Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * random.c -- A strong random number generator
   3 *
 
 
 
   4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   5 *
   6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
   7 * rights reserved.
   8 *
   9 * Redistribution and use in source and binary forms, with or without
  10 * modification, are permitted provided that the following conditions
  11 * are met:
  12 * 1. Redistributions of source code must retain the above copyright
  13 *    notice, and the entire permission notice in its entirety,
  14 *    including the disclaimer of warranties.
  15 * 2. Redistributions in binary form must reproduce the above copyright
  16 *    notice, this list of conditions and the following disclaimer in the
  17 *    documentation and/or other materials provided with the distribution.
  18 * 3. The name of the author may not be used to endorse or promote
  19 *    products derived from this software without specific prior
  20 *    written permission.
  21 *
  22 * ALTERNATIVELY, this product may be distributed under the terms of
  23 * the GNU General Public License, in which case the provisions of the GPL are
  24 * required INSTEAD OF the above restrictions.  (This clause is
  25 * necessary due to a potential bad interaction between the GPL and
  26 * the restrictions contained in a BSD-style copyright.)
  27 *
  28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39 * DAMAGE.
  40 */
  41
  42/*
  43 * (now, with legal B.S. out of the way.....)
  44 *
  45 * This routine gathers environmental noise from device drivers, etc.,
  46 * and returns good random numbers, suitable for cryptographic use.
  47 * Besides the obvious cryptographic uses, these numbers are also good
  48 * for seeding TCP sequence numbers, and other places where it is
  49 * desirable to have numbers which are not only random, but hard to
  50 * predict by an attacker.
  51 *
  52 * Theory of operation
  53 * ===================
  54 *
  55 * Computers are very predictable devices.  Hence it is extremely hard
  56 * to produce truly random numbers on a computer --- as opposed to
  57 * pseudo-random numbers, which can easily generated by using a
  58 * algorithm.  Unfortunately, it is very easy for attackers to guess
  59 * the sequence of pseudo-random number generators, and for some
  60 * applications this is not acceptable.  So instead, we must try to
  61 * gather "environmental noise" from the computer's environment, which
  62 * must be hard for outside attackers to observe, and use that to
  63 * generate random numbers.  In a Unix environment, this is best done
  64 * from inside the kernel.
  65 *
  66 * Sources of randomness from the environment include inter-keyboard
  67 * timings, inter-interrupt timings from some interrupts, and other
  68 * events which are both (a) non-deterministic and (b) hard for an
  69 * outside observer to measure.  Randomness from these sources are
  70 * added to an "entropy pool", which is mixed using a CRC-like function.
  71 * This is not cryptographically strong, but it is adequate assuming
  72 * the randomness is not chosen maliciously, and it is fast enough that
  73 * the overhead of doing it on every interrupt is very reasonable.
  74 * As random bytes are mixed into the entropy pool, the routines keep
  75 * an *estimate* of how many bits of randomness have been stored into
  76 * the random number generator's internal state.
  77 *
  78 * When random bytes are desired, they are obtained by taking the SHA
  79 * hash of the contents of the "entropy pool".  The SHA hash avoids
  80 * exposing the internal state of the entropy pool.  It is believed to
  81 * be computationally infeasible to derive any useful information
  82 * about the input of SHA from its output.  Even if it is possible to
  83 * analyze SHA in some clever way, as long as the amount of data
  84 * returned from the generator is less than the inherent entropy in
  85 * the pool, the output data is totally unpredictable.  For this
  86 * reason, the routine decreases its internal estimate of how many
  87 * bits of "true randomness" are contained in the entropy pool as it
  88 * outputs random numbers.
  89 *
  90 * If this estimate goes to zero, the routine can still generate
  91 * random numbers; however, an attacker may (at least in theory) be
  92 * able to infer the future output of the generator from prior
  93 * outputs.  This requires successful cryptanalysis of SHA, which is
  94 * not believed to be feasible, but there is a remote possibility.
  95 * Nonetheless, these numbers should be useful for the vast majority
  96 * of purposes.
  97 *
  98 * Exported interfaces ---- output
  99 * ===============================
 100 *
 101 * There are three exported interfaces; the first is one designed to
 102 * be used from within the kernel:
 103 *
 104 * 	void get_random_bytes(void *buf, int nbytes);
 105 *
 106 * This interface will return the requested number of random bytes,
 107 * and place it in the requested buffer.
 108 *
 109 * The two other interfaces are two character devices /dev/random and
 110 * /dev/urandom.  /dev/random is suitable for use when very high
 111 * quality randomness is desired (for example, for key generation or
 112 * one-time pads), as it will only return a maximum of the number of
 113 * bits of randomness (as estimated by the random number generator)
 114 * contained in the entropy pool.
 115 *
 116 * The /dev/urandom device does not have this limit, and will return
 117 * as many bytes as are requested.  As more and more random bytes are
 118 * requested without giving time for the entropy pool to recharge,
 119 * this will result in random numbers that are merely cryptographically
 120 * strong.  For many applications, however, this is acceptable.
 121 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122 * Exported interfaces ---- input
 123 * ==============================
 124 *
 125 * The current exported interfaces for gathering environmental noise
 126 * from the devices are:
 127 *
 128 *	void add_device_randomness(const void *buf, unsigned int size);
 129 * 	void add_input_randomness(unsigned int type, unsigned int code,
 130 *                                unsigned int value);
 131 *	void add_interrupt_randomness(int irq, int irq_flags);
 132 * 	void add_disk_randomness(struct gendisk *disk);
 133 *
 134 * add_device_randomness() is for adding data to the random pool that
 135 * is likely to differ between two devices (or possibly even per boot).
 136 * This would be things like MAC addresses or serial numbers, or the
 137 * read-out of the RTC. This does *not* add any actual entropy to the
 138 * pool, but it initializes the pool to different values for devices
 139 * that might otherwise be identical and have very little entropy
 140 * available to them (particularly common in the embedded world).
 141 *
 142 * add_input_randomness() uses the input layer interrupt timing, as well as
 143 * the event type information from the hardware.
 144 *
 145 * add_interrupt_randomness() uses the interrupt timing as random
 146 * inputs to the entropy pool. Using the cycle counters and the irq source
 147 * as inputs, it feeds the randomness roughly once a second.
 148 *
 149 * add_disk_randomness() uses what amounts to the seek time of block
 150 * layer request events, on a per-disk_devt basis, as input to the
 151 * entropy pool. Note that high-speed solid state drives with very low
 152 * seek times do not make for good sources of entropy, as their seek
 153 * times are usually fairly consistent.
 154 *
 155 * All of these routines try to estimate how many bits of randomness a
 156 * particular randomness source.  They do this by keeping track of the
 157 * first and second order deltas of the event timings.
 158 *
 159 * Ensuring unpredictability at system startup
 160 * ============================================
 161 *
 162 * When any operating system starts up, it will go through a sequence
 163 * of actions that are fairly predictable by an adversary, especially
 164 * if the start-up does not involve interaction with a human operator.
 165 * This reduces the actual number of bits of unpredictability in the
 166 * entropy pool below the value in entropy_count.  In order to
 167 * counteract this effect, it helps to carry information in the
 168 * entropy pool across shut-downs and start-ups.  To do this, put the
 169 * following lines an appropriate script which is run during the boot
 170 * sequence:
 171 *
 172 *	echo "Initializing random number generator..."
 173 *	random_seed=/var/run/random-seed
 174 *	# Carry a random seed from start-up to start-up
 175 *	# Load and then save the whole entropy pool
 176 *	if [ -f $random_seed ]; then
 177 *		cat $random_seed >/dev/urandom
 178 *	else
 179 *		touch $random_seed
 180 *	fi
 181 *	chmod 600 $random_seed
 182 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 183 *
 184 * and the following lines in an appropriate script which is run as
 185 * the system is shutdown:
 186 *
 187 *	# Carry a random seed from shut-down to start-up
 188 *	# Save the whole entropy pool
 189 *	echo "Saving random seed..."
 190 *	random_seed=/var/run/random-seed
 191 *	touch $random_seed
 192 *	chmod 600 $random_seed
 193 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 194 *
 195 * For example, on most modern systems using the System V init
 196 * scripts, such code fragments would be found in
 197 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 199 *
 200 * Effectively, these commands cause the contents of the entropy pool
 201 * to be saved at shut-down time and reloaded into the entropy pool at
 202 * start-up.  (The 'dd' in the addition to the bootup script is to
 203 * make sure that /etc/random-seed is different for every start-up,
 204 * even if the system crashes without executing rc.0.)  Even with
 205 * complete knowledge of the start-up activities, predicting the state
 206 * of the entropy pool requires knowledge of the previous history of
 207 * the system.
 208 *
 209 * Configuring the /dev/random driver under Linux
 210 * ==============================================
 211 *
 212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 213 * the /dev/mem major number (#1).  So if your system does not have
 214 * /dev/random and /dev/urandom created already, they can be created
 215 * by using the commands:
 216 *
 217 * 	mknod /dev/random c 1 8
 218 * 	mknod /dev/urandom c 1 9
 219 *
 220 * Acknowledgements:
 221 * =================
 222 *
 223 * Ideas for constructing this random number generator were derived
 224 * from Pretty Good Privacy's random number generator, and from private
 225 * discussions with Phil Karn.  Colin Plumb provided a faster random
 226 * number generator, which speed up the mixing function of the entropy
 227 * pool, taken from PGPfone.  Dale Worley has also contributed many
 228 * useful ideas and suggestions to improve this driver.
 229 *
 230 * Any flaws in the design are solely my responsibility, and should
 231 * not be attributed to the Phil, Colin, or any of authors of PGP.
 232 *
 233 * Further background information on this topic may be obtained from
 234 * RFC 1750, "Randomness Recommendations for Security", by Donald
 235 * Eastlake, Steve Crocker, and Jeff Schiller.
 236 */
 237
 
 
 238#include <linux/utsname.h>
 239#include <linux/module.h>
 240#include <linux/kernel.h>
 241#include <linux/major.h>
 242#include <linux/string.h>
 243#include <linux/fcntl.h>
 244#include <linux/slab.h>
 245#include <linux/random.h>
 246#include <linux/poll.h>
 247#include <linux/init.h>
 248#include <linux/fs.h>
 249#include <linux/genhd.h>
 250#include <linux/interrupt.h>
 251#include <linux/mm.h>
 
 252#include <linux/spinlock.h>
 253#include <linux/kthread.h>
 254#include <linux/percpu.h>
 255#include <linux/cryptohash.h>
 256#include <linux/fips.h>
 257#include <linux/ptrace.h>
 258#include <linux/kmemcheck.h>
 259#include <linux/workqueue.h>
 260#include <linux/irq.h>
 
 261#include <linux/syscalls.h>
 262#include <linux/completion.h>
 
 
 
 263
 264#include <asm/processor.h>
 265#include <asm/uaccess.h>
 266#include <asm/irq.h>
 267#include <asm/irq_regs.h>
 268#include <asm/io.h>
 269
 270#define CREATE_TRACE_POINTS
 271#include <trace/events/random.h>
 272
 273/* #define ADD_INTERRUPT_BENCH */
 274
 275/*
 276 * Configuration information
 277 */
 278#define INPUT_POOL_SHIFT	12
 279#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
 280#define OUTPUT_POOL_SHIFT	10
 281#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
 282#define SEC_XFER_SIZE		512
 283#define EXTRACT_SIZE		10
 284
 285#define DEBUG_RANDOM_BOOT 0
 286
 287#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
 288
 289/*
 290 * To allow fractional bits to be tracked, the entropy_count field is
 291 * denominated in units of 1/8th bits.
 292 *
 293 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
 294 * credit_entropy_bits() needs to be 64 bits wide.
 295 */
 296#define ENTROPY_SHIFT 3
 297#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
 298
 299/*
 300 * The minimum number of bits of entropy before we wake up a read on
 301 * /dev/random.  Should be enough to do a significant reseed.
 302 */
 303static int random_read_wakeup_bits = 64;
 304
 305/*
 306 * If the entropy count falls under this number of bits, then we
 307 * should wake up processes which are selecting or polling on write
 308 * access to /dev/random.
 309 */
 310static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
 311
 312/*
 313 * The minimum number of seconds between urandom pool reseeding.  We
 314 * do this to limit the amount of entropy that can be drained from the
 315 * input pool even if there are heavy demands on /dev/urandom.
 316 */
 317static int random_min_urandom_seed = 60;
 318
 319/*
 320 * Originally, we used a primitive polynomial of degree .poolwords
 321 * over GF(2).  The taps for various sizes are defined below.  They
 322 * were chosen to be evenly spaced except for the last tap, which is 1
 323 * to get the twisting happening as fast as possible.
 324 *
 325 * For the purposes of better mixing, we use the CRC-32 polynomial as
 326 * well to make a (modified) twisted Generalized Feedback Shift
 327 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 328 * generators.  ACM Transactions on Modeling and Computer Simulation
 329 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
 330 * GFSR generators II.  ACM Transactions on Modeling and Computer
 331 * Simulation 4:254-266)
 332 *
 333 * Thanks to Colin Plumb for suggesting this.
 334 *
 335 * The mixing operation is much less sensitive than the output hash,
 336 * where we use SHA-1.  All that we want of mixing operation is that
 337 * it be a good non-cryptographic hash; i.e. it not produce collisions
 338 * when fed "random" data of the sort we expect to see.  As long as
 339 * the pool state differs for different inputs, we have preserved the
 340 * input entropy and done a good job.  The fact that an intelligent
 341 * attacker can construct inputs that will produce controlled
 342 * alterations to the pool's state is not important because we don't
 343 * consider such inputs to contribute any randomness.  The only
 344 * property we need with respect to them is that the attacker can't
 345 * increase his/her knowledge of the pool's state.  Since all
 346 * additions are reversible (knowing the final state and the input,
 347 * you can reconstruct the initial state), if an attacker has any
 348 * uncertainty about the initial state, he/she can only shuffle that
 349 * uncertainty about, but never cause any collisions (which would
 350 * decrease the uncertainty).
 351 *
 352 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 353 * Videau in their paper, "The Linux Pseudorandom Number Generator
 354 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 355 * paper, they point out that we are not using a true Twisted GFSR,
 356 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 357 * is, with only three taps, instead of the six that we are using).
 358 * As a result, the resulting polynomial is neither primitive nor
 359 * irreducible, and hence does not have a maximal period over
 360 * GF(2**32).  They suggest a slight change to the generator
 361 * polynomial which improves the resulting TGFSR polynomial to be
 362 * irreducible, which we have made here.
 363 */
 364static struct poolinfo {
 365	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
 366#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
 367	int tap1, tap2, tap3, tap4, tap5;
 368} poolinfo_table[] = {
 369	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
 370	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
 371	{ S(128),	104,	76,	51,	25,	1 },
 372	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
 373	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
 374	{ S(32),	26,	19,	14,	7,	1 },
 375#if 0
 376	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
 377	{ S(2048),	1638,	1231,	819,	411,	1 },
 378
 379	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
 380	{ S(1024),	817,	615,	412,	204,	1 },
 381
 382	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
 383	{ S(1024),	819,	616,	410,	207,	2 },
 384
 385	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
 386	{ S(512),	411,	308,	208,	104,	1 },
 387
 388	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
 389	{ S(512),	409,	307,	206,	102,	2 },
 390	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
 391	{ S(512),	409,	309,	205,	103,	2 },
 392
 393	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
 394	{ S(256),	205,	155,	101,	52,	1 },
 395
 396	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
 397	{ S(128),	103,	78,	51,	27,	2 },
 398
 399	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
 400	{ S(64),	52,	39,	26,	14,	1 },
 401#endif
 402};
 403
 404/*
 405 * Static global variables
 406 */
 407static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
 408static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 409static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
 410static struct fasync_struct *fasync;
 411
 412static DEFINE_SPINLOCK(random_ready_list_lock);
 413static LIST_HEAD(random_ready_list);
 414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415/**********************************************************************
 416 *
 417 * OS independent entropy store.   Here are the functions which handle
 418 * storing entropy in an entropy pool.
 419 *
 420 **********************************************************************/
 421
 422struct entropy_store;
 423struct entropy_store {
 424	/* read-only data: */
 425	const struct poolinfo *poolinfo;
 426	__u32 *pool;
 427	const char *name;
 428	struct entropy_store *pull;
 429	struct work_struct push_work;
 430
 431	/* read-write data: */
 432	unsigned long last_pulled;
 433	spinlock_t lock;
 434	unsigned short add_ptr;
 435	unsigned short input_rotate;
 436	int entropy_count;
 437	int entropy_total;
 438	unsigned int initialized:1;
 439	unsigned int limit:1;
 440	unsigned int last_data_init:1;
 441	__u8 last_data[EXTRACT_SIZE];
 442};
 443
 444static void push_to_pool(struct work_struct *work);
 445static __u32 input_pool_data[INPUT_POOL_WORDS];
 446static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
 447static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
 
 
 
