Loading...
1/*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13/*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/kernel.h>
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/interrupt.h>
38#include <linux/spinlock.h>
39#include <linux/platform_device.h>
40#include <linux/log2.h>
41#include <linux/pm.h>
42#include <linux/of.h>
43#include <linux/of_platform.h>
44
45/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
46#include <asm-generic/rtc.h>
47
48struct cmos_rtc {
49 struct rtc_device *rtc;
50 struct device *dev;
51 int irq;
52 struct resource *iomem;
53 time64_t alarm_expires;
54
55 void (*wake_on)(struct device *);
56 void (*wake_off)(struct device *);
57
58 u8 enabled_wake;
59 u8 suspend_ctrl;
60
61 /* newer hardware extends the original register set */
62 u8 day_alrm;
63 u8 mon_alrm;
64 u8 century;
65};
66
67/* both platform and pnp busses use negative numbers for invalid irqs */
68#define is_valid_irq(n) ((n) > 0)
69
70static const char driver_name[] = "rtc_cmos";
71
72/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
73 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
74 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
75 */
76#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
77
78static inline int is_intr(u8 rtc_intr)
79{
80 if (!(rtc_intr & RTC_IRQF))
81 return 0;
82 return rtc_intr & RTC_IRQMASK;
83}
84
85/*----------------------------------------------------------------*/
86
87/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
88 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
89 * used in a broken "legacy replacement" mode. The breakage includes
90 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
91 * other (better) use.
92 *
93 * When that broken mode is in use, platform glue provides a partial
94 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
95 * want to use HPET for anything except those IRQs though...
96 */
97#ifdef CONFIG_HPET_EMULATE_RTC
98#include <asm/hpet.h>
99#else
100
101static inline int is_hpet_enabled(void)
102{
103 return 0;
104}
105
106static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
107{
108 return 0;
109}
110
111static inline int hpet_set_rtc_irq_bit(unsigned long mask)
112{
113 return 0;
114}
115
116static inline int
117hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
118{
119 return 0;
120}
121
122static inline int hpet_set_periodic_freq(unsigned long freq)
123{
124 return 0;
125}
126
127static inline int hpet_rtc_dropped_irq(void)
128{
129 return 0;
130}
131
132static inline int hpet_rtc_timer_init(void)
133{
134 return 0;
135}
136
137extern irq_handler_t hpet_rtc_interrupt;
138
139static inline int hpet_register_irq_handler(irq_handler_t handler)
140{
141 return 0;
142}
143
144static inline int hpet_unregister_irq_handler(irq_handler_t handler)
145{
146 return 0;
147}
148
149#endif
150
151/*----------------------------------------------------------------*/
152
153#ifdef RTC_PORT
154
155/* Most newer x86 systems have two register banks, the first used
156 * for RTC and NVRAM and the second only for NVRAM. Caller must
157 * own rtc_lock ... and we won't worry about access during NMI.
158 */
159#define can_bank2 true
160
161static inline unsigned char cmos_read_bank2(unsigned char addr)
162{
163 outb(addr, RTC_PORT(2));
164 return inb(RTC_PORT(3));
165}
166
167static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
168{
169 outb(addr, RTC_PORT(2));
170 outb(val, RTC_PORT(3));
171}
172
173#else
174
175#define can_bank2 false
176
177static inline unsigned char cmos_read_bank2(unsigned char addr)
178{
179 return 0;
180}
181
182static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
183{
184}
185
186#endif
187
188/*----------------------------------------------------------------*/
189
190static int cmos_read_time(struct device *dev, struct rtc_time *t)
191{
192 /* REVISIT: if the clock has a "century" register, use
193 * that instead of the heuristic in get_rtc_time().
194 * That'll make Y3K compatility (year > 2070) easy!
195 */
196 get_rtc_time(t);
197 return 0;
198}
199
200static int cmos_set_time(struct device *dev, struct rtc_time *t)
201{
202 /* REVISIT: set the "century" register if available
203 *
204 * NOTE: this ignores the issue whereby updating the seconds
205 * takes effect exactly 500ms after we write the register.
206 * (Also queueing and other delays before we get this far.)
207 */
208 return set_rtc_time(t);
209}
210
211static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
212{
213 struct cmos_rtc *cmos = dev_get_drvdata(dev);
214 unsigned char rtc_control;
215
216 if (!is_valid_irq(cmos->irq))
217 return -EIO;
218
219 /* Basic alarms only support hour, minute, and seconds fields.
220 * Some also support day and month, for alarms up to a year in
221 * the future.
222 */
223 t->time.tm_mday = -1;
224 t->time.tm_mon = -1;
225
226 spin_lock_irq(&rtc_lock);
227 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
228 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
229 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
230
231 if (cmos->day_alrm) {
232 /* ignore upper bits on readback per ACPI spec */
233 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
234 if (!t->time.tm_mday)
235 t->time.tm_mday = -1;
236
237 if (cmos->mon_alrm) {
238 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
239 if (!t->time.tm_mon)
240 t->time.tm_mon = -1;
241 }
242 }
243
244 rtc_control = CMOS_READ(RTC_CONTROL);
245 spin_unlock_irq(&rtc_lock);
246
247 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
248 if (((unsigned)t->time.tm_sec) < 0x60)
249 t->time.tm_sec = bcd2bin(t->time.tm_sec);
250 else
251 t->time.tm_sec = -1;
252 if (((unsigned)t->time.tm_min) < 0x60)
253 t->time.tm_min = bcd2bin(t->time.tm_min);
254 else
255 t->time.tm_min = -1;
256 if (((unsigned)t->time.tm_hour) < 0x24)
257 t->time.tm_hour = bcd2bin(t->time.tm_hour);
258 else
259 t->time.tm_hour = -1;
260
261 if (cmos->day_alrm) {
262 if (((unsigned)t->time.tm_mday) <= 0x31)
263 t->time.tm_mday = bcd2bin(t->time.tm_mday);
264 else
265 t->time.tm_mday = -1;
266
267 if (cmos->mon_alrm) {
268 if (((unsigned)t->time.tm_mon) <= 0x12)
269 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
270 else
271 t->time.tm_mon = -1;
272 }
273 }
274 }
275 t->time.tm_year = -1;
276
277 t->enabled = !!(rtc_control & RTC_AIE);
278 t->pending = 0;
279
280 return 0;
281}
282
283static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
284{
285 unsigned char rtc_intr;
286
287 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
288 * allegedly some older rtcs need that to handle irqs properly
289 */
290 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
291
292 if (is_hpet_enabled())
293 return;
294
295 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
296 if (is_intr(rtc_intr))
297 rtc_update_irq(cmos->rtc, 1, rtc_intr);
298}
299
300static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
301{
302 unsigned char rtc_control;
303
304 /* flush any pending IRQ status, notably for update irqs,
305 * before we enable new IRQs
306 */
307 rtc_control = CMOS_READ(RTC_CONTROL);
308 cmos_checkintr(cmos, rtc_control);
309
310 rtc_control |= mask;
311 CMOS_WRITE(rtc_control, RTC_CONTROL);
312 hpet_set_rtc_irq_bit(mask);
313
314 cmos_checkintr(cmos, rtc_control);
315}
316
317static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
318{
319 unsigned char rtc_control;
320
321 rtc_control = CMOS_READ(RTC_CONTROL);
322 rtc_control &= ~mask;
323 CMOS_WRITE(rtc_control, RTC_CONTROL);
324 hpet_mask_rtc_irq_bit(mask);
325
326 cmos_checkintr(cmos, rtc_control);
327}
328
329static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
330{
331 struct cmos_rtc *cmos = dev_get_drvdata(dev);
332 unsigned char mon, mday, hrs, min, sec, rtc_control;
333
334 if (!is_valid_irq(cmos->irq))
335 return -EIO;
336
337 mon = t->time.tm_mon + 1;
338 mday = t->time.tm_mday;
339 hrs = t->time.tm_hour;
340 min = t->time.tm_min;
341 sec = t->time.tm_sec;
342
343 rtc_control = CMOS_READ(RTC_CONTROL);
344 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
345 /* Writing 0xff means "don't care" or "match all". */
346 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
347 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
348 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
349 min = (min < 60) ? bin2bcd(min) : 0xff;
350 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
351 }
352
353 spin_lock_irq(&rtc_lock);
354
355 /* next rtc irq must not be from previous alarm setting */
356 cmos_irq_disable(cmos, RTC_AIE);
357
358 /* update alarm */
359 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
360 CMOS_WRITE(min, RTC_MINUTES_ALARM);
361 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
362
363 /* the system may support an "enhanced" alarm */
364 if (cmos->day_alrm) {
365 CMOS_WRITE(mday, cmos->day_alrm);
366 if (cmos->mon_alrm)
367 CMOS_WRITE(mon, cmos->mon_alrm);
368 }
369
370 /* FIXME the HPET alarm glue currently ignores day_alrm
371 * and mon_alrm ...
372 */
373 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
374
375 if (t->enabled)
376 cmos_irq_enable(cmos, RTC_AIE);
377
378 spin_unlock_irq(&rtc_lock);
379
380 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
381
382 return 0;
383}
384
385static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
386{
387 struct cmos_rtc *cmos = dev_get_drvdata(dev);
388 unsigned long flags;
389
390 if (!is_valid_irq(cmos->irq))
391 return -EINVAL;
392
393 spin_lock_irqsave(&rtc_lock, flags);
394
395 if (enabled)
396 cmos_irq_enable(cmos, RTC_AIE);
397 else
398 cmos_irq_disable(cmos, RTC_AIE);
399
400 spin_unlock_irqrestore(&rtc_lock, flags);
401 return 0;
402}
403
404#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
405
406static int cmos_procfs(struct device *dev, struct seq_file *seq)
407{
408 struct cmos_rtc *cmos = dev_get_drvdata(dev);
409 unsigned char rtc_control, valid;
410
411 spin_lock_irq(&rtc_lock);
412 rtc_control = CMOS_READ(RTC_CONTROL);
413 valid = CMOS_READ(RTC_VALID);
414 spin_unlock_irq(&rtc_lock);
415
416 /* NOTE: at least ICH6 reports battery status using a different
417 * (non-RTC) bit; and SQWE is ignored on many current systems.
