Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
   3 *
   4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
   5 * Copyright (C) 2006 David Brownell (convert to new framework)
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; either version
  10 * 2 of the License, or (at your option) any later version.
  11 */
  12
  13/*
  14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  15 * That defined the register interface now provided by all PCs, some
  16 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
  17 * integrate an MC146818 clone in their southbridge, and boards use
  18 * that instead of discrete clones like the DS12887 or M48T86.  There
  19 * are also clones that connect using the LPC bus.
  20 *
  21 * That register API is also used directly by various other drivers
  22 * (notably for integrated NVRAM), infrastructure (x86 has code to
  23 * bypass the RTC framework, directly reading the RTC during boot
  24 * and updating minutes/seconds for systems using NTP synch) and
  25 * utilities (like userspace 'hwclock', if no /dev node exists).
  26 *
  27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  28 * interrupts disabled, holding the global rtc_lock, to exclude those
  29 * other drivers and utilities on correctly configured systems.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/kernel.h>
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/interrupt.h>
  38#include <linux/spinlock.h>
  39#include <linux/platform_device.h>
  40#include <linux/log2.h>
  41#include <linux/pm.h>
  42#include <linux/of.h>
  43#include <linux/of_platform.h>
 
 
 
  44
  45/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  46#include <asm-generic/rtc.h>
  47
  48struct cmos_rtc {
  49	struct rtc_device	*rtc;
  50	struct device		*dev;
  51	int			irq;
  52	struct resource		*iomem;
  53	time64_t		alarm_expires;
  54
  55	void			(*wake_on)(struct device *);
  56	void			(*wake_off)(struct device *);
  57
  58	u8			enabled_wake;
  59	u8			suspend_ctrl;
  60
  61	/* newer hardware extends the original register set */
  62	u8			day_alrm;
  63	u8			mon_alrm;
  64	u8			century;
 
 
  65};
  66
  67/* both platform and pnp busses use negative numbers for invalid irqs */
  68#define is_valid_irq(n)		((n) > 0)
  69
  70static const char driver_name[] = "rtc_cmos";
  71
  72/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  73 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
  74 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  75 */
  76#define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
  77
  78static inline int is_intr(u8 rtc_intr)
  79{
  80	if (!(rtc_intr & RTC_IRQF))
  81		return 0;
  82	return rtc_intr & RTC_IRQMASK;
  83}
  84
  85/*----------------------------------------------------------------*/
  86
  87/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  88 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  89 * used in a broken "legacy replacement" mode.  The breakage includes
  90 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  91 * other (better) use.
  92 *
  93 * When that broken mode is in use, platform glue provides a partial
  94 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
  95 * want to use HPET for anything except those IRQs though...
  96 */
  97#ifdef CONFIG_HPET_EMULATE_RTC
  98#include <asm/hpet.h>
  99#else
 100
 101static inline int is_hpet_enabled(void)
 102{
 103	return 0;
 104}
 105
 106static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
 107{
 108	return 0;
 109}
 110
 111static inline int hpet_set_rtc_irq_bit(unsigned long mask)
 112{
 113	return 0;
 114}
 115
 116static inline int
 117hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 118{
 119	return 0;
 120}
 121
 122static inline int hpet_set_periodic_freq(unsigned long freq)
 123{
 124	return 0;
 125}
 126
 127static inline int hpet_rtc_dropped_irq(void)
 128{
 129	return 0;
 130}
 131
 132static inline int hpet_rtc_timer_init(void)
 133{
 134	return 0;
 135}
 136
 137extern irq_handler_t hpet_rtc_interrupt;
 138
 139static inline int hpet_register_irq_handler(irq_handler_t handler)
 140{
 141	return 0;
 142}
 143
 144static inline int hpet_unregister_irq_handler(irq_handler_t handler)
 145{
 146	return 0;
 147}
 148
 149#endif
 150
 151/*----------------------------------------------------------------*/
 152
 153#ifdef RTC_PORT
 154
 155/* Most newer x86 systems have two register banks, the first used
 156 * for RTC and NVRAM and the second only for NVRAM.  Caller must
 157 * own rtc_lock ... and we won't worry about access during NMI.
 158 */
 159#define can_bank2	true
 160
 161static inline unsigned char cmos_read_bank2(unsigned char addr)
 162{
 163	outb(addr, RTC_PORT(2));
 164	return inb(RTC_PORT(3));
 165}
 166
 167static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 168{
 169	outb(addr, RTC_PORT(2));
 170	outb(val, RTC_PORT(3));
 171}
 172
 173#else
 174
 175#define can_bank2	false
 176
 177static inline unsigned char cmos_read_bank2(unsigned char addr)
 178{
 179	return 0;
 180}
 181
 182static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 183{
 184}
 185
 186#endif
 187
 188/*----------------------------------------------------------------*/
 189
 190static int cmos_read_time(struct device *dev, struct rtc_time *t)
 191{
 
 
 
 
 
 
 
 192	/* REVISIT:  if the clock has a "century" register, use
 193	 * that instead of the heuristic in get_rtc_time().
 194	 * That'll make Y3K compatility (year > 2070) easy!
 195	 */
 196	get_rtc_time(t);
 197	return 0;
 198}
 199
 200static int cmos_set_time(struct device *dev, struct rtc_time *t)
 201{
 202	/* REVISIT:  set the "century" register if available
 203	 *
 204	 * NOTE: this ignores the issue whereby updating the seconds
 205	 * takes effect exactly 500ms after we write the register.
 206	 * (Also queueing and other delays before we get this far.)
 207	 */
 208	return set_rtc_time(t);
 209}
 210
 211static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
 212{
 213	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 214	unsigned char	rtc_control;
 215
 216	if (!is_valid_irq(cmos->irq))
 217		return -EIO;
 218
 219	/* Basic alarms only support hour, minute, and seconds fields.
 220	 * Some also support day and month, for alarms up to a year in
 221	 * the future.
 222	 */
 223	t->time.tm_mday = -1;
 224	t->time.tm_mon = -1;
 225
 226	spin_lock_irq(&rtc_lock);
 227	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 228	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 229	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 230
 231	if (cmos->day_alrm) {
 232		/* ignore upper bits on readback per ACPI spec */
 233		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
 234		if (!t->time.tm_mday)
 235			t->time.tm_mday = -1;
 236
 237		if (cmos->mon_alrm) {
 238			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
 239			if (!t->time.tm_mon)
 240				t->time.tm_mon = -1;
 241		}
 242	}
 243
 244	rtc_control = CMOS_READ(RTC_CONTROL);
 245	spin_unlock_irq(&rtc_lock);
 246
 247	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 248		if (((unsigned)t->time.tm_sec) < 0x60)
 249			t->time.tm_sec = bcd2bin(t->time.tm_sec);
 250		else
 251			t->time.tm_sec = -1;
 252		if (((unsigned)t->time.tm_min) < 0x60)
 253			t->time.tm_min = bcd2bin(t->time.tm_min);
 254		else
 255			t->time.tm_min = -1;
 256		if (((unsigned)t->time.tm_hour) < 0x24)
 257			t->time.tm_hour = bcd2bin(t->time.tm_hour);
 258		else
 259			t->time.tm_hour = -1;
 260
 261		if (cmos->day_alrm) {
 262			if (((unsigned)t->time.tm_mday) <= 0x31)
 263				t->time.tm_mday = bcd2bin(t->time.tm_mday);
 264			else
 265				t->time.tm_mday = -1;
 266
 267			if (cmos->mon_alrm) {
 268				if (((unsigned)t->time.tm_mon) <= 0x12)
 269					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
 270				else
 271					t->time.tm_mon = -1;
 272			}
 273		}
 274	}
 275	t->time.tm_year = -1;
 276
 277	t->enabled = !!(rtc_control & RTC_AIE);
 278	t->pending = 0;
 279
 280	return 0;
 281}
 282
 283static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
 284{
 285	unsigned char	rtc_intr;
 286
 287	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
 288	 * allegedly some older rtcs need that to handle irqs properly
 289	 */
 290	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 291
 292	if (is_hpet_enabled())
 293		return;
 294
 295	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 296	if (is_intr(rtc_intr))
 297		rtc_update_irq(cmos->rtc, 1, rtc_intr);
 298}
 299
 300static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
 301{
 302	unsigned char	rtc_control;
 303
 304	/* flush any pending IRQ status, notably for update irqs,
 305	 * before we enable new IRQs
 306	 */
 307	rtc_control = CMOS_READ(RTC_CONTROL);
 308	cmos_checkintr(cmos, rtc_control);
 309
 310	rtc_control |= mask;
 311	CMOS_WRITE(rtc_control, RTC_CONTROL);
 312	hpet_set_rtc_irq_bit(mask);
 313
 314	cmos_checkintr(cmos, rtc_control);
 315}
 316
 317static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
 318{
 319	unsigned char	rtc_control;
 320
 321	rtc_control = CMOS_READ(RTC_CONTROL);
 322	rtc_control &= ~mask;
 323	CMOS_WRITE(rtc_control, RTC_CONTROL);
 324	hpet_mask_rtc_irq_bit(mask);
 325
 326	cmos_checkintr(cmos, rtc_control);
 327}
 328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
 330{
 331	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 332	unsigned char mon, mday, hrs, min, sec, rtc_control;
 
 333
 334	if (!is_valid_irq(cmos->irq))
 335		return -EIO;
 336
 
 
 
