Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (C) 2012 Avionic Design GmbH
   3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/debugfs.h>
  12#include <linux/iommu.h>
 
 
  13#include <linux/reset.h>
  14
  15#include <soc/tegra/pmc.h>
  16
  17#include "dc.h"
  18#include "drm.h"
  19#include "gem.h"
 
 
  20
  21#include <drm/drm_atomic.h>
  22#include <drm/drm_atomic_helper.h>
  23#include <drm/drm_plane_helper.h>
  24
  25struct tegra_dc_soc_info {
  26	bool supports_border_color;
  27	bool supports_interlacing;
  28	bool supports_cursor;
  29	bool supports_block_linear;
  30	unsigned int pitch_align;
  31	bool has_powergate;
  32};
  33
  34struct tegra_plane {
  35	struct drm_plane base;
  36	unsigned int index;
  37};
  38
  39static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
  40{
  41	return container_of(plane, struct tegra_plane, base);
 
 
 
  42}
  43
  44struct tegra_dc_state {
  45	struct drm_crtc_state base;
 
 
  46
  47	struct clk *clk;
  48	unsigned long pclk;
  49	unsigned int div;
  50
  51	u32 planes;
  52};
  53
  54static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
 
  55{
  56	if (state)
  57		return container_of(state, struct tegra_dc_state, base);
  58
  59	return NULL;
  60}
  61
  62struct tegra_plane_state {
  63	struct drm_plane_state base;
 
 
  64
  65	struct tegra_bo_tiling tiling;
  66	u32 format;
  67	u32 swap;
  68};
  69
  70static inline struct tegra_plane_state *
  71to_tegra_plane_state(struct drm_plane_state *state)
  72{
  73	if (state)
  74		return container_of(state, struct tegra_plane_state, base);
  75
  76	return NULL;
  77}
  78
  79static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
 
  80{
  81	stats->frames = 0;
  82	stats->vblank = 0;
  83	stats->underflow = 0;
  84	stats->overflow = 0;
  85}
  86
  87/*
  88 * Reads the active copy of a register. This takes the dc->lock spinlock to
  89 * prevent races with the VBLANK processing which also needs access to the
  90 * active copy of some registers.
  91 */
  92static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  93{
  94	unsigned long flags;
  95	u32 value;
  96
  97	spin_lock_irqsave(&dc->lock, flags);
 
 
 
 
  98
  99	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 100	value = tegra_dc_readl(dc, offset);
 101	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 102
 103	spin_unlock_irqrestore(&dc->lock, flags);
 104	return value;
 105}
 106
 107/*
 108 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
 109 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 110 * Latching happens mmediately if the display controller is in STOP mode or
 111 * on the next frame boundary otherwise.
 112 *
 113 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 114 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 115 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 116 * into the ACTIVE copy, either immediately if the display controller is in
 117 * STOP mode, or at the next frame boundary otherwise.
 118 */
 119void tegra_dc_commit(struct tegra_dc *dc)
 120{
 121	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 122	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 123}
 124
 125static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
 126{
 127	/* assume no swapping of fetched data */
 128	if (swap)
 129		*swap = BYTE_SWAP_NOSWAP;
 130
 131	switch (fourcc) {
 132	case DRM_FORMAT_XBGR8888:
 133		*format = WIN_COLOR_DEPTH_R8G8B8A8;
 134		break;
 135
 136	case DRM_FORMAT_XRGB8888:
 137		*format = WIN_COLOR_DEPTH_B8G8R8A8;
 138		break;
 139
 140	case DRM_FORMAT_RGB565:
 141		*format = WIN_COLOR_DEPTH_B5G6R5;
 142		break;
 143
 144	case DRM_FORMAT_UYVY:
 145		*format = WIN_COLOR_DEPTH_YCbCr422;
 146		break;
 147
 148	case DRM_FORMAT_YUYV:
 149		if (swap)
 150			*swap = BYTE_SWAP_SWAP2;
 151
 152		*format = WIN_COLOR_DEPTH_YCbCr422;
 153		break;
 154
 155	case DRM_FORMAT_YUV420:
 156		*format = WIN_COLOR_DEPTH_YCbCr420P;
 157		break;
 158
 159	case DRM_FORMAT_YUV422:
 160		*format = WIN_COLOR_DEPTH_YCbCr422P;
 161		break;
 162
 163	default:
 164		return -EINVAL;
 165	}
 166
 167	return 0;
 168}
 169
 170static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
 171{
 172	switch (format) {
 173	case WIN_COLOR_DEPTH_YCbCr422:
 174	case WIN_COLOR_DEPTH_YUV422:
 175		if (planar)
 176			*planar = false;
 177
 178		return true;
 179
 180	case WIN_COLOR_DEPTH_YCbCr420P:
 181	case WIN_COLOR_DEPTH_YUV420P:
 182	case WIN_COLOR_DEPTH_YCbCr422P:
 183	case WIN_COLOR_DEPTH_YUV422P:
 184	case WIN_COLOR_DEPTH_YCbCr422R:
 185	case WIN_COLOR_DEPTH_YUV422R:
 186	case WIN_COLOR_DEPTH_YCbCr422RA:
 187	case WIN_COLOR_DEPTH_YUV422RA:
 188		if (planar)
 189			*planar = true;
 190
 191		return true;
 192	}
 193
 194	if (planar)
 195		*planar = false;
 196
 197	return false;
 198}
 199
 200static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 201				  unsigned int bpp)
 202{
 203	fixed20_12 outf = dfixed_init(out);
 204	fixed20_12 inf = dfixed_init(in);
 205	u32 dda_inc;
 206	int max;
 207
 208	if (v)
 209		max = 15;
 210	else {
 211		switch (bpp) {
 212		case 2:
 213			max = 8;
 214			break;
 215
 216		default:
 217			WARN_ON_ONCE(1);
 218			/* fallthrough */
 219		case 4:
 220			max = 4;
 221			break;
 222		}
 223	}
 224
 225	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 226	inf.full -= dfixed_const(1);
 227
 228	dda_inc = dfixed_div(inf, outf);
 229	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 230
 231	return dda_inc;
 232}
 233
 234static inline u32 compute_initial_dda(unsigned int in)
 235{
 236	fixed20_12 inf = dfixed_init(in);
 237	return dfixed_frac(inf);
 238}
 239
 240static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241				  const struct tegra_dc_window *window)
 242{
 243	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 244	unsigned long value, flags;
 245	bool yuv, planar;
 
 246
 247	/*
 248	 * For YUV planar modes, the number of bytes per pixel takes into
 249	 * account only the luma component and therefore is 1.
 250	 */
 251	yuv = tegra_dc_format_is_yuv(window->format, &planar);
 252	if (!yuv)
 253		bpp = window->bits_per_pixel / 8;
 254	else
 255		bpp = planar ? 1 : 2;
 256
 257	spin_lock_irqsave(&dc->lock, flags);
 258
 259	value = WINDOW_A_SELECT << index;
 260	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 261
 262	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
 263	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
 264
 265	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 266	tegra_dc_writel(dc, value, DC_WIN_POSITION);
 267
 268	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 269	tegra_dc_writel(dc, value, DC_WIN_SIZE);
 270
 271	h_offset = window->src.x * bpp;
 272	v_offset = window->src.y;
 273	h_size = window->src.w * bpp;
 274	v_size = window->src.h;
 275
 276	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 277	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
 278
 279	/*
 280	 * For DDA computations the number of bytes per pixel for YUV planar
 281	 * modes needs to take into account all Y, U and V components.
 282	 */
 283	if (yuv && planar)
 284		bpp = 2;
 285
 286	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 287	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 288
 289	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 290	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
 291
 292	h_dda = compute_initial_dda(window->src.x);
 293	v_dda = compute_initial_dda(window->src.y);
 294
 295	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
 296	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
 297
 298	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
 299	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
 300
 301	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
 302
 303	if (yuv && planar) {
 304		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
 305		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
 306		value = window->stride[1] << 16 | window->stride[0];
 307		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
 308	} else {
 309		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
 310	}
 311
 312	if (window->bottom_up)
 313		v_offset += window->src.h - 1;
 314
 315	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 316	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 317
 318	if (dc->soc->supports_block_linear) {
 319		unsigned long height = window->tiling.value;
 320
 321		switch (window->tiling.mode) {
 322		case TEGRA_BO_TILING_MODE_PITCH:
 323			value = DC_WINBUF_SURFACE_KIND_PITCH;
 324			break;
 325
 326		case TEGRA_BO_TILING_MODE_TILED:
 327			value = DC_WINBUF_SURFACE_KIND_TILED;
 328			break;
 329
 330		case TEGRA_BO_TILING_MODE_BLOCK:
 331			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 332				DC_WINBUF_SURFACE_KIND_BLOCK;
 333			break;
 334		}
 335
 336		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
 337	} else {
 338		switch (window->tiling.mode) {
 339		case TEGRA_BO_TILING_MODE_PITCH:
 340			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 341				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 342			break;
 343
 344		case TEGRA_BO_TILING_MODE_TILED:
 345			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 346				DC_WIN_BUFFER_ADDR_MODE_TILE;
 347			break;
 348
 349		case TEGRA_BO_TILING_MODE_BLOCK:
 350			/*
 351			 * No need to handle this here because ->atomic_check
 352			 * will already have filtered it out.
 353			 */
 354			break;
 355		}
 356
 357		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
 358	}
 359
 360	value = WIN_ENABLE;
 361
 362	if (yuv) {
 363		/* setup default colorspace conversion coefficients */
 364		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
 365		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
 366		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
 367		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
 368		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
 369		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
 370		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
 371		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
 372
 373		value |= CSC_ENABLE;
 374	} else if (window->bits_per_pixel < 24) {
 375		value |= COLOR_EXPAND;
 376	}
 377
 378	if (window->bottom_up)
 379		value |= V_DIRECTION;
 380
 381	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 382
 383	/*
 384	 * Disable blending and assume Window A is the bottom-most window,
 385	 * Window C is the top-most window and Window B is in the middle.
 386	 */
 387	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
 388	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
 389
 390	switch (index) {
 391	case 0:
 392		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
 393		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 394		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 395		break;
 396
 397	case 1:
 398		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 399		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
 400		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
 401		break;
 402
 403	case 2:
 404		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
 405		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
 406		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
 407		break;
 408	}
 409
 410	spin_unlock_irqrestore(&dc->lock, flags);
 411}
 412
 413static void tegra_plane_destroy(struct drm_plane *plane)
 414{
 415	struct tegra_plane *p = to_tegra_plane(plane);
 416
 417	drm_plane_cleanup(plane);
 418	kfree(p);
 419}
 420
 421static const u32 tegra_primary_plane_formats[] = {
 
 
 
 
 
 
 
 
 
 422	DRM_FORMAT_XBGR8888,
 423	DRM_FORMAT_XRGB8888,
 424	DRM_FORMAT_RGB565,
 425};
 426
 427static void tegra_primary_plane_destroy(struct drm_plane *plane)
 428{
 429	tegra_plane_destroy(plane);
 430}
 431
 432static void tegra_plane_reset(struct drm_plane *plane)
 433{
 434	struct tegra_plane_state *state;
 435
 436	if (plane->state)
 437		__drm_atomic_helper_plane_destroy_state(plane, plane->state);
 438
 439	kfree(plane->state);
 440	plane->state = NULL;
 441
 442	state = kzalloc(sizeof(*state), GFP_KERNEL);
 443	if (state) {
 444		plane->state = &state->base;
 445		plane->state->plane = plane;
 446	}
 447}
 448
 449static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
 450{
 451	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 452	struct tegra_plane_state *copy;
 453
 454	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
 455	if (!copy)
 456		return NULL;
 457
 458	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
 459	copy->tiling = state->tiling;
 460	copy->format = state->format;
 461	copy->swap = state->swap;
 462
 463	return &copy->base;
 464}
 465
 466static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
 467					     struct drm_plane_state *state)
 468{
 469	__drm_atomic_helper_plane_destroy_state(plane, state);
 470	kfree(state);
 471}
 472
 473static const struct drm_plane_funcs tegra_primary_plane_funcs = {
 474	.update_plane = drm_atomic_helper_update_plane,
 475	.disable_plane = drm_atomic_helper_disable_plane,
 476	.destroy = tegra_primary_plane_destroy,
 477	.reset = tegra_plane_reset,
 478	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 479	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
 480};
 481
 482static int tegra_plane_prepare_fb(struct drm_plane *plane,
 483				  const struct drm_plane_state *new_state)
 484{
 485	return 0;
 486}
 487
 488static void tegra_plane_cleanup_fb(struct drm_plane *plane,
 489				   const struct drm_plane_state *old_fb)
 490{
 491}
 492
 493static int tegra_plane_state_add(struct tegra_plane *plane,
 494				 struct drm_plane_state *state)
 495{
 496	struct drm_crtc_state *crtc_state;
 497	struct tegra_dc_state *tegra;
 498
 499	/* Propagate errors from allocation or locking failures. */
 500	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
 501	if (IS_ERR(crtc_state))
 502		return PTR_ERR(crtc_state);
 503
 504	tegra = to_dc_state(crtc_state);
 505
 506	tegra->planes |= WIN_A_ACT_REQ << plane->index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507
 508	return 0;
 509}
 
 
 
 
 
 
 
