Loading...
1/*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
133 *
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
251#include <linux/mm.h>
252#include <linux/spinlock.h>
253#include <linux/kthread.h>
254#include <linux/percpu.h>
255#include <linux/cryptohash.h>
256#include <linux/fips.h>
257#include <linux/ptrace.h>
258#include <linux/kmemcheck.h>
259#include <linux/workqueue.h>
260#include <linux/irq.h>
261#include <linux/syscalls.h>
262#include <linux/completion.h>
263
264#include <asm/processor.h>
265#include <asm/uaccess.h>
266#include <asm/irq.h>
267#include <asm/irq_regs.h>
268#include <asm/io.h>
269
270#define CREATE_TRACE_POINTS
271#include <trace/events/random.h>
272
273/* #define ADD_INTERRUPT_BENCH */
274
275/*
276 * Configuration information
277 */
278#define INPUT_POOL_SHIFT 12
279#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
280#define OUTPUT_POOL_SHIFT 10
281#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
282#define SEC_XFER_SIZE 512
283#define EXTRACT_SIZE 10
284
285#define DEBUG_RANDOM_BOOT 0
286
287#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
288
289/*
290 * To allow fractional bits to be tracked, the entropy_count field is
291 * denominated in units of 1/8th bits.
292 *
293 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
294 * credit_entropy_bits() needs to be 64 bits wide.
295 */
296#define ENTROPY_SHIFT 3
297#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
298
299/*
300 * The minimum number of bits of entropy before we wake up a read on
301 * /dev/random. Should be enough to do a significant reseed.
302 */
303static int random_read_wakeup_bits = 64;
304
305/*
306 * If the entropy count falls under this number of bits, then we
307 * should wake up processes which are selecting or polling on write
308 * access to /dev/random.
309 */
310static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
311
312/*
313 * The minimum number of seconds between urandom pool reseeding. We
314 * do this to limit the amount of entropy that can be drained from the
315 * input pool even if there are heavy demands on /dev/urandom.
316 */
317static int random_min_urandom_seed = 60;
318
319/*
320 * Originally, we used a primitive polynomial of degree .poolwords
321 * over GF(2). The taps for various sizes are defined below. They
322 * were chosen to be evenly spaced except for the last tap, which is 1
323 * to get the twisting happening as fast as possible.
324 *
325 * For the purposes of better mixing, we use the CRC-32 polynomial as
326 * well to make a (modified) twisted Generalized Feedback Shift
327 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
328 * generators. ACM Transactions on Modeling and Computer Simulation
329 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
330 * GFSR generators II. ACM Transactions on Modeling and Computer
331 * Simulation 4:254-266)
332 *
333 * Thanks to Colin Plumb for suggesting this.
334 *
335 * The mixing operation is much less sensitive than the output hash,
336 * where we use SHA-1. All that we want of mixing operation is that
337 * it be a good non-cryptographic hash; i.e. it not produce collisions
338 * when fed "random" data of the sort we expect to see. As long as
339 * the pool state differs for different inputs, we have preserved the
340 * input entropy and done a good job. The fact that an intelligent
341 * attacker can construct inputs that will produce controlled
342 * alterations to the pool's state is not important because we don't
343 * consider such inputs to contribute any randomness. The only
344 * property we need with respect to them is that the attacker can't
345 * increase his/her knowledge of the pool's state. Since all
346 * additions are reversible (knowing the final state and the input,
347 * you can reconstruct the initial state), if an attacker has any
348 * uncertainty about the initial state, he/she can only shuffle that
349 * uncertainty about, but never cause any collisions (which would
350 * decrease the uncertainty).
351 *
352 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
353 * Videau in their paper, "The Linux Pseudorandom Number Generator
354 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
355 * paper, they point out that we are not using a true Twisted GFSR,
356 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
357 * is, with only three taps, instead of the six that we are using).
358 * As a result, the resulting polynomial is neither primitive nor
359 * irreducible, and hence does not have a maximal period over
360 * GF(2**32). They suggest a slight change to the generator
361 * polynomial which improves the resulting TGFSR polynomial to be
362 * irreducible, which we have made here.
363 */
364static struct poolinfo {
365 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
366#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
367 int tap1, tap2, tap3, tap4, tap5;
368} poolinfo_table[] = {
369 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
370 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
371 { S(128), 104, 76, 51, 25, 1 },
372 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
373 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
374 { S(32), 26, 19, 14, 7, 1 },
375#if 0
376 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
377 { S(2048), 1638, 1231, 819, 411, 1 },
378
379 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
380 { S(1024), 817, 615, 412, 204, 1 },
381
382 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
383 { S(1024), 819, 616, 410, 207, 2 },
384
385 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
386 { S(512), 411, 308, 208, 104, 1 },
387
388 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
389 { S(512), 409, 307, 206, 102, 2 },
390 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
391 { S(512), 409, 309, 205, 103, 2 },
392
393 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
394 { S(256), 205, 155, 101, 52, 1 },
395
396 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
397 { S(128), 103, 78, 51, 27, 2 },
398
399 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
400 { S(64), 52, 39, 26, 14, 1 },
401#endif
402};
403
404/*
405 * Static global variables
406 */
407static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
408static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
409static DECLARE_WAIT_QUEUE_HEAD(urandom_init_wait);
410static struct fasync_struct *fasync;
411
412static DEFINE_SPINLOCK(random_ready_list_lock);
413static LIST_HEAD(random_ready_list);
414
415/**********************************************************************
416 *
417 * OS independent entropy store. Here are the functions which handle
418 * storing entropy in an entropy pool.
419 *
420 **********************************************************************/
421
422struct entropy_store;
423struct entropy_store {
424 /* read-only data: */
425 const struct poolinfo *poolinfo;
426 __u32 *pool;
427 const char *name;
428 struct entropy_store *pull;
429 struct work_struct push_work;
430
431 /* read-write data: */
432 unsigned long last_pulled;
433 spinlock_t lock;
434 unsigned short add_ptr;
435 unsigned short input_rotate;
436 int entropy_count;
437 int entropy_total;
438 unsigned int initialized:1;
439 unsigned int limit:1;
440 unsigned int last_data_init:1;
441 __u8 last_data[EXTRACT_SIZE];
442};
443
444static void push_to_pool(struct work_struct *work);
445static __u32 input_pool_data[INPUT_POOL_WORDS];
446static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
447static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
448
449static struct entropy_store input_pool = {
450 .poolinfo = &poolinfo_table[0],
451 .name = "input",
452 .limit = 1,
453 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
454 .pool = input_pool_data
455};
456
457static struct entropy_store blocking_pool = {
458 .poolinfo = &poolinfo_table[1],
459 .name = "blocking",
460 .limit = 1,
461 .pull = &input_pool,
462 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
463 .pool = blocking_pool_data,
464 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
465 push_to_pool),
466};
467
468static struct entropy_store nonblocking_pool = {
469 .poolinfo = &poolinfo_table[1],
470 .name = "nonblocking",
471 .pull = &input_pool,
472 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
473 .pool = nonblocking_pool_data,
474 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
475 push_to_pool),
476};
477
478static __u32 const twist_table[8] = {
479 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
480 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
481
482/*
483 * This function adds bytes into the entropy "pool". It does not
484 * update the entropy estimate. The caller should call
485 * credit_entropy_bits if this is appropriate.
486 *
487 * The pool is stirred with a primitive polynomial of the appropriate
488 * degree, and then twisted. We twist by three bits at a time because
489 * it's cheap to do so and helps slightly in the expected case where
490 * the entropy is concentrated in the low-order bits.
491 */
492static void _mix_pool_bytes(struct entropy_store *r, const void *in,
493 int nbytes)
494{
495 unsigned long i, tap1, tap2, tap3, tap4, tap5;
496 int input_rotate;
497 int wordmask = r->poolinfo->poolwords - 1;
498 const char *bytes = in;
499 __u32 w;
500
501 tap1 = r->poolinfo->tap1;
502 tap2 = r->poolinfo->tap2;
503 tap3 = r->poolinfo->tap3;
504 tap4 = r->poolinfo->tap4;
505 tap5 = r->poolinfo->tap5;
506
507 input_rotate = r->input_rotate;
508 i = r->add_ptr;
509
510 /* mix one byte at a time to simplify size handling and churn faster */
511 while (nbytes--) {
512 w = rol32(*bytes++, input_rotate);
513 i = (i - 1) & wordmask;
514
515 /* XOR in the various taps */
516 w ^= r->pool[i];
517 w ^= r->pool[(i + tap1) & wordmask];
518 w ^= r->pool[(i + tap2) & wordmask];
519 w ^= r->pool[(i + tap3) & wordmask];
520 w ^= r->pool[(i + tap4) & wordmask];
521 w ^= r->pool[(i + tap5) & wordmask];
522
523 /* Mix the result back in with a twist */
524 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
525
526 /*
527 * Normally, we add 7 bits of rotation to the pool.
528 * At the beginning of the pool, add an extra 7 bits
529 * rotation, so that successive passes spread the
530 * input bits across the pool evenly.
531 */
532 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
533 }
534
535 r->input_rotate = input_rotate;
536 r->add_ptr = i;
537}
538
539static void __mix_pool_bytes(struct entropy_store *r, const void *in,
540 int nbytes)
541{
542 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
543 _mix_pool_bytes(r, in, nbytes);
544}
545
546static void mix_pool_bytes(struct entropy_store *r, const void *in,
547 int nbytes)
548{
549 unsigned long flags;
550
551 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
552 spin_lock_irqsave(&r->lock, flags);
553 _mix_pool_bytes(r, in, nbytes);
554 spin_unlock_irqrestore(&r->lock, flags);
555}
556
557struct fast_pool {
558 __u32 pool[4];
559 unsigned long last;
560 unsigned short reg_idx;
561 unsigned char count;
562};
563
564/*
565 * This is a fast mixing routine used by the interrupt randomness
566 * collector. It's hardcoded for an 128 bit pool and assumes that any
567 * locks that might be needed are taken by the caller.
568 */
569static void fast_mix(struct fast_pool *f)
570{
571 __u32 a = f->pool[0], b = f->pool[1];
572 __u32 c = f->pool[2], d = f->pool[3];
573
574 a += b; c += d;
575 b = rol32(b, 6); d = rol32(d, 27);
576 d ^= a; b ^= c;
577
578 a += b; c += d;
579 b = rol32(b, 16); d = rol32(d, 14);
580 d ^= a; b ^= c;
581
582 a += b; c += d;
583 b = rol32(b, 6); d = rol32(d, 27);
584 d ^= a; b ^= c;
585
586 a += b; c += d;
587 b = rol32(b, 16); d = rol32(d, 14);
588 d ^= a; b ^= c;
589
590 f->pool[0] = a; f->pool[1] = b;
591 f->pool[2] = c; f->pool[3] = d;
592 f->count++;
593}
594
595static void process_random_ready_list(void)
596{
597 unsigned long flags;
598 struct random_ready_callback *rdy, *tmp;
599
600 spin_lock_irqsave(&random_ready_list_lock, flags);
601 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
602 struct module *owner = rdy->owner;
603
604 list_del_init(&rdy->list);
605 rdy->func(rdy);
606 module_put(owner);
607 }
608 spin_unlock_irqrestore(&random_ready_list_lock, flags);
609}
610
611/*
612 * Credit (or debit) the entropy store with n bits of entropy.
613 * Use credit_entropy_bits_safe() if the value comes from userspace
614 * or otherwise should be checked for extreme values.
615 */
616static void credit_entropy_bits(struct entropy_store *r, int nbits)
617{
618 int entropy_count, orig;
619 const int pool_size = r->poolinfo->poolfracbits;
620 int nfrac = nbits << ENTROPY_SHIFT;
621
622 if (!nbits)
623 return;
624
625retry:
626 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
627 if (nfrac < 0) {
628 /* Debit */
629 entropy_count += nfrac;
630 } else {
631 /*
632 * Credit: we have to account for the possibility of
633 * overwriting already present entropy. Even in the
634 * ideal case of pure Shannon entropy, new contributions
635 * approach the full value asymptotically:
636 *
637 * entropy <- entropy + (pool_size - entropy) *
638 * (1 - exp(-add_entropy/pool_size))
639 *
640 * For add_entropy <= pool_size/2 then
641 * (1 - exp(-add_entropy/pool_size)) >=
642 * (add_entropy/pool_size)*0.7869...
643 * so we can approximate the exponential with
644 * 3/4*add_entropy/pool_size and still be on the
645 * safe side by adding at most pool_size/2 at a time.
646 *
647 * The use of pool_size-2 in the while statement is to
648 * prevent rounding artifacts from making the loop
649 * arbitrarily long; this limits the loop to log2(pool_size)*2
650 * turns no matter how large nbits is.
