Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
  3 *	http://www.samsung.com
  4 *
  5 *  Copyright (C) 2013 Google, Inc
  6 *
  7 *  This program is free software; you can redistribute it and/or modify
  8 *  it under the terms of the GNU General Public License as published by
  9 *  the Free Software Foundation; either version 2 of the License, or
 10 *  (at your option) any later version.
 11 *
 12 *  This program is distributed in the hope that it will be useful,
 13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 *  GNU General Public License for more details.
 16 */
 17
 18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 19
 20#include <linux/module.h>
 21#include <linux/i2c.h>
 22#include <linux/bcd.h>
 23#include <linux/regmap.h>
 24#include <linux/rtc.h>
 25#include <linux/platform_device.h>
 26#include <linux/mfd/samsung/core.h>
 27#include <linux/mfd/samsung/irq.h>
 28#include <linux/mfd/samsung/rtc.h>
 29#include <linux/mfd/samsung/s2mps14.h>
 30
 31/*
 32 * Maximum number of retries for checking changes in UDR field
 33 * of S5M_RTC_UDR_CON register (to limit possible endless loop).
 34 *
 35 * After writing to RTC registers (setting time or alarm) read the UDR field
 36 * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
 37 * been transferred.
 38 */
 39#define UDR_READ_RETRY_CNT	5
 40
 
 
 
 
 
 
 
 
 
 
 
 
 
 41/*
 42 * Registers used by the driver which are different between chipsets.
 43 *
 44 * Operations like read time and write alarm/time require updating
 45 * specific fields in UDR register. These fields usually are auto-cleared
 46 * (with some exceptions).
 47 *
 48 * Table of operations per device:
 49 *
 50 * Device     | Write time | Read time | Write alarm
 51 * =================================================
 52 * S5M8767    | UDR + TIME |           | UDR
 53 * S2MPS11/14 | WUDR       | RUDR      | WUDR + RUDR
 54 * S2MPS13    | WUDR       | RUDR      | WUDR + AUDR
 55 * S2MPS15    | WUDR       | RUDR      | AUDR
 56 */
 57struct s5m_rtc_reg_config {
 58	/* Number of registers used for setting time/alarm0/alarm1 */
 59	unsigned int regs_count;
 60	/* First register for time, seconds */
 61	unsigned int time;
 62	/* RTC control register */
 63	unsigned int ctrl;
 64	/* First register for alarm 0, seconds */
 65	unsigned int alarm0;
 66	/* First register for alarm 1, seconds */
 67	unsigned int alarm1;
 68	/*
 69	 * Register for update flag (UDR). Typically setting UDR field to 1
 70	 * will enable update of time or alarm register. Then it will be
 71	 * auto-cleared after successful update.
 72	 */
 73	unsigned int udr_update;
 74	/* Auto-cleared mask in UDR field for writing time and alarm */
 75	unsigned int autoclear_udr_mask;
 76	/*
 77	 * Masks in UDR field for time and alarm operations.
 78	 * The read time mask can be 0. Rest should not.
 79	 */
 80	unsigned int read_time_udr_mask;
 81	unsigned int write_time_udr_mask;
 82	unsigned int write_alarm_udr_mask;
 83};
 84
 85/* Register map for S5M8763 and S5M8767 */
 86static const struct s5m_rtc_reg_config s5m_rtc_regs = {
 87	.regs_count		= 8,
 88	.time			= S5M_RTC_SEC,
 89	.ctrl			= S5M_ALARM1_CONF,
 90	.alarm0			= S5M_ALARM0_SEC,
 91	.alarm1			= S5M_ALARM1_SEC,
 92	.udr_update		= S5M_RTC_UDR_CON,
 93	.autoclear_udr_mask	= S5M_RTC_UDR_MASK,
 94	.read_time_udr_mask	= 0, /* Not needed */
 95	.write_time_udr_mask	= S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
 96	.write_alarm_udr_mask	= S5M_RTC_UDR_MASK,
 97};
 98
 99/* Register map for S2MPS13 */
100static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
101	.regs_count		= 7,
102	.time			= S2MPS_RTC_SEC,
103	.ctrl			= S2MPS_RTC_CTRL,
104	.alarm0			= S2MPS_ALARM0_SEC,
105	.alarm1			= S2MPS_ALARM1_SEC,
106	.udr_update		= S2MPS_RTC_UDR_CON,
107	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
108	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
109	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
110	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
111};
112
113/* Register map for S2MPS11/14 */
114static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
115	.regs_count		= 7,
116	.time			= S2MPS_RTC_SEC,
117	.ctrl			= S2MPS_RTC_CTRL,
118	.alarm0			= S2MPS_ALARM0_SEC,
119	.alarm1			= S2MPS_ALARM1_SEC,
120	.udr_update		= S2MPS_RTC_UDR_CON,
121	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
122	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
123	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
124	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
125};
126
127/*
128 * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
129 * are swapped.
130 */
131static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
132	.regs_count		= 7,
133	.time			= S2MPS_RTC_SEC,
134	.ctrl			= S2MPS_RTC_CTRL,
135	.alarm0			= S2MPS_ALARM0_SEC,
136	.alarm1			= S2MPS_ALARM1_SEC,
137	.udr_update		= S2MPS_RTC_UDR_CON,
138	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
139	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
140	.write_time_udr_mask	= S2MPS15_RTC_WUDR_MASK,
141	.write_alarm_udr_mask	= S2MPS15_RTC_AUDR_MASK,
142};
143
144struct s5m_rtc_info {
145	struct device *dev;
146	struct i2c_client *i2c;
147	struct sec_pmic_dev *s5m87xx;
148	struct regmap *regmap;
149	struct rtc_device *rtc_dev;
150	int irq;
151	enum sec_device_type device_type;
152	int rtc_24hr_mode;
153	const struct s5m_rtc_reg_config	*regs;
154};
155
156static const struct regmap_config s5m_rtc_regmap_config = {
157	.reg_bits = 8,
158	.val_bits = 8,
159
160	.max_register = S5M_RTC_REG_MAX,
161};
162
163static const struct regmap_config s2mps14_rtc_regmap_config = {
164	.reg_bits = 8,
165	.val_bits = 8,
166
167	.max_register = S2MPS_RTC_REG_MAX,
168};
169
170static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
171			       int rtc_24hr_mode)
172{
173	tm->tm_sec = data[RTC_SEC] & 0x7f;
174	tm->tm_min = data[RTC_MIN] & 0x7f;
175	if (rtc_24hr_mode) {
176		tm->tm_hour = data[RTC_HOUR] & 0x1f;
177	} else {
178		tm->tm_hour = data[RTC_HOUR] & 0x0f;
179		if (data[RTC_HOUR] & HOUR_PM_MASK)
180			tm->tm_hour += 12;
181	}
182
183	tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
184	tm->tm_mday = data[RTC_DATE] & 0x1f;
185	tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
186	tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
187	tm->tm_yday = 0;
188	tm->tm_isdst = 0;
189}
190
191static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
192{
193	data[RTC_SEC] = tm->tm_sec;
194	data[RTC_MIN] = tm->tm_min;
195
196	if (tm->tm_hour >= 12)
197		data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
198	else
199		data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
200
201	data[RTC_WEEKDAY] = 1 << tm->tm_wday;
202	data[RTC_DATE] = tm->tm_mday;
203	data[RTC_MONTH] = tm->tm_mon + 1;
204	data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
205
206	if (tm->tm_year < 100) {
207		pr_err("RTC cannot handle the year %d\n",
208		       1900 + tm->tm_year);
209		return -EINVAL;
210	} else {
211		return 0;
212	}
213}
214
215/*
216 * Read RTC_UDR_CON register and wait till UDR field is cleared.