 
 337	mon = t->time.tm_mon + 1;
 338	mday = t->time.tm_mday;
 339	hrs = t->time.tm_hour;
 340	min = t->time.tm_min;
 341	sec = t->time.tm_sec;
 342
 343	rtc_control = CMOS_READ(RTC_CONTROL);
 344	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 345		/* Writing 0xff means "don't care" or "match all".  */
 346		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
 347		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
 348		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
 349		min = (min < 60) ? bin2bcd(min) : 0xff;
 350		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
 351	}
 352
 353	spin_lock_irq(&rtc_lock);
 354
 355	/* next rtc irq must not be from previous alarm setting */
 356	cmos_irq_disable(cmos, RTC_AIE);
 357
 358	/* update alarm */
 359	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 360	CMOS_WRITE(min, RTC_MINUTES_ALARM);
 361	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 362
 363	/* the system may support an "enhanced" alarm */
 364	if (cmos->day_alrm) {
 365		CMOS_WRITE(mday, cmos->day_alrm);
 366		if (cmos->mon_alrm)
 367			CMOS_WRITE(mon, cmos->mon_alrm);
 368	}
 369
 370	/* FIXME the HPET alarm glue currently ignores day_alrm
 371	 * and mon_alrm ...
 372	 */
 373	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
 374
 375	if (t->enabled)
 376		cmos_irq_enable(cmos, RTC_AIE);
 377
 378	spin_unlock_irq(&rtc_lock);
 379
 380	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
 381
 382	return 0;
 383}
 384
 385static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
 386{
 387	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 388	unsigned long	flags;
 389
 390	if (!is_valid_irq(cmos->irq))
 391		return -EINVAL;
 392
 393	spin_lock_irqsave(&rtc_lock, flags);
 394
 395	if (enabled)
 396		cmos_irq_enable(cmos, RTC_AIE);
 397	else
 398		cmos_irq_disable(cmos, RTC_AIE);
 399
 400	spin_unlock_irqrestore(&rtc_lock, flags);
 401	return 0;
 402}
 403
 404#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
 405
 406static int cmos_procfs(struct device *dev, struct seq_file *seq)
 407{
 408	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 409	unsigned char	rtc_control, valid;
 410
 411	spin_lock_irq(&rtc_lock);
 412	rtc_control = CMOS_READ(RTC_CONTROL);
 413	valid = CMOS_READ(RTC_VALID);
 414	spin_unlock_irq(&rtc_lock);
 415
 416	/* NOTE:  at least ICH6 reports battery status using a different
 417	 * (non-RTC) bit; and SQWE is ignored on many current systems.
 418	 */
 419	seq_printf(seq,
 420		   "periodic_IRQ\t: %s\n"
 421		   "update_IRQ\t: %s\n"
 422		   "HPET_emulated\t: %s\n"
 423		   // "square_wave\t: %s\n"
 424		   "BCD\t\t: %s\n"
 425		   "DST_enable\t: %s\n"
 426		   "periodic_freq\t: %d\n"
 427		   "batt_status\t: %s\n",
 428		   (rtc_control & RTC_PIE) ? "yes" : "no",
 429		   (rtc_control & RTC_UIE) ? "yes" : "no",
 430		   is_hpet_enabled() ? "yes" : "no",
 431		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
 432		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
 433		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
 434		   cmos->rtc->irq_freq,
 435		   (valid & RTC_VRT) ? "okay" : "dead");
 436
 437	return 0;
 438}
 439
 440#else
 441#define	cmos_procfs	NULL
 442#endif
 443
 444static const struct rtc_class_ops cmos_rtc_ops = {
 445	.read_time		= cmos_read_time,
 446	.set_time		= cmos_set_time,
 447	.read_alarm		= cmos_read_alarm,
 448	.set_alarm		= cmos_set_alarm,
 449	.proc			= cmos_procfs,
 450	.alarm_irq_enable	= cmos_alarm_irq_enable,
 451};
 452
 453/*----------------------------------------------------------------*/
 454
 455/*
 456 * All these chips have at least 64 bytes of address space, shared by
 457 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 458 * by boot firmware.  Modern chips have 128 or 256 bytes.
 459 */
 460
 461#define NVRAM_OFFSET	(RTC_REG_D + 1)
 462
 463static ssize_t
 464cmos_nvram_read(struct file *filp, struct kobject *kobj,
 465		struct bin_attribute *attr,
 466		char *buf, loff_t off, size_t count)
 467{
 
 468	int	retval;
 469
 470	off += NVRAM_OFFSET;
 471	spin_lock_irq(&rtc_lock);
 472	for (retval = 0; count; count--, off++, retval++) {
 473		if (off < 128)
 474			*buf++ = CMOS_READ(off);
 475		else if (can_bank2)
 476			*buf++ = cmos_read_bank2(off);
 477		else
 478			break;
 479	}
 480	spin_unlock_irq(&rtc_lock);
 481
 482	return retval;
 483}
 484
 485static ssize_t
 486cmos_nvram_write(struct file *filp, struct kobject *kobj,
 487		struct bin_attribute *attr,
 488		char *buf, loff_t off, size_t count)
 489{
 490	struct cmos_rtc	*cmos;
 
 491	int		retval;
 492
 493	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
 494
 495	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
 496	 * checksum on part of the NVRAM data.  That's currently ignored
 497	 * here.  If userspace is smart enough to know what fields of
 498	 * NVRAM to update, updating checksums is also part of its job.
 499	 */
 500	off += NVRAM_OFFSET;
 501	spin_lock_irq(&rtc_lock);
 502	for (retval = 0; count; count--, off++, retval++) {
 503		/* don't trash RTC registers */
 504		if (off == cmos->day_alrm
 505				|| off == cmos->mon_alrm
 506				|| off == cmos->century)
 507			buf++;
 508		else if (off < 128)
 509			CMOS_WRITE(*buf++, off);
 510		else if (can_bank2)
 511			cmos_write_bank2(*buf++, off);
 512		else
 513			break;
 514	}
 515	spin_unlock_irq(&rtc_lock);
 516
 517	return retval;
 518}
 519
 520static struct bin_attribute nvram = {
 521	.attr = {
 522		.name	= "nvram",
 523		.mode	= S_IRUGO | S_IWUSR,
 524	},
 525
 526	.read	= cmos_nvram_read,
 527	.write	= cmos_nvram_write,
 528	/* size gets set up later */
 529};
 530
 531/*----------------------------------------------------------------*/
 532
 533static struct cmos_rtc	cmos_rtc;
 534
 535static irqreturn_t cmos_interrupt(int irq, void *p)
 536{
 537	u8		irqstat;
 538	u8		rtc_control;
 539
 540	spin_lock(&rtc_lock);
 541
 542	/* When the HPET interrupt handler calls us, the interrupt
 543	 * status is passed as arg1 instead of the irq number.  But
 544	 * always clear irq status, even when HPET is in the way.
 545	 *
 546	 * Note that HPET and RTC are almost certainly out of phase,
 547	 * giving different IRQ status ...
 548	 */
 549	irqstat = CMOS_READ(RTC_INTR_FLAGS);
 550	rtc_control = CMOS_READ(RTC_CONTROL);
 551	if (is_hpet_enabled())
 552		irqstat = (unsigned long)irq & 0xF0;
 553
 554	/* If we were suspended, RTC_CONTROL may not be accurate since the
 555	 * bios may have cleared it.
 556	 */
 557	if (!cmos_rtc.suspend_ctrl)
 558		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 559	else
 560		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
 561
 562	/* All Linux RTC alarms should be treated as if they were oneshot.
 563	 * Similar code may be needed in system wakeup paths, in case the
 564	 * alarm woke the system.
 565	 */
 566	if (irqstat & RTC_AIE) {
 567		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 568		rtc_control &= ~RTC_AIE;
 569		CMOS_WRITE(rtc_control, RTC_CONTROL);
 570		hpet_mask_rtc_irq_bit(RTC_AIE);
 571		CMOS_READ(RTC_INTR_FLAGS);
 572	}
 573	spin_unlock(&rtc_lock);
 574
 575	if (is_intr(irqstat)) {
 576		rtc_update_irq(p, 1, irqstat);
 577		return IRQ_HANDLED;
 578	} else
 579		return IRQ_NONE;
 580}
 581
 582#ifdef	CONFIG_PNP
 583#define	INITSECTION
 584
 585#else
 586#define	INITSECTION	__init
 587#endif
 588
 589static int INITSECTION
 590cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
 591{
 592	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
 593	int				retval = 0;
 594	unsigned char			rtc_control;
 595	unsigned			address_space;
 596	u32				flags = 0;
 
 
 
 
 
 
 
 
 597
 598	/* there can be only one ... */
 599	if (cmos_rtc.dev)
 600		return -EBUSY;
 601
 602	if (!ports)
 603		return -ENODEV;
 604
 605	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
 606	 *
 607	 * REVISIT non-x86 systems may instead use memory space resources
 608	 * (needing ioremap etc), not i/o space resources like this ...
 609	 */
 610	if (RTC_IOMAPPED)
 611		ports = request_region(ports->start, resource_size(ports),
 612				       driver_name);
 613	else
 614		ports = request_mem_region(ports->start, resource_size(ports),
 615					   driver_name);
 616	if (!ports) {
 617		dev_dbg(dev, "i/o registers already in use\n");
 618		return -EBUSY;
 619	}
 620
 621	cmos_rtc.irq = rtc_irq;
 622	cmos_rtc.iomem = ports;
 623
 624	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
 625	 * driver did, but don't reject unknown configs.   Old hardware
 626	 * won't address 128 bytes.  Newer chips have multiple banks,
 627	 * though they may not be listed in one I/O resource.
 628	 */
 629#if	defined(CONFIG_ATARI)
 630	address_space = 64;
 631#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
 632			|| defined(__sparc__) || defined(__mips__) \
 633			|| defined(__powerpc__)
 634	address_space = 128;
 635#else
 636#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
 637	address_space = 128;
 638#endif
 639	if (can_bank2 && ports->end > (ports->start + 1))
 640		address_space = 256;
 641
 642	/* For ACPI systems extension info comes from the FADT.  On others,
 643	 * board specific setup provides it as appropriate.  Systems where
 644	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
 645	 * some almost-clones) can provide hooks to make that behave.
 646	 *
 647	 * Note that ACPI doesn't preclude putting these registers into
 648	 * "extended" areas of the chip, including some that we won't yet
 649	 * expect CMOS_READ and friends to handle.
 650	 */
 651	if (info) {
 652		if (info->flags)
 653			flags = info->flags;
 654		if (info->address_space)
 655			address_space = info->address_space;
 656
 657		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
 658			cmos_rtc.day_alrm = info->rtc_day_alarm;
 659		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
 660			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
 661		if (info->rtc_century && info->rtc_century < 128)
 662			cmos_rtc.century = info->rtc_century;
 663
 664		if (info->wake_on && info->wake_off) {
 665			cmos_rtc.wake_on = info->wake_on;
 666			cmos_rtc.wake_off = info->wake_off;
 667		}
 668	}
 669
 670	cmos_rtc.dev = dev;
 671	dev_set_drvdata(dev, &cmos_rtc);
 672
 673	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
 674				&cmos_rtc_ops, THIS_MODULE);
 675	if (IS_ERR(cmos_rtc.rtc)) {
 676		retval = PTR_ERR(cmos_rtc.rtc);
 677		goto cleanup0;
 678	}
 679
 680	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
 681
 682	spin_lock_irq(&rtc_lock);
 683
 684	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
 685		/* force periodic irq to CMOS reset default of 1024Hz;
 686		 *
 687		 * REVISIT it's been reported that at least one x86_64 ALI
 688		 * mobo doesn't use 32KHz here ... for portability we might
 689		 * need to do something about other clock frequencies.
 690		 */
 691		cmos_rtc.rtc->irq_freq = 1024;
 692		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
 693		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
 694	}
 695
 696	/* disable irqs */
 697	if (is_valid_irq(rtc_irq))
 698		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
 699
 700	rtc_control = CMOS_READ(RTC_CONTROL);
 701
 702	spin_unlock_irq(&rtc_lock);
 703
 704	/* FIXME:
 705	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
 706	 */
 707	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
 708		dev_warn(dev, "only 24-hr supported\n");
 709		retval = -ENXIO;
 710		goto cleanup1;
 711	}
 712
 