651 */
652 int pnfrac = nfrac;
653 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
654 /* The +2 corresponds to the /4 in the denominator */
655
656 do {
657 unsigned int anfrac = min(pnfrac, pool_size/2);
658 unsigned int add =
659 ((pool_size - entropy_count)*anfrac*3) >> s;
660
661 entropy_count += add;
662 pnfrac -= anfrac;
663 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
664 }
665
666 if (unlikely(entropy_count < 0)) {
667 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
668 r->name, entropy_count);
669 WARN_ON(1);
670 entropy_count = 0;
671 } else if (entropy_count > pool_size)
672 entropy_count = pool_size;
673 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
674 goto retry;
675
676 r->entropy_total += nbits;
677 if (!r->initialized && r->entropy_total > 128) {
678 r->initialized = 1;
679 r->entropy_total = 0;
680 if (r == &nonblocking_pool) {
681 prandom_reseed_late();
682 process_random_ready_list();
683 wake_up_all(&urandom_init_wait);
684 pr_notice("random: %s pool is initialized\n", r->name);
685 }
686 }
687
688 trace_credit_entropy_bits(r->name, nbits,
689 entropy_count >> ENTROPY_SHIFT,
690 r->entropy_total, _RET_IP_);
691
692 if (r == &input_pool) {
693 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
694
695 /* should we wake readers? */
696 if (entropy_bits >= random_read_wakeup_bits) {
697 wake_up_interruptible(&random_read_wait);
698 kill_fasync(&fasync, SIGIO, POLL_IN);
699 }
700 /* If the input pool is getting full, send some
701 * entropy to the two output pools, flipping back and
702 * forth between them, until the output pools are 75%
703 * full.
704 */
705 if (entropy_bits > random_write_wakeup_bits &&
706 r->initialized &&
707 r->entropy_total >= 2*random_read_wakeup_bits) {
708 static struct entropy_store *last = &blocking_pool;
709 struct entropy_store *other = &blocking_pool;
710
711 if (last == &blocking_pool)
712 other = &nonblocking_pool;
713 if (other->entropy_count <=
714 3 * other->poolinfo->poolfracbits / 4)
715 last = other;
716 if (last->entropy_count <=
717 3 * last->poolinfo->poolfracbits / 4) {
718 schedule_work(&last->push_work);
719 r->entropy_total = 0;
720 }
721 }
722 }
723}
724
725static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
726{
727 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
728
729 /* Cap the value to avoid overflows */
730 nbits = min(nbits, nbits_max);
731 nbits = max(nbits, -nbits_max);
732
733 credit_entropy_bits(r, nbits);
734}
735
736/*********************************************************************
737 *
738 * Entropy input management
739 *
740 *********************************************************************/
741
742/* There is one of these per entropy source */
743struct timer_rand_state {
744 cycles_t last_time;
745 long last_delta, last_delta2;
746 unsigned dont_count_entropy:1;
747};
748
749#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
750
751/*
752 * Add device- or boot-specific data to the input and nonblocking
753 * pools to help initialize them to unique values.
754 *
755 * None of this adds any entropy, it is meant to avoid the
756 * problem of the nonblocking pool having similar initial state
757 * across largely identical devices.
758 */
759void add_device_randomness(const void *buf, unsigned int size)
760{
761 unsigned long time = random_get_entropy() ^ jiffies;
762 unsigned long flags;
763
764 trace_add_device_randomness(size, _RET_IP_);
765 spin_lock_irqsave(&input_pool.lock, flags);
766 _mix_pool_bytes(&input_pool, buf, size);
767 _mix_pool_bytes(&input_pool, &time, sizeof(time));
768 spin_unlock_irqrestore(&input_pool.lock, flags);
769
770 spin_lock_irqsave(&nonblocking_pool.lock, flags);
771 _mix_pool_bytes(&nonblocking_pool, buf, size);
772 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time));
773 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
774}
775EXPORT_SYMBOL(add_device_randomness);
776
777static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
778
779/*
780 * This function adds entropy to the entropy "pool" by using timing
781 * delays. It uses the timer_rand_state structure to make an estimate
782 * of how many bits of entropy this call has added to the pool.
783 *
784 * The number "num" is also added to the pool - it should somehow describe
785 * the type of event which just happened. This is currently 0-255 for
786 * keyboard scan codes, and 256 upwards for interrupts.
787 *
788 */
789static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
790{
791 struct entropy_store *r;
792 struct {
793 long jiffies;
794 unsigned cycles;
795 unsigned num;
796 } sample;
797 long delta, delta2, delta3;
798
799 preempt_disable();
800
801 sample.jiffies = jiffies;
802 sample.cycles = random_get_entropy();
803 sample.num = num;
804 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
805 mix_pool_bytes(r, &sample, sizeof(sample));
806
807 /*
808 * Calculate number of bits of randomness we probably added.
809 * We take into account the first, second and third-order deltas
810 * in order to make our estimate.
811 */
812
813 if (!state->dont_count_entropy) {
814 delta = sample.jiffies - state->last_time;
815 state->last_time = sample.jiffies;
816
817 delta2 = delta - state->last_delta;
818 state->last_delta = delta;
819
820 delta3 = delta2 - state->last_delta2;
821 state->last_delta2 = delta2;
822
823 if (delta < 0)
824 delta = -delta;
825 if (delta2 < 0)
826 delta2 = -delta2;
827 if (delta3 < 0)
828 delta3 = -delta3;
829 if (delta > delta2)
830 delta = delta2;
831 if (delta > delta3)
832 delta = delta3;
833
834 /*
835 * delta is now minimum absolute delta.
836 * Round down by 1 bit on general principles,
837 * and limit entropy entimate to 12 bits.
838 */
839 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
840 }
841 preempt_enable();
842}
843
844void add_input_randomness(unsigned int type, unsigned int code,
845 unsigned int value)
846{
847 static unsigned char last_value;
848
849 /* ignore autorepeat and the like */
850 if (value == last_value)
851 return;
852
853 last_value = value;
854 add_timer_randomness(&input_timer_state,
855 (type << 4) ^ code ^ (code >> 4) ^ value);
856 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
857}
858EXPORT_SYMBOL_GPL(add_input_randomness);
859
860static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
861
862#ifdef ADD_INTERRUPT_BENCH
863static unsigned long avg_cycles, avg_deviation;
864
865#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
866#define FIXED_1_2 (1 << (AVG_SHIFT-1))
867
868static void add_interrupt_bench(cycles_t start)
869{
870 long delta = random_get_entropy() - start;
871
872 /* Use a weighted moving average */
873 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
874 avg_cycles += delta;
875 /* And average deviation */
876 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
877 avg_deviation += delta;
878}
879#else
880#define add_interrupt_bench(x)
881#endif
882
883static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
884{
885 __u32 *ptr = (__u32 *) regs;
886
887 if (regs == NULL)
888 return 0;
889 if (f->reg_idx >= sizeof(struct pt_regs) / sizeof(__u32))
890 f->reg_idx = 0;
891 return *(ptr + f->reg_idx++);
892}
893
894void add_interrupt_randomness(int irq, int irq_flags)
895{
896 struct entropy_store *r;
897 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
898 struct pt_regs *regs = get_irq_regs();
899 unsigned long now = jiffies;
900 cycles_t cycles = random_get_entropy();
901 __u32 c_high, j_high;
902 __u64 ip;
903 unsigned long seed;
904 int credit = 0;
905
906 if (cycles == 0)
907 cycles = get_reg(fast_pool, regs);
908 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
909 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
910 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
911 fast_pool->pool[1] ^= now ^ c_high;
912 ip = regs ? instruction_pointer(regs) : _RET_IP_;
913 fast_pool->pool[2] ^= ip;
914 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
915 get_reg(fast_pool, regs);
916
917 fast_mix(fast_pool);
918 add_interrupt_bench(cycles);
919
920 if ((fast_pool->count < 64) &&
921 !time_after(now, fast_pool->last + HZ))
922 return;
923
924 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
925 if (!spin_trylock(&r->lock))
926 return;
927
928 fast_pool->last = now;
929 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
930
931 /*
932 * If we have architectural seed generator, produce a seed and
933 * add it to the pool. For the sake of paranoia don't let the
934 * architectural seed generator dominate the input from the
935 * interrupt noise.
936 */
937 if (arch_get_random_seed_long(&seed)) {
938 __mix_pool_bytes(r, &seed, sizeof(seed));
939 credit = 1;
940 }
941 spin_unlock(&r->lock);
942
943 fast_pool->count = 0;
944
945 /* award one bit for the contents of the fast pool */
946 credit_entropy_bits(r, credit + 1);
947}
948
949#ifdef CONFIG_BLOCK
950void add_disk_randomness(struct gendisk *disk)
951{
952 if (!disk || !disk->random)
953 return;
954 /* first major is 1, so we get >= 0x200 here */
955 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
956 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
957}
958EXPORT_SYMBOL_GPL(add_disk_randomness);
959#endif
960
961/*********************************************************************
962 *
963 * Entropy extraction routines
964 *
965 *********************************************************************/
966
967static ssize_t extract_entropy(struct entropy_store *r, void *buf,
968 size_t nbytes, int min, int rsvd);
969
970/*
971 * This utility inline function is responsible for transferring entropy
972 * from the primary pool to the secondary extraction pool. We make
973 * sure we pull enough for a 'catastrophic reseed'.
974 */
975static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
976static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
977{
978 if (!r->pull ||
979 r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
980 r->entropy_count > r->poolinfo->poolfracbits)
981 return;
982
983 if (r->limit == 0 && random_min_urandom_seed) {
984 unsigned long now = jiffies;
985
986 if (time_before(now,
987 r->last_pulled + random_min_urandom_seed * HZ))
988 return;
989 r->last_pulled = now;
990 }
991
992 _xfer_secondary_pool(r, nbytes);
993}
994
995static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
996{
997 __u32 tmp[OUTPUT_POOL_WORDS];
998
999 /* For /dev/random's pool, always leave two wakeups' worth */
1000 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
1001 int bytes = nbytes;
1002
1003 /* pull at least as much as a wakeup */
1004 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1005 /* but never more than the buffer size */
1006 bytes = min_t(int, bytes, sizeof(tmp));
1007
1008 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1009 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1010 bytes = extract_entropy(r->pull, tmp, bytes,
1011 random_read_wakeup_bits / 8, rsvd_bytes);
1012 mix_pool_bytes(r, tmp, bytes);
1013 credit_entropy_bits(r, bytes*8);
1014}
1015
1016/*
1017 * Used as a workqueue function so that when the input pool is getting
1018 * full, we can "spill over" some entropy to the output pools. That
1019 * way the output pools can store some of the excess entropy instead
1020 * of letting it go to waste.
1021 */
1022static void push_to_pool(struct work_struct *work)
1023{
1024 struct entropy_store *r = container_of(work, struct entropy_store,
1025 push_work);
1026 BUG_ON(!r);
1027 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
1028 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1029 r->pull->entropy_count >> ENTROPY_SHIFT);
1030}
1031
1032/*
1033 * This function decides how many bytes to actually take from the
1034 * given pool, and also debits the entropy count accordingly.
1035 */
1036static size_t account(struct entropy_store *r, size_t nbytes, int min,
1037 int reserved)
1038{
1039 int entropy_count, orig;
1040 size_t ibytes, nfrac;
1041
1042 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1043
1044 /* Can we pull enough? */
1045retry:
1046 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
1047 ibytes = nbytes;
1048 /* If limited, never pull more than available */
1049 if (r->limit) {
1050 int have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1051
1052 if ((have_bytes -= reserved) < 0)
1053 have_bytes = 0;
1054 ibytes = min_t(size_t, ibytes, have_bytes);
1055 }
1056 if (ibytes < min)
1057 ibytes = 0;
1058
1059 if (unlikely(entropy_count < 0)) {
1060 pr_warn("random: negative entropy count: pool %s count %d\n",
1061 r->name, entropy_count);
1062 WARN_ON(1);
1063 entropy_count = 0;
1064 }
1065 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1066 if ((size_t) entropy_count > nfrac)
1067 entropy_count -= nfrac;
1068 else
1069 entropy_count = 0;
1070
1071 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1072 goto retry;
1073
1074 trace_debit_entropy(r->name, 8 * ibytes);
1075 if (ibytes &&
1076 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1077 wake_up_interruptible(&random_write_wait);
1078 kill_fasync(&fasync, SIGIO, POLL_OUT);
1079 }
1080
1081 return ibytes;
1082}
1083
1084/*
1085 * This function does the actual extraction for extract_entropy and
1086 * extract_entropy_user.
1087 *
1088 * Note: we assume that .poolwords is a multiple of 16 words.
