Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kmemcheck.h>
  28#include <linux/kasan.h>
  29#include <linux/module.h>
  30#include <linux/suspend.h>
  31#include <linux/pagevec.h>
  32#include <linux/blkdev.h>
  33#include <linux/slab.h>
  34#include <linux/ratelimit.h>
  35#include <linux/oom.h>
  36#include <linux/notifier.h>
  37#include <linux/topology.h>
  38#include <linux/sysctl.h>
  39#include <linux/cpu.h>
  40#include <linux/cpuset.h>
  41#include <linux/memory_hotplug.h>
  42#include <linux/nodemask.h>
  43#include <linux/vmalloc.h>
  44#include <linux/vmstat.h>
  45#include <linux/mempolicy.h>
  46#include <linux/memremap.h>
  47#include <linux/stop_machine.h>
  48#include <linux/sort.h>
  49#include <linux/pfn.h>
  50#include <linux/backing-dev.h>
  51#include <linux/fault-inject.h>
  52#include <linux/page-isolation.h>
  53#include <linux/page_ext.h>
  54#include <linux/debugobjects.h>
  55#include <linux/kmemleak.h>
  56#include <linux/compaction.h>
  57#include <trace/events/kmem.h>
 
 
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
  60#include <linux/migrate.h>
  61#include <linux/page_ext.h>
  62#include <linux/hugetlb.h>
  63#include <linux/sched/rt.h>
  64#include <linux/page_owner.h>
  65#include <linux/kthread.h>
  66
  67#include <asm/sections.h>
  68#include <asm/tlbflush.h>
  69#include <asm/div64.h>
  70#include "internal.h"
  71
  72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  73static DEFINE_MUTEX(pcp_batch_high_lock);
  74#define MIN_PERCPU_PAGELIST_FRACTION	(8)
  75
  76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  77DEFINE_PER_CPU(int, numa_node);
  78EXPORT_PER_CPU_SYMBOL(numa_node);
  79#endif
  80
  81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  82/*
  83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  86 * defined in <linux/topology.h>.
  87 */
  88DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  90int _node_numa_mem_[MAX_NUMNODES];
  91#endif
  92
  93/*
  94 * Array of node states.
  95 */
  96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  97	[N_POSSIBLE] = NODE_MASK_ALL,
  98	[N_ONLINE] = { { [0] = 1UL } },
  99#ifndef CONFIG_NUMA
 100	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
 101#ifdef CONFIG_HIGHMEM
 102	[N_HIGH_MEMORY] = { { [0] = 1UL } },
 103#endif
 104#ifdef CONFIG_MOVABLE_NODE
 105	[N_MEMORY] = { { [0] = 1UL } },
 106#endif
 107	[N_CPU] = { { [0] = 1UL } },
 108#endif	/* NUMA */
 109};
 110EXPORT_SYMBOL(node_states);
 111
 112/* Protect totalram_pages and zone->managed_pages */
 113static DEFINE_SPINLOCK(managed_page_count_lock);
 114
 115unsigned long totalram_pages __read_mostly;
 116unsigned long totalreserve_pages __read_mostly;
 117unsigned long totalcma_pages __read_mostly;
 118
 119int percpu_pagelist_fraction;
 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 121
 122/*
 123 * A cached value of the page's pageblock's migratetype, used when the page is
 124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 126 * Also the migratetype set in the page does not necessarily match the pcplist
 127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 128 * other index - this ensures that it will be put on the correct CMA freelist.
 129 */
 130static inline int get_pcppage_migratetype(struct page *page)
 131{
 132	return page->index;
 133}
 134
 135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 136{
 137	page->index = migratetype;
 138}
 139
 140#ifdef CONFIG_PM_SLEEP
 141/*
 142 * The following functions are used by the suspend/hibernate code to temporarily
 143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 144 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 147 * guaranteed not to run in parallel with that modification).
 148 */
 149
 150static gfp_t saved_gfp_mask;
 151
 152void pm_restore_gfp_mask(void)
 153{
 154	WARN_ON(!mutex_is_locked(&pm_mutex));
 155	if (saved_gfp_mask) {
 156		gfp_allowed_mask = saved_gfp_mask;
 157		saved_gfp_mask = 0;
 158	}
 159}
 160
 161void pm_restrict_gfp_mask(void)
 162{
 163	WARN_ON(!mutex_is_locked(&pm_mutex));
 164	WARN_ON(saved_gfp_mask);
 165	saved_gfp_mask = gfp_allowed_mask;
 166	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 167}
 168
 169bool pm_suspended_storage(void)
 170{
 171	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 172		return false;
 173	return true;
 174}
 175#endif /* CONFIG_PM_SLEEP */
 176
 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 178unsigned int pageblock_order __read_mostly;
 179#endif
 180
 181static void __free_pages_ok(struct page *page, unsigned int order);
 182
 183/*
 184 * results with 256, 32 in the lowmem_reserve sysctl:
 185 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 186 *	1G machine -> (16M dma, 784M normal, 224M high)
 187 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 188 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 189 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 190 *
 191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 192 * don't need any ZONE_NORMAL reservation
 193 */
 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
 195#ifdef CONFIG_ZONE_DMA
 196	 256,
 197#endif
 198#ifdef CONFIG_ZONE_DMA32
 199	 256,
 200#endif
 201#ifdef CONFIG_HIGHMEM
 202	 32,
 203#endif
 204	 32,
 205};
 206
 207EXPORT_SYMBOL(totalram_pages);
 208
 209static char * const zone_names[MAX_NR_ZONES] = {
 210#ifdef CONFIG_ZONE_DMA
 211	 "DMA",
 212#endif
 213#ifdef CONFIG_ZONE_DMA32
 214	 "DMA32",
 215#endif
 216	 "Normal",
 217#ifdef CONFIG_HIGHMEM
 218	 "HighMem",
 219#endif
 220	 "Movable",
 221#ifdef CONFIG_ZONE_DEVICE
 222	 "Device",
 223#endif
 224};
 225
 226char * const migratetype_names[MIGRATE_TYPES] = {
 227	"Unmovable",
 228	"Movable",
 229	"Reclaimable",
 230	"HighAtomic",
 231#ifdef CONFIG_CMA
 232	"CMA",
 233#endif
 234#ifdef CONFIG_MEMORY_ISOLATION
 235	"Isolate",
 236#endif
 237};
 238
 239compound_page_dtor * const compound_page_dtors[] = {
 240	NULL,
 241	free_compound_page,
 242#ifdef CONFIG_HUGETLB_PAGE
 243	free_huge_page,
 244#endif
 245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 246	free_transhuge_page,
 247#endif
 248};
 249
 250int min_free_kbytes = 1024;
 251int user_min_free_kbytes = -1;
 252int watermark_scale_factor = 10;
 253
 254static unsigned long __meminitdata nr_kernel_pages;
 255static unsigned long __meminitdata nr_all_pages;
 256static unsigned long __meminitdata dma_reserve;
 257
 258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 261static unsigned long __initdata required_kernelcore;
 262static unsigned long __initdata required_movablecore;
 263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 264static bool mirrored_kernelcore;
 265
 266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 267int movable_zone;
 268EXPORT_SYMBOL(movable_zone);
 269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 270
 271#if MAX_NUMNODES > 1
 272int nr_node_ids __read_mostly = MAX_NUMNODES;
 273int nr_online_nodes __read_mostly = 1;
 274EXPORT_SYMBOL(nr_node_ids);
 275EXPORT_SYMBOL(nr_online_nodes);
 276#endif
 277
 278int page_group_by_mobility_disabled __read_mostly;
 279
 280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 281static inline void reset_deferred_meminit(pg_data_t *pgdat)
 282{
 283	pgdat->first_deferred_pfn = ULONG_MAX;
 284}
 285
 286/* Returns true if the struct page for the pfn is uninitialised */
 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 288{
 289	if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
 290		return true;
 291
 292	return false;
 293}
 294
 295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
 296{
 297	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
 298		return true;
 299
 300	return false;
 301}
 302
 303/*
 304 * Returns false when the remaining initialisation should be deferred until
 305 * later in the boot cycle when it can be parallelised.
 306 */
 307static inline bool update_defer_init(pg_data_t *pgdat,
 308				unsigned long pfn, unsigned long zone_end,
 309				unsigned long *nr_initialised)
 310{
 311	unsigned long max_initialise;
 312
 313	/* Always populate low zones for address-contrained allocations */
 314	if (zone_end < pgdat_end_pfn(pgdat))
 315		return true;
 316	/*
 317	 * Initialise at least 2G of a node but also take into account that
 318	 * two large system hashes that can take up 1GB for 0.25TB/node.
 319	 */
 320	max_initialise = max(2UL << (30 - PAGE_SHIFT),
 321		(pgdat->node_spanned_pages >> 8));
 322
 323	(*nr_initialised)++;
 324	if ((*nr_initialised > max_initialise) &&
 325	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 326		pgdat->first_deferred_pfn = pfn;
 327		return false;
 328	}
 329
 330	return true;
 331}
 332#else
 333static inline void reset_deferred_meminit(pg_data_t *pgdat)
 334{
 335}
 336
 337static inline bool early_page_uninitialised(unsigned long pfn)
 338{
 339	return false;
 340}
 341
 342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
 343{
 344	return false;
 345}
 346
 347static inline bool update_defer_init(pg_data_t *pgdat,
 348				unsigned long pfn, unsigned long zone_end,
 349				unsigned long *nr_initialised)
 350{
 351	return true;
 352}
 353#endif
 354
 355
 356void set_pageblock_migratetype(struct page *page, int migratetype)
 357{
 358	if (unlikely(page_group_by_mobility_disabled &&
 359		     migratetype < MIGRATE_PCPTYPES))
 360		migratetype = MIGRATE_UNMOVABLE;
 361
 362	set_pageblock_flags_group(page, (unsigned long)migratetype,
 363					PB_migrate, PB_migrate_end);
 364}
 365
 
 
 366#ifdef CONFIG_DEBUG_VM
 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 368{
 369	int ret = 0;
 370	unsigned seq;
 371	unsigned long pfn = page_to_pfn(page);
 372	unsigned long sp, start_pfn;
 373
 374	do {
 375		seq = zone_span_seqbegin(zone);
 376		start_pfn = zone->zone_start_pfn;
 377		sp = zone->spanned_pages;
 378		if (!zone_spans_pfn(zone, pfn))
 379			ret = 1;
 380	} while (zone_span_seqretry(zone, seq));
 381
 382	if (ret)
 383		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 384			pfn, zone_to_nid(zone), zone->name,
 385			start_pfn, start_pfn + sp);
 386
 387	return ret;
 388}
 389
 390static int page_is_consistent(struct zone *zone, struct page *page)
 391{
 392	if (!pfn_valid_within(page_to_pfn(page)))
 393		return 0;
 394	if (zone != page_zone(page))
 395		return 0;
 396
 397	return 1;
 398}
 399/*
 400 * Temporary debugging check for pages not lying within a given zone.
 401 */
 402static int bad_range(struct zone *zone, struct page *page)
 403{
 404	if (page_outside_zone_boundaries(zone, page))
 405		return 1;
 406	if (!page_is_consistent(zone, page))
 407		return 1;
 408
 409	return 0;
 410}
 411#else
 412static inline int bad_range(struct zone *zone, struct page *page)
 413{
 414	return 0;
 415}
 416#endif
 417
 418static void bad_page(struct page *page, const char *reason,
 419		unsigned long bad_flags)
 420{
 421	static unsigned long resume;
 422	static unsigned long nr_shown;
 423	static unsigned long nr_unshown;
 424
 425	/* Don't complain about poisoned pages */
 426	if (PageHWPoison(page)) {
 427		page_mapcount_reset(page); /* remove PageBuddy */
 428		return;
 429	}
 430
 431	/*
 432	 * Allow a burst of 60 reports, then keep quiet for that minute;
 433	 * or allow a steady drip of one report per second.
 434	 */
 435	if (nr_shown == 60) {
 436		if (time_before(jiffies, resume)) {
 437			nr_unshown++;
 438			goto out;
 439		}
 440		if (nr_unshown) {
 441			pr_alert(
 442			      "BUG: Bad page state: %lu messages suppressed\n",
 443				nr_unshown);
 444			nr_unshown = 0;
 445		}
 446		nr_shown = 0;
 447	}
 448	if (nr_shown++ == 0)
 449		resume = jiffies + 60 * HZ;
 450
 451	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 452		current->comm, page_to_pfn(page));
 453	__dump_page(page, reason);
 454	bad_flags &= page->flags;
 455	if (bad_flags)
 456		pr_alert("bad because of flags: %#lx(%pGp)\n",
 457						bad_flags, &bad_flags);
 458	dump_page_owner(page);
 459
 460	print_modules();
 461	dump_stack();
 462out:
 463	/* Leave bad fields for debug, except PageBuddy could make trouble */
 464	page_mapcount_reset(page); /* remove PageBuddy */
 465	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 466}
 467
 468/*
 469 * Higher-order pages are called "compound pages".  They are structured thusly:
 470 *
 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 472 *
 473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 475 *
 476 * The first tail page's ->compound_dtor holds the offset in array of compound
 477 * page destructors. See compound_page_dtors.
 478 *
 479 * The first tail page's ->compound_order holds the order of allocation.
 
 480 * This usage means that zero-order pages may not be compound.
 481 */
 482
 483void free_compound_page(struct page *page)
 484{
 485	__free_pages_ok(page, compound_order(page));
 486}
 487
 488void prep_compound_page(struct page *page, unsigned int order)
 489{
 490	int i;
 491	int nr_pages = 1 << order;
 492
 493	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 494	set_compound_order(page, order);
 495	__SetPageHead(page);
 496	for (i = 1; i < nr_pages; i++) {
 497		struct page *p = page + i;
 498		set_page_count(p, 0);
 499		p->mapping = TAIL_MAPPING;
 500		set_compound_head(p, page);
 
 
 501	}
 502	atomic_set(compound_mapcount_ptr(page), -1);
 503}
 504
 505#ifdef CONFIG_DEBUG_PAGEALLOC
 506unsigned int _debug_guardpage_minorder;
 507bool _debug_pagealloc_enabled __read_mostly
 508			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
 510bool _debug_guardpage_enabled __read_mostly;
 511
 512static int __init early_debug_pagealloc(char *buf)
 513{
 514	if (!buf)
 515		return -EINVAL;
 
 516
 517	if (strcmp(buf, "on") == 0)
 518		_debug_pagealloc_enabled = true;
 
 
 519
 520	if (strcmp(buf, "off") == 0)
 521		_debug_pagealloc_enabled = false;
 522
 523	return 0;
 524}
 525early_param("debug_pagealloc", early_debug_pagealloc);
 526
 527static bool need_debug_guardpage(void)
 528{
 529	/* If we don't use debug_pagealloc, we don't need guard page */
 530	if (!debug_pagealloc_enabled())
 531		return false;
 
 
 
 
 532
 533	return true;
 534}
 535
 536static void init_debug_guardpage(void)
 537{
 538	if (!debug_pagealloc_enabled())
 539		return;
 540
 541	_debug_guardpage_enabled = true;
 
 
 
 
 
 
 542}
 543
 544struct page_ext_operations debug_guardpage_ops = {
 545	.need = need_debug_guardpage,
 546	.init = init_debug_guardpage,
 547};
 548
 549static int __init debug_guardpage_minorder_setup(char *buf)
 550{
 551	unsigned long res;
 552
 553	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 554		pr_err("Bad debug_guardpage_minorder value\n");
 555		return 0;
 556	}
 557	_debug_guardpage_minorder = res;
 558	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 559	return 0;
 560}
 561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
 562
 563static inline void set_page_guard(struct zone *zone, struct page *page,
 564				unsigned int order, int migratetype)
 565{
 566	struct page_ext *page_ext;
 567
 568	if (!debug_guardpage_enabled())
 569		return;
 570
 571	page_ext = lookup_page_ext(page);
 572	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 573
 574	INIT_LIST_HEAD(&page->lru);
 575	set_page_private(page, order);
 576	/* Guard pages are not available for any usage */
 577	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
 578}
 579
 580static inline void clear_page_guard(struct zone *zone, struct page *page,
 581				unsigned int order, int migratetype)
 582{
 583	struct page_ext *page_ext;
 584
 585	if (!debug_guardpage_enabled())
 586		return;
 587
 588	page_ext = lookup_page_ext(page);
 589	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 590
 591	set_page_private(page, 0);
 592	if (!is_migrate_isolate(migratetype))
 593		__mod_zone_freepage_state(zone, (1 << order), migratetype);
 594}
 595#else
 596struct page_ext_operations debug_guardpage_ops = { NULL, };
 597static inline void set_page_guard(struct zone *zone, struct page *page,
 598				unsigned int order, int migratetype) {}
 599static inline void clear_page_guard(struct zone *zone, struct page *page,
 600				unsigned int order, int migratetype) {}
 601#endif
 602
 603static inline void set_page_order(struct page *page, unsigned int order)
 604{
 605	set_page_private(page, order);
 606	__SetPageBuddy(page);
 607}
 608
 609static inline void rmv_page_order(struct page *page)
 610{
 611	__ClearPageBuddy(page);
 612	set_page_private(page, 0);
 613}
 614
 615/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616 * This function checks whether a page is free && is the buddy
 617 * we can do coalesce a page and its buddy if
 618 * (a) the buddy is not in a hole &&
 619 * (b) the buddy is in the buddy system &&
 620 * (c) a page and its buddy have the same order &&
 621 * (d) a page and its buddy are in the same zone.
 622 *
 623 * For recording whether a page is in the buddy system, we set ->_mapcount
 624 * PAGE_BUDDY_MAPCOUNT_VALUE.
 625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 626 * serialized by zone->lock.
 627 *
 628 * For recording page's order, we use page_private(page).
 629 */
 630static inline int page_is_buddy(struct page *page, struct page *buddy,
 631							unsigned int order)
 632{
 633	if (!pfn_valid_within(page_to_pfn(buddy)))
 634		return 0;
 635
 636	if (page_is_guard(buddy) && page_order(buddy) == order) {
 637		if (page_zone_id(page) != page_zone_id(buddy))
 638			return 0;
 639
 
 640		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 641
 642		return 1;
 643	}
 644
 645	if (PageBuddy(buddy) && page_order(buddy) == order) {
 646		/*
 647		 * zone check is done late to avoid uselessly
 648		 * calculating zone/node ids for pages that could
 649		 * never merge.
 650		 */
 651		if (page_zone_id(page) != page_zone_id(buddy))
 652			return 0;
 653
 654		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 655
 656		return 1;
 657	}
 658	return 0;
 659}
 660
 661/*
 662 * Freeing function for a buddy system allocator.
 663 *
 664 * The concept of a buddy system is to maintain direct-mapped table
 665 * (containing bit values) for memory blocks of various "orders".
 666 * The bottom level table contains the map for the smallest allocatable
 667 * units of memory (here, pages), and each level above it describes
 668 * pairs of units from the levels below, hence, "buddies".
 669 * At a high level, all that happens here is marking the table entry
 670 * at the bottom level available, and propagating the changes upward
 671 * as necessary, plus some accounting needed to play nicely with other
 672 * parts of the VM system.
 673 * At each level, we keep a list of pages, which are heads of continuous
 674 * free pages of length of (1 << order) and marked with _mapcount
 675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 676 * field.
 677 * So when we are allocating or freeing one, we can derive the state of the
 678 * other.  That is, if we allocate a small block, and both were
 679 * free, the remainder of the region must be split into blocks.
 680 * If a block is freed, and its buddy is also free, then this
 681 * triggers coalescing into a block of larger size.
 682 *
 683 * -- nyc
 684 */
 685
 686static inline void __free_one_page(struct page *page,
 687		unsigned long pfn,
 688		struct zone *zone, unsigned int order,
 689		int migratetype)
 690{
 691	unsigned long page_idx;
 692	unsigned long combined_idx;
 693	unsigned long uninitialized_var(buddy_idx);
 694	struct page *buddy;
 695	unsigned int max_order;
 696
 697	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 698
 699	VM_BUG_ON(!zone_is_initialized(zone));
 700	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 
 
 
 701
 702	VM_BUG_ON(migratetype == -1);
 703	if (likely(!is_migrate_isolate(migratetype)))
 704		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 705
 706	page_idx = pfn & ((1 << MAX_ORDER) - 1);
 707
 708	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
 709	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 710
 711continue_merging:
 712	while (order < max_order - 1) {
 713		buddy_idx = __find_buddy_index(page_idx, order);
 714		buddy = page + (buddy_idx - page_idx);
 715		if (!page_is_buddy(page, buddy, order))
 716			goto done_merging;
 717		/*
 718		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 719		 * merge with it and move up one order.
 720		 */
 721		if (page_is_guard(buddy)) {
 722			clear_page_guard(zone, buddy, order, migratetype);
 
 
 
 723		} else {
 724			list_del(&buddy->lru);
 725			zone->free_area[order].nr_free--;
 726			rmv_page_order(buddy);
 727		}
 728		combined_idx = buddy_idx & page_idx;
 729		page = page + (combined_idx - page_idx);
 730		page_idx = combined_idx;
 731		order++;
 732	}
 733	if (max_order < MAX_ORDER) {
 734		/* If we are here, it means order is >= pageblock_order.
 735		 * We want to prevent merge between freepages on isolate
 736		 * pageblock and normal pageblock. Without this, pageblock
 737		 * isolation could cause incorrect freepage or CMA accounting.
 738		 *
 739		 * We don't want to hit this code for the more frequent
 740		 * low-order merging.
 741		 */
 742		if (unlikely(has_isolate_pageblock(zone))) {
 743			int buddy_mt;
 744
 745			buddy_idx = __find_buddy_index(page_idx, order);
 746			buddy = page + (buddy_idx - page_idx);
 747			buddy_mt = get_pageblock_migratetype(buddy);
 748
 749			if (migratetype != buddy_mt
 750					&& (is_migrate_isolate(migratetype) ||
 751						is_migrate_isolate(buddy_mt)))
 752				goto done_merging;
 753		}
 754		max_order++;
 755		goto continue_merging;
 756	}
 757
 758done_merging:
 759	set_page_order(page, order);
 760
 761	/*
 762	 * If this is not the largest possible page, check if the buddy
 763	 * of the next-highest order is free. If it is, it's possible
 764	 * that pages are being freed that will coalesce soon. In case,
 765	 * that is happening, add the free page to the tail of the list
 766	 * so it's less likely to be used soon and more likely to be merged
 767	 * as a higher order page
 768	 */
 769	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
 770		struct page *higher_page, *higher_buddy;
 771		combined_idx = buddy_idx & page_idx;
 772		higher_page = page + (combined_idx - page_idx);
 773		buddy_idx = __find_buddy_index(combined_idx, order + 1);
 774		higher_buddy = higher_page + (buddy_idx - combined_idx);
 775		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
 776			list_add_tail(&page->lru,
 777				&zone->free_area[order].free_list[migratetype]);
 778			goto out;
 779		}
 780	}
 781
 782	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 783out:
 784	zone->free_area[order].nr_free++;
 785}
 786
 787static inline int free_pages_check(struct page *page)
 788{
 789	const char *bad_reason = NULL;
 790	unsigned long bad_flags = 0;
 791
 792	if (unlikely(atomic_read(&page->_mapcount) != -1))
 793		bad_reason = "nonzero mapcount";
 794	if (unlikely(page->mapping != NULL))
 795		bad_reason = "non-NULL mapping";
 796	if (unlikely(page_ref_count(page) != 0))
 797		bad_reason = "nonzero _count";
 798	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 799		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 800		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 801	}
 802#ifdef CONFIG_MEMCG
 803	if (unlikely(page->mem_cgroup))
 804		bad_reason = "page still charged to cgroup";
 805#endif
 806	if (unlikely(bad_reason)) {
 807		bad_page(page, bad_reason, bad_flags);
 808		return 1;
 809	}
 810	page_cpupid_reset_last(page);
 811	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
 812		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 813	return 0;
 814}
 815
 816/*
 817 * Frees a number of pages from the PCP lists
 818 * Assumes all pages on list are in same zone, and of same order.
 819 * count is the number of pages to free.
 820 *
 821 * If the zone was previously in an "all pages pinned" state then look to
 822 * see if this freeing clears that state.
 823 *
 824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 825 * pinned" detection logic.
 826 */
 827static void free_pcppages_bulk(struct zone *zone, int count,
 828					struct per_cpu_pages *pcp)
 829{
 830	int migratetype = 0;
 831	int batch_free = 0;
 832	int to_free = count;
 833	unsigned long nr_scanned;
 834
 835	spin_lock(&zone->lock);
 836	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
 837	if (nr_scanned)
 838		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
 839
 840	while (to_free) {
 841		struct page *page;
 842		struct list_head *list;
 843
 844		/*
 845		 * Remove pages from lists in a round-robin fashion. A
 846		 * batch_free count is maintained that is incremented when an
 847		 * empty list is encountered.  This is so more pages are freed
 848		 * off fuller lists instead of spinning excessively around empty
 849		 * lists
 850		 */
 851		do {
 852			batch_free++;
 853			if (++migratetype == MIGRATE_PCPTYPES)
 854				migratetype = 0;
 855			list = &pcp->lists[migratetype];
 856		} while (list_empty(list));
 857
 858		/* This is the only non-empty list. Free them all. */
 859		if (batch_free == MIGRATE_PCPTYPES)
 860			batch_free = to_free;
 861
 862		do {
 863			int mt;	/* migratetype of the to-be-freed page */
 864
 865			page = list_last_entry(list, struct page, lru);
 866			/* must delete as __free_one_page list manipulates */
 867			list_del(&page->lru);
 868
 869			mt = get_pcppage_migratetype(page);
 870			/* MIGRATE_ISOLATE page should not go to pcplists */
 871			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
 872			/* Pageblock could have been isolated meanwhile */
 873			if (unlikely(has_isolate_pageblock(zone)))
 874				mt = get_pageblock_migratetype(page);
 875
 876			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
 877			trace_mm_page_pcpu_drain(page, 0, mt);
 
 
 
 
 
 878		} while (--to_free && --batch_free && !list_empty(list));
 879	}
 880	spin_unlock(&zone->lock);
 881}
 882
 883static void free_one_page(struct zone *zone,
 884				struct page *page, unsigned long pfn,
 885				unsigned int order,
 886				int migratetype)
 887{
 888	unsigned long nr_scanned;
 889	spin_lock(&zone->lock);
 890	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
 891	if (nr_scanned)
 892		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
 893
 894	if (unlikely(has_isolate_pageblock(zone) ||
 895		is_migrate_isolate(migratetype))) {
 896		migratetype = get_pfnblock_migratetype(page, pfn);
 897	}
 898	__free_one_page(page, pfn, zone, order, migratetype);
 899	spin_unlock(&zone->lock);
 900}
 901
 902static int free_tail_pages_check(struct page *head_page, struct page *page)
 903{
 904	int ret = 1;
 905
 906	/*
 907	 * We rely page->lru.next never has bit 0 set, unless the page
 908	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 909	 */
 910	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 911
 912	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
 913		ret = 0;
 914		goto out;
 915	}
 916	switch (page - head_page) {
 917	case 1:
 918		/* the first tail page: ->mapping is compound_mapcount() */
 919		if (unlikely(compound_mapcount(page))) {
 920			bad_page(page, "nonzero compound_mapcount", 0);
 921			goto out;
 922		}
 923		break;
 924	case 2:
 925		/*
 926		 * the second tail page: ->mapping is
 927		 * page_deferred_list().next -- ignore value.
 928		 */
 929		break;
 930	default:
 931		if (page->mapping != TAIL_MAPPING) {
 932			bad_page(page, "corrupted mapping in tail page", 0);
 933			goto out;
 934		}
 935		break;
 936	}
 937	if (unlikely(!PageTail(page))) {
 938		bad_page(page, "PageTail not set", 0);
 939		goto out;
 940	}
 941	if (unlikely(compound_head(page) != head_page)) {
 942		bad_page(page, "compound_head not consistent", 0);
 943		goto out;
 944	}
 945	ret = 0;
 946out:
 947	page->mapping = NULL;
 948	clear_compound_head(page);
 949	return ret;
 950}
 951
 952static void __meminit __init_single_page(struct page *page, unsigned long pfn,
 953				unsigned long zone, int nid)
 954{
 955	set_page_links(page, zone, nid, pfn);
 956	init_page_count(page);
 957	page_mapcount_reset(page);
 958	page_cpupid_reset_last(page);
 959
 960	INIT_LIST_HEAD(&page->lru);
 961#ifdef WANT_PAGE_VIRTUAL
 962	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
 963	if (!is_highmem_idx(zone))
 964		set_page_address(page, __va(pfn << PAGE_SHIFT));
 965#endif
 966}
 967
 968static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
 969					int nid)
 970{
 971	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
 972}
 973
 974#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 975static void init_reserved_page(unsigned long pfn)
 976{
 977	pg_data_t *pgdat;
 978	int nid, zid;
 979
 980	if (!early_page_uninitialised(pfn))
 981		return;
 982
 983	nid = early_pfn_to_nid(pfn);
 984	pgdat = NODE_DATA(nid);
 985
 986	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 987		struct zone *zone = &pgdat->node_zones[zid];
 988
 989		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
 990			break;
 991	}
 992	__init_single_pfn(pfn, zid, nid);
 993}
 994#else
 995static inline void init_reserved_page(unsigned long pfn)
 996{
 997}
 998#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 999
1000/*
1001 * Initialised pages do not have PageReserved set. This function is
1002 * called for each range allocated by the bootmem allocator and
1003 * marks the pages PageReserved. The remaining valid pages are later
1004 * sent to the buddy page allocator.
1005 */
1006void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
1007{
1008	unsigned long start_pfn = PFN_DOWN(start);
1009	unsigned long end_pfn = PFN_UP(end);
1010
1011	for (; start_pfn < end_pfn; start_pfn++) {
1012		if (pfn_valid(start_pfn)) {
1013			struct page *page = pfn_to_page(start_pfn);
1014
1015			init_reserved_page(start_pfn);
1016
1017			/* Avoid false-positive PageTail() */
1018			INIT_LIST_HEAD(&page->lru);
1019
1020			SetPageReserved(page);
1021		}
1022	}
1023}
1024
1025static bool free_pages_prepare(struct page *page, unsigned int order)
1026{
1027	bool compound = PageCompound(page);
1028	int i, bad = 0;
1029
1030	VM_BUG_ON_PAGE(PageTail(page), page);
1031	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1032
1033	trace_mm_page_free(page, order);
1034	kmemcheck_free_shadow(page, order);
1035	kasan_free_pages(page, order);
1036
1037	if (PageAnon(page))
1038		page->mapping = NULL;
1039	bad += free_pages_check(page);
1040	for (i = 1; i < (1 << order); i++) {
1041		if (compound)
1042			bad += free_tail_pages_check(page, page + i);
1043		bad += free_pages_check(page + i);
1044	}
1045	if (bad)
1046		return false;
1047
1048	reset_page_owner(page, order);
1049
1050	if (!PageHighMem(page)) {
1051		debug_check_no_locks_freed(page_address(page),
1052					   PAGE_SIZE << order);
1053		debug_check_no_obj_freed(page_address(page),
1054					   PAGE_SIZE << order);
1055	}
1056	arch_free_page(page, order);
1057	kernel_poison_pages(page, 1 << order, 0);
1058	kernel_map_pages(page, 1 << order, 0);
1059
1060	return true;
1061}
1062
1063static void __free_pages_ok(struct page *page, unsigned int order)
1064{
1065	unsigned long flags;
1066	int migratetype;
1067	unsigned long pfn = page_to_pfn(page);
1068
1069	if (!free_pages_prepare(page, order))
1070		return;
1071
1072	migratetype = get_pfnblock_migratetype(page, pfn);
1073	local_irq_save(flags);
1074	__count_vm_events(PGFREE, 1 << order);
1075	free_one_page(page_zone(page), page, pfn, order, migratetype);
 
 
1076	local_irq_restore(flags);
1077}
1078
1079static void __init __free_pages_boot_core(struct page *page,
1080					unsigned long pfn, unsigned int order)
1081{
1082	unsigned int nr_pages = 1 << order;
1083	struct page *p = page;
1084	unsigned int loop;
1085
1086	prefetchw(p);
1087	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1088		prefetchw(p + 1);
1089		__ClearPageReserved(p);
1090		set_page_count(p, 0);
1091	}
1092	__ClearPageReserved(p);
1093	set_page_count(p, 0);
1094
1095	page_zone(page)->managed_pages += nr_pages;
1096	set_page_refcounted(page);
1097	__free_pages(page, order);
1098}
1099
1100#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1101	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1102
1103static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1104
1105int __meminit early_pfn_to_nid(unsigned long pfn)
1106{
1107	static DEFINE_SPINLOCK(early_pfn_lock);
1108	int nid;
1109
1110	spin_lock(&early_pfn_lock);
1111	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1112	if (nid < 0)
1113		nid = 0;
1114	spin_unlock(&early_pfn_lock);
1115
1116	return nid;
1117}
1118#endif
1119
1120#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1121static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1122					struct mminit_pfnnid_cache *state)
1123{
1124	int nid;
1125
1126	nid = __early_pfn_to_nid(pfn, state);
1127	if (nid >= 0 && nid != node)
1128		return false;
1129	return true;
1130}
1131
1132/* Only safe to use early in boot when initialisation is single-threaded */
1133static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1134{
1135	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1136}
1137
1138#else
1139
1140static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1141{
1142	return true;
1143}
1144static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1145					struct mminit_pfnnid_cache *state)
1146{
1147	return true;
1148}
1149#endif
1150
1151
1152void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1153							unsigned int order)
1154{
1155	if (early_page_uninitialised(pfn))
1156		return;
1157	return __free_pages_boot_core(page, pfn, order);
1158}
1159
1160/*
1161 * Check that the whole (or subset of) a pageblock given by the interval of
1162 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1163 * with the migration of free compaction scanner. The scanners then need to
1164 * use only pfn_valid_within() check for arches that allow holes within
1165 * pageblocks.
1166 *
1167 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1168 *
1169 * It's possible on some configurations to have a setup like node0 node1 node0
1170 * i.e. it's possible that all pages within a zones range of pages do not
1171 * belong to a single zone. We assume that a border between node0 and node1
1172 * can occur within a single pageblock, but not a node0 node1 node0
1173 * interleaving within a single pageblock. It is therefore sufficient to check
1174 * the first and last page of a pageblock and avoid checking each individual
1175 * page in a pageblock.
1176 */
1177struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1178				     unsigned long end_pfn, struct zone *zone)
1179{
1180	struct page *start_page;
1181	struct page *end_page;
1182
1183	/* end_pfn is one past the range we are checking */
1184	end_pfn--;
1185
1186	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1187		return NULL;
1188
1189	start_page = pfn_to_page(start_pfn);
1190
1191	if (page_zone(start_page) != zone)
1192		return NULL;
1193
1194	end_page = pfn_to_page(end_pfn);
1195
1196	/* This gives a shorter code than deriving page_zone(end_page) */
1197	if (page_zone_id(start_page) != page_zone_id(end_page))
1198		return NULL;
1199
1200	return start_page;
1201}
1202
1203void set_zone_contiguous(struct zone *zone)
1204{
1205	unsigned long block_start_pfn = zone->zone_start_pfn;
1206	unsigned long block_end_pfn;
1207
1208	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1209	for (; block_start_pfn < zone_end_pfn(zone);
1210			block_start_pfn = block_end_pfn,
1211			 block_end_pfn += pageblock_nr_pages) {
1212
1213		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1214
1215		if (!__pageblock_pfn_to_page(block_start_pfn,
1216					     block_end_pfn, zone))
1217			return;
1218	}
1219
1220	/* We confirm that there is no hole */
1221	zone->contiguous = true;
1222}
1223
1224void clear_zone_contiguous(struct zone *zone)
1225{
1226	zone->contiguous = false;
1227}
1228
1229#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1230static void __init deferred_free_range(struct page *page,
1231					unsigned long pfn, int nr_pages)
1232{
1233	int i;
1234
1235	if (!page)
1236		return;
1237
1238	/* Free a large naturally-aligned chunk if possible */
1239	if (nr_pages == MAX_ORDER_NR_PAGES &&
1240	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1241		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1242		__free_pages_boot_core(page, pfn, MAX_ORDER-1);
1243		return;
1244	}
1245
1246	for (i = 0; i < nr_pages; i++, page++, pfn++)
1247		__free_pages_boot_core(page, pfn, 0);
1248}
1249
1250/* Completion tracking for deferred_init_memmap() threads */
1251static atomic_t pgdat_init_n_undone __initdata;
1252static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1253
1254static inline void __init pgdat_init_report_one_done(void)
1255{
1256	if (atomic_dec_and_test(&pgdat_init_n_undone))
1257		complete(&pgdat_init_all_done_comp);
1258}
1259
1260/* Initialise remaining memory on a node */
1261static int __init deferred_init_memmap(void *data)
1262{
1263	pg_data_t *pgdat = data;
1264	int nid = pgdat->node_id;
1265	struct mminit_pfnnid_cache nid_init_state = { };
1266	unsigned long start = jiffies;
1267	unsigned long nr_pages = 0;
1268	unsigned long walk_start, walk_end;
1269	int i, zid;
1270	struct zone *zone;
1271	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1272	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1273
1274	if (first_init_pfn == ULONG_MAX) {
1275		pgdat_init_report_one_done();
1276		return 0;
1277	}
1278
1279	/* Bind memory initialisation thread to a local node if possible */
1280	if (!cpumask_empty(cpumask))
1281		set_cpus_allowed_ptr(current, cpumask);
1282
1283	/* Sanity check boundaries */
1284	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1285	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1286	pgdat->first_deferred_pfn = ULONG_MAX;
1287
1288	/* Only the highest zone is deferred so find it */
1289	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1290		zone = pgdat->node_zones + zid;
1291		if (first_init_pfn < zone_end_pfn(zone))
1292			break;
1293	}
1294
1295	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1296		unsigned long pfn, end_pfn;
1297		struct page *page = NULL;
1298		struct page *free_base_page = NULL;
1299		unsigned long free_base_pfn = 0;
1300		int nr_to_free = 0;
1301
1302		end_pfn = min(walk_end, zone_end_pfn(zone));
1303		pfn = first_init_pfn;
1304		if (pfn < walk_start)
1305			pfn = walk_start;
1306		if (pfn < zone->zone_start_pfn)
1307			pfn = zone->zone_start_pfn;
1308
1309		for (; pfn < end_pfn; pfn++) {
1310			if (!pfn_valid_within(pfn))
1311				goto free_range;
1312
1313			/*
1314			 * Ensure pfn_valid is checked every
1315			 * MAX_ORDER_NR_PAGES for memory holes
1316			 */
1317			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1318				if (!pfn_valid(pfn)) {
1319					page = NULL;
1320					goto free_range;
1321				}
1322			}
1323
1324			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1325				page = NULL;
1326				goto free_range;
1327			}
1328
1329			/* Minimise pfn page lookups and scheduler checks */
1330			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1331				page++;
1332			} else {
1333				nr_pages += nr_to_free;
1334				deferred_free_range(free_base_page,
1335						free_base_pfn, nr_to_free);
1336				free_base_page = NULL;
1337				free_base_pfn = nr_to_free = 0;
1338
1339				page = pfn_to_page(pfn);
1340				cond_resched();
1341			}
1342
1343			if (page->flags) {
1344				VM_BUG_ON(page_zone(page) != zone);
1345				goto free_range;
1346			}
1347
1348			__init_single_page(page, pfn, zid, nid);
1349			if (!free_base_page) {
1350				free_base_page = page;
1351				free_base_pfn = pfn;
1352				nr_to_free = 0;
1353			}
1354			nr_to_free++;
1355
1356			/* Where possible, batch up pages for a single free */
1357			continue;
1358free_range:
1359			/* Free the current block of pages to allocator */
1360			nr_pages += nr_to_free;
1361			deferred_free_range(free_base_page, free_base_pfn,
1362								nr_to_free);
1363			free_base_page = NULL;
1364			free_base_pfn = nr_to_free = 0;
1365		}
1366
1367		first_init_pfn = max(end_pfn, first_init_pfn);
1368	}
1369
1370	/* Sanity check that the next zone really is unpopulated */
1371	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1372
1373	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1374					jiffies_to_msecs(jiffies - start));
1375
1376	pgdat_init_report_one_done();
1377	return 0;
1378}
1379#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1380
1381void __init page_alloc_init_late(void)
1382{
1383	struct zone *zone;
1384
1385#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1386	int nid;
1387
1388	/* There will be num_node_state(N_MEMORY) threads */
1389	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1390	for_each_node_state(nid, N_MEMORY) {
1391		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1392	}
1393
1394	/* Block until all are initialised */
1395	wait_for_completion(&pgdat_init_all_done_comp);
1396
1397	/* Reinit limits that are based on free pages after the kernel is up */
1398	files_maxfiles_init();
1399#endif
1400
1401	for_each_populated_zone(zone)
1402		set_zone_contiguous(zone);
1403}
1404
1405#ifdef CONFIG_CMA
1406/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1407void __init init_cma_reserved_pageblock(struct page *page)
1408{
1409	unsigned i = pageblock_nr_pages;
1410	struct page *p = page;
1411
1412	do {
1413		__ClearPageReserved(p);
1414		set_page_count(p, 0);
1415	} while (++p, --i);
1416
 
1417	set_pageblock_migratetype(page, MIGRATE_CMA);
1418
1419	if (pageblock_order >= MAX_ORDER) {
1420		i = pageblock_nr_pages;
1421		p = page;
1422		do {
1423			set_page_refcounted(p);
1424			__free_pages(p, MAX_ORDER - 1);
1425			p += MAX_ORDER_NR_PAGES;
1426		} while (i -= MAX_ORDER_NR_PAGES);
1427	} else {
1428		set_page_refcounted(page);
1429		__free_pages(page, pageblock_order);
1430	}
1431
1432	adjust_managed_page_count(page, pageblock_nr_pages);
1433}
1434#endif
1435
1436/*
1437 * The order of subdivision here is critical for the IO subsystem.
1438 * Please do not alter this order without good reasons and regression
1439 * testing. Specifically, as large blocks of memory are subdivided,
1440 * the order in which smaller blocks are delivered depends on the order
1441 * they're subdivided in this function. This is the primary factor
1442 * influencing the order in which pages are delivered to the IO
1443 * subsystem according to empirical testing, and this is also justified
1444 * by considering the behavior of a buddy system containing a single
1445 * large block of memory acted on by a series of small allocations.
1446 * This behavior is a critical factor in sglist merging's success.
1447 *
1448 * -- nyc
1449 */
1450static inline void expand(struct zone *zone, struct page *page,
1451	int low, int high, struct free_area *area,
1452	int migratetype)
1453{
1454	unsigned long size = 1 << high;
1455
1456	while (high > low) {
1457		area--;
1458		high--;
1459		size >>= 1;
1460		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1461
1462		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1463			debug_guardpage_enabled() &&
1464			high < debug_guardpage_minorder()) {
1465			/*
1466			 * Mark as guard pages (or page), that will allow to
1467			 * merge back to allocator when buddy will be freed.
1468			 * Corresponding page table entries will not be touched,
1469			 * pages will stay not present in virtual address space
1470			 */
1471			set_page_guard(zone, &page[size], high, migratetype);
 
 
 
 
 
1472			continue;
1473		}
 
1474		list_add(&page[size].lru, &area->free_list[migratetype]);
1475		area->nr_free++;
1476		set_page_order(&page[size], high);
1477	}
1478}
1479
1480/*
1481 * This page is about to be returned from the page allocator
1482 */
1483static inline int check_new_page(struct page *page)
1484{
1485	const char *bad_reason = NULL;
1486	unsigned long bad_flags = 0;
1487
1488	if (unlikely(atomic_read(&page->_mapcount) != -1))
1489		bad_reason = "nonzero mapcount";
1490	if (unlikely(page->mapping != NULL))
1491		bad_reason = "non-NULL mapping";
1492	if (unlikely(page_ref_count(page) != 0))
1493		bad_reason = "nonzero _count";
1494	if (unlikely(page->flags & __PG_HWPOISON)) {
1495		bad_reason = "HWPoisoned (hardware-corrupted)";
1496		bad_flags = __PG_HWPOISON;
1497	}
1498	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1499		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1500		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1501	}
1502#ifdef CONFIG_MEMCG
1503	if (unlikely(page->mem_cgroup))
1504		bad_reason = "page still charged to cgroup";
1505#endif
1506	if (unlikely(bad_reason)) {
1507		bad_page(page, bad_reason, bad_flags);
1508		return 1;
1509	}
1510	return 0;
1511}
1512
1513static inline bool free_pages_prezeroed(bool poisoned)
1514{
1515	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1516		page_poisoning_enabled() && poisoned;
1517}
1518
1519static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1520								int alloc_flags)
1521{
1522	int i;
1523	bool poisoned = true;
1524
1525	for (i = 0; i < (1 << order); i++) {
1526		struct page *p = page + i;
1527		if (unlikely(check_new_page(p)))
1528			return 1;
1529		if (poisoned)
1530			poisoned &= page_is_poisoned(p);
1531	}
1532
1533	set_page_private(page, 0);
1534	set_page_refcounted(page);
1535
1536	arch_alloc_page(page, order);
1537	kernel_map_pages(page, 1 << order, 1);
1538	kernel_poison_pages(page, 1 << order, 1);
1539	kasan_alloc_pages(page, order);
1540
1541	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1542		for (i = 0; i < (1 << order); i++)
1543			clear_highpage(page + i);
1544
1545	if (order && (gfp_flags & __GFP_COMP))
1546		prep_compound_page(page, order);
1547
1548	set_page_owner(page, order, gfp_flags);
1549
1550	/*
1551	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1552	 * allocate the page. The expectation is that the caller is taking
1553	 * steps that will free more memory. The caller should avoid the page
1554	 * being used for !PFMEMALLOC purposes.
1555	 */
1556	if (alloc_flags & ALLOC_NO_WATERMARKS)
1557		set_page_pfmemalloc(page);
1558	else
1559		clear_page_pfmemalloc(page);
1560
1561	return 0;
1562}
1563
1564/*
1565 * Go through the free lists for the given migratetype and remove
1566 * the smallest available page from the freelists
1567 */
1568static inline
1569struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1570						int migratetype)
1571{
1572	unsigned int current_order;
1573	struct free_area *area;
1574	struct page *page;
1575
1576	/* Find a page of the appropriate size in the preferred list */
1577	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1578		area = &(zone->free_area[current_order]);
1579		page = list_first_entry_or_null(&area->free_list[migratetype],
1580							struct page, lru);
1581		if (!page)
1582			continue;
 
 
 
1583		list_del(&page->lru);
1584		rmv_page_order(page);
1585		area->nr_free--;
1586		expand(zone, page, order, current_order, area, migratetype);
1587		set_pcppage_migratetype(page, migratetype);
1588		return page;
1589	}
1590
1591	return NULL;
1592}
1593
1594
1595/*
1596 * This array describes the order lists are fallen back to when
1597 * the free lists for the desirable migrate type are depleted
1598 */
1599static int fallbacks[MIGRATE_TYPES][4] = {
1600	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1601	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1602	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1603#ifdef CONFIG_CMA
1604	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
 
 
 
1605#endif
 
1606#ifdef CONFIG_MEMORY_ISOLATION
1607	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1608#endif
1609};
1610
1611#ifdef CONFIG_CMA
1612static struct page *__rmqueue_cma_fallback(struct zone *zone,
1613					unsigned int order)
1614{
1615	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1616}
1617#else
1618static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1619					unsigned int order) { return NULL; }
1620#endif
1621
1622/*
1623 * Move the free pages in a range to the free lists of the requested type.
1624 * Note that start_page and end_pages are not aligned on a pageblock
1625 * boundary. If alignment is required, use move_freepages_block()
1626 */
1627int move_freepages(struct zone *zone,
1628			  struct page *start_page, struct page *end_page,
1629			  int migratetype)
1630{
1631	struct page *page;
1632	unsigned int order;
1633	int pages_moved = 0;
1634
1635#ifndef CONFIG_HOLES_IN_ZONE
1636	/*
1637	 * page_zone is not safe to call in this context when
1638	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1639	 * anyway as we check zone boundaries in move_freepages_block().
1640	 * Remove at a later date when no bug reports exist related to
1641	 * grouping pages by mobility
1642	 */
1643	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1644#endif
1645
1646	for (page = start_page; page <= end_page;) {
1647		/* Make sure we are not inadvertently changing nodes */
1648		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1649
1650		if (!pfn_valid_within(page_to_pfn(page))) {
1651			page++;
1652			continue;
1653		}
1654
1655		if (!PageBuddy(page)) {
1656			page++;
1657			continue;
1658		}
1659
1660		order = page_order(page);
1661		list_move(&page->lru,
1662			  &zone->free_area[order].free_list[migratetype]);
 
1663		page += 1 << order;
1664		pages_moved += 1 << order;
1665	}
1666
1667	return pages_moved;
1668}
1669
1670int move_freepages_block(struct zone *zone, struct page *page,
1671				int migratetype)
1672{
1673	unsigned long start_pfn, end_pfn;
1674	struct page *start_page, *end_page;
1675
1676	start_pfn = page_to_pfn(page);
1677	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1678	start_page = pfn_to_page(start_pfn);
1679	end_page = start_page + pageblock_nr_pages - 1;
1680	end_pfn = start_pfn + pageblock_nr_pages - 1;
1681
1682	/* Do not cross zone boundaries */
1683	if (!zone_spans_pfn(zone, start_pfn))
1684		start_page = page;
1685	if (!zone_spans_pfn(zone, end_pfn))
1686		return 0;
1687
1688	return move_freepages(zone, start_page, end_page, migratetype);
1689}
1690
1691static void change_pageblock_range(struct page *pageblock_page,
1692					int start_order, int migratetype)
1693{
1694	int nr_pageblocks = 1 << (start_order - pageblock_order);
1695
1696	while (nr_pageblocks--) {
1697		set_pageblock_migratetype(pageblock_page, migratetype);
1698		pageblock_page += pageblock_nr_pages;
1699	}
1700}
1701
1702/*
1703 * When we are falling back to another migratetype during allocation, try to
1704 * steal extra free pages from the same pageblocks to satisfy further
1705 * allocations, instead of polluting multiple pageblocks.
1706 *
1707 * If we are stealing a relatively large buddy page, it is likely there will
1708 * be more free pages in the pageblock, so try to steal them all. For
1709 * reclaimable and unmovable allocations, we steal regardless of page size,
1710 * as fragmentation caused by those allocations polluting movable pageblocks
1711 * is worse than movable allocations stealing from unmovable and reclaimable
1712 * pageblocks.
1713 */
1714static bool can_steal_fallback(unsigned int order, int start_mt)
1715{
1716	/*
1717	 * Leaving this order check is intended, although there is
1718	 * relaxed order check in next check. The reason is that
1719	 * we can actually steal whole pageblock if this condition met,
1720	 * but, below check doesn't guarantee it and that is just heuristic
1721	 * so could be changed anytime.
1722	 */
1723	if (order >= pageblock_order)
1724		return true;
1725
1726	if (order >= pageblock_order / 2 ||
1727		start_mt == MIGRATE_RECLAIMABLE ||
1728		start_mt == MIGRATE_UNMOVABLE ||
1729		page_group_by_mobility_disabled)
1730		return true;
1731
1732	return false;
1733}
1734
1735/*
1736 * This function implements actual steal behaviour. If order is large enough,
1737 * we can steal whole pageblock. If not, we first move freepages in this
1738 * pageblock and check whether half of pages are moved or not. If half of
1739 * pages are moved, we can change migratetype of pageblock and permanently
1740 * use it's pages as requested migratetype in the future.
1741 */
1742static void steal_suitable_fallback(struct zone *zone, struct page *page,
1743							  int start_type)
1744{
1745	unsigned int current_order = page_order(page);
1746	int pages;
 
 
 
 
 