217 * This indicates that time/alarm update ended.
218 */
219static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
220{
221	int ret, retry = UDR_READ_RETRY_CNT;
222	unsigned int data;
223
224	do {
225		ret = regmap_read(info->regmap, info->regs->udr_update, &data);
226	} while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
227
228	if (!retry)
229		dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
230
231	return ret;
232}
233
234static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
235		struct rtc_wkalrm *alarm)
236{
237	int ret;
238	unsigned int val;
239
240	switch (info->device_type) {
241	case S5M8767X:
242	case S5M8763X:
243		ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
244		val &= S5M_ALARM0_STATUS;
245		break;
246	case S2MPS15X:
247	case S2MPS14X:
248	case S2MPS13X:
249		ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
250				&val);
251		val &= S2MPS_ALARM0_STATUS;
252		break;
253	default:
254		return -EINVAL;
255	}
256	if (ret < 0)
257		return ret;
258
259	if (val)
260		alarm->pending = 1;
261	else
262		alarm->pending = 0;
263
264	return 0;
265}
266
267static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
268{
269	int ret;
270	unsigned int data;
271
272	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
273	if (ret < 0) {
274		dev_err(info->dev, "failed to read update reg(%d)\n", ret);
275		return ret;
276	}
277
278	data |= info->regs->write_time_udr_mask;
279
280	ret = regmap_write(info->regmap, info->regs->udr_update, data);
281	if (ret < 0) {
282		dev_err(info->dev, "failed to write update reg(%d)\n", ret);
283		return ret;
284	}
285
286	ret = s5m8767_wait_for_udr_update(info);
287
288	return ret;
289}
290
291static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
292{
293	int ret;
294	unsigned int data;
295
296	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
297	if (ret < 0) {
298		dev_err(info->dev, "%s: fail to read update reg(%d)\n",
299			__func__, ret);
300		return ret;
301	}
302
303	data |= info->regs->write_alarm_udr_mask;
304	switch (info->device_type) {
305	case S5M8763X:
306	case S5M8767X:
307		data &= ~S5M_RTC_TIME_EN_MASK;
308		break;
309	case S2MPS15X:
310	case S2MPS14X:
311	case S2MPS13X:
312		/* No exceptions needed */
313		break;
314	default:
315		return -EINVAL;
316	}
317
318	ret = regmap_write(info->regmap, info->regs->udr_update, data);
319	if (ret < 0) {
320		dev_err(info->dev, "%s: fail to write update reg(%d)\n",
321			__func__, ret);
322		return ret;
323	}
324
325	ret = s5m8767_wait_for_udr_update(info);
326
327	/* On S2MPS13 the AUDR is not auto-cleared */
328	if (info->device_type == S2MPS13X)
329		regmap_update_bits(info->regmap, info->regs->udr_update,
330				   S2MPS13_RTC_AUDR_MASK, 0);
331
332	return ret;
333}
334
335static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
336{
337	tm->tm_sec = bcd2bin(data[RTC_SEC]);
338	tm->tm_min = bcd2bin(data[RTC_MIN]);
339
340	if (data[RTC_HOUR] & HOUR_12) {
341		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
342		if (data[RTC_HOUR] & HOUR_PM)
343			tm->tm_hour += 12;
344	} else {
345		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
346	}
347
348	tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
349	tm->tm_mday = bcd2bin(data[RTC_DATE]);
350	tm->tm_mon = bcd2bin(data[RTC_MONTH]);
351	tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
352	tm->tm_year -= 1900;
353}
354
355static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
356{
357	data[RTC_SEC] = bin2bcd(tm->tm_sec);
358	data[RTC_MIN] = bin2bcd(tm->tm_min);
359	data[RTC_HOUR] = bin2bcd(tm->tm_hour);
360	data[RTC_WEEKDAY] = tm->tm_wday;
361	data[RTC_DATE] = bin2bcd(tm->tm_mday);
362	data[RTC_MONTH] = bin2bcd(tm->tm_mon);
363	data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
364	data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
365}
366
367static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
368{
369	struct s5m_rtc_info *info = dev_get_drvdata(dev);
370	u8 data[info->regs->regs_count];
371	int ret;
372
373	if (info->regs->read_time_udr_mask) {
374		ret = regmap_update_bits(info->regmap,
375				info->regs->udr_update,
376				info->regs->read_time_udr_mask,
377				info->regs->read_time_udr_mask);
378		if (ret) {
379			dev_err(dev,
380				"Failed to prepare registers for time reading: %d\n",
381				ret);
382			return ret;
383		}
384	}
385	ret = regmap_bulk_read(info->regmap, info->regs->time, data,
386			info->regs->regs_count);
387	if (ret < 0)
388		return ret;
389
390	switch (info->device_type) {
391	case S5M8763X:
392		s5m8763_data_to_tm(data, tm);
393		break;
394
395	case S5M8767X:
396	case S2MPS15X:
397	case S2MPS14X:
398	case S2MPS13X:
399		s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
400		break;
401
402	default:
403		return -EINVAL;
404	}
405
406	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
407		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
408		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
409
410	return rtc_valid_tm(tm);
411}
412
413static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
414{
415	struct s5m_rtc_info *info = dev_get_drvdata(dev);
416	u8 data[info->regs->regs_count];
417	int ret = 0;
418
419	switch (info->device_type) {
420	case S5M8763X:
421		s5m8763_tm_to_data(tm, data);
422		break;
423	case S5M8767X:
424	case S2MPS15X:
425	case S2MPS14X:
426	case S2MPS13X:
427		ret = s5m8767_tm_to_data(tm, data);
428		break;
429	default:
430		return -EINVAL;
431	}
432
433	if (ret < 0)
434		return ret;
435
436	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
437		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
438		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
439
440	ret = regmap_raw_write(info->regmap, info->regs->time, data,
441			info->regs->regs_count);
442	if (ret < 0)
443		return ret;
444
445	ret = s5m8767_rtc_set_time_reg(info);
446
447	return ret;
448}
449
450static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
451{
452	struct s5m_rtc_info *info = dev_get_drvdata(dev);
453	u8 data[info->regs->regs_count];
454	unsigned int val;
455	int ret, i;
456
457	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
458			info->regs->regs_count);
459	if (ret < 0)
460		return ret;
461
462	switch (info->device_type) {
463	case S5M8763X:
464		s5m8763_data_to_tm(data, &alrm->time);