 448
 449static struct entropy_store input_pool = {
 450	.poolinfo = &poolinfo_table[0],
 451	.name = "input",
 452	.limit = 1,
 453	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 454	.pool = input_pool_data
 455};
 456
 457static struct entropy_store blocking_pool = {
 458	.poolinfo = &poolinfo_table[1],
 459	.name = "blocking",
 460	.limit = 1,
 461	.pull = &input_pool,
 462	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
 463	.pool = blocking_pool_data,
 464	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
 465					push_to_pool),
 466};
 467
 468static struct entropy_store nonblocking_pool = {
 469	.poolinfo = &poolinfo_table[1],
 470	.name = "nonblocking",
 471	.pull = &input_pool,
 472	.lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
 473	.pool = nonblocking_pool_data,
 474	.push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
 475					push_to_pool),
 476};
 477
 478static __u32 const twist_table[8] = {
 479	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 480	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 481
 482/*
 483 * This function adds bytes into the entropy "pool".  It does not
 484 * update the entropy estimate.  The caller should call
 485 * credit_entropy_bits if this is appropriate.
 486 *
 487 * The pool is stirred with a primitive polynomial of the appropriate
 488 * degree, and then twisted.  We twist by three bits at a time because
 489 * it's cheap to do so and helps slightly in the expected case where
 490 * the entropy is concentrated in the low-order bits.
 491 */
 492static void _mix_pool_bytes(struct entropy_store *r, const void *in,
 493			    int nbytes)
 494{
 495	unsigned long i, tap1, tap2, tap3, tap4, tap5;
 496	int input_rotate;
 497	int wordmask = r->poolinfo->poolwords - 1;
 498	const char *bytes = in;
 499	__u32 w;
 500
 501	tap1 = r->poolinfo->tap1;
 502	tap2 = r->poolinfo->tap2;
 503	tap3 = r->poolinfo->tap3;
 504	tap4 = r->poolinfo->tap4;
 505	tap5 = r->poolinfo->tap5;
 506
 507	input_rotate = r->input_rotate;
 508	i = r->add_ptr;
 509
 510	/* mix one byte at a time to simplify size handling and churn faster */
 511	while (nbytes--) {
 512		w = rol32(*bytes++, input_rotate);
 513		i = (i - 1) & wordmask;
 514
 515		/* XOR in the various taps */
 516		w ^= r->pool[i];
 517		w ^= r->pool[(i + tap1) & wordmask];
 518		w ^= r->pool[(i + tap2) & wordmask];
 519		w ^= r->pool[(i + tap3) & wordmask];
 520		w ^= r->pool[(i + tap4) & wordmask];
 521		w ^= r->pool[(i + tap5) & wordmask];
 522
 523		/* Mix the result back in with a twist */
 524		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 525
 526		/*
 527		 * Normally, we add 7 bits of rotation to the pool.
 528		 * At the beginning of the pool, add an extra 7 bits
 529		 * rotation, so that successive passes spread the
 530		 * input bits across the pool evenly.
 531		 */
 532		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
 533	}
 534
 535	r->input_rotate = input_rotate;
 536	r->add_ptr = i;
 537}
 538
 539static void __mix_pool_bytes(struct entropy_store *r, const void *in,
 540			     int nbytes)
 541{
 542	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
 543	_mix_pool_bytes(r, in, nbytes);
 544}
 545
 546static void mix_pool_bytes(struct entropy_store *r, const void *in,
 547			   int nbytes)
 548{
 549	unsigned long flags;
 550
 551	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
 552	spin_lock_irqsave(&r->lock, flags);
 553	_mix_pool_bytes(r, in, nbytes);
 554	spin_unlock_irqrestore(&r->lock, flags);
 555}
 556
 557struct fast_pool {
 558	__u32		pool[4];
 559	unsigned long	last;
 560	unsigned short	reg_idx;
 561	unsigned char	count;
 562};
 563
 564/*
 565 * This is a fast mixing routine used by the interrupt randomness
 566 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 567 * locks that might be needed are taken by the caller.
 568 */
 569static void fast_mix(struct fast_pool *f)
 570{
 571	__u32 a = f->pool[0],	b = f->pool[1];
 572	__u32 c = f->pool[2],	d = f->pool[3];
 573
 574	a += b;			c += d;
 575	b = rol32(b, 6);	d = rol32(d, 27);
 576	d ^= a;			b ^= c;
 577
 578	a += b;			c += d;
 579	b = rol32(b, 16);	d = rol32(d, 14);
 580	d ^= a;			b ^= c;
 581
 582	a += b;			c += d;
 583	b = rol32(b, 6);	d = rol32(d, 27);
 584	d ^= a;			b ^= c;
 585
 586	a += b;			c += d;
 587	b = rol32(b, 16);	d = rol32(d, 14);
 588	d ^= a;			b ^= c;
 589
 590	f->pool[0] = a;  f->pool[1] = b;
 591	f->pool[2] = c;  f->pool[3] = d;
 592	f->count++;
 593}
 594
 595static void process_random_ready_list(void)
 596{
 597	unsigned long flags;
 598	struct random_ready_callback *rdy, *tmp;
 599
 600	spin_lock_irqsave(&random_ready_list_lock, flags);
 601	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
 602		struct module *owner = rdy->owner;
 603
 604		list_del_init(&rdy->list);
 605		rdy->func(rdy);
 606		module_put(owner);
 607	}
 608	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 609}
 610
 611/*
 612 * Credit (or debit) the entropy store with n bits of entropy.
 613 * Use credit_entropy_bits_safe() if the value comes from userspace
 614 * or otherwise should be checked for extreme values.
 615 */
 616static void credit_entropy_bits(struct entropy_store *r, int nbits)
 617{
 618	int entropy_count, orig;
 619	const int pool_size = r->poolinfo->poolfracbits;
 620	int nfrac = nbits << ENTROPY_SHIFT;
 621
 622	if (!nbits)
 623		return;
 624
 625retry:
 626	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
 627	if (nfrac < 0) {
 628		/* Debit */
 629		entropy_count += nfrac;
 630	} else {
 631		/*
 632		 * Credit: we have to account for the possibility of
 633		 * overwriting already present entropy.	 Even in the
 634		 * ideal case of pure Shannon entropy, new contributions
 635		 * approach the full value asymptotically:
 636		 *
 637		 * entropy <- entropy + (pool_size - entropy) *
 638		 *	(1 - exp(-add_entropy/pool_size))
 639		 *
 640		 * For add_entropy <= pool_size/2 then
 641		 * (1 - exp(-add_entropy/pool_size)) >=
 642		 *    (add_entropy/pool_size)*0.7869...
 643		 * so we can approximate the exponential with
 644		 * 3/4*add_entropy/pool_size and still be on the
 645		 * safe side by adding at most pool_size/2 at a time.
 646		 *
 647		 * The use of pool_size-2 in the while statement is to
 648		 * prevent rounding artifacts from making the loop
 649		 * arbitrarily long; this limits the loop to log2(pool_size)*2
 650		 * turns no matter how large nbits is.
 651		 */
 652		int pnfrac = nfrac;
 653		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
 654		/* The +2 corresponds to the /4 in the denominator */
 655
 656		do {
 657			unsigned int anfrac = min(pnfrac, pool_size/2);
 658			unsigned int add =
 659				((pool_size - entropy_count)*anfrac*3) >> s;
 660
 661			entropy_count += add;
 662			pnfrac -= anfrac;
 663		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
 664	}
 665
 666	if (unlikely(entropy_count < 0)) {
 667		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
 668			r->name, entropy_count);
 669		WARN_ON(1);
 670		entropy_count = 0;
 671	} else if (entropy_count > pool_size)
 672		entropy_count = pool_size;
 673	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 674		goto retry;
 675
 676	r->entropy_total += nbits;
 677	if (!r->initialized && r->entropy_total > 128) {
 678		r->initialized = 1;
 679		r->entropy_total = 0;
 680		if (r == &nonblocking_pool) {
 681			prandom_reseed_late();
 682			process_random_ready_list();
 683			wake_up_all(&urandom_init_wait);
 684			pr_notice("random: %s pool is initialized\n", r->name);
 685		}
 686	}
 687
 688	trace_credit_entropy_bits(r->name, nbits,
 689				  entropy_count >> ENTROPY_SHIFT,
 690				  r->entropy_total, _RET_IP_);
 691
 692	if (r == &input_pool) {
 693		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
 694
 695		/* should we wake readers? */
 696		if (entropy_bits >= random_read_wakeup_bits) {
 697			wake_up_interruptible(&random_read_wait);
 698			kill_fasync(&fasync, SIGIO, POLL_IN);
 699		}
 700		/* If the input pool is getting full, send some
 701		 * entropy to the two output pools, flipping back and
 702		 * forth between them, until the output pools are 75%
 703		 * full.
 704		 */
 705		if (entropy_bits > random_write_wakeup_bits &&
 706		    r->initialized &&
 707		    r->entropy_total >= 2*random_read_wakeup_bits) {
 708			static struct entropy_store *last = &blocking_pool;
 709			struct entropy_store *other = &blocking_pool;
 710
 711			if (last == &blocking_pool)
 712				other = &nonblocking_pool;
 713			if (other->entropy_count <=
 714			    3 * other->poolinfo->poolfracbits / 4)
 715				last = other;
 716			if (last->entropy_count <=
 717			    3 * last->poolinfo->poolfracbits / 4) {
 718				schedule_work(&last->push_work);
 719				r->entropy_total = 0;
 720			}
 721		}
 722	}
 723}
 724
 725static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
 726{
 727	const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
 
 
 
 728
 729	/* Cap the value to avoid overflows */
 730	nbits = min(nbits,  nbits_max);
 731	nbits = max(nbits, -nbits_max);
 732
 733	credit_entropy_bits(r, nbits);
 
 734}
 735
 736/*********************************************************************
 737 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 738 * Entropy input management
 739 *
 740 *********************************************************************/
 741
 742/* There is one of these per entropy source */
 743struct timer_rand_state {
 744	cycles_t last_time;
 745	long last_delta, last_delta2;
 746	unsigned dont_count_entropy:1;
 747};
 748
 749#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
 750
 751/*
 752 * Add device- or boot-specific data to the input and nonblocking
 753 * pools to help initialize them to unique values.
 754 *
 755 * None of this adds any entropy, it is meant to avoid the
 756 * problem of the nonblocking pool having similar initial state
 757 * across largely identical devices.
 758 */
 759void add_device_randomness(const void *buf, unsigned int size)
 760{
 761	unsigned long time = random_get_entropy() ^ jiffies;
 762	unsigned long flags;
 763
 
 
 
 764	trace_add_device_randomness(size, _RET_IP_);
 765	spin_lock_irqsave(&input_pool.lock, flags);
 766	_mix_pool_bytes(&input_pool, buf, size);
 767	_mix_pool_bytes(&input_pool, &time, sizeof(time));
 768	spin_unlock_irqrestore(&input_pool.lock, flags);
 769
 770	spin_lock_irqsave(&nonblocking_pool.lock, flags);
 771	_mix_pool_bytes(&nonblocking_pool, buf, size);
 772	_mix_pool_bytes(&nonblocking_pool, &time, sizeof(time));
 773	spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
 774}
 775EXPORT_SYMBOL(add_device_randomness);
 776
 777static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
 778
 779/*
 780 * This function adds entropy to the entropy "pool" by using timing
 781 * delays.  It uses the timer_rand_state structure to make an estimate
 782 * of how many bits of entropy this call has added to the pool.
 783 *
 784 * The number "num" is also added to the pool - it should somehow describe
 785 * the type of event which just happened.  This is currently 0-255 for
 786 * keyboard scan codes, and 256 upwards for interrupts.
 787 *
 788 */
 789static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
 790{
 791	struct entropy_store	*r;
 792	struct {
 793		long jiffies;
 794		unsigned cycles;
 795		unsigned num;
 796	} sample;
 797	long delta, delta2, delta3;
 798
 799	preempt_disable();
 800
 801	sample.jiffies = jiffies;
 802	sample.cycles = random_get_entropy();
 803	sample.num = num;
 804	r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
 805	mix_pool_bytes(r, &sample, sizeof(sample));
 806
 807	/*
 808	 * Calculate number of bits of randomness we probably added.
 809	 * We take into account the first, second and third-order deltas
 810	 * in order to make our estimate.
 811	 */
 
 
 812
 813	if (!state->dont_count_entropy) {
 814		delta = sample.jiffies - state->last_time;
 815		state->last_time = sample.jiffies;
 816
 817		delta2 = delta - state->last_delta;
 818		state->last_delta = delta;
 819
 820		delta3 = delta2 - state->last_delta2;
 821		state->last_delta2 = delta2;
 822
 823		if (delta < 0)
 824			delta = -delta;
 825		if (delta2 < 0)
 826			delta2 = -delta2;
 827		if (delta3 < 0)
 828			delta3 = -delta3;
 829		if (delta > delta2)
 830			delta = delta2;
 831		if (delta > delta3)
 832			delta = delta3;
 833
 834		/*
 835		 * delta is now minimum absolute delta.
 836		 * Round down by 1 bit on general principles,
 837		 * and limit entropy entimate to 12 bits.
 838		 */
 839		credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
 840	}
 841	preempt_enable();
 
 
 
 
 
 
 
 
 
 
 
 
 842}
 843
 844void add_input_randomness(unsigned int type, unsigned int code,
 845				 unsigned int value)
 846{
 847	static unsigned char last_value;
 848
 849	/* ignore autorepeat and the like */
 850	if (value == last_value)
 851		return;
 852
 853	last_value = value;
 854	add_timer_randomness(&input_timer_state,
 855			     (type << 4) ^ code ^ (code >> 4) ^ value);
 856	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
 857}
 858EXPORT_SYMBOL_GPL(add_input_randomness);
 859
 860static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
 861
 862#ifdef ADD_INTERRUPT_BENCH
 863static unsigned long avg_cycles, avg_deviation;
 864
 865#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
 866#define FIXED_1_2 (1 << (AVG_SHIFT-1))
 867
 868static void add_interrupt_bench(cycles_t start)
 869{
 870        long delta = random_get_entropy() - start;
 871
 872        /* Use a weighted moving average */
 873        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
 874        avg_cycles += delta;
 875        /* And average deviation */
 876        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
 877        avg_deviation += delta;
 878}
 879#else
 880#define add_interrupt_bench(x)
 881#endif
 882
 883static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
 884{
 885	__u32 *ptr = (__u32 *) regs;
 
 886
 887	if (regs == NULL)
 888		return 0;
 889	if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
 890		f->reg_idx = 0;
 891	return *(ptr + f->reg_idx++);
 
 
 
 892}
 893
 894void add_interrupt_randomness(int irq, int irq_flags)
 895{
 896	struct entropy_store	*r;
 897	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
 898	struct pt_regs		*regs = get_irq_regs();
 899	unsigned long		now = jiffies;
 900	cycles_t		cycles = random_get_entropy();
 901	__u32			c_high, j_high;
 902	__u64			ip;
 903	unsigned long		seed;
 904	int			credit = 0;
 905
 906	if (cycles == 0)
 907		cycles = get_reg(fast_pool, regs);
 908	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
 909	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
 910	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
 911	fast_pool->pool[1] ^= now ^ c_high;
 912	ip = regs ? instruction_pointer(regs) : _RET_IP_;
 913	fast_pool->pool[2] ^= ip;
 914	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
 915		get_reg(fast_pool, regs);
 916
 917	fast_mix(fast_pool);
 918	add_interrupt_bench(cycles);
 919
 
 
 
 
 
 
 
 
 
 
 920	if ((fast_pool->count < 64) &&
 921	    !time_after(now, fast_pool->last + HZ))
 922		return;
 923
 924	r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
 925	if (!spin_trylock(&r->lock))
 926		return;
 927
 928	fast_pool->last = now;
 929	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
 930
 931	/*
 932	 * If we have architectural seed generator, produce a seed and
 933	 * add it to the pool.  For the sake of paranoia don't let the
 934	 * architectural seed generator dominate the input from the
 935	 * interrupt noise.
 936	 */
 937	if (arch_get_random_seed_long(&seed)) {
 938		__mix_pool_bytes(r, &seed, sizeof(seed));
 939		credit = 1;
 940	}
 941	spin_unlock(&r->lock);
 942
 943	fast_pool->count = 0;
 944
 945	/* award one bit for the contents of the fast pool */
 946	credit_entropy_bits(r, credit + 1);
 947}
 