418 */
419 seq_printf(seq,
420 "periodic_IRQ\t: %s\n"
421 "update_IRQ\t: %s\n"
422 "HPET_emulated\t: %s\n"
423 // "square_wave\t: %s\n"
424 "BCD\t\t: %s\n"
425 "DST_enable\t: %s\n"
426 "periodic_freq\t: %d\n"
427 "batt_status\t: %s\n",
428 (rtc_control & RTC_PIE) ? "yes" : "no",
429 (rtc_control & RTC_UIE) ? "yes" : "no",
430 is_hpet_enabled() ? "yes" : "no",
431 // (rtc_control & RTC_SQWE) ? "yes" : "no",
432 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
433 (rtc_control & RTC_DST_EN) ? "yes" : "no",
434 cmos->rtc->irq_freq,
435 (valid & RTC_VRT) ? "okay" : "dead");
436
437 return 0;
438}
439
440#else
441#define cmos_procfs NULL
442#endif
443
444static const struct rtc_class_ops cmos_rtc_ops = {
445 .read_time = cmos_read_time,
446 .set_time = cmos_set_time,
447 .read_alarm = cmos_read_alarm,
448 .set_alarm = cmos_set_alarm,
449 .proc = cmos_procfs,
450 .alarm_irq_enable = cmos_alarm_irq_enable,
451};
452
453/*----------------------------------------------------------------*/
454
455/*
456 * All these chips have at least 64 bytes of address space, shared by
457 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
458 * by boot firmware. Modern chips have 128 or 256 bytes.
459 */
460
461#define NVRAM_OFFSET (RTC_REG_D + 1)
462
463static ssize_t
464cmos_nvram_read(struct file *filp, struct kobject *kobj,
465 struct bin_attribute *attr,
466 char *buf, loff_t off, size_t count)
467{
468 int retval;
469
470 off += NVRAM_OFFSET;
471 spin_lock_irq(&rtc_lock);
472 for (retval = 0; count; count--, off++, retval++) {
473 if (off < 128)
474 *buf++ = CMOS_READ(off);
475 else if (can_bank2)
476 *buf++ = cmos_read_bank2(off);
477 else
478 break;
479 }
480 spin_unlock_irq(&rtc_lock);
481
482 return retval;
483}
484
485static ssize_t
486cmos_nvram_write(struct file *filp, struct kobject *kobj,
487 struct bin_attribute *attr,
488 char *buf, loff_t off, size_t count)
489{
490 struct cmos_rtc *cmos;
491 int retval;
492
493 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
494
495 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
496 * checksum on part of the NVRAM data. That's currently ignored
497 * here. If userspace is smart enough to know what fields of
498 * NVRAM to update, updating checksums is also part of its job.
499 */
500 off += NVRAM_OFFSET;
501 spin_lock_irq(&rtc_lock);
502 for (retval = 0; count; count--, off++, retval++) {
503 /* don't trash RTC registers */
504 if (off == cmos->day_alrm
505 || off == cmos->mon_alrm
506 || off == cmos->century)
507 buf++;
508 else if (off < 128)
509 CMOS_WRITE(*buf++, off);
510 else if (can_bank2)
511 cmos_write_bank2(*buf++, off);
512 else
513 break;
514 }
515 spin_unlock_irq(&rtc_lock);
516
517 return retval;
518}
519
520static struct bin_attribute nvram = {
521 .attr = {
522 .name = "nvram",
523 .mode = S_IRUGO | S_IWUSR,
524 },
525
526 .read = cmos_nvram_read,
527 .write = cmos_nvram_write,
528 /* size gets set up later */
529};
530
531/*----------------------------------------------------------------*/
532
533static struct cmos_rtc cmos_rtc;
534
535static irqreturn_t cmos_interrupt(int irq, void *p)
536{
537 u8 irqstat;
538 u8 rtc_control;
539
540 spin_lock(&rtc_lock);
541
542 /* When the HPET interrupt handler calls us, the interrupt
543 * status is passed as arg1 instead of the irq number. But
544 * always clear irq status, even when HPET is in the way.
545 *
546 * Note that HPET and RTC are almost certainly out of phase,
547 * giving different IRQ status ...
548 */
549 irqstat = CMOS_READ(RTC_INTR_FLAGS);
550 rtc_control = CMOS_READ(RTC_CONTROL);
551 if (is_hpet_enabled())
552 irqstat = (unsigned long)irq & 0xF0;
553
554 /* If we were suspended, RTC_CONTROL may not be accurate since the
555 * bios may have cleared it.
556 */
557 if (!cmos_rtc.suspend_ctrl)
558 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
559 else
560 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
561
562 /* All Linux RTC alarms should be treated as if they were oneshot.
563 * Similar code may be needed in system wakeup paths, in case the
564 * alarm woke the system.
565 */
566 if (irqstat & RTC_AIE) {
567 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
568 rtc_control &= ~RTC_AIE;
569 CMOS_WRITE(rtc_control, RTC_CONTROL);
570 hpet_mask_rtc_irq_bit(RTC_AIE);
571 CMOS_READ(RTC_INTR_FLAGS);
572 }
573 spin_unlock(&rtc_lock);
574
575 if (is_intr(irqstat)) {
576 rtc_update_irq(p, 1, irqstat);
577 return IRQ_HANDLED;
578 } else
579 return IRQ_NONE;
580}
581
582#ifdef CONFIG_PNP
583#define INITSECTION
584
585#else
586#define INITSECTION __init
587#endif
588
589static int INITSECTION
590cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
591{
592 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
593 int retval = 0;
594 unsigned char rtc_control;
595 unsigned address_space;
596 u32 flags = 0;
597
598 /* there can be only one ... */
599 if (cmos_rtc.dev)
600 return -EBUSY;
601
602 if (!ports)
603 return -ENODEV;
604
605 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
606 *
607 * REVISIT non-x86 systems may instead use memory space resources
608 * (needing ioremap etc), not i/o space resources like this ...
609 */
610 if (RTC_IOMAPPED)
611 ports = request_region(ports->start, resource_size(ports),
612 driver_name);
613 else
614 ports = request_mem_region(ports->start, resource_size(ports),
615 driver_name);
616 if (!ports) {
617 dev_dbg(dev, "i/o registers already in use\n");
618 return -EBUSY;
619 }
620
621 cmos_rtc.irq = rtc_irq;
622 cmos_rtc.iomem = ports;
623
624 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
625 * driver did, but don't reject unknown configs. Old hardware
626 * won't address 128 bytes. Newer chips have multiple banks,
627 * though they may not be listed in one I/O resource.
628 */
629#if defined(CONFIG_ATARI)
630 address_space = 64;
631#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
632 || defined(__sparc__) || defined(__mips__) \
633 || defined(__powerpc__)
634 address_space = 128;
635#else
636#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
637 address_space = 128;
638#endif
639 if (can_bank2 && ports->end > (ports->start + 1))
640 address_space = 256;
641
642 /* For ACPI systems extension info comes from the FADT. On others,
643 * board specific setup provides it as appropriate. Systems where
644 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
645 * some almost-clones) can provide hooks to make that behave.
646 *
647 * Note that ACPI doesn't preclude putting these registers into
648 * "extended" areas of the chip, including some that we won't yet
649 * expect CMOS_READ and friends to handle.
650 */
651 if (info) {
652 if (info->flags)
653 flags = info->flags;
654 if (info->address_space)
655 address_space = info->address_space;
656
657 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
658 cmos_rtc.day_alrm = info->rtc_day_alarm;
659 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
660 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
661 if (info->rtc_century && info->rtc_century < 128)
662 cmos_rtc.century = info->rtc_century;
663
664 if (info->wake_on && info->wake_off) {
665 cmos_rtc.wake_on = info->wake_on;
666 cmos_rtc.wake_off = info->wake_off;
667 }
668 }
669
670 cmos_rtc.dev = dev;
671 dev_set_drvdata(dev, &cmos_rtc);
672
673 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
674 &cmos_rtc_ops, THIS_MODULE);
675 if (IS_ERR(cmos_rtc.rtc)) {
676 retval = PTR_ERR(cmos_rtc.rtc);
677 goto cleanup0;
678 }
679
680 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
681
682 spin_lock_irq(&rtc_lock);
683
684 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
685 /* force periodic irq to CMOS reset default of 1024Hz;
686 *
687 * REVISIT it's been reported that at least one x86_64 ALI
688 * mobo doesn't use 32KHz here ... for portability we might
689 * need to do something about other clock frequencies.
