Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
 
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kmemcheck.h>
  28#include <linux/kasan.h>
  29#include <linux/module.h>
  30#include <linux/suspend.h>
  31#include <linux/pagevec.h>
  32#include <linux/blkdev.h>
  33#include <linux/slab.h>
  34#include <linux/ratelimit.h>
  35#include <linux/oom.h>
  36#include <linux/notifier.h>
  37#include <linux/topology.h>
  38#include <linux/sysctl.h>
  39#include <linux/cpu.h>
  40#include <linux/cpuset.h>
  41#include <linux/memory_hotplug.h>
  42#include <linux/nodemask.h>
  43#include <linux/vmalloc.h>
  44#include <linux/vmstat.h>
  45#include <linux/mempolicy.h>
  46#include <linux/memremap.h>
  47#include <linux/stop_machine.h>
 
  48#include <linux/sort.h>
  49#include <linux/pfn.h>
  50#include <linux/backing-dev.h>
  51#include <linux/fault-inject.h>
  52#include <linux/page-isolation.h>
  53#include <linux/page_ext.h>
  54#include <linux/debugobjects.h>
  55#include <linux/kmemleak.h>
  56#include <linux/compaction.h>
  57#include <trace/events/kmem.h>
 
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
 
  60#include <linux/migrate.h>
  61#include <linux/page_ext.h>
  62#include <linux/hugetlb.h>
  63#include <linux/sched/rt.h>
 
  64#include <linux/page_owner.h>
  65#include <linux/kthread.h>
  66
 
 
 
 
 
 
 
  67#include <asm/sections.h>
  68#include <asm/tlbflush.h>
  69#include <asm/div64.h>
  70#include "internal.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71
  72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  73static DEFINE_MUTEX(pcp_batch_high_lock);
  74#define MIN_PERCPU_PAGELIST_FRACTION	(8)
 
 
 
 
 
 
 
  75
  76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  77DEFINE_PER_CPU(int, numa_node);
  78EXPORT_PER_CPU_SYMBOL(numa_node);
  79#endif
  80
 
 
  81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  82/*
  83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  86 * defined in <linux/topology.h>.
  87 */
  88DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  90int _node_numa_mem_[MAX_NUMNODES];
 
 
 
 
 
 
 
 
 
 
 
 
  91#endif
  92
  93/*
  94 * Array of node states.
  95 */
  96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  97	[N_POSSIBLE] = NODE_MASK_ALL,
  98	[N_ONLINE] = { { [0] = 1UL } },
  99#ifndef CONFIG_NUMA
 100	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 101#ifdef CONFIG_HIGHMEM
 102	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 103#endif
 104#ifdef CONFIG_MOVABLE_NODE
 105	[N_MEMORY] = { { [0] = 1UL } },
 106#endif
 107	[N_CPU] = { { [0] = 1UL } },
 108#endif	/* NUMA */
 109};
 110EXPORT_SYMBOL(node_states);
 111
 112/* Protect totalram_pages and zone->managed_pages */
 113static DEFINE_SPINLOCK(managed_page_count_lock);
 114
 115unsigned long totalram_pages __read_mostly;
 116unsigned long totalreserve_pages __read_mostly;
 117unsigned long totalcma_pages __read_mostly;
 118
 119int percpu_pagelist_fraction;
 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121
 122/*
 123 * A cached value of the page's pageblock's migratetype, used when the page is
 124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 126 * Also the migratetype set in the page does not necessarily match the pcplist
 127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 128 * other index - this ensures that it will be put on the correct CMA freelist.
 129 */
 130static inline int get_pcppage_migratetype(struct page *page)
 131{
 132	return page->index;
 133}
 134
 135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 136{
 137	page->index = migratetype;
 138}
 139
 140#ifdef CONFIG_PM_SLEEP
 141/*
 142 * The following functions are used by the suspend/hibernate code to temporarily
 143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 144 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 147 * guaranteed not to run in parallel with that modification).
 
 148 */
 149
 150static gfp_t saved_gfp_mask;
 151
 152void pm_restore_gfp_mask(void)
 153{
 154	WARN_ON(!mutex_is_locked(&pm_mutex));
 155	if (saved_gfp_mask) {
 156		gfp_allowed_mask = saved_gfp_mask;
 157		saved_gfp_mask = 0;
 158	}
 159}
 160
 161void pm_restrict_gfp_mask(void)
 162{
 163	WARN_ON(!mutex_is_locked(&pm_mutex));
 164	WARN_ON(saved_gfp_mask);
 165	saved_gfp_mask = gfp_allowed_mask;
 166	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 167}
 168
 169bool pm_suspended_storage(void)
 170{
 171	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 172		return false;
 173	return true;
 174}
 175#endif /* CONFIG_PM_SLEEP */
 176
 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 178unsigned int pageblock_order __read_mostly;
 179#endif
 180
 181static void __free_pages_ok(struct page *page, unsigned int order);
 
 182
 183/*
 184 * results with 256, 32 in the lowmem_reserve sysctl:
 185 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 186 *	1G machine -> (16M dma, 784M normal, 224M high)
 187 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 188 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 189 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 190 *
 191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 192 * don't need any ZONE_NORMAL reservation
 193 */
 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
 195#ifdef CONFIG_ZONE_DMA
 196	 256,
 197#endif
 198#ifdef CONFIG_ZONE_DMA32
 199	 256,
 200#endif
 
 201#ifdef CONFIG_HIGHMEM
 202	 32,
 203#endif
 204	 32,
 205};
 206
 207EXPORT_SYMBOL(totalram_pages);
 208
 209static char * const zone_names[MAX_NR_ZONES] = {
 210#ifdef CONFIG_ZONE_DMA
 211	 "DMA",
 212#endif
 213#ifdef CONFIG_ZONE_DMA32
 214	 "DMA32",
 215#endif
 216	 "Normal",
 217#ifdef CONFIG_HIGHMEM
 218	 "HighMem",
 219#endif
 220	 "Movable",
 221#ifdef CONFIG_ZONE_DEVICE
 222	 "Device",
 223#endif
 224};
 225
 226char * const migratetype_names[MIGRATE_TYPES] = {
 227	"Unmovable",
 228	"Movable",
 229	"Reclaimable",
 230	"HighAtomic",
 231#ifdef CONFIG_CMA
 232	"CMA",
 233#endif
 234#ifdef CONFIG_MEMORY_ISOLATION
 235	"Isolate",
 236#endif
 237};
 238
 239compound_page_dtor * const compound_page_dtors[] = {
 240	NULL,
 241	free_compound_page,
 242#ifdef CONFIG_HUGETLB_PAGE
 243	free_huge_page,
 244#endif
 245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 246	free_transhuge_page,
 247#endif
 248};
 249
 250int min_free_kbytes = 1024;
 251int user_min_free_kbytes = -1;
 
 252int watermark_scale_factor = 10;
 253
 254static unsigned long __meminitdata nr_kernel_pages;
 255static unsigned long __meminitdata nr_all_pages;
 256static unsigned long __meminitdata dma_reserve;
 257
 258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 261static unsigned long __initdata required_kernelcore;
 262static unsigned long __initdata required_movablecore;
 263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 264static bool mirrored_kernelcore;
 
 265
 266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 267int movable_zone;
 268EXPORT_SYMBOL(movable_zone);
 269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 270
 271#if MAX_NUMNODES > 1
 272int nr_node_ids __read_mostly = MAX_NUMNODES;
 273int nr_online_nodes __read_mostly = 1;
 274EXPORT_SYMBOL(nr_node_ids);
 275EXPORT_SYMBOL(nr_online_nodes);
 276#endif
 277
 278int page_group_by_mobility_disabled __read_mostly;
 279
 280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 281static inline void reset_deferred_meminit(pg_data_t *pgdat)
 282{
 283	pgdat->first_deferred_pfn = ULONG_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284}
 285
 286/* Returns true if the struct page for the pfn is uninitialised */
 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 288{
 289	if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
 290		return true;
 291
 292	return false;
 293}
 294
 295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
 296{
 297	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
 298		return true;
 299
 300	return false;
 301}
 302
 303/*
 304 * Returns false when the remaining initialisation should be deferred until
 305 * later in the boot cycle when it can be parallelised.
 306 */
 307static inline bool update_defer_init(pg_data_t *pgdat,
 308				unsigned long pfn, unsigned long zone_end,
 309				unsigned long *nr_initialised)
 310{
 311	unsigned long max_initialise;
 312
 313	/* Always populate low zones for address-contrained allocations */
 314	if (zone_end < pgdat_end_pfn(pgdat))
 315		return true;
 316	/*
 317	 * Initialise at least 2G of a node but also take into account that
 318	 * two large system hashes that can take up 1GB for 0.25TB/node.
 319	 */
 320	max_initialise = max(2UL << (30 - PAGE_SHIFT),
 321		(pgdat->node_spanned_pages >> 8));
 
 
 322
 323	(*nr_initialised)++;
 324	if ((*nr_initialised > max_initialise) &&
 325	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 326		pgdat->first_deferred_pfn = pfn;
 327		return false;
 328	}
 329
 330	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 331}
 332#else
 333static inline void reset_deferred_meminit(pg_data_t *pgdat)
 334{
 
 
 
 335}
 336
 337static inline bool early_page_uninitialised(unsigned long pfn)
 338{
 339	return false;
 340}
 341
 342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
 343{
 344	return false;
 345}
 
 346
 347static inline bool update_defer_init(pg_data_t *pgdat,
 348				unsigned long pfn, unsigned long zone_end,
 349				unsigned long *nr_initialised)
 350{
 351	return true;
 
 
 
 
 352}
 353#endif
 354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355
 356void set_pageblock_migratetype(struct page *page, int migratetype)
 357{
 358	if (unlikely(page_group_by_mobility_disabled &&
 359		     migratetype < MIGRATE_PCPTYPES))
 360		migratetype = MIGRATE_UNMOVABLE;
 361
 362	set_pageblock_flags_group(page, (unsigned long)migratetype,
 363					PB_migrate, PB_migrate_end);
 364}
 365
 366#ifdef CONFIG_DEBUG_VM
 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 368{
 369	int ret = 0;
 370	unsigned seq;
 371	unsigned long pfn = page_to_pfn(page);
 372	unsigned long sp, start_pfn;
 373
 374	do {
 375		seq = zone_span_seqbegin(zone);
 376		start_pfn = zone->zone_start_pfn;
 377		sp = zone->spanned_pages;
 378		if (!zone_spans_pfn(zone, pfn))
 379			ret = 1;
 380	} while (zone_span_seqretry(zone, seq));
 381
 382	if (ret)
 383		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 384			pfn, zone_to_nid(zone), zone->name,
 385			start_pfn, start_pfn + sp);
 386
 387	return ret;
 388}
 389
 390static int page_is_consistent(struct zone *zone, struct page *page)
 391{
 392	if (!pfn_valid_within(page_to_pfn(page)))
 393		return 0;
 394	if (zone != page_zone(page))
 395		return 0;
 396
 397	return 1;
 398}
 399/*
 400 * Temporary debugging check for pages not lying within a given zone.
 401 */
 402static int bad_range(struct zone *zone, struct page *page)
 403{
 404	if (page_outside_zone_boundaries(zone, page))
 405		return 1;
 406	if (!page_is_consistent(zone, page))
 407		return 1;
 408
 409	return 0;
 410}
 411#else
 412static inline int bad_range(struct zone *zone, struct page *page)
 413{
 414	return 0;
 415}
 416#endif
 417
 418static void bad_page(struct page *page, const char *reason,
 419		unsigned long bad_flags)
 420{
 421	static unsigned long resume;
 422	static unsigned long nr_shown;
 423	static unsigned long nr_unshown;
 424
 425	/* Don't complain about poisoned pages */
 426	if (PageHWPoison(page)) {
 427		page_mapcount_reset(page); /* remove PageBuddy */
 428		return;
 429	}
 430
 431	/*
 432	 * Allow a burst of 60 reports, then keep quiet for that minute;
 433	 * or allow a steady drip of one report per second.
 434	 */
 435	if (nr_shown == 60) {
 436		if (time_before(jiffies, resume)) {
 437			nr_unshown++;
 438			goto out;
 439		}
 440		if (nr_unshown) {
 441			pr_alert(
 442			      "BUG: Bad page state: %lu messages suppressed\n",
 443				nr_unshown);
 444			nr_unshown = 0;
 445		}
 446		nr_shown = 0;
 447	}
 448	if (nr_shown++ == 0)
 449		resume = jiffies + 60 * HZ;
 450
 451	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 452		current->comm, page_to_pfn(page));
 453	__dump_page(page, reason);
 454	bad_flags &= page->flags;
 455	if (bad_flags)
 456		pr_alert("bad because of flags: %#lx(%pGp)\n",
 457						bad_flags, &bad_flags);
 458	dump_page_owner(page);
 459
 460	print_modules();
 461	dump_stack();
 462out:
 463	/* Leave bad fields for debug, except PageBuddy could make trouble */
 464	page_mapcount_reset(page); /* remove PageBuddy */
 465	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 466}
 467
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468/*
 469 * Higher-order pages are called "compound pages".  They are structured thusly:
 470 *
 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 472 *
 473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 475 *
 476 * The first tail page's ->compound_dtor holds the offset in array of compound
 477 * page destructors. See compound_page_dtors.
 478 *
 479 * The first tail page's ->compound_order holds the order of allocation.
 480 * This usage means that zero-order pages may not be compound.
 481 */
 482
 483void free_compound_page(struct page *page)
 484{
 485	__free_pages_ok(page, compound_order(page));
 
 486}
 487
 488void prep_compound_page(struct page *page, unsigned int order)
 489{
 490	int i;
 491	int nr_pages = 1 << order;
 492
 493	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 494	set_compound_order(page, order);
 495	__SetPageHead(page);
 496	for (i = 1; i < nr_pages; i++) {
 497		struct page *p = page + i;
 498		set_page_count(p, 0);
 499		p->mapping = TAIL_MAPPING;
 500		set_compound_head(p, page);
 501	}
 
 
 
 502	atomic_set(compound_mapcount_ptr(page), -1);
 
 
 503}
 504
 505#ifdef CONFIG_DEBUG_PAGEALLOC
 506unsigned int _debug_guardpage_minorder;
 507bool _debug_pagealloc_enabled __read_mostly
 
 508			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 
 
 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
 510bool _debug_guardpage_enabled __read_mostly;
 
 511
 512static int __init early_debug_pagealloc(char *buf)
 513{
 514	if (!buf)
 515		return -EINVAL;
 516
 517	if (strcmp(buf, "on") == 0)
 518		_debug_pagealloc_enabled = true;
 519
 520	if (strcmp(buf, "off") == 0)
 521		_debug_pagealloc_enabled = false;
 522
 523	return 0;
 524}
 525early_param("debug_pagealloc", early_debug_pagealloc);
 526
 527static bool need_debug_guardpage(void)
 528{
 529	/* If we don't use debug_pagealloc, we don't need guard page */
 530	if (!debug_pagealloc_enabled())
 531		return false;
 532
 533	return true;
 534}
 535
 536static void init_debug_guardpage(void)
 537{
 538	if (!debug_pagealloc_enabled())
 539		return;
 540
 541	_debug_guardpage_enabled = true;
 542}
 543
 544struct page_ext_operations debug_guardpage_ops = {
 545	.need = need_debug_guardpage,
 546	.init = init_debug_guardpage,
 547};
 548
 549static int __init debug_guardpage_minorder_setup(char *buf)
 550{
 551	unsigned long res;
 552
 553	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 554		pr_err("Bad debug_guardpage_minorder value\n");
 555		return 0;
 556	}
 557	_debug_guardpage_minorder = res;
 558	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 559	return 0;
 560}
 561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
 562
 563static inline void set_page_guard(struct zone *zone, struct page *page,
 564				unsigned int order, int migratetype)
 565{
 566	struct page_ext *page_ext;
 567
 568	if (!debug_guardpage_enabled())
 569		return;
 570
 571	page_ext = lookup_page_ext(page);
 572	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 573
 
 574	INIT_LIST_HEAD(&page->lru);
 575	set_page_private(page, order);
 576	/* Guard pages are not available for any usage */
 577	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 
 
 578}
 579
 580static inline void clear_page_guard(struct zone *zone, struct page *page,
 581				unsigned int order, int migratetype)
 582{
 583	struct page_ext *page_ext;
 584
 585	if (!debug_guardpage_enabled())
 586		return;
 587
 588	page_ext = lookup_page_ext(page);
 589	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 590
 591	set_page_private(page, 0);
 592	if (!is_migrate_isolate(migratetype))
 593		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 594}
 595#else
 596struct page_ext_operations debug_guardpage_ops = { NULL, };
 597static inline void set_page_guard(struct zone *zone, struct page *page,
 598				unsigned int order, int migratetype) {}
 599static inline void clear_page_guard(struct zone *zone, struct page *page,
 600				unsigned int order, int migratetype) {}
 601#endif
 602
 603static inline void set_page_order(struct page *page, unsigned int order)
 
 
 
 
 
 
 604{
 605	set_page_private(page, order);
 606	__SetPageBuddy(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607}
 608
 609static inline void rmv_page_order(struct page *page)
 610{
 611	__ClearPageBuddy(page);
 612	set_page_private(page, 0);
 613}
 614
 615/*
 616 * This function checks whether a page is free && is the buddy
 617 * we can do coalesce a page and its buddy if
 618 * (a) the buddy is not in a hole &&
 619 * (b) the buddy is in the buddy system &&
 620 * (c) a page and its buddy have the same order &&
 621 * (d) a page and its buddy are in the same zone.
 622 *
 623 * For recording whether a page is in the buddy system, we set ->_mapcount
 624 * PAGE_BUDDY_MAPCOUNT_VALUE.
 625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 626 * serialized by zone->lock.
 627 *
 628 * For recording page's order, we use page_private(page).
 629 */
 630static inline int page_is_buddy(struct page *page, struct page *buddy,
 631							unsigned int order)
 632{
 633	if (!pfn_valid_within(page_to_pfn(buddy)))
 634		return 0;
 635
 636	if (page_is_guard(buddy) && page_order(buddy) == order) {
 637		if (page_zone_id(page) != page_zone_id(buddy))
 638			return 0;
 639
 640		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 
 
 
 
 641
 642		return 1;
 643	}
 644
 645	if (PageBuddy(buddy) && page_order(buddy) == order) {
 646		/*
 647		 * zone check is done late to avoid uselessly
 648		 * calculating zone/node ids for pages that could
 649		 * never merge.
 650		 */
 651		if (page_zone_id(page) != page_zone_id(buddy))
 652			return 0;
 653
 654		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 
 
 655
 656		return 1;
 657	}
 658	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659}
 660
 661/*
 662 * Freeing function for a buddy system allocator.
 663 *
 664 * The concept of a buddy system is to maintain direct-mapped table
 665 * (containing bit values) for memory blocks of various "orders".
 666 * The bottom level table contains the map for the smallest allocatable
 667 * units of memory (here, pages), and each level above it describes
 668 * pairs of units from the levels below, hence, "buddies".
 669 * At a high level, all that happens here is marking the table entry
 670 * at the bottom level available, and propagating the changes upward
 671 * as necessary, plus some accounting needed to play nicely with other
 672 * parts of the VM system.
 673 * At each level, we keep a list of pages, which are heads of continuous
 674 * free pages of length of (1 << order) and marked with _mapcount
 675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 676 * field.
 677 * So when we are allocating or freeing one, we can derive the state of the
 678 * other.  That is, if we allocate a small block, and both were
 679 * free, the remainder of the region must be split into blocks.
 680 * If a block is freed, and its buddy is also free, then this
 681 * triggers coalescing into a block of larger size.
 682 *
 683 * -- nyc
 684 */
 685
 686static inline void __free_one_page(struct page *page,
 687		unsigned long pfn,
 688		struct zone *zone, unsigned int order,
 689		int migratetype)
 690{
 691	unsigned long page_idx;
 692	unsigned long combined_idx;
 693	unsigned long uninitialized_var(buddy_idx);
 694	struct page *buddy;
 695	unsigned int max_order;
 
 
 696
 697	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 698
 699	VM_BUG_ON(!zone_is_initialized(zone));
 700	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 701
 702	VM_BUG_ON(migratetype == -1);
 703	if (likely(!is_migrate_isolate(migratetype)))
 704		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 705
 706	page_idx = pfn & ((1 << MAX_ORDER) - 1);
 707
 708	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
 709	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 710
 711continue_merging:
 712	while (order < max_order - 1) {
 713		buddy_idx = __find_buddy_index(page_idx, order);
 714		buddy = page + (buddy_idx - page_idx);
 
 
 
 
 
 
 
 
 715		if (!page_is_buddy(page, buddy, order))
 716			goto done_merging;
 717		/*
 718		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 719		 * merge with it and move up one order.
 720		 */
 721		if (page_is_guard(buddy)) {
 722			clear_page_guard(zone, buddy, order, migratetype);
 723		} else {
 724			list_del(&buddy->lru);
 725			zone->free_area[order].nr_free--;
 726			rmv_page_order(buddy);
 727		}
 728		combined_idx = buddy_idx & page_idx;
 729		page = page + (combined_idx - page_idx);
 730		page_idx = combined_idx;
 731		order++;
 732	}
 733	if (max_order < MAX_ORDER) {
 734		/* If we are here, it means order is >= pageblock_order.
 735		 * We want to prevent merge between freepages on isolate
 736		 * pageblock and normal pageblock. Without this, pageblock
 737		 * isolation could cause incorrect freepage or CMA accounting.
 738		 *
 739		 * We don't want to hit this code for the more frequent
 740		 * low-order merging.
 741		 */
 742		if (unlikely(has_isolate_pageblock(zone))) {
 743			int buddy_mt;
 744
 745			buddy_idx = __find_buddy_index(page_idx, order);
 746			buddy = page + (buddy_idx - page_idx);
 747			buddy_mt = get_pageblock_migratetype(buddy);
 748
 749			if (migratetype != buddy_mt
 750					&& (is_migrate_isolate(migratetype) ||
 751						is_migrate_isolate(buddy_mt)))
 752				goto done_merging;
 753		}
 754		max_order++;
 755		goto continue_merging;
 756	}
 757
 758done_merging:
 759	set_page_order(page, order);
 760
 761	/*
 762	 * If this is not the largest possible page, check if the buddy
 763	 * of the next-highest order is free. If it is, it's possible
 764	 * that pages are being freed that will coalesce soon. In case,
 765	 * that is happening, add the free page to the tail of the list
 766	 * so it's less likely to be used soon and more likely to be merged
 767	 * as a higher order page
 768	 */
 769	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
 770		struct page *higher_page, *higher_buddy;
 771		combined_idx = buddy_idx & page_idx;
 772		higher_page = page + (combined_idx - page_idx);
 773		buddy_idx = __find_buddy_index(combined_idx, order + 1);
 774		higher_buddy = higher_page + (buddy_idx - combined_idx);
 775		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
 776			list_add_tail(&page->lru,
 777				&zone->free_area[order].free_list[migratetype]);
 778			goto out;
 779		}
 780	}
 781
 782	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 783out:
 784	zone->free_area[order].nr_free++;
 
 
 
 
 
 785}
 786
 787static inline int free_pages_check(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788{
 789	const char *bad_reason = NULL;
 790	unsigned long bad_flags = 0;
 791
 792	if (unlikely(atomic_read(&page->_mapcount) != -1))
 793		bad_reason = "nonzero mapcount";
 794	if (unlikely(page->mapping != NULL))
 795		bad_reason = "non-NULL mapping";
 796	if (unlikely(page_ref_count(page) != 0))
 797		bad_reason = "nonzero _count";
 798	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 799		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 800		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 
 
 801	}
 802#ifdef CONFIG_MEMCG
 803	if (unlikely(page->mem_cgroup))
 804		bad_reason = "page still charged to cgroup";
 805#endif
 806	if (unlikely(bad_reason)) {
 807		bad_page(page, bad_reason, bad_flags);
 808		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810	page_cpupid_reset_last(page);
 811	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
 812		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 813	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814}
 815
 816/*
 817 * Frees a number of pages from the PCP lists
 818 * Assumes all pages on list are in same zone, and of same order.
 819 * count is the number of pages to free.
 820 *
 821 * If the zone was previously in an "all pages pinned" state then look to
 822 * see if this freeing clears that state.
 823 *
 824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 825 * pinned" detection logic.
 826 */
 827static void free_pcppages_bulk(struct zone *zone, int count,
 828					struct per_cpu_pages *pcp)
 829{
 830	int migratetype = 0;
 831	int batch_free = 0;
 832	int to_free = count;
 833	unsigned long nr_scanned;
 834
 835	spin_lock(&zone->lock);
 836	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
 837	if (nr_scanned)
 838		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
 839
 840	while (to_free) {
 841		struct page *page;
 
 
 
 
 842		struct list_head *list;
 843
 844		/*
 845		 * Remove pages from lists in a round-robin fashion. A
 846		 * batch_free count is maintained that is incremented when an
 847		 * empty list is encountered.  This is so more pages are freed
 848		 * off fuller lists instead of spinning excessively around empty
 849		 * lists
 850		 */
 851		do {
 852			batch_free++;
 853			if (++migratetype == MIGRATE_PCPTYPES)
 854				migratetype = 0;
 855			list = &pcp->lists[migratetype];
 856		} while (list_empty(list));
 857
 858		/* This is the only non-empty list. Free them all. */
 859		if (batch_free == MIGRATE_PCPTYPES)
 860			batch_free = to_free;
 861
 
 
 862		do {
 863			int mt;	/* migratetype of the to-be-freed page */
 864
 865			page = list_last_entry(list, struct page, lru);
 866			/* must delete as __free_one_page list manipulates */
 867			list_del(&page->lru);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868
 869			mt = get_pcppage_migratetype(page);
 870			/* MIGRATE_ISOLATE page should not go to pcplists */
 871			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
 872			/* Pageblock could have been isolated meanwhile */
 873			if (unlikely(has_isolate_pageblock(zone)))
 874				mt = get_pageblock_migratetype(page);
 875
 876			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
 877			trace_mm_page_pcpu_drain(page, 0, mt);
 878		} while (--to_free && --batch_free && !list_empty(list));
 879	}
 880	spin_unlock(&zone->lock);
 881}
 882
 883static void free_one_page(struct zone *zone,
 884				struct page *page, unsigned long pfn,
 885				unsigned int order,
 886				int migratetype)
 887{
 888	unsigned long nr_scanned;
 889	spin_lock(&zone->lock);
 890	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
 891	if (nr_scanned)
 892		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
 893
 
 894	if (unlikely(has_isolate_pageblock(zone) ||
 895		is_migrate_isolate(migratetype))) {
 896		migratetype = get_pfnblock_migratetype(page, pfn);
 897	}
 898	__free_one_page(page, pfn, zone, order, migratetype);
 899	spin_unlock(&zone->lock);
 900}
 901
 902static int free_tail_pages_check(struct page *head_page, struct page *page)
 903{
 904	int ret = 1;
 905
 906	/*
 907	 * We rely page->lru.next never has bit 0 set, unless the page
 908	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 909	 */
 910	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 911
 912	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
 913		ret = 0;
 914		goto out;
 915	}
 916	switch (page - head_page) {
 917	case 1:
 918		/* the first tail page: ->mapping is compound_mapcount() */
 919		if (unlikely(compound_mapcount(page))) {
 920			bad_page(page, "nonzero compound_mapcount", 0);
 921			goto out;
 922		}
 923		break;
 924	case 2:
 925		/*
 926		 * the second tail page: ->mapping is
 927		 * page_deferred_list().next -- ignore value.
 928		 */
 929		break;
 930	default:
 931		if (page->mapping != TAIL_MAPPING) {
 932			bad_page(page, "corrupted mapping in tail page", 0);
 933			goto out;
 934		}
 935		break;
 936	}
 937	if (unlikely(!PageTail(page))) {
 938		bad_page(page, "PageTail not set", 0);
 939		goto out;
 940	}
 941	if (unlikely(compound_head(page) != head_page)) {
 942		bad_page(page, "compound_head not consistent", 0);
 943		goto out;
 944	}
 945	ret = 0;
 946out:
 947	page->mapping = NULL;
 948	clear_compound_head(page);
 949	return ret;
 950}
 951
 952static void __meminit __init_single_page(struct page *page, unsigned long pfn,
 953				unsigned long zone, int nid)
 954{
 
 955	set_page_links(page, zone, nid, pfn);
 956	init_page_count(page);
 957	page_mapcount_reset(page);
 958	page_cpupid_reset_last(page);
 
 959
 960	INIT_LIST_HEAD(&page->lru);
 961#ifdef WANT_PAGE_VIRTUAL
 962	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
 963	if (!is_highmem_idx(zone))
 964		set_page_address(page, __va(pfn << PAGE_SHIFT));
 965#endif
 966}
 967
 968static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
 969					int nid)
 970{
 971	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
 972}
 973
 974#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 975static void init_reserved_page(unsigned long pfn)
 976{
 977	pg_data_t *pgdat;
 978	int nid, zid;
 979
 980	if (!early_page_uninitialised(pfn))
 981		return;
 982
 983	nid = early_pfn_to_nid(pfn);
 984	pgdat = NODE_DATA(nid);
 985
 986	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 987		struct zone *zone = &pgdat->node_zones[zid];
 988
 989		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
 990			break;
 991	}
 992	__init_single_pfn(pfn, zid, nid);
 993}
 994#else
 995static inline void init_reserved_page(unsigned long pfn)
 996{
 997}
 998#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 999
1000/*
1001 * Initialised pages do not have PageReserved set. This function is
1002 * called for each range allocated by the bootmem allocator and
1003 * marks the pages PageReserved. The remaining valid pages are later
1004 * sent to the buddy page allocator.
1005 */
1006void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
1007{
1008	unsigned long start_pfn = PFN_DOWN(start);
1009	unsigned long end_pfn = PFN_UP(end);
1010
1011	for (; start_pfn < end_pfn; start_pfn++) {
1012		if (pfn_valid(start_pfn)) {
1013			struct page *page = pfn_to_page(start_pfn);
1014
1015			init_reserved_page(start_pfn);
1016
1017			/* Avoid false-positive PageTail() */
1018			INIT_LIST_HEAD(&page->lru);
1019
1020			SetPageReserved(page);
 
 
 
 
 
1021		}
1022	}
1023}
1024
1025static bool free_pages_prepare(struct page *page, unsigned int order)
1026{
1027	bool compound = PageCompound(page);
1028	int i, bad = 0;
1029
1030	VM_BUG_ON_PAGE(PageTail(page), page);
1031	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1032
1033	trace_mm_page_free(page, order);
1034	kmemcheck_free_shadow(page, order);
1035	kasan_free_pages(page, order);
1036
1037	if (PageAnon(page))
1038		page->mapping = NULL;
1039	bad += free_pages_check(page);
1040	for (i = 1; i < (1 << order); i++) {
1041		if (compound)
1042			bad += free_tail_pages_check(page, page + i);
1043		bad += free_pages_check(page + i);
1044	}
1045	if (bad)
1046		return false;
1047
1048	reset_page_owner(page, order);
1049
1050	if (!PageHighMem(page)) {
1051		debug_check_no_locks_freed(page_address(page),
1052					   PAGE_SIZE << order);
1053		debug_check_no_obj_freed(page_address(page),
1054					   PAGE_SIZE << order);
1055	}
1056	arch_free_page(page, order);
1057	kernel_poison_pages(page, 1 << order, 0);
1058	kernel_map_pages(page, 1 << order, 0);
1059
1060	return true;
1061}
1062
1063static void __free_pages_ok(struct page *page, unsigned int order)
1064{
1065	unsigned long flags;
1066	int migratetype;
1067	unsigned long pfn = page_to_pfn(page);
 
1068
1069	if (!free_pages_prepare(page, order))
1070		return;
1071
1072	migratetype = get_pfnblock_migratetype(page, pfn);
1073	local_irq_save(flags);
 
 
 
 
 
 
 
 
1074	__count_vm_events(PGFREE, 1 << order);
1075	free_one_page(page_zone(page), page, pfn, order, migratetype);
1076	local_irq_restore(flags);
1077}
1078
1079static void __init __free_pages_boot_core(struct page *page,
1080					unsigned long pfn, unsigned int order)
1081{
1082	unsigned int nr_pages = 1 << order;
1083	struct page *p = page;
1084	unsigned int loop;
1085
 
 
 
 
 
1086	prefetchw(p);
1087	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1088		prefetchw(p + 1);
1089		__ClearPageReserved(p);
1090		set_page_count(p, 0);
1091	}
1092	__ClearPageReserved(p);
1093	set_page_count(p, 0);
1094
1095	page_zone(page)->managed_pages += nr_pages;
1096	set_page_refcounted(page);
1097	__free_pages(page, order);
 
 
 
 
1098}
1099
1100#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1101	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
 
 
 
 
 
 
 
 
 
 
1102
1103static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1104
1105int __meminit early_pfn_to_nid(unsigned long pfn)
 
 
 
 
1106{
1107	static DEFINE_SPINLOCK(early_pfn_lock);
1108	int nid;
1109
1110	spin_lock(&early_pfn_lock);
1111	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1112	if (nid < 0)
1113		nid = 0;
1114	spin_unlock(&early_pfn_lock);
 
 
 
 
1115
1116	return nid;
1117}
1118#endif
1119
1120#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1121static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1122					struct mminit_pfnnid_cache *state)
1123{
 
1124	int nid;
1125
1126	nid = __early_pfn_to_nid(pfn, state);
1127	if (nid >= 0 && nid != node)
1128		return false;
1129	return true;
1130}
1131
1132/* Only safe to use early in boot when initialisation is single-threaded */
1133static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1134{
1135	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1136}
1137
1138#else
1139
1140static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1141{
1142	return true;
1143}
1144static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1145					struct mminit_pfnnid_cache *state)
1146{
1147	return true;
1148}
1149#endif
1150
1151
1152void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1153							unsigned int order)
1154{
1155	if (early_page_uninitialised(pfn))
1156		return;
1157	return __free_pages_boot_core(page, pfn, order);
1158}
1159
1160/*
1161 * Check that the whole (or subset of) a pageblock given by the interval of
1162 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1163 * with the migration of free compaction scanner. The scanners then need to
1164 * use only pfn_valid_within() check for arches that allow holes within
1165 * pageblocks.
1166 *
1167 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1168 *
1169 * It's possible on some configurations to have a setup like node0 node1 node0
1170 * i.e. it's possible that all pages within a zones range of pages do not
1171 * belong to a single zone. We assume that a border between node0 and node1
1172 * can occur within a single pageblock, but not a node0 node1 node0
1173 * interleaving within a single pageblock. It is therefore sufficient to check
1174 * the first and last page of a pageblock and avoid checking each individual
1175 * page in a pageblock.
1176 */
1177struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1178				     unsigned long end_pfn, struct zone *zone)
1179{
1180	struct page *start_page;
1181	struct page *end_page;
1182
1183	/* end_pfn is one past the range we are checking */
1184	end_pfn--;
1185
1186	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1187		return NULL;
1188
1189	start_page = pfn_to_page(start_pfn);
 
 
1190
1191	if (page_zone(start_page) != zone)
1192		return NULL;
1193
1194	end_page = pfn_to_page(end_pfn);
1195
1196	/* This gives a shorter code than deriving page_zone(end_page) */
1197	if (page_zone_id(start_page) != page_zone_id(end_page))
1198		return NULL;
1199
1200	return start_page;
1201}
1202
1203void set_zone_contiguous(struct zone *zone)
1204{
1205	unsigned long block_start_pfn = zone->zone_start_pfn;
1206	unsigned long block_end_pfn;
1207
1208	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1209	for (; block_start_pfn < zone_end_pfn(zone);
1210			block_start_pfn = block_end_pfn,
1211			 block_end_pfn += pageblock_nr_pages) {
1212
1213		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1214
1215		if (!__pageblock_pfn_to_page(block_start_pfn,
1216					     block_end_pfn, zone))
1217			return;
 
1218	}
1219
1220	/* We confirm that there is no hole */
1221	zone->contiguous = true;
1222}
1223
1224void clear_zone_contiguous(struct zone *zone)
1225{
1226	zone->contiguous = false;
1227}
1228
1229#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1230static void __init deferred_free_range(struct page *page,
1231					unsigned long pfn, int nr_pages)
1232{
1233	int i;
 
1234
1235	if (!page)
1236		return;
1237
 
 
1238	/* Free a large naturally-aligned chunk if possible */
1239	if (nr_pages == MAX_ORDER_NR_PAGES &&
1240	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1241		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1242		__free_pages_boot_core(page, pfn, MAX_ORDER-1);
1243		return;
1244	}
1245
1246	for (i = 0; i < nr_pages; i++, page++, pfn++)
1247		__free_pages_boot_core(page, pfn, 0);
 
 
 
1248}
1249
1250/* Completion tracking for deferred_init_memmap() threads */
1251static atomic_t pgdat_init_n_undone __initdata;
1252static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1253
1254static inline void __init pgdat_init_report_one_done(void)
1255{
1256	if (atomic_dec_and_test(&pgdat_init_n_undone))
1257		complete(&pgdat_init_all_done_comp);
1258}
1259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260/* Initialise remaining memory on a node */
1261static int __init deferred_init_memmap(void *data)
1262{
1263	pg_data_t *pgdat = data;
1264	int nid = pgdat->node_id;
1265	struct mminit_pfnnid_cache nid_init_state = { };
 
1266	unsigned long start = jiffies;
1267	unsigned long nr_pages = 0;
1268	unsigned long walk_start, walk_end;
1269	int i, zid;
1270	struct zone *zone;
1271	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1272	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1273
 
 
 
 
 
 
1274	if (first_init_pfn == ULONG_MAX) {
 
1275		pgdat_init_report_one_done();
1276		return 0;
1277	}
1278
1279	/* Bind memory initialisation thread to a local node if possible */
1280	if (!cpumask_empty(cpumask))
1281		set_cpus_allowed_ptr(current, cpumask);
1282
1283	/* Sanity check boundaries */
1284	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1285	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1286	pgdat->first_deferred_pfn = ULONG_MAX;
1287
 
 
 
 
 
 
 
1288	/* Only the highest zone is deferred so find it */
1289	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1290		zone = pgdat->node_zones + zid;
1291		if (first_init_pfn < zone_end_pfn(zone))
1292			break;
1293	}
1294
1295	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1296		unsigned long pfn, end_pfn;
1297		struct page *page = NULL;
1298		struct page *free_base_page = NULL;
1299		unsigned long free_base_pfn = 0;
1300		int nr_to_free = 0;
1301
1302		end_pfn = min(walk_end, zone_end_pfn(zone));
1303		pfn = first_init_pfn;
1304		if (pfn < walk_start)
1305			pfn = walk_start;
1306		if (pfn < zone->zone_start_pfn)
1307			pfn = zone->zone_start_pfn;
1308
1309		for (; pfn < end_pfn; pfn++) {
1310			if (!pfn_valid_within(pfn))
1311				goto free_range;
 
 
 
 
 
 
 
 
 
1312
1313			/*
1314			 * Ensure pfn_valid is checked every
1315			 * MAX_ORDER_NR_PAGES for memory holes
1316			 */
1317			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1318				if (!pfn_valid(pfn)) {
1319					page = NULL;
1320					goto free_range;
1321				}
1322			}
1323
1324			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1325				page = NULL;
1326				goto free_range;
1327			}
1328
1329			/* Minimise pfn page lookups and scheduler checks */
1330			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1331				page++;
1332			} else {
1333				nr_pages += nr_to_free;
1334				deferred_free_range(free_base_page,
1335						free_base_pfn, nr_to_free);
1336				free_base_page = NULL;
1337				free_base_pfn = nr_to_free = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338
1339				page = pfn_to_page(pfn);
1340				cond_resched();
1341			}
1342
1343			if (page->flags) {
1344				VM_BUG_ON(page_zone(page) != zone);
1345				goto free_range;
1346			}
1347
1348			__init_single_page(page, pfn, zid, nid);
1349			if (!free_base_page) {
1350				free_base_page = page;
1351				free_base_pfn = pfn;
1352				nr_to_free = 0;
1353			}
1354			nr_to_free++;
 
1355
1356			/* Where possible, batch up pages for a single free */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357			continue;
1358free_range:
1359			/* Free the current block of pages to allocator */
1360			nr_pages += nr_to_free;
1361			deferred_free_range(free_base_page, free_base_pfn,
1362								nr_to_free);
1363			free_base_page = NULL;
1364			free_base_pfn = nr_to_free = 0;
1365		}
1366
1367		first_init_pfn = max(end_pfn, first_init_pfn);
 
 
1368	}
1369
1370	/* Sanity check that the next zone really is unpopulated */
1371	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1372
1373	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1374					jiffies_to_msecs(jiffies - start));
1375
1376	pgdat_init_report_one_done();
1377	return 0;
 
 
 
 
 
 
 
 
1378}
 
1379#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1380
1381void __init page_alloc_init_late(void)
1382{
1383	struct zone *zone;
 
1384
1385#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1386	int nid;
1387
1388	/* There will be num_node_state(N_MEMORY) threads */
1389	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1390	for_each_node_state(nid, N_MEMORY) {
1391		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1392	}
1393
1394	/* Block until all are initialised */
1395	wait_for_completion(&pgdat_init_all_done_comp);
1396
 
 
 
 
 
 
1397	/* Reinit limits that are based on free pages after the kernel is up */
1398	files_maxfiles_init();
1399#endif
1400
 
 
 
 
 
 
 
 
1401	for_each_populated_zone(zone)
1402		set_zone_contiguous(zone);
1403}
1404
1405#ifdef CONFIG_CMA
1406/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1407void __init init_cma_reserved_pageblock(struct page *page)
1408{
1409	unsigned i = pageblock_nr_pages;
1410	struct page *p = page;
1411
1412	do {
1413		__ClearPageReserved(p);
1414		set_page_count(p, 0);
1415	} while (++p, --i);
1416
1417	set_pageblock_migratetype(page, MIGRATE_CMA);
1418
1419	if (pageblock_order >= MAX_ORDER) {
1420		i = pageblock_nr_pages;
1421		p = page;
1422		do {
1423			set_page_refcounted(p);
1424			__free_pages(p, MAX_ORDER - 1);
1425			p += MAX_ORDER_NR_PAGES;
1426		} while (i -= MAX_ORDER_NR_PAGES);
1427	} else {
1428		set_page_refcounted(page);
1429		__free_pages(page, pageblock_order);
1430	}
1431
1432	adjust_managed_page_count(page, pageblock_nr_pages);
 
1433}
1434#endif
1435
1436/*
1437 * The order of subdivision here is critical for the IO subsystem.
1438 * Please do not alter this order without good reasons and regression
1439 * testing. Specifically, as large blocks of memory are subdivided,
1440 * the order in which smaller blocks are delivered depends on the order
1441 * they're subdivided in this function. This is the primary factor
1442 * influencing the order in which pages are delivered to the IO
1443 * subsystem according to empirical testing, and this is also justified
1444 * by considering the behavior of a buddy system containing a single
1445 * large block of memory acted on by a series of small allocations.
1446 * This behavior is a critical factor in sglist merging's success.
1447 *
1448 * -- nyc
1449 */
1450static inline void expand(struct zone *zone, struct page *page,
1451	int low, int high, struct free_area *area,
1452	int migratetype)
1453{
1454	unsigned long size = 1 << high;
1455
1456	while (high > low) {
1457		area--;
1458		high--;
1459		size >>= 1;
1460		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1461
1462		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1463			debug_guardpage_enabled() &&
1464			high < debug_guardpage_minorder()) {
1465			/*
1466			 * Mark as guard pages (or page), that will allow to
1467			 * merge back to allocator when buddy will be freed.
1468			 * Corresponding page table entries will not be touched,
1469			 * pages will stay not present in virtual address space
1470			 */
1471			set_page_guard(zone, &page[size], high, migratetype);
1472			continue;
1473		}
1474		list_add(&page[size].lru, &area->free_list[migratetype]);
1475		area->nr_free++;
1476		set_page_order(&page[size], high);
1477	}
1478}
1479
 
 
 
 
 
 
 
 
 
 
 
 
1480/*
1481 * This page is about to be returned from the page allocator
1482 */
1483static inline int check_new_page(struct page *page)
1484{
1485	const char *bad_reason = NULL;
1486	unsigned long bad_flags = 0;
 
1487
1488	if (unlikely(atomic_read(&page->_mapcount) != -1))
1489		bad_reason = "nonzero mapcount";
1490	if (unlikely(page->mapping != NULL))
1491		bad_reason = "non-NULL mapping";
1492	if (unlikely(page_ref_count(page) != 0))
1493		bad_reason = "nonzero _count";
1494	if (unlikely(page->flags & __PG_HWPOISON)) {
1495		bad_reason = "HWPoisoned (hardware-corrupted)";
1496		bad_flags = __PG_HWPOISON;
1497	}
1498	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1499		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1500		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1501	}
1502#ifdef CONFIG_MEMCG
1503	if (unlikely(page->mem_cgroup))
1504		bad_reason = "page still charged to cgroup";
1505#endif
1506	if (unlikely(bad_reason)) {
1507		bad_page(page, bad_reason, bad_flags);
1508		return 1;
1509	}
1510	return 0;
1511}
1512
1513static inline bool free_pages_prezeroed(bool poisoned)
1514{
1515	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1516		page_poisoning_enabled() && poisoned;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517}
 
1518
1519static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1520								int alloc_flags)
1521{
1522	int i;
1523	bool poisoned = true;
1524
1525	for (i = 0; i < (1 << order); i++) {
1526		struct page *p = page + i;
 
1527		if (unlikely(check_new_page(p)))
1528			return 1;
1529		if (poisoned)
1530			poisoned &= page_is_poisoned(p);
1531	}
1532
 
 
 
 
 
 
1533	set_page_private(page, 0);
1534	set_page_refcounted(page);
1535
1536	arch_alloc_page(page, order);
1537	kernel_map_pages(page, 1 << order, 1);
1538	kernel_poison_pages(page, 1 << order, 1);
1539	kasan_alloc_pages(page, order);
1540
1541	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1542		for (i = 0; i < (1 << order); i++)
1543			clear_highpage(page + i);
1544
1545	if (order && (gfp_flags & __GFP_COMP))
1546		prep_compound_page(page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547
1548	set_page_owner(page, order, gfp_flags);
 
 
 
 
 
 
 
 
 
1549
1550	/*
1551	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1552	 * allocate the page. The expectation is that the caller is taking
1553	 * steps that will free more memory. The caller should avoid the page
1554	 * being used for !PFMEMALLOC purposes.
1555	 */
1556	if (alloc_flags & ALLOC_NO_WATERMARKS)
1557		set_page_pfmemalloc(page);
1558	else
1559		clear_page_pfmemalloc(page);
1560
1561	return 0;
1562}
1563
1564/*
1565 * Go through the free lists for the given migratetype and remove
1566 * the smallest available page from the freelists
1567 */
1568static inline
1569struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1570						int migratetype)
1571{
1572	unsigned int current_order;
1573	struct free_area *area;
1574	struct page *page;
1575
1576	/* Find a page of the appropriate size in the preferred list */
1577	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1578		area = &(zone->free_area[current_order]);
1579		page = list_first_entry_or_null(&area->free_list[migratetype],
1580							struct page, lru);
1581		if (!page)
1582			continue;
1583		list_del(&page->lru);
1584		rmv_page_order(page);
1585		area->nr_free--;
1586		expand(zone, page, order, current_order, area, migratetype);
1587		set_pcppage_migratetype(page, migratetype);
1588		return page;
1589	}
1590
1591	return NULL;
1592}
1593
1594
1595/*
1596 * This array describes the order lists are fallen back to when
1597 * the free lists for the desirable migrate type are depleted
1598 */
1599static int fallbacks[MIGRATE_TYPES][4] = {
1600	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1601	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1602	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
 
1603#ifdef CONFIG_CMA
1604	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1605#endif
1606#ifdef CONFIG_MEMORY_ISOLATION
1607	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1608#endif
1609};
1610
1611#ifdef CONFIG_CMA
1612static struct page *__rmqueue_cma_fallback(struct zone *zone,
1613					unsigned int order)
1614{
1615	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1616}
1617#else
1618static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1619					unsigned int order) { return NULL; }
1620#endif
1621
1622/*
1623 * Move the free pages in a range to the free lists of the requested type.
1624 * Note that start_page and end_pages are not aligned on a pageblock
1625 * boundary. If alignment is required, use move_freepages_block()
1626 */
1627int move_freepages(struct zone *zone,
1628			  struct page *start_page, struct page *end_page,
1629			  int migratetype)
1630{
1631	struct page *page;
 
1632	unsigned int order;
1633	int pages_moved = 0;
1634
1635#ifndef CONFIG_HOLES_IN_ZONE
1636	/*
1637	 * page_zone is not safe to call in this context when
1638	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1639	 * anyway as we check zone boundaries in move_freepages_block().
1640	 * Remove at a later date when no bug reports exist related to
1641	 * grouping pages by mobility
1642	 */
1643	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1644#endif
1645
1646	for (page = start_page; page <= end_page;) {
1647		/* Make sure we are not inadvertently changing nodes */
1648		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1649
1650		if (!pfn_valid_within(page_to_pfn(page))) {
1651			page++;
1652			continue;
1653		}
1654
 
1655		if (!PageBuddy(page)) {
1656			page++;
 
 
 
 
 
 
 
 
1657			continue;
1658		}
1659
1660		order = page_order(page);
1661		list_move(&page->lru,
1662			  &zone->free_area[order].free_list[migratetype]);
1663		page += 1 << order;
 
 
 
1664		pages_moved += 1 << order;
1665	}
1666
1667	return pages_moved;
1668}
1669
1670int move_freepages_block(struct zone *zone, struct page *page,
1671				int migratetype)
1672{
1673	unsigned long start_pfn, end_pfn;
1674	struct page *start_page, *end_page;
1675
1676	start_pfn = page_to_pfn(page);
1677	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1678	start_page = pfn_to_page(start_pfn);
1679	end_page = start_page + pageblock_nr_pages - 1;
 
1680	end_pfn = start_pfn + pageblock_nr_pages - 1;
1681
1682	/* Do not cross zone boundaries */
1683	if (!zone_spans_pfn(zone, start_pfn))
1684		start_page = page;
1685	if (!zone_spans_pfn(zone, end_pfn))
1686		return 0;
1687
1688	return move_freepages(zone, start_page, end_page, migratetype);
 
1689}
1690
1691static void change_pageblock_range(struct page *pageblock_page,
1692					int start_order, int migratetype)
1693{
1694	int nr_pageblocks = 1 << (start_order - pageblock_order);
1695
1696	while (nr_pageblocks--) {
1697		set_pageblock_migratetype(pageblock_page, migratetype);
1698		pageblock_page += pageblock_nr_pages;
1699	}
1700}
1701
1702/*
1703 * When we are falling back to another migratetype during allocation, try to
1704 * steal extra free pages from the same pageblocks to satisfy further
1705 * allocations, instead of polluting multiple pageblocks.
1706 *
1707 * If we are stealing a relatively large buddy page, it is likely there will
1708 * be more free pages in the pageblock, so try to steal them all. For
1709 * reclaimable and unmovable allocations, we steal regardless of page size,
1710 * as fragmentation caused by those allocations polluting movable pageblocks
1711 * is worse than movable allocations stealing from unmovable and reclaimable
1712 * pageblocks.
1713 */
1714static bool can_steal_fallback(unsigned int order, int start_mt)
1715{
1716	/*
1717	 * Leaving this order check is intended, although there is
1718	 * relaxed order check in next check. The reason is that
1719	 * we can actually steal whole pageblock if this condition met,
1720	 * but, below check doesn't guarantee it and that is just heuristic
1721	 * so could be changed anytime.
1722	 */
1723	if (order >= pageblock_order)
1724		return true;
1725
1726	if (order >= pageblock_order / 2 ||
1727		start_mt == MIGRATE_RECLAIMABLE ||
1728		start_mt == MIGRATE_UNMOVABLE ||
1729		page_group_by_mobility_disabled)
1730		return true;
1731
1732	return false;
1733}
1734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1735/*
1736 * This function implements actual steal behaviour. If order is large enough,
1737 * we can steal whole pageblock. If not, we first move freepages in this
1738 * pageblock and check whether half of pages are moved or not. If half of
1739 * pages are moved, we can change migratetype of pageblock and permanently
1740 * use it's pages as requested migratetype in the future.
 
1741 */
1742static void steal_suitable_fallback(struct zone *zone, struct page *page,
1743							  int start_type)
1744{
1745	unsigned int current_order = page_order(page);
1746	int pages;
 
 
 
 
 
 
 
 
 
 
1747
1748	/* Take ownership for orders >= pageblock_order */
1749	if (current_order >= pageblock_order) {
1750		change_pageblock_range(page, current_order, start_type);
1751		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752	}
1753
1754	pages = move_freepages_block(zone, page, start_type);
 
 
1755
1756	/* Claim the whole block if over half of it is free */
1757	if (pages >= (1 << (pageblock_order-1)) ||
 
 
 
1758			page_group_by_mobility_disabled)
1759		set_pageblock_migratetype(page, start_type);
 
 
 
 
 
1760}
1761
1762/*
1763 * Check whether there is a suitable fallback freepage with requested order.
1764 * If only_stealable is true, this function returns fallback_mt only if
1765 * we can steal other freepages all together. This would help to reduce
1766 * fragmentation due to mixed migratetype pages in one pageblock.
1767 */
1768int find_suitable_fallback(struct free_area *area, unsigned int order,
1769			int migratetype, bool only_stealable, bool *can_steal)
1770{
1771	int i;
1772	int fallback_mt;
1773
1774	if (area->nr_free == 0)
1775		return -1;
1776
1777	*can_steal = false;
1778	for (i = 0;; i++) {
1779		fallback_mt = fallbacks[migratetype][i];
1780		if (fallback_mt == MIGRATE_TYPES)
1781			break;
1782
1783		if (list_empty(&area->free_list[fallback_mt]))
1784			continue;
1785
1786		if (can_steal_fallback(order, migratetype))
1787			*can_steal = true;
1788
1789		if (!only_stealable)
1790			return fallback_mt;
1791
1792		if (*can_steal)
1793			return fallback_mt;
1794	}
1795
1796	return -1;
1797}
1798
1799/*
1800 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1801 * there are no empty page blocks that contain a page with a suitable order
1802 */
1803static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1804				unsigned int alloc_order)
1805{
1806	int mt;
1807	unsigned long max_managed, flags;
1808
1809	/*
1810	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1811	 * Check is race-prone but harmless.
1812	 */
1813	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1814	if (zone->nr_reserved_highatomic >= max_managed)
1815		return;
1816
1817	spin_lock_irqsave(&zone->lock, flags);
1818
1819	/* Recheck the nr_reserved_highatomic limit under the lock */
1820	if (zone->nr_reserved_highatomic >= max_managed)
1821		goto out_unlock;
1822
1823	/* Yoink! */
1824	mt = get_pageblock_migratetype(page);
1825	if (mt != MIGRATE_HIGHATOMIC &&
1826			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1827		zone->nr_reserved_highatomic += pageblock_nr_pages;
1828		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1829		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1830	}
1831
1832out_unlock:
1833	spin_unlock_irqrestore(&zone->lock, flags);
1834}
1835
1836/*
1837 * Used when an allocation is about to fail under memory pressure. This
1838 * potentially hurts the reliability of high-order allocations when under
1839 * intense memory pressure but failed atomic allocations should be easier
1840 * to recover from than an OOM.
 
 
 
1841 */
1842static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
 
1843{
1844	struct zonelist *zonelist = ac->zonelist;
1845	unsigned long flags;
1846	struct zoneref *z;
1847	struct zone *zone;
1848	struct page *page;
1849	int order;
 
1850
1851	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1852								ac->nodemask) {
1853		/* Preserve at least one pageblock */
1854		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
 
 
 
 
1855			continue;
1856
1857		spin_lock_irqsave(&zone->lock, flags);
1858		for (order = 0; order < MAX_ORDER; order++) {
1859			struct free_area *area = &(zone->free_area[order]);
1860
1861			page = list_first_entry_or_null(
1862					&area->free_list[MIGRATE_HIGHATOMIC],
1863					struct page, lru);
1864			if (!page)
1865				continue;
1866
1867			/*
1868			 * It should never happen but changes to locking could
1869			 * inadvertently allow a per-cpu drain to add pages
1870			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1871			 * and watch for underflows.
 
1872			 */
1873			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1874				zone->nr_reserved_highatomic);
 
 
 
 
 
 
 
 
 
 
1875
1876			/*
1877			 * Convert to ac->migratetype and avoid the normal
1878			 * pageblock stealing heuristics. Minimally, the caller
1879			 * is doing the work and needs the pages. More
1880			 * importantly, if the block was always converted to
1881			 * MIGRATE_UNMOVABLE or another type then the number
1882			 * of pageblocks that cannot be completely freed
1883			 * may increase.
1884			 */
1885			set_pageblock_migratetype(page, ac->migratetype);
1886			move_freepages_block(zone, page, ac->migratetype);
1887			spin_unlock_irqrestore(&zone->lock, flags);
1888			return;
 
 
 
1889		}
1890		spin_unlock_irqrestore(&zone->lock, flags);
1891	}
 
 
1892}
1893
1894/* Remove an element from the buddy allocator from the fallback list */
1895static inline struct page *
1896__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
 
 
 
 
 
 
 
 
 
 
1897{
1898	struct free_area *area;
1899	unsigned int current_order;
 
1900	struct page *page;
1901	int fallback_mt;
1902	bool can_steal;
1903
1904	/* Find the largest possible block of pages in the other list */
1905	for (current_order = MAX_ORDER-1;
1906				current_order >= order && current_order <= MAX_ORDER-1;
 
 
 
 
 
 
 
 
 
 
 
1907				--current_order) {
1908		area = &(zone->free_area[current_order]);
1909		fallback_mt = find_suitable_fallback(area, current_order,
1910				start_migratetype, false, &can_steal);
1911		if (fallback_mt == -1)
1912			continue;
1913
1914		page = list_first_entry(&area->free_list[fallback_mt],
1915						struct page, lru);
1916		if (can_steal)
1917			steal_suitable_fallback(zone, page, start_migratetype);
1918
1919		/* Remove the page from the freelists */
1920		area->nr_free--;
1921		list_del(&page->lru);
1922		rmv_page_order(page);
1923
1924		expand(zone, page, order, current_order, area,
1925					start_migratetype);
1926		/*
1927		 * The pcppage_migratetype may differ from pageblock's
1928		 * migratetype depending on the decisions in
1929		 * find_suitable_fallback(). This is OK as long as it does not
1930		 * differ for MIGRATE_CMA pageblocks. Those can be used as
1931		 * fallback only via special __rmqueue_cma_fallback() function
1932		 */
1933		set_pcppage_migratetype(page, start_migratetype);
 
 
 
1934
1935		trace_mm_page_alloc_extfrag(page, order, current_order,
1936			start_migratetype, fallback_mt);
1937
1938		return page;
 
 
 
 
 
 
 
 
 
1939	}
1940
1941	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1942}
1943
1944/*
1945 * Do the hard work of removing an element from the buddy allocator.
1946 * Call me with the zone->lock already held.
1947 */
1948static struct page *__rmqueue(struct zone *zone, unsigned int order,
1949				int migratetype)
 
1950{
1951	struct page *page;
1952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1953	page = __rmqueue_smallest(zone, order, migratetype);
1954	if (unlikely(!page)) {
1955		if (migratetype == MIGRATE_MOVABLE)
1956			page = __rmqueue_cma_fallback(zone, order);
1957
1958		if (!page)
1959			page = __rmqueue_fallback(zone, order, migratetype);
 
1960	}
1961
1962	trace_mm_page_alloc_zone_locked(page, order, migratetype);
 
1963	return page;
1964}
1965
1966/*
1967 * Obtain a specified number of elements from the buddy allocator, all under
1968 * a single hold of the lock, for efficiency.  Add them to the supplied list.
1969 * Returns the number of new pages which were placed at *list.
1970 */
1971static int rmqueue_bulk(struct zone *zone, unsigned int order,
1972			unsigned long count, struct list_head *list,
1973			int migratetype, bool cold)
1974{
1975	int i;
1976
 
 
 
 
1977	spin_lock(&zone->lock);
1978	for (i = 0; i < count; ++i) {
1979		struct page *page = __rmqueue(zone, order, migratetype);
 
1980		if (unlikely(page == NULL))
1981			break;
1982
 
 
 
1983		/*
1984		 * Split buddy pages returned by expand() are received here
1985		 * in physical page order. The page is added to the callers and
1986		 * list and the list head then moves forward. From the callers
1987		 * perspective, the linked list is ordered by page number in
1988		 * some conditions. This is useful for IO devices that can
1989		 * merge IO requests if the physical pages are ordered
1990		 * properly.
 