 948
 949#ifdef CONFIG_BLOCK
 950void add_disk_randomness(struct gendisk *disk)
 951{
 952	if (!disk || !disk->random)
 953		return;
 954	/* first major is 1, so we get >= 0x200 here */
 955	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
 956	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
 957}
 958EXPORT_SYMBOL_GPL(add_disk_randomness);
 959#endif
 960
 961/*********************************************************************
 962 *
 963 * Entropy extraction routines
 964 *
 965 *********************************************************************/
 966
 967static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 968			       size_t nbytes, int min, int rsvd);
 969
 970/*
 971 * This utility inline function is responsible for transferring entropy
 972 * from the primary pool to the secondary extraction pool. We make
 973 * sure we pull enough for a 'catastrophic reseed'.
 974 */
 975static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
 976static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 977{
 978	if (!r->pull ||
 979	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
 980	    r->entropy_count > r->poolinfo->poolfracbits)
 981		return;
 982
 983	if (r->limit == 0 && random_min_urandom_seed) {
 984		unsigned long now = jiffies;
 985
 986		if (time_before(now,
 987				r->last_pulled + random_min_urandom_seed * HZ))
 988			return;
 989		r->last_pulled = now;
 990	}
 991
 992	_xfer_secondary_pool(r, nbytes);
 993}
 994
 995static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
 996{
 997	__u32	tmp[OUTPUT_POOL_WORDS];
 998
 999	/* For /dev/random's pool, always leave two wakeups' worth */
1000	int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
1001	int bytes = nbytes;
1002
1003	/* pull at least as much as a wakeup */
1004	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1005	/* but never more than the buffer size */
1006	bytes = min_t(int, bytes, sizeof(tmp));
1007
1008	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1009				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1010	bytes = extract_entropy(r->pull, tmp, bytes,
1011				random_read_wakeup_bits / 8, rsvd_bytes);
1012	mix_pool_bytes(r, tmp, bytes);
1013	credit_entropy_bits(r, bytes*8);
1014}
1015
1016/*
1017 * Used as a workqueue function so that when the input pool is getting
1018 * full, we can "spill over" some entropy to the output pools.  That
1019 * way the output pools can store some of the excess entropy instead
1020 * of letting it go to waste.
1021 */
1022static void push_to_pool(struct work_struct *work)
1023{
1024	struct entropy_store *r = container_of(work, struct entropy_store,
1025					      push_work);
1026	BUG_ON(!r);
1027	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1028	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1029			   r->pull->entropy_count >> ENTROPY_SHIFT);
1030}
1031
1032/*
1033 * This function decides how many bytes to actually take from the
1034 * given pool, and also debits the entropy count accordingly.
1035 */
1036static size_t account(struct entropy_store *r, size_t nbytes, int min,
1037		      int reserved)
1038{
1039	int entropy_count, orig;
1040	size_t ibytes, nfrac;
1041
1042	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1043
1044	/* Can we pull enough? */
1045retry:
1046	entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1047	ibytes = nbytes;
1048	/* If limited, never pull more than available */
1049	if (r->limit) {
1050		int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1051
1052		if ((have_bytes -= reserved) < 0)
1053			have_bytes = 0;
1054		ibytes = min_t(size_t, ibytes, have_bytes);
1055	}
1056	if (ibytes < min)
1057		ibytes = 0;
1058
1059	if (unlikely(entropy_count < 0)) {
1060		pr_warn("random: negative entropy count: pool %s count %d\n",
1061			r->name, entropy_count);
1062		WARN_ON(1);
1063		entropy_count = 0;
1064	}
1065	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1066	if ((size_t) entropy_count > nfrac)
1067		entropy_count -= nfrac;
1068	else
1069		entropy_count = 0;
1070
1071	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1072		goto retry;
1073
1074	trace_debit_entropy(r->name, 8 * ibytes);
1075	if (ibytes &&
1076	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1077		wake_up_interruptible(&random_write_wait);
1078		kill_fasync(&fasync, SIGIO, POLL_OUT);
1079	}
1080
1081	return ibytes;
1082}
1083
1084/*
1085 * This function does the actual extraction for extract_entropy and
1086 * extract_entropy_user.
1087 *
1088 * Note: we assume that .poolwords is a multiple of 16 words.
1089 */
1090static void extract_buf(struct entropy_store *r, __u8 *out)
1091{
1092	int i;
1093	union {
1094		__u32 w[5];
1095		unsigned long l[LONGS(20)];
1096	} hash;
1097	__u32 workspace[SHA_WORKSPACE_WORDS];
1098	unsigned long flags;
1099
1100	/*
1101	 * If we have an architectural hardware random number
1102	 * generator, use it for SHA's initial vector
1103	 */
1104	sha_init(hash.w);
1105	for (i = 0; i < LONGS(20); i++) {
1106		unsigned long v;
1107		if (!arch_get_random_long(&v))
1108			break;
1109		hash.l[i] = v;
1110	}
1111
1112	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1113	spin_lock_irqsave(&r->lock, flags);
1114	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1115		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1116
1117	/*
1118	 * We mix the hash back into the pool to prevent backtracking
1119	 * attacks (where the attacker knows the state of the pool
1120	 * plus the current outputs, and attempts to find previous
1121	 * ouputs), unless the hash function can be inverted. By
1122	 * mixing at least a SHA1 worth of hash data back, we make
1123	 * brute-forcing the feedback as hard as brute-forcing the
1124	 * hash.
1125	 */
1126	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1127	spin_unlock_irqrestore(&r->lock, flags);
1128
1129	memzero_explicit(workspace, sizeof(workspace));
1130
1131	/*
1132	 * In case the hash function has some recognizable output
1133	 * pattern, we fold it in half. Thus, we always feed back
1134	 * twice as much data as we output.
1135	 */
1136	hash.w[0] ^= hash.w[3];
1137	hash.w[1] ^= hash.w[4];
1138	hash.w[2] ^= rol32(hash.w[2], 16);
1139
1140	memcpy(out, &hash, EXTRACT_SIZE);
1141	memzero_explicit(&hash, sizeof(hash));
1142}
1143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1144/*
1145 * This function extracts randomness from the "entropy pool", and
1146 * returns it in a buffer.
1147 *
1148 * The min parameter specifies the minimum amount we can pull before
1149 * failing to avoid races that defeat catastrophic reseeding while the
1150 * reserved parameter indicates how much entropy we must leave in the
1151 * pool after each pull to avoid starving other readers.
1152 */
1153static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1154				 size_t nbytes, int min, int reserved)
1155{
1156	ssize_t ret = 0, i;
1157	__u8 tmp[EXTRACT_SIZE];
1158	unsigned long flags;
1159
1160	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1161	if (fips_enabled) {
1162		spin_lock_irqsave(&r->lock, flags);
1163		if (!r->last_data_init) {
1164			r->last_data_init = 1;
1165			spin_unlock_irqrestore(&r->lock, flags);
1166			trace_extract_entropy(r->name, EXTRACT_SIZE,
1167					      ENTROPY_BITS(r), _RET_IP_);
1168			xfer_secondary_pool(r, EXTRACT_SIZE);
1169			extract_buf(r, tmp);
1170			spin_lock_irqsave(&r->lock, flags);
1171			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1172		}
1173		spin_unlock_irqrestore(&r->lock, flags);
1174	}
1175
1176	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1177	xfer_secondary_pool(r, nbytes);
1178	nbytes = account(r, nbytes, min, reserved);
1179
1180	while (nbytes) {
1181		extract_buf(r, tmp);
1182
1183		if (fips_enabled) {
1184			spin_lock_irqsave(&r->lock, flags);
1185			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1186				panic("Hardware RNG duplicated output!\n");
1187			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1188			spin_unlock_irqrestore(&r->lock, flags);
1189		}
1190		i = min_t(int, nbytes, EXTRACT_SIZE);
1191		memcpy(buf, tmp, i);
1192		nbytes -= i;
1193		buf += i;
1194		ret += i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195	}
1196
1197	/* Wipe data just returned from memory */
 
 
 
 
 
1198	memzero_explicit(tmp, sizeof(tmp));
 
1199
1200	return ret;
 
 
 
 
 
1201}
 
 
1202
1203/*
1204 * This function extracts randomness from the "entropy pool", and
1205 * returns it in a userspace buffer.
 
 
 
 
 
 
 
 
 
1206 */
1207static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1208				    size_t nbytes)
1209{
1210	ssize_t ret = 0, i;
1211	__u8 tmp[EXTRACT_SIZE];
1212	int large_request = (nbytes > 256);
1213
1214	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1215	xfer_secondary_pool(r, nbytes);
1216	nbytes = account(r, nbytes, 0, 0);
 
 
 
 
 
 
 
1217
1218	while (nbytes) {
1219		if (large_request && need_resched()) {
1220			if (signal_pending(current)) {
1221				if (ret == 0)
1222					ret = -ERESTARTSYS;
1223				break;
1224			}
1225			schedule();
1226		}
1227
1228		extract_buf(r, tmp);
1229		i = min_t(int, nbytes, EXTRACT_SIZE);
1230		if (copy_to_user(buf, tmp, i)) {
1231			ret = -EFAULT;
1232			break;
1233		}
1234
1235		nbytes -= i;
1236		buf += i;
1237		ret += i;
 
 
 
 
1238	}
1239
1240	/* Wipe data just returned from memory */
1241	memzero_explicit(tmp, sizeof(tmp));
 
 
1242
1243	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244}
 
1245
1246/*
1247 * This function is the exported kernel interface.  It returns some
1248 * number of good random numbers, suitable for key generation, seeding
1249 * TCP sequence numbers, etc.  It does not rely on the hardware random
1250 * number generator.  For random bytes direct from the hardware RNG
1251 * (when available), use get_random_bytes_arch().
 
 
1252 */
1253void get_random_bytes(void *buf, int nbytes)
1254{
1255#if DEBUG_RANDOM_BOOT > 0
1256	if (unlikely(nonblocking_pool.initialized == 0))
1257		printk(KERN_NOTICE "random: %pF get_random_bytes called "
1258		       "with %d bits of entropy available\n",
1259		       (void *) _RET_IP_,
1260		       nonblocking_pool.entropy_total);
1261#endif
1262	trace_get_random_bytes(nbytes, _RET_IP_);
1263	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1264}
1265EXPORT_SYMBOL(get_random_bytes);
1266
1267/*
1268 * Add a callback function that will be invoked when the nonblocking
1269 * pool is initialised.
1270 *
1271 * returns: 0 if callback is successfully added
1272 *	    -EALREADY if pool is already initialised (callback not called)
1273 *	    -ENOENT if module for callback is not alive
1274 */
1275int add_random_ready_callback(struct random_ready_callback *rdy)
1276{
1277	struct module *owner;
1278	unsigned long flags;
1279	int err = -EALREADY;
1280
1281	if (likely(nonblocking_pool.initialized))
1282		return err;
1283
1284	owner = rdy->owner;
1285	if (!try_module_get(owner))
1286		return -ENOENT;
1287
1288	spin_lock_irqsave(&random_ready_list_lock, flags);
1289	if (nonblocking_pool.initialized)
1290		goto out;
1291
1292	owner = NULL;
1293
1294	list_add(&rdy->list, &random_ready_list);
1295	err = 0;
1296
1297out:
1298	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1299
1300	module_put(owner);
1301
1302	return err;
1303}
1304EXPORT_SYMBOL(add_random_ready_callback);
1305
1306/*
1307 * Delete a previously registered readiness callback function.
1308 */
1309void del_random_ready_callback(struct random_ready_callback *rdy)
1310{
1311	unsigned long flags;
1312	struct module *owner = NULL;
1313
1314	spin_lock_irqsave(&random_ready_list_lock, flags);
1315	if (!list_empty(&rdy->list)) {
1316		list_del_init(&rdy->list);
1317		owner = rdy->owner;
1318	}
1319	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1320
1321	module_put(owner);
1322}
1323EXPORT_SYMBOL(del_random_ready_callback);
1324
1325/*
1326 * This function will use the architecture-specific hardware random
1327 * number generator if it is available.  The arch-specific hw RNG will
1328 * almost certainly be faster than what we can do in software, but it
1329 * is impossible to verify that it is implemented securely (as
1330 * opposed, to, say, the AES encryption of a sequence number using a
1331 * key known by the NSA).  So it's useful if we need the speed, but
1332 * only if we're willing to trust the hardware manufacturer not to
1333 * have put in a back door.
 
 
1334 */
1335void get_random_bytes_arch(void *buf, int nbytes)
1336{
 
1337	char *p = buf;
1338
1339	trace_get_random_bytes_arch(nbytes, _RET_IP_);
1340	while (nbytes) {
1341		unsigned long v;
1342		int chunk = min(nbytes, (int)sizeof(unsigned long));
1343
1344		if (!arch_get_random_long(&v))
1345			break;
1346		
1347		memcpy(p, &v, chunk);
1348		p += chunk;
1349		nbytes -= chunk;
1350	}
1351
1352	if (nbytes)
1353		extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1354}
1355EXPORT_SYMBOL(get_random_bytes_arch);
1356
1357
1358/*
1359 * init_std_data - initialize pool with system data
1360 *
1361 * @r: pool to initialize
1362 *
1363 * This function clears the pool's entropy count and mixes some system
1364 * data into the pool to prepare it for use. The pool is not cleared
1365 * as that can only decrease the entropy in the pool.
1366 */
1367static void init_std_data(struct entropy_store *r)
1368{
1369	int i;
1370	ktime_t now = ktime_get_real();
1371	unsigned long rv;
1372
1373	r->last_pulled = jiffies;
1374	mix_pool_bytes(r, &now, sizeof(now));
1375	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1376		if (!arch_get_random_seed_long(&rv) &&
1377		    !arch_get_random_long(&rv))
1378			rv = random_get_entropy();
1379		mix_pool_bytes(r, &rv, sizeof(rv));
1380	}
1381	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1382}
1383
1384/*
1385 * Note that setup_arch() may call add_device_randomness()
1386 * long before we get here. This allows seeding of the pools
1387 * with some platform dependent data very early in the boot
1388 * process. But it limits our options here. We must use
1389 * statically allocated structures that already have all
1390 * initializations complete at compile time. We should also
1391 * take care not to overwrite the precious per platform data
1392 * we were given.
1393 */
1394static int rand_initialize(void)
1395{
1396	init_std_data(&input_pool);
1397	init_std_data(&blocking_pool);
1398	init_std_data(&nonblocking_pool);
 
 
 
 
1399	return 0;
1400}
1401early_initcall(rand_initialize);
1402
1403#ifdef CONFIG_BLOCK
1404void rand_initialize_disk(struct gendisk *disk)
1405{
1406	struct timer_rand_state *state;
1407
1408	/*
1409	 * If kzalloc returns null, we just won't use that entropy
1410	 * source.
1411	 */
1412	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1413	if (state) {
1414		state->last_time = INITIAL_JIFFIES;
1415		disk->random = state;
1416	}
1417}
1418#endif
1419
1420static ssize_t
1421_random_read(int nonblock, char __user *buf, size_t nbytes)
 
1422{
1423	ssize_t n;
1424
1425	if (nbytes == 0)
1426		return 0;
1427
1428	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1429	while (1) {
1430		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1431		if (n < 0)
1432			return n;
1433		trace_random_read(n*8, (nbytes-n)*8,
1434				  ENTROPY_BITS(&blocking_pool),
1435				  ENTROPY_BITS(&input_pool));
1436		if (n > 0)
1437			return n;
1438
1439		/* Pool is (near) empty.  Maybe wait and retry. */
1440		if (nonblock)
1441			return -EAGAIN;
1442
1443		wait_event_interruptible(random_read_wait,
1444			ENTROPY_BITS(&input_pool) >=
1445			random_read_wakeup_bits);
1446		if (signal_pending(current))
1447			return -ERESTARTSYS;
1448	}
1449}
1450
1451static ssize_t
1452random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1453{
1454	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
1455}
1456
1457static ssize_t
1458urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1459{
1460	int ret;
1461
1462	if (unlikely(nonblocking_pool.initialized == 0))
1463		printk_once(KERN_NOTICE "random: %s urandom read "
1464			    "with %d bits of entropy available\n",
1465			    current->comm, nonblocking_pool.entropy_total);
1466
1467	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1468	ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
1469
1470	trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1471			   ENTROPY_BITS(&input_pool));
1472	return ret;
1473}
1474
1475static unsigned int
1476random_poll(struct file *file, poll_table * wait)
1477{
1478	unsigned int mask;
1479
1480	poll_wait(file, &random_read_wait, wait);
1481	poll_wait(file, &random_write_wait, wait);
1482	mask = 0;
1483	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1484		mask |= POLLIN | POLLRDNORM;
1485	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1486		mask |= POLLOUT | POLLWRNORM;
1487	return mask;
1488}
1489
1490static int
1491write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1492{
1493	size_t bytes;
1494	__u32 buf[16];
1495	const char __user *p = buffer;
1496
1497	while (count > 0) {
 
 
1498		bytes = min(count, sizeof(buf));
1499		if (copy_from_user(&buf, p, bytes))
1500			return -EFAULT;
1501
 
 
 
 
 
 
1502		count -= bytes;
1503		p += bytes;
1504
1505		mix_pool_bytes(r, buf, bytes);
1506		cond_resched();
1507	}
1508
1509	return 0;
1510}
1511
1512static ssize_t random_write(struct file *file, const char __user *buffer,
1513			    size_t count, loff_t *ppos)
1514{
1515	size_t ret;
1516
1517	ret = write_pool(&blocking_pool, buffer, count);
1518	if (ret)
1519		return ret;
1520	ret = write_pool(&nonblocking_pool, buffer, count);
1521	if (ret)
1522		return ret;
1523
1524	return (ssize_t)count;
1525}
1526
1527static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1528{
1529	int size, ent_count;
1530	int __user *p = (int __user *)arg;
1531	int retval;
1532
1533	switch (cmd) {
1534	case RNDGETENTCNT:
1535		/* inherently racy, no point locking */
1536		ent_count = ENTROPY_BITS(&input_pool);
1537		if (put_user(ent_count, p))
1538			return -EFAULT;
1539		return 0;
1540	case RNDADDTOENTCNT:
1541		if (!capable(CAP_SYS_ADMIN))
1542			return -EPERM;
1543		if (get_user(ent_count, p))
1544			return -EFAULT;
1545		credit_entropy_bits_safe(&input_pool, ent_count);
1546		return 0;
1547	case RNDADDENTROPY:
1548		if (!capable(CAP_SYS_ADMIN))
1549			return -EPERM;
1550		if (get_user(ent_count, p++))
1551			return -EFAULT;
1552		if (ent_count < 0)
1553			return -EINVAL;
1554		if (get_user(size, p++))
1555			return -EFAULT;
1556		retval = write_pool(&input_pool, (const char __user *)p,
1557				    size);
1558		if (retval < 0)
1559			return retval;
1560		credit_entropy_bits_safe(&input_pool, ent_count);
1561		return 0;
1562	case RNDZAPENTCNT:
1563	case RNDCLEARPOOL:
1564		/*
1565		 * Clear the entropy pool counters. We no longer clear
1566		 * the entropy pool, as that's silly.
1567		 */
1568		if (!capable(CAP_SYS_ADMIN))
1569			return -EPERM;
1570		input_pool.entropy_count = 0;
1571		nonblocking_pool.entropy_count = 0;
1572		blocking_pool.entropy_count = 0;
 