 
 713	if (is_valid_irq(rtc_irq)) {
 714		irq_handler_t rtc_cmos_int_handler;
 715
 716		if (is_hpet_enabled()) {
 717			rtc_cmos_int_handler = hpet_rtc_interrupt;
 718			retval = hpet_register_irq_handler(cmos_interrupt);
 719			if (retval) {
 
 720				dev_warn(dev, "hpet_register_irq_handler "
 721						" failed in rtc_init().");
 722				goto cleanup1;
 723			}
 724		} else
 725			rtc_cmos_int_handler = cmos_interrupt;
 726
 727		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
 728				IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
 729				cmos_rtc.rtc);
 730		if (retval < 0) {
 731			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
 732			goto cleanup1;
 733		}
 734	}
 735	hpet_rtc_timer_init();
 736
 737	/* export at least the first block of NVRAM */
 738	nvram.size = address_space - NVRAM_OFFSET;
 739	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
 740	if (retval < 0) {
 741		dev_dbg(dev, "can't create nvram file? %d\n", retval);
 742		goto cleanup2;
 743	}
 744
 745	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
 746		!is_valid_irq(rtc_irq) ? "no alarms" :
 747			cmos_rtc.mon_alrm ? "alarms up to one year" :
 748			cmos_rtc.day_alrm ? "alarms up to one month" :
 749			"alarms up to one day",
 750		cmos_rtc.century ? ", y3k" : "",
 751		nvram.size,
 752		is_hpet_enabled() ? ", hpet irqs" : "");
 
 
 
 
 
 753
 754	return 0;
 755
 756cleanup2:
 757	if (is_valid_irq(rtc_irq))
 758		free_irq(rtc_irq, cmos_rtc.rtc);
 759cleanup1:
 760	cmos_rtc.dev = NULL;
 761	rtc_device_unregister(cmos_rtc.rtc);
 762cleanup0:
 763	if (RTC_IOMAPPED)
 764		release_region(ports->start, resource_size(ports));
 765	else
 766		release_mem_region(ports->start, resource_size(ports));
 767	return retval;
 768}
 769
 770static void cmos_do_shutdown(int rtc_irq)
 771{
 772	spin_lock_irq(&rtc_lock);
 773	if (is_valid_irq(rtc_irq))
 774		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
 775	spin_unlock_irq(&rtc_lock);
 776}
 777
 778static void __exit cmos_do_remove(struct device *dev)
 779{
 780	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 781	struct resource *ports;
 782
 783	cmos_do_shutdown(cmos->irq);
 784
 785	sysfs_remove_bin_file(&dev->kobj, &nvram);
 786
 787	if (is_valid_irq(cmos->irq)) {
 788		free_irq(cmos->irq, cmos->rtc);
 789		hpet_unregister_irq_handler(cmos_interrupt);
 790	}
 791
 792	rtc_device_unregister(cmos->rtc);
 793	cmos->rtc = NULL;
 794
 795	ports = cmos->iomem;
 796	if (RTC_IOMAPPED)
 797		release_region(ports->start, resource_size(ports));
 798	else
 799		release_mem_region(ports->start, resource_size(ports));
 800	cmos->iomem = NULL;
 801
 802	cmos->dev = NULL;
 803}
 804
 805static int cmos_aie_poweroff(struct device *dev)
 806{
 807	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 808	struct rtc_time now;
 809	time64_t t_now;
 810	int retval = 0;
 811	unsigned char rtc_control;
 812
 813	if (!cmos->alarm_expires)
 814		return -EINVAL;
 815
 816	spin_lock_irq(&rtc_lock);
 817	rtc_control = CMOS_READ(RTC_CONTROL);
 818	spin_unlock_irq(&rtc_lock);
 819
 820	/* We only care about the situation where AIE is disabled. */
 821	if (rtc_control & RTC_AIE)
 822		return -EBUSY;
 823
 824	cmos_read_time(dev, &now);
 825	t_now = rtc_tm_to_time64(&now);
 826
 827	/*
 828	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
 829	 * automatically right after shutdown on some buggy boxes.
 830	 * This automatic rebooting issue won't happen when the alarm
 831	 * time is larger than now+1 seconds.
 832	 *
 833	 * If the alarm time is equal to now+1 seconds, the issue can be
 834	 * prevented by cancelling the alarm.
 835	 */
 836	if (cmos->alarm_expires == t_now + 1) {
 837		struct rtc_wkalrm alarm;
 838
 839		/* Cancel the AIE timer by configuring the past time. */
 840		rtc_time64_to_tm(t_now - 1, &alarm.time);
 841		alarm.enabled = 0;
 842		retval = cmos_set_alarm(dev, &alarm);
 843	} else if (cmos->alarm_expires > t_now + 1) {
 844		retval = -EBUSY;
 845	}
 846
 847	return retval;
 848}
 849
 850#ifdef CONFIG_PM
 851
 852static int cmos_suspend(struct device *dev)
 853{
 854	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 855	unsigned char	tmp;
 856
 857	/* only the alarm might be a wakeup event source */
 858	spin_lock_irq(&rtc_lock);
 859	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
 860	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
 861		unsigned char	mask;
 862
 863		if (device_may_wakeup(dev))
 864			mask = RTC_IRQMASK & ~RTC_AIE;
 865		else
 866			mask = RTC_IRQMASK;
 867		tmp &= ~mask;
 868		CMOS_WRITE(tmp, RTC_CONTROL);
 869		hpet_mask_rtc_irq_bit(mask);
 870
 871		cmos_checkintr(cmos, tmp);
 872	}
 873	spin_unlock_irq(&rtc_lock);
 874
 875	if (tmp & RTC_AIE) {
 876		cmos->enabled_wake = 1;
 877		if (cmos->wake_on)
 878			cmos->wake_on(dev);
 879		else
 880			enable_irq_wake(cmos->irq);
 881	}
 882
 
 
 883	dev_dbg(dev, "suspend%s, ctrl %02x\n",
 884			(tmp & RTC_AIE) ? ", alarm may wake" : "",
 885			tmp);
 886
 887	return 0;
 888}
 889
 890/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
 891 * after a detour through G3 "mechanical off", although the ACPI spec
 892 * says wakeup should only work from G1/S4 "hibernate".  To most users,
 893 * distinctions between S4 and S5 are pointless.  So when the hardware
 894 * allows, don't draw that distinction.
 895 */
 896static inline int cmos_poweroff(struct device *dev)
 897{
 
 
 
 898	return cmos_suspend(dev);
 899}
 900
 901#ifdef	CONFIG_PM_SLEEP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902
 903static int cmos_resume(struct device *dev)
 904{
 905	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 906	unsigned char tmp;
 907
 908	if (cmos->enabled_wake) {
 909		if (cmos->wake_off)
 910			cmos->wake_off(dev);
 911		else
 912			disable_irq_wake(cmos->irq);
 913		cmos->enabled_wake = 0;
 914	}
 915
 
 
 
 916	spin_lock_irq(&rtc_lock);
 917	tmp = cmos->suspend_ctrl;
 918	cmos->suspend_ctrl = 0;
 919	/* re-enable any irqs previously active */
 920	if (tmp & RTC_IRQMASK) {
 921		unsigned char	mask;
 922
 923		if (device_may_wakeup(dev))
 924			hpet_rtc_timer_init();
 925
 926		do {
 927			CMOS_WRITE(tmp, RTC_CONTROL);
 928			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
 929
 930			mask = CMOS_READ(RTC_INTR_FLAGS);
 931			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
 932			if (!is_hpet_enabled() || !is_intr(mask))
 933				break;
 934
 935			/* force one-shot behavior if HPET blocked
 936			 * the wake alarm's irq
 937			 */
 938			rtc_update_irq(cmos->rtc, 1, mask);
 939			tmp &= ~RTC_AIE;
 940			hpet_mask_rtc_irq_bit(RTC_AIE);
 941		} while (mask & RTC_AIE);
 
 
 
 942	}
 943	spin_unlock_irq(&rtc_lock);
 944
 945	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
 946
 947	return 0;
 948}
 949
 950#endif
 951#else
 952
 953static inline int cmos_poweroff(struct device *dev)
 954{
 955	return -ENOSYS;
 956}
 957
 958#endif
 959
 960static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
 961
 962/*----------------------------------------------------------------*/
 963
 964/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
 965 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
 966 * probably list them in similar PNPBIOS tables; so PNP is more common.
 967 *
 968 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
 969 * predate even PNPBIOS should set up platform_bus devices.
 970 */
 971
 972#ifdef	CONFIG_ACPI
 973
 974#include <linux/acpi.h>
 975
 976static u32 rtc_handler(void *context)
 977{
 978	struct device *dev = context;
 
 
 
 
 979
 980	pm_wakeup_event(dev, 0);
 
 
 
 
 
 
 
 
 
 
 
