Loading...
1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11 *
12 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13 * Grant Likely.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20#include <linux/console.h>
21#include <linux/ctype.h>
22#include <linux/cpu.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_graph.h>
26#include <linux/spinlock.h>
27#include <linux/slab.h>
28#include <linux/string.h>
29#include <linux/proc_fs.h>
30
31#include "of_private.h"
32
33LIST_HEAD(aliases_lookup);
34
35struct device_node *of_root;
36EXPORT_SYMBOL(of_root);
37struct device_node *of_chosen;
38struct device_node *of_aliases;
39struct device_node *of_stdout;
40static const char *of_stdout_options;
41
42struct kset *of_kset;
43
44/*
45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46 * This mutex must be held whenever modifications are being made to the
47 * device tree. The of_{attach,detach}_node() and
48 * of_{add,remove,update}_property() helpers make sure this happens.
49 */
50DEFINE_MUTEX(of_mutex);
51
52/* use when traversing tree through the child, sibling,
53 * or parent members of struct device_node.
54 */
55DEFINE_RAW_SPINLOCK(devtree_lock);
56
57int of_n_addr_cells(struct device_node *np)
58{
59 const __be32 *ip;
60
61 do {
62 if (np->parent)
63 np = np->parent;
64 ip = of_get_property(np, "#address-cells", NULL);
65 if (ip)
66 return be32_to_cpup(ip);
67 } while (np->parent);
68 /* No #address-cells property for the root node */
69 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
70}
71EXPORT_SYMBOL(of_n_addr_cells);
72
73int of_n_size_cells(struct device_node *np)
74{
75 const __be32 *ip;
76
77 do {
78 if (np->parent)
79 np = np->parent;
80 ip = of_get_property(np, "#size-cells", NULL);
81 if (ip)
82 return be32_to_cpup(ip);
83 } while (np->parent);
84 /* No #size-cells property for the root node */
85 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
86}
87EXPORT_SYMBOL(of_n_size_cells);
88
89#ifdef CONFIG_NUMA
90int __weak of_node_to_nid(struct device_node *np)
91{
92 return NUMA_NO_NODE;
93}
94#endif
95
96#ifndef CONFIG_OF_DYNAMIC
97static void of_node_release(struct kobject *kobj)
98{
99 /* Without CONFIG_OF_DYNAMIC, no nodes gets freed */
100}
101#endif /* CONFIG_OF_DYNAMIC */
102
103struct kobj_type of_node_ktype = {
104 .release = of_node_release,
105};
106
107static ssize_t of_node_property_read(struct file *filp, struct kobject *kobj,
108 struct bin_attribute *bin_attr, char *buf,
109 loff_t offset, size_t count)
110{
111 struct property *pp = container_of(bin_attr, struct property, attr);
112 return memory_read_from_buffer(buf, count, &offset, pp->value, pp->length);
113}
114
115static const char *safe_name(struct kobject *kobj, const char *orig_name)
116{
117 const char *name = orig_name;
118 struct kernfs_node *kn;
119 int i = 0;
120
121 /* don't be a hero. After 16 tries give up */
122 while (i < 16 && (kn = sysfs_get_dirent(kobj->sd, name))) {
123 sysfs_put(kn);
124 if (name != orig_name)
125 kfree(name);
126 name = kasprintf(GFP_KERNEL, "%s#%i", orig_name, ++i);
127 }
128
129 if (name != orig_name)
130 pr_warn("device-tree: Duplicate name in %s, renamed to \"%s\"\n",
131 kobject_name(kobj), name);
132 return name;
133}
134
135int __of_add_property_sysfs(struct device_node *np, struct property *pp)
136{
137 int rc;
138
139 /* Important: Don't leak passwords */
140 bool secure = strncmp(pp->name, "security-", 9) == 0;
141
142 if (!IS_ENABLED(CONFIG_SYSFS))
143 return 0;
144
145 if (!of_kset || !of_node_is_attached(np))
146 return 0;
147
148 sysfs_bin_attr_init(&pp->attr);
149 pp->attr.attr.name = safe_name(&np->kobj, pp->name);
150 pp->attr.attr.mode = secure ? S_IRUSR : S_IRUGO;
151 pp->attr.size = secure ? 0 : pp->length;
152 pp->attr.read = of_node_property_read;
153
154 rc = sysfs_create_bin_file(&np->kobj, &pp->attr);
155 WARN(rc, "error adding attribute %s to node %s\n", pp->name, np->full_name);
156 return rc;
157}
158
159int __of_attach_node_sysfs(struct device_node *np)
160{
161 const char *name;
162 struct property *pp;
163 int rc;
164
165 if (!IS_ENABLED(CONFIG_SYSFS))
166 return 0;
167
168 if (!of_kset)
169 return 0;
170
171 np->kobj.kset = of_kset;
172 if (!np->parent) {
173 /* Nodes without parents are new top level trees */
174 rc = kobject_add(&np->kobj, NULL, "%s",
175 safe_name(&of_kset->kobj, "base"));
176 } else {
177 name = safe_name(&np->parent->kobj, kbasename(np->full_name));
178 if (!name || !name[0])
179 return -EINVAL;
180
181 rc = kobject_add(&np->kobj, &np->parent->kobj, "%s", name);
182 }
183 if (rc)
184 return rc;
185
186 for_each_property_of_node(np, pp)
187 __of_add_property_sysfs(np, pp);
188
189 return 0;
190}
191
192void __init of_core_init(void)
193{
194 struct device_node *np;
195
196 /* Create the kset, and register existing nodes */
197 mutex_lock(&of_mutex);
198 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
199 if (!of_kset) {
200 mutex_unlock(&of_mutex);
201 pr_err("devicetree: failed to register existing nodes\n");
202 return;
203 }
204 for_each_of_allnodes(np)
205 __of_attach_node_sysfs(np);
206 mutex_unlock(&of_mutex);
207
208 /* Symlink in /proc as required by userspace ABI */
209 if (of_root)
210 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
211}
212
213static struct property *__of_find_property(const struct device_node *np,
214 const char *name, int *lenp)
215{
216 struct property *pp;
217
218 if (!np)
219 return NULL;
220
221 for (pp = np->properties; pp; pp = pp->next) {
222 if (of_prop_cmp(pp->name, name) == 0) {
223 if (lenp)
224 *lenp = pp->length;
225 break;
226 }
227 }
228
229 return pp;
230}
231
232struct property *of_find_property(const struct device_node *np,
233 const char *name,
234 int *lenp)
235{
236 struct property *pp;
237 unsigned long flags;
238
239 raw_spin_lock_irqsave(&devtree_lock, flags);
240 pp = __of_find_property(np, name, lenp);
241 raw_spin_unlock_irqrestore(&devtree_lock, flags);
242
243 return pp;
244}
245EXPORT_SYMBOL(of_find_property);
246
247struct device_node *__of_find_all_nodes(struct device_node *prev)
248{
249 struct device_node *np;
250 if (!prev) {
251 np = of_root;
252 } else if (prev->child) {
253 np = prev->child;
254 } else {
255 /* Walk back up looking for a sibling, or the end of the structure */
256 np = prev;
257 while (np->parent && !np->sibling)
258 np = np->parent;
259 np = np->sibling; /* Might be null at the end of the tree */
260 }
261 return np;
262}
263
264/**
265 * of_find_all_nodes - Get next node in global list
266 * @prev: Previous node or NULL to start iteration
267 * of_node_put() will be called on it
268 *
269 * Returns a node pointer with refcount incremented, use
270 * of_node_put() on it when done.
271 */
272struct device_node *of_find_all_nodes(struct device_node *prev)
273{
274 struct device_node *np;
275 unsigned long flags;
276
277 raw_spin_lock_irqsave(&devtree_lock, flags);
278 np = __of_find_all_nodes(prev);
279 of_node_get(np);
280 of_node_put(prev);
281 raw_spin_unlock_irqrestore(&devtree_lock, flags);
282 return np;
283}
284EXPORT_SYMBOL(of_find_all_nodes);
285
286/*
287 * Find a property with a given name for a given node
288 * and return the value.
289 */
290const void *__of_get_property(const struct device_node *np,
291 const char *name, int *lenp)
292{
293 struct property *pp = __of_find_property(np, name, lenp);
294
295 return pp ? pp->value : NULL;
296}
297
298/*
299 * Find a property with a given name for a given node
300 * and return the value.
301 */
302const void *of_get_property(const struct device_node *np, const char *name,
303 int *lenp)
304{
305 struct property *pp = of_find_property(np, name, lenp);
306
307 return pp ? pp->value : NULL;
308}
309EXPORT_SYMBOL(of_get_property);
310
311/*
312 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
313 *
314 * @cpu: logical cpu index of a core/thread
315 * @phys_id: physical identifier of a core/thread
316 *
317 * CPU logical to physical index mapping is architecture specific.
318 * However this __weak function provides a default match of physical
319 * id to logical cpu index. phys_id provided here is usually values read
320 * from the device tree which must match the hardware internal registers.
321 *
322 * Returns true if the physical identifier and the logical cpu index
323 * correspond to the same core/thread, false otherwise.
324 */
325bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
326{
327 return (u32)phys_id == cpu;
328}
329
330/**
331 * Checks if the given "prop_name" property holds the physical id of the
332 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
333 * NULL, local thread number within the core is returned in it.
334 */
335static bool __of_find_n_match_cpu_property(struct device_node *cpun,
336 const char *prop_name, int cpu, unsigned int *thread)
337{
338 const __be32 *cell;
339 int ac, prop_len, tid;
340 u64 hwid;
341
342 ac = of_n_addr_cells(cpun);
343 cell = of_get_property(cpun, prop_name, &prop_len);
344 if (!cell || !ac)
345 return false;
346 prop_len /= sizeof(*cell) * ac;
347 for (tid = 0; tid < prop_len; tid++) {
348 hwid = of_read_number(cell, ac);
349 if (arch_match_cpu_phys_id(cpu, hwid)) {
350 if (thread)
351 *thread = tid;
352 return true;
353 }
354 cell += ac;
355 }
356 return false;
357}
358
359/*
360 * arch_find_n_match_cpu_physical_id - See if the given device node is
361 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
362 * else false. If 'thread' is non-NULL, the local thread number within the
363 * core is returned in it.
364 */
365bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
366 int cpu, unsigned int *thread)
367{
368 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
369 * for thread ids on PowerPC. If it doesn't exist fallback to
370 * standard "reg" property.
371 */
372 if (IS_ENABLED(CONFIG_PPC) &&
373 __of_find_n_match_cpu_property(cpun,
374 "ibm,ppc-interrupt-server#s",
375 cpu, thread))
376 return true;
377
378 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
379}
380
381/**
382 * of_get_cpu_node - Get device node associated with the given logical CPU
383 *
384 * @cpu: CPU number(logical index) for which device node is required
385 * @thread: if not NULL, local thread number within the physical core is
386 * returned
387 *
388 * The main purpose of this function is to retrieve the device node for the
389 * given logical CPU index. It should be used to initialize the of_node in
390 * cpu device. Once of_node in cpu device is populated, all the further
391 * references can use that instead.
392 *
393 * CPU logical to physical index mapping is architecture specific and is built
394 * before booting secondary cores. This function uses arch_match_cpu_phys_id
395 * which can be overridden by architecture specific implementation.
396 *
397 * Returns a node pointer for the logical cpu if found, else NULL.
398 */
399struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
400{
401 struct device_node *cpun;
402
403 for_each_node_by_type(cpun, "cpu") {
404 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
405 return cpun;
406 }
407 return NULL;
408}
409EXPORT_SYMBOL(of_get_cpu_node);
410
411/**
412 * __of_device_is_compatible() - Check if the node matches given constraints
413 * @device: pointer to node
414 * @compat: required compatible string, NULL or "" for any match
415 * @type: required device_type value, NULL or "" for any match
416 * @name: required node name, NULL or "" for any match
417 *
418 * Checks if the given @compat, @type and @name strings match the
419 * properties of the given @device. A constraints can be skipped by
420 * passing NULL or an empty string as the constraint.
421 *
422 * Returns 0 for no match, and a positive integer on match. The return
423 * value is a relative score with larger values indicating better
424 * matches. The score is weighted for the most specific compatible value
425 * to get the highest score. Matching type is next, followed by matching
426 * name. Practically speaking, this results in the following priority
427 * order for matches:
428 *
429 * 1. specific compatible && type && name
430 * 2. specific compatible && type
431 * 3. specific compatible && name
432 * 4. specific compatible
433 * 5. general compatible && type && name
434 * 6. general compatible && type
435 * 7. general compatible && name
436 * 8. general compatible
437 * 9. type && name
438 * 10. type
439 * 11. name
440 */
441static int __of_device_is_compatible(const struct device_node *device,
442 const char *compat, const char *type, const char *name)
443{
444 struct property *prop;
445 const char *cp;
446 int index = 0, score = 0;
447
448 /* Compatible match has highest priority */
449 if (compat && compat[0]) {
450 prop = __of_find_property(device, "compatible", NULL);
451 for (cp = of_prop_next_string(prop, NULL); cp;
452 cp = of_prop_next_string(prop, cp), index++) {
453 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
454 score = INT_MAX/2 - (index << 2);
455 break;
456 }
457 }
458 if (!score)
459 return 0;
460 }
461
462 /* Matching type is better than matching name */
463 if (type && type[0]) {
464 if (!device->type || of_node_cmp(type, device->type))
465 return 0;
466 score += 2;
467 }
468
469 /* Matching name is a bit better than not */
470 if (name && name[0]) {
471 if (!device->name || of_node_cmp(name, device->name))
472 return 0;
473 score++;
474 }
475
476 return score;
477}
478
479/** Checks if the given "compat" string matches one of the strings in
480 * the device's "compatible" property
481 */
482int of_device_is_compatible(const struct device_node *device,
483 const char *compat)
484{
485 unsigned long flags;
486 int res;
487
488 raw_spin_lock_irqsave(&devtree_lock, flags);
489 res = __of_device_is_compatible(device, compat, NULL, NULL);
490 raw_spin_unlock_irqrestore(&devtree_lock, flags);
491 return res;
492}
493EXPORT_SYMBOL(of_device_is_compatible);
494
495/**
496 * of_machine_is_compatible - Test root of device tree for a given compatible value
497 * @compat: compatible string to look for in root node's compatible property.
498 *
499 * Returns a positive integer if the root node has the given value in its
500 * compatible property.
501 */
502int of_machine_is_compatible(const char *compat)
503{
504 struct device_node *root;
505 int rc = 0;
506
507 root = of_find_node_by_path("/");
508 if (root) {
509 rc = of_device_is_compatible(root, compat);
510 of_node_put(root);
511 }
512 return rc;
513}
514EXPORT_SYMBOL(of_machine_is_compatible);
515
516/**
517 * __of_device_is_available - check if a device is available for use
518 *
519 * @device: Node to check for availability, with locks already held
520 *
521 * Returns true if the status property is absent or set to "okay" or "ok",
522 * false otherwise
523 */
524static bool __of_device_is_available(const struct device_node *device)
525{
526 const char *status;
527 int statlen;
528
529 if (!device)
530 return false;
531
532 status = __of_get_property(device, "status", &statlen);
533 if (status == NULL)
534 return true;
535
536 if (statlen > 0) {
537 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
538 return true;
539 }
540
541 return false;
542}
543
544/**
545 * of_device_is_available - check if a device is available for use
546 *
547 * @device: Node to check for availability
548 *
549 * Returns true if the status property is absent or set to "okay" or "ok",
550 * false otherwise
551 */
552bool of_device_is_available(const struct device_node *device)
553{
554 unsigned long flags;
555 bool res;
556
557 raw_spin_lock_irqsave(&devtree_lock, flags);
558 res = __of_device_is_available(device);
559 raw_spin_unlock_irqrestore(&devtree_lock, flags);
560 return res;
561
562}
563EXPORT_SYMBOL(of_device_is_available);
564
565/**
566 * of_device_is_big_endian - check if a device has BE registers
567 *
568 * @device: Node to check for endianness
569 *
570 * Returns true if the device has a "big-endian" property, or if the kernel
571 * was compiled for BE *and* the device has a "native-endian" property.