1991		 */
1992		if (likely(!cold))
1993			list_add(&page->lru, list);
1994		else
1995			list_add_tail(&page->lru, list);
1996		list = &page->lru;
1997		if (is_migrate_cma(get_pcppage_migratetype(page)))
1998			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1999					      -(1 << order));
2000	}
 
 
 
 
 
 
 
2001	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2002	spin_unlock(&zone->lock);
2003	return i;
2004}
2005
2006#ifdef CONFIG_NUMA
2007/*
2008 * Called from the vmstat counter updater to drain pagesets of this
2009 * currently executing processor on remote nodes after they have
2010 * expired.
2011 *
2012 * Note that this function must be called with the thread pinned to
2013 * a single processor.
2014 */
2015void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2016{
2017	unsigned long flags;
2018	int to_drain, batch;
2019
2020	local_irq_save(flags);
2021	batch = READ_ONCE(pcp->batch);
2022	to_drain = min(pcp->count, batch);
2023	if (to_drain > 0) {
2024		free_pcppages_bulk(zone, to_drain, pcp);
2025		pcp->count -= to_drain;
2026	}
2027	local_irq_restore(flags);
2028}
2029#endif
2030
2031/*
2032 * Drain pcplists of the indicated processor and zone.
2033 *
2034 * The processor must either be the current processor and the
2035 * thread pinned to the current processor or a processor that
2036 * is not online.
2037 */
2038static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2039{
2040	unsigned long flags;
2041	struct per_cpu_pageset *pset;
2042	struct per_cpu_pages *pcp;
2043
2044	local_irq_save(flags);
2045	pset = per_cpu_ptr(zone->pageset, cpu);
2046
2047	pcp = &pset->pcp;
2048	if (pcp->count) {
2049		free_pcppages_bulk(zone, pcp->count, pcp);
2050		pcp->count = 0;
2051	}
2052	local_irq_restore(flags);
2053}
2054
2055/*
2056 * Drain pcplists of all zones on the indicated processor.
2057 *
2058 * The processor must either be the current processor and the
2059 * thread pinned to the current processor or a processor that
2060 * is not online.
2061 */
2062static void drain_pages(unsigned int cpu)
2063{
2064	struct zone *zone;
2065
2066	for_each_populated_zone(zone) {
2067		drain_pages_zone(cpu, zone);
2068	}
2069}
2070
2071/*
2072 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2073 *
2074 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2075 * the single zone's pages.
2076 */
2077void drain_local_pages(struct zone *zone)
2078{
2079	int cpu = smp_processor_id();
2080
2081	if (zone)
2082		drain_pages_zone(cpu, zone);
2083	else
2084		drain_pages(cpu);
2085}
2086
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2087/*
2088 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 
2089 *
2090 * When zone parameter is non-NULL, spill just the single zone's pages.
2091 *
2092 * Note that this code is protected against sending an IPI to an offline
2093 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2094 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2095 * nothing keeps CPUs from showing up after we populated the cpumask and
2096 * before the call to on_each_cpu_mask().
2097 */
2098void drain_all_pages(struct zone *zone)
2099{
2100	int cpu;
2101
2102	/*
2103	 * Allocate in the BSS so we wont require allocation in
2104	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2105	 */
2106	static cpumask_t cpus_with_pcps;
2107
2108	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2109	 * We don't care about racing with CPU hotplug event
2110	 * as offline notification will cause the notified
2111	 * cpu to drain that CPU pcps and on_each_cpu_mask
2112	 * disables preemption as part of its processing
2113	 */
2114	for_each_online_cpu(cpu) {
2115		struct per_cpu_pageset *pcp;
2116		struct zone *z;
2117		bool has_pcps = false;
2118
2119		if (zone) {
2120			pcp = per_cpu_ptr(zone->pageset, cpu);
2121			if (pcp->pcp.count)
 
 
 
 
 
 
2122				has_pcps = true;
2123		} else {
2124			for_each_populated_zone(z) {
2125				pcp = per_cpu_ptr(z->pageset, cpu);
2126				if (pcp->pcp.count) {
2127					has_pcps = true;
2128					break;
2129				}
2130			}
2131		}
2132
2133		if (has_pcps)
2134			cpumask_set_cpu(cpu, &cpus_with_pcps);
2135		else
2136			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2137	}
2138	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2139								zone, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2140}
2141
2142#ifdef CONFIG_HIBERNATION
2143
 
 
 
 
 
2144void mark_free_pages(struct zone *zone)
2145{
2146	unsigned long pfn, max_zone_pfn;
2147	unsigned long flags;
2148	unsigned int order, t;
2149	struct page *page;
2150
2151	if (zone_is_empty(zone))
2152		return;
2153
2154	spin_lock_irqsave(&zone->lock, flags);
2155
2156	max_zone_pfn = zone_end_pfn(zone);
2157	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2158		if (pfn_valid(pfn)) {
2159			page = pfn_to_page(pfn);
 
 
 
 
 
 
 
 
 
2160			if (!swsusp_page_is_forbidden(page))
2161				swsusp_unset_page_free(page);
2162		}
2163
2164	for_each_migratetype_order(order, t) {
2165		list_for_each_entry(page,
2166				&zone->free_area[order].free_list[t], lru) {
2167			unsigned long i;
2168
2169			pfn = page_to_pfn(page);
2170			for (i = 0; i < (1UL << order); i++)
 
 
 
 
2171				swsusp_set_page_free(pfn_to_page(pfn + i));
 
2172		}
2173	}
2174	spin_unlock_irqrestore(&zone->lock, flags);
2175}
2176#endif /* CONFIG_PM */
2177
2178/*
2179 * Free a 0-order page
2180 * cold == true ? free a cold page : free a hot page
2181 */
2182void free_hot_cold_page(struct page *page, bool cold)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2183{
2184	struct zone *zone = page_zone(page);
2185	struct per_cpu_pages *pcp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186	unsigned long flags;
2187	unsigned long pfn = page_to_pfn(page);
2188	int migratetype;
2189
2190	if (!free_pages_prepare(page, 0))
2191		return;
2192
2193	migratetype = get_pfnblock_migratetype(page, pfn);
2194	set_pcppage_migratetype(page, migratetype);
2195	local_irq_save(flags);
2196	__count_vm_event(PGFREE);
2197
2198	/*
2199	 * We only track unmovable, reclaimable and movable on pcp lists.
2200	 * Free ISOLATE pages back to the allocator because they are being
2201	 * offlined but treat RESERVE as movable pages so we can get those
2202	 * areas back if necessary. Otherwise, we may have to free
2203	 * excessively into the page allocator
2204	 */
2205	if (migratetype >= MIGRATE_PCPTYPES) {
 
2206		if (unlikely(is_migrate_isolate(migratetype))) {
2207			free_one_page(zone, page, pfn, 0, migratetype);
2208			goto out;
2209		}
2210		migratetype = MIGRATE_MOVABLE;
2211	}
2212
2213	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2214	if (!cold)
2215		list_add(&page->lru, &pcp->lists[migratetype]);
2216	else
2217		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2218	pcp->count++;
2219	if (pcp->count >= pcp->high) {
2220		unsigned long batch = READ_ONCE(pcp->batch);
2221		free_pcppages_bulk(zone, batch, pcp);
2222		pcp->count -= batch;
2223	}
2224
2225out:
2226	local_irq_restore(flags);
2227}
2228
2229/*
2230 * Free a list of 0-order pages
2231 */
2232void free_hot_cold_page_list(struct list_head *list, bool cold)
2233{
2234	struct page *page, *next;
 
 
 
2235
 
2236	list_for_each_entry_safe(page, next, list, lru) {
2237		trace_mm_page_free_batched(page, cold);
2238		free_hot_cold_page(page, cold);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2239	}
 
2240}
2241
2242/*
2243 * split_page takes a non-compound higher-order page, and splits it into
2244 * n (1<<order) sub-pages: page[0..n]
2245 * Each sub-page must be freed individually.
2246 *
2247 * Note: this is probably too low level an operation for use in drivers.
2248 * Please consult with lkml before using this in your driver.
2249 */
2250void split_page(struct page *page, unsigned int order)
2251{
2252	int i;
2253	gfp_t gfp_mask;
2254
2255	VM_BUG_ON_PAGE(PageCompound(page), page);
2256	VM_BUG_ON_PAGE(!page_count(page), page);
2257
2258#ifdef CONFIG_KMEMCHECK
2259	/*
2260	 * Split shadow pages too, because free(page[0]) would
2261	 * otherwise free the whole shadow.
2262	 */
2263	if (kmemcheck_page_is_tracked(page))
2264		split_page(virt_to_page(page[0].shadow), order);
2265#endif
2266
2267	gfp_mask = get_page_owner_gfp(page);
2268	set_page_owner(page, 0, gfp_mask);
2269	for (i = 1; i < (1 << order); i++) {
2270		set_page_refcounted(page + i);
2271		set_page_owner(page + i, 0, gfp_mask);
2272	}
2273}
2274EXPORT_SYMBOL_GPL(split_page);
2275
2276int __isolate_free_page(struct page *page, unsigned int order)
2277{
2278	unsigned long watermark;
2279	struct zone *zone;
2280	int mt;
2281
2282	BUG_ON(!PageBuddy(page));
2283
2284	zone = page_zone(page);
2285	mt = get_pageblock_migratetype(page);
2286
2287	if (!is_migrate_isolate(mt)) {
2288		/* Obey watermarks as if the page was being allocated */
2289		watermark = low_wmark_pages(zone) + (1 << order);
2290		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
 
 
 
 
 
2291			return 0;
2292
2293		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2294	}
2295
2296	/* Remove page from free list */
2297	list_del(&page->lru);
2298	zone->free_area[order].nr_free--;
2299	rmv_page_order(page);
2300
2301	set_page_owner(page, order, __GFP_MOVABLE);
2302
2303	/* Set the pageblock if the isolated page is at least a pageblock */
 
 
 
2304	if (order >= pageblock_order - 1) {
2305		struct page *endpage = page + (1 << order) - 1;
2306		for (; page < endpage; page += pageblock_nr_pages) {
2307			int mt = get_pageblock_migratetype(page);
2308			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
 
2309				set_pageblock_migratetype(page,
2310							  MIGRATE_MOVABLE);
2311		}
2312	}
2313
2314
2315	return 1UL << order;
2316}
2317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2318/*
2319 * Similar to split_page except the page is already free. As this is only
2320 * being used for migration, the migratetype of the block also changes.
2321 * As this is called with interrupts disabled, the caller is responsible
2322 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2323 * are enabled.
2324 *
2325 * Note: this is probably too low level an operation for use in drivers.
2326 * Please consult with lkml before using this in your driver.
2327 */
2328int split_free_page(struct page *page)
 
2329{
2330	unsigned int order;
2331	int nr_pages;
2332
2333	order = page_order(page);
 
 
2334
2335	nr_pages = __isolate_free_page(page, order);
2336	if (!nr_pages)
2337		return 0;
2338
2339	/* Split into individual pages */
2340	set_page_refcounted(page);
2341	split_page(page, order);
2342	return nr_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2343}
2344
2345/*
2346 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2347 */
2348static inline
2349struct page *buffered_rmqueue(struct zone *preferred_zone,
2350			struct zone *zone, unsigned int order,
2351			gfp_t gfp_flags, int alloc_flags, int migratetype)
 
2352{
2353	unsigned long flags;
2354	struct page *page;
2355	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2356
2357	if (likely(order == 0)) {
2358		struct per_cpu_pages *pcp;
2359		struct list_head *list;
2360
2361		local_irq_save(flags);
2362		pcp = &this_cpu_ptr(zone->pageset)->pcp;
2363		list = &pcp->lists[migratetype];
2364		if (list_empty(list)) {
2365			pcp->count += rmqueue_bulk(zone, 0,
2366					pcp->batch, list,
2367					migratetype, cold);
2368			if (unlikely(list_empty(list)))
2369				goto failed;
 
2370		}
 
2371
2372		if (cold)
2373			page = list_last_entry(list, struct page, lru);
2374		else
2375			page = list_first_entry(list, struct page, lru);
 
 
2376
2377		list_del(&page->lru);
2378		pcp->count--;
2379	} else {
2380		/*
2381		 * We most definitely don't want callers attempting to
2382		 * allocate greater than order-1 page units with __GFP_NOFAIL.
 
 
2383		 */
2384		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2385		spin_lock_irqsave(&zone->lock, flags);
2386
2387		page = NULL;
2388		if (alloc_flags & ALLOC_HARDER) {
2389			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2390			if (page)
2391				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2392		}
2393		if (!page)
2394			page = __rmqueue(zone, order, migratetype);
2395		spin_unlock(&zone->lock);
2396		if (!page)
2397			goto failed;
2398		__mod_zone_freepage_state(zone, -(1 << order),
2399					  get_pcppage_migratetype(page));
2400	}
2401
2402	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2403	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2404	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2405		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2406
2407	__count_zone_vm_events(PGALLOC, zone, 1 << order);
2408	zone_statistics(preferred_zone, zone, gfp_flags);
2409	local_irq_restore(flags);
2410
2411	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 
 
 
 
 
 
 
 
 
 
2412	return page;
2413
2414failed:
2415	local_irq_restore(flags);
2416	return NULL;
2417}
2418
2419#ifdef CONFIG_FAIL_PAGE_ALLOC
2420
2421static struct {
2422	struct fault_attr attr;
2423
2424	bool ignore_gfp_highmem;
2425	bool ignore_gfp_reclaim;
2426	u32 min_order;
2427} fail_page_alloc = {
2428	.attr = FAULT_ATTR_INITIALIZER,
2429	.ignore_gfp_reclaim = true,
2430	.ignore_gfp_highmem = true,
2431	.min_order = 1,
2432};
2433
2434static int __init setup_fail_page_alloc(char *str)
2435{
2436	return setup_fault_attr(&fail_page_alloc.attr, str);
2437}
2438__setup("fail_page_alloc=", setup_fail_page_alloc);
2439
2440static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2441{
2442	if (order < fail_page_alloc.min_order)
2443		return false;
2444	if (gfp_mask & __GFP_NOFAIL)
2445		return false;
2446	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2447		return false;
2448	if (fail_page_alloc.ignore_gfp_reclaim &&
2449			(gfp_mask & __GFP_DIRECT_RECLAIM))
2450		return false;
2451
2452	return should_fail(&fail_page_alloc.attr, 1 << order);
2453}
2454
2455#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2456
2457static int __init fail_page_alloc_debugfs(void)
2458{
2459	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2460	struct dentry *dir;
2461
2462	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2463					&fail_page_alloc.attr);
2464	if (IS_ERR(dir))
2465		return PTR_ERR(dir);
2466
2467	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2468				&fail_page_alloc.ignore_gfp_reclaim))
2469		goto fail;
2470	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2471				&fail_page_alloc.ignore_gfp_highmem))
2472		goto fail;
2473	if (!debugfs_create_u32("min-order", mode, dir,
2474				&fail_page_alloc.min_order))
2475		goto fail;
2476
2477	return 0;
2478fail:
2479	debugfs_remove_recursive(dir);
2480
2481	return -ENOMEM;
2482}
2483
2484late_initcall(fail_page_alloc_debugfs);
2485
2486#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2487
2488#else /* CONFIG_FAIL_PAGE_ALLOC */
2489
2490static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2491{
2492	return false;
2493}
2494
2495#endif /* CONFIG_FAIL_PAGE_ALLOC */
2496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2497/*
2498 * Return true if free base pages are above 'mark'. For high-order checks it
2499 * will return true of the order-0 watermark is reached and there is at least
2500 * one free page of a suitable size. Checking now avoids taking the zone lock
2501 * to check in the allocation paths if no pages are free.
2502 */
2503static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2504			unsigned long mark, int classzone_idx, int alloc_flags,
2505			long free_pages)
2506{
2507	long min = mark;
2508	int o;
2509	const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2510
2511	/* free_pages may go negative - that's OK */
2512	free_pages -= (1 << order) - 1;
2513
2514	if (alloc_flags & ALLOC_HIGH)
2515		min -= min / 2;
2516
2517	/*
2518	 * If the caller does not have rights to ALLOC_HARDER then subtract
2519	 * the high-atomic reserves. This will over-estimate the size of the
2520	 * atomic reserve but it avoids a search.
2521	 */
2522	if (likely(!alloc_harder))
2523		free_pages -= z->nr_reserved_highatomic;
2524	else
2525		min -= min / 4;
2526
2527#ifdef CONFIG_CMA
2528	/* If allocation can't use CMA areas don't use free CMA pages */
2529	if (!(alloc_flags & ALLOC_CMA))
2530		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2531#endif
2532
2533	/*
2534	 * Check watermarks for an order-0 allocation request. If these
2535	 * are not met, then a high-order request also cannot go ahead
2536	 * even if a suitable page happened to be free.
2537	 */
2538	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2539		return false;
2540
2541	/* If this is an order-0 request then the watermark is fine */
2542	if (!order)
2543		return true;
2544
2545	/* For a high-order request, check at least one suitable page is free */
2546	for (o = order; o < MAX_ORDER; o++) {
2547		struct free_area *area = &z->free_area[o];
2548		int mt;
2549
2550		if (!area->nr_free)
2551			continue;
2552
2553		if (alloc_harder)
2554			return true;
2555
2556		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2557			if (!list_empty(&area->free_list[mt]))
2558				return true;
2559		}
2560
2561#ifdef CONFIG_CMA
2562		if ((alloc_flags & ALLOC_CMA) &&
2563		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2564			return true;
2565		}
2566#endif
 
 
2567	}
2568	return false;
2569}
2570
2571bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2572		      int classzone_idx, int alloc_flags)
2573{
2574	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2575					zone_page_state(z, NR_FREE_PAGES));
2576}
2577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2578bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2579			unsigned long mark, int classzone_idx)
2580{
2581	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2582
2583	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2584		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2585
2586	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2587								free_pages);
2588}
2589
2590#ifdef CONFIG_NUMA
2591static bool zone_local(struct zone *local_zone, struct zone *zone)
2592{
2593	return local_zone->node == zone->node;
2594}
2595
2596static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2597{
2598	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2599				RECLAIM_DISTANCE;
2600}
2601#else	/* CONFIG_NUMA */
2602static bool zone_local(struct zone *local_zone, struct zone *zone)
2603{
2604	return true;
2605}
2606
2607static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2608{
2609	return true;
2610}
2611#endif	/* CONFIG_NUMA */
2612
2613static void reset_alloc_batches(struct zone *preferred_zone)
 
 
 
 
 
 
 
 
 
2614{
2615	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2616
2617	do {
2618		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2619			high_wmark_pages(zone) - low_wmark_pages(zone) -
2620			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2621		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2622	} while (zone++ != preferred_zone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2623}
2624
2625/*
2626 * get_page_from_freelist goes through the zonelist trying to allocate
2627 * a page.
2628 */
2629static struct page *
2630get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2631						const struct alloc_context *ac)
2632{
2633	struct zonelist *zonelist = ac->zonelist;
2634	struct zoneref *z;
2635	struct page *page = NULL;
2636	struct zone *zone;
2637	int nr_fair_skipped = 0;
2638	bool zonelist_rescan;
2639
2640zonelist_scan:
2641	zonelist_rescan = false;
2642
 
2643	/*
2644	 * Scan zonelist, looking for a zone with enough free.
2645	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2646	 */
2647	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2648								ac->nodemask) {
 
 
 
2649		unsigned long mark;
2650
2651		if (cpusets_enabled() &&
2652			(alloc_flags & ALLOC_CPUSET) &&
2653			!cpuset_zone_allowed(zone, gfp_mask))
2654				continue;
2655		/*
2656		 * Distribute pages in proportion to the individual
2657		 * zone size to ensure fair page aging.  The zone a
2658		 * page was allocated in should have no effect on the
2659		 * time the page has in memory before being reclaimed.
2660		 */
2661		if (alloc_flags & ALLOC_FAIR) {
2662			if (!zone_local(ac->preferred_zone, zone))
2663				break;
2664			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2665				nr_fair_skipped++;
2666				continue;
2667			}
2668		}
2669		/*
2670		 * When allocating a page cache page for writing, we
2671		 * want to get it from a zone that is within its dirty
2672		 * limit, such that no single zone holds more than its
2673		 * proportional share of globally allowed dirty pages.
2674		 * The dirty limits take into account the zone's
2675		 * lowmem reserves and high watermark so that kswapd
2676		 * should be able to balance it without having to
2677		 * write pages from its LRU list.
2678		 *
2679		 * This may look like it could increase pressure on
2680		 * lower zones by failing allocations in higher zones
2681		 * before they are full.  But the pages that do spill
2682		 * over are limited as the lower zones are protected
2683		 * by this very same mechanism.  It should not become
2684		 * a practical burden to them.
2685		 *
2686		 * XXX: For now, allow allocations to potentially
2687		 * exceed the per-zone dirty limit in the slowpath
2688		 * (spread_dirty_pages unset) before going into reclaim,
2689		 * which is important when on a NUMA setup the allowed
2690		 * zones are together not big enough to reach the
2691		 * global limit.  The proper fix for these situations
2692		 * will require awareness of zones in the
2693		 * dirty-throttling and the flusher threads.
2694		 */
2695		if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2696			continue;
 
 
 
 
 
 
 
2697
2698		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2699		if (!zone_watermark_ok(zone, order, mark,
2700				       ac->classzone_idx, alloc_flags)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2701			int ret;
2702
 
 
 
 
 
 
 
 
 
 
2703			/* Checked here to keep the fast path fast */
2704			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2705			if (alloc_flags & ALLOC_NO_WATERMARKS)
2706				goto try_this_zone;
2707
2708			if (zone_reclaim_mode == 0 ||
2709			    !zone_allows_reclaim(ac->preferred_zone, zone))
2710				continue;
2711
2712			ret = zone_reclaim(zone, gfp_mask, order);
2713			switch (ret) {
2714			case ZONE_RECLAIM_NOSCAN:
2715				/* did not scan */
2716				continue;
2717			case ZONE_RECLAIM_FULL:
2718				/* scanned but unreclaimable */
2719				continue;
2720			default:
2721				/* did we reclaim enough */
2722				if (zone_watermark_ok(zone, order, mark,
2723						ac->classzone_idx, alloc_flags))
2724					goto try_this_zone;
2725
2726				continue;
2727			}
2728		}
2729
2730try_this_zone:
2731		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2732				gfp_mask, alloc_flags, ac->migratetype);
2733		if (page) {
2734			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2735				goto try_this_zone;
2736
2737			/*
2738			 * If this is a high-order atomic allocation then check
2739			 * if the pageblock should be reserved for the future
2740			 */
2741			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2742				reserve_highatomic_pageblock(page, zone, order);
2743
2744			return page;
 
 
 
 
 
 
 
 
2745		}
2746	}
2747
2748	/*
2749	 * The first pass makes sure allocations are spread fairly within the
2750	 * local node.  However, the local node might have free pages left
2751	 * after the fairness batches are exhausted, and remote zones haven't
2752	 * even been considered yet.  Try once more without fairness, and
2753	 * include remote zones now, before entering the slowpath and waking
2754	 * kswapd: prefer spilling to a remote zone over swapping locally.
2755	 */
2756	if (alloc_flags & ALLOC_FAIR) {
2757		alloc_flags &= ~ALLOC_FAIR;
2758		if (nr_fair_skipped) {
2759			zonelist_rescan = true;
2760			reset_alloc_batches(ac->preferred_zone);
2761		}
2762		if (nr_online_nodes > 1)
2763			zonelist_rescan = true;
2764	}
2765
2766	if (zonelist_rescan)
2767		goto zonelist_scan;
2768
2769	return NULL;
2770}
2771
2772/*
2773 * Large machines with many possible nodes should not always dump per-node
2774 * meminfo in irq context.
2775 */
2776static inline bool should_suppress_show_mem(void)
2777{
2778	bool ret = false;
2779
2780#if NODES_SHIFT > 8
2781	ret = in_interrupt();
2782#endif
2783	return ret;
2784}
2785
2786static DEFINE_RATELIMIT_STATE(nopage_rs,
2787		DEFAULT_RATELIMIT_INTERVAL,
2788		DEFAULT_RATELIMIT_BURST);
2789
2790void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2791{
2792	unsigned int filter = SHOW_MEM_FILTER_NODES;
2793
2794	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2795	    debug_guardpage_minorder() > 0)
2796		return;
2797
2798	/*
2799	 * This documents exceptions given to allocations in certain
2800	 * contexts that are allowed to allocate outside current's set
2801	 * of allowed nodes.
2802	 */
2803	if (!(gfp_mask & __GFP_NOMEMALLOC))
2804		if (test_thread_flag(TIF_MEMDIE) ||
2805		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2806			filter &= ~SHOW_MEM_FILTER_NODES;
2807	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2808		filter &= ~SHOW_MEM_FILTER_NODES;
2809
2810	if (fmt) {
2811		struct va_format vaf;
2812		va_list args;
2813
2814		va_start(args, fmt);
2815
2816		vaf.fmt = fmt;
2817		vaf.va = &args;
 
 
 
2818
2819		pr_warn("%pV", &vaf);
 
2820
2821		va_end(args);
2822	}
 
 
 
 
 
2823
2824	pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2825		current->comm, order, gfp_mask, &gfp_mask);
2826	dump_stack();
2827	if (!should_suppress_show_mem())
2828		show_mem(filter);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2829}
2830
2831static inline struct page *
2832__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2833	const struct alloc_context *ac, unsigned long *did_some_progress)
2834{
2835	struct oom_control oc = {
2836		.zonelist = ac->zonelist,
2837		.nodemask = ac->nodemask,
 
2838		.gfp_mask = gfp_mask,
2839		.order = order,
2840	};
2841	struct page *page;
2842
2843	*did_some_progress = 0;
2844
2845	/*
2846	 * Acquire the oom lock.  If that fails, somebody else is
2847	 * making progress for us.
2848	 */
2849	if (!mutex_trylock(&oom_lock)) {
2850		*did_some_progress = 1;
2851		schedule_timeout_uninterruptible(1);
2852		return NULL;
2853	}
2854
2855	/*
2856	 * Go through the zonelist yet one more time, keep very high watermark
2857	 * here, this is only to catch a parallel oom killing, we must fail if
2858	 * we're still under heavy pressure.
2859	 */
2860	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2861					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
 
 
 
2862	if (page)
2863		goto out;
2864
2865	if (!(gfp_mask & __GFP_NOFAIL)) {
2866		/* Coredumps can quickly deplete all memory reserves */
2867		if (current->flags & PF_DUMPCORE)
2868			goto out;
2869		/* The OOM killer will not help higher order allocs */
2870		if (order > PAGE_ALLOC_COSTLY_ORDER)
2871			goto out;
2872		/* The OOM killer does not needlessly kill tasks for lowmem */
2873		if (ac->high_zoneidx < ZONE_NORMAL)
2874			goto out;
2875		/* The OOM killer does not compensate for IO-less reclaim */
2876		if (!(gfp_mask & __GFP_FS)) {
2877			/*
2878			 * XXX: Page reclaim didn't yield anything,
2879			 * and the OOM killer can't be invoked, but
2880			 * keep looping as per tradition.
2881			 *
2882			 * But do not keep looping if oom_killer_disable()
2883			 * was already called, for the system is trying to
2884			 * enter a quiescent state during suspend.
2885			 */
2886			*did_some_progress = !oom_killer_disabled;
2887			goto out;
2888		}
2889		if (pm_suspended_storage())
2890			goto out;
2891		/* The OOM killer may not free memory on a specific node */
2892		if (gfp_mask & __GFP_THISNODE)
2893			goto out;
2894	}
2895	/* Exhausted what can be done so it's blamo time */
 
2896	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2897		*did_some_progress = 1;
2898
2899		if (gfp_mask & __GFP_NOFAIL) {
2900			page = get_page_from_freelist(gfp_mask, order,
2901					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2902			/*
2903			 * fallback to ignore cpuset restriction if our nodes
2904			 * are depleted
2905			 */
2906			if (!page)
2907				page = get_page_from_freelist(gfp_mask, order,
2908					ALLOC_NO_WATERMARKS, ac);
2909		}
2910	}
2911out:
2912	mutex_unlock(&oom_lock);
2913	return page;
2914}
2915
 
 
 
 
 
 
2916#ifdef CONFIG_COMPACTION
2917/* Try memory compaction for high-order allocations before reclaim */
2918static struct page *
2919__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2920		int alloc_flags, const struct alloc_context *ac,
2921		enum migrate_mode mode, int *contended_compaction,
2922		bool *deferred_compaction)
2923{
2924	unsigned long compact_result;
2925	struct page *page;
 
2926
2927	if (!order)
2928		return NULL;
2929
2930	current->flags |= PF_MEMALLOC;
2931	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2932						mode, contended_compaction);
2933	current->flags &= ~PF_MEMALLOC;
2934
2935	switch (compact_result) {
2936	case COMPACT_DEFERRED:
2937		*deferred_compaction = true;
2938		/* fall-through */
2939	case COMPACT_SKIPPED:
2940		return NULL;
2941	default:
2942		break;
2943	}
2944
 
 
2945	/*
2946	 * At least in one zone compaction wasn't deferred or skipped, so let's
2947	 * count a compaction stall
2948	 */
2949	count_vm_event(COMPACTSTALL);
2950
2951	page = get_page_from_freelist(gfp_mask, order,
2952					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
 
 
 
 
 
2953
2954	if (page) {
2955		struct zone *zone = page_zone(page);
2956
2957		zone->compact_blockskip_flush = false;
2958		compaction_defer_reset(zone, order, true);
2959		count_vm_event(COMPACTSUCCESS);
2960		return page;
2961	}
2962
2963	/*
2964	 * It's bad if compaction run occurs and fails. The most likely reason
2965	 * is that pages exist, but not enough to satisfy watermarks.
2966	 */
2967	count_vm_event(COMPACTFAIL);
2968
2969	cond_resched();
2970
2971	return NULL;
2972}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2973#else
2974static inline struct page *
2975__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2976		int alloc_flags, const struct alloc_context *ac,
2977		enum migrate_mode mode, int *contended_compaction,
2978		bool *deferred_compaction)
2979{
 
2980	return NULL;
2981}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2982#endif /* CONFIG_COMPACTION */
2983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2984/* Perform direct synchronous page reclaim */
2985static int
2986__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2987					const struct alloc_context *ac)
2988{
2989	struct reclaim_state reclaim_state;
2990	int progress;
2991
2992	cond_resched();
2993
2994	/* We now go into synchronous reclaim */
2995	cpuset_memory_pressure_bump();
2996	current->flags |= PF_MEMALLOC;
2997	lockdep_set_current_reclaim_state(gfp_mask);
2998	reclaim_state.reclaimed_slab = 0;
2999	current->reclaim_state = &reclaim_state;
3000
3001	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3002								ac->nodemask);
3003
3004	current->reclaim_state = NULL;
3005	lockdep_clear_current_reclaim_state();
3006	current->flags &= ~PF_MEMALLOC;
3007
3008	cond_resched();
3009
3010	return progress;
3011}
3012
3013/* The really slow allocator path where we enter direct reclaim */
3014static inline struct page *
3015__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3016		int alloc_flags, const struct alloc_context *ac,
3017		unsigned long *did_some_progress)
3018{
3019	struct page *page = NULL;
3020	bool drained = false;
3021
3022	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3023	if (unlikely(!(*did_some_progress)))
3024		return NULL;
3025
3026retry:
3027	page = get_page_from_freelist(gfp_mask, order,
3028					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3029
3030	/*
3031	 * If an allocation failed after direct reclaim, it could be because
3032	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3033	 * Shrink them them and try again
3034	 */
3035	if (!page && !drained) {
3036		unreserve_highatomic_pageblock(ac);
3037		drain_all_pages(NULL);
3038		drained = true;
3039		goto retry;
3040	}
3041
3042	return page;
3043}
3044
3045static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
 
3046{
3047	struct zoneref *z;
3048	struct zone *zone;
 
 
3049
3050	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3051						ac->high_zoneidx, ac->nodemask)
3052		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
 
 
 
3053}
3054
3055static inline int
3056gfp_to_alloc_flags(gfp_t gfp_mask)
3057{
3058	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3059
3060	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
 
 
 
 
3061	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
 
3062
3063	/*
3064	 * The caller may dip into page reserves a bit more if the caller
3065	 * cannot run direct reclaim, or if the caller has realtime scheduling
3066	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3067	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3068	 */
3069	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
 
3070
3071	if (gfp_mask & __GFP_ATOMIC) {
3072		/*
3073		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3074		 * if it can't schedule.
3075		 */
3076		if (!(gfp_mask & __GFP_NOMEMALLOC))
3077			alloc_flags |= ALLOC_HARDER;
3078		/*
3079		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3080		 * comment for __cpuset_node_allowed().
3081		 */
3082		alloc_flags &= ~ALLOC_CPUSET;
3083	} else if (unlikely(rt_task(current)) && !in_interrupt())
3084		alloc_flags |= ALLOC_HARDER;
3085
3086	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3087		if (gfp_mask & __GFP_MEMALLOC)
3088			alloc_flags |= ALLOC_NO_WATERMARKS;
3089		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3090			alloc_flags |= ALLOC_NO_WATERMARKS;
3091		else if (!in_interrupt() &&
3092				((current->flags & PF_MEMALLOC) ||
3093				 unlikely(test_thread_flag(TIF_MEMDIE))))
3094			alloc_flags |= ALLOC_NO_WATERMARKS;
3095	}
3096#ifdef CONFIG_CMA
3097	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3098		alloc_flags |= ALLOC_CMA;
3099#endif
3100	return alloc_flags;
3101}
3102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3103bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3104{
3105	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3106}
3107
3108static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
 
3109{
3110	return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3111}
3112
3113static inline struct page *
3114__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3115						struct alloc_context *ac)
3116{
3117	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
 
3118	struct page *page = NULL;
3119	int alloc_flags;
3120	unsigned long pages_reclaimed = 0;
3121	unsigned long did_some_progress;
3122	enum migrate_mode migration_mode = MIGRATE_ASYNC;
3123	bool deferred_compaction = false;
3124	int contended_compaction = COMPACT_CONTENDED_NONE;
3125
3126	/*
3127	 * In the slowpath, we sanity check order to avoid ever trying to
3128	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3129	 * be using allocators in order of preference for an area that is
3130	 * too large.
3131	 */
3132	if (order >= MAX_ORDER) {
3133		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3134		return NULL;
3135	}
3136
3137	/*
3138	 * We also sanity check to catch abuse of atomic reserves being used by
3139	 * callers that are not in atomic context.
3140	 */
3141	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3142				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3143		gfp_mask &= ~__GFP_ATOMIC;
3144
3145retry:
3146	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3147		wake_all_kswapds(order, ac);
 
 
3148
3149	/*
3150	 * OK, we're below the kswapd watermark and have kicked background
3151	 * reclaim. Now things get more complex, so set up alloc_flags according
3152	 * to how we want to proceed.
3153	 */
3154	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3155
3156	/*
3157	 * Find the true preferred zone if the allocation is unconstrained by
3158	 * cpusets.
3159	 */
3160	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3161		struct zoneref *preferred_zoneref;
3162		preferred_zoneref = first_zones_zonelist(ac->zonelist,
3163				ac->high_zoneidx, NULL, &ac->preferred_zone);
3164		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3165	}
3166
3167	/* This is the last chance, in general, before the goto nopage. */
3168	page = get_page_from_freelist(gfp_mask, order,
3169				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
 
 
 
 
 
3170	if (page)
3171		goto got_pg;
3172
3173	/* Allocate without watermarks if the context allows */
3174	if (alloc_flags & ALLOC_NO_WATERMARKS) {
3175		/*
3176		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3177		 * the allocation is high priority and these type of
3178		 * allocations are system rather than user orientated
3179		 */
3180		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3181		page = get_page_from_freelist(gfp_mask, order,
3182						ALLOC_NO_WATERMARKS, ac);
 
 
 
 
 
 
 
3183		if (page)
3184			goto got_pg;
3185	}
3186
3187	/* Caller is not willing to reclaim, we can't balance anything */
3188	if (!can_direct_reclaim) {
3189		/*
3190		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3191		 * of any new users that actually allow this type of allocation
3192		 * to fail.
3193		 */
3194		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3195		goto nopage;
3196	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3197
3198	/* Avoid recursion of direct reclaim */
3199	if (current->flags & PF_MEMALLOC) {
3200		/*
3201		 * __GFP_NOFAIL request from this context is rather bizarre
3202		 * because we cannot reclaim anything and only can loop waiting
3203		 * for somebody to do a work for us.
3204		 */
3205		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3206			cond_resched();
3207			goto retry;
3208		}
3209		goto nopage;
3210	}
3211
3212	/* Avoid allocations with no watermarks from looping endlessly */
3213	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3214		goto nopage;
 
 
 
 
 
3215
3216	/*
3217	 * Try direct compaction. The first pass is asynchronous. Subsequent
3218	 * attempts after direct reclaim are synchronous
 
3219	 */
3220	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3221					migration_mode,
3222					&contended_compaction,
3223					&deferred_compaction);
 
 
 
 
3224	if (page)
3225		goto got_pg;
3226
3227	/* Checks for THP-specific high-order allocations */
3228	if (is_thp_gfp_mask(gfp_mask)) {
3229		/*
3230		 * If compaction is deferred for high-order allocations, it is
3231		 * because sync compaction recently failed. If this is the case
3232		 * and the caller requested a THP allocation, we do not want
3233		 * to heavily disrupt the system, so we fail the allocation
3234		 * instead of entering direct reclaim.
3235		 */
3236		if (deferred_compaction)
3237			goto nopage;
3238
3239		/*
3240		 * In all zones where compaction was attempted (and not
3241		 * deferred or skipped), lock contention has been detected.
3242		 * For THP allocation we do not want to disrupt the others
3243		 * so we fallback to base pages instead.
3244		 */
3245		if (contended_compaction == COMPACT_CONTENDED_LOCK)
3246			goto nopage;
3247
3248		/*
3249		 * If compaction was aborted due to need_resched(), we do not
3250		 * want to further increase allocation latency, unless it is
3251		 * khugepaged trying to collapse.
3252		 */
3253		if (contended_compaction == COMPACT_CONTENDED_SCHED
3254			&& !(current->flags & PF_KTHREAD))
3255			goto nopage;
3256	}
3257
3258	/*
3259	 * It can become very expensive to allocate transparent hugepages at
3260	 * fault, so use asynchronous memory compaction for THP unless it is
3261	 * khugepaged trying to collapse.
3262	 */
3263	if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3264		migration_mode = MIGRATE_SYNC_LIGHT;
3265
3266	/* Try direct reclaim and then allocating */
3267	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3268							&did_some_progress);
3269	if (page)
3270		goto got_pg;
3271
 
 
 
 
 
 
3272	/* Do not loop if specifically requested */
3273	if (gfp_mask & __GFP_NORETRY)
3274		goto noretry;
3275
3276	/* Keep reclaiming pages as long as there is reasonable progress */
3277	pages_reclaimed += did_some_progress;
3278	if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3279	    ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3280		/* Wait for some write requests to complete then retry */
3281		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
 
 
 
3282		goto retry;
3283	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3284
3285	/* Reclaim has failed us, start killing things */
3286	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3287	if (page)
3288		goto got_pg;
3289
 
 
 
 
 
 
3290	/* Retry as long as the OOM killer is making progress */
3291	if (did_some_progress)
 
3292		goto retry;
 
3293
3294noretry:
3295	/*
3296	 * High-order allocations do not necessarily loop after
3297	 * direct reclaim and reclaim/compaction depends on compaction
3298	 * being called after reclaim so call directly if necessary
3299	 */
3300	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3301					    ac, migration_mode,
3302					    &contended_compaction,
3303					    &deferred_compaction);
3304	if (page)
3305		goto got_pg;
3306nopage:
3307	warn_alloc_failed(gfp_mask, order, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3308got_pg:
3309	return page;
3310}
3311
3312/*
3313 * This is the 'heart' of the zoned buddy allocator.
3314 */
3315struct page *
3316__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3317			struct zonelist *zonelist, nodemask_t *nodemask)
3318{
3319	struct zoneref *preferred_zoneref;
3320	struct page *page = NULL;
3321	unsigned int cpuset_mems_cookie;
3322	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3323	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3324	struct alloc_context ac = {
3325		.high_zoneidx = gfp_zone(gfp_mask),
3326		.nodemask = nodemask,
3327		.migratetype = gfpflags_to_migratetype(gfp_mask),
3328	};
3329
3330	gfp_mask &= gfp_allowed_mask;
 
 
 
 
 
 
 
 
 
 
3331
3332	lockdep_trace_alloc(gfp_mask);
 
3333
3334	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3335
3336	if (should_fail_alloc_page(gfp_mask, order))
3337		return NULL;
 
 
 
 
 
3338
3339	/*
3340	 * Check the zones suitable for the gfp_mask contain at least one
3341	 * valid zone. It's possible to have an empty zonelist as a result
3342	 * of __GFP_THISNODE and a memoryless node
3343	 */
3344	if (unlikely(!zonelist->_zonerefs->zone))
3345		return NULL;
3346
3347	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3348		alloc_flags |= ALLOC_CMA;
3349
3350retry_cpuset:
3351	cpuset_mems_cookie = read_mems_allowed_begin();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3352
3353	/* We set it here, as __alloc_pages_slowpath might have changed it */
3354	ac.zonelist = zonelist;
 
3355
3356	/* Dirty zone balancing only done in the fast path */
3357	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
 
3358
3359	/* The preferred zone is used for statistics later */
3360	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3361				ac.nodemask ? : &cpuset_current_mems_allowed,
3362				&ac.preferred_zone);
3363	if (!ac.preferred_zone)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3364		goto out;
3365	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3366
3367	/* First allocation attempt */
3368	alloc_mask = gfp_mask|__GFP_HARDWALL;
3369	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3370	if (unlikely(!page)) {
3371		/*
3372		 * Runtime PM, block IO and its error handling path
3373		 * can deadlock because I/O on the device might not
3374		 * complete.
3375		 */
3376		alloc_mask = memalloc_noio_flags(gfp_mask);
3377		ac.spread_dirty_pages = false;
 
 
3378
3379		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
 
 
 
 
 
3380	}
3381
3382	if (kmemcheck_enabled && page)
3383		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
 
 
 
 
3384
3385	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3386
3387out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388	/*
3389	 * When updating a task's mems_allowed, it is possible to race with
3390	 * parallel threads in such a way that an allocation can fail while
3391	 * the mask is being updated. If a page allocation is about to fail,
3392	 * check if the cpuset changed during allocation and if so, retry.
3393	 */
3394	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3395		goto retry_cpuset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3396
3397	return page;
3398}
3399EXPORT_SYMBOL(__alloc_pages_nodemask);
3400
3401/*
3402 * Common helper functions.
 
 
3403 */
3404unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3405{
3406	struct page *page;
3407
3408	/*
3409	 * __get_free_pages() returns a 32-bit address, which cannot represent
3410	 * a highmem page
3411	 */
3412	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3413
3414	page = alloc_pages(gfp_mask, order);
3415	if (!page)
3416		return 0;
3417	return (unsigned long) page_address(page);
3418}
3419EXPORT_SYMBOL(__get_free_pages);
3420
3421unsigned long get_zeroed_page(gfp_t gfp_mask)
3422{
3423	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3424}
3425EXPORT_SYMBOL(get_zeroed_page);
3426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3427void __free_pages(struct page *page, unsigned int order)
3428{
3429	if (put_page_testzero(page)) {
3430		if (order == 0)
3431			free_hot_cold_page(page, false);
3432		else
3433			__free_pages_ok(page, order);
3434	}
3435}
3436
3437EXPORT_SYMBOL(__free_pages);
3438
3439void free_pages(unsigned long addr, unsigned int order)
3440{
3441	if (addr != 0) {
3442		VM_BUG_ON(!virt_addr_valid((void *)addr));
3443		__free_pages(virt_to_page((void *)addr), order);
3444	}
3445}
3446
3447EXPORT_SYMBOL(free_pages);
3448
3449/*
3450 * Page Fragment:
3451 *  An arbitrary-length arbitrary-offset area of memory which resides
3452 *  within a 0 or higher order page.  Multiple fragments within that page
3453 *  are individually refcounted, in the page's reference counter.
3454 *
3455 * The page_frag functions below provide a simple allocation framework for
3456 * page fragments.  This is used by the network stack and network device
3457 * drivers to provide a backing region of memory for use as either an
3458 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3459 */
3460static struct page *__page_frag_refill(struct page_frag_cache *nc,
3461				       gfp_t gfp_mask)
3462{
3463	struct page *page = NULL;
3464	gfp_t gfp = gfp_mask;
3465
3466#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3467	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3468		    __GFP_NOMEMALLOC;
3469	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3470				PAGE_FRAG_CACHE_MAX_ORDER);
3471	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3472#endif
3473	if (unlikely(!page))
3474		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3475
3476	nc->va = page ? page_address(page) : NULL;
3477
3478	return page;
3479}
3480
3481void *__alloc_page_frag(struct page_frag_cache *nc,
3482			unsigned int fragsz, gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
 
3483{
3484	unsigned int size = PAGE_SIZE;
3485	struct page *page;
3486	int offset;
3487
3488	if (unlikely(!nc->va)) {
3489refill:
3490		page = __page_frag_refill(nc, gfp_mask);
3491		if (!page)
3492			return NULL;
3493
3494#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3495		/* if size can vary use size else just use PAGE_SIZE */
3496		size = nc->size;
3497#endif
3498		/* Even if we own the page, we do not use atomic_set().
3499		 * This would break get_page_unless_zero() users.
3500		 */
3501		page_ref_add(page, size - 1);
3502
3503		/* reset page count bias and offset to start of new frag */
3504		nc->pfmemalloc = page_is_pfmemalloc(page);
3505		nc->pagecnt_bias = size;
3506		nc->offset = size;
3507	}
3508
3509	offset = nc->offset - fragsz;
3510	if (unlikely(offset < 0)) {
3511		page = virt_to_page(nc->va);
3512
3513		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3514			goto refill;
3515
 
 
 
 
 
3516#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3517		/* if size can vary use size else just use PAGE_SIZE */
3518		size = nc->size;
3519#endif
3520		/* OK, page count is 0, we can safely set it */
3521		set_page_count(page, size);
3522
3523		/* reset page count bias and offset to start of new frag */
3524		nc->pagecnt_bias = size;
3525		offset = size - fragsz;
3526	}
3527
3528	nc->pagecnt_bias--;
 
3529	nc->offset = offset;
3530
3531	return nc->va + offset;
3532}
3533EXPORT_SYMBOL(__alloc_page_frag);
3534
3535/*
3536 * Frees a page fragment allocated out of either a compound or order 0 page.
3537 */
3538void __free_page_frag(void *addr)
3539{
3540	struct page *page = virt_to_head_page(addr);
3541
3542	if (unlikely(put_page_testzero(page)))
3543		__free_pages_ok(page, compound_order(page));
3544}
3545EXPORT_SYMBOL(__free_page_frag);
3546
3547/*
3548 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3549 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3550 * equivalent to alloc_pages.
3551 *
3552 * It should be used when the caller would like to use kmalloc, but since the
3553 * allocation is large, it has to fall back to the page allocator.
3554 */
3555struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3556{
3557	struct page *page;
3558
3559	page = alloc_pages(gfp_mask, order);
3560	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3561		__free_pages(page, order);
3562		page = NULL;
3563	}
3564	return page;
3565}
3566
3567struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3568{
3569	struct page *page;
3570
3571	page = alloc_pages_node(nid, gfp_mask, order);
3572	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3573		__free_pages(page, order);
3574		page = NULL;
3575	}
3576	return page;
3577}
3578
3579/*
3580 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3581 * alloc_kmem_pages.
3582 */
3583void __free_kmem_pages(struct page *page, unsigned int order)
3584{
3585	memcg_kmem_uncharge(page, order);
3586	__free_pages(page, order);
3587}
3588
3589void free_kmem_pages(unsigned long addr, unsigned int order)
3590{
3591	if (addr != 0) {
3592		VM_BUG_ON(!virt_addr_valid((void *)addr));
3593		__free_kmem_pages(virt_to_page((void *)addr), order);
3594	}
3595}
 
3596
3597static void *make_alloc_exact(unsigned long addr, unsigned int order,
3598		size_t size)
3599{
3600	if (addr) {
3601		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3602		unsigned long used = addr + PAGE_ALIGN(size);
3603
3604		split_page(virt_to_page((void *)addr), order);
3605		while (used < alloc_end) {
3606			free_page(used);
3607			used += PAGE_SIZE;
3608		}
3609	}
3610	return (void *)addr;
3611}
3612
3613/**
3614 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3615 * @size: the number of bytes to allocate
3616 * @gfp_mask: GFP flags for the allocation
3617 *
3618 * This function is similar to alloc_pages(), except that it allocates the
3619 * minimum number of pages to satisfy the request.  alloc_pages() can only
3620 * allocate memory in power-of-two pages.
3621 *
3622 * This function is also limited by MAX_ORDER.
3623 *
3624 * Memory allocated by this function must be released by free_pages_exact().
 
 
3625 */
3626void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3627{
3628	unsigned int order = get_order(size);
3629	unsigned long addr;
3630
 
 
 
3631	addr = __get_free_pages(gfp_mask, order);
3632	return make_alloc_exact(addr, order, size);
3633}
3634EXPORT_SYMBOL(alloc_pages_exact);
3635
3636/**
3637 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3638 *			   pages on a node.
3639 * @nid: the preferred node ID where memory should be allocated
3640 * @size: the number of bytes to allocate
3641 * @gfp_mask: GFP flags for the allocation
3642 *
3643 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3644 * back.
 
 
3645 */
3646void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3647{
3648	unsigned int order = get_order(size);
3649	struct page *p = alloc_pages_node(nid, gfp_mask, order);
 
 
 
 
 
3650	if (!p)
3651		return NULL;
3652	return make_alloc_exact((unsigned long)page_address(p), order, size);
3653}
3654
3655/**
3656 * free_pages_exact - release memory allocated via alloc_pages_exact()
3657 * @virt: the value returned by alloc_pages_exact.
3658 * @size: size of allocation, same value as passed to alloc_pages_exact().
3659 *
3660 * Release the memory allocated by a previous call to alloc_pages_exact.
3661 */
3662void free_pages_exact(void *virt, size_t size)
3663{
3664	unsigned long addr = (unsigned long)virt;
3665	unsigned long end = addr + PAGE_ALIGN(size);
3666
3667	while (addr < end) {
3668		free_page(addr);
3669		addr += PAGE_SIZE;
3670	}
3671}
3672EXPORT_SYMBOL(free_pages_exact);
3673
3674/**
3675 * nr_free_zone_pages - count number of pages beyond high watermark
3676 * @offset: The zone index of the highest zone
3677 *
3678 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3679 * high watermark within all zones at or below a given zone index.  For each
3680 * zone, the number of pages is calculated as:
3681 *     managed_pages - high_pages
 
 
 
3682 */
3683static unsigned long nr_free_zone_pages(int offset)
3684{
3685	struct zoneref *z;
3686	struct zone *zone;
3687
3688	/* Just pick one node, since fallback list is circular */
3689	unsigned long sum = 0;
3690
3691	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3692
3693	for_each_zone_zonelist(zone, z, zonelist, offset) {
3694		unsigned long size = zone->managed_pages;
3695		unsigned long high = high_wmark_pages(zone);
3696		if (size > high)
3697			sum += size - high;
3698	}
3699
3700	return sum;
3701}
3702
3703/**
3704 * nr_free_buffer_pages - count number of pages beyond high watermark
3705 *
3706 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3707 * watermark within ZONE_DMA and ZONE_NORMAL.
 
 
 
3708 */
3709unsigned long nr_free_buffer_pages(void)
3710{
3711	return nr_free_zone_pages(gfp_zone(GFP_USER));
3712}
3713EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3714
3715/**
3716 * nr_free_pagecache_pages - count number of pages beyond high watermark
3717 *
3718 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3719 * high watermark within all zones.
3720 */
3721unsigned long nr_free_pagecache_pages(void)
3722{
3723	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3724}
3725
3726static inline void show_node(struct zone *zone)
3727{
3728	if (IS_ENABLED(CONFIG_NUMA))
3729		printk("Node %d ", zone_to_nid(zone));
3730}
3731
3732long si_mem_available(void)
3733{
3734	long available;
3735	unsigned long pagecache;
3736	unsigned long wmark_low = 0;
3737	unsigned long pages[NR_LRU_LISTS];
 
3738	struct zone *zone;
3739	int lru;
3740
3741	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3742		pages[lru] = global_page_state(NR_LRU_BASE + lru);
3743
3744	for_each_zone(zone)
3745		wmark_low += zone->watermark[WMARK_LOW];
3746
3747	/*
3748	 * Estimate the amount of memory available for userspace allocations,
3749	 * without causing swapping.
3750	 */
3751	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3752
3753	/*
3754	 * Not all the page cache can be freed, otherwise the system will
3755	 * start swapping. Assume at least half of the page cache, or the
3756	 * low watermark worth of cache, needs to stay.
3757	 */
3758	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3759	pagecache -= min(pagecache / 2, wmark_low);
3760	available += pagecache;
3761
3762	/*
3763	 * Part of the reclaimable slab consists of items that are in use,
3764	 * and cannot be freed. Cap this estimate at the low watermark.
3765	 */
3766	available += global_page_state(NR_SLAB_RECLAIMABLE) -
3767		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
 
 
3768
3769	if (available < 0)
3770		available = 0;
3771	return available;
3772}
3773EXPORT_SYMBOL_GPL(si_mem_available);
3774
3775void si_meminfo(struct sysinfo *val)
3776{
3777	val->totalram = totalram_pages;
3778	val->sharedram = global_page_state(NR_SHMEM);
3779	val->freeram = global_page_state(NR_FREE_PAGES);
3780	val->bufferram = nr_blockdev_pages();
3781	val->totalhigh = totalhigh_pages;
3782	val->freehigh = nr_free_highpages();
3783	val->mem_unit = PAGE_SIZE;
3784}
3785
3786EXPORT_SYMBOL(si_meminfo);
3787
3788#ifdef CONFIG_NUMA
3789void si_meminfo_node(struct sysinfo *val, int nid)
3790{
3791	int zone_type;		/* needs to be signed */
3792	unsigned long managed_pages = 0;
 
 
3793	pg_data_t *pgdat = NODE_DATA(nid);
3794
3795	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3796		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3797	val->totalram = managed_pages;
3798	val->sharedram = node_page_state(nid, NR_SHMEM);
3799	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3800#ifdef CONFIG_HIGHMEM
3801	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3802	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3803			NR_FREE_PAGES);
 
 
 
 
 
 
 
3804#else
3805	val->totalhigh = 0;
3806	val->freehigh = 0;
3807#endif
3808	val->mem_unit = PAGE_SIZE;
3809}
3810#endif
3811
3812/*
3813 * Determine whether the node should be displayed or not, depending on whether
3814 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3815 */
3816bool skip_free_areas_node(unsigned int flags, int nid)
3817{
3818	bool ret = false;
3819	unsigned int cpuset_mems_cookie;
3820
3821	if (!(flags & SHOW_MEM_FILTER_NODES))
3822		goto out;
3823
3824	do {
3825		cpuset_mems_cookie = read_mems_allowed_begin();
3826		ret = !node_isset(nid, cpuset_current_mems_allowed);
3827	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3828out:
3829	return ret;
 
 
 
3830}
3831
3832#define K(x) ((x) << (PAGE_SHIFT-10))
3833
3834static void show_migration_types(unsigned char type)
3835{
3836	static const char types[MIGRATE_TYPES] = {
3837		[MIGRATE_UNMOVABLE]	= 'U',
3838		[MIGRATE_MOVABLE]	= 'M',
3839		[MIGRATE_RECLAIMABLE]	= 'E',
3840		[MIGRATE_HIGHATOMIC]	= 'H',
3841#ifdef CONFIG_CMA
3842		[MIGRATE_CMA]		= 'C',
3843#endif
3844#ifdef CONFIG_MEMORY_ISOLATION
3845		[MIGRATE_ISOLATE]	= 'I',
3846#endif
3847	};
3848	char tmp[MIGRATE_TYPES + 1];
3849	char *p = tmp;
3850	int i;
3851
3852	for (i = 0; i < MIGRATE_TYPES; i++) {
3853		if (type & (1 << i))
3854			*p++ = types[i];
3855	}
3856
3857	*p = '\0';
3858	printk("(%s) ", tmp);
3859}
3860
3861/*
3862 * Show free area list (used inside shift_scroll-lock stuff)
3863 * We also calculate the percentage fragmentation. We do this by counting the
3864 * memory on each free list with the exception of the first item on the list.
3865 *
3866 * Bits in @filter:
3867 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3868 *   cpuset.
3869 */
3870void show_free_areas(unsigned int filter)
3871{
3872	unsigned long free_pcp = 0;
3873	int cpu;
3874	struct zone *zone;
 
3875
3876	for_each_populated_zone(zone) {
3877		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3878			continue;
3879
3880		for_each_online_cpu(cpu)
3881			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3882	}
3883
3884	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3885		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3886		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3887		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3888		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3889		" free:%lu free_pcp:%lu free_cma:%lu\n",
3890		global_page_state(NR_ACTIVE_ANON),
3891		global_page_state(NR_INACTIVE_ANON),
3892		global_page_state(NR_ISOLATED_ANON),
3893		global_page_state(NR_ACTIVE_FILE),
3894		global_page_state(NR_INACTIVE_FILE),
3895		global_page_state(NR_ISOLATED_FILE),
3896		global_page_state(NR_UNEVICTABLE),
3897		global_page_state(NR_FILE_DIRTY),
3898		global_page_state(NR_WRITEBACK),
3899		global_page_state(NR_UNSTABLE_NFS),
3900		global_page_state(NR_SLAB_RECLAIMABLE),
3901		global_page_state(NR_SLAB_UNRECLAIMABLE),
3902		global_page_state(NR_FILE_MAPPED),
3903		global_page_state(NR_SHMEM),
3904		global_page_state(NR_PAGETABLE),
3905		global_page_state(NR_BOUNCE),
3906		global_page_state(NR_FREE_PAGES),
3907		free_pcp,
3908		global_page_state(NR_FREE_CMA_PAGES));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3909
3910	for_each_populated_zone(zone) {
3911		int i;
3912
3913		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3914			continue;
3915
3916		free_pcp = 0;
3917		for_each_online_cpu(cpu)
3918			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3919
3920		show_node(zone);
3921		printk("%s"
 
3922			" free:%lukB"
3923			" min:%lukB"
3924			" low:%lukB"
3925			" high:%lukB"
 
3926			" active_anon:%lukB"
3927			" inactive_anon:%lukB"
3928			" active_file:%lukB"
3929			" inactive_file:%lukB"
3930			" unevictable:%lukB"
3931			" isolated(anon):%lukB"
3932			" isolated(file):%lukB"
3933			" present:%lukB"
3934			" managed:%lukB"
3935			" mlocked:%lukB"
3936			" dirty:%lukB"
3937			" writeback:%lukB"
3938			" mapped:%lukB"
3939			" shmem:%lukB"
3940			" slab_reclaimable:%lukB"
3941			" slab_unreclaimable:%lukB"
3942			" kernel_stack:%lukB"
3943			" pagetables:%lukB"
3944			" unstable:%lukB"
3945			" bounce:%lukB"
3946			" free_pcp:%lukB"
3947			" local_pcp:%ukB"
3948			" free_cma:%lukB"
3949			" writeback_tmp:%lukB"
3950			" pages_scanned:%lu"
3951			" all_unreclaimable? %s"
3952			"\n",
3953			zone->name,
3954			K(zone_page_state(zone, NR_FREE_PAGES)),
3955			K(min_wmark_pages(zone)),
3956			K(low_wmark_pages(zone)),
3957			K(high_wmark_pages(zone)),
3958			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3959			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3960			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3961			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3962			K(zone_page_state(zone, NR_UNEVICTABLE)),
3963			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3964			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3965			K(zone->present_pages),
3966			K(zone->managed_pages),
3967			K(zone_page_state(zone, NR_MLOCK)),
3968			K(zone_page_state(zone, NR_FILE_DIRTY)),
3969			K(zone_page_state(zone, NR_WRITEBACK)),
3970			K(zone_page_state(zone, NR_FILE_MAPPED)),
3971			K(zone_page_state(zone, NR_SHMEM)),
3972			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3973			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3974			zone_page_state(zone, NR_KERNEL_STACK) *
3975				THREAD_SIZE / 1024,
3976			K(zone_page_state(zone, NR_PAGETABLE)),
3977			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3978			K(zone_page_state(zone, NR_BOUNCE)),
3979			K(free_pcp),
3980			K(this_cpu_read(zone->pageset->pcp.count)),
3981			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3982			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3983			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3984			(!zone_reclaimable(zone) ? "yes" : "no")
3985			);
3986		printk("lowmem_reserve[]:");
3987		for (i = 0; i < MAX_NR_ZONES; i++)
3988			printk(" %ld", zone->lowmem_reserve[i]);
3989		printk("\n");
3990	}
3991
3992	for_each_populated_zone(zone) {
3993		unsigned int order;
3994		unsigned long nr[MAX_ORDER], flags, total = 0;
3995		unsigned char types[MAX_ORDER];
3996
3997		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3998			continue;
3999		show_node(zone);
4000		printk("%s: ", zone->name);
4001
4002		spin_lock_irqsave(&zone->lock, flags);
4003		for (order = 0; order < MAX_ORDER; order++) {
4004			struct free_area *area = &zone->free_area[order];
4005			int type;
4006
4007			nr[order] = area->nr_free;
4008			total += nr[order] << order;
4009
4010			types[order] = 0;
4011			for (type = 0; type < MIGRATE_TYPES; type++) {
4012				if (!list_empty(&area->free_list[type]))
4013					types[order] |= 1 << type;
4014			}
4015		}
4016		spin_unlock_irqrestore(&zone->lock, flags);
4017		for (order = 0; order < MAX_ORDER; order++) {
4018			printk("%lu*%lukB ", nr[order], K(1UL) << order);
 
4019			if (nr[order])
4020				show_migration_types(types[order]);
4021		}
4022		printk("= %lukB\n", K(total));
4023	}
4024
4025	hugetlb_show_meminfo();
4026
4027	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4028
4029	show_swap_cache_info();
4030}
4031
4032static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4033{
4034	zoneref->zone = zone;
4035	zoneref->zone_idx = zone_idx(zone);
4036}
4037
4038/*
4039 * Builds allocation fallback zone lists.
4040 *
4041 * Add all populated zones of a node to the zonelist.
4042 */
4043static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4044				int nr_zones)
4045{
4046	struct zone *zone;
4047	enum zone_type zone_type = MAX_NR_ZONES;
 
4048
4049	do {
4050		zone_type--;
4051		zone = pgdat->node_zones + zone_type;
4052		if (populated_zone(zone)) {
4053			zoneref_set_zone(zone,
4054				&zonelist->_zonerefs[nr_zones++]);
4055			check_highest_zone(zone_type);
4056		}
4057	} while (zone_type);
4058
4059	return nr_zones;
4060}
4061
4062
4063/*
4064 *  zonelist_order:
4065 *  0 = automatic detection of better ordering.
4066 *  1 = order by ([node] distance, -zonetype)
4067 *  2 = order by (-zonetype, [node] distance)
4068 *
4069 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4070 *  the same zonelist. So only NUMA can configure this param.
4071 */
4072#define ZONELIST_ORDER_DEFAULT  0
4073#define ZONELIST_ORDER_NODE     1
4074#define ZONELIST_ORDER_ZONE     2
4075
4076/* zonelist order in the kernel.
4077 * set_zonelist_order() will set this to NODE or ZONE.
4078 */
4079static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4080static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4081
4082
4083#ifdef CONFIG_NUMA
4084/* The value user specified ....changed by config */
4085static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4086/* string for sysctl */
4087#define NUMA_ZONELIST_ORDER_LEN	16
4088char numa_zonelist_order[16] = "default";
4089
4090/*
4091 * interface for configure zonelist ordering.
4092 * command line option "numa_zonelist_order"
4093 *	= "[dD]efault	- default, automatic configuration.
4094 *	= "[nN]ode 	- order by node locality, then by zone within node
4095 *	= "[zZ]one      - order by zone, then by locality within zone
4096 */
4097
4098static int __parse_numa_zonelist_order(char *s)
4099{
4100	if (*s == 'd' || *s == 'D') {
4101		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4102	} else if (*s == 'n' || *s == 'N') {
4103		user_zonelist_order = ZONELIST_ORDER_NODE;
4104	} else if (*s == 'z' || *s == 'Z') {
4105		user_zonelist_order = ZONELIST_ORDER_ZONE;
4106	} else {
4107		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4108		return -EINVAL;
4109	}
4110	return 0;
4111}
4112
4113static __init int setup_numa_zonelist_order(char *s)
4114{
4115	int ret;
4116
4117	if (!s)
4118		return 0;
4119
4120	ret = __parse_numa_zonelist_order(s);
4121	if (ret == 0)
4122		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4123
4124	return ret;
4125}
4126early_param("numa_zonelist_order", setup_numa_zonelist_order);
4127
4128/*
4129 * sysctl handler for numa_zonelist_order
4130 */
4131int numa_zonelist_order_handler(struct ctl_table *table, int write,
4132		void __user *buffer, size_t *length,
4133		loff_t *ppos)
4134{
4135	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4136	int ret;
4137	static DEFINE_MUTEX(zl_order_mutex);
4138
4139	mutex_lock(&zl_order_mutex);
4140	if (write) {
4141		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4142			ret = -EINVAL;
4143			goto out;
4144		}
4145		strcpy(saved_string, (char *)table->data);
4146	}
4147	ret = proc_dostring(table, write, buffer, length, ppos);
4148	if (ret)
4149		goto out;
4150	if (write) {
4151		int oldval = user_zonelist_order;
4152
4153		ret = __parse_numa_zonelist_order((char *)table->data);
4154		if (ret) {
4155			/*
4156			 * bogus value.  restore saved string
4157			 */
4158			strncpy((char *)table->data, saved_string,
4159				NUMA_ZONELIST_ORDER_LEN);
4160			user_zonelist_order = oldval;
4161		} else if (oldval != user_zonelist_order) {
4162			mutex_lock(&zonelists_mutex);
4163			build_all_zonelists(NULL, NULL);
4164			mutex_unlock(&zonelists_mutex);
4165		}
4166	}
4167out:
4168	mutex_unlock(&zl_order_mutex);
4169	return ret;
4170}
4171
4172
4173#define MAX_NODE_LOAD (nr_online_nodes)
4174static int node_load[MAX_NUMNODES];
4175
4176/**
4177 * find_next_best_node - find the next node that should appear in a given node's fallback list
4178 * @node: node whose fallback list we're appending
4179 * @used_node_mask: nodemask_t of already used nodes
4180 *
4181 * We use a number of factors to determine which is the next node that should
4182 * appear on a given node's fallback list.  The node should not have appeared
4183 * already in @node's fallback list, and it should be the next closest node
4184 * according to the distance array (which contains arbitrary distance values
4185 * from each node to each node in the system), and should also prefer nodes
4186 * with no CPUs, since presumably they'll have very little allocation pressure
4187 * on them otherwise.
4188 * It returns -1 if no node is found.
 