 981	acpi_clear_event(ACPI_EVENT_RTC);
 982	acpi_disable_event(ACPI_EVENT_RTC, 0);
 983	return ACPI_INTERRUPT_HANDLED;
 984}
 985
 986static inline void rtc_wake_setup(struct device *dev)
 987{
 988	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
 989	/*
 990	 * After the RTC handler is installed, the Fixed_RTC event should
 991	 * be disabled. Only when the RTC alarm is set will it be enabled.
 992	 */
 993	acpi_clear_event(ACPI_EVENT_RTC);
 994	acpi_disable_event(ACPI_EVENT_RTC, 0);
 995}
 996
 997static void rtc_wake_on(struct device *dev)
 998{
 999	acpi_clear_event(ACPI_EVENT_RTC);
1000	acpi_enable_event(ACPI_EVENT_RTC, 0);
1001}
1002
1003static void rtc_wake_off(struct device *dev)
1004{
1005	acpi_disable_event(ACPI_EVENT_RTC, 0);
1006}
1007
1008/* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1009 * its device node and pass extra config data.  This helps its driver use
1010 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1011 * that this board's RTC is wakeup-capable (per ACPI spec).
1012 */
1013static struct cmos_rtc_board_info acpi_rtc_info;
1014
1015static void cmos_wake_setup(struct device *dev)
1016{
1017	if (acpi_disabled)
1018		return;
1019
1020	rtc_wake_setup(dev);
1021	acpi_rtc_info.wake_on = rtc_wake_on;
1022	acpi_rtc_info.wake_off = rtc_wake_off;
1023
1024	/* workaround bug in some ACPI tables */
1025	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1026		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1027			acpi_gbl_FADT.month_alarm);
1028		acpi_gbl_FADT.month_alarm = 0;
1029	}
1030
1031	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1032	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1033	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1034
1035	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1036	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1037		dev_info(dev, "RTC can wake from S4\n");
1038
1039	dev->platform_data = &acpi_rtc_info;
1040
1041	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1042	device_init_wakeup(dev, 1);
1043}
1044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045#else
1046
1047static void cmos_wake_setup(struct device *dev)
1048{
1049}
1050
 
 
 
 
 
1051#endif
1052
1053#ifdef	CONFIG_PNP
1054
1055#include <linux/pnp.h>
1056
1057static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1058{
1059	cmos_wake_setup(&pnp->dev);
1060
1061	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
 
 
1062		/* Some machines contain a PNP entry for the RTC, but
1063		 * don't define the IRQ. It should always be safe to
1064		 * hardcode it in these cases
1065		 */
 
 
 
1066		return cmos_do_probe(&pnp->dev,
1067				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1068	else
1069		return cmos_do_probe(&pnp->dev,
1070				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1071				pnp_irq(pnp, 0));
 
1072}
1073
1074static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1075{
1076	cmos_do_remove(&pnp->dev);
1077}
1078
1079static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1080{
1081	struct device *dev = &pnp->dev;
1082	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1083
1084	if (system_state == SYSTEM_POWER_OFF) {
1085		int retval = cmos_poweroff(dev);
1086
1087		if (cmos_aie_poweroff(dev) < 0 && !retval)
1088			return;
1089	}
1090
1091	cmos_do_shutdown(cmos->irq);
1092}
1093
1094static const struct pnp_device_id rtc_ids[] = {
1095	{ .id = "PNP0b00", },
1096	{ .id = "PNP0b01", },
1097	{ .id = "PNP0b02", },
1098	{ },
1099};
1100MODULE_DEVICE_TABLE(pnp, rtc_ids);
1101
1102static struct pnp_driver cmos_pnp_driver = {
1103	.name		= (char *) driver_name,
1104	.id_table	= rtc_ids,
1105	.probe		= cmos_pnp_probe,
1106	.remove		= __exit_p(cmos_pnp_remove),
1107	.shutdown	= cmos_pnp_shutdown,
1108
1109	/* flag ensures resume() gets called, and stops syslog spam */
1110	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1111	.driver		= {
1112			.pm = &cmos_pm_ops,
1113	},
1114};
1115
1116#endif	/* CONFIG_PNP */
1117
1118#ifdef CONFIG_OF
1119static const struct of_device_id of_cmos_match[] = {
1120	{
1121		.compatible = "motorola,mc146818",
1122	},
1123	{ },
1124};
1125MODULE_DEVICE_TABLE(of, of_cmos_match);
1126
1127static __init void cmos_of_init(struct platform_device *pdev)
1128{
1129	struct device_node *node = pdev->dev.of_node;
1130	struct rtc_time time;
1131	int ret;
1132	const __be32 *val;
1133
1134	if (!node)
1135		return;
1136
1137	val = of_get_property(node, "ctrl-reg", NULL);
1138	if (val)
1139		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1140
1141	val = of_get_property(node, "freq-reg", NULL);
1142	if (val)
1143		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1144
1145	get_rtc_time(&time);
1146	ret = rtc_valid_tm(&time);
1147	if (ret) {
1148		struct rtc_time def_time = {
1149			.tm_year = 1,
1150			.tm_mday = 1,
1151		};
1152		set_rtc_time(&def_time);
1153	}
1154}
1155#else
1156static inline void cmos_of_init(struct platform_device *pdev) {}
1157#endif
1158/*----------------------------------------------------------------*/
1159
1160/* Platform setup should have set up an RTC device, when PNP is
1161 * unavailable ... this could happen even on (older) PCs.
1162 */
1163
1164static int __init cmos_platform_probe(struct platform_device *pdev)
1165{
1166	struct resource *resource;
1167	int irq;
1168
1169	cmos_of_init(pdev);
1170	cmos_wake_setup(&pdev->dev);
1171
1172	if (RTC_IOMAPPED)
1173		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1174	else
1175		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1176	irq = platform_get_irq(pdev, 0);
1177	if (irq < 0)
1178		irq = -1;
1179
1180	return cmos_do_probe(&pdev->dev, resource, irq);
1181}
1182
1183static int __exit cmos_platform_remove(struct platform_device *pdev)
1184{
1185	cmos_do_remove(&pdev->dev);
1186	return 0;
1187}
1188
1189static void cmos_platform_shutdown(struct platform_device *pdev)
1190{
1191	struct device *dev = &pdev->dev;
1192	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1193
1194	if (system_state == SYSTEM_POWER_OFF) {
1195		int retval = cmos_poweroff(dev);
1196
1197		if (cmos_aie_poweroff(dev) < 0 && !retval)
1198			return;
1199	}
1200
1201	cmos_do_shutdown(cmos->irq);
1202}
1203
1204/* work with hotplug and coldplug */
1205MODULE_ALIAS("platform:rtc_cmos");
1206
1207static struct platform_driver cmos_platform_driver = {
1208	.remove		= __exit_p(cmos_platform_remove),
1209	.shutdown	= cmos_platform_shutdown,
1210	.driver = {
1211		.name		= driver_name,
1212#ifdef CONFIG_PM
1213		.pm		= &cmos_pm_ops,
1214#endif
1215		.of_match_table = of_match_ptr(of_cmos_match),
1216	}
1217};
1218
1219#ifdef CONFIG_PNP
1220static bool pnp_driver_registered;
1221#endif
1222static bool platform_driver_registered;
1223
1224static int __init cmos_init(void)
1225{
1226	int retval = 0;
1227
1228#ifdef	CONFIG_PNP
1229	retval = pnp_register_driver(&cmos_pnp_driver);
1230	if (retval == 0)
1231		pnp_driver_registered = true;
1232#endif
1233
1234	if (!cmos_rtc.dev) {
1235		retval = platform_driver_probe(&cmos_platform_driver,
1236					       cmos_platform_probe);
1237		if (retval == 0)
1238			platform_driver_registered = true;
1239	}
1240
1241	if (retval == 0)
1242		return 0;
1243
1244#ifdef	CONFIG_PNP
1245	if (pnp_driver_registered)
1246		pnp_unregister_driver(&cmos_pnp_driver);
1247#endif
1248	return retval;
1249}
1250module_init(cmos_init);
1251
1252static void __exit cmos_exit(void)
1253{
1254#ifdef	CONFIG_PNP
1255	if (pnp_driver_registered)
1256		pnp_unregister_driver(&cmos_pnp_driver);
1257#endif
1258	if (platform_driver_registered)
1259		platform_driver_unregister(&cmos_platform_driver);
1260}
1261module_exit(cmos_exit);
1262
1263
1264MODULE_AUTHOR("David Brownell");
1265MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1266MODULE_LICENSE("GPL");
v4.17
   1/*
   2 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
   3 *
   4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
   5 * Copyright (C) 2006 David Brownell (convert to new framework)
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; either version
  10 * 2 of the License, or (at your option) any later version.
  11 */
  12
  13/*
  14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  15 * That defined the register interface now provided by all PCs, some
  16 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
  17 * integrate an MC146818 clone in their southbridge, and boards use
  18 * that instead of discrete clones like the DS12887 or M48T86.  There
  19 * are also clones that connect using the LPC bus.
  20 *
  21 * That register API is also used directly by various other drivers
  22 * (notably for integrated NVRAM), infrastructure (x86 has code to
  23 * bypass the RTC framework, directly reading the RTC during boot
  24 * and updating minutes/seconds for systems using NTP synch) and
  25 * utilities (like userspace 'hwclock', if no /dev node exists).
  26 *
  27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  28 * interrupts disabled, holding the global rtc_lock, to exclude those
  29 * other drivers and utilities on correctly configured systems.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/kernel.h>
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/interrupt.h>
  38#include <linux/spinlock.h>
  39#include <linux/platform_device.h>
  40#include <linux/log2.h>
  41#include <linux/pm.h>
  42#include <linux/of.h>
  43#include <linux/of_platform.h>
  44#ifdef CONFIG_X86
  45#include <asm/i8259.h>
  46#endif
  47
  48/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  49#include <linux/mc146818rtc.h>
  50
  51struct cmos_rtc {
  52	struct rtc_device	*rtc;
  53	struct device		*dev;
  54	int			irq;
  55	struct resource		*iomem;
  56	time64_t		alarm_expires;
  57
  58	void			(*wake_on)(struct device *);
  59	void			(*wake_off)(struct device *);
  60
  61	u8			enabled_wake;
  62	u8			suspend_ctrl;
  63
  64	/* newer hardware extends the original register set */
  65	u8			day_alrm;
  66	u8			mon_alrm;
  67	u8			century;
  68
  69	struct rtc_wkalrm	saved_wkalrm;
  70};
  71
  72/* both platform and pnp busses use negative numbers for invalid irqs */
  73#define is_valid_irq(n)		((n) > 0)
  74
  75static const char driver_name[] = "rtc_cmos";
  76
  77/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  78 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
  79 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  80 */
  81#define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
  82
  83static inline int is_intr(u8 rtc_intr)
  84{
  85	if (!(rtc_intr & RTC_IRQF))
  86		return 0;
  87	return rtc_intr & RTC_IRQMASK;
  88}
  89
  90/*----------------------------------------------------------------*/
  91
  92/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  93 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  94 * used in a broken "legacy replacement" mode.  The breakage includes
  95 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  96 * other (better) use.
  97 *
  98 * When that broken mode is in use, platform glue provides a partial
  99 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
 100 * want to use HPET for anything except those IRQs though...
 101 */
 102#ifdef CONFIG_HPET_EMULATE_RTC
 103#include <asm/hpet.h>
 104#else
 105
 106static inline int is_hpet_enabled(void)
 107{
 108	return 0;
 109}
 110
 111static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
 112{
 113	return 0;
 114}
 115
 116static inline int hpet_set_rtc_irq_bit(unsigned long mask)
 117{
 118	return 0;
 119}
 120
 121static inline int
 122hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 123{
 124	return 0;
 125}
 126
 127static inline int hpet_set_periodic_freq(unsigned long freq)
 128{
 129	return 0;
 130}
 131
 132static inline int hpet_rtc_dropped_irq(void)
 133{
 134	return 0;
 135}
 136
 137static inline int hpet_rtc_timer_init(void)
 138{
 139	return 0;
 140}
 141
 142extern irq_handler_t hpet_rtc_interrupt;
 143
 144static inline int hpet_register_irq_handler(irq_handler_t handler)
 145{
 146	return 0;
 147}
 148
 149static inline int hpet_unregister_irq_handler(irq_handler_t handler)
 150{
 151	return 0;
 152}
 153
 154#endif
 155
 156/*----------------------------------------------------------------*/
 157
 158#ifdef RTC_PORT
 159
 160/* Most newer x86 systems have two register banks, the first used
 161 * for RTC and NVRAM and the second only for NVRAM.  Caller must
 162 * own rtc_lock ... and we won't worry about access during NMI.
 163 */
 164#define can_bank2	true
 165
 166static inline unsigned char cmos_read_bank2(unsigned char addr)
 167{
 168	outb(addr, RTC_PORT(2));
 169	return inb(RTC_PORT(3));
 170}
 171
 172static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 173{
 174	outb(addr, RTC_PORT(2));
 175	outb(val, RTC_PORT(3));
 176}
 177
 178#else
 179
 180#define can_bank2	false
 181
 182static inline unsigned char cmos_read_bank2(unsigned char addr)
 183{
 184	return 0;
 185}
 186
 187static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 188{
 189}
 190
 191#endif
 192
 193/*----------------------------------------------------------------*/
 194
 195static int cmos_read_time(struct device *dev, struct rtc_time *t)
 196{
 197	/*
 198	 * If pm_trace abused the RTC for storage, set the timespec to 0,
 199	 * which tells the caller that this RTC value is unusable.
 200	 */
 201	if (!pm_trace_rtc_valid())
 202		return -EIO;
 203
 204	/* REVISIT:  if the clock has a "century" register, use
 205	 * that instead of the heuristic in mc146818_get_time().
 206	 * That'll make Y3K compatility (year > 2070) easy!
 207	 */
 208	mc146818_get_time(t);
 209	return 0;
 210}
 211
 212static int cmos_set_time(struct device *dev, struct rtc_time *t)
 213{
 214	/* REVISIT:  set the "century" register if available
 215	 *
 216	 * NOTE: this ignores the issue whereby updating the seconds
 217	 * takes effect exactly 500ms after we write the register.
 218	 * (Also queueing and other delays before we get this far.)
 219	 */
 220	return mc146818_set_time(t);
 221}
 222
 223static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
 224{
 225	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 226	unsigned char	rtc_control;
 227
 228	if (!is_valid_irq(cmos->irq))
 229		return -EIO;
 230
 231	/* Basic alarms only support hour, minute, and seconds fields.
 232	 * Some also support day and month, for alarms up to a year in
 233	 * the future.
 234	 */
 