572 * Returns false otherwise.
573 *
574 * Callers would nominally use ioread32be/iowrite32be if
575 * of_device_is_big_endian() == true, or readl/writel otherwise.
576 */
577bool of_device_is_big_endian(const struct device_node *device)
578{
579 if (of_property_read_bool(device, "big-endian"))
580 return true;
581 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
582 of_property_read_bool(device, "native-endian"))
583 return true;
584 return false;
585}
586EXPORT_SYMBOL(of_device_is_big_endian);
587
588/**
589 * of_get_parent - Get a node's parent if any
590 * @node: Node to get parent
591 *
592 * Returns a node pointer with refcount incremented, use
593 * of_node_put() on it when done.
594 */
595struct device_node *of_get_parent(const struct device_node *node)
596{
597 struct device_node *np;
598 unsigned long flags;
599
600 if (!node)
601 return NULL;
602
603 raw_spin_lock_irqsave(&devtree_lock, flags);
604 np = of_node_get(node->parent);
605 raw_spin_unlock_irqrestore(&devtree_lock, flags);
606 return np;
607}
608EXPORT_SYMBOL(of_get_parent);
609
610/**
611 * of_get_next_parent - Iterate to a node's parent
612 * @node: Node to get parent of
613 *
614 * This is like of_get_parent() except that it drops the
615 * refcount on the passed node, making it suitable for iterating
616 * through a node's parents.
617 *
618 * Returns a node pointer with refcount incremented, use
619 * of_node_put() on it when done.
620 */
621struct device_node *of_get_next_parent(struct device_node *node)
622{
623 struct device_node *parent;
624 unsigned long flags;
625
626 if (!node)
627 return NULL;
628
629 raw_spin_lock_irqsave(&devtree_lock, flags);
630 parent = of_node_get(node->parent);
631 of_node_put(node);
632 raw_spin_unlock_irqrestore(&devtree_lock, flags);
633 return parent;
634}
635EXPORT_SYMBOL(of_get_next_parent);
636
637static struct device_node *__of_get_next_child(const struct device_node *node,
638 struct device_node *prev)
639{
640 struct device_node *next;
641
642 if (!node)
643 return NULL;
644
645 next = prev ? prev->sibling : node->child;
646 for (; next; next = next->sibling)
647 if (of_node_get(next))
648 break;
649 of_node_put(prev);
650 return next;
651}
652#define __for_each_child_of_node(parent, child) \
653 for (child = __of_get_next_child(parent, NULL); child != NULL; \
654 child = __of_get_next_child(parent, child))
655
656/**
657 * of_get_next_child - Iterate a node childs
658 * @node: parent node
659 * @prev: previous child of the parent node, or NULL to get first
660 *
661 * Returns a node pointer with refcount incremented, use of_node_put() on
662 * it when done. Returns NULL when prev is the last child. Decrements the
663 * refcount of prev.
664 */
665struct device_node *of_get_next_child(const struct device_node *node,
666 struct device_node *prev)
667{
668 struct device_node *next;
669 unsigned long flags;
670
671 raw_spin_lock_irqsave(&devtree_lock, flags);
672 next = __of_get_next_child(node, prev);
673 raw_spin_unlock_irqrestore(&devtree_lock, flags);
674 return next;
675}
676EXPORT_SYMBOL(of_get_next_child);
677
678/**
679 * of_get_next_available_child - Find the next available child node
680 * @node: parent node
681 * @prev: previous child of the parent node, or NULL to get first
682 *
683 * This function is like of_get_next_child(), except that it
684 * automatically skips any disabled nodes (i.e. status = "disabled").
685 */
686struct device_node *of_get_next_available_child(const struct device_node *node,
687 struct device_node *prev)
688{
689 struct device_node *next;
690 unsigned long flags;
691
692 if (!node)
693 return NULL;
694
695 raw_spin_lock_irqsave(&devtree_lock, flags);
696 next = prev ? prev->sibling : node->child;
697 for (; next; next = next->sibling) {
698 if (!__of_device_is_available(next))
699 continue;
700 if (of_node_get(next))
701 break;
702 }
703 of_node_put(prev);
704 raw_spin_unlock_irqrestore(&devtree_lock, flags);
705 return next;
706}
707EXPORT_SYMBOL(of_get_next_available_child);
708
709/**
710 * of_get_child_by_name - Find the child node by name for a given parent
711 * @node: parent node
712 * @name: child name to look for.
713 *
714 * This function looks for child node for given matching name
715 *
716 * Returns a node pointer if found, with refcount incremented, use
717 * of_node_put() on it when done.
718 * Returns NULL if node is not found.
719 */
720struct device_node *of_get_child_by_name(const struct device_node *node,
721 const char *name)
722{
723 struct device_node *child;
724
725 for_each_child_of_node(node, child)
726 if (child->name && (of_node_cmp(child->name, name) == 0))
727 break;
728 return child;
729}
730EXPORT_SYMBOL(of_get_child_by_name);
731
732static struct device_node *__of_find_node_by_path(struct device_node *parent,
733 const char *path)
734{
735 struct device_node *child;
736 int len;
737
738 len = strcspn(path, "/:");
739 if (!len)
740 return NULL;
741
742 __for_each_child_of_node(parent, child) {
743 const char *name = strrchr(child->full_name, '/');
744 if (WARN(!name, "malformed device_node %s\n", child->full_name))
745 continue;
746 name++;
747 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
748 return child;
749 }
750 return NULL;
751}
752
753/**
754 * of_find_node_opts_by_path - Find a node matching a full OF path
755 * @path: Either the full path to match, or if the path does not
756 * start with '/', the name of a property of the /aliases
757 * node (an alias). In the case of an alias, the node
758 * matching the alias' value will be returned.
759 * @opts: Address of a pointer into which to store the start of
760 * an options string appended to the end of the path with
761 * a ':' separator.
762 *
763 * Valid paths:
764 * /foo/bar Full path
765 * foo Valid alias
766 * foo/bar Valid alias + relative path
767 *
768 * Returns a node pointer with refcount incremented, use
769 * of_node_put() on it when done.
770 */
771struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
772{
773 struct device_node *np = NULL;
774 struct property *pp;
775 unsigned long flags;
776 const char *separator = strchr(path, ':');
777
778 if (opts)
779 *opts = separator ? separator + 1 : NULL;
780
781 if (strcmp(path, "/") == 0)
782 return of_node_get(of_root);
783
784 /* The path could begin with an alias */
785 if (*path != '/') {
786 int len;
787 const char *p = separator;
788
789 if (!p)
790 p = strchrnul(path, '/');
791 len = p - path;
792
793 /* of_aliases must not be NULL */
794 if (!of_aliases)
795 return NULL;
796
797 for_each_property_of_node(of_aliases, pp) {
798 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
799 np = of_find_node_by_path(pp->value);
800 break;
801 }
802 }
803 if (!np)
804 return NULL;
805 path = p;
806 }
807
808 /* Step down the tree matching path components */
809 raw_spin_lock_irqsave(&devtree_lock, flags);
810 if (!np)
811 np = of_node_get(of_root);
812 while (np && *path == '/') {
813 path++; /* Increment past '/' delimiter */
814 np = __of_find_node_by_path(np, path);
815 path = strchrnul(path, '/');
816 if (separator && separator < path)
817 break;
818 }
819 raw_spin_unlock_irqrestore(&devtree_lock, flags);
820 return np;
821}
822EXPORT_SYMBOL(of_find_node_opts_by_path);
823
824/**
825 * of_find_node_by_name - Find a node by its "name" property
826 * @from: The node to start searching from or NULL, the node
827 * you pass will not be searched, only the next one
828 * will; typically, you pass what the previous call
829 * returned. of_node_put() will be called on it
830 * @name: The name string to match against
831 *
832 * Returns a node pointer with refcount incremented, use
833 * of_node_put() on it when done.
834 */
835struct device_node *of_find_node_by_name(struct device_node *from,
836 const char *name)
837{
838 struct device_node *np;
839 unsigned long flags;
840
841 raw_spin_lock_irqsave(&devtree_lock, flags);
842 for_each_of_allnodes_from(from, np)
843 if (np->name && (of_node_cmp(np->name, name) == 0)
844 && of_node_get(np))
845 break;
846 of_node_put(from);
847 raw_spin_unlock_irqrestore(&devtree_lock, flags);
848 return np;
849}
850EXPORT_SYMBOL(of_find_node_by_name);
851
852/**
853 * of_find_node_by_type - Find a node by its "device_type" property
854 * @from: The node to start searching from, or NULL to start searching
855 * the entire device tree. The node you pass will not be
856 * searched, only the next one will; typically, you pass
857 * what the previous call returned. of_node_put() will be
858 * called on from for you.
859 * @type: The type string to match against
860 *
861 * Returns a node pointer with refcount incremented, use
862 * of_node_put() on it when done.
863 */
864struct device_node *of_find_node_by_type(struct device_node *from,
865 const char *type)
866{
867 struct device_node *np;
868 unsigned long flags;
869
870 raw_spin_lock_irqsave(&devtree_lock, flags);
871 for_each_of_allnodes_from(from, np)
872 if (np->type && (of_node_cmp(np->type, type) == 0)
873 && of_node_get(np))
874 break;
875 of_node_put(from);
876 raw_spin_unlock_irqrestore(&devtree_lock, flags);
877 return np;
878}
879EXPORT_SYMBOL(of_find_node_by_type);
880
881/**
882 * of_find_compatible_node - Find a node based on type and one of the
883 * tokens in its "compatible" property
884 * @from: The node to start searching from or NULL, the node
885 * you pass will not be searched, only the next one
886 * will; typically, you pass what the previous call
887 * returned. of_node_put() will be called on it
888 * @type: The type string to match "device_type" or NULL to ignore
889 * @compatible: The string to match to one of the tokens in the device
890 * "compatible" list.
891 *
892 * Returns a node pointer with refcount incremented, use
893 * of_node_put() on it when done.
894 */
895struct device_node *of_find_compatible_node(struct device_node *from,
896 const char *type, const char *compatible)
897{
898 struct device_node *np;
899 unsigned long flags;
900
901 raw_spin_lock_irqsave(&devtree_lock, flags);
902 for_each_of_allnodes_from(from, np)
903 if (__of_device_is_compatible(np, compatible, type, NULL) &&
904 of_node_get(np))
905 break;
906 of_node_put(from);
907 raw_spin_unlock_irqrestore(&devtree_lock, flags);
908 return np;
909}
910EXPORT_SYMBOL(of_find_compatible_node);
911
912/**
913 * of_find_node_with_property - Find a node which has a property with
914 * the given name.
915 * @from: The node to start searching from or NULL, the node
916 * you pass will not be searched, only the next one
917 * will; typically, you pass what the previous call
918 * returned. of_node_put() will be called on it
919 * @prop_name: The name of the property to look for.
920 *
921 * Returns a node pointer with refcount incremented, use
922 * of_node_put() on it when done.
923 */
924struct device_node *of_find_node_with_property(struct device_node *from,
925 const char *prop_name)
926{
927 struct device_node *np;
928 struct property *pp;
929 unsigned long flags;
930
931 raw_spin_lock_irqsave(&devtree_lock, flags);
932 for_each_of_allnodes_from(from, np) {
933 for (pp = np->properties; pp; pp = pp->next) {
934 if (of_prop_cmp(pp->name, prop_name) == 0) {
935 of_node_get(np);
936 goto out;
937 }
938 }
939 }
940out:
941 of_node_put(from);
942 raw_spin_unlock_irqrestore(&devtree_lock, flags);
943 return np;
944}
945EXPORT_SYMBOL(of_find_node_with_property);
946
947static
948const struct of_device_id *__of_match_node(const struct of_device_id *matches,
949 const struct device_node *node)
950{
951 const struct of_device_id *best_match = NULL;
952 int score, best_score = 0;
953
954 if (!matches)
955 return NULL;
956
957 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
958 score = __of_device_is_compatible(node, matches->compatible,
959 matches->type, matches->name);
960 if (score > best_score) {
961 best_match = matches;
962 best_score = score;
963 }
964 }
965
966 return best_match;
967}
968
969/**
970 * of_match_node - Tell if a device_node has a matching of_match structure
971 * @matches: array of of device match structures to search in
972 * @node: the of device structure to match against
973 *
974 * Low level utility function used by device matching.
975 */
976const struct of_device_id *of_match_node(const struct of_device_id *matches,
977 const struct device_node *node)
978{
979 const struct of_device_id *match;
980 unsigned long flags;
981
982 raw_spin_lock_irqsave(&devtree_lock, flags);
983 match = __of_match_node(matches, node);
984 raw_spin_unlock_irqrestore(&devtree_lock, flags);
985 return match;
986}
987EXPORT_SYMBOL(of_match_node);
988
989/**
990 * of_find_matching_node_and_match - Find a node based on an of_device_id
991 * match table.
992 * @from: The node to start searching from or NULL, the node
993 * you pass will not be searched, only the next one
994 * will; typically, you pass what the previous call
995 * returned. of_node_put() will be called on it
996 * @matches: array of of device match structures to search in
997 * @match Updated to point at the matches entry which matched
998 *
999 * Returns a node pointer with refcount incremented, use
1000 * of_node_put() on it when done.
1001 */
1002struct device_node *of_find_matching_node_and_match(struct device_node *from,
1003 const struct of_device_id *matches,
1004 const struct of_device_id **match)
1005{
1006 struct device_node *np;
1007 const struct of_device_id *m;
1008 unsigned long flags;
1009
1010 if (match)
1011 *match = NULL;
1012
1013 raw_spin_lock_irqsave(&devtree_lock, flags);
1014 for_each_of_allnodes_from(from, np) {
1015 m = __of_match_node(matches, np);
1016 if (m && of_node_get(np)) {
1017 if (match)
1018 *match = m;
1019 break;
1020 }
1021 }
1022 of_node_put(from);
1023 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1024 return np;
1025}
1026EXPORT_SYMBOL(of_find_matching_node_and_match);
1027
1028/**
1029 * of_modalias_node - Lookup appropriate modalias for a device node
1030 * @node: pointer to a device tree node
1031 * @modalias: Pointer to buffer that modalias value will be copied into
1032 * @len: Length of modalias value
1033 *
1034 * Based on the value of the compatible property, this routine will attempt
1035 * to choose an appropriate modalias value for a particular device tree node.
1036 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1037 * from the first entry in the compatible list property.
1038 *
1039 * This routine returns 0 on success, <0 on failure.
1040 */
1041int of_modalias_node(struct device_node *node, char *modalias, int len)
1042{
1043 const char *compatible, *p;
1044 int cplen;
1045
1046 compatible = of_get_property(node, "compatible", &cplen);
1047 if (!compatible || strlen(compatible) > cplen)
1048 return -ENODEV;
1049 p = strchr(compatible, ',');
1050 strlcpy(modalias, p ? p + 1 : compatible, len);
1051 return 0;
1052}
1053EXPORT_SYMBOL_GPL(of_modalias_node);
1054
1055/**
1056 * of_find_node_by_phandle - Find a node given a phandle
1057 * @handle: phandle of the node to find
1058 *
1059 * Returns a node pointer with refcount incremented, use
1060 * of_node_put() on it when done.
1061 */
1062struct device_node *of_find_node_by_phandle(phandle handle)
1063{
1064 struct device_node *np;
1065 unsigned long flags;
1066
1067 if (!handle)
1068 return NULL;
1069
1070 raw_spin_lock_irqsave(&devtree_lock, flags);
1071 for_each_of_allnodes(np)
1072 if (np->phandle == handle)
1073 break;
1074 of_node_get(np);
1075 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1076 return np;
1077}
1078EXPORT_SYMBOL(of_find_node_by_phandle);
1079
1080/**
1081 * of_property_count_elems_of_size - Count the number of elements in a property
1082 *
1083 * @np: device node from which the property value is to be read.
1084 * @propname: name of the property to be searched.
1085 * @elem_size: size of the individual element
1086 *
1087 * Search for a property in a device node and count the number of elements of
1088 * size elem_size in it. Returns number of elements on sucess, -EINVAL if the
1089 * property does not exist or its length does not match a multiple of elem_size
1090 * and -ENODATA if the property does not have a value.