 
 510
 511static int tegra_plane_atomic_check(struct drm_plane *plane,
 512				    struct drm_plane_state *state)
 513{
 514	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 515	struct tegra_bo_tiling *tiling = &plane_state->tiling;
 516	struct tegra_plane *tegra = to_tegra_plane(plane);
 517	struct tegra_dc *dc = to_tegra_dc(state->crtc);
 
 518	int err;
 519
 520	/* no need for further checks if the plane is being disabled */
 521	if (!state->crtc)
 522		return 0;
 523
 524	err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
 525			      &plane_state->swap);
 526	if (err < 0)
 527		return err;
 528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529	err = tegra_fb_get_tiling(state->fb, tiling);
 530	if (err < 0)
 531		return err;
 532
 533	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 534	    !dc->soc->supports_block_linear) {
 535		DRM_ERROR("hardware doesn't support block linear mode\n");
 536		return -EINVAL;
 537	}
 538
 539	/*
 540	 * Tegra doesn't support different strides for U and V planes so we
 541	 * error out if the user tries to display a framebuffer with such a
 542	 * configuration.
 543	 */
 544	if (drm_format_num_planes(state->fb->pixel_format) > 2) {
 545		if (state->fb->pitches[2] != state->fb->pitches[1]) {
 546			DRM_ERROR("unsupported UV-plane configuration\n");
 547			return -EINVAL;
 548		}
 549	}
 550
 551	err = tegra_plane_state_add(tegra, state);
 552	if (err < 0)
 553		return err;
 554
 555	return 0;
 556}
 557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558static void tegra_plane_atomic_update(struct drm_plane *plane,
 559				      struct drm_plane_state *old_state)
 560{
 561	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 562	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 563	struct drm_framebuffer *fb = plane->state->fb;
 564	struct tegra_plane *p = to_tegra_plane(plane);
 565	struct tegra_dc_window window;
 566	unsigned int i;
 567
 568	/* rien ne va plus */
 569	if (!plane->state->crtc || !plane->state->fb)
 570		return;
 571
 
 
 
 572	memset(&window, 0, sizeof(window));
 573	window.src.x = plane->state->src_x >> 16;
 574	window.src.y = plane->state->src_y >> 16;
 575	window.src.w = plane->state->src_w >> 16;
 576	window.src.h = plane->state->src_h >> 16;
 577	window.dst.x = plane->state->crtc_x;
 578	window.dst.y = plane->state->crtc_y;
 579	window.dst.w = plane->state->crtc_w;
 580	window.dst.h = plane->state->crtc_h;
 581	window.bits_per_pixel = fb->bits_per_pixel;
 582	window.bottom_up = tegra_fb_is_bottom_up(fb);
 583
 584	/* copy from state */
 
 585	window.tiling = state->tiling;
 586	window.format = state->format;
 587	window.swap = state->swap;
 588
 589	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
 590		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
 591
 592		window.base[i] = bo->paddr + fb->offsets[i];
 593		window.stride[i] = fb->pitches[i];
 594	}
 595
 596	tegra_dc_setup_window(dc, p->index, &window);
 597}
 598
 599static void tegra_plane_atomic_disable(struct drm_plane *plane,
 600				       struct drm_plane_state *old_state)
 601{
 602	struct tegra_plane *p = to_tegra_plane(plane);
 603	struct tegra_dc *dc;
 604	unsigned long flags;
 605	u32 value;
 606
 607	/* rien ne va plus */
 608	if (!old_state || !old_state->crtc)
 609		return;
 610
 611	dc = to_tegra_dc(old_state->crtc);
 612
 613	spin_lock_irqsave(&dc->lock, flags);
 614
 615	value = WINDOW_A_SELECT << p->index;
 616	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
 617
 618	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
 619	value &= ~WIN_ENABLE;
 620	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
 621
 622	spin_unlock_irqrestore(&dc->lock, flags);
 623}
 624
 625static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
 626	.prepare_fb = tegra_plane_prepare_fb,
 627	.cleanup_fb = tegra_plane_cleanup_fb,
 628	.atomic_check = tegra_plane_atomic_check,
 629	.atomic_update = tegra_plane_atomic_update,
 630	.atomic_disable = tegra_plane_atomic_disable,
 
 631};
 632
 633static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
 634						       struct tegra_dc *dc)
 635{
 636	/*
 637	 * Ideally this would use drm_crtc_mask(), but that would require the
 638	 * CRTC to already be in the mode_config's list of CRTCs. However, it
 639	 * will only be added to that list in the drm_crtc_init_with_planes()
 640	 * (in tegra_dc_init()), which in turn requires registration of these
 641	 * planes. So we have ourselves a nice little chicken and egg problem
 642	 * here.
 643	 *
 644	 * We work around this by manually creating the mask from the number
 645	 * of CRTCs that have been registered, and should therefore always be
 646	 * the same as drm_crtc_index() after registration.
 647	 */
 648	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
 
 
 
 
 
 
 
 649	struct tegra_plane *plane;
 650	unsigned int num_formats;
 
 651	const u32 *formats;
 652	int err;
 653
 654	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 655	if (!plane)
 656		return ERR_PTR(-ENOMEM);
 657
 658	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
 659	formats = tegra_primary_plane_formats;
 
 
 
 
 
 
 660
 661	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 662				       &tegra_primary_plane_funcs, formats,
 663				       num_formats, DRM_PLANE_TYPE_PRIMARY,
 664				       NULL);
 665	if (err < 0) {
 666		kfree(plane);
 667		return ERR_PTR(err);
 668	}
 669
 670	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
 
 
 
 671
 672	return &plane->base;
 673}
 674
 675static const u32 tegra_cursor_plane_formats[] = {
 676	DRM_FORMAT_RGBA8888,
 677};
 678
 679static int tegra_cursor_atomic_check(struct drm_plane *plane,
 680				     struct drm_plane_state *state)
 681{
 682	struct tegra_plane *tegra = to_tegra_plane(plane);
 683	int err;
 684
 685	/* no need for further checks if the plane is being disabled */
 686	if (!state->crtc)
 687		return 0;
 688
 689	/* scaling not supported for cursor */
 690	if ((state->src_w >> 16 != state->crtc_w) ||
 691	    (state->src_h >> 16 != state->crtc_h))
 692		return -EINVAL;
 693
 694	/* only square cursors supported */
 695	if (state->src_w != state->src_h)
 696		return -EINVAL;
 697
 698	if (state->crtc_w != 32 && state->crtc_w != 64 &&
 699	    state->crtc_w != 128 && state->crtc_w != 256)
 700		return -EINVAL;
 701
 702	err = tegra_plane_state_add(tegra, state);
 703	if (err < 0)
 704		return err;
 705
 706	return 0;
 707}
 708
 709static void tegra_cursor_atomic_update(struct drm_plane *plane,
 710				       struct drm_plane_state *old_state)
 711{
 712	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
 713	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 714	struct drm_plane_state *state = plane->state;
 715	u32 value = CURSOR_CLIP_DISPLAY;
 716
 717	/* rien ne va plus */
 718	if (!plane->state->crtc || !plane->state->fb)
 719		return;
 720
 721	switch (state->crtc_w) {
 722	case 32:
 723		value |= CURSOR_SIZE_32x32;
 724		break;
 725
 726	case 64:
 727		value |= CURSOR_SIZE_64x64;
 728		break;
 729
 730	case 128:
 731		value |= CURSOR_SIZE_128x128;
 732		break;
 733
 734	case 256:
 735		value |= CURSOR_SIZE_256x256;
 736		break;
 737
 738	default:
 739		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
 740		     state->crtc_h);
 741		return;
 742	}
 743
 744	value |= (bo->paddr >> 10) & 0x3fffff;
 745	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 746
 747#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 748	value = (bo->paddr >> 32) & 0x3;
 749	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 750#endif
 751
 752	/* enable cursor and set blend mode */
 753	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 754	value |= CURSOR_ENABLE;
 755	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 756
 757	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 758	value &= ~CURSOR_DST_BLEND_MASK;
 759	value &= ~CURSOR_SRC_BLEND_MASK;
 760	value |= CURSOR_MODE_NORMAL;
 761	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 762	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 763	value |= CURSOR_ALPHA;
 764	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 765
 766	/* position the cursor */
 767	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
 768	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 769}
 770
 771static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 772					struct drm_plane_state *old_state)
 773{
 774	struct tegra_dc *dc;
 775	u32 value;
 776
 777	/* rien ne va plus */
 778	if (!old_state || !old_state->crtc)
 779		return;
 780
 781	dc = to_tegra_dc(old_state->crtc);
 782
 783	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 784	value &= ~CURSOR_ENABLE;
 785	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 786}
 787
 788static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
 789	.update_plane = drm_atomic_helper_update_plane,
 790	.disable_plane = drm_atomic_helper_disable_plane,
 791	.destroy = tegra_plane_destroy,
 792	.reset = tegra_plane_reset,
 793	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 794	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
 795};
 796
 797static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 798	.prepare_fb = tegra_plane_prepare_fb,
 799	.cleanup_fb = tegra_plane_cleanup_fb,
 800	.atomic_check = tegra_cursor_atomic_check,
 801	.atomic_update = tegra_cursor_atomic_update,
 802	.atomic_disable = tegra_cursor_atomic_disable,
 803};
 804
 805static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 806						      struct tegra_dc *dc)
 807{
 
 808	struct tegra_plane *plane;
 809	unsigned int num_formats;
 810	const u32 *formats;
 811	int err;
 812
 813	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 814	if (!plane)
 815		return ERR_PTR(-ENOMEM);
 816
 817	/*
 818	 * This index is kind of fake. The cursor isn't a regular plane, but
 819	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
 820	 * use the same programming. Setting this fake index here allows the
 821	 * code in tegra_add_plane_state() to do the right thing without the
 822	 * need to special-casing the cursor plane.
 823	 */
 824	plane->index = 6;
 
 825
 826	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 827	formats = tegra_cursor_plane_formats;
 828
 829	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 830				       &tegra_cursor_plane_funcs, formats,
 831				       num_formats, DRM_PLANE_TYPE_CURSOR,
 832				       NULL);
 833	if (err < 0) {
 834		kfree(plane);
 835		return ERR_PTR(err);
 836	}
 837
 838	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 839
 840	return &plane->base;
 841}
 842
 843static void tegra_overlay_plane_destroy(struct drm_plane *plane)
 844{
 845	tegra_plane_destroy(plane);
 846}
 847
 848static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
 849	.update_plane = drm_atomic_helper_update_plane,
 850	.disable_plane = drm_atomic_helper_disable_plane,
 851	.destroy = tegra_overlay_plane_destroy,
 852	.reset = tegra_plane_reset,
 853	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
 854	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
 855};
 856
 857static const uint32_t tegra_overlay_plane_formats[] = {
 858	DRM_FORMAT_XBGR8888,
 859	DRM_FORMAT_XRGB8888,
 
 
 
 
 
 
 
 
 
 
 860	DRM_FORMAT_RGB565,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861	DRM_FORMAT_UYVY,
 862	DRM_FORMAT_YUYV,
 863	DRM_FORMAT_YUV420,
 864	DRM_FORMAT_YUV422,
 865};
 866
 867static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
 868	.prepare_fb = tegra_plane_prepare_fb,
 869	.cleanup_fb = tegra_plane_cleanup_fb,
 870	.atomic_check = tegra_plane_atomic_check,
 871	.atomic_update = tegra_plane_atomic_update,
 872	.atomic_disable = tegra_plane_atomic_disable,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873};
 874
 875static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
 876						       struct tegra_dc *dc,
 877						       unsigned int index)
 
 878{
 
 879	struct tegra_plane *plane;
 880	unsigned int num_formats;
 
 881	const u32 *formats;
 882	int err;
 883
 884	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 885	if (!plane)
 886		return ERR_PTR(-ENOMEM);
 887
 
 888	plane->index = index;
 
 889
 890	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
 891	formats = tegra_overlay_plane_formats;
 892
 893	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
 894				       &tegra_overlay_plane_funcs, formats,
 895				       num_formats, DRM_PLANE_TYPE_OVERLAY,
 896				       NULL);
 
 
 
 
 897	if (err < 0) {
 898		kfree(plane);
 899		return ERR_PTR(err);
 900	}
 901
 902	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
 903
 904	return &plane->base;
 905}
 906
 907static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
 908{
 909	struct drm_plane *plane;
 910	unsigned int i;
 911
 912	for (i = 0; i < 2; i++) {
 913		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
 914		if (IS_ERR(plane))
 915			return PTR_ERR(plane);
 916	}
 917
 918	return 0;
 919}
 920
 921u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
 922{
 923	if (dc->syncpt)
 924		return host1x_syncpt_read(dc->syncpt);
 925
 926	/* fallback to software emulated VBLANK counter */
 927	return drm_crtc_vblank_count(&dc->base);
 928}
 929
 930void tegra_dc_enable_vblank(struct tegra_dc *dc)
 931{
 932	unsigned long value, flags;
 933
 934	spin_lock_irqsave(&dc->lock, flags);
 935
 936	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 937	value |= VBLANK_INT;
 938	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 939
 940	spin_unlock_irqrestore(&dc->lock, flags);
 941}
 942
 943void tegra_dc_disable_vblank(struct tegra_dc *dc)
 
 944{
 945	unsigned long value, flags;
 
 946
 947	spin_lock_irqsave(&dc->lock, flags);
 