 
 235
 236	spin_lock_irq(&rtc_lock);
 237	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 238	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 239	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 240
 241	if (cmos->day_alrm) {
 242		/* ignore upper bits on readback per ACPI spec */
 243		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
 244		if (!t->time.tm_mday)
 245			t->time.tm_mday = -1;
 246
 247		if (cmos->mon_alrm) {
 248			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
 249			if (!t->time.tm_mon)
 250				t->time.tm_mon = -1;
 251		}
 252	}
 253
 254	rtc_control = CMOS_READ(RTC_CONTROL);
 255	spin_unlock_irq(&rtc_lock);
 256
 257	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 258		if (((unsigned)t->time.tm_sec) < 0x60)
 259			t->time.tm_sec = bcd2bin(t->time.tm_sec);
 260		else
 261			t->time.tm_sec = -1;
 262		if (((unsigned)t->time.tm_min) < 0x60)
 263			t->time.tm_min = bcd2bin(t->time.tm_min);
 264		else
 265			t->time.tm_min = -1;
 266		if (((unsigned)t->time.tm_hour) < 0x24)
 267			t->time.tm_hour = bcd2bin(t->time.tm_hour);
 268		else
 269			t->time.tm_hour = -1;
 270
 271		if (cmos->day_alrm) {
 272			if (((unsigned)t->time.tm_mday) <= 0x31)
 273				t->time.tm_mday = bcd2bin(t->time.tm_mday);
 274			else
 275				t->time.tm_mday = -1;
 276
 277			if (cmos->mon_alrm) {
 278				if (((unsigned)t->time.tm_mon) <= 0x12)
 279					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
 280				else
 281					t->time.tm_mon = -1;
 282			}
 283		}
 284	}
 
 285
 286	t->enabled = !!(rtc_control & RTC_AIE);
 287	t->pending = 0;
 288
 289	return 0;
 290}
 291
 292static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
 293{
 294	unsigned char	rtc_intr;
 295
 296	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
 297	 * allegedly some older rtcs need that to handle irqs properly
 298	 */
 299	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 300
 301	if (is_hpet_enabled())
 302		return;
 303
 304	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 305	if (is_intr(rtc_intr))
 306		rtc_update_irq(cmos->rtc, 1, rtc_intr);
 307}
 308
 309static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
 310{
 311	unsigned char	rtc_control;
 312
 313	/* flush any pending IRQ status, notably for update irqs,
 314	 * before we enable new IRQs
 315	 */
 316	rtc_control = CMOS_READ(RTC_CONTROL);
 317	cmos_checkintr(cmos, rtc_control);
 318
 319	rtc_control |= mask;
 320	CMOS_WRITE(rtc_control, RTC_CONTROL);
 321	hpet_set_rtc_irq_bit(mask);
 322
 323	cmos_checkintr(cmos, rtc_control);
 324}
 325
 326static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
 327{
 328	unsigned char	rtc_control;
 329
 330	rtc_control = CMOS_READ(RTC_CONTROL);
 331	rtc_control &= ~mask;
 332	CMOS_WRITE(rtc_control, RTC_CONTROL);
 333	hpet_mask_rtc_irq_bit(mask);
 334
 335	cmos_checkintr(cmos, rtc_control);
 336}
 337
 338static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
 339{
 340	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 341	struct rtc_time now;
 342
 343	cmos_read_time(dev, &now);
 344
 345	if (!cmos->day_alrm) {
 346		time64_t t_max_date;
 347		time64_t t_alrm;
 348
 349		t_max_date = rtc_tm_to_time64(&now);
 350		t_max_date += 24 * 60 * 60 - 1;
 351		t_alrm = rtc_tm_to_time64(&t->time);
 352		if (t_alrm > t_max_date) {
 353			dev_err(dev,
 354				"Alarms can be up to one day in the future\n");
 355			return -EINVAL;
 356		}
 357	} else if (!cmos->mon_alrm) {
 358		struct rtc_time max_date = now;
 359		time64_t t_max_date;
 360		time64_t t_alrm;
 361		int max_mday;
 362
 363		if (max_date.tm_mon == 11) {
 364			max_date.tm_mon = 0;
 365			max_date.tm_year += 1;
 366		} else {
 367			max_date.tm_mon += 1;
 368		}
 369		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 370		if (max_date.tm_mday > max_mday)
 371			max_date.tm_mday = max_mday;
 372
 373		t_max_date = rtc_tm_to_time64(&max_date);
 374		t_max_date -= 1;
 375		t_alrm = rtc_tm_to_time64(&t->time);
 376		if (t_alrm > t_max_date) {
 377			dev_err(dev,
 378				"Alarms can be up to one month in the future\n");
 379			return -EINVAL;
 380		}
 381	} else {
 382		struct rtc_time max_date = now;
 383		time64_t t_max_date;
 384		time64_t t_alrm;
 385		int max_mday;
 386
 387		max_date.tm_year += 1;
 388		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 389		if (max_date.tm_mday > max_mday)
 390			max_date.tm_mday = max_mday;
 391
 392		t_max_date = rtc_tm_to_time64(&max_date);
 393		t_max_date -= 1;
 394		t_alrm = rtc_tm_to_time64(&t->time);
 395		if (t_alrm > t_max_date) {
 396			dev_err(dev,
 397				"Alarms can be up to one year in the future\n");
 398			return -EINVAL;
 399		}
 400	}
 401
 402	return 0;
 403}
 404
 405static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
 406{
 407	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 408	unsigned char mon, mday, hrs, min, sec, rtc_control;
 409	int ret;
 410
 411	if (!is_valid_irq(cmos->irq))
 412		return -EIO;
 413
 414	ret = cmos_validate_alarm(dev, t);
 415	if (ret < 0)
 416		return ret;
 417
 418	mon = t->time.tm_mon + 1;
 419	mday = t->time.tm_mday;
 420	hrs = t->time.tm_hour;
 421	min = t->time.tm_min;
 422	sec = t->time.tm_sec;
 423
 424	rtc_control = CMOS_READ(RTC_CONTROL);
 425	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 426		/* Writing 0xff means "don't care" or "match all".  */
 427		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
 428		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
 429		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
 430		min = (min < 60) ? bin2bcd(min) : 0xff;
 431		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
 432	}
 433
 434	spin_lock_irq(&rtc_lock);
 435
 436	/* next rtc irq must not be from previous alarm setting */
 437	cmos_irq_disable(cmos, RTC_AIE);
 438
 439	/* update alarm */
 440	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 441	CMOS_WRITE(min, RTC_MINUTES_ALARM);
 442	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 443
 444	/* the system may support an "enhanced" alarm */
 445	if (cmos->day_alrm) {
 446		CMOS_WRITE(mday, cmos->day_alrm);
 447		if (cmos->mon_alrm)
 448			CMOS_WRITE(mon, cmos->mon_alrm);
 449	}
 450
 451	/* FIXME the HPET alarm glue currently ignores day_alrm
 452	 * and mon_alrm ...
 453	 */
 454	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
 455
 456	if (t->enabled)
 457		cmos_irq_enable(cmos, RTC_AIE);
 458
 459	spin_unlock_irq(&rtc_lock);
 460
 461	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
 462
 463	return 0;
 464}
 465
 466static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
 467{
 468	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 469	unsigned long	flags;
 470
 471	if (!is_valid_irq(cmos->irq))
 472		return -EINVAL;
 473
 474	spin_lock_irqsave(&rtc_lock, flags);
 475
 476	if (enabled)
 477		cmos_irq_enable(cmos, RTC_AIE);
 478	else
 479		cmos_irq_disable(cmos, RTC_AIE);
 480
 481	spin_unlock_irqrestore(&rtc_lock, flags);
 482	return 0;
 483}
 484
 485#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
 486
 487static int cmos_procfs(struct device *dev, struct seq_file *seq)
 488{
 489	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 490	unsigned char	rtc_control, valid;
 491
 492	spin_lock_irq(&rtc_lock);
 493	rtc_control = CMOS_READ(RTC_CONTROL);
 494	valid = CMOS_READ(RTC_VALID);
 495	spin_unlock_irq(&rtc_lock);
 496
 497	/* NOTE:  at least ICH6 reports battery status using a different
 498	 * (non-RTC) bit; and SQWE is ignored on many current systems.
 499	 */
 500	seq_printf(seq,
 501		   "periodic_IRQ\t: %s\n"
 502		   "update_IRQ\t: %s\n"
 503		   "HPET_emulated\t: %s\n"
 504		   // "square_wave\t: %s\n"
 505		   "BCD\t\t: %s\n"
 506		   "DST_enable\t: %s\n"
 507		   "periodic_freq\t: %d\n"
 508		   "batt_status\t: %s\n",
 509		   (rtc_control & RTC_PIE) ? "yes" : "no",
 510		   (rtc_control & RTC_UIE) ? "yes" : "no",
 511		   is_hpet_enabled() ? "yes" : "no",
 512		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
 513		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
 514		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
 515		   cmos->rtc->irq_freq,
 516		   (valid & RTC_VRT) ? "okay" : "dead");
 517
 518	return 0;
 519}
 520
 521#else
 522#define	cmos_procfs	NULL
 523#endif
 524
 525static const struct rtc_class_ops cmos_rtc_ops = {
 526	.read_time		= cmos_read_time,
 527	.set_time		= cmos_set_time,
 528	.read_alarm		= cmos_read_alarm,
 529	.set_alarm		= cmos_set_alarm,
 530	.proc			= cmos_procfs,
 531	.alarm_irq_enable	= cmos_alarm_irq_enable,
 532};
 533
 534/*----------------------------------------------------------------*/
 535
 536/*
 537 * All these chips have at least 64 bytes of address space, shared by
 538 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 539 * by boot firmware.  Modern chips have 128 or 256 bytes.
 540 */
 541
 542#define NVRAM_OFFSET	(RTC_REG_D + 1)
 543
 544static int cmos_nvram_read(void *priv, unsigned int off, void *val,
 545			   size_t count)
 