 
1747
1748	/* Take ownership for orders >= pageblock_order */
1749	if (current_order >= pageblock_order) {
1750		change_pageblock_range(page, current_order, start_type);
1751		return;
1752	}
1753
1754	pages = move_freepages_block(zone, page, start_type);
1755
1756	/* Claim the whole block if over half of it is free */
1757	if (pages >= (1 << (pageblock_order-1)) ||
1758			page_group_by_mobility_disabled)
1759		set_pageblock_migratetype(page, start_type);
1760}
1761
1762/*
1763 * Check whether there is a suitable fallback freepage with requested order.
1764 * If only_stealable is true, this function returns fallback_mt only if
1765 * we can steal other freepages all together. This would help to reduce
1766 * fragmentation due to mixed migratetype pages in one pageblock.
1767 */
1768int find_suitable_fallback(struct free_area *area, unsigned int order,
1769			int migratetype, bool only_stealable, bool *can_steal)
1770{
1771	int i;
1772	int fallback_mt;
1773
1774	if (area->nr_free == 0)
1775		return -1;
1776
1777	*can_steal = false;
1778	for (i = 0;; i++) {
1779		fallback_mt = fallbacks[migratetype][i];
1780		if (fallback_mt == MIGRATE_TYPES)
1781			break;
1782
1783		if (list_empty(&area->free_list[fallback_mt]))
1784			continue;
1785
1786		if (can_steal_fallback(order, migratetype))
1787			*can_steal = true;
1788
1789		if (!only_stealable)
1790			return fallback_mt;
1791
1792		if (*can_steal)
1793			return fallback_mt;
1794	}
1795
1796	return -1;
1797}
1798
1799/*
1800 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1801 * there are no empty page blocks that contain a page with a suitable order
1802 */
1803static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1804				unsigned int alloc_order)
1805{
1806	int mt;
1807	unsigned long max_managed, flags;
1808
1809	/*
1810	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1811	 * Check is race-prone but harmless.
1812	 */
1813	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1814	if (zone->nr_reserved_highatomic >= max_managed)
1815		return;
1816
1817	spin_lock_irqsave(&zone->lock, flags);
1818
1819	/* Recheck the nr_reserved_highatomic limit under the lock */
1820	if (zone->nr_reserved_highatomic >= max_managed)
1821		goto out_unlock;
1822
1823	/* Yoink! */
1824	mt = get_pageblock_migratetype(page);
1825	if (mt != MIGRATE_HIGHATOMIC &&
1826			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1827		zone->nr_reserved_highatomic += pageblock_nr_pages;
1828		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1829		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1830	}
1831
1832out_unlock:
1833	spin_unlock_irqrestore(&zone->lock, flags);
1834}
1835
1836/*
1837 * Used when an allocation is about to fail under memory pressure. This
1838 * potentially hurts the reliability of high-order allocations when under
1839 * intense memory pressure but failed atomic allocations should be easier
1840 * to recover from than an OOM.
1841 */
1842static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1843{
1844	struct zonelist *zonelist = ac->zonelist;
1845	unsigned long flags;
1846	struct zoneref *z;
1847	struct zone *zone;
1848	struct page *page;
1849	int order;
1850
1851	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1852								ac->nodemask) {
1853		/* Preserve at least one pageblock */
1854		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1855			continue;
1856
1857		spin_lock_irqsave(&zone->lock, flags);
1858		for (order = 0; order < MAX_ORDER; order++) {
1859			struct free_area *area = &(zone->free_area[order]);
1860
1861			page = list_first_entry_or_null(
1862					&area->free_list[MIGRATE_HIGHATOMIC],
1863					struct page, lru);
1864			if (!page)
1865				continue;
1866
1867			/*
1868			 * It should never happen but changes to locking could
1869			 * inadvertently allow a per-cpu drain to add pages
1870			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1871			 * and watch for underflows.
1872			 */
1873			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1874				zone->nr_reserved_highatomic);
1875
1876			/*
1877			 * Convert to ac->migratetype and avoid the normal
1878			 * pageblock stealing heuristics. Minimally, the caller
1879			 * is doing the work and needs the pages. More
1880			 * importantly, if the block was always converted to
1881			 * MIGRATE_UNMOVABLE or another type then the number
1882			 * of pageblocks that cannot be completely freed
1883			 * may increase.
1884			 */
1885			set_pageblock_migratetype(page, ac->migratetype);
1886			move_freepages_block(zone, page, ac->migratetype);
1887			spin_unlock_irqrestore(&zone->lock, flags);
1888			return;
1889		}
1890		spin_unlock_irqrestore(&zone->lock, flags);
1891	}
1892}
1893
1894/* Remove an element from the buddy allocator from the fallback list */
1895static inline struct page *
1896__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1897{
1898	struct free_area *area;
1899	unsigned int current_order;
1900	struct page *page;
1901	int fallback_mt;
1902	bool can_steal;
1903
1904	/* Find the largest possible block of pages in the other list */
1905	for (current_order = MAX_ORDER-1;
1906				current_order >= order && current_order <= MAX_ORDER-1;
1907				--current_order) {
1908		area = &(zone->free_area[current_order]);
1909		fallback_mt = find_suitable_fallback(area, current_order,
1910				start_migratetype, false, &can_steal);
1911		if (fallback_mt == -1)
1912			continue;
1913
1914		page = list_first_entry(&area->free_list[fallback_mt],
1915						struct page, lru);
1916		if (can_steal)
1917			steal_suitable_fallback(zone, page, start_migratetype);
1918
1919		/* Remove the page from the freelists */
1920		area->nr_free--;
1921		list_del(&page->lru);
1922		rmv_page_order(page);
1923
1924		expand(zone, page, order, current_order, area,
1925					start_migratetype);
1926		/*
1927		 * The pcppage_migratetype may differ from pageblock's
1928		 * migratetype depending on the decisions in
1929		 * find_suitable_fallback(). This is OK as long as it does not
1930		 * differ for MIGRATE_CMA pageblocks. Those can be used as
1931		 * fallback only via special __rmqueue_cma_fallback() function
1932		 */
1933		set_pcppage_migratetype(page, start_migratetype);
1934
1935		trace_mm_page_alloc_extfrag(page, order, current_order,
1936			start_migratetype, fallback_mt);
 
1937
1938		return page;
 
 
 
 
 
 
 
 
 
 
 
1939	}
1940
1941	return NULL;
1942}
1943
1944/*
1945 * Do the hard work of removing an element from the buddy allocator.
1946 * Call me with the zone->lock already held.
1947 */
1948static struct page *__rmqueue(struct zone *zone, unsigned int order,
1949				int migratetype)
1950{
1951	struct page *page;
1952
 
1953	page = __rmqueue_smallest(zone, order, migratetype);
1954	if (unlikely(!page)) {
1955		if (migratetype == MIGRATE_MOVABLE)
1956			page = __rmqueue_cma_fallback(zone, order);
1957
1958		if (!page)
1959			page = __rmqueue_fallback(zone, order, migratetype);
 
 
 
 
 
 
 
 
 
 
1960	}
1961
1962	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1963	return page;
1964}
1965
1966/*
1967 * Obtain a specified number of elements from the buddy allocator, all under
1968 * a single hold of the lock, for efficiency.  Add them to the supplied list.
1969 * Returns the number of new pages which were placed at *list.
1970 */
1971static int rmqueue_bulk(struct zone *zone, unsigned int order,
1972			unsigned long count, struct list_head *list,
1973			int migratetype, bool cold)
1974{
1975	int i;
1976
1977	spin_lock(&zone->lock);
1978	for (i = 0; i < count; ++i) {
1979		struct page *page = __rmqueue(zone, order, migratetype);
1980		if (unlikely(page == NULL))
1981			break;
1982
1983		/*
1984		 * Split buddy pages returned by expand() are received here
1985		 * in physical page order. The page is added to the callers and
1986		 * list and the list head then moves forward. From the callers
1987		 * perspective, the linked list is ordered by page number in
1988		 * some conditions. This is useful for IO devices that can
1989		 * merge IO requests if the physical pages are ordered
1990		 * properly.
1991		 */
1992		if (likely(!cold))
1993			list_add(&page->lru, list);
1994		else
1995			list_add_tail(&page->lru, list);
 
 
 
 
 
 
1996		list = &page->lru;
1997		if (is_migrate_cma(get_pcppage_migratetype(page)))
1998			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1999					      -(1 << order));
2000	}
2001	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2002	spin_unlock(&zone->lock);
2003	return i;
2004}
2005
2006#ifdef CONFIG_NUMA
2007/*
2008 * Called from the vmstat counter updater to drain pagesets of this
2009 * currently executing processor on remote nodes after they have
2010 * expired.
2011 *
2012 * Note that this function must be called with the thread pinned to
2013 * a single processor.
2014 */
2015void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2016{
2017	unsigned long flags;
2018	int to_drain, batch;
 
2019
2020	local_irq_save(flags);
2021	batch = READ_ONCE(pcp->batch);
2022	to_drain = min(pcp->count, batch);
 
 
 
2023	if (to_drain > 0) {
2024		free_pcppages_bulk(zone, to_drain, pcp);
2025		pcp->count -= to_drain;
2026	}
2027	local_irq_restore(flags);
2028}
2029#endif
2030
2031/*
2032 * Drain pcplists of the indicated processor and zone.
2033 *
2034 * The processor must either be the current processor and the
2035 * thread pinned to the current processor or a processor that
2036 * is not online.
2037 */
2038static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2039{
2040	unsigned long flags;
2041	struct per_cpu_pageset *pset;
2042	struct per_cpu_pages *pcp;
2043
2044	local_irq_save(flags);
2045	pset = per_cpu_ptr(zone->pageset, cpu);
2046
2047	pcp = &pset->pcp;
2048	if (pcp->count) {
2049		free_pcppages_bulk(zone, pcp->count, pcp);
2050		pcp->count = 0;
2051	}
2052	local_irq_restore(flags);
2053}
2054
2055/*
2056 * Drain pcplists of all zones on the indicated processor.
2057 *
2058 * The processor must either be the current processor and the
2059 * thread pinned to the current processor or a processor that
2060 * is not online.
2061 */
2062static void drain_pages(unsigned int cpu)
2063{
 
2064	struct zone *zone;
2065
2066	for_each_populated_zone(zone) {
2067		drain_pages_zone(cpu, zone);
 
 
 
 
 
 
 
 
 
 
 
2068	}
2069}
2070
2071/*
2072 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2073 *
2074 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2075 * the single zone's pages.
2076 */
2077void drain_local_pages(struct zone *zone)
2078{
2079	int cpu = smp_processor_id();
2080
2081	if (zone)
2082		drain_pages_zone(cpu, zone);
2083	else
2084		drain_pages(cpu);
2085}
2086
2087/*
2088 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2089 *
2090 * When zone parameter is non-NULL, spill just the single zone's pages.
2091 *
2092 * Note that this code is protected against sending an IPI to an offline
2093 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2094 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2095 * nothing keeps CPUs from showing up after we populated the cpumask and
2096 * before the call to on_each_cpu_mask().
2097 */
2098void drain_all_pages(struct zone *zone)
2099{
2100	int cpu;
 
 
2101
2102	/*
2103	 * Allocate in the BSS so we wont require allocation in
2104	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2105	 */
2106	static cpumask_t cpus_with_pcps;
2107
2108	/*
2109	 * We don't care about racing with CPU hotplug event
2110	 * as offline notification will cause the notified
2111	 * cpu to drain that CPU pcps and on_each_cpu_mask
2112	 * disables preemption as part of its processing
2113	 */
2114	for_each_online_cpu(cpu) {
2115		struct per_cpu_pageset *pcp;
2116		struct zone *z;
2117		bool has_pcps = false;
2118
2119		if (zone) {
2120			pcp = per_cpu_ptr(zone->pageset, cpu);
2121			if (pcp->pcp.count)
2122				has_pcps = true;
2123		} else {
2124			for_each_populated_zone(z) {
2125				pcp = per_cpu_ptr(z->pageset, cpu);
2126				if (pcp->pcp.count) {
2127					has_pcps = true;
2128					break;
2129				}
2130			}
2131		}
2132
2133		if (has_pcps)
2134			cpumask_set_cpu(cpu, &cpus_with_pcps);
2135		else
2136			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2137	}
2138	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2139								zone, 1);
2140}
2141
2142#ifdef CONFIG_HIBERNATION
2143
2144void mark_free_pages(struct zone *zone)
2145{
2146	unsigned long pfn, max_zone_pfn;
2147	unsigned long flags;
2148	unsigned int order, t;
2149	struct page *page;
2150
2151	if (zone_is_empty(zone))
2152		return;
2153
2154	spin_lock_irqsave(&zone->lock, flags);
2155
2156	max_zone_pfn = zone_end_pfn(zone);
2157	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2158		if (pfn_valid(pfn)) {
2159			page = pfn_to_page(pfn);
 
2160			if (!swsusp_page_is_forbidden(page))
2161				swsusp_unset_page_free(page);
2162		}
2163
2164	for_each_migratetype_order(order, t) {
2165		list_for_each_entry(page,
2166				&zone->free_area[order].free_list[t], lru) {
2167			unsigned long i;
2168
2169			pfn = page_to_pfn(page);
2170			for (i = 0; i < (1UL << order); i++)
2171				swsusp_set_page_free(pfn_to_page(pfn + i));
2172		}
2173	}
2174	spin_unlock_irqrestore(&zone->lock, flags);
2175}
2176#endif /* CONFIG_PM */
2177
2178/*
2179 * Free a 0-order page
2180 * cold == true ? free a cold page : free a hot page
2181 */
2182void free_hot_cold_page(struct page *page, bool cold)
2183{
2184	struct zone *zone = page_zone(page);
2185	struct per_cpu_pages *pcp;
2186	unsigned long flags;
2187	unsigned long pfn = page_to_pfn(page);
2188	int migratetype;
2189
2190	if (!free_pages_prepare(page, 0))
2191		return;
2192
2193	migratetype = get_pfnblock_migratetype(page, pfn);
2194	set_pcppage_migratetype(page, migratetype);
2195	local_irq_save(flags);
2196	__count_vm_event(PGFREE);
2197
2198	/*
2199	 * We only track unmovable, reclaimable and movable on pcp lists.
2200	 * Free ISOLATE pages back to the allocator because they are being
2201	 * offlined but treat RESERVE as movable pages so we can get those
2202	 * areas back if necessary. Otherwise, we may have to free
2203	 * excessively into the page allocator
2204	 */
2205	if (migratetype >= MIGRATE_PCPTYPES) {
2206		if (unlikely(is_migrate_isolate(migratetype))) {
2207			free_one_page(zone, page, pfn, 0, migratetype);
2208			goto out;
2209		}
2210		migratetype = MIGRATE_MOVABLE;
2211	}
2212
2213	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2214	if (!cold)
2215		list_add(&page->lru, &pcp->lists[migratetype]);
2216	else
2217		list_add_tail(&page->lru, &pcp->lists[migratetype]);
 
 
2218	pcp->count++;
2219	if (pcp->count >= pcp->high) {
2220		unsigned long batch = READ_ONCE(pcp->batch);
2221		free_pcppages_bulk(zone, batch, pcp);
2222		pcp->count -= batch;
2223	}
2224
2225out:
2226	local_irq_restore(flags);
2227}
2228
2229/*
2230 * Free a list of 0-order pages
2231 */
2232void free_hot_cold_page_list(struct list_head *list, bool cold)
2233{
2234	struct page *page, *next;
2235
2236	list_for_each_entry_safe(page, next, list, lru) {
2237		trace_mm_page_free_batched(page, cold);
2238		free_hot_cold_page(page, cold);
2239	}
2240}
2241
2242/*
2243 * split_page takes a non-compound higher-order page, and splits it into
2244 * n (1<<order) sub-pages: page[0..n]
2245 * Each sub-page must be freed individually.
2246 *
2247 * Note: this is probably too low level an operation for use in drivers.
2248 * Please consult with lkml before using this in your driver.
2249 */
2250void split_page(struct page *page, unsigned int order)
2251{
2252	int i;
2253	gfp_t gfp_mask;
2254
2255	VM_BUG_ON_PAGE(PageCompound(page), page);
2256	VM_BUG_ON_PAGE(!page_count(page), page);
2257
2258#ifdef CONFIG_KMEMCHECK
2259	/*
2260	 * Split shadow pages too, because free(page[0]) would
2261	 * otherwise free the whole shadow.
2262	 */
2263	if (kmemcheck_page_is_tracked(page))
2264		split_page(virt_to_page(page[0].shadow), order);
2265#endif
2266
2267	gfp_mask = get_page_owner_gfp(page);
2268	set_page_owner(page, 0, gfp_mask);
2269	for (i = 1; i < (1 << order); i++) {
2270		set_page_refcounted(page + i);
2271		set_page_owner(page + i, 0, gfp_mask);
2272	}
2273}
2274EXPORT_SYMBOL_GPL(split_page);
2275
2276int __isolate_free_page(struct page *page, unsigned int order)
2277{
2278	unsigned long watermark;
2279	struct zone *zone;
2280	int mt;
2281
2282	BUG_ON(!PageBuddy(page));
2283
2284	zone = page_zone(page);
2285	mt = get_pageblock_migratetype(page);
2286
2287	if (!is_migrate_isolate(mt)) {
2288		/* Obey watermarks as if the page was being allocated */
2289		watermark = low_wmark_pages(zone) + (1 << order);
2290		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2291			return 0;
2292
2293		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2294	}
2295
2296	/* Remove page from free list */
2297	list_del(&page->lru);
2298	zone->free_area[order].nr_free--;
2299	rmv_page_order(page);
2300
2301	set_page_owner(page, order, __GFP_MOVABLE);
2302
2303	/* Set the pageblock if the isolated page is at least a pageblock */
2304	if (order >= pageblock_order - 1) {
2305		struct page *endpage = page + (1 << order) - 1;
2306		for (; page < endpage; page += pageblock_nr_pages) {
2307			int mt = get_pageblock_migratetype(page);
2308			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2309				set_pageblock_migratetype(page,
2310							  MIGRATE_MOVABLE);
2311		}
2312	}
2313
2314
2315	return 1UL << order;
2316}
2317
2318/*
2319 * Similar to split_page except the page is already free. As this is only
2320 * being used for migration, the migratetype of the block also changes.
2321 * As this is called with interrupts disabled, the caller is responsible
2322 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2323 * are enabled.
2324 *
2325 * Note: this is probably too low level an operation for use in drivers.
2326 * Please consult with lkml before using this in your driver.
2327 */
2328int split_free_page(struct page *page)
2329{
2330	unsigned int order;
2331	int nr_pages;
2332
2333	order = page_order(page);
2334
2335	nr_pages = __isolate_free_page(page, order);
2336	if (!nr_pages)
2337		return 0;
2338
2339	/* Split into individual pages */
2340	set_page_refcounted(page);
2341	split_page(page, order);
2342	return nr_pages;
2343}
2344
2345/*
2346 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
 
 
2347 */
2348static inline
2349struct page *buffered_rmqueue(struct zone *preferred_zone,
2350			struct zone *zone, unsigned int order,
2351			gfp_t gfp_flags, int alloc_flags, int migratetype)
2352{
2353	unsigned long flags;
2354	struct page *page;
2355	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2356
 
2357	if (likely(order == 0)) {
2358		struct per_cpu_pages *pcp;
2359		struct list_head *list;
2360
2361		local_irq_save(flags);
2362		pcp = &this_cpu_ptr(zone->pageset)->pcp;
2363		list = &pcp->lists[migratetype];
2364		if (list_empty(list)) {
2365			pcp->count += rmqueue_bulk(zone, 0,
2366					pcp->batch, list,
2367					migratetype, cold);
2368			if (unlikely(list_empty(list)))
2369				goto failed;
2370		}
2371
2372		if (cold)
2373			page = list_last_entry(list, struct page, lru);
2374		else
2375			page = list_first_entry(list, struct page, lru);
2376
2377		list_del(&page->lru);
2378		pcp->count--;
2379	} else {
2380		/*
2381		 * We most definitely don't want callers attempting to
2382		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2383		 */
2384		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2385		spin_lock_irqsave(&zone->lock, flags);
2386
2387		page = NULL;
2388		if (alloc_flags & ALLOC_HARDER) {
2389			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2390			if (page)
2391				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2392		}
2393		if (!page)
2394			page = __rmqueue(zone, order, migratetype);
2395		spin_unlock(&zone->lock);
2396		if (!page)
2397			goto failed;
2398		__mod_zone_freepage_state(zone, -(1 << order),
2399					  get_pcppage_migratetype(page));
2400	}
2401
2402	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2403	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2404	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2405		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2406
2407	__count_zone_vm_events(PGALLOC, zone, 1 << order);
2408	zone_statistics(preferred_zone, zone, gfp_flags);
2409	local_irq_restore(flags);
2410
2411	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 
 
2412	return page;
2413
2414failed:
2415	local_irq_restore(flags);
2416	return NULL;
2417}
2418
2419#ifdef CONFIG_FAIL_PAGE_ALLOC
2420
2421static struct {
2422	struct fault_attr attr;
2423
2424	bool ignore_gfp_highmem;
2425	bool ignore_gfp_reclaim;
2426	u32 min_order;
2427} fail_page_alloc = {
2428	.attr = FAULT_ATTR_INITIALIZER,
2429	.ignore_gfp_reclaim = true,
2430	.ignore_gfp_highmem = true,
2431	.min_order = 1,
2432};
2433
2434static int __init setup_fail_page_alloc(char *str)
2435{
2436	return setup_fault_attr(&fail_page_alloc.attr, str);
2437}
2438__setup("fail_page_alloc=", setup_fail_page_alloc);
2439
2440static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2441{
2442	if (order < fail_page_alloc.min_order)
2443		return false;
2444	if (gfp_mask & __GFP_NOFAIL)
2445		return false;
2446	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2447		return false;
2448	if (fail_page_alloc.ignore_gfp_reclaim &&
2449			(gfp_mask & __GFP_DIRECT_RECLAIM))
2450		return false;
2451
2452	return should_fail(&fail_page_alloc.attr, 1 << order);
2453}
2454
2455#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2456
2457static int __init fail_page_alloc_debugfs(void)
2458{
2459	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2460	struct dentry *dir;
2461
2462	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2463					&fail_page_alloc.attr);
2464	if (IS_ERR(dir))
2465		return PTR_ERR(dir);
2466
2467	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2468				&fail_page_alloc.ignore_gfp_reclaim))
2469		goto fail;
2470	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2471				&fail_page_alloc.ignore_gfp_highmem))
2472		goto fail;
2473	if (!debugfs_create_u32("min-order", mode, dir,
2474				&fail_page_alloc.min_order))
2475		goto fail;
2476
2477	return 0;
2478fail:
2479	debugfs_remove_recursive(dir);
2480
2481	return -ENOMEM;
2482}
2483
2484late_initcall(fail_page_alloc_debugfs);
2485
2486#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2487
2488#else /* CONFIG_FAIL_PAGE_ALLOC */
2489
2490static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2491{
2492	return false;
2493}
2494
2495#endif /* CONFIG_FAIL_PAGE_ALLOC */
2496
2497/*
2498 * Return true if free base pages are above 'mark'. For high-order checks it
2499 * will return true of the order-0 watermark is reached and there is at least
2500 * one free page of a suitable size. Checking now avoids taking the zone lock
2501 * to check in the allocation paths if no pages are free.
2502 */
2503static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2504			unsigned long mark, int classzone_idx, int alloc_flags,
2505			long free_pages)
2506{
 
2507	long min = mark;
 
2508	int o;
2509	const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2510
2511	/* free_pages may go negative - that's OK */
2512	free_pages -= (1 << order) - 1;
2513
2514	if (alloc_flags & ALLOC_HIGH)
2515		min -= min / 2;
2516
2517	/*
2518	 * If the caller does not have rights to ALLOC_HARDER then subtract
2519	 * the high-atomic reserves. This will over-estimate the size of the
2520	 * atomic reserve but it avoids a search.
2521	 */
2522	if (likely(!alloc_harder))
2523		free_pages -= z->nr_reserved_highatomic;
2524	else
2525		min -= min / 4;
2526
2527#ifdef CONFIG_CMA
2528	/* If allocation can't use CMA areas don't use free CMA pages */
2529	if (!(alloc_flags & ALLOC_CMA))
2530		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2531#endif
2532
2533	/*
2534	 * Check watermarks for an order-0 allocation request. If these
2535	 * are not met, then a high-order request also cannot go ahead
2536	 * even if a suitable page happened to be free.
2537	 */
2538	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2539		return false;
 
 
 
2540
2541	/* If this is an order-0 request then the watermark is fine */
2542	if (!order)
2543		return true;
2544
2545	/* For a high-order request, check at least one suitable page is free */
2546	for (o = order; o < MAX_ORDER; o++) {
2547		struct free_area *area = &z->free_area[o];
2548		int mt;
2549
2550		if (!area->nr_free)
2551			continue;
2552
2553		if (alloc_harder)
2554			return true;
2555
2556		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2557			if (!list_empty(&area->free_list[mt]))
2558				return true;
2559		}
2560
2561#ifdef CONFIG_CMA
2562		if ((alloc_flags & ALLOC_CMA) &&
2563		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2564			return true;
2565		}
2566#endif
2567	}
2568	return false;
2569}
2570
2571bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2572		      int classzone_idx, int alloc_flags)
2573{
2574	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2575					zone_page_state(z, NR_FREE_PAGES));
2576}
2577
2578bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2579			unsigned long mark, int classzone_idx)
2580{
2581	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2582
2583	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2584		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2585
2586	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2587								free_pages);
2588}
2589
2590#ifdef CONFIG_NUMA
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2591static bool zone_local(struct zone *local_zone, struct zone *zone)
2592{
2593	return local_zone->node == zone->node;
2594}
2595
2596static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2597{
2598	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2599				RECLAIM_DISTANCE;
2600}
 
 
 
 
 
 
 
 
 
 
 
 
2601#else	/* CONFIG_NUMA */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2602static bool zone_local(struct zone *local_zone, struct zone *zone)
2603{
2604	return true;
2605}
2606
2607static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2608{
2609	return true;
2610}
2611#endif	/* CONFIG_NUMA */
2612
2613static void reset_alloc_batches(struct zone *preferred_zone)
2614{
2615	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2616
2617	do {
2618		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2619			high_wmark_pages(zone) - low_wmark_pages(zone) -
2620			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2621		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2622	} while (zone++ != preferred_zone);
2623}
 
2624
2625/*
2626 * get_page_from_freelist goes through the zonelist trying to allocate
2627 * a page.
2628 */
2629static struct page *
2630get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2631						const struct alloc_context *ac)
 
2632{
2633	struct zonelist *zonelist = ac->zonelist;
2634	struct zoneref *z;
2635	struct page *page = NULL;
 
2636	struct zone *zone;
2637	int nr_fair_skipped = 0;
2638	bool zonelist_rescan;
 
2639
 
2640zonelist_scan:
2641	zonelist_rescan = false;
2642
2643	/*
2644	 * Scan zonelist, looking for a zone with enough free.
2645	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2646	 */
2647	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2648								ac->nodemask) {
2649		unsigned long mark;
2650
2651		if (cpusets_enabled() &&
2652			(alloc_flags & ALLOC_CPUSET) &&
2653			!cpuset_zone_allowed(zone, gfp_mask))
2654				continue;
 
 
 
 
 
 
2655		/*
2656		 * Distribute pages in proportion to the individual
2657		 * zone size to ensure fair page aging.  The zone a
2658		 * page was allocated in should have no effect on the
2659		 * time the page has in memory before being reclaimed.
2660		 */
2661		if (alloc_flags & ALLOC_FAIR) {
2662			if (!zone_local(ac->preferred_zone, zone))
2663				break;
2664			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2665				nr_fair_skipped++;
2666				continue;
2667			}
2668		}
2669		/*
2670		 * When allocating a page cache page for writing, we
2671		 * want to get it from a zone that is within its dirty
2672		 * limit, such that no single zone holds more than its
2673		 * proportional share of globally allowed dirty pages.
2674		 * The dirty limits take into account the zone's
2675		 * lowmem reserves and high watermark so that kswapd
2676		 * should be able to balance it without having to
2677		 * write pages from its LRU list.
2678		 *
2679		 * This may look like it could increase pressure on
2680		 * lower zones by failing allocations in higher zones
2681		 * before they are full.  But the pages that do spill
2682		 * over are limited as the lower zones are protected
2683		 * by this very same mechanism.  It should not become
2684		 * a practical burden to them.
2685		 *
2686		 * XXX: For now, allow allocations to potentially
2687		 * exceed the per-zone dirty limit in the slowpath
2688		 * (spread_dirty_pages unset) before going into reclaim,
2689		 * which is important when on a NUMA setup the allowed
2690		 * zones are together not big enough to reach the
2691		 * global limit.  The proper fix for these situations
2692		 * will require awareness of zones in the
2693		 * dirty-throttling and the flusher threads.
2694		 */
2695		if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2696			continue;
 
2697
2698		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2699		if (!zone_watermark_ok(zone, order, mark,
2700				       ac->classzone_idx, alloc_flags)) {
2701			int ret;
2702
2703			/* Checked here to keep the fast path fast */
2704			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2705			if (alloc_flags & ALLOC_NO_WATERMARKS)
2706				goto try_this_zone;
 
 
 
 
 
 
 
2707
2708			if (zone_reclaim_mode == 0 ||
2709			    !zone_allows_reclaim(ac->preferred_zone, zone))
 
 
 
 
 
 
 
 
2710				continue;
2711
2712			ret = zone_reclaim(zone, gfp_mask, order);
2713			switch (ret) {
2714			case ZONE_RECLAIM_NOSCAN:
2715				/* did not scan */
2716				continue;
2717			case ZONE_RECLAIM_FULL:
2718				/* scanned but unreclaimable */
2719				continue;
2720			default:
2721				/* did we reclaim enough */
2722				if (zone_watermark_ok(zone, order, mark,
2723						ac->classzone_idx, alloc_flags))
2724					goto try_this_zone;
2725
 
 
 
 
 
 
 
 
 
 
 
 
 
2726				continue;
2727			}
2728		}
2729
2730try_this_zone:
2731		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2732				gfp_mask, alloc_flags, ac->migratetype);
2733		if (page) {
2734			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2735				goto try_this_zone;
2736
2737			/*
2738			 * If this is a high-order atomic allocation then check
2739			 * if the pageblock should be reserved for the future
2740			 */
2741			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2742				reserve_highatomic_pageblock(page, zone, order);
2743
2744			return page;
2745		}
2746	}
2747
2748	/*
2749	 * The first pass makes sure allocations are spread fairly within the
2750	 * local node.  However, the local node might have free pages left
2751	 * after the fairness batches are exhausted, and remote zones haven't
2752	 * even been considered yet.  Try once more without fairness, and
2753	 * include remote zones now, before entering the slowpath and waking
2754	 * kswapd: prefer spilling to a remote zone over swapping locally.
2755	 */
2756	if (alloc_flags & ALLOC_FAIR) {
2757		alloc_flags &= ~ALLOC_FAIR;
2758		if (nr_fair_skipped) {
2759			zonelist_rescan = true;
2760			reset_alloc_batches(ac->preferred_zone);
2761		}
2762		if (nr_online_nodes > 1)
2763			zonelist_rescan = true;
2764	}
2765
2766	if (zonelist_rescan)
2767		goto zonelist_scan;
 
 
 
 
 
 
 
2768
2769	return NULL;
2770}
2771
2772/*
2773 * Large machines with many possible nodes should not always dump per-node
2774 * meminfo in irq context.
2775 */
2776static inline bool should_suppress_show_mem(void)
2777{
2778	bool ret = false;
2779
2780#if NODES_SHIFT > 8
2781	ret = in_interrupt();
2782#endif
2783	return ret;
2784}
2785
2786static DEFINE_RATELIMIT_STATE(nopage_rs,
2787		DEFAULT_RATELIMIT_INTERVAL,
2788		DEFAULT_RATELIMIT_BURST);
2789
2790void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2791{
2792	unsigned int filter = SHOW_MEM_FILTER_NODES;
2793
2794	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2795	    debug_guardpage_minorder() > 0)
2796		return;
2797
2798	/*
2799	 * This documents exceptions given to allocations in certain
2800	 * contexts that are allowed to allocate outside current's set
2801	 * of allowed nodes.
2802	 */
2803	if (!(gfp_mask & __GFP_NOMEMALLOC))
2804		if (test_thread_flag(TIF_MEMDIE) ||
2805		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2806			filter &= ~SHOW_MEM_FILTER_NODES;
2807	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2808		filter &= ~SHOW_MEM_FILTER_NODES;
2809
2810	if (fmt) {
2811		struct va_format vaf;
2812		va_list args;
2813
2814		va_start(args, fmt);
2815
2816		vaf.fmt = fmt;
2817		vaf.va = &args;
2818
2819		pr_warn("%pV", &vaf);
2820
2821		va_end(args);
2822	}
2823
2824	pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2825		current->comm, order, gfp_mask, &gfp_mask);
 
2826	dump_stack();
2827	if (!should_suppress_show_mem())
2828		show_mem(filter);
2829}
2830
2831static inline struct page *
2832__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2833	const struct alloc_context *ac, unsigned long *did_some_progress)
 
2834{
2835	struct oom_control oc = {
2836		.zonelist = ac->zonelist,
2837		.nodemask = ac->nodemask,
2838		.gfp_mask = gfp_mask,
2839		.order = order,
2840	};
2841	struct page *page;
2842
2843	*did_some_progress = 0;
 
 
 
 
 
 
 
 
 
 
2844
2845	/*
2846	 * Acquire the oom lock.  If that fails, somebody else is
2847	 * making progress for us.
 
2848	 */
2849	if (!mutex_trylock(&oom_lock)) {
2850		*did_some_progress = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2851		schedule_timeout_uninterruptible(1);
2852		return NULL;
2853	}
2854
2855	/*
2856	 * Go through the zonelist yet one more time, keep very high watermark
2857	 * here, this is only to catch a parallel oom killing, we must fail if
2858	 * we're still under heavy pressure.
2859	 */
2860	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2861					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
 
 
2862	if (page)
2863		goto out;
2864
2865	if (!(gfp_mask & __GFP_NOFAIL)) {
2866		/* Coredumps can quickly deplete all memory reserves */
2867		if (current->flags & PF_DUMPCORE)
2868			goto out;
2869		/* The OOM killer will not help higher order allocs */
2870		if (order > PAGE_ALLOC_COSTLY_ORDER)
2871			goto out;
2872		/* The OOM killer does not needlessly kill tasks for lowmem */
2873		if (ac->high_zoneidx < ZONE_NORMAL)
2874			goto out;
2875		/* The OOM killer does not compensate for IO-less reclaim */
2876		if (!(gfp_mask & __GFP_FS)) {
2877			/*
2878			 * XXX: Page reclaim didn't yield anything,
2879			 * and the OOM killer can't be invoked, but
2880			 * keep looping as per tradition.
2881			 *
2882			 * But do not keep looping if oom_killer_disable()
2883			 * was already called, for the system is trying to
2884			 * enter a quiescent state during suspend.
2885			 */
2886			*did_some_progress = !oom_killer_disabled;
2887			goto out;
2888		}
2889		if (pm_suspended_storage())
2890			goto out;
2891		/* The OOM killer may not free memory on a specific node */
2892		if (gfp_mask & __GFP_THISNODE)
2893			goto out;
2894	}
2895	/* Exhausted what can be done so it's blamo time */
2896	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2897		*did_some_progress = 1;
2898
2899		if (gfp_mask & __GFP_NOFAIL) {
2900			page = get_page_from_freelist(gfp_mask, order,
2901					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2902			/*
2903			 * fallback to ignore cpuset restriction if our nodes
2904			 * are depleted
2905			 */
2906			if (!page)
2907				page = get_page_from_freelist(gfp_mask, order,
2908					ALLOC_NO_WATERMARKS, ac);
2909		}
2910	}
2911out:
2912	mutex_unlock(&oom_lock);
2913	return page;
2914}
2915
2916#ifdef CONFIG_COMPACTION
2917/* Try memory compaction for high-order allocations before reclaim */
2918static struct page *
2919__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2920		int alloc_flags, const struct alloc_context *ac,
2921		enum migrate_mode mode, int *contended_compaction,
2922		bool *deferred_compaction)
 
 
2923{
2924	unsigned long compact_result;
2925	struct page *page;
2926
2927	if (!order)
2928		return NULL;
2929
2930	current->flags |= PF_MEMALLOC;
2931	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2932						mode, contended_compaction);
2933	current->flags &= ~PF_MEMALLOC;
2934
2935	switch (compact_result) {
2936	case COMPACT_DEFERRED:
2937		*deferred_compaction = true;
2938		/* fall-through */
2939	case COMPACT_SKIPPED:
2940		return NULL;
2941	default:
2942		break;
2943	}
2944
2945	/*
2946	 * At least in one zone compaction wasn't deferred or skipped, so let's
2947	 * count a compaction stall
2948	 */
2949	count_vm_event(COMPACTSTALL);
2950
2951	page = get_page_from_freelist(gfp_mask, order,
2952					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2953
2954	if (page) {
2955		struct zone *zone = page_zone(page);
 
 
 
 
 
 
 
 
 
 
 
 
2956
2957		zone->compact_blockskip_flush = false;
2958		compaction_defer_reset(zone, order, true);
2959		count_vm_event(COMPACTSUCCESS);
2960		return page;
2961	}
 
2962
2963	/*
2964	 * It's bad if compaction run occurs and fails. The most likely reason
2965	 * is that pages exist, but not enough to satisfy watermarks.
2966	 */
2967	count_vm_event(COMPACTFAIL);
 
2968
2969	cond_resched();
 
2970
2971	return NULL;
2972}
2973#else
2974static inline struct page *
2975__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2976		int alloc_flags, const struct alloc_context *ac,
2977		enum migrate_mode mode, int *contended_compaction,
2978		bool *deferred_compaction)
 
 
2979{
2980	return NULL;
2981}
2982#endif /* CONFIG_COMPACTION */
2983
2984/* Perform direct synchronous page reclaim */
2985static int
2986__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2987					const struct alloc_context *ac)
2988{
2989	struct reclaim_state reclaim_state;
2990	int progress;
2991
2992	cond_resched();
2993
2994	/* We now go into synchronous reclaim */
2995	cpuset_memory_pressure_bump();
2996	current->flags |= PF_MEMALLOC;
2997	lockdep_set_current_reclaim_state(gfp_mask);
2998	reclaim_state.reclaimed_slab = 0;
2999	current->reclaim_state = &reclaim_state;
3000
3001	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3002								ac->nodemask);
3003
3004	current->reclaim_state = NULL;
3005	lockdep_clear_current_reclaim_state();
3006	current->flags &= ~PF_MEMALLOC;
3007
3008	cond_resched();
3009
3010	return progress;
3011}
3012
3013/* The really slow allocator path where we enter direct reclaim */
3014static inline struct page *
3015__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3016		int alloc_flags, const struct alloc_context *ac,
3017		unsigned long *did_some_progress)
 
3018{
3019	struct page *page = NULL;
3020	bool drained = false;
3021
3022	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
 
3023	if (unlikely(!(*did_some_progress)))
3024		return NULL;
3025
 
 
 
 
3026retry:
3027	page = get_page_from_freelist(gfp_mask, order,
3028					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
 
 
3029
3030	/*
3031	 * If an allocation failed after direct reclaim, it could be because
3032	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3033	 * Shrink them them and try again
3034	 */
3035	if (!page && !drained) {
3036		unreserve_highatomic_pageblock(ac);
3037		drain_all_pages(NULL);
3038		drained = true;
3039		goto retry;
3040	}
3041
3042	return page;
3043}
3044
3045static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3046{
3047	struct zoneref *z;
3048	struct zone *zone;
3049
3050	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3051						ac->high_zoneidx, ac->nodemask)
3052		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3053}
3054
3055static inline int
3056gfp_to_alloc_flags(gfp_t gfp_mask)
3057{
3058	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
 
3059
3060	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3061	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3062
3063	/*
3064	 * The caller may dip into page reserves a bit more if the caller
3065	 * cannot run direct reclaim, or if the caller has realtime scheduling
3066	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3067	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3068	 */
3069	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3070
3071	if (gfp_mask & __GFP_ATOMIC) {
3072		/*
3073		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3074		 * if it can't schedule.
3075		 */
3076		if (!(gfp_mask & __GFP_NOMEMALLOC))
3077			alloc_flags |= ALLOC_HARDER;
3078		/*
3079		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3080		 * comment for __cpuset_node_allowed().
3081		 */
3082		alloc_flags &= ~ALLOC_CPUSET;
3083	} else if (unlikely(rt_task(current)) && !in_interrupt())
3084		alloc_flags |= ALLOC_HARDER;
3085
3086	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3087		if (gfp_mask & __GFP_MEMALLOC)
3088			alloc_flags |= ALLOC_NO_WATERMARKS;
3089		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3090			alloc_flags |= ALLOC_NO_WATERMARKS;
3091		else if (!in_interrupt() &&
3092				((current->flags & PF_MEMALLOC) ||
3093				 unlikely(test_thread_flag(TIF_MEMDIE))))
3094			alloc_flags |= ALLOC_NO_WATERMARKS;
3095	}
3096#ifdef CONFIG_CMA
3097	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3098		alloc_flags |= ALLOC_CMA;
3099#endif
3100	return alloc_flags;
3101}
3102
3103bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3104{
3105	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3106}
3107
3108static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3109{
3110	return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3111}
3112
3113static inline struct page *
3114__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3115						struct alloc_context *ac)
 
 
3116{
3117	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3118	struct page *page = NULL;
3119	int alloc_flags;
3120	unsigned long pages_reclaimed = 0;
3121	unsigned long did_some_progress;
3122	enum migrate_mode migration_mode = MIGRATE_ASYNC;
3123	bool deferred_compaction = false;
3124	int contended_compaction = COMPACT_CONTENDED_NONE;
3125
3126	/*
3127	 * In the slowpath, we sanity check order to avoid ever trying to
3128	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3129	 * be using allocators in order of preference for an area that is
3130	 * too large.
3131	 */
3132	if (order >= MAX_ORDER) {
3133		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3134		return NULL;
3135	}
3136
3137	/*
3138	 * We also sanity check to catch abuse of atomic reserves being used by
3139	 * callers that are not in atomic context.
 
 
 
 
3140	 */
3141	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3142				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3143		gfp_mask &= ~__GFP_ATOMIC;
3144
3145retry:
3146	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3147		wake_all_kswapds(order, ac);
3148
3149	/*
3150	 * OK, we're below the kswapd watermark and have kicked background
3151	 * reclaim. Now things get more complex, so set up alloc_flags according
3152	 * to how we want to proceed.
3153	 */
3154	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3155
3156	/*
3157	 * Find the true preferred zone if the allocation is unconstrained by
3158	 * cpusets.
3159	 */
3160	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3161		struct zoneref *preferred_zoneref;
3162		preferred_zoneref = first_zones_zonelist(ac->zonelist,
3163				ac->high_zoneidx, NULL, &ac->preferred_zone);
3164		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3165	}
3166
 
3167	/* This is the last chance, in general, before the goto nopage. */
3168	page = get_page_from_freelist(gfp_mask, order,
3169				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
 
3170	if (page)
3171		goto got_pg;
3172
3173	/* Allocate without watermarks if the context allows */
3174	if (alloc_flags & ALLOC_NO_WATERMARKS) {
3175		/*
3176		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3177		 * the allocation is high priority and these type of
3178		 * allocations are system rather than user orientated
3179		 */
3180		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3181		page = get_page_from_freelist(gfp_mask, order,
3182						ALLOC_NO_WATERMARKS, ac);
3183		if (page)
 
 
3184			goto got_pg;
 
3185	}
3186
3187	/* Caller is not willing to reclaim, we can't balance anything */
3188	if (!can_direct_reclaim) {
3189		/*
3190		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3191		 * of any new users that actually allow this type of allocation
3192		 * to fail.
3193		 */
3194		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3195		goto nopage;
3196	}
3197
3198	/* Avoid recursion of direct reclaim */
3199	if (current->flags & PF_MEMALLOC) {
3200		/*
3201		 * __GFP_NOFAIL request from this context is rather bizarre
3202		 * because we cannot reclaim anything and only can loop waiting
3203		 * for somebody to do a work for us.
3204		 */
3205		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3206			cond_resched();
3207			goto retry;
3208		}
3209		goto nopage;
3210	}
3211
3212	/* Avoid allocations with no watermarks from looping endlessly */
3213	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3214		goto nopage;
3215
3216	/*
3217	 * Try direct compaction. The first pass is asynchronous. Subsequent
3218	 * attempts after direct reclaim are synchronous
3219	 */
3220	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3221					migration_mode,
 
 
 
3222					&contended_compaction,
3223					&deferred_compaction);
 
3224	if (page)
3225		goto got_pg;
3226
3227	/* Checks for THP-specific high-order allocations */
3228	if (is_thp_gfp_mask(gfp_mask)) {
3229		/*
3230		 * If compaction is deferred for high-order allocations, it is
3231		 * because sync compaction recently failed. If this is the case
3232		 * and the caller requested a THP allocation, we do not want
3233		 * to heavily disrupt the system, so we fail the allocation
3234		 * instead of entering direct reclaim.
3235		 */
3236		if (deferred_compaction)
3237			goto nopage;
3238
3239		/*
3240		 * In all zones where compaction was attempted (and not
3241		 * deferred or skipped), lock contention has been detected.
3242		 * For THP allocation we do not want to disrupt the others
3243		 * so we fallback to base pages instead.
3244		 */
3245		if (contended_compaction == COMPACT_CONTENDED_LOCK)
3246			goto nopage;
3247
3248		/*
3249		 * If compaction was aborted due to need_resched(), we do not
3250		 * want to further increase allocation latency, unless it is
3251		 * khugepaged trying to collapse.
3252		 */
3253		if (contended_compaction == COMPACT_CONTENDED_SCHED
3254			&& !(current->flags & PF_KTHREAD))
3255			goto nopage;
3256	}
3257
3258	/*
3259	 * It can become very expensive to allocate transparent hugepages at
3260	 * fault, so use asynchronous memory compaction for THP unless it is
3261	 * khugepaged trying to collapse.
 
3262	 */
3263	if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3264		migration_mode = MIGRATE_SYNC_LIGHT;
 
3265
3266	/* Try direct reclaim and then allocating */
3267	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3268							&did_some_progress);
 
 
 
3269	if (page)
3270		goto got_pg;
3271
3272	/* Do not loop if specifically requested */
3273	if (gfp_mask & __GFP_NORETRY)
3274		goto noretry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3275
3276	/* Keep reclaiming pages as long as there is reasonable progress */
 
 
 
 
3277	pages_reclaimed += did_some_progress;
3278	if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3279	    ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3280		/* Wait for some write requests to complete then retry */
3281		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3282		goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3283	}
3284
3285	/* Reclaim has failed us, start killing things */
3286	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3287	if (page)
3288		goto got_pg;
3289
3290	/* Retry as long as the OOM killer is making progress */
3291	if (did_some_progress)
3292		goto retry;
3293
3294noretry:
3295	/*
3296	 * High-order allocations do not necessarily loop after
3297	 * direct reclaim and reclaim/compaction depends on compaction
3298	 * being called after reclaim so call directly if necessary
3299	 */
3300	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3301					    ac, migration_mode,
3302					    &contended_compaction,
3303					    &deferred_compaction);
3304	if (page)
3305		goto got_pg;
3306nopage:
3307	warn_alloc_failed(gfp_mask, order, NULL);
 
3308got_pg:
 
 
 
3309	return page;
3310}
3311
3312/*
3313 * This is the 'heart' of the zoned buddy allocator.
3314 */
3315struct page *
3316__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3317			struct zonelist *zonelist, nodemask_t *nodemask)
3318{
3319	struct zoneref *preferred_zoneref;
 
3320	struct page *page = NULL;
 
3321	unsigned int cpuset_mems_cookie;
3322	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3323	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3324	struct alloc_context ac = {
3325		.high_zoneidx = gfp_zone(gfp_mask),
3326		.nodemask = nodemask,
3327		.migratetype = gfpflags_to_migratetype(gfp_mask),
3328	};
3329
3330	gfp_mask &= gfp_allowed_mask;
3331
3332	lockdep_trace_alloc(gfp_mask);
3333
3334	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3335
3336	if (should_fail_alloc_page(gfp_mask, order))
3337		return NULL;
3338
3339	/*
3340	 * Check the zones suitable for the gfp_mask contain at least one
3341	 * valid zone. It's possible to have an empty zonelist as a result
3342	 * of __GFP_THISNODE and a memoryless node
3343	 */
3344	if (unlikely(!zonelist->_zonerefs->zone))
3345		return NULL;
3346
3347	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3348		alloc_flags |= ALLOC_CMA;
 
 
 
 
3349
3350retry_cpuset:
3351	cpuset_mems_cookie = read_mems_allowed_begin();
3352
3353	/* We set it here, as __alloc_pages_slowpath might have changed it */
3354	ac.zonelist = zonelist;
3355
3356	/* Dirty zone balancing only done in the fast path */
3357	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3358
3359	/* The preferred zone is used for statistics later */
3360	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3361				ac.nodemask ? : &cpuset_current_mems_allowed,
3362				&ac.preferred_zone);
3363	if (!ac.preferred_zone)
3364		goto out;
3365	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3366
 
 
 
 
 
3367	/* First allocation attempt */
3368	alloc_mask = gfp_mask|__GFP_HARDWALL;
3369	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
 
3370	if (unlikely(!page)) {
3371		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3372		 * Runtime PM, block IO and its error handling path
3373		 * can deadlock because I/O on the device might not
3374		 * complete.
3375		 */
3376		alloc_mask = memalloc_noio_flags(gfp_mask);
3377		ac.spread_dirty_pages = false;
3378
3379		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3380	}
3381
3382	if (kmemcheck_enabled && page)
3383		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3384
3385	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3386
3387out:
3388	/*
3389	 * When updating a task's mems_allowed, it is possible to race with
3390	 * parallel threads in such a way that an allocation can fail while
3391	 * the mask is being updated. If a page allocation is about to fail,
3392	 * check if the cpuset changed during allocation and if so, retry.
3393	 */
3394	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3395		goto retry_cpuset;
3396
 
 
3397	return page;
3398}
3399EXPORT_SYMBOL(__alloc_pages_nodemask);
3400
3401/*
3402 * Common helper functions.
3403 */
3404unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3405{
3406	struct page *page;
3407
3408	/*
3409	 * __get_free_pages() returns a 32-bit address, which cannot represent
3410	 * a highmem page
3411	 */
3412	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3413
3414	page = alloc_pages(gfp_mask, order);
3415	if (!page)
3416		return 0;
3417	return (unsigned long) page_address(page);
3418}
3419EXPORT_SYMBOL(__get_free_pages);
3420
3421unsigned long get_zeroed_page(gfp_t gfp_mask)
3422{
3423	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3424}
3425EXPORT_SYMBOL(get_zeroed_page);
3426
3427void __free_pages(struct page *page, unsigned int order)
3428{
3429	if (put_page_testzero(page)) {
3430		if (order == 0)
3431			free_hot_cold_page(page, false);
3432		else
3433			__free_pages_ok(page, order);
3434	}
3435}
3436
3437EXPORT_SYMBOL(__free_pages);
3438
3439void free_pages(unsigned long addr, unsigned int order)
3440{
3441	if (addr != 0) {
3442		VM_BUG_ON(!virt_addr_valid((void *)addr));
3443		__free_pages(virt_to_page((void *)addr), order);
3444	}
3445}
3446
3447EXPORT_SYMBOL(free_pages);
3448
3449/*
3450 * Page Fragment:
3451 *  An arbitrary-length arbitrary-offset area of memory which resides
3452 *  within a 0 or higher order page.  Multiple fragments within that page
3453 *  are individually refcounted, in the page's reference counter.
3454 *
3455 * The page_frag functions below provide a simple allocation framework for
3456 * page fragments.  This is used by the network stack and network device
3457 * drivers to provide a backing region of memory for use as either an
3458 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3459 */
3460static struct page *__page_frag_refill(struct page_frag_cache *nc,
3461				       gfp_t gfp_mask)
3462{
3463	struct page *page = NULL;
3464	gfp_t gfp = gfp_mask;
3465
3466#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3467	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3468		    __GFP_NOMEMALLOC;
3469	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3470				PAGE_FRAG_CACHE_MAX_ORDER);
3471	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3472#endif
3473	if (unlikely(!page))
3474		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3475
3476	nc->va = page ? page_address(page) : NULL;
3477
3478	return page;
3479}
3480
3481void *__alloc_page_frag(struct page_frag_cache *nc,
3482			unsigned int fragsz, gfp_t gfp_mask)
3483{
3484	unsigned int size = PAGE_SIZE;
3485	struct page *page;
3486	int offset;
3487
3488	if (unlikely(!nc->va)) {
3489refill:
3490		page = __page_frag_refill(nc, gfp_mask);
3491		if (!page)
3492			return NULL;
3493
3494#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3495		/* if size can vary use size else just use PAGE_SIZE */
3496		size = nc->size;
3497#endif
3498		/* Even if we own the page, we do not use atomic_set().
3499		 * This would break get_page_unless_zero() users.
3500		 */
3501		page_ref_add(page, size - 1);
3502
3503		/* reset page count bias and offset to start of new frag */
3504		nc->pfmemalloc = page_is_pfmemalloc(page);
3505		nc->pagecnt_bias = size;
3506		nc->offset = size;
3507	}
3508
3509	offset = nc->offset - fragsz;
3510	if (unlikely(offset < 0)) {
3511		page = virt_to_page(nc->va);
3512
3513		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3514			goto refill;
3515
3516#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3517		/* if size can vary use size else just use PAGE_SIZE */
3518		size = nc->size;
3519#endif
3520		/* OK, page count is 0, we can safely set it */
3521		set_page_count(page, size);
3522
3523		/* reset page count bias and offset to start of new frag */
3524		nc->pagecnt_bias = size;
3525		offset = size - fragsz;
3526	}
3527
3528	nc->pagecnt_bias--;
3529	nc->offset = offset;
3530
3531	return nc->va + offset;
3532}
3533EXPORT_SYMBOL(__alloc_page_frag);
3534
3535/*
3536 * Frees a page fragment allocated out of either a compound or order 0 page.
3537 */
3538void __free_page_frag(void *addr)
3539{
3540	struct page *page = virt_to_head_page(addr);
3541
3542	if (unlikely(put_page_testzero(page)))
3543		__free_pages_ok(page, compound_order(page));
3544}
3545EXPORT_SYMBOL(__free_page_frag);
3546
3547/*
3548 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3549 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3550 * equivalent to alloc_pages.
3551 *
3552 * It should be used when the caller would like to use kmalloc, but since the
3553 * allocation is large, it has to fall back to the page allocator.
3554 */
3555struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3556{
3557	struct page *page;
3558
3559	page = alloc_pages(gfp_mask, order);
3560	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3561		__free_pages(page, order);
3562		page = NULL;
3563	}
3564	return page;
3565}
3566
3567struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3568{
3569	struct page *page;
3570
3571	page = alloc_pages_node(nid, gfp_mask, order);
3572	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3573		__free_pages(page, order);
3574		page = NULL;
3575	}
3576	return page;
3577}
3578
3579/*
3580 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3581 * alloc_kmem_pages.
3582 */
3583void __free_kmem_pages(struct page *page, unsigned int order)
3584{
3585	memcg_kmem_uncharge(page, order);
3586	__free_pages(page, order);
3587}
3588
3589void free_kmem_pages(unsigned long addr, unsigned int order)
3590{
3591	if (addr != 0) {
3592		VM_BUG_ON(!virt_addr_valid((void *)addr));
3593		__free_kmem_pages(virt_to_page((void *)addr), order);
3594	}
3595}
3596
3597static void *make_alloc_exact(unsigned long addr, unsigned int order,
3598		size_t size)
3599{
3600	if (addr) {
3601		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3602		unsigned long used = addr + PAGE_ALIGN(size);
3603
3604		split_page(virt_to_page((void *)addr), order);
3605		while (used < alloc_end) {
3606			free_page(used);
3607			used += PAGE_SIZE;
3608		}
3609	}
3610	return (void *)addr;
3611}
3612
3613/**
3614 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3615 * @size: the number of bytes to allocate
3616 * @gfp_mask: GFP flags for the allocation
3617 *
3618 * This function is similar to alloc_pages(), except that it allocates the
3619 * minimum number of pages to satisfy the request.  alloc_pages() can only
3620 * allocate memory in power-of-two pages.
3621 *
3622 * This function is also limited by MAX_ORDER.
3623 *
3624 * Memory allocated by this function must be released by free_pages_exact().
3625 */
3626void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3627{
3628	unsigned int order = get_order(size);
3629	unsigned long addr;
3630
3631	addr = __get_free_pages(gfp_mask, order);
3632	return make_alloc_exact(addr, order, size);
3633}
3634EXPORT_SYMBOL(alloc_pages_exact);
3635
3636/**
3637 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3638 *			   pages on a node.
3639 * @nid: the preferred node ID where memory should be allocated
3640 * @size: the number of bytes to allocate
3641 * @gfp_mask: GFP flags for the allocation
3642 *
3643 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3644 * back.
 
