Linux Audio

Check our new training course

Loading...
  1/*
  2 * RTC subsystem, base class
  3 *
  4 * Copyright (C) 2005 Tower Technologies
  5 * Author: Alessandro Zummo <a.zummo@towertech.it>
  6 *
  7 * class skeleton from drivers/hwmon/hwmon.c
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12*/
 13
 14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 15
 16#include <linux/module.h>
 17#include <linux/of.h>
 18#include <linux/rtc.h>
 19#include <linux/kdev_t.h>
 20#include <linux/idr.h>
 21#include <linux/slab.h>
 22#include <linux/workqueue.h>
 23
 24#include "rtc-core.h"
 25
 26
 27static DEFINE_IDA(rtc_ida);
 28struct class *rtc_class;
 29
 30static void rtc_device_release(struct device *dev)
 31{
 32	struct rtc_device *rtc = to_rtc_device(dev);
 33	ida_simple_remove(&rtc_ida, rtc->id);
 34	kfree(rtc);
 35}
 36
 37#ifdef CONFIG_RTC_HCTOSYS_DEVICE
 38/* Result of the last RTC to system clock attempt. */
 39int rtc_hctosys_ret = -ENODEV;
 40#endif
 41
 42#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
 43/*
 44 * On suspend(), measure the delta between one RTC and the
 45 * system's wall clock; restore it on resume().
 46 */
 47
 48static struct timespec64 old_rtc, old_system, old_delta;
 49
 50
 51static int rtc_suspend(struct device *dev)
 52{
 53	struct rtc_device	*rtc = to_rtc_device(dev);
 54	struct rtc_time		tm;
 55	struct timespec64	delta, delta_delta;
 56	int err;
 57
 58	if (timekeeping_rtc_skipsuspend())
 59		return 0;
 60
 61	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
 62		return 0;
 63
 64	/* snapshot the current RTC and system time at suspend*/
 65	err = rtc_read_time(rtc, &tm);
 66	if (err < 0) {
 67		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
 68		return 0;
 69	}
 70
 71	getnstimeofday64(&old_system);
 72	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
 73
 74
 75	/*
 76	 * To avoid drift caused by repeated suspend/resumes,
 77	 * which each can add ~1 second drift error,
 78	 * try to compensate so the difference in system time
 79	 * and rtc time stays close to constant.
 80	 */
 81	delta = timespec64_sub(old_system, old_rtc);
 82	delta_delta = timespec64_sub(delta, old_delta);
 83	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
 84		/*
 85		 * if delta_delta is too large, assume time correction
 86		 * has occured and set old_delta to the current delta.
 87		 */
 88		old_delta = delta;
 89	} else {
 90		/* Otherwise try to adjust old_system to compensate */
 91		old_system = timespec64_sub(old_system, delta_delta);
 92	}
 93
 94	return 0;
 95}
 96
 97static int rtc_resume(struct device *dev)
 98{
 99	struct rtc_device	*rtc = to_rtc_device(dev);
100	struct rtc_time		tm;
101	struct timespec64	new_system, new_rtc;
102	struct timespec64	sleep_time;
103	int err;
104
105	if (timekeeping_rtc_skipresume())
106		return 0;
107
108	rtc_hctosys_ret = -ENODEV;
109	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
110		return 0;
111
112	/* snapshot the current rtc and system time at resume */
113	getnstimeofday64(&new_system);
114	err = rtc_read_time(rtc, &tm);
115	if (err < 0) {
116		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
117		return 0;
118	}
119
120	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
121	new_rtc.tv_nsec = 0;
122
123	if (new_rtc.tv_sec < old_rtc.tv_sec) {
124		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
125		return 0;
126	}
127
128	/* calculate the RTC time delta (sleep time)*/
129	sleep_time = timespec64_sub(new_rtc, old_rtc);
130
131	/*
132	 * Since these RTC suspend/resume handlers are not called
133	 * at the very end of suspend or the start of resume,
134	 * some run-time may pass on either sides of the sleep time
135	 * so subtract kernel run-time between rtc_suspend to rtc_resume
136	 * to keep things accurate.