1089 */
1090static void extract_buf(struct entropy_store *r, __u8 *out)
1091{
1092 int i;
1093 union {
1094 __u32 w[5];
1095 unsigned long l[LONGS(20)];
1096 } hash;
1097 __u32 workspace[SHA_WORKSPACE_WORDS];
1098 unsigned long flags;
1099
1100 /*
1101 * If we have an architectural hardware random number
1102 * generator, use it for SHA's initial vector
1103 */
1104 sha_init(hash.w);
1105 for (i = 0; i < LONGS(20); i++) {
1106 unsigned long v;
1107 if (!arch_get_random_long(&v))
1108 break;
1109 hash.l[i] = v;
1110 }
1111
1112 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1113 spin_lock_irqsave(&r->lock, flags);
1114 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1115 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1116
1117 /*
1118 * We mix the hash back into the pool to prevent backtracking
1119 * attacks (where the attacker knows the state of the pool
1120 * plus the current outputs, and attempts to find previous
1121 * ouputs), unless the hash function can be inverted. By
1122 * mixing at least a SHA1 worth of hash data back, we make
1123 * brute-forcing the feedback as hard as brute-forcing the
1124 * hash.
1125 */
1126 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1127 spin_unlock_irqrestore(&r->lock, flags);
1128
1129 memzero_explicit(workspace, sizeof(workspace));
1130
1131 /*
1132 * In case the hash function has some recognizable output
1133 * pattern, we fold it in half. Thus, we always feed back
1134 * twice as much data as we output.
1135 */
1136 hash.w[0] ^= hash.w[3];
1137 hash.w[1] ^= hash.w[4];
1138 hash.w[2] ^= rol32(hash.w[2], 16);
1139
1140 memcpy(out, &hash, EXTRACT_SIZE);
1141 memzero_explicit(&hash, sizeof(hash));
1142}
1143
1144/*
1145 * This function extracts randomness from the "entropy pool", and
1146 * returns it in a buffer.
1147 *
1148 * The min parameter specifies the minimum amount we can pull before
1149 * failing to avoid races that defeat catastrophic reseeding while the
1150 * reserved parameter indicates how much entropy we must leave in the
1151 * pool after each pull to avoid starving other readers.
1152 */
1153static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1154 size_t nbytes, int min, int reserved)
1155{
1156 ssize_t ret = 0, i;
1157 __u8 tmp[EXTRACT_SIZE];
1158 unsigned long flags;
1159
1160 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1161 if (fips_enabled) {
1162 spin_lock_irqsave(&r->lock, flags);
1163 if (!r->last_data_init) {
1164 r->last_data_init = 1;
1165 spin_unlock_irqrestore(&r->lock, flags);
1166 trace_extract_entropy(r->name, EXTRACT_SIZE,
1167 ENTROPY_BITS(r), _RET_IP_);
1168 xfer_secondary_pool(r, EXTRACT_SIZE);
1169 extract_buf(r, tmp);
1170 spin_lock_irqsave(&r->lock, flags);
1171 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1172 }
1173 spin_unlock_irqrestore(&r->lock, flags);
1174 }
1175
1176 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1177 xfer_secondary_pool(r, nbytes);
1178 nbytes = account(r, nbytes, min, reserved);
1179
1180 while (nbytes) {
1181 extract_buf(r, tmp);
1182
1183 if (fips_enabled) {
1184 spin_lock_irqsave(&r->lock, flags);
1185 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1186 panic("Hardware RNG duplicated output!\n");
1187 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1188 spin_unlock_irqrestore(&r->lock, flags);
1189 }
1190 i = min_t(int, nbytes, EXTRACT_SIZE);
1191 memcpy(buf, tmp, i);
1192 nbytes -= i;
1193 buf += i;
1194 ret += i;
1195 }
1196
1197 /* Wipe data just returned from memory */
1198 memzero_explicit(tmp, sizeof(tmp));
1199
1200 return ret;
1201}
1202
1203/*
1204 * This function extracts randomness from the "entropy pool", and
1205 * returns it in a userspace buffer.
1206 */
1207static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1208 size_t nbytes)
1209{
1210 ssize_t ret = 0, i;
1211 __u8 tmp[EXTRACT_SIZE];
1212 int large_request = (nbytes > 256);
1213
1214 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1215 xfer_secondary_pool(r, nbytes);
1216 nbytes = account(r, nbytes, 0, 0);
1217
1218 while (nbytes) {
1219 if (large_request && need_resched()) {
1220 if (signal_pending(current)) {
1221 if (ret == 0)
1222 ret = -ERESTARTSYS;
1223 break;
1224 }
1225 schedule();
1226 }
1227
1228 extract_buf(r, tmp);
1229 i = min_t(int, nbytes, EXTRACT_SIZE);
1230 if (copy_to_user(buf, tmp, i)) {
1231 ret = -EFAULT;
1232 break;
1233 }
1234
1235 nbytes -= i;
1236 buf += i;
1237 ret += i;
1238 }
1239
1240 /* Wipe data just returned from memory */
1241 memzero_explicit(tmp, sizeof(tmp));
1242
1243 return ret;
1244}
1245
1246/*
1247 * This function is the exported kernel interface. It returns some
1248 * number of good random numbers, suitable for key generation, seeding
1249 * TCP sequence numbers, etc. It does not rely on the hardware random
1250 * number generator. For random bytes direct from the hardware RNG
1251 * (when available), use get_random_bytes_arch().
1252 */
1253void get_random_bytes(void *buf, int nbytes)
1254{
1255#if DEBUG_RANDOM_BOOT > 0
1256 if (unlikely(nonblocking_pool.initialized == 0))
1257 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1258 "with %d bits of entropy available\n",
1259 (void *) _RET_IP_,
1260 nonblocking_pool.entropy_total);
1261#endif
1262 trace_get_random_bytes(nbytes, _RET_IP_);
1263 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1264}
1265EXPORT_SYMBOL(get_random_bytes);
1266
1267/*
1268 * Add a callback function that will be invoked when the nonblocking
1269 * pool is initialised.
1270 *
1271 * returns: 0 if callback is successfully added
1272 * -EALREADY if pool is already initialised (callback not called)
1273 * -ENOENT if module for callback is not alive
1274 */
1275int add_random_ready_callback(struct random_ready_callback *rdy)
1276{
1277 struct module *owner;
1278 unsigned long flags;
1279 int err = -EALREADY;
1280
1281 if (likely(nonblocking_pool.initialized))
1282 return err;
1283
1284 owner = rdy->owner;
1285 if (!try_module_get(owner))
1286 return -ENOENT;
1287
1288 spin_lock_irqsave(&random_ready_list_lock, flags);
1289 if (nonblocking_pool.initialized)
1290 goto out;
1291
1292 owner = NULL;
1293
1294 list_add(&rdy->list, &random_ready_list);
1295 err = 0;
1296
1297out:
1298 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1299
1300 module_put(owner);
1301
1302 return err;
1303}
1304EXPORT_SYMBOL(add_random_ready_callback);
1305
1306/*
1307 * Delete a previously registered readiness callback function.
1308 */
1309void del_random_ready_callback(struct random_ready_callback *rdy)
1310{
1311 unsigned long flags;
1312 struct module *owner = NULL;
1313
1314 spin_lock_irqsave(&random_ready_list_lock, flags);
1315 if (!list_empty(&rdy->list)) {
1316 list_del_init(&rdy->list);
1317 owner = rdy->owner;
1318 }
1319 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1320
1321 module_put(owner);
1322}
1323EXPORT_SYMBOL(del_random_ready_callback);
1324
1325/*
1326 * This function will use the architecture-specific hardware random
1327 * number generator if it is available. The arch-specific hw RNG will
1328 * almost certainly be faster than what we can do in software, but it
1329 * is impossible to verify that it is implemented securely (as
1330 * opposed, to, say, the AES encryption of a sequence number using a
1331 * key known by the NSA). So it's useful if we need the speed, but
1332 * only if we're willing to trust the hardware manufacturer not to
1333 * have put in a back door.
1334 */
1335void get_random_bytes_arch(void *buf, int nbytes)
1336{
1337 char *p = buf;
1338
1339 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1340 while (nbytes) {
1341 unsigned long v;
1342 int chunk = min(nbytes, (int)sizeof(unsigned long));
1343
1344 if (!arch_get_random_long(&v))
1345 break;
1346
1347 memcpy(p, &v, chunk);
1348 p += chunk;
1349 nbytes -= chunk;
1350 }
1351
1352 if (nbytes)
1353 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1354}
1355EXPORT_SYMBOL(get_random_bytes_arch);
1356
1357
1358/*
1359 * init_std_data - initialize pool with system data
1360 *
1361 * @r: pool to initialize
1362 *
1363 * This function clears the pool's entropy count and mixes some system
1364 * data into the pool to prepare it for use. The pool is not cleared
1365 * as that can only decrease the entropy in the pool.
1366 */
1367static void init_std_data(struct entropy_store *r)
1368{
1369 int i;
1370 ktime_t now = ktime_get_real();
1371 unsigned long rv;
1372
1373 r->last_pulled = jiffies;
1374 mix_pool_bytes(r, &now, sizeof(now));
1375 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1376 if (!arch_get_random_seed_long(&rv) &&
1377 !arch_get_random_long(&rv))
1378 rv = random_get_entropy();
1379 mix_pool_bytes(r, &rv, sizeof(rv));
1380 }
1381 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1382}
1383
1384/*
1385 * Note that setup_arch() may call add_device_randomness()
1386 * long before we get here. This allows seeding of the pools
1387 * with some platform dependent data very early in the boot
1388 * process. But it limits our options here. We must use
1389 * statically allocated structures that already have all
1390 * initializations complete at compile time. We should also
1391 * take care not to overwrite the precious per platform data
1392 * we were given.
1393 */
1394static int rand_initialize(void)
1395{
1396 init_std_data(&input_pool);
1397 init_std_data(&blocking_pool);
1398 init_std_data(&nonblocking_pool);
1399 return 0;
1400}
1401early_initcall(rand_initialize);
1402
1403#ifdef CONFIG_BLOCK
1404void rand_initialize_disk(struct gendisk *disk)
1405{
1406 struct timer_rand_state *state;
1407
1408 /*
1409 * If kzalloc returns null, we just won't use that entropy
1410 * source.
1411 */
1412 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1413 if (state) {
1414 state->last_time = INITIAL_JIFFIES;
1415 disk->random = state;
1416 }
1417}
1418#endif
1419
1420static ssize_t
1421_random_read(int nonblock, char __user *buf, size_t nbytes)
1422{
1423 ssize_t n;
1424
1425 if (nbytes == 0)
1426 return 0;
1427
1428 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1429 while (1) {
1430 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1431 if (n < 0)
1432 return n;
1433 trace_random_read(n*8, (nbytes-n)*8,
1434 ENTROPY_BITS(&blocking_pool),
1435 ENTROPY_BITS(&input_pool));
1436 if (n > 0)
1437 return n;
1438
1439 /* Pool is (near) empty. Maybe wait and retry. */
1440 if (nonblock)
1441 return -EAGAIN;
1442
1443 wait_event_interruptible(random_read_wait,
1444 ENTROPY_BITS(&input_pool) >=
1445 random_read_wakeup_bits);
1446 if (signal_pending(current))
1447 return -ERESTARTSYS;
1448 }
1449}
1450
1451static ssize_t
1452random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1453{
1454 return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1455}
1456
1457static ssize_t
1458urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1459{
1460 int ret;
1461
1462 if (unlikely(nonblocking_pool.initialized == 0))
1463 printk_once(KERN_NOTICE "random: %s urandom read "
1464 "with %d bits of entropy available\n",
1465 current->comm, nonblocking_pool.entropy_total);
1466
1467 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1468 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
1469
1470 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1471 ENTROPY_BITS(&input_pool));
1472 return ret;
1473}
1474
1475static unsigned int
1476random_poll(struct file *file, poll_table * wait)
1477{
1478 unsigned int mask;
1479
1480 poll_wait(file, &random_read_wait, wait);
1481 poll_wait(file, &random_write_wait, wait);
1482 mask = 0;
1483 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1484 mask |= POLLIN | POLLRDNORM;
1485 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1486 mask |= POLLOUT | POLLWRNORM;
1487 return mask;
1488}
1489
1490static int
1491write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1492{
1493 size_t bytes;
1494 __u32 buf[16];
1495 const char __user *p = buffer;
1496
1497 while (count > 0) {
1498 bytes = min(count, sizeof(buf));
1499 if (copy_from_user(&buf, p, bytes))
1500 return -EFAULT;
1501
1502 count -= bytes;
1503 p += bytes;
1504
1505 mix_pool_bytes(r, buf, bytes);
1506 cond_resched();
1507 }
1508
1509 return 0;
1510}
1511
1512static ssize_t random_write(struct file *file, const char __user *buffer,
1513 size_t count, loff_t *ppos)
1514{
1515 size_t ret;
1516
1517 ret = write_pool(&blocking_pool, buffer, count);
1518 if (ret)
1519 return ret;
1520 ret = write_pool(&nonblocking_pool, buffer, count);
1521 if (ret)
1522 return ret;
1523
1524 return (ssize_t)count;
1525}
1526
1527static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1528{
1529 int size, ent_count;
1530 int __user *p = (int __user *)arg;
1531 int retval;
1532
1533 switch (cmd) {
1534 case RNDGETENTCNT:
1535 /* inherently racy, no point locking */
1536 ent_count = ENTROPY_BITS(&input_pool);
1537 if (put_user(ent_count, p))
1538 return -EFAULT;
1539 return 0;
1540 case RNDADDTOENTCNT:
1541 if (!capable(CAP_SYS_ADMIN))
1542 return -EPERM;
1543 if (get_user(ent_count, p))
1544 return -EFAULT;
1545 credit_entropy_bits_safe(&input_pool, ent_count);
1546 return 0;
1547 case RNDADDENTROPY:
1548 if (!capable(CAP_SYS_ADMIN))
1549 return -EPERM;
1550 if (get_user(ent_count, p++))
1551 return -EFAULT;
1552 if (ent_count < 0)
1553 return -EINVAL;
1554 if (get_user(size, p++))
1555 return -EFAULT;
1556 retval = write_pool(&input_pool, (const char __user *)p,
1557 size);
1558 if (retval < 0)
1559 return retval;
1560 credit_entropy_bits_safe(&input_pool, ent_count);
1561 return 0;
1562 case RNDZAPENTCNT:
1563 case RNDCLEARPOOL:
1564 /*
1565 * Clear the entropy pool counters. We no longer clear
1566 * the entropy pool, as that's silly.