 
3645 */
3646void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3647{
3648	unsigned int order = get_order(size);
3649	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3650	if (!p)
3651		return NULL;
3652	return make_alloc_exact((unsigned long)page_address(p), order, size);
3653}
 
3654
3655/**
3656 * free_pages_exact - release memory allocated via alloc_pages_exact()
3657 * @virt: the value returned by alloc_pages_exact.
3658 * @size: size of allocation, same value as passed to alloc_pages_exact().
3659 *
3660 * Release the memory allocated by a previous call to alloc_pages_exact.
3661 */
3662void free_pages_exact(void *virt, size_t size)
3663{
3664	unsigned long addr = (unsigned long)virt;
3665	unsigned long end = addr + PAGE_ALIGN(size);
3666
3667	while (addr < end) {
3668		free_page(addr);
3669		addr += PAGE_SIZE;
3670	}
3671}
3672EXPORT_SYMBOL(free_pages_exact);
3673
3674/**
3675 * nr_free_zone_pages - count number of pages beyond high watermark
3676 * @offset: The zone index of the highest zone
3677 *
3678 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3679 * high watermark within all zones at or below a given zone index.  For each
3680 * zone, the number of pages is calculated as:
3681 *     managed_pages - high_pages
3682 */
3683static unsigned long nr_free_zone_pages(int offset)
3684{
3685	struct zoneref *z;
3686	struct zone *zone;
3687
3688	/* Just pick one node, since fallback list is circular */
3689	unsigned long sum = 0;
3690
3691	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3692
3693	for_each_zone_zonelist(zone, z, zonelist, offset) {
3694		unsigned long size = zone->managed_pages;
3695		unsigned long high = high_wmark_pages(zone);
3696		if (size > high)
3697			sum += size - high;
3698	}
3699
3700	return sum;
3701}
3702
3703/**
3704 * nr_free_buffer_pages - count number of pages beyond high watermark
3705 *
3706 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3707 * watermark within ZONE_DMA and ZONE_NORMAL.
3708 */
3709unsigned long nr_free_buffer_pages(void)
3710{
3711	return nr_free_zone_pages(gfp_zone(GFP_USER));
3712}
3713EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3714
3715/**
3716 * nr_free_pagecache_pages - count number of pages beyond high watermark
3717 *
3718 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3719 * high watermark within all zones.
3720 */
3721unsigned long nr_free_pagecache_pages(void)
3722{
3723	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3724}
3725
3726static inline void show_node(struct zone *zone)
3727{
3728	if (IS_ENABLED(CONFIG_NUMA))
3729		printk("Node %d ", zone_to_nid(zone));
3730}
3731
3732long si_mem_available(void)
3733{
3734	long available;
3735	unsigned long pagecache;
3736	unsigned long wmark_low = 0;
3737	unsigned long pages[NR_LRU_LISTS];
3738	struct zone *zone;
3739	int lru;
3740
3741	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3742		pages[lru] = global_page_state(NR_LRU_BASE + lru);
3743
3744	for_each_zone(zone)
3745		wmark_low += zone->watermark[WMARK_LOW];
3746
3747	/*
3748	 * Estimate the amount of memory available for userspace allocations,
3749	 * without causing swapping.
3750	 */
3751	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3752
3753	/*
3754	 * Not all the page cache can be freed, otherwise the system will
3755	 * start swapping. Assume at least half of the page cache, or the
3756	 * low watermark worth of cache, needs to stay.
3757	 */
3758	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3759	pagecache -= min(pagecache / 2, wmark_low);
3760	available += pagecache;
3761
3762	/*
3763	 * Part of the reclaimable slab consists of items that are in use,
3764	 * and cannot be freed. Cap this estimate at the low watermark.
3765	 */
3766	available += global_page_state(NR_SLAB_RECLAIMABLE) -
3767		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3768
3769	if (available < 0)
3770		available = 0;
3771	return available;
3772}
3773EXPORT_SYMBOL_GPL(si_mem_available);
3774
3775void si_meminfo(struct sysinfo *val)
3776{
3777	val->totalram = totalram_pages;
3778	val->sharedram = global_page_state(NR_SHMEM);
3779	val->freeram = global_page_state(NR_FREE_PAGES);
3780	val->bufferram = nr_blockdev_pages();
3781	val->totalhigh = totalhigh_pages;
3782	val->freehigh = nr_free_highpages();
3783	val->mem_unit = PAGE_SIZE;
3784}
3785
3786EXPORT_SYMBOL(si_meminfo);
3787
3788#ifdef CONFIG_NUMA
3789void si_meminfo_node(struct sysinfo *val, int nid)
3790{
3791	int zone_type;		/* needs to be signed */
3792	unsigned long managed_pages = 0;
3793	pg_data_t *pgdat = NODE_DATA(nid);
3794
3795	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3796		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3797	val->totalram = managed_pages;
3798	val->sharedram = node_page_state(nid, NR_SHMEM);
3799	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3800#ifdef CONFIG_HIGHMEM
3801	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3802	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3803			NR_FREE_PAGES);
3804#else
3805	val->totalhigh = 0;
3806	val->freehigh = 0;
3807#endif
3808	val->mem_unit = PAGE_SIZE;
3809}
3810#endif
3811
3812/*
3813 * Determine whether the node should be displayed or not, depending on whether
3814 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3815 */
3816bool skip_free_areas_node(unsigned int flags, int nid)
3817{
3818	bool ret = false;
3819	unsigned int cpuset_mems_cookie;
3820
3821	if (!(flags & SHOW_MEM_FILTER_NODES))
3822		goto out;
3823
3824	do {
3825		cpuset_mems_cookie = read_mems_allowed_begin();
3826		ret = !node_isset(nid, cpuset_current_mems_allowed);
3827	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3828out:
3829	return ret;
3830}
3831
3832#define K(x) ((x) << (PAGE_SHIFT-10))
3833
3834static void show_migration_types(unsigned char type)
3835{
3836	static const char types[MIGRATE_TYPES] = {
3837		[MIGRATE_UNMOVABLE]	= 'U',
3838		[MIGRATE_MOVABLE]	= 'M',
3839		[MIGRATE_RECLAIMABLE]	= 'E',
3840		[MIGRATE_HIGHATOMIC]	= 'H',
 
3841#ifdef CONFIG_CMA
3842		[MIGRATE_CMA]		= 'C',
3843#endif
3844#ifdef CONFIG_MEMORY_ISOLATION
3845		[MIGRATE_ISOLATE]	= 'I',
3846#endif
3847	};
3848	char tmp[MIGRATE_TYPES + 1];
3849	char *p = tmp;
3850	int i;
3851
3852	for (i = 0; i < MIGRATE_TYPES; i++) {
3853		if (type & (1 << i))
3854			*p++ = types[i];
3855	}
3856
3857	*p = '\0';
3858	printk("(%s) ", tmp);
3859}
3860
3861/*
3862 * Show free area list (used inside shift_scroll-lock stuff)
3863 * We also calculate the percentage fragmentation. We do this by counting the
3864 * memory on each free list with the exception of the first item on the list.
3865 *
3866 * Bits in @filter:
3867 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3868 *   cpuset.
3869 */
3870void show_free_areas(unsigned int filter)
3871{
3872	unsigned long free_pcp = 0;
3873	int cpu;
3874	struct zone *zone;
3875
3876	for_each_populated_zone(zone) {
3877		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3878			continue;
 
 
3879
3880		for_each_online_cpu(cpu)
3881			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
 
 
 
 
 
 
 
3882	}
3883
3884	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3885		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3886		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3887		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
 
3888		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3889		" free:%lu free_pcp:%lu free_cma:%lu\n",
3890		global_page_state(NR_ACTIVE_ANON),
3891		global_page_state(NR_INACTIVE_ANON),
3892		global_page_state(NR_ISOLATED_ANON),
3893		global_page_state(NR_ACTIVE_FILE),
3894		global_page_state(NR_INACTIVE_FILE),
3895		global_page_state(NR_ISOLATED_FILE),
3896		global_page_state(NR_UNEVICTABLE),
3897		global_page_state(NR_FILE_DIRTY),
3898		global_page_state(NR_WRITEBACK),
3899		global_page_state(NR_UNSTABLE_NFS),
 
3900		global_page_state(NR_SLAB_RECLAIMABLE),
3901		global_page_state(NR_SLAB_UNRECLAIMABLE),
3902		global_page_state(NR_FILE_MAPPED),
3903		global_page_state(NR_SHMEM),
3904		global_page_state(NR_PAGETABLE),
3905		global_page_state(NR_BOUNCE),
3906		global_page_state(NR_FREE_PAGES),
3907		free_pcp,
3908		global_page_state(NR_FREE_CMA_PAGES));
3909
3910	for_each_populated_zone(zone) {
3911		int i;
3912
3913		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3914			continue;
3915
3916		free_pcp = 0;
3917		for_each_online_cpu(cpu)
3918			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3919
3920		show_node(zone);
3921		printk("%s"
3922			" free:%lukB"
3923			" min:%lukB"
3924			" low:%lukB"
3925			" high:%lukB"
3926			" active_anon:%lukB"
3927			" inactive_anon:%lukB"
3928			" active_file:%lukB"
3929			" inactive_file:%lukB"
3930			" unevictable:%lukB"
3931			" isolated(anon):%lukB"
3932			" isolated(file):%lukB"
3933			" present:%lukB"
3934			" managed:%lukB"
3935			" mlocked:%lukB"
3936			" dirty:%lukB"
3937			" writeback:%lukB"
3938			" mapped:%lukB"
3939			" shmem:%lukB"
3940			" slab_reclaimable:%lukB"
3941			" slab_unreclaimable:%lukB"
3942			" kernel_stack:%lukB"
3943			" pagetables:%lukB"
3944			" unstable:%lukB"
3945			" bounce:%lukB"
3946			" free_pcp:%lukB"
3947			" local_pcp:%ukB"
3948			" free_cma:%lukB"
3949			" writeback_tmp:%lukB"
3950			" pages_scanned:%lu"
3951			" all_unreclaimable? %s"
3952			"\n",
3953			zone->name,
3954			K(zone_page_state(zone, NR_FREE_PAGES)),
3955			K(min_wmark_pages(zone)),
3956			K(low_wmark_pages(zone)),
3957			K(high_wmark_pages(zone)),
3958			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3959			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3960			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3961			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3962			K(zone_page_state(zone, NR_UNEVICTABLE)),
3963			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3964			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3965			K(zone->present_pages),
3966			K(zone->managed_pages),
3967			K(zone_page_state(zone, NR_MLOCK)),
3968			K(zone_page_state(zone, NR_FILE_DIRTY)),
3969			K(zone_page_state(zone, NR_WRITEBACK)),
3970			K(zone_page_state(zone, NR_FILE_MAPPED)),
3971			K(zone_page_state(zone, NR_SHMEM)),
3972			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3973			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3974			zone_page_state(zone, NR_KERNEL_STACK) *
3975				THREAD_SIZE / 1024,
3976			K(zone_page_state(zone, NR_PAGETABLE)),
3977			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3978			K(zone_page_state(zone, NR_BOUNCE)),
3979			K(free_pcp),
3980			K(this_cpu_read(zone->pageset->pcp.count)),
3981			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3982			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3983			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3984			(!zone_reclaimable(zone) ? "yes" : "no")
3985			);
3986		printk("lowmem_reserve[]:");
3987		for (i = 0; i < MAX_NR_ZONES; i++)
3988			printk(" %ld", zone->lowmem_reserve[i]);
3989		printk("\n");
3990	}
3991
3992	for_each_populated_zone(zone) {
3993		unsigned int order;
3994		unsigned long nr[MAX_ORDER], flags, total = 0;
3995		unsigned char types[MAX_ORDER];
3996
3997		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3998			continue;
3999		show_node(zone);
4000		printk("%s: ", zone->name);
4001
4002		spin_lock_irqsave(&zone->lock, flags);
4003		for (order = 0; order < MAX_ORDER; order++) {
4004			struct free_area *area = &zone->free_area[order];
4005			int type;
4006
4007			nr[order] = area->nr_free;
4008			total += nr[order] << order;
4009
4010			types[order] = 0;
4011			for (type = 0; type < MIGRATE_TYPES; type++) {
4012				if (!list_empty(&area->free_list[type]))
4013					types[order] |= 1 << type;
4014			}
4015		}
4016		spin_unlock_irqrestore(&zone->lock, flags);
4017		for (order = 0; order < MAX_ORDER; order++) {
4018			printk("%lu*%lukB ", nr[order], K(1UL) << order);
4019			if (nr[order])
4020				show_migration_types(types[order]);
4021		}
4022		printk("= %lukB\n", K(total));
4023	}
4024
4025	hugetlb_show_meminfo();
4026
4027	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4028
4029	show_swap_cache_info();
4030}
4031
4032static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4033{
4034	zoneref->zone = zone;
4035	zoneref->zone_idx = zone_idx(zone);
4036}
4037
4038/*
4039 * Builds allocation fallback zone lists.
4040 *
4041 * Add all populated zones of a node to the zonelist.
4042 */
4043static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4044				int nr_zones)
4045{
4046	struct zone *zone;
4047	enum zone_type zone_type = MAX_NR_ZONES;
4048
4049	do {
4050		zone_type--;
4051		zone = pgdat->node_zones + zone_type;
4052		if (populated_zone(zone)) {
4053			zoneref_set_zone(zone,
4054				&zonelist->_zonerefs[nr_zones++]);
4055			check_highest_zone(zone_type);
4056		}
4057	} while (zone_type);
4058
4059	return nr_zones;
4060}
4061
4062
4063/*
4064 *  zonelist_order:
4065 *  0 = automatic detection of better ordering.
4066 *  1 = order by ([node] distance, -zonetype)
4067 *  2 = order by (-zonetype, [node] distance)
4068 *
4069 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4070 *  the same zonelist. So only NUMA can configure this param.
4071 */
4072#define ZONELIST_ORDER_DEFAULT  0
4073#define ZONELIST_ORDER_NODE     1
4074#define ZONELIST_ORDER_ZONE     2
4075
4076/* zonelist order in the kernel.
4077 * set_zonelist_order() will set this to NODE or ZONE.
4078 */
4079static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4080static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4081
4082
4083#ifdef CONFIG_NUMA
4084/* The value user specified ....changed by config */
4085static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4086/* string for sysctl */
4087#define NUMA_ZONELIST_ORDER_LEN	16
4088char numa_zonelist_order[16] = "default";
4089
4090/*
4091 * interface for configure zonelist ordering.
4092 * command line option "numa_zonelist_order"
4093 *	= "[dD]efault	- default, automatic configuration.
4094 *	= "[nN]ode 	- order by node locality, then by zone within node
4095 *	= "[zZ]one      - order by zone, then by locality within zone
4096 */
4097
4098static int __parse_numa_zonelist_order(char *s)
4099{
4100	if (*s == 'd' || *s == 'D') {
4101		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4102	} else if (*s == 'n' || *s == 'N') {
4103		user_zonelist_order = ZONELIST_ORDER_NODE;
4104	} else if (*s == 'z' || *s == 'Z') {
4105		user_zonelist_order = ZONELIST_ORDER_ZONE;
4106	} else {
4107		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
 
 
4108		return -EINVAL;
4109	}
4110	return 0;
4111}
4112
4113static __init int setup_numa_zonelist_order(char *s)
4114{
4115	int ret;
4116
4117	if (!s)
4118		return 0;
4119
4120	ret = __parse_numa_zonelist_order(s);
4121	if (ret == 0)
4122		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4123
4124	return ret;
4125}
4126early_param("numa_zonelist_order", setup_numa_zonelist_order);
4127
4128/*
4129 * sysctl handler for numa_zonelist_order
4130 */
4131int numa_zonelist_order_handler(struct ctl_table *table, int write,
4132		void __user *buffer, size_t *length,
4133		loff_t *ppos)
4134{
4135	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4136	int ret;
4137	static DEFINE_MUTEX(zl_order_mutex);
4138
4139	mutex_lock(&zl_order_mutex);
4140	if (write) {
4141		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4142			ret = -EINVAL;
4143			goto out;
4144		}
4145		strcpy(saved_string, (char *)table->data);
4146	}
4147	ret = proc_dostring(table, write, buffer, length, ppos);
4148	if (ret)
4149		goto out;
4150	if (write) {
4151		int oldval = user_zonelist_order;
4152
4153		ret = __parse_numa_zonelist_order((char *)table->data);
4154		if (ret) {
4155			/*
4156			 * bogus value.  restore saved string
4157			 */
4158			strncpy((char *)table->data, saved_string,
4159				NUMA_ZONELIST_ORDER_LEN);
4160			user_zonelist_order = oldval;
4161		} else if (oldval != user_zonelist_order) {
4162			mutex_lock(&zonelists_mutex);
4163			build_all_zonelists(NULL, NULL);
4164			mutex_unlock(&zonelists_mutex);
4165		}
4166	}
4167out:
4168	mutex_unlock(&zl_order_mutex);
4169	return ret;
4170}
4171
4172
4173#define MAX_NODE_LOAD (nr_online_nodes)
4174static int node_load[MAX_NUMNODES];
4175
4176/**
4177 * find_next_best_node - find the next node that should appear in a given node's fallback list
4178 * @node: node whose fallback list we're appending
4179 * @used_node_mask: nodemask_t of already used nodes
4180 *
4181 * We use a number of factors to determine which is the next node that should
4182 * appear on a given node's fallback list.  The node should not have appeared
4183 * already in @node's fallback list, and it should be the next closest node
4184 * according to the distance array (which contains arbitrary distance values
4185 * from each node to each node in the system), and should also prefer nodes
4186 * with no CPUs, since presumably they'll have very little allocation pressure
4187 * on them otherwise.
4188 * It returns -1 if no node is found.
4189 */
4190static int find_next_best_node(int node, nodemask_t *used_node_mask)
4191{
4192	int n, val;
4193	int min_val = INT_MAX;
4194	int best_node = NUMA_NO_NODE;
4195	const struct cpumask *tmp = cpumask_of_node(0);
4196
4197	/* Use the local node if we haven't already */
4198	if (!node_isset(node, *used_node_mask)) {
4199		node_set(node, *used_node_mask);
4200		return node;
4201	}
4202
4203	for_each_node_state(n, N_MEMORY) {
4204
4205		/* Don't want a node to appear more than once */
4206		if (node_isset(n, *used_node_mask))
4207			continue;
4208
4209		/* Use the distance array to find the distance */
4210		val = node_distance(node, n);
4211
4212		/* Penalize nodes under us ("prefer the next node") */
4213		val += (n < node);
4214
4215		/* Give preference to headless and unused nodes */
4216		tmp = cpumask_of_node(n);
4217		if (!cpumask_empty(tmp))
4218			val += PENALTY_FOR_NODE_WITH_CPUS;
4219
4220		/* Slight preference for less loaded node */
4221		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4222		val += node_load[n];
4223
4224		if (val < min_val) {
4225			min_val = val;
4226			best_node = n;
4227		}
4228	}
4229
4230	if (best_node >= 0)
4231		node_set(best_node, *used_node_mask);
4232
4233	return best_node;
4234}
4235
4236
4237/*
4238 * Build zonelists ordered by node and zones within node.
4239 * This results in maximum locality--normal zone overflows into local
4240 * DMA zone, if any--but risks exhausting DMA zone.
4241 */
4242static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4243{
4244	int j;
4245	struct zonelist *zonelist;
4246
4247	zonelist = &pgdat->node_zonelists[0];
4248	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4249		;
4250	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4251	zonelist->_zonerefs[j].zone = NULL;
4252	zonelist->_zonerefs[j].zone_idx = 0;
4253}
4254
4255/*
4256 * Build gfp_thisnode zonelists
4257 */
4258static void build_thisnode_zonelists(pg_data_t *pgdat)
4259{
4260	int j;
4261	struct zonelist *zonelist;
4262
4263	zonelist = &pgdat->node_zonelists[1];
4264	j = build_zonelists_node(pgdat, zonelist, 0);
4265	zonelist->_zonerefs[j].zone = NULL;
4266	zonelist->_zonerefs[j].zone_idx = 0;
4267}
4268
4269/*
4270 * Build zonelists ordered by zone and nodes within zones.
4271 * This results in conserving DMA zone[s] until all Normal memory is
4272 * exhausted, but results in overflowing to remote node while memory
4273 * may still exist in local DMA zone.
4274 */
4275static int node_order[MAX_NUMNODES];
4276
4277static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4278{
4279	int pos, j, node;
4280	int zone_type;		/* needs to be signed */
4281	struct zone *z;
4282	struct zonelist *zonelist;
4283
4284	zonelist = &pgdat->node_zonelists[0];
4285	pos = 0;
4286	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4287		for (j = 0; j < nr_nodes; j++) {
4288			node = node_order[j];
4289			z = &NODE_DATA(node)->node_zones[zone_type];
4290			if (populated_zone(z)) {
4291				zoneref_set_zone(z,
4292					&zonelist->_zonerefs[pos++]);
4293				check_highest_zone(zone_type);
4294			}
4295		}
4296	}
4297	zonelist->_zonerefs[pos].zone = NULL;
4298	zonelist->_zonerefs[pos].zone_idx = 0;
4299}
4300
4301#if defined(CONFIG_64BIT)
4302/*
4303 * Devices that require DMA32/DMA are relatively rare and do not justify a
4304 * penalty to every machine in case the specialised case applies. Default
4305 * to Node-ordering on 64-bit NUMA machines
4306 */
4307static int default_zonelist_order(void)
4308{
4309	return ZONELIST_ORDER_NODE;
4310}
4311#else
4312/*
4313 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4314 * by the kernel. If processes running on node 0 deplete the low memory zone
4315 * then reclaim will occur more frequency increasing stalls and potentially
4316 * be easier to OOM if a large percentage of the zone is under writeback or
4317 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4318 * Hence, default to zone ordering on 32-bit.
4319 */
4320static int default_zonelist_order(void)
4321{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4322	return ZONELIST_ORDER_ZONE;
4323}
4324#endif /* CONFIG_64BIT */
4325
4326static void set_zonelist_order(void)
4327{
4328	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4329		current_zonelist_order = default_zonelist_order();
4330	else
4331		current_zonelist_order = user_zonelist_order;
4332}
4333
4334static void build_zonelists(pg_data_t *pgdat)
4335{
4336	int i, node, load;
 
4337	nodemask_t used_mask;
4338	int local_node, prev_node;
4339	struct zonelist *zonelist;
4340	unsigned int order = current_zonelist_order;
4341
4342	/* initialize zonelists */
4343	for (i = 0; i < MAX_ZONELISTS; i++) {
4344		zonelist = pgdat->node_zonelists + i;
4345		zonelist->_zonerefs[0].zone = NULL;
4346		zonelist->_zonerefs[0].zone_idx = 0;
4347	}
4348
4349	/* NUMA-aware ordering of nodes */
4350	local_node = pgdat->node_id;
4351	load = nr_online_nodes;
4352	prev_node = local_node;
4353	nodes_clear(used_mask);
4354
4355	memset(node_order, 0, sizeof(node_order));
4356	i = 0;
4357
4358	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4359		/*
4360		 * We don't want to pressure a particular node.
4361		 * So adding penalty to the first node in same
4362		 * distance group to make it round-robin.
4363		 */
4364		if (node_distance(local_node, node) !=
4365		    node_distance(local_node, prev_node))
4366			node_load[node] = load;
4367
4368		prev_node = node;
4369		load--;
4370		if (order == ZONELIST_ORDER_NODE)
4371			build_zonelists_in_node_order(pgdat, node);
4372		else
4373			node_order[i++] = node;	/* remember order */
4374	}
4375
4376	if (order == ZONELIST_ORDER_ZONE) {
4377		/* calculate node order -- i.e., DMA last! */
4378		build_zonelists_in_zone_order(pgdat, i);
4379	}
4380
4381	build_thisnode_zonelists(pgdat);
4382}
4383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4384#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4385/*
4386 * Return node id of node used for "local" allocations.
4387 * I.e., first node id of first zone in arg node's generic zonelist.
4388 * Used for initializing percpu 'numa_mem', which is used primarily
4389 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4390 */
4391int local_memory_node(int node)
4392{
4393	struct zone *zone;
4394
4395	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4396				   gfp_zone(GFP_KERNEL),
4397				   NULL,
4398				   &zone);
4399	return zone->node;
4400}
4401#endif
4402
4403#else	/* CONFIG_NUMA */
4404
4405static void set_zonelist_order(void)
4406{
4407	current_zonelist_order = ZONELIST_ORDER_ZONE;
4408}
4409
4410static void build_zonelists(pg_data_t *pgdat)
4411{
4412	int node, local_node;
4413	enum zone_type j;
4414	struct zonelist *zonelist;
4415
4416	local_node = pgdat->node_id;
4417
4418	zonelist = &pgdat->node_zonelists[0];
4419	j = build_zonelists_node(pgdat, zonelist, 0);
4420
4421	/*
4422	 * Now we build the zonelist so that it contains the zones
4423	 * of all the other nodes.
4424	 * We don't want to pressure a particular node, so when
4425	 * building the zones for node N, we make sure that the
4426	 * zones coming right after the local ones are those from
4427	 * node N+1 (modulo N)
4428	 */
4429	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4430		if (!node_online(node))
4431			continue;
4432		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4433	}
4434	for (node = 0; node < local_node; node++) {
4435		if (!node_online(node))
4436			continue;
4437		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4438	}
4439
4440	zonelist->_zonerefs[j].zone = NULL;
4441	zonelist->_zonerefs[j].zone_idx = 0;
4442}
4443
 
 
 
 
 
 
4444#endif	/* CONFIG_NUMA */
4445
4446/*
4447 * Boot pageset table. One per cpu which is going to be used for all
4448 * zones and all nodes. The parameters will be set in such a way
4449 * that an item put on a list will immediately be handed over to
4450 * the buddy list. This is safe since pageset manipulation is done
4451 * with interrupts disabled.
4452 *
4453 * The boot_pagesets must be kept even after bootup is complete for
4454 * unused processors and/or zones. They do play a role for bootstrapping
4455 * hotplugged processors.
4456 *
4457 * zoneinfo_show() and maybe other functions do
4458 * not check if the processor is online before following the pageset pointer.
4459 * Other parts of the kernel may not check if the zone is available.
4460 */
4461static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4462static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4463static void setup_zone_pageset(struct zone *zone);
4464
4465/*
4466 * Global mutex to protect against size modification of zonelists
4467 * as well as to serialize pageset setup for the new populated zone.
4468 */
4469DEFINE_MUTEX(zonelists_mutex);
4470
4471/* return values int ....just for stop_machine() */
4472static int __build_all_zonelists(void *data)
4473{
4474	int nid;
4475	int cpu;
4476	pg_data_t *self = data;
4477
4478#ifdef CONFIG_NUMA
4479	memset(node_load, 0, sizeof(node_load));
4480#endif
4481
4482	if (self && !node_online(self->node_id)) {
4483		build_zonelists(self);
 
4484	}
4485
4486	for_each_online_node(nid) {
4487		pg_data_t *pgdat = NODE_DATA(nid);
4488
4489		build_zonelists(pgdat);
 
4490	}
4491
4492	/*
4493	 * Initialize the boot_pagesets that are going to be used
4494	 * for bootstrapping processors. The real pagesets for
4495	 * each zone will be allocated later when the per cpu
4496	 * allocator is available.
4497	 *
4498	 * boot_pagesets are used also for bootstrapping offline
4499	 * cpus if the system is already booted because the pagesets
4500	 * are needed to initialize allocators on a specific cpu too.
4501	 * F.e. the percpu allocator needs the page allocator which
4502	 * needs the percpu allocator in order to allocate its pagesets
4503	 * (a chicken-egg dilemma).
4504	 */
4505	for_each_possible_cpu(cpu) {
4506		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4507
4508#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4509		/*
4510		 * We now know the "local memory node" for each node--
4511		 * i.e., the node of the first zone in the generic zonelist.
4512		 * Set up numa_mem percpu variable for on-line cpus.  During
4513		 * boot, only the boot cpu should be on-line;  we'll init the
4514		 * secondary cpus' numa_mem as they come on-line.  During
4515		 * node/memory hotplug, we'll fixup all on-line cpus.
4516		 */
4517		if (cpu_online(cpu))
4518			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4519#endif
4520	}
4521
4522	return 0;
4523}
4524
4525static noinline void __init
4526build_all_zonelists_init(void)
4527{
4528	__build_all_zonelists(NULL);
4529	mminit_verify_zonelist();
4530	cpuset_init_current_mems_allowed();
4531}
4532
4533/*
4534 * Called with zonelists_mutex held always
4535 * unless system_state == SYSTEM_BOOTING.
4536 *
4537 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4538 * [we're only called with non-NULL zone through __meminit paths] and
4539 * (2) call of __init annotated helper build_all_zonelists_init
4540 * [protected by SYSTEM_BOOTING].
4541 */
4542void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4543{
4544	set_zonelist_order();
4545
4546	if (system_state == SYSTEM_BOOTING) {
4547		build_all_zonelists_init();
 
 
4548	} else {
4549#ifdef CONFIG_MEMORY_HOTPLUG
4550		if (zone)
4551			setup_zone_pageset(zone);
4552#endif
4553		/* we have to stop all cpus to guarantee there is no user
4554		   of zonelist */
4555		stop_machine(__build_all_zonelists, pgdat, NULL);
4556		/* cpuset refresh routine should be here */
4557	}
4558	vm_total_pages = nr_free_pagecache_pages();
4559	/*
4560	 * Disable grouping by mobility if the number of pages in the
4561	 * system is too low to allow the mechanism to work. It would be
4562	 * more accurate, but expensive to check per-zone. This check is
4563	 * made on memory-hotadd so a system can start with mobility
4564	 * disabled and enable it later
4565	 */
4566	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4567		page_group_by_mobility_disabled = 1;
4568	else
4569		page_group_by_mobility_disabled = 0;
4570
4571	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
4572		nr_online_nodes,
4573		zonelist_order_name[current_zonelist_order],
4574		page_group_by_mobility_disabled ? "off" : "on",
4575		vm_total_pages);
 
4576#ifdef CONFIG_NUMA
4577	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4578#endif
4579}
4580
4581/*
4582 * Helper functions to size the waitqueue hash table.
4583 * Essentially these want to choose hash table sizes sufficiently
4584 * large so that collisions trying to wait on pages are rare.
4585 * But in fact, the number of active page waitqueues on typical
4586 * systems is ridiculously low, less than 200. So this is even
4587 * conservative, even though it seems large.
4588 *
4589 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4590 * waitqueues, i.e. the size of the waitq table given the number of pages.
4591 */
4592#define PAGES_PER_WAITQUEUE	256
4593
4594#ifndef CONFIG_MEMORY_HOTPLUG
4595static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4596{
4597	unsigned long size = 1;
4598
4599	pages /= PAGES_PER_WAITQUEUE;
4600
4601	while (size < pages)
4602		size <<= 1;
4603
4604	/*
4605	 * Once we have dozens or even hundreds of threads sleeping
4606	 * on IO we've got bigger problems than wait queue collision.
4607	 * Limit the size of the wait table to a reasonable size.
4608	 */
4609	size = min(size, 4096UL);
4610
4611	return max(size, 4UL);
4612}
4613#else
4614/*
4615 * A zone's size might be changed by hot-add, so it is not possible to determine
4616 * a suitable size for its wait_table.  So we use the maximum size now.
4617 *
4618 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4619 *
4620 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4621 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4622 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4623 *
4624 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4625 * or more by the traditional way. (See above).  It equals:
4626 *
4627 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4628 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4629 *    powerpc (64K page size)             : =  (32G +16M)byte.
4630 */
4631static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4632{
4633	return 4096UL;
4634}
4635#endif
4636
4637/*
4638 * This is an integer logarithm so that shifts can be used later
4639 * to extract the more random high bits from the multiplicative
4640 * hash function before the remainder is taken.
4641 */
4642static inline unsigned long wait_table_bits(unsigned long size)
4643{
4644	return ffz(~size);
4645}
4646
4647/*
4648 * Initially all pages are reserved - free ones are freed
4649 * up by free_all_bootmem() once the early boot process is
4650 * done. Non-atomic initialization, single-pass.
4651 */
4652void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4653		unsigned long start_pfn, enum memmap_context context)
4654{
4655	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4656	unsigned long end_pfn = start_pfn + size;
4657	pg_data_t *pgdat = NODE_DATA(nid);
4658	unsigned long pfn;
4659	unsigned long nr_initialised = 0;
4660#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4661	struct memblock_region *r = NULL, *tmp;
4662#endif
4663
4664	if (highest_memmap_pfn < end_pfn - 1)
4665		highest_memmap_pfn = end_pfn - 1;
 
 
 
 
4666
4667	/*
4668	 * Honor reservation requested by the driver for this ZONE_DEVICE
4669	 * memory
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4670	 */
4671	if (altmap && start_pfn == altmap->base_pfn)
4672		start_pfn += altmap->reserve;
4673
4674	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4675		/*
4676		 * There can be holes in boot-time mem_map[]s handed to this
4677		 * function.  They do not exist on hotplugged memory.
4678		 */
4679		if (context != MEMMAP_EARLY)
4680			goto not_early;
4681
4682		if (!early_pfn_valid(pfn))
 
4683			continue;
4684		if (!early_pfn_in_nid(pfn, nid))
 
 
 
4685			continue;
4686		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4687			break;
 
4688
4689#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4690		/*
4691		 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4692		 * from zone_movable_pfn[nid] to end of each node should be
4693		 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4694		 */
4695		if (!mirrored_kernelcore && zone_movable_pfn[nid])
4696			if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4697				continue;
 
 
 
4698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4699		/*
4700		 * Check given memblock attribute by firmware which can affect
4701		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
4702		 * mirrored, it's an overlapped memmap init. skip it.
4703		 */
4704		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4705			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4706				for_each_memblock(memory, tmp)
4707					if (pfn < memblock_region_memory_end_pfn(tmp))
4708						break;
4709				r = tmp;
4710			}
4711			if (pfn >= memblock_region_memory_base_pfn(r) &&
4712			    memblock_is_mirror(r)) {
4713				/* already initialized as NORMAL */
4714				pfn = memblock_region_memory_end_pfn(r);
4715				continue;
4716			}
4717		}
4718#endif
4719
4720not_early:
 
 
 
 
4721		/*
4722		 * Mark the block movable so that blocks are reserved for
4723		 * movable at startup. This will force kernel allocations
4724		 * to reserve their blocks rather than leaking throughout
4725		 * the address space during boot when many long-lived
4726		 * kernel allocations are made.
 
 
4727		 *
4728		 * bitmap is created for zone's valid pfn range. but memmap
4729		 * can be created for invalid pages (for alignment)
4730		 * check here not to call set_pageblock_migratetype() against
4731		 * pfn out of zone.
4732		 */
4733		if (!(pfn & (pageblock_nr_pages - 1))) {
4734			struct page *page = pfn_to_page(pfn);
4735
4736			__init_single_page(page, pfn, zone, nid);
4737			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4738		} else {
4739			__init_single_pfn(pfn, zone, nid);
4740		}
 
 
 
 
4741	}
4742}
4743
4744static void __meminit zone_init_free_lists(struct zone *zone)
4745{
4746	unsigned int order, t;
4747	for_each_migratetype_order(order, t) {
4748		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4749		zone->free_area[order].nr_free = 0;
4750	}
4751}
4752
4753#ifndef __HAVE_ARCH_MEMMAP_INIT
4754#define memmap_init(size, nid, zone, start_pfn) \
4755	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4756#endif
4757
4758static int zone_batchsize(struct zone *zone)
4759{
4760#ifdef CONFIG_MMU
4761	int batch;
4762
4763	/*
4764	 * The per-cpu-pages pools are set to around 1000th of the
4765	 * size of the zone.  But no more than 1/2 of a meg.
4766	 *
4767	 * OK, so we don't know how big the cache is.  So guess.
4768	 */
4769	batch = zone->managed_pages / 1024;
4770	if (batch * PAGE_SIZE > 512 * 1024)
4771		batch = (512 * 1024) / PAGE_SIZE;
4772	batch /= 4;		/* We effectively *= 4 below */
4773	if (batch < 1)
4774		batch = 1;
4775
4776	/*
4777	 * Clamp the batch to a 2^n - 1 value. Having a power
4778	 * of 2 value was found to be more likely to have
4779	 * suboptimal cache aliasing properties in some cases.
4780	 *
4781	 * For example if 2 tasks are alternately allocating
4782	 * batches of pages, one task can end up with a lot
4783	 * of pages of one half of the possible page colors
4784	 * and the other with pages of the other colors.
4785	 */
4786	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4787
4788	return batch;
4789
4790#else
4791	/* The deferral and batching of frees should be suppressed under NOMMU
4792	 * conditions.
4793	 *
4794	 * The problem is that NOMMU needs to be able to allocate large chunks
4795	 * of contiguous memory as there's no hardware page translation to
4796	 * assemble apparent contiguous memory from discontiguous pages.
4797	 *
4798	 * Queueing large contiguous runs of pages for batching, however,
4799	 * causes the pages to actually be freed in smaller chunks.  As there
4800	 * can be a significant delay between the individual batches being
4801	 * recycled, this leads to the once large chunks of space being
4802	 * fragmented and becoming unavailable for high-order allocations.
4803	 */
4804	return 0;
4805#endif
4806}
4807
4808/*
4809 * pcp->high and pcp->batch values are related and dependent on one another:
4810 * ->batch must never be higher then ->high.
4811 * The following function updates them in a safe manner without read side
4812 * locking.
4813 *
4814 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4815 * those fields changing asynchronously (acording the the above rule).
4816 *
4817 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4818 * outside of boot time (or some other assurance that no concurrent updaters
4819 * exist).
4820 */
4821static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4822		unsigned long batch)
4823{
4824       /* start with a fail safe value for batch */
4825	pcp->batch = 1;
4826	smp_wmb();
4827
4828       /* Update high, then batch, in order */
4829	pcp->high = high;
4830	smp_wmb();
4831
4832	pcp->batch = batch;
4833}
4834
4835/* a companion to pageset_set_high() */
4836static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4837{
4838	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4839}
4840
4841static void pageset_init(struct per_cpu_pageset *p)
4842{
4843	struct per_cpu_pages *pcp;
4844	int migratetype;
4845
4846	memset(p, 0, sizeof(*p));
4847
4848	pcp = &p->pcp;
4849	pcp->count = 0;
4850	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4851		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4852}
4853
4854static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4855{
4856	pageset_init(p);
4857	pageset_set_batch(p, batch);
4858}
4859
4860/*
4861 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4862 * to the value high for the pageset p.
4863 */
4864static void pageset_set_high(struct per_cpu_pageset *p,
4865				unsigned long high)
4866{
4867	unsigned long batch = max(1UL, high / 4);
4868	if ((high / 4) > (PAGE_SHIFT * 8))
4869		batch = PAGE_SHIFT * 8;
4870
4871	pageset_update(&p->pcp, high, batch);
4872}
4873
4874static void pageset_set_high_and_batch(struct zone *zone,
4875				       struct per_cpu_pageset *pcp)
4876{
4877	if (percpu_pagelist_fraction)
4878		pageset_set_high(pcp,
4879			(zone->managed_pages /
4880				percpu_pagelist_fraction));
4881	else
4882		pageset_set_batch(pcp, zone_batchsize(zone));
4883}
4884
4885static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4886{
4887	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4888
4889	pageset_init(pcp);
4890	pageset_set_high_and_batch(zone, pcp);
4891}
4892
4893static void __meminit setup_zone_pageset(struct zone *zone)
4894{
4895	int cpu;
4896	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4897	for_each_possible_cpu(cpu)
4898		zone_pageset_init(zone, cpu);
4899}
4900
4901/*
4902 * Allocate per cpu pagesets and initialize them.
4903 * Before this call only boot pagesets were available.
4904 */
4905void __init setup_per_cpu_pageset(void)
4906{
4907	struct zone *zone;
4908
4909	for_each_populated_zone(zone)
4910		setup_zone_pageset(zone);
4911}
4912
4913static noinline __init_refok
4914int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4915{
4916	int i;
4917	size_t alloc_size;
4918
4919	/*
4920	 * The per-page waitqueue mechanism uses hashed waitqueues
4921	 * per zone.
4922	 */
4923	zone->wait_table_hash_nr_entries =
4924		 wait_table_hash_nr_entries(zone_size_pages);
4925	zone->wait_table_bits =
4926		wait_table_bits(zone->wait_table_hash_nr_entries);
4927	alloc_size = zone->wait_table_hash_nr_entries
4928					* sizeof(wait_queue_head_t);
4929
4930	if (!slab_is_available()) {
4931		zone->wait_table = (wait_queue_head_t *)
4932			memblock_virt_alloc_node_nopanic(
4933				alloc_size, zone->zone_pgdat->node_id);
4934	} else {
4935		/*
4936		 * This case means that a zone whose size was 0 gets new memory
4937		 * via memory hot-add.
4938		 * But it may be the case that a new node was hot-added.  In
4939		 * this case vmalloc() will not be able to use this new node's
4940		 * memory - this wait_table must be initialized to use this new
4941		 * node itself as well.
4942		 * To use this new node's memory, further consideration will be
4943		 * necessary.
4944		 */
4945		zone->wait_table = vmalloc(alloc_size);
4946	}
4947	if (!zone->wait_table)
4948		return -ENOMEM;
4949
4950	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4951		init_waitqueue_head(zone->wait_table + i);
4952
4953	return 0;
4954}
4955
4956static __meminit void zone_pcp_init(struct zone *zone)
4957{
4958	/*
4959	 * per cpu subsystem is not up at this point. The following code
4960	 * relies on the ability of the linker to provide the
4961	 * offset of a (static) per cpu variable into the per cpu area.
4962	 */
4963	zone->pageset = &boot_pageset;
4964
4965	if (populated_zone(zone))
4966		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4967			zone->name, zone->present_pages,
4968					 zone_batchsize(zone));
4969}
4970
4971int __meminit init_currently_empty_zone(struct zone *zone,
4972					unsigned long zone_start_pfn,
4973					unsigned long size)
 
4974{
4975	struct pglist_data *pgdat = zone->zone_pgdat;
4976	int ret;
4977	ret = zone_wait_table_init(zone, size);
4978	if (ret)
4979		return ret;
4980	pgdat->nr_zones = zone_idx(zone) + 1;
4981
4982	zone->zone_start_pfn = zone_start_pfn;
4983
4984	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4985			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4986			pgdat->node_id,
4987			(unsigned long)zone_idx(zone),
4988			zone_start_pfn, (zone_start_pfn + size));
4989
4990	zone_init_free_lists(zone);
4991
4992	return 0;
4993}
4994
4995#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4996#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4997
4998/*
4999 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 
 
 
5000 */
5001int __meminit __early_pfn_to_nid(unsigned long pfn,
5002					struct mminit_pfnnid_cache *state)
5003{
5004	unsigned long start_pfn, end_pfn;
5005	int nid;
 
 
 
 
 
 
5006
5007	if (state->last_start <= pfn && pfn < state->last_end)
5008		return state->last_nid;
5009
5010	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5011	if (nid != -1) {
5012		state->last_start = start_pfn;
5013		state->last_end = end_pfn;
5014		state->last_nid = nid;
5015	}
5016
5017	return nid;
5018}
5019#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5020
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5021/**
5022 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5023 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5024 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5025 *
5026 * If an architecture guarantees that all ranges registered contain no holes
5027 * and may be freed, this this function may be used instead of calling
5028 * memblock_free_early_nid() manually.
 
5029 */
5030void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5031{
5032	unsigned long start_pfn, end_pfn;
5033	int i, this_nid;
5034
5035	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5036		start_pfn = min(start_pfn, max_low_pfn);
5037		end_pfn = min(end_pfn, max_low_pfn);
5038
5039		if (start_pfn < end_pfn)
5040			memblock_free_early_nid(PFN_PHYS(start_pfn),
5041					(end_pfn - start_pfn) << PAGE_SHIFT,
5042					this_nid);
5043	}
5044}
5045
5046/**
5047 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5048 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5049 *
5050 * If an architecture guarantees that all ranges registered contain no holes and may
5051 * be freed, this function may be used instead of calling memory_present() manually.
 