137	 */
138	sleep_time = timespec64_sub(sleep_time,
139			timespec64_sub(new_system, old_system));
140
141	if (sleep_time.tv_sec >= 0)
142		timekeeping_inject_sleeptime64(&sleep_time);
143	rtc_hctosys_ret = 0;
144	return 0;
145}
146
147static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
148#define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
149#else
150#define RTC_CLASS_DEV_PM_OPS	NULL
151#endif
152
153
154/**
155 * rtc_device_register - register w/ RTC class
156 * @dev: the device to register
157 *
158 * rtc_device_unregister() must be called when the class device is no
159 * longer needed.
160 *
161 * Returns the pointer to the new struct class device.
162 */
163struct rtc_device *rtc_device_register(const char *name, struct device *dev,
164					const struct rtc_class_ops *ops,
165					struct module *owner)
166{
167	struct rtc_device *rtc;
168	struct rtc_wkalrm alrm;
169	int of_id = -1, id = -1, err;
170
171	if (dev->of_node)
172		of_id = of_alias_get_id(dev->of_node, "rtc");
173	else if (dev->parent && dev->parent->of_node)
174		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
175
176	if (of_id >= 0) {
177		id = ida_simple_get(&rtc_ida, of_id, of_id + 1,
178				    GFP_KERNEL);
179		if (id < 0)
180			dev_warn(dev, "/aliases ID %d not available\n",
181				    of_id);
182	}
183
184	if (id < 0) {
185		id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
186		if (id < 0) {
187			err = id;
188			goto exit;
189		}
190	}
191
192	rtc = kzalloc(sizeof(struct rtc_device), GFP_KERNEL);
193	if (rtc == NULL) {
194		err = -ENOMEM;
195		goto exit_ida;
196	}
197
198	rtc->id = id;
199	rtc->ops = ops;
200	rtc->owner = owner;
201	rtc->irq_freq = 1;
202	rtc->max_user_freq = 64;
203	rtc->dev.parent = dev;
204	rtc->dev.class = rtc_class;
205	rtc->dev.groups = rtc_get_dev_attribute_groups();
206	rtc->dev.release = rtc_device_release;
207
208	mutex_init(&rtc->ops_lock);
209	spin_lock_init(&rtc->irq_lock);
210	spin_lock_init(&rtc->irq_task_lock);
211	init_waitqueue_head(&rtc->irq_queue);
212
213	/* Init timerqueue */
214	timerqueue_init_head(&rtc->timerqueue);
215	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
216	/* Init aie timer */
217	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, (void *)rtc);
218	/* Init uie timer */
219	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, (void *)rtc);
220	/* Init pie timer */
221	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
222	rtc->pie_timer.function = rtc_pie_update_irq;
223	rtc->pie_enabled = 0;
224
225	strlcpy(rtc->name, name, RTC_DEVICE_NAME_SIZE);
226	dev_set_name(&rtc->dev, "rtc%d", id);
227
228	/* Check to see if there is an ALARM already set in hw */
229	err = __rtc_read_alarm(rtc, &alrm);
230
231	if (!err && !rtc_valid_tm(&alrm.time))
232		rtc_initialize_alarm(rtc, &alrm);
233
234	rtc_dev_prepare(rtc);
235
236	err = device_register(&rtc->dev);
237	if (err) {
238		/* This will free both memory and the ID */
239		put_device(&rtc->dev);
240		goto exit;
241	}
242
243	rtc_dev_add_device(rtc);
244	rtc_proc_add_device(rtc);
245
246	dev_info(dev, "rtc core: registered %s as %s\n",
247			rtc->name, dev_name(&rtc->dev));
248
249	return rtc;
250
251exit_ida:
252	ida_simple_remove(&rtc_ida, id);
253
254exit:
255	dev_err(dev, "rtc core: unable to register %s, err = %d\n",
256			name, err);
257	return ERR_PTR(err);
258}
259EXPORT_SYMBOL_GPL(rtc_device_register);
260
261
262/**
263 * rtc_device_unregister - removes the previously registered RTC class device
264 *
265 * @rtc: the RTC class device to destroy
266 */
267void rtc_device_unregister(struct rtc_device *rtc)
268{
269	mutex_lock(&rtc->ops_lock);
270	/*
271	 * Remove innards of this RTC, then disable it, before
272	 * letting any rtc_class_open() users access it again
273	 */
274	rtc_dev_del_device(rtc);
275	rtc_proc_del_device(rtc);
276	device_del(&rtc->dev);
277	rtc->ops = NULL;
278	mutex_unlock(&rtc->ops_lock);
279	put_device(&rtc->dev);
280}
281EXPORT_SYMBOL_GPL(rtc_device_unregister);
282
283static void devm_rtc_device_release(struct device *dev, void *res)
284{
285	struct rtc_device *rtc = *(struct rtc_device **)res;
286
287	rtc_device_unregister(rtc);
288}
289
290static int devm_rtc_device_match(struct device *dev, void *res, void *data)
291{
292	struct rtc **r = res;
293
294	return *r == data;
295}
296
297/**
298 * devm_rtc_device_register - resource managed rtc_device_register()
299 * @dev: the device to register
300 * @name: the name of the device
301 * @ops: the rtc operations structure
302 * @owner: the module owner
303 *
304 * @return a struct rtc on success, or an ERR_PTR on error
305 *
306 * Managed rtc_device_register(). The rtc_device returned from this function
307 * are automatically freed on driver detach. See rtc_device_register()
308 * for more information.