1091 */
1092int of_property_count_elems_of_size(const struct device_node *np,
1093 const char *propname, int elem_size)
1094{
1095 struct property *prop = of_find_property(np, propname, NULL);
1096
1097 if (!prop)
1098 return -EINVAL;
1099 if (!prop->value)
1100 return -ENODATA;
1101
1102 if (prop->length % elem_size != 0) {
1103 pr_err("size of %s in node %s is not a multiple of %d\n",
1104 propname, np->full_name, elem_size);
1105 return -EINVAL;
1106 }
1107
1108 return prop->length / elem_size;
1109}
1110EXPORT_SYMBOL_GPL(of_property_count_elems_of_size);
1111
1112/**
1113 * of_find_property_value_of_size
1114 *
1115 * @np: device node from which the property value is to be read.
1116 * @propname: name of the property to be searched.
1117 * @len: requested length of property value
1118 *
1119 * Search for a property in a device node and valid the requested size.
1120 * Returns the property value on success, -EINVAL if the property does not
1121 * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
1122 * property data isn't large enough.
1123 *
1124 */
1125static void *of_find_property_value_of_size(const struct device_node *np,
1126 const char *propname, u32 len)
1127{
1128 struct property *prop = of_find_property(np, propname, NULL);
1129
1130 if (!prop)
1131 return ERR_PTR(-EINVAL);
1132 if (!prop->value)
1133 return ERR_PTR(-ENODATA);
1134 if (len > prop->length)
1135 return ERR_PTR(-EOVERFLOW);
1136
1137 return prop->value;
1138}
1139
1140/**
1141 * of_property_read_u32_index - Find and read a u32 from a multi-value property.
1142 *
1143 * @np: device node from which the property value is to be read.
1144 * @propname: name of the property to be searched.
1145 * @index: index of the u32 in the list of values
1146 * @out_value: pointer to return value, modified only if no error.
1147 *
1148 * Search for a property in a device node and read nth 32-bit value from
1149 * it. Returns 0 on success, -EINVAL if the property does not exist,
1150 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1151 * property data isn't large enough.
1152 *
1153 * The out_value is modified only if a valid u32 value can be decoded.
1154 */
1155int of_property_read_u32_index(const struct device_node *np,
1156 const char *propname,
1157 u32 index, u32 *out_value)
1158{
1159 const u32 *val = of_find_property_value_of_size(np, propname,
1160 ((index + 1) * sizeof(*out_value)));
1161
1162 if (IS_ERR(val))
1163 return PTR_ERR(val);
1164
1165 *out_value = be32_to_cpup(((__be32 *)val) + index);
1166 return 0;
1167}
1168EXPORT_SYMBOL_GPL(of_property_read_u32_index);
1169
1170/**
1171 * of_property_read_u8_array - Find and read an array of u8 from a property.
1172 *
1173 * @np: device node from which the property value is to be read.
1174 * @propname: name of the property to be searched.
1175 * @out_values: pointer to return value, modified only if return value is 0.
1176 * @sz: number of array elements to read
1177 *
1178 * Search for a property in a device node and read 8-bit value(s) from
1179 * it. Returns 0 on success, -EINVAL if the property does not exist,
1180 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1181 * property data isn't large enough.
1182 *
1183 * dts entry of array should be like:
1184 * property = /bits/ 8 <0x50 0x60 0x70>;
1185 *
1186 * The out_values is modified only if a valid u8 value can be decoded.
1187 */
1188int of_property_read_u8_array(const struct device_node *np,
1189 const char *propname, u8 *out_values, size_t sz)
1190{
1191 const u8 *val = of_find_property_value_of_size(np, propname,
1192 (sz * sizeof(*out_values)));
1193
1194 if (IS_ERR(val))
1195 return PTR_ERR(val);
1196
1197 while (sz--)
1198 *out_values++ = *val++;
1199 return 0;
1200}
1201EXPORT_SYMBOL_GPL(of_property_read_u8_array);
1202
1203/**
1204 * of_property_read_u16_array - Find and read an array of u16 from a property.
1205 *
1206 * @np: device node from which the property value is to be read.
1207 * @propname: name of the property to be searched.
1208 * @out_values: pointer to return value, modified only if return value is 0.
1209 * @sz: number of array elements to read
1210 *
1211 * Search for a property in a device node and read 16-bit value(s) from
1212 * it. Returns 0 on success, -EINVAL if the property does not exist,
1213 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1214 * property data isn't large enough.
1215 *
1216 * dts entry of array should be like:
1217 * property = /bits/ 16 <0x5000 0x6000 0x7000>;
1218 *
1219 * The out_values is modified only if a valid u16 value can be decoded.
1220 */
1221int of_property_read_u16_array(const struct device_node *np,
1222 const char *propname, u16 *out_values, size_t sz)
1223{
1224 const __be16 *val = of_find_property_value_of_size(np, propname,
1225 (sz * sizeof(*out_values)));
1226
1227 if (IS_ERR(val))
1228 return PTR_ERR(val);
1229
1230 while (sz--)
1231 *out_values++ = be16_to_cpup(val++);
1232 return 0;
1233}
1234EXPORT_SYMBOL_GPL(of_property_read_u16_array);
1235
1236/**
1237 * of_property_read_u32_array - Find and read an array of 32 bit integers
1238 * from a property.
1239 *
1240 * @np: device node from which the property value is to be read.
1241 * @propname: name of the property to be searched.
1242 * @out_values: pointer to return value, modified only if return value is 0.
1243 * @sz: number of array elements to read
1244 *
1245 * Search for a property in a device node and read 32-bit value(s) from
1246 * it. Returns 0 on success, -EINVAL if the property does not exist,
1247 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1248 * property data isn't large enough.
1249 *
1250 * The out_values is modified only if a valid u32 value can be decoded.
1251 */
1252int of_property_read_u32_array(const struct device_node *np,
1253 const char *propname, u32 *out_values,
1254 size_t sz)
1255{
1256 const __be32 *val = of_find_property_value_of_size(np, propname,
1257 (sz * sizeof(*out_values)));
1258
1259 if (IS_ERR(val))
1260 return PTR_ERR(val);
1261
1262 while (sz--)
1263 *out_values++ = be32_to_cpup(val++);
1264 return 0;
1265}
1266EXPORT_SYMBOL_GPL(of_property_read_u32_array);
1267
1268/**
1269 * of_property_read_u64 - Find and read a 64 bit integer from a property
1270 * @np: device node from which the property value is to be read.
1271 * @propname: name of the property to be searched.
1272 * @out_value: pointer to return value, modified only if return value is 0.
1273 *
1274 * Search for a property in a device node and read a 64-bit value from
1275 * it. Returns 0 on success, -EINVAL if the property does not exist,
1276 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1277 * property data isn't large enough.
1278 *
1279 * The out_value is modified only if a valid u64 value can be decoded.
1280 */
1281int of_property_read_u64(const struct device_node *np, const char *propname,
1282 u64 *out_value)
1283{
1284 const __be32 *val = of_find_property_value_of_size(np, propname,
1285 sizeof(*out_value));
1286
1287 if (IS_ERR(val))
1288 return PTR_ERR(val);
1289
1290 *out_value = of_read_number(val, 2);
1291 return 0;
1292}
1293EXPORT_SYMBOL_GPL(of_property_read_u64);
1294
1295/**
1296 * of_property_read_u64_array - Find and read an array of 64 bit integers
1297 * from a property.
1298 *
1299 * @np: device node from which the property value is to be read.
1300 * @propname: name of the property to be searched.
1301 * @out_values: pointer to return value, modified only if return value is 0.
1302 * @sz: number of array elements to read
1303 *
1304 * Search for a property in a device node and read 64-bit value(s) from
1305 * it. Returns 0 on success, -EINVAL if the property does not exist,
1306 * -ENODATA if property does not have a value, and -EOVERFLOW if the
1307 * property data isn't large enough.
1308 *
1309 * The out_values is modified only if a valid u64 value can be decoded.
1310 */
1311int of_property_read_u64_array(const struct device_node *np,
1312 const char *propname, u64 *out_values,
1313 size_t sz)
1314{
1315 const __be32 *val = of_find_property_value_of_size(np, propname,
1316 (sz * sizeof(*out_values)));
1317
1318 if (IS_ERR(val))
1319 return PTR_ERR(val);
1320
1321 while (sz--) {
1322 *out_values++ = of_read_number(val, 2);
1323 val += 2;
1324 }
1325 return 0;
1326}
1327EXPORT_SYMBOL_GPL(of_property_read_u64_array);
1328
1329/**
1330 * of_property_read_string - Find and read a string from a property
1331 * @np: device node from which the property value is to be read.
1332 * @propname: name of the property to be searched.
1333 * @out_string: pointer to null terminated return string, modified only if
1334 * return value is 0.
1335 *
1336 * Search for a property in a device tree node and retrieve a null
1337 * terminated string value (pointer to data, not a copy). Returns 0 on
1338 * success, -EINVAL if the property does not exist, -ENODATA if property
1339 * does not have a value, and -EILSEQ if the string is not null-terminated
1340 * within the length of the property data.
1341 *
1342 * The out_string pointer is modified only if a valid string can be decoded.
1343 */
1344int of_property_read_string(const struct device_node *np, const char *propname,
1345 const char **out_string)
1346{
1347 const struct property *prop = of_find_property(np, propname, NULL);
1348 if (!prop)
1349 return -EINVAL;
1350 if (!prop->value)
1351 return -ENODATA;
1352 if (strnlen(prop->value, prop->length) >= prop->length)
1353 return -EILSEQ;
1354 *out_string = prop->value;
1355 return 0;
1356}
1357EXPORT_SYMBOL_GPL(of_property_read_string);
1358
1359/**
1360 * of_property_match_string() - Find string in a list and return index
1361 * @np: pointer to node containing string list property
1362 * @propname: string list property name
1363 * @string: pointer to string to search for in string list
1364 *
1365 * This function searches a string list property and returns the index
1366 * of a specific string value.
1367 */
1368int of_property_match_string(const struct device_node *np, const char *propname,
1369 const char *string)
1370{
1371 const struct property *prop = of_find_property(np, propname, NULL);
1372 size_t l;
1373 int i;
1374 const char *p, *end;
1375
1376 if (!prop)
1377 return -EINVAL;
1378 if (!prop->value)
1379 return -ENODATA;
1380
1381 p = prop->value;
1382 end = p + prop->length;
1383
1384 for (i = 0; p < end; i++, p += l) {
1385 l = strnlen(p, end - p) + 1;
1386 if (p + l > end)
1387 return -EILSEQ;
1388 pr_debug("comparing %s with %s\n", string, p);
1389 if (strcmp(string, p) == 0)
1390 return i; /* Found it; return index */
1391 }
1392 return -ENODATA;
1393}
1394EXPORT_SYMBOL_GPL(of_property_match_string);
1395
1396/**
1397 * of_property_read_string_helper() - Utility helper for parsing string properties
1398 * @np: device node from which the property value is to be read.
1399 * @propname: name of the property to be searched.
1400 * @out_strs: output array of string pointers.
1401 * @sz: number of array elements to read.
1402 * @skip: Number of strings to skip over at beginning of list.
1403 *
1404 * Don't call this function directly. It is a utility helper for the
1405 * of_property_read_string*() family of functions.
1406 */
1407int of_property_read_string_helper(const struct device_node *np,
1408 const char *propname, const char **out_strs,
1409 size_t sz, int skip)
1410{
1411 const struct property *prop = of_find_property(np, propname, NULL);
1412 int l = 0, i = 0;
1413 const char *p, *end;
1414
1415 if (!prop)
1416 return -EINVAL;
1417 if (!prop->value)
1418 return -ENODATA;
1419 p = prop->value;
1420 end = p + prop->length;
1421
1422 for (i = 0; p < end && (!out_strs || i < skip + sz); i++, p += l) {
1423 l = strnlen(p, end - p) + 1;
1424 if (p + l > end)
1425 return -EILSEQ;
1426 if (out_strs && i >= skip)
1427 *out_strs++ = p;
1428 }
1429 i -= skip;
1430 return i <= 0 ? -ENODATA : i;
1431}
1432EXPORT_SYMBOL_GPL(of_property_read_string_helper);
1433
1434void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1435{
1436 int i;
1437 printk("%s %s", msg, of_node_full_name(args->np));
1438 for (i = 0; i < args->args_count; i++)
1439 printk(i ? ",%08x" : ":%08x", args->args[i]);
1440 printk("\n");
1441}
1442
1443static int __of_parse_phandle_with_args(const struct device_node *np,
1444 const char *list_name,
1445 const char *cells_name,
1446 int cell_count, int index,
1447 struct of_phandle_args *out_args)
1448{
1449 const __be32 *list, *list_end;
1450 int rc = 0, size, cur_index = 0;
1451 uint32_t count = 0;
1452 struct device_node *node = NULL;
1453 phandle phandle;
1454
1455 /* Retrieve the phandle list property */
1456 list = of_get_property(np, list_name, &size);
1457 if (!list)
1458 return -ENOENT;
1459 list_end = list + size / sizeof(*list);
1460
1461 /* Loop over the phandles until all the requested entry is found */
1462 while (list < list_end) {
1463 rc = -EINVAL;
1464 count = 0;
1465
1466 /*
1467 * If phandle is 0, then it is an empty entry with no
1468 * arguments. Skip forward to the next entry.
1469 */
1470 phandle = be32_to_cpup(list++);
1471 if (phandle) {
1472 /*
1473 * Find the provider node and parse the #*-cells
1474 * property to determine the argument length.
1475 *
1476 * This is not needed if the cell count is hard-coded
1477 * (i.e. cells_name not set, but cell_count is set),
1478 * except when we're going to return the found node
1479 * below.
1480 */
1481 if (cells_name || cur_index == index) {
1482 node = of_find_node_by_phandle(phandle);
1483 if (!node) {
1484 pr_err("%s: could not find phandle\n",
1485 np->full_name);
1486 goto err;
1487 }
1488 }
1489
1490 if (cells_name) {
1491 if (of_property_read_u32(node, cells_name,
1492 &count)) {
1493 pr_err("%s: could not get %s for %s\n",
1494 np->full_name, cells_name,
1495 node->full_name);
1496 goto err;
1497 }
1498 } else {
1499 count = cell_count;
1500 }
1501
1502 /*
1503 * Make sure that the arguments actually fit in the
1504 * remaining property data length
1505 */
1506 if (list + count > list_end) {
1507 pr_err("%s: arguments longer than property\n",
1508 np->full_name);
1509 goto err;
1510 }
1511 }
1512
1513 /*
1514 * All of the error cases above bail out of the loop, so at
1515 * this point, the parsing is successful. If the requested
1516 * index matches, then fill the out_args structure and return,
1517 * or return -ENOENT for an empty entry.
1518 */
1519 rc = -ENOENT;
1520 if (cur_index == index) {
1521 if (!phandle)
1522 goto err;
1523
1524 if (out_args) {
1525 int i;
1526 if (WARN_ON(count > MAX_PHANDLE_ARGS))
1527 count = MAX_PHANDLE_ARGS;
1528 out_args->np = node;
1529 out_args->args_count = count;
1530 for (i = 0; i < count; i++)
1531 out_args->args[i] = be32_to_cpup(list++);
1532 } else {
1533 of_node_put(node);
1534 }
1535
1536 /* Found it! return success */
1537 return 0;
1538 }
1539
1540 of_node_put(node);
1541 node = NULL;
1542 list += count;
1543 cur_index++;
1544 }
1545
1546 /*
1547 * Unlock node before returning result; will be one of:
1548 * -ENOENT : index is for empty phandle
1549 * -EINVAL : parsing error on data
1550 * [1..n] : Number of phandle (count mode; when index = -1)
1551 */
1552 rc = index < 0 ? cur_index : -ENOENT;
1553 err:
1554 if (node)
1555 of_node_put(node);
1556 return rc;
1557}
1558
1559/**
1560 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1561 * @np: Pointer to device node holding phandle property
1562 * @phandle_name: Name of property holding a phandle value
1563 * @index: For properties holding a table of phandles, this is the index into
1564 * the table
1565 *
1566 * Returns the device_node pointer with refcount incremented. Use
1567 * of_node_put() on it when done.