690 */
691 cmos_rtc.rtc->irq_freq = 1024;
692 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
693 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
694 }
695
696 /* disable irqs */
697 if (is_valid_irq(rtc_irq))
698 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
699
700 rtc_control = CMOS_READ(RTC_CONTROL);
701
702 spin_unlock_irq(&rtc_lock);
703
704 /* FIXME:
705 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
706 */
707 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
708 dev_warn(dev, "only 24-hr supported\n");
709 retval = -ENXIO;
710 goto cleanup1;
711 }
712
713 if (is_valid_irq(rtc_irq)) {
714 irq_handler_t rtc_cmos_int_handler;
715
716 if (is_hpet_enabled()) {
717 rtc_cmos_int_handler = hpet_rtc_interrupt;
718 retval = hpet_register_irq_handler(cmos_interrupt);
719 if (retval) {
720 dev_warn(dev, "hpet_register_irq_handler "
721 " failed in rtc_init().");
722 goto cleanup1;
723 }
724 } else
725 rtc_cmos_int_handler = cmos_interrupt;
726
727 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
728 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
729 cmos_rtc.rtc);
730 if (retval < 0) {
731 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
732 goto cleanup1;
733 }
734 }
735 hpet_rtc_timer_init();
736
737 /* export at least the first block of NVRAM */
738 nvram.size = address_space - NVRAM_OFFSET;
739 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
740 if (retval < 0) {
741 dev_dbg(dev, "can't create nvram file? %d\n", retval);
742 goto cleanup2;
743 }
744
745 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
746 !is_valid_irq(rtc_irq) ? "no alarms" :
747 cmos_rtc.mon_alrm ? "alarms up to one year" :
748 cmos_rtc.day_alrm ? "alarms up to one month" :
749 "alarms up to one day",
750 cmos_rtc.century ? ", y3k" : "",
751 nvram.size,
752 is_hpet_enabled() ? ", hpet irqs" : "");
753
754 return 0;
755
756cleanup2:
757 if (is_valid_irq(rtc_irq))
758 free_irq(rtc_irq, cmos_rtc.rtc);
759cleanup1:
760 cmos_rtc.dev = NULL;
761 rtc_device_unregister(cmos_rtc.rtc);
762cleanup0:
763 if (RTC_IOMAPPED)
764 release_region(ports->start, resource_size(ports));
765 else
766 release_mem_region(ports->start, resource_size(ports));
767 return retval;
768}
769
770static void cmos_do_shutdown(int rtc_irq)
771{
772 spin_lock_irq(&rtc_lock);
773 if (is_valid_irq(rtc_irq))
774 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
775 spin_unlock_irq(&rtc_lock);
776}
777
778static void __exit cmos_do_remove(struct device *dev)
779{
780 struct cmos_rtc *cmos = dev_get_drvdata(dev);
781 struct resource *ports;
782
783 cmos_do_shutdown(cmos->irq);
784
785 sysfs_remove_bin_file(&dev->kobj, &nvram);
786
787 if (is_valid_irq(cmos->irq)) {
788 free_irq(cmos->irq, cmos->rtc);
789 hpet_unregister_irq_handler(cmos_interrupt);
790 }
791
792 rtc_device_unregister(cmos->rtc);
793 cmos->rtc = NULL;
794
795 ports = cmos->iomem;
796 if (RTC_IOMAPPED)
797 release_region(ports->start, resource_size(ports));
798 else
799 release_mem_region(ports->start, resource_size(ports));
800 cmos->iomem = NULL;
801
802 cmos->dev = NULL;
803}
804
805static int cmos_aie_poweroff(struct device *dev)
806{
807 struct cmos_rtc *cmos = dev_get_drvdata(dev);
808 struct rtc_time now;
809 time64_t t_now;
810 int retval = 0;
811 unsigned char rtc_control;
812
813 if (!cmos->alarm_expires)
814 return -EINVAL;
815
816 spin_lock_irq(&rtc_lock);
817 rtc_control = CMOS_READ(RTC_CONTROL);
818 spin_unlock_irq(&rtc_lock);
819
820 /* We only care about the situation where AIE is disabled. */
821 if (rtc_control & RTC_AIE)
822 return -EBUSY;
823
824 cmos_read_time(dev, &now);
825 t_now = rtc_tm_to_time64(&now);
826
827 /*
828 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
829 * automatically right after shutdown on some buggy boxes.
830 * This automatic rebooting issue won't happen when the alarm
831 * time is larger than now+1 seconds.
832 *
833 * If the alarm time is equal to now+1 seconds, the issue can be
834 * prevented by cancelling the alarm.
835 */
836 if (cmos->alarm_expires == t_now + 1) {
837 struct rtc_wkalrm alarm;
838
839 /* Cancel the AIE timer by configuring the past time. */
840 rtc_time64_to_tm(t_now - 1, &alarm.time);
841 alarm.enabled = 0;
842 retval = cmos_set_alarm(dev, &alarm);
843 } else if (cmos->alarm_expires > t_now + 1) {
844 retval = -EBUSY;
845 }
846
847 return retval;
848}
849
850#ifdef CONFIG_PM
851
852static int cmos_suspend(struct device *dev)
853{
854 struct cmos_rtc *cmos = dev_get_drvdata(dev);
855 unsigned char tmp;
856
857 /* only the alarm might be a wakeup event source */
858 spin_lock_irq(&rtc_lock);
859 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
860 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
861 unsigned char mask;
862
863 if (device_may_wakeup(dev))
864 mask = RTC_IRQMASK & ~RTC_AIE;
865 else
866 mask = RTC_IRQMASK;
867 tmp &= ~mask;
868 CMOS_WRITE(tmp, RTC_CONTROL);
869 hpet_mask_rtc_irq_bit(mask);
870
871 cmos_checkintr(cmos, tmp);
872 }
873 spin_unlock_irq(&rtc_lock);
874
875 if (tmp & RTC_AIE) {
876 cmos->enabled_wake = 1;
877 if (cmos->wake_on)
878 cmos->wake_on(dev);
879 else
880 enable_irq_wake(cmos->irq);
881 }
882
883 dev_dbg(dev, "suspend%s, ctrl %02x\n",
884 (tmp & RTC_AIE) ? ", alarm may wake" : "",
885 tmp);
886
887 return 0;
888}
889
890/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
891 * after a detour through G3 "mechanical off", although the ACPI spec
892 * says wakeup should only work from G1/S4 "hibernate". To most users,
893 * distinctions between S4 and S5 are pointless. So when the hardware
894 * allows, don't draw that distinction.
895 */
896static inline int cmos_poweroff(struct device *dev)
897{
898 return cmos_suspend(dev);
899}
900
901#ifdef CONFIG_PM_SLEEP
902
903static int cmos_resume(struct device *dev)
904{
905 struct cmos_rtc *cmos = dev_get_drvdata(dev);
906 unsigned char tmp;
907
908 if (cmos->enabled_wake) {
909 if (cmos->wake_off)
910 cmos->wake_off(dev);
911 else
912 disable_irq_wake(cmos->irq);
913 cmos->enabled_wake = 0;
914 }
915
916 spin_lock_irq(&rtc_lock);
917 tmp = cmos->suspend_ctrl;
918 cmos->suspend_ctrl = 0;
919 /* re-enable any irqs previously active */
920 if (tmp & RTC_IRQMASK) {
921 unsigned char mask;
922
923 if (device_may_wakeup(dev))
924 hpet_rtc_timer_init();
925
926 do {
927 CMOS_WRITE(tmp, RTC_CONTROL);
928 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
929
930 mask = CMOS_READ(RTC_INTR_FLAGS);
931 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
932 if (!is_hpet_enabled() || !is_intr(mask))
933 break;
934
935 /* force one-shot behavior if HPET blocked
936 * the wake alarm's irq
937 */
938 rtc_update_irq(cmos->rtc, 1, mask);
939 tmp &= ~RTC_AIE;
940 hpet_mask_rtc_irq_bit(RTC_AIE);
941 } while (mask & RTC_AIE);
942 }
943 spin_unlock_irq(&rtc_lock);
944
945 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
946
947 return 0;
948}
949
950#endif
951#else
952
953static inline int cmos_poweroff(struct device *dev)
954{
955 return -ENOSYS;
956}
957
958#endif
959
960static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
961
962/*----------------------------------------------------------------*/
963
964/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
965 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
966 * probably list them in similar PNPBIOS tables; so PNP is more common.
967 *
968 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
969 * predate even PNPBIOS should set up platform_bus devices.
970 */
971
972#ifdef CONFIG_ACPI
973
974#include <linux/acpi.h>
975
976static u32 rtc_handler(void *context)
977{
978 struct device *dev = context;
979
980 pm_wakeup_event(dev, 0);
981 acpi_clear_event(ACPI_EVENT_RTC);
982 acpi_disable_event(ACPI_EVENT_RTC, 0);
983 return ACPI_INTERRUPT_HANDLED;
984}
985
986static inline void rtc_wake_setup(struct device *dev)
987{
988 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
989 /*
990 * After the RTC handler is installed, the Fixed_RTC event should
991 * be disabled. Only when the RTC alarm is set will it be enabled.
992 */
993 acpi_clear_event(ACPI_EVENT_RTC);
994 acpi_disable_event(ACPI_EVENT_RTC, 0);
995}
996
997static void rtc_wake_on(struct device *dev)
998{
999 acpi_clear_event(ACPI_EVENT_RTC);
1000 acpi_enable_event(ACPI_EVENT_RTC, 0);
1001}
1002
1003static void rtc_wake_off(struct device *dev)
1004{
1005 acpi_disable_event(ACPI_EVENT_RTC, 0);
1006}
1007
1008/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1009 * its device node and pass extra config data. This helps its driver use
1010 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1011 * that this board's RTC is wakeup-capable (per ACPI spec).