309 */
310
311struct rtc_device *devm_rtc_device_register(struct device *dev,
312					const char *name,
313					const struct rtc_class_ops *ops,
314					struct module *owner)
315{
316	struct rtc_device **ptr, *rtc;
317
318	ptr = devres_alloc(devm_rtc_device_release, sizeof(*ptr), GFP_KERNEL);
319	if (!ptr)
320		return ERR_PTR(-ENOMEM);
321
322	rtc = rtc_device_register(name, dev, ops, owner);
323	if (!IS_ERR(rtc)) {
324		*ptr = rtc;
325		devres_add(dev, ptr);
326	} else {
327		devres_free(ptr);
328	}
329
330	return rtc;
331}
332EXPORT_SYMBOL_GPL(devm_rtc_device_register);
333
334/**
335 * devm_rtc_device_unregister - resource managed devm_rtc_device_unregister()
336 * @dev: the device to unregister
337 * @rtc: the RTC class device to unregister
338 *
339 * Deallocated a rtc allocated with devm_rtc_device_register(). Normally this
340 * function will not need to be called and the resource management code will
341 * ensure that the resource is freed.
342 */
343void devm_rtc_device_unregister(struct device *dev, struct rtc_device *rtc)
344{
345	int rc;
346
347	rc = devres_release(dev, devm_rtc_device_release,
348				devm_rtc_device_match, rtc);
349	WARN_ON(rc);
350}
351EXPORT_SYMBOL_GPL(devm_rtc_device_unregister);
352
353static int __init rtc_init(void)
354{
355	rtc_class = class_create(THIS_MODULE, "rtc");
356	if (IS_ERR(rtc_class)) {
357		pr_err("couldn't create class\n");
358		return PTR_ERR(rtc_class);
359	}
360	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
361	rtc_dev_init();
362	return 0;
363}
364subsys_initcall(rtc_init);
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * RTC subsystem, base class
  4 *
  5 * Copyright (C) 2005 Tower Technologies
  6 * Author: Alessandro Zummo <a.zummo@towertech.it>
  7 *
  8 * class skeleton from drivers/hwmon/hwmon.c
  9 */
 10
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/module.h>
 14#include <linux/of.h>
 15#include <linux/rtc.h>
 16#include <linux/kdev_t.h>
 17#include <linux/idr.h>
 18#include <linux/slab.h>
 19#include <linux/workqueue.h>
 20
 21#include "rtc-core.h"
 22
 23static DEFINE_IDA(rtc_ida);
 24struct class *rtc_class;
 25
 26static void rtc_device_release(struct device *dev)
 27{
 28	struct rtc_device *rtc = to_rtc_device(dev);
 29
 30	ida_simple_remove(&rtc_ida, rtc->id);
 31	kfree(rtc);
 32}
 33
 34#ifdef CONFIG_RTC_HCTOSYS_DEVICE
 35/* Result of the last RTC to system clock attempt. */
 36int rtc_hctosys_ret = -ENODEV;
 37
 38/* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
 39 * whether it stores the most close value or the value with partial
 40 * seconds truncated. However, it is important that we use it to store
 41 * the truncated value. This is because otherwise it is necessary,
 42 * in an rtc sync function, to read both xtime.tv_sec and
 43 * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
 44 * of >32bits is not possible. So storing the most close value would
 45 * slow down the sync API. So here we have the truncated value and
 46 * the best guess is to add 0.5s.