1568 */
1569struct device_node *of_parse_phandle(const struct device_node *np,
1570 const char *phandle_name, int index)
1571{
1572 struct of_phandle_args args;
1573
1574 if (index < 0)
1575 return NULL;
1576
1577 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1578 index, &args))
1579 return NULL;
1580
1581 return args.np;
1582}
1583EXPORT_SYMBOL(of_parse_phandle);
1584
1585/**
1586 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1587 * @np: pointer to a device tree node containing a list
1588 * @list_name: property name that contains a list
1589 * @cells_name: property name that specifies phandles' arguments count
1590 * @index: index of a phandle to parse out
1591 * @out_args: optional pointer to output arguments structure (will be filled)
1592 *
1593 * This function is useful to parse lists of phandles and their arguments.
1594 * Returns 0 on success and fills out_args, on error returns appropriate
1595 * errno value.
1596 *
1597 * Caller is responsible to call of_node_put() on the returned out_args->np
1598 * pointer.
1599 *
1600 * Example:
1601 *
1602 * phandle1: node1 {
1603 * #list-cells = <2>;
1604 * }
1605 *
1606 * phandle2: node2 {
1607 * #list-cells = <1>;
1608 * }
1609 *
1610 * node3 {
1611 * list = <&phandle1 1 2 &phandle2 3>;
1612 * }
1613 *
1614 * To get a device_node of the `node2' node you may call this:
1615 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1616 */
1617int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1618 const char *cells_name, int index,
1619 struct of_phandle_args *out_args)
1620{
1621 if (index < 0)
1622 return -EINVAL;
1623 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1624 index, out_args);
1625}
1626EXPORT_SYMBOL(of_parse_phandle_with_args);
1627
1628/**
1629 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1630 * @np: pointer to a device tree node containing a list
1631 * @list_name: property name that contains a list
1632 * @cell_count: number of argument cells following the phandle
1633 * @index: index of a phandle to parse out
1634 * @out_args: optional pointer to output arguments structure (will be filled)
1635 *
1636 * This function is useful to parse lists of phandles and their arguments.
1637 * Returns 0 on success and fills out_args, on error returns appropriate
1638 * errno value.
1639 *
1640 * Caller is responsible to call of_node_put() on the returned out_args->np
1641 * pointer.
1642 *
1643 * Example:
1644 *
1645 * phandle1: node1 {
1646 * }
1647 *
1648 * phandle2: node2 {
1649 * }
1650 *
1651 * node3 {
1652 * list = <&phandle1 0 2 &phandle2 2 3>;
1653 * }
1654 *
1655 * To get a device_node of the `node2' node you may call this:
1656 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1657 */
1658int of_parse_phandle_with_fixed_args(const struct device_node *np,
1659 const char *list_name, int cell_count,
1660 int index, struct of_phandle_args *out_args)
1661{
1662 if (index < 0)
1663 return -EINVAL;
1664 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1665 index, out_args);
1666}
1667EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1668
1669/**
1670 * of_count_phandle_with_args() - Find the number of phandles references in a property
1671 * @np: pointer to a device tree node containing a list
1672 * @list_name: property name that contains a list
1673 * @cells_name: property name that specifies phandles' arguments count
1674 *
1675 * Returns the number of phandle + argument tuples within a property. It
1676 * is a typical pattern to encode a list of phandle and variable
1677 * arguments into a single property. The number of arguments is encoded
1678 * by a property in the phandle-target node. For example, a gpios
1679 * property would contain a list of GPIO specifies consisting of a
1680 * phandle and 1 or more arguments. The number of arguments are
1681 * determined by the #gpio-cells property in the node pointed to by the
1682 * phandle.
1683 */
1684int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1685 const char *cells_name)
1686{
1687 return __of_parse_phandle_with_args(np, list_name, cells_name, 0, -1,
1688 NULL);
1689}
1690EXPORT_SYMBOL(of_count_phandle_with_args);
1691
1692/**
1693 * __of_add_property - Add a property to a node without lock operations
1694 */
1695int __of_add_property(struct device_node *np, struct property *prop)
1696{
1697 struct property **next;
1698
1699 prop->next = NULL;
1700 next = &np->properties;
1701 while (*next) {
1702 if (strcmp(prop->name, (*next)->name) == 0)
1703 /* duplicate ! don't insert it */
1704 return -EEXIST;
1705
1706 next = &(*next)->next;
1707 }
1708 *next = prop;
1709
1710 return 0;
1711}
1712
1713/**
1714 * of_add_property - Add a property to a node
1715 */
1716int of_add_property(struct device_node *np, struct property *prop)
1717{
1718 unsigned long flags;
1719 int rc;
1720
1721 mutex_lock(&of_mutex);
1722
1723 raw_spin_lock_irqsave(&devtree_lock, flags);
1724 rc = __of_add_property(np, prop);
1725 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1726
1727 if (!rc)
1728 __of_add_property_sysfs(np, prop);
1729
1730 mutex_unlock(&of_mutex);
1731
1732 if (!rc)
1733 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1734
1735 return rc;
1736}
1737
1738int __of_remove_property(struct device_node *np, struct property *prop)
1739{
1740 struct property **next;
1741
1742 for (next = &np->properties; *next; next = &(*next)->next) {
1743 if (*next == prop)
1744 break;
1745 }
1746 if (*next == NULL)
1747 return -ENODEV;
1748
1749 /* found the node */
1750 *next = prop->next;
1751 prop->next = np->deadprops;
1752 np->deadprops = prop;
1753
1754 return 0;
1755}
1756
1757void __of_remove_property_sysfs(struct device_node *np, struct property *prop)
1758{
1759 if (!IS_ENABLED(CONFIG_SYSFS))
1760 return;
1761
1762 /* at early boot, bail here and defer setup to of_init() */
1763 if (of_kset && of_node_is_attached(np))
1764 sysfs_remove_bin_file(&np->kobj, &prop->attr);
1765}
1766
1767/**
1768 * of_remove_property - Remove a property from a node.
1769 *
1770 * Note that we don't actually remove it, since we have given out
1771 * who-knows-how-many pointers to the data using get-property.
1772 * Instead we just move the property to the "dead properties"
1773 * list, so it won't be found any more.
1774 */
1775int of_remove_property(struct device_node *np, struct property *prop)
1776{
1777 unsigned long flags;
1778 int rc;
1779
1780 mutex_lock(&of_mutex);
1781
1782 raw_spin_lock_irqsave(&devtree_lock, flags);
1783 rc = __of_remove_property(np, prop);
1784 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1785
1786 if (!rc)
1787 __of_remove_property_sysfs(np, prop);
1788
1789 mutex_unlock(&of_mutex);
1790
1791 if (!rc)
1792 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1793
1794 return rc;
1795}
1796
1797int __of_update_property(struct device_node *np, struct property *newprop,
1798 struct property **oldpropp)
1799{
1800 struct property **next, *oldprop;
1801
1802 for (next = &np->properties; *next; next = &(*next)->next) {
1803 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1804 break;
1805 }
1806 *oldpropp = oldprop = *next;
1807
1808 if (oldprop) {
1809 /* replace the node */
1810 newprop->next = oldprop->next;
1811 *next = newprop;
1812 oldprop->next = np->deadprops;
1813 np->deadprops = oldprop;
1814 } else {
1815 /* new node */
1816 newprop->next = NULL;
1817 *next = newprop;
1818 }
1819
1820 return 0;
1821}
1822
1823void __of_update_property_sysfs(struct device_node *np, struct property *newprop,
1824 struct property *oldprop)
1825{
1826 if (!IS_ENABLED(CONFIG_SYSFS))
1827 return;
1828
1829 /* At early boot, bail out and defer setup to of_init() */
1830 if (!of_kset)
1831 return;
1832
1833 if (oldprop)
1834 sysfs_remove_bin_file(&np->kobj, &oldprop->attr);
1835 __of_add_property_sysfs(np, newprop);
1836}
1837
1838/*
1839 * of_update_property - Update a property in a node, if the property does
1840 * not exist, add it.
1841 *
1842 * Note that we don't actually remove it, since we have given out
1843 * who-knows-how-many pointers to the data using get-property.
1844 * Instead we just move the property to the "dead properties" list,
1845 * and add the new property to the property list
1846 */
1847int of_update_property(struct device_node *np, struct property *newprop)
1848{
1849 struct property *oldprop;
1850 unsigned long flags;
1851 int rc;
1852
1853 if (!newprop->name)
1854 return -EINVAL;
1855
1856 mutex_lock(&of_mutex);
1857
1858 raw_spin_lock_irqsave(&devtree_lock, flags);
1859 rc = __of_update_property(np, newprop, &oldprop);
1860 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1861
1862 if (!rc)
1863 __of_update_property_sysfs(np, newprop, oldprop);
1864
1865 mutex_unlock(&of_mutex);
1866
1867 if (!rc)
1868 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1869
1870 return rc;
1871}
1872
1873static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1874 int id, const char *stem, int stem_len)
1875{
1876 ap->np = np;
1877 ap->id = id;
1878 strncpy(ap->stem, stem, stem_len);
1879 ap->stem[stem_len] = 0;
1880 list_add_tail(&ap->link, &aliases_lookup);
1881 pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1882 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1883}
1884
1885/**
1886 * of_alias_scan - Scan all properties of the 'aliases' node
1887 *
1888 * The function scans all the properties of the 'aliases' node and populates
1889 * the global lookup table with the properties. It returns the
1890 * number of alias properties found, or an error code in case of failure.
1891 *
1892 * @dt_alloc: An allocator that provides a virtual address to memory
1893 * for storing the resulting tree
1894 */
1895void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1896{
1897 struct property *pp;
1898
1899 of_aliases = of_find_node_by_path("/aliases");
1900 of_chosen = of_find_node_by_path("/chosen");
1901 if (of_chosen == NULL)
1902 of_chosen = of_find_node_by_path("/chosen@0");
1903
1904 if (of_chosen) {
1905 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1906 const char *name = of_get_property(of_chosen, "stdout-path", NULL);
1907 if (!name)
1908 name = of_get_property(of_chosen, "linux,stdout-path", NULL);
1909 if (IS_ENABLED(CONFIG_PPC) && !name)
1910 name = of_get_property(of_aliases, "stdout", NULL);
1911 if (name)
1912 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1913 }
1914
1915 if (!of_aliases)
1916 return;
1917
1918 for_each_property_of_node(of_aliases, pp) {
1919 const char *start = pp->name;
1920 const char *end = start + strlen(start);
1921 struct device_node *np;
1922 struct alias_prop *ap;
1923 int id, len;
1924
1925 /* Skip those we do not want to proceed */
1926 if (!strcmp(pp->name, "name") ||
1927 !strcmp(pp->name, "phandle") ||
1928 !strcmp(pp->name, "linux,phandle"))
1929 continue;
1930
1931 np = of_find_node_by_path(pp->value);
1932 if (!np)
1933 continue;
1934
1935 /* walk the alias backwards to extract the id and work out
1936 * the 'stem' string */
1937 while (isdigit(*(end-1)) && end > start)
1938 end--;
1939 len = end - start;
1940
1941 if (kstrtoint(end, 10, &id) < 0)
1942 continue;
1943
1944 /* Allocate an alias_prop with enough space for the stem */
1945 ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1946 if (!ap)
1947 continue;
1948 memset(ap, 0, sizeof(*ap) + len + 1);
1949 ap->alias = start;
1950 of_alias_add(ap, np, id, start, len);
1951 }
1952}
1953
1954/**
1955 * of_alias_get_id - Get alias id for the given device_node
1956 * @np: Pointer to the given device_node
1957 * @stem: Alias stem of the given device_node
1958 *
1959 * The function travels the lookup table to get the alias id for the given
1960 * device_node and alias stem. It returns the alias id if found.
1961 */
1962int of_alias_get_id(struct device_node *np, const char *stem)
1963{
1964 struct alias_prop *app;
1965 int id = -ENODEV;
1966
1967 mutex_lock(&of_mutex);
1968 list_for_each_entry(app, &aliases_lookup, link) {
1969 if (strcmp(app->stem, stem) != 0)
1970 continue;
1971
1972 if (np == app->np) {
1973 id = app->id;
1974 break;
1975 }
1976 }
1977 mutex_unlock(&of_mutex);
1978
1979 return id;
1980}
1981EXPORT_SYMBOL_GPL(of_alias_get_id);
1982
1983/**
1984 * of_alias_get_highest_id - Get highest alias id for the given stem
1985 * @stem: Alias stem to be examined
1986 *
1987 * The function travels the lookup table to get the highest alias id for the
1988 * given alias stem. It returns the alias id if found.
1989 */
1990int of_alias_get_highest_id(const char *stem)
1991{
1992 struct alias_prop *app;
1993 int id = -ENODEV;
1994
1995 mutex_lock(&of_mutex);
1996 list_for_each_entry(app, &aliases_lookup, link) {
1997 if (strcmp(app->stem, stem) != 0)
1998 continue;
1999
2000 if (app->id > id)
2001 id = app->id;
2002 }
2003 mutex_unlock(&of_mutex);
2004
2005 return id;
2006}
2007EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2008
2009const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
2010 u32 *pu)
2011{
2012 const void *curv = cur;
2013
2014 if (!prop)
2015 return NULL;
2016
2017 if (!cur) {
2018 curv = prop->value;
2019 goto out_val;
2020 }
2021
2022 curv += sizeof(*cur);
2023 if (curv >= prop->value + prop->length)
2024 return NULL;
2025
2026out_val:
2027 *pu = be32_to_cpup(curv);
2028 return curv;
2029}
2030EXPORT_SYMBOL_GPL(of_prop_next_u32);
2031
2032const char *of_prop_next_string(struct property *prop, const char *cur)
2033{
2034 const void *curv = cur;
2035
2036 if (!prop)
2037 return NULL;
2038
2039 if (!cur)
2040 return prop->value;
2041
2042 curv += strlen(cur) + 1;
2043 if (curv >= prop->value + prop->length)
2044 return NULL;
2045
2046 return curv;
2047}
2048EXPORT_SYMBOL_GPL(of_prop_next_string);
2049
2050/**
2051 * of_console_check() - Test and setup console for DT setup
2052 * @dn - Pointer to device node
2053 * @name - Name to use for preferred console without index. ex. "ttyS"
2054 * @index - Index to use for preferred console.
2055 *
2056 * Check if the given device node matches the stdout-path property in the
2057 * /chosen node. If it does then register it as the preferred console and return
2058 * TRUE. Otherwise return FALSE.
2059 */
2060bool of_console_check(struct device_node *dn, char *name, int index)
2061{
2062 if (!dn || dn != of_stdout || console_set_on_cmdline)
2063 return false;
2064 return !add_preferred_console(name, index,
2065 kstrdup(of_stdout_options, GFP_KERNEL));
2066}
2067EXPORT_SYMBOL_GPL(of_console_check);
2068
2069/**
2070 * of_find_next_cache_node - Find a node's subsidiary cache
2071 * @np: node of type "cpu" or "cache"
2072 *
2073 * Returns a node pointer with refcount incremented, use
2074 * of_node_put() on it when done. Caller should hold a reference
2075 * to np.
2076 */
2077struct device_node *of_find_next_cache_node(const struct device_node *np)
2078{
2079 struct device_node *child;
2080 const phandle *handle;
2081
2082 handle = of_get_property(np, "l2-cache", NULL);
2083 if (!handle)
2084 handle = of_get_property(np, "next-level-cache", NULL);
2085
2086 if (handle)
2087 return of_find_node_by_phandle(be32_to_cpup(handle));
2088
2089 /* OF on pmac has nodes instead of properties named "l2-cache"
2090 * beneath CPU nodes.
2091 */
2092 if (!strcmp(np->type, "cpu"))
2093 for_each_child_of_node(np, child)
2094 if (!strcmp(child->type, "cache"))
2095 return child;
2096
2097 return NULL;
2098}
2099
2100/**
2101 * of_graph_parse_endpoint() - parse common endpoint node properties
2102 * @node: pointer to endpoint device_node
2103 * @endpoint: pointer to the OF endpoint data structure
2104 *
2105 * The caller should hold a reference to @node.