 948
 949	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
 950	value &= ~VBLANK_INT;
 951	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 952
 953	spin_unlock_irqrestore(&dc->lock, flags);
 954}
 955
 956static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
 
 957{
 958	struct drm_device *drm = dc->base.dev;
 959	struct drm_crtc *crtc = &dc->base;
 960	unsigned long flags, base;
 961	struct tegra_bo *bo;
 962
 963	spin_lock_irqsave(&drm->event_lock, flags);
 964
 965	if (!dc->event) {
 966		spin_unlock_irqrestore(&drm->event_lock, flags);
 967		return;
 968	}
 969
 970	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
 
 
 971
 972	spin_lock(&dc->lock);
 
 
 
 973
 974	/* check if new start address has been latched */
 975	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
 976	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
 977	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
 978	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
 979
 980	spin_unlock(&dc->lock);
 
 981
 982	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
 983		drm_crtc_send_vblank_event(crtc, dc->event);
 984		drm_crtc_vblank_put(crtc);
 985		dc->event = NULL;
 986	}
 987
 988	spin_unlock_irqrestore(&drm->event_lock, flags);
 989}
 990
 991static void tegra_dc_destroy(struct drm_crtc *crtc)
 992{
 993	drm_crtc_cleanup(crtc);
 994}
 995
 996static void tegra_crtc_reset(struct drm_crtc *crtc)
 997{
 998	struct tegra_dc_state *state;
 999
1000	if (crtc->state)
1001		__drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1002
1003	kfree(crtc->state);
1004	crtc->state = NULL;
1005
1006	state = kzalloc(sizeof(*state), GFP_KERNEL);
1007	if (state) {
1008		crtc->state = &state->base;
1009		crtc->state->crtc = crtc;
1010	}
1011
1012	drm_crtc_vblank_reset(crtc);
1013}
1014
1015static struct drm_crtc_state *
1016tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1017{
1018	struct tegra_dc_state *state = to_dc_state(crtc->state);
1019	struct tegra_dc_state *copy;
1020
1021	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1022	if (!copy)
1023		return NULL;
1024
1025	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1026	copy->clk = state->clk;
1027	copy->pclk = state->pclk;
1028	copy->div = state->div;
1029	copy->planes = state->planes;
1030
1031	return &copy->base;
1032}
1033
1034static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1035					    struct drm_crtc_state *state)
1036{
1037	__drm_atomic_helper_crtc_destroy_state(crtc, state);
1038	kfree(state);
1039}
1040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041static const struct drm_crtc_funcs tegra_crtc_funcs = {
1042	.page_flip = drm_atomic_helper_page_flip,
1043	.set_config = drm_atomic_helper_set_config,
1044	.destroy = tegra_dc_destroy,
1045	.reset = tegra_crtc_reset,
1046	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1047	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
 
 
 
 
 
1048};
1049
1050static int tegra_dc_set_timings(struct tegra_dc *dc,
1051				struct drm_display_mode *mode)
1052{
1053	unsigned int h_ref_to_sync = 1;
1054	unsigned int v_ref_to_sync = 1;
1055	unsigned long value;
1056
1057	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
 
1058
1059	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1060	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
 
1061
1062	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1063		((mode->hsync_end - mode->hsync_start) <<  0);
1064	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1065
1066	value = ((mode->vtotal - mode->vsync_end) << 16) |
1067		((mode->htotal - mode->hsync_end) <<  0);
1068	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1069
1070	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1071		((mode->hsync_start - mode->hdisplay) <<  0);
1072	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1073
1074	value = (mode->vdisplay << 16) | mode->hdisplay;
1075	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1076
1077	return 0;
1078}
1079
1080/**
1081 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1082 *     state
1083 * @dc: display controller
1084 * @crtc_state: CRTC atomic state
1085 * @clk: parent clock for display controller
1086 * @pclk: pixel clock
1087 * @div: shift clock divider
1088 *
1089 * Returns:
1090 * 0 on success or a negative error-code on failure.
1091 */
1092int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1093			       struct drm_crtc_state *crtc_state,
1094			       struct clk *clk, unsigned long pclk,
1095			       unsigned int div)
1096{
1097	struct tegra_dc_state *state = to_dc_state(crtc_state);
1098
1099	if (!clk_has_parent(dc->clk, clk))
1100		return -EINVAL;
1101
1102	state->clk = clk;
1103	state->pclk = pclk;
1104	state->div = div;
1105
1106	return 0;
1107}
1108
1109static void tegra_dc_commit_state(struct tegra_dc *dc,
1110				  struct tegra_dc_state *state)
1111{
1112	u32 value;
1113	int err;
1114
1115	err = clk_set_parent(dc->clk, state->clk);
1116	if (err < 0)
1117		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1118
1119	/*
1120	 * Outputs may not want to change the parent clock rate. This is only
1121	 * relevant to Tegra20 where only a single display PLL is available.
1122	 * Since that PLL would typically be used for HDMI, an internal LVDS
1123	 * panel would need to be driven by some other clock such as PLL_P
1124	 * which is shared with other peripherals. Changing the clock rate
1125	 * should therefore be avoided.
1126	 */
1127	if (state->pclk > 0) {
1128		err = clk_set_rate(state->clk, state->pclk);
1129		if (err < 0)
1130			dev_err(dc->dev,
1131				"failed to set clock rate to %lu Hz\n",
1132				state->pclk);
1133	}
1134
1135	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1136		      state->div);
1137	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1138
1139	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1140	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
 
 
 
 
 
 
 
1141}
1142
1143static void tegra_dc_stop(struct tegra_dc *dc)
1144{
1145	u32 value;
1146
1147	/* stop the display controller */
1148	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1149	value &= ~DISP_CTRL_MODE_MASK;
1150	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1151
1152	tegra_dc_commit(dc);
1153}
1154
1155static bool tegra_dc_idle(struct tegra_dc *dc)
1156{
1157	u32 value;
1158
1159	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1160
1161	return (value & DISP_CTRL_MODE_MASK) == 0;
1162}
1163
1164static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1165{
1166	timeout = jiffies + msecs_to_jiffies(timeout);
1167
1168	while (time_before(jiffies, timeout)) {
1169		if (tegra_dc_idle(dc))
1170			return 0;
1171
1172		usleep_range(1000, 2000);
1173	}
1174
1175	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1176	return -ETIMEDOUT;
1177}
1178
1179static void tegra_crtc_disable(struct drm_crtc *crtc)
 
1180{
1181	struct tegra_dc *dc = to_tegra_dc(crtc);
1182	u32 value;
1183
1184	if (!tegra_dc_idle(dc)) {
1185		tegra_dc_stop(dc);
1186
1187		/*
1188		 * Ignore the return value, there isn't anything useful to do
1189		 * in case this fails.
1190		 */
1191		tegra_dc_wait_idle(dc, 100);
1192	}
1193
1194	/*
1195	 * This should really be part of the RGB encoder driver, but clearing
1196	 * these bits has the side-effect of stopping the display controller.
1197	 * When that happens no VBLANK interrupts will be raised. At the same
1198	 * time the encoder is disabled before the display controller, so the
1199	 * above code is always going to timeout waiting for the controller
1200	 * to go idle.
1201	 *
1202	 * Given the close coupling between the RGB encoder and the display
1203	 * controller doing it here is still kind of okay. None of the other
1204	 * encoder drivers require these bits to be cleared.
1205	 *
1206	 * XXX: Perhaps given that the display controller is switched off at
1207	 * this point anyway maybe clearing these bits isn't even useful for
1208	 * the RGB encoder?
1209	 */
1210	if (dc->rgb) {
1211		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1212		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1213			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1214		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1215	}
1216
1217	tegra_dc_stats_reset(&dc->stats);
1218	drm_crtc_vblank_off(crtc);
 
 
 
 
 
 
 
 
 
 
 
1219}
1220
1221static void tegra_crtc_enable(struct drm_crtc *crtc)
 
1222{
1223	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1224	struct tegra_dc_state *state = to_dc_state(crtc->state);
1225	struct tegra_dc *dc = to_tegra_dc(crtc);
1226	u32 value;
1227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228	tegra_dc_commit_state(dc, state);
1229
1230	/* program display mode */
1231	tegra_dc_set_timings(dc, mode);
1232
1233	/* interlacing isn't supported yet, so disable it */
1234	if (dc->soc->supports_interlacing) {
1235		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1236		value &= ~INTERLACE_ENABLE;
1237		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1238	}
1239
1240	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1241	value &= ~DISP_CTRL_MODE_MASK;
1242	value |= DISP_CTRL_MODE_C_DISPLAY;
1243	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1244
1245	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1246	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1247		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1248	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
 
 
 
 
 
 
 
 
1249
1250	tegra_dc_commit(dc);
1251
1252	drm_crtc_vblank_on(crtc);
1253}
1254
1255static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1256				   struct drm_crtc_state *state)
1257{
1258	return 0;
1259}
1260
1261static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1262				    struct drm_crtc_state *old_crtc_state)
1263{
1264	struct tegra_dc *dc = to_tegra_dc(crtc);
1265
1266	if (crtc->state->event) {
1267		crtc->state->event->pipe = drm_crtc_index(crtc);
1268
1269		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
 
 
 
 
 
1270
1271		dc->event = crtc->state->event;
1272		crtc->state->event = NULL;
1273	}
1274}
1275
1276static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1277				    struct drm_crtc_state *old_crtc_state)
1278{
1279	struct tegra_dc_state *state = to_dc_state(crtc->state);
1280	struct tegra_dc *dc = to_tegra_dc(crtc);
 
1281
1282	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1283	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
 
 
 
 
 
1284}
1285
1286static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1287	.disable = tegra_crtc_disable,
1288	.enable = tegra_crtc_enable,
1289	.atomic_check = tegra_crtc_atomic_check,
1290	.atomic_begin = tegra_crtc_atomic_begin,
1291	.atomic_flush = tegra_crtc_atomic_flush,
 