 47 */
 48
 49static void rtc_hctosys(struct rtc_device *rtc)
 50{
 51	int err;
 52	struct rtc_time tm;
 53	struct timespec64 tv64 = {
 54		.tv_nsec = NSEC_PER_SEC >> 1,
 55	};
 56
 57	err = rtc_read_time(rtc, &tm);
 58	if (err) {
 59		dev_err(rtc->dev.parent,
 60			"hctosys: unable to read the hardware clock\n");
 61		goto err_read;
 62	}
 63
 64	tv64.tv_sec = rtc_tm_to_time64(&tm);
 65
 66#if BITS_PER_LONG == 32
 67	if (tv64.tv_sec > INT_MAX) {
 68		err = -ERANGE;
 69		goto err_read;
 70	}
 71#endif
 72
 73	err = do_settimeofday64(&tv64);
 74
 75	dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
 76		 &tm, (long long)tv64.tv_sec);
 77
 78err_read:
 79	rtc_hctosys_ret = err;
 80}
 81#endif
 82
 83#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
 84/*
 85 * On suspend(), measure the delta between one RTC and the
 86 * system's wall clock; restore it on resume().
 87 */
 88
 89static struct timespec64 old_rtc, old_system, old_delta;
 90
 91static int rtc_suspend(struct device *dev)
 92{
 93	struct rtc_device	*rtc = to_rtc_device(dev);
 94	struct rtc_time		tm;
 95	struct timespec64	delta, delta_delta;
 96	int err;
 97
 98	if (timekeeping_rtc_skipsuspend())
 99		return 0;
100
101	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
102		return 0;
103
104	/* snapshot the current RTC and system time at suspend*/
105	err = rtc_read_time(rtc, &tm);
106	if (err < 0) {
107		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
108		return 0;
109	}
110
111	ktime_get_real_ts64(&old_system);
112	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
113
114	/*
115	 * To avoid drift caused by repeated suspend/resumes,
116	 * which each can add ~1 second drift error,
117	 * try to compensate so the difference in system time
118	 * and rtc time stays close to constant.
119	 */
120	delta = timespec64_sub(old_system, old_rtc);
121	delta_delta = timespec64_sub(delta, old_delta);
122	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
123		/*
124		 * if delta_delta is too large, assume time correction
125		 * has occurred and set old_delta to the current delta.
126		 */
127		old_delta = delta;
128	} else {
129		/* Otherwise try to adjust old_system to compensate */
130		old_system = timespec64_sub(old_system, delta_delta);
131	}
132
133	return 0;
134}
135
136static int rtc_resume(struct device *dev)
137{
138	struct rtc_device	*rtc = to_rtc_device(dev);
139	struct rtc_time		tm;
140	struct timespec64	new_system, new_rtc;
141	struct timespec64	sleep_time;
142	int err;
143
144	if (timekeeping_rtc_skipresume())
145		return 0;
146
147	rtc_hctosys_ret = -ENODEV;
148	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
149		return 0;
150
151	/* snapshot the current rtc and system time at resume */
152	ktime_get_real_ts64(&new_system);
153	err = rtc_read_time(rtc, &tm);
154	if (err < 0) {
155		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
156		return 0;
157	}
158
159	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
160	new_rtc.tv_nsec = 0;
161
162	if (new_rtc.tv_sec < old_rtc.tv_sec) {
163		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
164		return 0;
165	}
166
167	/* calculate the RTC time delta (sleep time)*/
168	sleep_time = timespec64_sub(new_rtc, old_rtc);
169
170	/*
171	 * Since these RTC suspend/resume handlers are not called
172	 * at the very end of suspend or the start of resume,
173	 * some run-time may pass on either sides of the sleep time
174	 * so subtract kernel run-time between rtc_suspend to rtc_resume
175	 * to keep things accurate.