2106 */
2107int of_graph_parse_endpoint(const struct device_node *node,
2108 struct of_endpoint *endpoint)
2109{
2110 struct device_node *port_node = of_get_parent(node);
2111
2112 WARN_ONCE(!port_node, "%s(): endpoint %s has no parent node\n",
2113 __func__, node->full_name);
2114
2115 memset(endpoint, 0, sizeof(*endpoint));
2116
2117 endpoint->local_node = node;
2118 /*
2119 * It doesn't matter whether the two calls below succeed.
2120 * If they don't then the default value 0 is used.
2121 */
2122 of_property_read_u32(port_node, "reg", &endpoint->port);
2123 of_property_read_u32(node, "reg", &endpoint->id);
2124
2125 of_node_put(port_node);
2126
2127 return 0;
2128}
2129EXPORT_SYMBOL(of_graph_parse_endpoint);
2130
2131/**
2132 * of_graph_get_port_by_id() - get the port matching a given id
2133 * @parent: pointer to the parent device node
2134 * @id: id of the port
2135 *
2136 * Return: A 'port' node pointer with refcount incremented. The caller
2137 * has to use of_node_put() on it when done.
2138 */
2139struct device_node *of_graph_get_port_by_id(struct device_node *parent, u32 id)
2140{
2141 struct device_node *node, *port;
2142
2143 node = of_get_child_by_name(parent, "ports");
2144 if (node)
2145 parent = node;
2146
2147 for_each_child_of_node(parent, port) {
2148 u32 port_id = 0;
2149
2150 if (of_node_cmp(port->name, "port") != 0)
2151 continue;
2152 of_property_read_u32(port, "reg", &port_id);
2153 if (id == port_id)
2154 break;
2155 }
2156
2157 of_node_put(node);
2158
2159 return port;
2160}
2161EXPORT_SYMBOL(of_graph_get_port_by_id);
2162
2163/**
2164 * of_graph_get_next_endpoint() - get next endpoint node
2165 * @parent: pointer to the parent device node
2166 * @prev: previous endpoint node, or NULL to get first
2167 *
2168 * Return: An 'endpoint' node pointer with refcount incremented. Refcount
2169 * of the passed @prev node is decremented.
2170 */
2171struct device_node *of_graph_get_next_endpoint(const struct device_node *parent,
2172 struct device_node *prev)
2173{
2174 struct device_node *endpoint;
2175 struct device_node *port;
2176
2177 if (!parent)
2178 return NULL;
2179
2180 /*
2181 * Start by locating the port node. If no previous endpoint is specified
2182 * search for the first port node, otherwise get the previous endpoint
2183 * parent port node.
2184 */
2185 if (!prev) {
2186 struct device_node *node;
2187
2188 node = of_get_child_by_name(parent, "ports");
2189 if (node)
2190 parent = node;
2191
2192 port = of_get_child_by_name(parent, "port");
2193 of_node_put(node);
2194
2195 if (!port) {
2196 pr_err("%s(): no port node found in %s\n",
2197 __func__, parent->full_name);
2198 return NULL;
2199 }
2200 } else {
2201 port = of_get_parent(prev);
2202 if (WARN_ONCE(!port, "%s(): endpoint %s has no parent node\n",
2203 __func__, prev->full_name))
2204 return NULL;
2205 }
2206
2207 while (1) {
2208 /*
2209 * Now that we have a port node, get the next endpoint by
2210 * getting the next child. If the previous endpoint is NULL this
2211 * will return the first child.
2212 */
2213 endpoint = of_get_next_child(port, prev);
2214 if (endpoint) {
2215 of_node_put(port);
2216 return endpoint;
2217 }
2218
2219 /* No more endpoints under this port, try the next one. */
2220 prev = NULL;
2221
2222 do {
2223 port = of_get_next_child(parent, port);
2224 if (!port)
2225 return NULL;
2226 } while (of_node_cmp(port->name, "port"));
2227 }
2228}
2229EXPORT_SYMBOL(of_graph_get_next_endpoint);
2230
2231/**
2232 * of_graph_get_endpoint_by_regs() - get endpoint node of specific identifiers
2233 * @parent: pointer to the parent device node
2234 * @port_reg: identifier (value of reg property) of the parent port node
2235 * @reg: identifier (value of reg property) of the endpoint node
2236 *
2237 * Return: An 'endpoint' node pointer which is identified by reg and at the same
2238 * is the child of a port node identified by port_reg. reg and port_reg are
2239 * ignored when they are -1.
2240 */
2241struct device_node *of_graph_get_endpoint_by_regs(
2242 const struct device_node *parent, int port_reg, int reg)
2243{
2244 struct of_endpoint endpoint;
2245 struct device_node *node, *prev_node = NULL;
2246
2247 while (1) {
2248 node = of_graph_get_next_endpoint(parent, prev_node);
2249 of_node_put(prev_node);
2250 if (!node)
2251 break;
2252
2253 of_graph_parse_endpoint(node, &endpoint);
2254 if (((port_reg == -1) || (endpoint.port == port_reg)) &&
2255 ((reg == -1) || (endpoint.id == reg)))
2256 return node;
2257
2258 prev_node = node;
2259 }
2260
2261 return NULL;
2262}
2263EXPORT_SYMBOL(of_graph_get_endpoint_by_regs);
2264
2265/**
2266 * of_graph_get_remote_port_parent() - get remote port's parent node
2267 * @node: pointer to a local endpoint device_node
2268 *
2269 * Return: Remote device node associated with remote endpoint node linked
2270 * to @node. Use of_node_put() on it when done.
2271 */
2272struct device_node *of_graph_get_remote_port_parent(
2273 const struct device_node *node)
2274{
2275 struct device_node *np;
2276 unsigned int depth;
2277
2278 /* Get remote endpoint node. */
2279 np = of_parse_phandle(node, "remote-endpoint", 0);
2280
2281 /* Walk 3 levels up only if there is 'ports' node. */
2282 for (depth = 3; depth && np; depth--) {
2283 np = of_get_next_parent(np);
2284 if (depth == 2 && of_node_cmp(np->name, "ports"))
2285 break;
2286 }
2287 return np;
2288}
2289EXPORT_SYMBOL(of_graph_get_remote_port_parent);
2290
2291/**
2292 * of_graph_get_remote_port() - get remote port node
2293 * @node: pointer to a local endpoint device_node
2294 *
2295 * Return: Remote port node associated with remote endpoint node linked
2296 * to @node. Use of_node_put() on it when done.
2297 */
2298struct device_node *of_graph_get_remote_port(const struct device_node *node)
2299{
2300 struct device_node *np;
2301
2302 /* Get remote endpoint node. */
2303 np = of_parse_phandle(node, "remote-endpoint", 0);
2304 if (!np)
2305 return NULL;
2306 return of_get_next_parent(np);
2307}
2308EXPORT_SYMBOL(of_graph_get_remote_port);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17#define pr_fmt(fmt) "OF: " fmt
18
19#include <linux/console.h>
20#include <linux/ctype.h>
21#include <linux/cpu.h>
22#include <linux/module.h>
23#include <linux/of.h>
24#include <linux/of_device.h>
25#include <linux/of_graph.h>
26#include <linux/spinlock.h>
27#include <linux/slab.h>
28#include <linux/string.h>
29#include <linux/proc_fs.h>
30
31#include "of_private.h"
32
33LIST_HEAD(aliases_lookup);
34
35struct device_node *of_root;
36EXPORT_SYMBOL(of_root);
37struct device_node *of_chosen;
38struct device_node *of_aliases;
39struct device_node *of_stdout;
40static const char *of_stdout_options;
41
42struct kset *of_kset;
43
44/*
45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46 * This mutex must be held whenever modifications are being made to the
47 * device tree. The of_{attach,detach}_node() and
48 * of_{add,remove,update}_property() helpers make sure this happens.
49 */
50DEFINE_MUTEX(of_mutex);
51
52/* use when traversing tree through the child, sibling,
53 * or parent members of struct device_node.
54 */
55DEFINE_RAW_SPINLOCK(devtree_lock);
56
57int of_n_addr_cells(struct device_node *np)
58{
59 u32 cells;
60
61 do {
62 if (np->parent)
63 np = np->parent;
64 if (!of_property_read_u32(np, "#address-cells", &cells))
65 return cells;
66 } while (np->parent);
67 /* No #address-cells property for the root node */
68 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
69}
70EXPORT_SYMBOL(of_n_addr_cells);
71
72int of_n_size_cells(struct device_node *np)
73{
74 u32 cells;
75
76 do {
77 if (np->parent)
78 np = np->parent;
79 if (!of_property_read_u32(np, "#size-cells", &cells))
80 return cells;
81 } while (np->parent);
82 /* No #size-cells property for the root node */
83 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
84}
85EXPORT_SYMBOL(of_n_size_cells);
86
87#ifdef CONFIG_NUMA
88int __weak of_node_to_nid(struct device_node *np)
89{
90 return NUMA_NO_NODE;
91}
92#endif
93
94static struct device_node **phandle_cache;
95static u32 phandle_cache_mask;
96
97/*
98 * Assumptions behind phandle_cache implementation:
99 * - phandle property values are in a contiguous range of 1..n
100 *
101 * If the assumptions do not hold, then
102 * - the phandle lookup overhead reduction provided by the cache
103 * will likely be less
104 */
105static void of_populate_phandle_cache(void)
106{
107 unsigned long flags;
108 u32 cache_entries;
109 struct device_node *np;
110 u32 phandles = 0;
111
112 raw_spin_lock_irqsave(&devtree_lock, flags);
113
114 kfree(phandle_cache);
115 phandle_cache = NULL;
116
117 for_each_of_allnodes(np)
118 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
119 phandles++;
120
121 cache_entries = roundup_pow_of_two(phandles);
122 phandle_cache_mask = cache_entries - 1;
123
124 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
125 GFP_ATOMIC);
126 if (!phandle_cache)
127 goto out;
128
129 for_each_of_allnodes(np)
130 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
131 phandle_cache[np->phandle & phandle_cache_mask] = np;
132
133out:
134 raw_spin_unlock_irqrestore(&devtree_lock, flags);
135}
136
137#ifndef CONFIG_MODULES
138static int __init of_free_phandle_cache(void)
139{
140 unsigned long flags;
141
142 raw_spin_lock_irqsave(&devtree_lock, flags);
143
144 kfree(phandle_cache);
145 phandle_cache = NULL;
146
147 raw_spin_unlock_irqrestore(&devtree_lock, flags);
148
149 return 0;
150}
151late_initcall_sync(of_free_phandle_cache);
152#endif
153
154void __init of_core_init(void)
155{
156 struct device_node *np;
157
158 of_populate_phandle_cache();
159
160 /* Create the kset, and register existing nodes */
161 mutex_lock(&of_mutex);
162 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
163 if (!of_kset) {
164 mutex_unlock(&of_mutex);
165 pr_err("failed to register existing nodes\n");
166 return;
167 }
168 for_each_of_allnodes(np)
169 __of_attach_node_sysfs(np);
170 mutex_unlock(&of_mutex);
171
172 /* Symlink in /proc as required by userspace ABI */
173 if (of_root)
174 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
175}
176
177static struct property *__of_find_property(const struct device_node *np,
178 const char *name, int *lenp)
179{
180 struct property *pp;
181
182 if (!np)
183 return NULL;
184
185 for (pp = np->properties; pp; pp = pp->next) {
186 if (of_prop_cmp(pp->name, name) == 0) {
187 if (lenp)
188 *lenp = pp->length;
189 break;
190 }
191 }
192
193 return pp;
194}
195
196struct property *of_find_property(const struct device_node *np,
197 const char *name,
198 int *lenp)
199{
200 struct property *pp;
201 unsigned long flags;
202
203 raw_spin_lock_irqsave(&devtree_lock, flags);
204 pp = __of_find_property(np, name, lenp);
205 raw_spin_unlock_irqrestore(&devtree_lock, flags);
206
207 return pp;
208}
209EXPORT_SYMBOL(of_find_property);
210
211struct device_node *__of_find_all_nodes(struct device_node *prev)
212{
213 struct device_node *np;
214 if (!prev) {
215 np = of_root;
216 } else if (prev->child) {
217 np = prev->child;
218 } else {
219 /* Walk back up looking for a sibling, or the end of the structure */
220 np = prev;
221 while (np->parent && !np->sibling)
222 np = np->parent;
223 np = np->sibling; /* Might be null at the end of the tree */
224 }
225 return np;
226}
227
228/**
229 * of_find_all_nodes - Get next node in global list
230 * @prev: Previous node or NULL to start iteration
231 * of_node_put() will be called on it
232 *
233 * Returns a node pointer with refcount incremented, use
234 * of_node_put() on it when done.
235 */
236struct device_node *of_find_all_nodes(struct device_node *prev)
237{
238 struct device_node *np;
239 unsigned long flags;
240
241 raw_spin_lock_irqsave(&devtree_lock, flags);
242 np = __of_find_all_nodes(prev);
243 of_node_get(np);
244 of_node_put(prev);
245 raw_spin_unlock_irqrestore(&devtree_lock, flags);
246 return np;
247}
248EXPORT_SYMBOL(of_find_all_nodes);
249
250/*
251 * Find a property with a given name for a given node
252 * and return the value.
253 */
254const void *__of_get_property(const struct device_node *np,
255 const char *name, int *lenp)
256{
257 struct property *pp = __of_find_property(np, name, lenp);
258
259 return pp ? pp->value : NULL;
260}
261
262/*
263 * Find a property with a given name for a given node
264 * and return the value.
265 */
266const void *of_get_property(const struct device_node *np, const char *name,
267 int *lenp)
268{
269 struct property *pp = of_find_property(np, name, lenp);
270
271 return pp ? pp->value : NULL;
272}
273EXPORT_SYMBOL(of_get_property);
274
275/*
276 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
277 *
278 * @cpu: logical cpu index of a core/thread
279 * @phys_id: physical identifier of a core/thread
280 *
281 * CPU logical to physical index mapping is architecture specific.
282 * However this __weak function provides a default match of physical
283 * id to logical cpu index. phys_id provided here is usually values read
284 * from the device tree which must match the hardware internal registers.
285 *
286 * Returns true if the physical identifier and the logical cpu index
287 * correspond to the same core/thread, false otherwise.
288 */
289bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
290{
291 return (u32)phys_id == cpu;
292}
293
294/**
295 * Checks if the given "prop_name" property holds the physical id of the
296 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
297 * NULL, local thread number within the core is returned in it.
298 */
299static bool __of_find_n_match_cpu_property(struct device_node *cpun,
300 const char *prop_name, int cpu, unsigned int *thread)
301{
302 const __be32 *cell;
303 int ac, prop_len, tid;
304 u64 hwid;
305
306 ac = of_n_addr_cells(cpun);
307 cell = of_get_property(cpun, prop_name, &prop_len);
308 if (!cell || !ac)
309 return false;
310 prop_len /= sizeof(*cell) * ac;
311 for (tid = 0; tid < prop_len; tid++) {
312 hwid = of_read_number(cell, ac);
313 if (arch_match_cpu_phys_id(cpu, hwid)) {
314 if (thread)
315 *thread = tid;
316 return true;
317 }
318 cell += ac;
319 }
320 return false;
321}
322
323/*
324 * arch_find_n_match_cpu_physical_id - See if the given device node is
325 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
326 * else false. If 'thread' is non-NULL, the local thread number within the
327 * core is returned in it.
328 */
329bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
330 int cpu, unsigned int *thread)
331{
332 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
333 * for thread ids on PowerPC. If it doesn't exist fallback to
334 * standard "reg" property.
335 */
336 if (IS_ENABLED(CONFIG_PPC) &&
337 __of_find_n_match_cpu_property(cpun,
338 "ibm,ppc-interrupt-server#s",
339 cpu, thread))
340 return true;
341
342 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
343}
344
345/**
346 * of_get_cpu_node - Get device node associated with the given logical CPU
347 *
348 * @cpu: CPU number(logical index) for which device node is required
349 * @thread: if not NULL, local thread number within the physical core is
350 * returned
351 *
352 * The main purpose of this function is to retrieve the device node for the
353 * given logical CPU index. It should be used to initialize the of_node in
354 * cpu device. Once of_node in cpu device is populated, all the further
355 * references can use that instead.