 
1292};
1293
1294static irqreturn_t tegra_dc_irq(int irq, void *data)
1295{
1296	struct tegra_dc *dc = data;
1297	unsigned long status;
1298
1299	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1300	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1301
1302	if (status & FRAME_END_INT) {
1303		/*
1304		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1305		*/
1306		dc->stats.frames++;
1307	}
1308
1309	if (status & VBLANK_INT) {
1310		/*
1311		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1312		*/
1313		drm_crtc_handle_vblank(&dc->base);
1314		tegra_dc_finish_page_flip(dc);
1315		dc->stats.vblank++;
1316	}
1317
1318	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1319		/*
1320		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1321		*/
1322		dc->stats.underflow++;
1323	}
1324
1325	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1326		/*
1327		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1328		*/
1329		dc->stats.overflow++;
1330	}
1331
1332	return IRQ_HANDLED;
1333}
1334
1335static int tegra_dc_show_regs(struct seq_file *s, void *data)
1336{
1337	struct drm_info_node *node = s->private;
1338	struct tegra_dc *dc = node->info_ent->data;
1339	int err = 0;
1340
1341	drm_modeset_lock_crtc(&dc->base, NULL);
1342
1343	if (!dc->base.state->active) {
1344		err = -EBUSY;
1345		goto unlock;
1346	}
1347
1348#define DUMP_REG(name)						\
1349	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1350		   tegra_dc_readl(dc, name))
1351
1352	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1353	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1354	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1355	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1356	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1357	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1358	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1359	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1360	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1361	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1362	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1363	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1364	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1365	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1366	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1367	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1368	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1369	DUMP_REG(DC_CMD_INT_STATUS);
1370	DUMP_REG(DC_CMD_INT_MASK);
1371	DUMP_REG(DC_CMD_INT_ENABLE);
1372	DUMP_REG(DC_CMD_INT_TYPE);
1373	DUMP_REG(DC_CMD_INT_POLARITY);
1374	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1375	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1376	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1377	DUMP_REG(DC_CMD_STATE_ACCESS);
1378	DUMP_REG(DC_CMD_STATE_CONTROL);
1379	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1380	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1381	DUMP_REG(DC_COM_CRC_CONTROL);
1382	DUMP_REG(DC_COM_CRC_CHECKSUM);
1383	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1384	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1385	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1386	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1387	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1388	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1389	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1390	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1391	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1392	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1393	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1394	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1395	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1396	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1397	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1398	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1399	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1400	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1401	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1402	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1403	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1404	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1405	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1406	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1407	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1408	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1409	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1410	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1411	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1412	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1413	DUMP_REG(DC_COM_SPI_CONTROL);
1414	DUMP_REG(DC_COM_SPI_START_BYTE);
1415	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1416	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1417	DUMP_REG(DC_COM_HSPI_CS_DC);
1418	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1419	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1420	DUMP_REG(DC_COM_GPIO_CTRL);
1421	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1422	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1423	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1424	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1425	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1426	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1427	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1428	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1429	DUMP_REG(DC_DISP_REF_TO_SYNC);
1430	DUMP_REG(DC_DISP_SYNC_WIDTH);
1431	DUMP_REG(DC_DISP_BACK_PORCH);
1432	DUMP_REG(DC_DISP_ACTIVE);
1433	DUMP_REG(DC_DISP_FRONT_PORCH);
1434	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1435	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1436	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1437	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1438	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1439	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1440	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1441	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1442	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1443	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1444	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1445	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1446	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1447	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1448	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1449	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1450	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1451	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1452	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1453	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1454	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1455	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1456	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1457	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1458	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1459	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1460	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1461	DUMP_REG(DC_DISP_M0_CONTROL);
1462	DUMP_REG(DC_DISP_M1_CONTROL);
1463	DUMP_REG(DC_DISP_DI_CONTROL);
1464	DUMP_REG(DC_DISP_PP_CONTROL);
1465	DUMP_REG(DC_DISP_PP_SELECT_A);
1466	DUMP_REG(DC_DISP_PP_SELECT_B);
1467	DUMP_REG(DC_DISP_PP_SELECT_C);
1468	DUMP_REG(DC_DISP_PP_SELECT_D);
1469	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1470	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1471	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1472	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1473	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1474	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1475	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1476	DUMP_REG(DC_DISP_BORDER_COLOR);
1477	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1478	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1479	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1480	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1481	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1482	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1483	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1484	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1485	DUMP_REG(DC_DISP_CURSOR_POSITION);
1486	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1487	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1488	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1489	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1490	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1491	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1492	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1493	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1494	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1495	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1496	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1497	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1498	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1499	DUMP_REG(DC_DISP_SD_CONTROL);
1500	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1501	DUMP_REG(DC_DISP_SD_LUT(0));
1502	DUMP_REG(DC_DISP_SD_LUT(1));
1503	DUMP_REG(DC_DISP_SD_LUT(2));
1504	DUMP_REG(DC_DISP_SD_LUT(3));
1505	DUMP_REG(DC_DISP_SD_LUT(4));
1506	DUMP_REG(DC_DISP_SD_LUT(5));
1507	DUMP_REG(DC_DISP_SD_LUT(6));
1508	DUMP_REG(DC_DISP_SD_LUT(7));
1509	DUMP_REG(DC_DISP_SD_LUT(8));
1510	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1511	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1512	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1513	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1514	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1515	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1516	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1517	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1518	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1519	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1520	DUMP_REG(DC_DISP_SD_BL_TF(0));
1521	DUMP_REG(DC_DISP_SD_BL_TF(1));
1522	DUMP_REG(DC_DISP_SD_BL_TF(2));
1523	DUMP_REG(DC_DISP_SD_BL_TF(3));
1524	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1525	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1526	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1527	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1528	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1529	DUMP_REG(DC_WIN_WIN_OPTIONS);
1530	DUMP_REG(DC_WIN_BYTE_SWAP);
1531	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1532	DUMP_REG(DC_WIN_COLOR_DEPTH);
1533	DUMP_REG(DC_WIN_POSITION);
1534	DUMP_REG(DC_WIN_SIZE);
1535	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1536	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1537	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1538	DUMP_REG(DC_WIN_DDA_INC);
1539	DUMP_REG(DC_WIN_LINE_STRIDE);
1540	DUMP_REG(DC_WIN_BUF_STRIDE);
1541	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1542	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1543	DUMP_REG(DC_WIN_DV_CONTROL);
1544	DUMP_REG(DC_WIN_BLEND_NOKEY);
1545	DUMP_REG(DC_WIN_BLEND_1WIN);
1546	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1547	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1548	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1549	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1550	DUMP_REG(DC_WINBUF_START_ADDR);
1551	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1552	DUMP_REG(DC_WINBUF_START_ADDR_U);
1553	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1554	DUMP_REG(DC_WINBUF_START_ADDR_V);
1555	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1556	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1557	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1558	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1559	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1560	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1561	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1562	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1563	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1564
1565#undef DUMP_REG
1566
1567unlock:
1568	drm_modeset_unlock_crtc(&dc->base);
1569	return err;
1570}
1571
1572static int tegra_dc_show_crc(struct seq_file *s, void *data)
1573{
1574	struct drm_info_node *node = s->private;
1575	struct tegra_dc *dc = node->info_ent->data;
1576	int err = 0;
1577	u32 value;
1578
1579	drm_modeset_lock_crtc(&dc->base, NULL);
1580
1581	if (!dc->base.state->active) {
1582		err = -EBUSY;
1583		goto unlock;
1584	}
1585
1586	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1587	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1588	tegra_dc_commit(dc);
1589
1590	drm_crtc_wait_one_vblank(&dc->base);
1591	drm_crtc_wait_one_vblank(&dc->base);
1592
1593	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1594	seq_printf(s, "%08x\n", value);
1595
1596	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1597
1598unlock:
1599	drm_modeset_unlock_crtc(&dc->base);
1600	return err;
1601}
1602
1603static int tegra_dc_show_stats(struct seq_file *s, void *data)
1604{
1605	struct drm_info_node *node = s->private;
1606	struct tegra_dc *dc = node->info_ent->data;
1607
1608	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1609	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1610	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1611	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1612
1613	return 0;
1614}
1615
1616static struct drm_info_list debugfs_files[] = {
1617	{ "regs", tegra_dc_show_regs, 0, NULL },
1618	{ "crc", tegra_dc_show_crc, 0, NULL },
1619	{ "stats", tegra_dc_show_stats, 0, NULL },
1620};
1621
1622static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1623{
1624	unsigned int i;
1625	char *name;
1626	int err;
1627
1628	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1629	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1630	kfree(name);
1631
1632	if (!dc->debugfs)
1633		return -ENOMEM;
1634
1635	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1636				    GFP_KERNEL);
1637	if (!dc->debugfs_files) {
1638		err = -ENOMEM;
1639		goto remove;
1640	}
1641
1642	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1643		dc->debugfs_files[i].data = dc;
1644
1645	err = drm_debugfs_create_files(dc->debugfs_files,
1646				       ARRAY_SIZE(debugfs_files),
1647				       dc->debugfs, minor);
1648	if (err < 0)
1649		goto free;
1650
1651	dc->minor = minor;
1652
1653	return 0;
1654
1655free:
1656	kfree(dc->debugfs_files);
1657	dc->debugfs_files = NULL;
1658remove:
1659	debugfs_remove(dc->debugfs);
1660	dc->debugfs = NULL;
1661
1662	return err;
1663}
1664
1665static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1666{
1667	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1668				 dc->minor);
1669	dc->minor = NULL;
1670
1671	kfree(dc->debugfs_files);
1672	dc->debugfs_files = NULL;
1673
1674	debugfs_remove(dc->debugfs);
1675	dc->debugfs = NULL;
1676
1677	return 0;
1678}
1679
1680static int tegra_dc_init(struct host1x_client *client)
1681{
1682	struct drm_device *drm = dev_get_drvdata(client->parent);
 
1683	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1684	struct tegra_dc *dc = host1x_client_to_dc(client);
1685	struct tegra_drm *tegra = drm->dev_private;
1686	struct drm_plane *primary = NULL;
1687	struct drm_plane *cursor = NULL;
1688	u32 value;
1689	int err;
1690
1691	dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1692	if (!dc->syncpt)
1693		dev_warn(dc->dev, "failed to allocate syncpoint\n");
1694
1695	if (tegra->domain) {
1696		err = iommu_attach_device(tegra->domain, dc->dev);
1697		if (err < 0) {
1698			dev_err(dc->dev, "failed to attach to domain: %d\n",
1699				err);
1700			return err;
 
 
 
 
 
1701		}
1702
1703		dc->domain = tegra->domain;
1704	}
1705
1706	primary = tegra_dc_primary_plane_create(drm, dc);
 
 
 
 
1707	if (IS_ERR(primary)) {
1708		err = PTR_ERR(primary);
1709		goto cleanup;
1710	}
1711
1712	if (dc->soc->supports_cursor) {
1713		cursor = tegra_dc_cursor_plane_create(drm, dc);
1714		if (IS_ERR(cursor)) {
1715			err = PTR_ERR(cursor);
1716			goto cleanup;
1717		}
 
 
 
 
 
 
 
1718	}
1719
1720	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1721					&tegra_crtc_funcs, NULL);
1722	if (err < 0)
1723		goto cleanup;
1724
1725	drm_mode_crtc_set_gamma_size(&dc->base, 256);
1726	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1727
1728	/*
1729	 * Keep track of the minimum pitch alignment across all display
1730	 * controllers.
1731	 */
1732	if (dc->soc->pitch_align > tegra->pitch_align)
1733		tegra->pitch_align = dc->soc->pitch_align;
1734
1735	err = tegra_dc_rgb_init(drm, dc);
1736	if (err < 0 && err != -ENODEV) {
1737		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1738		goto cleanup;
1739	}
1740
1741	err = tegra_dc_add_planes(drm, dc);
1742	if (err < 0)
1743		goto cleanup;
1744
1745	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1746		err = tegra_dc_debugfs_init(dc, drm->primary);
1747		if (err < 0)
1748			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1749	}
1750
1751	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1752			       dev_name(dc->dev), dc);
1753	if (err < 0) {
1754		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1755			err);
1756		goto cleanup;
1757	}
1758
1759	/* initialize display controller */
1760	if (dc->syncpt) {
1761		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1762
1763		value = SYNCPT_CNTRL_NO_STALL;
1764		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1765
1766		value = SYNCPT_VSYNC_ENABLE | syncpt;
1767		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1768	}
1769
1770	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1771		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1772	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1773
1774	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1775		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1776	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1777
1778	/* initialize timer */
1779	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1780		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1781	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1782
1783	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1784		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1785	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1786
1787	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1788		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1789	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1790
1791	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1792		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1793	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1794
1795	if (dc->soc->supports_border_color)
1796		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1797
1798	tegra_dc_stats_reset(&dc->stats);
1799
1800	return 0;
1801
1802cleanup:
1803	if (cursor)
1804		drm_plane_cleanup(cursor);
1805
1806	if (primary)
1807		drm_plane_cleanup(primary);
1808
1809	if (tegra->domain) {
1810		iommu_detach_device(tegra->domain, dc->dev);
 
 
 
 
1811		dc->domain = NULL;
1812	}
1813
1814	return err;
1815}
1816
1817static int tegra_dc_exit(struct host1x_client *client)
1818{
 
 
1819	struct tegra_dc *dc = host1x_client_to_dc(client);
 
1820	int err;
1821
1822	devm_free_irq(dc->dev, dc->irq, dc);
1823
1824	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1825		err = tegra_dc_debugfs_exit(dc);
1826		if (err < 0)
1827			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1828	}
1829
1830	err = tegra_dc_rgb_exit(dc);
1831	if (err) {
1832		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1833		return err;
1834	}
1835
1836	if (dc->domain) {
1837		iommu_detach_device(dc->domain, dc->dev);
 
 
 
 
1838		dc->domain = NULL;
1839	}
1840
1841	host1x_syncpt_free(dc->syncpt);
1842
1843	return 0;
1844}
1845
1846static const struct host1x_client_ops dc_client_ops = {
1847	.init = tegra_dc_init,
1848	.exit = tegra_dc_exit,
1849};
1850
1851static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1852	.supports_border_color = true,
1853	.supports_interlacing = false,
1854	.supports_cursor = false,
1855	.supports_block_linear = false,
 
1856	.pitch_align = 8,
1857	.has_powergate = false,
 
 
 
 
 
 
 
1858};
1859
1860static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1861	.supports_border_color = true,
1862	.supports_interlacing = false,
1863	.supports_cursor = false,
1864	.supports_block_linear = false,
 
1865	.pitch_align = 8,
1866	.has_powergate = false,
 
 
 
 
 
 
 
1867};
1868
1869static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1870	.supports_border_color = true,
1871	.supports_interlacing = false,
1872	.supports_cursor = false,
1873	.supports_block_linear = false,
 
1874	.pitch_align = 64,
1875	.has_powergate = true,
 
 
 
 
 
 
 
1876};
1877
1878static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1879	.supports_border_color = false,
1880	.supports_interlacing = true,
1881	.supports_cursor = true,
1882	.supports_block_linear = true,
 
1883	.pitch_align = 64,
1884	.has_powergate = true,
 
 
 
 
 
 
 
1885};
1886
1887static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1888	.supports_border_color = false,
1889	.supports_interlacing = true,
1890	.supports_cursor = true,
1891	.supports_block_linear = true,
 
1892	.pitch_align = 64,
1893	.has_powergate = true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894};
1895
1896static const struct of_device_id tegra_dc_of_match[] = {
1897	{
 
 
 
1898		.compatible = "nvidia,tegra210-dc",
1899		.data = &tegra210_dc_soc_info,
1900	}, {
1901		.compatible = "nvidia,tegra124-dc",
1902		.data = &tegra124_dc_soc_info,
1903	}, {
1904		.compatible = "nvidia,tegra114-dc",
1905		.data = &tegra114_dc_soc_info,
1906	}, {
1907		.compatible = "nvidia,tegra30-dc",
1908		.data = &tegra30_dc_soc_info,
1909	}, {
1910		.compatible = "nvidia,tegra20-dc",
1911		.data = &tegra20_dc_soc_info,
1912	}, {
1913		/* sentinel */
1914	}
1915};
1916MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1917
1918static int tegra_dc_parse_dt(struct tegra_dc *dc)
1919{
1920	struct device_node *np;
1921	u32 value = 0;
1922	int err;
1923
1924	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1925	if (err < 0) {
1926		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1927
1928		/*
1929		 * If the nvidia,head property isn't present, try to find the
1930		 * correct head number by looking up the position of this
1931		 * display controller's node within the device tree. Assuming
1932		 * that the nodes are ordered properly in the DTS file and
1933		 * that the translation into a flattened device tree blob
1934		 * preserves that ordering this will actually yield the right
1935		 * head number.
1936		 *
1937		 * If those assumptions don't hold, this will still work for
1938		 * cases where only a single display controller is used.
1939		 */
1940		for_each_matching_node(np, tegra_dc_of_match) {
1941			if (np == dc->dev->of_node) {
1942				of_node_put(np);
1943				break;
1944			}
1945
1946			value++;
1947		}
1948	}
1949
1950	dc->pipe = value;
1951
1952	return 0;
1953}
1954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1955static int tegra_dc_probe(struct platform_device *pdev)
1956{
1957	const struct of_device_id *id;
1958	struct resource *regs;
1959	struct tegra_dc *dc;
1960	int err;
1961
1962	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1963	if (!dc)
1964		return -ENOMEM;
1965
1966	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1967	if (!id)
1968		return -ENODEV;
1969
1970	spin_lock_init(&dc->lock);
1971	INIT_LIST_HEAD(&dc->list);
1972	dc->dev = &pdev->dev;
1973	dc->soc = id->data;
1974
1975	err = tegra_dc_parse_dt(dc);
1976	if (err < 0)
1977		return err;
1978
 