 
 546{
 547	unsigned char *buf = val;
 548	int	retval;
 549
 550	off += NVRAM_OFFSET;
 551	spin_lock_irq(&rtc_lock);
 552	for (retval = 0; count; count--, off++, retval++) {
 553		if (off < 128)
 554			*buf++ = CMOS_READ(off);
 555		else if (can_bank2)
 556			*buf++ = cmos_read_bank2(off);
 557		else
 558			break;
 559	}
 560	spin_unlock_irq(&rtc_lock);
 561
 562	return retval;
 563}
 564
 565static int cmos_nvram_write(void *priv, unsigned int off, void *val,
 566			    size_t count)
 
 
 567{
 568	struct cmos_rtc	*cmos = priv;
 569	unsigned char	*buf = val;
 570	int		retval;
 571
 
 
 572	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
 573	 * checksum on part of the NVRAM data.  That's currently ignored
 574	 * here.  If userspace is smart enough to know what fields of
 575	 * NVRAM to update, updating checksums is also part of its job.
 576	 */
 577	off += NVRAM_OFFSET;
 578	spin_lock_irq(&rtc_lock);
 579	for (retval = 0; count; count--, off++, retval++) {
 580		/* don't trash RTC registers */
 581		if (off == cmos->day_alrm
 582				|| off == cmos->mon_alrm
 583				|| off == cmos->century)
 584			buf++;
 585		else if (off < 128)
 586			CMOS_WRITE(*buf++, off);
 587		else if (can_bank2)
 588			cmos_write_bank2(*buf++, off);
 589		else
 590			break;
 591	}
 592	spin_unlock_irq(&rtc_lock);
 593
 594	return retval;
 595}
 596
 
 
 
 
 
 
 
 
 
 
 
 597/*----------------------------------------------------------------*/
 598
 599static struct cmos_rtc	cmos_rtc;
 600
 601static irqreturn_t cmos_interrupt(int irq, void *p)
 602{
 603	u8		irqstat;
 604	u8		rtc_control;
 605
 606	spin_lock(&rtc_lock);
 607
 608	/* When the HPET interrupt handler calls us, the interrupt
 609	 * status is passed as arg1 instead of the irq number.  But
 610	 * always clear irq status, even when HPET is in the way.
 611	 *
 612	 * Note that HPET and RTC are almost certainly out of phase,
 613	 * giving different IRQ status ...
 614	 */
 615	irqstat = CMOS_READ(RTC_INTR_FLAGS);
 616	rtc_control = CMOS_READ(RTC_CONTROL);
 617	if (is_hpet_enabled())
 618		irqstat = (unsigned long)irq & 0xF0;
 619
 620	/* If we were suspended, RTC_CONTROL may not be accurate since the
 621	 * bios may have cleared it.
 622	 */
 623	if (!cmos_rtc.suspend_ctrl)
 624		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 625	else
 626		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
 627
 628	/* All Linux RTC alarms should be treated as if they were oneshot.
 629	 * Similar code may be needed in system wakeup paths, in case the
 630	 * alarm woke the system.
 631	 */
 632	if (irqstat & RTC_AIE) {
 633		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 634		rtc_control &= ~RTC_AIE;
 635		CMOS_WRITE(rtc_control, RTC_CONTROL);
 636		hpet_mask_rtc_irq_bit(RTC_AIE);
 637		CMOS_READ(RTC_INTR_FLAGS);
 638	}
 639	spin_unlock(&rtc_lock);
 640
 641	if (is_intr(irqstat)) {
 642		rtc_update_irq(p, 1, irqstat);
 643		return IRQ_HANDLED;
 644	} else
 645		return IRQ_NONE;
 646}
 647
 648#ifdef	CONFIG_PNP
 649#define	INITSECTION
 650
 651#else
 652#define	INITSECTION	__init
 653#endif
 654
 655static int INITSECTION
 656cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
 657{
 658	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
 659	int				retval = 0;
 660	unsigned char			rtc_control;
 661	unsigned			address_space;
 662	u32				flags = 0;
 663	struct nvmem_config nvmem_cfg = {
 664		.name = "cmos_nvram",
 665		.word_size = 1,
 666		.stride = 1,
 667		.reg_read = cmos_nvram_read,
 668		.reg_write = cmos_nvram_write,
 669		.priv = &cmos_rtc,
 670	};
 671
 672	/* there can be only one ... */
 673	if (cmos_rtc.dev)
 674		return -EBUSY;
 675
 676	if (!ports)
 677		return -ENODEV;
 678
 679	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
 680	 *
 681	 * REVISIT non-x86 systems may instead use memory space resources
 682	 * (needing ioremap etc), not i/o space resources like this ...
 683	 */
 684	if (RTC_IOMAPPED)
 685		ports = request_region(ports->start, resource_size(ports),
 686				       driver_name);
 687	else
 688		ports = request_mem_region(ports->start, resource_size(ports),
 689					   driver_name);
 690	if (!ports) {
 691		dev_dbg(dev, "i/o registers already in use\n");
 692		return -EBUSY;
 693	}
 694
 695	cmos_rtc.irq = rtc_irq;
 696	cmos_rtc.iomem = ports;
 697
 698	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
 699	 * driver did, but don't reject unknown configs.   Old hardware
 700	 * won't address 128 bytes.  Newer chips have multiple banks,
 701	 * though they may not be listed in one I/O resource.
 702	 */
 703#if	defined(CONFIG_ATARI)
 704	address_space = 64;
 705#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
 706			|| defined(__sparc__) || defined(__mips__) \
 707			|| defined(__powerpc__)
 708	address_space = 128;
 709#else
 710#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
 711	address_space = 128;
 712#endif
 713	if (can_bank2 && ports->end > (ports->start + 1))
 714		address_space = 256;
 715
 716	/* For ACPI systems extension info comes from the FADT.  On others,
 717	 * board specific setup provides it as appropriate.  Systems where
 718	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
 719	 * some almost-clones) can provide hooks to make that behave.
 720	 *
 721	 * Note that ACPI doesn't preclude putting these registers into
 722	 * "extended" areas of the chip, including some that we won't yet
 723	 * expect CMOS_READ and friends to handle.
 724	 */
 725	if (info) {
 726		if (info->flags)
 727			flags = info->flags;
 728		if (info->address_space)
 729			address_space = info->address_space;
 730
 731		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
 732			cmos_rtc.day_alrm = info->rtc_day_alarm;
 733		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
 734			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
 735		if (info->rtc_century && info->rtc_century < 128)
 736			cmos_rtc.century = info->rtc_century;
 737
 738		if (info->wake_on && info->wake_off) {
 739			cmos_rtc.wake_on = info->wake_on;
 740			cmos_rtc.wake_off = info->wake_off;
 741		}
 742	}
 743
 744	cmos_rtc.dev = dev;
 745	dev_set_drvdata(dev, &cmos_rtc);
 746
 747	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
 