 
 
 
 
 
1573		return 0;
1574	default:
1575		return -EINVAL;
1576	}
1577}
1578
1579static int random_fasync(int fd, struct file *filp, int on)
1580{
1581	return fasync_helper(fd, filp, on, &fasync);
1582}
1583
1584const struct file_operations random_fops = {
1585	.read  = random_read,
1586	.write = random_write,
1587	.poll  = random_poll,
1588	.unlocked_ioctl = random_ioctl,
 
1589	.fasync = random_fasync,
1590	.llseek = noop_llseek,
1591};
1592
1593const struct file_operations urandom_fops = {
1594	.read  = urandom_read,
1595	.write = random_write,
1596	.unlocked_ioctl = random_ioctl,
 
1597	.fasync = random_fasync,
1598	.llseek = noop_llseek,
1599};
1600
1601SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1602		unsigned int, flags)
1603{
1604	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
 
 
 
 
 
 
 
 
 
1605		return -EINVAL;
1606
1607	if (count > INT_MAX)
1608		count = INT_MAX;
1609
1610	if (flags & GRND_RANDOM)
1611		return _random_read(flags & GRND_NONBLOCK, buf, count);
1612
1613	if (unlikely(nonblocking_pool.initialized == 0)) {
1614		if (flags & GRND_NONBLOCK)
1615			return -EAGAIN;
1616		wait_event_interruptible(urandom_init_wait,
1617					 nonblocking_pool.initialized);
1618		if (signal_pending(current))
1619			return -ERESTARTSYS;
1620	}
1621	return urandom_read(NULL, buf, count, NULL);
1622}
1623
1624/***************************************************************
1625 * Random UUID interface
1626 *
1627 * Used here for a Boot ID, but can be useful for other kernel
1628 * drivers.
1629 ***************************************************************/
1630
1631/*
1632 * Generate random UUID
1633 */
1634void generate_random_uuid(unsigned char uuid_out[16])
1635{
1636	get_random_bytes(uuid_out, 16);
1637	/* Set UUID version to 4 --- truly random generation */
1638	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1639	/* Set the UUID variant to DCE */
1640	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1641}
1642EXPORT_SYMBOL(generate_random_uuid);
1643
1644/********************************************************************
1645 *
1646 * Sysctl interface
1647 *
1648 ********************************************************************/
1649
1650#ifdef CONFIG_SYSCTL
1651
1652#include <linux/sysctl.h>
1653
1654static int min_read_thresh = 8, min_write_thresh;
1655static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1656static int max_write_thresh = INPUT_POOL_WORDS * 32;
 
1657static char sysctl_bootid[16];
1658
1659/*
1660 * This function is used to return both the bootid UUID, and random
1661 * UUID.  The difference is in whether table->data is NULL; if it is,
1662 * then a new UUID is generated and returned to the user.
1663 *
1664 * If the user accesses this via the proc interface, the UUID will be
1665 * returned as an ASCII string in the standard UUID format; if via the
1666 * sysctl system call, as 16 bytes of binary data.
1667 */
1668static int proc_do_uuid(struct ctl_table *table, int write,
1669			void __user *buffer, size_t *lenp, loff_t *ppos)
1670{
1671	struct ctl_table fake_table;
1672	unsigned char buf[64], tmp_uuid[16], *uuid;
1673
1674	uuid = table->data;
1675	if (!uuid) {
1676		uuid = tmp_uuid;
1677		generate_random_uuid(uuid);
1678	} else {
1679		static DEFINE_SPINLOCK(bootid_spinlock);
1680
1681		spin_lock(&bootid_spinlock);
1682		if (!uuid[8])
1683			generate_random_uuid(uuid);
1684		spin_unlock(&bootid_spinlock);
1685	}
1686
1687	sprintf(buf, "%pU", uuid);
1688
1689	fake_table.data = buf;
1690	fake_table.maxlen = sizeof(buf);
1691
1692	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1693}
1694
1695/*
1696 * Return entropy available scaled to integral bits
1697 */
1698static int proc_do_entropy(struct ctl_table *table, int write,
1699			   void __user *buffer, size_t *lenp, loff_t *ppos)
1700{
1701	struct ctl_table fake_table;
1702	int entropy_count;
1703
1704	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1705
1706	fake_table.data = &entropy_count;
1707	fake_table.maxlen = sizeof(entropy_count);
1708
1709	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1710}
1711
1712static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1713extern struct ctl_table random_table[];
1714struct ctl_table random_table[] = {
1715	{
1716		.procname	= "poolsize",
1717		.data		= &sysctl_poolsize,
1718		.maxlen		= sizeof(int),
1719		.mode		= 0444,
1720		.proc_handler	= proc_dointvec,
1721	},
1722	{
1723		.procname	= "entropy_avail",
1724		.maxlen		= sizeof(int),
1725		.mode		= 0444,
1726		.proc_handler	= proc_do_entropy,
1727		.data		= &input_pool.entropy_count,
1728	},
1729	{
1730		.procname	= "read_wakeup_threshold",
1731		.data		= &random_read_wakeup_bits,
1732		.maxlen		= sizeof(int),
1733		.mode		= 0644,
1734		.proc_handler	= proc_dointvec_minmax,
1735		.extra1		= &min_read_thresh,
1736		.extra2		= &max_read_thresh,
1737	},
1738	{
1739		.procname	= "write_wakeup_threshold",
1740		.data		= &random_write_wakeup_bits,
1741		.maxlen		= sizeof(int),
1742		.mode		= 0644,
1743		.proc_handler	= proc_dointvec_minmax,
1744		.extra1		= &min_write_thresh,
1745		.extra2		= &max_write_thresh,
1746	},
1747	{
1748		.procname	= "urandom_min_reseed_secs",
1749		.data		= &random_min_urandom_seed,
1750		.maxlen		= sizeof(int),
1751		.mode		= 0644,
1752		.proc_handler	= proc_dointvec,
1753	},
1754	{
1755		.procname	= "boot_id",
1756		.data		= &sysctl_bootid,
1757		.maxlen		= 16,
1758		.mode		= 0444,
1759		.proc_handler	= proc_do_uuid,
1760	},
1761	{
1762		.procname	= "uuid",
1763		.maxlen		= 16,
1764		.mode		= 0444,
1765		.proc_handler	= proc_do_uuid,
1766	},
1767#ifdef ADD_INTERRUPT_BENCH
1768	{
1769		.procname	= "add_interrupt_avg_cycles",
1770		.data		= &avg_cycles,
1771		.maxlen		= sizeof(avg_cycles),
1772		.mode		= 0444,
1773		.proc_handler	= proc_doulongvec_minmax,
1774	},
1775	{
1776		.procname	= "add_interrupt_avg_deviation",
1777		.data		= &avg_deviation,
1778		.maxlen		= sizeof(avg_deviation),
1779		.mode		= 0444,
1780		.proc_handler	= proc_doulongvec_minmax,
1781	},
1782#endif
1783	{ }
1784};
1785#endif 	/* CONFIG_SYSCTL */
1786
1787static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1788
1789int random_int_secret_init(void)
1790{
1791	get_random_bytes(random_int_secret, sizeof(random_int_secret));
1792	return 0;
1793}
 
1794
1795/*
1796 * Get a random word for internal kernel use only. Similar to urandom but
1797 * with the goal of minimal entropy pool depletion. As a result, the random
1798 * value is not cryptographically secure but for several uses the cost of
1799 * depleting entropy is too high
 
 
1800 */
1801static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1802unsigned int get_random_int(void)
 
 
 
1803{
1804	__u32 *hash;
1805	unsigned int ret;
 
 
1806
1807	if (arch_get_random_int(&ret))
1808		return ret;
1809
1810	hash = get_cpu_var(get_random_int_hash);
 
 
 
 
 
 
 
 
 
 
1811
1812	hash[0] += current->pid + jiffies + random_get_entropy();
1813	md5_transform(hash, random_int_secret);
1814	ret = hash[0];
1815	put_cpu_var(get_random_int_hash);
 
 
 
 
 
 
 
1816
 
 
 
 
 
 
 
 
1817	return ret;
1818}
1819EXPORT_SYMBOL(get_random_int);
1820
1821/*
1822 * Same as get_random_int(), but returns unsigned long.
1823 */
1824unsigned long get_random_long(void)
 
1825{
1826	__u32 *hash;
1827	unsigned long ret;
1828
1829	if (arch_get_random_long(&ret))
1830		return ret;
1831
1832	hash = get_cpu_var(get_random_int_hash);
 
1833
1834	hash[0] += current->pid + jiffies + random_get_entropy();
1835	md5_transform(hash, random_int_secret);
1836	ret = *(unsigned long *)hash;
1837	put_cpu_var(get_random_int_hash);
1838
1839	return ret;
 
 
 
 
1840}
1841EXPORT_SYMBOL(get_random_long);
1842
1843/*
1844 * randomize_range() returns a start address such that
 
 
 
 
 
1845 *
1846 *    [...... <range> .....]
1847 *  start                  end
1848 *
1849 * a <range> with size "len" starting at the return value is inside in the
1850 * area defined by [start, end], but is otherwise randomized.
1851 */
1852unsigned long
1853randomize_range(unsigned long start, unsigned long end, unsigned long len)
1854{
1855	unsigned long range = end - len - start;
 
 
 
1856
1857	if (end <= start + len)
1858		return 0;
1859	return PAGE_ALIGN(get_random_int() % range + start);
 
 
 
 
 
 
1860}
1861
1862/* Interface for in-kernel drivers of true hardware RNGs.
1863 * Those devices may produce endless random bits and will be throttled
1864 * when our pool is full.
1865 */
1866void add_hwgenerator_randomness(const char *buffer, size_t count,
1867				size_t entropy)
1868{
1869	struct entropy_store *poolp = &input_pool;
1870
 
 
 
 
 
1871	/* Suspend writing if we're above the trickle threshold.
1872	 * We'll be woken up again once below random_write_wakeup_thresh,
1873	 * or when the calling thread is about to terminate.
1874	 */
1875	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
1876			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
1877	mix_pool_bytes(poolp, buffer, count);
1878	credit_entropy_bits(poolp, entropy);
1879}
1880EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
v5.14.15
   1/*
   2 * random.c -- A strong random number generator
   3 *
   4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
   5 * Rights Reserved.
   6 *
   7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
   8 *
   9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
  10 * rights reserved.
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 * 1. Redistributions of source code must retain the above copyright
  16 *    notice, and the entire permission notice in its entirety,
  17 *    including the disclaimer of warranties.
  18 * 2. Redistributions in binary form must reproduce the above copyright
  19 *    notice, this list of conditions and the following disclaimer in the
  20 *    documentation and/or other materials provided with the distribution.
  21 * 3. The name of the author may not be used to endorse or promote
  22 *    products derived from this software without specific prior
  23 *    written permission.
  24 *
  25 * ALTERNATIVELY, this product may be distributed under the terms of
  26 * the GNU General Public License, in which case the provisions of the GPL are
  27 * required INSTEAD OF the above restrictions.  (This clause is
  28 * necessary due to a potential bad interaction between the GPL and
  29 * the restrictions contained in a BSD-style copyright.)
  30 *
  31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42 * DAMAGE.
  43 */
  44
  45/*
  46 * (now, with legal B.S. out of the way.....)
  47 *
  48 * This routine gathers environmental noise from device drivers, etc.,
  49 * and returns good random numbers, suitable for cryptographic use.
  50 * Besides the obvious cryptographic uses, these numbers are also good
  51 * for seeding TCP sequence numbers, and other places where it is
  52 * desirable to have numbers which are not only random, but hard to
  53 * predict by an attacker.
  54 *
  55 * Theory of operation
  56 * ===================
  57 *
  58 * Computers are very predictable devices.  Hence it is extremely hard
  59 * to produce truly random numbers on a computer --- as opposed to
  60 * pseudo-random numbers, which can easily generated by using a
  61 * algorithm.  Unfortunately, it is very easy for attackers to guess
  62 * the sequence of pseudo-random number generators, and for some
  63 * applications this is not acceptable.  So instead, we must try to
  64 * gather "environmental noise" from the computer's environment, which
  65 * must be hard for outside attackers to observe, and use that to
  66 * generate random numbers.  In a Unix environment, this is best done
  67 * from inside the kernel.
  68 *
  69 * Sources of randomness from the environment include inter-keyboard
  70 * timings, inter-interrupt timings from some interrupts, and other
  71 * events which are both (a) non-deterministic and (b) hard for an
  72 * outside observer to measure.  Randomness from these sources are
  73 * added to an "entropy pool", which is mixed using a CRC-like function.
  74 * This is not cryptographically strong, but it is adequate assuming
  75 * the randomness is not chosen maliciously, and it is fast enough that
  76 * the overhead of doing it on every interrupt is very reasonable.
  77 * As random bytes are mixed into the entropy pool, the routines keep
  78 * an *estimate* of how many bits of randomness have been stored into
  79 * the random number generator's internal state.
  80 *
  81 * When random bytes are desired, they are obtained by taking the SHA
  82 * hash of the contents of the "entropy pool".  The SHA hash avoids
  83 * exposing the internal state of the entropy pool.  It is believed to
  84 * be computationally infeasible to derive any useful information
  85 * about the input of SHA from its output.  Even if it is possible to
  86 * analyze SHA in some clever way, as long as the amount of data
  87 * returned from the generator is less than the inherent entropy in
  88 * the pool, the output data is totally unpredictable.  For this
  89 * reason, the routine decreases its internal estimate of how many
  90 * bits of "true randomness" are contained in the entropy pool as it
  91 * outputs random numbers.
  92 *
  93 * If this estimate goes to zero, the routine can still generate
  94 * random numbers; however, an attacker may (at least in theory) be
  95 * able to infer the future output of the generator from prior
  96 * outputs.  This requires successful cryptanalysis of SHA, which is
  97 * not believed to be feasible, but there is a remote possibility.
  98 * Nonetheless, these numbers should be useful for the vast majority
  99 * of purposes.
 100 *
 101 * Exported interfaces ---- output
 102 * ===============================
 103 *
 104 * There are four exported interfaces; two for use within the kernel,
 105 * and two or use from userspace.
 