465		ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
466		if (ret < 0)
467			return ret;
468
469		alrm->enabled = !!val;
470		break;
471
472	case S5M8767X:
473	case S2MPS15X:
474	case S2MPS14X:
475	case S2MPS13X:
476		s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
477		alrm->enabled = 0;
478		for (i = 0; i < info->regs->regs_count; i++) {
479			if (data[i] & ALARM_ENABLE_MASK) {
480				alrm->enabled = 1;
481				break;
482			}
483		}
484		break;
485
486	default:
487		return -EINVAL;
488	}
489
490	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
491		1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
492		alrm->time.tm_mday, alrm->time.tm_hour,
493		alrm->time.tm_min, alrm->time.tm_sec,
494		alrm->time.tm_wday);
495
496	ret = s5m_check_peding_alarm_interrupt(info, alrm);
497
498	return 0;
499}
500
501static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
502{
503	u8 data[info->regs->regs_count];
504	int ret, i;
505	struct rtc_time tm;
506
507	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
508			info->regs->regs_count);
509	if (ret < 0)
510		return ret;
511
512	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
513	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
514		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
515		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
516
517	switch (info->device_type) {
518	case S5M8763X:
519		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
520		break;
521
522	case S5M8767X:
523	case S2MPS15X:
524	case S2MPS14X:
525	case S2MPS13X:
526		for (i = 0; i < info->regs->regs_count; i++)
527			data[i] &= ~ALARM_ENABLE_MASK;
528
529		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
530				info->regs->regs_count);
531		if (ret < 0)
532			return ret;
533
534		ret = s5m8767_rtc_set_alarm_reg(info);
535
536		break;
537
538	default:
539		return -EINVAL;
540	}
541
542	return ret;
543}
544
545static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
546{
547	int ret;
548	u8 data[info->regs->regs_count];
549	u8 alarm0_conf;
550	struct rtc_time tm;
551
552	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
553			info->regs->regs_count);
554	if (ret < 0)
555		return ret;
556
557	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
558	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
559		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
560		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
561
562	switch (info->device_type) {
563	case S5M8763X:
564		alarm0_conf = 0x77;
565		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
566		break;
567
568	case S5M8767X:
569	case S2MPS15X:
570	case S2MPS14X:
571	case S2MPS13X:
572		data[RTC_SEC] |= ALARM_ENABLE_MASK;
573		data[RTC_MIN] |= ALARM_ENABLE_MASK;
574		data[RTC_HOUR] |= ALARM_ENABLE_MASK;
575		data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
576		if (data[RTC_DATE] & 0x1f)
577			data[RTC_DATE] |= ALARM_ENABLE_MASK;
578		if (data[RTC_MONTH] & 0xf)
579			data[RTC_MONTH] |= ALARM_ENABLE_MASK;
580		if (data[RTC_YEAR1] & 0x7f)
581			data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
582
583		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
584				info->regs->regs_count);
585		if (ret < 0)
586			return ret;
587		ret = s5m8767_rtc_set_alarm_reg(info);
588
589		break;
590
591	default:
592		return -EINVAL;
593	}
594
595	return ret;
596}
597
598static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
599{
600	struct s5m_rtc_info *info = dev_get_drvdata(dev);
601	u8 data[info->regs->regs_count];
602	int ret;
603
604	switch (info->device_type) {
605	case S5M8763X:
606		s5m8763_tm_to_data(&alrm->time, data);
607		break;
608
609	case S5M8767X:
610	case S2MPS15X:
611	case S2MPS14X:
612	case S2MPS13X:
613		s5m8767_tm_to_data(&alrm->time, data);
614		break;
615
616	default:
617		return -EINVAL;
618	}
619
620	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
621		1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
622		alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min,
623		alrm->time.tm_sec, alrm->time.tm_wday);
624
625	ret = s5m_rtc_stop_alarm(info);
626	if (ret < 0)
627		return ret;
628
629	ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
630			info->regs->regs_count);
631	if (ret < 0)
632		return ret;
633
634	ret = s5m8767_rtc_set_alarm_reg(info);
635	if (ret < 0)
636		return ret;
637
638	if (alrm->enabled)
639		ret = s5m_rtc_start_alarm(info);
640
641	return ret;
642}
643
644static int s5m_rtc_alarm_irq_enable(struct device *dev,
645				    unsigned int enabled)
646{
647	struct s5m_rtc_info *info = dev_get_drvdata(dev);
648
649	if (enabled)
650		return s5m_rtc_start_alarm(info);
651	else
652		return s5m_rtc_stop_alarm(info);
653}
654
655static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
656{
657	struct s5m_rtc_info *info = data;
658
659	rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
660
661	return IRQ_HANDLED;
662}
663
664static const struct rtc_class_ops s5m_rtc_ops = {
665	.read_time = s5m_rtc_read_time,
666	.set_time = s5m_rtc_set_time,
667	.read_alarm = s5m_rtc_read_alarm,
668	.set_alarm = s5m_rtc_set_alarm,
669	.alarm_irq_enable = s5m_rtc_alarm_irq_enable,
670};
671
672static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
673{
674	u8 data[2];
675	int ret;
676
677	switch (info->device_type) {
678	case S5M8763X:
679	case S5M8767X:
680		/* UDR update time. Default of 7.32 ms is too long. */
681		ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
682				S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
683		if (ret < 0)
684			dev_err(info->dev, "%s: fail to change UDR time: %d\n",
685					__func__, ret);
686
687		/* Set RTC control register : Binary mode, 24hour mode */
688		data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
689		data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
690
691		ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
692		break;
693
694	case S2MPS15X:
695	case S2MPS14X:
696	case S2MPS13X:
697		data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
698		ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
699		if (ret < 0)
700			break;
701
702		/*
703		 * Should set WUDR & (RUDR or AUDR) bits to high after writing
704		 * RTC_CTRL register like writing Alarm registers. We can't find
705		 * the description from datasheet but vendor code does that
706		 * really.