1567 */
1568 if (!capable(CAP_SYS_ADMIN))
1569 return -EPERM;
1570 input_pool.entropy_count = 0;
1571 nonblocking_pool.entropy_count = 0;
1572 blocking_pool.entropy_count = 0;
1573 return 0;
1574 default:
1575 return -EINVAL;
1576 }
1577}
1578
1579static int random_fasync(int fd, struct file *filp, int on)
1580{
1581 return fasync_helper(fd, filp, on, &fasync);
1582}
1583
1584const struct file_operations random_fops = {
1585 .read = random_read,
1586 .write = random_write,
1587 .poll = random_poll,
1588 .unlocked_ioctl = random_ioctl,
1589 .fasync = random_fasync,
1590 .llseek = noop_llseek,
1591};
1592
1593const struct file_operations urandom_fops = {
1594 .read = urandom_read,
1595 .write = random_write,
1596 .unlocked_ioctl = random_ioctl,
1597 .fasync = random_fasync,
1598 .llseek = noop_llseek,
1599};
1600
1601SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
1602 unsigned int, flags)
1603{
1604 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
1605 return -EINVAL;
1606
1607 if (count > INT_MAX)
1608 count = INT_MAX;
1609
1610 if (flags & GRND_RANDOM)
1611 return _random_read(flags & GRND_NONBLOCK, buf, count);
1612
1613 if (unlikely(nonblocking_pool.initialized == 0)) {
1614 if (flags & GRND_NONBLOCK)
1615 return -EAGAIN;
1616 wait_event_interruptible(urandom_init_wait,
1617 nonblocking_pool.initialized);
1618 if (signal_pending(current))
1619 return -ERESTARTSYS;
1620 }
1621 return urandom_read(NULL, buf, count, NULL);
1622}
1623
1624/***************************************************************
1625 * Random UUID interface
1626 *
1627 * Used here for a Boot ID, but can be useful for other kernel
1628 * drivers.
1629 ***************************************************************/
1630
1631/*
1632 * Generate random UUID
1633 */
1634void generate_random_uuid(unsigned char uuid_out[16])
1635{
1636 get_random_bytes(uuid_out, 16);
1637 /* Set UUID version to 4 --- truly random generation */
1638 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1639 /* Set the UUID variant to DCE */
1640 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1641}
1642EXPORT_SYMBOL(generate_random_uuid);
1643
1644/********************************************************************
1645 *
1646 * Sysctl interface
1647 *
1648 ********************************************************************/
1649
1650#ifdef CONFIG_SYSCTL
1651
1652#include <linux/sysctl.h>
1653
1654static int min_read_thresh = 8, min_write_thresh;
1655static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1656static int max_write_thresh = INPUT_POOL_WORDS * 32;
1657static char sysctl_bootid[16];
1658
1659/*
1660 * This function is used to return both the bootid UUID, and random
1661 * UUID. The difference is in whether table->data is NULL; if it is,
1662 * then a new UUID is generated and returned to the user.
1663 *
1664 * If the user accesses this via the proc interface, the UUID will be
1665 * returned as an ASCII string in the standard UUID format; if via the
1666 * sysctl system call, as 16 bytes of binary data.
1667 */
1668static int proc_do_uuid(struct ctl_table *table, int write,
1669 void __user *buffer, size_t *lenp, loff_t *ppos)
1670{
1671 struct ctl_table fake_table;
1672 unsigned char buf[64], tmp_uuid[16], *uuid;
1673
1674 uuid = table->data;
1675 if (!uuid) {
1676 uuid = tmp_uuid;
1677 generate_random_uuid(uuid);
1678 } else {
1679 static DEFINE_SPINLOCK(bootid_spinlock);
1680
1681 spin_lock(&bootid_spinlock);
1682 if (!uuid[8])
1683 generate_random_uuid(uuid);
1684 spin_unlock(&bootid_spinlock);
1685 }
1686
1687 sprintf(buf, "%pU", uuid);
1688
1689 fake_table.data = buf;
1690 fake_table.maxlen = sizeof(buf);
1691
1692 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1693}
1694
1695/*
1696 * Return entropy available scaled to integral bits
1697 */
1698static int proc_do_entropy(struct ctl_table *table, int write,
1699 void __user *buffer, size_t *lenp, loff_t *ppos)
1700{
1701 struct ctl_table fake_table;
1702 int entropy_count;
1703
1704 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1705
1706 fake_table.data = &entropy_count;
1707 fake_table.maxlen = sizeof(entropy_count);
1708
1709 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1710}
1711
1712static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1713extern struct ctl_table random_table[];
1714struct ctl_table random_table[] = {
1715 {
1716 .procname = "poolsize",
1717 .data = &sysctl_poolsize,
1718 .maxlen = sizeof(int),
1719 .mode = 0444,
1720 .proc_handler = proc_dointvec,
1721 },
1722 {
1723 .procname = "entropy_avail",
1724 .maxlen = sizeof(int),
1725 .mode = 0444,
1726 .proc_handler = proc_do_entropy,
1727 .data = &input_pool.entropy_count,
1728 },
1729 {
1730 .procname = "read_wakeup_threshold",
1731 .data = &random_read_wakeup_bits,
1732 .maxlen = sizeof(int),
1733 .mode = 0644,
1734 .proc_handler = proc_dointvec_minmax,
1735 .extra1 = &min_read_thresh,
1736 .extra2 = &max_read_thresh,
1737 },
1738 {
1739 .procname = "write_wakeup_threshold",
1740 .data = &random_write_wakeup_bits,
1741 .maxlen = sizeof(int),
1742 .mode = 0644,
1743 .proc_handler = proc_dointvec_minmax,
1744 .extra1 = &min_write_thresh,
1745 .extra2 = &max_write_thresh,
1746 },
1747 {
1748 .procname = "urandom_min_reseed_secs",
1749 .data = &random_min_urandom_seed,
1750 .maxlen = sizeof(int),
1751 .mode = 0644,
1752 .proc_handler = proc_dointvec,
1753 },
1754 {
1755 .procname = "boot_id",
1756 .data = &sysctl_bootid,
1757 .maxlen = 16,
1758 .mode = 0444,
1759 .proc_handler = proc_do_uuid,
1760 },
1761 {
1762 .procname = "uuid",
1763 .maxlen = 16,
1764 .mode = 0444,
1765 .proc_handler = proc_do_uuid,
1766 },
1767#ifdef ADD_INTERRUPT_BENCH
1768 {
1769 .procname = "add_interrupt_avg_cycles",
1770 .data = &avg_cycles,
1771 .maxlen = sizeof(avg_cycles),
1772 .mode = 0444,
1773 .proc_handler = proc_doulongvec_minmax,
1774 },
1775 {
1776 .procname = "add_interrupt_avg_deviation",
1777 .data = &avg_deviation,
1778 .maxlen = sizeof(avg_deviation),
1779 .mode = 0444,
1780 .proc_handler = proc_doulongvec_minmax,
1781 },
1782#endif
1783 { }
1784};
1785#endif /* CONFIG_SYSCTL */
1786
1787static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1788
1789int random_int_secret_init(void)
1790{
1791 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1792 return 0;
1793}
1794
1795/*
1796 * Get a random word for internal kernel use only. Similar to urandom but
1797 * with the goal of minimal entropy pool depletion. As a result, the random
1798 * value is not cryptographically secure but for several uses the cost of
1799 * depleting entropy is too high
1800 */
1801static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1802unsigned int get_random_int(void)
1803{
1804 __u32 *hash;
1805 unsigned int ret;
1806
1807 if (arch_get_random_int(&ret))
1808 return ret;
1809
1810 hash = get_cpu_var(get_random_int_hash);
1811
1812 hash[0] += current->pid + jiffies + random_get_entropy();
1813 md5_transform(hash, random_int_secret);
1814 ret = hash[0];
1815 put_cpu_var(get_random_int_hash);
1816
1817 return ret;
1818}
1819EXPORT_SYMBOL(get_random_int);
1820
1821/*
1822 * Same as get_random_int(), but returns unsigned long.
1823 */
1824unsigned long get_random_long(void)
1825{
1826 __u32 *hash;
1827 unsigned long ret;
1828
1829 if (arch_get_random_long(&ret))
1830 return ret;
1831
1832 hash = get_cpu_var(get_random_int_hash);
1833
1834 hash[0] += current->pid + jiffies + random_get_entropy();
1835 md5_transform(hash, random_int_secret);
1836 ret = *(unsigned long *)hash;
1837 put_cpu_var(get_random_int_hash);
1838
1839 return ret;
1840}
1841EXPORT_SYMBOL(get_random_long);
1842
1843/*
1844 * randomize_range() returns a start address such that
1845 *
1846 * [...... <range> .....]
1847 * start end
1848 *
1849 * a <range> with size "len" starting at the return value is inside in the
1850 * area defined by [start, end], but is otherwise randomized.
1851 */
1852unsigned long
1853randomize_range(unsigned long start, unsigned long end, unsigned long len)
1854{
1855 unsigned long range = end - len - start;
1856
1857 if (end <= start + len)
1858 return 0;
1859 return PAGE_ALIGN(get_random_int() % range + start);
1860}
1861
1862/* Interface for in-kernel drivers of true hardware RNGs.
1863 * Those devices may produce endless random bits and will be throttled
1864 * when our pool is full.
1865 */
1866void add_hwgenerator_randomness(const char *buffer, size_t count,
1867 size_t entropy)
1868{
1869 struct entropy_store *poolp = &input_pool;
1870
1871 /* Suspend writing if we're above the trickle threshold.
1872 * We'll be woken up again once below random_write_wakeup_thresh,
1873 * or when the calling thread is about to terminate.
1874 */
1875 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
1876 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
1877 mix_pool_bytes(poolp, buffer, count);
1878 credit_entropy_bits(poolp, entropy);
1879}
1880EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
1/*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_device_randomness(const void *buf, unsigned int size);
129 * void add_input_randomness(unsigned int type, unsigned int code,
130 * unsigned int value);
131 * void add_interrupt_randomness(int irq, int irq_flags);
132 * void add_disk_randomness(struct gendisk *disk);
133 *
134 * add_device_randomness() is for adding data to the random pool that
135 * is likely to differ between two devices (or possibly even per boot).
136 * This would be things like MAC addresses or serial numbers, or the
137 * read-out of the RTC. This does *not* add any actual entropy to the
138 * pool, but it initializes the pool to different values for devices
139 * that might otherwise be identical and have very little entropy
140 * available to them (particularly common in the embedded world).
141 *
142 * add_input_randomness() uses the input layer interrupt timing, as well as
143 * the event type information from the hardware.
144 *
145 * add_interrupt_randomness() uses the interrupt timing as random
146 * inputs to the entropy pool. Using the cycle counters and the irq source
147 * as inputs, it feeds the randomness roughly once a second.