4189 */
4190static int find_next_best_node(int node, nodemask_t *used_node_mask)
4191{
4192	int n, val;
4193	int min_val = INT_MAX;
4194	int best_node = NUMA_NO_NODE;
4195	const struct cpumask *tmp = cpumask_of_node(0);
4196
4197	/* Use the local node if we haven't already */
4198	if (!node_isset(node, *used_node_mask)) {
4199		node_set(node, *used_node_mask);
4200		return node;
4201	}
4202
4203	for_each_node_state(n, N_MEMORY) {
4204
4205		/* Don't want a node to appear more than once */
4206		if (node_isset(n, *used_node_mask))
4207			continue;
4208
4209		/* Use the distance array to find the distance */
4210		val = node_distance(node, n);
4211
4212		/* Penalize nodes under us ("prefer the next node") */
4213		val += (n < node);
4214
4215		/* Give preference to headless and unused nodes */
4216		tmp = cpumask_of_node(n);
4217		if (!cpumask_empty(tmp))
4218			val += PENALTY_FOR_NODE_WITH_CPUS;
4219
4220		/* Slight preference for less loaded node */
4221		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4222		val += node_load[n];
4223
4224		if (val < min_val) {
4225			min_val = val;
4226			best_node = n;
4227		}
4228	}
4229
4230	if (best_node >= 0)
4231		node_set(best_node, *used_node_mask);
4232
4233	return best_node;
4234}
4235
4236
4237/*
4238 * Build zonelists ordered by node and zones within node.
4239 * This results in maximum locality--normal zone overflows into local
4240 * DMA zone, if any--but risks exhausting DMA zone.
4241 */
4242static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
 
4243{
4244	int j;
4245	struct zonelist *zonelist;
 
 
4246
4247	zonelist = &pgdat->node_zonelists[0];
4248	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4249		;
4250	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4251	zonelist->_zonerefs[j].zone = NULL;
4252	zonelist->_zonerefs[j].zone_idx = 0;
 
 
 
 
4253}
4254
4255/*
4256 * Build gfp_thisnode zonelists
4257 */
4258static void build_thisnode_zonelists(pg_data_t *pgdat)
4259{
4260	int j;
4261	struct zonelist *zonelist;
4262
4263	zonelist = &pgdat->node_zonelists[1];
4264	j = build_zonelists_node(pgdat, zonelist, 0);
4265	zonelist->_zonerefs[j].zone = NULL;
4266	zonelist->_zonerefs[j].zone_idx = 0;
 
4267}
4268
4269/*
4270 * Build zonelists ordered by zone and nodes within zones.
4271 * This results in conserving DMA zone[s] until all Normal memory is
4272 * exhausted, but results in overflowing to remote node while memory
4273 * may still exist in local DMA zone.
4274 */
4275static int node_order[MAX_NUMNODES];
4276
4277static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4278{
4279	int pos, j, node;
4280	int zone_type;		/* needs to be signed */
4281	struct zone *z;
4282	struct zonelist *zonelist;
4283
4284	zonelist = &pgdat->node_zonelists[0];
4285	pos = 0;
4286	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4287		for (j = 0; j < nr_nodes; j++) {
4288			node = node_order[j];
4289			z = &NODE_DATA(node)->node_zones[zone_type];
4290			if (populated_zone(z)) {
4291				zoneref_set_zone(z,
4292					&zonelist->_zonerefs[pos++]);
4293				check_highest_zone(zone_type);
4294			}
4295		}
4296	}
4297	zonelist->_zonerefs[pos].zone = NULL;
4298	zonelist->_zonerefs[pos].zone_idx = 0;
4299}
4300
4301#if defined(CONFIG_64BIT)
4302/*
4303 * Devices that require DMA32/DMA are relatively rare and do not justify a
4304 * penalty to every machine in case the specialised case applies. Default
4305 * to Node-ordering on 64-bit NUMA machines
4306 */
4307static int default_zonelist_order(void)
4308{
4309	return ZONELIST_ORDER_NODE;
4310}
4311#else
4312/*
4313 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4314 * by the kernel. If processes running on node 0 deplete the low memory zone
4315 * then reclaim will occur more frequency increasing stalls and potentially
4316 * be easier to OOM if a large percentage of the zone is under writeback or
4317 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4318 * Hence, default to zone ordering on 32-bit.
4319 */
4320static int default_zonelist_order(void)
4321{
4322	return ZONELIST_ORDER_ZONE;
4323}
4324#endif /* CONFIG_64BIT */
4325
4326static void set_zonelist_order(void)
4327{
4328	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4329		current_zonelist_order = default_zonelist_order();
4330	else
4331		current_zonelist_order = user_zonelist_order;
4332}
4333
4334static void build_zonelists(pg_data_t *pgdat)
4335{
4336	int i, node, load;
4337	nodemask_t used_mask;
 
4338	int local_node, prev_node;
4339	struct zonelist *zonelist;
4340	unsigned int order = current_zonelist_order;
4341
4342	/* initialize zonelists */
4343	for (i = 0; i < MAX_ZONELISTS; i++) {
4344		zonelist = pgdat->node_zonelists + i;
4345		zonelist->_zonerefs[0].zone = NULL;
4346		zonelist->_zonerefs[0].zone_idx = 0;
4347	}
4348
4349	/* NUMA-aware ordering of nodes */
4350	local_node = pgdat->node_id;
4351	load = nr_online_nodes;
4352	prev_node = local_node;
4353	nodes_clear(used_mask);
4354
4355	memset(node_order, 0, sizeof(node_order));
4356	i = 0;
4357
4358	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4359		/*
4360		 * We don't want to pressure a particular node.
4361		 * So adding penalty to the first node in same
4362		 * distance group to make it round-robin.
4363		 */
4364		if (node_distance(local_node, node) !=
4365		    node_distance(local_node, prev_node))
4366			node_load[node] = load;
4367
 
4368		prev_node = node;
4369		load--;
4370		if (order == ZONELIST_ORDER_NODE)
4371			build_zonelists_in_node_order(pgdat, node);
4372		else
4373			node_order[i++] = node;	/* remember order */
4374	}
4375
4376	if (order == ZONELIST_ORDER_ZONE) {
4377		/* calculate node order -- i.e., DMA last! */
4378		build_zonelists_in_zone_order(pgdat, i);
4379	}
4380
 
4381	build_thisnode_zonelists(pgdat);
4382}
4383
4384#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4385/*
4386 * Return node id of node used for "local" allocations.
4387 * I.e., first node id of first zone in arg node's generic zonelist.
4388 * Used for initializing percpu 'numa_mem', which is used primarily
4389 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4390 */
4391int local_memory_node(int node)
4392{
4393	struct zone *zone;
4394
4395	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4396				   gfp_zone(GFP_KERNEL),
4397				   NULL,
4398				   &zone);
4399	return zone->node;
4400}
4401#endif
4402
 
 
4403#else	/* CONFIG_NUMA */
4404
4405static void set_zonelist_order(void)
4406{
4407	current_zonelist_order = ZONELIST_ORDER_ZONE;
4408}
4409
4410static void build_zonelists(pg_data_t *pgdat)
4411{
4412	int node, local_node;
4413	enum zone_type j;
4414	struct zonelist *zonelist;
4415
4416	local_node = pgdat->node_id;
4417
4418	zonelist = &pgdat->node_zonelists[0];
4419	j = build_zonelists_node(pgdat, zonelist, 0);
 
4420
4421	/*
4422	 * Now we build the zonelist so that it contains the zones
4423	 * of all the other nodes.
4424	 * We don't want to pressure a particular node, so when
4425	 * building the zones for node N, we make sure that the
4426	 * zones coming right after the local ones are those from
4427	 * node N+1 (modulo N)
4428	 */
4429	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4430		if (!node_online(node))
4431			continue;
4432		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 
4433	}
4434	for (node = 0; node < local_node; node++) {
4435		if (!node_online(node))
4436			continue;
4437		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
 
4438	}
4439
4440	zonelist->_zonerefs[j].zone = NULL;
4441	zonelist->_zonerefs[j].zone_idx = 0;
4442}
4443
4444#endif	/* CONFIG_NUMA */
4445
4446/*
4447 * Boot pageset table. One per cpu which is going to be used for all
4448 * zones and all nodes. The parameters will be set in such a way
4449 * that an item put on a list will immediately be handed over to
4450 * the buddy list. This is safe since pageset manipulation is done
4451 * with interrupts disabled.
4452 *
4453 * The boot_pagesets must be kept even after bootup is complete for
4454 * unused processors and/or zones. They do play a role for bootstrapping
4455 * hotplugged processors.
4456 *
4457 * zoneinfo_show() and maybe other functions do
4458 * not check if the processor is online before following the pageset pointer.
4459 * Other parts of the kernel may not check if the zone is available.
4460 */
4461static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4462static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4463static void setup_zone_pageset(struct zone *zone);
4464
4465/*
4466 * Global mutex to protect against size modification of zonelists
4467 * as well as to serialize pageset setup for the new populated zone.
4468 */
4469DEFINE_MUTEX(zonelists_mutex);
4470
4471/* return values int ....just for stop_machine() */
4472static int __build_all_zonelists(void *data)
4473{
4474	int nid;
4475	int cpu;
4476	pg_data_t *self = data;
 
 
 
4477
4478#ifdef CONFIG_NUMA
4479	memset(node_load, 0, sizeof(node_load));
4480#endif
4481
 
 
 
 
4482	if (self && !node_online(self->node_id)) {
4483		build_zonelists(self);
4484	}
4485
4486	for_each_online_node(nid) {
4487		pg_data_t *pgdat = NODE_DATA(nid);
4488
4489		build_zonelists(pgdat);
4490	}
4491
4492	/*
4493	 * Initialize the boot_pagesets that are going to be used
4494	 * for bootstrapping processors. The real pagesets for
4495	 * each zone will be allocated later when the per cpu
4496	 * allocator is available.
4497	 *
4498	 * boot_pagesets are used also for bootstrapping offline
4499	 * cpus if the system is already booted because the pagesets
4500	 * are needed to initialize allocators on a specific cpu too.
4501	 * F.e. the percpu allocator needs the page allocator which
4502	 * needs the percpu allocator in order to allocate its pagesets
4503	 * (a chicken-egg dilemma).
4504	 */
4505	for_each_possible_cpu(cpu) {
4506		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4507
4508#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4509		/*
4510		 * We now know the "local memory node" for each node--
4511		 * i.e., the node of the first zone in the generic zonelist.
4512		 * Set up numa_mem percpu variable for on-line cpus.  During
4513		 * boot, only the boot cpu should be on-line;  we'll init the
4514		 * secondary cpus' numa_mem as they come on-line.  During
4515		 * node/memory hotplug, we'll fixup all on-line cpus.
4516		 */
4517		if (cpu_online(cpu))
4518			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4519#endif
4520	}
4521
4522	return 0;
4523}
4524
4525static noinline void __init
4526build_all_zonelists_init(void)
4527{
 
 
4528	__build_all_zonelists(NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4529	mminit_verify_zonelist();
4530	cpuset_init_current_mems_allowed();
4531}
4532
4533/*
4534 * Called with zonelists_mutex held always
4535 * unless system_state == SYSTEM_BOOTING.
4536 *
4537 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4538 * [we're only called with non-NULL zone through __meminit paths] and
4539 * (2) call of __init annotated helper build_all_zonelists_init
4540 * [protected by SYSTEM_BOOTING].
4541 */
4542void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4543{
4544	set_zonelist_order();
4545
4546	if (system_state == SYSTEM_BOOTING) {
4547		build_all_zonelists_init();
4548	} else {
4549#ifdef CONFIG_MEMORY_HOTPLUG
4550		if (zone)
4551			setup_zone_pageset(zone);
4552#endif
4553		/* we have to stop all cpus to guarantee there is no user
4554		   of zonelist */
4555		stop_machine(__build_all_zonelists, pgdat, NULL);
4556		/* cpuset refresh routine should be here */
4557	}
4558	vm_total_pages = nr_free_pagecache_pages();
 
4559	/*
4560	 * Disable grouping by mobility if the number of pages in the
4561	 * system is too low to allow the mechanism to work. It would be
4562	 * more accurate, but expensive to check per-zone. This check is
4563	 * made on memory-hotadd so a system can start with mobility
4564	 * disabled and enable it later
4565	 */
4566	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4567		page_group_by_mobility_disabled = 1;
4568	else
4569		page_group_by_mobility_disabled = 0;
4570
4571	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
4572		nr_online_nodes,
4573		zonelist_order_name[current_zonelist_order],
4574		page_group_by_mobility_disabled ? "off" : "on",
4575		vm_total_pages);
4576#ifdef CONFIG_NUMA
4577	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4578#endif
4579}
4580
4581/*
4582 * Helper functions to size the waitqueue hash table.
4583 * Essentially these want to choose hash table sizes sufficiently
4584 * large so that collisions trying to wait on pages are rare.
4585 * But in fact, the number of active page waitqueues on typical
4586 * systems is ridiculously low, less than 200. So this is even
4587 * conservative, even though it seems large.
4588 *
4589 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4590 * waitqueues, i.e. the size of the waitq table given the number of pages.
4591 */
4592#define PAGES_PER_WAITQUEUE	256
4593
4594#ifndef CONFIG_MEMORY_HOTPLUG
4595static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4596{
4597	unsigned long size = 1;
4598
4599	pages /= PAGES_PER_WAITQUEUE;
4600
4601	while (size < pages)
4602		size <<= 1;
4603
4604	/*
4605	 * Once we have dozens or even hundreds of threads sleeping
4606	 * on IO we've got bigger problems than wait queue collision.
4607	 * Limit the size of the wait table to a reasonable size.
4608	 */
4609	size = min(size, 4096UL);
4610
4611	return max(size, 4UL);
4612}
4613#else
4614/*
4615 * A zone's size might be changed by hot-add, so it is not possible to determine
4616 * a suitable size for its wait_table.  So we use the maximum size now.
4617 *
4618 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4619 *
4620 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4621 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4622 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4623 *
4624 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4625 * or more by the traditional way. (See above).  It equals:
4626 *
4627 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4628 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4629 *    powerpc (64K page size)             : =  (32G +16M)byte.
4630 */
4631static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4632{
4633	return 4096UL;
4634}
4635#endif
4636
4637/*
4638 * This is an integer logarithm so that shifts can be used later
4639 * to extract the more random high bits from the multiplicative
4640 * hash function before the remainder is taken.
4641 */
4642static inline unsigned long wait_table_bits(unsigned long size)
4643{
4644	return ffz(~size);
4645}
4646
4647/*
4648 * Initially all pages are reserved - free ones are freed
4649 * up by free_all_bootmem() once the early boot process is
4650 * done. Non-atomic initialization, single-pass.
4651 */
4652void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4653		unsigned long start_pfn, enum memmap_context context)
 
 
 
 
 
 
4654{
4655	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4656	unsigned long end_pfn = start_pfn + size;
4657	pg_data_t *pgdat = NODE_DATA(nid);
4658	unsigned long pfn;
4659	unsigned long nr_initialised = 0;
4660#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4661	struct memblock_region *r = NULL, *tmp;
4662#endif
4663
4664	if (highest_memmap_pfn < end_pfn - 1)
4665		highest_memmap_pfn = end_pfn - 1;
4666
 
4667	/*
4668	 * Honor reservation requested by the driver for this ZONE_DEVICE
4669	 * memory
 
 
 
4670	 */
4671	if (altmap && start_pfn == altmap->base_pfn)
4672		start_pfn += altmap->reserve;
 
4673
4674	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 
 
 
 
 
 
4675		/*
4676		 * There can be holes in boot-time mem_map[]s handed to this
4677		 * function.  They do not exist on hotplugged memory.
4678		 */
4679		if (context != MEMMAP_EARLY)
4680			goto not_early;
 
 
 
 
4681
4682		if (!early_pfn_valid(pfn))
4683			continue;
4684		if (!early_pfn_in_nid(pfn, nid))
4685			continue;
4686		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4687			break;
4688
4689#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4690		/*
4691		 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4692		 * from zone_movable_pfn[nid] to end of each node should be
4693		 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4694		 */
4695		if (!mirrored_kernelcore && zone_movable_pfn[nid])
4696			if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4697				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4698
4699		/*
4700		 * Check given memblock attribute by firmware which can affect
4701		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
4702		 * mirrored, it's an overlapped memmap init. skip it.
4703		 */
4704		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4705			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4706				for_each_memblock(memory, tmp)
4707					if (pfn < memblock_region_memory_end_pfn(tmp))
4708						break;
4709				r = tmp;
4710			}
4711			if (pfn >= memblock_region_memory_base_pfn(r) &&
4712			    memblock_is_mirror(r)) {
4713				/* already initialized as NORMAL */
4714				pfn = memblock_region_memory_end_pfn(r);
4715				continue;
4716			}
4717		}
4718#endif
4719
4720not_early:
4721		/*
4722		 * Mark the block movable so that blocks are reserved for
4723		 * movable at startup. This will force kernel allocations
4724		 * to reserve their blocks rather than leaking throughout
4725		 * the address space during boot when many long-lived
4726		 * kernel allocations are made.
4727		 *
4728		 * bitmap is created for zone's valid pfn range. but memmap
4729		 * can be created for invalid pages (for alignment)
4730		 * check here not to call set_pageblock_migratetype() against
4731		 * pfn out of zone.
4732		 */
4733		if (!(pfn & (pageblock_nr_pages - 1))) {
4734			struct page *page = pfn_to_page(pfn);
4735
4736			__init_single_page(page, pfn, zone, nid);
4737			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4738		} else {
4739			__init_single_pfn(pfn, zone, nid);
4740		}
4741	}
 
 
 
4742}
4743
 
4744static void __meminit zone_init_free_lists(struct zone *zone)
4745{
4746	unsigned int order, t;
4747	for_each_migratetype_order(order, t) {
4748		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4749		zone->free_area[order].nr_free = 0;
4750	}
4751}
4752
4753#ifndef __HAVE_ARCH_MEMMAP_INIT
4754#define memmap_init(size, nid, zone, start_pfn) \
4755	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4756#endif
 
 
4757
4758static int zone_batchsize(struct zone *zone)
4759{
4760#ifdef CONFIG_MMU
4761	int batch;
4762
4763	/*
4764	 * The per-cpu-pages pools are set to around 1000th of the
4765	 * size of the zone.  But no more than 1/2 of a meg.
4766	 *
4767	 * OK, so we don't know how big the cache is.  So guess.
4768	 */
4769	batch = zone->managed_pages / 1024;
4770	if (batch * PAGE_SIZE > 512 * 1024)
4771		batch = (512 * 1024) / PAGE_SIZE;
4772	batch /= 4;		/* We effectively *= 4 below */
4773	if (batch < 1)
4774		batch = 1;
4775
4776	/*
4777	 * Clamp the batch to a 2^n - 1 value. Having a power
4778	 * of 2 value was found to be more likely to have
4779	 * suboptimal cache aliasing properties in some cases.
4780	 *
4781	 * For example if 2 tasks are alternately allocating
4782	 * batches of pages, one task can end up with a lot
4783	 * of pages of one half of the possible page colors
4784	 * and the other with pages of the other colors.
4785	 */
4786	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4787
4788	return batch;
4789
4790#else
4791	/* The deferral and batching of frees should be suppressed under NOMMU
4792	 * conditions.
4793	 *
4794	 * The problem is that NOMMU needs to be able to allocate large chunks
4795	 * of contiguous memory as there's no hardware page translation to
4796	 * assemble apparent contiguous memory from discontiguous pages.
4797	 *
4798	 * Queueing large contiguous runs of pages for batching, however,
4799	 * causes the pages to actually be freed in smaller chunks.  As there
4800	 * can be a significant delay between the individual batches being
4801	 * recycled, this leads to the once large chunks of space being
4802	 * fragmented and becoming unavailable for high-order allocations.
4803	 */
4804	return 0;
4805#endif
4806}
4807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4808/*
4809 * pcp->high and pcp->batch values are related and dependent on one another:
4810 * ->batch must never be higher then ->high.
4811 * The following function updates them in a safe manner without read side
4812 * locking.
4813 *
4814 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4815 * those fields changing asynchronously (acording the the above rule).
 
 
 
4816 *
4817 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4818 * outside of boot time (or some other assurance that no concurrent updaters
4819 * exist).
4820 */
4821static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4822		unsigned long batch)
4823{
4824       /* start with a fail safe value for batch */
4825	pcp->batch = 1;
4826	smp_wmb();
4827
4828       /* Update high, then batch, in order */
4829	pcp->high = high;
4830	smp_wmb();
4831
4832	pcp->batch = batch;
4833}
4834
4835/* a companion to pageset_set_high() */
4836static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4837{
4838	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4839}
4840
4841static void pageset_init(struct per_cpu_pageset *p)
4842{
4843	struct per_cpu_pages *pcp;
4844	int migratetype;
4845
4846	memset(p, 0, sizeof(*p));
 
4847
4848	pcp = &p->pcp;
4849	pcp->count = 0;
4850	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4851		INIT_LIST_HEAD(&pcp->lists[migratetype]);
 
 
 
 
 
4852}
4853
4854static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
 
4855{
4856	pageset_init(p);
4857	pageset_set_batch(p, batch);
 
 
 
 
 
4858}
4859
4860/*
4861 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4862 * to the value high for the pageset p.
4863 */
4864static void pageset_set_high(struct per_cpu_pageset *p,
4865				unsigned long high)
4866{
4867	unsigned long batch = max(1UL, high / 4);
4868	if ((high / 4) > (PAGE_SHIFT * 8))
4869		batch = PAGE_SHIFT * 8;
4870
4871	pageset_update(&p->pcp, high, batch);
4872}
4873
4874static void pageset_set_high_and_batch(struct zone *zone,
4875				       struct per_cpu_pageset *pcp)
4876{
4877	if (percpu_pagelist_fraction)
4878		pageset_set_high(pcp,
4879			(zone->managed_pages /
4880				percpu_pagelist_fraction));
4881	else
4882		pageset_set_batch(pcp, zone_batchsize(zone));
4883}
4884
4885static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4886{
4887	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4888
4889	pageset_init(pcp);
4890	pageset_set_high_and_batch(zone, pcp);
4891}
4892
4893static void __meminit setup_zone_pageset(struct zone *zone)
4894{
4895	int cpu;
4896	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4897	for_each_possible_cpu(cpu)
4898		zone_pageset_init(zone, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
4899}
4900
4901/*
4902 * Allocate per cpu pagesets and initialize them.
4903 * Before this call only boot pagesets were available.
4904 */
4905void __init setup_per_cpu_pageset(void)
4906{
 
4907	struct zone *zone;
 
4908
4909	for_each_populated_zone(zone)
4910		setup_zone_pageset(zone);
4911}
4912
4913static noinline __init_refok
4914int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4915{
4916	int i;
4917	size_t alloc_size;
4918
 
4919	/*
4920	 * The per-page waitqueue mechanism uses hashed waitqueues
4921	 * per zone.
 
 
4922	 */
4923	zone->wait_table_hash_nr_entries =
4924		 wait_table_hash_nr_entries(zone_size_pages);
4925	zone->wait_table_bits =
4926		wait_table_bits(zone->wait_table_hash_nr_entries);
4927	alloc_size = zone->wait_table_hash_nr_entries
4928					* sizeof(wait_queue_head_t);
4929
4930	if (!slab_is_available()) {
4931		zone->wait_table = (wait_queue_head_t *)
4932			memblock_virt_alloc_node_nopanic(
4933				alloc_size, zone->zone_pgdat->node_id);
4934	} else {
4935		/*
4936		 * This case means that a zone whose size was 0 gets new memory
4937		 * via memory hot-add.
4938		 * But it may be the case that a new node was hot-added.  In
4939		 * this case vmalloc() will not be able to use this new node's
4940		 * memory - this wait_table must be initialized to use this new
4941		 * node itself as well.
4942		 * To use this new node's memory, further consideration will be
4943		 * necessary.
4944		 */
4945		zone->wait_table = vmalloc(alloc_size);
4946	}
4947	if (!zone->wait_table)
4948		return -ENOMEM;
4949
4950	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4951		init_waitqueue_head(zone->wait_table + i);
4952
4953	return 0;
 
 
4954}
4955
4956static __meminit void zone_pcp_init(struct zone *zone)
4957{
4958	/*
4959	 * per cpu subsystem is not up at this point. The following code
4960	 * relies on the ability of the linker to provide the
4961	 * offset of a (static) per cpu variable into the per cpu area.
4962	 */
4963	zone->pageset = &boot_pageset;
 
 
 
4964
4965	if (populated_zone(zone))
4966		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4967			zone->name, zone->present_pages,
4968					 zone_batchsize(zone));
4969}
4970
4971int __meminit init_currently_empty_zone(struct zone *zone,
4972					unsigned long zone_start_pfn,
4973					unsigned long size)
4974{
4975	struct pglist_data *pgdat = zone->zone_pgdat;
4976	int ret;
4977	ret = zone_wait_table_init(zone, size);
4978	if (ret)
4979		return ret;
4980	pgdat->nr_zones = zone_idx(zone) + 1;
4981
4982	zone->zone_start_pfn = zone_start_pfn;
4983
4984	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4985			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4986			pgdat->node_id,
4987			(unsigned long)zone_idx(zone),
4988			zone_start_pfn, (zone_start_pfn + size));
4989
4990	zone_init_free_lists(zone);
4991
4992	return 0;
4993}
4994
4995#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4996#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4997
4998/*
4999 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5000 */
5001int __meminit __early_pfn_to_nid(unsigned long pfn,
5002					struct mminit_pfnnid_cache *state)
5003{
5004	unsigned long start_pfn, end_pfn;
5005	int nid;
5006
5007	if (state->last_start <= pfn && pfn < state->last_end)
5008		return state->last_nid;
5009
5010	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5011	if (nid != -1) {
5012		state->last_start = start_pfn;
5013		state->last_end = end_pfn;
5014		state->last_nid = nid;
5015	}
5016
5017	return nid;
5018}
5019#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5020
5021/**
5022 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5023 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5024 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5025 *
5026 * If an architecture guarantees that all ranges registered contain no holes
5027 * and may be freed, this this function may be used instead of calling
5028 * memblock_free_early_nid() manually.
5029 */
5030void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5031{
5032	unsigned long start_pfn, end_pfn;
5033	int i, this_nid;
5034
5035	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5036		start_pfn = min(start_pfn, max_low_pfn);
5037		end_pfn = min(end_pfn, max_low_pfn);
5038
5039		if (start_pfn < end_pfn)
5040			memblock_free_early_nid(PFN_PHYS(start_pfn),
5041					(end_pfn - start_pfn) << PAGE_SHIFT,
5042					this_nid);
5043	}
5044}
5045
5046/**
5047 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5048 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5049 *
5050 * If an architecture guarantees that all ranges registered contain no holes and may
5051 * be freed, this function may be used instead of calling memory_present() manually.
5052 */
5053void __init sparse_memory_present_with_active_regions(int nid)
5054{
5055	unsigned long start_pfn, end_pfn;
5056	int i, this_nid;
5057
5058	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5059		memory_present(this_nid, start_pfn, end_pfn);
5060}
5061
5062/**
5063 * get_pfn_range_for_nid - Return the start and end page frames for a node
5064 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5065 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5066 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5067 *
5068 * It returns the start and end page frame of a node based on information
5069 * provided by memblock_set_node(). If called for a node
5070 * with no available memory, a warning is printed and the start and end
5071 * PFNs will be 0.
5072 */
5073void __meminit get_pfn_range_for_nid(unsigned int nid,
5074			unsigned long *start_pfn, unsigned long *end_pfn)
5075{
5076	unsigned long this_start_pfn, this_end_pfn;
5077	int i;
5078
5079	*start_pfn = -1UL;
5080	*end_pfn = 0;
5081
5082	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5083		*start_pfn = min(*start_pfn, this_start_pfn);
5084		*end_pfn = max(*end_pfn, this_end_pfn);
5085	}
5086
5087	if (*start_pfn == -1UL)
5088		*start_pfn = 0;
5089}
5090
5091/*
5092 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5093 * assumption is made that zones within a node are ordered in monotonic
5094 * increasing memory addresses so that the "highest" populated zone is used
5095 */
5096static void __init find_usable_zone_for_movable(void)
5097{
5098	int zone_index;
5099	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5100		if (zone_index == ZONE_MOVABLE)
5101			continue;
5102
5103		if (arch_zone_highest_possible_pfn[zone_index] >
5104				arch_zone_lowest_possible_pfn[zone_index])
5105			break;
5106	}
5107
5108	VM_BUG_ON(zone_index == -1);
5109	movable_zone = zone_index;
5110}
5111
5112/*
5113 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5114 * because it is sized independent of architecture. Unlike the other zones,
5115 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5116 * in each node depending on the size of each node and how evenly kernelcore
5117 * is distributed. This helper function adjusts the zone ranges
5118 * provided by the architecture for a given node by using the end of the
5119 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5120 * zones within a node are in order of monotonic increases memory addresses
5121 */
5122static void __meminit adjust_zone_range_for_zone_movable(int nid,
5123					unsigned long zone_type,
5124					unsigned long node_start_pfn,
5125					unsigned long node_end_pfn,
5126					unsigned long *zone_start_pfn,
5127					unsigned long *zone_end_pfn)
5128{
5129	/* Only adjust if ZONE_MOVABLE is on this node */
5130	if (zone_movable_pfn[nid]) {
5131		/* Size ZONE_MOVABLE */
5132		if (zone_type == ZONE_MOVABLE) {
5133			*zone_start_pfn = zone_movable_pfn[nid];
5134			*zone_end_pfn = min(node_end_pfn,
5135				arch_zone_highest_possible_pfn[movable_zone]);
5136
 
 
 
 
 
 
5137		/* Check if this whole range is within ZONE_MOVABLE */
5138		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5139			*zone_start_pfn = *zone_end_pfn;
5140	}
5141}
5142
5143/*
5144 * Return the number of pages a zone spans in a node, including holes
5145 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5146 */
5147static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5148					unsigned long zone_type,
5149					unsigned long node_start_pfn,
5150					unsigned long node_end_pfn,
5151					unsigned long *zone_start_pfn,
5152					unsigned long *zone_end_pfn,
5153					unsigned long *ignored)
5154{
 
 
5155	/* When hotadd a new node from cpu_up(), the node should be empty */
5156	if (!node_start_pfn && !node_end_pfn)
5157		return 0;
5158
5159	/* Get the start and end of the zone */
5160	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5161	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5162	adjust_zone_range_for_zone_movable(nid, zone_type,
5163				node_start_pfn, node_end_pfn,
5164				zone_start_pfn, zone_end_pfn);
5165
5166	/* Check that this node has pages within the zone's required range */
5167	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5168		return 0;
5169
5170	/* Move the zone boundaries inside the node if necessary */
5171	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5172	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5173
5174	/* Return the spanned pages */
5175	return *zone_end_pfn - *zone_start_pfn;
5176}
5177
5178/*
5179 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5180 * then all holes in the requested range will be accounted for.
5181 */
5182unsigned long __meminit __absent_pages_in_range(int nid,
5183				unsigned long range_start_pfn,
5184				unsigned long range_end_pfn)
5185{
5186	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5187	unsigned long start_pfn, end_pfn;
5188	int i;
5189
5190	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5191		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5192		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5193		nr_absent -= end_pfn - start_pfn;
5194	}
5195	return nr_absent;
5196}
5197
5198/**
5199 * absent_pages_in_range - Return number of page frames in holes within a range
5200 * @start_pfn: The start PFN to start searching for holes
5201 * @end_pfn: The end PFN to stop searching for holes
5202 *
5203 * It returns the number of pages frames in memory holes within a range.
5204 */
5205unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5206							unsigned long end_pfn)
5207{
5208	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5209}
5210
5211/* Return the number of page frames in holes in a zone on a node */
5212static unsigned long __meminit zone_absent_pages_in_node(int nid,
5213					unsigned long zone_type,
5214					unsigned long node_start_pfn,
5215					unsigned long node_end_pfn,
5216					unsigned long *ignored)
5217{
5218	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5219	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5220	unsigned long zone_start_pfn, zone_end_pfn;
5221	unsigned long nr_absent;
5222
5223	/* When hotadd a new node from cpu_up(), the node should be empty */
5224	if (!node_start_pfn && !node_end_pfn)
5225		return 0;
5226
5227	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5228	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5229
5230	adjust_zone_range_for_zone_movable(nid, zone_type,
5231			node_start_pfn, node_end_pfn,
5232			&zone_start_pfn, &zone_end_pfn);
5233	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5234
5235	/*
5236	 * ZONE_MOVABLE handling.
5237	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5238	 * and vice versa.
5239	 */
5240	if (zone_movable_pfn[nid]) {
5241		if (mirrored_kernelcore) {
5242			unsigned long start_pfn, end_pfn;
5243			struct memblock_region *r;
5244
5245			for_each_memblock(memory, r) {
5246				start_pfn = clamp(memblock_region_memory_base_pfn(r),
5247						  zone_start_pfn, zone_end_pfn);
5248				end_pfn = clamp(memblock_region_memory_end_pfn(r),
5249						zone_start_pfn, zone_end_pfn);
5250
5251				if (zone_type == ZONE_MOVABLE &&
5252				    memblock_is_mirror(r))
5253					nr_absent += end_pfn - start_pfn;
5254
5255				if (zone_type == ZONE_NORMAL &&
5256				    !memblock_is_mirror(r))
5257					nr_absent += end_pfn - start_pfn;
5258			}
5259		} else {
5260			if (zone_type == ZONE_NORMAL)
5261				nr_absent += node_end_pfn - zone_movable_pfn[nid];
5262		}
5263	}
5264
5265	return nr_absent;
5266}
5267
5268#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5269static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5270					unsigned long zone_type,
5271					unsigned long node_start_pfn,
5272					unsigned long node_end_pfn,
5273					unsigned long *zone_start_pfn,
5274					unsigned long *zone_end_pfn,
5275					unsigned long *zones_size)
5276{
5277	unsigned int zone;
5278
5279	*zone_start_pfn = node_start_pfn;
5280	for (zone = 0; zone < zone_type; zone++)
5281		*zone_start_pfn += zones_size[zone];
5282
5283	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5284
5285	return zones_size[zone_type];
5286}
5287
5288static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5289						unsigned long zone_type,
5290						unsigned long node_start_pfn,
5291						unsigned long node_end_pfn,
5292						unsigned long *zholes_size)
5293{
5294	if (!zholes_size)
5295		return 0;
5296
5297	return zholes_size[zone_type];
5298}
5299
5300#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5301
5302static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5303						unsigned long node_start_pfn,
5304						unsigned long node_end_pfn,
5305						unsigned long *zones_size,
5306						unsigned long *zholes_size)
5307{
5308	unsigned long realtotalpages = 0, totalpages = 0;
5309	enum zone_type i;
5310
5311	for (i = 0; i < MAX_NR_ZONES; i++) {
5312		struct zone *zone = pgdat->node_zones + i;
5313		unsigned long zone_start_pfn, zone_end_pfn;
 
5314		unsigned long size, real_size;
5315
5316		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5317						  node_start_pfn,
5318						  node_end_pfn,
5319						  &zone_start_pfn,
5320						  &zone_end_pfn,
5321						  zones_size);
5322		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5323						  node_start_pfn, node_end_pfn,
5324						  zholes_size);
 
 
 
5325		if (size)
5326			zone->zone_start_pfn = zone_start_pfn;
5327		else
5328			zone->zone_start_pfn = 0;
5329		zone->spanned_pages = size;
5330		zone->present_pages = real_size;
5331
5332		totalpages += size;
5333		realtotalpages += real_size;
5334	}
5335
5336	pgdat->node_spanned_pages = totalpages;
5337	pgdat->node_present_pages = realtotalpages;
5338	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5339							realtotalpages);
5340}
5341
5342#ifndef CONFIG_SPARSEMEM
5343/*
5344 * Calculate the size of the zone->blockflags rounded to an unsigned long
5345 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5346 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5347 * round what is now in bits to nearest long in bits, then return it in
5348 * bytes.
5349 */
5350static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5351{
5352	unsigned long usemapsize;
5353
5354	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5355	usemapsize = roundup(zonesize, pageblock_nr_pages);
5356	usemapsize = usemapsize >> pageblock_order;
5357	usemapsize *= NR_PAGEBLOCK_BITS;
5358	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5359
5360	return usemapsize / 8;
5361}
5362
5363static void __init setup_usemap(struct pglist_data *pgdat,
5364				struct zone *zone,
5365				unsigned long zone_start_pfn,
5366				unsigned long zonesize)
5367{
5368	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
 
5369	zone->pageblock_flags = NULL;
5370	if (usemapsize)
5371		zone->pageblock_flags =
5372			memblock_virt_alloc_node_nopanic(usemapsize,
5373							 pgdat->node_id);
 
 
 
 
5374}
5375#else
5376static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5377				unsigned long zone_start_pfn, unsigned long zonesize) {}
5378#endif /* CONFIG_SPARSEMEM */
5379
5380#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5381
5382/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5383void __paginginit set_pageblock_order(void)
5384{
5385	unsigned int order;
5386
5387	/* Check that pageblock_nr_pages has not already been setup */
5388	if (pageblock_order)
5389		return;
5390
5391	if (HPAGE_SHIFT > PAGE_SHIFT)
5392		order = HUGETLB_PAGE_ORDER;
5393	else
5394		order = MAX_ORDER - 1;
5395
5396	/*
5397	 * Assume the largest contiguous order of interest is a huge page.
5398	 * This value may be variable depending on boot parameters on IA64 and
5399	 * powerpc.
5400	 */
5401	pageblock_order = order;
5402}
5403#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5404
5405/*
5406 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5407 * is unused as pageblock_order is set at compile-time. See
5408 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5409 * the kernel config
5410 */
5411void __paginginit set_pageblock_order(void)
5412{
5413}
5414
5415#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5416
5417static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5418						   unsigned long present_pages)
5419{
5420	unsigned long pages = spanned_pages;
5421
5422	/*
5423	 * Provide a more accurate estimation if there are holes within
5424	 * the zone and SPARSEMEM is in use. If there are holes within the
5425	 * zone, each populated memory region may cost us one or two extra
5426	 * memmap pages due to alignment because memmap pages for each
5427	 * populated regions may not naturally algined on page boundary.
5428	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5429	 */
5430	if (spanned_pages > present_pages + (present_pages >> 4) &&
5431	    IS_ENABLED(CONFIG_SPARSEMEM))
5432		pages = present_pages;
5433
5434	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5435}
5436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5437/*
5438 * Set up the zone data structures:
5439 *   - mark all pages reserved
5440 *   - mark all memory queues empty
5441 *   - clear the memory bitmaps
5442 *
5443 * NOTE: pgdat should get zeroed by caller.
 
5444 */
5445static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5446{
5447	enum zone_type j;
5448	int nid = pgdat->node_id;
5449	int ret;
5450
5451	pgdat_resize_init(pgdat);
5452#ifdef CONFIG_NUMA_BALANCING
5453	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5454	pgdat->numabalancing_migrate_nr_pages = 0;
5455	pgdat->numabalancing_migrate_next_window = jiffies;
5456#endif
5457#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5458	spin_lock_init(&pgdat->split_queue_lock);
5459	INIT_LIST_HEAD(&pgdat->split_queue);
5460	pgdat->split_queue_len = 0;
5461#endif
5462	init_waitqueue_head(&pgdat->kswapd_wait);
5463	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5464#ifdef CONFIG_COMPACTION
5465	init_waitqueue_head(&pgdat->kcompactd_wait);
5466#endif
5467	pgdat_page_ext_init(pgdat);
5468
5469	for (j = 0; j < MAX_NR_ZONES; j++) {
5470		struct zone *zone = pgdat->node_zones + j;
5471		unsigned long size, realsize, freesize, memmap_pages;
5472		unsigned long zone_start_pfn = zone->zone_start_pfn;
5473
5474		size = zone->spanned_pages;
5475		realsize = freesize = zone->present_pages;
5476
5477		/*
5478		 * Adjust freesize so that it accounts for how much memory
5479		 * is used by this zone for memmap. This affects the watermark
5480		 * and per-cpu initialisations
5481		 */
5482		memmap_pages = calc_memmap_size(size, realsize);
5483		if (!is_highmem_idx(j)) {
5484			if (freesize >= memmap_pages) {
5485				freesize -= memmap_pages;
5486				if (memmap_pages)
5487					printk(KERN_DEBUG
5488					       "  %s zone: %lu pages used for memmap\n",
5489					       zone_names[j], memmap_pages);
5490			} else
5491				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5492					zone_names[j], memmap_pages, freesize);
5493		}
5494
5495		/* Account for reserved pages */
5496		if (j == 0 && freesize > dma_reserve) {
5497			freesize -= dma_reserve;
5498			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5499					zone_names[0], dma_reserve);
5500		}
5501
5502		if (!is_highmem_idx(j))
5503			nr_kernel_pages += freesize;
5504		/* Charge for highmem memmap if there are enough kernel pages */
5505		else if (nr_kernel_pages > memmap_pages * 2)
5506			nr_kernel_pages -= memmap_pages;
5507		nr_all_pages += freesize;
5508
5509		/*
5510		 * Set an approximate value for lowmem here, it will be adjusted
5511		 * when the bootmem allocator frees pages into the buddy system.
5512		 * And all highmem pages will be managed by the buddy system.
5513		 */
5514		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5515#ifdef CONFIG_NUMA
5516		zone->node = nid;
5517		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5518						/ 100;
5519		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5520#endif
5521		zone->name = zone_names[j];
5522		spin_lock_init(&zone->lock);
5523		spin_lock_init(&zone->lru_lock);
5524		zone_seqlock_init(zone);
5525		zone->zone_pgdat = pgdat;
5526		zone_pcp_init(zone);
5527
5528		/* For bootup, initialized properly in watermark setup */
5529		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5530
5531		lruvec_init(&zone->lruvec);
5532		if (!size)
5533			continue;
5534
5535		set_pageblock_order();
5536		setup_usemap(pgdat, zone, zone_start_pfn, size);
5537		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5538		BUG_ON(ret);
5539		memmap_init(size, nid, j, zone_start_pfn);
5540	}
5541}
5542
5543static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
 
5544{
5545	unsigned long __maybe_unused start = 0;
5546	unsigned long __maybe_unused offset = 0;
5547
5548	/* Skip empty nodes */
5549	if (!pgdat->node_spanned_pages)
5550		return;
5551
5552#ifdef CONFIG_FLAT_NODE_MEM_MAP
5553	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5554	offset = pgdat->node_start_pfn - start;
5555	/* ia64 gets its own node_mem_map, before this, without bootmem */
5556	if (!pgdat->node_mem_map) {
5557		unsigned long size, end;
5558		struct page *map;
5559
5560		/*
5561		 * The zone's endpoints aren't required to be MAX_ORDER
5562		 * aligned but the node_mem_map endpoints must be in order
5563		 * for the buddy allocator to function correctly.
5564		 */
5565		end = pgdat_end_pfn(pgdat);
5566		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5567		size =  (end - start) * sizeof(struct page);
5568		map = alloc_remap(pgdat->node_id, size);
 
5569		if (!map)
5570			map = memblock_virt_alloc_node_nopanic(size,
5571							       pgdat->node_id);
5572		pgdat->node_mem_map = map + offset;
5573	}
5574#ifndef CONFIG_NEED_MULTIPLE_NODES
 
 
 
5575	/*
5576	 * With no DISCONTIG, the global mem_map is just set as node 0's
5577	 */
5578	if (pgdat == NODE_DATA(0)) {
5579		mem_map = NODE_DATA(0)->node_mem_map;
5580#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5581		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5582			mem_map -= offset;
5583#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5584	}
5585#endif
5586#endif /* CONFIG_FLAT_NODE_MEM_MAP */
5587}
 
 
 
5588
5589void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5590		unsigned long node_start_pfn, unsigned long *zholes_size)
 
 
 
 
 
 
 
 
5591{
5592	pg_data_t *pgdat = NODE_DATA(nid);
5593	unsigned long start_pfn = 0;
5594	unsigned long end_pfn = 0;
5595
5596	/* pg_data_t should be reset to zero when it's allocated */
5597	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5598
5599	reset_deferred_meminit(pgdat);
5600	pgdat->node_id = nid;
5601	pgdat->node_start_pfn = node_start_pfn;
5602#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5603	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 
 
 
 
 
5604	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5605		(u64)start_pfn << PAGE_SHIFT,
5606		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5607#else
5608	start_pfn = node_start_pfn;
5609#endif
5610	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5611				  zones_size, zholes_size);
5612
5613	alloc_node_mem_map(pgdat);
5614#ifdef CONFIG_FLAT_NODE_MEM_MAP
5615	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5616		nid, (unsigned long)pgdat,
5617		(unsigned long)pgdat->node_mem_map);
5618#endif
5619
5620	free_area_init_core(pgdat);
5621}
5622
5623#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 
 
 
5624
5625#if MAX_NUMNODES > 1
5626/*
5627 * Figure out the number of possible node ids.
5628 */
5629void __init setup_nr_node_ids(void)
5630{
5631	unsigned int highest;
5632
5633	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5634	nr_node_ids = highest + 1;
5635}
5636#endif
5637
5638/**
5639 * node_map_pfn_alignment - determine the maximum internode alignment
5640 *
5641 * This function should be called after node map is populated and sorted.
5642 * It calculates the maximum power of two alignment which can distinguish
5643 * all the nodes.
5644 *
5645 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5646 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5647 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5648 * shifted, 1GiB is enough and this function will indicate so.
5649 *
5650 * This is used to test whether pfn -> nid mapping of the chosen memory
5651 * model has fine enough granularity to avoid incorrect mapping for the
5652 * populated node map.
5653 *
5654 * Returns the determined alignment in pfn's.  0 if there is no alignment
5655 * requirement (single node).
5656 */
5657unsigned long __init node_map_pfn_alignment(void)
5658{
5659	unsigned long accl_mask = 0, last_end = 0;
5660	unsigned long start, end, mask;
5661	int last_nid = -1;
5662	int i, nid;
5663
5664	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5665		if (!start || last_nid < 0 || last_nid == nid) {
5666			last_nid = nid;
5667			last_end = end;
5668			continue;
5669		}
5670
5671		/*
5672		 * Start with a mask granular enough to pin-point to the
5673		 * start pfn and tick off bits one-by-one until it becomes
5674		 * too coarse to separate the current node from the last.
5675		 */
5676		mask = ~((1 << __ffs(start)) - 1);
5677		while (mask && last_end <= (start & (mask << 1)))
5678			mask <<= 1;
5679
5680		/* accumulate all internode masks */
5681		accl_mask |= mask;
5682	}
5683
5684	/* convert mask to number of pages */
5685	return ~accl_mask + 1;
5686}
5687
5688/* Find the lowest pfn for a node */
5689static unsigned long __init find_min_pfn_for_node(int nid)
5690{
5691	unsigned long min_pfn = ULONG_MAX;
5692	unsigned long start_pfn;
5693	int i;
5694
5695	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5696		min_pfn = min(min_pfn, start_pfn);
5697
5698	if (min_pfn == ULONG_MAX) {
5699		pr_warn("Could not find start_pfn for node %d\n", nid);
5700		return 0;
5701	}
5702
5703	return min_pfn;
5704}
5705
5706/**
5707 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5708 *
5709 * It returns the minimum PFN based on information provided via
5710 * memblock_set_node().
5711 */
5712unsigned long __init find_min_pfn_with_active_regions(void)
5713{
5714	return find_min_pfn_for_node(MAX_NUMNODES);
5715}
5716
5717/*
5718 * early_calculate_totalpages()
5719 * Sum pages in active regions for movable zone.
5720 * Populate N_MEMORY for calculating usable_nodes.
5721 */
5722static unsigned long __init early_calculate_totalpages(void)
5723{
5724	unsigned long totalpages = 0;
5725	unsigned long start_pfn, end_pfn;
5726	int i, nid;
5727
5728	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5729		unsigned long pages = end_pfn - start_pfn;
5730
5731		totalpages += pages;
5732		if (pages)
5733			node_set_state(nid, N_MEMORY);
5734	}
5735	return totalpages;
5736}
5737
5738/*
5739 * Find the PFN the Movable zone begins in each node. Kernel memory
5740 * is spread evenly between nodes as long as the nodes have enough
5741 * memory. When they don't, some nodes will have more kernelcore than
5742 * others
5743 */
5744static void __init find_zone_movable_pfns_for_nodes(void)
5745{
5746	int i, nid;
5747	unsigned long usable_startpfn;
5748	unsigned long kernelcore_node, kernelcore_remaining;
5749	/* save the state before borrow the nodemask */
5750	nodemask_t saved_node_state = node_states[N_MEMORY];
5751	unsigned long totalpages = early_calculate_totalpages();
5752	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5753	struct memblock_region *r;
5754
5755	/* Need to find movable_zone earlier when movable_node is specified. */
5756	find_usable_zone_for_movable();
5757
5758	/*
5759	 * If movable_node is specified, ignore kernelcore and movablecore
5760	 * options.
5761	 */
5762	if (movable_node_is_enabled()) {
5763		for_each_memblock(memory, r) {
5764			if (!memblock_is_hotpluggable(r))
5765				continue;
5766
5767			nid = r->nid;
5768
5769			usable_startpfn = PFN_DOWN(r->base);
5770			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5771				min(usable_startpfn, zone_movable_pfn[nid]) :
5772				usable_startpfn;
5773		}
5774
5775		goto out2;
5776	}
5777
5778	/*
5779	 * If kernelcore=mirror is specified, ignore movablecore option
5780	 */
5781	if (mirrored_kernelcore) {
5782		bool mem_below_4gb_not_mirrored = false;
5783
5784		for_each_memblock(memory, r) {
5785			if (memblock_is_mirror(r))
5786				continue;
5787
5788			nid = r->nid;
5789
5790			usable_startpfn = memblock_region_memory_base_pfn(r);
5791
5792			if (usable_startpfn < 0x100000) {
5793				mem_below_4gb_not_mirrored = true;
5794				continue;
5795			}
5796
5797			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5798				min(usable_startpfn, zone_movable_pfn[nid]) :
5799				usable_startpfn;
5800		}
5801
5802		if (mem_below_4gb_not_mirrored)
5803			pr_warn("This configuration results in unmirrored kernel memory.");
5804
5805		goto out2;
5806	}
5807
5808	/*
5809	 * If movablecore=nn[KMG] was specified, calculate what size of
 
 
 
 
 
 
 
 
 
 
 
5810	 * kernelcore that corresponds so that memory usable for
5811	 * any allocation type is evenly spread. If both kernelcore
5812	 * and movablecore are specified, then the value of kernelcore
5813	 * will be used for required_kernelcore if it's greater than
5814	 * what movablecore would have allowed.
5815	 */
5816	if (required_movablecore) {
5817		unsigned long corepages;
5818
5819		/*
5820		 * Round-up so that ZONE_MOVABLE is at least as large as what
5821		 * was requested by the user
5822		 */
5823		required_movablecore =
5824			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5825		required_movablecore = min(totalpages, required_movablecore);
5826		corepages = totalpages - required_movablecore;
5827
5828		required_kernelcore = max(required_kernelcore, corepages);
5829	}
5830
5831	/*
5832	 * If kernelcore was not specified or kernelcore size is larger
5833	 * than totalpages, there is no ZONE_MOVABLE.
5834	 */
5835	if (!required_kernelcore || required_kernelcore >= totalpages)
5836		goto out;
5837
5838	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5839	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5840
5841restart:
5842	/* Spread kernelcore memory as evenly as possible throughout nodes */
5843	kernelcore_node = required_kernelcore / usable_nodes;
5844	for_each_node_state(nid, N_MEMORY) {
5845		unsigned long start_pfn, end_pfn;
5846
5847		/*
5848		 * Recalculate kernelcore_node if the division per node
5849		 * now exceeds what is necessary to satisfy the requested
5850		 * amount of memory for the kernel
5851		 */
5852		if (required_kernelcore < kernelcore_node)
5853			kernelcore_node = required_kernelcore / usable_nodes;
5854
5855		/*
5856		 * As the map is walked, we track how much memory is usable
5857		 * by the kernel using kernelcore_remaining. When it is
5858		 * 0, the rest of the node is usable by ZONE_MOVABLE
5859		 */
5860		kernelcore_remaining = kernelcore_node;
5861
5862		/* Go through each range of PFNs within this node */
5863		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5864			unsigned long size_pages;
5865
5866			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5867			if (start_pfn >= end_pfn)
5868				continue;
5869
5870			/* Account for what is only usable for kernelcore */
5871			if (start_pfn < usable_startpfn) {
5872				unsigned long kernel_pages;
5873				kernel_pages = min(end_pfn, usable_startpfn)
5874								- start_pfn;
5875
5876				kernelcore_remaining -= min(kernel_pages,
5877							kernelcore_remaining);
5878				required_kernelcore -= min(kernel_pages,
5879							required_kernelcore);
5880
5881				/* Continue if range is now fully accounted */
5882				if (end_pfn <= usable_startpfn) {
5883
5884					/*
5885					 * Push zone_movable_pfn to the end so
5886					 * that if we have to rebalance
5887					 * kernelcore across nodes, we will
5888					 * not double account here
5889					 */
5890					zone_movable_pfn[nid] = end_pfn;
5891					continue;
5892				}
5893				start_pfn = usable_startpfn;
5894			}
5895
5896			/*
5897			 * The usable PFN range for ZONE_MOVABLE is from
5898			 * start_pfn->end_pfn. Calculate size_pages as the
5899			 * number of pages used as kernelcore
5900			 */
5901			size_pages = end_pfn - start_pfn;
5902			if (size_pages > kernelcore_remaining)
5903				size_pages = kernelcore_remaining;
5904			zone_movable_pfn[nid] = start_pfn + size_pages;
5905
5906			/*
5907			 * Some kernelcore has been met, update counts and
5908			 * break if the kernelcore for this node has been
5909			 * satisfied
5910			 */
5911			required_kernelcore -= min(required_kernelcore,
5912								size_pages);
5913			kernelcore_remaining -= size_pages;
5914			if (!kernelcore_remaining)
5915				break;
5916		}
5917	}
5918
5919	/*
5920	 * If there is still required_kernelcore, we do another pass with one
5921	 * less node in the count. This will push zone_movable_pfn[nid] further
5922	 * along on the nodes that still have memory until kernelcore is
5923	 * satisfied
5924	 */
5925	usable_nodes--;
5926	if (usable_nodes && required_kernelcore > usable_nodes)
5927		goto restart;
5928
5929out2:
5930	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5931	for (nid = 0; nid < MAX_NUMNODES; nid++)
5932		zone_movable_pfn[nid] =
5933			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5934
5935out:
5936	/* restore the node_state */
5937	node_states[N_MEMORY] = saved_node_state;
5938}
5939
5940/* Any regular or high memory on that node ? */
5941static void check_for_memory(pg_data_t *pgdat, int nid)
5942{
5943	enum zone_type zone_type;
5944
5945	if (N_MEMORY == N_NORMAL_MEMORY)
5946		return;
5947
5948	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5949		struct zone *zone = &pgdat->node_zones[zone_type];
5950		if (populated_zone(zone)) {
5951			node_set_state(nid, N_HIGH_MEMORY);
5952			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5953			    zone_type <= ZONE_NORMAL)
5954				node_set_state(nid, N_NORMAL_MEMORY);
5955			break;
5956		}
5957	}
5958}
5959
 
 
 
 
 
 
 
 
 
5960/**
5961 * free_area_init_nodes - Initialise all pg_data_t and zone data
5962 * @max_zone_pfn: an array of max PFNs for each zone
5963 *
5964 * This will call free_area_init_node() for each active node in the system.
5965 * Using the page ranges provided by memblock_set_node(), the size of each
5966 * zone in each node and their holes is calculated. If the maximum PFN
5967 * between two adjacent zones match, it is assumed that the zone is empty.
5968 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5969 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5970 * starts where the previous one ended. For example, ZONE_DMA32 starts
5971 * at arch_max_dma_pfn.
5972 */
5973void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5974{
5975	unsigned long start_pfn, end_pfn;
5976	int i, nid;
 
5977
5978	/* Record where the zone boundaries are */
5979	memset(arch_zone_lowest_possible_pfn, 0,
5980				sizeof(arch_zone_lowest_possible_pfn));
5981	memset(arch_zone_highest_possible_pfn, 0,
5982				sizeof(arch_zone_highest_possible_pfn));
5983	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5984	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5985	for (i = 1; i < MAX_NR_ZONES; i++) {
5986		if (i == ZONE_MOVABLE)
 
 
 
 
 
 
 
5987			continue;
5988		arch_zone_lowest_possible_pfn[i] =
5989			arch_zone_highest_possible_pfn[i-1];
5990		arch_zone_highest_possible_pfn[i] =
5991			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
 
 
5992	}
5993	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5994	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5995
5996	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5997	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5998	find_zone_movable_pfns_for_nodes();
5999
6000	/* Print out the zone ranges */
6001	pr_info("Zone ranges:\n");
6002	for (i = 0; i < MAX_NR_ZONES; i++) {
6003		if (i == ZONE_MOVABLE)
6004			continue;
6005		pr_info("  %-8s ", zone_names[i]);
6006		if (arch_zone_lowest_possible_pfn[i] ==
6007				arch_zone_highest_possible_pfn[i])
6008			pr_cont("empty\n");
6009		else
6010			pr_cont("[mem %#018Lx-%#018Lx]\n",
6011				(u64)arch_zone_lowest_possible_pfn[i]
6012					<< PAGE_SHIFT,
6013				((u64)arch_zone_highest_possible_pfn[i]
6014					<< PAGE_SHIFT) - 1);
6015	}
6016
6017	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6018	pr_info("Movable zone start for each node\n");
6019	for (i = 0; i < MAX_NUMNODES; i++) {
6020		if (zone_movable_pfn[i])
6021			pr_info("  Node %d: %#018Lx\n", i,
6022			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6023	}
6024
6025	/* Print out the early node map */
 
 
 
 
6026	pr_info("Early memory node ranges\n");
6027	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6028		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6029			(u64)start_pfn << PAGE_SHIFT,
6030			((u64)end_pfn << PAGE_SHIFT) - 1);
 
 
6031
6032	/* Initialise every node */
6033	mminit_verify_pageflags_layout();
6034	setup_nr_node_ids();
6035	for_each_online_node(nid) {
6036		pg_data_t *pgdat = NODE_DATA(nid);
6037		free_area_init_node(nid, NULL,
6038				find_min_pfn_for_node(nid), NULL);
6039
6040		/* Any memory on that node */
6041		if (pgdat->node_present_pages)
6042			node_set_state(nid, N_MEMORY);
6043		check_for_memory(pgdat, nid);
6044	}
 
 
6045}
6046
6047static int __init cmdline_parse_core(char *p, unsigned long *core)
 
6048{
6049	unsigned long long coremem;
 
 
6050	if (!p)
6051		return -EINVAL;
6052
6053	coremem = memparse(p, &p);
6054	*core = coremem >> PAGE_SHIFT;
 
 
 
6055
6056	/* Paranoid check that UL is enough for the coremem value */
6057	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
 
 
 
6058
 
 
 
6059	return 0;
6060}
6061
6062/*
6063 * kernelcore=size sets the amount of memory for use for allocations that
6064 * cannot be reclaimed or migrated.
6065 */
6066static int __init cmdline_parse_kernelcore(char *p)
6067{
6068	/* parse kernelcore=mirror */
6069	if (parse_option_str(p, "mirror")) {
6070		mirrored_kernelcore = true;
6071		return 0;
6072	}
6073
6074	return cmdline_parse_core(p, &required_kernelcore);
 
6075}
6076
6077/*
6078 * movablecore=size sets the amount of memory for use for allocations that
6079 * can be reclaimed or migrated.
6080 */
6081static int __init cmdline_parse_movablecore(char *p)
6082{
6083	return cmdline_parse_core(p, &required_movablecore);
 
6084}
6085
6086early_param("kernelcore", cmdline_parse_kernelcore);
6087early_param("movablecore", cmdline_parse_movablecore);
6088
6089#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6090
6091void adjust_managed_page_count(struct page *page, long count)
6092{
6093	spin_lock(&managed_page_count_lock);
6094	page_zone(page)->managed_pages += count;
6095	totalram_pages += count;
6096#ifdef CONFIG_HIGHMEM
6097	if (PageHighMem(page))
6098		totalhigh_pages += count;
6099#endif
6100	spin_unlock(&managed_page_count_lock);
6101}
6102EXPORT_SYMBOL(adjust_managed_page_count);
6103
6104unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6105{
6106	void *pos;
6107	unsigned long pages = 0;
6108
6109	start = (void *)PAGE_ALIGN((unsigned long)start);
6110	end = (void *)((unsigned long)end & PAGE_MASK);
6111	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6112		if ((unsigned int)poison <= 0xFF)
6113			memset(pos, poison, PAGE_SIZE);
6114		free_reserved_page(virt_to_page(pos));
 
6115	}
6116
6117	if (pages && s)
6118		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6119			s, pages << (PAGE_SHIFT - 10), start, end);
6120
6121	return pages;
6122}
6123EXPORT_SYMBOL(free_reserved_area);
6124
6125#ifdef	CONFIG_HIGHMEM
6126void free_highmem_page(struct page *page)
6127{
6128	__free_reserved_page(page);
6129	totalram_pages++;
6130	page_zone(page)->managed_pages++;
6131	totalhigh_pages++;
6132}
6133#endif
6134
6135
6136void __init mem_init_print_info(const char *str)
6137{
6138	unsigned long physpages, codesize, datasize, rosize, bss_size;
6139	unsigned long init_code_size, init_data_size;
6140
6141	physpages = get_num_physpages();
6142	codesize = _etext - _stext;
6143	datasize = _edata - _sdata;
6144	rosize = __end_rodata - __start_rodata;
6145	bss_size = __bss_stop - __bss_start;
6146	init_data_size = __init_end - __init_begin;
6147	init_code_size = _einittext - _sinittext;
6148
6149	/*
6150	 * Detect special cases and adjust section sizes accordingly:
6151	 * 1) .init.* may be embedded into .data sections
6152	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6153	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6154	 * 3) .rodata.* may be embedded into .text or .data sections.
6155	 */
6156#define adj_init_size(start, end, size, pos, adj) \
6157	do { \
6158		if (start <= pos && pos < end && size > adj) \
6159			size -= adj; \
6160	} while (0)
6161
6162	adj_init_size(__init_begin, __init_end, init_data_size,
6163		     _sinittext, init_code_size);
6164	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6165	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6166	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6167	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6168
6169#undef	adj_init_size
6170
6171	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6172#ifdef	CONFIG_HIGHMEM
6173		", %luK highmem"
6174#endif
6175		"%s%s)\n",
6176		nr_free_pages() << (PAGE_SHIFT - 10),
6177		physpages << (PAGE_SHIFT - 10),
6178		codesize >> 10, datasize >> 10, rosize >> 10,
6179		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6180		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6181		totalcma_pages << (PAGE_SHIFT - 10),
6182#ifdef	CONFIG_HIGHMEM
6183		totalhigh_pages << (PAGE_SHIFT - 10),
6184#endif
6185		str ? ", " : "", str ? str : "");
6186}
6187
6188/**
6189 * set_dma_reserve - set the specified number of pages reserved in the first zone
6190 * @new_dma_reserve: The number of pages to mark reserved
6191 *
6192 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6193 * In the DMA zone, a significant percentage may be consumed by kernel image
6194 * and other unfreeable allocations which can skew the watermarks badly. This
6195 * function may optionally be used to account for unfreeable pages in the
6196 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6197 * smaller per-cpu batchsize.
6198 */
6199void __init set_dma_reserve(unsigned long new_dma_reserve)
6200{
6201	dma_reserve = new_dma_reserve;
6202}
6203
6204void __init free_area_init(unsigned long *zones_size)
6205{
6206	free_area_init_node(0, zones_size,
6207			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6208}
6209
6210static int page_alloc_cpu_notify(struct notifier_block *self,
6211				 unsigned long action, void *hcpu)
6212{
6213	int cpu = (unsigned long)hcpu;
6214
6215	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6216		lru_add_drain_cpu(cpu);
6217		drain_pages(cpu);
 