356 *
357 * CPU logical to physical index mapping is architecture specific and is built
358 * before booting secondary cores. This function uses arch_match_cpu_phys_id
359 * which can be overridden by architecture specific implementation.
360 *
361 * Returns a node pointer for the logical cpu with refcount incremented, use
362 * of_node_put() on it when done. Returns NULL if not found.
363 */
364struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
365{
366 struct device_node *cpun;
367
368 for_each_node_by_type(cpun, "cpu") {
369 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
370 return cpun;
371 }
372 return NULL;
373}
374EXPORT_SYMBOL(of_get_cpu_node);
375
376/**
377 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
378 *
379 * @cpu_node: Pointer to the device_node for CPU.
380 *
381 * Returns the logical CPU number of the given CPU device_node.
382 * Returns -ENODEV if the CPU is not found.
383 */
384int of_cpu_node_to_id(struct device_node *cpu_node)
385{
386 int cpu;
387 bool found = false;
388 struct device_node *np;
389
390 for_each_possible_cpu(cpu) {
391 np = of_cpu_device_node_get(cpu);
392 found = (cpu_node == np);
393 of_node_put(np);
394 if (found)
395 return cpu;
396 }
397
398 return -ENODEV;
399}
400EXPORT_SYMBOL(of_cpu_node_to_id);
401
402/**
403 * __of_device_is_compatible() - Check if the node matches given constraints
404 * @device: pointer to node
405 * @compat: required compatible string, NULL or "" for any match
406 * @type: required device_type value, NULL or "" for any match
407 * @name: required node name, NULL or "" for any match
408 *
409 * Checks if the given @compat, @type and @name strings match the
410 * properties of the given @device. A constraints can be skipped by
411 * passing NULL or an empty string as the constraint.
412 *
413 * Returns 0 for no match, and a positive integer on match. The return
414 * value is a relative score with larger values indicating better
415 * matches. The score is weighted for the most specific compatible value
416 * to get the highest score. Matching type is next, followed by matching
417 * name. Practically speaking, this results in the following priority
418 * order for matches:
419 *
420 * 1. specific compatible && type && name
421 * 2. specific compatible && type
422 * 3. specific compatible && name
423 * 4. specific compatible
424 * 5. general compatible && type && name
425 * 6. general compatible && type
426 * 7. general compatible && name
427 * 8. general compatible
428 * 9. type && name
429 * 10. type
430 * 11. name
431 */
432static int __of_device_is_compatible(const struct device_node *device,
433 const char *compat, const char *type, const char *name)
434{
435 struct property *prop;
436 const char *cp;
437 int index = 0, score = 0;
438
439 /* Compatible match has highest priority */
440 if (compat && compat[0]) {
441 prop = __of_find_property(device, "compatible", NULL);
442 for (cp = of_prop_next_string(prop, NULL); cp;
443 cp = of_prop_next_string(prop, cp), index++) {
444 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
445 score = INT_MAX/2 - (index << 2);
446 break;
447 }
448 }
449 if (!score)
450 return 0;
451 }
452
453 /* Matching type is better than matching name */
454 if (type && type[0]) {
455 if (!device->type || of_node_cmp(type, device->type))
456 return 0;
457 score += 2;
458 }
459
460 /* Matching name is a bit better than not */
461 if (name && name[0]) {
462 if (!device->name || of_node_cmp(name, device->name))
463 return 0;
464 score++;
465 }
466
467 return score;
468}
469
470/** Checks if the given "compat" string matches one of the strings in
471 * the device's "compatible" property
472 */
473int of_device_is_compatible(const struct device_node *device,
474 const char *compat)
475{
476 unsigned long flags;
477 int res;
478
479 raw_spin_lock_irqsave(&devtree_lock, flags);
480 res = __of_device_is_compatible(device, compat, NULL, NULL);
481 raw_spin_unlock_irqrestore(&devtree_lock, flags);
482 return res;
483}
484EXPORT_SYMBOL(of_device_is_compatible);
485
486/** Checks if the device is compatible with any of the entries in
487 * a NULL terminated array of strings. Returns the best match
488 * score or 0.
489 */
490int of_device_compatible_match(struct device_node *device,
491 const char *const *compat)
492{
493 unsigned int tmp, score = 0;
494
495 if (!compat)
496 return 0;
497
498 while (*compat) {
499 tmp = of_device_is_compatible(device, *compat);
500 if (tmp > score)
501 score = tmp;
502 compat++;
503 }
504
505 return score;
506}
507
508/**
509 * of_machine_is_compatible - Test root of device tree for a given compatible value
510 * @compat: compatible string to look for in root node's compatible property.
511 *
512 * Returns a positive integer if the root node has the given value in its
513 * compatible property.
514 */
515int of_machine_is_compatible(const char *compat)
516{
517 struct device_node *root;
518 int rc = 0;
519
520 root = of_find_node_by_path("/");
521 if (root) {
522 rc = of_device_is_compatible(root, compat);
523 of_node_put(root);
524 }
525 return rc;
526}
527EXPORT_SYMBOL(of_machine_is_compatible);
528
529/**
530 * __of_device_is_available - check if a device is available for use
531 *
532 * @device: Node to check for availability, with locks already held
533 *
534 * Returns true if the status property is absent or set to "okay" or "ok",
535 * false otherwise
536 */
537static bool __of_device_is_available(const struct device_node *device)
538{
539 const char *status;
540 int statlen;
541
542 if (!device)
543 return false;
544
545 status = __of_get_property(device, "status", &statlen);
546 if (status == NULL)
547 return true;
548
549 if (statlen > 0) {
550 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
551 return true;
552 }
553
554 return false;
555}
556
557/**
558 * of_device_is_available - check if a device is available for use
559 *
560 * @device: Node to check for availability
561 *
562 * Returns true if the status property is absent or set to "okay" or "ok",
563 * false otherwise
564 */
565bool of_device_is_available(const struct device_node *device)
566{
567 unsigned long flags;
568 bool res;
569
570 raw_spin_lock_irqsave(&devtree_lock, flags);
571 res = __of_device_is_available(device);
572 raw_spin_unlock_irqrestore(&devtree_lock, flags);
573 return res;
574
575}
576EXPORT_SYMBOL(of_device_is_available);
577
578/**
579 * of_device_is_big_endian - check if a device has BE registers
580 *
581 * @device: Node to check for endianness
582 *
583 * Returns true if the device has a "big-endian" property, or if the kernel
584 * was compiled for BE *and* the device has a "native-endian" property.
585 * Returns false otherwise.
586 *
587 * Callers would nominally use ioread32be/iowrite32be if
588 * of_device_is_big_endian() == true, or readl/writel otherwise.
589 */
590bool of_device_is_big_endian(const struct device_node *device)
591{
592 if (of_property_read_bool(device, "big-endian"))
593 return true;
594 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
595 of_property_read_bool(device, "native-endian"))
596 return true;
597 return false;
598}
599EXPORT_SYMBOL(of_device_is_big_endian);
600
601/**
602 * of_get_parent - Get a node's parent if any
603 * @node: Node to get parent
604 *
605 * Returns a node pointer with refcount incremented, use
606 * of_node_put() on it when done.
607 */
608struct device_node *of_get_parent(const struct device_node *node)
609{
610 struct device_node *np;
611 unsigned long flags;
612
613 if (!node)
614 return NULL;
615
616 raw_spin_lock_irqsave(&devtree_lock, flags);
617 np = of_node_get(node->parent);
618 raw_spin_unlock_irqrestore(&devtree_lock, flags);
619 return np;
620}
621EXPORT_SYMBOL(of_get_parent);
622
623/**
624 * of_get_next_parent - Iterate to a node's parent
625 * @node: Node to get parent of
626 *
627 * This is like of_get_parent() except that it drops the
628 * refcount on the passed node, making it suitable for iterating
629 * through a node's parents.
630 *
631 * Returns a node pointer with refcount incremented, use
632 * of_node_put() on it when done.
633 */
634struct device_node *of_get_next_parent(struct device_node *node)
635{
636 struct device_node *parent;
637 unsigned long flags;
638
639 if (!node)
640 return NULL;
641
642 raw_spin_lock_irqsave(&devtree_lock, flags);
643 parent = of_node_get(node->parent);
644 of_node_put(node);
645 raw_spin_unlock_irqrestore(&devtree_lock, flags);
646 return parent;
647}
648EXPORT_SYMBOL(of_get_next_parent);
649
650static struct device_node *__of_get_next_child(const struct device_node *node,
651 struct device_node *prev)
652{
653 struct device_node *next;
654
655 if (!node)
656 return NULL;
657
658 next = prev ? prev->sibling : node->child;
659 for (; next; next = next->sibling)
660 if (of_node_get(next))
661 break;
662 of_node_put(prev);
663 return next;
664}
665#define __for_each_child_of_node(parent, child) \
666 for (child = __of_get_next_child(parent, NULL); child != NULL; \
667 child = __of_get_next_child(parent, child))
668
669/**
670 * of_get_next_child - Iterate a node childs
671 * @node: parent node
672 * @prev: previous child of the parent node, or NULL to get first
673 *
674 * Returns a node pointer with refcount incremented, use of_node_put() on
675 * it when done. Returns NULL when prev is the last child. Decrements the
676 * refcount of prev.
677 */
678struct device_node *of_get_next_child(const struct device_node *node,
679 struct device_node *prev)
680{
681 struct device_node *next;
682 unsigned long flags;
683
684 raw_spin_lock_irqsave(&devtree_lock, flags);
685 next = __of_get_next_child(node, prev);
686 raw_spin_unlock_irqrestore(&devtree_lock, flags);
687 return next;
688}
689EXPORT_SYMBOL(of_get_next_child);
690
691/**
692 * of_get_next_available_child - Find the next available child node
693 * @node: parent node
694 * @prev: previous child of the parent node, or NULL to get first
695 *
696 * This function is like of_get_next_child(), except that it
697 * automatically skips any disabled nodes (i.e. status = "disabled").
698 */
699struct device_node *of_get_next_available_child(const struct device_node *node,
700 struct device_node *prev)
701{
702 struct device_node *next;
703 unsigned long flags;
704
705 if (!node)
706 return NULL;
707
708 raw_spin_lock_irqsave(&devtree_lock, flags);
709 next = prev ? prev->sibling : node->child;
710 for (; next; next = next->sibling) {
711 if (!__of_device_is_available(next))
712 continue;
713 if (of_node_get(next))
714 break;
715 }
716 of_node_put(prev);
717 raw_spin_unlock_irqrestore(&devtree_lock, flags);
718 return next;
719}
720EXPORT_SYMBOL(of_get_next_available_child);
721
722/**
723 * of_get_child_by_name - Find the child node by name for a given parent
724 * @node: parent node
725 * @name: child name to look for.
726 *
727 * This function looks for child node for given matching name
728 *
729 * Returns a node pointer if found, with refcount incremented, use
730 * of_node_put() on it when done.
731 * Returns NULL if node is not found.
732 */
733struct device_node *of_get_child_by_name(const struct device_node *node,
734 const char *name)
735{
736 struct device_node *child;
737
738 for_each_child_of_node(node, child)
739 if (child->name && (of_node_cmp(child->name, name) == 0))
740 break;
741 return child;
742}
743EXPORT_SYMBOL(of_get_child_by_name);
744
745struct device_node *__of_find_node_by_path(struct device_node *parent,
746 const char *path)
747{
748 struct device_node *child;
749 int len;
750
751 len = strcspn(path, "/:");
752 if (!len)
753 return NULL;
754
755 __for_each_child_of_node(parent, child) {
756 const char *name = kbasename(child->full_name);
757 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
758 return child;
759 }
760 return NULL;
761}
762
763struct device_node *__of_find_node_by_full_path(struct device_node *node,
764 const char *path)
765{
766 const char *separator = strchr(path, ':');
767
768 while (node && *path == '/') {
769 struct device_node *tmp = node;
770
771 path++; /* Increment past '/' delimiter */
772 node = __of_find_node_by_path(node, path);
773 of_node_put(tmp);
774 path = strchrnul(path, '/');
775 if (separator && separator < path)
776 break;
777 }
778 return node;
779}
780
781/**
782 * of_find_node_opts_by_path - Find a node matching a full OF path
783 * @path: Either the full path to match, or if the path does not
784 * start with '/', the name of a property of the /aliases
785 * node (an alias). In the case of an alias, the node
786 * matching the alias' value will be returned.
787 * @opts: Address of a pointer into which to store the start of
788 * an options string appended to the end of the path with
789 * a ':' separator.
790 *
791 * Valid paths:
792 * /foo/bar Full path
793 * foo Valid alias
794 * foo/bar Valid alias + relative path
795 *
796 * Returns a node pointer with refcount incremented, use
797 * of_node_put() on it when done.
798 */
799struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
800{
801 struct device_node *np = NULL;
802 struct property *pp;
803 unsigned long flags;
804 const char *separator = strchr(path, ':');
805
806 if (opts)
807 *opts = separator ? separator + 1 : NULL;
808
809 if (strcmp(path, "/") == 0)
810 return of_node_get(of_root);
811
812 /* The path could begin with an alias */
813 if (*path != '/') {
814 int len;
815 const char *p = separator;
816
817 if (!p)
818 p = strchrnul(path, '/');
819 len = p - path;
820
821 /* of_aliases must not be NULL */
822 if (!of_aliases)
823 return NULL;
824
825 for_each_property_of_node(of_aliases, pp) {
826 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
827 np = of_find_node_by_path(pp->value);
828 break;
829 }
830 }
831 if (!np)
832 return NULL;
833 path = p;
834 }
835
836 /* Step down the tree matching path components */
837 raw_spin_lock_irqsave(&devtree_lock, flags);
838 if (!np)
839 np = of_node_get(of_root);
840 np = __of_find_node_by_full_path(np, path);
841 raw_spin_unlock_irqrestore(&devtree_lock, flags);
842 return np;
843}
844EXPORT_SYMBOL(of_find_node_opts_by_path);
845
846/**
847 * of_find_node_by_name - Find a node by its "name" property
848 * @from: The node to start searching from or NULL; the node
849 * you pass will not be searched, only the next one
850 * will. Typically, you pass what the previous call
851 * returned. of_node_put() will be called on @from.
852 * @name: The name string to match against
853 *
854 * Returns a node pointer with refcount incremented, use
855 * of_node_put() on it when done.
856 */
857struct device_node *of_find_node_by_name(struct device_node *from,
858 const char *name)
859{
860 struct device_node *np;
861 unsigned long flags;
862
863 raw_spin_lock_irqsave(&devtree_lock, flags);
864 for_each_of_allnodes_from(from, np)
865 if (np->name && (of_node_cmp(np->name, name) == 0)
866 && of_node_get(np))
867 break;
868 of_node_put(from);
869 raw_spin_unlock_irqrestore(&devtree_lock, flags);
870 return np;
871}
872EXPORT_SYMBOL(of_find_node_by_name);
873
874/**
875 * of_find_node_by_type - Find a node by its "device_type" property
876 * @from: The node to start searching from, or NULL to start searching
877 * the entire device tree. The node you pass will not be
878 * searched, only the next one will; typically, you pass
879 * what the previous call returned. of_node_put() will be
880 * called on from for you.
881 * @type: The type string to match against
882 *
883 * Returns a node pointer with refcount incremented, use
884 * of_node_put() on it when done.
885 */
886struct device_node *of_find_node_by_type(struct device_node *from,
887 const char *type)
888{
889 struct device_node *np;
890 unsigned long flags;
891
892 raw_spin_lock_irqsave(&devtree_lock, flags);
893 for_each_of_allnodes_from(from, np)
894 if (np->type && (of_node_cmp(np->type, type) == 0)
895 && of_node_get(np))
896 break;
897 of_node_put(from);
898 raw_spin_unlock_irqrestore(&devtree_lock, flags);
899 return np;
900}
901EXPORT_SYMBOL(of_find_node_by_type);
902
903/**
904 * of_find_compatible_node - Find a node based on type and one of the
905 * tokens in its "compatible" property
906 * @from: The node to start searching from or NULL, the node
907 * you pass will not be searched, only the next one
908 * will; typically, you pass what the previous call
909 * returned. of_node_put() will be called on it
910 * @type: The type string to match "device_type" or NULL to ignore
911 * @compatible: The string to match to one of the tokens in the device
912 * "compatible" list.