1012 */
1013static struct cmos_rtc_board_info acpi_rtc_info;
1014
1015static void cmos_wake_setup(struct device *dev)
1016{
1017 if (acpi_disabled)
1018 return;
1019
1020 rtc_wake_setup(dev);
1021 acpi_rtc_info.wake_on = rtc_wake_on;
1022 acpi_rtc_info.wake_off = rtc_wake_off;
1023
1024 /* workaround bug in some ACPI tables */
1025 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1026 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1027 acpi_gbl_FADT.month_alarm);
1028 acpi_gbl_FADT.month_alarm = 0;
1029 }
1030
1031 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1032 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1033 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1034
1035 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1036 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1037 dev_info(dev, "RTC can wake from S4\n");
1038
1039 dev->platform_data = &acpi_rtc_info;
1040
1041 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1042 device_init_wakeup(dev, 1);
1043}
1044
1045#else
1046
1047static void cmos_wake_setup(struct device *dev)
1048{
1049}
1050
1051#endif
1052
1053#ifdef CONFIG_PNP
1054
1055#include <linux/pnp.h>
1056
1057static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1058{
1059 cmos_wake_setup(&pnp->dev);
1060
1061 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1062 /* Some machines contain a PNP entry for the RTC, but
1063 * don't define the IRQ. It should always be safe to
1064 * hardcode it in these cases
1065 */
1066 return cmos_do_probe(&pnp->dev,
1067 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1068 else
1069 return cmos_do_probe(&pnp->dev,
1070 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1071 pnp_irq(pnp, 0));
1072}
1073
1074static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1075{
1076 cmos_do_remove(&pnp->dev);
1077}
1078
1079static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1080{
1081 struct device *dev = &pnp->dev;
1082 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1083
1084 if (system_state == SYSTEM_POWER_OFF) {
1085 int retval = cmos_poweroff(dev);
1086
1087 if (cmos_aie_poweroff(dev) < 0 && !retval)
1088 return;
1089 }
1090
1091 cmos_do_shutdown(cmos->irq);
1092}
1093
1094static const struct pnp_device_id rtc_ids[] = {
1095 { .id = "PNP0b00", },
1096 { .id = "PNP0b01", },
1097 { .id = "PNP0b02", },
1098 { },
1099};
1100MODULE_DEVICE_TABLE(pnp, rtc_ids);
1101
1102static struct pnp_driver cmos_pnp_driver = {
1103 .name = (char *) driver_name,
1104 .id_table = rtc_ids,
1105 .probe = cmos_pnp_probe,
1106 .remove = __exit_p(cmos_pnp_remove),
1107 .shutdown = cmos_pnp_shutdown,
1108
1109 /* flag ensures resume() gets called, and stops syslog spam */
1110 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1111 .driver = {
1112 .pm = &cmos_pm_ops,
1113 },
1114};
1115
1116#endif /* CONFIG_PNP */
1117
1118#ifdef CONFIG_OF
1119static const struct of_device_id of_cmos_match[] = {
1120 {
1121 .compatible = "motorola,mc146818",
1122 },
1123 { },
1124};
1125MODULE_DEVICE_TABLE(of, of_cmos_match);
1126
1127static __init void cmos_of_init(struct platform_device *pdev)
1128{
1129 struct device_node *node = pdev->dev.of_node;
1130 struct rtc_time time;
1131 int ret;
1132 const __be32 *val;
1133
1134 if (!node)
1135 return;
1136
1137 val = of_get_property(node, "ctrl-reg", NULL);
1138 if (val)
1139 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1140
1141 val = of_get_property(node, "freq-reg", NULL);
1142 if (val)
1143 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1144
1145 get_rtc_time(&time);
1146 ret = rtc_valid_tm(&time);
1147 if (ret) {
1148 struct rtc_time def_time = {
1149 .tm_year = 1,
1150 .tm_mday = 1,
1151 };
1152 set_rtc_time(&def_time);
1153 }
1154}
1155#else
1156static inline void cmos_of_init(struct platform_device *pdev) {}
1157#endif
1158/*----------------------------------------------------------------*/
1159
1160/* Platform setup should have set up an RTC device, when PNP is
1161 * unavailable ... this could happen even on (older) PCs.
1162 */
1163
1164static int __init cmos_platform_probe(struct platform_device *pdev)
1165{
1166 struct resource *resource;
1167 int irq;
1168
1169 cmos_of_init(pdev);
1170 cmos_wake_setup(&pdev->dev);
1171
1172 if (RTC_IOMAPPED)
1173 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1174 else
1175 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1176 irq = platform_get_irq(pdev, 0);
1177 if (irq < 0)
1178 irq = -1;
1179
1180 return cmos_do_probe(&pdev->dev, resource, irq);
1181}
1182
1183static int __exit cmos_platform_remove(struct platform_device *pdev)
1184{
1185 cmos_do_remove(&pdev->dev);
1186 return 0;
1187}
1188
1189static void cmos_platform_shutdown(struct platform_device *pdev)
1190{
1191 struct device *dev = &pdev->dev;
1192 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1193
1194 if (system_state == SYSTEM_POWER_OFF) {
1195 int retval = cmos_poweroff(dev);
1196
1197 if (cmos_aie_poweroff(dev) < 0 && !retval)
1198 return;
1199 }
1200
1201 cmos_do_shutdown(cmos->irq);
1202}
1203
1204/* work with hotplug and coldplug */
1205MODULE_ALIAS("platform:rtc_cmos");
1206
1207static struct platform_driver cmos_platform_driver = {
1208 .remove = __exit_p(cmos_platform_remove),
1209 .shutdown = cmos_platform_shutdown,
1210 .driver = {
1211 .name = driver_name,
1212#ifdef CONFIG_PM
1213 .pm = &cmos_pm_ops,
1214#endif
1215 .of_match_table = of_match_ptr(of_cmos_match),
1216 }
1217};
1218
1219#ifdef CONFIG_PNP
1220static bool pnp_driver_registered;
1221#endif
1222static bool platform_driver_registered;
1223
1224static int __init cmos_init(void)
1225{
1226 int retval = 0;
1227
1228#ifdef CONFIG_PNP
1229 retval = pnp_register_driver(&cmos_pnp_driver);
1230 if (retval == 0)
1231 pnp_driver_registered = true;
1232#endif
1233
1234 if (!cmos_rtc.dev) {
1235 retval = platform_driver_probe(&cmos_platform_driver,
1236 cmos_platform_probe);
1237 if (retval == 0)
1238 platform_driver_registered = true;
1239 }
1240
1241 if (retval == 0)
1242 return 0;
1243
1244#ifdef CONFIG_PNP
1245 if (pnp_driver_registered)
1246 pnp_unregister_driver(&cmos_pnp_driver);
1247#endif
1248 return retval;
1249}
1250module_init(cmos_init);
1251
1252static void __exit cmos_exit(void)
1253{
1254#ifdef CONFIG_PNP
1255 if (pnp_driver_registered)
1256 pnp_unregister_driver(&cmos_pnp_driver);
1257#endif
1258 if (platform_driver_registered)
1259 platform_driver_unregister(&cmos_platform_driver);
1260}
1261module_exit(cmos_exit);
1262
1263
1264MODULE_AUTHOR("David Brownell");
1265MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1266MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 *
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
7 */
8
9/*
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
16 *
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
22 *
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
26 */
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/spinlock.h>
35#include <linux/platform_device.h>
36#include <linux/log2.h>
37#include <linux/pm.h>
38#include <linux/of.h>
39#include <linux/of_platform.h>
40#ifdef CONFIG_X86
41#include <asm/i8259.h>
42#include <asm/processor.h>
43#include <linux/dmi.h>
44#endif
45
46/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47#include <linux/mc146818rtc.h>
48
49#ifdef CONFIG_ACPI
50/*
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52 *
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
54 *
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56 */
57
58static bool use_acpi_alarm;
59module_param(use_acpi_alarm, bool, 0444);
60
61static inline int cmos_use_acpi_alarm(void)
62{
63 return use_acpi_alarm;
64}
65#else /* !CONFIG_ACPI */
66
67static inline int cmos_use_acpi_alarm(void)
68{
69 return 0;
70}
71#endif
72
73struct cmos_rtc {
74 struct rtc_device *rtc;
75 struct device *dev;
76 int irq;
77 struct resource *iomem;
78 time64_t alarm_expires;
79
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
82
83 u8 enabled_wake;
84 u8 suspend_ctrl;
85
86 /* newer hardware extends the original register set */
87 u8 day_alrm;
88 u8 mon_alrm;
89 u8 century;
90
91 struct rtc_wkalrm saved_wkalrm;
92};
93
94/* both platform and pnp busses use negative numbers for invalid irqs */
95#define is_valid_irq(n) ((n) > 0)
96
97static const char driver_name[] = "rtc_cmos";
98
99/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102 */
103#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
104
105static inline int is_intr(u8 rtc_intr)
106{
107 if (!(rtc_intr & RTC_IRQF))
108 return 0;
109 return rtc_intr & RTC_IRQMASK;
110}
111
112/*----------------------------------------------------------------*/
113
114/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
119 *
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
123 */
124#ifdef CONFIG_HPET_EMULATE_RTC
125#include <asm/hpet.h>
126#else
127
128static inline int is_hpet_enabled(void)
129{
130 return 0;
131}
132
133static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134{
135 return 0;
136}
137
138static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139{
140 return 0;
141}
142
143static inline int
144hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145{
146 return 0;
147}
148
149static inline int hpet_set_periodic_freq(unsigned long freq)
150{
151 return 0;
152}
153
154static inline int hpet_rtc_dropped_irq(void)
155{
156 return 0;
157}
158
159static inline int hpet_rtc_timer_init(void)
160{
161 return 0;
162}
163
164extern irq_handler_t hpet_rtc_interrupt;
165
166static inline int hpet_register_irq_handler(irq_handler_t handler)
167{
168 return 0;
169}
170
171static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172{
173 return 0;
174}
175
176#endif
177
178/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179static inline int use_hpet_alarm(void)
180{
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
182}
183
184/*----------------------------------------------------------------*/
185
186#ifdef RTC_PORT
187
188/* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM. Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
191 */
192#define can_bank2 true
193
194static inline unsigned char cmos_read_bank2(unsigned char addr)
195{
196 outb(addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
198}
199
200static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201{
202 outb(addr, RTC_PORT(2));
203 outb(val, RTC_PORT(3));
204}
205
206#else
207
208#define can_bank2 false
209
210static inline unsigned char cmos_read_bank2(unsigned char addr)
211{
212 return 0;
213}
214
215static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216{
217}
218
219#endif
220
221/*----------------------------------------------------------------*/
222
223static int cmos_read_time(struct device *dev, struct rtc_time *t)
224{
225 /*
226 * If pm_trace abused the RTC for storage, set the timespec to 0,
227 * which tells the caller that this RTC value is unusable.