6218
6219		/*
6220		 * Spill the event counters of the dead processor
6221		 * into the current processors event counters.
6222		 * This artificially elevates the count of the current
6223		 * processor.
6224		 */
6225		vm_events_fold_cpu(cpu);
6226
6227		/*
6228		 * Zero the differential counters of the dead processor
6229		 * so that the vm statistics are consistent.
6230		 *
6231		 * This is only okay since the processor is dead and cannot
6232		 * race with what we are doing.
6233		 */
6234		cpu_vm_stats_fold(cpu);
6235	}
6236	return NOTIFY_OK;
6237}
 
 
6238
6239void __init page_alloc_init(void)
6240{
6241	hotcpu_notifier(page_alloc_cpu_notify, 0);
 
 
 
 
 
 
 
 
 
 
 
6242}
6243
6244/*
6245 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6246 *	or min_free_kbytes changes.
6247 */
6248static void calculate_totalreserve_pages(void)
6249{
6250	struct pglist_data *pgdat;
6251	unsigned long reserve_pages = 0;
6252	enum zone_type i, j;
6253
6254	for_each_online_pgdat(pgdat) {
 
 
 
6255		for (i = 0; i < MAX_NR_ZONES; i++) {
6256			struct zone *zone = pgdat->node_zones + i;
6257			long max = 0;
 
6258
6259			/* Find valid and maximum lowmem_reserve in the zone */
6260			for (j = i; j < MAX_NR_ZONES; j++) {
6261				if (zone->lowmem_reserve[j] > max)
6262					max = zone->lowmem_reserve[j];
6263			}
6264
6265			/* we treat the high watermark as reserved pages. */
6266			max += high_wmark_pages(zone);
6267
6268			if (max > zone->managed_pages)
6269				max = zone->managed_pages;
6270
6271			zone->totalreserve_pages = max;
6272
6273			reserve_pages += max;
6274		}
6275	}
6276	totalreserve_pages = reserve_pages;
6277}
6278
6279/*
6280 * setup_per_zone_lowmem_reserve - called whenever
6281 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6282 *	has a correct pages reserved value, so an adequate number of
6283 *	pages are left in the zone after a successful __alloc_pages().
6284 */
6285static void setup_per_zone_lowmem_reserve(void)
6286{
6287	struct pglist_data *pgdat;
6288	enum zone_type j, idx;
6289
6290	for_each_online_pgdat(pgdat) {
6291		for (j = 0; j < MAX_NR_ZONES; j++) {
6292			struct zone *zone = pgdat->node_zones + j;
6293			unsigned long managed_pages = zone->managed_pages;
6294
6295			zone->lowmem_reserve[j] = 0;
6296
6297			idx = j;
6298			while (idx) {
6299				struct zone *lower_zone;
6300
6301				idx--;
6302
6303				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6304					sysctl_lowmem_reserve_ratio[idx] = 1;
6305
6306				lower_zone = pgdat->node_zones + idx;
6307				lower_zone->lowmem_reserve[j] = managed_pages /
6308					sysctl_lowmem_reserve_ratio[idx];
6309				managed_pages += lower_zone->managed_pages;
6310			}
6311		}
6312	}
6313
6314	/* update totalreserve_pages */
6315	calculate_totalreserve_pages();
6316}
6317
6318static void __setup_per_zone_wmarks(void)
6319{
6320	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6321	unsigned long lowmem_pages = 0;
6322	struct zone *zone;
6323	unsigned long flags;
6324
6325	/* Calculate total number of !ZONE_HIGHMEM pages */
6326	for_each_zone(zone) {
6327		if (!is_highmem(zone))
6328			lowmem_pages += zone->managed_pages;
6329	}
6330
6331	for_each_zone(zone) {
6332		u64 tmp;
6333
6334		spin_lock_irqsave(&zone->lock, flags);
6335		tmp = (u64)pages_min * zone->managed_pages;
6336		do_div(tmp, lowmem_pages);
6337		if (is_highmem(zone)) {
6338			/*
6339			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6340			 * need highmem pages, so cap pages_min to a small
6341			 * value here.
6342			 *
6343			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6344			 * deltas control asynch page reclaim, and so should
6345			 * not be capped for highmem.
6346			 */
6347			unsigned long min_pages;
6348
6349			min_pages = zone->managed_pages / 1024;
6350			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6351			zone->watermark[WMARK_MIN] = min_pages;
6352		} else {
6353			/*
6354			 * If it's a lowmem zone, reserve a number of pages
6355			 * proportionate to the zone's size.
6356			 */
6357			zone->watermark[WMARK_MIN] = tmp;
6358		}
6359
6360		/*
6361		 * Set the kswapd watermarks distance according to the
6362		 * scale factor in proportion to available memory, but
6363		 * ensure a minimum size on small systems.
6364		 */
6365		tmp = max_t(u64, tmp >> 2,
6366			    mult_frac(zone->managed_pages,
6367				      watermark_scale_factor, 10000));
6368
6369		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6370		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6371
6372		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
6373			high_wmark_pages(zone) - low_wmark_pages(zone) -
6374			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6375
6376		spin_unlock_irqrestore(&zone->lock, flags);
6377	}
6378
6379	/* update totalreserve_pages */
6380	calculate_totalreserve_pages();
6381}
6382
6383/**
6384 * setup_per_zone_wmarks - called when min_free_kbytes changes
6385 * or when memory is hot-{added|removed}
6386 *
6387 * Ensures that the watermark[min,low,high] values for each zone are set
6388 * correctly with respect to min_free_kbytes.
6389 */
6390void setup_per_zone_wmarks(void)
6391{
6392	mutex_lock(&zonelists_mutex);
6393	__setup_per_zone_wmarks();
6394	mutex_unlock(&zonelists_mutex);
6395}
6396
6397/*
6398 * The inactive anon list should be small enough that the VM never has to
6399 * do too much work, but large enough that each inactive page has a chance
6400 * to be referenced again before it is swapped out.
6401 *
6402 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6403 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6404 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6405 * the anonymous pages are kept on the inactive list.
6406 *
6407 * total     target    max
6408 * memory    ratio     inactive anon
6409 * -------------------------------------
6410 *   10MB       1         5MB
6411 *  100MB       1        50MB
6412 *    1GB       3       250MB
6413 *   10GB      10       0.9GB
6414 *  100GB      31         3GB
6415 *    1TB     101        10GB
6416 *   10TB     320        32GB
6417 */
6418static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6419{
6420	unsigned int gb, ratio;
6421
6422	/* Zone size in gigabytes */
6423	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6424	if (gb)
6425		ratio = int_sqrt(10 * gb);
6426	else
6427		ratio = 1;
6428
6429	zone->inactive_ratio = ratio;
6430}
6431
6432static void __meminit setup_per_zone_inactive_ratio(void)
6433{
6434	struct zone *zone;
 
 
 
 
 
6435
 
 
 
 
6436	for_each_zone(zone)
6437		calculate_zone_inactive_ratio(zone);
6438}
6439
6440/*
6441 * Initialise min_free_kbytes.
6442 *
6443 * For small machines we want it small (128k min).  For large machines
6444 * we want it large (64MB max).  But it is not linear, because network
6445 * bandwidth does not increase linearly with machine size.  We use
6446 *
6447 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6448 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6449 *
6450 * which yields
6451 *
6452 * 16MB:	512k
6453 * 32MB:	724k
6454 * 64MB:	1024k
6455 * 128MB:	1448k
6456 * 256MB:	2048k
6457 * 512MB:	2896k
6458 * 1024MB:	4096k
6459 * 2048MB:	5792k
6460 * 4096MB:	8192k
6461 * 8192MB:	11584k
6462 * 16384MB:	16384k
6463 */
6464int __meminit init_per_zone_wmark_min(void)
6465{
6466	unsigned long lowmem_kbytes;
6467	int new_min_free_kbytes;
6468
6469	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6470	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6471
6472	if (new_min_free_kbytes > user_min_free_kbytes) {
6473		min_free_kbytes = new_min_free_kbytes;
6474		if (min_free_kbytes < 128)
6475			min_free_kbytes = 128;
6476		if (min_free_kbytes > 65536)
6477			min_free_kbytes = 65536;
6478	} else {
6479		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6480				new_min_free_kbytes, user_min_free_kbytes);
6481	}
6482	setup_per_zone_wmarks();
6483	refresh_zone_stat_thresholds();
6484	setup_per_zone_lowmem_reserve();
6485	setup_per_zone_inactive_ratio();
 
 
 
 
 
 
 
6486	return 0;
6487}
6488core_initcall(init_per_zone_wmark_min)
6489
6490/*
6491 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6492 *	that we can call two helper functions whenever min_free_kbytes
6493 *	changes.
6494 */
6495int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6496	void __user *buffer, size_t *length, loff_t *ppos)
6497{
6498	int rc;
6499
6500	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6501	if (rc)
6502		return rc;
6503
6504	if (write) {
6505		user_min_free_kbytes = min_free_kbytes;
6506		setup_per_zone_wmarks();
6507	}
6508	return 0;
6509}
6510
6511int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6512	void __user *buffer, size_t *length, loff_t *ppos)
6513{
6514	int rc;
6515
6516	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6517	if (rc)
6518		return rc;
6519
6520	if (write)
6521		setup_per_zone_wmarks();
6522
6523	return 0;
6524}
6525
6526#ifdef CONFIG_NUMA
6527int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6528	void __user *buffer, size_t *length, loff_t *ppos)
6529{
 
6530	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 
 
6531	int rc;
6532
6533	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6534	if (rc)
6535		return rc;
6536
6537	for_each_zone(zone)
6538		zone->min_unmapped_pages = (zone->managed_pages *
6539				sysctl_min_unmapped_ratio) / 100;
6540	return 0;
6541}
6542
6543int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6544	void __user *buffer, size_t *length, loff_t *ppos)
6545{
 
6546	struct zone *zone;
 
 
 
 
 
 
 
 
 
 
 
 
6547	int rc;
6548
6549	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6550	if (rc)
6551		return rc;
6552
6553	for_each_zone(zone)
6554		zone->min_slab_pages = (zone->managed_pages *
6555				sysctl_min_slab_ratio) / 100;
6556	return 0;
6557}
6558#endif
6559
6560/*
6561 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6562 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6563 *	whenever sysctl_lowmem_reserve_ratio changes.
6564 *
6565 * The reserve ratio obviously has absolutely no relation with the
6566 * minimum watermarks. The lowmem reserve ratio can only make sense
6567 * if in function of the boot time zone sizes.
6568 */
6569int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6570	void __user *buffer, size_t *length, loff_t *ppos)
6571{
 
 
6572	proc_dointvec_minmax(table, write, buffer, length, ppos);
 
 
 
 
 
 
6573	setup_per_zone_lowmem_reserve();
6574	return 0;
6575}
6576
6577/*
6578 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6579 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6580 * pagelist can have before it gets flushed back to buddy allocator.
6581 */
6582int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6583	void __user *buffer, size_t *length, loff_t *ppos)
6584{
6585	struct zone *zone;
6586	int old_percpu_pagelist_fraction;
6587	int ret;
6588
6589	mutex_lock(&pcp_batch_high_lock);
6590	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6591
6592	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6593	if (!write || ret < 0)
6594		goto out;
6595
6596	/* Sanity checking to avoid pcp imbalance */
6597	if (percpu_pagelist_fraction &&
6598	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6599		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6600		ret = -EINVAL;
6601		goto out;
6602	}
6603
6604	/* No change? */
6605	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6606		goto out;
6607
6608	for_each_populated_zone(zone) {
6609		unsigned int cpu;
6610
6611		for_each_possible_cpu(cpu)
6612			pageset_set_high_and_batch(zone,
6613					per_cpu_ptr(zone->pageset, cpu));
6614	}
6615out:
6616	mutex_unlock(&pcp_batch_high_lock);
6617	return ret;
6618}
6619
6620#ifdef CONFIG_NUMA
6621int hashdist = HASHDIST_DEFAULT;
6622
6623static int __init set_hashdist(char *str)
 
 
6624{
6625	if (!str)
6626		return 0;
6627	hashdist = simple_strtoul(str, &str, 0);
6628	return 1;
6629}
6630__setup("hashdist=", set_hashdist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6631#endif
6632
6633/*
6634 * allocate a large system hash table from bootmem
6635 * - it is assumed that the hash table must contain an exact power-of-2
6636 *   quantity of entries
6637 * - limit is the number of hash buckets, not the total allocation size
6638 */
6639void *__init alloc_large_system_hash(const char *tablename,
6640				     unsigned long bucketsize,
6641				     unsigned long numentries,
6642				     int scale,
6643				     int flags,
6644				     unsigned int *_hash_shift,
6645				     unsigned int *_hash_mask,
6646				     unsigned long low_limit,
6647				     unsigned long high_limit)
6648{
6649	unsigned long long max = high_limit;
6650	unsigned long log2qty, size;
6651	void *table = NULL;
 
 
 
6652
6653	/* allow the kernel cmdline to have a say */
6654	if (!numentries) {
6655		/* round applicable memory size up to nearest megabyte */
6656		numentries = nr_kernel_pages;
 
6657
6658		/* It isn't necessary when PAGE_SIZE >= 1MB */
6659		if (PAGE_SHIFT < 20)
6660			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6661
 
 
 
 
 
 
 
 
 
 
6662		/* limit to 1 bucket per 2^scale bytes of low memory */
6663		if (scale > PAGE_SHIFT)
6664			numentries >>= (scale - PAGE_SHIFT);
6665		else
6666			numentries <<= (PAGE_SHIFT - scale);
6667
6668		/* Make sure we've got at least a 0-order allocation.. */
6669		if (unlikely(flags & HASH_SMALL)) {
6670			/* Makes no sense without HASH_EARLY */
6671			WARN_ON(!(flags & HASH_EARLY));
6672			if (!(numentries >> *_hash_shift)) {
6673				numentries = 1UL << *_hash_shift;
6674				BUG_ON(!numentries);
6675			}
6676		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6677			numentries = PAGE_SIZE / bucketsize;
6678	}
6679	numentries = roundup_pow_of_two(numentries);
6680
6681	/* limit allocation size to 1/16 total memory by default */
6682	if (max == 0) {
6683		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6684		do_div(max, bucketsize);
6685	}
6686	max = min(max, 0x80000000ULL);
6687
6688	if (numentries < low_limit)
6689		numentries = low_limit;
6690	if (numentries > max)
6691		numentries = max;
6692
6693	log2qty = ilog2(numentries);
6694
 
6695	do {
 
6696		size = bucketsize << log2qty;
6697		if (flags & HASH_EARLY)
6698			table = memblock_virt_alloc_nopanic(size, 0);
6699		else if (hashdist)
6700			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6701		else {
 
 
 
 
 
 
6702			/*
6703			 * If bucketsize is not a power-of-two, we may free
6704			 * some pages at the end of hash table which
6705			 * alloc_pages_exact() automatically does
6706			 */
6707			if (get_order(size) < MAX_ORDER) {
6708				table = alloc_pages_exact(size, GFP_ATOMIC);
6709				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6710			}
6711		}
6712	} while (!table && size > PAGE_SIZE && --log2qty);
6713
6714	if (!table)
6715		panic("Failed to allocate %s hash table\n", tablename);
6716
6717	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6718		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
 
6719
6720	if (_hash_shift)
6721		*_hash_shift = log2qty;
6722	if (_hash_mask)
6723		*_hash_mask = (1 << log2qty) - 1;
6724
6725	return table;
6726}
6727
6728/* Return a pointer to the bitmap storing bits affecting a block of pages */
6729static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6730							unsigned long pfn)
6731{
6732#ifdef CONFIG_SPARSEMEM
6733	return __pfn_to_section(pfn)->pageblock_flags;
6734#else
6735	return zone->pageblock_flags;
6736#endif /* CONFIG_SPARSEMEM */
6737}
6738
6739static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6740{
6741#ifdef CONFIG_SPARSEMEM
6742	pfn &= (PAGES_PER_SECTION-1);
6743	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6744#else
6745	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6746	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6747#endif /* CONFIG_SPARSEMEM */
6748}
6749
6750/**
6751 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6752 * @page: The page within the block of interest
6753 * @pfn: The target page frame number
6754 * @end_bitidx: The last bit of interest to retrieve
6755 * @mask: mask of bits that the caller is interested in
6756 *
6757 * Return: pageblock_bits flags
6758 */
6759unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6760					unsigned long end_bitidx,
6761					unsigned long mask)
6762{
6763	struct zone *zone;
6764	unsigned long *bitmap;
6765	unsigned long bitidx, word_bitidx;
6766	unsigned long word;
6767
6768	zone = page_zone(page);
6769	bitmap = get_pageblock_bitmap(zone, pfn);
6770	bitidx = pfn_to_bitidx(zone, pfn);
6771	word_bitidx = bitidx / BITS_PER_LONG;
6772	bitidx &= (BITS_PER_LONG-1);
6773
6774	word = bitmap[word_bitidx];
6775	bitidx += end_bitidx;
6776	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6777}
6778
6779/**
6780 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6781 * @page: The page within the block of interest
6782 * @flags: The flags to set
6783 * @pfn: The target page frame number
6784 * @end_bitidx: The last bit of interest
6785 * @mask: mask of bits that the caller is interested in
6786 */
6787void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6788					unsigned long pfn,
6789					unsigned long end_bitidx,
6790					unsigned long mask)
6791{
6792	struct zone *zone;
6793	unsigned long *bitmap;
6794	unsigned long bitidx, word_bitidx;
6795	unsigned long old_word, word;
6796
6797	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6798
6799	zone = page_zone(page);
6800	bitmap = get_pageblock_bitmap(zone, pfn);
6801	bitidx = pfn_to_bitidx(zone, pfn);
6802	word_bitidx = bitidx / BITS_PER_LONG;
6803	bitidx &= (BITS_PER_LONG-1);
6804
6805	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6806
6807	bitidx += end_bitidx;
6808	mask <<= (BITS_PER_LONG - bitidx - 1);
6809	flags <<= (BITS_PER_LONG - bitidx - 1);
6810
6811	word = READ_ONCE(bitmap[word_bitidx]);
6812	for (;;) {
6813		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6814		if (word == old_word)
6815			break;
6816		word = old_word;
6817	}
6818}
6819
6820/*
6821 * This function checks whether pageblock includes unmovable pages or not.
6822 * If @count is not zero, it is okay to include less @count unmovable pages
6823 *
6824 * PageLRU check without isolation or lru_lock could race so that
6825 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6826 * expect this function should be exact.
 
 
 
 
 
 
6827 */
6828bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6829			 bool skip_hwpoisoned_pages)
6830{
6831	unsigned long pfn, iter, found;
6832	int mt;
 
6833
6834	/*
6835	 * For avoiding noise data, lru_add_drain_all() should be called
6836	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6837	 */
6838	if (zone_idx(zone) == ZONE_MOVABLE)
6839		return false;
6840	mt = get_pageblock_migratetype(page);
6841	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6842		return false;
6843
6844	pfn = page_to_pfn(page);
6845	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6846		unsigned long check = pfn + iter;
6847
6848		if (!pfn_valid_within(check))
 
6849			continue;
6850
6851		page = pfn_to_page(check);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6852
6853		/*
6854		 * Hugepages are not in LRU lists, but they're movable.
6855		 * We need not scan over tail pages bacause we don't
 
6856		 * handle each tail page individually in migration.
6857		 */
6858		if (PageHuge(page)) {
6859			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
 
 
 
 
 
 
 
 
 
 
 
6860			continue;
6861		}
6862
6863		/*
6864		 * We can't use page_count without pin a page
6865		 * because another CPU can free compound page.
6866		 * This check already skips compound tails of THP
6867		 * because their page->_count is zero at all time.
6868		 */
6869		if (!page_ref_count(page)) {
6870			if (PageBuddy(page))
6871				iter += (1 << page_order(page)) - 1;
6872			continue;
6873		}
6874
6875		/*
6876		 * The HWPoisoned page may be not in buddy system, and
6877		 * page_count() is not 0.
6878		 */
6879		if (skip_hwpoisoned_pages && PageHWPoison(page))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6880			continue;
6881
6882		if (!PageLRU(page))
6883			found++;
6884		/*
6885		 * If there are RECLAIMABLE pages, we need to check
6886		 * it.  But now, memory offline itself doesn't call
6887		 * shrink_node_slabs() and it still to be fixed.
6888		 */
6889		/*
6890		 * If the page is not RAM, page_count()should be 0.
6891		 * we don't need more check. This is an _used_ not-movable page.
6892		 *
6893		 * The problematic thing here is PG_reserved pages. PG_reserved
6894		 * is set to both of a memory hole page and a _used_ kernel
6895		 * page at boot.
6896		 */
6897		if (found > count)
6898			return true;
6899	}
6900	return false;
6901}
6902
6903bool is_pageblock_removable_nolock(struct page *page)
6904{
6905	struct zone *zone;
6906	unsigned long pfn;
6907
6908	/*
6909	 * We have to be careful here because we are iterating over memory
6910	 * sections which are not zone aware so we might end up outside of
6911	 * the zone but still within the section.
6912	 * We have to take care about the node as well. If the node is offline
6913	 * its NODE_DATA will be NULL - see page_zone.
6914	 */
6915	if (!node_online(page_to_nid(page)))
6916		return false;
6917
6918	zone = page_zone(page);
6919	pfn = page_to_pfn(page);
6920	if (!zone_spans_pfn(zone, pfn))
6921		return false;
6922
6923	return !has_unmovable_pages(zone, page, 0, true);
6924}
6925
6926#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6927
6928static unsigned long pfn_max_align_down(unsigned long pfn)
6929{
6930	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6931			     pageblock_nr_pages) - 1);
6932}
6933
6934static unsigned long pfn_max_align_up(unsigned long pfn)
6935{
6936	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6937				pageblock_nr_pages));
6938}
6939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6940/* [start, end) must belong to a single zone. */
6941static int __alloc_contig_migrate_range(struct compact_control *cc,
6942					unsigned long start, unsigned long end)
6943{
6944	/* This function is based on compact_zone() from compaction.c. */
6945	unsigned long nr_reclaimed;
6946	unsigned long pfn = start;
6947	unsigned int tries = 0;
6948	int ret = 0;
 
 
 
 
6949
6950	migrate_prep();
6951
6952	while (pfn < end || !list_empty(&cc->migratepages)) {
6953		if (fatal_signal_pending(current)) {
6954			ret = -EINTR;
6955			break;
6956		}
6957
6958		if (list_empty(&cc->migratepages)) {
6959			cc->nr_migratepages = 0;
6960			pfn = isolate_migratepages_range(cc, pfn, end);
6961			if (!pfn) {
6962				ret = -EINTR;
6963				break;
6964			}
6965			tries = 0;
6966		} else if (++tries == 5) {
6967			ret = ret < 0 ? ret : -EBUSY;
6968			break;
6969		}
6970
6971		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6972							&cc->migratepages);
6973		cc->nr_migratepages -= nr_reclaimed;
6974
6975		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6976				    NULL, 0, cc->mode, MR_CMA);
 
 
 
 
 
 
 
6977	}
 
 
6978	if (ret < 0) {
 
 
6979		putback_movable_pages(&cc->migratepages);
6980		return ret;
6981	}
6982	return 0;
6983}
6984
6985/**
6986 * alloc_contig_range() -- tries to allocate given range of pages
6987 * @start:	start PFN to allocate
6988 * @end:	one-past-the-last PFN to allocate
6989 * @migratetype:	migratetype of the underlaying pageblocks (either
6990 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6991 *			in range must have the same migratetype and it must
6992 *			be either of the two.
 
6993 *
6994 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6995 * aligned, however it's the caller's responsibility to guarantee that
6996 * we are the only thread that changes migrate type of pageblocks the
6997 * pages fall in.
6998 *
6999 * The PFN range must belong to a single zone.
 
 
7000 *
7001 * Returns zero on success or negative error code.  On success all
7002 * pages which PFN is in [start, end) are allocated for the caller and
7003 * need to be freed with free_contig_range().
7004 */
7005int alloc_contig_range(unsigned long start, unsigned long end,
7006		       unsigned migratetype)
7007{
7008	unsigned long outer_start, outer_end;
7009	unsigned int order;
7010	int ret = 0;
7011
7012	struct compact_control cc = {
7013		.nr_migratepages = 0,
7014		.order = -1,
7015		.zone = page_zone(pfn_to_page(start)),
7016		.mode = MIGRATE_SYNC,
7017		.ignore_skip_hint = true,
 
 
 
7018	};
7019	INIT_LIST_HEAD(&cc.migratepages);
7020
7021	/*
7022	 * What we do here is we mark all pageblocks in range as
7023	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7024	 * have different sizes, and due to the way page allocator
7025	 * work, we align the range to biggest of the two pages so
7026	 * that page allocator won't try to merge buddies from
7027	 * different pageblocks and change MIGRATE_ISOLATE to some
7028	 * other migration type.
7029	 *
7030	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7031	 * migrate the pages from an unaligned range (ie. pages that
7032	 * we are interested in).  This will put all the pages in
7033	 * range back to page allocator as MIGRATE_ISOLATE.
7034	 *
7035	 * When this is done, we take the pages in range from page
7036	 * allocator removing them from the buddy system.  This way
7037	 * page allocator will never consider using them.
7038	 *
7039	 * This lets us mark the pageblocks back as
7040	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7041	 * aligned range but not in the unaligned, original range are
7042	 * put back to page allocator so that buddy can use them.
7043	 */
7044
7045	ret = start_isolate_page_range(pfn_max_align_down(start),
7046				       pfn_max_align_up(end), migratetype,
7047				       false);
7048	if (ret)
7049		return ret;
7050
 
 
7051	/*
7052	 * In case of -EBUSY, we'd like to know which page causes problem.
7053	 * So, just fall through. We will check it in test_pages_isolated().
 
 
 
 
 
 
7054	 */
7055	ret = __alloc_contig_migrate_range(&cc, start, end);
7056	if (ret && ret != -EBUSY)
7057		goto done;
 
7058
7059	/*
7060	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7061	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7062	 * more, all pages in [start, end) are free in page allocator.
7063	 * What we are going to do is to allocate all pages from
7064	 * [start, end) (that is remove them from page allocator).
7065	 *
7066	 * The only problem is that pages at the beginning and at the
7067	 * end of interesting range may be not aligned with pages that
7068	 * page allocator holds, ie. they can be part of higher order
7069	 * pages.  Because of this, we reserve the bigger range and
7070	 * once this is done free the pages we are not interested in.
7071	 *
7072	 * We don't have to hold zone->lock here because the pages are
7073	 * isolated thus they won't get removed from buddy.
7074	 */
7075
7076	lru_add_drain_all();
7077	drain_all_pages(cc.zone);
7078
7079	order = 0;
7080	outer_start = start;
7081	while (!PageBuddy(pfn_to_page(outer_start))) {
7082		if (++order >= MAX_ORDER) {
7083			outer_start = start;
7084			break;
7085		}
7086		outer_start &= ~0UL << order;
7087	}
7088
7089	if (outer_start != start) {
7090		order = page_order(pfn_to_page(outer_start));
7091
7092		/*
7093		 * outer_start page could be small order buddy page and
7094		 * it doesn't include start page. Adjust outer_start
7095		 * in this case to report failed page properly
7096		 * on tracepoint in test_pages_isolated()
7097		 */
7098		if (outer_start + (1UL << order) <= start)
7099			outer_start = start;
7100	}
7101
7102	/* Make sure the range is really isolated. */
7103	if (test_pages_isolated(outer_start, end, false)) {
7104		pr_info("%s: [%lx, %lx) PFNs busy\n",
7105			__func__, outer_start, end);
7106		ret = -EBUSY;
7107		goto done;
7108	}
7109
7110	/* Grab isolated pages from freelists. */
7111	outer_end = isolate_freepages_range(&cc, outer_start, end);
7112	if (!outer_end) {
7113		ret = -EBUSY;
7114		goto done;
7115	}
7116
7117	/* Free head and tail (if any) */
7118	if (start != outer_start)
7119		free_contig_range(outer_start, start - outer_start);
7120	if (end != outer_end)
7121		free_contig_range(end, outer_end - end);
7122
7123done:
7124	undo_isolate_page_range(pfn_max_align_down(start),
7125				pfn_max_align_up(end), migratetype);
7126	return ret;
7127}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7128
7129void free_contig_range(unsigned long pfn, unsigned nr_pages)
7130{
7131	unsigned int count = 0;
7132
7133	for (; nr_pages--; pfn++) {
7134		struct page *page = pfn_to_page(pfn);
7135
7136		count += page_count(page) != 1;
7137		__free_page(page);
7138	}
7139	WARN(count != 0, "%d pages are still in use!\n", count);
7140}
7141#endif
7142
7143#ifdef CONFIG_MEMORY_HOTPLUG
7144/*
7145 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7146 * page high values need to be recalulated.
7147 */
7148void __meminit zone_pcp_update(struct zone *zone)
7149{
7150	unsigned cpu;
7151	mutex_lock(&pcp_batch_high_lock);
7152	for_each_possible_cpu(cpu)
7153		pageset_set_high_and_batch(zone,
7154				per_cpu_ptr(zone->pageset, cpu));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7155	mutex_unlock(&pcp_batch_high_lock);
7156}
7157#endif
7158
7159void zone_pcp_reset(struct zone *zone)
7160{
7161	unsigned long flags;
7162	int cpu;
7163	struct per_cpu_pageset *pset;
7164
7165	/* avoid races with drain_pages()  */
7166	local_irq_save(flags);
7167	if (zone->pageset != &boot_pageset) {
7168		for_each_online_cpu(cpu) {
7169			pset = per_cpu_ptr(zone->pageset, cpu);
7170			drain_zonestat(zone, pset);
7171		}
7172		free_percpu(zone->pageset);
7173		zone->pageset = &boot_pageset;
 
 
7174	}
7175	local_irq_restore(flags);
7176}
7177
7178#ifdef CONFIG_MEMORY_HOTREMOVE
7179/*
7180 * All pages in the range must be isolated before calling this.
 
7181 */
7182void
7183__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7184{
 
7185	struct page *page;
7186	struct zone *zone;
7187	unsigned int order, i;
7188	unsigned long pfn;
7189	unsigned long flags;
7190	/* find the first valid pfn */
7191	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7192		if (pfn_valid(pfn))
7193			break;
7194	if (pfn == end_pfn)
7195		return;
7196	zone = page_zone(pfn_to_page(pfn));
7197	spin_lock_irqsave(&zone->lock, flags);
7198	pfn = start_pfn;
7199	while (pfn < end_pfn) {
7200		if (!pfn_valid(pfn)) {
7201			pfn++;
7202			continue;
7203		}
7204		page = pfn_to_page(pfn);
7205		/*
7206		 * The HWPoisoned page may be not in buddy system, and
7207		 * page_count() is not 0.
7208		 */
7209		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7210			pfn++;
7211			SetPageReserved(page);
 
 
 
 
 
 
 
 
 
7212			continue;
7213		}
7214
7215		BUG_ON(page_count(page));
7216		BUG_ON(!PageBuddy(page));
7217		order = page_order(page);
7218#ifdef CONFIG_DEBUG_VM
7219		pr_info("remove from free list %lx %d %lx\n",
7220			pfn, 1 << order, end_pfn);
7221#endif
7222		list_del(&page->lru);
7223		rmv_page_order(page);
7224		zone->free_area[order].nr_free--;
7225		for (i = 0; i < (1 << order); i++)
7226			SetPageReserved((page+i));
7227		pfn += (1 << order);
7228	}
7229	spin_unlock_irqrestore(&zone->lock, flags);
7230}
7231#endif
7232
7233bool is_free_buddy_page(struct page *page)
7234{
7235	struct zone *zone = page_zone(page);
7236	unsigned long pfn = page_to_pfn(page);
7237	unsigned long flags;
7238	unsigned int order;
7239
7240	spin_lock_irqsave(&zone->lock, flags);
7241	for (order = 0; order < MAX_ORDER; order++) {
7242		struct page *page_head = page - (pfn & ((1 << order) - 1));
7243
7244		if (PageBuddy(page_head) && page_order(page_head) >= order)
7245			break;
7246	}
7247	spin_unlock_irqrestore(&zone->lock, flags);
7248
7249	return order < MAX_ORDER;
7250}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/page_alloc.c
   4 *
   5 *  Manages the free list, the system allocates free pages here.
   6 *  Note that kmalloc() lives in slab.c
   7 *
   8 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   9 *  Swap reorganised 29.12.95, Stephen Tweedie
  10 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  11 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  12 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  13 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  14 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  15 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  16 */
  17
  18#include <linux/stddef.h>
  19#include <linux/mm.h>
  20#include <linux/highmem.h>
  21#include <linux/swap.h>
  22#include <linux/interrupt.h>
  23#include <linux/pagemap.h>
  24#include <linux/jiffies.h>
 
  25#include <linux/memblock.h>
  26#include <linux/compiler.h>
  27#include <linux/kernel.h>
 
  28#include <linux/kasan.h>
  29#include <linux/module.h>
  30#include <linux/suspend.h>
  31#include <linux/pagevec.h>
  32#include <linux/blkdev.h>
  33#include <linux/slab.h>
  34#include <linux/ratelimit.h>
  35#include <linux/oom.h>
 
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
  45#include <linux/memremap.h>
  46#include <linux/stop_machine.h>
  47#include <linux/random.h>
  48#include <linux/sort.h>
  49#include <linux/pfn.h>
  50#include <linux/backing-dev.h>
  51#include <linux/fault-inject.h>
  52#include <linux/page-isolation.h>
 
  53#include <linux/debugobjects.h>
  54#include <linux/kmemleak.h>
  55#include <linux/compaction.h>
  56#include <trace/events/kmem.h>
  57#include <trace/events/oom.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
  60#include <linux/mmu_notifier.h>
  61#include <linux/migrate.h>
 
  62#include <linux/hugetlb.h>
  63#include <linux/sched/rt.h>
  64#include <linux/sched/mm.h>
  65#include <linux/page_owner.h>
  66#include <linux/kthread.h>
  67#include <linux/memcontrol.h>
  68#include <linux/ftrace.h>
  69#include <linux/lockdep.h>
  70#include <linux/nmi.h>
  71#include <linux/psi.h>
  72#include <linux/padata.h>
  73#include <linux/khugepaged.h>
  74#include <linux/buffer_head.h>
  75#include <asm/sections.h>
  76#include <asm/tlbflush.h>
  77#include <asm/div64.h>
  78#include "internal.h"
  79#include "shuffle.h"
  80#include "page_reporting.h"
  81
  82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
  83typedef int __bitwise fpi_t;
  84
  85/* No special request */
  86#define FPI_NONE		((__force fpi_t)0)
  87
  88/*
  89 * Skip free page reporting notification for the (possibly merged) page.
  90 * This does not hinder free page reporting from grabbing the page,
  91 * reporting it and marking it "reported" -  it only skips notifying
  92 * the free page reporting infrastructure about a newly freed page. For
  93 * example, used when temporarily pulling a page from a freelist and
  94 * putting it back unmodified.
  95 */
  96#define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
  97
  98/*
  99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
 100 * page shuffling (relevant code - e.g., memory onlining - is expected to
 101 * shuffle the whole zone).
 102 *
 103 * Note: No code should rely on this flag for correctness - it's purely
 104 *       to allow for optimizations when handing back either fresh pages
 105 *       (memory onlining) or untouched pages (page isolation, free page
 106 *       reporting).
 107 */
 108#define FPI_TO_TAIL		((__force fpi_t)BIT(1))
 109
 110/*
 111 * Don't poison memory with KASAN (only for the tag-based modes).
 112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
 113 * Poisoning all that memory lengthens boot time, especially on systems with
 114 * large amount of RAM. This flag is used to skip that poisoning.
 115 * This is only done for the tag-based KASAN modes, as those are able to
 116 * detect memory corruptions with the memory tags assigned by default.
 117 * All memory allocated normally after boot gets poisoned as usual.
 118 */
 119#define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
 120
 121/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
 122static DEFINE_MUTEX(pcp_batch_high_lock);
 123#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
 124
 125struct pagesets {
 126	local_lock_t lock;
 127};
 128static DEFINE_PER_CPU(struct pagesets, pagesets) = {
 129	.lock = INIT_LOCAL_LOCK(lock),
 130};
 131
 132#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
 133DEFINE_PER_CPU(int, numa_node);
 134EXPORT_PER_CPU_SYMBOL(numa_node);
 135#endif
 136
 137DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
 138
 139#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 140/*
 141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 144 * defined in <linux/topology.h>.
 145 */
 146DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
 147EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 148#endif
 149
 150/* work_structs for global per-cpu drains */
 151struct pcpu_drain {
 152	struct zone *zone;
 153	struct work_struct work;
 154};
 155static DEFINE_MUTEX(pcpu_drain_mutex);
 156static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
 157
 158#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 159volatile unsigned long latent_entropy __latent_entropy;
 160EXPORT_SYMBOL(latent_entropy);
 161#endif
 162
 163/*
 164 * Array of node states.
 165 */
 166nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 167	[N_POSSIBLE] = NODE_MASK_ALL,
 168	[N_ONLINE] = { { [0] = 1UL } },
 169#ifndef CONFIG_NUMA
 170	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 171#ifdef CONFIG_HIGHMEM
 172	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 173#endif
 
 174	[N_MEMORY] = { { [0] = 1UL } },
 
 175	[N_CPU] = { { [0] = 1UL } },
 176#endif	/* NUMA */
 177};
 178EXPORT_SYMBOL(node_states);
 179
 180atomic_long_t _totalram_pages __read_mostly;
 181EXPORT_SYMBOL(_totalram_pages);
 
 
 182unsigned long totalreserve_pages __read_mostly;
 183unsigned long totalcma_pages __read_mostly;
 184
 185int percpu_pagelist_high_fraction;
 186gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 187DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
 188EXPORT_SYMBOL(init_on_alloc);
 189
 190DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
 191EXPORT_SYMBOL(init_on_free);
 192
 193static bool _init_on_alloc_enabled_early __read_mostly
 194				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
 195static int __init early_init_on_alloc(char *buf)
 196{
 197
 198	return kstrtobool(buf, &_init_on_alloc_enabled_early);
 199}
 200early_param("init_on_alloc", early_init_on_alloc);
 201
 202static bool _init_on_free_enabled_early __read_mostly
 203				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
 204static int __init early_init_on_free(char *buf)
 205{
 206	return kstrtobool(buf, &_init_on_free_enabled_early);
 207}
 208early_param("init_on_free", early_init_on_free);
 209
 210/*
 211 * A cached value of the page's pageblock's migratetype, used when the page is
 212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 214 * Also the migratetype set in the page does not necessarily match the pcplist
 215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 216 * other index - this ensures that it will be put on the correct CMA freelist.
 217 */
 218static inline int get_pcppage_migratetype(struct page *page)
 219{
 220	return page->index;
 221}
 222
 223static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 224{
 225	page->index = migratetype;
 226}
 227
 228#ifdef CONFIG_PM_SLEEP
 229/*
 230 * The following functions are used by the suspend/hibernate code to temporarily
 231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 232 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 233 * they should always be called with system_transition_mutex held
 234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 236 * with that modification).
 237 */
 238
 239static gfp_t saved_gfp_mask;
 240
 241void pm_restore_gfp_mask(void)
 242{
 243	WARN_ON(!mutex_is_locked(&system_transition_mutex));
 244	if (saved_gfp_mask) {
 245		gfp_allowed_mask = saved_gfp_mask;
 246		saved_gfp_mask = 0;
 247	}
 248}
 249
 250void pm_restrict_gfp_mask(void)
 251{
 252	WARN_ON(!mutex_is_locked(&system_transition_mutex));
 253	WARN_ON(saved_gfp_mask);
 254	saved_gfp_mask = gfp_allowed_mask;
 255	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 256}
 257
 258bool pm_suspended_storage(void)
 259{
 260	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 261		return false;
 262	return true;
 263}
 264#endif /* CONFIG_PM_SLEEP */
 265
 266#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 267unsigned int pageblock_order __read_mostly;
 268#endif
 269
 270static void __free_pages_ok(struct page *page, unsigned int order,
 271			    fpi_t fpi_flags);
 272
 273/*
 274 * results with 256, 32 in the lowmem_reserve sysctl:
 275 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 276 *	1G machine -> (16M dma, 784M normal, 224M high)
 277 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 278 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 279 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 280 *
 281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 282 * don't need any ZONE_NORMAL reservation
 283 */
 284int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 285#ifdef CONFIG_ZONE_DMA
 286	[ZONE_DMA] = 256,
 287#endif
 288#ifdef CONFIG_ZONE_DMA32
 289	[ZONE_DMA32] = 256,
 290#endif
 291	[ZONE_NORMAL] = 32,
 292#ifdef CONFIG_HIGHMEM
 293	[ZONE_HIGHMEM] = 0,
 294#endif
 295	[ZONE_MOVABLE] = 0,
 296};
 297
 
 
 298static char * const zone_names[MAX_NR_ZONES] = {
 299#ifdef CONFIG_ZONE_DMA
 300	 "DMA",
 301#endif
 302#ifdef CONFIG_ZONE_DMA32
 303	 "DMA32",
 304#endif
 305	 "Normal",
 306#ifdef CONFIG_HIGHMEM
 307	 "HighMem",
 308#endif
 309	 "Movable",
 310#ifdef CONFIG_ZONE_DEVICE
 311	 "Device",
 312#endif
 313};
 314
 315const char * const migratetype_names[MIGRATE_TYPES] = {
 316	"Unmovable",
 317	"Movable",
 318	"Reclaimable",
 319	"HighAtomic",
 320#ifdef CONFIG_CMA
 321	"CMA",
 322#endif
 323#ifdef CONFIG_MEMORY_ISOLATION
 324	"Isolate",
 325#endif
 326};
 327
 328compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
 329	[NULL_COMPOUND_DTOR] = NULL,
 330	[COMPOUND_PAGE_DTOR] = free_compound_page,
 331#ifdef CONFIG_HUGETLB_PAGE
 332	[HUGETLB_PAGE_DTOR] = free_huge_page,
 333#endif
 334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 335	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
 336#endif
 337};
 338
 339int min_free_kbytes = 1024;
 340int user_min_free_kbytes = -1;
 341int watermark_boost_factor __read_mostly = 15000;
 342int watermark_scale_factor = 10;
 343
 344static unsigned long nr_kernel_pages __initdata;
 345static unsigned long nr_all_pages __initdata;
 346static unsigned long dma_reserve __initdata;
 347
 348static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
 349static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
 350static unsigned long required_kernelcore __initdata;
 351static unsigned long required_kernelcore_percent __initdata;
 352static unsigned long required_movablecore __initdata;
 353static unsigned long required_movablecore_percent __initdata;
 354static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
 355static bool mirrored_kernelcore __meminitdata;
 356
 357/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 358int movable_zone;
 359EXPORT_SYMBOL(movable_zone);
 
 360
 361#if MAX_NUMNODES > 1
 362unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
 363unsigned int nr_online_nodes __read_mostly = 1;
 364EXPORT_SYMBOL(nr_node_ids);
 365EXPORT_SYMBOL(nr_online_nodes);
 366#endif
 367
 368int page_group_by_mobility_disabled __read_mostly;
 369
 370#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 371/*
 372 * During boot we initialize deferred pages on-demand, as needed, but once
 373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
 374 * and we can permanently disable that path.
 375 */
 376static DEFINE_STATIC_KEY_TRUE(deferred_pages);
 377
 378/*
 379 * Calling kasan_poison_pages() only after deferred memory initialization
 380 * has completed. Poisoning pages during deferred memory init will greatly
 381 * lengthen the process and cause problem in large memory systems as the
 382 * deferred pages initialization is done with interrupt disabled.
 383 *
 384 * Assuming that there will be no reference to those newly initialized
 385 * pages before they are ever allocated, this should have no effect on
 386 * KASAN memory tracking as the poison will be properly inserted at page
 387 * allocation time. The only corner case is when pages are allocated by
 388 * on-demand allocation and then freed again before the deferred pages
 389 * initialization is done, but this is not likely to happen.
 390 */
 391static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
 392{
 393	return static_branch_unlikely(&deferred_pages) ||
 394	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
 395		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
 396	       PageSkipKASanPoison(page);
 397}
 398
 399/* Returns true if the struct page for the pfn is uninitialised */
 400static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 401{
 402	int nid = early_pfn_to_nid(pfn);
 
 403
 404	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 
 
 
 
 
 405		return true;
 406
 407	return false;
 408}
 409
 410/*
 411 * Returns true when the remaining initialisation should be deferred until
 412 * later in the boot cycle when it can be parallelised.
 413 */
 414static bool __meminit
 415defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 
 416{
 417	static unsigned long prev_end_pfn, nr_initialised;
 418
 
 
 
 419	/*
 420	 * prev_end_pfn static that contains the end of previous zone
 421	 * No need to protect because called very early in boot before smp_init.
 422	 */
 423	if (prev_end_pfn != end_pfn) {
 424		prev_end_pfn = end_pfn;
 425		nr_initialised = 0;
 426	}
 427
 428	/* Always populate low zones for address-constrained allocations */
 429	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
 
 
 430		return false;
 
 431
 432	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
 433		return true;
 434	/*
 435	 * We start only with one section of pages, more pages are added as
 436	 * needed until the rest of deferred pages are initialized.
 437	 */
 438	nr_initialised++;
 439	if ((nr_initialised > PAGES_PER_SECTION) &&
 440	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 441		NODE_DATA(nid)->first_deferred_pfn = pfn;
 442		return true;
 443	}
 444	return false;
 445}
 446#else
 447static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
 448{
 449	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
 450		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
 451	       PageSkipKASanPoison(page);
 452}
 453
 454static inline bool early_page_uninitialised(unsigned long pfn)
 455{
 456	return false;
 457}
 458
 459static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
 460{
 461	return false;
 462}
 463#endif
 464
 465/* Return a pointer to the bitmap storing bits affecting a block of pages */
 466static inline unsigned long *get_pageblock_bitmap(const struct page *page,
 467							unsigned long pfn)
 468{
 469#ifdef CONFIG_SPARSEMEM
 470	return section_to_usemap(__pfn_to_section(pfn));
 471#else
 472	return page_zone(page)->pageblock_flags;
 473#endif /* CONFIG_SPARSEMEM */
 474}
 
 475
 476static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
 477{
 478#ifdef CONFIG_SPARSEMEM
 479	pfn &= (PAGES_PER_SECTION-1);
 480#else
 481	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 482#endif /* CONFIG_SPARSEMEM */
 483	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 484}
 485
 486static __always_inline
 487unsigned long __get_pfnblock_flags_mask(const struct page *page,
 488					unsigned long pfn,
 489					unsigned long mask)
 490{
 491	unsigned long *bitmap;
 492	unsigned long bitidx, word_bitidx;
 493	unsigned long word;
 494
 495	bitmap = get_pageblock_bitmap(page, pfn);
 496	bitidx = pfn_to_bitidx(page, pfn);
 497	word_bitidx = bitidx / BITS_PER_LONG;
 498	bitidx &= (BITS_PER_LONG-1);
 499
 500	word = bitmap[word_bitidx];
 501	return (word >> bitidx) & mask;
 502}
 503
 504/**
 505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 506 * @page: The page within the block of interest
 507 * @pfn: The target page frame number
 508 * @mask: mask of bits that the caller is interested in
 509 *
 510 * Return: pageblock_bits flags
 511 */
 512unsigned long get_pfnblock_flags_mask(const struct page *page,
 513					unsigned long pfn, unsigned long mask)
 514{
 515	return __get_pfnblock_flags_mask(page, pfn, mask);
 516}
 517
 518static __always_inline int get_pfnblock_migratetype(const struct page *page,
 519					unsigned long pfn)
 520{
 521	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
 522}
 523
 524/**
 525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 526 * @page: The page within the block of interest
 527 * @flags: The flags to set
 528 * @pfn: The target page frame number
 529 * @mask: mask of bits that the caller is interested in
 530 */
 531void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 532					unsigned long pfn,
 533					unsigned long mask)
 534{
 535	unsigned long *bitmap;
 536	unsigned long bitidx, word_bitidx;
 537	unsigned long old_word, word;
 538
 539	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 540	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
 541
 542	bitmap = get_pageblock_bitmap(page, pfn);
 543	bitidx = pfn_to_bitidx(page, pfn);
 544	word_bitidx = bitidx / BITS_PER_LONG;
 545	bitidx &= (BITS_PER_LONG-1);
 546
 547	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 548
 549	mask <<= bitidx;
 550	flags <<= bitidx;
 551
 552	word = READ_ONCE(bitmap[word_bitidx]);
 553	for (;;) {
 554		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 555		if (word == old_word)
 556			break;
 557		word = old_word;
 558	}
 559}
 560
 561void set_pageblock_migratetype(struct page *page, int migratetype)
 562{
 563	if (unlikely(page_group_by_mobility_disabled &&
 564		     migratetype < MIGRATE_PCPTYPES))
 565		migratetype = MIGRATE_UNMOVABLE;
 566
 567	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
 568				page_to_pfn(page), MIGRATETYPE_MASK);
 569}
 570
 571#ifdef CONFIG_DEBUG_VM
 572static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 573{
 574	int ret = 0;
 575	unsigned seq;
 576	unsigned long pfn = page_to_pfn(page);
 577	unsigned long sp, start_pfn;
 578
 579	do {
 580		seq = zone_span_seqbegin(zone);
 581		start_pfn = zone->zone_start_pfn;
 582		sp = zone->spanned_pages;
 583		if (!zone_spans_pfn(zone, pfn))
 584			ret = 1;
 585	} while (zone_span_seqretry(zone, seq));
 586
 587	if (ret)
 588		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 589			pfn, zone_to_nid(zone), zone->name,
 590			start_pfn, start_pfn + sp);
 591
 592	return ret;
 593}
 594
 595static int page_is_consistent(struct zone *zone, struct page *page)
 596{
 597	if (!pfn_valid_within(page_to_pfn(page)))
 598		return 0;
 599	if (zone != page_zone(page))
 600		return 0;
 601
 602	return 1;
 603}
 604/*
 605 * Temporary debugging check for pages not lying within a given zone.
 606 */
 607static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 608{
 609	if (page_outside_zone_boundaries(zone, page))
 610		return 1;
 611	if (!page_is_consistent(zone, page))
 612		return 1;
 613
 614	return 0;
 615}
 616#else
 617static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 618{
 619	return 0;
 620}
 621#endif
 622
 623static void bad_page(struct page *page, const char *reason)
 
 624{
 625	static unsigned long resume;
 626	static unsigned long nr_shown;
 627	static unsigned long nr_unshown;
 628
 
 
 
 
 
 
 629	/*
 630	 * Allow a burst of 60 reports, then keep quiet for that minute;
 631	 * or allow a steady drip of one report per second.
 632	 */
 633	if (nr_shown == 60) {
 634		if (time_before(jiffies, resume)) {
 635			nr_unshown++;
 636			goto out;
 637		}
 638		if (nr_unshown) {
 639			pr_alert(
 640			      "BUG: Bad page state: %lu messages suppressed\n",
 641				nr_unshown);
 642			nr_unshown = 0;
 643		}
 644		nr_shown = 0;
 645	}
 646	if (nr_shown++ == 0)
 647		resume = jiffies + 60 * HZ;
 648
 649	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 650		current->comm, page_to_pfn(page));
 651	dump_page(page, reason);
 
 
 
 
 
 652
 653	print_modules();
 654	dump_stack();
 655out:
 656	/* Leave bad fields for debug, except PageBuddy could make trouble */
 657	page_mapcount_reset(page); /* remove PageBuddy */
 658	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 659}
 660
 661static inline unsigned int order_to_pindex(int migratetype, int order)
 662{
 663	int base = order;
 664
 665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 666	if (order > PAGE_ALLOC_COSTLY_ORDER) {
 667		VM_BUG_ON(order != pageblock_order);
 668		base = PAGE_ALLOC_COSTLY_ORDER + 1;
 669	}
 670#else
 671	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 672#endif
 673
 674	return (MIGRATE_PCPTYPES * base) + migratetype;
 675}
 676
 677static inline int pindex_to_order(unsigned int pindex)
 678{
 679	int order = pindex / MIGRATE_PCPTYPES;
 680
 681#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 682	if (order > PAGE_ALLOC_COSTLY_ORDER) {
 683		order = pageblock_order;
 684		VM_BUG_ON(order != pageblock_order);
 685	}
 686#else
 687	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
 688#endif
 689
 690	return order;
 691}
 692
 693static inline bool pcp_allowed_order(unsigned int order)
 694{
 695	if (order <= PAGE_ALLOC_COSTLY_ORDER)
 696		return true;
 697#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 698	if (order == pageblock_order)
 699		return true;
 700#endif
 701	return false;
 702}
 703
 704static inline void free_the_page(struct page *page, unsigned int order)
 705{
 706	if (pcp_allowed_order(order))		/* Via pcp? */
 707		free_unref_page(page, order);
 708	else
 709		__free_pages_ok(page, order, FPI_NONE);
 710}
 711
 712/*
 713 * Higher-order pages are called "compound pages".  They are structured thusly:
 714 *
 715 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 716 *
 717 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 718 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 719 *
 720 * The first tail page's ->compound_dtor holds the offset in array of compound
 721 * page destructors. See compound_page_dtors.
 722 *
 723 * The first tail page's ->compound_order holds the order of allocation.
 724 * This usage means that zero-order pages may not be compound.
 725 */
 726
 727void free_compound_page(struct page *page)
 728{
 729	mem_cgroup_uncharge(page);
 730	free_the_page(page, compound_order(page));
 731}
 732
 733void prep_compound_page(struct page *page, unsigned int order)
 734{
 735	int i;
 736	int nr_pages = 1 << order;
 737
 
 
 738	__SetPageHead(page);
 739	for (i = 1; i < nr_pages; i++) {
 740		struct page *p = page + i;
 
 741		p->mapping = TAIL_MAPPING;
 742		set_compound_head(p, page);
 743	}
 744
 745	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 746	set_compound_order(page, order);
 747	atomic_set(compound_mapcount_ptr(page), -1);
 748	if (hpage_pincount_available(page))
 749		atomic_set(compound_pincount_ptr(page), 0);
 750}
 751
 752#ifdef CONFIG_DEBUG_PAGEALLOC
 753unsigned int _debug_guardpage_minorder;
 754
 755bool _debug_pagealloc_enabled_early __read_mostly
 756			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 757EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
 758DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
 759EXPORT_SYMBOL(_debug_pagealloc_enabled);
 760
 761DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
 762
 763static int __init early_debug_pagealloc(char *buf)
 764{
 765	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
 
 
 
 
 
 
 
 
 
 766}
 767early_param("debug_pagealloc", early_debug_pagealloc);
 768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 769static int __init debug_guardpage_minorder_setup(char *buf)
 770{
 771	unsigned long res;
 772
 773	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 774		pr_err("Bad debug_guardpage_minorder value\n");
 775		return 0;
 776	}
 777	_debug_guardpage_minorder = res;
 778	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 779	return 0;
 780}
 781early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 782
 783static inline bool set_page_guard(struct zone *zone, struct page *page,
 784				unsigned int order, int migratetype)
 785{
 
 
 786	if (!debug_guardpage_enabled())
 787		return false;
 788
 789	if (order >= debug_guardpage_minorder())
 790		return false;
 791
 792	__SetPageGuard(page);
 793	INIT_LIST_HEAD(&page->lru);
 794	set_page_private(page, order);
 795	/* Guard pages are not available for any usage */
 796	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 797
 798	return true;
 799}
 800
 801static inline void clear_page_guard(struct zone *zone, struct page *page,
 802				unsigned int order, int migratetype)
 803{
 
 
 804	if (!debug_guardpage_enabled())
 805		return;
 806
 807	__ClearPageGuard(page);
 
 808
 809	set_page_private(page, 0);
 810	if (!is_migrate_isolate(migratetype))
 811		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 812}
 813#else
 814static inline bool set_page_guard(struct zone *zone, struct page *page,
 815			unsigned int order, int migratetype) { return false; }
 
 816static inline void clear_page_guard(struct zone *zone, struct page *page,
 817				unsigned int order, int migratetype) {}
 818#endif
 819
 820/*
 821 * Enable static keys related to various memory debugging and hardening options.
 822 * Some override others, and depend on early params that are evaluated in the
 823 * order of appearance. So we need to first gather the full picture of what was
 824 * enabled, and then make decisions.
 825 */
 826void init_mem_debugging_and_hardening(void)
 827{
 828	bool page_poisoning_requested = false;
 829
 830#ifdef CONFIG_PAGE_POISONING
 831	/*
 832	 * Page poisoning is debug page alloc for some arches. If
 833	 * either of those options are enabled, enable poisoning.
 834	 */
 835	if (page_poisoning_enabled() ||
 836	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
 837	      debug_pagealloc_enabled())) {
 838		static_branch_enable(&_page_poisoning_enabled);
 839		page_poisoning_requested = true;
 840	}
 841#endif
 842
 843	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
 844	    page_poisoning_requested) {
 845		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
 846			"will take precedence over init_on_alloc and init_on_free\n");
 847		_init_on_alloc_enabled_early = false;
 848		_init_on_free_enabled_early = false;
 849	}
 850
 851	if (_init_on_alloc_enabled_early)
 852		static_branch_enable(&init_on_alloc);
 853	else
 854		static_branch_disable(&init_on_alloc);
 855
 856	if (_init_on_free_enabled_early)
 857		static_branch_enable(&init_on_free);
 858	else
 859		static_branch_disable(&init_on_free);
 860
 861#ifdef CONFIG_DEBUG_PAGEALLOC
 862	if (!debug_pagealloc_enabled())
 863		return;
 864
 865	static_branch_enable(&_debug_pagealloc_enabled);
 866
 867	if (!debug_guardpage_minorder())
 868		return;
 869
 870	static_branch_enable(&_debug_guardpage_enabled);
 871#endif
 872}
 873
 874static inline void set_buddy_order(struct page *page, unsigned int order)
 875{
 876	set_page_private(page, order);
 877	__SetPageBuddy(page);
 878}
 879
 880/*
 881 * This function checks whether a page is free && is the buddy
 882 * we can coalesce a page and its buddy if
 883 * (a) the buddy is not in a hole (check before calling!) &&
 884 * (b) the buddy is in the buddy system &&
 885 * (c) a page and its buddy have the same order &&
 886 * (d) a page and its buddy are in the same zone.
 887 *
 888 * For recording whether a page is in the buddy system, we set PageBuddy.
 889 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 
 
 890 *
 891 * For recording page's order, we use page_private(page).
 892 */
 893static inline bool page_is_buddy(struct page *page, struct page *buddy,
 894							unsigned int order)
 895{
 896	if (!page_is_guard(buddy) && !PageBuddy(buddy))
 897		return false;
 898
 899	if (buddy_order(buddy) != order)
 900		return false;
 
 901
 902	/*
 903	 * zone check is done late to avoid uselessly calculating
 904	 * zone/node ids for pages that could never merge.
 905	 */
 906	if (page_zone_id(page) != page_zone_id(buddy))
 907		return false;
 908
 909	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 910
 911	return true;
 912}
 
 
 
 
 
 
 913
 914#ifdef CONFIG_COMPACTION
 915static inline struct capture_control *task_capc(struct zone *zone)
 916{
 917	struct capture_control *capc = current->capture_control;
 918
 919	return unlikely(capc) &&
 920		!(current->flags & PF_KTHREAD) &&
 921		!capc->page &&
 922		capc->cc->zone == zone ? capc : NULL;
 923}
 924
 925static inline bool
 926compaction_capture(struct capture_control *capc, struct page *page,
 927		   int order, int migratetype)
 928{
 929	if (!capc || order != capc->cc->order)
 930		return false;
 931
 932	/* Do not accidentally pollute CMA or isolated regions*/
 933	if (is_migrate_cma(migratetype) ||
 934	    is_migrate_isolate(migratetype))
 935		return false;
 936
 937	/*
 938	 * Do not let lower order allocations pollute a movable pageblock.
 939	 * This might let an unmovable request use a reclaimable pageblock
 940	 * and vice-versa but no more than normal fallback logic which can
 941	 * have trouble finding a high-order free page.
 942	 */
 943	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
 944		return false;
 945
 946	capc->page = page;
 947	return true;
 948}
 949
 950#else
 951static inline struct capture_control *task_capc(struct zone *zone)
 952{
 953	return NULL;
 954}
 955
 956static inline bool
 957compaction_capture(struct capture_control *capc, struct page *page,
 958		   int order, int migratetype)
 959{
 960	return false;
 961}
 962#endif /* CONFIG_COMPACTION */
 963
 964/* Used for pages not on another list */
 965static inline void add_to_free_list(struct page *page, struct zone *zone,
 966				    unsigned int order, int migratetype)
 967{
 968	struct free_area *area = &zone->free_area[order];
 969
 970	list_add(&page->lru, &area->free_list[migratetype]);
 971	area->nr_free++;
 972}
 973
 974/* Used for pages not on another list */
 975static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
 976					 unsigned int order, int migratetype)
 977{
 978	struct free_area *area = &zone->free_area[order];
 979
 980	list_add_tail(&page->lru, &area->free_list[migratetype]);
 981	area->nr_free++;
 982}
 983
 984/*
 985 * Used for pages which are on another list. Move the pages to the tail
 986 * of the list - so the moved pages won't immediately be considered for
 987 * allocation again (e.g., optimization for memory onlining).
 988 */
 989static inline void move_to_free_list(struct page *page, struct zone *zone,
 990				     unsigned int order, int migratetype)
 991{
 992	struct free_area *area = &zone->free_area[order];
 993
 994	list_move_tail(&page->lru, &area->free_list[migratetype]);
 995}
 996
 997static inline void del_page_from_free_list(struct page *page, struct zone *zone,
 998					   unsigned int order)
 999{
1000	/* clear reported state and update reported page count */
1001	if (page_reported(page))
1002		__ClearPageReported(page);
1003
1004	list_del(&page->lru);
1005	__ClearPageBuddy(page);
1006	set_page_private(page, 0);
1007	zone->free_area[order].nr_free--;
1008}
1009
1010/*
1011 * If this is not the largest possible page, check if the buddy
1012 * of the next-highest order is free. If it is, it's possible
1013 * that pages are being freed that will coalesce soon. In case,
1014 * that is happening, add the free page to the tail of the list
1015 * so it's less likely to be used soon and more likely to be merged
1016 * as a higher order page
1017 */
1018static inline bool
1019buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1020		   struct page *page, unsigned int order)
1021{
1022	struct page *higher_page, *higher_buddy;
1023	unsigned long combined_pfn;
1024
1025	if (order >= MAX_ORDER - 2)
1026		return false;
1027
1028	if (!pfn_valid_within(buddy_pfn))
1029		return false;
1030
1031	combined_pfn = buddy_pfn & pfn;
1032	higher_page = page + (combined_pfn - pfn);
1033	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1034	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1035
1036	return pfn_valid_within(buddy_pfn) &&
1037	       page_is_buddy(higher_page, higher_buddy, order + 1);
1038}
1039
1040/*
1041 * Freeing function for a buddy system allocator.
1042 *
1043 * The concept of a buddy system is to maintain direct-mapped table
1044 * (containing bit values) for memory blocks of various "orders".
1045 * The bottom level table contains the map for the smallest allocatable
1046 * units of memory (here, pages), and each level above it describes
1047 * pairs of units from the levels below, hence, "buddies".
1048 * At a high level, all that happens here is marking the table entry
1049 * at the bottom level available, and propagating the changes upward
1050 * as necessary, plus some accounting needed to play nicely with other
1051 * parts of the VM system.
1052 * At each level, we keep a list of pages, which are heads of continuous
1053 * free pages of length of (1 << order) and marked with PageBuddy.
1054 * Page's order is recorded in page_private(page) field.
 