 
 
 
1979	dc->clk = devm_clk_get(&pdev->dev, NULL);
1980	if (IS_ERR(dc->clk)) {
1981		dev_err(&pdev->dev, "failed to get clock\n");
1982		return PTR_ERR(dc->clk);
1983	}
1984
1985	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1986	if (IS_ERR(dc->rst)) {
1987		dev_err(&pdev->dev, "failed to get reset\n");
1988		return PTR_ERR(dc->rst);
1989	}
1990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991	if (dc->soc->has_powergate) {
1992		if (dc->pipe == 0)
1993			dc->powergate = TEGRA_POWERGATE_DIS;
1994		else
1995			dc->powergate = TEGRA_POWERGATE_DISB;
1996
1997		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1998							dc->rst);
1999		if (err < 0) {
2000			dev_err(&pdev->dev, "failed to power partition: %d\n",
2001				err);
2002			return err;
2003		}
2004	} else {
2005		err = clk_prepare_enable(dc->clk);
2006		if (err < 0) {
2007			dev_err(&pdev->dev, "failed to enable clock: %d\n",
2008				err);
2009			return err;
2010		}
2011
2012		err = reset_control_deassert(dc->rst);
2013		if (err < 0) {
2014			dev_err(&pdev->dev, "failed to deassert reset: %d\n",
2015				err);
2016			return err;
2017		}
2018	}
2019
2020	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2021	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2022	if (IS_ERR(dc->regs))
2023		return PTR_ERR(dc->regs);
2024
2025	dc->irq = platform_get_irq(pdev, 0);
2026	if (dc->irq < 0) {
2027		dev_err(&pdev->dev, "failed to get IRQ\n");
2028		return -ENXIO;
2029	}
2030
2031	INIT_LIST_HEAD(&dc->client.list);
2032	dc->client.ops = &dc_client_ops;
2033	dc->client.dev = &pdev->dev;
2034
2035	err = tegra_dc_rgb_probe(dc);
2036	if (err < 0 && err != -ENODEV) {
2037		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2038		return err;
2039	}
2040
 
 
 
 
 
 
 
2041	err = host1x_client_register(&dc->client);
2042	if (err < 0) {
2043		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2044			err);
2045		return err;
2046	}
2047
2048	platform_set_drvdata(pdev, dc);
2049
2050	return 0;
2051}
2052
2053static int tegra_dc_remove(struct platform_device *pdev)
2054{
2055	struct tegra_dc *dc = platform_get_drvdata(pdev);
2056	int err;
2057
2058	err = host1x_client_unregister(&dc->client);
2059	if (err < 0) {
2060		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2061			err);
2062		return err;
2063	}
2064
2065	err = tegra_dc_rgb_remove(dc);
2066	if (err < 0) {
2067		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2068		return err;
2069	}
2070
2071	reset_control_assert(dc->rst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072
2073	if (dc->soc->has_powergate)
2074		tegra_powergate_power_off(dc->powergate);
2075
2076	clk_disable_unprepare(dc->clk);
2077
2078	return 0;
2079}
2080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2081struct platform_driver tegra_dc_driver = {
2082	.driver = {
2083		.name = "tegra-dc",
2084		.of_match_table = tegra_dc_of_match,
 
2085	},
2086	.probe = tegra_dc_probe,
2087	.remove = tegra_dc_remove,
2088};
v4.17
   1/*
   2 * Copyright (C) 2012 Avionic Design GmbH
   3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/debugfs.h>
  12#include <linux/iommu.h>
  13#include <linux/of_device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/reset.h>
  16
  17#include <soc/tegra/pmc.h>
  18
  19#include "dc.h"
  20#include "drm.h"
  21#include "gem.h"
  22#include "hub.h"
  23#include "plane.h"
  24
  25#include <drm/drm_atomic.h>
  26#include <drm/drm_atomic_helper.h>
  27#include <drm/drm_plane_helper.h>
  28
  29static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  30{
  31	stats->frames = 0;
  32	stats->vblank = 0;
  33	stats->underflow = 0;
  34	stats->overflow = 0;
  35}
  36
  37/* Reads the active copy of a register. */
  38static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
  39{
  40	u32 value;
  41
  42	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
  43	value = tegra_dc_readl(dc, offset);
  44	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
  45
  46	return value;
  47}
  48
  49static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
  50					      unsigned int offset)
  51{
  52	if (offset >= 0x500 && offset <= 0x638) {
  53		offset = 0x000 + (offset - 0x500);
  54		return plane->offset + offset;
  55	}
 
  56
  57	if (offset >= 0x700 && offset <= 0x719) {
  58		offset = 0x180 + (offset - 0x700);
  59		return plane->offset + offset;
  60	}
  61
  62	if (offset >= 0x800 && offset <= 0x839) {
  63		offset = 0x1c0 + (offset - 0x800);
  64		return plane->offset + offset;
  65	}
  66
  67	dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
 
 
 
 
  68
  69	return plane->offset + offset;
  70}
  71
  72static inline u32 tegra_plane_readl(struct tegra_plane *plane,
  73				    unsigned int offset)
  74{
  75	return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
 
 
 
  76}
  77
  78static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
  79				      unsigned int offset)
 
 
 
 
  80{
  81	tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
  82}
  83
  84bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
  85{
  86	struct device_node *np = dc->dev->of_node;
  87	struct of_phandle_iterator it;
  88	int err;
  89
  90	of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
  91		if (it.node == dev->of_node)
  92			return true;
  93
  94	return false;
 
  95}
  96
  97/*
  98 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
  99 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
 100 * Latching happens mmediately if the display controller is in STOP mode or
 101 * on the next frame boundary otherwise.
 102 *
 103 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
 104 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
 105 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
 106 * into the ACTIVE copy, either immediately if the display controller is in
 107 * STOP mode, or at the next frame boundary otherwise.
 108 */
 109void tegra_dc_commit(struct tegra_dc *dc)
 110{
 111	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
 112	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
 113}
 114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
 116				  unsigned int bpp)
 117{
 118	fixed20_12 outf = dfixed_init(out);
 119	fixed20_12 inf = dfixed_init(in);
 120	u32 dda_inc;
 121	int max;
 122
 123	if (v)
 124		max = 15;
 125	else {
 126		switch (bpp) {
 127		case 2:
 128			max = 8;
 129			break;
 130
 131		default:
 132			WARN_ON_ONCE(1);
 133			/* fallthrough */
 134		case 4:
 135			max = 4;
 136			break;
 137		}
 138	}
 139
 140	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
 141	inf.full -= dfixed_const(1);
 142
 143	dda_inc = dfixed_div(inf, outf);
 144	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
 145
 146	return dda_inc;
 147}
 148
 149static inline u32 compute_initial_dda(unsigned int in)
 150{
 151	fixed20_12 inf = dfixed_init(in);
 152	return dfixed_frac(inf);
 153}
 154
 155static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
 156{
 157	u32 background[3] = {
 158		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 159		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 160		BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
 161	};
 162	u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
 163			 BLEND_COLOR_KEY_NONE;
 164	u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
 165	struct tegra_plane_state *state;
 166	unsigned int i;
 167
 168	state = to_tegra_plane_state(plane->base.state);
 169
 170	/* alpha contribution is 1 minus sum of overlapping windows */
 171	for (i = 0; i < 3; i++) {
 172		if (state->dependent[i])
 173			background[i] |= BLEND_CONTROL_DEPENDENT;
 174	}
 175
 176	/* enable alpha blending if pixel format has an alpha component */
 177	if (!state->opaque)
 178		foreground |= BLEND_CONTROL_ALPHA;
 179
 180	/*
 181	 * Disable blending and assume Window A is the bottom-most window,
 182	 * Window C is the top-most window and Window B is in the middle.
 183	 */
 184	tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
 185	tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
 186
 187	switch (plane->index) {
 188	case 0:
 189		tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
 190		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 191		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 192		break;
 193
 194	case 1:
 195		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 196		tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
 197		tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
 198		break;
 199
 200	case 2:
 201		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
 202		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
 203		tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
 204		break;
 205	}
 206}
 207
 208static void tegra_plane_setup_blending(struct tegra_plane *plane,
 209				       const struct tegra_dc_window *window)
 210{
 211	u32 value;
 212
 213	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 214		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 215		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 216	tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
 217
 218	value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
 219		BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
 220		BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
 221	tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
 222
 223	value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
 224	tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
 225}
 226
 227static void tegra_dc_setup_window(struct tegra_plane *plane,
 228				  const struct tegra_dc_window *window)
 229{
 230	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
 231	struct tegra_dc *dc = plane->dc;
 232	bool yuv, planar;
 233	u32 value;
 234
 235	/*
 236	 * For YUV planar modes, the number of bytes per pixel takes into
 237	 * account only the luma component and therefore is 1.
 238	 */
 239	yuv = tegra_plane_format_is_yuv(window->format, &planar);
 240	if (!yuv)
 241		bpp = window->bits_per_pixel / 8;
 242	else
 243		bpp = planar ? 1 : 2;
 244
 245	tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
 246	tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
 
 
 
 
 
 247
 248	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
 249	tegra_plane_writel(plane, value, DC_WIN_POSITION);
 250
 251	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
 252	tegra_plane_writel(plane, value, DC_WIN_SIZE);
 253
 254	h_offset = window->src.x * bpp;
 255	v_offset = window->src.y;
 256	h_size = window->src.w * bpp;
 257	v_size = window->src.h;
 258
 259	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
 260	tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
 261
 262	/*
 263	 * For DDA computations the number of bytes per pixel for YUV planar
 264	 * modes needs to take into account all Y, U and V components.
 265	 */
 266	if (yuv && planar)
 267		bpp = 2;
 268
 269	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
 270	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
 271
 272	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
 273	tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
 274
 275	h_dda = compute_initial_dda(window->src.x);
 276	v_dda = compute_initial_dda(window->src.y);
 277
 278	tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
 279	tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
 280
 281	tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
 282	tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
 283
 284	tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
 285
 286	if (yuv && planar) {
 287		tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
 288		tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
 289		value = window->stride[1] << 16 | window->stride[0];
 290		tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
 291	} else {
 292		tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
 293	}
 294
 295	if (window->bottom_up)
 296		v_offset += window->src.h - 1;
 297
 298	tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
 299	tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
 300
 301	if (dc->soc->supports_block_linear) {
 302		unsigned long height = window->tiling.value;
 303
 304		switch (window->tiling.mode) {
 305		case TEGRA_BO_TILING_MODE_PITCH:
 306			value = DC_WINBUF_SURFACE_KIND_PITCH;
 307			break;
 308
 309		case TEGRA_BO_TILING_MODE_TILED:
 310			value = DC_WINBUF_SURFACE_KIND_TILED;
 311			break;
 312
 313		case TEGRA_BO_TILING_MODE_BLOCK:
 314			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
 315				DC_WINBUF_SURFACE_KIND_BLOCK;
 316			break;
 317		}
 318
 319		tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
 320	} else {
 321		switch (window->tiling.mode) {
 322		case TEGRA_BO_TILING_MODE_PITCH:
 323			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
 324				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
 325			break;
 326
 327		case TEGRA_BO_TILING_MODE_TILED:
 328			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
 329				DC_WIN_BUFFER_ADDR_MODE_TILE;
 330			break;
 331
 332		case TEGRA_BO_TILING_MODE_BLOCK:
 333			/*
 334			 * No need to handle this here because ->atomic_check
 335			 * will already have filtered it out.
 336			 */
 337			break;
 338		}
 339
 340		tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
 341	}
 342
 343	value = WIN_ENABLE;
 344
 345	if (yuv) {
 346		/* setup default colorspace conversion coefficients */
 347		tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
 348		tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
 349		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
 350		tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
 351		tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
 352		tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
 353		tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
 354		tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
 355
 356		value |= CSC_ENABLE;
 357	} else if (window->bits_per_pixel < 24) {
 358		value |= COLOR_EXPAND;
 359	}
 360
 361	if (window->bottom_up)
 362		value |= V_DIRECTION;
 363
 364	tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 365
 366	if (dc->soc->supports_blending)
 367		tegra_plane_setup_blending(plane, window);
 368	else
 369		tegra_plane_setup_blending_legacy(plane);
 