148 *
149 * add_disk_randomness() uses what amounts to the seek time of block
150 * layer request events, on a per-disk_devt basis, as input to the
151 * entropy pool. Note that high-speed solid state drives with very low
152 * seek times do not make for good sources of entropy, as their seek
153 * times are usually fairly consistent.
154 *
155 * All of these routines try to estimate how many bits of randomness a
156 * particular randomness source. They do this by keeping track of the
157 * first and second order deltas of the event timings.
158 *
159 * Ensuring unpredictability at system startup
160 * ============================================
161 *
162 * When any operating system starts up, it will go through a sequence
163 * of actions that are fairly predictable by an adversary, especially
164 * if the start-up does not involve interaction with a human operator.
165 * This reduces the actual number of bits of unpredictability in the
166 * entropy pool below the value in entropy_count. In order to
167 * counteract this effect, it helps to carry information in the
168 * entropy pool across shut-downs and start-ups. To do this, put the
169 * following lines an appropriate script which is run during the boot
170 * sequence:
171 *
172 * echo "Initializing random number generator..."
173 * random_seed=/var/run/random-seed
174 * # Carry a random seed from start-up to start-up
175 * # Load and then save the whole entropy pool
176 * if [ -f $random_seed ]; then
177 * cat $random_seed >/dev/urandom
178 * else
179 * touch $random_seed
180 * fi
181 * chmod 600 $random_seed
182 * dd if=/dev/urandom of=$random_seed count=1 bs=512
183 *
184 * and the following lines in an appropriate script which is run as
185 * the system is shutdown:
186 *
187 * # Carry a random seed from shut-down to start-up
188 * # Save the whole entropy pool
189 * echo "Saving random seed..."
190 * random_seed=/var/run/random-seed
191 * touch $random_seed
192 * chmod 600 $random_seed
193 * dd if=/dev/urandom of=$random_seed count=1 bs=512
194 *
195 * For example, on most modern systems using the System V init
196 * scripts, such code fragments would be found in
197 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
198 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
199 *
200 * Effectively, these commands cause the contents of the entropy pool
201 * to be saved at shut-down time and reloaded into the entropy pool at
202 * start-up. (The 'dd' in the addition to the bootup script is to
203 * make sure that /etc/random-seed is different for every start-up,
204 * even if the system crashes without executing rc.0.) Even with
205 * complete knowledge of the start-up activities, predicting the state
206 * of the entropy pool requires knowledge of the previous history of
207 * the system.
208 *
209 * Configuring the /dev/random driver under Linux
210 * ==============================================
211 *
212 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
213 * the /dev/mem major number (#1). So if your system does not have
214 * /dev/random and /dev/urandom created already, they can be created
215 * by using the commands:
216 *
217 * mknod /dev/random c 1 8
218 * mknod /dev/urandom c 1 9
219 *
220 * Acknowledgements:
221 * =================
222 *
223 * Ideas for constructing this random number generator were derived
224 * from Pretty Good Privacy's random number generator, and from private
225 * discussions with Phil Karn. Colin Plumb provided a faster random
226 * number generator, which speed up the mixing function of the entropy
227 * pool, taken from PGPfone. Dale Worley has also contributed many
228 * useful ideas and suggestions to improve this driver.
229 *
230 * Any flaws in the design are solely my responsibility, and should
231 * not be attributed to the Phil, Colin, or any of authors of PGP.
232 *
233 * Further background information on this topic may be obtained from
234 * RFC 1750, "Randomness Recommendations for Security", by Donald
235 * Eastlake, Steve Crocker, and Jeff Schiller.
236 */
237
238#include <linux/utsname.h>
239#include <linux/module.h>
240#include <linux/kernel.h>
241#include <linux/major.h>
242#include <linux/string.h>
243#include <linux/fcntl.h>
244#include <linux/slab.h>
245#include <linux/random.h>
246#include <linux/poll.h>
247#include <linux/init.h>
248#include <linux/fs.h>
249#include <linux/genhd.h>
250#include <linux/interrupt.h>
251#include <linux/mm.h>
252#include <linux/spinlock.h>
253#include <linux/percpu.h>
254#include <linux/cryptohash.h>
255#include <linux/fips.h>
256#include <linux/ptrace.h>
257#include <linux/kmemcheck.h>
258#include <linux/workqueue.h>
259#include <linux/irq.h>
260
261#include <asm/processor.h>
262#include <asm/uaccess.h>
263#include <asm/irq.h>
264#include <asm/irq_regs.h>
265#include <asm/io.h>
266
267#define CREATE_TRACE_POINTS
268#include <trace/events/random.h>
269
270/*
271 * Configuration information
272 */
273#define INPUT_POOL_SHIFT 12
274#define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
275#define OUTPUT_POOL_SHIFT 10
276#define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
277#define SEC_XFER_SIZE 512
278#define EXTRACT_SIZE 10
279
280#define DEBUG_RANDOM_BOOT 0
281
282#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
283
284/*
285 * To allow fractional bits to be tracked, the entropy_count field is
286 * denominated in units of 1/8th bits.
287 *
288 * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
289 * credit_entropy_bits() needs to be 64 bits wide.
290 */
291#define ENTROPY_SHIFT 3
292#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
293
294/*
295 * The minimum number of bits of entropy before we wake up a read on
296 * /dev/random. Should be enough to do a significant reseed.
297 */
298static int random_read_wakeup_bits = 64;
299
300/*
301 * If the entropy count falls under this number of bits, then we
302 * should wake up processes which are selecting or polling on write
303 * access to /dev/random.
304 */
305static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
306
307/*
308 * The minimum number of seconds between urandom pool reseeding. We
309 * do this to limit the amount of entropy that can be drained from the
310 * input pool even if there are heavy demands on /dev/urandom.
311 */
312static int random_min_urandom_seed = 60;
313
314/*
315 * Originally, we used a primitive polynomial of degree .poolwords
316 * over GF(2). The taps for various sizes are defined below. They
317 * were chosen to be evenly spaced except for the last tap, which is 1
318 * to get the twisting happening as fast as possible.
319 *
320 * For the purposes of better mixing, we use the CRC-32 polynomial as
321 * well to make a (modified) twisted Generalized Feedback Shift
322 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
323 * generators. ACM Transactions on Modeling and Computer Simulation
324 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
325 * GFSR generators II. ACM Transactions on Modeling and Computer
326 * Simulation 4:254-266)
327 *
328 * Thanks to Colin Plumb for suggesting this.
329 *
330 * The mixing operation is much less sensitive than the output hash,
331 * where we use SHA-1. All that we want of mixing operation is that
332 * it be a good non-cryptographic hash; i.e. it not produce collisions
333 * when fed "random" data of the sort we expect to see. As long as
334 * the pool state differs for different inputs, we have preserved the
335 * input entropy and done a good job. The fact that an intelligent
336 * attacker can construct inputs that will produce controlled
337 * alterations to the pool's state is not important because we don't
338 * consider such inputs to contribute any randomness. The only
339 * property we need with respect to them is that the attacker can't
340 * increase his/her knowledge of the pool's state. Since all
341 * additions are reversible (knowing the final state and the input,
342 * you can reconstruct the initial state), if an attacker has any
343 * uncertainty about the initial state, he/she can only shuffle that
344 * uncertainty about, but never cause any collisions (which would
345 * decrease the uncertainty).
346 *
347 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
348 * Videau in their paper, "The Linux Pseudorandom Number Generator
349 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
350 * paper, they point out that we are not using a true Twisted GFSR,
351 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
352 * is, with only three taps, instead of the six that we are using).
353 * As a result, the resulting polynomial is neither primitive nor
354 * irreducible, and hence does not have a maximal period over
355 * GF(2**32). They suggest a slight change to the generator
356 * polynomial which improves the resulting TGFSR polynomial to be
357 * irreducible, which we have made here.
358 */
359static struct poolinfo {
360 int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
361#define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
362 int tap1, tap2, tap3, tap4, tap5;
363} poolinfo_table[] = {
364 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
365 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
366 { S(128), 104, 76, 51, 25, 1 },
367 /* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
368 /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
369 { S(32), 26, 19, 14, 7, 1 },
370#if 0
371 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
372 { S(2048), 1638, 1231, 819, 411, 1 },
373
374 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
375 { S(1024), 817, 615, 412, 204, 1 },
376
377 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
378 { S(1024), 819, 616, 410, 207, 2 },
379
380 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
381 { S(512), 411, 308, 208, 104, 1 },
382
383 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
384 { S(512), 409, 307, 206, 102, 2 },
385 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
386 { S(512), 409, 309, 205, 103, 2 },
387
388 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
389 { S(256), 205, 155, 101, 52, 1 },
390
391 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
392 { S(128), 103, 78, 51, 27, 2 },
393
394 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
395 { S(64), 52, 39, 26, 14, 1 },
396#endif
397};
398
399/*
400 * Static global variables
401 */
402static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
403static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
404static struct fasync_struct *fasync;
405
406/**********************************************************************
407 *
408 * OS independent entropy store. Here are the functions which handle
409 * storing entropy in an entropy pool.
410 *
411 **********************************************************************/
412
413struct entropy_store;
414struct entropy_store {
415 /* read-only data: */
416 const struct poolinfo *poolinfo;
417 __u32 *pool;
418 const char *name;
419 struct entropy_store *pull;
420 struct work_struct push_work;
421
422 /* read-write data: */
423 unsigned long last_pulled;
424 spinlock_t lock;
425 unsigned short add_ptr;
426 unsigned short input_rotate;
427 int entropy_count;
428 int entropy_total;
429 unsigned int initialized:1;
430 unsigned int limit:1;
431 unsigned int last_data_init:1;
432 __u8 last_data[EXTRACT_SIZE];
433};
434
435static void push_to_pool(struct work_struct *work);
436static __u32 input_pool_data[INPUT_POOL_WORDS];
437static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
438static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
439
440static struct entropy_store input_pool = {
441 .poolinfo = &poolinfo_table[0],
442 .name = "input",
443 .limit = 1,
444 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
445 .pool = input_pool_data
446};
447
448static struct entropy_store blocking_pool = {
449 .poolinfo = &poolinfo_table[1],
450 .name = "blocking",
451 .limit = 1,
452 .pull = &input_pool,
453 .lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
454 .pool = blocking_pool_data,
455 .push_work = __WORK_INITIALIZER(blocking_pool.push_work,
456 push_to_pool),
457};
458
459static struct entropy_store nonblocking_pool = {
460 .poolinfo = &poolinfo_table[1],
461 .name = "nonblocking",
462 .pull = &input_pool,
463 .lock = __SPIN_LOCK_UNLOCKED(nonblocking_pool.lock),
464 .pool = nonblocking_pool_data,
465 .push_work = __WORK_INITIALIZER(nonblocking_pool.push_work,
466 push_to_pool),
467};
468
469static __u32 const twist_table[8] = {
470 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
471 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
472
473/*
474 * This function adds bytes into the entropy "pool". It does not
475 * update the entropy estimate. The caller should call
476 * credit_entropy_bits if this is appropriate.
477 *
478 * The pool is stirred with a primitive polynomial of the appropriate
479 * degree, and then twisted. We twist by three bits at a time because
480 * it's cheap to do so and helps slightly in the expected case where
481 * the entropy is concentrated in the low-order bits.
482 */
483static void _mix_pool_bytes(struct entropy_store *r, const void *in,
484 int nbytes, __u8 out[64])
485{
486 unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
487 int input_rotate;
488 int wordmask = r->poolinfo->poolwords - 1;
489 const char *bytes = in;
490 __u32 w;
491
492 tap1 = r->poolinfo->tap1;
493 tap2 = r->poolinfo->tap2;
494 tap3 = r->poolinfo->tap3;
495 tap4 = r->poolinfo->tap4;
496 tap5 = r->poolinfo->tap5;
497
498 smp_rmb();
499 input_rotate = ACCESS_ONCE(r->input_rotate);
500 i = ACCESS_ONCE(r->add_ptr);
501
502 /* mix one byte at a time to simplify size handling and churn faster */
503 while (nbytes--) {
504 w = rol32(*bytes++, input_rotate);
505 i = (i - 1) & wordmask;
506
507 /* XOR in the various taps */
508 w ^= r->pool[i];
509 w ^= r->pool[(i + tap1) & wordmask];
510 w ^= r->pool[(i + tap2) & wordmask];
511 w ^= r->pool[(i + tap3) & wordmask];
512 w ^= r->pool[(i + tap4) & wordmask];
513 w ^= r->pool[(i + tap5) & wordmask];
514
515 /* Mix the result back in with a twist */
516 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
517
518 /*
519 * Normally, we add 7 bits of rotation to the pool.
520 * At the beginning of the pool, add an extra 7 bits
521 * rotation, so that successive passes spread the
522 * input bits across the pool evenly.