1055 * So when we are allocating or freeing one, we can derive the state of the
1056 * other.  That is, if we allocate a small block, and both were
1057 * free, the remainder of the region must be split into blocks.
1058 * If a block is freed, and its buddy is also free, then this
1059 * triggers coalescing into a block of larger size.
1060 *
1061 * -- nyc
1062 */
1063
1064static inline void __free_one_page(struct page *page,
1065		unsigned long pfn,
1066		struct zone *zone, unsigned int order,
1067		int migratetype, fpi_t fpi_flags)
1068{
1069	struct capture_control *capc = task_capc(zone);
1070	unsigned long buddy_pfn;
1071	unsigned long combined_pfn;
 
1072	unsigned int max_order;
1073	struct page *buddy;
1074	bool to_tail;
1075
1076	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1077
1078	VM_BUG_ON(!zone_is_initialized(zone));
1079	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1080
1081	VM_BUG_ON(migratetype == -1);
1082	if (likely(!is_migrate_isolate(migratetype)))
1083		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1084
1085	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 
 
1086	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1087
1088continue_merging:
1089	while (order < max_order) {
1090		if (compaction_capture(capc, page, order, migratetype)) {
1091			__mod_zone_freepage_state(zone, -(1 << order),
1092								migratetype);
1093			return;
1094		}
1095		buddy_pfn = __find_buddy_pfn(pfn, order);
1096		buddy = page + (buddy_pfn - pfn);
1097
1098		if (!pfn_valid_within(buddy_pfn))
1099			goto done_merging;
1100		if (!page_is_buddy(page, buddy, order))
1101			goto done_merging;
1102		/*
1103		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1104		 * merge with it and move up one order.
1105		 */
1106		if (page_is_guard(buddy))
1107			clear_page_guard(zone, buddy, order, migratetype);
1108		else
1109			del_page_from_free_list(buddy, zone, order);
1110		combined_pfn = buddy_pfn & pfn;
1111		page = page + (combined_pfn - pfn);
1112		pfn = combined_pfn;
 
 
 
1113		order++;
1114	}
1115	if (order < MAX_ORDER - 1) {
1116		/* If we are here, it means order is >= pageblock_order.
1117		 * We want to prevent merge between freepages on isolate
1118		 * pageblock and normal pageblock. Without this, pageblock
1119		 * isolation could cause incorrect freepage or CMA accounting.
1120		 *
1121		 * We don't want to hit this code for the more frequent
1122		 * low-order merging.
1123		 */
1124		if (unlikely(has_isolate_pageblock(zone))) {
1125			int buddy_mt;
1126
1127			buddy_pfn = __find_buddy_pfn(pfn, order);
1128			buddy = page + (buddy_pfn - pfn);
1129			buddy_mt = get_pageblock_migratetype(buddy);
1130
1131			if (migratetype != buddy_mt
1132					&& (is_migrate_isolate(migratetype) ||
1133						is_migrate_isolate(buddy_mt)))
1134				goto done_merging;
1135		}
1136		max_order = order + 1;
1137		goto continue_merging;
1138	}
1139
1140done_merging:
1141	set_buddy_order(page, order);
1142
1143	if (fpi_flags & FPI_TO_TAIL)
1144		to_tail = true;
1145	else if (is_shuffle_order(order))
1146		to_tail = shuffle_pick_tail();
1147	else
1148		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149
1150	if (to_tail)
1151		add_to_free_list_tail(page, zone, order, migratetype);
1152	else
1153		add_to_free_list(page, zone, order, migratetype);
1154
1155	/* Notify page reporting subsystem of freed page */
1156	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1157		page_reporting_notify_free(order);
1158}
1159
1160/*
1161 * A bad page could be due to a number of fields. Instead of multiple branches,
1162 * try and check multiple fields with one check. The caller must do a detailed
1163 * check if necessary.
1164 */
1165static inline bool page_expected_state(struct page *page,
1166					unsigned long check_flags)
1167{
1168	if (unlikely(atomic_read(&page->_mapcount) != -1))
1169		return false;
1170
1171	if (unlikely((unsigned long)page->mapping |
1172			page_ref_count(page) |
1173#ifdef CONFIG_MEMCG
1174			page->memcg_data |
1175#endif
1176			(page->flags & check_flags)))
1177		return false;
1178
1179	return true;
1180}
1181
1182static const char *page_bad_reason(struct page *page, unsigned long flags)
1183{
1184	const char *bad_reason = NULL;
 
1185
1186	if (unlikely(atomic_read(&page->_mapcount) != -1))
1187		bad_reason = "nonzero mapcount";
1188	if (unlikely(page->mapping != NULL))
1189		bad_reason = "non-NULL mapping";
1190	if (unlikely(page_ref_count(page) != 0))
1191		bad_reason = "nonzero _refcount";
1192	if (unlikely(page->flags & flags)) {
1193		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1194			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1195		else
1196			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1197	}
1198#ifdef CONFIG_MEMCG
1199	if (unlikely(page->memcg_data))
1200		bad_reason = "page still charged to cgroup";
1201#endif
1202	return bad_reason;
1203}
1204
1205static void check_free_page_bad(struct page *page)
1206{
1207	bad_page(page,
1208		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1209}
1210
1211static inline int check_free_page(struct page *page)
1212{
1213	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1214		return 0;
1215
1216	/* Something has gone sideways, find it */
1217	check_free_page_bad(page);
1218	return 1;
1219}
1220
1221static int free_tail_pages_check(struct page *head_page, struct page *page)
1222{
1223	int ret = 1;
1224
1225	/*
1226	 * We rely page->lru.next never has bit 0 set, unless the page
1227	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1228	 */
1229	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1230
1231	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1232		ret = 0;
1233		goto out;
1234	}
1235	switch (page - head_page) {
1236	case 1:
1237		/* the first tail page: ->mapping may be compound_mapcount() */
1238		if (unlikely(compound_mapcount(page))) {
1239			bad_page(page, "nonzero compound_mapcount");
1240			goto out;
1241		}
1242		break;
1243	case 2:
1244		/*
1245		 * the second tail page: ->mapping is
1246		 * deferred_list.next -- ignore value.
1247		 */
1248		break;
1249	default:
1250		if (page->mapping != TAIL_MAPPING) {
1251			bad_page(page, "corrupted mapping in tail page");
1252			goto out;
1253		}
1254		break;
1255	}
1256	if (unlikely(!PageTail(page))) {
1257		bad_page(page, "PageTail not set");
1258		goto out;
1259	}
1260	if (unlikely(compound_head(page) != head_page)) {
1261		bad_page(page, "compound_head not consistent");
1262		goto out;
1263	}
1264	ret = 0;
1265out:
1266	page->mapping = NULL;
1267	clear_compound_head(page);
1268	return ret;
1269}
1270
1271static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1272{
1273	int i;
1274
1275	if (zero_tags) {
1276		for (i = 0; i < numpages; i++)
1277			tag_clear_highpage(page + i);
1278		return;
1279	}
1280
1281	/* s390's use of memset() could override KASAN redzones. */
1282	kasan_disable_current();
1283	for (i = 0; i < numpages; i++) {
1284		u8 tag = page_kasan_tag(page + i);
1285		page_kasan_tag_reset(page + i);
1286		clear_highpage(page + i);
1287		page_kasan_tag_set(page + i, tag);
1288	}
1289	kasan_enable_current();
1290}
1291
1292static __always_inline bool free_pages_prepare(struct page *page,
1293			unsigned int order, bool check_free, fpi_t fpi_flags)
1294{
1295	int bad = 0;
1296	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1297
1298	VM_BUG_ON_PAGE(PageTail(page), page);
1299
1300	trace_mm_page_free(page, order);
1301
1302	if (unlikely(PageHWPoison(page)) && !order) {
1303		/*
1304		 * Do not let hwpoison pages hit pcplists/buddy
1305		 * Untie memcg state and reset page's owner
1306		 */
1307		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1308			__memcg_kmem_uncharge_page(page, order);
1309		reset_page_owner(page, order);
1310		return false;
1311	}
1312
1313	/*
1314	 * Check tail pages before head page information is cleared to
1315	 * avoid checking PageCompound for order-0 pages.
1316	 */
1317	if (unlikely(order)) {
1318		bool compound = PageCompound(page);
1319		int i;
1320
1321		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1322
1323		if (compound)
1324			ClearPageDoubleMap(page);
1325		for (i = 1; i < (1 << order); i++) {
1326			if (compound)
1327				bad += free_tail_pages_check(page, page + i);
1328			if (unlikely(check_free_page(page + i))) {
1329				bad++;
1330				continue;
1331			}
1332			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1333		}
1334	}
1335	if (PageMappingFlags(page))
1336		page->mapping = NULL;
1337	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1338		__memcg_kmem_uncharge_page(page, order);
1339	if (check_free)
1340		bad += check_free_page(page);
1341	if (bad)
1342		return false;
1343
1344	page_cpupid_reset_last(page);
1345	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1346	reset_page_owner(page, order);
1347
1348	if (!PageHighMem(page)) {
1349		debug_check_no_locks_freed(page_address(page),
1350					   PAGE_SIZE << order);
1351		debug_check_no_obj_freed(page_address(page),
1352					   PAGE_SIZE << order);
1353	}
1354
1355	kernel_poison_pages(page, 1 << order);
1356
1357	/*
1358	 * As memory initialization might be integrated into KASAN,
1359	 * kasan_free_pages and kernel_init_free_pages must be
1360	 * kept together to avoid discrepancies in behavior.
1361	 *
1362	 * With hardware tag-based KASAN, memory tags must be set before the
1363	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1364	 */
1365	if (kasan_has_integrated_init()) {
1366		if (!skip_kasan_poison)
1367			kasan_free_pages(page, order);
1368	} else {
1369		bool init = want_init_on_free();
1370
1371		if (init)
1372			kernel_init_free_pages(page, 1 << order, false);
1373		if (!skip_kasan_poison)
1374			kasan_poison_pages(page, order, init);
1375	}
1376
1377	/*
1378	 * arch_free_page() can make the page's contents inaccessible.  s390
1379	 * does this.  So nothing which can access the page's contents should
1380	 * happen after this.
1381	 */
1382	arch_free_page(page, order);
1383
1384	debug_pagealloc_unmap_pages(page, 1 << order);
1385
1386	return true;
1387}
1388
1389#ifdef CONFIG_DEBUG_VM
1390/*
1391 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1392 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1393 * moved from pcp lists to free lists.
1394 */
1395static bool free_pcp_prepare(struct page *page, unsigned int order)
1396{
1397	return free_pages_prepare(page, order, true, FPI_NONE);
1398}
1399
1400static bool bulkfree_pcp_prepare(struct page *page)
1401{
1402	if (debug_pagealloc_enabled_static())
1403		return check_free_page(page);
1404	else
1405		return false;
1406}
1407#else
1408/*
1409 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1410 * moving from pcp lists to free list in order to reduce overhead. With
1411 * debug_pagealloc enabled, they are checked also immediately when being freed
1412 * to the pcp lists.
1413 */
1414static bool free_pcp_prepare(struct page *page, unsigned int order)
1415{
1416	if (debug_pagealloc_enabled_static())
1417		return free_pages_prepare(page, order, true, FPI_NONE);
1418	else
1419		return free_pages_prepare(page, order, false, FPI_NONE);
1420}
1421
1422static bool bulkfree_pcp_prepare(struct page *page)
1423{
1424	return check_free_page(page);
1425}
1426#endif /* CONFIG_DEBUG_VM */
1427
1428static inline void prefetch_buddy(struct page *page)
1429{
1430	unsigned long pfn = page_to_pfn(page);
1431	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1432	struct page *buddy = page + (buddy_pfn - pfn);
1433
1434	prefetch(buddy);
1435}
1436
1437/*
1438 * Frees a number of pages from the PCP lists
1439 * Assumes all pages on list are in same zone, and of same order.
1440 * count is the number of pages to free.
1441 *
1442 * If the zone was previously in an "all pages pinned" state then look to
1443 * see if this freeing clears that state.
1444 *
1445 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1446 * pinned" detection logic.
1447 */
1448static void free_pcppages_bulk(struct zone *zone, int count,
1449					struct per_cpu_pages *pcp)
1450{
1451	int pindex = 0;
1452	int batch_free = 0;
1453	int nr_freed = 0;
1454	unsigned int order;
1455	int prefetch_nr = READ_ONCE(pcp->batch);
1456	bool isolated_pageblocks;
1457	struct page *page, *tmp;
1458	LIST_HEAD(head);
 
1459
1460	/*
1461	 * Ensure proper count is passed which otherwise would stuck in the
1462	 * below while (list_empty(list)) loop.
1463	 */
1464	count = min(pcp->count, count);
1465	while (count > 0) {
1466		struct list_head *list;
1467
1468		/*
1469		 * Remove pages from lists in a round-robin fashion. A
1470		 * batch_free count is maintained that is incremented when an
1471		 * empty list is encountered.  This is so more pages are freed
1472		 * off fuller lists instead of spinning excessively around empty
1473		 * lists
1474		 */
1475		do {
1476			batch_free++;
1477			if (++pindex == NR_PCP_LISTS)
1478				pindex = 0;
1479			list = &pcp->lists[pindex];
1480		} while (list_empty(list));
1481
1482		/* This is the only non-empty list. Free them all. */
1483		if (batch_free == NR_PCP_LISTS)
1484			batch_free = count;
1485
1486		order = pindex_to_order(pindex);
1487		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1488		do {
 
 
1489			page = list_last_entry(list, struct page, lru);
1490			/* must delete to avoid corrupting pcp list */
1491			list_del(&page->lru);
1492			nr_freed += 1 << order;
1493			count -= 1 << order;
1494
1495			if (bulkfree_pcp_prepare(page))
1496				continue;
1497
1498			/* Encode order with the migratetype */
1499			page->index <<= NR_PCP_ORDER_WIDTH;
1500			page->index |= order;
1501
1502			list_add_tail(&page->lru, &head);
1503
1504			/*
1505			 * We are going to put the page back to the global
1506			 * pool, prefetch its buddy to speed up later access
1507			 * under zone->lock. It is believed the overhead of
1508			 * an additional test and calculating buddy_pfn here
1509			 * can be offset by reduced memory latency later. To
1510			 * avoid excessive prefetching due to large count, only
1511			 * prefetch buddy for the first pcp->batch nr of pages.
1512			 */
1513			if (prefetch_nr) {
1514				prefetch_buddy(page);
1515				prefetch_nr--;
1516			}
1517		} while (count > 0 && --batch_free && !list_empty(list));
1518	}
1519	pcp->count -= nr_freed;
1520
1521	/*
1522	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1523	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1524	 */
1525	spin_lock(&zone->lock);
1526	isolated_pageblocks = has_isolate_pageblock(zone);
1527
1528	/*
1529	 * Use safe version since after __free_one_page(),
1530	 * page->lru.next will not point to original list.
1531	 */
1532	list_for_each_entry_safe(page, tmp, &head, lru) {
1533		int mt = get_pcppage_migratetype(page);
1534
1535		/* mt has been encoded with the order (see above) */
1536		order = mt & NR_PCP_ORDER_MASK;
1537		mt >>= NR_PCP_ORDER_WIDTH;
1538
1539		/* MIGRATE_ISOLATE page should not go to pcplists */
1540		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1541		/* Pageblock could have been isolated meanwhile */
1542		if (unlikely(isolated_pageblocks))
1543			mt = get_pageblock_migratetype(page);
1544
1545		__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1546		trace_mm_page_pcpu_drain(page, order, mt);
 
 
 
 
 
 
 
 
1547	}
1548	spin_unlock(&zone->lock);
1549}
1550
1551static void free_one_page(struct zone *zone,
1552				struct page *page, unsigned long pfn,
1553				unsigned int order,
1554				int migratetype, fpi_t fpi_flags)
1555{
1556	unsigned long flags;
 
 
 
 
1557
1558	spin_lock_irqsave(&zone->lock, flags);
1559	if (unlikely(has_isolate_pageblock(zone) ||
1560		is_migrate_isolate(migratetype))) {
1561		migratetype = get_pfnblock_migratetype(page, pfn);
1562	}
1563	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1564	spin_unlock_irqrestore(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565}
1566
1567static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1568				unsigned long zone, int nid)
1569{
1570	mm_zero_struct_page(page);
1571	set_page_links(page, zone, nid, pfn);
1572	init_page_count(page);
1573	page_mapcount_reset(page);
1574	page_cpupid_reset_last(page);
1575	page_kasan_tag_reset(page);
1576
1577	INIT_LIST_HEAD(&page->lru);
1578#ifdef WANT_PAGE_VIRTUAL
1579	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1580	if (!is_highmem_idx(zone))
1581		set_page_address(page, __va(pfn << PAGE_SHIFT));
1582#endif
1583}
1584
 
 
 
 
 
 
1585#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1586static void __meminit init_reserved_page(unsigned long pfn)
1587{
1588	pg_data_t *pgdat;
1589	int nid, zid;
1590
1591	if (!early_page_uninitialised(pfn))
1592		return;
1593
1594	nid = early_pfn_to_nid(pfn);
1595	pgdat = NODE_DATA(nid);
1596
1597	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1598		struct zone *zone = &pgdat->node_zones[zid];
1599
1600		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1601			break;
1602	}
1603	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1604}
1605#else
1606static inline void init_reserved_page(unsigned long pfn)
1607{
1608}
1609#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1610
1611/*
1612 * Initialised pages do not have PageReserved set. This function is
1613 * called for each range allocated by the bootmem allocator and
1614 * marks the pages PageReserved. The remaining valid pages are later
1615 * sent to the buddy page allocator.
1616 */
1617void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1618{
1619	unsigned long start_pfn = PFN_DOWN(start);
1620	unsigned long end_pfn = PFN_UP(end);
1621
1622	for (; start_pfn < end_pfn; start_pfn++) {
1623		if (pfn_valid(start_pfn)) {
1624			struct page *page = pfn_to_page(start_pfn);
1625
1626			init_reserved_page(start_pfn);
1627
1628			/* Avoid false-positive PageTail() */
1629			INIT_LIST_HEAD(&page->lru);
1630
1631			/*
1632			 * no need for atomic set_bit because the struct
1633			 * page is not visible yet so nobody should
1634			 * access it yet.
1635			 */
1636			__SetPageReserved(page);
1637		}
1638	}
1639}
1640
1641static void __free_pages_ok(struct page *page, unsigned int order,
1642			    fpi_t fpi_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1643{
1644	unsigned long flags;
1645	int migratetype;
1646	unsigned long pfn = page_to_pfn(page);
1647	struct zone *zone = page_zone(page);
1648
1649	if (!free_pages_prepare(page, order, true, fpi_flags))
1650		return;
1651
1652	migratetype = get_pfnblock_migratetype(page, pfn);
1653
1654	spin_lock_irqsave(&zone->lock, flags);
1655	if (unlikely(has_isolate_pageblock(zone) ||
1656		is_migrate_isolate(migratetype))) {
1657		migratetype = get_pfnblock_migratetype(page, pfn);
1658	}
1659	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1660	spin_unlock_irqrestore(&zone->lock, flags);
1661
1662	__count_vm_events(PGFREE, 1 << order);
 
 
1663}
1664
1665void __free_pages_core(struct page *page, unsigned int order)
 
1666{
1667	unsigned int nr_pages = 1 << order;
1668	struct page *p = page;
1669	unsigned int loop;
1670
1671	/*
1672	 * When initializing the memmap, __init_single_page() sets the refcount
1673	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1674	 * refcount of all involved pages to 0.
1675	 */
1676	prefetchw(p);
1677	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1678		prefetchw(p + 1);
1679		__ClearPageReserved(p);
1680		set_page_count(p, 0);
1681	}
1682	__ClearPageReserved(p);
1683	set_page_count(p, 0);
1684
1685	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1686
1687	/*
1688	 * Bypass PCP and place fresh pages right to the tail, primarily
1689	 * relevant for memory onlining.
1690	 */
1691	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1692}
1693
1694#ifdef CONFIG_NUMA
1695
1696/*
1697 * During memory init memblocks map pfns to nids. The search is expensive and
1698 * this caches recent lookups. The implementation of __early_pfn_to_nid
1699 * treats start/end as pfns.
1700 */
1701struct mminit_pfnnid_cache {
1702	unsigned long last_start;
1703	unsigned long last_end;
1704	int last_nid;
1705};
1706
1707static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1708
1709/*
1710 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1711 */
1712static int __meminit __early_pfn_to_nid(unsigned long pfn,
1713					struct mminit_pfnnid_cache *state)
1714{
1715	unsigned long start_pfn, end_pfn;
1716	int nid;
1717
1718	if (state->last_start <= pfn && pfn < state->last_end)
1719		return state->last_nid;
1720
1721	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1722	if (nid != NUMA_NO_NODE) {
1723		state->last_start = start_pfn;
1724		state->last_end = end_pfn;
1725		state->last_nid = nid;
1726	}
1727
1728	return nid;
1729}
 
1730
1731int __meminit early_pfn_to_nid(unsigned long pfn)
 
 
1732{
1733	static DEFINE_SPINLOCK(early_pfn_lock);
1734	int nid;
1735
1736	spin_lock(&early_pfn_lock);
1737	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1738	if (nid < 0)
1739		nid = first_online_node;
1740	spin_unlock(&early_pfn_lock);
 
 
 
 
 
 
 
 
1741
1742	return nid;
 
 
 
 
 
 
 
1743}
1744#endif /* CONFIG_NUMA */
 
1745
1746void __init memblock_free_pages(struct page *page, unsigned long pfn,
1747							unsigned int order)
1748{
1749	if (early_page_uninitialised(pfn))
1750		return;
1751	__free_pages_core(page, order);
1752}
1753
1754/*
1755 * Check that the whole (or subset of) a pageblock given by the interval of
1756 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1757 * with the migration of free compaction scanner. The scanners then need to
1758 * use only pfn_valid_within() check for arches that allow holes within
1759 * pageblocks.
1760 *
1761 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1762 *
1763 * It's possible on some configurations to have a setup like node0 node1 node0
1764 * i.e. it's possible that all pages within a zones range of pages do not
1765 * belong to a single zone. We assume that a border between node0 and node1
1766 * can occur within a single pageblock, but not a node0 node1 node0
1767 * interleaving within a single pageblock. It is therefore sufficient to check
1768 * the first and last page of a pageblock and avoid checking each individual
1769 * page in a pageblock.
1770 */
1771struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1772				     unsigned long end_pfn, struct zone *zone)
1773{
1774	struct page *start_page;
1775	struct page *end_page;
1776
1777	/* end_pfn is one past the range we are checking */
1778	end_pfn--;
1779
1780	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1781		return NULL;
1782
1783	start_page = pfn_to_online_page(start_pfn);
1784	if (!start_page)
1785		return NULL;
1786
1787	if (page_zone(start_page) != zone)
1788		return NULL;
1789
1790	end_page = pfn_to_page(end_pfn);
1791
1792	/* This gives a shorter code than deriving page_zone(end_page) */
1793	if (page_zone_id(start_page) != page_zone_id(end_page))
1794		return NULL;
1795
1796	return start_page;
1797}
1798
1799void set_zone_contiguous(struct zone *zone)
1800{
1801	unsigned long block_start_pfn = zone->zone_start_pfn;
1802	unsigned long block_end_pfn;
1803
1804	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1805	for (; block_start_pfn < zone_end_pfn(zone);
1806			block_start_pfn = block_end_pfn,
1807			 block_end_pfn += pageblock_nr_pages) {
1808
1809		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1810
1811		if (!__pageblock_pfn_to_page(block_start_pfn,
1812					     block_end_pfn, zone))
1813			return;
1814		cond_resched();
1815	}
1816
1817	/* We confirm that there is no hole */
1818	zone->contiguous = true;
1819}
1820
1821void clear_zone_contiguous(struct zone *zone)
1822{
1823	zone->contiguous = false;
1824}
1825
1826#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1827static void __init deferred_free_range(unsigned long pfn,
1828				       unsigned long nr_pages)
1829{
1830	struct page *page;
1831	unsigned long i;
1832
1833	if (!nr_pages)
1834		return;
1835
1836	page = pfn_to_page(pfn);
1837
1838	/* Free a large naturally-aligned chunk if possible */
1839	if (nr_pages == pageblock_nr_pages &&
1840	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1841		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1842		__free_pages_core(page, pageblock_order);
1843		return;
1844	}
1845
1846	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1847		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1848			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1849		__free_pages_core(page, 0);
1850	}
1851}
1852
1853/* Completion tracking for deferred_init_memmap() threads */
1854static atomic_t pgdat_init_n_undone __initdata;
1855static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1856
1857static inline void __init pgdat_init_report_one_done(void)
1858{
1859	if (atomic_dec_and_test(&pgdat_init_n_undone))
1860		complete(&pgdat_init_all_done_comp);
1861}
1862
1863/*
1864 * Returns true if page needs to be initialized or freed to buddy allocator.
1865 *
1866 * First we check if pfn is valid on architectures where it is possible to have
1867 * holes within pageblock_nr_pages. On systems where it is not possible, this
1868 * function is optimized out.
1869 *
1870 * Then, we check if a current large page is valid by only checking the validity
1871 * of the head pfn.
1872 */
1873static inline bool __init deferred_pfn_valid(unsigned long pfn)
1874{
1875	if (!pfn_valid_within(pfn))
1876		return false;
1877	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1878		return false;
1879	return true;
1880}
1881
1882/*
1883 * Free pages to buddy allocator. Try to free aligned pages in
1884 * pageblock_nr_pages sizes.
1885 */
1886static void __init deferred_free_pages(unsigned long pfn,
1887				       unsigned long end_pfn)
1888{
1889	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1890	unsigned long nr_free = 0;
1891
1892	for (; pfn < end_pfn; pfn++) {
1893		if (!deferred_pfn_valid(pfn)) {
1894			deferred_free_range(pfn - nr_free, nr_free);
1895			nr_free = 0;
1896		} else if (!(pfn & nr_pgmask)) {
1897			deferred_free_range(pfn - nr_free, nr_free);
1898			nr_free = 1;
1899		} else {
1900			nr_free++;
1901		}
1902	}
1903	/* Free the last block of pages to allocator */
1904	deferred_free_range(pfn - nr_free, nr_free);
1905}
1906
1907/*
1908 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1909 * by performing it only once every pageblock_nr_pages.
1910 * Return number of pages initialized.
1911 */
1912static unsigned long  __init deferred_init_pages(struct zone *zone,
1913						 unsigned long pfn,
1914						 unsigned long end_pfn)
1915{
1916	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1917	int nid = zone_to_nid(zone);
1918	unsigned long nr_pages = 0;
1919	int zid = zone_idx(zone);
1920	struct page *page = NULL;
1921
1922	for (; pfn < end_pfn; pfn++) {
1923		if (!deferred_pfn_valid(pfn)) {
1924			page = NULL;
1925			continue;
1926		} else if (!page || !(pfn & nr_pgmask)) {
1927			page = pfn_to_page(pfn);
1928		} else {
1929			page++;
1930		}
1931		__init_single_page(page, pfn, zid, nid);
1932		nr_pages++;
1933	}
1934	return (nr_pages);
1935}
1936
1937/*
1938 * This function is meant to pre-load the iterator for the zone init.
1939 * Specifically it walks through the ranges until we are caught up to the
1940 * first_init_pfn value and exits there. If we never encounter the value we
1941 * return false indicating there are no valid ranges left.
1942 */
1943static bool __init
1944deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1945				    unsigned long *spfn, unsigned long *epfn,
1946				    unsigned long first_init_pfn)
1947{
1948	u64 j;
1949
1950	/*
1951	 * Start out by walking through the ranges in this zone that have
1952	 * already been initialized. We don't need to do anything with them
1953	 * so we just need to flush them out of the system.
1954	 */
1955	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1956		if (*epfn <= first_init_pfn)
1957			continue;
1958		if (*spfn < first_init_pfn)
1959			*spfn = first_init_pfn;
1960		*i = j;
1961		return true;
1962	}
1963
1964	return false;
1965}
1966
1967/*
1968 * Initialize and free pages. We do it in two loops: first we initialize
1969 * struct page, then free to buddy allocator, because while we are
1970 * freeing pages we can access pages that are ahead (computing buddy
1971 * page in __free_one_page()).
1972 *
1973 * In order to try and keep some memory in the cache we have the loop
1974 * broken along max page order boundaries. This way we will not cause
1975 * any issues with the buddy page computation.
1976 */
1977static unsigned long __init
1978deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1979		       unsigned long *end_pfn)
1980{
1981	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1982	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1983	unsigned long nr_pages = 0;
1984	u64 j = *i;
1985
1986	/* First we loop through and initialize the page values */
1987	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1988		unsigned long t;
1989
1990		if (mo_pfn <= *start_pfn)
1991			break;
1992
1993		t = min(mo_pfn, *end_pfn);
1994		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1995
1996		if (mo_pfn < *end_pfn) {
1997			*start_pfn = mo_pfn;
1998			break;
1999		}
2000	}
2001
2002	/* Reset values and now loop through freeing pages as needed */
2003	swap(j, *i);
2004
2005	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2006		unsigned long t;
2007
2008		if (mo_pfn <= spfn)
2009			break;
2010
2011		t = min(mo_pfn, epfn);
2012		deferred_free_pages(spfn, t);
2013
2014		if (mo_pfn <= epfn)
2015			break;
2016	}
2017
2018	return nr_pages;
2019}
2020
2021static void __init
2022deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2023			   void *arg)
2024{
2025	unsigned long spfn, epfn;
2026	struct zone *zone = arg;
2027	u64 i;
2028
2029	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2030
2031	/*
2032	 * Initialize and free pages in MAX_ORDER sized increments so that we
2033	 * can avoid introducing any issues with the buddy allocator.
2034	 */
2035	while (spfn < end_pfn) {
2036		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2037		cond_resched();
2038	}
2039}
2040
2041/* An arch may override for more concurrency. */
2042__weak int __init
2043deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2044{
2045	return 1;
2046}
2047
2048/* Initialise remaining memory on a node */
2049static int __init deferred_init_memmap(void *data)
2050{
2051	pg_data_t *pgdat = data;
2052	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2053	unsigned long spfn = 0, epfn = 0;
2054	unsigned long first_init_pfn, flags;
2055	unsigned long start = jiffies;
 
 
 
2056	struct zone *zone;
2057	int zid, max_threads;
2058	u64 i;
2059
2060	/* Bind memory initialisation thread to a local node if possible */
2061	if (!cpumask_empty(cpumask))
2062		set_cpus_allowed_ptr(current, cpumask);
2063
2064	pgdat_resize_lock(pgdat, &flags);
2065	first_init_pfn = pgdat->first_deferred_pfn;
2066	if (first_init_pfn == ULONG_MAX) {
2067		pgdat_resize_unlock(pgdat, &flags);
2068		pgdat_init_report_one_done();
2069		return 0;
2070	}
2071
 
 
 
 
2072	/* Sanity check boundaries */
2073	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2074	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2075	pgdat->first_deferred_pfn = ULONG_MAX;
2076
2077	/*
2078	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2079	 * interrupt thread must allocate this early in boot, zone must be
2080	 * pre-grown prior to start of deferred page initialization.
2081	 */
2082	pgdat_resize_unlock(pgdat, &flags);
2083
2084	/* Only the highest zone is deferred so find it */
2085	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2086		zone = pgdat->node_zones + zid;
2087		if (first_init_pfn < zone_end_pfn(zone))
2088			break;
2089	}
2090
2091	/* If the zone is empty somebody else may have cleared out the zone */
2092	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2093						 first_init_pfn))
2094		goto zone_empty;
2095
2096	max_threads = deferred_page_init_max_threads(cpumask);
2097
2098	while (spfn < epfn) {
2099		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2100		struct padata_mt_job job = {
2101			.thread_fn   = deferred_init_memmap_chunk,
2102			.fn_arg      = zone,
2103			.start       = spfn,
2104			.size        = epfn_align - spfn,
2105			.align       = PAGES_PER_SECTION,
2106			.min_chunk   = PAGES_PER_SECTION,
2107			.max_threads = max_threads,
2108		};
2109
2110		padata_do_multithreaded(&job);
2111		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2112						    epfn_align);
2113	}
2114zone_empty:
2115	/* Sanity check that the next zone really is unpopulated */
2116	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2117
2118	pr_info("node %d deferred pages initialised in %ums\n",
2119		pgdat->node_id, jiffies_to_msecs(jiffies - start));
 
 
 
 
 
 
 
 
2120
2121	pgdat_init_report_one_done();
2122	return 0;
2123}
 
2124
2125/*
2126 * If this zone has deferred pages, try to grow it by initializing enough
2127 * deferred pages to satisfy the allocation specified by order, rounded up to
2128 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2129 * of SECTION_SIZE bytes by initializing struct pages in increments of
2130 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2131 *
2132 * Return true when zone was grown, otherwise return false. We return true even
2133 * when we grow less than requested, to let the caller decide if there are
2134 * enough pages to satisfy the allocation.
2135 *
2136 * Note: We use noinline because this function is needed only during boot, and
2137 * it is called from a __ref function _deferred_grow_zone. This way we are
2138 * making sure that it is not inlined into permanent text section.
2139 */
2140static noinline bool __init
2141deferred_grow_zone(struct zone *zone, unsigned int order)
2142{
2143	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2144	pg_data_t *pgdat = zone->zone_pgdat;
2145	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2146	unsigned long spfn, epfn, flags;
2147	unsigned long nr_pages = 0;
2148	u64 i;
2149
2150	/* Only the last zone may have deferred pages */
2151	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2152		return false;
2153
2154	pgdat_resize_lock(pgdat, &flags);
 
 
 
2155
2156	/*
2157	 * If someone grew this zone while we were waiting for spinlock, return
2158	 * true, as there might be enough pages already.
2159	 */
2160	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2161		pgdat_resize_unlock(pgdat, &flags);
2162		return true;
2163	}
2164
2165	/* If the zone is empty somebody else may have cleared out the zone */
2166	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2167						 first_deferred_pfn)) {
2168		pgdat->first_deferred_pfn = ULONG_MAX;
2169		pgdat_resize_unlock(pgdat, &flags);
2170		/* Retry only once. */
2171		return first_deferred_pfn != ULONG_MAX;
2172	}
2173
2174	/*
2175	 * Initialize and free pages in MAX_ORDER sized increments so
2176	 * that we can avoid introducing any issues with the buddy
2177	 * allocator.
2178	 */
2179	while (spfn < epfn) {
2180		/* update our first deferred PFN for this section */
2181		first_deferred_pfn = spfn;
2182
2183		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2184		touch_nmi_watchdog();
2185
2186		/* We should only stop along section boundaries */
2187		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2188			continue;
 
 
 
 
 
 
 
 
2189
2190		/* If our quota has been met we can stop here */
2191		if (nr_pages >= nr_pages_needed)
2192			break;
2193	}
2194
2195	pgdat->first_deferred_pfn = spfn;
2196	pgdat_resize_unlock(pgdat, &flags);
2197
2198	return nr_pages > 0;
2199}
2200
2201/*
2202 * deferred_grow_zone() is __init, but it is called from
2203 * get_page_from_freelist() during early boot until deferred_pages permanently
2204 * disables this call. This is why we have refdata wrapper to avoid warning,
2205 * and to ensure that the function body gets unloaded.
2206 */
2207static bool __ref
2208_deferred_grow_zone(struct zone *zone, unsigned int order)
2209{
2210	return deferred_grow_zone(zone, order);
2211}
2212
2213#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2214
2215void __init page_alloc_init_late(void)
2216{
2217	struct zone *zone;
2218	int nid;
2219
2220#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 
2221
2222	/* There will be num_node_state(N_MEMORY) threads */
2223	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2224	for_each_node_state(nid, N_MEMORY) {
2225		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2226	}
2227
2228	/* Block until all are initialised */
2229	wait_for_completion(&pgdat_init_all_done_comp);
2230
2231	/*
2232	 * We initialized the rest of the deferred pages.  Permanently disable
2233	 * on-demand struct page initialization.
2234	 */
2235	static_branch_disable(&deferred_pages);
2236
2237	/* Reinit limits that are based on free pages after the kernel is up */
2238	files_maxfiles_init();
2239#endif
2240
2241	buffer_init();
2242
2243	/* Discard memblock private memory */
2244	memblock_discard();
2245
2246	for_each_node_state(nid, N_MEMORY)
2247		shuffle_free_memory(NODE_DATA(nid));
2248
2249	for_each_populated_zone(zone)
2250		set_zone_contiguous(zone);
2251}
2252
2253#ifdef CONFIG_CMA
2254/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2255void __init init_cma_reserved_pageblock(struct page *page)
2256{
2257	unsigned i = pageblock_nr_pages;
2258	struct page *p = page;
2259
2260	do {
2261		__ClearPageReserved(p);
2262		set_page_count(p, 0);
2263	} while (++p, --i);
2264
2265	set_pageblock_migratetype(page, MIGRATE_CMA);
2266
2267	if (pageblock_order >= MAX_ORDER) {
2268		i = pageblock_nr_pages;
2269		p = page;
2270		do {
2271			set_page_refcounted(p);
2272			__free_pages(p, MAX_ORDER - 1);
2273			p += MAX_ORDER_NR_PAGES;
2274		} while (i -= MAX_ORDER_NR_PAGES);
2275	} else {
2276		set_page_refcounted(page);
2277		__free_pages(page, pageblock_order);
2278	}
2279
2280	adjust_managed_page_count(page, pageblock_nr_pages);
2281	page_zone(page)->cma_pages += pageblock_nr_pages;
2282}
2283#endif
2284
2285/*
2286 * The order of subdivision here is critical for the IO subsystem.
2287 * Please do not alter this order without good reasons and regression
2288 * testing. Specifically, as large blocks of memory are subdivided,
2289 * the order in which smaller blocks are delivered depends on the order
2290 * they're subdivided in this function. This is the primary factor
2291 * influencing the order in which pages are delivered to the IO
2292 * subsystem according to empirical testing, and this is also justified
2293 * by considering the behavior of a buddy system containing a single
2294 * large block of memory acted on by a series of small allocations.
2295 * This behavior is a critical factor in sglist merging's success.
2296 *
2297 * -- nyc
2298 */
2299static inline void expand(struct zone *zone, struct page *page,
2300	int low, int high, int migratetype)
 
2301{
2302	unsigned long size = 1 << high;
2303
2304	while (high > low) {
 
2305		high--;
2306		size >>= 1;
2307		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2308
2309		/*
2310		 * Mark as guard pages (or page), that will allow to
2311		 * merge back to allocator when buddy will be freed.
2312		 * Corresponding page table entries will not be touched,
2313		 * pages will stay not present in virtual address space
2314		 */
2315		if (set_page_guard(zone, &page[size], high, migratetype))
 
 
 
2316			continue;
2317
2318		add_to_free_list(&page[size], zone, high, migratetype);
2319		set_buddy_order(&page[size], high);
 
2320	}
2321}
2322
2323static void check_new_page_bad(struct page *page)
2324{
2325	if (unlikely(page->flags & __PG_HWPOISON)) {
2326		/* Don't complain about hwpoisoned pages */
2327		page_mapcount_reset(page); /* remove PageBuddy */
2328		return;
2329	}
2330
2331	bad_page(page,
2332		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2333}
2334
2335/*
2336 * This page is about to be returned from the page allocator
2337 */
2338static inline int check_new_page(struct page *page)
2339{
2340	if (likely(page_expected_state(page,
2341				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2342		return 0;
2343
2344	check_new_page_bad(page);
2345	return 1;
2346}
2347
2348#ifdef CONFIG_DEBUG_VM
2349/*
2350 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2351 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2352 * also checked when pcp lists are refilled from the free lists.
2353 */
2354static inline bool check_pcp_refill(struct page *page)
2355{
2356	if (debug_pagealloc_enabled_static())
2357		return check_new_page(page);
2358	else
2359		return false;
 
 
 
 
 
 
 
2360}
2361
2362static inline bool check_new_pcp(struct page *page)
2363{
2364	return check_new_page(page);
2365}
2366#else
2367/*
2368 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2369 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2370 * enabled, they are also checked when being allocated from the pcp lists.
2371 */
2372static inline bool check_pcp_refill(struct page *page)
2373{
2374	return check_new_page(page);
2375}
2376static inline bool check_new_pcp(struct page *page)
2377{
2378	if (debug_pagealloc_enabled_static())
2379		return check_new_page(page);
2380	else
2381		return false;
2382}
2383#endif /* CONFIG_DEBUG_VM */
2384
2385static bool check_new_pages(struct page *page, unsigned int order)
 
2386{
2387	int i;
 
 
2388	for (i = 0; i < (1 << order); i++) {
2389		struct page *p = page + i;
2390
2391		if (unlikely(check_new_page(p)))
2392			return true;
 
 
2393	}
2394
2395	return false;
2396}
2397
2398inline void post_alloc_hook(struct page *page, unsigned int order,
2399				gfp_t gfp_flags)
2400{
2401	set_page_private(page, 0);
2402	set_page_refcounted(page);
2403
2404	arch_alloc_page(page, order);
2405	debug_pagealloc_map_pages(page, 1 << order);
 
 
 
 
 
 
2406
2407	/*
2408	 * Page unpoisoning must happen before memory initialization.
2409	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2410	 * allocations and the page unpoisoning code will complain.
2411	 */
2412	kernel_unpoison_pages(page, 1 << order);
2413
2414	/*
2415	 * As memory initialization might be integrated into KASAN,
2416	 * kasan_alloc_pages and kernel_init_free_pages must be
2417	 * kept together to avoid discrepancies in behavior.
2418	 */
2419	if (kasan_has_integrated_init()) {
2420		kasan_alloc_pages(page, order, gfp_flags);
2421	} else {
2422		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2423
2424		kasan_unpoison_pages(page, order, init);
2425		if (init)
2426			kernel_init_free_pages(page, 1 << order,
2427					       gfp_flags & __GFP_ZEROTAGS);
2428	}
2429
2430	set_page_owner(page, order, gfp_flags);
2431}
2432
2433static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2434							unsigned int alloc_flags)
2435{
2436	post_alloc_hook(page, order, gfp_flags);
2437
2438	if (order && (gfp_flags & __GFP_COMP))
2439		prep_compound_page(page, order);
2440
2441	/*
2442	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2443	 * allocate the page. The expectation is that the caller is taking
2444	 * steps that will free more memory. The caller should avoid the page
2445	 * being used for !PFMEMALLOC purposes.
2446	 */
2447	if (alloc_flags & ALLOC_NO_WATERMARKS)
2448		set_page_pfmemalloc(page);
2449	else
2450		clear_page_pfmemalloc(page);
 
 
2451}
2452
2453/*
2454 * Go through the free lists for the given migratetype and remove
2455 * the smallest available page from the freelists
2456 */
2457static __always_inline
2458struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2459						int migratetype)
2460{
2461	unsigned int current_order;
2462	struct free_area *area;
2463	struct page *page;
2464
2465	/* Find a page of the appropriate size in the preferred list */
2466	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2467		area = &(zone->free_area[current_order]);
2468		page = get_page_from_free_area(area, migratetype);
 
2469		if (!page)
2470			continue;
2471		del_page_from_free_list(page, zone, current_order);
2472		expand(zone, page, order, current_order, migratetype);
 
 
2473		set_pcppage_migratetype(page, migratetype);
2474		return page;
2475	}
2476
2477	return NULL;
2478}
2479
2480
2481/*
2482 * This array describes the order lists are fallen back to when
2483 * the free lists for the desirable migrate type are depleted
2484 */
2485static int fallbacks[MIGRATE_TYPES][3] = {
2486	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
 
2487	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2488	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2489#ifdef CONFIG_CMA
2490	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2491#endif
2492#ifdef CONFIG_MEMORY_ISOLATION
2493	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2494#endif
2495};
2496
2497#ifdef CONFIG_CMA
2498static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2499					unsigned int order)
2500{
2501	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2502}
2503#else
2504static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2505					unsigned int order) { return NULL; }
2506#endif
2507
2508/*
2509 * Move the free pages in a range to the freelist tail of the requested type.
2510 * Note that start_page and end_pages are not aligned on a pageblock
2511 * boundary. If alignment is required, use move_freepages_block()
2512 */
2513static int move_freepages(struct zone *zone,
2514			  unsigned long start_pfn, unsigned long end_pfn,
2515			  int migratetype, int *num_movable)
2516{
2517	struct page *page;
2518	unsigned long pfn;
2519	unsigned int order;
2520	int pages_moved = 0;
2521
2522	for (pfn = start_pfn; pfn <= end_pfn;) {
2523		if (!pfn_valid_within(pfn)) {
2524			pfn++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2525			continue;
2526		}
2527
2528		page = pfn_to_page(pfn);
2529		if (!PageBuddy(page)) {
2530			/*
2531			 * We assume that pages that could be isolated for
2532			 * migration are movable. But we don't actually try
2533			 * isolating, as that would be expensive.
2534			 */
2535			if (num_movable &&
2536					(PageLRU(page) || __PageMovable(page)))
2537				(*num_movable)++;
2538			pfn++;
2539			continue;
2540		}
2541
2542		/* Make sure we are not inadvertently changing nodes */
2543		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2544		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2545
2546		order = buddy_order(page);
2547		move_to_free_list(page, zone, order, migratetype);
2548		pfn += 1 << order;
2549		pages_moved += 1 << order;
2550	}
2551
2552	return pages_moved;
2553}
2554
2555int move_freepages_block(struct zone *zone, struct page *page,
2556				int migratetype, int *num_movable)
2557{
2558	unsigned long start_pfn, end_pfn, pfn;
 
2559
2560	if (num_movable)
2561		*num_movable = 0;
2562
2563	pfn = page_to_pfn(page);
2564	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2565	end_pfn = start_pfn + pageblock_nr_pages - 1;
2566
2567	/* Do not cross zone boundaries */
2568	if (!zone_spans_pfn(zone, start_pfn))
2569		start_pfn = pfn;
2570	if (!zone_spans_pfn(zone, end_pfn))
2571		return 0;
2572
2573	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2574								num_movable);
2575}
2576
2577static void change_pageblock_range(struct page *pageblock_page,
2578					int start_order, int migratetype)
2579{
2580	int nr_pageblocks = 1 << (start_order - pageblock_order);
2581
2582	while (nr_pageblocks--) {
2583		set_pageblock_migratetype(pageblock_page, migratetype);
2584		pageblock_page += pageblock_nr_pages;
2585	}
2586}
2587
2588/*
2589 * When we are falling back to another migratetype during allocation, try to
2590 * steal extra free pages from the same pageblocks to satisfy further
2591 * allocations, instead of polluting multiple pageblocks.
2592 *
2593 * If we are stealing a relatively large buddy page, it is likely there will
2594 * be more free pages in the pageblock, so try to steal them all. For
2595 * reclaimable and unmovable allocations, we steal regardless of page size,
2596 * as fragmentation caused by those allocations polluting movable pageblocks
2597 * is worse than movable allocations stealing from unmovable and reclaimable
2598 * pageblocks.
2599 */
2600static bool can_steal_fallback(unsigned int order, int start_mt)
2601{
2602	/*
2603	 * Leaving this order check is intended, although there is
2604	 * relaxed order check in next check. The reason is that
2605	 * we can actually steal whole pageblock if this condition met,
2606	 * but, below check doesn't guarantee it and that is just heuristic
2607	 * so could be changed anytime.
2608	 */
2609	if (order >= pageblock_order)
2610		return true;
2611
2612	if (order >= pageblock_order / 2 ||
2613		start_mt == MIGRATE_RECLAIMABLE ||
2614		start_mt == MIGRATE_UNMOVABLE ||
2615		page_group_by_mobility_disabled)
2616		return true;
2617
2618	return false;
2619}
2620
2621static inline bool boost_watermark(struct zone *zone)
2622{
2623	unsigned long max_boost;
2624
2625	if (!watermark_boost_factor)
2626		return false;
2627	/*
2628	 * Don't bother in zones that are unlikely to produce results.
2629	 * On small machines, including kdump capture kernels running
2630	 * in a small area, boosting the watermark can cause an out of
2631	 * memory situation immediately.
2632	 */
2633	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2634		return false;
2635
2636	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2637			watermark_boost_factor, 10000);
2638
2639	/*
2640	 * high watermark may be uninitialised if fragmentation occurs
2641	 * very early in boot so do not boost. We do not fall
2642	 * through and boost by pageblock_nr_pages as failing
2643	 * allocations that early means that reclaim is not going
2644	 * to help and it may even be impossible to reclaim the
2645	 * boosted watermark resulting in a hang.
2646	 */
2647	if (!max_boost)
2648		return false;
2649
2650	max_boost = max(pageblock_nr_pages, max_boost);
2651
2652	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2653		max_boost);
2654
2655	return true;
2656}
2657
2658/*
2659 * This function implements actual steal behaviour. If order is large enough,
2660 * we can steal whole pageblock. If not, we first move freepages in this
2661 * pageblock to our migratetype and determine how many already-allocated pages
2662 * are there in the pageblock with a compatible migratetype. If at least half
2663 * of pages are free or compatible, we can change migratetype of the pageblock
2664 * itself, so pages freed in the future will be put on the correct free list.
2665 */
2666static void steal_suitable_fallback(struct zone *zone, struct page *page,
2667		unsigned int alloc_flags, int start_type, bool whole_block)
2668{
2669	unsigned int current_order = buddy_order(page);
2670	int free_pages, movable_pages, alike_pages;
2671	int old_block_type;
2672
2673	old_block_type = get_pageblock_migratetype(page);
2674
2675	/*
2676	 * This can happen due to races and we want to prevent broken
2677	 * highatomic accounting.
2678	 */
2679	if (is_migrate_highatomic(old_block_type))
2680		goto single_page;
2681
2682	/* Take ownership for orders >= pageblock_order */
2683	if (current_order >= pageblock_order) {
2684		change_pageblock_range(page, current_order, start_type);
2685		goto single_page;
2686	}
2687
2688	/*
2689	 * Boost watermarks to increase reclaim pressure to reduce the
2690	 * likelihood of future fallbacks. Wake kswapd now as the node
2691	 * may be balanced overall and kswapd will not wake naturally.
2692	 */
2693	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2694		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2695
2696	/* We are not allowed to try stealing from the whole block */
2697	if (!whole_block)
2698		goto single_page;
2699
2700	free_pages = move_freepages_block(zone, page, start_type,
2701						&movable_pages);
2702	/*
2703	 * Determine how many pages are compatible with our allocation.
2704	 * For movable allocation, it's the number of movable pages which
2705	 * we just obtained. For other types it's a bit more tricky.
2706	 */
2707	if (start_type == MIGRATE_MOVABLE) {
2708		alike_pages = movable_pages;
2709	} else {
2710		/*
2711		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2712		 * to MOVABLE pageblock, consider all non-movable pages as
2713		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2714		 * vice versa, be conservative since we can't distinguish the
2715		 * exact migratetype of non-movable pages.
2716		 */
2717		if (old_block_type == MIGRATE_MOVABLE)
2718			alike_pages = pageblock_nr_pages
2719						- (free_pages + movable_pages);
2720		else
2721			alike_pages = 0;
2722	}
2723
2724	/* moving whole block can fail due to zone boundary conditions */
2725	if (!free_pages)
2726		goto single_page;
2727
2728	/*
2729	 * If a sufficient number of pages in the block are either free or of
2730	 * comparable migratability as our allocation, claim the whole block.
2731	 */
2732	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2733			page_group_by_mobility_disabled)
2734		set_pageblock_migratetype(page, start_type);
2735
2736	return;
2737
2738single_page:
2739	move_to_free_list(page, zone, current_order, start_type);
2740}
2741
2742/*
2743 * Check whether there is a suitable fallback freepage with requested order.
2744 * If only_stealable is true, this function returns fallback_mt only if
2745 * we can steal other freepages all together. This would help to reduce
2746 * fragmentation due to mixed migratetype pages in one pageblock.
2747 */
2748int find_suitable_fallback(struct free_area *area, unsigned int order,
2749			int migratetype, bool only_stealable, bool *can_steal)
2750{
2751	int i;
2752	int fallback_mt;
2753
2754	if (area->nr_free == 0)
2755		return -1;
2756
2757	*can_steal = false;
2758	for (i = 0;; i++) {
2759		fallback_mt = fallbacks[migratetype][i];
2760		if (fallback_mt == MIGRATE_TYPES)
2761			break;
2762
2763		if (free_area_empty(area, fallback_mt))
2764			continue;
2765
2766		if (can_steal_fallback(order, migratetype))
2767			*can_steal = true;
2768
2769		if (!only_stealable)
2770			return fallback_mt;
2771
2772		if (*can_steal)
2773			return fallback_mt;
2774	}
2775
2776	return -1;
2777}
2778
2779/*
2780 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2781 * there are no empty page blocks that contain a page with a suitable order
2782 */
2783static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2784				unsigned int alloc_order)
2785{
2786	int mt;
2787	unsigned long max_managed, flags;
2788
2789	/*
2790	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2791	 * Check is race-prone but harmless.
2792	 */
2793	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2794	if (zone->nr_reserved_highatomic >= max_managed)
2795		return;
2796
2797	spin_lock_irqsave(&zone->lock, flags);
2798
2799	/* Recheck the nr_reserved_highatomic limit under the lock */
2800	if (zone->nr_reserved_highatomic >= max_managed)
2801		goto out_unlock;
2802
2803	/* Yoink! */
2804	mt = get_pageblock_migratetype(page);
2805	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2806	    && !is_migrate_cma(mt)) {
2807		zone->nr_reserved_highatomic += pageblock_nr_pages;
2808		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2809		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2810	}
2811
2812out_unlock:
2813	spin_unlock_irqrestore(&zone->lock, flags);
2814}
2815
2816/*
2817 * Used when an allocation is about to fail under memory pressure. This
2818 * potentially hurts the reliability of high-order allocations when under
2819 * intense memory pressure but failed atomic allocations should be easier
2820 * to recover from than an OOM.
2821 *
2822 * If @force is true, try to unreserve a pageblock even though highatomic
2823 * pageblock is exhausted.
2824 */
2825static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2826						bool force)
2827{
2828	struct zonelist *zonelist = ac->zonelist;
2829	unsigned long flags;
2830	struct zoneref *z;
2831	struct zone *zone;
2832	struct page *page;
2833	int order;
2834	bool ret;
2835
2836	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2837								ac->nodemask) {
2838		/*
2839		 * Preserve at least one pageblock unless memory pressure
2840		 * is really high.
2841		 */
2842		if (!force && zone->nr_reserved_highatomic <=
2843					pageblock_nr_pages)
2844			continue;
2845
2846		spin_lock_irqsave(&zone->lock, flags);
2847		for (order = 0; order < MAX_ORDER; order++) {
2848			struct free_area *area = &(zone->free_area[order]);
2849
2850			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
 
 
2851			if (!page)
2852				continue;
2853
2854			/*
2855			 * In page freeing path, migratetype change is racy so
2856			 * we can counter several free pages in a pageblock
2857			 * in this loop although we changed the pageblock type
2858			 * from highatomic to ac->migratetype. So we should
2859			 * adjust the count once.
2860			 */
2861			if (is_migrate_highatomic_page(page)) {
2862				/*
2863				 * It should never happen but changes to
2864				 * locking could inadvertently allow a per-cpu
2865				 * drain to add pages to MIGRATE_HIGHATOMIC
2866				 * while unreserving so be safe and watch for
2867				 * underflows.
2868				 */
2869				zone->nr_reserved_highatomic -= min(
2870						pageblock_nr_pages,
2871						zone->nr_reserved_highatomic);
2872			}
2873
2874			/*
2875			 * Convert to ac->migratetype and avoid the normal
2876			 * pageblock stealing heuristics. Minimally, the caller
2877			 * is doing the work and needs the pages. More
2878			 * importantly, if the block was always converted to
2879			 * MIGRATE_UNMOVABLE or another type then the number
2880			 * of pageblocks that cannot be completely freed
2881			 * may increase.
2882			 */
2883			set_pageblock_migratetype(page, ac->migratetype);
2884			ret = move_freepages_block(zone, page, ac->migratetype,
2885									NULL);
2886			if (ret) {
2887				spin_unlock_irqrestore(&zone->lock, flags);
2888				return ret;
2889			}
2890		}
2891		spin_unlock_irqrestore(&zone->lock, flags);
2892	}
2893
2894	return false;
2895}
2896
2897/*
2898 * Try finding a free buddy page on the fallback list and put it on the free
2899 * list of requested migratetype, possibly along with other pages from the same
2900 * block, depending on fragmentation avoidance heuristics. Returns true if
2901 * fallback was found so that __rmqueue_smallest() can grab it.
2902 *
2903 * The use of signed ints for order and current_order is a deliberate
2904 * deviation from the rest of this file, to make the for loop
2905 * condition simpler.
2906 */
2907static __always_inline bool
2908__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2909						unsigned int alloc_flags)
2910{
2911	struct free_area *area;
2912	int current_order;
2913	int min_order = order;
2914	struct page *page;
2915	int fallback_mt;
2916	bool can_steal;
2917
2918	/*
2919	 * Do not steal pages from freelists belonging to other pageblocks
2920	 * i.e. orders < pageblock_order. If there are no local zones free,
2921	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2922	 */
2923	if (alloc_flags & ALLOC_NOFRAGMENT)
2924		min_order = pageblock_order;
2925
2926	/*
2927	 * Find the largest available free page in the other list. This roughly
2928	 * approximates finding the pageblock with the most free pages, which
2929	 * would be too costly to do exactly.
2930	 */
2931	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2932				--current_order) {
2933		area = &(zone->free_area[current_order]);
2934		fallback_mt = find_suitable_fallback(area, current_order,
2935				start_migratetype, false, &can_steal);
2936		if (fallback_mt == -1)
2937			continue;
2938
 
 
 
 
 
 
 
 
 
 
 
 
2939		/*
2940		 * We cannot steal all free pages from the pageblock and the
2941		 * requested migratetype is movable. In that case it's better to
2942		 * steal and split the smallest available page instead of the
2943		 * largest available page, because even if the next movable
2944		 * allocation falls back into a different pageblock than this
2945		 * one, it won't cause permanent fragmentation.
2946		 */
2947		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2948					&& current_order > order)
2949			goto find_smallest;
2950
2951		goto do_steal;
2952	}
2953
2954	return false;
2955
2956find_smallest:
2957	for (current_order = order; current_order < MAX_ORDER;
2958							current_order++) {
2959		area = &(zone->free_area[current_order]);
2960		fallback_mt = find_suitable_fallback(area, current_order,
2961				start_migratetype, false, &can_steal);
2962		if (fallback_mt != -1)
2963			break;
2964	}
2965
2966	/*
2967	 * This should not happen - we already found a suitable fallback
2968	 * when looking for the largest page.
2969	 */
2970	VM_BUG_ON(current_order == MAX_ORDER);
2971
2972do_steal:
2973	page = get_page_from_free_area(area, fallback_mt);
2974
2975	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2976								can_steal);
2977
2978	trace_mm_page_alloc_extfrag(page, order, current_order,
2979		start_migratetype, fallback_mt);
2980
2981	return true;
2982
2983}
2984
2985/*
2986 * Do the hard work of removing an element from the buddy allocator.
2987 * Call me with the zone->lock already held.
2988 */
2989static __always_inline struct page *
2990__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2991						unsigned int alloc_flags)
2992{
2993	struct page *page;
2994
2995	if (IS_ENABLED(CONFIG_CMA)) {
2996		/*
2997		 * Balance movable allocations between regular and CMA areas by
2998		 * allocating from CMA when over half of the zone's free memory
2999		 * is in the CMA area.
3000		 */
3001		if (alloc_flags & ALLOC_CMA &&
3002		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3003		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3004			page = __rmqueue_cma_fallback(zone, order);
3005			if (page)
3006				goto out;
3007		}
3008	}
3009retry:
3010	page = __rmqueue_smallest(zone, order, migratetype);
3011	if (unlikely(!page)) {
3012		if (alloc_flags & ALLOC_CMA)
3013			page = __rmqueue_cma_fallback(zone, order);
3014
3015		if (!page && __rmqueue_fallback(zone, order, migratetype,
3016								alloc_flags))
3017			goto retry;
3018	}
3019out:
3020	if (page)
3021		trace_mm_page_alloc_zone_locked(page, order, migratetype);
3022	return page;
3023}
3024
3025/*
3026 * Obtain a specified number of elements from the buddy allocator, all under
3027 * a single hold of the lock, for efficiency.  Add them to the supplied list.
3028 * Returns the number of new pages which were placed at *list.
3029 */
3030static int rmqueue_bulk(struct zone *zone, unsigned int order,
3031			unsigned long count, struct list_head *list,
3032			int migratetype, unsigned int alloc_flags)
3033{
3034	int i, allocated = 0;
3035
3036	/*
3037	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3038	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3039	 */
3040	spin_lock(&zone->lock);
3041	for (i = 0; i < count; ++i) {
3042		struct page *page = __rmqueue(zone, order, migratetype,
3043								alloc_flags);
3044		if (unlikely(page == NULL))
3045			break;
3046
3047		if (unlikely(check_pcp_refill(page)))
3048			continue;
3049
3050		/*
3051		 * Split buddy pages returned by expand() are received here in
3052		 * physical page order. The page is added to the tail of
3053		 * caller's list. From the callers perspective, the linked list
3054		 * is ordered by page number under some conditions. This is
3055		 * useful for IO devices that can forward direction from the
3056		 * head, thus also in the physical page order. This is useful
3057		 * for IO devices that can merge IO requests if the physical
3058		 * pages are ordered properly.
3059		 */
3060		list_add_tail(&page->lru, list);
3061		allocated++;
 
 
 
3062		if (is_migrate_cma(get_pcppage_migratetype(page)))
3063			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3064					      -(1 << order));
3065	}
3066
3067	/*
3068	 * i pages were removed from the buddy list even if some leak due
3069	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3070	 * on i. Do not confuse with 'allocated' which is the number of
3071	 * pages added to the pcp list.
3072	 */
3073	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3074	spin_unlock(&zone->lock);
3075	return allocated;
3076}
3077
3078#ifdef CONFIG_NUMA
3079/*
3080 * Called from the vmstat counter updater to drain pagesets of this
3081 * currently executing processor on remote nodes after they have
3082 * expired.
3083 *
3084 * Note that this function must be called with the thread pinned to
3085 * a single processor.
3086 */
3087void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3088{
3089	unsigned long flags;
3090	int to_drain, batch;
3091
3092	local_lock_irqsave(&pagesets.lock, flags);
3093	batch = READ_ONCE(pcp->batch);
3094	to_drain = min(pcp->count, batch);
3095	if (to_drain > 0)
3096		free_pcppages_bulk(zone, to_drain, pcp);
3097	local_unlock_irqrestore(&pagesets.lock, flags);
 
 
3098}
3099#endif
3100
3101/*
3102 * Drain pcplists of the indicated processor and zone.
3103 *
3104 * The processor must either be the current processor and the
3105 * thread pinned to the current processor or a processor that
3106 * is not online.
3107 */
3108static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3109{
3110	unsigned long flags;
 
3111	struct per_cpu_pages *pcp;
3112
3113	local_lock_irqsave(&pagesets.lock, flags);
 
3114
3115	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3116	if (pcp->count)
3117		free_pcppages_bulk(zone, pcp->count, pcp);
3118
3119	local_unlock_irqrestore(&pagesets.lock, flags);
 
3120}
3121
3122/*
3123 * Drain pcplists of all zones on the indicated processor.
3124 *
3125 * The processor must either be the current processor and the
3126 * thread pinned to the current processor or a processor that
3127 * is not online.
3128 */
3129static void drain_pages(unsigned int cpu)
3130{
3131	struct zone *zone;
3132
3133	for_each_populated_zone(zone) {
3134		drain_pages_zone(cpu, zone);
3135	}
3136}
3137
3138/*
3139 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3140 *
3141 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3142 * the single zone's pages.
3143 */
3144void drain_local_pages(struct zone *zone)
3145{
3146	int cpu = smp_processor_id();
3147
3148	if (zone)
3149		drain_pages_zone(cpu, zone);
3150	else
3151		drain_pages(cpu);
3152}
3153
3154static void drain_local_pages_wq(struct work_struct *work)
3155{
3156	struct pcpu_drain *drain;
3157
3158	drain = container_of(work, struct pcpu_drain, work);
3159
3160	/*
3161	 * drain_all_pages doesn't use proper cpu hotplug protection so
3162	 * we can race with cpu offline when the WQ can move this from
3163	 * a cpu pinned worker to an unbound one. We can operate on a different
3164	 * cpu which is alright but we also have to make sure to not move to
3165	 * a different one.
3166	 */
3167	preempt_disable();
3168	drain_local_pages(drain->zone);
3169	preempt_enable();
3170}
3171
3172/*
3173 * The implementation of drain_all_pages(), exposing an extra parameter to
3174 * drain on all cpus.
3175 *
3176 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3177 * not empty. The check for non-emptiness can however race with a free to
3178 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3179 * that need the guarantee that every CPU has drained can disable the
3180 * optimizing racy check.
 