 
 370}
 371
 372static const u32 tegra20_primary_formats[] = {
 373	DRM_FORMAT_ARGB4444,
 374	DRM_FORMAT_ARGB1555,
 375	DRM_FORMAT_RGB565,
 376	DRM_FORMAT_RGBA5551,
 377	DRM_FORMAT_ABGR8888,
 378	DRM_FORMAT_ARGB8888,
 379	/* non-native formats */
 380	DRM_FORMAT_XRGB1555,
 381	DRM_FORMAT_RGBX5551,
 382	DRM_FORMAT_XBGR8888,
 383	DRM_FORMAT_XRGB8888,
 
 384};
 385
 386static const u64 tegra20_modifiers[] = {
 387	DRM_FORMAT_MOD_LINEAR,
 388	DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
 389	DRM_FORMAT_MOD_INVALID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390};
 391
 392static const u32 tegra114_primary_formats[] = {
 393	DRM_FORMAT_ARGB4444,
 394	DRM_FORMAT_ARGB1555,
 395	DRM_FORMAT_RGB565,
 396	DRM_FORMAT_RGBA5551,
 397	DRM_FORMAT_ABGR8888,
 398	DRM_FORMAT_ARGB8888,
 399	/* new on Tegra114 */
 400	DRM_FORMAT_ABGR4444,
 401	DRM_FORMAT_ABGR1555,
 402	DRM_FORMAT_BGRA5551,
 403	DRM_FORMAT_XRGB1555,
 404	DRM_FORMAT_RGBX5551,
 405	DRM_FORMAT_XBGR1555,
 406	DRM_FORMAT_BGRX5551,
 407	DRM_FORMAT_BGR565,
 408	DRM_FORMAT_BGRA8888,
 409	DRM_FORMAT_RGBA8888,
 410	DRM_FORMAT_XRGB8888,
 411	DRM_FORMAT_XBGR8888,
 412};
 
 
 413
 414static const u32 tegra124_primary_formats[] = {
 415	DRM_FORMAT_ARGB4444,
 416	DRM_FORMAT_ARGB1555,
 417	DRM_FORMAT_RGB565,
 418	DRM_FORMAT_RGBA5551,
 419	DRM_FORMAT_ABGR8888,
 420	DRM_FORMAT_ARGB8888,
 421	/* new on Tegra114 */
 422	DRM_FORMAT_ABGR4444,
 423	DRM_FORMAT_ABGR1555,
 424	DRM_FORMAT_BGRA5551,
 425	DRM_FORMAT_XRGB1555,
 426	DRM_FORMAT_RGBX5551,
 427	DRM_FORMAT_XBGR1555,
 428	DRM_FORMAT_BGRX5551,
 429	DRM_FORMAT_BGR565,
 430	DRM_FORMAT_BGRA8888,
 431	DRM_FORMAT_RGBA8888,
 432	DRM_FORMAT_XRGB8888,
 433	DRM_FORMAT_XBGR8888,
 434	/* new on Tegra124 */
 435	DRM_FORMAT_RGBX8888,
 436	DRM_FORMAT_BGRX8888,
 437};
 438
 439static const u64 tegra124_modifiers[] = {
 440	DRM_FORMAT_MOD_LINEAR,
 441	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
 442	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
 443	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
 444	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
 445	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
 446	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
 447	DRM_FORMAT_MOD_INVALID
 448};
 449
 450static int tegra_plane_atomic_check(struct drm_plane *plane,
 451				    struct drm_plane_state *state)
 452{
 453	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
 454	struct tegra_bo_tiling *tiling = &plane_state->tiling;
 455	struct tegra_plane *tegra = to_tegra_plane(plane);
 456	struct tegra_dc *dc = to_tegra_dc(state->crtc);
 457	unsigned int format;
 458	int err;
 459
 460	/* no need for further checks if the plane is being disabled */
 461	if (!state->crtc)
 462		return 0;
 463
 464	err = tegra_plane_format(state->fb->format->format, &format,
 465				 &plane_state->swap);
 466	if (err < 0)
 467		return err;
 468
 469	/*
 470	 * Tegra20 and Tegra30 are special cases here because they support
 471	 * only variants of specific formats with an alpha component, but not
 472	 * the corresponding opaque formats. However, the opaque formats can
 473	 * be emulated by disabling alpha blending for the plane.
 474	 */
 475	if (!dc->soc->supports_blending) {
 476		if (!tegra_plane_format_has_alpha(format)) {
 477			err = tegra_plane_format_get_alpha(format, &format);
 478			if (err < 0)
 479				return err;
 480
 481			plane_state->opaque = true;
 482		} else {
 483			plane_state->opaque = false;
 484		}
 485
 486		tegra_plane_check_dependent(tegra, plane_state);
 487	}
 488
 489	plane_state->format = format;
 490
 491	err = tegra_fb_get_tiling(state->fb, tiling);
 492	if (err < 0)
 493		return err;
 494
 495	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
 496	    !dc->soc->supports_block_linear) {
 497		DRM_ERROR("hardware doesn't support block linear mode\n");
 498		return -EINVAL;
 499	}
 500
 501	/*
 502	 * Tegra doesn't support different strides for U and V planes so we
 503	 * error out if the user tries to display a framebuffer with such a
 504	 * configuration.
 505	 */
 506	if (state->fb->format->num_planes > 2) {
 507		if (state->fb->pitches[2] != state->fb->pitches[1]) {
 508			DRM_ERROR("unsupported UV-plane configuration\n");
 509			return -EINVAL;
 510		}
 511	}
 512
 513	err = tegra_plane_state_add(tegra, state);
 514	if (err < 0)
 515		return err;
 516
 517	return 0;
 518}
 519
 520static void tegra_plane_atomic_disable(struct drm_plane *plane,
 521				       struct drm_plane_state *old_state)
 522{
 523	struct tegra_plane *p = to_tegra_plane(plane);
 524	u32 value;
 525
 526	/* rien ne va plus */
 527	if (!old_state || !old_state->crtc)
 528		return;
 529
 530	value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
 531	value &= ~WIN_ENABLE;
 532	tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
 533}
 534
 535static void tegra_plane_atomic_update(struct drm_plane *plane,
 536				      struct drm_plane_state *old_state)
 537{
 538	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
 
 539	struct drm_framebuffer *fb = plane->state->fb;
 540	struct tegra_plane *p = to_tegra_plane(plane);
 541	struct tegra_dc_window window;
 542	unsigned int i;
 543
 544	/* rien ne va plus */
 545	if (!plane->state->crtc || !plane->state->fb)
 546		return;
 547
 548	if (!plane->state->visible)
 549		return tegra_plane_atomic_disable(plane, old_state);
 550
 551	memset(&window, 0, sizeof(window));
 552	window.src.x = plane->state->src.x1 >> 16;
 553	window.src.y = plane->state->src.y1 >> 16;
 554	window.src.w = drm_rect_width(&plane->state->src) >> 16;
 555	window.src.h = drm_rect_height(&plane->state->src) >> 16;
 556	window.dst.x = plane->state->dst.x1;
 557	window.dst.y = plane->state->dst.y1;
 558	window.dst.w = drm_rect_width(&plane->state->dst);
 559	window.dst.h = drm_rect_height(&plane->state->dst);
 560	window.bits_per_pixel = fb->format->cpp[0] * 8;
 561	window.bottom_up = tegra_fb_is_bottom_up(fb);
 562
 563	/* copy from state */
 564	window.zpos = plane->state->normalized_zpos;
 565	window.tiling = state->tiling;
 566	window.format = state->format;
 567	window.swap = state->swap;
 568
 569	for (i = 0; i < fb->format->num_planes; i++) {
 570		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
 571
 572		window.base[i] = bo->paddr + fb->offsets[i];
 
 
 
 
 
 573
 574		/*
 575		 * Tegra uses a shared stride for UV planes. Framebuffers are
 576		 * already checked for this in the tegra_plane_atomic_check()
 577		 * function, so it's safe to ignore the V-plane pitch here.
 578		 */
 579		if (i < 2)
 580			window.stride[i] = fb->pitches[i];
 581	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582
 583	tegra_dc_setup_window(p, &window);
 584}
 585
 586static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
 
 
 587	.atomic_check = tegra_plane_atomic_check,
 
 588	.atomic_disable = tegra_plane_atomic_disable,
 589	.atomic_update = tegra_plane_atomic_update,
 590};
 591
 592static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
 
 593{
 594	/*
 595	 * Ideally this would use drm_crtc_mask(), but that would require the
 596	 * CRTC to already be in the mode_config's list of CRTCs. However, it
 597	 * will only be added to that list in the drm_crtc_init_with_planes()
 598	 * (in tegra_dc_init()), which in turn requires registration of these
 599	 * planes. So we have ourselves a nice little chicken and egg problem
 600	 * here.
 601	 *
 602	 * We work around this by manually creating the mask from the number
 603	 * of CRTCs that have been registered, and should therefore always be
 604	 * the same as drm_crtc_index() after registration.
 605	 */
 606	return 1 << drm->mode_config.num_crtc;
 607}
 608
 609static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
 610						    struct tegra_dc *dc)
 611{
 612	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 613	enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
 614	struct tegra_plane *plane;
 615	unsigned int num_formats;
 616	const u64 *modifiers;
 617	const u32 *formats;
 618	int err;
 619
 620	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 621	if (!plane)
 622		return ERR_PTR(-ENOMEM);
 623
 624	/* Always use window A as primary window */
 625	plane->offset = 0xa00;
 626	plane->index = 0;
 627	plane->dc = dc;
 628
 629	num_formats = dc->soc->num_primary_formats;
 630	formats = dc->soc->primary_formats;
 631	modifiers = dc->soc->modifiers;
 632
 633	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 634				       &tegra_plane_funcs, formats,
 635				       num_formats, modifiers, type, NULL);
 
 636	if (err < 0) {
 637		kfree(plane);
 638		return ERR_PTR(err);
 639	}
 640
 641	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 642
 643	if (dc->soc->supports_blending)
 644		drm_plane_create_zpos_property(&plane->base, 0, 0, 255);
 645
 646	return &plane->base;
 647}
 648
 649static const u32 tegra_cursor_plane_formats[] = {
 650	DRM_FORMAT_RGBA8888,
 651};
 652
 653static int tegra_cursor_atomic_check(struct drm_plane *plane,
 654				     struct drm_plane_state *state)
 655{
 656	struct tegra_plane *tegra = to_tegra_plane(plane);
 657	int err;
 658
 659	/* no need for further checks if the plane is being disabled */
 660	if (!state->crtc)
 661		return 0;
 662
 663	/* scaling not supported for cursor */
 664	if ((state->src_w >> 16 != state->crtc_w) ||
 665	    (state->src_h >> 16 != state->crtc_h))
 666		return -EINVAL;
 667
 668	/* only square cursors supported */
 669	if (state->src_w != state->src_h)
 670		return -EINVAL;
 671
 672	if (state->crtc_w != 32 && state->crtc_w != 64 &&
 673	    state->crtc_w != 128 && state->crtc_w != 256)
 674		return -EINVAL;
 675
 676	err = tegra_plane_state_add(tegra, state);
 677	if (err < 0)
 678		return err;
 679
 680	return 0;
 681}
 682
 683static void tegra_cursor_atomic_update(struct drm_plane *plane,
 684				       struct drm_plane_state *old_state)
 685{
 686	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
 687	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
 688	struct drm_plane_state *state = plane->state;
 689	u32 value = CURSOR_CLIP_DISPLAY;
 690
 691	/* rien ne va plus */
 692	if (!plane->state->crtc || !plane->state->fb)
 693		return;
 694
 695	switch (state->crtc_w) {
 696	case 32:
 697		value |= CURSOR_SIZE_32x32;
 698		break;
 699
 700	case 64:
 701		value |= CURSOR_SIZE_64x64;
 702		break;
 703
 704	case 128:
 705		value |= CURSOR_SIZE_128x128;
 706		break;
 707
 708	case 256:
 709		value |= CURSOR_SIZE_256x256;
 710		break;
 711
 712	default:
 713		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
 714		     state->crtc_h);
 715		return;
 716	}
 717
 718	value |= (bo->paddr >> 10) & 0x3fffff;
 719	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
 720
 721#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 722	value = (bo->paddr >> 32) & 0x3;
 723	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
 724#endif
 725
 726	/* enable cursor and set blend mode */
 727	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 728	value |= CURSOR_ENABLE;
 729	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 730
 731	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
 732	value &= ~CURSOR_DST_BLEND_MASK;
 733	value &= ~CURSOR_SRC_BLEND_MASK;
 734	value |= CURSOR_MODE_NORMAL;
 735	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
 736	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
 737	value |= CURSOR_ALPHA;
 738	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
 739
 740	/* position the cursor */
 741	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
 742	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
 743}
 744
 745static void tegra_cursor_atomic_disable(struct drm_plane *plane,
 746					struct drm_plane_state *old_state)
 747{
 748	struct tegra_dc *dc;
 749	u32 value;
 750
 751	/* rien ne va plus */
 752	if (!old_state || !old_state->crtc)
 753		return;
 754
 755	dc = to_tegra_dc(old_state->crtc);
 756
 757	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
 758	value &= ~CURSOR_ENABLE;
 759	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
 760}
 761
 
 
 
 
 
 
 
 
 