 
 106 *
 107 * Exported interfaces ---- userspace output
 108 * -----------------------------------------
 109 *
 110 * The userspace interfaces are two character devices /dev/random and
 111 * /dev/urandom.  /dev/random is suitable for use when very high
 112 * quality randomness is desired (for example, for key generation or
 113 * one-time pads), as it will only return a maximum of the number of
 114 * bits of randomness (as estimated by the random number generator)
 115 * contained in the entropy pool.
 116 *
 117 * The /dev/urandom device does not have this limit, and will return
 118 * as many bytes as are requested.  As more and more random bytes are
 119 * requested without giving time for the entropy pool to recharge,
 120 * this will result in random numbers that are merely cryptographically
 121 * strong.  For many applications, however, this is acceptable.
 122 *
 123 * Exported interfaces ---- kernel output
 124 * --------------------------------------
 125 *
 126 * The primary kernel interface is
 127 *
 128 * 	void get_random_bytes(void *buf, int nbytes);
 129 *
 130 * This interface will return the requested number of random bytes,
 131 * and place it in the requested buffer.  This is equivalent to a
 132 * read from /dev/urandom.
 133 *
 134 * For less critical applications, there are the functions:
 135 *
 136 * 	u32 get_random_u32()
 137 * 	u64 get_random_u64()
 138 * 	unsigned int get_random_int()
 139 * 	unsigned long get_random_long()
 140 *
 141 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 142 * and so do not deplete the entropy pool as much.  These are recommended
 143 * for most in-kernel operations *if the result is going to be stored in
 144 * the kernel*.
 145 *
 146 * Specifically, the get_random_int() family do not attempt to do
 147 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 148 * by snapshotting the VM), you can figure out previous get_random_int()
 149 * return values.  But if the value is stored in the kernel anyway,
 150 * this is not a problem.
 151 *
 152 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 153 * network cookies); given outputs 1..n, it's not feasible to predict
 154 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 155 * the kernel later; the get_random_int() engine is not reseeded as
 156 * often as the get_random_bytes() one.
 157 *
 158 * get_random_bytes() is needed for keys that need to stay secret after
 159 * they are erased from the kernel.  For example, any key that will
 160 * be wrapped and stored encrypted.  And session encryption keys: we'd
 161 * like to know that after the session is closed and the keys erased,
 162 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 163 *
 164 * But for network ports/cookies, stack canaries, PRNG seeds, address
 165 * space layout randomization, session *authentication* keys, or other
 166 * applications where the sensitive data is stored in the kernel in
 167 * plaintext for as long as it's sensitive, the get_random_int() family
 168 * is just fine.
 169 *
 170 * Consider ASLR.  We want to keep the address space secret from an
 171 * outside attacker while the process is running, but once the address
 172 * space is torn down, it's of no use to an attacker any more.  And it's
 173 * stored in kernel data structures as long as it's alive, so worrying
 174 * about an attacker's ability to extrapolate it from the get_random_int()
 175 * CRNG is silly.
 176 *
 177 * Even some cryptographic keys are safe to generate with get_random_int().
 178 * In particular, keys for SipHash are generally fine.  Here, knowledge
 179 * of the key authorizes you to do something to a kernel object (inject
 180 * packets to a network connection, or flood a hash table), and the
 181 * key is stored with the object being protected.  Once it goes away,
 182 * we no longer care if anyone knows the key.
 183 *
 184 * prandom_u32()
 185 * -------------
 186 *
 187 * For even weaker applications, see the pseudorandom generator
 188 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 189 * numbers aren't security-critical at all, these are *far* cheaper.
 190 * Useful for self-tests, random error simulation, randomized backoffs,
 191 * and any other application where you trust that nobody is trying to
 192 * maliciously mess with you by guessing the "random" numbers.
 193 *
 194 * Exported interfaces ---- input
 195 * ==============================
 196 *
 197 * The current exported interfaces for gathering environmental noise
 198 * from the devices are:
 199 *
 200 *	void add_device_randomness(const void *buf, unsigned int size);
 201 * 	void add_input_randomness(unsigned int type, unsigned int code,
 202 *                                unsigned int value);
 203 *	void add_interrupt_randomness(int irq, int irq_flags);
 204 * 	void add_disk_randomness(struct gendisk *disk);
 205 *
 206 * add_device_randomness() is for adding data to the random pool that
 207 * is likely to differ between two devices (or possibly even per boot).
 208 * This would be things like MAC addresses or serial numbers, or the
 209 * read-out of the RTC. This does *not* add any actual entropy to the
 210 * pool, but it initializes the pool to different values for devices
 211 * that might otherwise be identical and have very little entropy
 212 * available to them (particularly common in the embedded world).
 213 *
 214 * add_input_randomness() uses the input layer interrupt timing, as well as
 215 * the event type information from the hardware.
 216 *
 217 * add_interrupt_randomness() uses the interrupt timing as random
 218 * inputs to the entropy pool. Using the cycle counters and the irq source
 219 * as inputs, it feeds the randomness roughly once a second.
 220 *
 221 * add_disk_randomness() uses what amounts to the seek time of block
 222 * layer request events, on a per-disk_devt basis, as input to the
 223 * entropy pool. Note that high-speed solid state drives with very low
 224 * seek times do not make for good sources of entropy, as their seek
 225 * times are usually fairly consistent.
 226 *
 227 * All of these routines try to estimate how many bits of randomness a
 228 * particular randomness source.  They do this by keeping track of the
 229 * first and second order deltas of the event timings.
 230 *
 231 * Ensuring unpredictability at system startup
 232 * ============================================
 233 *
 234 * When any operating system starts up, it will go through a sequence
 235 * of actions that are fairly predictable by an adversary, especially
 236 * if the start-up does not involve interaction with a human operator.
 237 * This reduces the actual number of bits of unpredictability in the
 238 * entropy pool below the value in entropy_count.  In order to
 239 * counteract this effect, it helps to carry information in the
 240 * entropy pool across shut-downs and start-ups.  To do this, put the
 241 * following lines an appropriate script which is run during the boot
 242 * sequence:
 243 *
 244 *	echo "Initializing random number generator..."
 245 *	random_seed=/var/run/random-seed
 246 *	# Carry a random seed from start-up to start-up
 247 *	# Load and then save the whole entropy pool
 248 *	if [ -f $random_seed ]; then
 249 *		cat $random_seed >/dev/urandom
 250 *	else
 251 *		touch $random_seed
 252 *	fi
 253 *	chmod 600 $random_seed
 254 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 255 *
 256 * and the following lines in an appropriate script which is run as
 257 * the system is shutdown:
 258 *
 259 *	# Carry a random seed from shut-down to start-up
 260 *	# Save the whole entropy pool
 261 *	echo "Saving random seed..."
 262 *	random_seed=/var/run/random-seed
 263 *	touch $random_seed
 264 *	chmod 600 $random_seed
 265 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 266 *
 267 * For example, on most modern systems using the System V init
 268 * scripts, such code fragments would be found in
 269 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 271 *
 272 * Effectively, these commands cause the contents of the entropy pool
 273 * to be saved at shut-down time and reloaded into the entropy pool at
 274 * start-up.  (The 'dd' in the addition to the bootup script is to
 275 * make sure that /etc/random-seed is different for every start-up,
 276 * even if the system crashes without executing rc.0.)  Even with
 277 * complete knowledge of the start-up activities, predicting the state
 278 * of the entropy pool requires knowledge of the previous history of
 279 * the system.
 280 *
 281 * Configuring the /dev/random driver under Linux
 282 * ==============================================
 283 *
 284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 285 * the /dev/mem major number (#1).  So if your system does not have
 286 * /dev/random and /dev/urandom created already, they can be created
 287 * by using the commands:
 288 *
 289 * 	mknod /dev/random c 1 8
 290 * 	mknod /dev/urandom c 1 9
 291 *
 292 * Acknowledgements:
 293 * =================
 294 *
 295 * Ideas for constructing this random number generator were derived
 296 * from Pretty Good Privacy's random number generator, and from private
 297 * discussions with Phil Karn.  Colin Plumb provided a faster random
 298 * number generator, which speed up the mixing function of the entropy
 299 * pool, taken from PGPfone.  Dale Worley has also contributed many
 300 * useful ideas and suggestions to improve this driver.
 301 *
 302 * Any flaws in the design are solely my responsibility, and should
 303 * not be attributed to the Phil, Colin, or any of authors of PGP.
 304 *
 305 * Further background information on this topic may be obtained from
 306 * RFC 1750, "Randomness Recommendations for Security", by Donald
 307 * Eastlake, Steve Crocker, and Jeff Schiller.
 308 */
 309
 310#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 311
 312#include <linux/utsname.h>
 313#include <linux/module.h>
 314#include <linux/kernel.h>
 315#include <linux/major.h>
 316#include <linux/string.h>
 317#include <linux/fcntl.h>
 318#include <linux/slab.h>
 319#include <linux/random.h>
 320#include <linux/poll.h>
 321#include <linux/init.h>
 322#include <linux/fs.h>
 323#include <linux/genhd.h>
 324#include <linux/interrupt.h>
 325#include <linux/mm.h>
 326#include <linux/nodemask.h>
 327#include <linux/spinlock.h>
 328#include <linux/kthread.h>
 329#include <linux/percpu.h>
 
 330#include <linux/fips.h>
 331#include <linux/ptrace.h>
 
 332#include <linux/workqueue.h>
 333#include <linux/irq.h>
 334#include <linux/ratelimit.h>
 335#include <linux/syscalls.h>
 336#include <linux/completion.h>
 337#include <linux/uuid.h>
 338#include <crypto/chacha.h>
 339#include <crypto/sha1.h>
 340
 341#include <asm/processor.h>
 342#include <linux/uaccess.h>
 343#include <asm/irq.h>
 344#include <asm/irq_regs.h>
 345#include <asm/io.h>
 346
 347#define CREATE_TRACE_POINTS
 348#include <trace/events/random.h>
 349
 350/* #define ADD_INTERRUPT_BENCH */
 351
 352/*
 353 * Configuration information
 354 */
 355#define INPUT_POOL_SHIFT	12
 356#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
 357#define OUTPUT_POOL_SHIFT	10
 358#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
 
 359#define EXTRACT_SIZE		10
 360
 
 361
 362#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
 363
 364/*
 365 * To allow fractional bits to be tracked, the entropy_count field is
 366 * denominated in units of 1/8th bits.
 367 *
 368 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
 369 * credit_entropy_bits() needs to be 64 bits wide.
 370 */
 371#define ENTROPY_SHIFT 3
 372#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
 373
 374/*
 
 
 
 
 
 
 375 * If the entropy count falls under this number of bits, then we
 376 * should wake up processes which are selecting or polling on write
 377 * access to /dev/random.
 378 */
 379static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
 380
 381/*
 
 
 
 
 
 
 
 382 * Originally, we used a primitive polynomial of degree .poolwords
 383 * over GF(2).  The taps for various sizes are defined below.  They
 384 * were chosen to be evenly spaced except for the last tap, which is 1
 385 * to get the twisting happening as fast as possible.
 386 *
 387 * For the purposes of better mixing, we use the CRC-32 polynomial as
 388 * well to make a (modified) twisted Generalized Feedback Shift
 389 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 390 * generators.  ACM Transactions on Modeling and Computer Simulation
 391 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
 392 * GFSR generators II.  ACM Transactions on Modeling and Computer
 393 * Simulation 4:254-266)
 394 *
 395 * Thanks to Colin Plumb for suggesting this.
 396 *
 397 * The mixing operation is much less sensitive than the output hash,
 398 * where we use SHA-1.  All that we want of mixing operation is that
 399 * it be a good non-cryptographic hash; i.e. it not produce collisions
 400 * when fed "random" data of the sort we expect to see.  As long as
 401 * the pool state differs for different inputs, we have preserved the
 402 * input entropy and done a good job.  The fact that an intelligent
 403 * attacker can construct inputs that will produce controlled
 404 * alterations to the pool's state is not important because we don't
 405 * consider such inputs to contribute any randomness.  The only
 406 * property we need with respect to them is that the attacker can't
 407 * increase his/her knowledge of the pool's state.  Since all
 408 * additions are reversible (knowing the final state and the input,
 409 * you can reconstruct the initial state), if an attacker has any
 410 * uncertainty about the initial state, he/she can only shuffle that
 411 * uncertainty about, but never cause any collisions (which would
 412 * decrease the uncertainty).
 413 *
 414 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 415 * Videau in their paper, "The Linux Pseudorandom Number Generator
 416 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 417 * paper, they point out that we are not using a true Twisted GFSR,
 418 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 419 * is, with only three taps, instead of the six that we are using).
 420 * As a result, the resulting polynomial is neither primitive nor
 421 * irreducible, and hence does not have a maximal period over
 422 * GF(2**32).  They suggest a slight change to the generator
 423 * polynomial which improves the resulting TGFSR polynomial to be
 424 * irreducible, which we have made here.
 425 */
 426static const struct poolinfo {
 427	int poolbitshift, poolwords, poolbytes, poolfracbits;
 428#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
 429	int tap1, tap2, tap3, tap4, tap5;
 430} poolinfo_table[] = {
 431	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
 432	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
 433	{ S(128),	104,	76,	51,	25,	1 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434};
 435
 436/*
 437 * Static global variables
 438 */
 
 439static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
 
 440static struct fasync_struct *fasync;
 441
 442static DEFINE_SPINLOCK(random_ready_list_lock);
 443static LIST_HEAD(random_ready_list);
 444
 445struct crng_state {
 446	__u32		state[16];
 447	unsigned long	init_time;
 448	spinlock_t	lock;
 449};
 450
 451static struct crng_state primary_crng = {
 452	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
 453};
 454
 455/*
 456 * crng_init =  0 --> Uninitialized
 457 *		1 --> Initialized
 458 *		2 --> Initialized from input_pool
 459 *
 460 * crng_init is protected by primary_crng->lock, and only increases
 461 * its value (from 0->1->2).
 462 */
 463static int crng_init = 0;
 464#define crng_ready() (likely(crng_init > 1))
 465static int crng_init_cnt = 0;
 466static unsigned long crng_global_init_time = 0;
 467#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
 468static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
 469static void _crng_backtrack_protect(struct crng_state *crng,
 470				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
 471static void process_random_ready_list(void);
 472static void _get_random_bytes(void *buf, int nbytes);
 473
 474static struct ratelimit_state unseeded_warning =
 475	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
 476static struct ratelimit_state urandom_warning =
 477	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
 478
 479static int ratelimit_disable __read_mostly;
 480
 481module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
 482MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
 483
 484/**********************************************************************
 485 *
 486 * OS independent entropy store.   Here are the functions which handle
 487 * storing entropy in an entropy pool.
 488 *
 489 **********************************************************************/
 490
 491struct entropy_store;
 492struct entropy_store {
 493	/* read-only data: */
 494	const struct poolinfo *poolinfo;
 495	__u32 *pool;
 496	const char *name;
 
 
 497
 498	/* read-write data: */
 
 499	spinlock_t lock;
 500	unsigned short add_ptr;
 501	unsigned short input_rotate;
 502	int entropy_count;
 
 
 
 503	unsigned int last_data_init:1;
 504	__u8 last_data[EXTRACT_SIZE];
 505};
 506
 507static ssize_t extract_entropy(struct entropy_store *r, void *buf,
 508			       size_t nbytes, int min, int rsvd);
 509static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
 510				size_t nbytes, int fips);
 511
 512static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
 513static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
 514
 515static struct entropy_store input_pool = {
 516	.poolinfo = &poolinfo_table[0],
 517	.name = "input",
 
 518	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
 519	.pool = input_pool_data
 520};
 521
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 522static __u32 const twist_table[8] = {
 523	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
 524	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
 525
 526/*
 527 * This function adds bytes into the entropy "pool".  It does not
 528 * update the entropy estimate.  The caller should call
 529 * credit_entropy_bits if this is appropriate.
 530 *
 531 * The pool is stirred with a primitive polynomial of the appropriate
 532 * degree, and then twisted.  We twist by three bits at a time because
 533 * it's cheap to do so and helps slightly in the expected case where
 534 * the entropy is concentrated in the low-order bits.
 535 */
 536static void _mix_pool_bytes(struct entropy_store *r, const void *in,
 537			    int nbytes)
 538{
 539	unsigned long i, tap1, tap2, tap3, tap4, tap5;
 540	int input_rotate;
 541	int wordmask = r->poolinfo->poolwords - 1;
 542	const char *bytes = in;
 543	__u32 w;
 544
 545	tap1 = r->poolinfo->tap1;
 546	tap2 = r->poolinfo->tap2;
 547	tap3 = r->poolinfo->tap3;
 548	tap4 = r->poolinfo->tap4;
 549	tap5 = r->poolinfo->tap5;
 550
 551	input_rotate = r->input_rotate;
 552	i = r->add_ptr;
 553
 554	/* mix one byte at a time to simplify size handling and churn faster */
 555	while (nbytes--) {
 556		w = rol32(*bytes++, input_rotate);
 557		i = (i - 1) & wordmask;
 558
 559		/* XOR in the various taps */
 560		w ^= r->pool[i];
 561		w ^= r->pool[(i + tap1) & wordmask];
 562		w ^= r->pool[(i + tap2) & wordmask];
 563		w ^= r->pool[(i + tap3) & wordmask];
 564		w ^= r->pool[(i + tap4) & wordmask];
 565		w ^= r->pool[(i + tap5) & wordmask];
 566
 567		/* Mix the result back in with a twist */
 568		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
 569
 570		/*
 571		 * Normally, we add 7 bits of rotation to the pool.
 572		 * At the beginning of the pool, add an extra 7 bits
 573		 * rotation, so that successive passes spread the
 574		 * input bits across the pool evenly.
 575		 */
 576		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
 577	}
 578
 579	r->input_rotate = input_rotate;
 580	r->add_ptr = i;
 581}
 582
 583static void __mix_pool_bytes(struct entropy_store *r, const void *in,
 584			     int nbytes)
 585{
 586	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
 587	_mix_pool_bytes(r, in, nbytes);
 588}
 589
 590static void mix_pool_bytes(struct entropy_store *r, const void *in,
 591			   int nbytes)
 592{
 593	unsigned long flags;
 594
 595	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
 596	spin_lock_irqsave(&r->lock, flags);
 597	_mix_pool_bytes(r, in, nbytes);
 598	spin_unlock_irqrestore(&r->lock, flags);
 599}
 600
 601struct fast_pool {
 602	__u32		pool[4];
 603	unsigned long	last;
 604	unsigned short	reg_idx;
 605	unsigned char	count;
 606};
 607
 608/*
 609 * This is a fast mixing routine used by the interrupt randomness
 610 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 611 * locks that might be needed are taken by the caller.
 612 */
 613static void fast_mix(struct fast_pool *f)
 614{
 615	__u32 a = f->pool[0],	b = f->pool[1];
 616	__u32 c = f->pool[2],	d = f->pool[3];
 617
 618	a += b;			c += d;
 619	b = rol32(b, 6);	d = rol32(d, 27);
 620	d ^= a;			b ^= c;
 621
 622	a += b;			c += d;
 623	b = rol32(b, 16);	d = rol32(d, 14);
 624	d ^= a;			b ^= c;
 625
 626	a += b;			c += d;
 627	b = rol32(b, 6);	d = rol32(d, 27);
 628	d ^= a;			b ^= c;
 629
 630	a += b;			c += d;
 631	b = rol32(b, 16);	d = rol32(d, 14);
 632	d ^= a;			b ^= c;
 633
 634	f->pool[0] = a;  f->pool[1] = b;
 635	f->pool[2] = c;  f->pool[3] = d;
 636	f->count++;
 637}
 638
 639static void process_random_ready_list(void)
 640{
 641	unsigned long flags;
 642	struct random_ready_callback *rdy, *tmp;
 643
 644	spin_lock_irqsave(&random_ready_list_lock, flags);
 645	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
 646		struct module *owner = rdy->owner;
 647
 648		list_del_init(&rdy->list);
 649		rdy->func(rdy);
 650		module_put(owner);
 651	}
 652	spin_unlock_irqrestore(&random_ready_list_lock, flags);
 653}
 654
 655/*
 656 * Credit (or debit) the entropy store with n bits of entropy.
 657 * Use credit_entropy_bits_safe() if the value comes from userspace
 658 * or otherwise should be checked for extreme values.
 659 */
 660static void credit_entropy_bits(struct entropy_store *r, int nbits)
 661{
 662	int entropy_count, orig;
 663	const int pool_size = r->poolinfo->poolfracbits;
 664	int nfrac = nbits << ENTROPY_SHIFT;
 665
 666	if (!nbits)
 667		return;
 668
 669retry:
 670	entropy_count = orig = READ_ONCE(r->entropy_count);
 671	if (nfrac < 0) {
 672		/* Debit */
 673		entropy_count += nfrac;
 674	} else {
 675		/*
 676		 * Credit: we have to account for the possibility of
 677		 * overwriting already present entropy.	 Even in the
 678		 * ideal case of pure Shannon entropy, new contributions
 679		 * approach the full value asymptotically:
 680		 *
 681		 * entropy <- entropy + (pool_size - entropy) *
 682		 *	(1 - exp(-add_entropy/pool_size))
 683		 *
 684		 * For add_entropy <= pool_size/2 then
 685		 * (1 - exp(-add_entropy/pool_size)) >=
 686		 *    (add_entropy/pool_size)*0.7869...
 687		 * so we can approximate the exponential with
 688		 * 3/4*add_entropy/pool_size and still be on the
 689		 * safe side by adding at most pool_size/2 at a time.
 690		 *
 691		 * The use of pool_size-2 in the while statement is to
 692		 * prevent rounding artifacts from making the loop
 693		 * arbitrarily long; this limits the loop to log2(pool_size)*2
 694		 * turns no matter how large nbits is.
 695		 */
 696		int pnfrac = nfrac;
 697		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
 698		/* The +2 corresponds to the /4 in the denominator */
 699
 700		do {
 701			unsigned int anfrac = min(pnfrac, pool_size/2);
 702			unsigned int add =
 703				((pool_size - entropy_count)*anfrac*3) >> s;
 704
 705			entropy_count += add;
 706			pnfrac -= anfrac;
 707		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
 708	}
 709
 710	if (WARN_ON(entropy_count < 0)) {
 711		pr_warn("negative entropy/overflow: pool %s count %d\n",
 712			r->name, entropy_count);
 