 
3181 */
3182static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3183{
3184	int cpu;
3185
3186	/*
3187	 * Allocate in the BSS so we won't require allocation in
3188	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3189	 */
3190	static cpumask_t cpus_with_pcps;
3191
3192	/*
3193	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3194	 * initialized.
3195	 */
3196	if (WARN_ON_ONCE(!mm_percpu_wq))
3197		return;
3198
3199	/*
3200	 * Do not drain if one is already in progress unless it's specific to
3201	 * a zone. Such callers are primarily CMA and memory hotplug and need
3202	 * the drain to be complete when the call returns.
3203	 */
3204	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3205		if (!zone)
3206			return;
3207		mutex_lock(&pcpu_drain_mutex);
3208	}
3209
3210	/*
3211	 * We don't care about racing with CPU hotplug event
3212	 * as offline notification will cause the notified
3213	 * cpu to drain that CPU pcps and on_each_cpu_mask
3214	 * disables preemption as part of its processing
3215	 */
3216	for_each_online_cpu(cpu) {
3217		struct per_cpu_pages *pcp;
3218		struct zone *z;
3219		bool has_pcps = false;
3220
3221		if (force_all_cpus) {
3222			/*
3223			 * The pcp.count check is racy, some callers need a
3224			 * guarantee that no cpu is missed.
3225			 */
3226			has_pcps = true;
3227		} else if (zone) {
3228			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3229			if (pcp->count)
3230				has_pcps = true;
3231		} else {
3232			for_each_populated_zone(z) {
3233				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3234				if (pcp->count) {
3235					has_pcps = true;
3236					break;
3237				}
3238			}
3239		}
3240
3241		if (has_pcps)
3242			cpumask_set_cpu(cpu, &cpus_with_pcps);
3243		else
3244			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3245	}
3246
3247	for_each_cpu(cpu, &cpus_with_pcps) {
3248		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3249
3250		drain->zone = zone;
3251		INIT_WORK(&drain->work, drain_local_pages_wq);
3252		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3253	}
3254	for_each_cpu(cpu, &cpus_with_pcps)
3255		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3256
3257	mutex_unlock(&pcpu_drain_mutex);
3258}
3259
3260/*
3261 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3262 *
3263 * When zone parameter is non-NULL, spill just the single zone's pages.
3264 *
3265 * Note that this can be extremely slow as the draining happens in a workqueue.
3266 */
3267void drain_all_pages(struct zone *zone)
3268{
3269	__drain_all_pages(zone, false);
3270}
3271
3272#ifdef CONFIG_HIBERNATION
3273
3274/*
3275 * Touch the watchdog for every WD_PAGE_COUNT pages.
3276 */
3277#define WD_PAGE_COUNT	(128*1024)
3278
3279void mark_free_pages(struct zone *zone)
3280{
3281	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3282	unsigned long flags;
3283	unsigned int order, t;
3284	struct page *page;
3285
3286	if (zone_is_empty(zone))
3287		return;
3288
3289	spin_lock_irqsave(&zone->lock, flags);
3290
3291	max_zone_pfn = zone_end_pfn(zone);
3292	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3293		if (pfn_valid(pfn)) {
3294			page = pfn_to_page(pfn);
3295
3296			if (!--page_count) {
3297				touch_nmi_watchdog();
3298				page_count = WD_PAGE_COUNT;
3299			}
3300
3301			if (page_zone(page) != zone)
3302				continue;
3303
3304			if (!swsusp_page_is_forbidden(page))
3305				swsusp_unset_page_free(page);
3306		}
3307
3308	for_each_migratetype_order(order, t) {
3309		list_for_each_entry(page,
3310				&zone->free_area[order].free_list[t], lru) {
3311			unsigned long i;
3312
3313			pfn = page_to_pfn(page);
3314			for (i = 0; i < (1UL << order); i++) {
3315				if (!--page_count) {
3316					touch_nmi_watchdog();
3317					page_count = WD_PAGE_COUNT;
3318				}
3319				swsusp_set_page_free(pfn_to_page(pfn + i));
3320			}
3321		}
3322	}
3323	spin_unlock_irqrestore(&zone->lock, flags);
3324}
3325#endif /* CONFIG_PM */
3326
3327static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3328							unsigned int order)
3329{
3330	int migratetype;
3331
3332	if (!free_pcp_prepare(page, order))
3333		return false;
3334
3335	migratetype = get_pfnblock_migratetype(page, pfn);
3336	set_pcppage_migratetype(page, migratetype);
3337	return true;
3338}
3339
3340static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3341{
3342	int min_nr_free, max_nr_free;
3343
3344	/* Check for PCP disabled or boot pageset */
3345	if (unlikely(high < batch))
3346		return 1;
3347
3348	/* Leave at least pcp->batch pages on the list */
3349	min_nr_free = batch;
3350	max_nr_free = high - batch;
3351
3352	/*
3353	 * Double the number of pages freed each time there is subsequent
3354	 * freeing of pages without any allocation.
3355	 */
3356	batch <<= pcp->free_factor;
3357	if (batch < max_nr_free)
3358		pcp->free_factor++;
3359	batch = clamp(batch, min_nr_free, max_nr_free);
3360
3361	return batch;
3362}
3363
3364static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3365{
3366	int high = READ_ONCE(pcp->high);
3367
3368	if (unlikely(!high))
3369		return 0;
3370
3371	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3372		return high;
3373
3374	/*
3375	 * If reclaim is active, limit the number of pages that can be
3376	 * stored on pcp lists
3377	 */
3378	return min(READ_ONCE(pcp->batch) << 2, high);
3379}
3380
3381static void free_unref_page_commit(struct page *page, unsigned long pfn,
3382				   int migratetype, unsigned int order)
3383{
3384	struct zone *zone = page_zone(page);
3385	struct per_cpu_pages *pcp;
3386	int high;
3387	int pindex;
3388
3389	__count_vm_event(PGFREE);
3390	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3391	pindex = order_to_pindex(migratetype, order);
3392	list_add(&page->lru, &pcp->lists[pindex]);
3393	pcp->count += 1 << order;
3394	high = nr_pcp_high(pcp, zone);
3395	if (pcp->count >= high) {
3396		int batch = READ_ONCE(pcp->batch);
3397
3398		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3399	}
3400}
3401
3402/*
3403 * Free a pcp page
3404 */
3405void free_unref_page(struct page *page, unsigned int order)
3406{
3407	unsigned long flags;
3408	unsigned long pfn = page_to_pfn(page);
3409	int migratetype;
3410
3411	if (!free_unref_page_prepare(page, pfn, order))
3412		return;
3413
 
 
 
 
 
3414	/*
3415	 * We only track unmovable, reclaimable and movable on pcp lists.
3416	 * Place ISOLATE pages on the isolated list because they are being
3417	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3418	 * areas back if necessary. Otherwise, we may have to free
3419	 * excessively into the page allocator
3420	 */
3421	migratetype = get_pcppage_migratetype(page);
3422	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3423		if (unlikely(is_migrate_isolate(migratetype))) {
3424			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3425			return;
3426		}
3427		migratetype = MIGRATE_MOVABLE;
3428	}
3429
3430	local_lock_irqsave(&pagesets.lock, flags);
3431	free_unref_page_commit(page, pfn, migratetype, order);
3432	local_unlock_irqrestore(&pagesets.lock, flags);
 
 
 
 
 
 
 
 
 
 
 
3433}
3434
3435/*
3436 * Free a list of 0-order pages
3437 */
3438void free_unref_page_list(struct list_head *list)
3439{
3440	struct page *page, *next;
3441	unsigned long flags, pfn;
3442	int batch_count = 0;
3443	int migratetype;
3444
3445	/* Prepare pages for freeing */
3446	list_for_each_entry_safe(page, next, list, lru) {
3447		pfn = page_to_pfn(page);
3448		if (!free_unref_page_prepare(page, pfn, 0)) {
3449			list_del(&page->lru);
3450			continue;
3451		}
3452
3453		/*
3454		 * Free isolated pages directly to the allocator, see
3455		 * comment in free_unref_page.
3456		 */
3457		migratetype = get_pcppage_migratetype(page);
3458		if (unlikely(is_migrate_isolate(migratetype))) {
3459			list_del(&page->lru);
3460			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3461			continue;
3462		}
3463
3464		set_page_private(page, pfn);
3465	}
3466
3467	local_lock_irqsave(&pagesets.lock, flags);
3468	list_for_each_entry_safe(page, next, list, lru) {
3469		pfn = page_private(page);
3470		set_page_private(page, 0);
3471
3472		/*
3473		 * Non-isolated types over MIGRATE_PCPTYPES get added
3474		 * to the MIGRATE_MOVABLE pcp list.
3475		 */
3476		migratetype = get_pcppage_migratetype(page);
3477		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3478			migratetype = MIGRATE_MOVABLE;
3479
3480		trace_mm_page_free_batched(page);
3481		free_unref_page_commit(page, pfn, migratetype, 0);
3482
3483		/*
3484		 * Guard against excessive IRQ disabled times when we get
3485		 * a large list of pages to free.
3486		 */
3487		if (++batch_count == SWAP_CLUSTER_MAX) {
3488			local_unlock_irqrestore(&pagesets.lock, flags);
3489			batch_count = 0;
3490			local_lock_irqsave(&pagesets.lock, flags);
3491		}
3492	}
3493	local_unlock_irqrestore(&pagesets.lock, flags);
3494}
3495
3496/*
3497 * split_page takes a non-compound higher-order page, and splits it into
3498 * n (1<<order) sub-pages: page[0..n]
3499 * Each sub-page must be freed individually.
3500 *
3501 * Note: this is probably too low level an operation for use in drivers.
3502 * Please consult with lkml before using this in your driver.
3503 */
3504void split_page(struct page *page, unsigned int order)
3505{
3506	int i;
 
3507
3508	VM_BUG_ON_PAGE(PageCompound(page), page);
3509	VM_BUG_ON_PAGE(!page_count(page), page);
3510
3511	for (i = 1; i < (1 << order); i++)
 
 
 
 
 
 
 
 
 
 
 
3512		set_page_refcounted(page + i);
3513	split_page_owner(page, 1 << order);
3514	split_page_memcg(page, 1 << order);
3515}
3516EXPORT_SYMBOL_GPL(split_page);
3517
3518int __isolate_free_page(struct page *page, unsigned int order)
3519{
3520	unsigned long watermark;
3521	struct zone *zone;
3522	int mt;
3523
3524	BUG_ON(!PageBuddy(page));
3525
3526	zone = page_zone(page);
3527	mt = get_pageblock_migratetype(page);
3528
3529	if (!is_migrate_isolate(mt)) {
3530		/*
3531		 * Obey watermarks as if the page was being allocated. We can
3532		 * emulate a high-order watermark check with a raised order-0
3533		 * watermark, because we already know our high-order page
3534		 * exists.
3535		 */
3536		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3537		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3538			return 0;
3539
3540		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3541	}
3542
3543	/* Remove page from free list */
 
 
 
3544
3545	del_page_from_free_list(page, zone, order);
3546
3547	/*
3548	 * Set the pageblock if the isolated page is at least half of a
3549	 * pageblock
3550	 */
3551	if (order >= pageblock_order - 1) {
3552		struct page *endpage = page + (1 << order) - 1;
3553		for (; page < endpage; page += pageblock_nr_pages) {
3554			int mt = get_pageblock_migratetype(page);
3555			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3556			    && !is_migrate_highatomic(mt))
3557				set_pageblock_migratetype(page,
3558							  MIGRATE_MOVABLE);
3559		}
3560	}
3561
3562
3563	return 1UL << order;
3564}
3565
3566/**
3567 * __putback_isolated_page - Return a now-isolated page back where we got it
3568 * @page: Page that was isolated
3569 * @order: Order of the isolated page
3570 * @mt: The page's pageblock's migratetype
3571 *
3572 * This function is meant to return a page pulled from the free lists via
3573 * __isolate_free_page back to the free lists they were pulled from.
3574 */
3575void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3576{
3577	struct zone *zone = page_zone(page);
3578
3579	/* zone lock should be held when this function is called */
3580	lockdep_assert_held(&zone->lock);
3581
3582	/* Return isolated page to tail of freelist. */
3583	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3584			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3585}
3586
3587/*
3588 * Update NUMA hit/miss statistics
 
 
 
 
3589 *
3590 * Must be called with interrupts disabled.
 
3591 */
3592static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3593				   long nr_account)
3594{
3595#ifdef CONFIG_NUMA
3596	enum numa_stat_item local_stat = NUMA_LOCAL;
3597
3598	/* skip numa counters update if numa stats is disabled */
3599	if (!static_branch_likely(&vm_numa_stat_key))
3600		return;
3601
3602	if (zone_to_nid(z) != numa_node_id())
3603		local_stat = NUMA_OTHER;
 
3604
3605	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3606		__count_numa_events(z, NUMA_HIT, nr_account);
3607	else {
3608		__count_numa_events(z, NUMA_MISS, nr_account);
3609		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3610	}
3611	__count_numa_events(z, local_stat, nr_account);
3612#endif
3613}
3614
3615/* Remove page from the per-cpu list, caller must protect the list */
3616static inline
3617struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3618			int migratetype,
3619			unsigned int alloc_flags,
3620			struct per_cpu_pages *pcp,
3621			struct list_head *list)
3622{
3623	struct page *page;
3624
3625	do {
3626		if (list_empty(list)) {
3627			int batch = READ_ONCE(pcp->batch);
3628			int alloced;
3629
3630			/*
3631			 * Scale batch relative to order if batch implies
3632			 * free pages can be stored on the PCP. Batch can
3633			 * be 1 for small zones or for boot pagesets which
3634			 * should never store free pages as the pages may
3635			 * belong to arbitrary zones.
3636			 */
3637			if (batch > 1)
3638				batch = max(batch >> order, 2);
3639			alloced = rmqueue_bulk(zone, order,
3640					batch, list,
3641					migratetype, alloc_flags);
3642
3643			pcp->count += alloced << order;
3644			if (unlikely(list_empty(list)))
3645				return NULL;
3646		}
3647
3648		page = list_first_entry(list, struct page, lru);
3649		list_del(&page->lru);
3650		pcp->count -= 1 << order;
3651	} while (check_new_pcp(page));
3652
3653	return page;
3654}
3655
3656/* Lock and remove page from the per-cpu list */
3657static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3658			struct zone *zone, unsigned int order,
3659			gfp_t gfp_flags, int migratetype,
3660			unsigned int alloc_flags)
3661{
3662	struct per_cpu_pages *pcp;
3663	struct list_head *list;
3664	struct page *page;
3665	unsigned long flags;
3666
3667	local_lock_irqsave(&pagesets.lock, flags);
3668
3669	/*
3670	 * On allocation, reduce the number of pages that are batch freed.
3671	 * See nr_pcp_free() where free_factor is increased for subsequent
3672	 * frees.
3673	 */
3674	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3675	pcp->free_factor >>= 1;
3676	list = &pcp->lists[order_to_pindex(migratetype, order)];
3677	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3678	local_unlock_irqrestore(&pagesets.lock, flags);
3679	if (page) {
3680		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3681		zone_statistics(preferred_zone, zone, 1);
3682	}
3683	return page;
3684}
3685
3686/*
3687 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3688 */
3689static inline
3690struct page *rmqueue(struct zone *preferred_zone,
3691			struct zone *zone, unsigned int order,
3692			gfp_t gfp_flags, unsigned int alloc_flags,
3693			int migratetype)
3694{
3695	unsigned long flags;
3696	struct page *page;
 
 
 
 
 
3697
3698	if (likely(pcp_allowed_order(order))) {
3699		/*
3700		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3701		 * we need to skip it when CMA area isn't allowed.
3702		 */
3703		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3704				migratetype != MIGRATE_MOVABLE) {
3705			page = rmqueue_pcplist(preferred_zone, zone, order,
3706					gfp_flags, migratetype, alloc_flags);
3707			goto out;
3708		}
3709	}
3710
3711	/*
3712	 * We most definitely don't want callers attempting to
3713	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3714	 */
3715	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3716	spin_lock_irqsave(&zone->lock, flags);
3717
3718	do {
3719		page = NULL;
 
3720		/*
3721		 * order-0 request can reach here when the pcplist is skipped
3722		 * due to non-CMA allocation context. HIGHATOMIC area is
3723		 * reserved for high-order atomic allocation, so order-0
3724		 * request should skip it.
3725		 */
3726		if (order > 0 && alloc_flags & ALLOC_HARDER) {
 
 
 
 
3727			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3728			if (page)
3729				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3730		}
3731		if (!page)
3732			page = __rmqueue(zone, order, migratetype, alloc_flags);
3733	} while (page && check_new_pages(page, order));
3734	if (!page)
3735		goto failed;
 
 
 
3736
3737	__mod_zone_freepage_state(zone, -(1 << order),
3738				  get_pcppage_migratetype(page));
3739	spin_unlock_irqrestore(&zone->lock, flags);
 
 
 
 
 
3740
3741	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3742	zone_statistics(preferred_zone, zone, 1);
3743
3744out:
3745	/* Separate test+clear to avoid unnecessary atomics */
3746	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3747		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3748		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3749	}
3750
3751	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3752	return page;
3753
3754failed:
3755	spin_unlock_irqrestore(&zone->lock, flags);
3756	return NULL;
3757}
3758
3759#ifdef CONFIG_FAIL_PAGE_ALLOC
3760
3761static struct {
3762	struct fault_attr attr;
3763
3764	bool ignore_gfp_highmem;
3765	bool ignore_gfp_reclaim;
3766	u32 min_order;
3767} fail_page_alloc = {
3768	.attr = FAULT_ATTR_INITIALIZER,
3769	.ignore_gfp_reclaim = true,
3770	.ignore_gfp_highmem = true,
3771	.min_order = 1,
3772};
3773
3774static int __init setup_fail_page_alloc(char *str)
3775{
3776	return setup_fault_attr(&fail_page_alloc.attr, str);
3777}
3778__setup("fail_page_alloc=", setup_fail_page_alloc);
3779
3780static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3781{
3782	if (order < fail_page_alloc.min_order)
3783		return false;
3784	if (gfp_mask & __GFP_NOFAIL)
3785		return false;
3786	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3787		return false;
3788	if (fail_page_alloc.ignore_gfp_reclaim &&
3789			(gfp_mask & __GFP_DIRECT_RECLAIM))
3790		return false;
3791
3792	return should_fail(&fail_page_alloc.attr, 1 << order);
3793}
3794
3795#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3796
3797static int __init fail_page_alloc_debugfs(void)
3798{
3799	umode_t mode = S_IFREG | 0600;
3800	struct dentry *dir;
3801
3802	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3803					&fail_page_alloc.attr);
 
 
3804
3805	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3806			    &fail_page_alloc.ignore_gfp_reclaim);
3807	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3808			    &fail_page_alloc.ignore_gfp_highmem);
3809	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
 
 
 
 
3810
3811	return 0;
 
 
 
 
3812}
3813
3814late_initcall(fail_page_alloc_debugfs);
3815
3816#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3817
3818#else /* CONFIG_FAIL_PAGE_ALLOC */
3819
3820static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3821{
3822	return false;
3823}
3824
3825#endif /* CONFIG_FAIL_PAGE_ALLOC */
3826
3827noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3828{
3829	return __should_fail_alloc_page(gfp_mask, order);
3830}
3831ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3832
3833static inline long __zone_watermark_unusable_free(struct zone *z,
3834				unsigned int order, unsigned int alloc_flags)
3835{
3836	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3837	long unusable_free = (1 << order) - 1;
3838
3839	/*
3840	 * If the caller does not have rights to ALLOC_HARDER then subtract
3841	 * the high-atomic reserves. This will over-estimate the size of the
3842	 * atomic reserve but it avoids a search.
3843	 */
3844	if (likely(!alloc_harder))
3845		unusable_free += z->nr_reserved_highatomic;
3846
3847#ifdef CONFIG_CMA
3848	/* If allocation can't use CMA areas don't use free CMA pages */
3849	if (!(alloc_flags & ALLOC_CMA))
3850		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3851#endif
3852
3853	return unusable_free;
3854}
3855
3856/*
3857 * Return true if free base pages are above 'mark'. For high-order checks it
3858 * will return true of the order-0 watermark is reached and there is at least
3859 * one free page of a suitable size. Checking now avoids taking the zone lock
3860 * to check in the allocation paths if no pages are free.
3861 */
3862bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3863			 int highest_zoneidx, unsigned int alloc_flags,
3864			 long free_pages)
3865{
3866	long min = mark;
3867	int o;
3868	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3869
3870	/* free_pages may go negative - that's OK */
3871	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3872
3873	if (alloc_flags & ALLOC_HIGH)
3874		min -= min / 2;
3875
3876	if (unlikely(alloc_harder)) {
3877		/*
3878		 * OOM victims can try even harder than normal ALLOC_HARDER
3879		 * users on the grounds that it's definitely going to be in
3880		 * the exit path shortly and free memory. Any allocation it
3881		 * makes during the free path will be small and short-lived.
3882		 */
3883		if (alloc_flags & ALLOC_OOM)
3884			min -= min / 2;
3885		else
3886			min -= min / 4;
3887	}
 
 
 
3888
3889	/*
3890	 * Check watermarks for an order-0 allocation request. If these
3891	 * are not met, then a high-order request also cannot go ahead
3892	 * even if a suitable page happened to be free.
3893	 */
3894	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3895		return false;
3896
3897	/* If this is an order-0 request then the watermark is fine */
3898	if (!order)
3899		return true;
3900
3901	/* For a high-order request, check at least one suitable page is free */
3902	for (o = order; o < MAX_ORDER; o++) {
3903		struct free_area *area = &z->free_area[o];
3904		int mt;
3905
3906		if (!area->nr_free)
3907			continue;
3908
 
 
 
3909		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3910			if (!free_area_empty(area, mt))
3911				return true;
3912		}
3913
3914#ifdef CONFIG_CMA
3915		if ((alloc_flags & ALLOC_CMA) &&
3916		    !free_area_empty(area, MIGRATE_CMA)) {
3917			return true;
3918		}
3919#endif
3920		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3921			return true;
3922	}
3923	return false;
3924}
3925
3926bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3927		      int highest_zoneidx, unsigned int alloc_flags)
3928{
3929	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3930					zone_page_state(z, NR_FREE_PAGES));
3931}
3932
3933static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3934				unsigned long mark, int highest_zoneidx,
3935				unsigned int alloc_flags, gfp_t gfp_mask)
3936{
3937	long free_pages;
3938
3939	free_pages = zone_page_state(z, NR_FREE_PAGES);
3940
3941	/*
3942	 * Fast check for order-0 only. If this fails then the reserves
3943	 * need to be calculated.
3944	 */
3945	if (!order) {
3946		long fast_free;
3947
3948		fast_free = free_pages;
3949		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3950		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3951			return true;
3952	}
3953
3954	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3955					free_pages))
3956		return true;
3957	/*
3958	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3959	 * when checking the min watermark. The min watermark is the
3960	 * point where boosting is ignored so that kswapd is woken up
3961	 * when below the low watermark.
3962	 */
3963	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3964		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3965		mark = z->_watermark[WMARK_MIN];
3966		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3967					alloc_flags, free_pages);
3968	}
3969
3970	return false;
3971}
3972
3973bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3974			unsigned long mark, int highest_zoneidx)
3975{
3976	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3977
3978	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3979		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3980
3981	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3982								free_pages);
3983}
3984
3985#ifdef CONFIG_NUMA
 
 
 
 
 
3986static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3987{
3988	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3989				node_reclaim_distance;
3990}
3991#else	/* CONFIG_NUMA */
 
 
 
 
 
3992static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3993{
3994	return true;
3995}
3996#endif	/* CONFIG_NUMA */
3997
3998/*
3999 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4000 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4001 * premature use of a lower zone may cause lowmem pressure problems that
4002 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4003 * probably too small. It only makes sense to spread allocations to avoid
4004 * fragmentation between the Normal and DMA32 zones.
4005 */
4006static inline unsigned int
4007alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4008{
4009	unsigned int alloc_flags;
4010
4011	/*
4012	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4013	 * to save a branch.
4014	 */
4015	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4016
4017#ifdef CONFIG_ZONE_DMA32
4018	if (!zone)
4019		return alloc_flags;
4020
4021	if (zone_idx(zone) != ZONE_NORMAL)
4022		return alloc_flags;
4023
4024	/*
4025	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4026	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4027	 * on UMA that if Normal is populated then so is DMA32.
4028	 */
4029	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4030	if (nr_online_nodes > 1 && !populated_zone(--zone))
4031		return alloc_flags;
4032
4033	alloc_flags |= ALLOC_NOFRAGMENT;
4034#endif /* CONFIG_ZONE_DMA32 */
4035	return alloc_flags;
4036}
4037
4038/* Must be called after current_gfp_context() which can change gfp_mask */
4039static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4040						  unsigned int alloc_flags)
4041{
4042#ifdef CONFIG_CMA
4043	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4044		alloc_flags |= ALLOC_CMA;
4045#endif
4046	return alloc_flags;
4047}
4048
4049/*
4050 * get_page_from_freelist goes through the zonelist trying to allocate
4051 * a page.
4052 */
4053static struct page *
4054get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4055						const struct alloc_context *ac)
4056{
 
4057	struct zoneref *z;
 
4058	struct zone *zone;
4059	struct pglist_data *last_pgdat_dirty_limit = NULL;
4060	bool no_fallback;
 
 
 
4061
4062retry:
4063	/*
4064	 * Scan zonelist, looking for a zone with enough free.
4065	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4066	 */
4067	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4068	z = ac->preferred_zoneref;
4069	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4070					ac->nodemask) {
4071		struct page *page;
4072		unsigned long mark;
4073
4074		if (cpusets_enabled() &&
4075			(alloc_flags & ALLOC_CPUSET) &&
4076			!__cpuset_zone_allowed(zone, gfp_mask))
4077				continue;
4078		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4079		 * When allocating a page cache page for writing, we
4080		 * want to get it from a node that is within its dirty
4081		 * limit, such that no single node holds more than its
4082		 * proportional share of globally allowed dirty pages.
4083		 * The dirty limits take into account the node's
4084		 * lowmem reserves and high watermark so that kswapd
4085		 * should be able to balance it without having to
4086		 * write pages from its LRU list.
4087		 *
 
 
 
 
 
 
 
4088		 * XXX: For now, allow allocations to potentially
4089		 * exceed the per-node dirty limit in the slowpath
4090		 * (spread_dirty_pages unset) before going into reclaim,
4091		 * which is important when on a NUMA setup the allowed
4092		 * nodes are together not big enough to reach the
4093		 * global limit.  The proper fix for these situations
4094		 * will require awareness of nodes in the
4095		 * dirty-throttling and the flusher threads.
4096		 */
4097		if (ac->spread_dirty_pages) {
4098			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4099				continue;
4100
4101			if (!node_dirty_ok(zone->zone_pgdat)) {
4102				last_pgdat_dirty_limit = zone->zone_pgdat;
4103				continue;
4104			}
4105		}
4106
4107		if (no_fallback && nr_online_nodes > 1 &&
4108		    zone != ac->preferred_zoneref->zone) {
4109			int local_nid;
4110
4111			/*
4112			 * If moving to a remote node, retry but allow
4113			 * fragmenting fallbacks. Locality is more important
4114			 * than fragmentation avoidance.
4115			 */
4116			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4117			if (zone_to_nid(zone) != local_nid) {
4118				alloc_flags &= ~ALLOC_NOFRAGMENT;
4119				goto retry;
4120			}
4121		}
4122
4123		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4124		if (!zone_watermark_fast(zone, order, mark,
4125				       ac->highest_zoneidx, alloc_flags,
4126				       gfp_mask)) {
4127			int ret;
4128
4129#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4130			/*
4131			 * Watermark failed for this zone, but see if we can
4132			 * grow this zone if it contains deferred pages.
4133			 */
4134			if (static_branch_unlikely(&deferred_pages)) {
4135				if (_deferred_grow_zone(zone, order))
4136					goto try_this_zone;
4137			}
4138#endif
4139			/* Checked here to keep the fast path fast */
4140			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4141			if (alloc_flags & ALLOC_NO_WATERMARKS)
4142				goto try_this_zone;
4143
4144			if (!node_reclaim_enabled() ||
4145			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4146				continue;
4147
4148			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4149			switch (ret) {
4150			case NODE_RECLAIM_NOSCAN:
4151				/* did not scan */
4152				continue;
4153			case NODE_RECLAIM_FULL:
4154				/* scanned but unreclaimable */
4155				continue;
4156			default:
4157				/* did we reclaim enough */
4158				if (zone_watermark_ok(zone, order, mark,
4159					ac->highest_zoneidx, alloc_flags))
4160					goto try_this_zone;
4161
4162				continue;
4163			}
4164		}
4165
4166try_this_zone:
4167		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4168				gfp_mask, alloc_flags, ac->migratetype);
4169		if (page) {
4170			prep_new_page(page, order, gfp_mask, alloc_flags);
 
4171
4172			/*
4173			 * If this is a high-order atomic allocation then check
4174			 * if the pageblock should be reserved for the future
4175			 */
4176			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4177				reserve_highatomic_pageblock(page, zone, order);
4178
4179			return page;
4180		} else {
4181#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4182			/* Try again if zone has deferred pages */
4183			if (static_branch_unlikely(&deferred_pages)) {
4184				if (_deferred_grow_zone(zone, order))
4185					goto try_this_zone;
4186			}
4187#endif
4188		}
4189	}
4190
4191	/*
4192	 * It's possible on a UMA machine to get through all zones that are
4193	 * fragmented. If avoiding fragmentation, reset and try again.
4194	 */
4195	if (no_fallback) {
4196		alloc_flags &= ~ALLOC_NOFRAGMENT;
4197		goto retry;
 
 
 
 
 
 
 
 
 
4198	}
4199
 
 
 
4200	return NULL;
4201}
4202
4203static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4204{
4205	unsigned int filter = SHOW_MEM_FILTER_NODES;
4206
 
 
 
 
4207	/*
4208	 * This documents exceptions given to allocations in certain
4209	 * contexts that are allowed to allocate outside current's set
4210	 * of allowed nodes.
4211	 */
4212	if (!(gfp_mask & __GFP_NOMEMALLOC))
4213		if (tsk_is_oom_victim(current) ||
4214		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4215			filter &= ~SHOW_MEM_FILTER_NODES;
4216	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4217		filter &= ~SHOW_MEM_FILTER_NODES;
4218
4219	show_mem(filter, nodemask);
4220}
 
 
 
4221
4222void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4223{
4224	struct va_format vaf;
4225	va_list args;
4226	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4227
4228	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4229		return;
4230
4231	va_start(args, fmt);
4232	vaf.fmt = fmt;
4233	vaf.va = &args;
4234	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4235			current->comm, &vaf, gfp_mask, &gfp_mask,
4236			nodemask_pr_args(nodemask));
4237	va_end(args);
4238
4239	cpuset_print_current_mems_allowed();
4240	pr_cont("\n");
4241	dump_stack();
4242	warn_alloc_show_mem(gfp_mask, nodemask);
4243}
4244
4245static inline struct page *
4246__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4247			      unsigned int alloc_flags,
4248			      const struct alloc_context *ac)
4249{
4250	struct page *page;
4251
4252	page = get_page_from_freelist(gfp_mask, order,
4253			alloc_flags|ALLOC_CPUSET, ac);
4254	/*
4255	 * fallback to ignore cpuset restriction if our nodes
4256	 * are depleted
4257	 */
4258	if (!page)
4259		page = get_page_from_freelist(gfp_mask, order,
4260				alloc_flags, ac);
4261
4262	return page;
4263}
4264
4265static inline struct page *
4266__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4267	const struct alloc_context *ac, unsigned long *did_some_progress)
4268{
4269	struct oom_control oc = {
4270		.zonelist = ac->zonelist,
4271		.nodemask = ac->nodemask,
4272		.memcg = NULL,
4273		.gfp_mask = gfp_mask,
4274		.order = order,
4275	};
4276	struct page *page;
4277
4278	*did_some_progress = 0;
4279
4280	/*
4281	 * Acquire the oom lock.  If that fails, somebody else is
4282	 * making progress for us.
4283	 */
4284	if (!mutex_trylock(&oom_lock)) {
4285		*did_some_progress = 1;
4286		schedule_timeout_uninterruptible(1);
4287		return NULL;
4288	}
4289
4290	/*
4291	 * Go through the zonelist yet one more time, keep very high watermark
4292	 * here, this is only to catch a parallel oom killing, we must fail if
4293	 * we're still under heavy pressure. But make sure that this reclaim
4294	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4295	 * allocation which will never fail due to oom_lock already held.
4296	 */
4297	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4298				      ~__GFP_DIRECT_RECLAIM, order,
4299				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4300	if (page)
4301		goto out;
4302
4303	/* Coredumps can quickly deplete all memory reserves */
4304	if (current->flags & PF_DUMPCORE)
4305		goto out;
4306	/* The OOM killer will not help higher order allocs */
4307	if (order > PAGE_ALLOC_COSTLY_ORDER)
4308		goto out;
4309	/*
4310	 * We have already exhausted all our reclaim opportunities without any
4311	 * success so it is time to admit defeat. We will skip the OOM killer
4312	 * because it is very likely that the caller has a more reasonable
4313	 * fallback than shooting a random task.
4314	 *
4315	 * The OOM killer may not free memory on a specific node.
4316	 */
4317	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4318		goto out;
4319	/* The OOM killer does not needlessly kill tasks for lowmem */
4320	if (ac->highest_zoneidx < ZONE_NORMAL)
4321		goto out;
4322	if (pm_suspended_storage())
4323		goto out;
4324	/*
4325	 * XXX: GFP_NOFS allocations should rather fail than rely on
4326	 * other request to make a forward progress.
4327	 * We are in an unfortunate situation where out_of_memory cannot
4328	 * do much for this context but let's try it to at least get
4329	 * access to memory reserved if the current task is killed (see
4330	 * out_of_memory). Once filesystems are ready to handle allocation
4331	 * failures more gracefully we should just bail out here.
4332	 */
4333
4334	/* Exhausted what can be done so it's blame time */
4335	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4336		*did_some_progress = 1;
4337
4338		/*
4339		 * Help non-failing allocations by giving them access to memory
4340		 * reserves
4341		 */
4342		if (gfp_mask & __GFP_NOFAIL)
4343			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
 
 
 
4344					ALLOC_NO_WATERMARKS, ac);
 
4345	}
4346out:
4347	mutex_unlock(&oom_lock);
4348	return page;
4349}
4350
4351/*
4352 * Maximum number of compaction retries with a progress before OOM
4353 * killer is consider as the only way to move forward.
4354 */
4355#define MAX_COMPACT_RETRIES 16
4356
4357#ifdef CONFIG_COMPACTION
4358/* Try memory compaction for high-order allocations before reclaim */
4359static struct page *
4360__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4361		unsigned int alloc_flags, const struct alloc_context *ac,
4362		enum compact_priority prio, enum compact_result *compact_result)
 
4363{
4364	struct page *page = NULL;
4365	unsigned long pflags;
4366	unsigned int noreclaim_flag;
4367
4368	if (!order)
4369		return NULL;
4370
4371	psi_memstall_enter(&pflags);
4372	noreclaim_flag = memalloc_noreclaim_save();
4373
4374	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4375								prio, &page);
4376
4377	memalloc_noreclaim_restore(noreclaim_flag);
4378	psi_memstall_leave(&pflags);
 
 
 
 
 
 
4379
4380	if (*compact_result == COMPACT_SKIPPED)
4381		return NULL;
4382	/*
4383	 * At least in one zone compaction wasn't deferred or skipped, so let's
4384	 * count a compaction stall
4385	 */
4386	count_vm_event(COMPACTSTALL);
4387
4388	/* Prep a captured page if available */
4389	if (page)
4390		prep_new_page(page, order, gfp_mask, alloc_flags);
4391
4392	/* Try get a page from the freelist if available */
4393	if (!page)
4394		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4395
4396	if (page) {
4397		struct zone *zone = page_zone(page);
4398
4399		zone->compact_blockskip_flush = false;
4400		compaction_defer_reset(zone, order, true);
4401		count_vm_event(COMPACTSUCCESS);
4402		return page;
4403	}
4404
4405	/*
4406	 * It's bad if compaction run occurs and fails. The most likely reason
4407	 * is that pages exist, but not enough to satisfy watermarks.
4408	 */
4409	count_vm_event(COMPACTFAIL);
4410
4411	cond_resched();
4412
4413	return NULL;
4414}
4415
4416static inline bool
4417should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4418		     enum compact_result compact_result,
4419		     enum compact_priority *compact_priority,
4420		     int *compaction_retries)
4421{
4422	int max_retries = MAX_COMPACT_RETRIES;
4423	int min_priority;
4424	bool ret = false;
4425	int retries = *compaction_retries;
4426	enum compact_priority priority = *compact_priority;
4427
4428	if (!order)
4429		return false;
4430
4431	if (fatal_signal_pending(current))
4432		return false;
4433
4434	if (compaction_made_progress(compact_result))
4435		(*compaction_retries)++;
4436
4437	/*
4438	 * compaction considers all the zone as desperately out of memory
4439	 * so it doesn't really make much sense to retry except when the
4440	 * failure could be caused by insufficient priority
4441	 */
4442	if (compaction_failed(compact_result))
4443		goto check_priority;
4444
4445	/*
4446	 * compaction was skipped because there are not enough order-0 pages
4447	 * to work with, so we retry only if it looks like reclaim can help.
4448	 */
4449	if (compaction_needs_reclaim(compact_result)) {
4450		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4451		goto out;
4452	}
4453
4454	/*
4455	 * make sure the compaction wasn't deferred or didn't bail out early
4456	 * due to locks contention before we declare that we should give up.
4457	 * But the next retry should use a higher priority if allowed, so
4458	 * we don't just keep bailing out endlessly.
4459	 */
4460	if (compaction_withdrawn(compact_result)) {
4461		goto check_priority;
4462	}
4463
4464	/*
4465	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4466	 * costly ones because they are de facto nofail and invoke OOM
4467	 * killer to move on while costly can fail and users are ready
4468	 * to cope with that. 1/4 retries is rather arbitrary but we
4469	 * would need much more detailed feedback from compaction to
4470	 * make a better decision.
4471	 */
4472	if (order > PAGE_ALLOC_COSTLY_ORDER)
4473		max_retries /= 4;
4474	if (*compaction_retries <= max_retries) {
4475		ret = true;
4476		goto out;
4477	}
4478
4479	/*
4480	 * Make sure there are attempts at the highest priority if we exhausted
4481	 * all retries or failed at the lower priorities.
4482	 */
4483check_priority:
4484	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4485			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4486
4487	if (*compact_priority > min_priority) {
4488		(*compact_priority)--;
4489		*compaction_retries = 0;
4490		ret = true;
4491	}
4492out:
4493	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4494	return ret;
4495}
4496#else
4497static inline struct page *
4498__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4499		unsigned int alloc_flags, const struct alloc_context *ac,
4500		enum compact_priority prio, enum compact_result *compact_result)
 
4501{
4502	*compact_result = COMPACT_SKIPPED;
4503	return NULL;
4504}
4505
4506static inline bool
4507should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4508		     enum compact_result compact_result,
4509		     enum compact_priority *compact_priority,
4510		     int *compaction_retries)
4511{
4512	struct zone *zone;
4513	struct zoneref *z;
4514
4515	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4516		return false;
4517
4518	/*
4519	 * There are setups with compaction disabled which would prefer to loop
4520	 * inside the allocator rather than hit the oom killer prematurely.
4521	 * Let's give them a good hope and keep retrying while the order-0
4522	 * watermarks are OK.
4523	 */
4524	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4525				ac->highest_zoneidx, ac->nodemask) {
4526		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4527					ac->highest_zoneidx, alloc_flags))
4528			return true;
4529	}
4530	return false;
4531}
4532#endif /* CONFIG_COMPACTION */
4533
4534#ifdef CONFIG_LOCKDEP
4535static struct lockdep_map __fs_reclaim_map =
4536	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4537
4538static bool __need_reclaim(gfp_t gfp_mask)
4539{
4540	/* no reclaim without waiting on it */
4541	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4542		return false;
4543
4544	/* this guy won't enter reclaim */
4545	if (current->flags & PF_MEMALLOC)
4546		return false;
4547
4548	if (gfp_mask & __GFP_NOLOCKDEP)
4549		return false;
4550
4551	return true;
4552}
4553
4554void __fs_reclaim_acquire(void)
4555{
4556	lock_map_acquire(&__fs_reclaim_map);
4557}
4558
4559void __fs_reclaim_release(void)
4560{
4561	lock_map_release(&__fs_reclaim_map);
4562}
4563
4564void fs_reclaim_acquire(gfp_t gfp_mask)
4565{
4566	gfp_mask = current_gfp_context(gfp_mask);
4567
4568	if (__need_reclaim(gfp_mask)) {
4569		if (gfp_mask & __GFP_FS)
4570			__fs_reclaim_acquire();
4571
4572#ifdef CONFIG_MMU_NOTIFIER
4573		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4574		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4575#endif
4576
4577	}
4578}
4579EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4580
4581void fs_reclaim_release(gfp_t gfp_mask)
4582{
4583	gfp_mask = current_gfp_context(gfp_mask);
4584
4585	if (__need_reclaim(gfp_mask)) {
4586		if (gfp_mask & __GFP_FS)
4587			__fs_reclaim_release();
4588	}
4589}
4590EXPORT_SYMBOL_GPL(fs_reclaim_release);
4591#endif
4592
4593/* Perform direct synchronous page reclaim */
4594static unsigned long
4595__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4596					const struct alloc_context *ac)
4597{
4598	unsigned int noreclaim_flag;
4599	unsigned long pflags, progress;
4600
4601	cond_resched();
4602
4603	/* We now go into synchronous reclaim */
4604	cpuset_memory_pressure_bump();
4605	psi_memstall_enter(&pflags);
4606	fs_reclaim_acquire(gfp_mask);
4607	noreclaim_flag = memalloc_noreclaim_save();
 
4608
4609	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4610								ac->nodemask);
4611
4612	memalloc_noreclaim_restore(noreclaim_flag);
4613	fs_reclaim_release(gfp_mask);
4614	psi_memstall_leave(&pflags);
4615
4616	cond_resched();
4617
4618	return progress;
4619}
4620
4621/* The really slow allocator path where we enter direct reclaim */
4622static inline struct page *
4623__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4624		unsigned int alloc_flags, const struct alloc_context *ac,
4625		unsigned long *did_some_progress)
4626{
4627	struct page *page = NULL;
4628	bool drained = false;
4629
4630	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4631	if (unlikely(!(*did_some_progress)))
4632		return NULL;
4633
4634retry:
4635	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
 
4636
4637	/*
4638	 * If an allocation failed after direct reclaim, it could be because
4639	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4640	 * Shrink them and try again
4641	 */
4642	if (!page && !drained) {
4643		unreserve_highatomic_pageblock(ac, false);
4644		drain_all_pages(NULL);
4645		drained = true;
4646		goto retry;
4647	}
4648
4649	return page;
4650}
4651
4652static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4653			     const struct alloc_context *ac)
4654{
4655	struct zoneref *z;
4656	struct zone *zone;
4657	pg_data_t *last_pgdat = NULL;
4658	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4659
4660	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4661					ac->nodemask) {
4662		if (last_pgdat != zone->zone_pgdat)
4663			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4664		last_pgdat = zone->zone_pgdat;
4665	}
4666}
4667
4668static inline unsigned int
4669gfp_to_alloc_flags(gfp_t gfp_mask)
4670{
4671	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4672
4673	/*
4674	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4675	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4676	 * to save two branches.
4677	 */
4678	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4679	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4680
4681	/*
4682	 * The caller may dip into page reserves a bit more if the caller
4683	 * cannot run direct reclaim, or if the caller has realtime scheduling
4684	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4685	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4686	 */
4687	alloc_flags |= (__force int)
4688		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4689
4690	if (gfp_mask & __GFP_ATOMIC) {
4691		/*
4692		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4693		 * if it can't schedule.
4694		 */
4695		if (!(gfp_mask & __GFP_NOMEMALLOC))
4696			alloc_flags |= ALLOC_HARDER;
4697		/*
4698		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4699		 * comment for __cpuset_node_allowed().
4700		 */
4701		alloc_flags &= ~ALLOC_CPUSET;
4702	} else if (unlikely(rt_task(current)) && !in_interrupt())
4703		alloc_flags |= ALLOC_HARDER;
4704
4705	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4706
 
 
 
 
 
 
 
 
 
 
 
 
4707	return alloc_flags;
4708}
4709
4710static bool oom_reserves_allowed(struct task_struct *tsk)
4711{
4712	if (!tsk_is_oom_victim(tsk))
4713		return false;
4714
4715	/*
4716	 * !MMU doesn't have oom reaper so give access to memory reserves
4717	 * only to the thread with TIF_MEMDIE set
4718	 */
4719	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4720		return false;
4721
4722	return true;
4723}
4724
4725/*
4726 * Distinguish requests which really need access to full memory
4727 * reserves from oom victims which can live with a portion of it
4728 */
4729static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4730{
4731	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4732		return 0;
4733	if (gfp_mask & __GFP_MEMALLOC)
4734		return ALLOC_NO_WATERMARKS;
4735	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4736		return ALLOC_NO_WATERMARKS;
4737	if (!in_interrupt()) {
4738		if (current->flags & PF_MEMALLOC)
4739			return ALLOC_NO_WATERMARKS;
4740		else if (oom_reserves_allowed(current))
4741			return ALLOC_OOM;
4742	}
4743
4744	return 0;
4745}
4746
4747bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4748{
4749	return !!__gfp_pfmemalloc_flags(gfp_mask);
4750}
4751
4752/*
4753 * Checks whether it makes sense to retry the reclaim to make a forward progress
4754 * for the given allocation request.
4755 *
4756 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4757 * without success, or when we couldn't even meet the watermark if we
4758 * reclaimed all remaining pages on the LRU lists.
4759 *
4760 * Returns true if a retry is viable or false to enter the oom path.
4761 */
4762static inline bool
4763should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4764		     struct alloc_context *ac, int alloc_flags,
4765		     bool did_some_progress, int *no_progress_loops)
4766{
4767	struct zone *zone;
4768	struct zoneref *z;
4769	bool ret = false;
4770
4771	/*
4772	 * Costly allocations might have made a progress but this doesn't mean
4773	 * their order will become available due to high fragmentation so
4774	 * always increment the no progress counter for them
4775	 */
4776	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4777		*no_progress_loops = 0;
4778	else
4779		(*no_progress_loops)++;
4780
4781	/*
4782	 * Make sure we converge to OOM if we cannot make any progress
4783	 * several times in the row.
4784	 */
4785	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4786		/* Before OOM, exhaust highatomic_reserve */
4787		return unreserve_highatomic_pageblock(ac, true);
4788	}
4789
4790	/*
4791	 * Keep reclaiming pages while there is a chance this will lead
4792	 * somewhere.  If none of the target zones can satisfy our allocation
4793	 * request even if all reclaimable pages are considered then we are
4794	 * screwed and have to go OOM.
4795	 */
4796	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4797				ac->highest_zoneidx, ac->nodemask) {
4798		unsigned long available;
4799		unsigned long reclaimable;
4800		unsigned long min_wmark = min_wmark_pages(zone);
4801		bool wmark;
4802
4803		available = reclaimable = zone_reclaimable_pages(zone);
4804		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4805
4806		/*
4807		 * Would the allocation succeed if we reclaimed all
4808		 * reclaimable pages?
4809		 */
4810		wmark = __zone_watermark_ok(zone, order, min_wmark,
4811				ac->highest_zoneidx, alloc_flags, available);
4812		trace_reclaim_retry_zone(z, order, reclaimable,
4813				available, min_wmark, *no_progress_loops, wmark);
4814		if (wmark) {
4815			/*
4816			 * If we didn't make any progress and have a lot of
4817			 * dirty + writeback pages then we should wait for
4818			 * an IO to complete to slow down the reclaim and
4819			 * prevent from pre mature OOM
4820			 */
4821			if (!did_some_progress) {
4822				unsigned long write_pending;
4823
4824				write_pending = zone_page_state_snapshot(zone,
4825							NR_ZONE_WRITE_PENDING);
4826
4827				if (2 * write_pending > reclaimable) {
4828					congestion_wait(BLK_RW_ASYNC, HZ/10);
4829					return true;
4830				}
4831			}
4832
4833			ret = true;
4834			goto out;
4835		}
4836	}
4837
4838out:
4839	/*
4840	 * Memory allocation/reclaim might be called from a WQ context and the
4841	 * current implementation of the WQ concurrency control doesn't
4842	 * recognize that a particular WQ is congested if the worker thread is
4843	 * looping without ever sleeping. Therefore we have to do a short sleep
4844	 * here rather than calling cond_resched().
4845	 */
4846	if (current->flags & PF_WQ_WORKER)
4847		schedule_timeout_uninterruptible(1);
4848	else
4849		cond_resched();
4850	return ret;
4851}
4852
4853static inline bool
4854check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4855{
4856	/*
4857	 * It's possible that cpuset's mems_allowed and the nodemask from
4858	 * mempolicy don't intersect. This should be normally dealt with by
4859	 * policy_nodemask(), but it's possible to race with cpuset update in
4860	 * such a way the check therein was true, and then it became false
4861	 * before we got our cpuset_mems_cookie here.
4862	 * This assumes that for all allocations, ac->nodemask can come only
4863	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4864	 * when it does not intersect with the cpuset restrictions) or the
4865	 * caller can deal with a violated nodemask.
4866	 */
4867	if (cpusets_enabled() && ac->nodemask &&
4868			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4869		ac->nodemask = NULL;
4870		return true;
4871	}
4872
4873	/*
4874	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4875	 * possible to race with parallel threads in such a way that our
4876	 * allocation can fail while the mask is being updated. If we are about
4877	 * to fail, check if the cpuset changed during allocation and if so,
4878	 * retry.
4879	 */
4880	if (read_mems_allowed_retry(cpuset_mems_cookie))
4881		return true;
4882
4883	return false;
4884}
4885
4886static inline struct page *
4887__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4888						struct alloc_context *ac)
4889{
4890	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4891	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4892	struct page *page = NULL;
4893	unsigned int alloc_flags;
 
4894	unsigned long did_some_progress;
4895	enum compact_priority compact_priority;
4896	enum compact_result compact_result;
4897	int compaction_retries;
4898	int no_progress_loops;
4899	unsigned int cpuset_mems_cookie;
4900	int reserve_flags;
 
 
 
 
 
 
 
 
4901
4902	/*
4903	 * We also sanity check to catch abuse of atomic reserves being used by
4904	 * callers that are not in atomic context.
4905	 */
4906	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4907				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4908		gfp_mask &= ~__GFP_ATOMIC;
4909
4910retry_cpuset:
4911	compaction_retries = 0;
4912	no_progress_loops = 0;
4913	compact_priority = DEF_COMPACT_PRIORITY;
4914	cpuset_mems_cookie = read_mems_allowed_begin();
4915
4916	/*
4917	 * The fast path uses conservative alloc_flags to succeed only until
4918	 * kswapd needs to be woken up, and to avoid the cost of setting up
4919	 * alloc_flags precisely. So we do that now.
4920	 */
4921	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4922
4923	/*
4924	 * We need to recalculate the starting point for the zonelist iterator
4925	 * because we might have used different nodemask in the fast path, or
4926	 * there was a cpuset modification and we are retrying - otherwise we
4927	 * could end up iterating over non-eligible zones endlessly.
4928	 */
4929	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4930					ac->highest_zoneidx, ac->nodemask);
4931	if (!ac->preferred_zoneref->zone)
4932		goto nopage;
4933
4934	if (alloc_flags & ALLOC_KSWAPD)
4935		wake_all_kswapds(order, gfp_mask, ac);
4936
4937	/*
4938	 * The adjusted alloc_flags might result in immediate success, so try
4939	 * that first
4940	 */
4941	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4942	if (page)
4943		goto got_pg;
4944
4945	/*
4946	 * For costly allocations, try direct compaction first, as it's likely
4947	 * that we have enough base pages and don't need to reclaim. For non-
4948	 * movable high-order allocations, do that as well, as compaction will
4949	 * try prevent permanent fragmentation by migrating from blocks of the
4950	 * same migratetype.
4951	 * Don't try this for allocations that are allowed to ignore
4952	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4953	 */
4954	if (can_direct_reclaim &&
4955			(costly_order ||
4956			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4957			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4958		page = __alloc_pages_direct_compact(gfp_mask, order,
4959						alloc_flags, ac,
4960						INIT_COMPACT_PRIORITY,
4961						&compact_result);
4962		if (page)
4963			goto got_pg;
 
4964
 
 
4965		/*
4966		 * Checks for costly allocations with __GFP_NORETRY, which
4967		 * includes some THP page fault allocations
 
4968		 */
4969		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4970			/*
4971			 * If allocating entire pageblock(s) and compaction
4972			 * failed because all zones are below low watermarks
4973			 * or is prohibited because it recently failed at this
4974			 * order, fail immediately unless the allocator has
4975			 * requested compaction and reclaim retry.
4976			 *
4977			 * Reclaim is
4978			 *  - potentially very expensive because zones are far
4979			 *    below their low watermarks or this is part of very
4980			 *    bursty high order allocations,
4981			 *  - not guaranteed to help because isolate_freepages()
4982			 *    may not iterate over freed pages as part of its
4983			 *    linear scan, and
4984			 *  - unlikely to make entire pageblocks free on its
4985			 *    own.
4986			 */
4987			if (compact_result == COMPACT_SKIPPED ||
4988			    compact_result == COMPACT_DEFERRED)
4989				goto nopage;
4990
4991			/*
4992			 * Looks like reclaim/compaction is worth trying, but
4993			 * sync compaction could be very expensive, so keep
4994			 * using async compaction.
4995			 */
4996			compact_priority = INIT_COMPACT_PRIORITY;
 
 
 
 
4997		}
 
4998	}
4999
5000retry:
5001	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5002	if (alloc_flags & ALLOC_KSWAPD)
5003		wake_all_kswapds(order, gfp_mask, ac);
5004
5005	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5006	if (reserve_flags)
5007		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5008
5009	/*
5010	 * Reset the nodemask and zonelist iterators if memory policies can be
5011	 * ignored. These allocations are high priority and system rather than
5012	 * user oriented.
5013	 */
5014	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5015		ac->nodemask = NULL;
5016		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5017					ac->highest_zoneidx, ac->nodemask);
5018	}
5019
5020	/* Attempt with potentially adjusted zonelist and alloc_flags */
5021	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5022	if (page)
5023		goto got_pg;
5024
5025	/* Caller is not willing to reclaim, we can't balance anything */
5026	if (!can_direct_reclaim)
5027		goto nopage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5028
5029	/* Avoid recursion of direct reclaim */
5030	if (current->flags & PF_MEMALLOC)
5031		goto nopage;
 
 
 
 
5032
5033	/* Try direct reclaim and then allocating */
5034	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5035							&did_some_progress);
5036	if (page)
5037		goto got_pg;
5038
5039	/* Try direct compaction and then allocating */
5040	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5041					compact_priority, &compact_result);
5042	if (page)
5043		goto got_pg;
5044
5045	/* Do not loop if specifically requested */
5046	if (gfp_mask & __GFP_NORETRY)
5047		goto nopage;
5048
5049	/*
5050	 * Do not retry costly high order allocations unless they are
5051	 * __GFP_RETRY_MAYFAIL
5052	 */
5053	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5054		goto nopage;
5055
5056	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5057				 did_some_progress > 0, &no_progress_loops))
5058		goto retry;
5059
5060	/*
5061	 * It doesn't make any sense to retry for the compaction if the order-0
5062	 * reclaim is not able to make any progress because the current
5063	 * implementation of the compaction depends on the sufficient amount
5064	 * of free memory (see __compaction_suitable)
5065	 */
5066	if (did_some_progress > 0 &&
5067			should_compact_retry(ac, order, alloc_flags,
5068				compact_result, &compact_priority,
5069				&compaction_retries))
5070		goto retry;
5071
5072
5073	/* Deal with possible cpuset update races before we start OOM killing */
5074	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5075		goto retry_cpuset;
5076
5077	/* Reclaim has failed us, start killing things */
5078	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5079	if (page)
5080		goto got_pg;
5081
5082	/* Avoid allocations with no watermarks from looping endlessly */
5083	if (tsk_is_oom_victim(current) &&
5084	    (alloc_flags & ALLOC_OOM ||
5085	     (gfp_mask & __GFP_NOMEMALLOC)))
5086		goto nopage;
5087
5088	/* Retry as long as the OOM killer is making progress */
5089	if (did_some_progress) {
5090		no_progress_loops = 0;
5091		goto retry;
5092	}
5093
 
 
 
 
 
 
 
 
 
 
 
 
5094nopage:
5095	/* Deal with possible cpuset update races before we fail */
5096	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5097		goto retry_cpuset;
5098
5099	/*
5100	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5101	 * we always retry
5102	 */
5103	if (gfp_mask & __GFP_NOFAIL) {
5104		/*
5105		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5106		 * of any new users that actually require GFP_NOWAIT
5107		 */
5108		if (WARN_ON_ONCE(!can_direct_reclaim))
5109			goto fail;
5110
5111		/*
5112		 * PF_MEMALLOC request from this context is rather bizarre
5113		 * because we cannot reclaim anything and only can loop waiting
5114		 * for somebody to do a work for us
5115		 */
5116		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5117
5118		/*
5119		 * non failing costly orders are a hard requirement which we
5120		 * are not prepared for much so let's warn about these users
5121		 * so that we can identify them and convert them to something
5122		 * else.
5123		 */
5124		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5125
5126		/*
5127		 * Help non-failing allocations by giving them access to memory
5128		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5129		 * could deplete whole memory reserves which would just make
5130		 * the situation worse
5131		 */
5132		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5133		if (page)
5134			goto got_pg;
5135
5136		cond_resched();
5137		goto retry;
5138	}
5139fail:
5140	warn_alloc(gfp_mask, ac->nodemask,
5141			"page allocation failure: order:%u", order);
5142got_pg:
5143	return page;
5144}
5145
5146static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5147		int preferred_nid, nodemask_t *nodemask,
5148		struct alloc_context *ac, gfp_t *alloc_gfp,
5149		unsigned int *alloc_flags)
5150{
5151	ac->highest_zoneidx = gfp_zone(gfp_mask);
5152	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5153	ac->nodemask = nodemask;
5154	ac->migratetype = gfp_migratetype(gfp_mask);
 
 
 
 
 
 
 
 
5155
5156	if (cpusets_enabled()) {
5157		*alloc_gfp |= __GFP_HARDWALL;
5158		/*
5159		 * When we are in the interrupt context, it is irrelevant
5160		 * to the current task context. It means that any node ok.
5161		 */
5162		if (!in_interrupt() && !ac->nodemask)
5163			ac->nodemask = &cpuset_current_mems_allowed;
5164		else
5165			*alloc_flags |= ALLOC_CPUSET;
5166	}
5167
5168	fs_reclaim_acquire(gfp_mask);
5169	fs_reclaim_release(gfp_mask);
5170
5171	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5172
5173	if (should_fail_alloc_page(gfp_mask, order))
5174		return false;
5175
5176	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5177
5178	/* Dirty zone balancing only done in the fast path */
5179	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5180
5181	/*
5182	 * The preferred zone is used for statistics but crucially it is
5183	 * also used as the starting point for the zonelist iterator. It
5184	 * may get reset for allocations that ignore memory policies.
5185	 */
5186	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5187					ac->highest_zoneidx, ac->nodemask);
5188
5189	return true;
5190}
5191
5192/*
5193 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5194 * @gfp: GFP flags for the allocation
5195 * @preferred_nid: The preferred NUMA node ID to allocate from
5196 * @nodemask: Set of nodes to allocate from, may be NULL
5197 * @nr_pages: The number of pages desired on the list or array
5198 * @page_list: Optional list to store the allocated pages
5199 * @page_array: Optional array to store the pages
5200 *
5201 * This is a batched version of the page allocator that attempts to
5202 * allocate nr_pages quickly. Pages are added to page_list if page_list
5203 * is not NULL, otherwise it is assumed that the page_array is valid.
5204 *
5205 * For lists, nr_pages is the number of pages that should be allocated.
5206 *
5207 * For arrays, only NULL elements are populated with pages and nr_pages
5208 * is the maximum number of pages that will be stored in the array.
5209 *
5210 * Returns the number of pages on the list or array.
5211 */
5212unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5213			nodemask_t *nodemask, int nr_pages,
5214			struct list_head *page_list,
5215			struct page **page_array)
5216{
5217	struct page *page;
5218	unsigned long flags;
5219	struct zone *zone;
5220	struct zoneref *z;
5221	struct per_cpu_pages *pcp;
5222	struct list_head *pcp_list;
5223	struct alloc_context ac;
5224	gfp_t alloc_gfp;
5225	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5226	int nr_populated = 0, nr_account = 0;
5227
5228	/*
5229	 * Skip populated array elements to determine if any pages need
5230	 * to be allocated before disabling IRQs.
5231	 */
5232	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5233		nr_populated++;
5234
5235	/* No pages requested? */
5236	if (unlikely(nr_pages <= 0))
5237		goto out;
5238
5239	/* Already populated array? */
5240	if (unlikely(page_array && nr_pages - nr_populated == 0))
5241		goto out;
5242
5243	/* Use the single page allocator for one page. */
5244	if (nr_pages - nr_populated == 1)
5245		goto failed;
5246
5247#ifdef CONFIG_PAGE_OWNER
5248	/*
5249	 * PAGE_OWNER may recurse into the allocator to allocate space to
5250	 * save the stack with pagesets.lock held. Releasing/reacquiring
5251	 * removes much of the performance benefit of bulk allocation so
5252	 * force the caller to allocate one page at a time as it'll have
5253	 * similar performance to added complexity to the bulk allocator.
5254	 */
5255	if (static_branch_unlikely(&page_owner_inited))
5256		goto failed;
5257#endif
5258
5259	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5260	gfp &= gfp_allowed_mask;
5261	alloc_gfp = gfp;
5262	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5263		goto out;
5264	gfp = alloc_gfp;
5265
5266	/* Find an allowed local zone that meets the low watermark. */
5267	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5268		unsigned long mark;
5269
5270		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5271		    !__cpuset_zone_allowed(zone, gfp)) {
5272			continue;
5273		}
5274
5275		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5276		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5277			goto failed;
5278		}
5279
5280		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5281		if (zone_watermark_fast(zone, 0,  mark,
5282				zonelist_zone_idx(ac.preferred_zoneref),
5283				alloc_flags, gfp)) {
5284			break;
5285		}
5286	}
5287
5288	/*
5289	 * If there are no allowed local zones that meets the watermarks then
5290	 * try to allocate a single page and reclaim if necessary.
5291	 */
5292	if (unlikely(!zone))
5293		goto failed;
5294
5295	/* Attempt the batch allocation */
5296	local_lock_irqsave(&pagesets.lock, flags);
5297	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5298	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5299
5300	while (nr_populated < nr_pages) {
5301
5302		/* Skip existing pages */
5303		if (page_array && page_array[nr_populated]) {
5304			nr_populated++;
5305			continue;
5306		}
5307
5308		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5309								pcp, pcp_list);
5310		if (unlikely(!page)) {
5311			/* Try and get at least one page */
5312			if (!nr_populated)
5313				goto failed_irq;
5314			break;
5315		}
5316		nr_account++;
5317
5318		prep_new_page(page, 0, gfp, 0);
5319		if (page_list)
5320			list_add(&page->lru, page_list);
5321		else
5322			page_array[nr_populated] = page;
5323		nr_populated++;
5324	}
5325
5326	local_unlock_irqrestore(&pagesets.lock, flags);
5327
5328	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5329	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5330
5331out:
5332	return nr_populated;
5333
5334failed_irq:
5335	local_unlock_irqrestore(&pagesets.lock, flags);
5336
5337failed:
5338	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5339	if (page) {
5340		if (page_list)
5341			list_add(&page->lru, page_list);
5342		else
5343			page_array[nr_populated] = page;
5344		nr_populated++;
5345	}
5346
5347	goto out;
5348}
5349EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5350
5351/*
5352 * This is the 'heart' of the zoned buddy allocator.
5353 */
5354struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5355							nodemask_t *nodemask)
5356{
5357	struct page *page;
5358	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5359	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5360	struct alloc_context ac = { };
5361
5362	/*
5363	 * There are several places where we assume that the order value is sane
5364	 * so bail out early if the request is out of bound.
 