913 *
914 * Returns a node pointer with refcount incremented, use
915 * of_node_put() on it when done.
916 */
917struct device_node *of_find_compatible_node(struct device_node *from,
918 const char *type, const char *compatible)
919{
920 struct device_node *np;
921 unsigned long flags;
922
923 raw_spin_lock_irqsave(&devtree_lock, flags);
924 for_each_of_allnodes_from(from, np)
925 if (__of_device_is_compatible(np, compatible, type, NULL) &&
926 of_node_get(np))
927 break;
928 of_node_put(from);
929 raw_spin_unlock_irqrestore(&devtree_lock, flags);
930 return np;
931}
932EXPORT_SYMBOL(of_find_compatible_node);
933
934/**
935 * of_find_node_with_property - Find a node which has a property with
936 * the given name.
937 * @from: The node to start searching from or NULL, the node
938 * you pass will not be searched, only the next one
939 * will; typically, you pass what the previous call
940 * returned. of_node_put() will be called on it
941 * @prop_name: The name of the property to look for.
942 *
943 * Returns a node pointer with refcount incremented, use
944 * of_node_put() on it when done.
945 */
946struct device_node *of_find_node_with_property(struct device_node *from,
947 const char *prop_name)
948{
949 struct device_node *np;
950 struct property *pp;
951 unsigned long flags;
952
953 raw_spin_lock_irqsave(&devtree_lock, flags);
954 for_each_of_allnodes_from(from, np) {
955 for (pp = np->properties; pp; pp = pp->next) {
956 if (of_prop_cmp(pp->name, prop_name) == 0) {
957 of_node_get(np);
958 goto out;
959 }
960 }
961 }
962out:
963 of_node_put(from);
964 raw_spin_unlock_irqrestore(&devtree_lock, flags);
965 return np;
966}
967EXPORT_SYMBOL(of_find_node_with_property);
968
969static
970const struct of_device_id *__of_match_node(const struct of_device_id *matches,
971 const struct device_node *node)
972{
973 const struct of_device_id *best_match = NULL;
974 int score, best_score = 0;
975
976 if (!matches)
977 return NULL;
978
979 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
980 score = __of_device_is_compatible(node, matches->compatible,
981 matches->type, matches->name);
982 if (score > best_score) {
983 best_match = matches;
984 best_score = score;
985 }
986 }
987
988 return best_match;
989}
990
991/**
992 * of_match_node - Tell if a device_node has a matching of_match structure
993 * @matches: array of of device match structures to search in
994 * @node: the of device structure to match against
995 *
996 * Low level utility function used by device matching.
997 */
998const struct of_device_id *of_match_node(const struct of_device_id *matches,
999 const struct device_node *node)
1000{
1001 const struct of_device_id *match;
1002 unsigned long flags;
1003
1004 raw_spin_lock_irqsave(&devtree_lock, flags);
1005 match = __of_match_node(matches, node);
1006 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1007 return match;
1008}
1009EXPORT_SYMBOL(of_match_node);
1010
1011/**
1012 * of_find_matching_node_and_match - Find a node based on an of_device_id
1013 * match table.
1014 * @from: The node to start searching from or NULL, the node
1015 * you pass will not be searched, only the next one
1016 * will; typically, you pass what the previous call
1017 * returned. of_node_put() will be called on it
1018 * @matches: array of of device match structures to search in
1019 * @match Updated to point at the matches entry which matched
1020 *
1021 * Returns a node pointer with refcount incremented, use
1022 * of_node_put() on it when done.
1023 */
1024struct device_node *of_find_matching_node_and_match(struct device_node *from,
1025 const struct of_device_id *matches,
1026 const struct of_device_id **match)
1027{
1028 struct device_node *np;
1029 const struct of_device_id *m;
1030 unsigned long flags;
1031
1032 if (match)
1033 *match = NULL;
1034
1035 raw_spin_lock_irqsave(&devtree_lock, flags);
1036 for_each_of_allnodes_from(from, np) {
1037 m = __of_match_node(matches, np);
1038 if (m && of_node_get(np)) {
1039 if (match)
1040 *match = m;
1041 break;
1042 }
1043 }
1044 of_node_put(from);
1045 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1046 return np;
1047}
1048EXPORT_SYMBOL(of_find_matching_node_and_match);
1049
1050/**
1051 * of_modalias_node - Lookup appropriate modalias for a device node
1052 * @node: pointer to a device tree node
1053 * @modalias: Pointer to buffer that modalias value will be copied into
1054 * @len: Length of modalias value
1055 *
1056 * Based on the value of the compatible property, this routine will attempt
1057 * to choose an appropriate modalias value for a particular device tree node.
1058 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1059 * from the first entry in the compatible list property.
1060 *
1061 * This routine returns 0 on success, <0 on failure.
1062 */
1063int of_modalias_node(struct device_node *node, char *modalias, int len)
1064{
1065 const char *compatible, *p;
1066 int cplen;
1067
1068 compatible = of_get_property(node, "compatible", &cplen);
1069 if (!compatible || strlen(compatible) > cplen)
1070 return -ENODEV;
1071 p = strchr(compatible, ',');
1072 strlcpy(modalias, p ? p + 1 : compatible, len);
1073 return 0;
1074}
1075EXPORT_SYMBOL_GPL(of_modalias_node);
1076
1077/**
1078 * of_find_node_by_phandle - Find a node given a phandle
1079 * @handle: phandle of the node to find
1080 *
1081 * Returns a node pointer with refcount incremented, use
1082 * of_node_put() on it when done.
1083 */
1084struct device_node *of_find_node_by_phandle(phandle handle)
1085{
1086 struct device_node *np = NULL;
1087 unsigned long flags;
1088 phandle masked_handle;
1089
1090 if (!handle)
1091 return NULL;
1092
1093 raw_spin_lock_irqsave(&devtree_lock, flags);
1094
1095 masked_handle = handle & phandle_cache_mask;
1096
1097 if (phandle_cache) {
1098 if (phandle_cache[masked_handle] &&
1099 handle == phandle_cache[masked_handle]->phandle)
1100 np = phandle_cache[masked_handle];
1101 }
1102
1103 if (!np) {
1104 for_each_of_allnodes(np)
1105 if (np->phandle == handle) {
1106 if (phandle_cache)
1107 phandle_cache[masked_handle] = np;
1108 break;
1109 }
1110 }
1111
1112 of_node_get(np);
1113 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1114 return np;
1115}
1116EXPORT_SYMBOL(of_find_node_by_phandle);
1117
1118void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1119{
1120 int i;
1121 printk("%s %pOF", msg, args->np);
1122 for (i = 0; i < args->args_count; i++) {
1123 const char delim = i ? ',' : ':';
1124
1125 pr_cont("%c%08x", delim, args->args[i]);
1126 }
1127 pr_cont("\n");
1128}
1129
1130int of_phandle_iterator_init(struct of_phandle_iterator *it,
1131 const struct device_node *np,
1132 const char *list_name,
1133 const char *cells_name,
1134 int cell_count)
1135{
1136 const __be32 *list;
1137 int size;
1138
1139 memset(it, 0, sizeof(*it));
1140
1141 list = of_get_property(np, list_name, &size);
1142 if (!list)
1143 return -ENOENT;
1144
1145 it->cells_name = cells_name;
1146 it->cell_count = cell_count;
1147 it->parent = np;
1148 it->list_end = list + size / sizeof(*list);
1149 it->phandle_end = list;
1150 it->cur = list;
1151
1152 return 0;
1153}
1154EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1155
1156int of_phandle_iterator_next(struct of_phandle_iterator *it)
1157{
1158 uint32_t count = 0;
1159
1160 if (it->node) {
1161 of_node_put(it->node);
1162 it->node = NULL;
1163 }
1164
1165 if (!it->cur || it->phandle_end >= it->list_end)
1166 return -ENOENT;
1167
1168 it->cur = it->phandle_end;
1169
1170 /* If phandle is 0, then it is an empty entry with no arguments. */
1171 it->phandle = be32_to_cpup(it->cur++);
1172
1173 if (it->phandle) {
1174
1175 /*
1176 * Find the provider node and parse the #*-cells property to
1177 * determine the argument length.
1178 */
1179 it->node = of_find_node_by_phandle(it->phandle);
1180
1181 if (it->cells_name) {
1182 if (!it->node) {
1183 pr_err("%pOF: could not find phandle\n",
1184 it->parent);
1185 goto err;
1186 }
1187
1188 if (of_property_read_u32(it->node, it->cells_name,
1189 &count)) {
1190 pr_err("%pOF: could not get %s for %pOF\n",
1191 it->parent,
1192 it->cells_name,
1193 it->node);
1194 goto err;
1195 }
1196 } else {
1197 count = it->cell_count;
1198 }
1199
1200 /*
1201 * Make sure that the arguments actually fit in the remaining
1202 * property data length
1203 */
1204 if (it->cur + count > it->list_end) {
1205 pr_err("%pOF: arguments longer than property\n",
1206 it->parent);
1207 goto err;
1208 }
1209 }
1210
1211 it->phandle_end = it->cur + count;
1212 it->cur_count = count;
1213
1214 return 0;
1215
1216err:
1217 if (it->node) {
1218 of_node_put(it->node);
1219 it->node = NULL;
1220 }
1221
1222 return -EINVAL;
1223}
1224EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1225
1226int of_phandle_iterator_args(struct of_phandle_iterator *it,
1227 uint32_t *args,
1228 int size)
1229{
1230 int i, count;
1231
1232 count = it->cur_count;
1233
1234 if (WARN_ON(size < count))
1235 count = size;
1236
1237 for (i = 0; i < count; i++)
1238 args[i] = be32_to_cpup(it->cur++);
1239
1240 return count;
1241}
1242
1243static int __of_parse_phandle_with_args(const struct device_node *np,
1244 const char *list_name,
1245 const char *cells_name,
1246 int cell_count, int index,
1247 struct of_phandle_args *out_args)
1248{
1249 struct of_phandle_iterator it;
1250 int rc, cur_index = 0;
1251
1252 /* Loop over the phandles until all the requested entry is found */
1253 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1254 /*
1255 * All of the error cases bail out of the loop, so at
1256 * this point, the parsing is successful. If the requested
1257 * index matches, then fill the out_args structure and return,
1258 * or return -ENOENT for an empty entry.
1259 */
1260 rc = -ENOENT;
1261 if (cur_index == index) {
1262 if (!it.phandle)
1263 goto err;
1264
1265 if (out_args) {
1266 int c;
1267
1268 c = of_phandle_iterator_args(&it,
1269 out_args->args,
1270 MAX_PHANDLE_ARGS);
1271 out_args->np = it.node;
1272 out_args->args_count = c;
1273 } else {
1274 of_node_put(it.node);
1275 }
1276
1277 /* Found it! return success */
1278 return 0;
1279 }
1280
1281 cur_index++;
1282 }
1283
1284 /*
1285 * Unlock node before returning result; will be one of:
1286 * -ENOENT : index is for empty phandle
1287 * -EINVAL : parsing error on data
1288 */
1289
1290 err:
1291 of_node_put(it.node);
1292 return rc;
1293}
1294
1295/**
1296 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1297 * @np: Pointer to device node holding phandle property
1298 * @phandle_name: Name of property holding a phandle value
1299 * @index: For properties holding a table of phandles, this is the index into
1300 * the table
1301 *
1302 * Returns the device_node pointer with refcount incremented. Use
1303 * of_node_put() on it when done.
1304 */
1305struct device_node *of_parse_phandle(const struct device_node *np,
1306 const char *phandle_name, int index)
1307{
1308 struct of_phandle_args args;
1309
1310 if (index < 0)
1311 return NULL;
1312
1313 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1314 index, &args))
1315 return NULL;
1316
1317 return args.np;
1318}
1319EXPORT_SYMBOL(of_parse_phandle);
1320
1321/**
1322 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1323 * @np: pointer to a device tree node containing a list
1324 * @list_name: property name that contains a list
1325 * @cells_name: property name that specifies phandles' arguments count
1326 * @index: index of a phandle to parse out
1327 * @out_args: optional pointer to output arguments structure (will be filled)
1328 *
1329 * This function is useful to parse lists of phandles and their arguments.
1330 * Returns 0 on success and fills out_args, on error returns appropriate
1331 * errno value.
1332 *
1333 * Caller is responsible to call of_node_put() on the returned out_args->np
1334 * pointer.
1335 *
1336 * Example:
1337 *
1338 * phandle1: node1 {
1339 * #list-cells = <2>;
1340 * }
1341 *
1342 * phandle2: node2 {
1343 * #list-cells = <1>;
1344 * }
1345 *
1346 * node3 {
1347 * list = <&phandle1 1 2 &phandle2 3>;
1348 * }
1349 *
1350 * To get a device_node of the `node2' node you may call this:
1351 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1352 */
1353int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1354 const char *cells_name, int index,
1355 struct of_phandle_args *out_args)
1356{
1357 if (index < 0)
1358 return -EINVAL;
1359 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1360 index, out_args);
1361}
1362EXPORT_SYMBOL(of_parse_phandle_with_args);
1363
1364/**
1365 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1366 * @np: pointer to a device tree node containing a list
1367 * @list_name: property name that contains a list
1368 * @stem_name: stem of property names that specify phandles' arguments count
1369 * @index: index of a phandle to parse out
1370 * @out_args: optional pointer to output arguments structure (will be filled)
1371 *
1372 * This function is useful to parse lists of phandles and their arguments.
1373 * Returns 0 on success and fills out_args, on error returns appropriate errno
1374 * value. The difference between this function and of_parse_phandle_with_args()
1375 * is that this API remaps a phandle if the node the phandle points to has
1376 * a <@stem_name>-map property.
1377 *
1378 * Caller is responsible to call of_node_put() on the returned out_args->np
1379 * pointer.
1380 *
1381 * Example:
1382 *
1383 * phandle1: node1 {
1384 * #list-cells = <2>;
1385 * }
1386 *
1387 * phandle2: node2 {
1388 * #list-cells = <1>;
1389 * }
1390 *
1391 * phandle3: node3 {
1392 * #list-cells = <1>;
1393 * list-map = <0 &phandle2 3>,
1394 * <1 &phandle2 2>,
1395 * <2 &phandle1 5 1>;
1396 * list-map-mask = <0x3>;
1397 * };
1398 *
1399 * node4 {
1400 * list = <&phandle1 1 2 &phandle3 0>;
1401 * }
1402 *
1403 * To get a device_node of the `node2' node you may call this:
1404 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1405 */
1406int of_parse_phandle_with_args_map(const struct device_node *np,
1407 const char *list_name,
1408 const char *stem_name,
1409 int index, struct of_phandle_args *out_args)
1410{
1411 char *cells_name, *map_name = NULL, *mask_name = NULL;
1412 char *pass_name = NULL;
1413 struct device_node *cur, *new = NULL;
1414 const __be32 *map, *mask, *pass;
1415 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1416 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1417 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1418 const __be32 *match_array = initial_match_array;
1419 int i, ret, map_len, match;
1420 u32 list_size, new_size;
1421
1422 if (index < 0)
1423 return -EINVAL;
1424
1425 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1426 if (!cells_name)
1427 return -ENOMEM;
1428
1429 ret = -ENOMEM;
1430 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1431 if (!map_name)
1432 goto free;
1433
1434 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1435 if (!mask_name)
1436 goto free;
1437
1438 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1439 if (!pass_name)
1440 goto free;
1441
1442 ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1443 out_args);
1444 if (ret)
1445 goto free;
1446
1447 /* Get the #<list>-cells property */
1448 cur = out_args->np;
1449 ret = of_property_read_u32(cur, cells_name, &list_size);
1450 if (ret < 0)
1451 goto put;
1452
1453 /* Precalculate the match array - this simplifies match loop */
1454 for (i = 0; i < list_size; i++)
1455 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1456
1457 ret = -EINVAL;
1458 while (cur) {
1459 /* Get the <list>-map property */
1460 map = of_get_property(cur, map_name, &map_len);
1461 if (!map) {
1462 ret = 0;
1463 goto free;
1464 }
1465 map_len /= sizeof(u32);
1466
1467 /* Get the <list>-map-mask property (optional) */
1468 mask = of_get_property(cur, mask_name, NULL);
1469 if (!mask)
1470 mask = dummy_mask;
1471 /* Iterate through <list>-map property */
1472 match = 0;
1473 while (map_len > (list_size + 1) && !match) {
1474 /* Compare specifiers */
1475 match = 1;
1476 for (i = 0; i < list_size; i++, map_len--)
1477 match &= !((match_array[i] ^ *map++) & mask[i]);
1478
1479 of_node_put(new);
1480 new = of_find_node_by_phandle(be32_to_cpup(map));
1481 map++;
1482 map_len--;
1483
1484 /* Check if not found */
1485 if (!new)
1486 goto put;
1487
1488 if (!of_device_is_available(new))
1489 match = 0;
1490
1491 ret = of_property_read_u32(new, cells_name, &new_size);
1492 if (ret)
1493 goto put;
1494
1495 /* Check for malformed properties */
1496 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1497 goto put;
1498 if (map_len < new_size)
1499 goto put;
1500
1501 /* Move forward by new node's #<list>-cells amount */
1502 map += new_size;
1503 map_len -= new_size;
1504 }
1505 if (!match)
1506 goto put;
1507
1508 /* Get the <list>-map-pass-thru property (optional) */
1509 pass = of_get_property(cur, pass_name, NULL);
1510 if (!pass)
1511 pass = dummy_pass;
1512
1513 /*
1514 * Successfully parsed a <list>-map translation; copy new
1515 * specifier into the out_args structure, keeping the
1516 * bits specified in <list>-map-pass-thru.