 713		entropy_count = 0;
 714	} else if (entropy_count > pool_size)
 715		entropy_count = pool_size;
 716	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
 717		goto retry;
 718
 
 
 
 
 
 
 
 
 
 
 
 
 719	trace_credit_entropy_bits(r->name, nbits,
 720				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
 
 721
 722	if (r == &input_pool) {
 723		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
 724
 725		if (crng_init < 2 && entropy_bits >= 128)
 726			crng_reseed(&primary_crng, r);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727	}
 728}
 729
 730static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
 731{
 732	const int nbits_max = r->poolinfo->poolwords * 32;
 733
 734	if (nbits < 0)
 735		return -EINVAL;
 736
 737	/* Cap the value to avoid overflows */
 738	nbits = min(nbits,  nbits_max);
 
 739
 740	credit_entropy_bits(r, nbits);
 741	return 0;
 742}
 743
 744/*********************************************************************
 745 *
 746 * CRNG using CHACHA20
 747 *
 748 *********************************************************************/
 749
 750#define CRNG_RESEED_INTERVAL (300*HZ)
 751
 752static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
 753
 754#ifdef CONFIG_NUMA
 755/*
 756 * Hack to deal with crazy userspace progams when they are all trying
 757 * to access /dev/urandom in parallel.  The programs are almost
 758 * certainly doing something terribly wrong, but we'll work around
 759 * their brain damage.
 760 */
 761static struct crng_state **crng_node_pool __read_mostly;
 762#endif
 763
 764static void invalidate_batched_entropy(void);
 765static void numa_crng_init(void);
 766
 767static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
 768static int __init parse_trust_cpu(char *arg)
 769{
 770	return kstrtobool(arg, &trust_cpu);
 771}
 772early_param("random.trust_cpu", parse_trust_cpu);
 773
 774static bool crng_init_try_arch(struct crng_state *crng)
 775{
 776	int		i;
 777	bool		arch_init = true;
 778	unsigned long	rv;
 779
 780	for (i = 4; i < 16; i++) {
 781		if (!arch_get_random_seed_long(&rv) &&
 782		    !arch_get_random_long(&rv)) {
 783			rv = random_get_entropy();
 784			arch_init = false;
 785		}
 786		crng->state[i] ^= rv;
 787	}
 788
 789	return arch_init;
 790}
 791
 792static bool __init crng_init_try_arch_early(struct crng_state *crng)
 793{
 794	int		i;
 795	bool		arch_init = true;
 796	unsigned long	rv;
 797
 798	for (i = 4; i < 16; i++) {
 799		if (!arch_get_random_seed_long_early(&rv) &&
 800		    !arch_get_random_long_early(&rv)) {
 801			rv = random_get_entropy();
 802			arch_init = false;
 803		}
 804		crng->state[i] ^= rv;
 805	}
 806
 807	return arch_init;
 808}
 809
 810static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
 811{
 812	chacha_init_consts(crng->state);
 813	_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
 814	crng_init_try_arch(crng);
 815	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
 816}
 817
 818static void __init crng_initialize_primary(struct crng_state *crng)
 819{
 820	chacha_init_consts(crng->state);
 821	_extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
 822	if (crng_init_try_arch_early(crng) && trust_cpu) {
 823		invalidate_batched_entropy();
 824		numa_crng_init();
 825		crng_init = 2;
 826		pr_notice("crng done (trusting CPU's manufacturer)\n");
 827	}
 828	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
 829}
 830
 831#ifdef CONFIG_NUMA
 832static void do_numa_crng_init(struct work_struct *work)
 833{
 834	int i;
 835	struct crng_state *crng;
 836	struct crng_state **pool;
 837
 838	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
 839	for_each_online_node(i) {
 840		crng = kmalloc_node(sizeof(struct crng_state),
 841				    GFP_KERNEL | __GFP_NOFAIL, i);
 842		spin_lock_init(&crng->lock);
 843		crng_initialize_secondary(crng);
 844		pool[i] = crng;
 845	}
 846	mb();
 847	if (cmpxchg(&crng_node_pool, NULL, pool)) {
 848		for_each_node(i)
 849			kfree(pool[i]);
 850		kfree(pool);
 851	}
 852}
 853
 854static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
 855
 856static void numa_crng_init(void)
 857{
 858	schedule_work(&numa_crng_init_work);
 859}
 860#else
 861static void numa_crng_init(void) {}
 862#endif
 863
 864/*
 865 * crng_fast_load() can be called by code in the interrupt service
 866 * path.  So we can't afford to dilly-dally.
 867 */
 868static int crng_fast_load(const char *cp, size_t len)
 869{
 870	unsigned long flags;
 871	char *p;
 872
 873	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 874		return 0;
 875	if (crng_init != 0) {
 876		spin_unlock_irqrestore(&primary_crng.lock, flags);
 877		return 0;
 878	}
 879	p = (unsigned char *) &primary_crng.state[4];
 880	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
 881		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
 882		cp++; crng_init_cnt++; len--;
 883	}
 884	spin_unlock_irqrestore(&primary_crng.lock, flags);
 885	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
 886		invalidate_batched_entropy();
 887		crng_init = 1;
 888		pr_notice("fast init done\n");
 889	}
 890	return 1;
 891}
 892
 893/*
 894 * crng_slow_load() is called by add_device_randomness, which has two
 895 * attributes.  (1) We can't trust the buffer passed to it is
 896 * guaranteed to be unpredictable (so it might not have any entropy at
 897 * all), and (2) it doesn't have the performance constraints of
 898 * crng_fast_load().
 899 *
 900 * So we do something more comprehensive which is guaranteed to touch
 901 * all of the primary_crng's state, and which uses a LFSR with a
 902 * period of 255 as part of the mixing algorithm.  Finally, we do
 903 * *not* advance crng_init_cnt since buffer we may get may be something
 904 * like a fixed DMI table (for example), which might very well be
 905 * unique to the machine, but is otherwise unvarying.
 906 */
 907static int crng_slow_load(const char *cp, size_t len)
 908{
 909	unsigned long		flags;
 910	static unsigned char	lfsr = 1;
 911	unsigned char		tmp;
 912	unsigned		i, max = CHACHA_KEY_SIZE;
 913	const char *		src_buf = cp;
 914	char *			dest_buf = (char *) &primary_crng.state[4];
 915
 916	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
 917		return 0;
 918	if (crng_init != 0) {
 919		spin_unlock_irqrestore(&primary_crng.lock, flags);
 920		return 0;
 921	}
 922	if (len > max)
 923		max = len;
 924
 925	for (i = 0; i < max ; i++) {
 926		tmp = lfsr;
 927		lfsr >>= 1;
 928		if (tmp & 1)
 929			lfsr ^= 0xE1;
 930		tmp = dest_buf[i % CHACHA_KEY_SIZE];
 931		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
 932		lfsr += (tmp << 3) | (tmp >> 5);
 933	}
 934	spin_unlock_irqrestore(&primary_crng.lock, flags);
 935	return 1;
 936}
 937
 938static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
 939{
 940	unsigned long	flags;
 941	int		i, num;
 942	union {
 943		__u8	block[CHACHA_BLOCK_SIZE];
 944		__u32	key[8];
 945	} buf;
 946
 947	if (r) {
 948		num = extract_entropy(r, &buf, 32, 16, 0);
 949		if (num == 0)
 950			return;
 951	} else {
 952		_extract_crng(&primary_crng, buf.block);
 953		_crng_backtrack_protect(&primary_crng, buf.block,
 954					CHACHA_KEY_SIZE);
 955	}
 956	spin_lock_irqsave(&crng->lock, flags);
 957	for (i = 0; i < 8; i++) {
 958		unsigned long	rv;
 959		if (!arch_get_random_seed_long(&rv) &&
 960		    !arch_get_random_long(&rv))
 961			rv = random_get_entropy();
 962		crng->state[i+4] ^= buf.key[i] ^ rv;
 963	}
 964	memzero_explicit(&buf, sizeof(buf));
 965	crng->init_time = jiffies;
 966	spin_unlock_irqrestore(&crng->lock, flags);
 967	if (crng == &primary_crng && crng_init < 2) {
 968		invalidate_batched_entropy();
 969		numa_crng_init();
 970		crng_init = 2;
 971		process_random_ready_list();
 972		wake_up_interruptible(&crng_init_wait);
 973		kill_fasync(&fasync, SIGIO, POLL_IN);
 974		pr_notice("crng init done\n");
 975		if (unseeded_warning.missed) {
 976			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
 977				  unseeded_warning.missed);
 978			unseeded_warning.missed = 0;
 979		}
 980		if (urandom_warning.missed) {
 981			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
 982				  urandom_warning.missed);
 983			urandom_warning.missed = 0;
 984		}
 985	}
 986}
 987
 988static void _extract_crng(struct crng_state *crng,
 989			  __u8 out[CHACHA_BLOCK_SIZE])
 990{
 991	unsigned long v, flags;
 992
 993	if (crng_ready() &&
 994	    (time_after(crng_global_init_time, crng->init_time) ||
 995	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
 996		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
 997	spin_lock_irqsave(&crng->lock, flags);
 998	if (arch_get_random_long(&v))
 999		crng->state[14] ^= v;
1000	chacha20_block(&crng->state[0], out);
1001	if (crng->state[12] == 0)
1002		crng->state[13]++;
1003	spin_unlock_irqrestore(&crng->lock, flags);
1004}
1005
1006static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1007{
1008	struct crng_state *crng = NULL;
1009
1010#ifdef CONFIG_NUMA
1011	if (crng_node_pool)
1012		crng = crng_node_pool[numa_node_id()];
1013	if (crng == NULL)
1014#endif
1015		crng = &primary_crng;
1016	_extract_crng(crng, out);
1017}
1018
1019/*
1020 * Use the leftover bytes from the CRNG block output (if there is
1021 * enough) to mutate the CRNG key to provide backtracking protection.
1022 */
1023static void _crng_backtrack_protect(struct crng_state *crng,
1024				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1025{
1026	unsigned long	flags;
1027	__u32		*s, *d;
1028	int		i;
1029
1030	used = round_up(used, sizeof(__u32));
1031	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1032		extract_crng(tmp);
1033		used = 0;
1034	}
1035	spin_lock_irqsave(&crng->lock, flags);
1036	s = (__u32 *) &tmp[used];
1037	d = &crng->state[4];
1038	for (i=0; i < 8; i++)
1039		*d++ ^= *s++;
1040	spin_unlock_irqrestore(&crng->lock, flags);
1041}
1042
1043static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1044{
1045	struct crng_state *crng = NULL;
1046
1047#ifdef CONFIG_NUMA
1048	if (crng_node_pool)
1049		crng = crng_node_pool[numa_node_id()];
1050	if (crng == NULL)
1051#endif
1052		crng = &primary_crng;
1053	_crng_backtrack_protect(crng, tmp, used);
1054}
1055
1056static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1057{
1058	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1059	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1060	int large_request = (nbytes > 256);
1061
1062	while (nbytes) {
1063		if (large_request && need_resched()) {
1064			if (signal_pending(current)) {
1065				if (ret == 0)
1066					ret = -ERESTARTSYS;
1067				break;
1068			}
1069			schedule();
1070		}
1071
1072		extract_crng(tmp);
1073		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1074		if (copy_to_user(buf, tmp, i)) {
1075			ret = -EFAULT;
1076			break;
1077		}
1078
1079		nbytes -= i;
1080		buf += i;
1081		ret += i;
1082	}
1083	crng_backtrack_protect(tmp, i);
1084
1085	/* Wipe data just written to memory */
1086	memzero_explicit(tmp, sizeof(tmp));
1087
1088	return ret;
1089}
1090
1091
1092/*********************************************************************
1093 *
1094 * Entropy input management
1095 *
1096 *********************************************************************/
1097
1098/* There is one of these per entropy source */
1099struct timer_rand_state {
1100	cycles_t last_time;
1101	long last_delta, last_delta2;
 
1102};
1103
1104#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1105
1106/*
1107 * Add device- or boot-specific data to the input pool to help
1108 * initialize it.
1109 *
1110 * None of this adds any entropy; it is meant to avoid the problem of
1111 * the entropy pool having similar initial state across largely
1112 * identical devices.
1113 */
1114void add_device_randomness(const void *buf, unsigned int size)
1115{
1116	unsigned long time = random_get_entropy() ^ jiffies;
1117	unsigned long flags;
1118
1119	if (!crng_ready() && size)
1120		crng_slow_load(buf, size);
1121
1122	trace_add_device_randomness(size, _RET_IP_);
1123	spin_lock_irqsave(&input_pool.lock, flags);
1124	_mix_pool_bytes(&input_pool, buf, size);
1125	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1126	spin_unlock_irqrestore(&input_pool.lock, flags);
 
 
 
 
 
1127}
1128EXPORT_SYMBOL(add_device_randomness);
1129
1130static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1131
1132/*
1133 * This function adds entropy to the entropy "pool" by using timing
1134 * delays.  It uses the timer_rand_state structure to make an estimate
1135 * of how many bits of entropy this call has added to the pool.
1136 *
1137 * The number "num" is also added to the pool - it should somehow describe
1138 * the type of event which just happened.  This is currently 0-255 for
1139 * keyboard scan codes, and 256 upwards for interrupts.
1140 *
1141 */
1142static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1143{
1144	struct entropy_store	*r;
1145	struct {
1146		long jiffies;
1147		unsigned cycles;
1148		unsigned num;
1149	} sample;
1150	long delta, delta2, delta3;
1151
 