 762static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
 
 
 763	.atomic_check = tegra_cursor_atomic_check,
 764	.atomic_update = tegra_cursor_atomic_update,
 765	.atomic_disable = tegra_cursor_atomic_disable,
 766};
 767
 768static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
 769						      struct tegra_dc *dc)
 770{
 771	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 772	struct tegra_plane *plane;
 773	unsigned int num_formats;
 774	const u32 *formats;
 775	int err;
 776
 777	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 778	if (!plane)
 779		return ERR_PTR(-ENOMEM);
 780
 781	/*
 782	 * This index is kind of fake. The cursor isn't a regular plane, but
 783	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
 784	 * use the same programming. Setting this fake index here allows the
 785	 * code in tegra_add_plane_state() to do the right thing without the
 786	 * need to special-casing the cursor plane.
 787	 */
 788	plane->index = 6;
 789	plane->dc = dc;
 790
 791	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
 792	formats = tegra_cursor_plane_formats;
 793
 794	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 795				       &tegra_plane_funcs, formats,
 796				       num_formats, NULL,
 797				       DRM_PLANE_TYPE_CURSOR, NULL);
 798	if (err < 0) {
 799		kfree(plane);
 800		return ERR_PTR(err);
 801	}
 802
 803	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
 804
 805	return &plane->base;
 806}
 807
 808static const u32 tegra20_overlay_formats[] = {
 809	DRM_FORMAT_ARGB4444,
 810	DRM_FORMAT_ARGB1555,
 811	DRM_FORMAT_RGB565,
 812	DRM_FORMAT_RGBA5551,
 813	DRM_FORMAT_ABGR8888,
 814	DRM_FORMAT_ARGB8888,
 815	/* non-native formats */
 816	DRM_FORMAT_XRGB1555,
 817	DRM_FORMAT_RGBX5551,
 
 
 
 
 
 818	DRM_FORMAT_XBGR8888,
 819	DRM_FORMAT_XRGB8888,
 820	/* planar formats */
 821	DRM_FORMAT_UYVY,
 822	DRM_FORMAT_YUYV,
 823	DRM_FORMAT_YUV420,
 824	DRM_FORMAT_YUV422,
 825};
 826
 827static const u32 tegra114_overlay_formats[] = {
 828	DRM_FORMAT_ARGB4444,
 829	DRM_FORMAT_ARGB1555,
 830	DRM_FORMAT_RGB565,
 831	DRM_FORMAT_RGBA5551,
 832	DRM_FORMAT_ABGR8888,
 833	DRM_FORMAT_ARGB8888,
 834	/* new on Tegra114 */
 835	DRM_FORMAT_ABGR4444,
 836	DRM_FORMAT_ABGR1555,
 837	DRM_FORMAT_BGRA5551,
 838	DRM_FORMAT_XRGB1555,
 839	DRM_FORMAT_RGBX5551,
 840	DRM_FORMAT_XBGR1555,
 841	DRM_FORMAT_BGRX5551,
 842	DRM_FORMAT_BGR565,
 843	DRM_FORMAT_BGRA8888,
 844	DRM_FORMAT_RGBA8888,
 845	DRM_FORMAT_XRGB8888,
 846	DRM_FORMAT_XBGR8888,
 847	/* planar formats */
 848	DRM_FORMAT_UYVY,
 849	DRM_FORMAT_YUYV,
 850	DRM_FORMAT_YUV420,
 851	DRM_FORMAT_YUV422,
 852};
 853
 854static const u32 tegra124_overlay_formats[] = {
 855	DRM_FORMAT_ARGB4444,
 856	DRM_FORMAT_ARGB1555,
 857	DRM_FORMAT_RGB565,
 858	DRM_FORMAT_RGBA5551,
 859	DRM_FORMAT_ABGR8888,
 860	DRM_FORMAT_ARGB8888,
 861	/* new on Tegra114 */
 862	DRM_FORMAT_ABGR4444,
 863	DRM_FORMAT_ABGR1555,
 864	DRM_FORMAT_BGRA5551,
 865	DRM_FORMAT_XRGB1555,
 866	DRM_FORMAT_RGBX5551,
 867	DRM_FORMAT_XBGR1555,
 868	DRM_FORMAT_BGRX5551,
 869	DRM_FORMAT_BGR565,
 870	DRM_FORMAT_BGRA8888,
 871	DRM_FORMAT_RGBA8888,
 872	DRM_FORMAT_XRGB8888,
 873	DRM_FORMAT_XBGR8888,
 874	/* new on Tegra124 */
 875	DRM_FORMAT_RGBX8888,
 876	DRM_FORMAT_BGRX8888,
 877	/* planar formats */
 878	DRM_FORMAT_UYVY,
 879	DRM_FORMAT_YUYV,
 880	DRM_FORMAT_YUV420,
 881	DRM_FORMAT_YUV422,
 882};
 883
 884static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
 885						       struct tegra_dc *dc,
 886						       unsigned int index,
 887						       bool cursor)
 888{
 889	unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
 890	struct tegra_plane *plane;
 891	unsigned int num_formats;
 892	enum drm_plane_type type;
 893	const u32 *formats;
 894	int err;
 895
 896	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
 897	if (!plane)
 898		return ERR_PTR(-ENOMEM);
 899
 900	plane->offset = 0xa00 + 0x200 * index;
 901	plane->index = index;
 902	plane->dc = dc;
 903
 904	num_formats = dc->soc->num_overlay_formats;
 905	formats = dc->soc->overlay_formats;
 906
 907	if (!cursor)
 908		type = DRM_PLANE_TYPE_OVERLAY;
 909	else
 910		type = DRM_PLANE_TYPE_CURSOR;
 911
 912	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
 913				       &tegra_plane_funcs, formats,
 914				       num_formats, NULL, type, NULL);
 915	if (err < 0) {
 916		kfree(plane);
 917		return ERR_PTR(err);
 918	}
 919
 920	drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
 921
 922	if (dc->soc->supports_blending)
 923		drm_plane_create_zpos_property(&plane->base, 0, 0, 255);
 
 
 
 
 
 924
 925	return &plane->base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 926}
 927
 928static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
 929						    struct tegra_dc *dc)
 930{
 931	struct drm_plane *plane, *primary = NULL;
 932	unsigned int i, j;
 933
 934	for (i = 0; i < dc->soc->num_wgrps; i++) {
 935		const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
 936
 937		if (wgrp->dc == dc->pipe) {
 938			for (j = 0; j < wgrp->num_windows; j++) {
 939				unsigned int index = wgrp->windows[j];
 940
 941				plane = tegra_shared_plane_create(drm, dc,
 942								  wgrp->index,
 943								  index);
 944				if (IS_ERR(plane))
 945					return plane;
 946
 947				/*
 948				 * Choose the first shared plane owned by this
 949				 * head as the primary plane.
 950				 */
 951				if (!primary) {
 952					plane->type = DRM_PLANE_TYPE_PRIMARY;
 953					primary = plane;
 954				}
 955			}
 956		}
 957	}
 958
 959	return primary;
 960}
 961
 962static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
 963					     struct tegra_dc *dc)
 964{
 965	struct drm_plane *planes[2], *primary;
 966	unsigned int planes_num;
 967	unsigned int i;
 968	int err;
 
 
 
 
 
 
 
 969
 970	primary = tegra_primary_plane_create(drm, dc);
 971	if (IS_ERR(primary))
 972		return primary;
 973
 974	if (dc->soc->supports_cursor)
 975		planes_num = 2;
 976	else
 977		planes_num = 1;
 978
 979	for (i = 0; i < planes_num; i++) {
 980		planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
 981							  false);
 982		if (IS_ERR(planes[i])) {
 983			err = PTR_ERR(planes[i]);
 984
 985			while (i--)
 986				tegra_plane_funcs.destroy(planes[i]);
 987
 988			tegra_plane_funcs.destroy(primary);
 989			return ERR_PTR(err);
 990		}
 