5052 */
5053void __init sparse_memory_present_with_active_regions(int nid)
5054{
5055	unsigned long start_pfn, end_pfn;
5056	int i, this_nid;
5057
5058	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5059		memory_present(this_nid, start_pfn, end_pfn);
5060}
5061
5062/**
5063 * get_pfn_range_for_nid - Return the start and end page frames for a node
5064 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5065 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5066 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5067 *
5068 * It returns the start and end page frame of a node based on information
5069 * provided by memblock_set_node(). If called for a node
5070 * with no available memory, a warning is printed and the start and end
5071 * PFNs will be 0.
5072 */
5073void __meminit get_pfn_range_for_nid(unsigned int nid,
5074			unsigned long *start_pfn, unsigned long *end_pfn)
5075{
5076	unsigned long this_start_pfn, this_end_pfn;
5077	int i;
5078
5079	*start_pfn = -1UL;
5080	*end_pfn = 0;
5081
5082	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5083		*start_pfn = min(*start_pfn, this_start_pfn);
5084		*end_pfn = max(*end_pfn, this_end_pfn);
5085	}
5086
5087	if (*start_pfn == -1UL)
5088		*start_pfn = 0;
5089}
5090
5091/*
5092 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5093 * assumption is made that zones within a node are ordered in monotonic
5094 * increasing memory addresses so that the "highest" populated zone is used
5095 */
5096static void __init find_usable_zone_for_movable(void)
5097{
5098	int zone_index;
5099	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5100		if (zone_index == ZONE_MOVABLE)
5101			continue;
5102
5103		if (arch_zone_highest_possible_pfn[zone_index] >
5104				arch_zone_lowest_possible_pfn[zone_index])
5105			break;
5106	}
5107
5108	VM_BUG_ON(zone_index == -1);
5109	movable_zone = zone_index;
5110}
5111
5112/*
5113 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5114 * because it is sized independent of architecture. Unlike the other zones,
5115 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5116 * in each node depending on the size of each node and how evenly kernelcore
5117 * is distributed. This helper function adjusts the zone ranges
5118 * provided by the architecture for a given node by using the end of the
5119 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5120 * zones within a node are in order of monotonic increases memory addresses
5121 */
5122static void __meminit adjust_zone_range_for_zone_movable(int nid,
5123					unsigned long zone_type,
5124					unsigned long node_start_pfn,
5125					unsigned long node_end_pfn,
5126					unsigned long *zone_start_pfn,
5127					unsigned long *zone_end_pfn)
5128{
5129	/* Only adjust if ZONE_MOVABLE is on this node */
5130	if (zone_movable_pfn[nid]) {
5131		/* Size ZONE_MOVABLE */
5132		if (zone_type == ZONE_MOVABLE) {
5133			*zone_start_pfn = zone_movable_pfn[nid];
5134			*zone_end_pfn = min(node_end_pfn,
5135				arch_zone_highest_possible_pfn[movable_zone]);
5136
 
 
 
 
 
5137		/* Check if this whole range is within ZONE_MOVABLE */
5138		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5139			*zone_start_pfn = *zone_end_pfn;
5140	}
5141}
5142
5143/*
5144 * Return the number of pages a zone spans in a node, including holes
5145 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5146 */
5147static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5148					unsigned long zone_type,
5149					unsigned long node_start_pfn,
5150					unsigned long node_end_pfn,
5151					unsigned long *zone_start_pfn,
5152					unsigned long *zone_end_pfn,
5153					unsigned long *ignored)
5154{
5155	/* When hotadd a new node from cpu_up(), the node should be empty */
5156	if (!node_start_pfn && !node_end_pfn)
5157		return 0;
5158
5159	/* Get the start and end of the zone */
5160	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5161	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5162	adjust_zone_range_for_zone_movable(nid, zone_type,
5163				node_start_pfn, node_end_pfn,
5164				zone_start_pfn, zone_end_pfn);
5165
5166	/* Check that this node has pages within the zone's required range */
5167	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5168		return 0;
5169
5170	/* Move the zone boundaries inside the node if necessary */
5171	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5172	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5173
5174	/* Return the spanned pages */
5175	return *zone_end_pfn - *zone_start_pfn;
5176}
5177
5178/*
5179 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5180 * then all holes in the requested range will be accounted for.
5181 */
5182unsigned long __meminit __absent_pages_in_range(int nid,
5183				unsigned long range_start_pfn,
5184				unsigned long range_end_pfn)
5185{
5186	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5187	unsigned long start_pfn, end_pfn;
5188	int i;
5189
5190	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5191		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5192		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5193		nr_absent -= end_pfn - start_pfn;
5194	}
5195	return nr_absent;
5196}
5197
5198/**
5199 * absent_pages_in_range - Return number of page frames in holes within a range
5200 * @start_pfn: The start PFN to start searching for holes
5201 * @end_pfn: The end PFN to stop searching for holes
5202 *
5203 * It returns the number of pages frames in memory holes within a range.
5204 */
5205unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5206							unsigned long end_pfn)
5207{
5208	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5209}
5210
5211/* Return the number of page frames in holes in a zone on a node */
5212static unsigned long __meminit zone_absent_pages_in_node(int nid,
5213					unsigned long zone_type,
5214					unsigned long node_start_pfn,
5215					unsigned long node_end_pfn,
5216					unsigned long *ignored)
5217{
5218	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5219	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5220	unsigned long zone_start_pfn, zone_end_pfn;
5221	unsigned long nr_absent;
5222
5223	/* When hotadd a new node from cpu_up(), the node should be empty */
5224	if (!node_start_pfn && !node_end_pfn)
5225		return 0;
5226
5227	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5228	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5229
5230	adjust_zone_range_for_zone_movable(nid, zone_type,
5231			node_start_pfn, node_end_pfn,
5232			&zone_start_pfn, &zone_end_pfn);
5233	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5234
5235	/*
5236	 * ZONE_MOVABLE handling.
5237	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5238	 * and vice versa.
5239	 */
5240	if (zone_movable_pfn[nid]) {
5241		if (mirrored_kernelcore) {
5242			unsigned long start_pfn, end_pfn;
5243			struct memblock_region *r;
5244
5245			for_each_memblock(memory, r) {
5246				start_pfn = clamp(memblock_region_memory_base_pfn(r),
5247						  zone_start_pfn, zone_end_pfn);
5248				end_pfn = clamp(memblock_region_memory_end_pfn(r),
5249						zone_start_pfn, zone_end_pfn);
5250
5251				if (zone_type == ZONE_MOVABLE &&
5252				    memblock_is_mirror(r))
5253					nr_absent += end_pfn - start_pfn;
5254
5255				if (zone_type == ZONE_NORMAL &&
5256				    !memblock_is_mirror(r))
5257					nr_absent += end_pfn - start_pfn;
5258			}
5259		} else {
5260			if (zone_type == ZONE_NORMAL)
5261				nr_absent += node_end_pfn - zone_movable_pfn[nid];
5262		}
5263	}
5264
5265	return nr_absent;
5266}
5267
5268#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5269static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5270					unsigned long zone_type,
5271					unsigned long node_start_pfn,
5272					unsigned long node_end_pfn,
5273					unsigned long *zone_start_pfn,
5274					unsigned long *zone_end_pfn,
5275					unsigned long *zones_size)
5276{
5277	unsigned int zone;
5278
5279	*zone_start_pfn = node_start_pfn;
5280	for (zone = 0; zone < zone_type; zone++)
5281		*zone_start_pfn += zones_size[zone];
5282
5283	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5284
5285	return zones_size[zone_type];
5286}
5287
5288static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5289						unsigned long zone_type,
5290						unsigned long node_start_pfn,
5291						unsigned long node_end_pfn,
5292						unsigned long *zholes_size)
5293{
5294	if (!zholes_size)
5295		return 0;
5296
5297	return zholes_size[zone_type];
5298}
5299
5300#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5301
5302static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5303						unsigned long node_start_pfn,
5304						unsigned long node_end_pfn,
5305						unsigned long *zones_size,
5306						unsigned long *zholes_size)
5307{
5308	unsigned long realtotalpages = 0, totalpages = 0;
5309	enum zone_type i;
5310
5311	for (i = 0; i < MAX_NR_ZONES; i++) {
5312		struct zone *zone = pgdat->node_zones + i;
5313		unsigned long zone_start_pfn, zone_end_pfn;
5314		unsigned long size, real_size;
5315
5316		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5317						  node_start_pfn,
5318						  node_end_pfn,
5319						  &zone_start_pfn,
5320						  &zone_end_pfn,
5321						  zones_size);
5322		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5323						  node_start_pfn, node_end_pfn,
5324						  zholes_size);
5325		if (size)
5326			zone->zone_start_pfn = zone_start_pfn;
5327		else
5328			zone->zone_start_pfn = 0;
5329		zone->spanned_pages = size;
5330		zone->present_pages = real_size;
5331
5332		totalpages += size;
5333		realtotalpages += real_size;
5334	}
5335
5336	pgdat->node_spanned_pages = totalpages;
5337	pgdat->node_present_pages = realtotalpages;
5338	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5339							realtotalpages);
5340}
5341
5342#ifndef CONFIG_SPARSEMEM
5343/*
5344 * Calculate the size of the zone->blockflags rounded to an unsigned long
5345 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5346 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5347 * round what is now in bits to nearest long in bits, then return it in
5348 * bytes.
5349 */
5350static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5351{
5352	unsigned long usemapsize;
5353
5354	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5355	usemapsize = roundup(zonesize, pageblock_nr_pages);
5356	usemapsize = usemapsize >> pageblock_order;
5357	usemapsize *= NR_PAGEBLOCK_BITS;
5358	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5359
5360	return usemapsize / 8;
5361}
5362
5363static void __init setup_usemap(struct pglist_data *pgdat,
5364				struct zone *zone,
5365				unsigned long zone_start_pfn,
5366				unsigned long zonesize)
5367{
5368	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5369	zone->pageblock_flags = NULL;
5370	if (usemapsize)
5371		zone->pageblock_flags =
5372			memblock_virt_alloc_node_nopanic(usemapsize,
5373							 pgdat->node_id);
5374}
5375#else
5376static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5377				unsigned long zone_start_pfn, unsigned long zonesize) {}
5378#endif /* CONFIG_SPARSEMEM */
5379
5380#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5381
5382/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5383void __paginginit set_pageblock_order(void)
5384{
5385	unsigned int order;
5386
5387	/* Check that pageblock_nr_pages has not already been setup */
5388	if (pageblock_order)
5389		return;
5390
5391	if (HPAGE_SHIFT > PAGE_SHIFT)
5392		order = HUGETLB_PAGE_ORDER;
5393	else
5394		order = MAX_ORDER - 1;
5395
5396	/*
5397	 * Assume the largest contiguous order of interest is a huge page.
5398	 * This value may be variable depending on boot parameters on IA64 and
5399	 * powerpc.
5400	 */
5401	pageblock_order = order;
5402}
5403#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5404
5405/*
5406 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5407 * is unused as pageblock_order is set at compile-time. See
5408 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5409 * the kernel config
5410 */
5411void __paginginit set_pageblock_order(void)
5412{
5413}
5414
5415#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5416
5417static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5418						   unsigned long present_pages)
5419{
5420	unsigned long pages = spanned_pages;
5421
5422	/*
5423	 * Provide a more accurate estimation if there are holes within
5424	 * the zone and SPARSEMEM is in use. If there are holes within the
5425	 * zone, each populated memory region may cost us one or two extra
5426	 * memmap pages due to alignment because memmap pages for each
5427	 * populated regions may not naturally algined on page boundary.
5428	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5429	 */
5430	if (spanned_pages > present_pages + (present_pages >> 4) &&
5431	    IS_ENABLED(CONFIG_SPARSEMEM))
5432		pages = present_pages;
5433
5434	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5435}
5436
5437/*
5438 * Set up the zone data structures:
5439 *   - mark all pages reserved
5440 *   - mark all memory queues empty
5441 *   - clear the memory bitmaps
5442 *
5443 * NOTE: pgdat should get zeroed by caller.
5444 */
5445static void __paginginit free_area_init_core(struct pglist_data *pgdat)
 
 
5446{
5447	enum zone_type j;
5448	int nid = pgdat->node_id;
 
5449	int ret;
5450
5451	pgdat_resize_init(pgdat);
5452#ifdef CONFIG_NUMA_BALANCING
5453	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5454	pgdat->numabalancing_migrate_nr_pages = 0;
5455	pgdat->numabalancing_migrate_next_window = jiffies;
5456#endif
5457#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5458	spin_lock_init(&pgdat->split_queue_lock);
5459	INIT_LIST_HEAD(&pgdat->split_queue);
5460	pgdat->split_queue_len = 0;
5461#endif
5462	init_waitqueue_head(&pgdat->kswapd_wait);
5463	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5464#ifdef CONFIG_COMPACTION
5465	init_waitqueue_head(&pgdat->kcompactd_wait);
5466#endif
5467	pgdat_page_ext_init(pgdat);
5468
5469	for (j = 0; j < MAX_NR_ZONES; j++) {
5470		struct zone *zone = pgdat->node_zones + j;
5471		unsigned long size, realsize, freesize, memmap_pages;
5472		unsigned long zone_start_pfn = zone->zone_start_pfn;
5473
5474		size = zone->spanned_pages;
5475		realsize = freesize = zone->present_pages;
 
 
 
 
5476
5477		/*
5478		 * Adjust freesize so that it accounts for how much memory
5479		 * is used by this zone for memmap. This affects the watermark
5480		 * and per-cpu initialisations
5481		 */
5482		memmap_pages = calc_memmap_size(size, realsize);
5483		if (!is_highmem_idx(j)) {
5484			if (freesize >= memmap_pages) {
5485				freesize -= memmap_pages;
5486				if (memmap_pages)
5487					printk(KERN_DEBUG
5488					       "  %s zone: %lu pages used for memmap\n",
5489					       zone_names[j], memmap_pages);
5490			} else
5491				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5492					zone_names[j], memmap_pages, freesize);
5493		}
5494
5495		/* Account for reserved pages */
5496		if (j == 0 && freesize > dma_reserve) {
5497			freesize -= dma_reserve;
5498			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5499					zone_names[0], dma_reserve);
5500		}
5501
5502		if (!is_highmem_idx(j))
5503			nr_kernel_pages += freesize;
5504		/* Charge for highmem memmap if there are enough kernel pages */
5505		else if (nr_kernel_pages > memmap_pages * 2)
5506			nr_kernel_pages -= memmap_pages;
5507		nr_all_pages += freesize;
5508
 
 
5509		/*
5510		 * Set an approximate value for lowmem here, it will be adjusted
5511		 * when the bootmem allocator frees pages into the buddy system.
5512		 * And all highmem pages will be managed by the buddy system.
5513		 */
5514		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5515#ifdef CONFIG_NUMA
5516		zone->node = nid;
5517		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5518						/ 100;
5519		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5520#endif
5521		zone->name = zone_names[j];
5522		spin_lock_init(&zone->lock);
5523		spin_lock_init(&zone->lru_lock);
5524		zone_seqlock_init(zone);
5525		zone->zone_pgdat = pgdat;
5526		zone_pcp_init(zone);
5527
5528		/* For bootup, initialized properly in watermark setup */
5529		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5530
5531		lruvec_init(&zone->lruvec);
5532		if (!size)
5533			continue;
5534
5535		set_pageblock_order();
5536		setup_usemap(pgdat, zone, zone_start_pfn, size);
5537		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
 
5538		BUG_ON(ret);
5539		memmap_init(size, nid, j, zone_start_pfn);
 
5540	}
5541}
5542
5543static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5544{
5545	unsigned long __maybe_unused start = 0;
5546	unsigned long __maybe_unused offset = 0;
5547
5548	/* Skip empty nodes */
5549	if (!pgdat->node_spanned_pages)
5550		return;
5551
5552#ifdef CONFIG_FLAT_NODE_MEM_MAP
5553	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5554	offset = pgdat->node_start_pfn - start;
5555	/* ia64 gets its own node_mem_map, before this, without bootmem */
5556	if (!pgdat->node_mem_map) {
5557		unsigned long size, end;
5558		struct page *map;
5559
5560		/*
5561		 * The zone's endpoints aren't required to be MAX_ORDER
5562		 * aligned but the node_mem_map endpoints must be in order
5563		 * for the buddy allocator to function correctly.
5564		 */
 
5565		end = pgdat_end_pfn(pgdat);
5566		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5567		size =  (end - start) * sizeof(struct page);
5568		map = alloc_remap(pgdat->node_id, size);
5569		if (!map)
5570			map = memblock_virt_alloc_node_nopanic(size,
5571							       pgdat->node_id);
5572		pgdat->node_mem_map = map + offset;
5573	}
5574#ifndef CONFIG_NEED_MULTIPLE_NODES
5575	/*
5576	 * With no DISCONTIG, the global mem_map is just set as node 0's
5577	 */
5578	if (pgdat == NODE_DATA(0)) {
5579		mem_map = NODE_DATA(0)->node_mem_map;
5580#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5581		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5582			mem_map -= offset;
5583#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5584	}
5585#endif
5586#endif /* CONFIG_FLAT_NODE_MEM_MAP */
5587}
5588
5589void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5590		unsigned long node_start_pfn, unsigned long *zholes_size)
5591{
5592	pg_data_t *pgdat = NODE_DATA(nid);
5593	unsigned long start_pfn = 0;
5594	unsigned long end_pfn = 0;
5595
5596	/* pg_data_t should be reset to zero when it's allocated */
5597	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5598
5599	reset_deferred_meminit(pgdat);
5600	pgdat->node_id = nid;
5601	pgdat->node_start_pfn = node_start_pfn;
 
 
5602#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5603	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5604	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5605		(u64)start_pfn << PAGE_SHIFT,
5606		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5607#else
5608	start_pfn = node_start_pfn;
5609#endif
5610	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5611				  zones_size, zholes_size);
5612
5613	alloc_node_mem_map(pgdat);
5614#ifdef CONFIG_FLAT_NODE_MEM_MAP
5615	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5616		nid, (unsigned long)pgdat,
5617		(unsigned long)pgdat->node_mem_map);
5618#endif
5619
5620	free_area_init_core(pgdat);
 
5621}
5622
5623#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5624
5625#if MAX_NUMNODES > 1
5626/*
5627 * Figure out the number of possible node ids.
5628 */
5629void __init setup_nr_node_ids(void)
5630{
5631	unsigned int highest;
 
5632
5633	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
 
5634	nr_node_ids = highest + 1;
5635}
5636#endif
5637
5638/**
5639 * node_map_pfn_alignment - determine the maximum internode alignment
5640 *
5641 * This function should be called after node map is populated and sorted.
5642 * It calculates the maximum power of two alignment which can distinguish
5643 * all the nodes.
5644 *
5645 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5646 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5647 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5648 * shifted, 1GiB is enough and this function will indicate so.
5649 *
5650 * This is used to test whether pfn -> nid mapping of the chosen memory
5651 * model has fine enough granularity to avoid incorrect mapping for the
5652 * populated node map.
5653 *
5654 * Returns the determined alignment in pfn's.  0 if there is no alignment
5655 * requirement (single node).
5656 */
5657unsigned long __init node_map_pfn_alignment(void)
5658{
5659	unsigned long accl_mask = 0, last_end = 0;
5660	unsigned long start, end, mask;
5661	int last_nid = -1;
5662	int i, nid;
5663
5664	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5665		if (!start || last_nid < 0 || last_nid == nid) {
5666			last_nid = nid;
5667			last_end = end;
5668			continue;
5669		}
5670
5671		/*
5672		 * Start with a mask granular enough to pin-point to the
5673		 * start pfn and tick off bits one-by-one until it becomes
5674		 * too coarse to separate the current node from the last.
5675		 */
5676		mask = ~((1 << __ffs(start)) - 1);
5677		while (mask && last_end <= (start & (mask << 1)))
5678			mask <<= 1;
5679
5680		/* accumulate all internode masks */
5681		accl_mask |= mask;
5682	}
5683
5684	/* convert mask to number of pages */
5685	return ~accl_mask + 1;
5686}
5687
5688/* Find the lowest pfn for a node */
5689static unsigned long __init find_min_pfn_for_node(int nid)
5690{
5691	unsigned long min_pfn = ULONG_MAX;
5692	unsigned long start_pfn;
5693	int i;
5694
5695	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5696		min_pfn = min(min_pfn, start_pfn);
5697
5698	if (min_pfn == ULONG_MAX) {
5699		pr_warn("Could not find start_pfn for node %d\n", nid);
 
5700		return 0;
5701	}
5702
5703	return min_pfn;
5704}
5705
5706/**
5707 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5708 *
5709 * It returns the minimum PFN based on information provided via
5710 * memblock_set_node().
5711 */
5712unsigned long __init find_min_pfn_with_active_regions(void)
5713{
5714	return find_min_pfn_for_node(MAX_NUMNODES);
5715}
5716
5717/*
5718 * early_calculate_totalpages()
5719 * Sum pages in active regions for movable zone.
5720 * Populate N_MEMORY for calculating usable_nodes.
5721 */
5722static unsigned long __init early_calculate_totalpages(void)
5723{
5724	unsigned long totalpages = 0;
5725	unsigned long start_pfn, end_pfn;
5726	int i, nid;
5727
5728	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5729		unsigned long pages = end_pfn - start_pfn;
5730
5731		totalpages += pages;
5732		if (pages)
5733			node_set_state(nid, N_MEMORY);
5734	}
5735	return totalpages;
5736}
5737
5738/*
5739 * Find the PFN the Movable zone begins in each node. Kernel memory
5740 * is spread evenly between nodes as long as the nodes have enough
5741 * memory. When they don't, some nodes will have more kernelcore than
5742 * others
5743 */
5744static void __init find_zone_movable_pfns_for_nodes(void)
5745{
5746	int i, nid;
5747	unsigned long usable_startpfn;
5748	unsigned long kernelcore_node, kernelcore_remaining;
5749	/* save the state before borrow the nodemask */
5750	nodemask_t saved_node_state = node_states[N_MEMORY];
5751	unsigned long totalpages = early_calculate_totalpages();
5752	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5753	struct memblock_region *r;
5754
5755	/* Need to find movable_zone earlier when movable_node is specified. */
5756	find_usable_zone_for_movable();
5757
5758	/*
5759	 * If movable_node is specified, ignore kernelcore and movablecore
5760	 * options.
5761	 */
5762	if (movable_node_is_enabled()) {
5763		for_each_memblock(memory, r) {
5764			if (!memblock_is_hotpluggable(r))
5765				continue;
5766
5767			nid = r->nid;
5768
5769			usable_startpfn = PFN_DOWN(r->base);
5770			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5771				min(usable_startpfn, zone_movable_pfn[nid]) :
5772				usable_startpfn;
5773		}
5774
5775		goto out2;
5776	}
5777
5778	/*
5779	 * If kernelcore=mirror is specified, ignore movablecore option
5780	 */
5781	if (mirrored_kernelcore) {
5782		bool mem_below_4gb_not_mirrored = false;
5783
5784		for_each_memblock(memory, r) {
5785			if (memblock_is_mirror(r))
5786				continue;
5787
5788			nid = r->nid;
5789
5790			usable_startpfn = memblock_region_memory_base_pfn(r);
5791
5792			if (usable_startpfn < 0x100000) {
5793				mem_below_4gb_not_mirrored = true;
5794				continue;
5795			}
5796
5797			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5798				min(usable_startpfn, zone_movable_pfn[nid]) :
5799				usable_startpfn;
5800		}
5801
5802		if (mem_below_4gb_not_mirrored)
5803			pr_warn("This configuration results in unmirrored kernel memory.");
5804
5805		goto out2;
5806	}
5807
5808	/*
5809	 * If movablecore=nn[KMG] was specified, calculate what size of
5810	 * kernelcore that corresponds so that memory usable for
5811	 * any allocation type is evenly spread. If both kernelcore
5812	 * and movablecore are specified, then the value of kernelcore
5813	 * will be used for required_kernelcore if it's greater than
5814	 * what movablecore would have allowed.
5815	 */
5816	if (required_movablecore) {
5817		unsigned long corepages;
5818
5819		/*
5820		 * Round-up so that ZONE_MOVABLE is at least as large as what
5821		 * was requested by the user
5822		 */
5823		required_movablecore =
5824			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5825		required_movablecore = min(totalpages, required_movablecore);
5826		corepages = totalpages - required_movablecore;
5827
5828		required_kernelcore = max(required_kernelcore, corepages);
5829	}
5830
5831	/*
5832	 * If kernelcore was not specified or kernelcore size is larger
5833	 * than totalpages, there is no ZONE_MOVABLE.
5834	 */
5835	if (!required_kernelcore || required_kernelcore >= totalpages)
5836		goto out;
5837
5838	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5839	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5840
5841restart:
5842	/* Spread kernelcore memory as evenly as possible throughout nodes */
5843	kernelcore_node = required_kernelcore / usable_nodes;
5844	for_each_node_state(nid, N_MEMORY) {
5845		unsigned long start_pfn, end_pfn;
5846
5847		/*
5848		 * Recalculate kernelcore_node if the division per node
5849		 * now exceeds what is necessary to satisfy the requested
5850		 * amount of memory for the kernel
5851		 */
5852		if (required_kernelcore < kernelcore_node)
5853			kernelcore_node = required_kernelcore / usable_nodes;
5854
5855		/*
5856		 * As the map is walked, we track how much memory is usable
5857		 * by the kernel using kernelcore_remaining. When it is
5858		 * 0, the rest of the node is usable by ZONE_MOVABLE
5859		 */
5860		kernelcore_remaining = kernelcore_node;
5861
5862		/* Go through each range of PFNs within this node */
5863		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5864			unsigned long size_pages;
5865
5866			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5867			if (start_pfn >= end_pfn)
5868				continue;
5869
5870			/* Account for what is only usable for kernelcore */
5871			if (start_pfn < usable_startpfn) {
5872				unsigned long kernel_pages;
5873				kernel_pages = min(end_pfn, usable_startpfn)
5874								- start_pfn;
5875
5876				kernelcore_remaining -= min(kernel_pages,
5877							kernelcore_remaining);
5878				required_kernelcore -= min(kernel_pages,
5879							required_kernelcore);
5880
5881				/* Continue if range is now fully accounted */
5882				if (end_pfn <= usable_startpfn) {
5883
5884					/*
5885					 * Push zone_movable_pfn to the end so
5886					 * that if we have to rebalance
5887					 * kernelcore across nodes, we will
5888					 * not double account here
5889					 */
5890					zone_movable_pfn[nid] = end_pfn;
5891					continue;
5892				}
5893				start_pfn = usable_startpfn;
5894			}
5895
5896			/*
5897			 * The usable PFN range for ZONE_MOVABLE is from
5898			 * start_pfn->end_pfn. Calculate size_pages as the
5899			 * number of pages used as kernelcore
5900			 */
5901			size_pages = end_pfn - start_pfn;
5902			if (size_pages > kernelcore_remaining)
5903				size_pages = kernelcore_remaining;
5904			zone_movable_pfn[nid] = start_pfn + size_pages;
5905
5906			/*
5907			 * Some kernelcore has been met, update counts and
5908			 * break if the kernelcore for this node has been
5909			 * satisfied
5910			 */
5911			required_kernelcore -= min(required_kernelcore,
5912								size_pages);
5913			kernelcore_remaining -= size_pages;
5914			if (!kernelcore_remaining)
5915				break;
5916		}
5917	}
5918
5919	/*
5920	 * If there is still required_kernelcore, we do another pass with one
5921	 * less node in the count. This will push zone_movable_pfn[nid] further
5922	 * along on the nodes that still have memory until kernelcore is
5923	 * satisfied
5924	 */
5925	usable_nodes--;
5926	if (usable_nodes && required_kernelcore > usable_nodes)
5927		goto restart;
5928
5929out2:
5930	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5931	for (nid = 0; nid < MAX_NUMNODES; nid++)
5932		zone_movable_pfn[nid] =
5933			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5934
5935out:
5936	/* restore the node_state */
5937	node_states[N_MEMORY] = saved_node_state;
5938}
5939
5940/* Any regular or high memory on that node ? */
5941static void check_for_memory(pg_data_t *pgdat, int nid)
5942{
5943	enum zone_type zone_type;
5944
5945	if (N_MEMORY == N_NORMAL_MEMORY)
5946		return;
5947
5948	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5949		struct zone *zone = &pgdat->node_zones[zone_type];
5950		if (populated_zone(zone)) {
5951			node_set_state(nid, N_HIGH_MEMORY);
5952			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5953			    zone_type <= ZONE_NORMAL)
5954				node_set_state(nid, N_NORMAL_MEMORY);
5955			break;
5956		}
5957	}
5958}
5959
5960/**
5961 * free_area_init_nodes - Initialise all pg_data_t and zone data
5962 * @max_zone_pfn: an array of max PFNs for each zone
5963 *
5964 * This will call free_area_init_node() for each active node in the system.
5965 * Using the page ranges provided by memblock_set_node(), the size of each
5966 * zone in each node and their holes is calculated. If the maximum PFN
5967 * between two adjacent zones match, it is assumed that the zone is empty.
5968 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5969 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5970 * starts where the previous one ended. For example, ZONE_DMA32 starts
5971 * at arch_max_dma_pfn.
5972 */
5973void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5974{
5975	unsigned long start_pfn, end_pfn;
5976	int i, nid;
5977
5978	/* Record where the zone boundaries are */
5979	memset(arch_zone_lowest_possible_pfn, 0,
5980				sizeof(arch_zone_lowest_possible_pfn));
5981	memset(arch_zone_highest_possible_pfn, 0,
5982				sizeof(arch_zone_highest_possible_pfn));
5983	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5984	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5985	for (i = 1; i < MAX_NR_ZONES; i++) {
5986		if (i == ZONE_MOVABLE)
5987			continue;
5988		arch_zone_lowest_possible_pfn[i] =
5989			arch_zone_highest_possible_pfn[i-1];
5990		arch_zone_highest_possible_pfn[i] =
5991			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5992	}
5993	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5994	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5995
5996	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5997	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5998	find_zone_movable_pfns_for_nodes();
5999
6000	/* Print out the zone ranges */
6001	pr_info("Zone ranges:\n");
6002	for (i = 0; i < MAX_NR_ZONES; i++) {
6003		if (i == ZONE_MOVABLE)
6004			continue;
6005		pr_info("  %-8s ", zone_names[i]);
6006		if (arch_zone_lowest_possible_pfn[i] ==
6007				arch_zone_highest_possible_pfn[i])
6008			pr_cont("empty\n");
6009		else
6010			pr_cont("[mem %#018Lx-%#018Lx]\n",
6011				(u64)arch_zone_lowest_possible_pfn[i]
6012					<< PAGE_SHIFT,
6013				((u64)arch_zone_highest_possible_pfn[i]
6014					<< PAGE_SHIFT) - 1);
6015	}
6016
6017	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6018	pr_info("Movable zone start for each node\n");
6019	for (i = 0; i < MAX_NUMNODES; i++) {
6020		if (zone_movable_pfn[i])
6021			pr_info("  Node %d: %#018Lx\n", i,
6022			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6023	}
6024
6025	/* Print out the early node map */
6026	pr_info("Early memory node ranges\n");
6027	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6028		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6029			(u64)start_pfn << PAGE_SHIFT,
6030			((u64)end_pfn << PAGE_SHIFT) - 1);
6031
6032	/* Initialise every node */
6033	mminit_verify_pageflags_layout();
6034	setup_nr_node_ids();
6035	for_each_online_node(nid) {
6036		pg_data_t *pgdat = NODE_DATA(nid);
6037		free_area_init_node(nid, NULL,
6038				find_min_pfn_for_node(nid), NULL);
6039
6040		/* Any memory on that node */
6041		if (pgdat->node_present_pages)
6042			node_set_state(nid, N_MEMORY);
6043		check_for_memory(pgdat, nid);
6044	}
6045}
6046
6047static int __init cmdline_parse_core(char *p, unsigned long *core)
6048{
6049	unsigned long long coremem;
6050	if (!p)
6051		return -EINVAL;
6052
6053	coremem = memparse(p, &p);
6054	*core = coremem >> PAGE_SHIFT;
6055
6056	/* Paranoid check that UL is enough for the coremem value */
6057	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6058
6059	return 0;
6060}
6061
6062/*
6063 * kernelcore=size sets the amount of memory for use for allocations that
6064 * cannot be reclaimed or migrated.
6065 */
6066static int __init cmdline_parse_kernelcore(char *p)
6067{
6068	/* parse kernelcore=mirror */
6069	if (parse_option_str(p, "mirror")) {
6070		mirrored_kernelcore = true;
6071		return 0;
6072	}
6073
6074	return cmdline_parse_core(p, &required_kernelcore);
6075}
6076
6077/*
6078 * movablecore=size sets the amount of memory for use for allocations that
6079 * can be reclaimed or migrated.
6080 */
6081static int __init cmdline_parse_movablecore(char *p)
6082{
6083	return cmdline_parse_core(p, &required_movablecore);
6084}
6085
6086early_param("kernelcore", cmdline_parse_kernelcore);
6087early_param("movablecore", cmdline_parse_movablecore);
6088
6089#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6090
6091void adjust_managed_page_count(struct page *page, long count)
6092{
6093	spin_lock(&managed_page_count_lock);
6094	page_zone(page)->managed_pages += count;
6095	totalram_pages += count;
6096#ifdef CONFIG_HIGHMEM
6097	if (PageHighMem(page))
6098		totalhigh_pages += count;
6099#endif
6100	spin_unlock(&managed_page_count_lock);
6101}
6102EXPORT_SYMBOL(adjust_managed_page_count);
6103
6104unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6105{
6106	void *pos;
6107	unsigned long pages = 0;
6108
6109	start = (void *)PAGE_ALIGN((unsigned long)start);
6110	end = (void *)((unsigned long)end & PAGE_MASK);
6111	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6112		if ((unsigned int)poison <= 0xFF)
6113			memset(pos, poison, PAGE_SIZE);
6114		free_reserved_page(virt_to_page(pos));
6115	}
6116
6117	if (pages && s)
6118		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6119			s, pages << (PAGE_SHIFT - 10), start, end);
6120
6121	return pages;
6122}
6123EXPORT_SYMBOL(free_reserved_area);
6124
6125#ifdef	CONFIG_HIGHMEM
6126void free_highmem_page(struct page *page)
6127{
6128	__free_reserved_page(page);
6129	totalram_pages++;
6130	page_zone(page)->managed_pages++;
6131	totalhigh_pages++;
6132}
6133#endif
6134
6135
6136void __init mem_init_print_info(const char *str)
6137{
6138	unsigned long physpages, codesize, datasize, rosize, bss_size;
6139	unsigned long init_code_size, init_data_size;
6140
6141	physpages = get_num_physpages();
6142	codesize = _etext - _stext;
6143	datasize = _edata - _sdata;
6144	rosize = __end_rodata - __start_rodata;
6145	bss_size = __bss_stop - __bss_start;
6146	init_data_size = __init_end - __init_begin;
6147	init_code_size = _einittext - _sinittext;
6148
6149	/*
6150	 * Detect special cases and adjust section sizes accordingly:
6151	 * 1) .init.* may be embedded into .data sections
6152	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6153	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6154	 * 3) .rodata.* may be embedded into .text or .data sections.
6155	 */
6156#define adj_init_size(start, end, size, pos, adj) \
6157	do { \
6158		if (start <= pos && pos < end && size > adj) \
6159			size -= adj; \
6160	} while (0)
6161
6162	adj_init_size(__init_begin, __init_end, init_data_size,
6163		     _sinittext, init_code_size);
6164	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6165	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6166	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6167	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6168
6169#undef	adj_init_size
6170
6171	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
 
 
6172#ifdef	CONFIG_HIGHMEM
6173		", %luK highmem"
6174#endif
6175		"%s%s)\n",
6176		nr_free_pages() << (PAGE_SHIFT - 10),
6177		physpages << (PAGE_SHIFT - 10),
6178		codesize >> 10, datasize >> 10, rosize >> 10,
6179		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6180		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6181		totalcma_pages << (PAGE_SHIFT - 10),
6182#ifdef	CONFIG_HIGHMEM
6183		totalhigh_pages << (PAGE_SHIFT - 10),
6184#endif
6185		str ? ", " : "", str ? str : "");
6186}
6187
6188/**
6189 * set_dma_reserve - set the specified number of pages reserved in the first zone
6190 * @new_dma_reserve: The number of pages to mark reserved
6191 *
6192 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6193 * In the DMA zone, a significant percentage may be consumed by kernel image
6194 * and other unfreeable allocations which can skew the watermarks badly. This
6195 * function may optionally be used to account for unfreeable pages in the
6196 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6197 * smaller per-cpu batchsize.
6198 */
6199void __init set_dma_reserve(unsigned long new_dma_reserve)
6200{
6201	dma_reserve = new_dma_reserve;
6202}
6203
6204void __init free_area_init(unsigned long *zones_size)
6205{
6206	free_area_init_node(0, zones_size,
6207			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6208}
6209
6210static int page_alloc_cpu_notify(struct notifier_block *self,
6211				 unsigned long action, void *hcpu)
6212{
6213	int cpu = (unsigned long)hcpu;
6214
6215	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6216		lru_add_drain_cpu(cpu);
6217		drain_pages(cpu);
6218
6219		/*
6220		 * Spill the event counters of the dead processor
6221		 * into the current processors event counters.
6222		 * This artificially elevates the count of the current
6223		 * processor.
6224		 */
6225		vm_events_fold_cpu(cpu);
6226
6227		/*
6228		 * Zero the differential counters of the dead processor
6229		 * so that the vm statistics are consistent.
6230		 *
6231		 * This is only okay since the processor is dead and cannot
6232		 * race with what we are doing.
6233		 */
6234		cpu_vm_stats_fold(cpu);
6235	}
6236	return NOTIFY_OK;
6237}
6238
6239void __init page_alloc_init(void)
6240{
6241	hotcpu_notifier(page_alloc_cpu_notify, 0);
6242}
6243
6244/*
6245 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6246 *	or min_free_kbytes changes.
6247 */
6248static void calculate_totalreserve_pages(void)
6249{
6250	struct pglist_data *pgdat;
6251	unsigned long reserve_pages = 0;
6252	enum zone_type i, j;
6253
6254	for_each_online_pgdat(pgdat) {
6255		for (i = 0; i < MAX_NR_ZONES; i++) {
6256			struct zone *zone = pgdat->node_zones + i;
6257			long max = 0;
6258
6259			/* Find valid and maximum lowmem_reserve in the zone */
6260			for (j = i; j < MAX_NR_ZONES; j++) {
6261				if (zone->lowmem_reserve[j] > max)
6262					max = zone->lowmem_reserve[j];
6263			}
6264
6265			/* we treat the high watermark as reserved pages. */
6266			max += high_wmark_pages(zone);
6267
6268			if (max > zone->managed_pages)
6269				max = zone->managed_pages;
6270
6271			zone->totalreserve_pages = max;
6272
6273			reserve_pages += max;
 
 
 
 
 
 
 
 
 
 
6274		}
6275	}
 
6276	totalreserve_pages = reserve_pages;
6277}
6278
6279/*
6280 * setup_per_zone_lowmem_reserve - called whenever
6281 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6282 *	has a correct pages reserved value, so an adequate number of
6283 *	pages are left in the zone after a successful __alloc_pages().
6284 */
6285static void setup_per_zone_lowmem_reserve(void)
6286{
6287	struct pglist_data *pgdat;
6288	enum zone_type j, idx;
6289
6290	for_each_online_pgdat(pgdat) {
6291		for (j = 0; j < MAX_NR_ZONES; j++) {
6292			struct zone *zone = pgdat->node_zones + j;
6293			unsigned long managed_pages = zone->managed_pages;
6294
6295			zone->lowmem_reserve[j] = 0;
6296
6297			idx = j;
6298			while (idx) {
6299				struct zone *lower_zone;
6300
6301				idx--;
6302
6303				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6304					sysctl_lowmem_reserve_ratio[idx] = 1;
6305
6306				lower_zone = pgdat->node_zones + idx;
6307				lower_zone->lowmem_reserve[j] = managed_pages /
6308					sysctl_lowmem_reserve_ratio[idx];
6309				managed_pages += lower_zone->managed_pages;
6310			}
6311		}
6312	}
6313
6314	/* update totalreserve_pages */
6315	calculate_totalreserve_pages();
6316}
6317
6318static void __setup_per_zone_wmarks(void)
6319{
6320	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6321	unsigned long lowmem_pages = 0;
6322	struct zone *zone;
6323	unsigned long flags;
6324
6325	/* Calculate total number of !ZONE_HIGHMEM pages */
6326	for_each_zone(zone) {
6327		if (!is_highmem(zone))
6328			lowmem_pages += zone->managed_pages;
6329	}
6330
6331	for_each_zone(zone) {
6332		u64 tmp;
6333
6334		spin_lock_irqsave(&zone->lock, flags);
6335		tmp = (u64)pages_min * zone->managed_pages;
6336		do_div(tmp, lowmem_pages);
6337		if (is_highmem(zone)) {
6338			/*
6339			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6340			 * need highmem pages, so cap pages_min to a small
6341			 * value here.
6342			 *
6343			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6344			 * deltas control asynch page reclaim, and so should
6345			 * not be capped for highmem.
6346			 */
6347			unsigned long min_pages;
6348
6349			min_pages = zone->managed_pages / 1024;
6350			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6351			zone->watermark[WMARK_MIN] = min_pages;
6352		} else {
6353			/*
6354			 * If it's a lowmem zone, reserve a number of pages
6355			 * proportionate to the zone's size.
6356			 */
6357			zone->watermark[WMARK_MIN] = tmp;
6358		}
6359
6360		/*
6361		 * Set the kswapd watermarks distance according to the
6362		 * scale factor in proportion to available memory, but
6363		 * ensure a minimum size on small systems.
6364		 */
6365		tmp = max_t(u64, tmp >> 2,
6366			    mult_frac(zone->managed_pages,
6367				      watermark_scale_factor, 10000));
6368
6369		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6370		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6371
6372		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
6373			high_wmark_pages(zone) - low_wmark_pages(zone) -
6374			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
 
6375
 
6376		spin_unlock_irqrestore(&zone->lock, flags);
6377	}
6378
6379	/* update totalreserve_pages */
6380	calculate_totalreserve_pages();
6381}
6382
6383/**
6384 * setup_per_zone_wmarks - called when min_free_kbytes changes
6385 * or when memory is hot-{added|removed}
6386 *
6387 * Ensures that the watermark[min,low,high] values for each zone are set
6388 * correctly with respect to min_free_kbytes.
6389 */
6390void setup_per_zone_wmarks(void)
6391{
6392	mutex_lock(&zonelists_mutex);
6393	__setup_per_zone_wmarks();
6394	mutex_unlock(&zonelists_mutex);
6395}
6396
6397/*
6398 * The inactive anon list should be small enough that the VM never has to
6399 * do too much work, but large enough that each inactive page has a chance
6400 * to be referenced again before it is swapped out.
6401 *
6402 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6403 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6404 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6405 * the anonymous pages are kept on the inactive list.
6406 *
6407 * total     target    max
6408 * memory    ratio     inactive anon
6409 * -------------------------------------
6410 *   10MB       1         5MB
6411 *  100MB       1        50MB
6412 *    1GB       3       250MB
6413 *   10GB      10       0.9GB
6414 *  100GB      31         3GB
6415 *    1TB     101        10GB
6416 *   10TB     320        32GB
6417 */
6418static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6419{
6420	unsigned int gb, ratio;
6421
6422	/* Zone size in gigabytes */
6423	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6424	if (gb)
6425		ratio = int_sqrt(10 * gb);
6426	else
6427		ratio = 1;
6428
6429	zone->inactive_ratio = ratio;
6430}
6431
6432static void __meminit setup_per_zone_inactive_ratio(void)
6433{
6434	struct zone *zone;
6435
6436	for_each_zone(zone)
6437		calculate_zone_inactive_ratio(zone);
6438}
6439
6440/*
6441 * Initialise min_free_kbytes.
6442 *
6443 * For small machines we want it small (128k min).  For large machines
6444 * we want it large (64MB max).  But it is not linear, because network
6445 * bandwidth does not increase linearly with machine size.  We use
6446 *
6447 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6448 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6449 *
6450 * which yields
6451 *
6452 * 16MB:	512k
6453 * 32MB:	724k
6454 * 64MB:	1024k
6455 * 128MB:	1448k
6456 * 256MB:	2048k
6457 * 512MB:	2896k
6458 * 1024MB:	4096k
6459 * 2048MB:	5792k
6460 * 4096MB:	8192k
6461 * 8192MB:	11584k
6462 * 16384MB:	16384k
6463 */
6464int __meminit init_per_zone_wmark_min(void)
6465{
6466	unsigned long lowmem_kbytes;
6467	int new_min_free_kbytes;
6468
6469	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6470	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6471
6472	if (new_min_free_kbytes > user_min_free_kbytes) {
6473		min_free_kbytes = new_min_free_kbytes;
6474		if (min_free_kbytes < 128)
6475			min_free_kbytes = 128;
6476		if (min_free_kbytes > 65536)
6477			min_free_kbytes = 65536;
6478	} else {
6479		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6480				new_min_free_kbytes, user_min_free_kbytes);
6481	}
6482	setup_per_zone_wmarks();
6483	refresh_zone_stat_thresholds();
6484	setup_per_zone_lowmem_reserve();
6485	setup_per_zone_inactive_ratio();
6486	return 0;
6487}
6488core_initcall(init_per_zone_wmark_min)
6489
6490/*
6491 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6492 *	that we can call two helper functions whenever min_free_kbytes
6493 *	changes.
6494 */
6495int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6496	void __user *buffer, size_t *length, loff_t *ppos)
6497{
6498	int rc;
6499
6500	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6501	if (rc)
6502		return rc;
6503
6504	if (write) {
6505		user_min_free_kbytes = min_free_kbytes;
6506		setup_per_zone_wmarks();
6507	}
6508	return 0;
6509}
6510
6511int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6512	void __user *buffer, size_t *length, loff_t *ppos)
6513{
6514	int rc;
6515
6516	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6517	if (rc)
6518		return rc;
6519
6520	if (write)
6521		setup_per_zone_wmarks();
6522
6523	return 0;
6524}
6525
6526#ifdef CONFIG_NUMA
6527int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6528	void __user *buffer, size_t *length, loff_t *ppos)
6529{
6530	struct zone *zone;
6531	int rc;
6532
6533	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6534	if (rc)
6535		return rc;
6536
6537	for_each_zone(zone)
6538		zone->min_unmapped_pages = (zone->managed_pages *
6539				sysctl_min_unmapped_ratio) / 100;
6540	return 0;
6541}
6542
6543int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6544	void __user *buffer, size_t *length, loff_t *ppos)
6545{
6546	struct zone *zone;
6547	int rc;
6548
6549	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6550	if (rc)
6551		return rc;
6552
6553	for_each_zone(zone)
6554		zone->min_slab_pages = (zone->managed_pages *
6555				sysctl_min_slab_ratio) / 100;
6556	return 0;
6557}
6558#endif
6559
6560/*
6561 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6562 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6563 *	whenever sysctl_lowmem_reserve_ratio changes.
6564 *
6565 * The reserve ratio obviously has absolutely no relation with the
6566 * minimum watermarks. The lowmem reserve ratio can only make sense
6567 * if in function of the boot time zone sizes.
6568 */
6569int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6570	void __user *buffer, size_t *length, loff_t *ppos)
6571{
6572	proc_dointvec_minmax(table, write, buffer, length, ppos);
6573	setup_per_zone_lowmem_reserve();
6574	return 0;
6575}
6576
6577/*
6578 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6579 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6580 * pagelist can have before it gets flushed back to buddy allocator.
6581 */
6582int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6583	void __user *buffer, size_t *length, loff_t *ppos)
6584{
6585	struct zone *zone;
6586	int old_percpu_pagelist_fraction;
6587	int ret;
6588
6589	mutex_lock(&pcp_batch_high_lock);
6590	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6591
6592	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6593	if (!write || ret < 0)
6594		goto out;
6595
6596	/* Sanity checking to avoid pcp imbalance */
6597	if (percpu_pagelist_fraction &&
6598	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6599		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6600		ret = -EINVAL;
6601		goto out;
6602	}
6603
6604	/* No change? */
6605	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6606		goto out;
6607
 
6608	for_each_populated_zone(zone) {
6609		unsigned int cpu;
6610
6611		for_each_possible_cpu(cpu)
6612			pageset_set_high_and_batch(zone,
6613					per_cpu_ptr(zone->pageset, cpu));
6614	}
6615out:
6616	mutex_unlock(&pcp_batch_high_lock);
6617	return ret;
6618}
6619
6620#ifdef CONFIG_NUMA
6621int hashdist = HASHDIST_DEFAULT;
6622
 
6623static int __init set_hashdist(char *str)
6624{
6625	if (!str)
6626		return 0;
6627	hashdist = simple_strtoul(str, &str, 0);
6628	return 1;
6629}
6630__setup("hashdist=", set_hashdist);
6631#endif
6632
6633/*
6634 * allocate a large system hash table from bootmem
6635 * - it is assumed that the hash table must contain an exact power-of-2
6636 *   quantity of entries
6637 * - limit is the number of hash buckets, not the total allocation size
6638 */
6639void *__init alloc_large_system_hash(const char *tablename,
6640				     unsigned long bucketsize,
6641				     unsigned long numentries,
6642				     int scale,
6643				     int flags,
6644				     unsigned int *_hash_shift,
6645				     unsigned int *_hash_mask,
6646				     unsigned long low_limit,
6647				     unsigned long high_limit)
6648{
6649	unsigned long long max = high_limit;
6650	unsigned long log2qty, size;
6651	void *table = NULL;
6652
6653	/* allow the kernel cmdline to have a say */
6654	if (!numentries) {
6655		/* round applicable memory size up to nearest megabyte */
6656		numentries = nr_kernel_pages;
6657
6658		/* It isn't necessary when PAGE_SIZE >= 1MB */
6659		if (PAGE_SHIFT < 20)
6660			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6661
6662		/* limit to 1 bucket per 2^scale bytes of low memory */
6663		if (scale > PAGE_SHIFT)
6664			numentries >>= (scale - PAGE_SHIFT);
6665		else
6666			numentries <<= (PAGE_SHIFT - scale);
6667
6668		/* Make sure we've got at least a 0-order allocation.. */
6669		if (unlikely(flags & HASH_SMALL)) {
6670			/* Makes no sense without HASH_EARLY */
6671			WARN_ON(!(flags & HASH_EARLY));
6672			if (!(numentries >> *_hash_shift)) {
6673				numentries = 1UL << *_hash_shift;
6674				BUG_ON(!numentries);
6675			}
6676		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6677			numentries = PAGE_SIZE / bucketsize;
6678	}
6679	numentries = roundup_pow_of_two(numentries);
6680
6681	/* limit allocation size to 1/16 total memory by default */
6682	if (max == 0) {
6683		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6684		do_div(max, bucketsize);
6685	}
6686	max = min(max, 0x80000000ULL);
6687
6688	if (numentries < low_limit)
6689		numentries = low_limit;
6690	if (numentries > max)
6691		numentries = max;
6692
6693	log2qty = ilog2(numentries);
6694
6695	do {
6696		size = bucketsize << log2qty;
6697		if (flags & HASH_EARLY)
6698			table = memblock_virt_alloc_nopanic(size, 0);
6699		else if (hashdist)
6700			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6701		else {
6702			/*
6703			 * If bucketsize is not a power-of-two, we may free
6704			 * some pages at the end of hash table which
6705			 * alloc_pages_exact() automatically does
6706			 */
6707			if (get_order(size) < MAX_ORDER) {
6708				table = alloc_pages_exact(size, GFP_ATOMIC);
6709				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6710			}
6711		}
6712	} while (!table && size > PAGE_SIZE && --log2qty);
6713
6714	if (!table)
6715		panic("Failed to allocate %s hash table\n", tablename);
6716
6717	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6718		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
 
 
 
6719
6720	if (_hash_shift)
6721		*_hash_shift = log2qty;
6722	if (_hash_mask)
6723		*_hash_mask = (1 << log2qty) - 1;
6724
6725	return table;
6726}
6727
6728/* Return a pointer to the bitmap storing bits affecting a block of pages */
6729static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6730							unsigned long pfn)
6731{
6732#ifdef CONFIG_SPARSEMEM
6733	return __pfn_to_section(pfn)->pageblock_flags;
6734#else
6735	return zone->pageblock_flags;
6736#endif /* CONFIG_SPARSEMEM */
6737}
6738
6739static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6740{
6741#ifdef CONFIG_SPARSEMEM
6742	pfn &= (PAGES_PER_SECTION-1);
6743	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6744#else
6745	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6746	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6747#endif /* CONFIG_SPARSEMEM */
6748}
6749
6750/**
6751 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6752 * @page: The page within the block of interest
6753 * @pfn: The target page frame number
6754 * @end_bitidx: The last bit of interest to retrieve
6755 * @mask: mask of bits that the caller is interested in
6756 *
6757 * Return: pageblock_bits flags
6758 */
6759unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6760					unsigned long end_bitidx,
6761					unsigned long mask)
6762{
6763	struct zone *zone;
6764	unsigned long *bitmap;
6765	unsigned long bitidx, word_bitidx;
6766	unsigned long word;
 
6767
6768	zone = page_zone(page);
 
6769	bitmap = get_pageblock_bitmap(zone, pfn);
6770	bitidx = pfn_to_bitidx(zone, pfn);
6771	word_bitidx = bitidx / BITS_PER_LONG;
6772	bitidx &= (BITS_PER_LONG-1);
6773
6774	word = bitmap[word_bitidx];
6775	bitidx += end_bitidx;
6776	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
 
 
6777}
6778
6779/**
6780 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6781 * @page: The page within the block of interest
6782 * @flags: The flags to set
6783 * @pfn: The target page frame number
6784 * @end_bitidx: The last bit of interest
6785 * @mask: mask of bits that the caller is interested in
6786 */
6787void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6788					unsigned long pfn,
6789					unsigned long end_bitidx,
6790					unsigned long mask)
6791{
6792	struct zone *zone;
6793	unsigned long *bitmap;
6794	unsigned long bitidx, word_bitidx;
6795	unsigned long old_word, word;
6796
6797	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6798
6799	zone = page_zone(page);
 
6800	bitmap = get_pageblock_bitmap(zone, pfn);
6801	bitidx = pfn_to_bitidx(zone, pfn);
6802	word_bitidx = bitidx / BITS_PER_LONG;
6803	bitidx &= (BITS_PER_LONG-1);
6804
6805	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6806
6807	bitidx += end_bitidx;
6808	mask <<= (BITS_PER_LONG - bitidx - 1);
6809	flags <<= (BITS_PER_LONG - bitidx - 1);
6810
6811	word = READ_ONCE(bitmap[word_bitidx]);
6812	for (;;) {
6813		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6814		if (word == old_word)
6815			break;
6816		word = old_word;
6817	}
6818}
6819
6820/*
6821 * This function checks whether pageblock includes unmovable pages or not.
6822 * If @count is not zero, it is okay to include less @count unmovable pages
6823 *
6824 * PageLRU check without isolation or lru_lock could race so that
6825 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6826 * expect this function should be exact.
6827 */
6828bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6829			 bool skip_hwpoisoned_pages)
6830{
6831	unsigned long pfn, iter, found;
6832	int mt;
6833
6834	/*
6835	 * For avoiding noise data, lru_add_drain_all() should be called
6836	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6837	 */
6838	if (zone_idx(zone) == ZONE_MOVABLE)
6839		return false;
6840	mt = get_pageblock_migratetype(page);
6841	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6842		return false;
6843
6844	pfn = page_to_pfn(page);
6845	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6846		unsigned long check = pfn + iter;
6847
6848		if (!pfn_valid_within(check))
6849			continue;
6850
6851		page = pfn_to_page(check);
6852
6853		/*
6854		 * Hugepages are not in LRU lists, but they're movable.
6855		 * We need not scan over tail pages bacause we don't
6856		 * handle each tail page individually in migration.
6857		 */
6858		if (PageHuge(page)) {
6859			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6860			continue;
6861		}
6862
6863		/*
6864		 * We can't use page_count without pin a page
6865		 * because another CPU can free compound page.
6866		 * This check already skips compound tails of THP
6867		 * because their page->_count is zero at all time.
6868		 */
6869		if (!page_ref_count(page)) {
6870			if (PageBuddy(page))
6871				iter += (1 << page_order(page)) - 1;
6872			continue;
6873		}
6874
6875		/*
6876		 * The HWPoisoned page may be not in buddy system, and
6877		 * page_count() is not 0.
6878		 */
6879		if (skip_hwpoisoned_pages && PageHWPoison(page))
6880			continue;
6881
6882		if (!PageLRU(page))
6883			found++;
6884		/*
6885		 * If there are RECLAIMABLE pages, we need to check
6886		 * it.  But now, memory offline itself doesn't call
6887		 * shrink_node_slabs() and it still to be fixed.
6888		 */
6889		/*
6890		 * If the page is not RAM, page_count()should be 0.
6891		 * we don't need more check. This is an _used_ not-movable page.
6892		 *
6893		 * The problematic thing here is PG_reserved pages. PG_reserved
6894		 * is set to both of a memory hole page and a _used_ kernel
6895		 * page at boot.
6896		 */
6897		if (found > count)
6898			return true;
6899	}
6900	return false;
6901}
6902
6903bool is_pageblock_removable_nolock(struct page *page)
6904{
6905	struct zone *zone;
6906	unsigned long pfn;
6907
6908	/*
6909	 * We have to be careful here because we are iterating over memory
6910	 * sections which are not zone aware so we might end up outside of
6911	 * the zone but still within the section.
6912	 * We have to take care about the node as well. If the node is offline
6913	 * its NODE_DATA will be NULL - see page_zone.
6914	 */
6915	if (!node_online(page_to_nid(page)))
6916		return false;
6917
6918	zone = page_zone(page);
6919	pfn = page_to_pfn(page);
6920	if (!zone_spans_pfn(zone, pfn))
6921		return false;
6922
6923	return !has_unmovable_pages(zone, page, 0, true);
6924}
6925
6926#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6927
6928static unsigned long pfn_max_align_down(unsigned long pfn)
6929{
6930	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6931			     pageblock_nr_pages) - 1);
6932}
6933
6934static unsigned long pfn_max_align_up(unsigned long pfn)
6935{
6936	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6937				pageblock_nr_pages));
6938}
6939
6940/* [start, end) must belong to a single zone. */
6941static int __alloc_contig_migrate_range(struct compact_control *cc,
6942					unsigned long start, unsigned long end)
6943{
6944	/* This function is based on compact_zone() from compaction.c. */
6945	unsigned long nr_reclaimed;
6946	unsigned long pfn = start;
6947	unsigned int tries = 0;
6948	int ret = 0;
6949
6950	migrate_prep();
6951
6952	while (pfn < end || !list_empty(&cc->migratepages)) {
6953		if (fatal_signal_pending(current)) {
6954			ret = -EINTR;
6955			break;
6956		}
6957
6958		if (list_empty(&cc->migratepages)) {
6959			cc->nr_migratepages = 0;
6960			pfn = isolate_migratepages_range(cc, pfn, end);
 