 
1152	sample.jiffies = jiffies;
1153	sample.cycles = random_get_entropy();
1154	sample.num = num;
1155	r = &input_pool;
1156	mix_pool_bytes(r, &sample, sizeof(sample));
1157
1158	/*
1159	 * Calculate number of bits of randomness we probably added.
1160	 * We take into account the first, second and third-order deltas
1161	 * in order to make our estimate.
1162	 */
1163	delta = sample.jiffies - READ_ONCE(state->last_time);
1164	WRITE_ONCE(state->last_time, sample.jiffies);
1165
1166	delta2 = delta - READ_ONCE(state->last_delta);
1167	WRITE_ONCE(state->last_delta, delta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168
1169	delta3 = delta2 - READ_ONCE(state->last_delta2);
1170	WRITE_ONCE(state->last_delta2, delta2);
1171
1172	if (delta < 0)
1173		delta = -delta;
1174	if (delta2 < 0)
1175		delta2 = -delta2;
1176	if (delta3 < 0)
1177		delta3 = -delta3;
1178	if (delta > delta2)
1179		delta = delta2;
1180	if (delta > delta3)
1181		delta = delta3;
1182
1183	/*
1184	 * delta is now minimum absolute delta.
1185	 * Round down by 1 bit on general principles,
1186	 * and limit entropy estimate to 12 bits.
1187	 */
1188	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1189}
1190
1191void add_input_randomness(unsigned int type, unsigned int code,
1192				 unsigned int value)
1193{
1194	static unsigned char last_value;
1195
1196	/* ignore autorepeat and the like */
1197	if (value == last_value)
1198		return;
1199
1200	last_value = value;
1201	add_timer_randomness(&input_timer_state,
1202			     (type << 4) ^ code ^ (code >> 4) ^ value);
1203	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1204}
1205EXPORT_SYMBOL_GPL(add_input_randomness);
1206
1207static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1208
1209#ifdef ADD_INTERRUPT_BENCH
1210static unsigned long avg_cycles, avg_deviation;
1211
1212#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1213#define FIXED_1_2 (1 << (AVG_SHIFT-1))
1214
1215static void add_interrupt_bench(cycles_t start)
1216{
1217        long delta = random_get_entropy() - start;
1218
1219        /* Use a weighted moving average */
1220        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1221        avg_cycles += delta;
1222        /* And average deviation */
1223        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1224        avg_deviation += delta;
1225}
1226#else
1227#define add_interrupt_bench(x)
1228#endif
1229
1230static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1231{
1232	__u32 *ptr = (__u32 *) regs;
1233	unsigned int idx;
1234
1235	if (regs == NULL)
1236		return 0;
1237	idx = READ_ONCE(f->reg_idx);
1238	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1239		idx = 0;
1240	ptr += idx++;
1241	WRITE_ONCE(f->reg_idx, idx);
1242	return *ptr;
1243}
1244
1245void add_interrupt_randomness(int irq, int irq_flags)
1246{
1247	struct entropy_store	*r;
1248	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1249	struct pt_regs		*regs = get_irq_regs();
1250	unsigned long		now = jiffies;
1251	cycles_t		cycles = random_get_entropy();
1252	__u32			c_high, j_high;
1253	__u64			ip;
 
 
1254
1255	if (cycles == 0)
1256		cycles = get_reg(fast_pool, regs);
1257	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1258	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1259	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1260	fast_pool->pool[1] ^= now ^ c_high;
1261	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1262	fast_pool->pool[2] ^= ip;
1263	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1264		get_reg(fast_pool, regs);
1265
1266	fast_mix(fast_pool);
1267	add_interrupt_bench(cycles);
1268
1269	if (unlikely(crng_init == 0)) {
1270		if ((fast_pool->count >= 64) &&
1271		    crng_fast_load((char *) fast_pool->pool,
1272				   sizeof(fast_pool->pool))) {
1273			fast_pool->count = 0;
1274			fast_pool->last = now;
1275		}
1276		return;
1277	}
1278
1279	if ((fast_pool->count < 64) &&
1280	    !time_after(now, fast_pool->last + HZ))
1281		return;
1282
1283	r = &input_pool;
1284	if (!spin_trylock(&r->lock))
1285		return;
1286
1287	fast_pool->last = now;
1288	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
 
 
 
 
 
 
 
 
 
 
 
1289	spin_unlock(&r->lock);
1290
1291	fast_pool->count = 0;
1292
1293	/* award one bit for the contents of the fast pool */
1294	credit_entropy_bits(r, 1);
1295}
1296EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1297
1298#ifdef CONFIG_BLOCK
1299void add_disk_randomness(struct gendisk *disk)
1300{
1301	if (!disk || !disk->random)
1302		return;
1303	/* first major is 1, so we get >= 0x200 here */
1304	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1305	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1306}
1307EXPORT_SYMBOL_GPL(add_disk_randomness);
1308#endif
1309
1310/*********************************************************************
1311 *
1312 * Entropy extraction routines
1313 *
1314 *********************************************************************/
1315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1316/*
1317 * This function decides how many bytes to actually take from the
1318 * given pool, and also debits the entropy count accordingly.
1319 */
1320static size_t account(struct entropy_store *r, size_t nbytes, int min,
1321		      int reserved)
1322{
1323	int entropy_count, orig, have_bytes;
1324	size_t ibytes, nfrac;
1325
1326	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1327
1328	/* Can we pull enough? */
1329retry:
1330	entropy_count = orig = READ_ONCE(r->entropy_count);
1331	ibytes = nbytes;
1332	/* never pull more than available */
1333	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1334
1335	if ((have_bytes -= reserved) < 0)
1336		have_bytes = 0;
1337	ibytes = min_t(size_t, ibytes, have_bytes);
 
 
1338	if (ibytes < min)
1339		ibytes = 0;
1340
1341	if (WARN_ON(entropy_count < 0)) {
1342		pr_warn("negative entropy count: pool %s count %d\n",
1343			r->name, entropy_count);
 
1344		entropy_count = 0;
1345	}
1346	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1347	if ((size_t) entropy_count > nfrac)
1348		entropy_count -= nfrac;
1349	else
1350		entropy_count = 0;
1351
1352	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1353		goto retry;
1354
1355	trace_debit_entropy(r->name, 8 * ibytes);
1356	if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
 
1357		wake_up_interruptible(&random_write_wait);
1358		kill_fasync(&fasync, SIGIO, POLL_OUT);
1359	}
1360
1361	return ibytes;
1362}
1363
1364/*
1365 * This function does the actual extraction for extract_entropy.
 
1366 *
1367 * Note: we assume that .poolwords is a multiple of 16 words.
1368 */
1369static void extract_buf(struct entropy_store *r, __u8 *out)
1370{
1371	int i;
1372	union {
1373		__u32 w[5];
1374		unsigned long l[LONGS(20)];
1375	} hash;
1376	__u32 workspace[SHA1_WORKSPACE_WORDS];
1377	unsigned long flags;
1378
1379	/*
1380	 * If we have an architectural hardware random number
1381	 * generator, use it for SHA's initial vector
1382	 */
1383	sha1_init(hash.w);
1384	for (i = 0; i < LONGS(20); i++) {
1385		unsigned long v;
1386		if (!arch_get_random_long(&v))
1387			break;
1388		hash.l[i] = v;
1389	}
1390
1391	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1392	spin_lock_irqsave(&r->lock, flags);
1393	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1394		sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1395
1396	/*
1397	 * We mix the hash back into the pool to prevent backtracking
1398	 * attacks (where the attacker knows the state of the pool
1399	 * plus the current outputs, and attempts to find previous
1400	 * ouputs), unless the hash function can be inverted. By
1401	 * mixing at least a SHA1 worth of hash data back, we make
1402	 * brute-forcing the feedback as hard as brute-forcing the
1403	 * hash.
1404	 */
1405	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1406	spin_unlock_irqrestore(&r->lock, flags);
1407
1408	memzero_explicit(workspace, sizeof(workspace));
1409
1410	/*
1411	 * In case the hash function has some recognizable output
1412	 * pattern, we fold it in half. Thus, we always feed back
1413	 * twice as much data as we output.
1414	 */
1415	hash.w[0] ^= hash.w[3];
1416	hash.w[1] ^= hash.w[4];
1417	hash.w[2] ^= rol32(hash.w[2], 16);
1418
1419	memcpy(out, &hash, EXTRACT_SIZE);
1420	memzero_explicit(&hash, sizeof(hash));
1421}
1422
1423static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1424				size_t nbytes, int fips)
1425{
1426	ssize_t ret = 0, i;
1427	__u8 tmp[EXTRACT_SIZE];
1428	unsigned long flags;
1429
1430	while (nbytes) {
1431		extract_buf(r, tmp);
1432
1433		if (fips) {
1434			spin_lock_irqsave(&r->lock, flags);
1435			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1436				panic("Hardware RNG duplicated output!\n");
1437			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1438			spin_unlock_irqrestore(&r->lock, flags);
1439		}
1440		i = min_t(int, nbytes, EXTRACT_SIZE);
1441		memcpy(buf, tmp, i);
1442		nbytes -= i;
1443		buf += i;
1444		ret += i;
1445	}
1446
1447	/* Wipe data just returned from memory */
1448	memzero_explicit(tmp, sizeof(tmp));
1449
1450	return ret;
1451}
1452
1453/*
1454 * This function extracts randomness from the "entropy pool", and
1455 * returns it in a buffer.
1456 *
1457 * The min parameter specifies the minimum amount we can pull before
1458 * failing to avoid races that defeat catastrophic reseeding while the
1459 * reserved parameter indicates how much entropy we must leave in the
1460 * pool after each pull to avoid starving other readers.
1461 */
1462static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1463				 size_t nbytes, int min, int reserved)
1464{
 
1465	__u8 tmp[EXTRACT_SIZE];
1466	unsigned long flags;
1467
1468	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1469	if (fips_enabled) {
1470		spin_lock_irqsave(&r->lock, flags);
1471		if (!r->last_data_init) {
1472			r->last_data_init = 1;
1473			spin_unlock_irqrestore(&r->lock, flags);
1474			trace_extract_entropy(r->name, EXTRACT_SIZE,
1475					      ENTROPY_BITS(r), _RET_IP_);
 
1476			extract_buf(r, tmp);
1477			spin_lock_irqsave(&r->lock, flags);
1478			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1479		}
1480		spin_unlock_irqrestore(&r->lock, flags);
1481	}
1482
1483	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
 
1484	nbytes = account(r, nbytes, min, reserved);
1485
1486	return _extract_entropy(r, buf, nbytes, fips_enabled);
1487}
1488
1489#define warn_unseeded_randomness(previous) \
1490	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1491
1492static void _warn_unseeded_randomness(const char *func_name, void *caller,
1493				      void **previous)
1494{
1495#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1496	const bool print_once = false;
1497#else
1498	static bool print_once __read_mostly;
1499#endif
1500
1501	if (print_once ||
1502	    crng_ready() ||
1503	    (previous && (caller == READ_ONCE(*previous))))
1504		return;
1505	WRITE_ONCE(*previous, caller);
1506#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1507	print_once = true;
1508#endif
1509	if (__ratelimit(&unseeded_warning))
1510		printk_deferred(KERN_NOTICE "random: %s called from %pS "
1511				"with crng_init=%d\n", func_name, caller,
1512				crng_init);
1513}
1514
1515/*
1516 * This function is the exported kernel interface.  It returns some
1517 * number of good random numbers, suitable for key generation, seeding
1518 * TCP sequence numbers, etc.  It does not rely on the hardware random
1519 * number generator.  For random bytes direct from the hardware RNG
1520 * (when available), use get_random_bytes_arch(). In order to ensure
1521 * that the randomness provided by this function is okay, the function
1522 * wait_for_random_bytes() should be called and return 0 at least once
1523 * at any point prior.
1524 */
1525static void _get_random_bytes(void *buf, int nbytes)
1526{
1527	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1528
1529	trace_get_random_bytes(nbytes, _RET_IP_);
1530
1531	while (nbytes >= CHACHA_BLOCK_SIZE) {
1532		extract_crng(buf);
1533		buf += CHACHA_BLOCK_SIZE;
1534		nbytes -= CHACHA_BLOCK_SIZE;
1535	}
1536
1537	if (nbytes > 0) {
1538		extract_crng(tmp);
1539		memcpy(buf, tmp, nbytes);
1540		crng_backtrack_protect(tmp, nbytes);
1541	} else
1542		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1543	memzero_explicit(tmp, sizeof(tmp));
1544}
1545
1546void get_random_bytes(void *buf, int nbytes)
1547{
1548	static void *previous;
1549
1550	warn_unseeded_randomness(&previous);
1551	_get_random_bytes(buf, nbytes);
1552}
1553EXPORT_SYMBOL(get_random_bytes);
1554
1555
1556/*
1557 * Each time the timer fires, we expect that we got an unpredictable
1558 * jump in the cycle counter. Even if the timer is running on another
1559 * CPU, the timer activity will be touching the stack of the CPU that is
1560 * generating entropy..
1561 *
1562 * Note that we don't re-arm the timer in the timer itself - we are
1563 * happy to be scheduled away, since that just makes the load more
1564 * complex, but we do not want the timer to keep ticking unless the
1565 * entropy loop is running.
1566 *
1567 * So the re-arming always happens in the entropy loop itself.
1568 */
1569static void entropy_timer(struct timer_list *t)
 
1570{
1571	credit_entropy_bits(&input_pool, 1);
1572}
 
1573
1574/*
1575 * If we have an actual cycle counter, see if we can
1576 * generate enough entropy with timing noise
1577 */
1578static void try_to_generate_entropy(void)
1579{
1580	struct {
1581		unsigned long now;
1582		struct timer_list timer;
1583	} stack;
1584
1585	stack.now = random_get_entropy();
 
 
 
 
 
 
 
 
1586
1587	/* Slow counter - or none. Don't even bother */
1588	if (stack.now == random_get_entropy())
1589		return;
 
 
 
1590
1591	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1592	while (!crng_ready()) {
1593		if (!timer_pending(&stack.timer))
1594			mod_timer(&stack.timer, jiffies+1);
1595		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1596		schedule();
1597		stack.now = random_get_entropy();
1598	}
1599
1600	del_timer_sync(&stack.timer);
1601	destroy_timer_on_stack(&stack.timer);
1602	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1603}
1604
1605/*
1606 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1607 * cryptographically secure random numbers. This applies to: the /dev/urandom
1608 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1609 * family of functions. Using any of these functions without first calling
1610 * this function forfeits the guarantee of security.
1611 *
1612 * Returns: 0 if the urandom pool has been seeded.
1613 *          -ERESTARTSYS if the function was interrupted by a signal.
1614 */
1615int wait_for_random_bytes(void)
1616{
1617	if (likely(crng_ready()))
1618		return 0;
1619
1620	do {
1621		int ret;
1622		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1623		if (ret)
1624			return ret > 0 ? 0 : ret;
1625
1626		try_to_generate_entropy();
1627	} while (!crng_ready());
1628
1629	return 0;
1630}
1631EXPORT_SYMBOL(wait_for_random_bytes);
1632
1633/*
1634 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1635 * to supply cryptographically secure random numbers. This applies to: the
1636 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1637 * ,u64,int,long} family of functions.
1638 *
1639 * Returns: true if the urandom pool has been seeded.
1640 *          false if the urandom pool has not been seeded.
1641 */
1642bool rng_is_initialized(void)
1643{
1644	return crng_ready();
 
 
 
 
 
 
 
 
1645}
1646EXPORT_SYMBOL(rng_is_initialized);
1647
1648/*
1649 * Add a callback function that will be invoked when the nonblocking
1650 * pool is initialised.
1651 *
1652 * returns: 0 if callback is successfully added
1653 *	    -EALREADY if pool is already initialised (callback not called)
1654 *	    -ENOENT if module for callback is not alive
1655 */
1656int add_random_ready_callback(struct random_ready_callback *rdy)
1657{
1658	struct module *owner;
1659	unsigned long flags;
1660	int err = -EALREADY;
1661
1662	if (crng_ready())
1663		return err;
1664
1665	owner = rdy->owner;
1666	if (!try_module_get(owner))
1667		return -ENOENT;
1668
1669	spin_lock_irqsave(&random_ready_list_lock, flags);
1670	if (crng_ready())
1671		goto out;
1672
1673	owner = NULL;
1674
1675	list_add(&rdy->list, &random_ready_list);
1676	err = 0;
1677
1678out:
1679	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1680
1681	module_put(owner);
1682
1683	return err;
1684}
1685EXPORT_SYMBOL(add_random_ready_callback);
1686
1687/*
1688 * Delete a previously registered readiness callback function.
1689 */
1690void del_random_ready_callback(struct random_ready_callback *rdy)
1691{
1692	unsigned long flags;
1693	struct module *owner = NULL;
1694
1695	spin_lock_irqsave(&random_ready_list_lock, flags);
1696	if (!list_empty(&rdy->list)) {
1697		list_del_init(&rdy->list);
1698		owner = rdy->owner;
1699	}
1700	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1701
1702	module_put(owner);
1703}
1704EXPORT_SYMBOL(del_random_ready_callback);
1705
1706/*
1707 * This function will use the architecture-specific hardware random
1708 * number generator if it is available.  The arch-specific hw RNG will
1709 * almost certainly be faster than what we can do in software, but it
1710 * is impossible to verify that it is implemented securely (as
1711 * opposed, to, say, the AES encryption of a sequence number using a
1712 * key known by the NSA).  So it's useful if we need the speed, but
1713 * only if we're willing to trust the hardware manufacturer not to
1714 * have put in a back door.
1715 *
1716 * Return number of bytes filled in.
1717 */
1718int __must_check get_random_bytes_arch(void *buf, int nbytes)
1719{
1720	int left = nbytes;
1721	char *p = buf;
1722
1723	trace_get_random_bytes_arch(left, _RET_IP_);
1724	while (left) {
1725		unsigned long v;
1726		int chunk = min_t(int, left, sizeof(unsigned long));
1727
1728		if (!arch_get_random_long(&v))
1729			break;
1730
1731		memcpy(p, &v, chunk);
1732		p += chunk;
1733		left -= chunk;
1734	}
1735
1736	return nbytes - left;
 