707		 */
708		ret = s5m8767_rtc_set_alarm_reg(info);
709		break;
710
711	default:
712		return -EINVAL;
713	}
714
715	info->rtc_24hr_mode = 1;
716	if (ret < 0) {
717		dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
718			__func__, ret);
719		return ret;
720	}
721
722	return ret;
723}
724
725static int s5m_rtc_probe(struct platform_device *pdev)
726{
727	struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
728	struct sec_platform_data *pdata = s5m87xx->pdata;
729	struct s5m_rtc_info *info;
730	const struct regmap_config *regmap_cfg;
731	int ret, alarm_irq;
732
733	if (!pdata) {
734		dev_err(pdev->dev.parent, "Platform data not supplied\n");
735		return -ENODEV;
736	}
737
738	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
739	if (!info)
740		return -ENOMEM;
741
742	switch (platform_get_device_id(pdev)->driver_data) {
743	case S2MPS15X:
744		regmap_cfg = &s2mps14_rtc_regmap_config;
745		info->regs = &s2mps15_rtc_regs;
746		alarm_irq = S2MPS14_IRQ_RTCA0;
747		break;
748	case S2MPS14X:
749		regmap_cfg = &s2mps14_rtc_regmap_config;
750		info->regs = &s2mps14_rtc_regs;
751		alarm_irq = S2MPS14_IRQ_RTCA0;
752		break;
753	case S2MPS13X:
754		regmap_cfg = &s2mps14_rtc_regmap_config;
755		info->regs = &s2mps13_rtc_regs;
756		alarm_irq = S2MPS14_IRQ_RTCA0;
757		break;
758	case S5M8763X:
759		regmap_cfg = &s5m_rtc_regmap_config;
760		info->regs = &s5m_rtc_regs;
761		alarm_irq = S5M8763_IRQ_ALARM0;
762		break;
763	case S5M8767X:
764		regmap_cfg = &s5m_rtc_regmap_config;
765		info->regs = &s5m_rtc_regs;
766		alarm_irq = S5M8767_IRQ_RTCA1;
767		break;
768	default:
769		dev_err(&pdev->dev,
770				"Device type %lu is not supported by RTC driver\n",
771				platform_get_device_id(pdev)->driver_data);
772		return -ENODEV;
773	}
774
775	info->i2c = i2c_new_dummy(s5m87xx->i2c->adapter, RTC_I2C_ADDR);
776	if (!info->i2c) {
777		dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
778		return -ENODEV;
779	}
780
781	info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
782	if (IS_ERR(info->regmap)) {
783		ret = PTR_ERR(info->regmap);
784		dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
785				ret);
786		goto err;
787	}
788
789	info->dev = &pdev->dev;
790	info->s5m87xx = s5m87xx;
791	info->device_type = platform_get_device_id(pdev)->driver_data;
792
793	if (s5m87xx->irq_data) {
794		info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
795		if (info->irq <= 0) {
796			ret = -EINVAL;
797			dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
798				alarm_irq);
799			goto err;
800		}
801	}
802
803	platform_set_drvdata(pdev, info);
804
805	ret = s5m8767_rtc_init_reg(info);
806
807	device_init_wakeup(&pdev->dev, 1);
808
809	info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
810						 &s5m_rtc_ops, THIS_MODULE);
811
812	if (IS_ERR(info->rtc_dev)) {
813		ret = PTR_ERR(info->rtc_dev);
814		goto err;
815	}
816
817	if (!info->irq) {
818		dev_info(&pdev->dev, "Alarm IRQ not available\n");
819		return 0;
820	}
821
822	ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
823					s5m_rtc_alarm_irq, 0, "rtc-alarm0",
824					info);
825	if (ret < 0) {
826		dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
827			info->irq, ret);
828		goto err;
829	}
830
831	return 0;
832
833err:
834	i2c_unregister_device(info->i2c);
835
836	return ret;
837}
838
839static int s5m_rtc_remove(struct platform_device *pdev)
840{
841	struct s5m_rtc_info *info = platform_get_drvdata(pdev);
842
843	i2c_unregister_device(info->i2c);
844
845	return 0;
846}
847
848#ifdef CONFIG_PM_SLEEP
849static int s5m_rtc_resume(struct device *dev)
850{
851	struct s5m_rtc_info *info = dev_get_drvdata(dev);
852	int ret = 0;
853
854	if (info->irq && device_may_wakeup(dev))
855		ret = disable_irq_wake(info->irq);
856
857	return ret;
858}
859
860static int s5m_rtc_suspend(struct device *dev)
861{
862	struct s5m_rtc_info *info = dev_get_drvdata(dev);
863	int ret = 0;
864
865	if (info->irq && device_may_wakeup(dev))
866		ret = enable_irq_wake(info->irq);
867
868	return ret;
869}
870#endif /* CONFIG_PM_SLEEP */
871
872static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
873
874static const struct platform_device_id s5m_rtc_id[] = {
875	{ "s5m-rtc",		S5M8767X },
876	{ "s2mps13-rtc",	S2MPS13X },
877	{ "s2mps14-rtc",	S2MPS14X },
878	{ "s2mps15-rtc",	S2MPS15X },
879	{ },
880};
881MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
882
883static struct platform_driver s5m_rtc_driver = {
884	.driver		= {
885		.name	= "s5m-rtc",
886		.pm	= &s5m_rtc_pm_ops,
887	},
888	.probe		= s5m_rtc_probe,
889	.remove		= s5m_rtc_remove,
890	.id_table	= s5m_rtc_id,
891};
892
893module_platform_driver(s5m_rtc_driver);
894
895/* Module information */
896MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
897MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
898MODULE_LICENSE("GPL");
899MODULE_ALIAS("platform:s5m-rtc");
v4.17
  1/*
  2 * Copyright (c) 2013-2014 Samsung Electronics Co., Ltd
  3 *	http://www.samsung.com
  4 *
  5 *  Copyright (C) 2013 Google, Inc
  6 *
  7 *  This program is free software; you can redistribute it and/or modify
  8 *  it under the terms of the GNU General Public License as published by
  9 *  the Free Software Foundation; either version 2 of the License, or
 10 *  (at your option) any later version.
 11 *
 12 *  This program is distributed in the hope that it will be useful,
 13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 *  GNU General Public License for more details.
 16 */
 17
 18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 19
 20#include <linux/module.h>
 21#include <linux/i2c.h>
 22#include <linux/bcd.h>
 23#include <linux/regmap.h>
 24#include <linux/rtc.h>
 25#include <linux/platform_device.h>
 26#include <linux/mfd/samsung/core.h>
 27#include <linux/mfd/samsung/irq.h>
 28#include <linux/mfd/samsung/rtc.h>
 29#include <linux/mfd/samsung/s2mps14.h>
 30
 31/*
 32 * Maximum number of retries for checking changes in UDR field
 33 * of S5M_RTC_UDR_CON register (to limit possible endless loop).
 34 *
 35 * After writing to RTC registers (setting time or alarm) read the UDR field
 36 * in S5M_RTC_UDR_CON register. UDR is auto-cleared when data have
 37 * been transferred.
 38 */
 39#define UDR_READ_RETRY_CNT	5
 40
 41enum {
 42	RTC_SEC = 0,
 43	RTC_MIN,
 44	RTC_HOUR,
 45	RTC_WEEKDAY,
 46	RTC_DATE,
 47	RTC_MONTH,
 48	RTC_YEAR1,
 49	RTC_YEAR2,
 50	/* Make sure this is always the last enum name. */
 51	RTC_MAX_NUM_TIME_REGS
 52};
 53
 54/*
 55 * Registers used by the driver which are different between chipsets.
 56 *
 57 * Operations like read time and write alarm/time require updating
 58 * specific fields in UDR register. These fields usually are auto-cleared
 59 * (with some exceptions).