523 */
524 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
525 }
526
527 ACCESS_ONCE(r->input_rotate) = input_rotate;
528 ACCESS_ONCE(r->add_ptr) = i;
529 smp_wmb();
530
531 if (out)
532 for (j = 0; j < 16; j++)
533 ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
534}
535
536static void __mix_pool_bytes(struct entropy_store *r, const void *in,
537 int nbytes, __u8 out[64])
538{
539 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
540 _mix_pool_bytes(r, in, nbytes, out);
541}
542
543static void mix_pool_bytes(struct entropy_store *r, const void *in,
544 int nbytes, __u8 out[64])
545{
546 unsigned long flags;
547
548 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
549 spin_lock_irqsave(&r->lock, flags);
550 _mix_pool_bytes(r, in, nbytes, out);
551 spin_unlock_irqrestore(&r->lock, flags);
552}
553
554struct fast_pool {
555 __u32 pool[4];
556 unsigned long last;
557 unsigned short count;
558 unsigned char rotate;
559 unsigned char last_timer_intr;
560};
561
562/*
563 * This is a fast mixing routine used by the interrupt randomness
564 * collector. It's hardcoded for an 128 bit pool and assumes that any
565 * locks that might be needed are taken by the caller.
566 */
567static void fast_mix(struct fast_pool *f, __u32 input[4])
568{
569 __u32 w;
570 unsigned input_rotate = f->rotate;
571
572 w = rol32(input[0], input_rotate) ^ f->pool[0] ^ f->pool[3];
573 f->pool[0] = (w >> 3) ^ twist_table[w & 7];
574 input_rotate = (input_rotate + 14) & 31;
575 w = rol32(input[1], input_rotate) ^ f->pool[1] ^ f->pool[0];
576 f->pool[1] = (w >> 3) ^ twist_table[w & 7];
577 input_rotate = (input_rotate + 7) & 31;
578 w = rol32(input[2], input_rotate) ^ f->pool[2] ^ f->pool[1];
579 f->pool[2] = (w >> 3) ^ twist_table[w & 7];
580 input_rotate = (input_rotate + 7) & 31;
581 w = rol32(input[3], input_rotate) ^ f->pool[3] ^ f->pool[2];
582 f->pool[3] = (w >> 3) ^ twist_table[w & 7];
583 input_rotate = (input_rotate + 7) & 31;
584
585 f->rotate = input_rotate;
586 f->count++;
587}
588
589/*
590 * Credit (or debit) the entropy store with n bits of entropy.
591 * Use credit_entropy_bits_safe() if the value comes from userspace
592 * or otherwise should be checked for extreme values.
593 */
594static void credit_entropy_bits(struct entropy_store *r, int nbits)
595{
596 int entropy_count, orig;
597 const int pool_size = r->poolinfo->poolfracbits;
598 int nfrac = nbits << ENTROPY_SHIFT;
599
600 if (!nbits)
601 return;
602
603retry:
604 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
605 if (nfrac < 0) {
606 /* Debit */
607 entropy_count += nfrac;
608 } else {
609 /*
610 * Credit: we have to account for the possibility of
611 * overwriting already present entropy. Even in the
612 * ideal case of pure Shannon entropy, new contributions
613 * approach the full value asymptotically:
614 *
615 * entropy <- entropy + (pool_size - entropy) *
616 * (1 - exp(-add_entropy/pool_size))
617 *
618 * For add_entropy <= pool_size/2 then
619 * (1 - exp(-add_entropy/pool_size)) >=
620 * (add_entropy/pool_size)*0.7869...
621 * so we can approximate the exponential with
622 * 3/4*add_entropy/pool_size and still be on the
623 * safe side by adding at most pool_size/2 at a time.
624 *
625 * The use of pool_size-2 in the while statement is to
626 * prevent rounding artifacts from making the loop
627 * arbitrarily long; this limits the loop to log2(pool_size)*2
628 * turns no matter how large nbits is.
629 */
630 int pnfrac = nfrac;
631 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
632 /* The +2 corresponds to the /4 in the denominator */
633
634 do {
635 unsigned int anfrac = min(pnfrac, pool_size/2);
636 unsigned int add =
637 ((pool_size - entropy_count)*anfrac*3) >> s;
638
639 entropy_count += add;
640 pnfrac -= anfrac;
641 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
642 }
643
644 if (entropy_count < 0) {
645 pr_warn("random: negative entropy/overflow: pool %s count %d\n",
646 r->name, entropy_count);
647 WARN_ON(1);
648 entropy_count = 0;
649 } else if (entropy_count > pool_size)
650 entropy_count = pool_size;
651 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
652 goto retry;
653
654 r->entropy_total += nbits;
655 if (!r->initialized && r->entropy_total > 128) {
656 r->initialized = 1;
657 r->entropy_total = 0;
658 if (r == &nonblocking_pool) {
659 prandom_reseed_late();
660 pr_notice("random: %s pool is initialized\n", r->name);
661 }
662 }
663
664 trace_credit_entropy_bits(r->name, nbits,
665 entropy_count >> ENTROPY_SHIFT,
666 r->entropy_total, _RET_IP_);
667
668 if (r == &input_pool) {
669 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
670
671 /* should we wake readers? */
672 if (entropy_bits >= random_read_wakeup_bits) {
673 wake_up_interruptible(&random_read_wait);
674 kill_fasync(&fasync, SIGIO, POLL_IN);
675 }
676 /* If the input pool is getting full, send some
677 * entropy to the two output pools, flipping back and
678 * forth between them, until the output pools are 75%
679 * full.
680 */
681 if (entropy_bits > random_write_wakeup_bits &&
682 r->initialized &&
683 r->entropy_total >= 2*random_read_wakeup_bits) {
684 static struct entropy_store *last = &blocking_pool;
685 struct entropy_store *other = &blocking_pool;
686
687 if (last == &blocking_pool)
688 other = &nonblocking_pool;
689 if (other->entropy_count <=
690 3 * other->poolinfo->poolfracbits / 4)
691 last = other;
692 if (last->entropy_count <=
693 3 * last->poolinfo->poolfracbits / 4) {
694 schedule_work(&last->push_work);
695 r->entropy_total = 0;
696 }
697 }
698 }
699}
700
701static void credit_entropy_bits_safe(struct entropy_store *r, int nbits)
702{
703 const int nbits_max = (int)(~0U >> (ENTROPY_SHIFT + 1));
704
705 /* Cap the value to avoid overflows */
706 nbits = min(nbits, nbits_max);
707 nbits = max(nbits, -nbits_max);
708
709 credit_entropy_bits(r, nbits);
710}
711
712/*********************************************************************
713 *
714 * Entropy input management
715 *
716 *********************************************************************/
717
718/* There is one of these per entropy source */
719struct timer_rand_state {
720 cycles_t last_time;
721 long last_delta, last_delta2;
722 unsigned dont_count_entropy:1;
723};
724
725#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
726
727/*
728 * Add device- or boot-specific data to the input and nonblocking
729 * pools to help initialize them to unique values.
730 *
731 * None of this adds any entropy, it is meant to avoid the
732 * problem of the nonblocking pool having similar initial state
733 * across largely identical devices.
734 */
735void add_device_randomness(const void *buf, unsigned int size)
736{
737 unsigned long time = random_get_entropy() ^ jiffies;
738 unsigned long flags;
739
740 trace_add_device_randomness(size, _RET_IP_);
741 spin_lock_irqsave(&input_pool.lock, flags);
742 _mix_pool_bytes(&input_pool, buf, size, NULL);
743 _mix_pool_bytes(&input_pool, &time, sizeof(time), NULL);
744 spin_unlock_irqrestore(&input_pool.lock, flags);
745
746 spin_lock_irqsave(&nonblocking_pool.lock, flags);
747 _mix_pool_bytes(&nonblocking_pool, buf, size, NULL);
748 _mix_pool_bytes(&nonblocking_pool, &time, sizeof(time), NULL);
749 spin_unlock_irqrestore(&nonblocking_pool.lock, flags);
750}
751EXPORT_SYMBOL(add_device_randomness);
752
753static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
754
755/*
756 * This function adds entropy to the entropy "pool" by using timing
757 * delays. It uses the timer_rand_state structure to make an estimate
758 * of how many bits of entropy this call has added to the pool.
759 *
760 * The number "num" is also added to the pool - it should somehow describe
761 * the type of event which just happened. This is currently 0-255 for
762 * keyboard scan codes, and 256 upwards for interrupts.
763 *
764 */
765static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
766{
767 struct entropy_store *r;
768 struct {
769 long jiffies;
770 unsigned cycles;
771 unsigned num;
772 } sample;
773 long delta, delta2, delta3;
774
775 preempt_disable();
776
777 sample.jiffies = jiffies;
778 sample.cycles = random_get_entropy();
779 sample.num = num;
780 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
781 mix_pool_bytes(r, &sample, sizeof(sample), NULL);
782
783 /*
784 * Calculate number of bits of randomness we probably added.
785 * We take into account the first, second and third-order deltas
786 * in order to make our estimate.
787 */
788
789 if (!state->dont_count_entropy) {
790 delta = sample.jiffies - state->last_time;
791 state->last_time = sample.jiffies;
792
793 delta2 = delta - state->last_delta;
794 state->last_delta = delta;
795
796 delta3 = delta2 - state->last_delta2;
797 state->last_delta2 = delta2;
798
799 if (delta < 0)
800 delta = -delta;
801 if (delta2 < 0)
802 delta2 = -delta2;
803 if (delta3 < 0)
804 delta3 = -delta3;
805 if (delta > delta2)
806 delta = delta2;
807 if (delta > delta3)
808 delta = delta3;
809
810 /*
811 * delta is now minimum absolute delta.
812 * Round down by 1 bit on general principles,
813 * and limit entropy entimate to 12 bits.
814 */
815 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
816 }
817 preempt_enable();
818}
819
820void add_input_randomness(unsigned int type, unsigned int code,
821 unsigned int value)
822{
823 static unsigned char last_value;
824
825 /* ignore autorepeat and the like */
826 if (value == last_value)
827 return;
828
829 last_value = value;
830 add_timer_randomness(&input_timer_state,
831 (type << 4) ^ code ^ (code >> 4) ^ value);
832 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
833}
834EXPORT_SYMBOL_GPL(add_input_randomness);
835
836static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
837
838void add_interrupt_randomness(int irq, int irq_flags)
839{
840 struct entropy_store *r;
841 struct fast_pool *fast_pool = &__get_cpu_var(irq_randomness);
842 struct pt_regs *regs = get_irq_regs();
843 unsigned long now = jiffies;
844 cycles_t cycles = random_get_entropy();
845 __u32 input[4], c_high, j_high;
846 __u64 ip;
847 unsigned long seed;
848 int credit;
849
850 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
851 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
852 input[0] = cycles ^ j_high ^ irq;
853 input[1] = now ^ c_high;
854 ip = regs ? instruction_pointer(regs) : _RET_IP_;
855 input[2] = ip;
856 input[3] = ip >> 32;
857
858 fast_mix(fast_pool, input);
859
860 if ((fast_pool->count & 63) && !time_after(now, fast_pool->last + HZ))
861 return;
862
863 fast_pool->last = now;
864
865 r = nonblocking_pool.initialized ? &input_pool : &nonblocking_pool;
866 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool), NULL);
867
868 /*
869 * If we don't have a valid cycle counter, and we see
870 * back-to-back timer interrupts, then skip giving credit for
871 * any entropy, otherwise credit 1 bit.
872 */
873 credit = 1;
874 if (cycles == 0) {
875 if (irq_flags & __IRQF_TIMER) {
876 if (fast_pool->last_timer_intr)
877 credit = 0;
878 fast_pool->last_timer_intr = 1;
879 } else
880 fast_pool->last_timer_intr = 0;
881 }
882
883 /*
884 * If we have architectural seed generator, produce a seed and
885 * add it to the pool. For the sake of paranoia count it as
886 * 50% entropic.
887 */
888 if (arch_get_random_seed_long(&seed)) {
889 __mix_pool_bytes(r, &seed, sizeof(seed), NULL);
890 credit += sizeof(seed) * 4;
891 }
892
893 credit_entropy_bits(r, credit);
894}
895
896#ifdef CONFIG_BLOCK
897void add_disk_randomness(struct gendisk *disk)
898{
899 if (!disk || !disk->random)
900 return;
901 /* first major is 1, so we get >= 0x200 here */
902 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
903 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
904}
905#endif
906
907/*********************************************************************
908 *
909 * Entropy extraction routines
910 *
911 *********************************************************************/
912
913static ssize_t extract_entropy(struct entropy_store *r, void *buf,
914 size_t nbytes, int min, int rsvd);
915
916/*
917 * This utility inline function is responsible for transferring entropy
918 * from the primary pool to the secondary extraction pool. We make
919 * sure we pull enough for a 'catastrophic reseed'.