1517 */
1518 match_array = map - new_size;
1519 for (i = 0; i < new_size; i++) {
1520 __be32 val = *(map - new_size + i);
1521
1522 if (i < list_size) {
1523 val &= ~pass[i];
1524 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1525 }
1526
1527 out_args->args[i] = be32_to_cpu(val);
1528 }
1529 out_args->args_count = list_size = new_size;
1530 /* Iterate again with new provider */
1531 out_args->np = new;
1532 of_node_put(cur);
1533 cur = new;
1534 }
1535put:
1536 of_node_put(cur);
1537 of_node_put(new);
1538free:
1539 kfree(mask_name);
1540 kfree(map_name);
1541 kfree(cells_name);
1542 kfree(pass_name);
1543
1544 return ret;
1545}
1546EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1547
1548/**
1549 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1550 * @np: pointer to a device tree node containing a list
1551 * @list_name: property name that contains a list
1552 * @cell_count: number of argument cells following the phandle
1553 * @index: index of a phandle to parse out
1554 * @out_args: optional pointer to output arguments structure (will be filled)
1555 *
1556 * This function is useful to parse lists of phandles and their arguments.
1557 * Returns 0 on success and fills out_args, on error returns appropriate
1558 * errno value.
1559 *
1560 * Caller is responsible to call of_node_put() on the returned out_args->np
1561 * pointer.
1562 *
1563 * Example:
1564 *
1565 * phandle1: node1 {
1566 * }
1567 *
1568 * phandle2: node2 {
1569 * }
1570 *
1571 * node3 {
1572 * list = <&phandle1 0 2 &phandle2 2 3>;
1573 * }
1574 *
1575 * To get a device_node of the `node2' node you may call this:
1576 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1577 */
1578int of_parse_phandle_with_fixed_args(const struct device_node *np,
1579 const char *list_name, int cell_count,
1580 int index, struct of_phandle_args *out_args)
1581{
1582 if (index < 0)
1583 return -EINVAL;
1584 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1585 index, out_args);
1586}
1587EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1588
1589/**
1590 * of_count_phandle_with_args() - Find the number of phandles references in a property
1591 * @np: pointer to a device tree node containing a list
1592 * @list_name: property name that contains a list
1593 * @cells_name: property name that specifies phandles' arguments count
1594 *
1595 * Returns the number of phandle + argument tuples within a property. It
1596 * is a typical pattern to encode a list of phandle and variable
1597 * arguments into a single property. The number of arguments is encoded
1598 * by a property in the phandle-target node. For example, a gpios
1599 * property would contain a list of GPIO specifies consisting of a
1600 * phandle and 1 or more arguments. The number of arguments are
1601 * determined by the #gpio-cells property in the node pointed to by the
1602 * phandle.
1603 */
1604int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1605 const char *cells_name)
1606{
1607 struct of_phandle_iterator it;
1608 int rc, cur_index = 0;
1609
1610 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1611 if (rc)
1612 return rc;
1613
1614 while ((rc = of_phandle_iterator_next(&it)) == 0)
1615 cur_index += 1;
1616
1617 if (rc != -ENOENT)
1618 return rc;
1619
1620 return cur_index;
1621}
1622EXPORT_SYMBOL(of_count_phandle_with_args);
1623
1624/**
1625 * __of_add_property - Add a property to a node without lock operations
1626 */
1627int __of_add_property(struct device_node *np, struct property *prop)
1628{
1629 struct property **next;
1630
1631 prop->next = NULL;
1632 next = &np->properties;
1633 while (*next) {
1634 if (strcmp(prop->name, (*next)->name) == 0)
1635 /* duplicate ! don't insert it */
1636 return -EEXIST;
1637
1638 next = &(*next)->next;
1639 }
1640 *next = prop;
1641
1642 return 0;
1643}
1644
1645/**
1646 * of_add_property - Add a property to a node
1647 */
1648int of_add_property(struct device_node *np, struct property *prop)
1649{
1650 unsigned long flags;
1651 int rc;
1652
1653 mutex_lock(&of_mutex);
1654
1655 raw_spin_lock_irqsave(&devtree_lock, flags);
1656 rc = __of_add_property(np, prop);
1657 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1658
1659 if (!rc)
1660 __of_add_property_sysfs(np, prop);
1661
1662 mutex_unlock(&of_mutex);
1663
1664 if (!rc)
1665 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1666
1667 return rc;
1668}
1669
1670int __of_remove_property(struct device_node *np, struct property *prop)
1671{
1672 struct property **next;
1673
1674 for (next = &np->properties; *next; next = &(*next)->next) {
1675 if (*next == prop)
1676 break;
1677 }
1678 if (*next == NULL)
1679 return -ENODEV;
1680
1681 /* found the node */
1682 *next = prop->next;
1683 prop->next = np->deadprops;
1684 np->deadprops = prop;
1685
1686 return 0;
1687}
1688
1689/**
1690 * of_remove_property - Remove a property from a node.
1691 *
1692 * Note that we don't actually remove it, since we have given out
1693 * who-knows-how-many pointers to the data using get-property.
1694 * Instead we just move the property to the "dead properties"
1695 * list, so it won't be found any more.
1696 */
1697int of_remove_property(struct device_node *np, struct property *prop)
1698{
1699 unsigned long flags;
1700 int rc;
1701
1702 if (!prop)
1703 return -ENODEV;
1704
1705 mutex_lock(&of_mutex);
1706
1707 raw_spin_lock_irqsave(&devtree_lock, flags);
1708 rc = __of_remove_property(np, prop);
1709 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1710
1711 if (!rc)
1712 __of_remove_property_sysfs(np, prop);
1713
1714 mutex_unlock(&of_mutex);
1715
1716 if (!rc)
1717 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1718
1719 return rc;
1720}
1721
1722int __of_update_property(struct device_node *np, struct property *newprop,
1723 struct property **oldpropp)
1724{
1725 struct property **next, *oldprop;
1726
1727 for (next = &np->properties; *next; next = &(*next)->next) {
1728 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1729 break;
1730 }
1731 *oldpropp = oldprop = *next;
1732
1733 if (oldprop) {
1734 /* replace the node */
1735 newprop->next = oldprop->next;
1736 *next = newprop;
1737 oldprop->next = np->deadprops;
1738 np->deadprops = oldprop;
1739 } else {
1740 /* new node */
1741 newprop->next = NULL;
1742 *next = newprop;
1743 }
1744
1745 return 0;
1746}
1747
1748/*
1749 * of_update_property - Update a property in a node, if the property does
1750 * not exist, add it.
1751 *
1752 * Note that we don't actually remove it, since we have given out
1753 * who-knows-how-many pointers to the data using get-property.
1754 * Instead we just move the property to the "dead properties" list,
1755 * and add the new property to the property list
1756 */
1757int of_update_property(struct device_node *np, struct property *newprop)
1758{
1759 struct property *oldprop;
1760 unsigned long flags;
1761 int rc;
1762
1763 if (!newprop->name)
1764 return -EINVAL;
1765
1766 mutex_lock(&of_mutex);
1767
1768 raw_spin_lock_irqsave(&devtree_lock, flags);
1769 rc = __of_update_property(np, newprop, &oldprop);
1770 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1771
1772 if (!rc)
1773 __of_update_property_sysfs(np, newprop, oldprop);
1774
1775 mutex_unlock(&of_mutex);
1776
1777 if (!rc)
1778 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1779
1780 return rc;
1781}
1782
1783static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1784 int id, const char *stem, int stem_len)
1785{
1786 ap->np = np;
1787 ap->id = id;
1788 strncpy(ap->stem, stem, stem_len);
1789 ap->stem[stem_len] = 0;
1790 list_add_tail(&ap->link, &aliases_lookup);
1791 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1792 ap->alias, ap->stem, ap->id, np);
1793}
1794
1795/**
1796 * of_alias_scan - Scan all properties of the 'aliases' node
1797 *
1798 * The function scans all the properties of the 'aliases' node and populates
1799 * the global lookup table with the properties. It returns the
1800 * number of alias properties found, or an error code in case of failure.
1801 *
1802 * @dt_alloc: An allocator that provides a virtual address to memory
1803 * for storing the resulting tree
1804 */
1805void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1806{
1807 struct property *pp;
1808
1809 of_aliases = of_find_node_by_path("/aliases");
1810 of_chosen = of_find_node_by_path("/chosen");
1811 if (of_chosen == NULL)
1812 of_chosen = of_find_node_by_path("/chosen@0");
1813
1814 if (of_chosen) {
1815 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1816 const char *name = NULL;
1817
1818 if (of_property_read_string(of_chosen, "stdout-path", &name))
1819 of_property_read_string(of_chosen, "linux,stdout-path",
1820 &name);
1821 if (IS_ENABLED(CONFIG_PPC) && !name)
1822 of_property_read_string(of_aliases, "stdout", &name);
1823 if (name)
1824 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1825 }
1826
1827 if (!of_aliases)
1828 return;
1829
1830 for_each_property_of_node(of_aliases, pp) {
1831 const char *start = pp->name;
1832 const char *end = start + strlen(start);
1833 struct device_node *np;
1834 struct alias_prop *ap;
1835 int id, len;
1836
1837 /* Skip those we do not want to proceed */
1838 if (!strcmp(pp->name, "name") ||
1839 !strcmp(pp->name, "phandle") ||
1840 !strcmp(pp->name, "linux,phandle"))
1841 continue;
1842
1843 np = of_find_node_by_path(pp->value);
1844 if (!np)
1845 continue;
1846
1847 /* walk the alias backwards to extract the id and work out
1848 * the 'stem' string */
1849 while (isdigit(*(end-1)) && end > start)
1850 end--;
1851 len = end - start;
1852
1853 if (kstrtoint(end, 10, &id) < 0)
1854 continue;
1855
1856 /* Allocate an alias_prop with enough space for the stem */
1857 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1858 if (!ap)
1859 continue;
1860 memset(ap, 0, sizeof(*ap) + len + 1);
1861 ap->alias = start;
1862 of_alias_add(ap, np, id, start, len);
1863 }
1864}
1865
1866/**
1867 * of_alias_get_id - Get alias id for the given device_node
1868 * @np: Pointer to the given device_node
1869 * @stem: Alias stem of the given device_node
1870 *
1871 * The function travels the lookup table to get the alias id for the given
1872 * device_node and alias stem. It returns the alias id if found.
1873 */
1874int of_alias_get_id(struct device_node *np, const char *stem)
1875{
1876 struct alias_prop *app;
1877 int id = -ENODEV;
1878
1879 mutex_lock(&of_mutex);
1880 list_for_each_entry(app, &aliases_lookup, link) {
1881 if (strcmp(app->stem, stem) != 0)
1882 continue;
1883
1884 if (np == app->np) {
1885 id = app->id;
1886 break;
1887 }
1888 }
1889 mutex_unlock(&of_mutex);
1890
1891 return id;
1892}
1893EXPORT_SYMBOL_GPL(of_alias_get_id);
1894
1895/**
1896 * of_alias_get_highest_id - Get highest alias id for the given stem
1897 * @stem: Alias stem to be examined
1898 *
1899 * The function travels the lookup table to get the highest alias id for the
1900 * given alias stem. It returns the alias id if found.
1901 */
1902int of_alias_get_highest_id(const char *stem)
1903{
1904 struct alias_prop *app;
1905 int id = -ENODEV;
1906
1907 mutex_lock(&of_mutex);
1908 list_for_each_entry(app, &aliases_lookup, link) {
1909 if (strcmp(app->stem, stem) != 0)
1910 continue;
1911
1912 if (app->id > id)
1913 id = app->id;
1914 }
1915 mutex_unlock(&of_mutex);
1916
1917 return id;
1918}
1919EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1920
1921/**
1922 * of_console_check() - Test and setup console for DT setup
1923 * @dn - Pointer to device node
1924 * @name - Name to use for preferred console without index. ex. "ttyS"
1925 * @index - Index to use for preferred console.
1926 *
1927 * Check if the given device node matches the stdout-path property in the
1928 * /chosen node. If it does then register it as the preferred console and return
1929 * TRUE. Otherwise return FALSE.
1930 */
1931bool of_console_check(struct device_node *dn, char *name, int index)
1932{
1933 if (!dn || dn != of_stdout || console_set_on_cmdline)
1934 return false;
1935
1936 /*
1937 * XXX: cast `options' to char pointer to suppress complication
1938 * warnings: printk, UART and console drivers expect char pointer.
1939 */
1940 return !add_preferred_console(name, index, (char *)of_stdout_options);
1941}
1942EXPORT_SYMBOL_GPL(of_console_check);
1943
1944/**
1945 * of_find_next_cache_node - Find a node's subsidiary cache
1946 * @np: node of type "cpu" or "cache"
1947 *
1948 * Returns a node pointer with refcount incremented, use
1949 * of_node_put() on it when done. Caller should hold a reference
1950 * to np.
1951 */
1952struct device_node *of_find_next_cache_node(const struct device_node *np)
1953{
1954 struct device_node *child, *cache_node;
1955
1956 cache_node = of_parse_phandle(np, "l2-cache", 0);
1957 if (!cache_node)
1958 cache_node = of_parse_phandle(np, "next-level-cache", 0);
1959
1960 if (cache_node)
1961 return cache_node;
1962
1963 /* OF on pmac has nodes instead of properties named "l2-cache"
1964 * beneath CPU nodes.
1965 */
1966 if (!strcmp(np->type, "cpu"))
1967 for_each_child_of_node(np, child)
1968 if (!strcmp(child->type, "cache"))
1969 return child;
1970
1971 return NULL;
1972}
1973
1974/**
1975 * of_find_last_cache_level - Find the level at which the last cache is
1976 * present for the given logical cpu
1977 *
1978 * @cpu: cpu number(logical index) for which the last cache level is needed
1979 *
1980 * Returns the the level at which the last cache is present. It is exactly
1981 * same as the total number of cache levels for the given logical cpu.
1982 */
1983int of_find_last_cache_level(unsigned int cpu)
1984{
1985 u32 cache_level = 0;
1986 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1987
1988 while (np) {
1989 prev = np;
1990 of_node_put(np);
1991 np = of_find_next_cache_node(np);
1992 }
1993
1994 of_property_read_u32(prev, "cache-level", &cache_level);
1995
1996 return cache_level;
1997}