6961			if (!pfn) {
6962				ret = -EINTR;
6963				break;
6964			}
6965			tries = 0;
6966		} else if (++tries == 5) {
6967			ret = ret < 0 ? ret : -EBUSY;
6968			break;
6969		}
6970
6971		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6972							&cc->migratepages);
6973		cc->nr_migratepages -= nr_reclaimed;
6974
6975		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6976				    NULL, 0, cc->mode, MR_CMA);
6977	}
6978	if (ret < 0) {
6979		putback_movable_pages(&cc->migratepages);
6980		return ret;
6981	}
6982	return 0;
6983}
6984
6985/**
6986 * alloc_contig_range() -- tries to allocate given range of pages
6987 * @start:	start PFN to allocate
6988 * @end:	one-past-the-last PFN to allocate
6989 * @migratetype:	migratetype of the underlaying pageblocks (either
6990 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6991 *			in range must have the same migratetype and it must
6992 *			be either of the two.
6993 *
6994 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6995 * aligned, however it's the caller's responsibility to guarantee that
6996 * we are the only thread that changes migrate type of pageblocks the
6997 * pages fall in.
6998 *
6999 * The PFN range must belong to a single zone.
7000 *
7001 * Returns zero on success or negative error code.  On success all
7002 * pages which PFN is in [start, end) are allocated for the caller and
7003 * need to be freed with free_contig_range().
7004 */
7005int alloc_contig_range(unsigned long start, unsigned long end,
7006		       unsigned migratetype)
7007{
7008	unsigned long outer_start, outer_end;
7009	unsigned int order;
7010	int ret = 0;
7011
7012	struct compact_control cc = {
7013		.nr_migratepages = 0,
7014		.order = -1,
7015		.zone = page_zone(pfn_to_page(start)),
7016		.mode = MIGRATE_SYNC,
7017		.ignore_skip_hint = true,
7018	};
7019	INIT_LIST_HEAD(&cc.migratepages);
7020
7021	/*
7022	 * What we do here is we mark all pageblocks in range as
7023	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7024	 * have different sizes, and due to the way page allocator
7025	 * work, we align the range to biggest of the two pages so
7026	 * that page allocator won't try to merge buddies from
7027	 * different pageblocks and change MIGRATE_ISOLATE to some
7028	 * other migration type.
7029	 *
7030	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7031	 * migrate the pages from an unaligned range (ie. pages that
7032	 * we are interested in).  This will put all the pages in
7033	 * range back to page allocator as MIGRATE_ISOLATE.
7034	 *
7035	 * When this is done, we take the pages in range from page
7036	 * allocator removing them from the buddy system.  This way
7037	 * page allocator will never consider using them.
7038	 *
7039	 * This lets us mark the pageblocks back as
7040	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7041	 * aligned range but not in the unaligned, original range are
7042	 * put back to page allocator so that buddy can use them.
7043	 */
7044
7045	ret = start_isolate_page_range(pfn_max_align_down(start),
7046				       pfn_max_align_up(end), migratetype,
7047				       false);
7048	if (ret)
7049		return ret;
7050
7051	/*
7052	 * In case of -EBUSY, we'd like to know which page causes problem.
7053	 * So, just fall through. We will check it in test_pages_isolated().
7054	 */
7055	ret = __alloc_contig_migrate_range(&cc, start, end);
7056	if (ret && ret != -EBUSY)
7057		goto done;
7058
7059	/*
7060	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7061	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7062	 * more, all pages in [start, end) are free in page allocator.
7063	 * What we are going to do is to allocate all pages from
7064	 * [start, end) (that is remove them from page allocator).
7065	 *
7066	 * The only problem is that pages at the beginning and at the
7067	 * end of interesting range may be not aligned with pages that
7068	 * page allocator holds, ie. they can be part of higher order
7069	 * pages.  Because of this, we reserve the bigger range and
7070	 * once this is done free the pages we are not interested in.
7071	 *
7072	 * We don't have to hold zone->lock here because the pages are
7073	 * isolated thus they won't get removed from buddy.
7074	 */
7075
7076	lru_add_drain_all();
7077	drain_all_pages(cc.zone);
7078
7079	order = 0;
7080	outer_start = start;
7081	while (!PageBuddy(pfn_to_page(outer_start))) {
7082		if (++order >= MAX_ORDER) {
7083			outer_start = start;
7084			break;
7085		}
7086		outer_start &= ~0UL << order;
7087	}
7088
7089	if (outer_start != start) {
7090		order = page_order(pfn_to_page(outer_start));
7091
7092		/*
7093		 * outer_start page could be small order buddy page and
7094		 * it doesn't include start page. Adjust outer_start
7095		 * in this case to report failed page properly
7096		 * on tracepoint in test_pages_isolated()
7097		 */
7098		if (outer_start + (1UL << order) <= start)
7099			outer_start = start;
7100	}
7101
7102	/* Make sure the range is really isolated. */
7103	if (test_pages_isolated(outer_start, end, false)) {
7104		pr_info("%s: [%lx, %lx) PFNs busy\n",
7105			__func__, outer_start, end);
7106		ret = -EBUSY;
7107		goto done;
7108	}
7109
 
7110	/* Grab isolated pages from freelists. */
7111	outer_end = isolate_freepages_range(&cc, outer_start, end);
7112	if (!outer_end) {
7113		ret = -EBUSY;
7114		goto done;
7115	}
7116
7117	/* Free head and tail (if any) */
7118	if (start != outer_start)
7119		free_contig_range(outer_start, start - outer_start);
7120	if (end != outer_end)
7121		free_contig_range(end, outer_end - end);
7122
7123done:
7124	undo_isolate_page_range(pfn_max_align_down(start),
7125				pfn_max_align_up(end), migratetype);
7126	return ret;
7127}
7128
7129void free_contig_range(unsigned long pfn, unsigned nr_pages)
7130{
7131	unsigned int count = 0;
7132
7133	for (; nr_pages--; pfn++) {
7134		struct page *page = pfn_to_page(pfn);
7135
7136		count += page_count(page) != 1;
7137		__free_page(page);
7138	}
7139	WARN(count != 0, "%d pages are still in use!\n", count);
7140}
7141#endif
7142
7143#ifdef CONFIG_MEMORY_HOTPLUG
7144/*
7145 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7146 * page high values need to be recalulated.
7147 */
7148void __meminit zone_pcp_update(struct zone *zone)
7149{
7150	unsigned cpu;
7151	mutex_lock(&pcp_batch_high_lock);
7152	for_each_possible_cpu(cpu)
7153		pageset_set_high_and_batch(zone,
7154				per_cpu_ptr(zone->pageset, cpu));
7155	mutex_unlock(&pcp_batch_high_lock);
7156}
7157#endif
7158
7159void zone_pcp_reset(struct zone *zone)
7160{
7161	unsigned long flags;
7162	int cpu;
7163	struct per_cpu_pageset *pset;
7164
7165	/* avoid races with drain_pages()  */
7166	local_irq_save(flags);
7167	if (zone->pageset != &boot_pageset) {
7168		for_each_online_cpu(cpu) {
7169			pset = per_cpu_ptr(zone->pageset, cpu);
7170			drain_zonestat(zone, pset);
7171		}
7172		free_percpu(zone->pageset);
7173		zone->pageset = &boot_pageset;
7174	}
7175	local_irq_restore(flags);
7176}
7177
7178#ifdef CONFIG_MEMORY_HOTREMOVE
7179/*
7180 * All pages in the range must be isolated before calling this.
7181 */
7182void
7183__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7184{
7185	struct page *page;
7186	struct zone *zone;
7187	unsigned int order, i;
7188	unsigned long pfn;
7189	unsigned long flags;
7190	/* find the first valid pfn */
7191	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7192		if (pfn_valid(pfn))
7193			break;
7194	if (pfn == end_pfn)
7195		return;
7196	zone = page_zone(pfn_to_page(pfn));
7197	spin_lock_irqsave(&zone->lock, flags);
7198	pfn = start_pfn;
7199	while (pfn < end_pfn) {
7200		if (!pfn_valid(pfn)) {
7201			pfn++;
7202			continue;
7203		}
7204		page = pfn_to_page(pfn);
7205		/*
7206		 * The HWPoisoned page may be not in buddy system, and
7207		 * page_count() is not 0.
7208		 */
7209		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7210			pfn++;
7211			SetPageReserved(page);
7212			continue;
7213		}
7214
7215		BUG_ON(page_count(page));
7216		BUG_ON(!PageBuddy(page));
7217		order = page_order(page);
7218#ifdef CONFIG_DEBUG_VM
7219		pr_info("remove from free list %lx %d %lx\n",
7220			pfn, 1 << order, end_pfn);
7221#endif
7222		list_del(&page->lru);
7223		rmv_page_order(page);
7224		zone->free_area[order].nr_free--;
7225		for (i = 0; i < (1 << order); i++)
7226			SetPageReserved((page+i));
7227		pfn += (1 << order);
7228	}
7229	spin_unlock_irqrestore(&zone->lock, flags);
7230}
7231#endif
7232
 
7233bool is_free_buddy_page(struct page *page)
7234{
7235	struct zone *zone = page_zone(page);
7236	unsigned long pfn = page_to_pfn(page);
7237	unsigned long flags;
7238	unsigned int order;
7239
7240	spin_lock_irqsave(&zone->lock, flags);
7241	for (order = 0; order < MAX_ORDER; order++) {
7242		struct page *page_head = page - (pfn & ((1 << order) - 1));
7243
7244		if (PageBuddy(page_head) && page_order(page_head) >= order)
7245			break;
7246	}
7247	spin_unlock_irqrestore(&zone->lock, flags);
7248
7249	return order < MAX_ORDER;
7250}
v3.15
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kmemcheck.h>
 
  28#include <linux/module.h>
  29#include <linux/suspend.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/slab.h>
  33#include <linux/ratelimit.h>
  34#include <linux/oom.h>
  35#include <linux/notifier.h>
  36#include <linux/topology.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/cpuset.h>
  40#include <linux/memory_hotplug.h>
  41#include <linux/nodemask.h>
  42#include <linux/vmalloc.h>
  43#include <linux/vmstat.h>
  44#include <linux/mempolicy.h>
 
  45#include <linux/stop_machine.h>
  46#include <linux/sort.h>
  47#include <linux/pfn.h>
  48#include <linux/backing-dev.h>
  49#include <linux/fault-inject.h>
  50#include <linux/page-isolation.h>
  51#include <linux/page_cgroup.h>
  52#include <linux/debugobjects.h>
  53#include <linux/kmemleak.h>
  54#include <linux/compaction.h>
  55#include <trace/events/kmem.h>
  56#include <linux/ftrace_event.h>
  57#include <linux/memcontrol.h>
  58#include <linux/prefetch.h>
  59#include <linux/mm_inline.h>
  60#include <linux/migrate.h>
  61#include <linux/page-debug-flags.h>
  62#include <linux/hugetlb.h>
  63#include <linux/sched/rt.h>
 
 
  64
  65#include <asm/sections.h>
  66#include <asm/tlbflush.h>
  67#include <asm/div64.h>
  68#include "internal.h"
  69
  70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  71static DEFINE_MUTEX(pcp_batch_high_lock);
 
  72
  73#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  74DEFINE_PER_CPU(int, numa_node);
  75EXPORT_PER_CPU_SYMBOL(numa_node);
  76#endif
  77
  78#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  79/*
  80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  83 * defined in <linux/topology.h>.
  84 */
  85DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
  86EXPORT_PER_CPU_SYMBOL(_numa_mem_);
 
  87#endif
  88
  89/*
  90 * Array of node states.
  91 */
  92nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  93	[N_POSSIBLE] = NODE_MASK_ALL,
  94	[N_ONLINE] = { { [0] = 1UL } },
  95#ifndef CONFIG_NUMA
  96	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
  97#ifdef CONFIG_HIGHMEM
  98	[N_HIGH_MEMORY] = { { [0] = 1UL } },
  99#endif
 100#ifdef CONFIG_MOVABLE_NODE
 101	[N_MEMORY] = { { [0] = 1UL } },
 102#endif
 103	[N_CPU] = { { [0] = 1UL } },
 104#endif	/* NUMA */
 105};
 106EXPORT_SYMBOL(node_states);
 107
 108/* Protect totalram_pages and zone->managed_pages */
 109static DEFINE_SPINLOCK(managed_page_count_lock);
 110
 111unsigned long totalram_pages __read_mostly;
 112unsigned long totalreserve_pages __read_mostly;
 
 
 
 
 
 113/*
 114 * When calculating the number of globally allowed dirty pages, there
 115 * is a certain number of per-zone reserves that should not be
 116 * considered dirtyable memory.  This is the sum of those reserves
 117 * over all existing zones that contribute dirtyable memory.
 
 
 118 */
 119unsigned long dirty_balance_reserve __read_mostly;
 
 
 
 120
 121int percpu_pagelist_fraction;
 122gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 
 
 123
 124#ifdef CONFIG_PM_SLEEP
 125/*
 126 * The following functions are used by the suspend/hibernate code to temporarily
 127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 128 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 131 * guaranteed not to run in parallel with that modification).
 132 */
 133
 134static gfp_t saved_gfp_mask;
 135
 136void pm_restore_gfp_mask(void)
 137{
 138	WARN_ON(!mutex_is_locked(&pm_mutex));
 139	if (saved_gfp_mask) {
 140		gfp_allowed_mask = saved_gfp_mask;
 141		saved_gfp_mask = 0;
 142	}
 143}
 144
 145void pm_restrict_gfp_mask(void)
 146{
 147	WARN_ON(!mutex_is_locked(&pm_mutex));
 148	WARN_ON(saved_gfp_mask);
 149	saved_gfp_mask = gfp_allowed_mask;
 150	gfp_allowed_mask &= ~GFP_IOFS;
 151}
 152
 153bool pm_suspended_storage(void)
 154{
 155	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
 156		return false;
 157	return true;
 158}
 159#endif /* CONFIG_PM_SLEEP */
 160
 161#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 162int pageblock_order __read_mostly;
 163#endif
 164
 165static void __free_pages_ok(struct page *page, unsigned int order);
 166
 167/*
 168 * results with 256, 32 in the lowmem_reserve sysctl:
 169 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 170 *	1G machine -> (16M dma, 784M normal, 224M high)
 171 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 172 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 173 *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
 174 *
 175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 176 * don't need any ZONE_NORMAL reservation
 177 */
 178int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
 179#ifdef CONFIG_ZONE_DMA
 180	 256,
 181#endif
 182#ifdef CONFIG_ZONE_DMA32
 183	 256,
 184#endif
 185#ifdef CONFIG_HIGHMEM
 186	 32,
 187#endif
 188	 32,
 189};
 190
 191EXPORT_SYMBOL(totalram_pages);
 192
 193static char * const zone_names[MAX_NR_ZONES] = {
 194#ifdef CONFIG_ZONE_DMA
 195	 "DMA",
 196#endif
 197#ifdef CONFIG_ZONE_DMA32
 198	 "DMA32",
 199#endif
 200	 "Normal",
 201#ifdef CONFIG_HIGHMEM
 202	 "HighMem",
 203#endif
 204	 "Movable",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205};
 206
 207int min_free_kbytes = 1024;
 208int user_min_free_kbytes = -1;
 
 209
 210static unsigned long __meminitdata nr_kernel_pages;
 211static unsigned long __meminitdata nr_all_pages;
 212static unsigned long __meminitdata dma_reserve;
 213
 214#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 215static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
 216static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
 217static unsigned long __initdata required_kernelcore;
 218static unsigned long __initdata required_movablecore;
 219static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
 
 220
 221/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 222int movable_zone;
 223EXPORT_SYMBOL(movable_zone);
 224#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 225
 226#if MAX_NUMNODES > 1
 227int nr_node_ids __read_mostly = MAX_NUMNODES;
 228int nr_online_nodes __read_mostly = 1;
 229EXPORT_SYMBOL(nr_node_ids);
 230EXPORT_SYMBOL(nr_online_nodes);
 231#endif
 232
 233int page_group_by_mobility_disabled __read_mostly;
 234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235void set_pageblock_migratetype(struct page *page, int migratetype)
 236{
 237	if (unlikely(page_group_by_mobility_disabled &&
 238		     migratetype < MIGRATE_PCPTYPES))
 239		migratetype = MIGRATE_UNMOVABLE;
 240
 241	set_pageblock_flags_group(page, (unsigned long)migratetype,
 242					PB_migrate, PB_migrate_end);
 243}
 244
 245bool oom_killer_disabled __read_mostly;
 246
 247#ifdef CONFIG_DEBUG_VM
 248static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 249{
 250	int ret = 0;
 251	unsigned seq;
 252	unsigned long pfn = page_to_pfn(page);
 253	unsigned long sp, start_pfn;
 254
 255	do {
 256		seq = zone_span_seqbegin(zone);
 257		start_pfn = zone->zone_start_pfn;
 258		sp = zone->spanned_pages;
 259		if (!zone_spans_pfn(zone, pfn))
 260			ret = 1;
 261	} while (zone_span_seqretry(zone, seq));
 262
 263	if (ret)
 264		pr_err("page %lu outside zone [ %lu - %lu ]\n",
 265			pfn, start_pfn, start_pfn + sp);
 
 266
 267	return ret;
 268}
 269
 270static int page_is_consistent(struct zone *zone, struct page *page)
 271{
 272	if (!pfn_valid_within(page_to_pfn(page)))
 273		return 0;
 274	if (zone != page_zone(page))
 275		return 0;
 276
 277	return 1;
 278}
 279/*
 280 * Temporary debugging check for pages not lying within a given zone.
 281 */
 282static int bad_range(struct zone *zone, struct page *page)
 283{
 284	if (page_outside_zone_boundaries(zone, page))
 285		return 1;
 286	if (!page_is_consistent(zone, page))
 287		return 1;
 288
 289	return 0;
 290}
 291#else
 292static inline int bad_range(struct zone *zone, struct page *page)
 293{
 294	return 0;
 295}
 296#endif
 297
 298static void bad_page(struct page *page, const char *reason,
 299		unsigned long bad_flags)
 300{
 301	static unsigned long resume;
 302	static unsigned long nr_shown;
 303	static unsigned long nr_unshown;
 304
 305	/* Don't complain about poisoned pages */
 306	if (PageHWPoison(page)) {
 307		page_mapcount_reset(page); /* remove PageBuddy */
 308		return;
 309	}
 310
 311	/*
 312	 * Allow a burst of 60 reports, then keep quiet for that minute;
 313	 * or allow a steady drip of one report per second.
 314	 */
 315	if (nr_shown == 60) {
 316		if (time_before(jiffies, resume)) {
 317			nr_unshown++;
 318			goto out;
 319		}
 320		if (nr_unshown) {
 321			printk(KERN_ALERT
 322			      "BUG: Bad page state: %lu messages suppressed\n",
 323				nr_unshown);
 324			nr_unshown = 0;
 325		}
 326		nr_shown = 0;
 327	}
 328	if (nr_shown++ == 0)
 329		resume = jiffies + 60 * HZ;
 330
 331	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
 332		current->comm, page_to_pfn(page));
 333	dump_page_badflags(page, reason, bad_flags);
 
 
 
 
 
 334
 335	print_modules();
 336	dump_stack();
 337out:
 338	/* Leave bad fields for debug, except PageBuddy could make trouble */
 339	page_mapcount_reset(page); /* remove PageBuddy */
 340	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 341}
 342
 343/*
 344 * Higher-order pages are called "compound pages".  They are structured thusly:
 345 *
 346 * The first PAGE_SIZE page is called the "head page".
 347 *
 348 * The remaining PAGE_SIZE pages are called "tail pages".
 
 349 *
 350 * All pages have PG_compound set.  All tail pages have their ->first_page
 351 * pointing at the head page.
 352 *
 353 * The first tail page's ->lru.next holds the address of the compound page's
 354 * put_page() function.  Its ->lru.prev holds the order of allocation.
 355 * This usage means that zero-order pages may not be compound.
 356 */
 357
 358static void free_compound_page(struct page *page)
 359{
 360	__free_pages_ok(page, compound_order(page));
 361}
 362
 363void prep_compound_page(struct page *page, unsigned long order)
 364{
 365	int i;
 366	int nr_pages = 1 << order;
 367
 368	set_compound_page_dtor(page, free_compound_page);
 369	set_compound_order(page, order);
 370	__SetPageHead(page);
 371	for (i = 1; i < nr_pages; i++) {
 372		struct page *p = page + i;
 373		set_page_count(p, 0);
 374		p->first_page = page;
 375		/* Make sure p->first_page is always valid for PageTail() */
 376		smp_wmb();
 377		__SetPageTail(p);
 378	}
 
 379}
 380
 381/* update __split_huge_page_refcount if you change this function */
 382static int destroy_compound_page(struct page *page, unsigned long order)
 
 
 
 
 
 
 383{
 384	int i;
 385	int nr_pages = 1 << order;
 386	int bad = 0;
 387
 388	if (unlikely(compound_order(page) != order)) {
 389		bad_page(page, "wrong compound order", 0);
 390		bad++;
 391	}
 392
 393	__ClearPageHead(page);
 
 394
 395	for (i = 1; i < nr_pages; i++) {
 396		struct page *p = page + i;
 
 397
 398		if (unlikely(!PageTail(p))) {
 399			bad_page(page, "PageTail not set", 0);
 400			bad++;
 401		} else if (unlikely(p->first_page != page)) {
 402			bad_page(page, "first_page not consistent", 0);
 403			bad++;
 404		}
 405		__ClearPageTail(p);
 406	}
 407
 408	return bad;
 409}
 410
 411static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
 412{
 413	int i;
 
 414
 415	/*
 416	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
 417	 * and __GFP_HIGHMEM from hard or soft interrupt context.
 418	 */
 419	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
 420	for (i = 0; i < (1 << order); i++)
 421		clear_highpage(page + i);
 422}
 423
 424#ifdef CONFIG_DEBUG_PAGEALLOC
 425unsigned int _debug_guardpage_minorder;
 
 
 426
 427static int __init debug_guardpage_minorder_setup(char *buf)
 428{
 429	unsigned long res;
 430
 431	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 432		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
 433		return 0;
 434	}
 435	_debug_guardpage_minorder = res;
 436	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
 437	return 0;
 438}
 439__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
 440
 441static inline void set_page_guard_flag(struct page *page)
 
 442{
 443	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
 
 
 
 
 
 
 
 
 
 
 
 444}
 445
 446static inline void clear_page_guard_flag(struct page *page)
 
 447{
 448	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
 
 
 
 
 
 
 
 
 
 
 449}
 450#else
 451static inline void set_page_guard_flag(struct page *page) { }
 452static inline void clear_page_guard_flag(struct page *page) { }
 
 
 
 453#endif
 454
 455static inline void set_page_order(struct page *page, int order)
 456{
 457	set_page_private(page, order);
 458	__SetPageBuddy(page);
 459}
 460
 461static inline void rmv_page_order(struct page *page)
 462{
 463	__ClearPageBuddy(page);
 464	set_page_private(page, 0);
 465}
 466
 467/*
 468 * Locate the struct page for both the matching buddy in our
 469 * pair (buddy1) and the combined O(n+1) page they form (page).
 470 *
 471 * 1) Any buddy B1 will have an order O twin B2 which satisfies
 472 * the following equation:
 473 *     B2 = B1 ^ (1 << O)
 474 * For example, if the starting buddy (buddy2) is #8 its order
 475 * 1 buddy is #10:
 476 *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
 477 *
 478 * 2) Any buddy B will have an order O+1 parent P which
 479 * satisfies the following equation:
 480 *     P = B & ~(1 << O)
 481 *
 482 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
 483 */
 484static inline unsigned long
 485__find_buddy_index(unsigned long page_idx, unsigned int order)
 486{
 487	return page_idx ^ (1 << order);
 488}
 489
 490/*
 491 * This function checks whether a page is free && is the buddy
 492 * we can do coalesce a page and its buddy if
 493 * (a) the buddy is not in a hole &&
 494 * (b) the buddy is in the buddy system &&
 495 * (c) a page and its buddy have the same order &&
 496 * (d) a page and its buddy are in the same zone.
 497 *
 498 * For recording whether a page is in the buddy system, we set ->_mapcount
 499 * PAGE_BUDDY_MAPCOUNT_VALUE.
 500 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 501 * serialized by zone->lock.
 502 *
 503 * For recording page's order, we use page_private(page).
 504 */
 505static inline int page_is_buddy(struct page *page, struct page *buddy,
 506								int order)
 507{
 508	if (!pfn_valid_within(page_to_pfn(buddy)))
 509		return 0;
 510
 511	if (page_zone_id(page) != page_zone_id(buddy))
 512		return 0;
 
 513
 514	if (page_is_guard(buddy) && page_order(buddy) == order) {
 515		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 516		return 1;
 517	}
 518
 519	if (PageBuddy(buddy) && page_order(buddy) == order) {
 
 
 
 
 
 
 
 
 520		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 
 521		return 1;
 522	}
 523	return 0;
 524}
 525
 526/*
 527 * Freeing function for a buddy system allocator.
 528 *
 529 * The concept of a buddy system is to maintain direct-mapped table
 530 * (containing bit values) for memory blocks of various "orders".
 531 * The bottom level table contains the map for the smallest allocatable
 532 * units of memory (here, pages), and each level above it describes
 533 * pairs of units from the levels below, hence, "buddies".
 534 * At a high level, all that happens here is marking the table entry
 535 * at the bottom level available, and propagating the changes upward
 536 * as necessary, plus some accounting needed to play nicely with other
 537 * parts of the VM system.
 538 * At each level, we keep a list of pages, which are heads of continuous
 539 * free pages of length of (1 << order) and marked with _mapcount
 540 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 541 * field.
 542 * So when we are allocating or freeing one, we can derive the state of the
 543 * other.  That is, if we allocate a small block, and both were
 544 * free, the remainder of the region must be split into blocks.
 545 * If a block is freed, and its buddy is also free, then this
 546 * triggers coalescing into a block of larger size.
 547 *
 548 * -- nyc
 549 */
 550
 551static inline void __free_one_page(struct page *page,
 
 552		struct zone *zone, unsigned int order,
 553		int migratetype)
 554{
 555	unsigned long page_idx;
 556	unsigned long combined_idx;
 557	unsigned long uninitialized_var(buddy_idx);
 558	struct page *buddy;
 
 
 
 559
 560	VM_BUG_ON(!zone_is_initialized(zone));
 561
 562	if (unlikely(PageCompound(page)))
 563		if (unlikely(destroy_compound_page(page, order)))
 564			return;
 565
 566	VM_BUG_ON(migratetype == -1);
 
 
 567
 568	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
 569
 570	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
 571	VM_BUG_ON_PAGE(bad_range(zone, page), page);
 572
 573	while (order < MAX_ORDER-1) {
 
 574		buddy_idx = __find_buddy_index(page_idx, order);
 575		buddy = page + (buddy_idx - page_idx);
 576		if (!page_is_buddy(page, buddy, order))
 577			break;
 578		/*
 579		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 580		 * merge with it and move up one order.
 581		 */
 582		if (page_is_guard(buddy)) {
 583			clear_page_guard_flag(buddy);
 584			set_page_private(page, 0);
 585			__mod_zone_freepage_state(zone, 1 << order,
 586						  migratetype);
 587		} else {
 588			list_del(&buddy->lru);
 589			zone->free_area[order].nr_free--;
 590			rmv_page_order(buddy);
 591		}
 592		combined_idx = buddy_idx & page_idx;
 593		page = page + (combined_idx - page_idx);
 594		page_idx = combined_idx;
 595		order++;
 596	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597	set_page_order(page, order);
 598
 599	/*
 600	 * If this is not the largest possible page, check if the buddy
 601	 * of the next-highest order is free. If it is, it's possible
 602	 * that pages are being freed that will coalesce soon. In case,
 603	 * that is happening, add the free page to the tail of the list
 604	 * so it's less likely to be used soon and more likely to be merged
 605	 * as a higher order page
 606	 */
 607	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
 608		struct page *higher_page, *higher_buddy;
 609		combined_idx = buddy_idx & page_idx;
 610		higher_page = page + (combined_idx - page_idx);
 611		buddy_idx = __find_buddy_index(combined_idx, order + 1);
 612		higher_buddy = higher_page + (buddy_idx - combined_idx);
 613		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
 614			list_add_tail(&page->lru,
 615				&zone->free_area[order].free_list[migratetype]);
 616			goto out;
 617		}
 618	}
 619
 620	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 621out:
 622	zone->free_area[order].nr_free++;
 623}
 624
 625static inline int free_pages_check(struct page *page)
 626{
 627	const char *bad_reason = NULL;
 628	unsigned long bad_flags = 0;
 629
 630	if (unlikely(page_mapcount(page)))
 631		bad_reason = "nonzero mapcount";
 632	if (unlikely(page->mapping != NULL))
 633		bad_reason = "non-NULL mapping";
 634	if (unlikely(atomic_read(&page->_count) != 0))
 635		bad_reason = "nonzero _count";
 636	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 637		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 638		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 639	}
 640	if (unlikely(mem_cgroup_bad_page_check(page)))
 641		bad_reason = "cgroup check failed";
 
 
 642	if (unlikely(bad_reason)) {
 643		bad_page(page, bad_reason, bad_flags);
 644		return 1;
 645	}
 646	page_cpupid_reset_last(page);
 647	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
 648		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
 649	return 0;
 650}
 651
 652/*
 653 * Frees a number of pages from the PCP lists
 654 * Assumes all pages on list are in same zone, and of same order.
 655 * count is the number of pages to free.
 656 *
 657 * If the zone was previously in an "all pages pinned" state then look to
 658 * see if this freeing clears that state.
 659 *
 660 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 661 * pinned" detection logic.
 662 */
 663static void free_pcppages_bulk(struct zone *zone, int count,
 664					struct per_cpu_pages *pcp)
 665{
 666	int migratetype = 0;
 667	int batch_free = 0;
 668	int to_free = count;
 
 669
 670	spin_lock(&zone->lock);
 671	zone->pages_scanned = 0;
 
 
 672
 673	while (to_free) {
 674		struct page *page;
 675		struct list_head *list;
 676
 677		/*
 678		 * Remove pages from lists in a round-robin fashion. A
 679		 * batch_free count is maintained that is incremented when an
 680		 * empty list is encountered.  This is so more pages are freed
 681		 * off fuller lists instead of spinning excessively around empty
 682		 * lists
 683		 */
 684		do {
 685			batch_free++;
 686			if (++migratetype == MIGRATE_PCPTYPES)
 687				migratetype = 0;
 688			list = &pcp->lists[migratetype];
 689		} while (list_empty(list));
 690
 691		/* This is the only non-empty list. Free them all. */
 692		if (batch_free == MIGRATE_PCPTYPES)
 693			batch_free = to_free;
 694
 695		do {
 696			int mt;	/* migratetype of the to-be-freed page */
 697
 698			page = list_entry(list->prev, struct page, lru);
 699			/* must delete as __free_one_page list manipulates */
 700			list_del(&page->lru);
 701			mt = get_freepage_migratetype(page);
 702			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
 703			__free_one_page(page, zone, 0, mt);
 
 
 
 
 
 
 704			trace_mm_page_pcpu_drain(page, 0, mt);
 705			if (likely(!is_migrate_isolate_page(page))) {
 706				__mod_zone_page_state(zone, NR_FREE_PAGES, 1);
 707				if (is_migrate_cma(mt))
 708					__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
 709			}
 710		} while (--to_free && --batch_free && !list_empty(list));
 711	}
 712	spin_unlock(&zone->lock);
 713}
 714
 715static void free_one_page(struct zone *zone, struct page *page, int order,
 
 
 716				int migratetype)
 717{
 
 718	spin_lock(&zone->lock);
 719	zone->pages_scanned = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 720
 721	__free_one_page(page, zone, order, migratetype);
 722	if (unlikely(!is_migrate_isolate(migratetype)))
 723		__mod_zone_freepage_state(zone, 1 << order, migratetype);
 724	spin_unlock(&zone->lock);
 
 
 
 
 
 
 
 
 725}
 726
 727static bool free_pages_prepare(struct page *page, unsigned int order)
 728{
 729	int i;
 730	int bad = 0;
 
 
 
 731
 732	trace_mm_page_free(page, order);
 733	kmemcheck_free_shadow(page, order);
 
 734
 735	if (PageAnon(page))
 736		page->mapping = NULL;
 737	for (i = 0; i < (1 << order); i++)
 
 
 
 738		bad += free_pages_check(page + i);
 
 739	if (bad)
 740		return false;
 741
 
 
 742	if (!PageHighMem(page)) {
 743		debug_check_no_locks_freed(page_address(page),
 744					   PAGE_SIZE << order);
 745		debug_check_no_obj_freed(page_address(page),
 746					   PAGE_SIZE << order);
 747	}
 748	arch_free_page(page, order);
 
 749	kernel_map_pages(page, 1 << order, 0);
 750
 751	return true;
 752}
 753
 754static void __free_pages_ok(struct page *page, unsigned int order)
 755{
 756	unsigned long flags;
 757	int migratetype;
 
 758
 759	if (!free_pages_prepare(page, order))
 760		return;
 761
 
 762	local_irq_save(flags);
 763	__count_vm_events(PGFREE, 1 << order);
 764	migratetype = get_pageblock_migratetype(page);
 765	set_freepage_migratetype(page, migratetype);
 766	free_one_page(page_zone(page), page, order, migratetype);
 767	local_irq_restore(flags);
 768}
 769
 770void __init __free_pages_bootmem(struct page *page, unsigned int order)
 
 771{
 772	unsigned int nr_pages = 1 << order;
 773	struct page *p = page;
 774	unsigned int loop;
 775
 776	prefetchw(p);
 777	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
 778		prefetchw(p + 1);
 779		__ClearPageReserved(p);
 780		set_page_count(p, 0);
 781	}
 782	__ClearPageReserved(p);
 783	set_page_count(p, 0);
 784
 785	page_zone(page)->managed_pages += nr_pages;
 786	set_page_refcounted(page);
 787	__free_pages(page, order);
 788}
 789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790#ifdef CONFIG_CMA
 791/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
 792void __init init_cma_reserved_pageblock(struct page *page)
 793{
 794	unsigned i = pageblock_nr_pages;
 795	struct page *p = page;
 796
 797	do {
 798		__ClearPageReserved(p);
 799		set_page_count(p, 0);
 800	} while (++p, --i);
 801
 802	set_page_refcounted(page);
 803	set_pageblock_migratetype(page, MIGRATE_CMA);
 804	__free_pages(page, pageblock_order);
 
 
 
 
 
 
 
 
 
 
 
 
 
 805	adjust_managed_page_count(page, pageblock_nr_pages);
 806}
 807#endif
 808
 809/*
 810 * The order of subdivision here is critical for the IO subsystem.
 811 * Please do not alter this order without good reasons and regression
 812 * testing. Specifically, as large blocks of memory are subdivided,
 813 * the order in which smaller blocks are delivered depends on the order
 814 * they're subdivided in this function. This is the primary factor
 815 * influencing the order in which pages are delivered to the IO
 816 * subsystem according to empirical testing, and this is also justified
 817 * by considering the behavior of a buddy system containing a single
 818 * large block of memory acted on by a series of small allocations.
 819 * This behavior is a critical factor in sglist merging's success.
 820 *
 821 * -- nyc
 822 */
 823static inline void expand(struct zone *zone, struct page *page,
 824	int low, int high, struct free_area *area,
 825	int migratetype)
 826{
 827	unsigned long size = 1 << high;
 828
 829	while (high > low) {
 830		area--;
 831		high--;
 832		size >>= 1;
 833		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
 834
 835#ifdef CONFIG_DEBUG_PAGEALLOC
 836		if (high < debug_guardpage_minorder()) {
 
 837			/*
 838			 * Mark as guard pages (or page), that will allow to
 839			 * merge back to allocator when buddy will be freed.
 840			 * Corresponding page table entries will not be touched,
 841			 * pages will stay not present in virtual address space
 842			 */
 843			INIT_LIST_HEAD(&page[size].lru);
 844			set_page_guard_flag(&page[size]);
 845			set_page_private(&page[size], high);
 846			/* Guard pages are not available for any usage */
 847			__mod_zone_freepage_state(zone, -(1 << high),
 848						  migratetype);
 849			continue;
 850		}
 851#endif
 852		list_add(&page[size].lru, &area->free_list[migratetype]);
 853		area->nr_free++;
 854		set_page_order(&page[size], high);
 855	}
 856}
 857
 858/*
 859 * This page is about to be returned from the page allocator
 860 */
 861static inline int check_new_page(struct page *page)
 862{
 863	const char *bad_reason = NULL;
 864	unsigned long bad_flags = 0;
 865
 866	if (unlikely(page_mapcount(page)))
 867		bad_reason = "nonzero mapcount";
 868	if (unlikely(page->mapping != NULL))
 869		bad_reason = "non-NULL mapping";
 870	if (unlikely(atomic_read(&page->_count) != 0))
 871		bad_reason = "nonzero _count";
 
 
 
 
 872	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
 873		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
 874		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
 875	}
 876	if (unlikely(mem_cgroup_bad_page_check(page)))
 877		bad_reason = "cgroup check failed";
 
 
 878	if (unlikely(bad_reason)) {
 879		bad_page(page, bad_reason, bad_flags);
 880		return 1;
 881	}
 882	return 0;
 883}
 884
 885static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
 
 
 
 
 
 
 
 886{
 887	int i;
 
 888
 889	for (i = 0; i < (1 << order); i++) {
 890		struct page *p = page + i;
 891		if (unlikely(check_new_page(p)))
 892			return 1;
 
 
 893	}
 894
 895	set_page_private(page, 0);
 896	set_page_refcounted(page);
 897
 898	arch_alloc_page(page, order);
 899	kernel_map_pages(page, 1 << order, 1);
 
 
 900
 901	if (gfp_flags & __GFP_ZERO)
 902		prep_zero_page(page, order, gfp_flags);
 
 903
 904	if (order && (gfp_flags & __GFP_COMP))
 905		prep_compound_page(page, order);
 906
 
 
 
 
 
 
 
 
 
 
 
 
 
 907	return 0;
 908}
 909
 910/*
 911 * Go through the free lists for the given migratetype and remove
 912 * the smallest available page from the freelists
 913 */
 914static inline
 915struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
 916						int migratetype)
 917{
 918	unsigned int current_order;
 919	struct free_area *area;
 920	struct page *page;
 921
 922	/* Find a page of the appropriate size in the preferred list */
 923	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
 924		area = &(zone->free_area[current_order]);
 925		if (list_empty(&area->free_list[migratetype]))
 
 
 926			continue;
 927
 928		page = list_entry(area->free_list[migratetype].next,
 929							struct page, lru);
 930		list_del(&page->lru);
 931		rmv_page_order(page);
 932		area->nr_free--;
 933		expand(zone, page, order, current_order, area, migratetype);
 
 934		return page;
 935	}
 936
 937	return NULL;
 938}
 939
 940
 941/*
 942 * This array describes the order lists are fallen back to when
 943 * the free lists for the desirable migrate type are depleted
 944 */
 945static int fallbacks[MIGRATE_TYPES][4] = {
 946	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
 947	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
 
 948#ifdef CONFIG_CMA
 949	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
 950	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
 951#else
 952	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
 953#endif
 954	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
 955#ifdef CONFIG_MEMORY_ISOLATION
 956	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
 957#endif
 958};
 959
 
 
 
 
 
 
 
 
 
 
 
 960/*
 961 * Move the free pages in a range to the free lists of the requested type.
 962 * Note that start_page and end_pages are not aligned on a pageblock
 963 * boundary. If alignment is required, use move_freepages_block()
 964 */
 965int move_freepages(struct zone *zone,
 966			  struct page *start_page, struct page *end_page,
 967			  int migratetype)
 968{
 969	struct page *page;
 970	unsigned long order;
 971	int pages_moved = 0;
 972
 973#ifndef CONFIG_HOLES_IN_ZONE
 974	/*
 975	 * page_zone is not safe to call in this context when
 976	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
 977	 * anyway as we check zone boundaries in move_freepages_block().
 978	 * Remove at a later date when no bug reports exist related to
 979	 * grouping pages by mobility
 980	 */
 981	BUG_ON(page_zone(start_page) != page_zone(end_page));
 982#endif
 983
 984	for (page = start_page; page <= end_page;) {
 985		/* Make sure we are not inadvertently changing nodes */
 986		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
 987
 988		if (!pfn_valid_within(page_to_pfn(page))) {
 989			page++;
 990			continue;
 991		}
 992
 993		if (!PageBuddy(page)) {
 994			page++;
 995			continue;
 996		}
 997
 998		order = page_order(page);
 999		list_move(&page->lru,
1000			  &zone->free_area[order].free_list[migratetype]);
1001		set_freepage_migratetype(page, migratetype);
1002		page += 1 << order;
1003		pages_moved += 1 << order;
1004	}
1005
1006	return pages_moved;
1007}
1008
1009int move_freepages_block(struct zone *zone, struct page *page,
1010				int migratetype)
1011{
1012	unsigned long start_pfn, end_pfn;
1013	struct page *start_page, *end_page;
1014
1015	start_pfn = page_to_pfn(page);
1016	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1017	start_page = pfn_to_page(start_pfn);
1018	end_page = start_page + pageblock_nr_pages - 1;
1019	end_pfn = start_pfn + pageblock_nr_pages - 1;
1020
1021	/* Do not cross zone boundaries */
1022	if (!zone_spans_pfn(zone, start_pfn))
1023		start_page = page;
1024	if (!zone_spans_pfn(zone, end_pfn))
1025		return 0;
1026
1027	return move_freepages(zone, start_page, end_page, migratetype);
1028}
1029
1030static void change_pageblock_range(struct page *pageblock_page,
1031					int start_order, int migratetype)
1032{
1033	int nr_pageblocks = 1 << (start_order - pageblock_order);
1034
1035	while (nr_pageblocks--) {
1036		set_pageblock_migratetype(pageblock_page, migratetype);
1037		pageblock_page += pageblock_nr_pages;
1038	}
1039}
1040
1041/*
1042 * If breaking a large block of pages, move all free pages to the preferred
1043 * allocation list. If falling back for a reclaimable kernel allocation, be
1044 * more aggressive about taking ownership of free pages.
1045 *
1046 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1047 * nor move CMA pages to different free lists. We don't want unmovable pages
1048 * to be allocated from MIGRATE_CMA areas.
1049 *
1050 * Returns the new migratetype of the pageblock (or the same old migratetype
1051 * if it was unchanged).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1052 */
1053static int try_to_steal_freepages(struct zone *zone, struct page *page,
1054				  int start_type, int fallback_type)
1055{
1056	int current_order = page_order(page);
1057
1058	/*
1059	 * When borrowing from MIGRATE_CMA, we need to release the excess
1060	 * buddy pages to CMA itself.
1061	 */
1062	if (is_migrate_cma(fallback_type))
1063		return fallback_type;
1064
1065	/* Take ownership for orders >= pageblock_order */
1066	if (current_order >= pageblock_order) {
1067		change_pageblock_range(page, current_order, start_type);
1068		return start_type;
1069	}
1070
1071	if (current_order >= pageblock_order / 2 ||
1072	    start_type == MIGRATE_RECLAIMABLE ||
1073	    page_group_by_mobility_disabled) {
1074		int pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075
1076		pages = move_freepages_block(zone, page, start_type);
 
1077
1078		/* Claim the whole block if over half of it is free */
1079		if (pages >= (1 << (pageblock_order-1)) ||
1080				page_group_by_mobility_disabled) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1081
1082			set_pageblock_migratetype(page, start_type);
1083			return start_type;
1084		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085
 
 
 
 
 
 
 
1086	}
1087
1088	return fallback_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089}
1090
1091/* Remove an element from the buddy allocator from the fallback list */
1092static inline struct page *
1093__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1094{
1095	struct free_area *area;
1096	int current_order;
1097	struct page *page;
1098	int migratetype, new_type, i;
 
1099
1100	/* Find the largest possible block of pages in the other list */
1101	for (current_order = MAX_ORDER-1; current_order >= order;
1102						--current_order) {
1103		for (i = 0;; i++) {
1104			migratetype = fallbacks[start_migratetype][i];
 
 
 
 
1105
1106			/* MIGRATE_RESERVE handled later if necessary */
1107			if (migratetype == MIGRATE_RESERVE)
1108				break;
 
1109
1110			area = &(zone->free_area[current_order]);
1111			if (list_empty(&area->free_list[migratetype]))
1112				continue;
 
1113
1114			page = list_entry(area->free_list[migratetype].next,
1115					struct page, lru);
1116			area->nr_free--;
 
 
 
 
 
 
 
1117
1118			new_type = try_to_steal_freepages(zone, page,
1119							  start_migratetype,
1120							  migratetype);
1121
1122			/* Remove the page from the freelists */
1123			list_del(&page->lru);
1124			rmv_page_order(page);
1125
1126			expand(zone, page, order, current_order, area,
1127			       new_type);
1128
1129			trace_mm_page_alloc_extfrag(page, order, current_order,
1130				start_migratetype, migratetype, new_type);
1131
1132			return page;
1133		}
1134	}
1135
1136	return NULL;
1137}
1138
1139/*
1140 * Do the hard work of removing an element from the buddy allocator.
1141 * Call me with the zone->lock already held.
1142 */
1143static struct page *__rmqueue(struct zone *zone, unsigned int order,
1144						int migratetype)
1145{
1146	struct page *page;
1147
1148retry_reserve:
1149	page = __rmqueue_smallest(zone, order, migratetype);
 
 
 
1150
1151	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1152		page = __rmqueue_fallback(zone, order, migratetype);
1153
1154		/*
1155		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1156		 * is used because __rmqueue_smallest is an inline function
1157		 * and we want just one call site
1158		 */
1159		if (!page) {
1160			migratetype = MIGRATE_RESERVE;
1161			goto retry_reserve;
1162		}
1163	}
1164
1165	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1166	return page;
1167}
1168
1169/*
1170 * Obtain a specified number of elements from the buddy allocator, all under
1171 * a single hold of the lock, for efficiency.  Add them to the supplied list.
1172 * Returns the number of new pages which were placed at *list.
1173 */
1174static int rmqueue_bulk(struct zone *zone, unsigned int order,
1175			unsigned long count, struct list_head *list,
1176			int migratetype, int cold)
1177{
1178	int mt = migratetype, i;
1179
1180	spin_lock(&zone->lock);
1181	for (i = 0; i < count; ++i) {
1182		struct page *page = __rmqueue(zone, order, migratetype);
1183		if (unlikely(page == NULL))
1184			break;
1185
1186		/*
1187		 * Split buddy pages returned by expand() are received here
1188		 * in physical page order. The page is added to the callers and
1189		 * list and the list head then moves forward. From the callers
1190		 * perspective, the linked list is ordered by page number in
1191		 * some conditions. This is useful for IO devices that can
1192		 * merge IO requests if the physical pages are ordered
1193		 * properly.
1194		 */
1195		if (likely(cold == 0))
1196			list_add(&page->lru, list);
1197		else
1198			list_add_tail(&page->lru, list);
1199		if (IS_ENABLED(CONFIG_CMA)) {
1200			mt = get_pageblock_migratetype(page);
1201			if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1202				mt = migratetype;
1203		}
1204		set_freepage_migratetype(page, mt);
1205		list = &page->lru;
1206		if (is_migrate_cma(mt))
1207			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1208					      -(1 << order));
1209	}
1210	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1211	spin_unlock(&zone->lock);
1212	return i;
1213}
1214
1215#ifdef CONFIG_NUMA
1216/*
1217 * Called from the vmstat counter updater to drain pagesets of this
1218 * currently executing processor on remote nodes after they have
1219 * expired.
1220 *
1221 * Note that this function must be called with the thread pinned to
1222 * a single processor.
1223 */
1224void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1225{
1226	unsigned long flags;
1227	int to_drain;
1228	unsigned long batch;
1229
1230	local_irq_save(flags);
1231	batch = ACCESS_ONCE(pcp->batch);
1232	if (pcp->count >= batch)
1233		to_drain = batch;
1234	else
1235		to_drain = pcp->count;
1236	if (to_drain > 0) {
1237		free_pcppages_bulk(zone, to_drain, pcp);
1238		pcp->count -= to_drain;
1239	}
1240	local_irq_restore(flags);
1241}
1242#endif
1243
1244/*
1245 * Drain pages of the indicated processor.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246 *
1247 * The processor must either be the current processor and the
1248 * thread pinned to the current processor or a processor that
1249 * is not online.
1250 */
1251static void drain_pages(unsigned int cpu)
1252{
1253	unsigned long flags;
1254	struct zone *zone;
1255
1256	for_each_populated_zone(zone) {
1257		struct per_cpu_pageset *pset;
1258		struct per_cpu_pages *pcp;
1259
1260		local_irq_save(flags);
1261		pset = per_cpu_ptr(zone->pageset, cpu);
1262
1263		pcp = &pset->pcp;
1264		if (pcp->count) {
1265			free_pcppages_bulk(zone, pcp->count, pcp);
1266			pcp->count = 0;
1267		}
1268		local_irq_restore(flags);
1269	}
1270}
1271
1272/*
1273 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
 
 
 
1274 */
1275void drain_local_pages(void *arg)
1276{
1277	drain_pages(smp_processor_id());
 
 
 
 
 
1278}
1279
1280/*
1281 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1282 *
 
 
1283 * Note that this code is protected against sending an IPI to an offline
1284 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1285 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1286 * nothing keeps CPUs from showing up after we populated the cpumask and
1287 * before the call to on_each_cpu_mask().
1288 */
1289void drain_all_pages(void)
1290{
1291	int cpu;
1292	struct per_cpu_pageset *pcp;
1293	struct zone *zone;
1294
1295	/*
1296	 * Allocate in the BSS so we wont require allocation in
1297	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1298	 */
1299	static cpumask_t cpus_with_pcps;
1300
1301	/*
1302	 * We don't care about racing with CPU hotplug event
1303	 * as offline notification will cause the notified
1304	 * cpu to drain that CPU pcps and on_each_cpu_mask
1305	 * disables preemption as part of its processing
1306	 */
1307	for_each_online_cpu(cpu) {
 
 
1308		bool has_pcps = false;
1309		for_each_populated_zone(zone) {
 
1310			pcp = per_cpu_ptr(zone->pageset, cpu);
1311			if (pcp->pcp.count) {
1312				has_pcps = true;
1313				break;
 
 
 
 
 
 
1314			}
1315		}
 
1316		if (has_pcps)
1317			cpumask_set_cpu(cpu, &cpus_with_pcps);
1318		else
1319			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1320	}
1321	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
 
1322}
1323
1324#ifdef CONFIG_HIBERNATION
1325
1326void mark_free_pages(struct zone *zone)
1327{
1328	unsigned long pfn, max_zone_pfn;
1329	unsigned long flags;
1330	int order, t;
1331	struct list_head *curr;
1332
1333	if (zone_is_empty(zone))
1334		return;
1335
1336	spin_lock_irqsave(&zone->lock, flags);
1337
1338	max_zone_pfn = zone_end_pfn(zone);
1339	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1340		if (pfn_valid(pfn)) {
1341			struct page *page = pfn_to_page(pfn);
1342
1343			if (!swsusp_page_is_forbidden(page))
1344				swsusp_unset_page_free(page);
1345		}
1346
1347	for_each_migratetype_order(order, t) {
1348		list_for_each(curr, &zone->free_area[order].free_list[t]) {
 
1349			unsigned long i;
1350
1351			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1352			for (i = 0; i < (1UL << order); i++)
1353				swsusp_set_page_free(pfn_to_page(pfn + i));
1354		}
1355	}
1356	spin_unlock_irqrestore(&zone->lock, flags);
1357}
1358#endif /* CONFIG_PM */
1359
1360/*
1361 * Free a 0-order page
1362 * cold == 1 ? free a cold page : free a hot page
1363 */
1364void free_hot_cold_page(struct page *page, int cold)
1365{
1366	struct zone *zone = page_zone(page);
1367	struct per_cpu_pages *pcp;
1368	unsigned long flags;
 
1369	int migratetype;
1370
1371	if (!free_pages_prepare(page, 0))
1372		return;
1373
1374	migratetype = get_pageblock_migratetype(page);
1375	set_freepage_migratetype(page, migratetype);
1376	local_irq_save(flags);
1377	__count_vm_event(PGFREE);
1378
1379	/*
1380	 * We only track unmovable, reclaimable and movable on pcp lists.
1381	 * Free ISOLATE pages back to the allocator because they are being
1382	 * offlined but treat RESERVE as movable pages so we can get those
1383	 * areas back if necessary. Otherwise, we may have to free
1384	 * excessively into the page allocator
1385	 */
1386	if (migratetype >= MIGRATE_PCPTYPES) {
1387		if (unlikely(is_migrate_isolate(migratetype))) {
1388			free_one_page(zone, page, 0, migratetype);
1389			goto out;
1390		}
1391		migratetype = MIGRATE_MOVABLE;
1392	}
1393
1394	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1395	if (cold)
 
 
1396		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1397	else
1398		list_add(&page->lru, &pcp->lists[migratetype]);
1399	pcp->count++;
1400	if (pcp->count >= pcp->high) {
1401		unsigned long batch = ACCESS_ONCE(pcp->batch);
1402		free_pcppages_bulk(zone, batch, pcp);
1403		pcp->count -= batch;
1404	}
1405
1406out:
1407	local_irq_restore(flags);
1408}
1409
1410/*
1411 * Free a list of 0-order pages
1412 */
1413void free_hot_cold_page_list(struct list_head *list, int cold)
1414{
1415	struct page *page, *next;
1416
1417	list_for_each_entry_safe(page, next, list, lru) {
1418		trace_mm_page_free_batched(page, cold);
1419		free_hot_cold_page(page, cold);
1420	}
1421}
1422
1423/*
1424 * split_page takes a non-compound higher-order page, and splits it into
1425 * n (1<<order) sub-pages: page[0..n]
1426 * Each sub-page must be freed individually.
1427 *
1428 * Note: this is probably too low level an operation for use in drivers.
1429 * Please consult with lkml before using this in your driver.
1430 */
1431void split_page(struct page *page, unsigned int order)
1432{
1433	int i;
 