920 */
921static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
922static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
923{
924 if (r->limit == 0 && random_min_urandom_seed) {
925 unsigned long now = jiffies;
926
927 if (time_before(now,
928 r->last_pulled + random_min_urandom_seed * HZ))
929 return;
930 r->last_pulled = now;
931 }
932 if (r->pull &&
933 r->entropy_count < (nbytes << (ENTROPY_SHIFT + 3)) &&
934 r->entropy_count < r->poolinfo->poolfracbits)
935 _xfer_secondary_pool(r, nbytes);
936}
937
938static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
939{
940 __u32 tmp[OUTPUT_POOL_WORDS];
941
942 /* For /dev/random's pool, always leave two wakeups' worth */
943 int rsvd_bytes = r->limit ? 0 : random_read_wakeup_bits / 4;
944 int bytes = nbytes;
945
946 /* pull at least as much as a wakeup */
947 bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
948 /* but never more than the buffer size */
949 bytes = min_t(int, bytes, sizeof(tmp));
950
951 trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
952 ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
953 bytes = extract_entropy(r->pull, tmp, bytes,
954 random_read_wakeup_bits / 8, rsvd_bytes);
955 mix_pool_bytes(r, tmp, bytes, NULL);
956 credit_entropy_bits(r, bytes*8);
957}
958
959/*
960 * Used as a workqueue function so that when the input pool is getting
961 * full, we can "spill over" some entropy to the output pools. That
962 * way the output pools can store some of the excess entropy instead
963 * of letting it go to waste.
964 */
965static void push_to_pool(struct work_struct *work)
966{
967 struct entropy_store *r = container_of(work, struct entropy_store,
968 push_work);
969 BUG_ON(!r);
970 _xfer_secondary_pool(r, random_read_wakeup_bits/8);
971 trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
972 r->pull->entropy_count >> ENTROPY_SHIFT);
973}
974
975/*
976 * This function decides how many bytes to actually take from the
977 * given pool, and also debits the entropy count accordingly.
978 */
979static size_t account(struct entropy_store *r, size_t nbytes, int min,
980 int reserved)
981{
982 int have_bytes;
983 int entropy_count, orig;
984 size_t ibytes;
985
986 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
987
988 /* Can we pull enough? */
989retry:
990 entropy_count = orig = ACCESS_ONCE(r->entropy_count);
991 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
992 ibytes = nbytes;
993 /* If limited, never pull more than available */
994 if (r->limit)
995 ibytes = min_t(size_t, ibytes, have_bytes - reserved);
996 if (ibytes < min)
997 ibytes = 0;
998 if (have_bytes >= ibytes + reserved)
999 entropy_count -= ibytes << (ENTROPY_SHIFT + 3);
1000 else
1001 entropy_count = reserved << (ENTROPY_SHIFT + 3);
1002
1003 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1004 goto retry;
1005
1006 trace_debit_entropy(r->name, 8 * ibytes);
1007 if (ibytes &&
1008 (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1009 wake_up_interruptible(&random_write_wait);
1010 kill_fasync(&fasync, SIGIO, POLL_OUT);
1011 }
1012
1013 return ibytes;
1014}
1015
1016/*
1017 * This function does the actual extraction for extract_entropy and
1018 * extract_entropy_user.
1019 *
1020 * Note: we assume that .poolwords is a multiple of 16 words.
1021 */
1022static void extract_buf(struct entropy_store *r, __u8 *out)
1023{
1024 int i;
1025 union {
1026 __u32 w[5];
1027 unsigned long l[LONGS(20)];
1028 } hash;
1029 __u32 workspace[SHA_WORKSPACE_WORDS];
1030 __u8 extract[64];
1031 unsigned long flags;
1032
1033 /*
1034 * If we have an architectural hardware random number
1035 * generator, use it for SHA's initial vector
1036 */
1037 sha_init(hash.w);
1038 for (i = 0; i < LONGS(20); i++) {
1039 unsigned long v;
1040 if (!arch_get_random_long(&v))
1041 break;
1042 hash.l[i] = v;
1043 }
1044
1045 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1046 spin_lock_irqsave(&r->lock, flags);
1047 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1048 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1049
1050 /*
1051 * We mix the hash back into the pool to prevent backtracking
1052 * attacks (where the attacker knows the state of the pool
1053 * plus the current outputs, and attempts to find previous
1054 * ouputs), unless the hash function can be inverted. By
1055 * mixing at least a SHA1 worth of hash data back, we make
1056 * brute-forcing the feedback as hard as brute-forcing the
1057 * hash.
1058 */
1059 __mix_pool_bytes(r, hash.w, sizeof(hash.w), extract);
1060 spin_unlock_irqrestore(&r->lock, flags);
1061
1062 /*
1063 * To avoid duplicates, we atomically extract a portion of the
1064 * pool while mixing, and hash one final time.
1065 */
1066 sha_transform(hash.w, extract, workspace);
1067 memset(extract, 0, sizeof(extract));
1068 memset(workspace, 0, sizeof(workspace));
1069
1070 /*
1071 * In case the hash function has some recognizable output
1072 * pattern, we fold it in half. Thus, we always feed back
1073 * twice as much data as we output.
1074 */
1075 hash.w[0] ^= hash.w[3];
1076 hash.w[1] ^= hash.w[4];
1077 hash.w[2] ^= rol32(hash.w[2], 16);
1078
1079 memcpy(out, &hash, EXTRACT_SIZE);
1080 memset(&hash, 0, sizeof(hash));
1081}
1082
1083/*
1084 * This function extracts randomness from the "entropy pool", and
1085 * returns it in a buffer.
1086 *
1087 * The min parameter specifies the minimum amount we can pull before
1088 * failing to avoid races that defeat catastrophic reseeding while the
1089 * reserved parameter indicates how much entropy we must leave in the
1090 * pool after each pull to avoid starving other readers.
1091 */
1092static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1093 size_t nbytes, int min, int reserved)
1094{
1095 ssize_t ret = 0, i;
1096 __u8 tmp[EXTRACT_SIZE];
1097 unsigned long flags;
1098
1099 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1100 if (fips_enabled) {
1101 spin_lock_irqsave(&r->lock, flags);
1102 if (!r->last_data_init) {
1103 r->last_data_init = 1;
1104 spin_unlock_irqrestore(&r->lock, flags);
1105 trace_extract_entropy(r->name, EXTRACT_SIZE,
1106 ENTROPY_BITS(r), _RET_IP_);
1107 xfer_secondary_pool(r, EXTRACT_SIZE);
1108 extract_buf(r, tmp);
1109 spin_lock_irqsave(&r->lock, flags);
1110 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1111 }
1112 spin_unlock_irqrestore(&r->lock, flags);
1113 }
1114
1115 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1116 xfer_secondary_pool(r, nbytes);
1117 nbytes = account(r, nbytes, min, reserved);
1118
1119 while (nbytes) {
1120 extract_buf(r, tmp);
1121
1122 if (fips_enabled) {
1123 spin_lock_irqsave(&r->lock, flags);
1124 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1125 panic("Hardware RNG duplicated output!\n");
1126 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1127 spin_unlock_irqrestore(&r->lock, flags);
1128 }
1129 i = min_t(int, nbytes, EXTRACT_SIZE);
1130 memcpy(buf, tmp, i);
1131 nbytes -= i;
1132 buf += i;
1133 ret += i;
1134 }
1135
1136 /* Wipe data just returned from memory */
1137 memset(tmp, 0, sizeof(tmp));
1138
1139 return ret;
1140}
1141
1142/*
1143 * This function extracts randomness from the "entropy pool", and
1144 * returns it in a userspace buffer.
1145 */
1146static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1147 size_t nbytes)
1148{
1149 ssize_t ret = 0, i;
1150 __u8 tmp[EXTRACT_SIZE];
1151
1152 trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1153 xfer_secondary_pool(r, nbytes);
1154 nbytes = account(r, nbytes, 0, 0);
1155
1156 while (nbytes) {
1157 if (need_resched()) {
1158 if (signal_pending(current)) {
1159 if (ret == 0)
1160 ret = -ERESTARTSYS;
1161 break;
1162 }
1163 schedule();
1164 }
1165
1166 extract_buf(r, tmp);
1167 i = min_t(int, nbytes, EXTRACT_SIZE);
1168 if (copy_to_user(buf, tmp, i)) {
1169 ret = -EFAULT;
1170 break;
1171 }
1172
1173 nbytes -= i;
1174 buf += i;
1175 ret += i;
1176 }
1177
1178 /* Wipe data just returned from memory */
1179 memset(tmp, 0, sizeof(tmp));
1180
1181 return ret;
1182}
1183
1184/*
1185 * This function is the exported kernel interface. It returns some
1186 * number of good random numbers, suitable for key generation, seeding
1187 * TCP sequence numbers, etc. It does not rely on the hardware random
1188 * number generator. For random bytes direct from the hardware RNG
1189 * (when available), use get_random_bytes_arch().
1190 */
1191void get_random_bytes(void *buf, int nbytes)
1192{
1193#if DEBUG_RANDOM_BOOT > 0
1194 if (unlikely(nonblocking_pool.initialized == 0))
1195 printk(KERN_NOTICE "random: %pF get_random_bytes called "
1196 "with %d bits of entropy available\n",
1197 (void *) _RET_IP_,
1198 nonblocking_pool.entropy_total);
1199#endif
1200 trace_get_random_bytes(nbytes, _RET_IP_);
1201 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
1202}
1203EXPORT_SYMBOL(get_random_bytes);
1204
1205/*
1206 * This function will use the architecture-specific hardware random
1207 * number generator if it is available. The arch-specific hw RNG will
1208 * almost certainly be faster than what we can do in software, but it
1209 * is impossible to verify that it is implemented securely (as
1210 * opposed, to, say, the AES encryption of a sequence number using a
1211 * key known by the NSA). So it's useful if we need the speed, but
1212 * only if we're willing to trust the hardware manufacturer not to
1213 * have put in a back door.
1214 */
1215void get_random_bytes_arch(void *buf, int nbytes)
1216{
1217 char *p = buf;
1218
1219 trace_get_random_bytes_arch(nbytes, _RET_IP_);
1220 while (nbytes) {
1221 unsigned long v;
1222 int chunk = min(nbytes, (int)sizeof(unsigned long));
1223
1224 if (!arch_get_random_long(&v))
1225 break;
1226
1227 memcpy(p, &v, chunk);
1228 p += chunk;
1229 nbytes -= chunk;
1230 }
1231
1232 if (nbytes)
1233 extract_entropy(&nonblocking_pool, p, nbytes, 0, 0);
1234}
1235EXPORT_SYMBOL(get_random_bytes_arch);
1236
1237
1238/*
1239 * init_std_data - initialize pool with system data
1240 *
1241 * @r: pool to initialize
1242 *
1243 * This function clears the pool's entropy count and mixes some system
1244 * data into the pool to prepare it for use. The pool is not cleared
1245 * as that can only decrease the entropy in the pool.
1246 */
1247static void init_std_data(struct entropy_store *r)
1248{
1249 int i;
1250 ktime_t now = ktime_get_real();
1251 unsigned long rv;
1252
1253 r->last_pulled = jiffies;
1254 mix_pool_bytes(r, &now, sizeof(now), NULL);
1255 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1256 if (!arch_get_random_seed_long(&rv) &&
1257 !arch_get_random_long(&rv))
1258 rv = random_get_entropy();
1259 mix_pool_bytes(r, &rv, sizeof(rv), NULL);
1260 }
1261 mix_pool_bytes(r, utsname(), sizeof(*(utsname())), NULL);
1262}
1263
1264/*
1265 * Note that setup_arch() may call add_device_randomness()
1266 * long before we get here. This allows seeding of the pools
1267 * with some platform dependent data very early in the boot
1268 * process. But it limits our options here. We must use
1269 * statically allocated structures that already have all
1270 * initializations complete at compile time. We should also
1271 * take care not to overwrite the precious per platform data
1272 * we were given.
1273 */
1274static int rand_initialize(void)
1275{
1276 init_std_data(&input_pool);
1277 init_std_data(&blocking_pool);
1278 init_std_data(&nonblocking_pool);
1279 return 0;
1280}
1281early_initcall(rand_initialize);
1282
1283#ifdef CONFIG_BLOCK
1284void rand_initialize_disk(struct gendisk *disk)
1285{
1286 struct timer_rand_state *state;
1287
1288 /*
1289 * If kzalloc returns null, we just won't use that entropy
1290 * source.
1291 */
1292 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1293 if (state) {
1294 state->last_time = INITIAL_JIFFIES;
1295 disk->random = state;
1296 }
1297}
1298#endif
1299
1300/*
1301 * Attempt an emergency refill using arch_get_random_seed_long().