 
5365	 */
5366	if (unlikely(order >= MAX_ORDER)) {
5367		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5368		return NULL;
5369	}
5370
5371	gfp &= gfp_allowed_mask;
5372	/*
5373	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5374	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5375	 * from a particular context which has been marked by
5376	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5377	 * movable zones are not used during allocation.
5378	 */
5379	gfp = current_gfp_context(gfp);
5380	alloc_gfp = gfp;
5381	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5382			&alloc_gfp, &alloc_flags))
5383		return NULL;
5384
5385	/*
5386	 * Forbid the first pass from falling back to types that fragment
5387	 * memory until all local zones are considered.
5388	 */
5389	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5390
5391	/* First allocation attempt */
5392	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5393	if (likely(page))
5394		goto out;
5395
5396	alloc_gfp = gfp;
5397	ac.spread_dirty_pages = false;
5398
5399	/*
5400	 * Restore the original nodemask if it was potentially replaced with
5401	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5402	 */
5403	ac.nodemask = nodemask;
5404
5405	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5406
5407out:
5408	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5409	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5410		__free_pages(page, order);
5411		page = NULL;
5412	}
5413
5414	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5415
5416	return page;
5417}
5418EXPORT_SYMBOL(__alloc_pages);
5419
5420/*
5421 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5422 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5423 * you need to access high mem.
5424 */
5425unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5426{
5427	struct page *page;
5428
5429	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
 
 
 
 
 
 
5430	if (!page)
5431		return 0;
5432	return (unsigned long) page_address(page);
5433}
5434EXPORT_SYMBOL(__get_free_pages);
5435
5436unsigned long get_zeroed_page(gfp_t gfp_mask)
5437{
5438	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5439}
5440EXPORT_SYMBOL(get_zeroed_page);
5441
5442/**
5443 * __free_pages - Free pages allocated with alloc_pages().
5444 * @page: The page pointer returned from alloc_pages().
5445 * @order: The order of the allocation.
5446 *
5447 * This function can free multi-page allocations that are not compound
5448 * pages.  It does not check that the @order passed in matches that of
5449 * the allocation, so it is easy to leak memory.  Freeing more memory
5450 * than was allocated will probably emit a warning.
5451 *
5452 * If the last reference to this page is speculative, it will be released
5453 * by put_page() which only frees the first page of a non-compound
5454 * allocation.  To prevent the remaining pages from being leaked, we free
5455 * the subsequent pages here.  If you want to use the page's reference
5456 * count to decide when to free the allocation, you should allocate a
5457 * compound page, and use put_page() instead of __free_pages().
5458 *
5459 * Context: May be called in interrupt context or while holding a normal
5460 * spinlock, but not in NMI context or while holding a raw spinlock.
5461 */
5462void __free_pages(struct page *page, unsigned int order)
5463{
5464	if (put_page_testzero(page))
5465		free_the_page(page, order);
5466	else if (!PageHead(page))
5467		while (order-- > 0)
5468			free_the_page(page + (1 << order), order);
 
5469}
 
5470EXPORT_SYMBOL(__free_pages);
5471
5472void free_pages(unsigned long addr, unsigned int order)
5473{
5474	if (addr != 0) {
5475		VM_BUG_ON(!virt_addr_valid((void *)addr));
5476		__free_pages(virt_to_page((void *)addr), order);
5477	}
5478}
5479
5480EXPORT_SYMBOL(free_pages);
5481
5482/*
5483 * Page Fragment:
5484 *  An arbitrary-length arbitrary-offset area of memory which resides
5485 *  within a 0 or higher order page.  Multiple fragments within that page
5486 *  are individually refcounted, in the page's reference counter.
5487 *
5488 * The page_frag functions below provide a simple allocation framework for
5489 * page fragments.  This is used by the network stack and network device
5490 * drivers to provide a backing region of memory for use as either an
5491 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5492 */
5493static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5494					     gfp_t gfp_mask)
5495{
5496	struct page *page = NULL;
5497	gfp_t gfp = gfp_mask;
5498
5499#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5500	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5501		    __GFP_NOMEMALLOC;
5502	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5503				PAGE_FRAG_CACHE_MAX_ORDER);
5504	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5505#endif
5506	if (unlikely(!page))
5507		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5508
5509	nc->va = page ? page_address(page) : NULL;
5510
5511	return page;
5512}
5513
5514void __page_frag_cache_drain(struct page *page, unsigned int count)
5515{
5516	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5517
5518	if (page_ref_sub_and_test(page, count))
5519		free_the_page(page, compound_order(page));
5520}
5521EXPORT_SYMBOL(__page_frag_cache_drain);
5522
5523void *page_frag_alloc_align(struct page_frag_cache *nc,
5524		      unsigned int fragsz, gfp_t gfp_mask,
5525		      unsigned int align_mask)
5526{
5527	unsigned int size = PAGE_SIZE;
5528	struct page *page;
5529	int offset;
5530
5531	if (unlikely(!nc->va)) {
5532refill:
5533		page = __page_frag_cache_refill(nc, gfp_mask);
5534		if (!page)
5535			return NULL;
5536
5537#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5538		/* if size can vary use size else just use PAGE_SIZE */
5539		size = nc->size;
5540#endif
5541		/* Even if we own the page, we do not use atomic_set().
5542		 * This would break get_page_unless_zero() users.
5543		 */
5544		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5545
5546		/* reset page count bias and offset to start of new frag */
5547		nc->pfmemalloc = page_is_pfmemalloc(page);
5548		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5549		nc->offset = size;
5550	}
5551
5552	offset = nc->offset - fragsz;
5553	if (unlikely(offset < 0)) {
5554		page = virt_to_page(nc->va);
5555
5556		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5557			goto refill;
5558
5559		if (unlikely(nc->pfmemalloc)) {
5560			free_the_page(page, compound_order(page));
5561			goto refill;
5562		}
5563
5564#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5565		/* if size can vary use size else just use PAGE_SIZE */
5566		size = nc->size;
5567#endif
5568		/* OK, page count is 0, we can safely set it */
5569		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5570
5571		/* reset page count bias and offset to start of new frag */
5572		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5573		offset = size - fragsz;
5574	}
5575
5576	nc->pagecnt_bias--;
5577	offset &= align_mask;
5578	nc->offset = offset;
5579
5580	return nc->va + offset;
5581}
5582EXPORT_SYMBOL(page_frag_alloc_align);
5583
5584/*
5585 * Frees a page fragment allocated out of either a compound or order 0 page.
5586 */
5587void page_frag_free(void *addr)
5588{
5589	struct page *page = virt_to_head_page(addr);
5590
5591	if (unlikely(put_page_testzero(page)))
5592		free_the_page(page, compound_order(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5593}
5594EXPORT_SYMBOL(page_frag_free);
5595
5596static void *make_alloc_exact(unsigned long addr, unsigned int order,
5597		size_t size)
5598{
5599	if (addr) {
5600		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5601		unsigned long used = addr + PAGE_ALIGN(size);
5602
5603		split_page(virt_to_page((void *)addr), order);
5604		while (used < alloc_end) {
5605			free_page(used);
5606			used += PAGE_SIZE;
5607		}
5608	}
5609	return (void *)addr;
5610}
5611
5612/**
5613 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5614 * @size: the number of bytes to allocate
5615 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5616 *
5617 * This function is similar to alloc_pages(), except that it allocates the
5618 * minimum number of pages to satisfy the request.  alloc_pages() can only
5619 * allocate memory in power-of-two pages.
5620 *
5621 * This function is also limited by MAX_ORDER.
5622 *
5623 * Memory allocated by this function must be released by free_pages_exact().
5624 *
5625 * Return: pointer to the allocated area or %NULL in case of error.
5626 */
5627void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5628{
5629	unsigned int order = get_order(size);
5630	unsigned long addr;
5631
5632	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5633		gfp_mask &= ~__GFP_COMP;
5634
5635	addr = __get_free_pages(gfp_mask, order);
5636	return make_alloc_exact(addr, order, size);
5637}
5638EXPORT_SYMBOL(alloc_pages_exact);
5639
5640/**
5641 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5642 *			   pages on a node.
5643 * @nid: the preferred node ID where memory should be allocated
5644 * @size: the number of bytes to allocate
5645 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5646 *
5647 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5648 * back.
5649 *
5650 * Return: pointer to the allocated area or %NULL in case of error.
5651 */
5652void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5653{
5654	unsigned int order = get_order(size);
5655	struct page *p;
5656
5657	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5658		gfp_mask &= ~__GFP_COMP;
5659
5660	p = alloc_pages_node(nid, gfp_mask, order);
5661	if (!p)
5662		return NULL;
5663	return make_alloc_exact((unsigned long)page_address(p), order, size);
5664}
5665
5666/**
5667 * free_pages_exact - release memory allocated via alloc_pages_exact()
5668 * @virt: the value returned by alloc_pages_exact.
5669 * @size: size of allocation, same value as passed to alloc_pages_exact().
5670 *
5671 * Release the memory allocated by a previous call to alloc_pages_exact.
5672 */
5673void free_pages_exact(void *virt, size_t size)
5674{
5675	unsigned long addr = (unsigned long)virt;
5676	unsigned long end = addr + PAGE_ALIGN(size);
5677
5678	while (addr < end) {
5679		free_page(addr);
5680		addr += PAGE_SIZE;
5681	}
5682}
5683EXPORT_SYMBOL(free_pages_exact);
5684
5685/**
5686 * nr_free_zone_pages - count number of pages beyond high watermark
5687 * @offset: The zone index of the highest zone
5688 *
5689 * nr_free_zone_pages() counts the number of pages which are beyond the
5690 * high watermark within all zones at or below a given zone index.  For each
5691 * zone, the number of pages is calculated as:
5692 *
5693 *     nr_free_zone_pages = managed_pages - high_pages
5694 *
5695 * Return: number of pages beyond high watermark.
5696 */
5697static unsigned long nr_free_zone_pages(int offset)
5698{
5699	struct zoneref *z;
5700	struct zone *zone;
5701
5702	/* Just pick one node, since fallback list is circular */
5703	unsigned long sum = 0;
5704
5705	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5706
5707	for_each_zone_zonelist(zone, z, zonelist, offset) {
5708		unsigned long size = zone_managed_pages(zone);
5709		unsigned long high = high_wmark_pages(zone);
5710		if (size > high)
5711			sum += size - high;
5712	}
5713
5714	return sum;
5715}
5716
5717/**
5718 * nr_free_buffer_pages - count number of pages beyond high watermark
5719 *
5720 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5721 * watermark within ZONE_DMA and ZONE_NORMAL.
5722 *
5723 * Return: number of pages beyond high watermark within ZONE_DMA and
5724 * ZONE_NORMAL.
5725 */
5726unsigned long nr_free_buffer_pages(void)
5727{
5728	return nr_free_zone_pages(gfp_zone(GFP_USER));
5729}
5730EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5731
 
 
 
 
 
 
 
 
 
 
 
5732static inline void show_node(struct zone *zone)
5733{
5734	if (IS_ENABLED(CONFIG_NUMA))
5735		printk("Node %d ", zone_to_nid(zone));
5736}
5737
5738long si_mem_available(void)
5739{
5740	long available;
5741	unsigned long pagecache;
5742	unsigned long wmark_low = 0;
5743	unsigned long pages[NR_LRU_LISTS];
5744	unsigned long reclaimable;
5745	struct zone *zone;
5746	int lru;
5747
5748	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5749		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5750
5751	for_each_zone(zone)
5752		wmark_low += low_wmark_pages(zone);
5753
5754	/*
5755	 * Estimate the amount of memory available for userspace allocations,
5756	 * without causing swapping.
5757	 */
5758	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5759
5760	/*
5761	 * Not all the page cache can be freed, otherwise the system will
5762	 * start swapping. Assume at least half of the page cache, or the
5763	 * low watermark worth of cache, needs to stay.
5764	 */
5765	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5766	pagecache -= min(pagecache / 2, wmark_low);
5767	available += pagecache;
5768
5769	/*
5770	 * Part of the reclaimable slab and other kernel memory consists of
5771	 * items that are in use, and cannot be freed. Cap this estimate at the
5772	 * low watermark.
5773	 */
5774	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5775		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5776	available += reclaimable - min(reclaimable / 2, wmark_low);
5777
5778	if (available < 0)
5779		available = 0;
5780	return available;
5781}
5782EXPORT_SYMBOL_GPL(si_mem_available);
5783
5784void si_meminfo(struct sysinfo *val)
5785{
5786	val->totalram = totalram_pages();
5787	val->sharedram = global_node_page_state(NR_SHMEM);
5788	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5789	val->bufferram = nr_blockdev_pages();
5790	val->totalhigh = totalhigh_pages();
5791	val->freehigh = nr_free_highpages();
5792	val->mem_unit = PAGE_SIZE;
5793}
5794
5795EXPORT_SYMBOL(si_meminfo);
5796
5797#ifdef CONFIG_NUMA
5798void si_meminfo_node(struct sysinfo *val, int nid)
5799{
5800	int zone_type;		/* needs to be signed */
5801	unsigned long managed_pages = 0;
5802	unsigned long managed_highpages = 0;
5803	unsigned long free_highpages = 0;
5804	pg_data_t *pgdat = NODE_DATA(nid);
5805
5806	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5807		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5808	val->totalram = managed_pages;
5809	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5810	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5811#ifdef CONFIG_HIGHMEM
5812	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5813		struct zone *zone = &pgdat->node_zones[zone_type];
5814
5815		if (is_highmem(zone)) {
5816			managed_highpages += zone_managed_pages(zone);
5817			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5818		}
5819	}
5820	val->totalhigh = managed_highpages;
5821	val->freehigh = free_highpages;
5822#else
5823	val->totalhigh = managed_highpages;
5824	val->freehigh = free_highpages;
5825#endif
5826	val->mem_unit = PAGE_SIZE;
5827}
5828#endif
5829
5830/*
5831 * Determine whether the node should be displayed or not, depending on whether
5832 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5833 */
5834static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5835{
 
 
 
5836	if (!(flags & SHOW_MEM_FILTER_NODES))
5837		return false;
5838
5839	/*
5840	 * no node mask - aka implicit memory numa policy. Do not bother with
5841	 * the synchronization - read_mems_allowed_begin - because we do not
5842	 * have to be precise here.
5843	 */
5844	if (!nodemask)
5845		nodemask = &cpuset_current_mems_allowed;
5846
5847	return !node_isset(nid, *nodemask);
5848}
5849
5850#define K(x) ((x) << (PAGE_SHIFT-10))
5851
5852static void show_migration_types(unsigned char type)
5853{
5854	static const char types[MIGRATE_TYPES] = {
5855		[MIGRATE_UNMOVABLE]	= 'U',
5856		[MIGRATE_MOVABLE]	= 'M',
5857		[MIGRATE_RECLAIMABLE]	= 'E',
5858		[MIGRATE_HIGHATOMIC]	= 'H',
5859#ifdef CONFIG_CMA
5860		[MIGRATE_CMA]		= 'C',
5861#endif
5862#ifdef CONFIG_MEMORY_ISOLATION
5863		[MIGRATE_ISOLATE]	= 'I',
5864#endif
5865	};
5866	char tmp[MIGRATE_TYPES + 1];
5867	char *p = tmp;
5868	int i;
5869
5870	for (i = 0; i < MIGRATE_TYPES; i++) {
5871		if (type & (1 << i))
5872			*p++ = types[i];
5873	}
5874
5875	*p = '\0';
5876	printk(KERN_CONT "(%s) ", tmp);
5877}
5878
5879/*
5880 * Show free area list (used inside shift_scroll-lock stuff)
5881 * We also calculate the percentage fragmentation. We do this by counting the
5882 * memory on each free list with the exception of the first item on the list.
5883 *
5884 * Bits in @filter:
5885 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5886 *   cpuset.
5887 */
5888void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5889{
5890	unsigned long free_pcp = 0;
5891	int cpu;
5892	struct zone *zone;
5893	pg_data_t *pgdat;
5894
5895	for_each_populated_zone(zone) {
5896		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5897			continue;
5898
5899		for_each_online_cpu(cpu)
5900			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5901	}
5902
5903	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5904		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5905		" unevictable:%lu dirty:%lu writeback:%lu\n"
5906		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5907		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5908		" free:%lu free_pcp:%lu free_cma:%lu\n",
5909		global_node_page_state(NR_ACTIVE_ANON),
5910		global_node_page_state(NR_INACTIVE_ANON),
5911		global_node_page_state(NR_ISOLATED_ANON),
5912		global_node_page_state(NR_ACTIVE_FILE),
5913		global_node_page_state(NR_INACTIVE_FILE),
5914		global_node_page_state(NR_ISOLATED_FILE),
5915		global_node_page_state(NR_UNEVICTABLE),
5916		global_node_page_state(NR_FILE_DIRTY),
5917		global_node_page_state(NR_WRITEBACK),
5918		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5919		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5920		global_node_page_state(NR_FILE_MAPPED),
5921		global_node_page_state(NR_SHMEM),
5922		global_node_page_state(NR_PAGETABLE),
5923		global_zone_page_state(NR_BOUNCE),
5924		global_zone_page_state(NR_FREE_PAGES),
 
5925		free_pcp,
5926		global_zone_page_state(NR_FREE_CMA_PAGES));
5927
5928	for_each_online_pgdat(pgdat) {
5929		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5930			continue;
5931
5932		printk("Node %d"
5933			" active_anon:%lukB"
5934			" inactive_anon:%lukB"
5935			" active_file:%lukB"
5936			" inactive_file:%lukB"
5937			" unevictable:%lukB"
5938			" isolated(anon):%lukB"
5939			" isolated(file):%lukB"
5940			" mapped:%lukB"
5941			" dirty:%lukB"
5942			" writeback:%lukB"
5943			" shmem:%lukB"
5944#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5945			" shmem_thp: %lukB"
5946			" shmem_pmdmapped: %lukB"
5947			" anon_thp: %lukB"
5948#endif
5949			" writeback_tmp:%lukB"
5950			" kernel_stack:%lukB"
5951#ifdef CONFIG_SHADOW_CALL_STACK
5952			" shadow_call_stack:%lukB"
5953#endif
5954			" pagetables:%lukB"
5955			" all_unreclaimable? %s"
5956			"\n",
5957			pgdat->node_id,
5958			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5959			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5960			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5961			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5962			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5963			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5964			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5965			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5966			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5967			K(node_page_state(pgdat, NR_WRITEBACK)),
5968			K(node_page_state(pgdat, NR_SHMEM)),
5969#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5970			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5971			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5972			K(node_page_state(pgdat, NR_ANON_THPS)),
5973#endif
5974			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5975			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5976#ifdef CONFIG_SHADOW_CALL_STACK
5977			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5978#endif
5979			K(node_page_state(pgdat, NR_PAGETABLE)),
5980			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5981				"yes" : "no");
5982	}
5983
5984	for_each_populated_zone(zone) {
5985		int i;
5986
5987		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5988			continue;
5989
5990		free_pcp = 0;
5991		for_each_online_cpu(cpu)
5992			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5993
5994		show_node(zone);
5995		printk(KERN_CONT
5996			"%s"
5997			" free:%lukB"
5998			" min:%lukB"
5999			" low:%lukB"
6000			" high:%lukB"
6001			" reserved_highatomic:%luKB"
6002			" active_anon:%lukB"
6003			" inactive_anon:%lukB"
6004			" active_file:%lukB"
6005			" inactive_file:%lukB"
6006			" unevictable:%lukB"
6007			" writepending:%lukB"
 
6008			" present:%lukB"
6009			" managed:%lukB"
6010			" mlocked:%lukB"
 
 
 
 
 
 
 
 
 
6011			" bounce:%lukB"
6012			" free_pcp:%lukB"
6013			" local_pcp:%ukB"
6014			" free_cma:%lukB"
 
 
 
6015			"\n",
6016			zone->name,
6017			K(zone_page_state(zone, NR_FREE_PAGES)),
6018			K(min_wmark_pages(zone)),
6019			K(low_wmark_pages(zone)),
6020			K(high_wmark_pages(zone)),
6021			K(zone->nr_reserved_highatomic),
6022			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6023			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6024			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6025			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6026			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6027			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6028			K(zone->present_pages),
6029			K(zone_managed_pages(zone)),
6030			K(zone_page_state(zone, NR_MLOCK)),
 
 
 
 
 
 
 
 
 
 
6031			K(zone_page_state(zone, NR_BOUNCE)),
6032			K(free_pcp),
6033			K(this_cpu_read(zone->per_cpu_pageset->count)),
6034			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
 
 
 
 
6035		printk("lowmem_reserve[]:");
6036		for (i = 0; i < MAX_NR_ZONES; i++)
6037			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6038		printk(KERN_CONT "\n");
6039	}
6040
6041	for_each_populated_zone(zone) {
6042		unsigned int order;
6043		unsigned long nr[MAX_ORDER], flags, total = 0;
6044		unsigned char types[MAX_ORDER];
6045
6046		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6047			continue;
6048		show_node(zone);
6049		printk(KERN_CONT "%s: ", zone->name);
6050
6051		spin_lock_irqsave(&zone->lock, flags);
6052		for (order = 0; order < MAX_ORDER; order++) {
6053			struct free_area *area = &zone->free_area[order];
6054			int type;
6055
6056			nr[order] = area->nr_free;
6057			total += nr[order] << order;
6058
6059			types[order] = 0;
6060			for (type = 0; type < MIGRATE_TYPES; type++) {
6061				if (!free_area_empty(area, type))
6062					types[order] |= 1 << type;
6063			}
6064		}
6065		spin_unlock_irqrestore(&zone->lock, flags);
6066		for (order = 0; order < MAX_ORDER; order++) {
6067			printk(KERN_CONT "%lu*%lukB ",
6068			       nr[order], K(1UL) << order);
6069			if (nr[order])
6070				show_migration_types(types[order]);
6071		}
6072		printk(KERN_CONT "= %lukB\n", K(total));
6073	}
6074
6075	hugetlb_show_meminfo();
6076
6077	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6078
6079	show_swap_cache_info();
6080}
6081
6082static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6083{
6084	zoneref->zone = zone;
6085	zoneref->zone_idx = zone_idx(zone);
6086}
6087
6088/*
6089 * Builds allocation fallback zone lists.
6090 *
6091 * Add all populated zones of a node to the zonelist.
6092 */
6093static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
 
6094{
6095	struct zone *zone;
6096	enum zone_type zone_type = MAX_NR_ZONES;
6097	int nr_zones = 0;
6098
6099	do {
6100		zone_type--;
6101		zone = pgdat->node_zones + zone_type;
6102		if (managed_zone(zone)) {
6103			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
 
6104			check_highest_zone(zone_type);
6105		}
6106	} while (zone_type);
6107
6108	return nr_zones;
6109}
6110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6111#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 
 
6112
6113static int __parse_numa_zonelist_order(char *s)
6114{
6115	/*
6116	 * We used to support different zonelists modes but they turned
6117	 * out to be just not useful. Let's keep the warning in place
6118	 * if somebody still use the cmd line parameter so that we do
6119	 * not fail it silently
6120	 */
6121	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6122		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6123		return -EINVAL;
6124	}
6125	return 0;
6126}
6127
6128char numa_zonelist_order[] = "Node";
 
 
 
 
 
 
 
 
 
 
 
 
 
6129
6130/*
6131 * sysctl handler for numa_zonelist_order
6132 */
6133int numa_zonelist_order_handler(struct ctl_table *table, int write,
6134		void *buffer, size_t *length, loff_t *ppos)
 
6135{
6136	if (write)
6137		return __parse_numa_zonelist_order(buffer);
6138	return proc_dostring(table, write, buffer, length, ppos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6139}
6140
6141
6142#define MAX_NODE_LOAD (nr_online_nodes)
6143static int node_load[MAX_NUMNODES];
6144
6145/**
6146 * find_next_best_node - find the next node that should appear in a given node's fallback list
6147 * @node: node whose fallback list we're appending
6148 * @used_node_mask: nodemask_t of already used nodes
6149 *
6150 * We use a number of factors to determine which is the next node that should
6151 * appear on a given node's fallback list.  The node should not have appeared
6152 * already in @node's fallback list, and it should be the next closest node
6153 * according to the distance array (which contains arbitrary distance values
6154 * from each node to each node in the system), and should also prefer nodes
6155 * with no CPUs, since presumably they'll have very little allocation pressure
6156 * on them otherwise.
6157 *
6158 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6159 */
6160static int find_next_best_node(int node, nodemask_t *used_node_mask)
6161{
6162	int n, val;
6163	int min_val = INT_MAX;
6164	int best_node = NUMA_NO_NODE;
 
6165
6166	/* Use the local node if we haven't already */
6167	if (!node_isset(node, *used_node_mask)) {
6168		node_set(node, *used_node_mask);
6169		return node;
6170	}
6171
6172	for_each_node_state(n, N_MEMORY) {
6173
6174		/* Don't want a node to appear more than once */
6175		if (node_isset(n, *used_node_mask))
6176			continue;
6177
6178		/* Use the distance array to find the distance */
6179		val = node_distance(node, n);
6180
6181		/* Penalize nodes under us ("prefer the next node") */
6182		val += (n < node);
6183
6184		/* Give preference to headless and unused nodes */
6185		if (!cpumask_empty(cpumask_of_node(n)))
 
6186			val += PENALTY_FOR_NODE_WITH_CPUS;
6187
6188		/* Slight preference for less loaded node */
6189		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6190		val += node_load[n];
6191
6192		if (val < min_val) {
6193			min_val = val;
6194			best_node = n;
6195		}
6196	}
6197
6198	if (best_node >= 0)
6199		node_set(best_node, *used_node_mask);
6200
6201	return best_node;
6202}
6203
6204
6205/*
6206 * Build zonelists ordered by node and zones within node.
6207 * This results in maximum locality--normal zone overflows into local
6208 * DMA zone, if any--but risks exhausting DMA zone.
6209 */
6210static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6211		unsigned nr_nodes)
6212{
6213	struct zoneref *zonerefs;
6214	int i;
6215
6216	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6217
6218	for (i = 0; i < nr_nodes; i++) {
6219		int nr_zones;
6220
6221		pg_data_t *node = NODE_DATA(node_order[i]);
6222
6223		nr_zones = build_zonerefs_node(node, zonerefs);
6224		zonerefs += nr_zones;
6225	}
6226	zonerefs->zone = NULL;
6227	zonerefs->zone_idx = 0;
6228}
6229
6230/*
6231 * Build gfp_thisnode zonelists
6232 */
6233static void build_thisnode_zonelists(pg_data_t *pgdat)
6234{
6235	struct zoneref *zonerefs;
6236	int nr_zones;
6237
6238	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6239	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6240	zonerefs += nr_zones;
6241	zonerefs->zone = NULL;
6242	zonerefs->zone_idx = 0;
6243}
6244
6245/*
6246 * Build zonelists ordered by zone and nodes within zones.
6247 * This results in conserving DMA zone[s] until all Normal memory is
6248 * exhausted, but results in overflowing to remote node while memory
6249 * may still exist in local DMA zone.
6250 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6251
6252static void build_zonelists(pg_data_t *pgdat)
6253{
6254	static int node_order[MAX_NUMNODES];
6255	int node, load, nr_nodes = 0;
6256	nodemask_t used_mask = NODE_MASK_NONE;
6257	int local_node, prev_node;
 
 
 
 
 
 
 
 
 
6258
6259	/* NUMA-aware ordering of nodes */
6260	local_node = pgdat->node_id;
6261	load = nr_online_nodes;
6262	prev_node = local_node;
 
6263
6264	memset(node_order, 0, sizeof(node_order));
 
 
6265	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6266		/*
6267		 * We don't want to pressure a particular node.
6268		 * So adding penalty to the first node in same
6269		 * distance group to make it round-robin.
6270		 */
6271		if (node_distance(local_node, node) !=
6272		    node_distance(local_node, prev_node))
6273			node_load[node] = load;
6274
6275		node_order[nr_nodes++] = node;
6276		prev_node = node;
6277		load--;
 
 
 
 
 
 
 
 
 
6278	}
6279
6280	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6281	build_thisnode_zonelists(pgdat);
6282}
6283
6284#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6285/*
6286 * Return node id of node used for "local" allocations.
6287 * I.e., first node id of first zone in arg node's generic zonelist.
6288 * Used for initializing percpu 'numa_mem', which is used primarily
6289 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6290 */
6291int local_memory_node(int node)
6292{
6293	struct zoneref *z;
6294
6295	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6296				   gfp_zone(GFP_KERNEL),
6297				   NULL);
6298	return zone_to_nid(z->zone);
 
6299}
6300#endif
6301
6302static void setup_min_unmapped_ratio(void);
6303static void setup_min_slab_ratio(void);
6304#else	/* CONFIG_NUMA */
6305
 
 
 
 
 
6306static void build_zonelists(pg_data_t *pgdat)
6307{
6308	int node, local_node;
6309	struct zoneref *zonerefs;
6310	int nr_zones;
6311
6312	local_node = pgdat->node_id;
6313
6314	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6315	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6316	zonerefs += nr_zones;
6317
6318	/*
6319	 * Now we build the zonelist so that it contains the zones
6320	 * of all the other nodes.
6321	 * We don't want to pressure a particular node, so when
6322	 * building the zones for node N, we make sure that the
6323	 * zones coming right after the local ones are those from
6324	 * node N+1 (modulo N)
6325	 */
6326	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6327		if (!node_online(node))
6328			continue;
6329		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6330		zonerefs += nr_zones;
6331	}
6332	for (node = 0; node < local_node; node++) {
6333		if (!node_online(node))
6334			continue;
6335		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6336		zonerefs += nr_zones;
6337	}
6338
6339	zonerefs->zone = NULL;
6340	zonerefs->zone_idx = 0;
6341}
6342
6343#endif	/* CONFIG_NUMA */
6344
6345/*
6346 * Boot pageset table. One per cpu which is going to be used for all
6347 * zones and all nodes. The parameters will be set in such a way
6348 * that an item put on a list will immediately be handed over to
6349 * the buddy list. This is safe since pageset manipulation is done
6350 * with interrupts disabled.
6351 *
6352 * The boot_pagesets must be kept even after bootup is complete for
6353 * unused processors and/or zones. They do play a role for bootstrapping
6354 * hotplugged processors.
6355 *
6356 * zoneinfo_show() and maybe other functions do
6357 * not check if the processor is online before following the pageset pointer.
6358 * Other parts of the kernel may not check if the zone is available.
6359 */
6360static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6361/* These effectively disable the pcplists in the boot pageset completely */
6362#define BOOT_PAGESET_HIGH	0
6363#define BOOT_PAGESET_BATCH	1
6364static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6365static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6366static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
 
 
6367
6368static void __build_all_zonelists(void *data)
 
6369{
6370	int nid;
6371	int __maybe_unused cpu;
6372	pg_data_t *self = data;
6373	static DEFINE_SPINLOCK(lock);
6374
6375	spin_lock(&lock);
6376
6377#ifdef CONFIG_NUMA
6378	memset(node_load, 0, sizeof(node_load));
6379#endif
6380
6381	/*
6382	 * This node is hotadded and no memory is yet present.   So just
6383	 * building zonelists is fine - no need to touch other nodes.
6384	 */
6385	if (self && !node_online(self->node_id)) {
6386		build_zonelists(self);
6387	} else {
6388		for_each_online_node(nid) {
6389			pg_data_t *pgdat = NODE_DATA(nid);
 
 
 
 
6390
6391			build_zonelists(pgdat);
6392		}
 
 
 
 
 
 
 
 
 
 
 
 
 
6393
6394#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6395		/*
6396		 * We now know the "local memory node" for each node--
6397		 * i.e., the node of the first zone in the generic zonelist.
6398		 * Set up numa_mem percpu variable for on-line cpus.  During
6399		 * boot, only the boot cpu should be on-line;  we'll init the
6400		 * secondary cpus' numa_mem as they come on-line.  During
6401		 * node/memory hotplug, we'll fixup all on-line cpus.
6402		 */
6403		for_each_online_cpu(cpu)
6404			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6405#endif
6406	}
6407
6408	spin_unlock(&lock);
6409}
6410
6411static noinline void __init
6412build_all_zonelists_init(void)
6413{
6414	int cpu;
6415
6416	__build_all_zonelists(NULL);
6417
6418	/*
6419	 * Initialize the boot_pagesets that are going to be used
6420	 * for bootstrapping processors. The real pagesets for
6421	 * each zone will be allocated later when the per cpu
6422	 * allocator is available.
6423	 *
6424	 * boot_pagesets are used also for bootstrapping offline
6425	 * cpus if the system is already booted because the pagesets
6426	 * are needed to initialize allocators on a specific cpu too.
6427	 * F.e. the percpu allocator needs the page allocator which
6428	 * needs the percpu allocator in order to allocate its pagesets
6429	 * (a chicken-egg dilemma).
6430	 */
6431	for_each_possible_cpu(cpu)
6432		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6433
6434	mminit_verify_zonelist();
6435	cpuset_init_current_mems_allowed();
6436}
6437
6438/*
 
6439 * unless system_state == SYSTEM_BOOTING.
6440 *
6441 * __ref due to call of __init annotated helper build_all_zonelists_init
 
 
6442 * [protected by SYSTEM_BOOTING].
6443 */
6444void __ref build_all_zonelists(pg_data_t *pgdat)
6445{
6446	unsigned long vm_total_pages;
6447
6448	if (system_state == SYSTEM_BOOTING) {
6449		build_all_zonelists_init();
6450	} else {
6451		__build_all_zonelists(pgdat);
 
 
 
 
 
 
6452		/* cpuset refresh routine should be here */
6453	}
6454	/* Get the number of free pages beyond high watermark in all zones. */
6455	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6456	/*
6457	 * Disable grouping by mobility if the number of pages in the
6458	 * system is too low to allow the mechanism to work. It would be
6459	 * more accurate, but expensive to check per-zone. This check is
6460	 * made on memory-hotadd so a system can start with mobility
6461	 * disabled and enable it later
6462	 */
6463	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6464		page_group_by_mobility_disabled = 1;
6465	else
6466		page_group_by_mobility_disabled = 0;
6467
6468	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6469		nr_online_nodes,
 
6470		page_group_by_mobility_disabled ? "off" : "on",
6471		vm_total_pages);
6472#ifdef CONFIG_NUMA
6473	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6474#endif
6475}
6476
6477/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6478static bool __meminit
6479overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6480{
6481	static struct memblock_region *r;
6482
6483	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6484		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6485			for_each_mem_region(r) {
6486				if (*pfn < memblock_region_memory_end_pfn(r))
6487					break;
6488			}
6489		}
6490		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6491		    memblock_is_mirror(r)) {
6492			*pfn = memblock_region_memory_end_pfn(r);
6493			return true;
6494		}
6495	}
6496	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6497}
6498
6499/*
6500 * Initially all pages are reserved - free ones are freed
6501 * up by memblock_free_all() once the early boot process is
6502 * done. Non-atomic initialization, single-pass.
6503 *
6504 * All aligned pageblocks are initialized to the specified migratetype
6505 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6506 * zone stats (e.g., nr_isolate_pageblock) are touched.
6507 */
6508void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6509		unsigned long start_pfn, unsigned long zone_end_pfn,
6510		enum meminit_context context,
6511		struct vmem_altmap *altmap, int migratetype)
6512{
6513	unsigned long pfn, end_pfn = start_pfn + size;
6514	struct page *page;
 
 
 
 
 
 
6515
6516	if (highest_memmap_pfn < end_pfn - 1)
6517		highest_memmap_pfn = end_pfn - 1;
6518
6519#ifdef CONFIG_ZONE_DEVICE
6520	/*
6521	 * Honor reservation requested by the driver for this ZONE_DEVICE
6522	 * memory. We limit the total number of pages to initialize to just
6523	 * those that might contain the memory mapping. We will defer the
6524	 * ZONE_DEVICE page initialization until after we have released
6525	 * the hotplug lock.
6526	 */
6527	if (zone == ZONE_DEVICE) {
6528		if (!altmap)
6529			return;
6530
6531		if (start_pfn == altmap->base_pfn)
6532			start_pfn += altmap->reserve;
6533		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6534	}
6535#endif
6536
6537	for (pfn = start_pfn; pfn < end_pfn; ) {
6538		/*
6539		 * There can be holes in boot-time mem_map[]s handed to this
6540		 * function.  They do not exist on hotplugged memory.
6541		 */
6542		if (context == MEMINIT_EARLY) {
6543			if (overlap_memmap_init(zone, &pfn))
6544				continue;
6545			if (defer_init(nid, pfn, zone_end_pfn))
6546				break;
6547		}
6548
6549		page = pfn_to_page(pfn);
6550		__init_single_page(page, pfn, zone, nid);
6551		if (context == MEMINIT_HOTPLUG)
6552			__SetPageReserved(page);
 
 
6553
 
6554		/*
6555		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6556		 * such that unmovable allocations won't be scattered all
6557		 * over the place during system boot.
6558		 */
6559		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6560			set_pageblock_migratetype(page, migratetype);
6561			cond_resched();
6562		}
6563		pfn++;
6564	}
6565}
6566
6567#ifdef CONFIG_ZONE_DEVICE
6568void __ref memmap_init_zone_device(struct zone *zone,
6569				   unsigned long start_pfn,
6570				   unsigned long nr_pages,
6571				   struct dev_pagemap *pgmap)
6572{
6573	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6574	struct pglist_data *pgdat = zone->zone_pgdat;
6575	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6576	unsigned long zone_idx = zone_idx(zone);
6577	unsigned long start = jiffies;
6578	int nid = pgdat->node_id;
6579
6580	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6581		return;
6582
6583	/*
6584	 * The call to memmap_init should have already taken care
6585	 * of the pages reserved for the memmap, so we can just jump to
6586	 * the end of that region and start processing the device pages.
6587	 */
6588	if (altmap) {
6589		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6590		nr_pages = end_pfn - start_pfn;
6591	}
6592
6593	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6594		struct page *page = pfn_to_page(pfn);
6595
6596		__init_single_page(page, pfn, zone_idx, nid);
6597
6598		/*
6599		 * Mark page reserved as it will need to wait for onlining
6600		 * phase for it to be fully associated with a zone.
6601		 *
6602		 * We can use the non-atomic __set_bit operation for setting
6603		 * the flag as we are still initializing the pages.
6604		 */
6605		__SetPageReserved(page);
6606
6607		/*
6608		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6609		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6610		 * ever freed or placed on a driver-private list.
6611		 */
6612		page->pgmap = pgmap;
6613		page->zone_device_data = NULL;
 
 
 
 
6614
 
6615		/*
6616		 * Mark the block movable so that blocks are reserved for
6617		 * movable at startup. This will force kernel allocations
6618		 * to reserve their blocks rather than leaking throughout
6619		 * the address space during boot when many long-lived
6620		 * kernel allocations are made.
6621		 *
6622		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6623		 * because this is done early in section_activate()
 
 
6624		 */
6625		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
 
 
 
6626			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6627			cond_resched();
 
6628		}
6629	}
6630
6631	pr_info("%s initialised %lu pages in %ums\n", __func__,
6632		nr_pages, jiffies_to_msecs(jiffies - start));
6633}
6634
6635#endif
6636static void __meminit zone_init_free_lists(struct zone *zone)
6637{
6638	unsigned int order, t;
6639	for_each_migratetype_order(order, t) {
6640		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6641		zone->free_area[order].nr_free = 0;
6642	}
6643}
6644
6645#if !defined(CONFIG_FLATMEM)
6646/*
6647 * Only struct pages that correspond to ranges defined by memblock.memory
6648 * are zeroed and initialized by going through __init_single_page() during
6649 * memmap_init_zone_range().
6650 *
6651 * But, there could be struct pages that correspond to holes in
6652 * memblock.memory. This can happen because of the following reasons:
6653 * - physical memory bank size is not necessarily the exact multiple of the
6654 *   arbitrary section size
6655 * - early reserved memory may not be listed in memblock.memory
6656 * - memory layouts defined with memmap= kernel parameter may not align
6657 *   nicely with memmap sections
6658 *
6659 * Explicitly initialize those struct pages so that:
6660 * - PG_Reserved is set
6661 * - zone and node links point to zone and node that span the page if the
6662 *   hole is in the middle of a zone
6663 * - zone and node links point to adjacent zone/node if the hole falls on
6664 *   the zone boundary; the pages in such holes will be prepended to the
6665 *   zone/node above the hole except for the trailing pages in the last
6666 *   section that will be appended to the zone/node below.
6667 */
6668static void __init init_unavailable_range(unsigned long spfn,
6669					  unsigned long epfn,
6670					  int zone, int node)
6671{
6672	unsigned long pfn;
6673	u64 pgcnt = 0;
6674
6675	for (pfn = spfn; pfn < epfn; pfn++) {
6676		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6677			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6678				+ pageblock_nr_pages - 1;
6679			continue;
6680		}
6681		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6682		__SetPageReserved(pfn_to_page(pfn));
6683		pgcnt++;
6684	}
6685
6686	if (pgcnt)
6687		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6688			node, zone_names[zone], pgcnt);
6689}
6690#else
6691static inline void init_unavailable_range(unsigned long spfn,
6692					  unsigned long epfn,
6693					  int zone, int node)
6694{
6695}
6696#endif
6697
6698static void __init memmap_init_zone_range(struct zone *zone,
6699					  unsigned long start_pfn,
6700					  unsigned long end_pfn,
6701					  unsigned long *hole_pfn)
6702{
6703	unsigned long zone_start_pfn = zone->zone_start_pfn;
6704	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6705	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6706
6707	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6708	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6709
6710	if (start_pfn >= end_pfn)
6711		return;
6712
6713	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6714			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6715
6716	if (*hole_pfn < start_pfn)
6717		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6718
6719	*hole_pfn = end_pfn;
6720}
6721
6722static void __init memmap_init(void)
6723{
6724	unsigned long start_pfn, end_pfn;
6725	unsigned long hole_pfn = 0;
6726	int i, j, zone_id, nid;
6727
6728	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6729		struct pglist_data *node = NODE_DATA(nid);
6730
6731		for (j = 0; j < MAX_NR_ZONES; j++) {
6732			struct zone *zone = node->node_zones + j;
6733
6734			if (!populated_zone(zone))
6735				continue;
6736
6737			memmap_init_zone_range(zone, start_pfn, end_pfn,
6738					       &hole_pfn);
6739			zone_id = j;
6740		}
6741	}
6742
6743#ifdef CONFIG_SPARSEMEM
6744	/*
6745	 * Initialize the memory map for hole in the range [memory_end,
6746	 * section_end].
6747	 * Append the pages in this hole to the highest zone in the last
6748	 * node.
6749	 * The call to init_unavailable_range() is outside the ifdef to
6750	 * silence the compiler warining about zone_id set but not used;
6751	 * for FLATMEM it is a nop anyway
6752	 */
6753	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6754	if (hole_pfn < end_pfn)
6755#endif
6756		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6757}
6758
6759static int zone_batchsize(struct zone *zone)
6760{
6761#ifdef CONFIG_MMU
6762	int batch;
6763
6764	/*
6765	 * The number of pages to batch allocate is either ~0.1%
6766	 * of the zone or 1MB, whichever is smaller. The batch
6767	 * size is striking a balance between allocation latency
6768	 * and zone lock contention.
6769	 */
6770	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
 
 
6771	batch /= 4;		/* We effectively *= 4 below */
6772	if (batch < 1)
6773		batch = 1;
6774
6775	/*
6776	 * Clamp the batch to a 2^n - 1 value. Having a power
6777	 * of 2 value was found to be more likely to have
6778	 * suboptimal cache aliasing properties in some cases.
6779	 *
6780	 * For example if 2 tasks are alternately allocating
6781	 * batches of pages, one task can end up with a lot
6782	 * of pages of one half of the possible page colors
6783	 * and the other with pages of the other colors.
6784	 */
6785	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6786
6787	return batch;
6788
6789#else
6790	/* The deferral and batching of frees should be suppressed under NOMMU
6791	 * conditions.
6792	 *
6793	 * The problem is that NOMMU needs to be able to allocate large chunks
6794	 * of contiguous memory as there's no hardware page translation to
6795	 * assemble apparent contiguous memory from discontiguous pages.
6796	 *
6797	 * Queueing large contiguous runs of pages for batching, however,
6798	 * causes the pages to actually be freed in smaller chunks.  As there
6799	 * can be a significant delay between the individual batches being
6800	 * recycled, this leads to the once large chunks of space being
6801	 * fragmented and becoming unavailable for high-order allocations.
6802	 */
6803	return 0;
6804#endif
6805}
6806
6807static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6808{
6809#ifdef CONFIG_MMU
6810	int high;
6811	int nr_split_cpus;
6812	unsigned long total_pages;
6813
6814	if (!percpu_pagelist_high_fraction) {
6815		/*
6816		 * By default, the high value of the pcp is based on the zone
6817		 * low watermark so that if they are full then background
6818		 * reclaim will not be started prematurely.
6819		 */
6820		total_pages = low_wmark_pages(zone);
6821	} else {
6822		/*
6823		 * If percpu_pagelist_high_fraction is configured, the high
6824		 * value is based on a fraction of the managed pages in the
6825		 * zone.
6826		 */
6827		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6828	}
6829
6830	/*
6831	 * Split the high value across all online CPUs local to the zone. Note
6832	 * that early in boot that CPUs may not be online yet and that during
6833	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6834	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6835	 * all online CPUs to mitigate the risk that reclaim is triggered
6836	 * prematurely due to pages stored on pcp lists.
6837	 */
6838	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6839	if (!nr_split_cpus)
6840		nr_split_cpus = num_online_cpus();
6841	high = total_pages / nr_split_cpus;
6842
6843	/*
6844	 * Ensure high is at least batch*4. The multiple is based on the
6845	 * historical relationship between high and batch.
6846	 */
6847	high = max(high, batch << 2);
6848
6849	return high;
6850#else
6851	return 0;
6852#endif
6853}
6854
6855/*
6856 * pcp->high and pcp->batch values are related and generally batch is lower
6857 * than high. They are also related to pcp->count such that count is lower
6858 * than high, and as soon as it reaches high, the pcplist is flushed.
6859 *
6860 * However, guaranteeing these relations at all times would require e.g. write
6861 * barriers here but also careful usage of read barriers at the read side, and
6862 * thus be prone to error and bad for performance. Thus the update only prevents
6863 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6864 * can cope with those fields changing asynchronously, and fully trust only the
6865 * pcp->count field on the local CPU with interrupts disabled.
6866 *
6867 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6868 * outside of boot time (or some other assurance that no concurrent updaters
6869 * exist).
6870 */
6871static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6872		unsigned long batch)
6873{
6874	WRITE_ONCE(pcp->batch, batch);
6875	WRITE_ONCE(pcp->high, high);
 
 
 
 
 
 
 
6876}
6877
6878static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
 
6879{
6880	int pindex;
 
6881
6882	memset(pcp, 0, sizeof(*pcp));
6883	memset(pzstats, 0, sizeof(*pzstats));
 
 
6884
6885	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6886		INIT_LIST_HEAD(&pcp->lists[pindex]);
6887
6888	/*
6889	 * Set batch and high values safe for a boot pageset. A true percpu
6890	 * pageset's initialization will update them subsequently. Here we don't
6891	 * need to be as careful as pageset_update() as nobody can access the
6892	 * pageset yet.
6893	 */
6894	pcp->high = BOOT_PAGESET_HIGH;
6895	pcp->batch = BOOT_PAGESET_BATCH;
6896	pcp->free_factor = 0;
6897}
6898
6899static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6900		unsigned long batch)
6901{
6902	struct per_cpu_pages *pcp;
6903	int cpu;
6904
6905	for_each_possible_cpu(cpu) {
6906		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6907		pageset_update(pcp, high, batch);
6908	}
6909}
6910
6911/*
6912 * Calculate and set new high and batch values for all per-cpu pagesets of a
6913 * zone based on the zone's size.
6914 */
6915static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
 
6916{
6917	int new_high, new_batch;
 
 
6918
6919	new_batch = max(1, zone_batchsize(zone));
6920	new_high = zone_highsize(zone, new_batch, cpu_online);
6921
6922	if (zone->pageset_high == new_high &&
6923	    zone->pageset_batch == new_batch)
6924		return;
 
 
 
 
 
 
 
6925
6926	zone->pageset_high = new_high;
6927	zone->pageset_batch = new_batch;
 
6928
6929	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
 
6930}
6931
6932void __meminit setup_zone_pageset(struct zone *zone)
6933{
6934	int cpu;
6935
6936	/* Size may be 0 on !SMP && !NUMA */
6937	if (sizeof(struct per_cpu_zonestat) > 0)
6938		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6939
6940	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6941	for_each_possible_cpu(cpu) {
6942		struct per_cpu_pages *pcp;
6943		struct per_cpu_zonestat *pzstats;
6944
6945		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6946		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6947		per_cpu_pages_init(pcp, pzstats);
6948	}
6949
6950	zone_set_pageset_high_and_batch(zone, 0);
6951}
6952
6953/*
6954 * Allocate per cpu pagesets and initialize them.
6955 * Before this call only boot pagesets were available.
6956 */
6957void __init setup_per_cpu_pageset(void)
6958{
6959	struct pglist_data *pgdat;
6960	struct zone *zone;
6961	int __maybe_unused cpu;
6962
6963	for_each_populated_zone(zone)
6964		setup_zone_pageset(zone);
 
 
 
 
 
 
 
6965
6966#ifdef CONFIG_NUMA
6967	/*
6968	 * Unpopulated zones continue using the boot pagesets.
6969	 * The numa stats for these pagesets need to be reset.
6970	 * Otherwise, they will end up skewing the stats of
6971	 * the nodes these zones are associated with.
6972	 */
6973	for_each_possible_cpu(cpu) {
6974		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6975		memset(pzstats->vm_numa_event, 0,
6976		       sizeof(pzstats->vm_numa_event));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6977	}
6978#endif
 
 
 
 
6979
6980	for_each_online_pgdat(pgdat)
6981		pgdat->per_cpu_nodestats =
6982			alloc_percpu(struct per_cpu_nodestat);
6983}
6984
6985static __meminit void zone_pcp_init(struct zone *zone)
6986{
6987	/*
6988	 * per cpu subsystem is not up at this point. The following code
6989	 * relies on the ability of the linker to provide the
6990	 * offset of a (static) per cpu variable into the per cpu area.
6991	 */
6992	zone->per_cpu_pageset = &boot_pageset;
6993	zone->per_cpu_zonestats = &boot_zonestats;
6994	zone->pageset_high = BOOT_PAGESET_HIGH;
6995	zone->pageset_batch = BOOT_PAGESET_BATCH;
6996
6997	if (populated_zone(zone))
6998		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6999			 zone->present_pages, zone_batchsize(zone));
 
7000}
7001
7002void __meminit init_currently_empty_zone(struct zone *zone,
7003					unsigned long zone_start_pfn,
7004					unsigned long size)
7005{
7006	struct pglist_data *pgdat = zone->zone_pgdat;
7007	int zone_idx = zone_idx(zone) + 1;
7008
7009	if (zone_idx > pgdat->nr_zones)
7010		pgdat->nr_zones = zone_idx;
 
7011
7012	zone->zone_start_pfn = zone_start_pfn;
7013
7014	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7015			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7016			pgdat->node_id,
7017			(unsigned long)zone_idx(zone),
7018			zone_start_pfn, (zone_start_pfn + size));
7019
7020	zone_init_free_lists(zone);
7021	zone->initialized = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7022}
7023
7024/**
7025 * get_pfn_range_for_nid - Return the start and end page frames for a node
7026 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7027 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7028 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7029 *
7030 * It returns the start and end page frame of a node based on information
7031 * provided by memblock_set_node(). If called for a node
7032 * with no available memory, a warning is printed and the start and end
7033 * PFNs will be 0.
7034 */
7035void __init get_pfn_range_for_nid(unsigned int nid,
7036			unsigned long *start_pfn, unsigned long *end_pfn)
7037{
7038	unsigned long this_start_pfn, this_end_pfn;
7039	int i;
7040
7041	*start_pfn = -1UL;
7042	*end_pfn = 0;
7043
7044	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7045		*start_pfn = min(*start_pfn, this_start_pfn);
7046		*end_pfn = max(*end_pfn, this_end_pfn);
7047	}
7048
7049	if (*start_pfn == -1UL)
7050		*start_pfn = 0;
7051}
7052
7053/*
7054 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7055 * assumption is made that zones within a node are ordered in monotonic
7056 * increasing memory addresses so that the "highest" populated zone is used
7057 */
7058static void __init find_usable_zone_for_movable(void)
7059{
7060	int zone_index;
7061	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7062		if (zone_index == ZONE_MOVABLE)
7063			continue;
7064
7065		if (arch_zone_highest_possible_pfn[zone_index] >
7066				arch_zone_lowest_possible_pfn[zone_index])
7067			break;
7068	}
7069
7070	VM_BUG_ON(zone_index == -1);
7071	movable_zone = zone_index;
7072}
7073
7074/*
7075 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7076 * because it is sized independent of architecture. Unlike the other zones,
7077 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7078 * in each node depending on the size of each node and how evenly kernelcore
7079 * is distributed. This helper function adjusts the zone ranges
7080 * provided by the architecture for a given node by using the end of the
7081 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7082 * zones within a node are in order of monotonic increases memory addresses
7083 */
7084static void __init adjust_zone_range_for_zone_movable(int nid,
7085					unsigned long zone_type,
7086					unsigned long node_start_pfn,
7087					unsigned long node_end_pfn,
7088					unsigned long *zone_start_pfn,
7089					unsigned long *zone_end_pfn)
7090{
7091	/* Only adjust if ZONE_MOVABLE is on this node */
7092	if (zone_movable_pfn[nid]) {
7093		/* Size ZONE_MOVABLE */
7094		if (zone_type == ZONE_MOVABLE) {
7095			*zone_start_pfn = zone_movable_pfn[nid];
7096			*zone_end_pfn = min(node_end_pfn,
7097				arch_zone_highest_possible_pfn[movable_zone]);
7098
7099		/* Adjust for ZONE_MOVABLE starting within this range */
7100		} else if (!mirrored_kernelcore &&
7101			*zone_start_pfn < zone_movable_pfn[nid] &&
7102			*zone_end_pfn > zone_movable_pfn[nid]) {
7103			*zone_end_pfn = zone_movable_pfn[nid];
7104
7105		/* Check if this whole range is within ZONE_MOVABLE */
7106		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7107			*zone_start_pfn = *zone_end_pfn;
7108	}
7109}
7110
7111/*
7112 * Return the number of pages a zone spans in a node, including holes
7113 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7114 */
7115static unsigned long __init zone_spanned_pages_in_node(int nid,
7116					unsigned long zone_type,
7117					unsigned long node_start_pfn,
7118					unsigned long node_end_pfn,
7119					unsigned long *zone_start_pfn,
7120					unsigned long *zone_end_pfn)
 
7121{
7122	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7123	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7124	/* When hotadd a new node from cpu_up(), the node should be empty */
7125	if (!node_start_pfn && !node_end_pfn)
7126		return 0;
7127
7128	/* Get the start and end of the zone */
7129	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7130	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7131	adjust_zone_range_for_zone_movable(nid, zone_type,
7132				node_start_pfn, node_end_pfn,
7133				zone_start_pfn, zone_end_pfn);
7134
7135	/* Check that this node has pages within the zone's required range */
7136	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7137		return 0;
7138
7139	/* Move the zone boundaries inside the node if necessary */
7140	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7141	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7142
7143	/* Return the spanned pages */
7144	return *zone_end_pfn - *zone_start_pfn;
7145}
7146
7147/*
7148 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7149 * then all holes in the requested range will be accounted for.
7150 */
7151unsigned long __init __absent_pages_in_range(int nid,
7152				unsigned long range_start_pfn,
7153				unsigned long range_end_pfn)
7154{
7155	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7156	unsigned long start_pfn, end_pfn;
7157	int i;
7158
7159	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7160		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7161		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7162		nr_absent -= end_pfn - start_pfn;
7163	}
7164	return nr_absent;
7165}
7166
7167/**
7168 * absent_pages_in_range - Return number of page frames in holes within a range
7169 * @start_pfn: The start PFN to start searching for holes
7170 * @end_pfn: The end PFN to stop searching for holes
7171 *
7172 * Return: the number of pages frames in memory holes within a range.
7173 */
7174unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7175							unsigned long end_pfn)
7176{
7177	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7178}
7179
7180/* Return the number of page frames in holes in a zone on a node */
7181static unsigned long __init zone_absent_pages_in_node(int nid,
7182					unsigned long zone_type,
7183					unsigned long node_start_pfn,
7184					unsigned long node_end_pfn)
 
7185{
7186	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7187	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7188	unsigned long zone_start_pfn, zone_end_pfn;
7189	unsigned long nr_absent;
7190
7191	/* When hotadd a new node from cpu_up(), the node should be empty */
7192	if (!node_start_pfn && !node_end_pfn)
7193		return 0;
7194
7195	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7196	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7197
7198	adjust_zone_range_for_zone_movable(nid, zone_type,
7199			node_start_pfn, node_end_pfn,
7200			&zone_start_pfn, &zone_end_pfn);
7201	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7202
7203	/*
7204	 * ZONE_MOVABLE handling.
7205	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7206	 * and vice versa.
7207	 */
7208	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7209		unsigned long start_pfn, end_pfn;
7210		struct memblock_region *r;
7211
7212		for_each_mem_region(r) {
7213			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7214					  zone_start_pfn, zone_end_pfn);
7215			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7216					zone_start_pfn, zone_end_pfn);
7217
7218			if (zone_type == ZONE_MOVABLE &&
7219			    memblock_is_mirror(r))
7220				nr_absent += end_pfn - start_pfn;
7221
7222			if (zone_type == ZONE_NORMAL &&
7223			    !memblock_is_mirror(r))
7224				nr_absent += end_pfn - start_pfn;
 
 
 
 
 
7225		}
7226	}
7227
7228	return nr_absent;
7229}
7230
7231static void __init calculate_node_totalpages(struct pglist_data *pgdat,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7232						unsigned long node_start_pfn,
7233						unsigned long node_end_pfn)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7234{
7235	unsigned long realtotalpages = 0, totalpages = 0;
7236	enum zone_type i;
7237
7238	for (i = 0; i < MAX_NR_ZONES; i++) {
7239		struct zone *zone = pgdat->node_zones + i;
7240		unsigned long zone_start_pfn, zone_end_pfn;
7241		unsigned long spanned, absent;
7242		unsigned long size, real_size;
7243
7244		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7245						     node_start_pfn,
7246						     node_end_pfn,
7247						     &zone_start_pfn,
7248						     &zone_end_pfn);
7249		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7250						   node_start_pfn,
7251						   node_end_pfn);
7252
7253		size = spanned;
7254		real_size = size - absent;
7255
7256		if (size)
7257			zone->zone_start_pfn = zone_start_pfn;
7258		else
7259			zone->zone_start_pfn = 0;
7260		zone->spanned_pages = size;
7261		zone->present_pages = real_size;
7262
7263		totalpages += size;
7264		realtotalpages += real_size;
7265	}
7266
7267	pgdat->node_spanned_pages = totalpages;
7268	pgdat->node_present_pages = realtotalpages;
7269	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
 
7270}
7271
7272#ifndef CONFIG_SPARSEMEM
7273/*
7274 * Calculate the size of the zone->blockflags rounded to an unsigned long
7275 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7276 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7277 * round what is now in bits to nearest long in bits, then return it in
7278 * bytes.
7279 */
7280static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7281{
7282	unsigned long usemapsize;
7283
7284	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7285	usemapsize = roundup(zonesize, pageblock_nr_pages);
7286	usemapsize = usemapsize >> pageblock_order;
7287	usemapsize *= NR_PAGEBLOCK_BITS;
7288	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7289
7290	return usemapsize / 8;
7291}
7292
7293static void __ref setup_usemap(struct zone *zone)
 
 
 
7294{
7295	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7296					       zone->spanned_pages);
7297	zone->pageblock_flags = NULL;
7298	if (usemapsize) {
7299		zone->pageblock_flags =
7300			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7301					    zone_to_nid(zone));
7302		if (!zone->pageblock_flags)
7303			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7304			      usemapsize, zone->name, zone_to_nid(zone));
7305	}
7306}
7307#else
7308static inline void setup_usemap(struct zone *zone) {}
 
7309#endif /* CONFIG_SPARSEMEM */
7310
7311#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7312
7313/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7314void __init set_pageblock_order(void)
7315{
7316	unsigned int order;
7317
7318	/* Check that pageblock_nr_pages has not already been setup */
7319	if (pageblock_order)
7320		return;
7321
7322	if (HPAGE_SHIFT > PAGE_SHIFT)
7323		order = HUGETLB_PAGE_ORDER;
7324	else
7325		order = MAX_ORDER - 1;
7326
7327	/*
7328	 * Assume the largest contiguous order of interest is a huge page.
7329	 * This value may be variable depending on boot parameters on IA64 and
7330	 * powerpc.
7331	 */
7332	pageblock_order = order;
7333}
7334#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7335
7336/*
7337 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7338 * is unused as pageblock_order is set at compile-time. See
7339 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7340 * the kernel config
7341 */
7342void __init set_pageblock_order(void)
7343{
7344}
7345
7346#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7347
7348static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7349						unsigned long present_pages)
7350{
7351	unsigned long pages = spanned_pages;
7352
7353	/*
7354	 * Provide a more accurate estimation if there are holes within
7355	 * the zone and SPARSEMEM is in use. If there are holes within the
7356	 * zone, each populated memory region may cost us one or two extra
7357	 * memmap pages due to alignment because memmap pages for each
7358	 * populated regions may not be naturally aligned on page boundary.
7359	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7360	 */
7361	if (spanned_pages > present_pages + (present_pages >> 4) &&
7362	    IS_ENABLED(CONFIG_SPARSEMEM))
7363		pages = present_pages;
7364
7365	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7366}
7367
7368#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7369static void pgdat_init_split_queue(struct pglist_data *pgdat)
7370{
7371	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7372
7373	spin_lock_init(&ds_queue->split_queue_lock);
7374	INIT_LIST_HEAD(&ds_queue->split_queue);
7375	ds_queue->split_queue_len = 0;
7376}
7377#else
7378static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7379#endif
7380
7381#ifdef CONFIG_COMPACTION
7382static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7383{
7384	init_waitqueue_head(&pgdat->kcompactd_wait);
7385}
7386#else
7387static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7388#endif
7389
7390static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7391{
7392	pgdat_resize_init(pgdat);
7393
7394	pgdat_init_split_queue(pgdat);
7395	pgdat_init_kcompactd(pgdat);
7396
7397	init_waitqueue_head(&pgdat->kswapd_wait);
7398	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7399
7400	pgdat_page_ext_init(pgdat);
7401	lruvec_init(&pgdat->__lruvec);
7402}
7403
7404static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7405							unsigned long remaining_pages)
7406{
7407	atomic_long_set(&zone->managed_pages, remaining_pages);
7408	zone_set_nid(zone, nid);
7409	zone->name = zone_names[idx];
7410	zone->zone_pgdat = NODE_DATA(nid);
7411	spin_lock_init(&zone->lock);
7412	zone_seqlock_init(zone);
7413	zone_pcp_init(zone);
7414}
7415
7416/*
7417 * Set up the zone data structures
7418 * - init pgdat internals
7419 * - init all zones belonging to this node
7420 *
7421 * NOTE: this function is only called during memory hotplug
7422 */
7423#ifdef CONFIG_MEMORY_HOTPLUG
7424void __ref free_area_init_core_hotplug(int nid)
7425{
7426	enum zone_type z;
7427	pg_data_t *pgdat = NODE_DATA(nid);
7428
7429	pgdat_init_internals(pgdat);
7430	for (z = 0; z < MAX_NR_ZONES; z++)
7431		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7432}
7433#endif
7434
7435/*
7436 * Set up the zone data structures:
7437 *   - mark all pages reserved
7438 *   - mark all memory queues empty
7439 *   - clear the memory bitmaps
7440 *
7441 * NOTE: pgdat should get zeroed by caller.
7442 * NOTE: this function is only called during early init.
7443 */
7444static void __init free_area_init_core(struct pglist_data *pgdat)
7445{
7446	enum zone_type j;
7447	int nid = pgdat->node_id;
 