1434
1435	VM_BUG_ON_PAGE(PageCompound(page), page);
1436	VM_BUG_ON_PAGE(!page_count(page), page);
1437
1438#ifdef CONFIG_KMEMCHECK
1439	/*
1440	 * Split shadow pages too, because free(page[0]) would
1441	 * otherwise free the whole shadow.
1442	 */
1443	if (kmemcheck_page_is_tracked(page))
1444		split_page(virt_to_page(page[0].shadow), order);
1445#endif
1446
1447	for (i = 1; i < (1 << order); i++)
 
 
1448		set_page_refcounted(page + i);
 
 
1449}
1450EXPORT_SYMBOL_GPL(split_page);
1451
1452static int __isolate_free_page(struct page *page, unsigned int order)
1453{
1454	unsigned long watermark;
1455	struct zone *zone;
1456	int mt;
1457
1458	BUG_ON(!PageBuddy(page));
1459
1460	zone = page_zone(page);
1461	mt = get_pageblock_migratetype(page);
1462
1463	if (!is_migrate_isolate(mt)) {
1464		/* Obey watermarks as if the page was being allocated */
1465		watermark = low_wmark_pages(zone) + (1 << order);
1466		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1467			return 0;
1468
1469		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1470	}
1471
1472	/* Remove page from free list */
1473	list_del(&page->lru);
1474	zone->free_area[order].nr_free--;
1475	rmv_page_order(page);
1476
 
 
1477	/* Set the pageblock if the isolated page is at least a pageblock */
1478	if (order >= pageblock_order - 1) {
1479		struct page *endpage = page + (1 << order) - 1;
1480		for (; page < endpage; page += pageblock_nr_pages) {
1481			int mt = get_pageblock_migratetype(page);
1482			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1483				set_pageblock_migratetype(page,
1484							  MIGRATE_MOVABLE);
1485		}
1486	}
1487
 
1488	return 1UL << order;
1489}
1490
1491/*
1492 * Similar to split_page except the page is already free. As this is only
1493 * being used for migration, the migratetype of the block also changes.
1494 * As this is called with interrupts disabled, the caller is responsible
1495 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1496 * are enabled.
1497 *
1498 * Note: this is probably too low level an operation for use in drivers.
1499 * Please consult with lkml before using this in your driver.
1500 */
1501int split_free_page(struct page *page)
1502{
1503	unsigned int order;
1504	int nr_pages;
1505
1506	order = page_order(page);
1507
1508	nr_pages = __isolate_free_page(page, order);
1509	if (!nr_pages)
1510		return 0;
1511
1512	/* Split into individual pages */
1513	set_page_refcounted(page);
1514	split_page(page, order);
1515	return nr_pages;
1516}
1517
1518/*
1519 * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1520 * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1521 * or two.
1522 */
1523static inline
1524struct page *buffered_rmqueue(struct zone *preferred_zone,
1525			struct zone *zone, int order, gfp_t gfp_flags,
1526			int migratetype)
1527{
1528	unsigned long flags;
1529	struct page *page;
1530	int cold = !!(gfp_flags & __GFP_COLD);
1531
1532again:
1533	if (likely(order == 0)) {
1534		struct per_cpu_pages *pcp;
1535		struct list_head *list;
1536
1537		local_irq_save(flags);
1538		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1539		list = &pcp->lists[migratetype];
1540		if (list_empty(list)) {
1541			pcp->count += rmqueue_bulk(zone, 0,
1542					pcp->batch, list,
1543					migratetype, cold);
1544			if (unlikely(list_empty(list)))
1545				goto failed;
1546		}
1547
1548		if (cold)
1549			page = list_entry(list->prev, struct page, lru);
1550		else
1551			page = list_entry(list->next, struct page, lru);
1552
1553		list_del(&page->lru);
1554		pcp->count--;
1555	} else {
1556		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1557			/*
1558			 * __GFP_NOFAIL is not to be used in new code.
1559			 *
1560			 * All __GFP_NOFAIL callers should be fixed so that they
1561			 * properly detect and handle allocation failures.
1562			 *
1563			 * We most definitely don't want callers attempting to
1564			 * allocate greater than order-1 page units with
1565			 * __GFP_NOFAIL.
1566			 */
1567			WARN_ON_ONCE(order > 1);
1568		}
1569		spin_lock_irqsave(&zone->lock, flags);
1570		page = __rmqueue(zone, order, migratetype);
1571		spin_unlock(&zone->lock);
1572		if (!page)
1573			goto failed;
1574		__mod_zone_freepage_state(zone, -(1 << order),
1575					  get_pageblock_migratetype(page));
1576	}
1577
1578	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
 
 
 
1579
1580	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1581	zone_statistics(preferred_zone, zone, gfp_flags);
1582	local_irq_restore(flags);
1583
1584	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1585	if (prep_new_page(page, order, gfp_flags))
1586		goto again;
1587	return page;
1588
1589failed:
1590	local_irq_restore(flags);
1591	return NULL;
1592}
1593
1594#ifdef CONFIG_FAIL_PAGE_ALLOC
1595
1596static struct {
1597	struct fault_attr attr;
1598
1599	u32 ignore_gfp_highmem;
1600	u32 ignore_gfp_wait;
1601	u32 min_order;
1602} fail_page_alloc = {
1603	.attr = FAULT_ATTR_INITIALIZER,
1604	.ignore_gfp_wait = 1,
1605	.ignore_gfp_highmem = 1,
1606	.min_order = 1,
1607};
1608
1609static int __init setup_fail_page_alloc(char *str)
1610{
1611	return setup_fault_attr(&fail_page_alloc.attr, str);
1612}
1613__setup("fail_page_alloc=", setup_fail_page_alloc);
1614
1615static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1616{
1617	if (order < fail_page_alloc.min_order)
1618		return false;
1619	if (gfp_mask & __GFP_NOFAIL)
1620		return false;
1621	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1622		return false;
1623	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
 
1624		return false;
1625
1626	return should_fail(&fail_page_alloc.attr, 1 << order);
1627}
1628
1629#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1630
1631static int __init fail_page_alloc_debugfs(void)
1632{
1633	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1634	struct dentry *dir;
1635
1636	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1637					&fail_page_alloc.attr);
1638	if (IS_ERR(dir))
1639		return PTR_ERR(dir);
1640
1641	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1642				&fail_page_alloc.ignore_gfp_wait))
1643		goto fail;
1644	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1645				&fail_page_alloc.ignore_gfp_highmem))
1646		goto fail;
1647	if (!debugfs_create_u32("min-order", mode, dir,
1648				&fail_page_alloc.min_order))
1649		goto fail;
1650
1651	return 0;
1652fail:
1653	debugfs_remove_recursive(dir);
1654
1655	return -ENOMEM;
1656}
1657
1658late_initcall(fail_page_alloc_debugfs);
1659
1660#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1661
1662#else /* CONFIG_FAIL_PAGE_ALLOC */
1663
1664static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1665{
1666	return false;
1667}
1668
1669#endif /* CONFIG_FAIL_PAGE_ALLOC */
1670
1671/*
1672 * Return true if free pages are above 'mark'. This takes into account the order
1673 * of the allocation.
1674 */
1675static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1676		      int classzone_idx, int alloc_flags, long free_pages)
 
 
 
1677{
1678	/* free_pages my go negative - that's OK */
1679	long min = mark;
1680	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1681	int o;
1682	long free_cma = 0;
1683
 
1684	free_pages -= (1 << order) - 1;
 
1685	if (alloc_flags & ALLOC_HIGH)
1686		min -= min / 2;
1687	if (alloc_flags & ALLOC_HARDER)
 
 
 
 
 
 
 
 
1688		min -= min / 4;
 
1689#ifdef CONFIG_CMA
1690	/* If allocation can't use CMA areas don't use free CMA pages */
1691	if (!(alloc_flags & ALLOC_CMA))
1692		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1693#endif
1694
1695	if (free_pages - free_cma <= min + lowmem_reserve)
 
 
 
 
 
1696		return false;
1697	for (o = 0; o < order; o++) {
1698		/* At the next order, this order's pages become unavailable */
1699		free_pages -= z->free_area[o].nr_free << o;
1700
1701		/* Require fewer higher order pages to be free */
1702		min >>= 1;
 
 
 
 
 
 
1703
1704		if (free_pages <= min)
1705			return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706	}
1707	return true;
1708}
1709
1710bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1711		      int classzone_idx, int alloc_flags)
1712{
1713	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1714					zone_page_state(z, NR_FREE_PAGES));
1715}
1716
1717bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1718		      int classzone_idx, int alloc_flags)
1719{
1720	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1721
1722	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1723		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1724
1725	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1726								free_pages);
1727}
1728
1729#ifdef CONFIG_NUMA
1730/*
1731 * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1732 * skip over zones that are not allowed by the cpuset, or that have
1733 * been recently (in last second) found to be nearly full.  See further
1734 * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1735 * that have to skip over a lot of full or unallowed zones.
1736 *
1737 * If the zonelist cache is present in the passed zonelist, then
1738 * returns a pointer to the allowed node mask (either the current
1739 * tasks mems_allowed, or node_states[N_MEMORY].)
1740 *
1741 * If the zonelist cache is not available for this zonelist, does
1742 * nothing and returns NULL.
1743 *
1744 * If the fullzones BITMAP in the zonelist cache is stale (more than
1745 * a second since last zap'd) then we zap it out (clear its bits.)
1746 *
1747 * We hold off even calling zlc_setup, until after we've checked the
1748 * first zone in the zonelist, on the theory that most allocations will
1749 * be satisfied from that first zone, so best to examine that zone as
1750 * quickly as we can.
1751 */
1752static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1753{
1754	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1755	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1756
1757	zlc = zonelist->zlcache_ptr;
1758	if (!zlc)
1759		return NULL;
1760
1761	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1762		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1763		zlc->last_full_zap = jiffies;
1764	}
1765
1766	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1767					&cpuset_current_mems_allowed :
1768					&node_states[N_MEMORY];
1769	return allowednodes;
1770}
1771
1772/*
1773 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1774 * if it is worth looking at further for free memory:
1775 *  1) Check that the zone isn't thought to be full (doesn't have its
1776 *     bit set in the zonelist_cache fullzones BITMAP).
1777 *  2) Check that the zones node (obtained from the zonelist_cache
1778 *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1779 * Return true (non-zero) if zone is worth looking at further, or
1780 * else return false (zero) if it is not.
1781 *
1782 * This check -ignores- the distinction between various watermarks,
1783 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1784 * found to be full for any variation of these watermarks, it will
1785 * be considered full for up to one second by all requests, unless
1786 * we are so low on memory on all allowed nodes that we are forced
1787 * into the second scan of the zonelist.
1788 *
1789 * In the second scan we ignore this zonelist cache and exactly
1790 * apply the watermarks to all zones, even it is slower to do so.
1791 * We are low on memory in the second scan, and should leave no stone
1792 * unturned looking for a free page.
1793 */
1794static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1795						nodemask_t *allowednodes)
1796{
1797	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1798	int i;				/* index of *z in zonelist zones */
1799	int n;				/* node that zone *z is on */
1800
1801	zlc = zonelist->zlcache_ptr;
1802	if (!zlc)
1803		return 1;
1804
1805	i = z - zonelist->_zonerefs;
1806	n = zlc->z_to_n[i];
1807
1808	/* This zone is worth trying if it is allowed but not full */
1809	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1810}
1811
1812/*
1813 * Given 'z' scanning a zonelist, set the corresponding bit in
1814 * zlc->fullzones, so that subsequent attempts to allocate a page
1815 * from that zone don't waste time re-examining it.
1816 */
1817static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1818{
1819	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1820	int i;				/* index of *z in zonelist zones */
1821
1822	zlc = zonelist->zlcache_ptr;
1823	if (!zlc)
1824		return;
1825
1826	i = z - zonelist->_zonerefs;
1827
1828	set_bit(i, zlc->fullzones);
1829}
1830
1831/*
1832 * clear all zones full, called after direct reclaim makes progress so that
1833 * a zone that was recently full is not skipped over for up to a second
1834 */
1835static void zlc_clear_zones_full(struct zonelist *zonelist)
1836{
1837	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1838
1839	zlc = zonelist->zlcache_ptr;
1840	if (!zlc)
1841		return;
1842
1843	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1844}
1845
1846static bool zone_local(struct zone *local_zone, struct zone *zone)
1847{
1848	return local_zone->node == zone->node;
1849}
1850
1851static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1852{
1853	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
 
1854}
1855
1856static void __paginginit init_zone_allows_reclaim(int nid)
1857{
1858	int i;
1859
1860	for_each_node_state(i, N_MEMORY)
1861		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1862			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1863		else
1864			zone_reclaim_mode = 1;
1865}
1866
1867#else	/* CONFIG_NUMA */
1868
1869static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1870{
1871	return NULL;
1872}
1873
1874static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1875				nodemask_t *allowednodes)
1876{
1877	return 1;
1878}
1879
1880static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1881{
1882}
1883
1884static void zlc_clear_zones_full(struct zonelist *zonelist)
1885{
1886}
1887
1888static bool zone_local(struct zone *local_zone, struct zone *zone)
1889{
1890	return true;
1891}
1892
1893static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1894{
1895	return true;
1896}
 
1897
1898static inline void init_zone_allows_reclaim(int nid)
1899{
 
 
 
 
 
 
 
 
1900}
1901#endif	/* CONFIG_NUMA */
1902
1903/*
1904 * get_page_from_freelist goes through the zonelist trying to allocate
1905 * a page.
1906 */
1907static struct page *
1908get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1909		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1910		struct zone *preferred_zone, int migratetype)
1911{
 
1912	struct zoneref *z;
1913	struct page *page = NULL;
1914	int classzone_idx;
1915	struct zone *zone;
1916	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1917	int zlc_active = 0;		/* set if using zonelist_cache */
1918	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1919
1920	classzone_idx = zone_idx(preferred_zone);
1921zonelist_scan:
 
 
1922	/*
1923	 * Scan zonelist, looking for a zone with enough free.
1924	 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1925	 */
1926	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1927						high_zoneidx, nodemask) {
1928		unsigned long mark;
1929
1930		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1931			!zlc_zone_worth_trying(zonelist, z, allowednodes))
 
1932				continue;
1933		if ((alloc_flags & ALLOC_CPUSET) &&
1934			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1935				continue;
1936		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1937		if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1938			goto try_this_zone;
1939		/*
1940		 * Distribute pages in proportion to the individual
1941		 * zone size to ensure fair page aging.  The zone a
1942		 * page was allocated in should have no effect on the
1943		 * time the page has in memory before being reclaimed.
1944		 */
1945		if (alloc_flags & ALLOC_FAIR) {
1946			if (!zone_local(preferred_zone, zone))
1947				continue;
1948			if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
 
1949				continue;
 
1950		}
1951		/*
1952		 * When allocating a page cache page for writing, we
1953		 * want to get it from a zone that is within its dirty
1954		 * limit, such that no single zone holds more than its
1955		 * proportional share of globally allowed dirty pages.
1956		 * The dirty limits take into account the zone's
1957		 * lowmem reserves and high watermark so that kswapd
1958		 * should be able to balance it without having to
1959		 * write pages from its LRU list.
1960		 *
1961		 * This may look like it could increase pressure on
1962		 * lower zones by failing allocations in higher zones
1963		 * before they are full.  But the pages that do spill
1964		 * over are limited as the lower zones are protected
1965		 * by this very same mechanism.  It should not become
1966		 * a practical burden to them.
1967		 *
1968		 * XXX: For now, allow allocations to potentially
1969		 * exceed the per-zone dirty limit in the slowpath
1970		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1971		 * which is important when on a NUMA setup the allowed
1972		 * zones are together not big enough to reach the
1973		 * global limit.  The proper fix for these situations
1974		 * will require awareness of zones in the
1975		 * dirty-throttling and the flusher threads.
1976		 */
1977		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1978		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1979			goto this_zone_full;
1980
1981		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1982		if (!zone_watermark_ok(zone, order, mark,
1983				       classzone_idx, alloc_flags)) {
1984			int ret;
1985
1986			if (IS_ENABLED(CONFIG_NUMA) &&
1987					!did_zlc_setup && nr_online_nodes > 1) {
1988				/*
1989				 * we do zlc_setup if there are multiple nodes
1990				 * and before considering the first zone allowed
1991				 * by the cpuset.
1992				 */
1993				allowednodes = zlc_setup(zonelist, alloc_flags);
1994				zlc_active = 1;
1995				did_zlc_setup = 1;
1996			}
1997
1998			if (zone_reclaim_mode == 0 ||
1999			    !zone_allows_reclaim(preferred_zone, zone))
2000				goto this_zone_full;
2001
2002			/*
2003			 * As we may have just activated ZLC, check if the first
2004			 * eligible zone has failed zone_reclaim recently.
2005			 */
2006			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2007				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2008				continue;
2009
2010			ret = zone_reclaim(zone, gfp_mask, order);
2011			switch (ret) {
2012			case ZONE_RECLAIM_NOSCAN:
2013				/* did not scan */
2014				continue;
2015			case ZONE_RECLAIM_FULL:
2016				/* scanned but unreclaimable */
2017				continue;
2018			default:
2019				/* did we reclaim enough */
2020				if (zone_watermark_ok(zone, order, mark,
2021						classzone_idx, alloc_flags))
2022					goto try_this_zone;
2023
2024				/*
2025				 * Failed to reclaim enough to meet watermark.
2026				 * Only mark the zone full if checking the min
2027				 * watermark or if we failed to reclaim just
2028				 * 1<<order pages or else the page allocator
2029				 * fastpath will prematurely mark zones full
2030				 * when the watermark is between the low and
2031				 * min watermarks.
2032				 */
2033				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2034				    ret == ZONE_RECLAIM_SOME)
2035					goto this_zone_full;
2036
2037				continue;
2038			}
2039		}
2040
2041try_this_zone:
2042		page = buffered_rmqueue(preferred_zone, zone, order,
2043						gfp_mask, migratetype);
2044		if (page)
2045			break;
2046this_zone_full:
2047		if (IS_ENABLED(CONFIG_NUMA))
2048			zlc_mark_zone_full(zonelist, z);
 
 
 
 
 
 
 
 
2049	}
2050
2051	if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2052		/* Disable zlc cache for second zonelist scan */
2053		zlc_active = 0;
2054		goto zonelist_scan;
 
 
 
 
 
 
 
 
 
 
 
 
2055	}
2056
2057	if (page)
2058		/*
2059		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2060		 * necessary to allocate the page. The expectation is
2061		 * that the caller is taking steps that will free more
2062		 * memory. The caller should avoid the page being used
2063		 * for !PFMEMALLOC purposes.
2064		 */
2065		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2066
2067	return page;
2068}
2069
2070/*
2071 * Large machines with many possible nodes should not always dump per-node
2072 * meminfo in irq context.
2073 */
2074static inline bool should_suppress_show_mem(void)
2075{
2076	bool ret = false;
2077
2078#if NODES_SHIFT > 8
2079	ret = in_interrupt();
2080#endif
2081	return ret;
2082}
2083
2084static DEFINE_RATELIMIT_STATE(nopage_rs,
2085		DEFAULT_RATELIMIT_INTERVAL,
2086		DEFAULT_RATELIMIT_BURST);
2087
2088void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2089{
2090	unsigned int filter = SHOW_MEM_FILTER_NODES;
2091
2092	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2093	    debug_guardpage_minorder() > 0)
2094		return;
2095
2096	/*
2097	 * This documents exceptions given to allocations in certain
2098	 * contexts that are allowed to allocate outside current's set
2099	 * of allowed nodes.
2100	 */
2101	if (!(gfp_mask & __GFP_NOMEMALLOC))
2102		if (test_thread_flag(TIF_MEMDIE) ||
2103		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2104			filter &= ~SHOW_MEM_FILTER_NODES;
2105	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2106		filter &= ~SHOW_MEM_FILTER_NODES;
2107
2108	if (fmt) {
2109		struct va_format vaf;
2110		va_list args;
2111
2112		va_start(args, fmt);
2113
2114		vaf.fmt = fmt;
2115		vaf.va = &args;
2116
2117		pr_warn("%pV", &vaf);
2118
2119		va_end(args);
2120	}
2121
2122	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2123		current->comm, order, gfp_mask);
2124
2125	dump_stack();
2126	if (!should_suppress_show_mem())
2127		show_mem(filter);
2128}
2129
2130static inline int
2131should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2132				unsigned long did_some_progress,
2133				unsigned long pages_reclaimed)
2134{
2135	/* Do not loop if specifically requested */
2136	if (gfp_mask & __GFP_NORETRY)
2137		return 0;
 
 
 
 
2138
2139	/* Always retry if specifically requested */
2140	if (gfp_mask & __GFP_NOFAIL)
2141		return 1;
2142
2143	/*
2144	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2145	 * making forward progress without invoking OOM. Suspend also disables
2146	 * storage devices so kswapd will not help. Bail if we are suspending.
2147	 */
2148	if (!did_some_progress && pm_suspended_storage())
2149		return 0;
2150
2151	/*
2152	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2153	 * means __GFP_NOFAIL, but that may not be true in other
2154	 * implementations.
2155	 */
2156	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2157		return 1;
2158
2159	/*
2160	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2161	 * specified, then we retry until we no longer reclaim any pages
2162	 * (above), or we've reclaimed an order of pages at least as
2163	 * large as the allocation's order. In both cases, if the
2164	 * allocation still fails, we stop retrying.
2165	 */
2166	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2167		return 1;
2168
2169	return 0;
2170}
2171
2172static inline struct page *
2173__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2174	struct zonelist *zonelist, enum zone_type high_zoneidx,
2175	nodemask_t *nodemask, struct zone *preferred_zone,
2176	int migratetype)
2177{
2178	struct page *page;
2179
2180	/* Acquire the OOM killer lock for the zones in zonelist */
2181	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2182		schedule_timeout_uninterruptible(1);
2183		return NULL;
2184	}
2185
2186	/*
2187	 * Go through the zonelist yet one more time, keep very high watermark
2188	 * here, this is only to catch a parallel oom killing, we must fail if
2189	 * we're still under heavy pressure.
2190	 */
2191	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2192		order, zonelist, high_zoneidx,
2193		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2194		preferred_zone, migratetype);
2195	if (page)
2196		goto out;
2197
2198	if (!(gfp_mask & __GFP_NOFAIL)) {
 
 
 
2199		/* The OOM killer will not help higher order allocs */
2200		if (order > PAGE_ALLOC_COSTLY_ORDER)
2201			goto out;
2202		/* The OOM killer does not needlessly kill tasks for lowmem */
2203		if (high_zoneidx < ZONE_NORMAL)
2204			goto out;
2205		/*
2206		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2207		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2208		 * The caller should handle page allocation failure by itself if
2209		 * it specifies __GFP_THISNODE.
2210		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2211		 */
 
 
 
 
 
 
 
 
 
 
2212		if (gfp_mask & __GFP_THISNODE)
2213			goto out;
2214	}
2215	/* Exhausted what can be done so it's blamo time */
2216	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
 
2217
 
 
 
 
 
 
 
 
 
 
 
 
2218out:
2219	clear_zonelist_oom(zonelist, gfp_mask);
2220	return page;
2221}
2222
2223#ifdef CONFIG_COMPACTION
2224/* Try memory compaction for high-order allocations before reclaim */
2225static struct page *
2226__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2227	struct zonelist *zonelist, enum zone_type high_zoneidx,
2228	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2229	int migratetype, bool sync_migration,
2230	bool *contended_compaction, bool *deferred_compaction,
2231	unsigned long *did_some_progress)
2232{
 
 
 
2233	if (!order)
2234		return NULL;
2235
2236	if (compaction_deferred(preferred_zone, order)) {
 
 
 
 
 
 
2237		*deferred_compaction = true;
 
 
2238		return NULL;
 
 
2239	}
2240
2241	current->flags |= PF_MEMALLOC;
2242	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2243						nodemask, sync_migration,
2244						contended_compaction);
2245	current->flags &= ~PF_MEMALLOC;
2246
2247	if (*did_some_progress != COMPACT_SKIPPED) {
2248		struct page *page;
2249
2250		/* Page migration frees to the PCP lists but we want merging */
2251		drain_pages(get_cpu());
2252		put_cpu();
2253
2254		page = get_page_from_freelist(gfp_mask, nodemask,
2255				order, zonelist, high_zoneidx,
2256				alloc_flags & ~ALLOC_NO_WATERMARKS,
2257				preferred_zone, migratetype);
2258		if (page) {
2259			preferred_zone->compact_blockskip_flush = false;
2260			compaction_defer_reset(preferred_zone, order, true);
2261			count_vm_event(COMPACTSUCCESS);
2262			return page;
2263		}
2264
2265		/*
2266		 * It's bad if compaction run occurs and fails.
2267		 * The most likely reason is that pages exist,
2268		 * but not enough to satisfy watermarks.
2269		 */
2270		count_vm_event(COMPACTFAIL);
2271
2272		/*
2273		 * As async compaction considers a subset of pageblocks, only
2274		 * defer if the failure was a sync compaction failure.
2275		 */
2276		if (sync_migration)
2277			defer_compaction(preferred_zone, order);
2278
2279		cond_resched();
2280	}
2281
2282	return NULL;
2283}
2284#else
2285static inline struct page *
2286__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2287	struct zonelist *zonelist, enum zone_type high_zoneidx,
2288	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2289	int migratetype, bool sync_migration,
2290	bool *contended_compaction, bool *deferred_compaction,
2291	unsigned long *did_some_progress)
2292{
2293	return NULL;
2294}
2295#endif /* CONFIG_COMPACTION */
2296
2297/* Perform direct synchronous page reclaim */
2298static int
2299__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2300		  nodemask_t *nodemask)
2301{
2302	struct reclaim_state reclaim_state;
2303	int progress;
2304
2305	cond_resched();
2306
2307	/* We now go into synchronous reclaim */
2308	cpuset_memory_pressure_bump();
2309	current->flags |= PF_MEMALLOC;
2310	lockdep_set_current_reclaim_state(gfp_mask);
2311	reclaim_state.reclaimed_slab = 0;
2312	current->reclaim_state = &reclaim_state;
2313
2314	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
 
2315
2316	current->reclaim_state = NULL;
2317	lockdep_clear_current_reclaim_state();
2318	current->flags &= ~PF_MEMALLOC;
2319
2320	cond_resched();
2321
2322	return progress;
2323}
2324
2325/* The really slow allocator path where we enter direct reclaim */
2326static inline struct page *
2327__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2328	struct zonelist *zonelist, enum zone_type high_zoneidx,
2329	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2330	int migratetype, unsigned long *did_some_progress)
2331{
2332	struct page *page = NULL;
2333	bool drained = false;
2334
2335	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2336					       nodemask);
2337	if (unlikely(!(*did_some_progress)))
2338		return NULL;
2339
2340	/* After successful reclaim, reconsider all zones for allocation */
2341	if (IS_ENABLED(CONFIG_NUMA))
2342		zlc_clear_zones_full(zonelist);
2343
2344retry:
2345	page = get_page_from_freelist(gfp_mask, nodemask, order,
2346					zonelist, high_zoneidx,
2347					alloc_flags & ~ALLOC_NO_WATERMARKS,
2348					preferred_zone, migratetype);
2349
2350	/*
2351	 * If an allocation failed after direct reclaim, it could be because
2352	 * pages are pinned on the per-cpu lists. Drain them and try again
 
2353	 */
2354	if (!page && !drained) {
2355		drain_all_pages();
 
2356		drained = true;
2357		goto retry;
2358	}
2359
2360	return page;
2361}
2362
2363/*
2364 * This is called in the allocator slow-path if the allocation request is of
2365 * sufficient urgency to ignore watermarks and take other desperate measures
2366 */
2367static inline struct page *
2368__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2369	struct zonelist *zonelist, enum zone_type high_zoneidx,
2370	nodemask_t *nodemask, struct zone *preferred_zone,
2371	int migratetype)
2372{
2373	struct page *page;
2374
2375	do {
2376		page = get_page_from_freelist(gfp_mask, nodemask, order,
2377			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2378			preferred_zone, migratetype);
2379
2380		if (!page && gfp_mask & __GFP_NOFAIL)
2381			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2382	} while (!page && (gfp_mask & __GFP_NOFAIL));
2383
2384	return page;
2385}
2386
2387static void reset_alloc_batches(struct zonelist *zonelist,
2388				enum zone_type high_zoneidx,
2389				struct zone *preferred_zone)
2390{
2391	struct zoneref *z;
2392	struct zone *zone;
2393
2394	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2395		/*
2396		 * Only reset the batches of zones that were actually
2397		 * considered in the fairness pass, we don't want to
2398		 * trash fairness information for zones that are not
2399		 * actually part of this zonelist's round-robin cycle.
2400		 */
2401		if (!zone_local(preferred_zone, zone))
2402			continue;
2403		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2404			high_wmark_pages(zone) - low_wmark_pages(zone) -
2405			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2406	}
2407}
2408
2409static void wake_all_kswapds(unsigned int order,
2410			     struct zonelist *zonelist,
2411			     enum zone_type high_zoneidx,
2412			     struct zone *preferred_zone)
2413{
2414	struct zoneref *z;
2415	struct zone *zone;
2416
2417	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2418		wakeup_kswapd(zone, order, zone_idx(preferred_zone));
 
2419}
2420
2421static inline int
2422gfp_to_alloc_flags(gfp_t gfp_mask)
2423{
2424	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2425	const gfp_t wait = gfp_mask & __GFP_WAIT;
2426
2427	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2428	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2429
2430	/*
2431	 * The caller may dip into page reserves a bit more if the caller
2432	 * cannot run direct reclaim, or if the caller has realtime scheduling
2433	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2434	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2435	 */
2436	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2437
2438	if (!wait) {
2439		/*
2440		 * Not worth trying to allocate harder for
2441		 * __GFP_NOMEMALLOC even if it can't schedule.
2442		 */
2443		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2444			alloc_flags |= ALLOC_HARDER;
2445		/*
2446		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2447		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2448		 */
2449		alloc_flags &= ~ALLOC_CPUSET;
2450	} else if (unlikely(rt_task(current)) && !in_interrupt())
2451		alloc_flags |= ALLOC_HARDER;
2452
2453	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2454		if (gfp_mask & __GFP_MEMALLOC)
2455			alloc_flags |= ALLOC_NO_WATERMARKS;
2456		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2457			alloc_flags |= ALLOC_NO_WATERMARKS;
2458		else if (!in_interrupt() &&
2459				((current->flags & PF_MEMALLOC) ||
2460				 unlikely(test_thread_flag(TIF_MEMDIE))))
2461			alloc_flags |= ALLOC_NO_WATERMARKS;
2462	}
2463#ifdef CONFIG_CMA
2464	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2465		alloc_flags |= ALLOC_CMA;
2466#endif
2467	return alloc_flags;
2468}
2469
2470bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2471{
2472	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2473}
2474
 
 
 
 
 
2475static inline struct page *
2476__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2477	struct zonelist *zonelist, enum zone_type high_zoneidx,
2478	nodemask_t *nodemask, struct zone *preferred_zone,
2479	int migratetype)
2480{
2481	const gfp_t wait = gfp_mask & __GFP_WAIT;
2482	struct page *page = NULL;
2483	int alloc_flags;
2484	unsigned long pages_reclaimed = 0;
2485	unsigned long did_some_progress;
2486	bool sync_migration = false;
2487	bool deferred_compaction = false;
2488	bool contended_compaction = false;
2489
2490	/*
2491	 * In the slowpath, we sanity check order to avoid ever trying to
2492	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2493	 * be using allocators in order of preference for an area that is
2494	 * too large.
2495	 */
2496	if (order >= MAX_ORDER) {
2497		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2498		return NULL;
2499	}
2500
2501	/*
2502	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2503	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2504	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2505	 * using a larger set of nodes after it has established that the
2506	 * allowed per node queues are empty and that nodes are
2507	 * over allocated.
2508	 */
2509	if (IS_ENABLED(CONFIG_NUMA) &&
2510	    (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2511		goto nopage;
2512
2513restart:
2514	if (!(gfp_mask & __GFP_NO_KSWAPD))
2515		wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
2516
2517	/*
2518	 * OK, we're below the kswapd watermark and have kicked background
2519	 * reclaim. Now things get more complex, so set up alloc_flags according
2520	 * to how we want to proceed.
2521	 */
2522	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2523
2524	/*
2525	 * Find the true preferred zone if the allocation is unconstrained by
2526	 * cpusets.
2527	 */
2528	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2529		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2530					&preferred_zone);
 
 
 
2531
2532rebalance:
2533	/* This is the last chance, in general, before the goto nopage. */
2534	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2535			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2536			preferred_zone, migratetype);
2537	if (page)
2538		goto got_pg;
2539
2540	/* Allocate without watermarks if the context allows */
2541	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2542		/*
2543		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2544		 * the allocation is high priority and these type of
2545		 * allocations are system rather than user orientated
2546		 */
2547		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2548
2549		page = __alloc_pages_high_priority(gfp_mask, order,
2550				zonelist, high_zoneidx, nodemask,
2551				preferred_zone, migratetype);
2552		if (page) {
2553			goto got_pg;
2554		}
2555	}
2556
2557	/* Atomic allocations - we can't balance anything */
2558	if (!wait) {
2559		/*
2560		 * All existing users of the deprecated __GFP_NOFAIL are
2561		 * blockable, so warn of any new users that actually allow this
2562		 * type of allocation to fail.
2563		 */
2564		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2565		goto nopage;
2566	}
2567
2568	/* Avoid recursion of direct reclaim */
2569	if (current->flags & PF_MEMALLOC)
 
 
 
 
 
 
 
 
 
2570		goto nopage;
 
2571
2572	/* Avoid allocations with no watermarks from looping endlessly */
2573	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2574		goto nopage;
2575
2576	/*
2577	 * Try direct compaction. The first pass is asynchronous. Subsequent
2578	 * attempts after direct reclaim are synchronous
2579	 */
2580	page = __alloc_pages_direct_compact(gfp_mask, order,
2581					zonelist, high_zoneidx,
2582					nodemask,
2583					alloc_flags, preferred_zone,
2584					migratetype, sync_migration,
2585					&contended_compaction,
2586					&deferred_compaction,
2587					&did_some_progress);
2588	if (page)
2589		goto got_pg;
2590	sync_migration = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2591
2592	/*
2593	 * If compaction is deferred for high-order allocations, it is because
2594	 * sync compaction recently failed. In this is the case and the caller
2595	 * requested a movable allocation that does not heavily disrupt the
2596	 * system then fail the allocation instead of entering direct reclaim.
2597	 */
2598	if ((deferred_compaction || contended_compaction) &&
2599						(gfp_mask & __GFP_NO_KSWAPD))
2600		goto nopage;
2601
2602	/* Try direct reclaim and then allocating */
2603	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2604					zonelist, high_zoneidx,
2605					nodemask,
2606					alloc_flags, preferred_zone,
2607					migratetype, &did_some_progress);
2608	if (page)
2609		goto got_pg;
2610
2611	/*
2612	 * If we failed to make any progress reclaiming, then we are
2613	 * running out of options and have to consider going OOM
2614	 */
2615	if (!did_some_progress) {
2616		if (oom_gfp_allowed(gfp_mask)) {
2617			if (oom_killer_disabled)
2618				goto nopage;
2619			/* Coredumps can quickly deplete all memory reserves */
2620			if ((current->flags & PF_DUMPCORE) &&
2621			    !(gfp_mask & __GFP_NOFAIL))
2622				goto nopage;
2623			page = __alloc_pages_may_oom(gfp_mask, order,
2624					zonelist, high_zoneidx,
2625					nodemask, preferred_zone,
2626					migratetype);
2627			if (page)
2628				goto got_pg;
2629
2630			if (!(gfp_mask & __GFP_NOFAIL)) {
2631				/*
2632				 * The oom killer is not called for high-order
2633				 * allocations that may fail, so if no progress
2634				 * is being made, there are no other options and
2635				 * retrying is unlikely to help.
2636				 */
2637				if (order > PAGE_ALLOC_COSTLY_ORDER)
2638					goto nopage;
2639				/*
2640				 * The oom killer is not called for lowmem
2641				 * allocations to prevent needlessly killing
2642				 * innocent tasks.
2643				 */
2644				if (high_zoneidx < ZONE_NORMAL)
2645					goto nopage;
2646			}
2647
2648			goto restart;
2649		}
2650	}
2651
2652	/* Check if we should retry the allocation */
2653	pages_reclaimed += did_some_progress;
2654	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2655						pages_reclaimed)) {
2656		/* Wait for some write requests to complete then retry */
2657		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2658		goto rebalance;
2659	} else {
2660		/*
2661		 * High-order allocations do not necessarily loop after
2662		 * direct reclaim and reclaim/compaction depends on compaction
2663		 * being called after reclaim so call directly if necessary
2664		 */
2665		page = __alloc_pages_direct_compact(gfp_mask, order,
2666					zonelist, high_zoneidx,
2667					nodemask,
2668					alloc_flags, preferred_zone,
2669					migratetype, sync_migration,
2670					&contended_compaction,
2671					&deferred_compaction,
2672					&did_some_progress);
2673		if (page)
2674			goto got_pg;
2675	}
2676
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2677nopage:
2678	warn_alloc_failed(gfp_mask, order, NULL);
2679	return page;
2680got_pg:
2681	if (kmemcheck_enabled)
2682		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2683
2684	return page;
2685}
2686
2687/*
2688 * This is the 'heart' of the zoned buddy allocator.
2689 */
2690struct page *
2691__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2692			struct zonelist *zonelist, nodemask_t *nodemask)
2693{
2694	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2695	struct zone *preferred_zone;
2696	struct page *page = NULL;
2697	int migratetype = allocflags_to_migratetype(gfp_mask);
2698	unsigned int cpuset_mems_cookie;
2699	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2700	struct mem_cgroup *memcg = NULL;
 
 
 
 
 
2701
2702	gfp_mask &= gfp_allowed_mask;
2703
2704	lockdep_trace_alloc(gfp_mask);
2705
2706	might_sleep_if(gfp_mask & __GFP_WAIT);
2707
2708	if (should_fail_alloc_page(gfp_mask, order))
2709		return NULL;
2710
2711	/*
2712	 * Check the zones suitable for the gfp_mask contain at least one
2713	 * valid zone. It's possible to have an empty zonelist as a result
2714	 * of GFP_THISNODE and a memoryless node
2715	 */
2716	if (unlikely(!zonelist->_zonerefs->zone))
2717		return NULL;
2718
2719	/*
2720	 * Will only have any effect when __GFP_KMEMCG is set.  This is
2721	 * verified in the (always inline) callee
2722	 */
2723	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2724		return NULL;
2725
2726retry_cpuset:
2727	cpuset_mems_cookie = read_mems_allowed_begin();
2728
 
 
 
 
 
 
2729	/* The preferred zone is used for statistics later */
2730	first_zones_zonelist(zonelist, high_zoneidx,
2731				nodemask ? : &cpuset_current_mems_allowed,
2732				&preferred_zone);
2733	if (!preferred_zone)
2734		goto out;
 
2735
2736#ifdef CONFIG_CMA
2737	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2738		alloc_flags |= ALLOC_CMA;
2739#endif
2740retry:
2741	/* First allocation attempt */
2742	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2743			zonelist, high_zoneidx, alloc_flags,
2744			preferred_zone, migratetype);
2745	if (unlikely(!page)) {
2746		/*
2747		 * The first pass makes sure allocations are spread
2748		 * fairly within the local node.  However, the local
2749		 * node might have free pages left after the fairness
2750		 * batches are exhausted, and remote zones haven't
2751		 * even been considered yet.  Try once more without
2752		 * fairness, and include remote zones now, before
2753		 * entering the slowpath and waking kswapd: prefer
2754		 * spilling to a remote zone over swapping locally.
2755		 */
2756		if (alloc_flags & ALLOC_FAIR) {
2757			reset_alloc_batches(zonelist, high_zoneidx,
2758					    preferred_zone);
2759			alloc_flags &= ~ALLOC_FAIR;
2760			goto retry;
2761		}
2762		/*
2763		 * Runtime PM, block IO and its error handling path
2764		 * can deadlock because I/O on the device might not
2765		 * complete.
2766		 */
2767		gfp_mask = memalloc_noio_flags(gfp_mask);
2768		page = __alloc_pages_slowpath(gfp_mask, order,
2769				zonelist, high_zoneidx, nodemask,
2770				preferred_zone, migratetype);
2771	}
2772
2773	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
 
 
 
2774
2775out:
2776	/*
2777	 * When updating a task's mems_allowed, it is possible to race with
2778	 * parallel threads in such a way that an allocation can fail while
2779	 * the mask is being updated. If a page allocation is about to fail,
2780	 * check if the cpuset changed during allocation and if so, retry.
2781	 */
2782	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2783		goto retry_cpuset;
2784
2785	memcg_kmem_commit_charge(page, memcg, order);
2786
2787	return page;
2788}
2789EXPORT_SYMBOL(__alloc_pages_nodemask);
2790
2791/*
2792 * Common helper functions.
2793 */
2794unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2795{
2796	struct page *page;
2797
2798	/*
2799	 * __get_free_pages() returns a 32-bit address, which cannot represent
2800	 * a highmem page
2801	 */
2802	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2803
2804	page = alloc_pages(gfp_mask, order);
2805	if (!page)
2806		return 0;
2807	return (unsigned long) page_address(page);
2808}
2809EXPORT_SYMBOL(__get_free_pages);
2810
2811unsigned long get_zeroed_page(gfp_t gfp_mask)
2812{
2813	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2814}
2815EXPORT_SYMBOL(get_zeroed_page);
2816
2817void __free_pages(struct page *page, unsigned int order)
2818{
2819	if (put_page_testzero(page)) {
2820		if (order == 0)
2821			free_hot_cold_page(page, 0);
2822		else
2823			__free_pages_ok(page, order);
2824	}
2825}
2826
2827EXPORT_SYMBOL(__free_pages);
2828
2829void free_pages(unsigned long addr, unsigned int order)
2830{
2831	if (addr != 0) {
2832		VM_BUG_ON(!virt_addr_valid((void *)addr));
2833		__free_pages(virt_to_page((void *)addr), order);
2834	}
2835}
2836
2837EXPORT_SYMBOL(free_pages);
2838
2839/*
2840 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2841 * pages allocated with __GFP_KMEMCG.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2842 *
2843 * Those pages are accounted to a particular memcg, embedded in the
2844 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2845 * for that information only to find out that it is NULL for users who have no
2846 * interest in that whatsoever, we provide these functions.
2847 *
2848 * The caller knows better which flags it relies on.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2849 */
2850void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2851{
2852	memcg_kmem_uncharge_pages(page, order);
2853	__free_pages(page, order);
2854}
2855
2856void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2857{
2858	if (addr != 0) {
2859		VM_BUG_ON(!virt_addr_valid((void *)addr));
2860		__free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2861	}
2862}
2863
2864static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
 
2865{
2866	if (addr) {
2867		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2868		unsigned long used = addr + PAGE_ALIGN(size);
2869
2870		split_page(virt_to_page((void *)addr), order);
2871		while (used < alloc_end) {
2872			free_page(used);
2873			used += PAGE_SIZE;
2874		}
2875	}
2876	return (void *)addr;
2877}
2878
2879/**
2880 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2881 * @size: the number of bytes to allocate
2882 * @gfp_mask: GFP flags for the allocation
2883 *
2884 * This function is similar to alloc_pages(), except that it allocates the
2885 * minimum number of pages to satisfy the request.  alloc_pages() can only
2886 * allocate memory in power-of-two pages.
2887 *
2888 * This function is also limited by MAX_ORDER.
2889 *
2890 * Memory allocated by this function must be released by free_pages_exact().
2891 */
2892void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2893{
2894	unsigned int order = get_order(size);
2895	unsigned long addr;
2896
2897	addr = __get_free_pages(gfp_mask, order);
2898	return make_alloc_exact(addr, order, size);
2899}
2900EXPORT_SYMBOL(alloc_pages_exact);
2901
2902/**
2903 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2904 *			   pages on a node.
2905 * @nid: the preferred node ID where memory should be allocated
2906 * @size: the number of bytes to allocate
2907 * @gfp_mask: GFP flags for the allocation
2908 *
2909 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2910 * back.
2911 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2912 * but is not exact.
2913 */
2914void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2915{
2916	unsigned order = get_order(size);
2917	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2918	if (!p)
2919		return NULL;
2920	return make_alloc_exact((unsigned long)page_address(p), order, size);
2921}
2922EXPORT_SYMBOL(alloc_pages_exact_nid);
2923
2924/**
2925 * free_pages_exact - release memory allocated via alloc_pages_exact()
2926 * @virt: the value returned by alloc_pages_exact.
2927 * @size: size of allocation, same value as passed to alloc_pages_exact().
2928 *
2929 * Release the memory allocated by a previous call to alloc_pages_exact.
2930 */
2931void free_pages_exact(void *virt, size_t size)
2932{
2933	unsigned long addr = (unsigned long)virt;
2934	unsigned long end = addr + PAGE_ALIGN(size);
2935
2936	while (addr < end) {
2937		free_page(addr);
2938		addr += PAGE_SIZE;
2939	}
2940}
2941EXPORT_SYMBOL(free_pages_exact);
2942
2943/**
2944 * nr_free_zone_pages - count number of pages beyond high watermark
2945 * @offset: The zone index of the highest zone
2946 *
2947 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2948 * high watermark within all zones at or below a given zone index.  For each
2949 * zone, the number of pages is calculated as:
2950 *     managed_pages - high_pages
2951 */
2952static unsigned long nr_free_zone_pages(int offset)
2953{
2954	struct zoneref *z;
2955	struct zone *zone;
2956
2957	/* Just pick one node, since fallback list is circular */
2958	unsigned long sum = 0;
2959
2960	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2961
2962	for_each_zone_zonelist(zone, z, zonelist, offset) {
2963		unsigned long size = zone->managed_pages;
2964		unsigned long high = high_wmark_pages(zone);
2965		if (size > high)
2966			sum += size - high;
2967	}
2968
2969	return sum;
2970}
2971
2972/**
2973 * nr_free_buffer_pages - count number of pages beyond high watermark
2974 *
2975 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2976 * watermark within ZONE_DMA and ZONE_NORMAL.
2977 */
2978unsigned long nr_free_buffer_pages(void)
2979{
2980	return nr_free_zone_pages(gfp_zone(GFP_USER));
2981}
2982EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2983
2984/**
2985 * nr_free_pagecache_pages - count number of pages beyond high watermark
2986 *
2987 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2988 * high watermark within all zones.
2989 */
2990unsigned long nr_free_pagecache_pages(void)
2991{
2992	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2993}
2994
2995static inline void show_node(struct zone *zone)
2996{
2997	if (IS_ENABLED(CONFIG_NUMA))
2998		printk("Node %d ", zone_to_nid(zone));
2999}
3000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3001void si_meminfo(struct sysinfo *val)
3002{
3003	val->totalram = totalram_pages;
3004	val->sharedram = 0;
3005	val->freeram = global_page_state(NR_FREE_PAGES);
3006	val->bufferram = nr_blockdev_pages();
3007	val->totalhigh = totalhigh_pages;
3008	val->freehigh = nr_free_highpages();
3009	val->mem_unit = PAGE_SIZE;
3010}
3011
3012EXPORT_SYMBOL(si_meminfo);
3013
3014#ifdef CONFIG_NUMA
3015void si_meminfo_node(struct sysinfo *val, int nid)
3016{
3017	int zone_type;		/* needs to be signed */
3018	unsigned long managed_pages = 0;
3019	pg_data_t *pgdat = NODE_DATA(nid);
3020
3021	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3022		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3023	val->totalram = managed_pages;
 
3024	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3025#ifdef CONFIG_HIGHMEM
3026	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3027	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3028			NR_FREE_PAGES);
3029#else
3030	val->totalhigh = 0;
3031	val->freehigh = 0;
3032#endif
3033	val->mem_unit = PAGE_SIZE;
3034}
3035#endif
3036
3037/*
3038 * Determine whether the node should be displayed or not, depending on whether
3039 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3040 */
3041bool skip_free_areas_node(unsigned int flags, int nid)
3042{
3043	bool ret = false;
3044	unsigned int cpuset_mems_cookie;
3045
3046	if (!(flags & SHOW_MEM_FILTER_NODES))
3047		goto out;
3048
3049	do {
3050		cpuset_mems_cookie = read_mems_allowed_begin();
3051		ret = !node_isset(nid, cpuset_current_mems_allowed);
3052	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3053out:
3054	return ret;
3055}
3056
3057#define K(x) ((x) << (PAGE_SHIFT-10))
3058
3059static void show_migration_types(unsigned char type)
3060{
3061	static const char types[MIGRATE_TYPES] = {
3062		[MIGRATE_UNMOVABLE]	= 'U',
 
3063		[MIGRATE_RECLAIMABLE]	= 'E',
3064		[MIGRATE_MOVABLE]	= 'M',
3065		[MIGRATE_RESERVE]	= 'R',
3066#ifdef CONFIG_CMA
3067		[MIGRATE_CMA]		= 'C',
3068#endif
3069#ifdef CONFIG_MEMORY_ISOLATION
3070		[MIGRATE_ISOLATE]	= 'I',
3071#endif
3072	};
3073	char tmp[MIGRATE_TYPES + 1];
3074	char *p = tmp;
3075	int i;
3076
3077	for (i = 0; i < MIGRATE_TYPES; i++) {
3078		if (type & (1 << i))
3079			*p++ = types[i];
3080	}
3081
3082	*p = '\0';
3083	printk("(%s) ", tmp);
3084}
3085
3086/*
3087 * Show free area list (used inside shift_scroll-lock stuff)
3088 * We also calculate the percentage fragmentation. We do this by counting the
3089 * memory on each free list with the exception of the first item on the list.
3090 * Suppresses nodes that are not allowed by current's cpuset if
3091 * SHOW_MEM_FILTER_NODES is passed.
 