1302 *
1303 * As with add_interrupt_randomness() be paranoid and only
1304 * credit the output as 50% entropic.
1305 */
1306static int arch_random_refill(void)
1307{
1308 const unsigned int nlongs = 64; /* Arbitrary number */
1309 unsigned int n = 0;
1310 unsigned int i;
1311 unsigned long buf[nlongs];
1312
1313 if (!arch_has_random_seed())
1314 return 0;
1315
1316 for (i = 0; i < nlongs; i++) {
1317 if (arch_get_random_seed_long(&buf[n]))
1318 n++;
1319 }
1320
1321 if (n) {
1322 unsigned int rand_bytes = n * sizeof(unsigned long);
1323
1324 mix_pool_bytes(&input_pool, buf, rand_bytes, NULL);
1325 credit_entropy_bits(&input_pool, rand_bytes*4);
1326 }
1327
1328 return n;
1329}
1330
1331static ssize_t
1332random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1333{
1334 ssize_t n;
1335
1336 if (nbytes == 0)
1337 return 0;
1338
1339 nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1340 while (1) {
1341 n = extract_entropy_user(&blocking_pool, buf, nbytes);
1342 if (n < 0)
1343 return n;
1344 trace_random_read(n*8, (nbytes-n)*8,
1345 ENTROPY_BITS(&blocking_pool),
1346 ENTROPY_BITS(&input_pool));
1347 if (n > 0)
1348 return n;
1349
1350 /* Pool is (near) empty. Maybe wait and retry. */
1351
1352 /* First try an emergency refill */
1353 if (arch_random_refill())
1354 continue;
1355
1356 if (file->f_flags & O_NONBLOCK)
1357 return -EAGAIN;
1358
1359 wait_event_interruptible(random_read_wait,
1360 ENTROPY_BITS(&input_pool) >=
1361 random_read_wakeup_bits);
1362 if (signal_pending(current))
1363 return -ERESTARTSYS;
1364 }
1365}
1366
1367static ssize_t
1368urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1369{
1370 int ret;
1371
1372 if (unlikely(nonblocking_pool.initialized == 0))
1373 printk_once(KERN_NOTICE "random: %s urandom read "
1374 "with %d bits of entropy available\n",
1375 current->comm, nonblocking_pool.entropy_total);
1376
1377 ret = extract_entropy_user(&nonblocking_pool, buf, nbytes);
1378
1379 trace_urandom_read(8 * nbytes, ENTROPY_BITS(&nonblocking_pool),
1380 ENTROPY_BITS(&input_pool));
1381 return ret;
1382}
1383
1384static unsigned int
1385random_poll(struct file *file, poll_table * wait)
1386{
1387 unsigned int mask;
1388
1389 poll_wait(file, &random_read_wait, wait);
1390 poll_wait(file, &random_write_wait, wait);
1391 mask = 0;
1392 if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1393 mask |= POLLIN | POLLRDNORM;
1394 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1395 mask |= POLLOUT | POLLWRNORM;
1396 return mask;
1397}
1398
1399static int
1400write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1401{
1402 size_t bytes;
1403 __u32 buf[16];
1404 const char __user *p = buffer;
1405
1406 while (count > 0) {
1407 bytes = min(count, sizeof(buf));
1408 if (copy_from_user(&buf, p, bytes))
1409 return -EFAULT;
1410
1411 count -= bytes;
1412 p += bytes;
1413
1414 mix_pool_bytes(r, buf, bytes, NULL);
1415 cond_resched();
1416 }
1417
1418 return 0;
1419}
1420
1421static ssize_t random_write(struct file *file, const char __user *buffer,
1422 size_t count, loff_t *ppos)
1423{
1424 size_t ret;
1425
1426 ret = write_pool(&blocking_pool, buffer, count);
1427 if (ret)
1428 return ret;
1429 ret = write_pool(&nonblocking_pool, buffer, count);
1430 if (ret)
1431 return ret;
1432
1433 return (ssize_t)count;
1434}
1435
1436static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1437{
1438 int size, ent_count;
1439 int __user *p = (int __user *)arg;
1440 int retval;
1441
1442 switch (cmd) {
1443 case RNDGETENTCNT:
1444 /* inherently racy, no point locking */
1445 ent_count = ENTROPY_BITS(&input_pool);
1446 if (put_user(ent_count, p))
1447 return -EFAULT;
1448 return 0;
1449 case RNDADDTOENTCNT:
1450 if (!capable(CAP_SYS_ADMIN))
1451 return -EPERM;
1452 if (get_user(ent_count, p))
1453 return -EFAULT;
1454 credit_entropy_bits_safe(&input_pool, ent_count);
1455 return 0;
1456 case RNDADDENTROPY:
1457 if (!capable(CAP_SYS_ADMIN))
1458 return -EPERM;
1459 if (get_user(ent_count, p++))
1460 return -EFAULT;
1461 if (ent_count < 0)
1462 return -EINVAL;
1463 if (get_user(size, p++))
1464 return -EFAULT;
1465 retval = write_pool(&input_pool, (const char __user *)p,
1466 size);
1467 if (retval < 0)
1468 return retval;
1469 credit_entropy_bits_safe(&input_pool, ent_count);
1470 return 0;
1471 case RNDZAPENTCNT:
1472 case RNDCLEARPOOL:
1473 /*
1474 * Clear the entropy pool counters. We no longer clear
1475 * the entropy pool, as that's silly.
1476 */
1477 if (!capable(CAP_SYS_ADMIN))
1478 return -EPERM;
1479 input_pool.entropy_count = 0;
1480 nonblocking_pool.entropy_count = 0;
1481 blocking_pool.entropy_count = 0;
1482 return 0;
1483 default:
1484 return -EINVAL;
1485 }
1486}
1487
1488static int random_fasync(int fd, struct file *filp, int on)
1489{
1490 return fasync_helper(fd, filp, on, &fasync);
1491}
1492
1493const struct file_operations random_fops = {
1494 .read = random_read,
1495 .write = random_write,
1496 .poll = random_poll,
1497 .unlocked_ioctl = random_ioctl,
1498 .fasync = random_fasync,
1499 .llseek = noop_llseek,
1500};
1501
1502const struct file_operations urandom_fops = {
1503 .read = urandom_read,
1504 .write = random_write,
1505 .unlocked_ioctl = random_ioctl,
1506 .fasync = random_fasync,
1507 .llseek = noop_llseek,
1508};
1509
1510/***************************************************************
1511 * Random UUID interface
1512 *
1513 * Used here for a Boot ID, but can be useful for other kernel
1514 * drivers.
1515 ***************************************************************/
1516
1517/*
1518 * Generate random UUID
1519 */
1520void generate_random_uuid(unsigned char uuid_out[16])
1521{
1522 get_random_bytes(uuid_out, 16);
1523 /* Set UUID version to 4 --- truly random generation */
1524 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1525 /* Set the UUID variant to DCE */
1526 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1527}
1528EXPORT_SYMBOL(generate_random_uuid);
1529
1530/********************************************************************
1531 *
1532 * Sysctl interface
1533 *
1534 ********************************************************************/
1535
1536#ifdef CONFIG_SYSCTL
1537
1538#include <linux/sysctl.h>
1539
1540static int min_read_thresh = 8, min_write_thresh;
1541static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
1542static int max_write_thresh = INPUT_POOL_WORDS * 32;
1543static char sysctl_bootid[16];
1544
1545/*
1546 * This function is used to return both the bootid UUID, and random
1547 * UUID. The difference is in whether table->data is NULL; if it is,
1548 * then a new UUID is generated and returned to the user.
1549 *
1550 * If the user accesses this via the proc interface, the UUID will be
1551 * returned as an ASCII string in the standard UUID format; if via the
1552 * sysctl system call, as 16 bytes of binary data.
1553 */
1554static int proc_do_uuid(struct ctl_table *table, int write,
1555 void __user *buffer, size_t *lenp, loff_t *ppos)
1556{
1557 struct ctl_table fake_table;
1558 unsigned char buf[64], tmp_uuid[16], *uuid;
1559
1560 uuid = table->data;
1561 if (!uuid) {
1562 uuid = tmp_uuid;
1563 generate_random_uuid(uuid);
1564 } else {
1565 static DEFINE_SPINLOCK(bootid_spinlock);
1566
1567 spin_lock(&bootid_spinlock);
1568 if (!uuid[8])
1569 generate_random_uuid(uuid);
1570 spin_unlock(&bootid_spinlock);
1571 }
1572
1573 sprintf(buf, "%pU", uuid);
1574
1575 fake_table.data = buf;
1576 fake_table.maxlen = sizeof(buf);
1577
1578 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
1579}
1580
1581/*
1582 * Return entropy available scaled to integral bits
1583 */
1584static int proc_do_entropy(ctl_table *table, int write,
1585 void __user *buffer, size_t *lenp, loff_t *ppos)
1586{
1587 ctl_table fake_table;
1588 int entropy_count;
1589
1590 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
1591
1592 fake_table.data = &entropy_count;
1593 fake_table.maxlen = sizeof(entropy_count);
1594
1595 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
1596}
1597
1598static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1599extern struct ctl_table random_table[];
1600struct ctl_table random_table[] = {
1601 {
1602 .procname = "poolsize",
1603 .data = &sysctl_poolsize,
1604 .maxlen = sizeof(int),
1605 .mode = 0444,
1606 .proc_handler = proc_dointvec,
1607 },
1608 {
1609 .procname = "entropy_avail",
1610 .maxlen = sizeof(int),
1611 .mode = 0444,
1612 .proc_handler = proc_do_entropy,
1613 .data = &input_pool.entropy_count,
1614 },
1615 {
1616 .procname = "read_wakeup_threshold",
1617 .data = &random_read_wakeup_bits,
1618 .maxlen = sizeof(int),
1619 .mode = 0644,
1620 .proc_handler = proc_dointvec_minmax,
1621 .extra1 = &min_read_thresh,
1622 .extra2 = &max_read_thresh,
1623 },
1624 {
1625 .procname = "write_wakeup_threshold",
1626 .data = &random_write_wakeup_bits,
1627 .maxlen = sizeof(int),
1628 .mode = 0644,
1629 .proc_handler = proc_dointvec_minmax,
1630 .extra1 = &min_write_thresh,
1631 .extra2 = &max_write_thresh,
1632 },
1633 {
1634 .procname = "urandom_min_reseed_secs",
1635 .data = &random_min_urandom_seed,
1636 .maxlen = sizeof(int),
1637 .mode = 0644,
1638 .proc_handler = proc_dointvec,
1639 },
1640 {
1641 .procname = "boot_id",
1642 .data = &sysctl_bootid,
1643 .maxlen = 16,
1644 .mode = 0444,
1645 .proc_handler = proc_do_uuid,
1646 },
1647 {
1648 .procname = "uuid",
1649 .maxlen = 16,
1650 .mode = 0444,
1651 .proc_handler = proc_do_uuid,
1652 },
1653 { }
1654};
1655#endif /* CONFIG_SYSCTL */
1656
1657static u32 random_int_secret[MD5_MESSAGE_BYTES / 4] ____cacheline_aligned;
1658
1659int random_int_secret_init(void)
1660{
1661 get_random_bytes(random_int_secret, sizeof(random_int_secret));
1662 return 0;
1663}
1664
1665/*
1666 * Get a random word for internal kernel use only. Similar to urandom but
1667 * with the goal of minimal entropy pool depletion. As a result, the random
1668 * value is not cryptographically secure but for several uses the cost of
1669 * depleting entropy is too high
1670 */
1671static DEFINE_PER_CPU(__u32 [MD5_DIGEST_WORDS], get_random_int_hash);
1672unsigned int get_random_int(void)
1673{
1674 __u32 *hash;
1675 unsigned int ret;
1676
1677 if (arch_get_random_int(&ret))
1678 return ret;
1679
1680 hash = get_cpu_var(get_random_int_hash);
1681
1682 hash[0] += current->pid + jiffies + random_get_entropy();
1683 md5_transform(hash, random_int_secret);
1684 ret = hash[0];
1685 put_cpu_var(get_random_int_hash);
1686
1687 return ret;
1688}
1689EXPORT_SYMBOL(get_random_int);
1690
1691/*
1692 * randomize_range() returns a start address such that
1693 *
1694 * [...... <range> .....]
1695 * start end
1696 *
1697 * a <range> with size "len" starting at the return value is inside in the
1698 * area defined by [start, end], but is otherwise randomized.
1699 */
1700unsigned long
1701randomize_range(unsigned long start, unsigned long end, unsigned long len)
1702{
1703 unsigned long range = end - len - start;
1704
1705 if (end <= start + len)
1706 return 0;
1707 return PAGE_ALIGN(get_random_int() % range + start);
1708}