228 */
229 if (!pm_trace_rtc_valid())
230 return -EIO;
231
232 /* REVISIT: if the clock has a "century" register, use
233 * that instead of the heuristic in mc146818_get_time().
234 * That'll make Y3K compatility (year > 2070) easy!
235 */
236 mc146818_get_time(t);
237 return 0;
238}
239
240static int cmos_set_time(struct device *dev, struct rtc_time *t)
241{
242 /* REVISIT: set the "century" register if available
243 *
244 * NOTE: this ignores the issue whereby updating the seconds
245 * takes effect exactly 500ms after we write the register.
246 * (Also queueing and other delays before we get this far.)
247 */
248 return mc146818_set_time(t);
249}
250
251static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
252{
253 struct cmos_rtc *cmos = dev_get_drvdata(dev);
254 unsigned char rtc_control;
255
256 /* This not only a rtc_op, but also called directly */
257 if (!is_valid_irq(cmos->irq))
258 return -EIO;
259
260 /* Basic alarms only support hour, minute, and seconds fields.
261 * Some also support day and month, for alarms up to a year in
262 * the future.
263 */
264
265 spin_lock_irq(&rtc_lock);
266 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
267 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
268 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
269
270 if (cmos->day_alrm) {
271 /* ignore upper bits on readback per ACPI spec */
272 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
273 if (!t->time.tm_mday)
274 t->time.tm_mday = -1;
275
276 if (cmos->mon_alrm) {
277 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
278 if (!t->time.tm_mon)
279 t->time.tm_mon = -1;
280 }
281 }
282
283 rtc_control = CMOS_READ(RTC_CONTROL);
284 spin_unlock_irq(&rtc_lock);
285
286 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
287 if (((unsigned)t->time.tm_sec) < 0x60)
288 t->time.tm_sec = bcd2bin(t->time.tm_sec);
289 else
290 t->time.tm_sec = -1;
291 if (((unsigned)t->time.tm_min) < 0x60)
292 t->time.tm_min = bcd2bin(t->time.tm_min);
293 else
294 t->time.tm_min = -1;
295 if (((unsigned)t->time.tm_hour) < 0x24)
296 t->time.tm_hour = bcd2bin(t->time.tm_hour);
297 else
298 t->time.tm_hour = -1;
299
300 if (cmos->day_alrm) {
301 if (((unsigned)t->time.tm_mday) <= 0x31)
302 t->time.tm_mday = bcd2bin(t->time.tm_mday);
303 else
304 t->time.tm_mday = -1;
305
306 if (cmos->mon_alrm) {
307 if (((unsigned)t->time.tm_mon) <= 0x12)
308 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
309 else
310 t->time.tm_mon = -1;
311 }
312 }
313 }
314
315 t->enabled = !!(rtc_control & RTC_AIE);
316 t->pending = 0;
317
318 return 0;
319}
320
321static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
322{
323 unsigned char rtc_intr;
324
325 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
326 * allegedly some older rtcs need that to handle irqs properly
327 */
328 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
329
330 if (use_hpet_alarm())
331 return;
332
333 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
334 if (is_intr(rtc_intr))
335 rtc_update_irq(cmos->rtc, 1, rtc_intr);
336}
337
338static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
339{
340 unsigned char rtc_control;
341
342 /* flush any pending IRQ status, notably for update irqs,
343 * before we enable new IRQs
344 */
345 rtc_control = CMOS_READ(RTC_CONTROL);
346 cmos_checkintr(cmos, rtc_control);
347
348 rtc_control |= mask;
349 CMOS_WRITE(rtc_control, RTC_CONTROL);
350 if (use_hpet_alarm())
351 hpet_set_rtc_irq_bit(mask);
352
353 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
354 if (cmos->wake_on)
355 cmos->wake_on(cmos->dev);
356 }
357
358 cmos_checkintr(cmos, rtc_control);
359}
360
361static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
362{
363 unsigned char rtc_control;
364
365 rtc_control = CMOS_READ(RTC_CONTROL);
366 rtc_control &= ~mask;
367 CMOS_WRITE(rtc_control, RTC_CONTROL);
368 if (use_hpet_alarm())
369 hpet_mask_rtc_irq_bit(mask);
370
371 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
372 if (cmos->wake_off)
373 cmos->wake_off(cmos->dev);
374 }
375
376 cmos_checkintr(cmos, rtc_control);
377}
378
379static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
380{
381 struct cmos_rtc *cmos = dev_get_drvdata(dev);
382 struct rtc_time now;
383
384 cmos_read_time(dev, &now);
385
386 if (!cmos->day_alrm) {
387 time64_t t_max_date;
388 time64_t t_alrm;
389
390 t_max_date = rtc_tm_to_time64(&now);
391 t_max_date += 24 * 60 * 60 - 1;
392 t_alrm = rtc_tm_to_time64(&t->time);
393 if (t_alrm > t_max_date) {
394 dev_err(dev,
395 "Alarms can be up to one day in the future\n");
396 return -EINVAL;
397 }
398 } else if (!cmos->mon_alrm) {
399 struct rtc_time max_date = now;
400 time64_t t_max_date;
401 time64_t t_alrm;
402 int max_mday;
403
404 if (max_date.tm_mon == 11) {
405 max_date.tm_mon = 0;
406 max_date.tm_year += 1;
407 } else {
408 max_date.tm_mon += 1;
409 }
410 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
411 if (max_date.tm_mday > max_mday)
412 max_date.tm_mday = max_mday;
413
414 t_max_date = rtc_tm_to_time64(&max_date);
415 t_max_date -= 1;
416 t_alrm = rtc_tm_to_time64(&t->time);
417 if (t_alrm > t_max_date) {
418 dev_err(dev,
419 "Alarms can be up to one month in the future\n");
420 return -EINVAL;
421 }
422 } else {
423 struct rtc_time max_date = now;
424 time64_t t_max_date;
425 time64_t t_alrm;
426 int max_mday;
427
428 max_date.tm_year += 1;
429 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
430 if (max_date.tm_mday > max_mday)
431 max_date.tm_mday = max_mday;
432
433 t_max_date = rtc_tm_to_time64(&max_date);
434 t_max_date -= 1;
435 t_alrm = rtc_tm_to_time64(&t->time);
436 if (t_alrm > t_max_date) {
437 dev_err(dev,
438 "Alarms can be up to one year in the future\n");
439 return -EINVAL;
440 }
441 }
442
443 return 0;
444}
445
446static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
447{
448 struct cmos_rtc *cmos = dev_get_drvdata(dev);
449 unsigned char mon, mday, hrs, min, sec, rtc_control;
450 int ret;
451
452 /* This not only a rtc_op, but also called directly */
453 if (!is_valid_irq(cmos->irq))
454 return -EIO;
455
456 ret = cmos_validate_alarm(dev, t);
457 if (ret < 0)
458 return ret;
459
460 mon = t->time.tm_mon + 1;
461 mday = t->time.tm_mday;
462 hrs = t->time.tm_hour;
463 min = t->time.tm_min;
464 sec = t->time.tm_sec;
465
466 rtc_control = CMOS_READ(RTC_CONTROL);
467 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
468 /* Writing 0xff means "don't care" or "match all". */
469 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
470 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
471 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
472 min = (min < 60) ? bin2bcd(min) : 0xff;
473 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
474 }
475
476 spin_lock_irq(&rtc_lock);
477
478 /* next rtc irq must not be from previous alarm setting */
479 cmos_irq_disable(cmos, RTC_AIE);
480
481 /* update alarm */
482 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
483 CMOS_WRITE(min, RTC_MINUTES_ALARM);
484 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
485
486 /* the system may support an "enhanced" alarm */
487 if (cmos->day_alrm) {
488 CMOS_WRITE(mday, cmos->day_alrm);
489 if (cmos->mon_alrm)
490 CMOS_WRITE(mon, cmos->mon_alrm);
491 }
492
493 if (use_hpet_alarm()) {
494 /*
495 * FIXME the HPET alarm glue currently ignores day_alrm
496 * and mon_alrm ...
497 */
498 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min,
499 t->time.tm_sec);
500 }
501
502 if (t->enabled)
503 cmos_irq_enable(cmos, RTC_AIE);
504
505 spin_unlock_irq(&rtc_lock);
506
507 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
508
509 return 0;
510}
511
512static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
513{
514 struct cmos_rtc *cmos = dev_get_drvdata(dev);
515 unsigned long flags;
516
517 spin_lock_irqsave(&rtc_lock, flags);
518
519 if (enabled)
520 cmos_irq_enable(cmos, RTC_AIE);
521 else
522 cmos_irq_disable(cmos, RTC_AIE);
523
524 spin_unlock_irqrestore(&rtc_lock, flags);
525 return 0;
526}
527
528#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
529
530static int cmos_procfs(struct device *dev, struct seq_file *seq)
531{
532 struct cmos_rtc *cmos = dev_get_drvdata(dev);
533 unsigned char rtc_control, valid;
534
535 spin_lock_irq(&rtc_lock);
536 rtc_control = CMOS_READ(RTC_CONTROL);
537 valid = CMOS_READ(RTC_VALID);
538 spin_unlock_irq(&rtc_lock);
539
540 /* NOTE: at least ICH6 reports battery status using a different
541 * (non-RTC) bit; and SQWE is ignored on many current systems.