 
3092 */
3093void show_free_areas(unsigned int filter)
3094{
 
3095	int cpu;
3096	struct zone *zone;
3097
3098	for_each_populated_zone(zone) {
3099		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3100			continue;
3101		show_node(zone);
3102		printk("%s per-cpu:\n", zone->name);
3103
3104		for_each_online_cpu(cpu) {
3105			struct per_cpu_pageset *pageset;
3106
3107			pageset = per_cpu_ptr(zone->pageset, cpu);
3108
3109			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3110			       cpu, pageset->pcp.high,
3111			       pageset->pcp.batch, pageset->pcp.count);
3112		}
3113	}
3114
3115	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3116		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3117		" unevictable:%lu"
3118		" dirty:%lu writeback:%lu unstable:%lu\n"
3119		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3120		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3121		" free_cma:%lu\n",
3122		global_page_state(NR_ACTIVE_ANON),
3123		global_page_state(NR_INACTIVE_ANON),
3124		global_page_state(NR_ISOLATED_ANON),
3125		global_page_state(NR_ACTIVE_FILE),
3126		global_page_state(NR_INACTIVE_FILE),
3127		global_page_state(NR_ISOLATED_FILE),
3128		global_page_state(NR_UNEVICTABLE),
3129		global_page_state(NR_FILE_DIRTY),
3130		global_page_state(NR_WRITEBACK),
3131		global_page_state(NR_UNSTABLE_NFS),
3132		global_page_state(NR_FREE_PAGES),
3133		global_page_state(NR_SLAB_RECLAIMABLE),
3134		global_page_state(NR_SLAB_UNRECLAIMABLE),
3135		global_page_state(NR_FILE_MAPPED),
3136		global_page_state(NR_SHMEM),
3137		global_page_state(NR_PAGETABLE),
3138		global_page_state(NR_BOUNCE),
 
 
3139		global_page_state(NR_FREE_CMA_PAGES));
3140
3141	for_each_populated_zone(zone) {
3142		int i;
3143
3144		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3145			continue;
 
 
 
 
 
3146		show_node(zone);
3147		printk("%s"
3148			" free:%lukB"
3149			" min:%lukB"
3150			" low:%lukB"
3151			" high:%lukB"
3152			" active_anon:%lukB"
3153			" inactive_anon:%lukB"
3154			" active_file:%lukB"
3155			" inactive_file:%lukB"
3156			" unevictable:%lukB"
3157			" isolated(anon):%lukB"
3158			" isolated(file):%lukB"
3159			" present:%lukB"
3160			" managed:%lukB"
3161			" mlocked:%lukB"
3162			" dirty:%lukB"
3163			" writeback:%lukB"
3164			" mapped:%lukB"
3165			" shmem:%lukB"
3166			" slab_reclaimable:%lukB"
3167			" slab_unreclaimable:%lukB"
3168			" kernel_stack:%lukB"
3169			" pagetables:%lukB"
3170			" unstable:%lukB"
3171			" bounce:%lukB"
 
 
3172			" free_cma:%lukB"
3173			" writeback_tmp:%lukB"
3174			" pages_scanned:%lu"
3175			" all_unreclaimable? %s"
3176			"\n",
3177			zone->name,
3178			K(zone_page_state(zone, NR_FREE_PAGES)),
3179			K(min_wmark_pages(zone)),
3180			K(low_wmark_pages(zone)),
3181			K(high_wmark_pages(zone)),
3182			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3183			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3184			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3185			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3186			K(zone_page_state(zone, NR_UNEVICTABLE)),
3187			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3188			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3189			K(zone->present_pages),
3190			K(zone->managed_pages),
3191			K(zone_page_state(zone, NR_MLOCK)),
3192			K(zone_page_state(zone, NR_FILE_DIRTY)),
3193			K(zone_page_state(zone, NR_WRITEBACK)),
3194			K(zone_page_state(zone, NR_FILE_MAPPED)),
3195			K(zone_page_state(zone, NR_SHMEM)),
3196			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3197			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3198			zone_page_state(zone, NR_KERNEL_STACK) *
3199				THREAD_SIZE / 1024,
3200			K(zone_page_state(zone, NR_PAGETABLE)),
3201			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3202			K(zone_page_state(zone, NR_BOUNCE)),
 
 
3203			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3204			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3205			zone->pages_scanned,
3206			(!zone_reclaimable(zone) ? "yes" : "no")
3207			);
3208		printk("lowmem_reserve[]:");
3209		for (i = 0; i < MAX_NR_ZONES; i++)
3210			printk(" %lu", zone->lowmem_reserve[i]);
3211		printk("\n");
3212	}
3213
3214	for_each_populated_zone(zone) {
3215		unsigned long nr[MAX_ORDER], flags, order, total = 0;
 
3216		unsigned char types[MAX_ORDER];
3217
3218		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3219			continue;
3220		show_node(zone);
3221		printk("%s: ", zone->name);
3222
3223		spin_lock_irqsave(&zone->lock, flags);
3224		for (order = 0; order < MAX_ORDER; order++) {
3225			struct free_area *area = &zone->free_area[order];
3226			int type;
3227
3228			nr[order] = area->nr_free;
3229			total += nr[order] << order;
3230
3231			types[order] = 0;
3232			for (type = 0; type < MIGRATE_TYPES; type++) {
3233				if (!list_empty(&area->free_list[type]))
3234					types[order] |= 1 << type;
3235			}
3236		}
3237		spin_unlock_irqrestore(&zone->lock, flags);
3238		for (order = 0; order < MAX_ORDER; order++) {
3239			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3240			if (nr[order])
3241				show_migration_types(types[order]);
3242		}
3243		printk("= %lukB\n", K(total));
3244	}
3245
3246	hugetlb_show_meminfo();
3247
3248	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3249
3250	show_swap_cache_info();
3251}
3252
3253static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3254{
3255	zoneref->zone = zone;
3256	zoneref->zone_idx = zone_idx(zone);
3257}
3258
3259/*
3260 * Builds allocation fallback zone lists.
3261 *
3262 * Add all populated zones of a node to the zonelist.
3263 */
3264static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3265				int nr_zones)
3266{
3267	struct zone *zone;
3268	enum zone_type zone_type = MAX_NR_ZONES;
3269
3270	do {
3271		zone_type--;
3272		zone = pgdat->node_zones + zone_type;
3273		if (populated_zone(zone)) {
3274			zoneref_set_zone(zone,
3275				&zonelist->_zonerefs[nr_zones++]);
3276			check_highest_zone(zone_type);
3277		}
3278	} while (zone_type);
3279
3280	return nr_zones;
3281}
3282
3283
3284/*
3285 *  zonelist_order:
3286 *  0 = automatic detection of better ordering.
3287 *  1 = order by ([node] distance, -zonetype)
3288 *  2 = order by (-zonetype, [node] distance)
3289 *
3290 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3291 *  the same zonelist. So only NUMA can configure this param.
3292 */
3293#define ZONELIST_ORDER_DEFAULT  0
3294#define ZONELIST_ORDER_NODE     1
3295#define ZONELIST_ORDER_ZONE     2
3296
3297/* zonelist order in the kernel.
3298 * set_zonelist_order() will set this to NODE or ZONE.
3299 */
3300static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3301static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3302
3303
3304#ifdef CONFIG_NUMA
3305/* The value user specified ....changed by config */
3306static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3307/* string for sysctl */
3308#define NUMA_ZONELIST_ORDER_LEN	16
3309char numa_zonelist_order[16] = "default";
3310
3311/*
3312 * interface for configure zonelist ordering.
3313 * command line option "numa_zonelist_order"
3314 *	= "[dD]efault	- default, automatic configuration.
3315 *	= "[nN]ode 	- order by node locality, then by zone within node
3316 *	= "[zZ]one      - order by zone, then by locality within zone
3317 */
3318
3319static int __parse_numa_zonelist_order(char *s)
3320{
3321	if (*s == 'd' || *s == 'D') {
3322		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3323	} else if (*s == 'n' || *s == 'N') {
3324		user_zonelist_order = ZONELIST_ORDER_NODE;
3325	} else if (*s == 'z' || *s == 'Z') {
3326		user_zonelist_order = ZONELIST_ORDER_ZONE;
3327	} else {
3328		printk(KERN_WARNING
3329			"Ignoring invalid numa_zonelist_order value:  "
3330			"%s\n", s);
3331		return -EINVAL;
3332	}
3333	return 0;
3334}
3335
3336static __init int setup_numa_zonelist_order(char *s)
3337{
3338	int ret;
3339
3340	if (!s)
3341		return 0;
3342
3343	ret = __parse_numa_zonelist_order(s);
3344	if (ret == 0)
3345		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3346
3347	return ret;
3348}
3349early_param("numa_zonelist_order", setup_numa_zonelist_order);
3350
3351/*
3352 * sysctl handler for numa_zonelist_order
3353 */
3354int numa_zonelist_order_handler(ctl_table *table, int write,
3355		void __user *buffer, size_t *length,
3356		loff_t *ppos)
3357{
3358	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3359	int ret;
3360	static DEFINE_MUTEX(zl_order_mutex);
3361
3362	mutex_lock(&zl_order_mutex);
3363	if (write) {
3364		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3365			ret = -EINVAL;
3366			goto out;
3367		}
3368		strcpy(saved_string, (char *)table->data);
3369	}
3370	ret = proc_dostring(table, write, buffer, length, ppos);
3371	if (ret)
3372		goto out;
3373	if (write) {
3374		int oldval = user_zonelist_order;
3375
3376		ret = __parse_numa_zonelist_order((char *)table->data);
3377		if (ret) {
3378			/*
3379			 * bogus value.  restore saved string
3380			 */
3381			strncpy((char *)table->data, saved_string,
3382				NUMA_ZONELIST_ORDER_LEN);
3383			user_zonelist_order = oldval;
3384		} else if (oldval != user_zonelist_order) {
3385			mutex_lock(&zonelists_mutex);
3386			build_all_zonelists(NULL, NULL);
3387			mutex_unlock(&zonelists_mutex);
3388		}
3389	}
3390out:
3391	mutex_unlock(&zl_order_mutex);
3392	return ret;
3393}
3394
3395
3396#define MAX_NODE_LOAD (nr_online_nodes)
3397static int node_load[MAX_NUMNODES];
3398
3399/**
3400 * find_next_best_node - find the next node that should appear in a given node's fallback list
3401 * @node: node whose fallback list we're appending
3402 * @used_node_mask: nodemask_t of already used nodes
3403 *
3404 * We use a number of factors to determine which is the next node that should
3405 * appear on a given node's fallback list.  The node should not have appeared
3406 * already in @node's fallback list, and it should be the next closest node
3407 * according to the distance array (which contains arbitrary distance values
3408 * from each node to each node in the system), and should also prefer nodes
3409 * with no CPUs, since presumably they'll have very little allocation pressure
3410 * on them otherwise.
3411 * It returns -1 if no node is found.
3412 */
3413static int find_next_best_node(int node, nodemask_t *used_node_mask)
3414{
3415	int n, val;
3416	int min_val = INT_MAX;
3417	int best_node = NUMA_NO_NODE;
3418	const struct cpumask *tmp = cpumask_of_node(0);
3419
3420	/* Use the local node if we haven't already */
3421	if (!node_isset(node, *used_node_mask)) {
3422		node_set(node, *used_node_mask);
3423		return node;
3424	}
3425
3426	for_each_node_state(n, N_MEMORY) {
3427
3428		/* Don't want a node to appear more than once */
3429		if (node_isset(n, *used_node_mask))
3430			continue;
3431
3432		/* Use the distance array to find the distance */
3433		val = node_distance(node, n);
3434
3435		/* Penalize nodes under us ("prefer the next node") */
3436		val += (n < node);
3437
3438		/* Give preference to headless and unused nodes */
3439		tmp = cpumask_of_node(n);
3440		if (!cpumask_empty(tmp))
3441			val += PENALTY_FOR_NODE_WITH_CPUS;
3442
3443		/* Slight preference for less loaded node */
3444		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3445		val += node_load[n];
3446
3447		if (val < min_val) {
3448			min_val = val;
3449			best_node = n;
3450		}
3451	}
3452
3453	if (best_node >= 0)
3454		node_set(best_node, *used_node_mask);
3455
3456	return best_node;
3457}
3458
3459
3460/*
3461 * Build zonelists ordered by node and zones within node.
3462 * This results in maximum locality--normal zone overflows into local
3463 * DMA zone, if any--but risks exhausting DMA zone.
3464 */
3465static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3466{
3467	int j;
3468	struct zonelist *zonelist;
3469
3470	zonelist = &pgdat->node_zonelists[0];
3471	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3472		;
3473	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3474	zonelist->_zonerefs[j].zone = NULL;
3475	zonelist->_zonerefs[j].zone_idx = 0;
3476}
3477
3478/*
3479 * Build gfp_thisnode zonelists
3480 */
3481static void build_thisnode_zonelists(pg_data_t *pgdat)
3482{
3483	int j;
3484	struct zonelist *zonelist;
3485
3486	zonelist = &pgdat->node_zonelists[1];
3487	j = build_zonelists_node(pgdat, zonelist, 0);
3488	zonelist->_zonerefs[j].zone = NULL;
3489	zonelist->_zonerefs[j].zone_idx = 0;
3490}
3491
3492/*
3493 * Build zonelists ordered by zone and nodes within zones.
3494 * This results in conserving DMA zone[s] until all Normal memory is
3495 * exhausted, but results in overflowing to remote node while memory
3496 * may still exist in local DMA zone.
3497 */
3498static int node_order[MAX_NUMNODES];
3499
3500static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3501{
3502	int pos, j, node;
3503	int zone_type;		/* needs to be signed */
3504	struct zone *z;
3505	struct zonelist *zonelist;
3506
3507	zonelist = &pgdat->node_zonelists[0];
3508	pos = 0;
3509	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3510		for (j = 0; j < nr_nodes; j++) {
3511			node = node_order[j];
3512			z = &NODE_DATA(node)->node_zones[zone_type];
3513			if (populated_zone(z)) {
3514				zoneref_set_zone(z,
3515					&zonelist->_zonerefs[pos++]);
3516				check_highest_zone(zone_type);
3517			}
3518		}
3519	}
3520	zonelist->_zonerefs[pos].zone = NULL;
3521	zonelist->_zonerefs[pos].zone_idx = 0;
3522}
3523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3524static int default_zonelist_order(void)
3525{
3526	int nid, zone_type;
3527	unsigned long low_kmem_size, total_size;
3528	struct zone *z;
3529	int average_size;
3530	/*
3531	 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3532	 * If they are really small and used heavily, the system can fall
3533	 * into OOM very easily.
3534	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3535	 */
3536	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3537	low_kmem_size = 0;
3538	total_size = 0;
3539	for_each_online_node(nid) {
3540		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3541			z = &NODE_DATA(nid)->node_zones[zone_type];
3542			if (populated_zone(z)) {
3543				if (zone_type < ZONE_NORMAL)
3544					low_kmem_size += z->managed_pages;
3545				total_size += z->managed_pages;
3546			} else if (zone_type == ZONE_NORMAL) {
3547				/*
3548				 * If any node has only lowmem, then node order
3549				 * is preferred to allow kernel allocations
3550				 * locally; otherwise, they can easily infringe
3551				 * on other nodes when there is an abundance of
3552				 * lowmem available to allocate from.
3553				 */
3554				return ZONELIST_ORDER_NODE;
3555			}
3556		}
3557	}
3558	if (!low_kmem_size ||  /* there are no DMA area. */
3559	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3560		return ZONELIST_ORDER_NODE;
3561	/*
3562	 * look into each node's config.
3563	 * If there is a node whose DMA/DMA32 memory is very big area on
3564	 * local memory, NODE_ORDER may be suitable.
3565	 */
3566	average_size = total_size /
3567				(nodes_weight(node_states[N_MEMORY]) + 1);
3568	for_each_online_node(nid) {
3569		low_kmem_size = 0;
3570		total_size = 0;
3571		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3572			z = &NODE_DATA(nid)->node_zones[zone_type];
3573			if (populated_zone(z)) {
3574				if (zone_type < ZONE_NORMAL)
3575					low_kmem_size += z->present_pages;
3576				total_size += z->present_pages;
3577			}
3578		}
3579		if (low_kmem_size &&
3580		    total_size > average_size && /* ignore small node */
3581		    low_kmem_size > total_size * 70/100)
3582			return ZONELIST_ORDER_NODE;
3583	}
3584	return ZONELIST_ORDER_ZONE;
3585}
 
3586
3587static void set_zonelist_order(void)
3588{
3589	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3590		current_zonelist_order = default_zonelist_order();
3591	else
3592		current_zonelist_order = user_zonelist_order;
3593}
3594
3595static void build_zonelists(pg_data_t *pgdat)
3596{
3597	int j, node, load;
3598	enum zone_type i;
3599	nodemask_t used_mask;
3600	int local_node, prev_node;
3601	struct zonelist *zonelist;
3602	int order = current_zonelist_order;
3603
3604	/* initialize zonelists */
3605	for (i = 0; i < MAX_ZONELISTS; i++) {
3606		zonelist = pgdat->node_zonelists + i;
3607		zonelist->_zonerefs[0].zone = NULL;
3608		zonelist->_zonerefs[0].zone_idx = 0;
3609	}
3610
3611	/* NUMA-aware ordering of nodes */
3612	local_node = pgdat->node_id;
3613	load = nr_online_nodes;
3614	prev_node = local_node;
3615	nodes_clear(used_mask);
3616
3617	memset(node_order, 0, sizeof(node_order));
3618	j = 0;
3619
3620	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3621		/*
3622		 * We don't want to pressure a particular node.
3623		 * So adding penalty to the first node in same
3624		 * distance group to make it round-robin.
3625		 */
3626		if (node_distance(local_node, node) !=
3627		    node_distance(local_node, prev_node))
3628			node_load[node] = load;
3629
3630		prev_node = node;
3631		load--;
3632		if (order == ZONELIST_ORDER_NODE)
3633			build_zonelists_in_node_order(pgdat, node);
3634		else
3635			node_order[j++] = node;	/* remember order */
3636	}
3637
3638	if (order == ZONELIST_ORDER_ZONE) {
3639		/* calculate node order -- i.e., DMA last! */
3640		build_zonelists_in_zone_order(pgdat, j);
3641	}
3642
3643	build_thisnode_zonelists(pgdat);
3644}
3645
3646/* Construct the zonelist performance cache - see further mmzone.h */
3647static void build_zonelist_cache(pg_data_t *pgdat)
3648{
3649	struct zonelist *zonelist;
3650	struct zonelist_cache *zlc;
3651	struct zoneref *z;
3652
3653	zonelist = &pgdat->node_zonelists[0];
3654	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3655	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3656	for (z = zonelist->_zonerefs; z->zone; z++)
3657		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3658}
3659
3660#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3661/*
3662 * Return node id of node used for "local" allocations.
3663 * I.e., first node id of first zone in arg node's generic zonelist.
3664 * Used for initializing percpu 'numa_mem', which is used primarily
3665 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3666 */
3667int local_memory_node(int node)
3668{
3669	struct zone *zone;
3670
3671	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3672				   gfp_zone(GFP_KERNEL),
3673				   NULL,
3674				   &zone);
3675	return zone->node;
3676}
3677#endif
3678
3679#else	/* CONFIG_NUMA */
3680
3681static void set_zonelist_order(void)
3682{
3683	current_zonelist_order = ZONELIST_ORDER_ZONE;
3684}
3685
3686static void build_zonelists(pg_data_t *pgdat)
3687{
3688	int node, local_node;
3689	enum zone_type j;
3690	struct zonelist *zonelist;
3691
3692	local_node = pgdat->node_id;
3693
3694	zonelist = &pgdat->node_zonelists[0];
3695	j = build_zonelists_node(pgdat, zonelist, 0);
3696
3697	/*
3698	 * Now we build the zonelist so that it contains the zones
3699	 * of all the other nodes.
3700	 * We don't want to pressure a particular node, so when
3701	 * building the zones for node N, we make sure that the
3702	 * zones coming right after the local ones are those from
3703	 * node N+1 (modulo N)
3704	 */
3705	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3706		if (!node_online(node))
3707			continue;
3708		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3709	}
3710	for (node = 0; node < local_node; node++) {
3711		if (!node_online(node))
3712			continue;
3713		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3714	}
3715
3716	zonelist->_zonerefs[j].zone = NULL;
3717	zonelist->_zonerefs[j].zone_idx = 0;
3718}
3719
3720/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3721static void build_zonelist_cache(pg_data_t *pgdat)
3722{
3723	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3724}
3725
3726#endif	/* CONFIG_NUMA */
3727
3728/*
3729 * Boot pageset table. One per cpu which is going to be used for all
3730 * zones and all nodes. The parameters will be set in such a way
3731 * that an item put on a list will immediately be handed over to
3732 * the buddy list. This is safe since pageset manipulation is done
3733 * with interrupts disabled.
3734 *
3735 * The boot_pagesets must be kept even after bootup is complete for
3736 * unused processors and/or zones. They do play a role for bootstrapping
3737 * hotplugged processors.
3738 *
3739 * zoneinfo_show() and maybe other functions do
3740 * not check if the processor is online before following the pageset pointer.
3741 * Other parts of the kernel may not check if the zone is available.
3742 */
3743static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3744static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3745static void setup_zone_pageset(struct zone *zone);
3746
3747/*
3748 * Global mutex to protect against size modification of zonelists
3749 * as well as to serialize pageset setup for the new populated zone.
3750 */
3751DEFINE_MUTEX(zonelists_mutex);
3752
3753/* return values int ....just for stop_machine() */
3754static int __build_all_zonelists(void *data)
3755{
3756	int nid;
3757	int cpu;
3758	pg_data_t *self = data;
3759
3760#ifdef CONFIG_NUMA
3761	memset(node_load, 0, sizeof(node_load));
3762#endif
3763
3764	if (self && !node_online(self->node_id)) {
3765		build_zonelists(self);
3766		build_zonelist_cache(self);
3767	}
3768
3769	for_each_online_node(nid) {
3770		pg_data_t *pgdat = NODE_DATA(nid);
3771
3772		build_zonelists(pgdat);
3773		build_zonelist_cache(pgdat);
3774	}
3775
3776	/*
3777	 * Initialize the boot_pagesets that are going to be used
3778	 * for bootstrapping processors. The real pagesets for
3779	 * each zone will be allocated later when the per cpu
3780	 * allocator is available.
3781	 *
3782	 * boot_pagesets are used also for bootstrapping offline
3783	 * cpus if the system is already booted because the pagesets
3784	 * are needed to initialize allocators on a specific cpu too.
3785	 * F.e. the percpu allocator needs the page allocator which
3786	 * needs the percpu allocator in order to allocate its pagesets
3787	 * (a chicken-egg dilemma).
3788	 */
3789	for_each_possible_cpu(cpu) {
3790		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3791
3792#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3793		/*
3794		 * We now know the "local memory node" for each node--
3795		 * i.e., the node of the first zone in the generic zonelist.
3796		 * Set up numa_mem percpu variable for on-line cpus.  During
3797		 * boot, only the boot cpu should be on-line;  we'll init the
3798		 * secondary cpus' numa_mem as they come on-line.  During
3799		 * node/memory hotplug, we'll fixup all on-line cpus.
3800		 */
3801		if (cpu_online(cpu))
3802			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3803#endif
3804	}
3805
3806	return 0;
3807}
3808
 
 
 
 
 
 
 
 
3809/*
3810 * Called with zonelists_mutex held always
3811 * unless system_state == SYSTEM_BOOTING.
 
 
 
 
 
3812 */
3813void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3814{
3815	set_zonelist_order();
3816
3817	if (system_state == SYSTEM_BOOTING) {
3818		__build_all_zonelists(NULL);
3819		mminit_verify_zonelist();
3820		cpuset_init_current_mems_allowed();
3821	} else {
3822#ifdef CONFIG_MEMORY_HOTPLUG
3823		if (zone)
3824			setup_zone_pageset(zone);
3825#endif
3826		/* we have to stop all cpus to guarantee there is no user
3827		   of zonelist */
3828		stop_machine(__build_all_zonelists, pgdat, NULL);
3829		/* cpuset refresh routine should be here */
3830	}
3831	vm_total_pages = nr_free_pagecache_pages();
3832	/*
3833	 * Disable grouping by mobility if the number of pages in the
3834	 * system is too low to allow the mechanism to work. It would be
3835	 * more accurate, but expensive to check per-zone. This check is
3836	 * made on memory-hotadd so a system can start with mobility
3837	 * disabled and enable it later
3838	 */
3839	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3840		page_group_by_mobility_disabled = 1;
3841	else
3842		page_group_by_mobility_disabled = 0;
3843
3844	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3845		"Total pages: %ld\n",
3846			nr_online_nodes,
3847			zonelist_order_name[current_zonelist_order],
3848			page_group_by_mobility_disabled ? "off" : "on",
3849			vm_total_pages);
3850#ifdef CONFIG_NUMA
3851	printk("Policy zone: %s\n", zone_names[policy_zone]);
3852#endif
3853}
3854
3855/*
3856 * Helper functions to size the waitqueue hash table.
3857 * Essentially these want to choose hash table sizes sufficiently
3858 * large so that collisions trying to wait on pages are rare.
3859 * But in fact, the number of active page waitqueues on typical
3860 * systems is ridiculously low, less than 200. So this is even
3861 * conservative, even though it seems large.
3862 *
3863 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3864 * waitqueues, i.e. the size of the waitq table given the number of pages.
3865 */
3866#define PAGES_PER_WAITQUEUE	256
3867
3868#ifndef CONFIG_MEMORY_HOTPLUG
3869static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3870{
3871	unsigned long size = 1;
3872
3873	pages /= PAGES_PER_WAITQUEUE;
3874
3875	while (size < pages)
3876		size <<= 1;
3877
3878	/*
3879	 * Once we have dozens or even hundreds of threads sleeping
3880	 * on IO we've got bigger problems than wait queue collision.
3881	 * Limit the size of the wait table to a reasonable size.
3882	 */
3883	size = min(size, 4096UL);
3884
3885	return max(size, 4UL);
3886}
3887#else
3888/*
3889 * A zone's size might be changed by hot-add, so it is not possible to determine
3890 * a suitable size for its wait_table.  So we use the maximum size now.
3891 *
3892 * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3893 *
3894 *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3895 *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3896 *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3897 *
3898 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3899 * or more by the traditional way. (See above).  It equals:
3900 *
3901 *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3902 *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3903 *    powerpc (64K page size)             : =  (32G +16M)byte.
3904 */
3905static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3906{
3907	return 4096UL;
3908}
3909#endif
3910
3911/*
3912 * This is an integer logarithm so that shifts can be used later
3913 * to extract the more random high bits from the multiplicative
3914 * hash function before the remainder is taken.
3915 */
3916static inline unsigned long wait_table_bits(unsigned long size)
3917{
3918	return ffz(~size);
3919}
3920
3921/*
3922 * Check if a pageblock contains reserved pages
 
 
3923 */
3924static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
 
3925{
 
 
 
3926	unsigned long pfn;
 
 
 
 
3927
3928	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3929		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3930			return 1;
3931	}
3932	return 0;
3933}
3934
3935/*
3936 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3937 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3938 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3939 * higher will lead to a bigger reserve which will get freed as contiguous
3940 * blocks as reclaim kicks in
3941 */
3942static void setup_zone_migrate_reserve(struct zone *zone)
3943{
3944	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3945	struct page *page;
3946	unsigned long block_migratetype;
3947	int reserve;
3948	int old_reserve;
3949
3950	/*
3951	 * Get the start pfn, end pfn and the number of blocks to reserve
3952	 * We have to be careful to be aligned to pageblock_nr_pages to
3953	 * make sure that we always check pfn_valid for the first page in
3954	 * the block.
3955	 */
3956	start_pfn = zone->zone_start_pfn;
3957	end_pfn = zone_end_pfn(zone);
3958	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3959	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3960							pageblock_order;
3961
3962	/*
3963	 * Reserve blocks are generally in place to help high-order atomic
3964	 * allocations that are short-lived. A min_free_kbytes value that
3965	 * would result in more than 2 reserve blocks for atomic allocations
3966	 * is assumed to be in place to help anti-fragmentation for the
3967	 * future allocation of hugepages at runtime.
3968	 */
3969	reserve = min(2, reserve);
3970	old_reserve = zone->nr_migrate_reserve_block;
3971
3972	/* When memory hot-add, we almost always need to do nothing */
3973	if (reserve == old_reserve)
3974		return;
3975	zone->nr_migrate_reserve_block = reserve;
 
 
 
3976
3977	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3978		if (!pfn_valid(pfn))
3979			continue;
3980		page = pfn_to_page(pfn);
3981
3982		/* Watch out for overlapping nodes */
3983		if (page_to_nid(page) != zone_to_nid(zone))
3984			continue;
3985
3986		block_migratetype = get_pageblock_migratetype(page);
3987
3988		/* Only test what is necessary when the reserves are not met */
3989		if (reserve > 0) {
3990			/*
3991			 * Blocks with reserved pages will never free, skip
3992			 * them.
3993			 */
3994			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3995			if (pageblock_is_reserved(pfn, block_end_pfn))
3996				continue;
3997
3998			/* If this block is reserved, account for it */
3999			if (block_migratetype == MIGRATE_RESERVE) {
4000				reserve--;
4001				continue;
4002			}
4003
4004			/* Suitable for reserving if this block is movable */
4005			if (block_migratetype == MIGRATE_MOVABLE) {
4006				set_pageblock_migratetype(page,
4007							MIGRATE_RESERVE);
4008				move_freepages_block(zone, page,
4009							MIGRATE_RESERVE);
4010				reserve--;
4011				continue;
4012			}
4013		} else if (!old_reserve) {
4014			/*
4015			 * At boot time we don't need to scan the whole zone
4016			 * for turning off MIGRATE_RESERVE.
4017			 */
4018			break;
4019		}
4020
 
4021		/*
4022		 * If the reserve is met and this is a previous reserved block,
4023		 * take it back
 
4024		 */
4025		if (block_migratetype == MIGRATE_RESERVE) {
4026			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4027			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4028		}
4029	}
4030}
4031
4032/*
4033 * Initially all pages are reserved - free ones are freed
4034 * up by free_all_bootmem() once the early boot process is
4035 * done. Non-atomic initialization, single-pass.
4036 */
4037void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4038		unsigned long start_pfn, enum memmap_context context)
4039{
4040	struct page *page;
4041	unsigned long end_pfn = start_pfn + size;
4042	unsigned long pfn;
4043	struct zone *z;
4044
4045	if (highest_memmap_pfn < end_pfn - 1)
4046		highest_memmap_pfn = end_pfn - 1;
4047
4048	z = &NODE_DATA(nid)->node_zones[zone];
4049	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4050		/*
4051		 * There can be holes in boot-time mem_map[]s
4052		 * handed to this function.  They do not
4053		 * exist on hotplugged memory.
4054		 */
4055		if (context == MEMMAP_EARLY) {
4056			if (!early_pfn_valid(pfn))
4057				continue;
4058			if (!early_pfn_in_nid(pfn, nid))
 
 
 
 
 
 
 
4059				continue;
 
4060		}
4061		page = pfn_to_page(pfn);
4062		set_page_links(page, zone, nid, pfn);
4063		mminit_verify_page_links(page, zone, nid, pfn);
4064		init_page_count(page);
4065		page_mapcount_reset(page);
4066		page_cpupid_reset_last(page);
4067		SetPageReserved(page);
4068		/*
4069		 * Mark the block movable so that blocks are reserved for
4070		 * movable at startup. This will force kernel allocations
4071		 * to reserve their blocks rather than leaking throughout
4072		 * the address space during boot when many long-lived
4073		 * kernel allocations are made. Later some blocks near
4074		 * the start are marked MIGRATE_RESERVE by
4075		 * setup_zone_migrate_reserve()
4076		 *
4077		 * bitmap is created for zone's valid pfn range. but memmap
4078		 * can be created for invalid pages (for alignment)
4079		 * check here not to call set_pageblock_migratetype() against
4080		 * pfn out of zone.
4081		 */
4082		if ((z->zone_start_pfn <= pfn)
4083		    && (pfn < zone_end_pfn(z))
4084		    && !(pfn & (pageblock_nr_pages - 1)))
 
4085			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4086
4087		INIT_LIST_HEAD(&page->lru);
4088#ifdef WANT_PAGE_VIRTUAL
4089		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4090		if (!is_highmem_idx(zone))
4091			set_page_address(page, __va(pfn << PAGE_SHIFT));
4092#endif
4093	}
4094}
4095
4096static void __meminit zone_init_free_lists(struct zone *zone)
4097{
4098	int order, t;
4099	for_each_migratetype_order(order, t) {
4100		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4101		zone->free_area[order].nr_free = 0;
4102	}
4103}
4104
4105#ifndef __HAVE_ARCH_MEMMAP_INIT
4106#define memmap_init(size, nid, zone, start_pfn) \
4107	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4108#endif
4109
4110static int __meminit zone_batchsize(struct zone *zone)
4111{
4112#ifdef CONFIG_MMU
4113	int batch;
4114
4115	/*
4116	 * The per-cpu-pages pools are set to around 1000th of the
4117	 * size of the zone.  But no more than 1/2 of a meg.
4118	 *
4119	 * OK, so we don't know how big the cache is.  So guess.
4120	 */
4121	batch = zone->managed_pages / 1024;
4122	if (batch * PAGE_SIZE > 512 * 1024)
4123		batch = (512 * 1024) / PAGE_SIZE;
4124	batch /= 4;		/* We effectively *= 4 below */
4125	if (batch < 1)
4126		batch = 1;
4127
4128	/*
4129	 * Clamp the batch to a 2^n - 1 value. Having a power
4130	 * of 2 value was found to be more likely to have
4131	 * suboptimal cache aliasing properties in some cases.
4132	 *
4133	 * For example if 2 tasks are alternately allocating
4134	 * batches of pages, one task can end up with a lot
4135	 * of pages of one half of the possible page colors
4136	 * and the other with pages of the other colors.
4137	 */
4138	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4139
4140	return batch;
4141
4142#else
4143	/* The deferral and batching of frees should be suppressed under NOMMU
4144	 * conditions.
4145	 *
4146	 * The problem is that NOMMU needs to be able to allocate large chunks
4147	 * of contiguous memory as there's no hardware page translation to
4148	 * assemble apparent contiguous memory from discontiguous pages.
4149	 *
4150	 * Queueing large contiguous runs of pages for batching, however,
4151	 * causes the pages to actually be freed in smaller chunks.  As there
4152	 * can be a significant delay between the individual batches being
4153	 * recycled, this leads to the once large chunks of space being
4154	 * fragmented and becoming unavailable for high-order allocations.
4155	 */
4156	return 0;
4157#endif
4158}
4159
4160/*
4161 * pcp->high and pcp->batch values are related and dependent on one another:
4162 * ->batch must never be higher then ->high.
4163 * The following function updates them in a safe manner without read side
4164 * locking.
4165 *
4166 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4167 * those fields changing asynchronously (acording the the above rule).
4168 *
4169 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4170 * outside of boot time (or some other assurance that no concurrent updaters
4171 * exist).
4172 */
4173static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4174		unsigned long batch)
4175{
4176       /* start with a fail safe value for batch */
4177	pcp->batch = 1;
4178	smp_wmb();
4179
4180       /* Update high, then batch, in order */
4181	pcp->high = high;
4182	smp_wmb();
4183
4184	pcp->batch = batch;
4185}
4186
4187/* a companion to pageset_set_high() */
4188static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4189{
4190	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4191}
4192
4193static void pageset_init(struct per_cpu_pageset *p)
4194{
4195	struct per_cpu_pages *pcp;
4196	int migratetype;
4197
4198	memset(p, 0, sizeof(*p));
4199
4200	pcp = &p->pcp;
4201	pcp->count = 0;
4202	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4203		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4204}
4205
4206static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4207{
4208	pageset_init(p);
4209	pageset_set_batch(p, batch);
4210}
4211
4212/*
4213 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4214 * to the value high for the pageset p.
4215 */
4216static void pageset_set_high(struct per_cpu_pageset *p,
4217				unsigned long high)
4218{
4219	unsigned long batch = max(1UL, high / 4);
4220	if ((high / 4) > (PAGE_SHIFT * 8))
4221		batch = PAGE_SHIFT * 8;
4222
4223	pageset_update(&p->pcp, high, batch);
4224}
4225
4226static void __meminit pageset_set_high_and_batch(struct zone *zone,
4227		struct per_cpu_pageset *pcp)
4228{
4229	if (percpu_pagelist_fraction)
4230		pageset_set_high(pcp,
4231			(zone->managed_pages /
4232				percpu_pagelist_fraction));
4233	else
4234		pageset_set_batch(pcp, zone_batchsize(zone));
4235}
4236
4237static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4238{
4239	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4240
4241	pageset_init(pcp);
4242	pageset_set_high_and_batch(zone, pcp);
4243}
4244
4245static void __meminit setup_zone_pageset(struct zone *zone)
4246{
4247	int cpu;
4248	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4249	for_each_possible_cpu(cpu)
4250		zone_pageset_init(zone, cpu);
4251}
4252
4253/*
4254 * Allocate per cpu pagesets and initialize them.
4255 * Before this call only boot pagesets were available.
4256 */
4257void __init setup_per_cpu_pageset(void)
4258{
4259	struct zone *zone;
4260
4261	for_each_populated_zone(zone)
4262		setup_zone_pageset(zone);
4263}
4264
4265static noinline __init_refok
4266int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4267{
4268	int i;
4269	size_t alloc_size;
4270
4271	/*
4272	 * The per-page waitqueue mechanism uses hashed waitqueues
4273	 * per zone.
4274	 */
4275	zone->wait_table_hash_nr_entries =
4276		 wait_table_hash_nr_entries(zone_size_pages);
4277	zone->wait_table_bits =
4278		wait_table_bits(zone->wait_table_hash_nr_entries);
4279	alloc_size = zone->wait_table_hash_nr_entries
4280					* sizeof(wait_queue_head_t);
4281
4282	if (!slab_is_available()) {
4283		zone->wait_table = (wait_queue_head_t *)
4284			memblock_virt_alloc_node_nopanic(
4285				alloc_size, zone->zone_pgdat->node_id);
4286	} else {
4287		/*
4288		 * This case means that a zone whose size was 0 gets new memory
4289		 * via memory hot-add.
4290		 * But it may be the case that a new node was hot-added.  In
4291		 * this case vmalloc() will not be able to use this new node's
4292		 * memory - this wait_table must be initialized to use this new
4293		 * node itself as well.
4294		 * To use this new node's memory, further consideration will be
4295		 * necessary.
4296		 */
4297		zone->wait_table = vmalloc(alloc_size);
4298	}
4299	if (!zone->wait_table)
4300		return -ENOMEM;
4301
4302	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4303		init_waitqueue_head(zone->wait_table + i);
4304
4305	return 0;
4306}
4307
4308static __meminit void zone_pcp_init(struct zone *zone)
4309{
4310	/*
4311	 * per cpu subsystem is not up at this point. The following code
4312	 * relies on the ability of the linker to provide the
4313	 * offset of a (static) per cpu variable into the per cpu area.
4314	 */
4315	zone->pageset = &boot_pageset;
4316
4317	if (populated_zone(zone))
4318		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4319			zone->name, zone->present_pages,
4320					 zone_batchsize(zone));
4321}
4322
4323int __meminit init_currently_empty_zone(struct zone *zone,
4324					unsigned long zone_start_pfn,
4325					unsigned long size,
4326					enum memmap_context context)
4327{
4328	struct pglist_data *pgdat = zone->zone_pgdat;
4329	int ret;
4330	ret = zone_wait_table_init(zone, size);
4331	if (ret)
4332		return ret;
4333	pgdat->nr_zones = zone_idx(zone) + 1;
4334
4335	zone->zone_start_pfn = zone_start_pfn;
4336
4337	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4338			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4339			pgdat->node_id,
4340			(unsigned long)zone_idx(zone),
4341			zone_start_pfn, (zone_start_pfn + size));
4342
4343	zone_init_free_lists(zone);
4344
4345	return 0;
4346}
4347
4348#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4349#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
 
4350/*
4351 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4352 * Architectures may implement their own version but if add_active_range()
4353 * was used and there are no special requirements, this is a convenient
4354 * alternative
4355 */
4356int __meminit __early_pfn_to_nid(unsigned long pfn)
 
4357{
4358	unsigned long start_pfn, end_pfn;
4359	int nid;
4360	/*
4361	 * NOTE: The following SMP-unsafe globals are only used early in boot
4362	 * when the kernel is running single-threaded.
4363	 */
4364	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4365	static int __meminitdata last_nid;
4366
4367	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4368		return last_nid;
4369
4370	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4371	if (nid != -1) {
4372		last_start_pfn = start_pfn;
4373		last_end_pfn = end_pfn;
4374		last_nid = nid;
4375	}
4376
4377	return nid;
4378}
4379#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4380
4381int __meminit early_pfn_to_nid(unsigned long pfn)
4382{
4383	int nid;
4384
4385	nid = __early_pfn_to_nid(pfn);
4386	if (nid >= 0)
4387		return nid;
4388	/* just returns 0 */
4389	return 0;
4390}
4391
4392#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4393bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4394{
4395	int nid;
4396
4397	nid = __early_pfn_to_nid(pfn);
4398	if (nid >= 0 && nid != node)
4399		return false;
4400	return true;
4401}
4402#endif
4403
4404/**
4405 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4406 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4407 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4408 *
4409 * If an architecture guarantees that all ranges registered with
4410 * add_active_ranges() contain no holes and may be freed, this
4411 * this function may be used instead of calling memblock_free_early_nid()
4412 * manually.
4413 */
4414void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4415{
4416	unsigned long start_pfn, end_pfn;
4417	int i, this_nid;
4418
4419	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4420		start_pfn = min(start_pfn, max_low_pfn);
4421		end_pfn = min(end_pfn, max_low_pfn);
4422
4423		if (start_pfn < end_pfn)
4424			memblock_free_early_nid(PFN_PHYS(start_pfn),
4425					(end_pfn - start_pfn) << PAGE_SHIFT,
4426					this_nid);
4427	}
4428}
4429
4430/**
4431 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4432 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4433 *
4434 * If an architecture guarantees that all ranges registered with
4435 * add_active_ranges() contain no holes and may be freed, this
4436 * function may be used instead of calling memory_present() manually.
4437 */
4438void __init sparse_memory_present_with_active_regions(int nid)
4439{
4440	unsigned long start_pfn, end_pfn;
4441	int i, this_nid;
4442
4443	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4444		memory_present(this_nid, start_pfn, end_pfn);
4445}
4446
4447/**
4448 * get_pfn_range_for_nid - Return the start and end page frames for a node
4449 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4450 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4451 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4452 *
4453 * It returns the start and end page frame of a node based on information
4454 * provided by an arch calling add_active_range(). If called for a node
4455 * with no available memory, a warning is printed and the start and end
4456 * PFNs will be 0.
4457 */
4458void __meminit get_pfn_range_for_nid(unsigned int nid,
4459			unsigned long *start_pfn, unsigned long *end_pfn)
4460{
4461	unsigned long this_start_pfn, this_end_pfn;
4462	int i;
4463
4464	*start_pfn = -1UL;
4465	*end_pfn = 0;
4466
4467	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4468		*start_pfn = min(*start_pfn, this_start_pfn);
4469		*end_pfn = max(*end_pfn, this_end_pfn);
4470	}
4471
4472	if (*start_pfn == -1UL)
4473		*start_pfn = 0;
4474}
4475
4476/*
4477 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4478 * assumption is made that zones within a node are ordered in monotonic
4479 * increasing memory addresses so that the "highest" populated zone is used
4480 */
4481static void __init find_usable_zone_for_movable(void)
4482{
4483	int zone_index;
4484	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4485		if (zone_index == ZONE_MOVABLE)
4486			continue;
4487
4488		if (arch_zone_highest_possible_pfn[zone_index] >
4489				arch_zone_lowest_possible_pfn[zone_index])
4490			break;
4491	}
4492
4493	VM_BUG_ON(zone_index == -1);
4494	movable_zone = zone_index;
4495}
4496
4497/*
4498 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4499 * because it is sized independent of architecture. Unlike the other zones,
4500 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4501 * in each node depending on the size of each node and how evenly kernelcore
4502 * is distributed. This helper function adjusts the zone ranges
4503 * provided by the architecture for a given node by using the end of the
4504 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4505 * zones within a node are in order of monotonic increases memory addresses
4506 */
4507static void __meminit adjust_zone_range_for_zone_movable(int nid,
4508					unsigned long zone_type,
4509					unsigned long node_start_pfn,
4510					unsigned long node_end_pfn,
4511					unsigned long *zone_start_pfn,
4512					unsigned long *zone_end_pfn)
4513{
4514	/* Only adjust if ZONE_MOVABLE is on this node */
4515	if (zone_movable_pfn[nid]) {
4516		/* Size ZONE_MOVABLE */
4517		if (zone_type == ZONE_MOVABLE) {
4518			*zone_start_pfn = zone_movable_pfn[nid];
4519			*zone_end_pfn = min(node_end_pfn,
4520				arch_zone_highest_possible_pfn[movable_zone]);
4521
4522		/* Adjust for ZONE_MOVABLE starting within this range */
4523		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4524				*zone_end_pfn > zone_movable_pfn[nid]) {
4525			*zone_end_pfn = zone_movable_pfn[nid];
4526
4527		/* Check if this whole range is within ZONE_MOVABLE */
4528		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4529			*zone_start_pfn = *zone_end_pfn;
4530	}
4531}
4532
4533/*
4534 * Return the number of pages a zone spans in a node, including holes
4535 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4536 */
4537static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4538					unsigned long zone_type,
4539					unsigned long node_start_pfn,
4540					unsigned long node_end_pfn,
 
 
4541					unsigned long *ignored)
4542{
4543	unsigned long zone_start_pfn, zone_end_pfn;
 
 
4544
4545	/* Get the start and end of the zone */
4546	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4547	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4548	adjust_zone_range_for_zone_movable(nid, zone_type,
4549				node_start_pfn, node_end_pfn,
4550				&zone_start_pfn, &zone_end_pfn);
4551
4552	/* Check that this node has pages within the zone's required range */
4553	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4554		return 0;
4555
4556	/* Move the zone boundaries inside the node if necessary */
4557	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4558	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4559
4560	/* Return the spanned pages */
4561	return zone_end_pfn - zone_start_pfn;
4562}
4563
4564/*
4565 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4566 * then all holes in the requested range will be accounted for.
4567 */
4568unsigned long __meminit __absent_pages_in_range(int nid,
4569				unsigned long range_start_pfn,
4570				unsigned long range_end_pfn)
4571{
4572	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4573	unsigned long start_pfn, end_pfn;
4574	int i;
4575
4576	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4577		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4578		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4579		nr_absent -= end_pfn - start_pfn;
4580	}
4581	return nr_absent;
4582}
4583
4584/**
4585 * absent_pages_in_range - Return number of page frames in holes within a range
4586 * @start_pfn: The start PFN to start searching for holes
4587 * @end_pfn: The end PFN to stop searching for holes
4588 *
4589 * It returns the number of pages frames in memory holes within a range.
4590 */
4591unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4592							unsigned long end_pfn)
4593{
4594	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4595}
4596
4597/* Return the number of page frames in holes in a zone on a node */
4598static unsigned long __meminit zone_absent_pages_in_node(int nid,
4599					unsigned long zone_type,
4600					unsigned long node_start_pfn,
4601					unsigned long node_end_pfn,
4602					unsigned long *ignored)
4603{
4604	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4605	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4606	unsigned long zone_start_pfn, zone_end_pfn;
 
 
 
 
 
4607
4608	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4609	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4610
4611	adjust_zone_range_for_zone_movable(nid, zone_type,
4612			node_start_pfn, node_end_pfn,
4613			&zone_start_pfn, &zone_end_pfn);
4614	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4615}
4616
4617#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4618static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4619					unsigned long zone_type,
4620					unsigned long node_start_pfn,
4621					unsigned long node_end_pfn,
 
 
4622					unsigned long *zones_size)
4623{
 
 
 
 
 
 
 
 
4624	return zones_size[zone_type];
4625}
4626
4627static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4628						unsigned long zone_type,
4629						unsigned long node_start_pfn,
4630						unsigned long node_end_pfn,
4631						unsigned long *zholes_size)
4632{
4633	if (!zholes_size)
4634		return 0;
4635
4636	return zholes_size[zone_type];
4637}
4638
4639#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4640
4641static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4642						unsigned long node_start_pfn,
4643						unsigned long node_end_pfn,
4644						unsigned long *zones_size,
4645						unsigned long *zholes_size)
4646{
4647	unsigned long realtotalpages, totalpages = 0;
4648	enum zone_type i;
4649
4650	for (i = 0; i < MAX_NR_ZONES; i++)
4651		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4652							 node_start_pfn,
4653							 node_end_pfn,
4654							 zones_size);
4655	pgdat->node_spanned_pages = totalpages;
4656
4657	realtotalpages = totalpages;
4658	for (i = 0; i < MAX_NR_ZONES; i++)
4659		realtotalpages -=
4660			zone_absent_pages_in_node(pgdat->node_id, i,
 
4661						  node_start_pfn, node_end_pfn,
4662						  zholes_size);
 
 
 
 
 
 
 
 
 
 
 
 
4663	pgdat->node_present_pages = realtotalpages;
4664	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4665							realtotalpages);
4666}
4667
4668#ifndef CONFIG_SPARSEMEM
4669/*
4670 * Calculate the size of the zone->blockflags rounded to an unsigned long
4671 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4672 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4673 * round what is now in bits to nearest long in bits, then return it in
4674 * bytes.
4675 */
4676static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4677{
4678	unsigned long usemapsize;
4679
4680	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4681	usemapsize = roundup(zonesize, pageblock_nr_pages);
4682	usemapsize = usemapsize >> pageblock_order;
4683	usemapsize *= NR_PAGEBLOCK_BITS;
4684	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4685
4686	return usemapsize / 8;
4687}
4688
4689static void __init setup_usemap(struct pglist_data *pgdat,
4690				struct zone *zone,
4691				unsigned long zone_start_pfn,
4692				unsigned long zonesize)
4693{
4694	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4695	zone->pageblock_flags = NULL;
4696	if (usemapsize)
4697		zone->pageblock_flags =
4698			memblock_virt_alloc_node_nopanic(usemapsize,
4699							 pgdat->node_id);
4700}
4701#else
4702static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4703				unsigned long zone_start_pfn, unsigned long zonesize) {}
4704#endif /* CONFIG_SPARSEMEM */
4705
4706#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4707
4708/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4709void __paginginit set_pageblock_order(void)
4710{
4711	unsigned int order;
4712
4713	/* Check that pageblock_nr_pages has not already been setup */
4714	if (pageblock_order)
4715		return;
4716
4717	if (HPAGE_SHIFT > PAGE_SHIFT)
4718		order = HUGETLB_PAGE_ORDER;
4719	else
4720		order = MAX_ORDER - 1;
4721
4722	/*
4723	 * Assume the largest contiguous order of interest is a huge page.
4724	 * This value may be variable depending on boot parameters on IA64 and
4725	 * powerpc.
4726	 */
4727	pageblock_order = order;
4728}
4729#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4730
4731/*
4732 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4733 * is unused as pageblock_order is set at compile-time. See
4734 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4735 * the kernel config
4736 */
4737void __paginginit set_pageblock_order(void)
4738{
4739}
4740
4741#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4742
4743static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4744						   unsigned long present_pages)
4745{
4746	unsigned long pages = spanned_pages;
4747
4748	/*
4749	 * Provide a more accurate estimation if there are holes within
4750	 * the zone and SPARSEMEM is in use. If there are holes within the
4751	 * zone, each populated memory region may cost us one or two extra
4752	 * memmap pages due to alignment because memmap pages for each
4753	 * populated regions may not naturally algined on page boundary.
4754	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4755	 */
4756	if (spanned_pages > present_pages + (present_pages >> 4) &&
4757	    IS_ENABLED(CONFIG_SPARSEMEM))
4758		pages = present_pages;
4759
4760	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4761}
4762
4763/*
4764 * Set up the zone data structures:
4765 *   - mark all pages reserved
4766 *   - mark all memory queues empty
4767 *   - clear the memory bitmaps
4768 *
4769 * NOTE: pgdat should get zeroed by caller.
4770 */
4771static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4772		unsigned long node_start_pfn, unsigned long node_end_pfn,
4773		unsigned long *zones_size, unsigned long *zholes_size)
4774{
4775	enum zone_type j;
4776	int nid = pgdat->node_id;
4777	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4778	int ret;
4779
4780	pgdat_resize_init(pgdat);
4781#ifdef CONFIG_NUMA_BALANCING
4782	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4783	pgdat->numabalancing_migrate_nr_pages = 0;
4784	pgdat->numabalancing_migrate_next_window = jiffies;
4785#endif
 
 
 
 
 
4786	init_waitqueue_head(&pgdat->kswapd_wait);
4787	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4788	pgdat_page_cgroup_init(pgdat);
 
 
 
4789
4790	for (j = 0; j < MAX_NR_ZONES; j++) {
4791		struct zone *zone = pgdat->node_zones + j;
4792		unsigned long size, realsize, freesize, memmap_pages;
 
4793
4794		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4795						  node_end_pfn, zones_size);
4796		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4797								node_start_pfn,
4798								node_end_pfn,
4799								zholes_size);
4800
4801		/*
4802		 * Adjust freesize so that it accounts for how much memory
4803		 * is used by this zone for memmap. This affects the watermark
4804		 * and per-cpu initialisations
4805		 */
4806		memmap_pages = calc_memmap_size(size, realsize);
4807		if (freesize >= memmap_pages) {
4808			freesize -= memmap_pages;
4809			if (memmap_pages)
4810				printk(KERN_DEBUG
4811				       "  %s zone: %lu pages used for memmap\n",
4812				       zone_names[j], memmap_pages);
4813		} else
4814			printk(KERN_WARNING
4815				"  %s zone: %lu pages exceeds freesize %lu\n",
4816				zone_names[j], memmap_pages, freesize);
 
4817
4818		/* Account for reserved pages */
4819		if (j == 0 && freesize > dma_reserve) {
4820			freesize -= dma_reserve;
4821			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4822					zone_names[0], dma_reserve);
4823		}
4824
4825		if (!is_highmem_idx(j))
4826			nr_kernel_pages += freesize;
4827		/* Charge for highmem memmap if there are enough kernel pages */
4828		else if (nr_kernel_pages > memmap_pages * 2)
4829			nr_kernel_pages -= memmap_pages;
4830		nr_all_pages += freesize;
4831
4832		zone->spanned_pages = size;
4833		zone->present_pages = realsize;
4834		/*
4835		 * Set an approximate value for lowmem here, it will be adjusted
4836		 * when the bootmem allocator frees pages into the buddy system.
4837		 * And all highmem pages will be managed by the buddy system.
4838		 */
4839		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4840#ifdef CONFIG_NUMA
4841		zone->node = nid;
4842		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4843						/ 100;
4844		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4845#endif
4846		zone->name = zone_names[j];
4847		spin_lock_init(&zone->lock);
4848		spin_lock_init(&zone->lru_lock);
4849		zone_seqlock_init(zone);
4850		zone->zone_pgdat = pgdat;
4851		zone_pcp_init(zone);
4852
4853		/* For bootup, initialized properly in watermark setup */
4854		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4855
4856		lruvec_init(&zone->lruvec);
4857		if (!size)
4858			continue;
4859
4860		set_pageblock_order();
4861		setup_usemap(pgdat, zone, zone_start_pfn, size);
4862		ret = init_currently_empty_zone(zone, zone_start_pfn,
4863						size, MEMMAP_EARLY);
4864		BUG_ON(ret);
4865		memmap_init(size, nid, j, zone_start_pfn);
4866		zone_start_pfn += size;
4867	}
4868}
4869
4870static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4871{
 
 
 
4872	/* Skip empty nodes */
4873	if (!pgdat->node_spanned_pages)
4874		return;
4875
4876#ifdef CONFIG_FLAT_NODE_MEM_MAP
 