 748	if (IS_ERR(cmos_rtc.rtc)) {
 749		retval = PTR_ERR(cmos_rtc.rtc);
 750		goto cleanup0;
 751	}
 752
 753	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
 754
 755	spin_lock_irq(&rtc_lock);
 756
 757	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
 758		/* force periodic irq to CMOS reset default of 1024Hz;
 759		 *
 760		 * REVISIT it's been reported that at least one x86_64 ALI
 761		 * mobo doesn't use 32KHz here ... for portability we might
 762		 * need to do something about other clock frequencies.
 763		 */
 764		cmos_rtc.rtc->irq_freq = 1024;
 765		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
 766		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
 767	}
 768
 769	/* disable irqs */
 770	if (is_valid_irq(rtc_irq))
 771		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
 772
 773	rtc_control = CMOS_READ(RTC_CONTROL);
 774
 775	spin_unlock_irq(&rtc_lock);
 776
 
 
 
 777	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
 778		dev_warn(dev, "only 24-hr supported\n");
 779		retval = -ENXIO;
 780		goto cleanup1;
 781	}
 782
 783	hpet_rtc_timer_init();
 784
 785	if (is_valid_irq(rtc_irq)) {
 786		irq_handler_t rtc_cmos_int_handler;
 787
 788		if (is_hpet_enabled()) {
 789			rtc_cmos_int_handler = hpet_rtc_interrupt;
 790			retval = hpet_register_irq_handler(cmos_interrupt);
 791			if (retval) {
 792				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
 793				dev_warn(dev, "hpet_register_irq_handler "
 794						" failed in rtc_init().");
 795				goto cleanup1;
 796			}
 797		} else
 798			rtc_cmos_int_handler = cmos_interrupt;
 799
 800		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
 801				IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
 802				cmos_rtc.rtc);
 803		if (retval < 0) {
 804			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
 805			goto cleanup1;
 806		}
 807	}
 
 808
 809	cmos_rtc.rtc->ops = &cmos_rtc_ops;
 810	cmos_rtc.rtc->nvram_old_abi = true;
 811	retval = rtc_register_device(cmos_rtc.rtc);
 812	if (retval)
 
 813		goto cleanup2;
 
 814
 815	/* export at least the first block of NVRAM */
 816	nvmem_cfg.size = address_space - NVRAM_OFFSET;
 817	if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
 818		dev_err(dev, "nvmem registration failed\n");
 819
 820	dev_info(dev, "%s%s, %d bytes nvram%s\n",
 821		 !is_valid_irq(rtc_irq) ? "no alarms" :
 822		 cmos_rtc.mon_alrm ? "alarms up to one year" :
 823		 cmos_rtc.day_alrm ? "alarms up to one month" :
 824		 "alarms up to one day",
 825		 cmos_rtc.century ? ", y3k" : "",
 826		 nvmem_cfg.size,
 827		 is_hpet_enabled() ? ", hpet irqs" : "");
 828
 829	return 0;
 830
 831cleanup2:
 832	if (is_valid_irq(rtc_irq))
 833		free_irq(rtc_irq, cmos_rtc.rtc);
 834cleanup1:
 835	cmos_rtc.dev = NULL;
 
 836cleanup0:
 837	if (RTC_IOMAPPED)
 838		release_region(ports->start, resource_size(ports));
 839	else
 840		release_mem_region(ports->start, resource_size(ports));
 841	return retval;
 842}
 843
 844static void cmos_do_shutdown(int rtc_irq)
 845{
 846	spin_lock_irq(&rtc_lock);
 847	if (is_valid_irq(rtc_irq))
 848		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
 849	spin_unlock_irq(&rtc_lock);
 850}
 851
 852static void cmos_do_remove(struct device *dev)
 853{
 854	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 855	struct resource *ports;
 856
 857	cmos_do_shutdown(cmos->irq);
 858
 
 
 859	if (is_valid_irq(cmos->irq)) {
 860		free_irq(cmos->irq, cmos->rtc);
 861		hpet_unregister_irq_handler(cmos_interrupt);
 862	}
 863
 
 864	cmos->rtc = NULL;
 865
 866	ports = cmos->iomem;
 867	if (RTC_IOMAPPED)
 868		release_region(ports->start, resource_size(ports));
 869	else
 870		release_mem_region(ports->start, resource_size(ports));
 871	cmos->iomem = NULL;
 872
 873	cmos->dev = NULL;
 874}
 875
 876static int cmos_aie_poweroff(struct device *dev)
 877{
 878	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 879	struct rtc_time now;
 880	time64_t t_now;
 881	int retval = 0;
 882	unsigned char rtc_control;
 883
 884	if (!cmos->alarm_expires)
 885		return -EINVAL;
 886
 887	spin_lock_irq(&rtc_lock);
 888	rtc_control = CMOS_READ(RTC_CONTROL);
 889	spin_unlock_irq(&rtc_lock);
 890
 891	/* We only care about the situation where AIE is disabled. */
 892	if (rtc_control & RTC_AIE)
 893		return -EBUSY;
 894
 895	cmos_read_time(dev, &now);
 896	t_now = rtc_tm_to_time64(&now);
 897
 898	/*
 899	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
 900	 * automatically right after shutdown on some buggy boxes.
 901	 * This automatic rebooting issue won't happen when the alarm
 902	 * time is larger than now+1 seconds.
 903	 *
 904	 * If the alarm time is equal to now+1 seconds, the issue can be
 905	 * prevented by cancelling the alarm.
 906	 */
 907	if (cmos->alarm_expires == t_now + 1) {
 908		struct rtc_wkalrm alarm;
 909
 910		/* Cancel the AIE timer by configuring the past time. */
 911		rtc_time64_to_tm(t_now - 1, &alarm.time);
 912		alarm.enabled = 0;
 913		retval = cmos_set_alarm(dev, &alarm);
 914	} else if (cmos->alarm_expires > t_now + 1) {
 915		retval = -EBUSY;
 916	}
 917
 918	return retval;
 919}
 920
 
 
 921static int cmos_suspend(struct device *dev)
 922{
 923	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 924	unsigned char	tmp;
 925
 926	/* only the alarm might be a wakeup event source */
 927	spin_lock_irq(&rtc_lock);
 928	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
 929	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
 930		unsigned char	mask;
 931
 932		if (device_may_wakeup(dev))
 933			mask = RTC_IRQMASK & ~RTC_AIE;
 934		else
 935			mask = RTC_IRQMASK;
 936		tmp &= ~mask;
 937		CMOS_WRITE(tmp, RTC_CONTROL);
 938		hpet_mask_rtc_irq_bit(mask);
 939
 940		cmos_checkintr(cmos, tmp);
 941	}
 942	spin_unlock_irq(&rtc_lock);
 943
 944	if (tmp & RTC_AIE) {
 945		cmos->enabled_wake = 1;
 946		if (cmos->wake_on)
 947			cmos->wake_on(dev);
 948		else
 949			enable_irq_wake(cmos->irq);
 950	}
 951
 952	cmos_read_alarm(dev, &cmos->saved_wkalrm);
 953
 954	dev_dbg(dev, "suspend%s, ctrl %02x\n",
 955			(tmp & RTC_AIE) ? ", alarm may wake" : "",
 956			tmp);
 957
 958	return 0;
 959}
 960
 961/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
 962 * after a detour through G3 "mechanical off", although the ACPI spec
 963 * says wakeup should only work from G1/S4 "hibernate".  To most users,
 964 * distinctions between S4 and S5 are pointless.  So when the hardware
 965 * allows, don't draw that distinction.
 966 */
 967static inline int cmos_poweroff(struct device *dev)
 968{
 969	if (!IS_ENABLED(CONFIG_PM))
 970		return -ENOSYS;
 971
 972	return cmos_suspend(dev);
 973}
 974
 975static void cmos_check_wkalrm(struct device *dev)
 976{
 977	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 978	struct rtc_wkalrm current_alarm;
 979	time64_t t_current_expires;
 980	time64_t t_saved_expires;
 981
 982	cmos_read_alarm(dev, &current_alarm);
 983	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
 984	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
 985	if (t_current_expires != t_saved_expires ||
 986	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
 987		cmos_set_alarm(dev, &cmos->saved_wkalrm);
 988	}
 989}
 990
 991static void cmos_check_acpi_rtc_status(struct device *dev,
 992				       unsigned char *rtc_control);
 993
 994static int __maybe_unused cmos_resume(struct device *dev)
 995{
 996	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 997	unsigned char tmp;
 998
 999	if (cmos->enabled_wake) {
1000		if (cmos->wake_off)
1001			cmos->wake_off(dev);
1002		else
1003			disable_irq_wake(cmos->irq);
1004		cmos->enabled_wake = 0;
1005	}
1006
1007	/* The BIOS might have changed the alarm, restore it */
1008	cmos_check_wkalrm(dev);
1009
1010	spin_lock_irq(&rtc_lock);
1011	tmp = cmos->suspend_ctrl;
1012	cmos->suspend_ctrl = 0;
1013	/* re-enable any irqs previously active */
1014	if (tmp & RTC_IRQMASK) {
1015		unsigned char	mask;
1016
1017		if (device_may_wakeup(dev))
1018			hpet_rtc_timer_init();
1019
1020		do {
1021			CMOS_WRITE(tmp, RTC_CONTROL);
1022			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1023
1024			mask = CMOS_READ(RTC_INTR_FLAGS);
1025			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1026			if (!is_hpet_enabled() || !is_intr(mask))
1027				break;
1028
1029			/* force one-shot behavior if HPET blocked
1030			 * the wake alarm's irq
1031			 */
1032			rtc_update_irq(cmos->rtc, 1, mask);
1033			tmp &= ~RTC_AIE;
1034			hpet_mask_rtc_irq_bit(RTC_AIE);
1035		} while (mask & RTC_AIE);
1036
1037		if (tmp & RTC_AIE)
1038			cmos_check_acpi_rtc_status(dev, &tmp);
1039	}
1040	spin_unlock_irq(&rtc_lock);
1041
1042	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1043
1044	return 0;
1045}
1046
 
 
 
 
 
 
 
 
 