542 */
543 seq_printf(seq,
544 "periodic_IRQ\t: %s\n"
545 "update_IRQ\t: %s\n"
546 "HPET_emulated\t: %s\n"
547 // "square_wave\t: %s\n"
548 "BCD\t\t: %s\n"
549 "DST_enable\t: %s\n"
550 "periodic_freq\t: %d\n"
551 "batt_status\t: %s\n",
552 (rtc_control & RTC_PIE) ? "yes" : "no",
553 (rtc_control & RTC_UIE) ? "yes" : "no",
554 use_hpet_alarm() ? "yes" : "no",
555 // (rtc_control & RTC_SQWE) ? "yes" : "no",
556 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
557 (rtc_control & RTC_DST_EN) ? "yes" : "no",
558 cmos->rtc->irq_freq,
559 (valid & RTC_VRT) ? "okay" : "dead");
560
561 return 0;
562}
563
564#else
565#define cmos_procfs NULL
566#endif
567
568static const struct rtc_class_ops cmos_rtc_ops = {
569 .read_time = cmos_read_time,
570 .set_time = cmos_set_time,
571 .read_alarm = cmos_read_alarm,
572 .set_alarm = cmos_set_alarm,
573 .proc = cmos_procfs,
574 .alarm_irq_enable = cmos_alarm_irq_enable,
575};
576
577static const struct rtc_class_ops cmos_rtc_ops_no_alarm = {
578 .read_time = cmos_read_time,
579 .set_time = cmos_set_time,
580 .proc = cmos_procfs,
581};
582
583/*----------------------------------------------------------------*/
584
585/*
586 * All these chips have at least 64 bytes of address space, shared by
587 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
588 * by boot firmware. Modern chips have 128 or 256 bytes.
589 */
590
591#define NVRAM_OFFSET (RTC_REG_D + 1)
592
593static int cmos_nvram_read(void *priv, unsigned int off, void *val,
594 size_t count)
595{
596 unsigned char *buf = val;
597 int retval;
598
599 off += NVRAM_OFFSET;
600 spin_lock_irq(&rtc_lock);
601 for (retval = 0; count; count--, off++, retval++) {
602 if (off < 128)
603 *buf++ = CMOS_READ(off);
604 else if (can_bank2)
605 *buf++ = cmos_read_bank2(off);
606 else
607 break;
608 }
609 spin_unlock_irq(&rtc_lock);
610
611 return retval;
612}
613
614static int cmos_nvram_write(void *priv, unsigned int off, void *val,
615 size_t count)
616{
617 struct cmos_rtc *cmos = priv;
618 unsigned char *buf = val;
619 int retval;
620
621 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
622 * checksum on part of the NVRAM data. That's currently ignored
623 * here. If userspace is smart enough to know what fields of
624 * NVRAM to update, updating checksums is also part of its job.
625 */
626 off += NVRAM_OFFSET;
627 spin_lock_irq(&rtc_lock);
628 for (retval = 0; count; count--, off++, retval++) {
629 /* don't trash RTC registers */
630 if (off == cmos->day_alrm
631 || off == cmos->mon_alrm
632 || off == cmos->century)
633 buf++;
634 else if (off < 128)
635 CMOS_WRITE(*buf++, off);
636 else if (can_bank2)
637 cmos_write_bank2(*buf++, off);
638 else
639 break;
640 }
641 spin_unlock_irq(&rtc_lock);
642
643 return retval;
644}
645
646/*----------------------------------------------------------------*/
647
648static struct cmos_rtc cmos_rtc;
649
650static irqreturn_t cmos_interrupt(int irq, void *p)
651{
652 u8 irqstat;
653 u8 rtc_control;
654
655 spin_lock(&rtc_lock);
656
657 /* When the HPET interrupt handler calls us, the interrupt
658 * status is passed as arg1 instead of the irq number. But
659 * always clear irq status, even when HPET is in the way.
660 *
661 * Note that HPET and RTC are almost certainly out of phase,
662 * giving different IRQ status ...
663 */
664 irqstat = CMOS_READ(RTC_INTR_FLAGS);
665 rtc_control = CMOS_READ(RTC_CONTROL);
666 if (use_hpet_alarm())
667 irqstat = (unsigned long)irq & 0xF0;
668
669 /* If we were suspended, RTC_CONTROL may not be accurate since the
670 * bios may have cleared it.
671 */
672 if (!cmos_rtc.suspend_ctrl)
673 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
674 else
675 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
676
677 /* All Linux RTC alarms should be treated as if they were oneshot.
678 * Similar code may be needed in system wakeup paths, in case the
679 * alarm woke the system.
680 */
681 if (irqstat & RTC_AIE) {
682 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
683 rtc_control &= ~RTC_AIE;
684 CMOS_WRITE(rtc_control, RTC_CONTROL);
685 if (use_hpet_alarm())
686 hpet_mask_rtc_irq_bit(RTC_AIE);
687 CMOS_READ(RTC_INTR_FLAGS);
688 }
689 spin_unlock(&rtc_lock);
690
691 if (is_intr(irqstat)) {
692 rtc_update_irq(p, 1, irqstat);
693 return IRQ_HANDLED;
694 } else
695 return IRQ_NONE;
696}
697
698#ifdef CONFIG_PNP
699#define INITSECTION
700
701#else
702#define INITSECTION __init
703#endif
704
705static int INITSECTION
706cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
707{
708 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
709 int retval = 0;
710 unsigned char rtc_control;
711 unsigned address_space;
712 u32 flags = 0;
713 struct nvmem_config nvmem_cfg = {
714 .name = "cmos_nvram",
715 .word_size = 1,
716 .stride = 1,
717 .reg_read = cmos_nvram_read,
718 .reg_write = cmos_nvram_write,
719 .priv = &cmos_rtc,
720 };
721
722 /* there can be only one ... */
723 if (cmos_rtc.dev)
724 return -EBUSY;
725
726 if (!ports)
727 return -ENODEV;
728
729 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
730 *
731 * REVISIT non-x86 systems may instead use memory space resources
732 * (needing ioremap etc), not i/o space resources like this ...
733 */
734 if (RTC_IOMAPPED)
735 ports = request_region(ports->start, resource_size(ports),
736 driver_name);
737 else
738 ports = request_mem_region(ports->start, resource_size(ports),
739 driver_name);
740 if (!ports) {
741 dev_dbg(dev, "i/o registers already in use\n");
742 return -EBUSY;
743 }
744
745 cmos_rtc.irq = rtc_irq;
746 cmos_rtc.iomem = ports;
747
748 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
749 * driver did, but don't reject unknown configs. Old hardware
750 * won't address 128 bytes. Newer chips have multiple banks,
751 * though they may not be listed in one I/O resource.
752 */
753#if defined(CONFIG_ATARI)
754 address_space = 64;
755#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
756 || defined(__sparc__) || defined(__mips__) \
757 || defined(__powerpc__)
758 address_space = 128;
759#else
760#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
761 address_space = 128;
762#endif
763 if (can_bank2 && ports->end > (ports->start + 1))
764 address_space = 256;
765
766 /* For ACPI systems extension info comes from the FADT. On others,
767 * board specific setup provides it as appropriate. Systems where
768 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
769 * some almost-clones) can provide hooks to make that behave.
770 *
771 * Note that ACPI doesn't preclude putting these registers into
772 * "extended" areas of the chip, including some that we won't yet
773 * expect CMOS_READ and friends to handle.
774 */
775 if (info) {
776 if (info->flags)
777 flags = info->flags;
778 if (info->address_space)
779 address_space = info->address_space;
780
781 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
782 cmos_rtc.day_alrm = info->rtc_day_alarm;
783 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
784 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
785 if (info->rtc_century && info->rtc_century < 128)
786 cmos_rtc.century = info->rtc_century;
787
788 if (info->wake_on && info->wake_off) {
789 cmos_rtc.wake_on = info->wake_on;
790 cmos_rtc.wake_off = info->wake_off;
791 }
792 }
793
794 cmos_rtc.dev = dev;
795 dev_set_drvdata(dev, &cmos_rtc);
796
797 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
798 if (IS_ERR(cmos_rtc.rtc)) {
799 retval = PTR_ERR(cmos_rtc.rtc);
800 goto cleanup0;
801 }
802
803 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
804
805 spin_lock_irq(&rtc_lock);
806
807 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
808 /* force periodic irq to CMOS reset default of 1024Hz;
809 *
810 * REVISIT it's been reported that at least one x86_64 ALI
811 * mobo doesn't use 32KHz here ... for portability we might
812 * need to do something about other clock frequencies.