176	 */
177	sleep_time = timespec64_sub(sleep_time,
178				    timespec64_sub(new_system, old_system));
179
180	if (sleep_time.tv_sec >= 0)
181		timekeeping_inject_sleeptime64(&sleep_time);
182	rtc_hctosys_ret = 0;
183	return 0;
184}
185
186static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
187#define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
188#else
189#define RTC_CLASS_DEV_PM_OPS	NULL
190#endif
191
192/* Ensure the caller will set the id before releasing the device */
193static struct rtc_device *rtc_allocate_device(void)
194{
195	struct rtc_device *rtc;
196
197	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
198	if (!rtc)
199		return NULL;
200
201	device_initialize(&rtc->dev);
202
203	/* Drivers can revise this default after allocating the device. */
204	rtc->set_offset_nsec =  NSEC_PER_SEC / 2;
205
206	rtc->irq_freq = 1;
207	rtc->max_user_freq = 64;
208	rtc->dev.class = rtc_class;
209	rtc->dev.groups = rtc_get_dev_attribute_groups();
210	rtc->dev.release = rtc_device_release;
211
212	mutex_init(&rtc->ops_lock);
213	spin_lock_init(&rtc->irq_lock);
214	init_waitqueue_head(&rtc->irq_queue);
215
216	/* Init timerqueue */
217	timerqueue_init_head(&rtc->timerqueue);
218	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
219	/* Init aie timer */
220	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
221	/* Init uie timer */
222	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
223	/* Init pie timer */
224	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
225	rtc->pie_timer.function = rtc_pie_update_irq;
226	rtc->pie_enabled = 0;
227
228	return rtc;
229}
230
231static int rtc_device_get_id(struct device *dev)
232{
233	int of_id = -1, id = -1;
234
235	if (dev->of_node)
236		of_id = of_alias_get_id(dev->of_node, "rtc");
237	else if (dev->parent && dev->parent->of_node)
238		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
239
240	if (of_id >= 0) {
241		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
242		if (id < 0)
243			dev_warn(dev, "/aliases ID %d not available\n", of_id);
244	}
245
246	if (id < 0)
247		id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
248
249	return id;
250}
251
252static void rtc_device_get_offset(struct rtc_device *rtc)
253{
254	time64_t range_secs;
255	u32 start_year;
256	int ret;
257
258	/*
259	 * If RTC driver did not implement the range of RTC hardware device,
260	 * then we can not expand the RTC range by adding or subtracting one
261	 * offset.
262	 */
263	if (rtc->range_min == rtc->range_max)
264		return;
265
266	ret = device_property_read_u32(rtc->dev.parent, "start-year",
267				       &start_year);
268	if (!ret) {
269		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
270		rtc->set_start_time = true;
271	}
272
273	/*
274	 * If user did not implement the start time for RTC driver, then no
275	 * need to expand the RTC range.
276	 */
277	if (!rtc->set_start_time)
278		return;
279
280	range_secs = rtc->range_max - rtc->range_min + 1;
281
282	/*
283	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
284	 * supported by RTC hardware or the maximum seconds of new expanded
285	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
286	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
287	 * RTC hardware will be mapped to start_secs by adding one offset, so
288	 * the offset seconds calculation formula should be:
289	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
290	 *
291	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
292	 * supported by RTC hardware, then there is one region is overlapped
293	 * between the original RTC hardware range and the new expanded range,
294	 * and this overlapped region do not need to be mapped into the new
295	 * expanded range due to it is valid for RTC device. So the minimum
296	 * seconds of RTC hardware (rtc->range_min) should be mapped to
297	 * rtc->range_max + 1, then the offset seconds formula should be:
298	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
299	 *
300	 * If the start_secs is less than the minimum seconds (rtc->range_min),
301	 * which is similar to case 2. So the start_secs should be mapped to
302	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
303	 * offset seconds formula should be:
304	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
305	 *
306	 * Otherwise the offset seconds should be 0.