1737}
1738EXPORT_SYMBOL(get_random_bytes_arch);
1739
 
1740/*
1741 * init_std_data - initialize pool with system data
1742 *
1743 * @r: pool to initialize
1744 *
1745 * This function clears the pool's entropy count and mixes some system
1746 * data into the pool to prepare it for use. The pool is not cleared
1747 * as that can only decrease the entropy in the pool.
1748 */
1749static void __init init_std_data(struct entropy_store *r)
1750{
1751	int i;
1752	ktime_t now = ktime_get_real();
1753	unsigned long rv;
1754
 
1755	mix_pool_bytes(r, &now, sizeof(now));
1756	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1757		if (!arch_get_random_seed_long(&rv) &&
1758		    !arch_get_random_long(&rv))
1759			rv = random_get_entropy();
1760		mix_pool_bytes(r, &rv, sizeof(rv));
1761	}
1762	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1763}
1764
1765/*
1766 * Note that setup_arch() may call add_device_randomness()
1767 * long before we get here. This allows seeding of the pools
1768 * with some platform dependent data very early in the boot
1769 * process. But it limits our options here. We must use
1770 * statically allocated structures that already have all
1771 * initializations complete at compile time. We should also
1772 * take care not to overwrite the precious per platform data
1773 * we were given.
1774 */
1775int __init rand_initialize(void)
1776{
1777	init_std_data(&input_pool);
1778	crng_initialize_primary(&primary_crng);
1779	crng_global_init_time = jiffies;
1780	if (ratelimit_disable) {
1781		urandom_warning.interval = 0;
1782		unseeded_warning.interval = 0;
1783	}
1784	return 0;
1785}
 
1786
1787#ifdef CONFIG_BLOCK
1788void rand_initialize_disk(struct gendisk *disk)
1789{
1790	struct timer_rand_state *state;
1791
1792	/*
1793	 * If kzalloc returns null, we just won't use that entropy
1794	 * source.
1795	 */
1796	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1797	if (state) {
1798		state->last_time = INITIAL_JIFFIES;
1799		disk->random = state;
1800	}
1801}
1802#endif
1803
1804static ssize_t
1805urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
1806		    loff_t *ppos)
1807{
1808	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809
1810	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1811	ret = extract_crng_user(buf, nbytes);
1812	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1813	return ret;
 
 
1814}
1815
1816static ssize_t
1817urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1818{
1819	unsigned long flags;
1820	static int maxwarn = 10;
1821
1822	if (!crng_ready() && maxwarn > 0) {
1823		maxwarn--;
1824		if (__ratelimit(&urandom_warning))
1825			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1826				  current->comm, nbytes);
1827		spin_lock_irqsave(&primary_crng.lock, flags);
1828		crng_init_cnt = 0;
1829		spin_unlock_irqrestore(&primary_crng.lock, flags);
1830	}
1831
1832	return urandom_read_nowarn(file, buf, nbytes, ppos);
1833}
1834
1835static ssize_t
1836random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1837{
1838	int ret;
1839
1840	ret = wait_for_random_bytes();
1841	if (ret != 0)
1842		return ret;
1843	return urandom_read_nowarn(file, buf, nbytes, ppos);
 
 
 
 
 
 
 
1844}
1845
1846static __poll_t
1847random_poll(struct file *file, poll_table * wait)
1848{
1849	__poll_t mask;
1850
1851	poll_wait(file, &crng_init_wait, wait);
1852	poll_wait(file, &random_write_wait, wait);
1853	mask = 0;
1854	if (crng_ready())
1855		mask |= EPOLLIN | EPOLLRDNORM;
1856	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1857		mask |= EPOLLOUT | EPOLLWRNORM;
1858	return mask;
1859}
1860
1861static int
1862write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1863{
1864	size_t bytes;
1865	__u32 t, buf[16];
1866	const char __user *p = buffer;
1867
1868	while (count > 0) {
1869		int b, i = 0;
1870
1871		bytes = min(count, sizeof(buf));
1872		if (copy_from_user(&buf, p, bytes))
1873			return -EFAULT;
1874
1875		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1876			if (!arch_get_random_int(&t))
1877				break;
1878			buf[i] ^= t;
1879		}
1880
1881		count -= bytes;
1882		p += bytes;
1883
1884		mix_pool_bytes(r, buf, bytes);
1885		cond_resched();
1886	}
1887
1888	return 0;
1889}
1890
1891static ssize_t random_write(struct file *file, const char __user *buffer,
1892			    size_t count, loff_t *ppos)
1893{
1894	size_t ret;
1895
1896	ret = write_pool(&input_pool, buffer, count);
 
 
 
1897	if (ret)
1898		return ret;
1899
1900	return (ssize_t)count;
1901}
1902
1903static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1904{
1905	int size, ent_count;
1906	int __user *p = (int __user *)arg;
1907	int retval;
1908
1909	switch (cmd) {
1910	case RNDGETENTCNT:
1911		/* inherently racy, no point locking */
1912		ent_count = ENTROPY_BITS(&input_pool);
1913		if (put_user(ent_count, p))
1914			return -EFAULT;
1915		return 0;
1916	case RNDADDTOENTCNT:
1917		if (!capable(CAP_SYS_ADMIN))
1918			return -EPERM;
1919		if (get_user(ent_count, p))
1920			return -EFAULT;
1921		return credit_entropy_bits_safe(&input_pool, ent_count);
 
1922	case RNDADDENTROPY:
1923		if (!capable(CAP_SYS_ADMIN))
1924			return -EPERM;
1925		if (get_user(ent_count, p++))
1926			return -EFAULT;
1927		if (ent_count < 0)
1928			return -EINVAL;
1929		if (get_user(size, p++))
1930			return -EFAULT;
1931		retval = write_pool(&input_pool, (const char __user *)p,
1932				    size);
1933		if (retval < 0)
1934			return retval;
1935		return credit_entropy_bits_safe(&input_pool, ent_count);
 
1936	case RNDZAPENTCNT:
1937	case RNDCLEARPOOL:
1938		/*
1939		 * Clear the entropy pool counters. We no longer clear
1940		 * the entropy pool, as that's silly.
1941		 */
1942		if (!capable(CAP_SYS_ADMIN))
1943			return -EPERM;
1944		input_pool.entropy_count = 0;
1945		return 0;
1946	case RNDRESEEDCRNG:
1947		if (!capable(CAP_SYS_ADMIN))
1948			return -EPERM;
1949		if (crng_init < 2)
1950			return -ENODATA;
1951		crng_reseed(&primary_crng, &input_pool);
1952		crng_global_init_time = jiffies - 1;
1953		return 0;
1954	default:
1955		return -EINVAL;
1956	}
1957}
1958
1959static int random_fasync(int fd, struct file *filp, int on)
1960{
1961	return fasync_helper(fd, filp, on, &fasync);
1962}
1963
1964const struct file_operations random_fops = {
1965	.read  = random_read,
1966	.write = random_write,
1967	.poll  = random_poll,
1968	.unlocked_ioctl = random_ioctl,
1969	.compat_ioctl = compat_ptr_ioctl,
1970	.fasync = random_fasync,
1971	.llseek = noop_llseek,
1972};
1973
1974const struct file_operations urandom_fops = {
1975	.read  = urandom_read,
1976	.write = random_write,
1977	.unlocked_ioctl = random_ioctl,
1978	.compat_ioctl = compat_ptr_ioctl,
1979	.fasync = random_fasync,
1980	.llseek = noop_llseek,
1981};
1982
1983SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1984		unsigned int, flags)
1985{
1986	int ret;
1987
1988	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
1989		return -EINVAL;
1990
1991	/*
1992	 * Requesting insecure and blocking randomness at the same time makes
1993	 * no sense.
1994	 */
1995	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
1996		return -EINVAL;
1997
1998	if (count > INT_MAX)
1999		count = INT_MAX;
2000
2001	if (!(flags & GRND_INSECURE) && !crng_ready()) {
 
 
 
2002		if (flags & GRND_NONBLOCK)
2003			return -EAGAIN;
2004		ret = wait_for_random_bytes();
2005		if (unlikely(ret))
2006			return ret;
 
2007	}
2008	return urandom_read_nowarn(NULL, buf, count, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2009}
 
2010
2011/********************************************************************
2012 *
2013 * Sysctl interface
2014 *
2015 ********************************************************************/
2016
2017#ifdef CONFIG_SYSCTL
2018
2019#include <linux/sysctl.h>
2020
2021static int min_write_thresh;
 
2022static int max_write_thresh = INPUT_POOL_WORDS * 32;
2023static int random_min_urandom_seed = 60;
2024static char sysctl_bootid[16];
2025
2026/*
2027 * This function is used to return both the bootid UUID, and random
2028 * UUID.  The difference is in whether table->data is NULL; if it is,
2029 * then a new UUID is generated and returned to the user.
2030 *
2031 * If the user accesses this via the proc interface, the UUID will be
2032 * returned as an ASCII string in the standard UUID format; if via the
2033 * sysctl system call, as 16 bytes of binary data.
2034 */
2035static int proc_do_uuid(struct ctl_table *table, int write,
2036			void *buffer, size_t *lenp, loff_t *ppos)
2037{
2038	struct ctl_table fake_table;
2039	unsigned char buf[64], tmp_uuid[16], *uuid;
2040
2041	uuid = table->data;
2042	if (!uuid) {
2043		uuid = tmp_uuid;
2044		generate_random_uuid(uuid);
2045	} else {
2046		static DEFINE_SPINLOCK(bootid_spinlock);
2047
2048		spin_lock(&bootid_spinlock);
2049		if (!uuid[8])
2050			generate_random_uuid(uuid);
2051		spin_unlock(&bootid_spinlock);
2052	}
2053
2054	sprintf(buf, "%pU", uuid);
2055
2056	fake_table.data = buf;
2057	fake_table.maxlen = sizeof(buf);
2058
2059	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2060}
2061
2062/*
2063 * Return entropy available scaled to integral bits
2064 */
2065static int proc_do_entropy(struct ctl_table *table, int write,
2066			   void *buffer, size_t *lenp, loff_t *ppos)
2067{
2068	struct ctl_table fake_table;
2069	int entropy_count;
2070
2071	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2072
2073	fake_table.data = &entropy_count;
2074	fake_table.maxlen = sizeof(entropy_count);
2075
2076	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2077}
2078
2079static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2080extern struct ctl_table random_table[];
2081struct ctl_table random_table[] = {
2082	{
2083		.procname	= "poolsize",
2084		.data		= &sysctl_poolsize,
2085		.maxlen		= sizeof(int),
2086		.mode		= 0444,
2087		.proc_handler	= proc_dointvec,
2088	},
2089	{
2090		.procname	= "entropy_avail",
2091		.maxlen		= sizeof(int),
2092		.mode		= 0444,
2093		.proc_handler	= proc_do_entropy,
2094		.data		= &input_pool.entropy_count,
2095	},
2096	{
 
 
 
 
 
 
 
 
 
2097		.procname	= "write_wakeup_threshold",
2098		.data		= &random_write_wakeup_bits,
2099		.maxlen		= sizeof(int),
2100		.mode		= 0644,
2101		.proc_handler	= proc_dointvec_minmax,
2102		.extra1		= &min_write_thresh,
2103		.extra2		= &max_write_thresh,
2104	},
2105	{
2106		.procname	= "urandom_min_reseed_secs",
2107		.data		= &random_min_urandom_seed,
2108		.maxlen		= sizeof(int),
2109		.mode		= 0644,
2110		.proc_handler	= proc_dointvec,
2111	},
2112	{
2113		.procname	= "boot_id",
2114		.data		= &sysctl_bootid,
2115		.maxlen		= 16,
2116		.mode		= 0444,
2117		.proc_handler	= proc_do_uuid,
2118	},
2119	{
2120		.procname	= "uuid",
2121		.maxlen		= 16,
2122		.mode		= 0444,
2123		.proc_handler	= proc_do_uuid,
2124	},
2125#ifdef ADD_INTERRUPT_BENCH
2126	{
2127		.procname	= "add_interrupt_avg_cycles",
2128		.data		= &avg_cycles,
2129		.maxlen		= sizeof(avg_cycles),
2130		.mode		= 0444,
2131		.proc_handler	= proc_doulongvec_minmax,
2132	},
2133	{
2134		.procname	= "add_interrupt_avg_deviation",
2135		.data		= &avg_deviation,
2136		.maxlen		= sizeof(avg_deviation),
2137		.mode		= 0444,
2138		.proc_handler	= proc_doulongvec_minmax,
2139	},
2140#endif
2141	{ }
2142};
2143#endif 	/* CONFIG_SYSCTL */
2144
2145struct batched_entropy {
2146	union {
2147		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2148		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2149	};
2150	unsigned int position;
2151	spinlock_t batch_lock;
2152};
2153
2154/*
2155 * Get a random word for internal kernel use only. The quality of the random
2156 * number is good as /dev/urandom, but there is no backtrack protection, with
2157 * the goal of being quite fast and not depleting entropy. In order to ensure
2158 * that the randomness provided by this function is okay, the function
2159 * wait_for_random_bytes() should be called and return 0 at least once at any
2160 * point prior.
2161 */
2162static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2163	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2164};
2165
2166u64 get_random_u64(void)
2167{
2168	u64 ret;
2169	unsigned long flags;
2170	struct batched_entropy *batch;
2171	static void *previous;
2172
2173	warn_unseeded_randomness(&previous);
 
2174
2175	batch = raw_cpu_ptr(&batched_entropy_u64);
2176	spin_lock_irqsave(&batch->batch_lock, flags);
2177	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2178		extract_crng((u8 *)batch->entropy_u64);
2179		batch->position = 0;
2180	}
2181	ret = batch->entropy_u64[batch->position++];
2182	spin_unlock_irqrestore(&batch->batch_lock, flags);
2183	return ret;
2184}
2185EXPORT_SYMBOL(get_random_u64);
2186
2187static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2188	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2189};
2190u32 get_random_u32(void)
2191{
2192	u32 ret;
2193	unsigned long flags;
2194	struct batched_entropy *batch;
2195	static void *previous;
2196
2197	warn_unseeded_randomness(&previous);
2198
2199	batch = raw_cpu_ptr(&batched_entropy_u32);
2200	spin_lock_irqsave(&batch->batch_lock, flags);
2201	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2202		extract_crng((u8 *)batch->entropy_u32);
2203		batch->position = 0;
2204	}
2205	ret = batch->entropy_u32[batch->position++];
2206	spin_unlock_irqrestore(&batch->batch_lock, flags);
2207	return ret;
2208}
2209EXPORT_SYMBOL(get_random_u32);
2210
2211/* It's important to invalidate all potential batched entropy that might
2212 * be stored before the crng is initialized, which we can do lazily by
2213 * simply resetting the counter to zero so that it's re-extracted on the
2214 * next usage. */
2215static void invalidate_batched_entropy(void)
2216{
2217	int cpu;
2218	unsigned long flags;
 
 
 
2219
2220	for_each_possible_cpu (cpu) {
2221		struct batched_entropy *batched_entropy;
2222
2223		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2224		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2225		batched_entropy->position = 0;
2226		spin_unlock(&batched_entropy->batch_lock);
2227
2228		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2229		spin_lock(&batched_entropy->batch_lock);
2230		batched_entropy->position = 0;
2231		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2232	}
2233}
 
2234
2235/**
2236 * randomize_page - Generate a random, page aligned address
2237 * @start:	The smallest acceptable address the caller will take.
2238 * @range:	The size of the area, starting at @start, within which the
2239 *		random address must fall.
2240 *
2241 * If @start + @range would overflow, @range is capped.
2242 *
2243 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2244 * @start was already page aligned.  We now align it regardless.
2245 *
2246 * Return: A page aligned address within [start, start + range).  On error,
2247 * @start is returned.
2248 */
2249unsigned long
2250randomize_page(unsigned long start, unsigned long range)
2251{
2252	if (!PAGE_ALIGNED(start)) {
2253		range -= PAGE_ALIGN(start) - start;
2254		start = PAGE_ALIGN(start);
2255	}
2256
2257	if (start > ULONG_MAX - range)
2258		range = ULONG_MAX - start;
2259
2260	range >>= PAGE_SHIFT;
2261
2262	if (range == 0)
2263		return start;
2264
2265	return start + (get_random_long() % range << PAGE_SHIFT);
2266}
2267
2268/* Interface for in-kernel drivers of true hardware RNGs.
2269 * Those devices may produce endless random bits and will be throttled
2270 * when our pool is full.
2271 */
2272void add_hwgenerator_randomness(const char *buffer, size_t count,
2273				size_t entropy)
2274{
2275	struct entropy_store *poolp = &input_pool;
2276
2277	if (unlikely(crng_init == 0)) {
2278		crng_fast_load(buffer, count);
2279		return;
2280	}
2281
2282	/* Suspend writing if we're above the trickle threshold.
2283	 * We'll be woken up again once below random_write_wakeup_thresh,
2284	 * or when the calling thread is about to terminate.
2285	 */
2286	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2287			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2288	mix_pool_bytes(poolp, buffer, count);
2289	credit_entropy_bits(poolp, entropy);
2290}
2291EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2292
2293/* Handle random seed passed by bootloader.
2294 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2295 * it would be regarded as device data.
2296 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2297 */
2298void add_bootloader_randomness(const void *buf, unsigned int size)
2299{
2300	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2301		add_hwgenerator_randomness(buf, size, size * 8);
2302	else
2303		add_device_randomness(buf, size);
2304}
2305EXPORT_SYMBOL_GPL(add_bootloader_randomness);