813 */
814 cmos_rtc.rtc->irq_freq = 1024;
815 if (use_hpet_alarm())
816 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
817 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
818 }
819
820 /* disable irqs */
821 if (is_valid_irq(rtc_irq))
822 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
823
824 rtc_control = CMOS_READ(RTC_CONTROL);
825
826 spin_unlock_irq(&rtc_lock);
827
828 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
829 dev_warn(dev, "only 24-hr supported\n");
830 retval = -ENXIO;
831 goto cleanup1;
832 }
833
834 if (use_hpet_alarm())
835 hpet_rtc_timer_init();
836
837 if (is_valid_irq(rtc_irq)) {
838 irq_handler_t rtc_cmos_int_handler;
839
840 if (use_hpet_alarm()) {
841 rtc_cmos_int_handler = hpet_rtc_interrupt;
842 retval = hpet_register_irq_handler(cmos_interrupt);
843 if (retval) {
844 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
845 dev_warn(dev, "hpet_register_irq_handler "
846 " failed in rtc_init().");
847 goto cleanup1;
848 }
849 } else
850 rtc_cmos_int_handler = cmos_interrupt;
851
852 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
853 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
854 cmos_rtc.rtc);
855 if (retval < 0) {
856 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
857 goto cleanup1;
858 }
859
860 cmos_rtc.rtc->ops = &cmos_rtc_ops;
861 } else {
862 cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm;
863 }
864
865 cmos_rtc.rtc->nvram_old_abi = true;
866 retval = rtc_register_device(cmos_rtc.rtc);
867 if (retval)
868 goto cleanup2;
869
870 /* export at least the first block of NVRAM */
871 nvmem_cfg.size = address_space - NVRAM_OFFSET;
872 if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
873 dev_err(dev, "nvmem registration failed\n");
874
875 dev_info(dev, "%s%s, %d bytes nvram%s\n",
876 !is_valid_irq(rtc_irq) ? "no alarms" :
877 cmos_rtc.mon_alrm ? "alarms up to one year" :
878 cmos_rtc.day_alrm ? "alarms up to one month" :
879 "alarms up to one day",
880 cmos_rtc.century ? ", y3k" : "",
881 nvmem_cfg.size,
882 use_hpet_alarm() ? ", hpet irqs" : "");
883
884 return 0;
885
886cleanup2:
887 if (is_valid_irq(rtc_irq))
888 free_irq(rtc_irq, cmos_rtc.rtc);
889cleanup1:
890 cmos_rtc.dev = NULL;
891cleanup0:
892 if (RTC_IOMAPPED)
893 release_region(ports->start, resource_size(ports));
894 else
895 release_mem_region(ports->start, resource_size(ports));
896 return retval;
897}
898
899static void cmos_do_shutdown(int rtc_irq)
900{
901 spin_lock_irq(&rtc_lock);
902 if (is_valid_irq(rtc_irq))
903 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
904 spin_unlock_irq(&rtc_lock);
905}
906
907static void cmos_do_remove(struct device *dev)
908{
909 struct cmos_rtc *cmos = dev_get_drvdata(dev);
910 struct resource *ports;
911
912 cmos_do_shutdown(cmos->irq);
913
914 if (is_valid_irq(cmos->irq)) {
915 free_irq(cmos->irq, cmos->rtc);
916 if (use_hpet_alarm())
917 hpet_unregister_irq_handler(cmos_interrupt);
918 }
919
920 cmos->rtc = NULL;
921
922 ports = cmos->iomem;
923 if (RTC_IOMAPPED)
924 release_region(ports->start, resource_size(ports));
925 else
926 release_mem_region(ports->start, resource_size(ports));
927 cmos->iomem = NULL;
928
929 cmos->dev = NULL;
930}
931
932static int cmos_aie_poweroff(struct device *dev)
933{
934 struct cmos_rtc *cmos = dev_get_drvdata(dev);
935 struct rtc_time now;
936 time64_t t_now;
937 int retval = 0;
938 unsigned char rtc_control;
939
940 if (!cmos->alarm_expires)
941 return -EINVAL;
942
943 spin_lock_irq(&rtc_lock);
944 rtc_control = CMOS_READ(RTC_CONTROL);
945 spin_unlock_irq(&rtc_lock);
946
947 /* We only care about the situation where AIE is disabled. */
948 if (rtc_control & RTC_AIE)
949 return -EBUSY;
950
951 cmos_read_time(dev, &now);
952 t_now = rtc_tm_to_time64(&now);
953
954 /*
955 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
956 * automatically right after shutdown on some buggy boxes.
957 * This automatic rebooting issue won't happen when the alarm
958 * time is larger than now+1 seconds.
959 *
960 * If the alarm time is equal to now+1 seconds, the issue can be
961 * prevented by cancelling the alarm.
962 */
963 if (cmos->alarm_expires == t_now + 1) {
964 struct rtc_wkalrm alarm;
965
966 /* Cancel the AIE timer by configuring the past time. */
967 rtc_time64_to_tm(t_now - 1, &alarm.time);
968 alarm.enabled = 0;
969 retval = cmos_set_alarm(dev, &alarm);
970 } else if (cmos->alarm_expires > t_now + 1) {
971 retval = -EBUSY;
972 }
973
974 return retval;
975}
976
977static int cmos_suspend(struct device *dev)
978{
979 struct cmos_rtc *cmos = dev_get_drvdata(dev);
980 unsigned char tmp;
981
982 /* only the alarm might be a wakeup event source */
983 spin_lock_irq(&rtc_lock);
984 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
985 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
986 unsigned char mask;
987
988 if (device_may_wakeup(dev))
989 mask = RTC_IRQMASK & ~RTC_AIE;
990 else
991 mask = RTC_IRQMASK;
992 tmp &= ~mask;
993 CMOS_WRITE(tmp, RTC_CONTROL);
994 if (use_hpet_alarm())
995 hpet_mask_rtc_irq_bit(mask);
996 cmos_checkintr(cmos, tmp);
997 }
998 spin_unlock_irq(&rtc_lock);
999
1000 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1001 cmos->enabled_wake = 1;
1002 if (cmos->wake_on)
1003 cmos->wake_on(dev);
1004 else
1005 enable_irq_wake(cmos->irq);
1006 }
1007
1008 cmos_read_alarm(dev, &cmos->saved_wkalrm);
1009
1010 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1011 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1012 tmp);
1013
1014 return 0;
1015}
1016
1017/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1018 * after a detour through G3 "mechanical off", although the ACPI spec
1019 * says wakeup should only work from G1/S4 "hibernate". To most users,
1020 * distinctions between S4 and S5 are pointless. So when the hardware
1021 * allows, don't draw that distinction.
1022 */
1023static inline int cmos_poweroff(struct device *dev)
1024{
1025 if (!IS_ENABLED(CONFIG_PM))
1026 return -ENOSYS;
1027
1028 return cmos_suspend(dev);
1029}
1030
1031static void cmos_check_wkalrm(struct device *dev)
1032{
1033 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1034 struct rtc_wkalrm current_alarm;
1035 time64_t t_now;
1036 time64_t t_current_expires;
1037 time64_t t_saved_expires;
1038 struct rtc_time now;
1039
1040 /* Check if we have RTC Alarm armed */
1041 if (!(cmos->suspend_ctrl & RTC_AIE))
1042 return;
1043
1044 cmos_read_time(dev, &now);
1045 t_now = rtc_tm_to_time64(&now);
1046
1047 /*
1048 * ACPI RTC wake event is cleared after resume from STR,
1049 * ACK the rtc irq here
1050 */
1051 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1052 cmos_interrupt(0, (void *)cmos->rtc);
1053 return;
1054 }
1055
1056 cmos_read_alarm(dev, ¤t_alarm);
1057 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
1058 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1059 if (t_current_expires != t_saved_expires ||
1060 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1061 cmos_set_alarm(dev, &cmos->saved_wkalrm);
1062 }
1063}
1064
1065static void cmos_check_acpi_rtc_status(struct device *dev,
1066 unsigned char *rtc_control);
1067
1068static int __maybe_unused cmos_resume(struct device *dev)
1069{
1070 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1071 unsigned char tmp;
1072
1073 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1074 if (cmos->wake_off)
1075 cmos->wake_off(dev);
1076 else
1077 disable_irq_wake(cmos->irq);
1078 cmos->enabled_wake = 0;
1079 }
1080
1081 /* The BIOS might have changed the alarm, restore it */
1082 cmos_check_wkalrm(dev);
1083
1084 spin_lock_irq(&rtc_lock);
1085 tmp = cmos->suspend_ctrl;
1086 cmos->suspend_ctrl = 0;
1087 /* re-enable any irqs previously active */
1088 if (tmp & RTC_IRQMASK) {
1089 unsigned char mask;
1090
1091 if (device_may_wakeup(dev) && use_hpet_alarm())
1092 hpet_rtc_timer_init();
1093
1094 do {
1095 CMOS_WRITE(tmp, RTC_CONTROL);
1096 if (use_hpet_alarm())
1097 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1098
1099 mask = CMOS_READ(RTC_INTR_FLAGS);
1100 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1101 if (!use_hpet_alarm() || !is_intr(mask))
1102 break;
1103
1104 /* force one-shot behavior if HPET blocked
1105 * the wake alarm's irq
1106 */
1107 rtc_update_irq(cmos->rtc, 1, mask);
1108 tmp &= ~RTC_AIE;
1109 hpet_mask_rtc_irq_bit(RTC_AIE);
1110 } while (mask & RTC_AIE);
1111
1112 if (tmp & RTC_AIE)
1113 cmos_check_acpi_rtc_status(dev, &tmp);
1114 }
1115 spin_unlock_irq(&rtc_lock);
1116
1117 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1118
1119 return 0;
1120}
1121
1122static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1123
1124/*----------------------------------------------------------------*/
1125
1126/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1127 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1128 * probably list them in similar PNPBIOS tables; so PNP is more common.
1129 *
1130 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1131 * predate even PNPBIOS should set up platform_bus devices.
1132 */
1133
1134#ifdef CONFIG_ACPI
1135
1136#include <linux/acpi.h>
1137
1138static u32 rtc_handler(void *context)
1139{
1140 struct device *dev = context;
1141 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1142 unsigned char rtc_control = 0;
1143 unsigned char rtc_intr;
1144 unsigned long flags;
1145
1146
1147 /*
1148 * Always update rtc irq when ACPI is used as RTC Alarm.
1149 * Or else, ACPI SCI is enabled during suspend/resume only,
1150 * update rtc irq in that case.