 60 *
 61 * Table of operations per device:
 62 *
 63 * Device     | Write time | Read time | Write alarm
 64 * =================================================
 65 * S5M8767    | UDR + TIME |           | UDR
 66 * S2MPS11/14 | WUDR       | RUDR      | WUDR + RUDR
 67 * S2MPS13    | WUDR       | RUDR      | WUDR + AUDR
 68 * S2MPS15    | WUDR       | RUDR      | AUDR
 69 */
 70struct s5m_rtc_reg_config {
 71	/* Number of registers used for setting time/alarm0/alarm1 */
 72	unsigned int regs_count;
 73	/* First register for time, seconds */
 74	unsigned int time;
 75	/* RTC control register */
 76	unsigned int ctrl;
 77	/* First register for alarm 0, seconds */
 78	unsigned int alarm0;
 79	/* First register for alarm 1, seconds */
 80	unsigned int alarm1;
 81	/*
 82	 * Register for update flag (UDR). Typically setting UDR field to 1
 83	 * will enable update of time or alarm register. Then it will be
 84	 * auto-cleared after successful update.
 85	 */
 86	unsigned int udr_update;
 87	/* Auto-cleared mask in UDR field for writing time and alarm */
 88	unsigned int autoclear_udr_mask;
 89	/*
 90	 * Masks in UDR field for time and alarm operations.
 91	 * The read time mask can be 0. Rest should not.
 92	 */
 93	unsigned int read_time_udr_mask;
 94	unsigned int write_time_udr_mask;
 95	unsigned int write_alarm_udr_mask;
 96};
 97
 98/* Register map for S5M8763 and S5M8767 */
 99static const struct s5m_rtc_reg_config s5m_rtc_regs = {
100	.regs_count		= 8,
101	.time			= S5M_RTC_SEC,
102	.ctrl			= S5M_ALARM1_CONF,
103	.alarm0			= S5M_ALARM0_SEC,
104	.alarm1			= S5M_ALARM1_SEC,
105	.udr_update		= S5M_RTC_UDR_CON,
106	.autoclear_udr_mask	= S5M_RTC_UDR_MASK,
107	.read_time_udr_mask	= 0, /* Not needed */
108	.write_time_udr_mask	= S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
109	.write_alarm_udr_mask	= S5M_RTC_UDR_MASK,
110};
111
112/* Register map for S2MPS13 */
113static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
114	.regs_count		= 7,
115	.time			= S2MPS_RTC_SEC,
116	.ctrl			= S2MPS_RTC_CTRL,
117	.alarm0			= S2MPS_ALARM0_SEC,
118	.alarm1			= S2MPS_ALARM1_SEC,
119	.udr_update		= S2MPS_RTC_UDR_CON,
120	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
121	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
122	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
123	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
124};
125
126/* Register map for S2MPS11/14 */
127static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
128	.regs_count		= 7,
129	.time			= S2MPS_RTC_SEC,
130	.ctrl			= S2MPS_RTC_CTRL,
131	.alarm0			= S2MPS_ALARM0_SEC,
132	.alarm1			= S2MPS_ALARM1_SEC,
133	.udr_update		= S2MPS_RTC_UDR_CON,
134	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
135	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
136	.write_time_udr_mask	= S2MPS_RTC_WUDR_MASK,
137	.write_alarm_udr_mask	= S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
138};
139
140/*
141 * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
142 * are swapped.
143 */
144static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
145	.regs_count		= 7,
146	.time			= S2MPS_RTC_SEC,
147	.ctrl			= S2MPS_RTC_CTRL,
148	.alarm0			= S2MPS_ALARM0_SEC,
149	.alarm1			= S2MPS_ALARM1_SEC,
150	.udr_update		= S2MPS_RTC_UDR_CON,
151	.autoclear_udr_mask	= S2MPS_RTC_WUDR_MASK,
152	.read_time_udr_mask	= S2MPS_RTC_RUDR_MASK,
153	.write_time_udr_mask	= S2MPS15_RTC_WUDR_MASK,
154	.write_alarm_udr_mask	= S2MPS15_RTC_AUDR_MASK,
155};
156
157struct s5m_rtc_info {
158	struct device *dev;
159	struct i2c_client *i2c;
160	struct sec_pmic_dev *s5m87xx;
161	struct regmap *regmap;
162	struct rtc_device *rtc_dev;
163	int irq;
164	enum sec_device_type device_type;
165	int rtc_24hr_mode;
166	const struct s5m_rtc_reg_config	*regs;
167};
168
169static const struct regmap_config s5m_rtc_regmap_config = {
170	.reg_bits = 8,
171	.val_bits = 8,
172
173	.max_register = S5M_RTC_REG_MAX,
174};
175
176static const struct regmap_config s2mps14_rtc_regmap_config = {
177	.reg_bits = 8,
178	.val_bits = 8,
179
180	.max_register = S2MPS_RTC_REG_MAX,
181};
182
183static void s5m8767_data_to_tm(u8 *data, struct rtc_time *tm,
184			       int rtc_24hr_mode)
185{
186	tm->tm_sec = data[RTC_SEC] & 0x7f;
187	tm->tm_min = data[RTC_MIN] & 0x7f;
188	if (rtc_24hr_mode) {
189		tm->tm_hour = data[RTC_HOUR] & 0x1f;
190	} else {
191		tm->tm_hour = data[RTC_HOUR] & 0x0f;
192		if (data[RTC_HOUR] & HOUR_PM_MASK)
193			tm->tm_hour += 12;
194	}
195
196	tm->tm_wday = ffs(data[RTC_WEEKDAY] & 0x7f);
197	tm->tm_mday = data[RTC_DATE] & 0x1f;
198	tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1;
199	tm->tm_year = (data[RTC_YEAR1] & 0x7f) + 100;
200	tm->tm_yday = 0;
201	tm->tm_isdst = 0;
202}
203
204static int s5m8767_tm_to_data(struct rtc_time *tm, u8 *data)
205{
206	data[RTC_SEC] = tm->tm_sec;
207	data[RTC_MIN] = tm->tm_min;
208
209	if (tm->tm_hour >= 12)
210		data[RTC_HOUR] = tm->tm_hour | HOUR_PM_MASK;
211	else
212		data[RTC_HOUR] = tm->tm_hour & ~HOUR_PM_MASK;
213
214	data[RTC_WEEKDAY] = 1 << tm->tm_wday;
215	data[RTC_DATE] = tm->tm_mday;
216	data[RTC_MONTH] = tm->tm_mon + 1;
217	data[RTC_YEAR1] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0;
218
219	if (tm->tm_year < 100) {
220		pr_err("RTC cannot handle the year %d\n",
221		       1900 + tm->tm_year);
222		return -EINVAL;
223	} else {
224		return 0;
225	}
226}
227
228/*
229 * Read RTC_UDR_CON register and wait till UDR field is cleared.
230 * This indicates that time/alarm update ended.