 
1047static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1048
1049/*----------------------------------------------------------------*/
1050
1051/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1052 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1053 * probably list them in similar PNPBIOS tables; so PNP is more common.
1054 *
1055 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1056 * predate even PNPBIOS should set up platform_bus devices.
1057 */
1058
1059#ifdef	CONFIG_ACPI
1060
1061#include <linux/acpi.h>
1062
1063static u32 rtc_handler(void *context)
1064{
1065	struct device *dev = context;
1066	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1067	unsigned char rtc_control = 0;
1068	unsigned char rtc_intr;
1069	unsigned long flags;
1070
1071	spin_lock_irqsave(&rtc_lock, flags);
1072	if (cmos_rtc.suspend_ctrl)
1073		rtc_control = CMOS_READ(RTC_CONTROL);
1074	if (rtc_control & RTC_AIE) {
1075		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1076		CMOS_WRITE(rtc_control, RTC_CONTROL);
1077		rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1078		rtc_update_irq(cmos->rtc, 1, rtc_intr);
1079	}
1080	spin_unlock_irqrestore(&rtc_lock, flags);
1081
1082	pm_wakeup_hard_event(dev);
1083	acpi_clear_event(ACPI_EVENT_RTC);
1084	acpi_disable_event(ACPI_EVENT_RTC, 0);
1085	return ACPI_INTERRUPT_HANDLED;
1086}
1087
1088static inline void rtc_wake_setup(struct device *dev)
1089{
1090	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1091	/*
1092	 * After the RTC handler is installed, the Fixed_RTC event should
1093	 * be disabled. Only when the RTC alarm is set will it be enabled.
1094	 */
1095	acpi_clear_event(ACPI_EVENT_RTC);
1096	acpi_disable_event(ACPI_EVENT_RTC, 0);
1097}
1098
1099static void rtc_wake_on(struct device *dev)
1100{
1101	acpi_clear_event(ACPI_EVENT_RTC);
1102	acpi_enable_event(ACPI_EVENT_RTC, 0);
1103}
1104
1105static void rtc_wake_off(struct device *dev)
1106{
1107	acpi_disable_event(ACPI_EVENT_RTC, 0);
1108}
1109
1110/* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1111 * its device node and pass extra config data.  This helps its driver use
1112 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1113 * that this board's RTC is wakeup-capable (per ACPI spec).
1114 */
1115static struct cmos_rtc_board_info acpi_rtc_info;
1116
1117static void cmos_wake_setup(struct device *dev)
1118{
1119	if (acpi_disabled)
1120		return;
1121
1122	rtc_wake_setup(dev);
1123	acpi_rtc_info.wake_on = rtc_wake_on;
1124	acpi_rtc_info.wake_off = rtc_wake_off;
1125
1126	/* workaround bug in some ACPI tables */
1127	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1128		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1129			acpi_gbl_FADT.month_alarm);
1130		acpi_gbl_FADT.month_alarm = 0;
1131	}
1132
1133	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1134	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1135	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1136
1137	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1138	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1139		dev_info(dev, "RTC can wake from S4\n");
1140
1141	dev->platform_data = &acpi_rtc_info;
1142
1143	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1144	device_init_wakeup(dev, 1);
1145}
1146
1147static void cmos_check_acpi_rtc_status(struct device *dev,
1148				       unsigned char *rtc_control)
1149{
1150	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1151	acpi_event_status rtc_status;
1152	acpi_status status;
1153
1154	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1155		return;
1156
1157	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1158	if (ACPI_FAILURE(status)) {
1159		dev_err(dev, "Could not get RTC status\n");
1160	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1161		unsigned char mask;
1162		*rtc_control &= ~RTC_AIE;
1163		CMOS_WRITE(*rtc_control, RTC_CONTROL);
1164		mask = CMOS_READ(RTC_INTR_FLAGS);
1165		rtc_update_irq(cmos->rtc, 1, mask);
1166	}
1167}
1168
1169#else
1170
1171static void cmos_wake_setup(struct device *dev)
1172{
1173}
1174
1175static void cmos_check_acpi_rtc_status(struct device *dev,
1176				       unsigned char *rtc_control)
1177{
1178}
1179
1180#endif
1181
1182#ifdef	CONFIG_PNP
1183
1184#include <linux/pnp.h>
1185
1186static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1187{
1188	cmos_wake_setup(&pnp->dev);
1189
1190	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1191		unsigned int irq = 0;
1192#ifdef CONFIG_X86
1193		/* Some machines contain a PNP entry for the RTC, but
1194		 * don't define the IRQ. It should always be safe to
1195		 * hardcode it on systems with a legacy PIC.
1196		 */
1197		if (nr_legacy_irqs())
1198			irq = 8;
1199#endif
1200		return cmos_do_probe(&pnp->dev,
1201				pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1202	} else {
1203		return cmos_do_probe(&pnp->dev,
1204				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1205				pnp_irq(pnp, 0));
1206	}
1207}
1208
1209static void cmos_pnp_remove(struct pnp_dev *pnp)
1210{
1211	cmos_do_remove(&pnp->dev);
1212}
1213
1214static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1215{
1216	struct device *dev = &pnp->dev;
1217	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1218
1219	if (system_state == SYSTEM_POWER_OFF) {
1220		int retval = cmos_poweroff(dev);
1221
1222		if (cmos_aie_poweroff(dev) < 0 && !retval)
1223			return;
1224	}
1225
1226	cmos_do_shutdown(cmos->irq);
1227}
1228
1229static const struct pnp_device_id rtc_ids[] = {
1230	{ .id = "PNP0b00", },
1231	{ .id = "PNP0b01", },
1232	{ .id = "PNP0b02", },
1233	{ },
1234};
1235MODULE_DEVICE_TABLE(pnp, rtc_ids);
1236
1237static struct pnp_driver cmos_pnp_driver = {
1238	.name		= (char *) driver_name,
1239	.id_table	= rtc_ids,
1240	.probe		= cmos_pnp_probe,
1241	.remove		= cmos_pnp_remove,
1242	.shutdown	= cmos_pnp_shutdown,
1243
1244	/* flag ensures resume() gets called, and stops syslog spam */
1245	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1246	.driver		= {
1247			.pm = &cmos_pm_ops,
1248	},
1249};
1250
1251#endif	/* CONFIG_PNP */
1252
1253#ifdef CONFIG_OF
1254static const struct of_device_id of_cmos_match[] = {
1255	{
1256		.compatible = "motorola,mc146818",
1257	},
1258	{ },
1259};
1260MODULE_DEVICE_TABLE(of, of_cmos_match);
1261
1262static __init void cmos_of_init(struct platform_device *pdev)
1263{
1264	struct device_node *node = pdev->dev.of_node;
 
 
1265	const __be32 *val;
1266
1267	if (!node)
1268		return;
1269
1270	val = of_get_property(node, "ctrl-reg", NULL);
1271	if (val)
1272		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1273
1274	val = of_get_property(node, "freq-reg", NULL);
1275	if (val)
1276		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
 
 
 
 
 
 
 
 
 
 
1277}
1278#else
1279static inline void cmos_of_init(struct platform_device *pdev) {}
1280#endif
1281/*----------------------------------------------------------------*/
1282
1283/* Platform setup should have set up an RTC device, when PNP is
1284 * unavailable ... this could happen even on (older) PCs.
1285 */
1286
1287static int __init cmos_platform_probe(struct platform_device *pdev)
1288{
1289	struct resource *resource;
1290	int irq;
1291
1292	cmos_of_init(pdev);
1293	cmos_wake_setup(&pdev->dev);
1294
1295	if (RTC_IOMAPPED)
1296		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1297	else
1298		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1299	irq = platform_get_irq(pdev, 0);
1300	if (irq < 0)
1301		irq = -1;
1302
1303	return cmos_do_probe(&pdev->dev, resource, irq);
1304}
1305
1306static int cmos_platform_remove(struct platform_device *pdev)
1307{
1308	cmos_do_remove(&pdev->dev);
1309	return 0;
1310}
1311
1312static void cmos_platform_shutdown(struct platform_device *pdev)
1313{
1314	struct device *dev = &pdev->dev;
1315	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1316
1317	if (system_state == SYSTEM_POWER_OFF) {
1318		int retval = cmos_poweroff(dev);
1319
1320		if (cmos_aie_poweroff(dev) < 0 && !retval)
1321			return;
1322	}
1323
1324	cmos_do_shutdown(cmos->irq);
1325}
1326
1327/* work with hotplug and coldplug */
1328MODULE_ALIAS("platform:rtc_cmos");
1329
1330static struct platform_driver cmos_platform_driver = {
1331	.remove		= cmos_platform_remove,
1332	.shutdown	= cmos_platform_shutdown,
1333	.driver = {
1334		.name		= driver_name,
 
1335		.pm		= &cmos_pm_ops,
 
1336		.of_match_table = of_match_ptr(of_cmos_match),
1337	}
1338};
1339
1340#ifdef CONFIG_PNP
1341static bool pnp_driver_registered;
1342#endif
1343static bool platform_driver_registered;
1344
1345static int __init cmos_init(void)
1346{
1347	int retval = 0;
1348
1349#ifdef	CONFIG_PNP
1350	retval = pnp_register_driver(&cmos_pnp_driver);
1351	if (retval == 0)
1352		pnp_driver_registered = true;
1353#endif
1354
1355	if (!cmos_rtc.dev) {
1356		retval = platform_driver_probe(&cmos_platform_driver,
1357					       cmos_platform_probe);
1358		if (retval == 0)
1359			platform_driver_registered = true;
1360	}
1361
1362	if (retval == 0)
1363		return 0;
1364
1365#ifdef	CONFIG_PNP
1366	if (pnp_driver_registered)
1367		pnp_unregister_driver(&cmos_pnp_driver);
1368#endif
1369	return retval;
1370}
1371module_init(cmos_init);
1372
1373static void __exit cmos_exit(void)
1374{
1375#ifdef	CONFIG_PNP
1376	if (pnp_driver_registered)
1377		pnp_unregister_driver(&cmos_pnp_driver);
1378#endif
1379	if (platform_driver_registered)
1380		platform_driver_unregister(&cmos_platform_driver);
1381}
1382module_exit(cmos_exit);
1383
1384
1385MODULE_AUTHOR("David Brownell");
1386MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1387MODULE_LICENSE("GPL");