1151 */
1152 if (cmos_use_acpi_alarm())
1153 cmos_interrupt(0, (void *)cmos->rtc);
1154 else {
1155 /* Fix me: can we use cmos_interrupt() here as well? */
1156 spin_lock_irqsave(&rtc_lock, flags);
1157 if (cmos_rtc.suspend_ctrl)
1158 rtc_control = CMOS_READ(RTC_CONTROL);
1159 if (rtc_control & RTC_AIE) {
1160 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1161 CMOS_WRITE(rtc_control, RTC_CONTROL);
1162 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1163 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1164 }
1165 spin_unlock_irqrestore(&rtc_lock, flags);
1166 }
1167
1168 pm_wakeup_hard_event(dev);
1169 acpi_clear_event(ACPI_EVENT_RTC);
1170 acpi_disable_event(ACPI_EVENT_RTC, 0);
1171 return ACPI_INTERRUPT_HANDLED;
1172}
1173
1174static inline void rtc_wake_setup(struct device *dev)
1175{
1176 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1177 /*
1178 * After the RTC handler is installed, the Fixed_RTC event should
1179 * be disabled. Only when the RTC alarm is set will it be enabled.
1180 */
1181 acpi_clear_event(ACPI_EVENT_RTC);
1182 acpi_disable_event(ACPI_EVENT_RTC, 0);
1183}
1184
1185static void rtc_wake_on(struct device *dev)
1186{
1187 acpi_clear_event(ACPI_EVENT_RTC);
1188 acpi_enable_event(ACPI_EVENT_RTC, 0);
1189}
1190
1191static void rtc_wake_off(struct device *dev)
1192{
1193 acpi_disable_event(ACPI_EVENT_RTC, 0);
1194}
1195
1196#ifdef CONFIG_X86
1197/* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
1198static void use_acpi_alarm_quirks(void)
1199{
1200 int year;
1201
1202 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1203 return;
1204
1205 if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0))
1206 return;
1207
1208 if (!is_hpet_enabled())
1209 return;
1210
1211 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015)
1212 use_acpi_alarm = true;
1213}
1214#else
1215static inline void use_acpi_alarm_quirks(void) { }
1216#endif
1217
1218/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1219 * its device node and pass extra config data. This helps its driver use
1220 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1221 * that this board's RTC is wakeup-capable (per ACPI spec).
1222 */
1223static struct cmos_rtc_board_info acpi_rtc_info;
1224
1225static void cmos_wake_setup(struct device *dev)
1226{
1227 if (acpi_disabled)
1228 return;
1229
1230 use_acpi_alarm_quirks();
1231
1232 rtc_wake_setup(dev);
1233 acpi_rtc_info.wake_on = rtc_wake_on;
1234 acpi_rtc_info.wake_off = rtc_wake_off;
1235
1236 /* workaround bug in some ACPI tables */
1237 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1238 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1239 acpi_gbl_FADT.month_alarm);
1240 acpi_gbl_FADT.month_alarm = 0;
1241 }
1242
1243 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1244 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1245 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1246
1247 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1248 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1249 dev_info(dev, "RTC can wake from S4\n");
1250
1251 dev->platform_data = &acpi_rtc_info;
1252
1253 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1254 device_init_wakeup(dev, 1);
1255}
1256
1257static void cmos_check_acpi_rtc_status(struct device *dev,
1258 unsigned char *rtc_control)
1259{
1260 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1261 acpi_event_status rtc_status;
1262 acpi_status status;
1263
1264 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1265 return;
1266
1267 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1268 if (ACPI_FAILURE(status)) {
1269 dev_err(dev, "Could not get RTC status\n");
1270 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1271 unsigned char mask;
1272 *rtc_control &= ~RTC_AIE;
1273 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1274 mask = CMOS_READ(RTC_INTR_FLAGS);
1275 rtc_update_irq(cmos->rtc, 1, mask);
1276 }
1277}
1278
1279#else
1280
1281static void cmos_wake_setup(struct device *dev)
1282{
1283}
1284
1285static void cmos_check_acpi_rtc_status(struct device *dev,
1286 unsigned char *rtc_control)
1287{
1288}
1289
1290#endif
1291
1292#ifdef CONFIG_PNP
1293
1294#include <linux/pnp.h>
1295
1296static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1297{
1298 cmos_wake_setup(&pnp->dev);
1299
1300 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1301 unsigned int irq = 0;
1302#ifdef CONFIG_X86
1303 /* Some machines contain a PNP entry for the RTC, but
1304 * don't define the IRQ. It should always be safe to
1305 * hardcode it on systems with a legacy PIC.
1306 */
1307 if (nr_legacy_irqs())
1308 irq = 8;
1309#endif
1310 return cmos_do_probe(&pnp->dev,
1311 pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1312 } else {
1313 return cmos_do_probe(&pnp->dev,
1314 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1315 pnp_irq(pnp, 0));
1316 }
1317}
1318
1319static void cmos_pnp_remove(struct pnp_dev *pnp)
1320{
1321 cmos_do_remove(&pnp->dev);
1322}
1323
1324static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1325{
1326 struct device *dev = &pnp->dev;
1327 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1328
1329 if (system_state == SYSTEM_POWER_OFF) {
1330 int retval = cmos_poweroff(dev);
1331
1332 if (cmos_aie_poweroff(dev) < 0 && !retval)
1333 return;
1334 }
1335
1336 cmos_do_shutdown(cmos->irq);
1337}
1338
1339static const struct pnp_device_id rtc_ids[] = {
1340 { .id = "PNP0b00", },
1341 { .id = "PNP0b01", },
1342 { .id = "PNP0b02", },
1343 { },
1344};
1345MODULE_DEVICE_TABLE(pnp, rtc_ids);
1346
1347static struct pnp_driver cmos_pnp_driver = {
1348 .name = (char *) driver_name,
1349 .id_table = rtc_ids,
1350 .probe = cmos_pnp_probe,
1351 .remove = cmos_pnp_remove,
1352 .shutdown = cmos_pnp_shutdown,
1353
1354 /* flag ensures resume() gets called, and stops syslog spam */
1355 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1356 .driver = {
1357 .pm = &cmos_pm_ops,
1358 },
1359};
1360
1361#endif /* CONFIG_PNP */
1362
1363#ifdef CONFIG_OF
1364static const struct of_device_id of_cmos_match[] = {
1365 {
1366 .compatible = "motorola,mc146818",
1367 },
1368 { },
1369};
1370MODULE_DEVICE_TABLE(of, of_cmos_match);
1371
1372static __init void cmos_of_init(struct platform_device *pdev)
1373{
1374 struct device_node *node = pdev->dev.of_node;
1375 const __be32 *val;
1376
1377 if (!node)
1378 return;
1379
1380 val = of_get_property(node, "ctrl-reg", NULL);
1381 if (val)
1382 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1383
1384 val = of_get_property(node, "freq-reg", NULL);
1385 if (val)
1386 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1387}
1388#else
1389static inline void cmos_of_init(struct platform_device *pdev) {}
1390#endif
1391/*----------------------------------------------------------------*/
1392
1393/* Platform setup should have set up an RTC device, when PNP is
1394 * unavailable ... this could happen even on (older) PCs.
1395 */
1396
1397static int __init cmos_platform_probe(struct platform_device *pdev)
1398{
1399 struct resource *resource;
1400 int irq;
1401
1402 cmos_of_init(pdev);
1403 cmos_wake_setup(&pdev->dev);
1404
1405 if (RTC_IOMAPPED)
1406 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1407 else
1408 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1409 irq = platform_get_irq(pdev, 0);
1410 if (irq < 0)
1411 irq = -1;
1412
1413 return cmos_do_probe(&pdev->dev, resource, irq);
1414}
1415
1416static int cmos_platform_remove(struct platform_device *pdev)
1417{
1418 cmos_do_remove(&pdev->dev);
1419 return 0;
1420}
1421
1422static void cmos_platform_shutdown(struct platform_device *pdev)
1423{
1424 struct device *dev = &pdev->dev;
1425 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1426
1427 if (system_state == SYSTEM_POWER_OFF) {
1428 int retval = cmos_poweroff(dev);
1429
1430 if (cmos_aie_poweroff(dev) < 0 && !retval)
1431 return;
1432 }
1433
1434 cmos_do_shutdown(cmos->irq);
1435}
1436
1437/* work with hotplug and coldplug */
1438MODULE_ALIAS("platform:rtc_cmos");
1439
1440static struct platform_driver cmos_platform_driver = {
1441 .remove = cmos_platform_remove,
1442 .shutdown = cmos_platform_shutdown,
1443 .driver = {
1444 .name = driver_name,
1445 .pm = &cmos_pm_ops,
1446 .of_match_table = of_match_ptr(of_cmos_match),
1447 }
1448};
1449
1450#ifdef CONFIG_PNP
1451static bool pnp_driver_registered;
1452#endif
1453static bool platform_driver_registered;
1454
1455static int __init cmos_init(void)
1456{
1457 int retval = 0;
1458
1459#ifdef CONFIG_PNP
1460 retval = pnp_register_driver(&cmos_pnp_driver);
1461 if (retval == 0)
1462 pnp_driver_registered = true;
1463#endif
1464
1465 if (!cmos_rtc.dev) {
1466 retval = platform_driver_probe(&cmos_platform_driver,
1467 cmos_platform_probe);
1468 if (retval == 0)
1469 platform_driver_registered = true;
1470 }
1471
1472 if (retval == 0)
1473 return 0;
1474
1475#ifdef CONFIG_PNP
1476 if (pnp_driver_registered)
1477 pnp_unregister_driver(&cmos_pnp_driver);
1478#endif
1479 return retval;
1480}
1481module_init(cmos_init);
1482
1483static void __exit cmos_exit(void)
1484{
1485#ifdef CONFIG_PNP
1486 if (pnp_driver_registered)
1487 pnp_unregister_driver(&cmos_pnp_driver);
1488#endif
1489 if (platform_driver_registered)
1490 platform_driver_unregister(&cmos_platform_driver);
1491}
1492module_exit(cmos_exit);
1493
1494
1495MODULE_AUTHOR("David Brownell");
1496MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1497MODULE_LICENSE("GPL");