 
4877	/* ia64 gets its own node_mem_map, before this, without bootmem */
4878	if (!pgdat->node_mem_map) {
4879		unsigned long size, start, end;
4880		struct page *map;
4881
4882		/*
4883		 * The zone's endpoints aren't required to be MAX_ORDER
4884		 * aligned but the node_mem_map endpoints must be in order
4885		 * for the buddy allocator to function correctly.
4886		 */
4887		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4888		end = pgdat_end_pfn(pgdat);
4889		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4890		size =  (end - start) * sizeof(struct page);
4891		map = alloc_remap(pgdat->node_id, size);
4892		if (!map)
4893			map = memblock_virt_alloc_node_nopanic(size,
4894							       pgdat->node_id);
4895		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4896	}
4897#ifndef CONFIG_NEED_MULTIPLE_NODES
4898	/*
4899	 * With no DISCONTIG, the global mem_map is just set as node 0's
4900	 */
4901	if (pgdat == NODE_DATA(0)) {
4902		mem_map = NODE_DATA(0)->node_mem_map;
4903#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4904		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4905			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4906#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4907	}
4908#endif
4909#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4910}
4911
4912void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4913		unsigned long node_start_pfn, unsigned long *zholes_size)
4914{
4915	pg_data_t *pgdat = NODE_DATA(nid);
4916	unsigned long start_pfn = 0;
4917	unsigned long end_pfn = 0;
4918
4919	/* pg_data_t should be reset to zero when it's allocated */
4920	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4921
 
4922	pgdat->node_id = nid;
4923	pgdat->node_start_pfn = node_start_pfn;
4924	if (node_state(nid, N_MEMORY))
4925		init_zone_allows_reclaim(nid);
4926#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4927	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 
 
 
 
 
4928#endif
4929	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4930				  zones_size, zholes_size);
4931
4932	alloc_node_mem_map(pgdat);
4933#ifdef CONFIG_FLAT_NODE_MEM_MAP
4934	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4935		nid, (unsigned long)pgdat,
4936		(unsigned long)pgdat->node_mem_map);
4937#endif
4938
4939	free_area_init_core(pgdat, start_pfn, end_pfn,
4940			    zones_size, zholes_size);
4941}
4942
4943#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4944
4945#if MAX_NUMNODES > 1
4946/*
4947 * Figure out the number of possible node ids.
4948 */
4949void __init setup_nr_node_ids(void)
4950{
4951	unsigned int node;
4952	unsigned int highest = 0;
4953
4954	for_each_node_mask(node, node_possible_map)
4955		highest = node;
4956	nr_node_ids = highest + 1;
4957}
4958#endif
4959
4960/**
4961 * node_map_pfn_alignment - determine the maximum internode alignment
4962 *
4963 * This function should be called after node map is populated and sorted.
4964 * It calculates the maximum power of two alignment which can distinguish
4965 * all the nodes.
4966 *
4967 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4968 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4969 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4970 * shifted, 1GiB is enough and this function will indicate so.
4971 *
4972 * This is used to test whether pfn -> nid mapping of the chosen memory
4973 * model has fine enough granularity to avoid incorrect mapping for the
4974 * populated node map.
4975 *
4976 * Returns the determined alignment in pfn's.  0 if there is no alignment
4977 * requirement (single node).
4978 */
4979unsigned long __init node_map_pfn_alignment(void)
4980{
4981	unsigned long accl_mask = 0, last_end = 0;
4982	unsigned long start, end, mask;
4983	int last_nid = -1;
4984	int i, nid;
4985
4986	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4987		if (!start || last_nid < 0 || last_nid == nid) {
4988			last_nid = nid;
4989			last_end = end;
4990			continue;
4991		}
4992
4993		/*
4994		 * Start with a mask granular enough to pin-point to the
4995		 * start pfn and tick off bits one-by-one until it becomes
4996		 * too coarse to separate the current node from the last.
4997		 */
4998		mask = ~((1 << __ffs(start)) - 1);
4999		while (mask && last_end <= (start & (mask << 1)))
5000			mask <<= 1;
5001
5002		/* accumulate all internode masks */
5003		accl_mask |= mask;
5004	}
5005
5006	/* convert mask to number of pages */
5007	return ~accl_mask + 1;
5008}
5009
5010/* Find the lowest pfn for a node */
5011static unsigned long __init find_min_pfn_for_node(int nid)
5012{
5013	unsigned long min_pfn = ULONG_MAX;
5014	unsigned long start_pfn;
5015	int i;
5016
5017	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5018		min_pfn = min(min_pfn, start_pfn);
5019
5020	if (min_pfn == ULONG_MAX) {
5021		printk(KERN_WARNING
5022			"Could not find start_pfn for node %d\n", nid);
5023		return 0;
5024	}
5025
5026	return min_pfn;
5027}
5028
5029/**
5030 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5031 *
5032 * It returns the minimum PFN based on information provided via
5033 * add_active_range().
5034 */
5035unsigned long __init find_min_pfn_with_active_regions(void)
5036{
5037	return find_min_pfn_for_node(MAX_NUMNODES);
5038}
5039
5040/*
5041 * early_calculate_totalpages()
5042 * Sum pages in active regions for movable zone.
5043 * Populate N_MEMORY for calculating usable_nodes.
5044 */
5045static unsigned long __init early_calculate_totalpages(void)
5046{
5047	unsigned long totalpages = 0;
5048	unsigned long start_pfn, end_pfn;
5049	int i, nid;
5050
5051	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5052		unsigned long pages = end_pfn - start_pfn;
5053
5054		totalpages += pages;
5055		if (pages)
5056			node_set_state(nid, N_MEMORY);
5057	}
5058	return totalpages;
5059}
5060
5061/*
5062 * Find the PFN the Movable zone begins in each node. Kernel memory
5063 * is spread evenly between nodes as long as the nodes have enough
5064 * memory. When they don't, some nodes will have more kernelcore than
5065 * others
5066 */
5067static void __init find_zone_movable_pfns_for_nodes(void)
5068{
5069	int i, nid;
5070	unsigned long usable_startpfn;
5071	unsigned long kernelcore_node, kernelcore_remaining;
5072	/* save the state before borrow the nodemask */
5073	nodemask_t saved_node_state = node_states[N_MEMORY];
5074	unsigned long totalpages = early_calculate_totalpages();
5075	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5076	struct memblock_region *r;
5077
5078	/* Need to find movable_zone earlier when movable_node is specified. */
5079	find_usable_zone_for_movable();
5080
5081	/*
5082	 * If movable_node is specified, ignore kernelcore and movablecore
5083	 * options.
5084	 */
5085	if (movable_node_is_enabled()) {
5086		for_each_memblock(memory, r) {
5087			if (!memblock_is_hotpluggable(r))
5088				continue;
5089
5090			nid = r->nid;
5091
5092			usable_startpfn = PFN_DOWN(r->base);
5093			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5094				min(usable_startpfn, zone_movable_pfn[nid]) :
5095				usable_startpfn;
5096		}
5097
5098		goto out2;
5099	}
5100
5101	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5102	 * If movablecore=nn[KMG] was specified, calculate what size of
5103	 * kernelcore that corresponds so that memory usable for
5104	 * any allocation type is evenly spread. If both kernelcore
5105	 * and movablecore are specified, then the value of kernelcore
5106	 * will be used for required_kernelcore if it's greater than
5107	 * what movablecore would have allowed.
5108	 */
5109	if (required_movablecore) {
5110		unsigned long corepages;
5111
5112		/*
5113		 * Round-up so that ZONE_MOVABLE is at least as large as what
5114		 * was requested by the user
5115		 */
5116		required_movablecore =
5117			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
 
5118		corepages = totalpages - required_movablecore;
5119
5120		required_kernelcore = max(required_kernelcore, corepages);
5121	}
5122
5123	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5124	if (!required_kernelcore)
 
 
 
5125		goto out;
5126
5127	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5128	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5129
5130restart:
5131	/* Spread kernelcore memory as evenly as possible throughout nodes */
5132	kernelcore_node = required_kernelcore / usable_nodes;
5133	for_each_node_state(nid, N_MEMORY) {
5134		unsigned long start_pfn, end_pfn;
5135
5136		/*
5137		 * Recalculate kernelcore_node if the division per node
5138		 * now exceeds what is necessary to satisfy the requested
5139		 * amount of memory for the kernel
5140		 */
5141		if (required_kernelcore < kernelcore_node)
5142			kernelcore_node = required_kernelcore / usable_nodes;
5143
5144		/*
5145		 * As the map is walked, we track how much memory is usable
5146		 * by the kernel using kernelcore_remaining. When it is
5147		 * 0, the rest of the node is usable by ZONE_MOVABLE
5148		 */
5149		kernelcore_remaining = kernelcore_node;
5150
5151		/* Go through each range of PFNs within this node */
5152		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5153			unsigned long size_pages;
5154
5155			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5156			if (start_pfn >= end_pfn)
5157				continue;
5158
5159			/* Account for what is only usable for kernelcore */
5160			if (start_pfn < usable_startpfn) {
5161				unsigned long kernel_pages;
5162				kernel_pages = min(end_pfn, usable_startpfn)
5163								- start_pfn;
5164
5165				kernelcore_remaining -= min(kernel_pages,
5166							kernelcore_remaining);
5167				required_kernelcore -= min(kernel_pages,
5168							required_kernelcore);
5169
5170				/* Continue if range is now fully accounted */
5171				if (end_pfn <= usable_startpfn) {
5172
5173					/*
5174					 * Push zone_movable_pfn to the end so
5175					 * that if we have to rebalance
5176					 * kernelcore across nodes, we will
5177					 * not double account here
5178					 */
5179					zone_movable_pfn[nid] = end_pfn;
5180					continue;
5181				}
5182				start_pfn = usable_startpfn;
5183			}
5184
5185			/*
5186			 * The usable PFN range for ZONE_MOVABLE is from
5187			 * start_pfn->end_pfn. Calculate size_pages as the
5188			 * number of pages used as kernelcore
5189			 */
5190			size_pages = end_pfn - start_pfn;
5191			if (size_pages > kernelcore_remaining)
5192				size_pages = kernelcore_remaining;
5193			zone_movable_pfn[nid] = start_pfn + size_pages;
5194
5195			/*
5196			 * Some kernelcore has been met, update counts and
5197			 * break if the kernelcore for this node has been
5198			 * satisfied
5199			 */
5200			required_kernelcore -= min(required_kernelcore,
5201								size_pages);
5202			kernelcore_remaining -= size_pages;
5203			if (!kernelcore_remaining)
5204				break;
5205		}
5206	}
5207
5208	/*
5209	 * If there is still required_kernelcore, we do another pass with one
5210	 * less node in the count. This will push zone_movable_pfn[nid] further
5211	 * along on the nodes that still have memory until kernelcore is
5212	 * satisfied
5213	 */
5214	usable_nodes--;
5215	if (usable_nodes && required_kernelcore > usable_nodes)
5216		goto restart;
5217
5218out2:
5219	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5220	for (nid = 0; nid < MAX_NUMNODES; nid++)
5221		zone_movable_pfn[nid] =
5222			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5223
5224out:
5225	/* restore the node_state */
5226	node_states[N_MEMORY] = saved_node_state;
5227}
5228
5229/* Any regular or high memory on that node ? */
5230static void check_for_memory(pg_data_t *pgdat, int nid)
5231{
5232	enum zone_type zone_type;
5233
5234	if (N_MEMORY == N_NORMAL_MEMORY)
5235		return;
5236
5237	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5238		struct zone *zone = &pgdat->node_zones[zone_type];
5239		if (populated_zone(zone)) {
5240			node_set_state(nid, N_HIGH_MEMORY);
5241			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5242			    zone_type <= ZONE_NORMAL)
5243				node_set_state(nid, N_NORMAL_MEMORY);
5244			break;
5245		}
5246	}
5247}
5248
5249/**
5250 * free_area_init_nodes - Initialise all pg_data_t and zone data
5251 * @max_zone_pfn: an array of max PFNs for each zone
5252 *
5253 * This will call free_area_init_node() for each active node in the system.
5254 * Using the page ranges provided by add_active_range(), the size of each
5255 * zone in each node and their holes is calculated. If the maximum PFN
5256 * between two adjacent zones match, it is assumed that the zone is empty.
5257 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5258 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5259 * starts where the previous one ended. For example, ZONE_DMA32 starts
5260 * at arch_max_dma_pfn.
5261 */
5262void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5263{
5264	unsigned long start_pfn, end_pfn;
5265	int i, nid;
5266
5267	/* Record where the zone boundaries are */
5268	memset(arch_zone_lowest_possible_pfn, 0,
5269				sizeof(arch_zone_lowest_possible_pfn));
5270	memset(arch_zone_highest_possible_pfn, 0,
5271				sizeof(arch_zone_highest_possible_pfn));
5272	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5273	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5274	for (i = 1; i < MAX_NR_ZONES; i++) {
5275		if (i == ZONE_MOVABLE)
5276			continue;
5277		arch_zone_lowest_possible_pfn[i] =
5278			arch_zone_highest_possible_pfn[i-1];
5279		arch_zone_highest_possible_pfn[i] =
5280			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5281	}
5282	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5283	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5284
5285	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5286	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5287	find_zone_movable_pfns_for_nodes();
5288
5289	/* Print out the zone ranges */
5290	printk("Zone ranges:\n");
5291	for (i = 0; i < MAX_NR_ZONES; i++) {
5292		if (i == ZONE_MOVABLE)
5293			continue;
5294		printk(KERN_CONT "  %-8s ", zone_names[i]);
5295		if (arch_zone_lowest_possible_pfn[i] ==
5296				arch_zone_highest_possible_pfn[i])
5297			printk(KERN_CONT "empty\n");
5298		else
5299			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5300				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5301				(arch_zone_highest_possible_pfn[i]
 
5302					<< PAGE_SHIFT) - 1);
5303	}
5304
5305	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5306	printk("Movable zone start for each node\n");
5307	for (i = 0; i < MAX_NUMNODES; i++) {
5308		if (zone_movable_pfn[i])
5309			printk("  Node %d: %#010lx\n", i,
5310			       zone_movable_pfn[i] << PAGE_SHIFT);
5311	}
5312
5313	/* Print out the early node map */
5314	printk("Early memory node ranges\n");
5315	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5316		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5317		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
 
5318
5319	/* Initialise every node */
5320	mminit_verify_pageflags_layout();
5321	setup_nr_node_ids();
5322	for_each_online_node(nid) {
5323		pg_data_t *pgdat = NODE_DATA(nid);
5324		free_area_init_node(nid, NULL,
5325				find_min_pfn_for_node(nid), NULL);
5326
5327		/* Any memory on that node */
5328		if (pgdat->node_present_pages)
5329			node_set_state(nid, N_MEMORY);
5330		check_for_memory(pgdat, nid);
5331	}
5332}
5333
5334static int __init cmdline_parse_core(char *p, unsigned long *core)
5335{
5336	unsigned long long coremem;
5337	if (!p)
5338		return -EINVAL;
5339
5340	coremem = memparse(p, &p);
5341	*core = coremem >> PAGE_SHIFT;
5342
5343	/* Paranoid check that UL is enough for the coremem value */
5344	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5345
5346	return 0;
5347}
5348
5349/*
5350 * kernelcore=size sets the amount of memory for use for allocations that
5351 * cannot be reclaimed or migrated.
5352 */
5353static int __init cmdline_parse_kernelcore(char *p)
5354{
 
 
 
 
 
 
5355	return cmdline_parse_core(p, &required_kernelcore);
5356}
5357
5358/*
5359 * movablecore=size sets the amount of memory for use for allocations that
5360 * can be reclaimed or migrated.
5361 */
5362static int __init cmdline_parse_movablecore(char *p)
5363{
5364	return cmdline_parse_core(p, &required_movablecore);
5365}
5366
5367early_param("kernelcore", cmdline_parse_kernelcore);
5368early_param("movablecore", cmdline_parse_movablecore);
5369
5370#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5371
5372void adjust_managed_page_count(struct page *page, long count)
5373{
5374	spin_lock(&managed_page_count_lock);
5375	page_zone(page)->managed_pages += count;
5376	totalram_pages += count;
5377#ifdef CONFIG_HIGHMEM
5378	if (PageHighMem(page))
5379		totalhigh_pages += count;
5380#endif
5381	spin_unlock(&managed_page_count_lock);
5382}
5383EXPORT_SYMBOL(adjust_managed_page_count);
5384
5385unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5386{
5387	void *pos;
5388	unsigned long pages = 0;
5389
5390	start = (void *)PAGE_ALIGN((unsigned long)start);
5391	end = (void *)((unsigned long)end & PAGE_MASK);
5392	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5393		if ((unsigned int)poison <= 0xFF)
5394			memset(pos, poison, PAGE_SIZE);
5395		free_reserved_page(virt_to_page(pos));
5396	}
5397
5398	if (pages && s)
5399		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5400			s, pages << (PAGE_SHIFT - 10), start, end);
5401
5402	return pages;
5403}
5404EXPORT_SYMBOL(free_reserved_area);
5405
5406#ifdef	CONFIG_HIGHMEM
5407void free_highmem_page(struct page *page)
5408{
5409	__free_reserved_page(page);
5410	totalram_pages++;
5411	page_zone(page)->managed_pages++;
5412	totalhigh_pages++;
5413}
5414#endif
5415
5416
5417void __init mem_init_print_info(const char *str)
5418{
5419	unsigned long physpages, codesize, datasize, rosize, bss_size;
5420	unsigned long init_code_size, init_data_size;
5421
5422	physpages = get_num_physpages();
5423	codesize = _etext - _stext;
5424	datasize = _edata - _sdata;
5425	rosize = __end_rodata - __start_rodata;
5426	bss_size = __bss_stop - __bss_start;
5427	init_data_size = __init_end - __init_begin;
5428	init_code_size = _einittext - _sinittext;
5429
5430	/*
5431	 * Detect special cases and adjust section sizes accordingly:
5432	 * 1) .init.* may be embedded into .data sections
5433	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5434	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5435	 * 3) .rodata.* may be embedded into .text or .data sections.
5436	 */
5437#define adj_init_size(start, end, size, pos, adj) \
5438	do { \
5439		if (start <= pos && pos < end && size > adj) \
5440			size -= adj; \
5441	} while (0)
5442
5443	adj_init_size(__init_begin, __init_end, init_data_size,
5444		     _sinittext, init_code_size);
5445	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5446	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5447	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5448	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5449
5450#undef	adj_init_size
5451
5452	printk("Memory: %luK/%luK available "
5453	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5454	       "%luK init, %luK bss, %luK reserved"
5455#ifdef	CONFIG_HIGHMEM
5456	       ", %luK highmem"
5457#endif
5458	       "%s%s)\n",
5459	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5460	       codesize >> 10, datasize >> 10, rosize >> 10,
5461	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5462	       (physpages - totalram_pages) << (PAGE_SHIFT-10),
 
 
5463#ifdef	CONFIG_HIGHMEM
5464	       totalhigh_pages << (PAGE_SHIFT-10),
5465#endif
5466	       str ? ", " : "", str ? str : "");
5467}
5468
5469/**
5470 * set_dma_reserve - set the specified number of pages reserved in the first zone
5471 * @new_dma_reserve: The number of pages to mark reserved
5472 *
5473 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5474 * In the DMA zone, a significant percentage may be consumed by kernel image
5475 * and other unfreeable allocations which can skew the watermarks badly. This
5476 * function may optionally be used to account for unfreeable pages in the
5477 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5478 * smaller per-cpu batchsize.
5479 */
5480void __init set_dma_reserve(unsigned long new_dma_reserve)
5481{
5482	dma_reserve = new_dma_reserve;
5483}
5484
5485void __init free_area_init(unsigned long *zones_size)
5486{
5487	free_area_init_node(0, zones_size,
5488			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5489}
5490
5491static int page_alloc_cpu_notify(struct notifier_block *self,
5492				 unsigned long action, void *hcpu)
5493{
5494	int cpu = (unsigned long)hcpu;
5495
5496	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5497		lru_add_drain_cpu(cpu);
5498		drain_pages(cpu);
5499
5500		/*
5501		 * Spill the event counters of the dead processor
5502		 * into the current processors event counters.
5503		 * This artificially elevates the count of the current
5504		 * processor.
5505		 */
5506		vm_events_fold_cpu(cpu);
5507
5508		/*
5509		 * Zero the differential counters of the dead processor
5510		 * so that the vm statistics are consistent.
5511		 *
5512		 * This is only okay since the processor is dead and cannot
5513		 * race with what we are doing.
5514		 */
5515		cpu_vm_stats_fold(cpu);
5516	}
5517	return NOTIFY_OK;
5518}
5519
5520void __init page_alloc_init(void)
5521{
5522	hotcpu_notifier(page_alloc_cpu_notify, 0);
5523}
5524
5525/*
5526 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5527 *	or min_free_kbytes changes.
5528 */
5529static void calculate_totalreserve_pages(void)
5530{
5531	struct pglist_data *pgdat;
5532	unsigned long reserve_pages = 0;
5533	enum zone_type i, j;
5534
5535	for_each_online_pgdat(pgdat) {
5536		for (i = 0; i < MAX_NR_ZONES; i++) {
5537			struct zone *zone = pgdat->node_zones + i;
5538			unsigned long max = 0;
5539
5540			/* Find valid and maximum lowmem_reserve in the zone */
5541			for (j = i; j < MAX_NR_ZONES; j++) {
5542				if (zone->lowmem_reserve[j] > max)
5543					max = zone->lowmem_reserve[j];
5544			}
5545
5546			/* we treat the high watermark as reserved pages. */
5547			max += high_wmark_pages(zone);
5548
5549			if (max > zone->managed_pages)
5550				max = zone->managed_pages;
 
 
 
5551			reserve_pages += max;
5552			/*
5553			 * Lowmem reserves are not available to
5554			 * GFP_HIGHUSER page cache allocations and
5555			 * kswapd tries to balance zones to their high
5556			 * watermark.  As a result, neither should be
5557			 * regarded as dirtyable memory, to prevent a
5558			 * situation where reclaim has to clean pages
5559			 * in order to balance the zones.
5560			 */
5561			zone->dirty_balance_reserve = max;
5562		}
5563	}
5564	dirty_balance_reserve = reserve_pages;
5565	totalreserve_pages = reserve_pages;
5566}
5567
5568/*
5569 * setup_per_zone_lowmem_reserve - called whenever
5570 *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5571 *	has a correct pages reserved value, so an adequate number of
5572 *	pages are left in the zone after a successful __alloc_pages().
5573 */
5574static void setup_per_zone_lowmem_reserve(void)
5575{
5576	struct pglist_data *pgdat;
5577	enum zone_type j, idx;
5578
5579	for_each_online_pgdat(pgdat) {
5580		for (j = 0; j < MAX_NR_ZONES; j++) {
5581			struct zone *zone = pgdat->node_zones + j;
5582			unsigned long managed_pages = zone->managed_pages;
5583
5584			zone->lowmem_reserve[j] = 0;
5585
5586			idx = j;
5587			while (idx) {
5588				struct zone *lower_zone;
5589
5590				idx--;
5591
5592				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5593					sysctl_lowmem_reserve_ratio[idx] = 1;
5594
5595				lower_zone = pgdat->node_zones + idx;
5596				lower_zone->lowmem_reserve[j] = managed_pages /
5597					sysctl_lowmem_reserve_ratio[idx];
5598				managed_pages += lower_zone->managed_pages;
5599			}
5600		}
5601	}
5602
5603	/* update totalreserve_pages */
5604	calculate_totalreserve_pages();
5605}
5606
5607static void __setup_per_zone_wmarks(void)
5608{
5609	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5610	unsigned long lowmem_pages = 0;
5611	struct zone *zone;
5612	unsigned long flags;
5613
5614	/* Calculate total number of !ZONE_HIGHMEM pages */
5615	for_each_zone(zone) {
5616		if (!is_highmem(zone))
5617			lowmem_pages += zone->managed_pages;
5618	}
5619
5620	for_each_zone(zone) {
5621		u64 tmp;
5622
5623		spin_lock_irqsave(&zone->lock, flags);
5624		tmp = (u64)pages_min * zone->managed_pages;
5625		do_div(tmp, lowmem_pages);
5626		if (is_highmem(zone)) {
5627			/*
5628			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5629			 * need highmem pages, so cap pages_min to a small
5630			 * value here.
5631			 *
5632			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5633			 * deltas controls asynch page reclaim, and so should
5634			 * not be capped for highmem.
5635			 */
5636			unsigned long min_pages;
5637
5638			min_pages = zone->managed_pages / 1024;
5639			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5640			zone->watermark[WMARK_MIN] = min_pages;
5641		} else {
5642			/*
5643			 * If it's a lowmem zone, reserve a number of pages
5644			 * proportionate to the zone's size.
5645			 */
5646			zone->watermark[WMARK_MIN] = tmp;
5647		}
5648
5649		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5650		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
 
 
 
 
 
 
 
 
 
5651
5652		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5653				      high_wmark_pages(zone) -
5654				      low_wmark_pages(zone) -
5655				      zone_page_state(zone, NR_ALLOC_BATCH));
5656
5657		setup_zone_migrate_reserve(zone);
5658		spin_unlock_irqrestore(&zone->lock, flags);
5659	}
5660
5661	/* update totalreserve_pages */
5662	calculate_totalreserve_pages();
5663}
5664
5665/**
5666 * setup_per_zone_wmarks - called when min_free_kbytes changes
5667 * or when memory is hot-{added|removed}
5668 *
5669 * Ensures that the watermark[min,low,high] values for each zone are set
5670 * correctly with respect to min_free_kbytes.
5671 */
5672void setup_per_zone_wmarks(void)
5673{
5674	mutex_lock(&zonelists_mutex);
5675	__setup_per_zone_wmarks();
5676	mutex_unlock(&zonelists_mutex);
5677}
5678
5679/*
5680 * The inactive anon list should be small enough that the VM never has to
5681 * do too much work, but large enough that each inactive page has a chance
5682 * to be referenced again before it is swapped out.
5683 *
5684 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5685 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5686 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5687 * the anonymous pages are kept on the inactive list.
5688 *
5689 * total     target    max
5690 * memory    ratio     inactive anon
5691 * -------------------------------------
5692 *   10MB       1         5MB
5693 *  100MB       1        50MB
5694 *    1GB       3       250MB
5695 *   10GB      10       0.9GB
5696 *  100GB      31         3GB
5697 *    1TB     101        10GB
5698 *   10TB     320        32GB
5699 */
5700static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5701{
5702	unsigned int gb, ratio;
5703
5704	/* Zone size in gigabytes */
5705	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5706	if (gb)
5707		ratio = int_sqrt(10 * gb);
5708	else
5709		ratio = 1;
5710
5711	zone->inactive_ratio = ratio;
5712}
5713
5714static void __meminit setup_per_zone_inactive_ratio(void)
5715{
5716	struct zone *zone;
5717
5718	for_each_zone(zone)
5719		calculate_zone_inactive_ratio(zone);
5720}
5721
5722/*
5723 * Initialise min_free_kbytes.
5724 *
5725 * For small machines we want it small (128k min).  For large machines
5726 * we want it large (64MB max).  But it is not linear, because network
5727 * bandwidth does not increase linearly with machine size.  We use
5728 *
5729 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5730 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5731 *
5732 * which yields
5733 *
5734 * 16MB:	512k
5735 * 32MB:	724k
5736 * 64MB:	1024k
5737 * 128MB:	1448k
5738 * 256MB:	2048k
5739 * 512MB:	2896k
5740 * 1024MB:	4096k
5741 * 2048MB:	5792k
5742 * 4096MB:	8192k
5743 * 8192MB:	11584k
5744 * 16384MB:	16384k
5745 */
5746int __meminit init_per_zone_wmark_min(void)
5747{
5748	unsigned long lowmem_kbytes;
5749	int new_min_free_kbytes;
5750
5751	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5752	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5753
5754	if (new_min_free_kbytes > user_min_free_kbytes) {
5755		min_free_kbytes = new_min_free_kbytes;
5756		if (min_free_kbytes < 128)
5757			min_free_kbytes = 128;
5758		if (min_free_kbytes > 65536)
5759			min_free_kbytes = 65536;
5760	} else {
5761		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5762				new_min_free_kbytes, user_min_free_kbytes);
5763	}
5764	setup_per_zone_wmarks();
5765	refresh_zone_stat_thresholds();
5766	setup_per_zone_lowmem_reserve();
5767	setup_per_zone_inactive_ratio();
5768	return 0;
5769}
5770module_init(init_per_zone_wmark_min)
5771
5772/*
5773 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5774 *	that we can call two helper functions whenever min_free_kbytes
5775 *	changes.
5776 */
5777int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5778	void __user *buffer, size_t *length, loff_t *ppos)
5779{
5780	int rc;
5781
5782	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5783	if (rc)
5784		return rc;
5785
5786	if (write) {
5787		user_min_free_kbytes = min_free_kbytes;
5788		setup_per_zone_wmarks();
5789	}
5790	return 0;
5791}
5792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5793#ifdef CONFIG_NUMA
5794int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5795	void __user *buffer, size_t *length, loff_t *ppos)
5796{
5797	struct zone *zone;
5798	int rc;
5799
5800	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5801	if (rc)
5802		return rc;
5803
5804	for_each_zone(zone)
5805		zone->min_unmapped_pages = (zone->managed_pages *
5806				sysctl_min_unmapped_ratio) / 100;
5807	return 0;
5808}
5809
5810int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5811	void __user *buffer, size_t *length, loff_t *ppos)
5812{
5813	struct zone *zone;
5814	int rc;
5815
5816	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5817	if (rc)
5818		return rc;
5819
5820	for_each_zone(zone)
5821		zone->min_slab_pages = (zone->managed_pages *
5822				sysctl_min_slab_ratio) / 100;
5823	return 0;
5824}
5825#endif
5826
5827/*
5828 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5829 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5830 *	whenever sysctl_lowmem_reserve_ratio changes.
5831 *
5832 * The reserve ratio obviously has absolutely no relation with the
5833 * minimum watermarks. The lowmem reserve ratio can only make sense
5834 * if in function of the boot time zone sizes.
5835 */
5836int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5837	void __user *buffer, size_t *length, loff_t *ppos)
5838{
5839	proc_dointvec_minmax(table, write, buffer, length, ppos);
5840	setup_per_zone_lowmem_reserve();
5841	return 0;
5842}
5843
5844/*
5845 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5846 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5847 * pagelist can have before it gets flushed back to buddy allocator.
5848 */
5849int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5850	void __user *buffer, size_t *length, loff_t *ppos)
5851{
5852	struct zone *zone;
5853	unsigned int cpu;
5854	int ret;
5855
 
 
 
5856	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5857	if (!write || (ret < 0))
5858		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
5859
5860	mutex_lock(&pcp_batch_high_lock);
5861	for_each_populated_zone(zone) {
5862		unsigned long  high;
5863		high = zone->managed_pages / percpu_pagelist_fraction;
5864		for_each_possible_cpu(cpu)
5865			pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5866					 high);
5867	}
 
5868	mutex_unlock(&pcp_batch_high_lock);
5869	return 0;
5870}
5871
 
5872int hashdist = HASHDIST_DEFAULT;
5873
5874#ifdef CONFIG_NUMA
5875static int __init set_hashdist(char *str)
5876{
5877	if (!str)
5878		return 0;
5879	hashdist = simple_strtoul(str, &str, 0);
5880	return 1;
5881}
5882__setup("hashdist=", set_hashdist);
5883#endif
5884
5885/*
5886 * allocate a large system hash table from bootmem
5887 * - it is assumed that the hash table must contain an exact power-of-2
5888 *   quantity of entries
5889 * - limit is the number of hash buckets, not the total allocation size
5890 */
5891void *__init alloc_large_system_hash(const char *tablename,
5892				     unsigned long bucketsize,
5893				     unsigned long numentries,
5894				     int scale,
5895				     int flags,
5896				     unsigned int *_hash_shift,
5897				     unsigned int *_hash_mask,
5898				     unsigned long low_limit,
5899				     unsigned long high_limit)
5900{
5901	unsigned long long max = high_limit;
5902	unsigned long log2qty, size;
5903	void *table = NULL;
5904
5905	/* allow the kernel cmdline to have a say */
5906	if (!numentries) {
5907		/* round applicable memory size up to nearest megabyte */
5908		numentries = nr_kernel_pages;
5909
5910		/* It isn't necessary when PAGE_SIZE >= 1MB */
5911		if (PAGE_SHIFT < 20)
5912			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5913
5914		/* limit to 1 bucket per 2^scale bytes of low memory */
5915		if (scale > PAGE_SHIFT)
5916			numentries >>= (scale - PAGE_SHIFT);
5917		else
5918			numentries <<= (PAGE_SHIFT - scale);
5919
5920		/* Make sure we've got at least a 0-order allocation.. */
5921		if (unlikely(flags & HASH_SMALL)) {
5922			/* Makes no sense without HASH_EARLY */
5923			WARN_ON(!(flags & HASH_EARLY));
5924			if (!(numentries >> *_hash_shift)) {
5925				numentries = 1UL << *_hash_shift;
5926				BUG_ON(!numentries);
5927			}
5928		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5929			numentries = PAGE_SIZE / bucketsize;
5930	}
5931	numentries = roundup_pow_of_two(numentries);
5932
5933	/* limit allocation size to 1/16 total memory by default */
5934	if (max == 0) {
5935		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5936		do_div(max, bucketsize);
5937	}
5938	max = min(max, 0x80000000ULL);
5939
5940	if (numentries < low_limit)
5941		numentries = low_limit;
5942	if (numentries > max)
5943		numentries = max;
5944
5945	log2qty = ilog2(numentries);
5946
5947	do {
5948		size = bucketsize << log2qty;
5949		if (flags & HASH_EARLY)
5950			table = memblock_virt_alloc_nopanic(size, 0);
5951		else if (hashdist)
5952			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5953		else {
5954			/*
5955			 * If bucketsize is not a power-of-two, we may free
5956			 * some pages at the end of hash table which
5957			 * alloc_pages_exact() automatically does
5958			 */
5959			if (get_order(size) < MAX_ORDER) {
5960				table = alloc_pages_exact(size, GFP_ATOMIC);
5961				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5962			}
5963		}
5964	} while (!table && size > PAGE_SIZE && --log2qty);
5965
5966	if (!table)
5967		panic("Failed to allocate %s hash table\n", tablename);
5968
5969	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5970	       tablename,
5971	       (1UL << log2qty),
5972	       ilog2(size) - PAGE_SHIFT,
5973	       size);
5974
5975	if (_hash_shift)
5976		*_hash_shift = log2qty;
5977	if (_hash_mask)
5978		*_hash_mask = (1 << log2qty) - 1;
5979
5980	return table;
5981}
5982
5983/* Return a pointer to the bitmap storing bits affecting a block of pages */
5984static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5985							unsigned long pfn)
5986{
5987#ifdef CONFIG_SPARSEMEM
5988	return __pfn_to_section(pfn)->pageblock_flags;
5989#else
5990	return zone->pageblock_flags;
5991#endif /* CONFIG_SPARSEMEM */
5992}
5993
5994static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5995{
5996#ifdef CONFIG_SPARSEMEM
5997	pfn &= (PAGES_PER_SECTION-1);
5998	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5999#else
6000	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6001	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6002#endif /* CONFIG_SPARSEMEM */
6003}
6004
6005/**
6006 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
6007 * @page: The page within the block of interest
6008 * @start_bitidx: The first bit of interest to retrieve
6009 * @end_bitidx: The last bit of interest
6010 * returns pageblock_bits flags
6011 */
6012unsigned long get_pageblock_flags_group(struct page *page,
6013					int start_bitidx, int end_bitidx)
 
 
 
6014{
6015	struct zone *zone;
6016	unsigned long *bitmap;
6017	unsigned long pfn, bitidx;
6018	unsigned long flags = 0;
6019	unsigned long value = 1;
6020
6021	zone = page_zone(page);
6022	pfn = page_to_pfn(page);
6023	bitmap = get_pageblock_bitmap(zone, pfn);
6024	bitidx = pfn_to_bitidx(zone, pfn);
 
 
6025
6026	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6027		if (test_bit(bitidx + start_bitidx, bitmap))
6028			flags |= value;
6029
6030	return flags;
6031}
6032
6033/**
6034 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
6035 * @page: The page within the block of interest
6036 * @start_bitidx: The first bit of interest
 
6037 * @end_bitidx: The last bit of interest
6038 * @flags: The flags to set
6039 */
6040void set_pageblock_flags_group(struct page *page, unsigned long flags,
6041					int start_bitidx, int end_bitidx)
 
 
6042{
6043	struct zone *zone;
6044	unsigned long *bitmap;
6045	unsigned long pfn, bitidx;
6046	unsigned long value = 1;
 
 
6047
6048	zone = page_zone(page);
6049	pfn = page_to_pfn(page);
6050	bitmap = get_pageblock_bitmap(zone, pfn);
6051	bitidx = pfn_to_bitidx(zone, pfn);
 
 
 
6052	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6053
6054	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6055		if (flags & value)
6056			__set_bit(bitidx + start_bitidx, bitmap);
6057		else
6058			__clear_bit(bitidx + start_bitidx, bitmap);
 
 
 
 
 
 
6059}
6060
6061/*
6062 * This function checks whether pageblock includes unmovable pages or not.
6063 * If @count is not zero, it is okay to include less @count unmovable pages
6064 *
6065 * PageLRU check without isolation or lru_lock could race so that
6066 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6067 * expect this function should be exact.
6068 */
6069bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6070			 bool skip_hwpoisoned_pages)
6071{
6072	unsigned long pfn, iter, found;
6073	int mt;
6074
6075	/*
6076	 * For avoiding noise data, lru_add_drain_all() should be called
6077	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6078	 */
6079	if (zone_idx(zone) == ZONE_MOVABLE)
6080		return false;
6081	mt = get_pageblock_migratetype(page);
6082	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6083		return false;
6084
6085	pfn = page_to_pfn(page);
6086	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6087		unsigned long check = pfn + iter;
6088
6089		if (!pfn_valid_within(check))
6090			continue;
6091
6092		page = pfn_to_page(check);
6093
6094		/*
6095		 * Hugepages are not in LRU lists, but they're movable.
6096		 * We need not scan over tail pages bacause we don't
6097		 * handle each tail page individually in migration.
6098		 */
6099		if (PageHuge(page)) {
6100			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6101			continue;
6102		}
6103
6104		/*
6105		 * We can't use page_count without pin a page
6106		 * because another CPU can free compound page.
6107		 * This check already skips compound tails of THP
6108		 * because their page->_count is zero at all time.
6109		 */
6110		if (!atomic_read(&page->_count)) {
6111			if (PageBuddy(page))
6112				iter += (1 << page_order(page)) - 1;
6113			continue;
6114		}
6115
6116		/*
6117		 * The HWPoisoned page may be not in buddy system, and
6118		 * page_count() is not 0.
6119		 */
6120		if (skip_hwpoisoned_pages && PageHWPoison(page))
6121			continue;
6122
6123		if (!PageLRU(page))
6124			found++;
6125		/*
6126		 * If there are RECLAIMABLE pages, we need to check it.
6127		 * But now, memory offline itself doesn't call shrink_slab()
6128		 * and it still to be fixed.
6129		 */
6130		/*
6131		 * If the page is not RAM, page_count()should be 0.
6132		 * we don't need more check. This is an _used_ not-movable page.
6133		 *
6134		 * The problematic thing here is PG_reserved pages. PG_reserved
6135		 * is set to both of a memory hole page and a _used_ kernel
6136		 * page at boot.
6137		 */
6138		if (found > count)
6139			return true;
6140	}
6141	return false;
6142}
6143
6144bool is_pageblock_removable_nolock(struct page *page)
6145{
6146	struct zone *zone;
6147	unsigned long pfn;
6148
6149	/*
6150	 * We have to be careful here because we are iterating over memory
6151	 * sections which are not zone aware so we might end up outside of
6152	 * the zone but still within the section.
6153	 * We have to take care about the node as well. If the node is offline
6154	 * its NODE_DATA will be NULL - see page_zone.
6155	 */
6156	if (!node_online(page_to_nid(page)))
6157		return false;
6158
6159	zone = page_zone(page);
6160	pfn = page_to_pfn(page);
6161	if (!zone_spans_pfn(zone, pfn))
6162		return false;
6163
6164	return !has_unmovable_pages(zone, page, 0, true);
6165}
6166
6167#ifdef CONFIG_CMA
6168
6169static unsigned long pfn_max_align_down(unsigned long pfn)
6170{
6171	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6172			     pageblock_nr_pages) - 1);
6173}
6174
6175static unsigned long pfn_max_align_up(unsigned long pfn)
6176{
6177	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6178				pageblock_nr_pages));
6179}
6180
6181/* [start, end) must belong to a single zone. */
6182static int __alloc_contig_migrate_range(struct compact_control *cc,
6183					unsigned long start, unsigned long end)
6184{
6185	/* This function is based on compact_zone() from compaction.c. */
6186	unsigned long nr_reclaimed;
6187	unsigned long pfn = start;
6188	unsigned int tries = 0;
6189	int ret = 0;
6190
6191	migrate_prep();
6192
6193	while (pfn < end || !list_empty(&cc->migratepages)) {
6194		if (fatal_signal_pending(current)) {
6195			ret = -EINTR;
6196			break;
6197		}
6198
6199		if (list_empty(&cc->migratepages)) {
6200			cc->nr_migratepages = 0;
6201			pfn = isolate_migratepages_range(cc->zone, cc,
6202							 pfn, end, true);
6203			if (!pfn) {
6204				ret = -EINTR;
6205				break;
6206			}
6207			tries = 0;
6208		} else if (++tries == 5) {
6209			ret = ret < 0 ? ret : -EBUSY;
6210			break;
6211		}
6212
6213		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6214							&cc->migratepages);
6215		cc->nr_migratepages -= nr_reclaimed;
6216
6217		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6218				    0, MIGRATE_SYNC, MR_CMA);
6219	}
6220	if (ret < 0) {
6221		putback_movable_pages(&cc->migratepages);
6222		return ret;
6223	}
6224	return 0;
6225}
6226
6227/**
6228 * alloc_contig_range() -- tries to allocate given range of pages
6229 * @start:	start PFN to allocate
6230 * @end:	one-past-the-last PFN to allocate
6231 * @migratetype:	migratetype of the underlaying pageblocks (either
6232 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6233 *			in range must have the same migratetype and it must
6234 *			be either of the two.
6235 *
6236 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6237 * aligned, however it's the caller's responsibility to guarantee that
6238 * we are the only thread that changes migrate type of pageblocks the
6239 * pages fall in.
6240 *
6241 * The PFN range must belong to a single zone.
6242 *
6243 * Returns zero on success or negative error code.  On success all
6244 * pages which PFN is in [start, end) are allocated for the caller and
6245 * need to be freed with free_contig_range().
6246 */
6247int alloc_contig_range(unsigned long start, unsigned long end,
6248		       unsigned migratetype)
6249{
6250	unsigned long outer_start, outer_end;
6251	int ret = 0, order;
 
6252
6253	struct compact_control cc = {
6254		.nr_migratepages = 0,
6255		.order = -1,
6256		.zone = page_zone(pfn_to_page(start)),
6257		.sync = true,
6258		.ignore_skip_hint = true,
6259	};
6260	INIT_LIST_HEAD(&cc.migratepages);
6261
6262	/*
6263	 * What we do here is we mark all pageblocks in range as
6264	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6265	 * have different sizes, and due to the way page allocator
6266	 * work, we align the range to biggest of the two pages so
6267	 * that page allocator won't try to merge buddies from
6268	 * different pageblocks and change MIGRATE_ISOLATE to some
6269	 * other migration type.
6270	 *
6271	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6272	 * migrate the pages from an unaligned range (ie. pages that
6273	 * we are interested in).  This will put all the pages in
6274	 * range back to page allocator as MIGRATE_ISOLATE.
6275	 *
6276	 * When this is done, we take the pages in range from page
6277	 * allocator removing them from the buddy system.  This way
6278	 * page allocator will never consider using them.
6279	 *
6280	 * This lets us mark the pageblocks back as
6281	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6282	 * aligned range but not in the unaligned, original range are
6283	 * put back to page allocator so that buddy can use them.
6284	 */
6285
6286	ret = start_isolate_page_range(pfn_max_align_down(start),
6287				       pfn_max_align_up(end), migratetype,
6288				       false);
6289	if (ret)
6290		return ret;
6291
 
 
 
 
6292	ret = __alloc_contig_migrate_range(&cc, start, end);
6293	if (ret)
6294		goto done;
6295
6296	/*
6297	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6298	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6299	 * more, all pages in [start, end) are free in page allocator.
6300	 * What we are going to do is to allocate all pages from
6301	 * [start, end) (that is remove them from page allocator).
6302	 *
6303	 * The only problem is that pages at the beginning and at the
6304	 * end of interesting range may be not aligned with pages that
6305	 * page allocator holds, ie. they can be part of higher order
6306	 * pages.  Because of this, we reserve the bigger range and
6307	 * once this is done free the pages we are not interested in.
6308	 *
6309	 * We don't have to hold zone->lock here because the pages are
6310	 * isolated thus they won't get removed from buddy.
6311	 */
6312
6313	lru_add_drain_all();
6314	drain_all_pages();
6315
6316	order = 0;
6317	outer_start = start;
6318	while (!PageBuddy(pfn_to_page(outer_start))) {
6319		if (++order >= MAX_ORDER) {
6320			ret = -EBUSY;
6321			goto done;
6322		}
6323		outer_start &= ~0UL << order;
6324	}
6325
 
 
 
 
 
 
 
 
 
 
 
 
 
6326	/* Make sure the range is really isolated. */
6327	if (test_pages_isolated(outer_start, end, false)) {
6328		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6329		       outer_start, end);
6330		ret = -EBUSY;
6331		goto done;
6332	}
6333
6334
6335	/* Grab isolated pages from freelists. */
6336	outer_end = isolate_freepages_range(&cc, outer_start, end);
6337	if (!outer_end) {
6338		ret = -EBUSY;
6339		goto done;
6340	}
6341
6342	/* Free head and tail (if any) */
6343	if (start != outer_start)
6344		free_contig_range(outer_start, start - outer_start);
6345	if (end != outer_end)
6346		free_contig_range(end, outer_end - end);
6347
6348done:
6349	undo_isolate_page_range(pfn_max_align_down(start),
6350				pfn_max_align_up(end), migratetype);
6351	return ret;
6352}
6353
6354void free_contig_range(unsigned long pfn, unsigned nr_pages)
6355{
6356	unsigned int count = 0;
6357
6358	for (; nr_pages--; pfn++) {
6359		struct page *page = pfn_to_page(pfn);
6360
6361		count += page_count(page) != 1;
6362		__free_page(page);
6363	}
6364	WARN(count != 0, "%d pages are still in use!\n", count);
6365}
6366#endif
6367
6368#ifdef CONFIG_MEMORY_HOTPLUG
6369/*
6370 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6371 * page high values need to be recalulated.
6372 */
6373void __meminit zone_pcp_update(struct zone *zone)
6374{
6375	unsigned cpu;
6376	mutex_lock(&pcp_batch_high_lock);
6377	for_each_possible_cpu(cpu)
6378		pageset_set_high_and_batch(zone,
6379				per_cpu_ptr(zone->pageset, cpu));
6380	mutex_unlock(&pcp_batch_high_lock);
6381}
6382#endif
6383
6384void zone_pcp_reset(struct zone *zone)
6385{
6386	unsigned long flags;
6387	int cpu;
6388	struct per_cpu_pageset *pset;
6389
6390	/* avoid races with drain_pages()  */
6391	local_irq_save(flags);
6392	if (zone->pageset != &boot_pageset) {
6393		for_each_online_cpu(cpu) {
6394			pset = per_cpu_ptr(zone->pageset, cpu);
6395			drain_zonestat(zone, pset);
6396		}
6397		free_percpu(zone->pageset);
6398		zone->pageset = &boot_pageset;
6399	}
6400	local_irq_restore(flags);
6401}
6402
6403#ifdef CONFIG_MEMORY_HOTREMOVE
6404/*
6405 * All pages in the range must be isolated before calling this.
6406 */
6407void
6408__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6409{
6410	struct page *page;
6411	struct zone *zone;
6412	int order, i;
6413	unsigned long pfn;
6414	unsigned long flags;
6415	/* find the first valid pfn */
6416	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6417		if (pfn_valid(pfn))
6418			break;
6419	if (pfn == end_pfn)
6420		return;
6421	zone = page_zone(pfn_to_page(pfn));
6422	spin_lock_irqsave(&zone->lock, flags);
6423	pfn = start_pfn;
6424	while (pfn < end_pfn) {
6425		if (!pfn_valid(pfn)) {
6426			pfn++;
6427			continue;
6428		}
6429		page = pfn_to_page(pfn);
6430		/*
6431		 * The HWPoisoned page may be not in buddy system, and
6432		 * page_count() is not 0.
6433		 */
6434		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6435			pfn++;
6436			SetPageReserved(page);
6437			continue;
6438		}
6439
6440		BUG_ON(page_count(page));
6441		BUG_ON(!PageBuddy(page));
6442		order = page_order(page);
6443#ifdef CONFIG_DEBUG_VM
6444		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6445		       pfn, 1 << order, end_pfn);
6446#endif
6447		list_del(&page->lru);
6448		rmv_page_order(page);
6449		zone->free_area[order].nr_free--;
6450		for (i = 0; i < (1 << order); i++)
6451			SetPageReserved((page+i));
6452		pfn += (1 << order);
6453	}
6454	spin_unlock_irqrestore(&zone->lock, flags);
6455}
6456#endif
6457
6458#ifdef CONFIG_MEMORY_FAILURE
6459bool is_free_buddy_page(struct page *page)
6460{
6461	struct zone *zone = page_zone(page);
6462	unsigned long pfn = page_to_pfn(page);
6463	unsigned long flags;
6464	int order;
6465
6466	spin_lock_irqsave(&zone->lock, flags);
6467	for (order = 0; order < MAX_ORDER; order++) {
6468		struct page *page_head = page - (pfn & ((1 << order) - 1));
6469
6470		if (PageBuddy(page_head) && page_order(page_head) >= order)
6471			break;
6472	}
6473	spin_unlock_irqrestore(&zone->lock, flags);
6474
6475	return order < MAX_ORDER;
6476}
6477#endif
6478
6479static const struct trace_print_flags pageflag_names[] = {
6480	{1UL << PG_locked,		"locked"	},
6481	{1UL << PG_error,		"error"		},
6482	{1UL << PG_referenced,		"referenced"	},
6483	{1UL << PG_uptodate,		"uptodate"	},
6484	{1UL << PG_dirty,		"dirty"		},
6485	{1UL << PG_lru,			"lru"		},
6486	{1UL << PG_active,		"active"	},
6487	{1UL << PG_slab,		"slab"		},
6488	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6489	{1UL << PG_arch_1,		"arch_1"	},
6490	{1UL << PG_reserved,		"reserved"	},
6491	{1UL << PG_private,		"private"	},
6492	{1UL << PG_private_2,		"private_2"	},
6493	{1UL << PG_writeback,		"writeback"	},
6494#ifdef CONFIG_PAGEFLAGS_EXTENDED
6495	{1UL << PG_head,		"head"		},
6496	{1UL << PG_tail,		"tail"		},
6497#else
6498	{1UL << PG_compound,		"compound"	},
6499#endif
6500	{1UL << PG_swapcache,		"swapcache"	},
6501	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6502	{1UL << PG_reclaim,		"reclaim"	},
6503	{1UL << PG_swapbacked,		"swapbacked"	},
6504	{1UL << PG_unevictable,		"unevictable"	},
6505#ifdef CONFIG_MMU
6506	{1UL << PG_mlocked,		"mlocked"	},
6507#endif
6508#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6509	{1UL << PG_uncached,		"uncached"	},
6510#endif
6511#ifdef CONFIG_MEMORY_FAILURE
6512	{1UL << PG_hwpoison,		"hwpoison"	},
6513#endif
6514#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6515	{1UL << PG_compound_lock,	"compound_lock"	},
6516#endif
6517};
6518
6519static void dump_page_flags(unsigned long flags)
6520{
6521	const char *delim = "";
6522	unsigned long mask;
6523	int i;
6524
6525	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6526
6527	printk(KERN_ALERT "page flags: %#lx(", flags);
6528
6529	/* remove zone id */
6530	flags &= (1UL << NR_PAGEFLAGS) - 1;
6531
6532	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6533
6534		mask = pageflag_names[i].mask;
6535		if ((flags & mask) != mask)
6536			continue;
6537
6538		flags &= ~mask;
6539		printk("%s%s", delim, pageflag_names[i].name);
6540		delim = "|";
6541	}
6542
6543	/* check for left over flags */
6544	if (flags)
6545		printk("%s%#lx", delim, flags);
6546
6547	printk(")\n");
6548}
6549
6550void dump_page_badflags(struct page *page, const char *reason,
6551		unsigned long badflags)
6552{
6553	printk(KERN_ALERT
6554	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6555		page, atomic_read(&page->_count), page_mapcount(page),
6556		page->mapping, page->index);
6557	dump_page_flags(page->flags);
6558	if (reason)
6559		pr_alert("page dumped because: %s\n", reason);
6560	if (page->flags & badflags) {
6561		pr_alert("bad because of flags:\n");
6562		dump_page_flags(page->flags & badflags);
6563	}
6564	mem_cgroup_print_bad_page(page);
6565}
6566
6567void dump_page(struct page *page, const char *reason)
6568{
6569	dump_page_badflags(page, reason, 0);
6570}
6571EXPORT_SYMBOL(dump_page);