231 */
232static int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
233{
234	int ret, retry = UDR_READ_RETRY_CNT;
235	unsigned int data;
236
237	do {
238		ret = regmap_read(info->regmap, info->regs->udr_update, &data);
239	} while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
240
241	if (!retry)
242		dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
243
244	return ret;
245}
246
247static int s5m_check_peding_alarm_interrupt(struct s5m_rtc_info *info,
248		struct rtc_wkalrm *alarm)
249{
250	int ret;
251	unsigned int val;
252
253	switch (info->device_type) {
254	case S5M8767X:
255	case S5M8763X:
256		ret = regmap_read(info->regmap, S5M_RTC_STATUS, &val);
257		val &= S5M_ALARM0_STATUS;
258		break;
259	case S2MPS15X:
260	case S2MPS14X:
261	case S2MPS13X:
262		ret = regmap_read(info->s5m87xx->regmap_pmic, S2MPS14_REG_ST2,
263				&val);
264		val &= S2MPS_ALARM0_STATUS;
265		break;
266	default:
267		return -EINVAL;
268	}
269	if (ret < 0)
270		return ret;
271
272	if (val)
273		alarm->pending = 1;
274	else
275		alarm->pending = 0;
276
277	return 0;
278}
279
280static int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
281{
282	int ret;
283	unsigned int data;
284
285	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
286	if (ret < 0) {
287		dev_err(info->dev, "failed to read update reg(%d)\n", ret);
288		return ret;
289	}
290
291	data |= info->regs->write_time_udr_mask;
292
293	ret = regmap_write(info->regmap, info->regs->udr_update, data);
294	if (ret < 0) {
295		dev_err(info->dev, "failed to write update reg(%d)\n", ret);
296		return ret;
297	}
298
299	ret = s5m8767_wait_for_udr_update(info);
300
301	return ret;
302}
303
304static int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
305{
306	int ret;
307	unsigned int data;
308
309	ret = regmap_read(info->regmap, info->regs->udr_update, &data);
310	if (ret < 0) {
311		dev_err(info->dev, "%s: fail to read update reg(%d)\n",
312			__func__, ret);
313		return ret;
314	}
315
316	data |= info->regs->write_alarm_udr_mask;
317	switch (info->device_type) {
318	case S5M8763X:
319	case S5M8767X:
320		data &= ~S5M_RTC_TIME_EN_MASK;
321		break;
322	case S2MPS15X:
323	case S2MPS14X:
324	case S2MPS13X:
325		/* No exceptions needed */
326		break;
327	default:
328		return -EINVAL;
329	}
330
331	ret = regmap_write(info->regmap, info->regs->udr_update, data);
332	if (ret < 0) {
333		dev_err(info->dev, "%s: fail to write update reg(%d)\n",
334			__func__, ret);
335		return ret;
336	}
337
338	ret = s5m8767_wait_for_udr_update(info);
339
340	/* On S2MPS13 the AUDR is not auto-cleared */
341	if (info->device_type == S2MPS13X)
342		regmap_update_bits(info->regmap, info->regs->udr_update,
343				   S2MPS13_RTC_AUDR_MASK, 0);
344
345	return ret;
346}
347
348static void s5m8763_data_to_tm(u8 *data, struct rtc_time *tm)
349{
350	tm->tm_sec = bcd2bin(data[RTC_SEC]);
351	tm->tm_min = bcd2bin(data[RTC_MIN]);
352
353	if (data[RTC_HOUR] & HOUR_12) {
354		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x1f);
355		if (data[RTC_HOUR] & HOUR_PM)
356			tm->tm_hour += 12;
357	} else {
358		tm->tm_hour = bcd2bin(data[RTC_HOUR] & 0x3f);
359	}
360
361	tm->tm_wday = data[RTC_WEEKDAY] & 0x07;
362	tm->tm_mday = bcd2bin(data[RTC_DATE]);
363	tm->tm_mon = bcd2bin(data[RTC_MONTH]);
364	tm->tm_year = bcd2bin(data[RTC_YEAR1]) + bcd2bin(data[RTC_YEAR2]) * 100;
365	tm->tm_year -= 1900;
366}
367
368static void s5m8763_tm_to_data(struct rtc_time *tm, u8 *data)
369{
370	data[RTC_SEC] = bin2bcd(tm->tm_sec);
371	data[RTC_MIN] = bin2bcd(tm->tm_min);
372	data[RTC_HOUR] = bin2bcd(tm->tm_hour);
373	data[RTC_WEEKDAY] = tm->tm_wday;
374	data[RTC_DATE] = bin2bcd(tm->tm_mday);
375	data[RTC_MONTH] = bin2bcd(tm->tm_mon);
376	data[RTC_YEAR1] = bin2bcd(tm->tm_year % 100);
377	data[RTC_YEAR2] = bin2bcd((tm->tm_year + 1900) / 100);
378}
379
380static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
381{
382	struct s5m_rtc_info *info = dev_get_drvdata(dev);
383	u8 data[RTC_MAX_NUM_TIME_REGS];
384	int ret;
385
386	if (info->regs->read_time_udr_mask) {
387		ret = regmap_update_bits(info->regmap,
388				info->regs->udr_update,
389				info->regs->read_time_udr_mask,
390				info->regs->read_time_udr_mask);
391		if (ret) {
392			dev_err(dev,
393				"Failed to prepare registers for time reading: %d\n",
394				ret);
395			return ret;
396		}
397	}
398	ret = regmap_bulk_read(info->regmap, info->regs->time, data,
399			info->regs->regs_count);
400	if (ret < 0)
401		return ret;
402
403	switch (info->device_type) {
404	case S5M8763X:
405		s5m8763_data_to_tm(data, tm);
406		break;
407
408	case S5M8767X:
409	case S2MPS15X:
410	case S2MPS14X:
411	case S2MPS13X:
412		s5m8767_data_to_tm(data, tm, info->rtc_24hr_mode);
413		break;
414
415	default:
416		return -EINVAL;
417	}
418
419	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
420		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
421		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
422
423	return 0;
424}
425
426static int s5m_rtc_set_time(struct device *dev, struct rtc_time *tm)
427{
428	struct s5m_rtc_info *info = dev_get_drvdata(dev);
429	u8 data[RTC_MAX_NUM_TIME_REGS];
430	int ret = 0;
431
432	switch (info->device_type) {
433	case S5M8763X:
434		s5m8763_tm_to_data(tm, data);
435		break;
436	case S5M8767X:
437	case S2MPS15X:
438	case S2MPS14X:
439	case S2MPS13X:
440		ret = s5m8767_tm_to_data(tm, data);
441		break;
442	default:
443		return -EINVAL;
444	}
445
446	if (ret < 0)
447		return ret;
448
449	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
450		1900 + tm->tm_year, 1 + tm->tm_mon, tm->tm_mday,
451		tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_wday);
452
453	ret = regmap_raw_write(info->regmap, info->regs->time, data,
454			info->regs->regs_count);
455	if (ret < 0)
456		return ret;
457
458	ret = s5m8767_rtc_set_time_reg(info);
459
460	return ret;
461}
462
463static int s5m_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
464{
465	struct s5m_rtc_info *info = dev_get_drvdata(dev);
466	u8 data[RTC_MAX_NUM_TIME_REGS];
467	unsigned int val;
468	int ret, i;
469
470	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
471			info->regs->regs_count);
472	if (ret < 0)
473		return ret;
474
475	switch (info->device_type) {
476	case S5M8763X:
477		s5m8763_data_to_tm(data, &alrm->time);
478		ret = regmap_read(info->regmap, S5M_ALARM0_CONF, &val);