307	 */
308	if (rtc->start_secs > rtc->range_max ||
309	    rtc->start_secs + range_secs - 1 < rtc->range_min)
310		rtc->offset_secs = rtc->start_secs - rtc->range_min;
311	else if (rtc->start_secs > rtc->range_min)
312		rtc->offset_secs = range_secs;
313	else if (rtc->start_secs < rtc->range_min)
314		rtc->offset_secs = -range_secs;
315	else
316		rtc->offset_secs = 0;
317}
318
319/**
320 * rtc_device_unregister - removes the previously registered RTC class device
321 *
322 * @rtc: the RTC class device to destroy
323 */
324static void rtc_device_unregister(struct rtc_device *rtc)
325{
326	mutex_lock(&rtc->ops_lock);
327	/*
328	 * Remove innards of this RTC, then disable it, before
329	 * letting any rtc_class_open() users access it again
330	 */
331	rtc_proc_del_device(rtc);
332	cdev_device_del(&rtc->char_dev, &rtc->dev);
333	rtc->ops = NULL;
334	mutex_unlock(&rtc->ops_lock);
335	put_device(&rtc->dev);
336}
337
338static void devm_rtc_release_device(struct device *dev, void *res)
339{
340	struct rtc_device *rtc = *(struct rtc_device **)res;
341
342	rtc_nvmem_unregister(rtc);
343
344	if (rtc->registered)
345		rtc_device_unregister(rtc);
346	else
347		put_device(&rtc->dev);
348}
349
350struct rtc_device *devm_rtc_allocate_device(struct device *dev)
351{
352	struct rtc_device **ptr, *rtc;
353	int id, err;
354
355	id = rtc_device_get_id(dev);
356	if (id < 0)
357		return ERR_PTR(id);
358
359	ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL);
360	if (!ptr) {
361		err = -ENOMEM;
362		goto exit_ida;
363	}
364
365	rtc = rtc_allocate_device();
366	if (!rtc) {
367		err = -ENOMEM;
368		goto exit_devres;
369	}
370
371	*ptr = rtc;
372	devres_add(dev, ptr);
373
374	rtc->id = id;
375	rtc->dev.parent = dev;
376	dev_set_name(&rtc->dev, "rtc%d", id);
377
378	return rtc;
379
380exit_devres:
381	devres_free(ptr);
382exit_ida:
383	ida_simple_remove(&rtc_ida, id);
384	return ERR_PTR(err);
385}
386EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
387
388int __rtc_register_device(struct module *owner, struct rtc_device *rtc)
389{
390	struct rtc_wkalrm alrm;
391	int err;
392
393	if (!rtc->ops) {
394		dev_dbg(&rtc->dev, "no ops set\n");
395		return -EINVAL;
396	}
397
398	rtc->owner = owner;
399	rtc_device_get_offset(rtc);
400
401	/* Check to see if there is an ALARM already set in hw */
402	err = __rtc_read_alarm(rtc, &alrm);
403	if (!err && !rtc_valid_tm(&alrm.time))
404		rtc_initialize_alarm(rtc, &alrm);
405
406	rtc_dev_prepare(rtc);
407
408	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
409	if (err)
410		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
411			 MAJOR(rtc->dev.devt), rtc->id);
412	else
413		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
414			MAJOR(rtc->dev.devt), rtc->id);
415
416	rtc_proc_add_device(rtc);
417
418	rtc->registered = true;
419	dev_info(rtc->dev.parent, "registered as %s\n",
420		 dev_name(&rtc->dev));
421
422#ifdef CONFIG_RTC_HCTOSYS_DEVICE
423	if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
424		rtc_hctosys(rtc);
425#endif
426
427	return 0;
428}
429EXPORT_SYMBOL_GPL(__rtc_register_device);
430
431/**
432 * devm_rtc_device_register - resource managed rtc_device_register()
433 * @dev: the device to register
434 * @name: the name of the device (unused)
435 * @ops: the rtc operations structure
436 * @owner: the module owner
437 *
438 * @return a struct rtc on success, or an ERR_PTR on error
439 *
440 * Managed rtc_device_register(). The rtc_device returned from this function
441 * are automatically freed on driver detach.
442 * This function is deprecated, use devm_rtc_allocate_device and
443 * rtc_register_device instead
444 */
445struct rtc_device *devm_rtc_device_register(struct device *dev,
446					    const char *name,
447					    const struct rtc_class_ops *ops,
448					    struct module *owner)
449{
450	struct rtc_device *rtc;
451	int err;
452
453	rtc = devm_rtc_allocate_device(dev);
454	if (IS_ERR(rtc))
455		return rtc;
456
457	rtc->ops = ops;
458
459	err = __rtc_register_device(owner, rtc);
460	if (err)
461		return ERR_PTR(err);
462
463	return rtc;
464}
465EXPORT_SYMBOL_GPL(devm_rtc_device_register);
466
467static int __init rtc_init(void)
468{
469	rtc_class = class_create(THIS_MODULE, "rtc");
470	if (IS_ERR(rtc_class)) {
471		pr_err("couldn't create class\n");
472		return PTR_ERR(rtc_class);
473	}
474	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
475	rtc_dev_init();
476	return 0;
477}
478subsys_initcall(rtc_init);