7448
7449	pgdat_init_internals(pgdat);
7450	pgdat->per_cpu_nodestats = &boot_nodestats;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7451
7452	for (j = 0; j < MAX_NR_ZONES; j++) {
7453		struct zone *zone = pgdat->node_zones + j;
7454		unsigned long size, freesize, memmap_pages;
 
7455
7456		size = zone->spanned_pages;
7457		freesize = zone->present_pages;
7458
7459		/*
7460		 * Adjust freesize so that it accounts for how much memory
7461		 * is used by this zone for memmap. This affects the watermark
7462		 * and per-cpu initialisations
7463		 */
7464		memmap_pages = calc_memmap_size(size, freesize);
7465		if (!is_highmem_idx(j)) {
7466			if (freesize >= memmap_pages) {
7467				freesize -= memmap_pages;
7468				if (memmap_pages)
7469					pr_debug("  %s zone: %lu pages used for memmap\n",
7470						 zone_names[j], memmap_pages);
 
7471			} else
7472				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7473					zone_names[j], memmap_pages, freesize);
7474		}
7475
7476		/* Account for reserved pages */
7477		if (j == 0 && freesize > dma_reserve) {
7478			freesize -= dma_reserve;
7479			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
 
7480		}
7481
7482		if (!is_highmem_idx(j))
7483			nr_kernel_pages += freesize;
7484		/* Charge for highmem memmap if there are enough kernel pages */
7485		else if (nr_kernel_pages > memmap_pages * 2)
7486			nr_kernel_pages -= memmap_pages;
7487		nr_all_pages += freesize;
7488
7489		/*
7490		 * Set an approximate value for lowmem here, it will be adjusted
7491		 * when the bootmem allocator frees pages into the buddy system.
7492		 * And all highmem pages will be managed by the buddy system.
7493		 */
7494		zone_init_internals(zone, j, nid, freesize);
 
 
 
 
 
 
 
 
 
 
 
 
7495
 
 
 
 
7496		if (!size)
7497			continue;
7498
7499		set_pageblock_order();
7500		setup_usemap(zone);
7501		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
 
 
7502	}
7503}
7504
7505#ifdef CONFIG_FLATMEM
7506static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7507{
7508	unsigned long __maybe_unused start = 0;
7509	unsigned long __maybe_unused offset = 0;
7510
7511	/* Skip empty nodes */
7512	if (!pgdat->node_spanned_pages)
7513		return;
7514
 
7515	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7516	offset = pgdat->node_start_pfn - start;
7517	/* ia64 gets its own node_mem_map, before this, without bootmem */
7518	if (!pgdat->node_mem_map) {
7519		unsigned long size, end;
7520		struct page *map;
7521
7522		/*
7523		 * The zone's endpoints aren't required to be MAX_ORDER
7524		 * aligned but the node_mem_map endpoints must be in order
7525		 * for the buddy allocator to function correctly.
7526		 */
7527		end = pgdat_end_pfn(pgdat);
7528		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7529		size =  (end - start) * sizeof(struct page);
7530		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7531					  pgdat->node_id);
7532		if (!map)
7533			panic("Failed to allocate %ld bytes for node %d memory map\n",
7534			      size, pgdat->node_id);
7535		pgdat->node_mem_map = map + offset;
7536	}
7537	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7538				__func__, pgdat->node_id, (unsigned long)pgdat,
7539				(unsigned long)pgdat->node_mem_map);
7540#ifndef CONFIG_NUMA
7541	/*
7542	 * With no DISCONTIG, the global mem_map is just set as node 0's
7543	 */
7544	if (pgdat == NODE_DATA(0)) {
7545		mem_map = NODE_DATA(0)->node_mem_map;
 
7546		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7547			mem_map -= offset;
 
7548	}
7549#endif
 
7550}
7551#else
7552static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7553#endif /* CONFIG_FLATMEM */
7554
7555#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7556static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7557{
7558	pgdat->first_deferred_pfn = ULONG_MAX;
7559}
7560#else
7561static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7562#endif
7563
7564static void __init free_area_init_node(int nid)
7565{
7566	pg_data_t *pgdat = NODE_DATA(nid);
7567	unsigned long start_pfn = 0;
7568	unsigned long end_pfn = 0;
7569
7570	/* pg_data_t should be reset to zero when it's allocated */
7571	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7572
 
 
 
 
7573	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7574
7575	pgdat->node_id = nid;
7576	pgdat->node_start_pfn = start_pfn;
7577	pgdat->per_cpu_nodestats = NULL;
7578
7579	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7580		(u64)start_pfn << PAGE_SHIFT,
7581		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7582	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
 
 
 
 
7583
7584	alloc_node_mem_map(pgdat);
7585	pgdat_set_deferred_range(pgdat);
 
 
 
 
7586
7587	free_area_init_core(pgdat);
7588}
7589
7590void __init free_area_init_memoryless_node(int nid)
7591{
7592	free_area_init_node(nid);
7593}
7594
7595#if MAX_NUMNODES > 1
7596/*
7597 * Figure out the number of possible node ids.
7598 */
7599void __init setup_nr_node_ids(void)
7600{
7601	unsigned int highest;
7602
7603	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7604	nr_node_ids = highest + 1;
7605}
7606#endif
7607
7608/**
7609 * node_map_pfn_alignment - determine the maximum internode alignment
7610 *
7611 * This function should be called after node map is populated and sorted.
7612 * It calculates the maximum power of two alignment which can distinguish
7613 * all the nodes.
7614 *
7615 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7616 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7617 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7618 * shifted, 1GiB is enough and this function will indicate so.
7619 *
7620 * This is used to test whether pfn -> nid mapping of the chosen memory
7621 * model has fine enough granularity to avoid incorrect mapping for the
7622 * populated node map.
7623 *
7624 * Return: the determined alignment in pfn's.  0 if there is no alignment
7625 * requirement (single node).
7626 */
7627unsigned long __init node_map_pfn_alignment(void)
7628{
7629	unsigned long accl_mask = 0, last_end = 0;
7630	unsigned long start, end, mask;
7631	int last_nid = NUMA_NO_NODE;
7632	int i, nid;
7633
7634	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7635		if (!start || last_nid < 0 || last_nid == nid) {
7636			last_nid = nid;
7637			last_end = end;
7638			continue;
7639		}
7640
7641		/*
7642		 * Start with a mask granular enough to pin-point to the
7643		 * start pfn and tick off bits one-by-one until it becomes
7644		 * too coarse to separate the current node from the last.
7645		 */
7646		mask = ~((1 << __ffs(start)) - 1);
7647		while (mask && last_end <= (start & (mask << 1)))
7648			mask <<= 1;
7649
7650		/* accumulate all internode masks */
7651		accl_mask |= mask;
7652	}
7653
7654	/* convert mask to number of pages */
7655	return ~accl_mask + 1;
7656}
7657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7658/**
7659 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7660 *
7661 * Return: the minimum PFN based on information provided via
7662 * memblock_set_node().
7663 */
7664unsigned long __init find_min_pfn_with_active_regions(void)
7665{
7666	return PHYS_PFN(memblock_start_of_DRAM());
7667}
7668
7669/*
7670 * early_calculate_totalpages()
7671 * Sum pages in active regions for movable zone.
7672 * Populate N_MEMORY for calculating usable_nodes.
7673 */
7674static unsigned long __init early_calculate_totalpages(void)
7675{
7676	unsigned long totalpages = 0;
7677	unsigned long start_pfn, end_pfn;
7678	int i, nid;
7679
7680	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7681		unsigned long pages = end_pfn - start_pfn;
7682
7683		totalpages += pages;
7684		if (pages)
7685			node_set_state(nid, N_MEMORY);
7686	}
7687	return totalpages;
7688}
7689
7690/*
7691 * Find the PFN the Movable zone begins in each node. Kernel memory
7692 * is spread evenly between nodes as long as the nodes have enough
7693 * memory. When they don't, some nodes will have more kernelcore than
7694 * others
7695 */
7696static void __init find_zone_movable_pfns_for_nodes(void)
7697{
7698	int i, nid;
7699	unsigned long usable_startpfn;
7700	unsigned long kernelcore_node, kernelcore_remaining;
7701	/* save the state before borrow the nodemask */
7702	nodemask_t saved_node_state = node_states[N_MEMORY];
7703	unsigned long totalpages = early_calculate_totalpages();
7704	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7705	struct memblock_region *r;
7706
7707	/* Need to find movable_zone earlier when movable_node is specified. */
7708	find_usable_zone_for_movable();
7709
7710	/*
7711	 * If movable_node is specified, ignore kernelcore and movablecore
7712	 * options.
7713	 */
7714	if (movable_node_is_enabled()) {
7715		for_each_mem_region(r) {
7716			if (!memblock_is_hotpluggable(r))
7717				continue;
7718
7719			nid = memblock_get_region_node(r);
7720
7721			usable_startpfn = PFN_DOWN(r->base);
7722			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7723				min(usable_startpfn, zone_movable_pfn[nid]) :
7724				usable_startpfn;
7725		}
7726
7727		goto out2;
7728	}
7729
7730	/*
7731	 * If kernelcore=mirror is specified, ignore movablecore option
7732	 */
7733	if (mirrored_kernelcore) {
7734		bool mem_below_4gb_not_mirrored = false;
7735
7736		for_each_mem_region(r) {
7737			if (memblock_is_mirror(r))
7738				continue;
7739
7740			nid = memblock_get_region_node(r);
7741
7742			usable_startpfn = memblock_region_memory_base_pfn(r);
7743
7744			if (usable_startpfn < 0x100000) {
7745				mem_below_4gb_not_mirrored = true;
7746				continue;
7747			}
7748
7749			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7750				min(usable_startpfn, zone_movable_pfn[nid]) :
7751				usable_startpfn;
7752		}
7753
7754		if (mem_below_4gb_not_mirrored)
7755			pr_warn("This configuration results in unmirrored kernel memory.\n");
7756
7757		goto out2;
7758	}
7759
7760	/*
7761	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7762	 * amount of necessary memory.
7763	 */
7764	if (required_kernelcore_percent)
7765		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7766				       10000UL;
7767	if (required_movablecore_percent)
7768		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7769					10000UL;
7770
7771	/*
7772	 * If movablecore= was specified, calculate what size of
7773	 * kernelcore that corresponds so that memory usable for
7774	 * any allocation type is evenly spread. If both kernelcore
7775	 * and movablecore are specified, then the value of kernelcore
7776	 * will be used for required_kernelcore if it's greater than
7777	 * what movablecore would have allowed.
7778	 */
7779	if (required_movablecore) {
7780		unsigned long corepages;
7781
7782		/*
7783		 * Round-up so that ZONE_MOVABLE is at least as large as what
7784		 * was requested by the user
7785		 */
7786		required_movablecore =
7787			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7788		required_movablecore = min(totalpages, required_movablecore);
7789		corepages = totalpages - required_movablecore;
7790
7791		required_kernelcore = max(required_kernelcore, corepages);
7792	}
7793
7794	/*
7795	 * If kernelcore was not specified or kernelcore size is larger
7796	 * than totalpages, there is no ZONE_MOVABLE.
7797	 */
7798	if (!required_kernelcore || required_kernelcore >= totalpages)
7799		goto out;
7800
7801	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7802	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7803
7804restart:
7805	/* Spread kernelcore memory as evenly as possible throughout nodes */
7806	kernelcore_node = required_kernelcore / usable_nodes;
7807	for_each_node_state(nid, N_MEMORY) {
7808		unsigned long start_pfn, end_pfn;
7809
7810		/*
7811		 * Recalculate kernelcore_node if the division per node
7812		 * now exceeds what is necessary to satisfy the requested
7813		 * amount of memory for the kernel
7814		 */
7815		if (required_kernelcore < kernelcore_node)
7816			kernelcore_node = required_kernelcore / usable_nodes;
7817
7818		/*
7819		 * As the map is walked, we track how much memory is usable
7820		 * by the kernel using kernelcore_remaining. When it is
7821		 * 0, the rest of the node is usable by ZONE_MOVABLE
7822		 */
7823		kernelcore_remaining = kernelcore_node;
7824
7825		/* Go through each range of PFNs within this node */
7826		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7827			unsigned long size_pages;
7828
7829			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7830			if (start_pfn >= end_pfn)
7831				continue;
7832
7833			/* Account for what is only usable for kernelcore */
7834			if (start_pfn < usable_startpfn) {
7835				unsigned long kernel_pages;
7836				kernel_pages = min(end_pfn, usable_startpfn)
7837								- start_pfn;
7838
7839				kernelcore_remaining -= min(kernel_pages,
7840							kernelcore_remaining);
7841				required_kernelcore -= min(kernel_pages,
7842							required_kernelcore);
7843
7844				/* Continue if range is now fully accounted */
7845				if (end_pfn <= usable_startpfn) {
7846
7847					/*
7848					 * Push zone_movable_pfn to the end so
7849					 * that if we have to rebalance
7850					 * kernelcore across nodes, we will
7851					 * not double account here
7852					 */
7853					zone_movable_pfn[nid] = end_pfn;
7854					continue;
7855				}
7856				start_pfn = usable_startpfn;
7857			}
7858
7859			/*
7860			 * The usable PFN range for ZONE_MOVABLE is from
7861			 * start_pfn->end_pfn. Calculate size_pages as the
7862			 * number of pages used as kernelcore
7863			 */
7864			size_pages = end_pfn - start_pfn;
7865			if (size_pages > kernelcore_remaining)
7866				size_pages = kernelcore_remaining;
7867			zone_movable_pfn[nid] = start_pfn + size_pages;
7868
7869			/*
7870			 * Some kernelcore has been met, update counts and
7871			 * break if the kernelcore for this node has been
7872			 * satisfied
7873			 */
7874			required_kernelcore -= min(required_kernelcore,
7875								size_pages);
7876			kernelcore_remaining -= size_pages;
7877			if (!kernelcore_remaining)
7878				break;
7879		}
7880	}
7881
7882	/*
7883	 * If there is still required_kernelcore, we do another pass with one
7884	 * less node in the count. This will push zone_movable_pfn[nid] further
7885	 * along on the nodes that still have memory until kernelcore is
7886	 * satisfied
7887	 */
7888	usable_nodes--;
7889	if (usable_nodes && required_kernelcore > usable_nodes)
7890		goto restart;
7891
7892out2:
7893	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7894	for (nid = 0; nid < MAX_NUMNODES; nid++)
7895		zone_movable_pfn[nid] =
7896			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7897
7898out:
7899	/* restore the node_state */
7900	node_states[N_MEMORY] = saved_node_state;
7901}
7902
7903/* Any regular or high memory on that node ? */
7904static void check_for_memory(pg_data_t *pgdat, int nid)
7905{
7906	enum zone_type zone_type;
7907
 
 
 
7908	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7909		struct zone *zone = &pgdat->node_zones[zone_type];
7910		if (populated_zone(zone)) {
7911			if (IS_ENABLED(CONFIG_HIGHMEM))
7912				node_set_state(nid, N_HIGH_MEMORY);
7913			if (zone_type <= ZONE_NORMAL)
7914				node_set_state(nid, N_NORMAL_MEMORY);
7915			break;
7916		}
7917	}
7918}
7919
7920/*
7921 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7922 * such cases we allow max_zone_pfn sorted in the descending order
7923 */
7924bool __weak arch_has_descending_max_zone_pfns(void)
7925{
7926	return false;
7927}
7928
7929/**
7930 * free_area_init - Initialise all pg_data_t and zone data
7931 * @max_zone_pfn: an array of max PFNs for each zone
7932 *
7933 * This will call free_area_init_node() for each active node in the system.
7934 * Using the page ranges provided by memblock_set_node(), the size of each
7935 * zone in each node and their holes is calculated. If the maximum PFN
7936 * between two adjacent zones match, it is assumed that the zone is empty.
7937 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7938 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7939 * starts where the previous one ended. For example, ZONE_DMA32 starts
7940 * at arch_max_dma_pfn.
7941 */
7942void __init free_area_init(unsigned long *max_zone_pfn)
7943{
7944	unsigned long start_pfn, end_pfn;
7945	int i, nid, zone;
7946	bool descending;
7947
7948	/* Record where the zone boundaries are */
7949	memset(arch_zone_lowest_possible_pfn, 0,
7950				sizeof(arch_zone_lowest_possible_pfn));
7951	memset(arch_zone_highest_possible_pfn, 0,
7952				sizeof(arch_zone_highest_possible_pfn));
7953
7954	start_pfn = find_min_pfn_with_active_regions();
7955	descending = arch_has_descending_max_zone_pfns();
7956
7957	for (i = 0; i < MAX_NR_ZONES; i++) {
7958		if (descending)
7959			zone = MAX_NR_ZONES - i - 1;
7960		else
7961			zone = i;
7962
7963		if (zone == ZONE_MOVABLE)
7964			continue;
7965
7966		end_pfn = max(max_zone_pfn[zone], start_pfn);
7967		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7968		arch_zone_highest_possible_pfn[zone] = end_pfn;
7969
7970		start_pfn = end_pfn;
7971	}
 
 
7972
7973	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7974	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7975	find_zone_movable_pfns_for_nodes();
7976
7977	/* Print out the zone ranges */
7978	pr_info("Zone ranges:\n");
7979	for (i = 0; i < MAX_NR_ZONES; i++) {
7980		if (i == ZONE_MOVABLE)
7981			continue;
7982		pr_info("  %-8s ", zone_names[i]);
7983		if (arch_zone_lowest_possible_pfn[i] ==
7984				arch_zone_highest_possible_pfn[i])
7985			pr_cont("empty\n");
7986		else
7987			pr_cont("[mem %#018Lx-%#018Lx]\n",
7988				(u64)arch_zone_lowest_possible_pfn[i]
7989					<< PAGE_SHIFT,
7990				((u64)arch_zone_highest_possible_pfn[i]
7991					<< PAGE_SHIFT) - 1);
7992	}
7993
7994	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7995	pr_info("Movable zone start for each node\n");
7996	for (i = 0; i < MAX_NUMNODES; i++) {
7997		if (zone_movable_pfn[i])
7998			pr_info("  Node %d: %#018Lx\n", i,
7999			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8000	}
8001
8002	/*
8003	 * Print out the early node map, and initialize the
8004	 * subsection-map relative to active online memory ranges to
8005	 * enable future "sub-section" extensions of the memory map.
8006	 */
8007	pr_info("Early memory node ranges\n");
8008	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8009		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8010			(u64)start_pfn << PAGE_SHIFT,
8011			((u64)end_pfn << PAGE_SHIFT) - 1);
8012		subsection_map_init(start_pfn, end_pfn - start_pfn);
8013	}
8014
8015	/* Initialise every node */
8016	mminit_verify_pageflags_layout();
8017	setup_nr_node_ids();
8018	for_each_online_node(nid) {
8019		pg_data_t *pgdat = NODE_DATA(nid);
8020		free_area_init_node(nid);
 
8021
8022		/* Any memory on that node */
8023		if (pgdat->node_present_pages)
8024			node_set_state(nid, N_MEMORY);
8025		check_for_memory(pgdat, nid);
8026	}
8027
8028	memmap_init();
8029}
8030
8031static int __init cmdline_parse_core(char *p, unsigned long *core,
8032				     unsigned long *percent)
8033{
8034	unsigned long long coremem;
8035	char *endptr;
8036
8037	if (!p)
8038		return -EINVAL;
8039
8040	/* Value may be a percentage of total memory, otherwise bytes */
8041	coremem = simple_strtoull(p, &endptr, 0);
8042	if (*endptr == '%') {
8043		/* Paranoid check for percent values greater than 100 */
8044		WARN_ON(coremem > 100);
8045
8046		*percent = coremem;
8047	} else {
8048		coremem = memparse(p, &p);
8049		/* Paranoid check that UL is enough for the coremem value */
8050		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8051
8052		*core = coremem >> PAGE_SHIFT;
8053		*percent = 0UL;
8054	}
8055	return 0;
8056}
8057
8058/*
8059 * kernelcore=size sets the amount of memory for use for allocations that
8060 * cannot be reclaimed or migrated.
8061 */
8062static int __init cmdline_parse_kernelcore(char *p)
8063{
8064	/* parse kernelcore=mirror */
8065	if (parse_option_str(p, "mirror")) {
8066		mirrored_kernelcore = true;
8067		return 0;
8068	}
8069
8070	return cmdline_parse_core(p, &required_kernelcore,
8071				  &required_kernelcore_percent);
8072}
8073
8074/*
8075 * movablecore=size sets the amount of memory for use for allocations that
8076 * can be reclaimed or migrated.
8077 */
8078static int __init cmdline_parse_movablecore(char *p)
8079{
8080	return cmdline_parse_core(p, &required_movablecore,
8081				  &required_movablecore_percent);
8082}
8083
8084early_param("kernelcore", cmdline_parse_kernelcore);
8085early_param("movablecore", cmdline_parse_movablecore);
8086
 
 
8087void adjust_managed_page_count(struct page *page, long count)
8088{
8089	atomic_long_add(count, &page_zone(page)->managed_pages);
8090	totalram_pages_add(count);
 
8091#ifdef CONFIG_HIGHMEM
8092	if (PageHighMem(page))
8093		totalhigh_pages_add(count);
8094#endif
 
8095}
8096EXPORT_SYMBOL(adjust_managed_page_count);
8097
8098unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8099{
8100	void *pos;
8101	unsigned long pages = 0;
8102
8103	start = (void *)PAGE_ALIGN((unsigned long)start);
8104	end = (void *)((unsigned long)end & PAGE_MASK);
8105	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8106		struct page *page = virt_to_page(pos);
8107		void *direct_map_addr;
8108
8109		/*
8110		 * 'direct_map_addr' might be different from 'pos'
8111		 * because some architectures' virt_to_page()
8112		 * work with aliases.  Getting the direct map
8113		 * address ensures that we get a _writeable_
8114		 * alias for the memset().
8115		 */
8116		direct_map_addr = page_address(page);
8117		/*
8118		 * Perform a kasan-unchecked memset() since this memory
8119		 * has not been initialized.
8120		 */
8121		direct_map_addr = kasan_reset_tag(direct_map_addr);
8122		if ((unsigned int)poison <= 0xFF)
8123			memset(direct_map_addr, poison, PAGE_SIZE);
8124
8125		free_reserved_page(page);
8126	}
8127
8128	if (pages && s)
8129		pr_info("Freeing %s memory: %ldK\n",
8130			s, pages << (PAGE_SHIFT - 10));
8131
8132	return pages;
8133}
 
 
 
 
 
 
 
 
 
 
 
 
8134
8135void __init mem_init_print_info(void)
8136{
8137	unsigned long physpages, codesize, datasize, rosize, bss_size;
8138	unsigned long init_code_size, init_data_size;
8139
8140	physpages = get_num_physpages();
8141	codesize = _etext - _stext;
8142	datasize = _edata - _sdata;
8143	rosize = __end_rodata - __start_rodata;
8144	bss_size = __bss_stop - __bss_start;
8145	init_data_size = __init_end - __init_begin;
8146	init_code_size = _einittext - _sinittext;
8147
8148	/*
8149	 * Detect special cases and adjust section sizes accordingly:
8150	 * 1) .init.* may be embedded into .data sections
8151	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8152	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8153	 * 3) .rodata.* may be embedded into .text or .data sections.
8154	 */
8155#define adj_init_size(start, end, size, pos, adj) \
8156	do { \
8157		if (start <= pos && pos < end && size > adj) \
8158			size -= adj; \
8159	} while (0)
8160
8161	adj_init_size(__init_begin, __init_end, init_data_size,
8162		     _sinittext, init_code_size);
8163	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8164	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8165	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8166	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8167
8168#undef	adj_init_size
8169
8170	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8171#ifdef	CONFIG_HIGHMEM
8172		", %luK highmem"
8173#endif
8174		")\n",
8175		nr_free_pages() << (PAGE_SHIFT - 10),
8176		physpages << (PAGE_SHIFT - 10),
8177		codesize >> 10, datasize >> 10, rosize >> 10,
8178		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8179		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8180		totalcma_pages << (PAGE_SHIFT - 10)
8181#ifdef	CONFIG_HIGHMEM
8182		, totalhigh_pages() << (PAGE_SHIFT - 10)
8183#endif
8184		);
8185}
8186
8187/**
8188 * set_dma_reserve - set the specified number of pages reserved in the first zone
8189 * @new_dma_reserve: The number of pages to mark reserved
8190 *
8191 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8192 * In the DMA zone, a significant percentage may be consumed by kernel image
8193 * and other unfreeable allocations which can skew the watermarks badly. This
8194 * function may optionally be used to account for unfreeable pages in the
8195 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8196 * smaller per-cpu batchsize.
8197 */
8198void __init set_dma_reserve(unsigned long new_dma_reserve)
8199{
8200	dma_reserve = new_dma_reserve;
8201}
8202
8203static int page_alloc_cpu_dead(unsigned int cpu)
8204{
8205	struct zone *zone;
8206
8207	lru_add_drain_cpu(cpu);
8208	drain_pages(cpu);
8209
8210	/*
8211	 * Spill the event counters of the dead processor
8212	 * into the current processors event counters.
8213	 * This artificially elevates the count of the current
8214	 * processor.
8215	 */
8216	vm_events_fold_cpu(cpu);
8217
8218	/*
8219	 * Zero the differential counters of the dead processor
8220	 * so that the vm statistics are consistent.
8221	 *
8222	 * This is only okay since the processor is dead and cannot
8223	 * race with what we are doing.
8224	 */
8225	cpu_vm_stats_fold(cpu);
8226
8227	for_each_populated_zone(zone)
8228		zone_pcp_update(zone, 0);
8229
8230	return 0;
8231}
8232
8233static int page_alloc_cpu_online(unsigned int cpu)
 
8234{
8235	struct zone *zone;
8236
8237	for_each_populated_zone(zone)
8238		zone_pcp_update(zone, 1);
8239	return 0;
8240}
8241
8242#ifdef CONFIG_NUMA
8243int hashdist = HASHDIST_DEFAULT;
 
 
 
 
 
8244
8245static int __init set_hashdist(char *str)
8246{
8247	if (!str)
8248		return 0;
8249	hashdist = simple_strtoul(str, &str, 0);
8250	return 1;
 
 
 
 
8251}
8252__setup("hashdist=", set_hashdist);
8253#endif
8254
8255void __init page_alloc_init(void)
8256{
8257	int ret;
8258
8259#ifdef CONFIG_NUMA
8260	if (num_node_state(N_MEMORY) == 1)
8261		hashdist = 0;
8262#endif
8263
8264	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8265					"mm/page_alloc:pcp",
8266					page_alloc_cpu_online,
8267					page_alloc_cpu_dead);
8268	WARN_ON(ret < 0);
8269}
8270
8271/*
8272 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8273 *	or min_free_kbytes changes.
8274 */
8275static void calculate_totalreserve_pages(void)
8276{
8277	struct pglist_data *pgdat;
8278	unsigned long reserve_pages = 0;
8279	enum zone_type i, j;
8280
8281	for_each_online_pgdat(pgdat) {
8282
8283		pgdat->totalreserve_pages = 0;
8284
8285		for (i = 0; i < MAX_NR_ZONES; i++) {
8286			struct zone *zone = pgdat->node_zones + i;
8287			long max = 0;
8288			unsigned long managed_pages = zone_managed_pages(zone);
8289
8290			/* Find valid and maximum lowmem_reserve in the zone */
8291			for (j = i; j < MAX_NR_ZONES; j++) {
8292				if (zone->lowmem_reserve[j] > max)
8293					max = zone->lowmem_reserve[j];
8294			}
8295
8296			/* we treat the high watermark as reserved pages. */
8297			max += high_wmark_pages(zone);
8298
8299			if (max > managed_pages)
8300				max = managed_pages;
8301
8302			pgdat->totalreserve_pages += max;
8303
8304			reserve_pages += max;
8305		}
8306	}
8307	totalreserve_pages = reserve_pages;
8308}
8309
8310/*
8311 * setup_per_zone_lowmem_reserve - called whenever
8312 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8313 *	has a correct pages reserved value, so an adequate number of
8314 *	pages are left in the zone after a successful __alloc_pages().
8315 */
8316static void setup_per_zone_lowmem_reserve(void)
8317{
8318	struct pglist_data *pgdat;
8319	enum zone_type i, j;
8320
8321	for_each_online_pgdat(pgdat) {
8322		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8323			struct zone *zone = &pgdat->node_zones[i];
8324			int ratio = sysctl_lowmem_reserve_ratio[i];
8325			bool clear = !ratio || !zone_managed_pages(zone);
8326			unsigned long managed_pages = 0;
8327
8328			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8329				struct zone *upper_zone = &pgdat->node_zones[j];
8330
8331				managed_pages += zone_managed_pages(upper_zone);
8332
8333				if (clear)
8334					zone->lowmem_reserve[j] = 0;
8335				else
8336					zone->lowmem_reserve[j] = managed_pages / ratio;
 
 
 
 
8337			}
8338		}
8339	}
8340
8341	/* update totalreserve_pages */
8342	calculate_totalreserve_pages();
8343}
8344
8345static void __setup_per_zone_wmarks(void)
8346{
8347	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8348	unsigned long lowmem_pages = 0;
8349	struct zone *zone;
8350	unsigned long flags;
8351
8352	/* Calculate total number of !ZONE_HIGHMEM pages */
8353	for_each_zone(zone) {
8354		if (!is_highmem(zone))
8355			lowmem_pages += zone_managed_pages(zone);
8356	}
8357
8358	for_each_zone(zone) {
8359		u64 tmp;
8360
8361		spin_lock_irqsave(&zone->lock, flags);
8362		tmp = (u64)pages_min * zone_managed_pages(zone);
8363		do_div(tmp, lowmem_pages);
8364		if (is_highmem(zone)) {
8365			/*
8366			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8367			 * need highmem pages, so cap pages_min to a small
8368			 * value here.
8369			 *
8370			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8371			 * deltas control async page reclaim, and so should
8372			 * not be capped for highmem.
8373			 */
8374			unsigned long min_pages;
8375
8376			min_pages = zone_managed_pages(zone) / 1024;
8377			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8378			zone->_watermark[WMARK_MIN] = min_pages;
8379		} else {
8380			/*
8381			 * If it's a lowmem zone, reserve a number of pages
8382			 * proportionate to the zone's size.
8383			 */
8384			zone->_watermark[WMARK_MIN] = tmp;
8385		}
8386
8387		/*
8388		 * Set the kswapd watermarks distance according to the
8389		 * scale factor in proportion to available memory, but
8390		 * ensure a minimum size on small systems.
8391		 */
8392		tmp = max_t(u64, tmp >> 2,
8393			    mult_frac(zone_managed_pages(zone),
8394				      watermark_scale_factor, 10000));
8395
8396		zone->watermark_boost = 0;
8397		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8398		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
 
 
 
8399
8400		spin_unlock_irqrestore(&zone->lock, flags);
8401	}
8402
8403	/* update totalreserve_pages */
8404	calculate_totalreserve_pages();
8405}
8406
8407/**
8408 * setup_per_zone_wmarks - called when min_free_kbytes changes
8409 * or when memory is hot-{added|removed}
8410 *
8411 * Ensures that the watermark[min,low,high] values for each zone are set
8412 * correctly with respect to min_free_kbytes.
8413 */
8414void setup_per_zone_wmarks(void)
8415{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8416	struct zone *zone;
8417	static DEFINE_SPINLOCK(lock);
8418
8419	spin_lock(&lock);
8420	__setup_per_zone_wmarks();
8421	spin_unlock(&lock);
8422
8423	/*
8424	 * The watermark size have changed so update the pcpu batch
8425	 * and high limits or the limits may be inappropriate.
8426	 */
8427	for_each_zone(zone)
8428		zone_pcp_update(zone, 0);
8429}
8430
8431/*
8432 * Initialise min_free_kbytes.
8433 *
8434 * For small machines we want it small (128k min).  For large machines
8435 * we want it large (256MB max).  But it is not linear, because network
8436 * bandwidth does not increase linearly with machine size.  We use
8437 *
8438 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8439 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8440 *
8441 * which yields
8442 *
8443 * 16MB:	512k
8444 * 32MB:	724k
8445 * 64MB:	1024k
8446 * 128MB:	1448k
8447 * 256MB:	2048k
8448 * 512MB:	2896k
8449 * 1024MB:	4096k
8450 * 2048MB:	5792k
8451 * 4096MB:	8192k
8452 * 8192MB:	11584k
8453 * 16384MB:	16384k
8454 */
8455int __meminit init_per_zone_wmark_min(void)
8456{
8457	unsigned long lowmem_kbytes;
8458	int new_min_free_kbytes;
8459
8460	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8461	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8462
8463	if (new_min_free_kbytes > user_min_free_kbytes) {
8464		min_free_kbytes = new_min_free_kbytes;
8465		if (min_free_kbytes < 128)
8466			min_free_kbytes = 128;
8467		if (min_free_kbytes > 262144)
8468			min_free_kbytes = 262144;
8469	} else {
8470		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8471				new_min_free_kbytes, user_min_free_kbytes);
8472	}
8473	setup_per_zone_wmarks();
8474	refresh_zone_stat_thresholds();
8475	setup_per_zone_lowmem_reserve();
8476
8477#ifdef CONFIG_NUMA
8478	setup_min_unmapped_ratio();
8479	setup_min_slab_ratio();
8480#endif
8481
8482	khugepaged_min_free_kbytes_update();
8483
8484	return 0;
8485}
8486postcore_initcall(init_per_zone_wmark_min)
8487
8488/*
8489 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8490 *	that we can call two helper functions whenever min_free_kbytes
8491 *	changes.
8492 */
8493int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8494		void *buffer, size_t *length, loff_t *ppos)
8495{
8496	int rc;
8497
8498	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8499	if (rc)
8500		return rc;
8501
8502	if (write) {
8503		user_min_free_kbytes = min_free_kbytes;
8504		setup_per_zone_wmarks();
8505	}
8506	return 0;
8507}
8508
8509int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8510		void *buffer, size_t *length, loff_t *ppos)
8511{
8512	int rc;
8513
8514	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8515	if (rc)
8516		return rc;
8517
8518	if (write)
8519		setup_per_zone_wmarks();
8520
8521	return 0;
8522}
8523
8524#ifdef CONFIG_NUMA
8525static void setup_min_unmapped_ratio(void)
 
8526{
8527	pg_data_t *pgdat;
8528	struct zone *zone;
8529
8530	for_each_online_pgdat(pgdat)
8531		pgdat->min_unmapped_pages = 0;
8532
8533	for_each_zone(zone)
8534		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8535						         sysctl_min_unmapped_ratio) / 100;
8536}
8537
8538
8539int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8540		void *buffer, size_t *length, loff_t *ppos)
8541{
8542	int rc;
8543
8544	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8545	if (rc)
8546		return rc;
8547
8548	setup_min_unmapped_ratio();
8549
 
8550	return 0;
8551}
8552
8553static void setup_min_slab_ratio(void)
 
8554{
8555	pg_data_t *pgdat;
8556	struct zone *zone;
8557
8558	for_each_online_pgdat(pgdat)
8559		pgdat->min_slab_pages = 0;
8560
8561	for_each_zone(zone)
8562		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8563						     sysctl_min_slab_ratio) / 100;
8564}
8565
8566int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8567		void *buffer, size_t *length, loff_t *ppos)
8568{
8569	int rc;
8570
8571	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8572	if (rc)
8573		return rc;
8574
8575	setup_min_slab_ratio();
8576
 
8577	return 0;
8578}
8579#endif
8580
8581/*
8582 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8583 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8584 *	whenever sysctl_lowmem_reserve_ratio changes.
8585 *
8586 * The reserve ratio obviously has absolutely no relation with the
8587 * minimum watermarks. The lowmem reserve ratio can only make sense
8588 * if in function of the boot time zone sizes.
8589 */
8590int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8591		void *buffer, size_t *length, loff_t *ppos)
8592{
8593	int i;
8594
8595	proc_dointvec_minmax(table, write, buffer, length, ppos);
8596
8597	for (i = 0; i < MAX_NR_ZONES; i++) {
8598		if (sysctl_lowmem_reserve_ratio[i] < 1)
8599			sysctl_lowmem_reserve_ratio[i] = 0;
8600	}
8601
8602	setup_per_zone_lowmem_reserve();
8603	return 0;
8604}
8605
8606/*
8607 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8608 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8609 * pagelist can have before it gets flushed back to buddy allocator.
8610 */
8611int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8612		int write, void *buffer, size_t *length, loff_t *ppos)
8613{
8614	struct zone *zone;
8615	int old_percpu_pagelist_high_fraction;
8616	int ret;
8617
8618	mutex_lock(&pcp_batch_high_lock);
8619	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8620
8621	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8622	if (!write || ret < 0)
8623		goto out;
8624
8625	/* Sanity checking to avoid pcp imbalance */
8626	if (percpu_pagelist_high_fraction &&
8627	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8628		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8629		ret = -EINVAL;
8630		goto out;
8631	}
8632
8633	/* No change? */
8634	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8635		goto out;
8636
8637	for_each_populated_zone(zone)
8638		zone_set_pageset_high_and_batch(zone, 0);
 
 
 
 
 
8639out:
8640	mutex_unlock(&pcp_batch_high_lock);
8641	return ret;
8642}
8643
8644#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8645/*
8646 * Returns the number of pages that arch has reserved but
8647 * is not known to alloc_large_system_hash().
8648 */
8649static unsigned long __init arch_reserved_kernel_pages(void)
8650{
8651	return 0;
 
 
 
8652}
8653#endif
8654
8655/*
8656 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8657 * machines. As memory size is increased the scale is also increased but at
8658 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8659 * quadruples the scale is increased by one, which means the size of hash table
8660 * only doubles, instead of quadrupling as well.
8661 * Because 32-bit systems cannot have large physical memory, where this scaling
8662 * makes sense, it is disabled on such platforms.
8663 */
8664#if __BITS_PER_LONG > 32
8665#define ADAPT_SCALE_BASE	(64ul << 30)
8666#define ADAPT_SCALE_SHIFT	2
8667#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8668#endif
8669
8670/*
8671 * allocate a large system hash table from bootmem
8672 * - it is assumed that the hash table must contain an exact power-of-2
8673 *   quantity of entries
8674 * - limit is the number of hash buckets, not the total allocation size
8675 */
8676void *__init alloc_large_system_hash(const char *tablename,
8677				     unsigned long bucketsize,
8678				     unsigned long numentries,
8679				     int scale,
8680				     int flags,
8681				     unsigned int *_hash_shift,
8682				     unsigned int *_hash_mask,
8683				     unsigned long low_limit,
8684				     unsigned long high_limit)
8685{
8686	unsigned long long max = high_limit;
8687	unsigned long log2qty, size;
8688	void *table = NULL;
8689	gfp_t gfp_flags;
8690	bool virt;
8691	bool huge;
8692
8693	/* allow the kernel cmdline to have a say */
8694	if (!numentries) {
8695		/* round applicable memory size up to nearest megabyte */
8696		numentries = nr_kernel_pages;
8697		numentries -= arch_reserved_kernel_pages();
8698
8699		/* It isn't necessary when PAGE_SIZE >= 1MB */
8700		if (PAGE_SHIFT < 20)
8701			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8702
8703#if __BITS_PER_LONG > 32
8704		if (!high_limit) {
8705			unsigned long adapt;
8706
8707			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8708			     adapt <<= ADAPT_SCALE_SHIFT)
8709				scale++;
8710		}
8711#endif
8712
8713		/* limit to 1 bucket per 2^scale bytes of low memory */
8714		if (scale > PAGE_SHIFT)
8715			numentries >>= (scale - PAGE_SHIFT);
8716		else
8717			numentries <<= (PAGE_SHIFT - scale);
8718
8719		/* Make sure we've got at least a 0-order allocation.. */
8720		if (unlikely(flags & HASH_SMALL)) {
8721			/* Makes no sense without HASH_EARLY */
8722			WARN_ON(!(flags & HASH_EARLY));
8723			if (!(numentries >> *_hash_shift)) {
8724				numentries = 1UL << *_hash_shift;
8725				BUG_ON(!numentries);
8726			}
8727		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8728			numentries = PAGE_SIZE / bucketsize;
8729	}
8730	numentries = roundup_pow_of_two(numentries);
8731
8732	/* limit allocation size to 1/16 total memory by default */
8733	if (max == 0) {
8734		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8735		do_div(max, bucketsize);
8736	}
8737	max = min(max, 0x80000000ULL);
8738
8739	if (numentries < low_limit)
8740		numentries = low_limit;
8741	if (numentries > max)
8742		numentries = max;
8743
8744	log2qty = ilog2(numentries);
8745
8746	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8747	do {
8748		virt = false;
8749		size = bucketsize << log2qty;
8750		if (flags & HASH_EARLY) {
8751			if (flags & HASH_ZERO)
8752				table = memblock_alloc(size, SMP_CACHE_BYTES);
8753			else
8754				table = memblock_alloc_raw(size,
8755							   SMP_CACHE_BYTES);
8756		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8757			table = __vmalloc(size, gfp_flags);
8758			virt = true;
8759			huge = is_vm_area_hugepages(table);
8760		} else {
8761			/*
8762			 * If bucketsize is not a power-of-two, we may free
8763			 * some pages at the end of hash table which
8764			 * alloc_pages_exact() automatically does
8765			 */
8766			table = alloc_pages_exact(size, gfp_flags);
8767			kmemleak_alloc(table, size, 1, gfp_flags);
 
 
8768		}
8769	} while (!table && size > PAGE_SIZE && --log2qty);
8770
8771	if (!table)
8772		panic("Failed to allocate %s hash table\n", tablename);
8773
8774	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8775		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8776		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8777
8778	if (_hash_shift)
8779		*_hash_shift = log2qty;
8780	if (_hash_mask)
8781		*_hash_mask = (1 << log2qty) - 1;
8782
8783	return table;
8784}
8785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8786/*
8787 * This function checks whether pageblock includes unmovable pages or not.
 
8788 *
8789 * PageLRU check without isolation or lru_lock could race so that
8790 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8791 * check without lock_page also may miss some movable non-lru pages at
8792 * race condition. So you can't expect this function should be exact.
8793 *
8794 * Returns a page without holding a reference. If the caller wants to
8795 * dereference that page (e.g., dumping), it has to make sure that it
8796 * cannot get removed (e.g., via memory unplug) concurrently.
8797 *
8798 */
8799struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8800				 int migratetype, int flags)
8801{
8802	unsigned long iter = 0;
8803	unsigned long pfn = page_to_pfn(page);
8804	unsigned long offset = pfn % pageblock_nr_pages;
8805
8806	if (is_migrate_cma_page(page)) {
8807		/*
8808		 * CMA allocations (alloc_contig_range) really need to mark
8809		 * isolate CMA pageblocks even when they are not movable in fact
8810		 * so consider them movable here.
8811		 */
8812		if (is_migrate_cma(migratetype))
8813			return NULL;
 
8814
8815		return page;
8816	}
 
8817
8818	for (; iter < pageblock_nr_pages - offset; iter++) {
8819		if (!pfn_valid_within(pfn + iter))
8820			continue;
8821
8822		page = pfn_to_page(pfn + iter);
8823
8824		/*
8825		 * Both, bootmem allocations and memory holes are marked
8826		 * PG_reserved and are unmovable. We can even have unmovable
8827		 * allocations inside ZONE_MOVABLE, for example when
8828		 * specifying "movablecore".
8829		 */
8830		if (PageReserved(page))
8831			return page;
8832
8833		/*
8834		 * If the zone is movable and we have ruled out all reserved
8835		 * pages then it should be reasonably safe to assume the rest
8836		 * is movable.
8837		 */
8838		if (zone_idx(zone) == ZONE_MOVABLE)
8839			continue;
8840
8841		/*
8842		 * Hugepages are not in LRU lists, but they're movable.
8843		 * THPs are on the LRU, but need to be counted as #small pages.
8844		 * We need not scan over tail pages because we don't
8845		 * handle each tail page individually in migration.
8846		 */
8847		if (PageHuge(page) || PageTransCompound(page)) {
8848			struct page *head = compound_head(page);
8849			unsigned int skip_pages;
8850
8851			if (PageHuge(page)) {
8852				if (!hugepage_migration_supported(page_hstate(head)))
8853					return page;
8854			} else if (!PageLRU(head) && !__PageMovable(head)) {
8855				return page;
8856			}
8857
8858			skip_pages = compound_nr(head) - (page - head);
8859			iter += skip_pages - 1;
8860			continue;
8861		}
8862
8863		/*
8864		 * We can't use page_count without pin a page
8865		 * because another CPU can free compound page.
8866		 * This check already skips compound tails of THP
8867		 * because their page->_refcount is zero at all time.
8868		 */
8869		if (!page_ref_count(page)) {
8870			if (PageBuddy(page))
8871				iter += (1 << buddy_order(page)) - 1;
8872			continue;
8873		}
8874
8875		/*
8876		 * The HWPoisoned page may be not in buddy system, and
8877		 * page_count() is not 0.
8878		 */
8879		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8880			continue;
8881
8882		/*
8883		 * We treat all PageOffline() pages as movable when offlining
8884		 * to give drivers a chance to decrement their reference count
8885		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8886		 * can be offlined as there are no direct references anymore.
8887		 * For actually unmovable PageOffline() where the driver does
8888		 * not support this, we will fail later when trying to actually
8889		 * move these pages that still have a reference count > 0.
8890		 * (false negatives in this function only)
8891		 */
8892		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8893			continue;
8894
8895		if (__PageMovable(page) || PageLRU(page))
8896			continue;
8897
 
 
8898		/*
8899		 * If there are RECLAIMABLE pages, we need to check
8900		 * it.  But now, memory offline itself doesn't call
8901		 * shrink_node_slabs() and it still to be fixed.
8902		 */
8903		return page;
 
 
 
 
 
 
 
 
 
8904	}
8905	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8906}
8907
8908#ifdef CONFIG_CONTIG_ALLOC
 
8909static unsigned long pfn_max_align_down(unsigned long pfn)
8910{
8911	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8912			     pageblock_nr_pages) - 1);
8913}
8914
8915static unsigned long pfn_max_align_up(unsigned long pfn)
8916{
8917	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8918				pageblock_nr_pages));
8919}
8920
8921#if defined(CONFIG_DYNAMIC_DEBUG) || \
8922	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8923/* Usage: See admin-guide/dynamic-debug-howto.rst */
8924static void alloc_contig_dump_pages(struct list_head *page_list)
8925{
8926	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8927
8928	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8929		struct page *page;
8930
8931		dump_stack();
8932		list_for_each_entry(page, page_list, lru)
8933			dump_page(page, "migration failure");
8934	}
8935}
8936#else
8937static inline void alloc_contig_dump_pages(struct list_head *page_list)
8938{
8939}
8940#endif
8941
8942/* [start, end) must belong to a single zone. */
8943static int __alloc_contig_migrate_range(struct compact_control *cc,
8944					unsigned long start, unsigned long end)
8945{
8946	/* This function is based on compact_zone() from compaction.c. */
8947	unsigned int nr_reclaimed;
8948	unsigned long pfn = start;
8949	unsigned int tries = 0;
8950	int ret = 0;
8951	struct migration_target_control mtc = {
8952		.nid = zone_to_nid(cc->zone),
8953		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8954	};
8955
8956	lru_cache_disable();
8957
8958	while (pfn < end || !list_empty(&cc->migratepages)) {
8959		if (fatal_signal_pending(current)) {
8960			ret = -EINTR;
8961			break;
8962		}
8963
8964		if (list_empty(&cc->migratepages)) {
8965			cc->nr_migratepages = 0;
8966			ret = isolate_migratepages_range(cc, pfn, end);
8967			if (ret && ret != -EAGAIN)
 
8968				break;
8969			pfn = cc->migrate_pfn;
8970			tries = 0;
8971		} else if (++tries == 5) {
8972			ret = -EBUSY;
8973			break;
8974		}
8975
8976		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8977							&cc->migratepages);
8978		cc->nr_migratepages -= nr_reclaimed;
8979
8980		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8981				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8982
8983		/*
8984		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8985		 * to retry again over this error, so do the same here.
8986		 */
8987		if (ret == -ENOMEM)
8988			break;
8989	}
8990
8991	lru_cache_enable();
8992	if (ret < 0) {
8993		if (ret == -EBUSY)
8994			alloc_contig_dump_pages(&cc->migratepages);
8995		putback_movable_pages(&cc->migratepages);
8996		return ret;
8997	}
8998	return 0;
8999}
9000
9001/**
9002 * alloc_contig_range() -- tries to allocate given range of pages
9003 * @start:	start PFN to allocate
9004 * @end:	one-past-the-last PFN to allocate
9005 * @migratetype:	migratetype of the underlying pageblocks (either
9006 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9007 *			in range must have the same migratetype and it must
9008 *			be either of the two.
9009 * @gfp_mask:	GFP mask to use during compaction
9010 *
9011 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9012 * aligned.  The PFN range must belong to a single zone.
 
 
9013 *
9014 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9015 * pageblocks in the range.  Once isolated, the pageblocks should not
9016 * be modified by others.
9017 *
9018 * Return: zero on success or negative error code.  On success all
9019 * pages which PFN is in [start, end) are allocated for the caller and
9020 * need to be freed with free_contig_range().
9021 */
9022int alloc_contig_range(unsigned long start, unsigned long end,
9023		       unsigned migratetype, gfp_t gfp_mask)
9024{
9025	unsigned long outer_start, outer_end;
9026	unsigned int order;
9027	int ret = 0;
9028
9029	struct compact_control cc = {
9030		.nr_migratepages = 0,
9031		.order = -1,
9032		.zone = page_zone(pfn_to_page(start)),
9033		.mode = MIGRATE_SYNC,
9034		.ignore_skip_hint = true,
9035		.no_set_skip_hint = true,
9036		.gfp_mask = current_gfp_context(gfp_mask),
9037		.alloc_contig = true,
9038	};
9039	INIT_LIST_HEAD(&cc.migratepages);
9040
9041	/*
9042	 * What we do here is we mark all pageblocks in range as
9043	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9044	 * have different sizes, and due to the way page allocator
9045	 * work, we align the range to biggest of the two pages so
9046	 * that page allocator won't try to merge buddies from
9047	 * different pageblocks and change MIGRATE_ISOLATE to some
9048	 * other migration type.
9049	 *
9050	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9051	 * migrate the pages from an unaligned range (ie. pages that
9052	 * we are interested in).  This will put all the pages in
9053	 * range back to page allocator as MIGRATE_ISOLATE.
9054	 *
9055	 * When this is done, we take the pages in range from page
9056	 * allocator removing them from the buddy system.  This way
9057	 * page allocator will never consider using them.
9058	 *
9059	 * This lets us mark the pageblocks back as
9060	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9061	 * aligned range but not in the unaligned, original range are
9062	 * put back to page allocator so that buddy can use them.
9063	 */
9064
9065	ret = start_isolate_page_range(pfn_max_align_down(start),
9066				       pfn_max_align_up(end), migratetype, 0);
 
9067	if (ret)
9068		return ret;
9069
9070	drain_all_pages(cc.zone);
9071
9072	/*
9073	 * In case of -EBUSY, we'd like to know which page causes problem.
9074	 * So, just fall through. test_pages_isolated() has a tracepoint
9075	 * which will report the busy page.
9076	 *
9077	 * It is possible that busy pages could become available before
9078	 * the call to test_pages_isolated, and the range will actually be
9079	 * allocated.  So, if we fall through be sure to clear ret so that
9080	 * -EBUSY is not accidentally used or returned to caller.
9081	 */
9082	ret = __alloc_contig_migrate_range(&cc, start, end);
9083	if (ret && ret != -EBUSY)
9084		goto done;
9085	ret = 0;
9086
9087	/*
9088	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9089	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9090	 * more, all pages in [start, end) are free in page allocator.
9091	 * What we are going to do is to allocate all pages from
9092	 * [start, end) (that is remove them from page allocator).
9093	 *
9094	 * The only problem is that pages at the beginning and at the
9095	 * end of interesting range may be not aligned with pages that
9096	 * page allocator holds, ie. they can be part of higher order
9097	 * pages.  Because of this, we reserve the bigger range and
9098	 * once this is done free the pages we are not interested in.
9099	 *
9100	 * We don't have to hold zone->lock here because the pages are
9101	 * isolated thus they won't get removed from buddy.
9102	 */
9103
 
 
 
9104	order = 0;
9105	outer_start = start;
9106	while (!PageBuddy(pfn_to_page(outer_start))) {
9107		if (++order >= MAX_ORDER) {
9108			outer_start = start;
9109			break;
9110		}
9111		outer_start &= ~0UL << order;
9112	}
9113
9114	if (outer_start != start) {
9115		order = buddy_order(pfn_to_page(outer_start));
9116
9117		/*
9118		 * outer_start page could be small order buddy page and
9119		 * it doesn't include start page. Adjust outer_start
9120		 * in this case to report failed page properly
9121		 * on tracepoint in test_pages_isolated()
9122		 */
9123		if (outer_start + (1UL << order) <= start)
9124			outer_start = start;
9125	}
9126
9127	/* Make sure the range is really isolated. */
9128	if (test_pages_isolated(outer_start, end, 0)) {
 
 
9129		ret = -EBUSY;
9130		goto done;
9131	}
9132
9133	/* Grab isolated pages from freelists. */
9134	outer_end = isolate_freepages_range(&cc, outer_start, end);
9135	if (!outer_end) {
9136		ret = -EBUSY;
9137		goto done;
9138	}
9139
9140	/* Free head and tail (if any) */
9141	if (start != outer_start)
9142		free_contig_range(outer_start, start - outer_start);
9143	if (end != outer_end)
9144		free_contig_range(end, outer_end - end);
9145
9146done:
9147	undo_isolate_page_range(pfn_max_align_down(start),
9148				pfn_max_align_up(end), migratetype);
9149	return ret;
9150}
9151EXPORT_SYMBOL(alloc_contig_range);
9152
9153static int __alloc_contig_pages(unsigned long start_pfn,
9154				unsigned long nr_pages, gfp_t gfp_mask)
9155{
9156	unsigned long end_pfn = start_pfn + nr_pages;
9157
9158	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9159				  gfp_mask);
9160}
9161
9162static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9163				   unsigned long nr_pages)
9164{
9165	unsigned long i, end_pfn = start_pfn + nr_pages;
9166	struct page *page;
9167
9168	for (i = start_pfn; i < end_pfn; i++) {
9169		page = pfn_to_online_page(i);
9170		if (!page)
9171			return false;
9172
9173		if (page_zone(page) != z)
9174			return false;
9175
9176		if (PageReserved(page))
9177			return false;
9178	}
9179	return true;
9180}
9181
9182static bool zone_spans_last_pfn(const struct zone *zone,
9183				unsigned long start_pfn, unsigned long nr_pages)
9184{
9185	unsigned long last_pfn = start_pfn + nr_pages - 1;
9186
9187	return zone_spans_pfn(zone, last_pfn);
9188}
9189
9190/**
9191 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9192 * @nr_pages:	Number of contiguous pages to allocate
9193 * @gfp_mask:	GFP mask to limit search and used during compaction
9194 * @nid:	Target node
9195 * @nodemask:	Mask for other possible nodes
9196 *
9197 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9198 * on an applicable zonelist to find a contiguous pfn range which can then be
9199 * tried for allocation with alloc_contig_range(). This routine is intended
9200 * for allocation requests which can not be fulfilled with the buddy allocator.
9201 *
9202 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9203 * power of two then the alignment is guaranteed to be to the given nr_pages
9204 * (e.g. 1GB request would be aligned to 1GB).
9205 *
9206 * Allocated pages can be freed with free_contig_range() or by manually calling
9207 * __free_page() on each allocated page.
9208 *
9209 * Return: pointer to contiguous pages on success, or NULL if not successful.
9210 */
9211struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9212				int nid, nodemask_t *nodemask)
9213{
9214	unsigned long ret, pfn, flags;
9215	struct zonelist *zonelist;
9216	struct zone *zone;
9217	struct zoneref *z;
9218
9219	zonelist = node_zonelist(nid, gfp_mask);
9220	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9221					gfp_zone(gfp_mask), nodemask) {
9222		spin_lock_irqsave(&zone->lock, flags);
9223
9224		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9225		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9226			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9227				/*
9228				 * We release the zone lock here because
9229				 * alloc_contig_range() will also lock the zone
9230				 * at some point. If there's an allocation
9231				 * spinning on this lock, it may win the race
9232				 * and cause alloc_contig_range() to fail...
9233				 */
9234				spin_unlock_irqrestore(&zone->lock, flags);
9235				ret = __alloc_contig_pages(pfn, nr_pages,
9236							gfp_mask);
9237				if (!ret)
9238					return pfn_to_page(pfn);
9239				spin_lock_irqsave(&zone->lock, flags);
9240			}
9241			pfn += nr_pages;
9242		}
9243		spin_unlock_irqrestore(&zone->lock, flags);
9244	}
9245	return NULL;
9246}
9247#endif /* CONFIG_CONTIG_ALLOC */
9248
9249void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9250{
9251	unsigned long count = 0;
9252
9253	for (; nr_pages--; pfn++) {
9254		struct page *page = pfn_to_page(pfn);
9255
9256		count += page_count(page) != 1;
9257		__free_page(page);
9258	}
9259	WARN(count != 0, "%lu pages are still in use!\n", count);
9260}
9261EXPORT_SYMBOL(free_contig_range);
9262
 
9263/*
9264 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9265 * page high values need to be recalculated.
9266 */
9267void zone_pcp_update(struct zone *zone, int cpu_online)
9268{
 
9269	mutex_lock(&pcp_batch_high_lock);
9270	zone_set_pageset_high_and_batch(zone, cpu_online);
9271	mutex_unlock(&pcp_batch_high_lock);
9272}
9273
9274/*
9275 * Effectively disable pcplists for the zone by setting the high limit to 0
9276 * and draining all cpus. A concurrent page freeing on another CPU that's about
9277 * to put the page on pcplist will either finish before the drain and the page
9278 * will be drained, or observe the new high limit and skip the pcplist.
9279 *
9280 * Must be paired with a call to zone_pcp_enable().
9281 */
9282void zone_pcp_disable(struct zone *zone)
9283{
9284	mutex_lock(&pcp_batch_high_lock);
9285	__zone_set_pageset_high_and_batch(zone, 0, 1);
9286	__drain_all_pages(zone, true);
9287}
9288
9289void zone_pcp_enable(struct zone *zone)
9290{
9291	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9292	mutex_unlock(&pcp_batch_high_lock);
9293}
 
9294
9295void zone_pcp_reset(struct zone *zone)
9296{
 
9297	int cpu;
9298	struct per_cpu_zonestat *pzstats;
9299
9300	if (zone->per_cpu_pageset != &boot_pageset) {
 
 
9301		for_each_online_cpu(cpu) {
9302			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9303			drain_zonestat(zone, pzstats);
9304		}
9305		free_percpu(zone->per_cpu_pageset);
9306		free_percpu(zone->per_cpu_zonestats);
9307		zone->per_cpu_pageset = &boot_pageset;
9308		zone->per_cpu_zonestats = &boot_zonestats;
9309	}
 
9310}
9311
9312#ifdef CONFIG_MEMORY_HOTREMOVE
9313/*
9314 * All pages in the range must be in a single zone, must not contain holes,
9315 * must span full sections, and must be isolated before calling this function.
9316 */
9317void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
 
9318{
9319	unsigned long pfn = start_pfn;
9320	struct page *page;
9321	struct zone *zone;
9322	unsigned int order;
 
9323	unsigned long flags;
9324
9325	offline_mem_sections(pfn, end_pfn);
 
 
 
 
9326	zone = page_zone(pfn_to_page(pfn));
9327	spin_lock_irqsave(&zone->lock, flags);
 
9328	while (pfn < end_pfn) {
 
 
 
 
9329		page = pfn_to_page(pfn);
9330		/*
9331		 * The HWPoisoned page may be not in buddy system, and
9332		 * page_count() is not 0.
9333		 */
9334		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9335			pfn++;
9336			continue;
9337		}
9338		/*
9339		 * At this point all remaining PageOffline() pages have a
9340		 * reference count of 0 and can simply be skipped.
9341		 */
9342		if (PageOffline(page)) {
9343			BUG_ON(page_count(page));
9344			BUG_ON(PageBuddy(page));
9345			pfn++;
9346			continue;
9347		}
9348
9349		BUG_ON(page_count(page));
9350		BUG_ON(!PageBuddy(page));
9351		order = buddy_order(page);
9352		del_page_from_free_list(page, zone, order);
 
 
 
 
 
 
 
 
9353		pfn += (1 << order);
9354	}
9355	spin_unlock_irqrestore(&zone->lock, flags);
9356}
9357#endif
9358
9359bool is_free_buddy_page(struct page *page)
9360{
9361	struct zone *zone = page_zone(page);
9362	unsigned long pfn = page_to_pfn(page);
9363	unsigned long flags;
9364	unsigned int order;
9365
9366	spin_lock_irqsave(&zone->lock, flags);
9367	for (order = 0; order < MAX_ORDER; order++) {
9368		struct page *page_head = page - (pfn & ((1 << order) - 1));
9369
9370		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9371			break;
9372	}
9373	spin_unlock_irqrestore(&zone->lock, flags);
9374
9375	return order < MAX_ORDER;
9376}
9377
9378#ifdef CONFIG_MEMORY_FAILURE
9379/*
9380 * Break down a higher-order page in sub-pages, and keep our target out of
9381 * buddy allocator.
9382 */
9383static void break_down_buddy_pages(struct zone *zone, struct page *page,
9384				   struct page *target, int low, int high,
9385				   int migratetype)
9386{
9387	unsigned long size = 1 << high;
9388	struct page *current_buddy, *next_page;
9389
9390	while (high > low) {
9391		high--;
9392		size >>= 1;
9393
9394		if (target >= &page[size]) {
9395			next_page = page + size;
9396			current_buddy = page;
9397		} else {
9398			next_page = page;
9399			current_buddy = page + size;
9400		}
9401
9402		if (set_page_guard(zone, current_buddy, high, migratetype))
9403			continue;
9404
9405		if (current_buddy != target) {
9406			add_to_free_list(current_buddy, zone, high, migratetype);
9407			set_buddy_order(current_buddy, high);
9408			page = next_page;
9409		}
9410	}
9411}
9412
9413/*
9414 * Take a page that will be marked as poisoned off the buddy allocator.
9415 */
9416bool take_page_off_buddy(struct page *page)
9417{
9418	struct zone *zone = page_zone(page);
9419	unsigned long pfn = page_to_pfn(page);
9420	unsigned long flags;
9421	unsigned int order;
9422	bool ret = false;
9423
9424	spin_lock_irqsave(&zone->lock, flags);
9425	for (order = 0; order < MAX_ORDER; order++) {
9426		struct page *page_head = page - (pfn & ((1 << order) - 1));
9427		int page_order = buddy_order(page_head);
9428
9429		if (PageBuddy(page_head) && page_order >= order) {
9430			unsigned long pfn_head = page_to_pfn(page_head);
9431			int migratetype = get_pfnblock_migratetype(page_head,
9432								   pfn_head);
9433
9434			del_page_from_free_list(page_head, zone, page_order);
9435			break_down_buddy_pages(zone, page_head, page, 0,
9436						page_order, migratetype);
9437			if (!is_migrate_isolate(migratetype))
9438				__mod_zone_freepage_state(zone, -1, migratetype);
9439			ret = true;
9440			break;
9441		}
9442		if (page_count(page_head) > 0)
9443			break;
9444	}
9445	spin_unlock_irqrestore(&zone->lock, flags);
9446	return ret;
9447}
9448#endif