479		if (ret < 0)
480			return ret;
481
482		alrm->enabled = !!val;
483		break;
484
485	case S5M8767X:
486	case S2MPS15X:
487	case S2MPS14X:
488	case S2MPS13X:
489		s5m8767_data_to_tm(data, &alrm->time, info->rtc_24hr_mode);
490		alrm->enabled = 0;
491		for (i = 0; i < info->regs->regs_count; i++) {
492			if (data[i] & ALARM_ENABLE_MASK) {
493				alrm->enabled = 1;
494				break;
495			}
496		}
497		break;
498
499	default:
500		return -EINVAL;
501	}
502
503	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
504		1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
505		alrm->time.tm_mday, alrm->time.tm_hour,
506		alrm->time.tm_min, alrm->time.tm_sec,
507		alrm->time.tm_wday);
508
509	ret = s5m_check_peding_alarm_interrupt(info, alrm);
510
511	return 0;
512}
513
514static int s5m_rtc_stop_alarm(struct s5m_rtc_info *info)
515{
516	u8 data[RTC_MAX_NUM_TIME_REGS];
517	int ret, i;
518	struct rtc_time tm;
519
520	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
521			info->regs->regs_count);
522	if (ret < 0)
523		return ret;
524
525	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
526	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
527		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
528		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
529
530	switch (info->device_type) {
531	case S5M8763X:
532		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, 0);
533		break;
534
535	case S5M8767X:
536	case S2MPS15X:
537	case S2MPS14X:
538	case S2MPS13X:
539		for (i = 0; i < info->regs->regs_count; i++)
540			data[i] &= ~ALARM_ENABLE_MASK;
541
542		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
543				info->regs->regs_count);
544		if (ret < 0)
545			return ret;
546
547		ret = s5m8767_rtc_set_alarm_reg(info);
548
549		break;
550
551	default:
552		return -EINVAL;
553	}
554
555	return ret;
556}
557
558static int s5m_rtc_start_alarm(struct s5m_rtc_info *info)
559{
560	int ret;
561	u8 data[RTC_MAX_NUM_TIME_REGS];
562	u8 alarm0_conf;
563	struct rtc_time tm;
564
565	ret = regmap_bulk_read(info->regmap, info->regs->alarm0, data,
566			info->regs->regs_count);
567	if (ret < 0)
568		return ret;
569
570	s5m8767_data_to_tm(data, &tm, info->rtc_24hr_mode);
571	dev_dbg(info->dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
572		1900 + tm.tm_year, 1 + tm.tm_mon, tm.tm_mday,
573		tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_wday);
574
575	switch (info->device_type) {
576	case S5M8763X:
577		alarm0_conf = 0x77;
578		ret = regmap_write(info->regmap, S5M_ALARM0_CONF, alarm0_conf);
579		break;
580
581	case S5M8767X:
582	case S2MPS15X:
583	case S2MPS14X:
584	case S2MPS13X:
585		data[RTC_SEC] |= ALARM_ENABLE_MASK;
586		data[RTC_MIN] |= ALARM_ENABLE_MASK;
587		data[RTC_HOUR] |= ALARM_ENABLE_MASK;
588		data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK;
589		if (data[RTC_DATE] & 0x1f)
590			data[RTC_DATE] |= ALARM_ENABLE_MASK;
591		if (data[RTC_MONTH] & 0xf)
592			data[RTC_MONTH] |= ALARM_ENABLE_MASK;
593		if (data[RTC_YEAR1] & 0x7f)
594			data[RTC_YEAR1] |= ALARM_ENABLE_MASK;
595
596		ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
597				info->regs->regs_count);
598		if (ret < 0)
599			return ret;
600		ret = s5m8767_rtc_set_alarm_reg(info);
601
602		break;
603
604	default:
605		return -EINVAL;
606	}
607
608	return ret;
609}
610
611static int s5m_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
612{
613	struct s5m_rtc_info *info = dev_get_drvdata(dev);
614	u8 data[RTC_MAX_NUM_TIME_REGS];
615	int ret;
616
617	switch (info->device_type) {
618	case S5M8763X:
619		s5m8763_tm_to_data(&alrm->time, data);
620		break;
621
622	case S5M8767X:
623	case S2MPS15X:
624	case S2MPS14X:
625	case S2MPS13X:
626		s5m8767_tm_to_data(&alrm->time, data);
627		break;
628
629	default:
630		return -EINVAL;
631	}
632
633	dev_dbg(dev, "%s: %d/%d/%d %d:%d:%d(%d)\n", __func__,
634		1900 + alrm->time.tm_year, 1 + alrm->time.tm_mon,
635		alrm->time.tm_mday, alrm->time.tm_hour, alrm->time.tm_min,
636		alrm->time.tm_sec, alrm->time.tm_wday);
637
638	ret = s5m_rtc_stop_alarm(info);
639	if (ret < 0)
640		return ret;
641
642	ret = regmap_raw_write(info->regmap, info->regs->alarm0, data,
643			info->regs->regs_count);
644	if (ret < 0)
645		return ret;
646
647	ret = s5m8767_rtc_set_alarm_reg(info);
648	if (ret < 0)
649		return ret;
650
651	if (alrm->enabled)
652		ret = s5m_rtc_start_alarm(info);
653
654	return ret;
655}
656
657static int s5m_rtc_alarm_irq_enable(struct device *dev,
658				    unsigned int enabled)
659{
660	struct s5m_rtc_info *info = dev_get_drvdata(dev);
661
662	if (enabled)
663		return s5m_rtc_start_alarm(info);
664	else
665		return s5m_rtc_stop_alarm(info);
666}
667
668static irqreturn_t s5m_rtc_alarm_irq(int irq, void *data)
669{
670	struct s5m_rtc_info *info = data;
671
672	rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF);
673
674	return IRQ_HANDLED;
675}
676
677static const struct rtc_class_ops s5m_rtc_ops = {
678	.read_time = s5m_rtc_read_time,
679	.set_time = s5m_rtc_set_time,
680	.read_alarm = s5m_rtc_read_alarm,
681	.set_alarm = s5m_rtc_set_alarm,
682	.alarm_irq_enable = s5m_rtc_alarm_irq_enable,
683};
684
685static int s5m8767_rtc_init_reg(struct s5m_rtc_info *info)
686{
687	u8 data[2];
688	int ret;
689
690	switch (info->device_type) {
691	case S5M8763X:
692	case S5M8767X:
693		/* UDR update time. Default of 7.32 ms is too long. */
694		ret = regmap_update_bits(info->regmap, S5M_RTC_UDR_CON,
695				S5M_RTC_UDR_T_MASK, S5M_RTC_UDR_T_450_US);
696		if (ret < 0)
697			dev_err(info->dev, "%s: fail to change UDR time: %d\n",
698					__func__, ret);
699
700		/* Set RTC control register : Binary mode, 24hour mode */
701		data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
702		data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
703
704		ret = regmap_raw_write(info->regmap, S5M_ALARM0_CONF, data, 2);
705		break;
706
707	case S2MPS15X:
708	case S2MPS14X:
709	case S2MPS13X:
710		data[0] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT);
711		ret = regmap_write(info->regmap, info->regs->ctrl, data[0]);
712		if (ret < 0)
713			break;
714
715		/*
716		 * Should set WUDR & (RUDR or AUDR) bits to high after writing
717		 * RTC_CTRL register like writing Alarm registers. We can't find
718		 * the description from datasheet but vendor code does that
719		 * really.
720		 */
721		ret = s5m8767_rtc_set_alarm_reg(info);
722		break;
723
724	default:
725		return -EINVAL;
726	}
727
728	info->rtc_24hr_mode = 1;
729	if (ret < 0) {
730		dev_err(info->dev, "%s: fail to write controlm reg(%d)\n",
731			__func__, ret);
732		return ret;
733	}
734
735	return ret;
736}
737
738static int s5m_rtc_probe(struct platform_device *pdev)
739{
740	struct sec_pmic_dev *s5m87xx = dev_get_drvdata(pdev->dev.parent);
741	struct sec_platform_data *pdata = s5m87xx->pdata;
742	struct s5m_rtc_info *info;
743	const struct regmap_config *regmap_cfg;
744	int ret, alarm_irq;
745
746	if (!pdata) {
747		dev_err(pdev->dev.parent, "Platform data not supplied\n");
748		return -ENODEV;
749	}
750
751	info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
752	if (!info)
753		return -ENOMEM;
754
755	switch (platform_get_device_id(pdev)->driver_data) {
756	case S2MPS15X:
757		regmap_cfg = &s2mps14_rtc_regmap_config;
758		info->regs = &s2mps15_rtc_regs;
759		alarm_irq = S2MPS14_IRQ_RTCA0;
760		break;
761	case S2MPS14X:
762		regmap_cfg = &s2mps14_rtc_regmap_config;
763		info->regs = &s2mps14_rtc_regs;
764		alarm_irq = S2MPS14_IRQ_RTCA0;
765		break;
766	case S2MPS13X:
767		regmap_cfg = &s2mps14_rtc_regmap_config;
768		info->regs = &s2mps13_rtc_regs;
769		alarm_irq = S2MPS14_IRQ_RTCA0;
770		break;
771	case S5M8763X:
772		regmap_cfg = &s5m_rtc_regmap_config;
773		info->regs = &s5m_rtc_regs;
774		alarm_irq = S5M8763_IRQ_ALARM0;
775		break;
776	case S5M8767X:
777		regmap_cfg = &s5m_rtc_regmap_config;
778		info->regs = &s5m_rtc_regs;
779		alarm_irq = S5M8767_IRQ_RTCA1;
780		break;
781	default:
782		dev_err(&pdev->dev,
783				"Device type %lu is not supported by RTC driver\n",
784				platform_get_device_id(pdev)->driver_data);
785		return -ENODEV;
786	}
787
788	info->i2c = i2c_new_dummy(s5m87xx->i2c->adapter, RTC_I2C_ADDR);
789	if (!info->i2c) {
790		dev_err(&pdev->dev, "Failed to allocate I2C for RTC\n");
791		return -ENODEV;
792	}
793
794	info->regmap = devm_regmap_init_i2c(info->i2c, regmap_cfg);
795	if (IS_ERR(info->regmap)) {
796		ret = PTR_ERR(info->regmap);
797		dev_err(&pdev->dev, "Failed to allocate RTC register map: %d\n",
798				ret);
799		goto err;
800	}
801
802	info->dev = &pdev->dev;
803	info->s5m87xx = s5m87xx;
804	info->device_type = platform_get_device_id(pdev)->driver_data;
805
806	if (s5m87xx->irq_data) {
807		info->irq = regmap_irq_get_virq(s5m87xx->irq_data, alarm_irq);
808		if (info->irq <= 0) {
809			ret = -EINVAL;
810			dev_err(&pdev->dev, "Failed to get virtual IRQ %d\n",
811				alarm_irq);
812			goto err;
813		}
814	}
815
816	platform_set_drvdata(pdev, info);
817
818	ret = s5m8767_rtc_init_reg(info);
819
820	device_init_wakeup(&pdev->dev, 1);
821
822	info->rtc_dev = devm_rtc_device_register(&pdev->dev, "s5m-rtc",
823						 &s5m_rtc_ops, THIS_MODULE);
824
825	if (IS_ERR(info->rtc_dev)) {
826		ret = PTR_ERR(info->rtc_dev);
827		goto err;
828	}
829
830	if (!info->irq) {
831		dev_info(&pdev->dev, "Alarm IRQ not available\n");
832		return 0;
833	}
834
835	ret = devm_request_threaded_irq(&pdev->dev, info->irq, NULL,
836					s5m_rtc_alarm_irq, 0, "rtc-alarm0",
837					info);
838	if (ret < 0) {
839		dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
840			info->irq, ret);
841		goto err;
842	}
843
844	return 0;
845
846err:
847	i2c_unregister_device(info->i2c);
848
849	return ret;
850}
851
852static int s5m_rtc_remove(struct platform_device *pdev)
853{
854	struct s5m_rtc_info *info = platform_get_drvdata(pdev);
855
856	i2c_unregister_device(info->i2c);
857
858	return 0;
859}
860
861#ifdef CONFIG_PM_SLEEP
862static int s5m_rtc_resume(struct device *dev)
863{
864	struct s5m_rtc_info *info = dev_get_drvdata(dev);
865	int ret = 0;
866
867	if (info->irq && device_may_wakeup(dev))
868		ret = disable_irq_wake(info->irq);
869
870	return ret;
871}
872
873static int s5m_rtc_suspend(struct device *dev)
874{
875	struct s5m_rtc_info *info = dev_get_drvdata(dev);
876	int ret = 0;
877
878	if (info->irq && device_may_wakeup(dev))
879		ret = enable_irq_wake(info->irq);
880
881	return ret;
882}
883#endif /* CONFIG_PM_SLEEP */
884
885static SIMPLE_DEV_PM_OPS(s5m_rtc_pm_ops, s5m_rtc_suspend, s5m_rtc_resume);
886
887static const struct platform_device_id s5m_rtc_id[] = {
888	{ "s5m-rtc",		S5M8767X },
889	{ "s2mps13-rtc",	S2MPS13X },
890	{ "s2mps14-rtc",	S2MPS14X },
891	{ "s2mps15-rtc",	S2MPS15X },
892	{ },
893};
894MODULE_DEVICE_TABLE(platform, s5m_rtc_id);
895
896static struct platform_driver s5m_rtc_driver = {
897	.driver		= {
898		.name	= "s5m-rtc",
899		.pm	= &s5m_rtc_pm_ops,
900	},
901	.probe		= s5m_rtc_probe,
902	.remove		= s5m_rtc_remove,
903	.id_table	= s5m_rtc_id,
904};
905
906module_platform_driver(s5m_rtc_driver);
907
908/* Module information */
909MODULE_AUTHOR("Sangbeom Kim <sbkim73@samsung.com>");
910MODULE_DESCRIPTION("Samsung S5M/S2MPS14 RTC driver");
911MODULE_LICENSE("GPL");
912MODULE_ALIAS("platform:s5m-rtc");