 991	}
 992
 993	return primary;
 994}
 995
 996static void tegra_dc_destroy(struct drm_crtc *crtc)
 997{
 998	drm_crtc_cleanup(crtc);
 999}
1000
1001static void tegra_crtc_reset(struct drm_crtc *crtc)
1002{
1003	struct tegra_dc_state *state;
1004
1005	if (crtc->state)
1006		__drm_atomic_helper_crtc_destroy_state(crtc->state);
1007
1008	kfree(crtc->state);
1009	crtc->state = NULL;
1010
1011	state = kzalloc(sizeof(*state), GFP_KERNEL);
1012	if (state) {
1013		crtc->state = &state->base;
1014		crtc->state->crtc = crtc;
1015	}
1016
1017	drm_crtc_vblank_reset(crtc);
1018}
1019
1020static struct drm_crtc_state *
1021tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1022{
1023	struct tegra_dc_state *state = to_dc_state(crtc->state);
1024	struct tegra_dc_state *copy;
1025
1026	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1027	if (!copy)
1028		return NULL;
1029
1030	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1031	copy->clk = state->clk;
1032	copy->pclk = state->pclk;
1033	copy->div = state->div;
1034	copy->planes = state->planes;
1035
1036	return &copy->base;
1037}
1038
1039static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1040					    struct drm_crtc_state *state)
1041{
1042	__drm_atomic_helper_crtc_destroy_state(state);
1043	kfree(state);
1044}
1045
1046#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1047
1048static const struct debugfs_reg32 tegra_dc_regs[] = {
1049	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1050	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1051	DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1052	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1053	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1054	DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1055	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1056	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1057	DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1058	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1059	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1060	DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1061	DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1062	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1063	DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1064	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1065	DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1066	DEBUGFS_REG32(DC_CMD_INT_STATUS),
1067	DEBUGFS_REG32(DC_CMD_INT_MASK),
1068	DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1069	DEBUGFS_REG32(DC_CMD_INT_TYPE),
1070	DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1071	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1072	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1073	DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1074	DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1075	DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1076	DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1077	DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1078	DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1079	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1080	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1081	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1082	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1083	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1084	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1085	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1086	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1087	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1088	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1089	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1090	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1091	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1092	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1093	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1094	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1095	DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1096	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1097	DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1098	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1099	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1100	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1101	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1102	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1103	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1104	DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1105	DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1106	DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1107	DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1108	DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1109	DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1110	DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1111	DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1112	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1113	DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1114	DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1115	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1116	DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1117	DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1118	DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1119	DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1120	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1121	DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1122	DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1123	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1124	DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1125	DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1126	DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1127	DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1128	DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1129	DEBUGFS_REG32(DC_DISP_ACTIVE),
1130	DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1131	DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1132	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1133	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1134	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1135	DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1136	DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1137	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1138	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1139	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1140	DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1141	DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1142	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1143	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1144	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1145	DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1146	DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1147	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1148	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1149	DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1150	DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1151	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1152	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1153	DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1154	DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1155	DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1156	DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1157	DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1158	DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1159	DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1160	DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1161	DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1162	DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1163	DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1164	DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1165	DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1166	DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1167	DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1168	DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1169	DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1170	DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1171	DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1172	DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1173	DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1174	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1175	DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1176	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1177	DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1178	DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1179	DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1180	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1181	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1182	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1183	DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1184	DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1185	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1186	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1187	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1188	DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1189	DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1190	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1191	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1192	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1193	DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1194	DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1195	DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1196	DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1197	DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1198	DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1199	DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1200	DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1201	DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1202	DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1203	DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1204	DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1205	DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1206	DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1207	DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1208	DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1209	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1210	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1211	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1212	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1213	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1214	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1215	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1216	DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1217	DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1218	DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1219	DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1220	DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1221	DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1222	DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1223	DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1224	DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1225	DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1226	DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1227	DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1228	DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1229	DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1230	DEBUGFS_REG32(DC_WIN_POSITION),
1231	DEBUGFS_REG32(DC_WIN_SIZE),
1232	DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1233	DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1234	DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1235	DEBUGFS_REG32(DC_WIN_DDA_INC),
1236	DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1237	DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1238	DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1239	DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1240	DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1241	DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1242	DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1243	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1244	DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1245	DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1246	DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1247	DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1248	DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1249	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1250	DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1251	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1252	DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1253	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1254	DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1255	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1256	DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1257	DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1258	DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1259	DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1260	DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1261};
1262
1263static int tegra_dc_show_regs(struct seq_file *s, void *data)
1264{
1265	struct drm_info_node *node = s->private;
1266	struct tegra_dc *dc = node->info_ent->data;
1267	unsigned int i;
1268	int err = 0;
1269
1270	drm_modeset_lock(&dc->base.mutex, NULL);
1271
1272	if (!dc->base.state->active) {
1273		err = -EBUSY;
1274		goto unlock;
1275	}
1276
1277	for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1278		unsigned int offset = tegra_dc_regs[i].offset;
1279
1280		seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1281			   offset, tegra_dc_readl(dc, offset));
1282	}
1283
1284unlock:
1285	drm_modeset_unlock(&dc->base.mutex);
1286	return err;
1287}
1288
1289static int tegra_dc_show_crc(struct seq_file *s, void *data)
1290{
1291	struct drm_info_node *node = s->private;
1292	struct tegra_dc *dc = node->info_ent->data;
1293	int err = 0;
1294	u32 value;
1295
1296	drm_modeset_lock(&dc->base.mutex, NULL);
1297
1298	if (!dc->base.state->active) {
1299		err = -EBUSY;
1300		goto unlock;
1301	}
1302
1303	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1304	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1305	tegra_dc_commit(dc);
1306
1307	drm_crtc_wait_one_vblank(&dc->base);
1308	drm_crtc_wait_one_vblank(&dc->base);
1309
1310	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1311	seq_printf(s, "%08x\n", value);
1312
1313	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1314
1315unlock:
1316	drm_modeset_unlock(&dc->base.mutex);
1317	return err;
1318}
1319
1320static int tegra_dc_show_stats(struct seq_file *s, void *data)
1321{
1322	struct drm_info_node *node = s->private;
1323	struct tegra_dc *dc = node->info_ent->data;
1324
1325	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1326	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1327	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1328	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1329
1330	return 0;
1331}
1332
1333static struct drm_info_list debugfs_files[] = {
1334	{ "regs", tegra_dc_show_regs, 0, NULL },
1335	{ "crc", tegra_dc_show_crc, 0, NULL },
1336	{ "stats", tegra_dc_show_stats, 0, NULL },
1337};
1338
1339static int tegra_dc_late_register(struct drm_crtc *crtc)
1340{
1341	unsigned int i, count = ARRAY_SIZE(debugfs_files);
1342	struct drm_minor *minor = crtc->dev->primary;
1343	struct dentry *root;
1344	struct tegra_dc *dc = to_tegra_dc(crtc);
1345	int err;
1346
1347#ifdef CONFIG_DEBUG_FS
1348	root = crtc->debugfs_entry;
1349#else
1350	root = NULL;
1351#endif
1352
1353	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1354				    GFP_KERNEL);
1355	if (!dc->debugfs_files)
1356		return -ENOMEM;
1357
1358	for (i = 0; i < count; i++)
1359		dc->debugfs_files[i].data = dc;
1360
1361	err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1362	if (err < 0)
1363		goto free;
1364
1365	return 0;
1366
1367free:
1368	kfree(dc->debugfs_files);
1369	dc->debugfs_files = NULL;
1370
1371	return err;
1372}
1373
1374static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1375{
1376	unsigned int count = ARRAY_SIZE(debugfs_files);
1377	struct drm_minor *minor = crtc->dev->primary;
1378	struct tegra_dc *dc = to_tegra_dc(crtc);
1379
1380	drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1381	kfree(dc->debugfs_files);
1382	dc->debugfs_files = NULL;
1383}
1384
1385static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1386{
1387	struct tegra_dc *dc = to_tegra_dc(crtc);
1388
1389	/* XXX vblank syncpoints don't work with nvdisplay yet */
1390	if (dc->syncpt && !dc->soc->has_nvdisplay)
1391		return host1x_syncpt_read(dc->syncpt);
1392
1393	/* fallback to software emulated VBLANK counter */
1394	return (u32)drm_crtc_vblank_count(&dc->base);
1395}
1396
1397static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1398{
1399	struct tegra_dc *dc = to_tegra_dc(crtc);
1400	u32 value;
1401
1402	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1403	value |= VBLANK_INT;
1404	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1405
1406	return 0;
1407}
1408
1409static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1410{
1411	struct tegra_dc *dc = to_tegra_dc(crtc);
1412	u32 value;
1413
1414	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1415	value &= ~VBLANK_INT;
1416	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1417}
1418
1419static const struct drm_crtc_funcs tegra_crtc_funcs = {
1420	.page_flip = drm_atomic_helper_page_flip,
1421	.set_config = drm_atomic_helper_set_config,
1422	.destroy = tegra_dc_destroy,
1423	.reset = tegra_crtc_reset,
1424	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1425	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1426	.late_register = tegra_dc_late_register,
1427	.early_unregister = tegra_dc_early_unregister,
1428	.get_vblank_counter = tegra_dc_get_vblank_counter,
1429	.enable_vblank = tegra_dc_enable_vblank,
1430	.disable_vblank = tegra_dc_disable_vblank,
1431};
1432
1433static int tegra_dc_set_timings(struct tegra_dc *dc,
1434				struct drm_display_mode *mode)
1435{
1436	unsigned int h_ref_to_sync = 1;
1437	unsigned int v_ref_to_sync = 1;
1438	unsigned long value;
1439
1440	if (!dc->soc->has_nvdisplay) {
1441		tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1442
1443		value = (v_ref_to_sync << 16) | h_ref_to_sync;
1444		tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1445	}
1446
1447	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1448		((mode->hsync_end - mode->hsync_start) <<  0);
1449	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1450
1451	value = ((mode->vtotal - mode->vsync_end) << 16) |
1452		((mode->htotal - mode->hsync_end) <<  0);
1453	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1454
1455	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1456		((mode->hsync_start - mode->hdisplay) <<  0);
1457	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1458
1459	value = (mode->vdisplay << 16) | mode->hdisplay;
1460	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1461
1462	return 0;
1463}
1464
1465/**
1466 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1467 *     state
1468 * @dc: display controller
1469 * @crtc_state: CRTC atomic state
1470 * @clk: parent clock for display controller
1471 * @pclk: pixel clock
1472 * @div: shift clock divider
1473 *
1474 * Returns:
1475 * 0 on success or a negative error-code on failure.
1476 */
1477int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1478			       struct drm_crtc_state *crtc_state,
1479			       struct clk *clk, unsigned long pclk,
1480			       unsigned int div)
1481{
1482	struct tegra_dc_state *state = to_dc_state(crtc_state);
1483
1484	if (!clk_has_parent(dc->clk, clk))
1485		return -EINVAL;
1486
1487	state->clk = clk;
1488	state->pclk = pclk;
1489	state->div = div;
1490
1491	return 0;
1492}
1493
1494static void tegra_dc_commit_state(struct tegra_dc *dc,
1495				  struct tegra_dc_state *state)
1496{
1497	u32 value;
1498	int err;
1499
1500	err = clk_set_parent(dc->clk, state->clk);
1501	if (err < 0)
1502		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1503
1504	/*
1505	 * Outputs may not want to change the parent clock rate. This is only
1506	 * relevant to Tegra20 where only a single display PLL is available.
1507	 * Since that PLL would typically be used for HDMI, an internal LVDS
1508	 * panel would need to be driven by some other clock such as PLL_P
1509	 * which is shared with other peripherals. Changing the clock rate
1510	 * should therefore be avoided.
1511	 */
1512	if (state->pclk > 0) {
1513		err = clk_set_rate(state->clk, state->pclk);
1514		if (err < 0)
1515			dev_err(dc->dev,
1516				"failed to set clock rate to %lu Hz\n",
1517				state->pclk);
1518	}
1519
1520	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1521		      state->div);
1522	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1523
1524	if (!dc->soc->has_nvdisplay) {
1525		value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1526		tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1527	}
1528
1529	err = clk_set_rate(dc->clk, state->pclk);
1530	if (err < 0)
1531		dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1532			dc->clk, state->pclk, err);
1533}
1534
1535static void tegra_dc_stop(struct tegra_dc *dc)
1536{
1537	u32 value;
1538
1539	/* stop the display controller */
1540	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1541	value &= ~DISP_CTRL_MODE_MASK;
1542	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1543
1544	tegra_dc_commit(dc);
1545}
1546
1547static bool tegra_dc_idle(struct tegra_dc *dc)
1548{
1549	u32 value;
1550
1551	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1552
1553	return (value & DISP_CTRL_MODE_MASK) == 0;
1554}
1555
1556static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1557{
1558	timeout = jiffies + msecs_to_jiffies(timeout);
1559
1560	while (time_before(jiffies, timeout)) {
1561		if (tegra_dc_idle(dc))
1562			return 0;
1563
1564		usleep_range(1000, 2000);
1565	}
1566
1567	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1568	return -ETIMEDOUT;
1569}
1570
1571static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1572				      struct drm_crtc_state *old_state)
1573{
1574	struct tegra_dc *dc = to_tegra_dc(crtc);
1575	u32 value;
1576
1577	if (!tegra_dc_idle(dc)) {
1578		tegra_dc_stop(dc);
1579
1580		/*
1581		 * Ignore the return value, there isn't anything useful to do
1582		 * in case this fails.
1583		 */
1584		tegra_dc_wait_idle(dc, 100);
1585	}
1586
1587	/*
1588	 * This should really be part of the RGB encoder driver, but clearing
1589	 * these bits has the side-effect of stopping the display controller.
1590	 * When that happens no VBLANK interrupts will be raised. At the same
1591	 * time the encoder is disabled before the display controller, so the
1592	 * above code is always going to timeout waiting for the controller
1593	 * to go idle.
1594	 *
1595	 * Given the close coupling between the RGB encoder and the display
1596	 * controller doing it here is still kind of okay. None of the other
1597	 * encoder drivers require these bits to be cleared.
1598	 *
1599	 * XXX: Perhaps given that the display controller is switched off at
1600	 * this point anyway maybe clearing these bits isn't even useful for
1601	 * the RGB encoder?
1602	 */
1603	if (dc->rgb) {
1604		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1605		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1606			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1607		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1608	}
1609
1610	tegra_dc_stats_reset(&dc->stats);
1611	drm_crtc_vblank_off(crtc);
1612
1613	spin_lock_irq(&crtc->dev->event_lock);
1614
1615	if (crtc->state->event) {
1616		drm_crtc_send_vblank_event(crtc, crtc->state->event);
1617		crtc->state->event = NULL;
1618	}
1619
1620	spin_unlock_irq(&crtc->dev->event_lock);
1621
1622	pm_runtime_put_sync(dc->dev);
1623}
1624
1625static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1626				     struct drm_crtc_state *old_state)
1627{
1628	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1629	struct tegra_dc_state *state = to_dc_state(crtc->state);
1630	struct tegra_dc *dc = to_tegra_dc(crtc);
1631	u32 value;
1632
1633	pm_runtime_get_sync(dc->dev);
1634
1635	/* initialize display controller */
1636	if (dc->syncpt) {
1637		u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1638
1639		if (dc->soc->has_nvdisplay)
1640			enable = 1 << 31;
1641		else
1642			enable = 1 << 8;
1643
1644		value = SYNCPT_CNTRL_NO_STALL;
1645		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1646
1647		value = enable | syncpt;
1648		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1649	}
1650
1651	if (dc->soc->has_nvdisplay) {
1652		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1653			DSC_OBUF_UF_INT;
1654		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1655
1656		value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1657			DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1658			HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1659			REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1660			VBLANK_INT | FRAME_END_INT;
1661		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1662
1663		value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1664			FRAME_END_INT;
1665		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1666
1667		value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1668		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1669
1670		tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1671	} else {
1672		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1673			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1674		tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1675
1676		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1677			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1678		tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1679
1680		/* initialize timer */
1681		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1682			WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1683		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1684
1685		value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1686			WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1687		tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1688
1689		value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1690			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1691		tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1692
1693		value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1694			WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1695		tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1696	}
1697
1698	if (dc->soc->supports_background_color)
1699		tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1700	else
1701		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1702
1703	/* apply PLL and pixel clock changes */
1704	tegra_dc_commit_state(dc, state);
1705
1706	/* program display mode */
1707	tegra_dc_set_timings(dc, mode);
1708
1709	/* interlacing isn't supported yet, so disable it */
1710	if (dc->soc->supports_interlacing) {
1711		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1712		value &= ~INTERLACE_ENABLE;
1713		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1714	}
1715
1716	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1717	value &= ~DISP_CTRL_MODE_MASK;
1718	value |= DISP_CTRL_MODE_C_DISPLAY;
1719	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1720
1721	if (!dc->soc->has_nvdisplay) {
1722		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1723		value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1724			 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1725		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1726	}
1727
1728	/* enable underflow reporting and display red for missing pixels */
1729	if (dc->soc->has_nvdisplay) {
1730		value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1731		tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1732	}
1733
1734	tegra_dc_commit(dc);
1735
1736	drm_crtc_vblank_on(crtc);
1737}
1738
 
 
 
 
 
 
1739static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1740				    struct drm_crtc_state *old_crtc_state)
1741{
1742	unsigned long flags;
1743
1744	if (crtc->state->event) {
1745		spin_lock_irqsave(&crtc->dev->event_lock, flags);
1746
1747		if (drm_crtc_vblank_get(crtc) != 0)
1748			drm_crtc_send_vblank_event(crtc, crtc->state->event);
1749		else
1750			drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1751
1752		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1753
 
1754		crtc->state->event = NULL;
1755	}
1756}
1757
1758static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1759				    struct drm_crtc_state *old_crtc_state)
1760{
1761	struct tegra_dc_state *state = to_dc_state(crtc->state);
1762	struct tegra_dc *dc = to_tegra_dc(crtc);
1763	u32 value;
1764
1765	value = state->planes << 8 | GENERAL_UPDATE;
1766	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1767	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1768
1769	value = state->planes | GENERAL_ACT_REQ;
1770	tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1771	value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1772}
1773
1774static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
 
 
 
1775	.atomic_begin = tegra_crtc_atomic_begin,
1776	.atomic_flush = tegra_crtc_atomic_flush,
1777	.atomic_enable = tegra_crtc_atomic_enable,
1778	.atomic_disable = tegra_crtc_atomic_disable,
1779};
1780
1781static irqreturn_t tegra_dc_irq(int irq, void *data)
1782{
1783	struct tegra_dc *dc = data;
1784	unsigned long status;
1785
1786	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1787	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1788
1789	if (status & FRAME_END_INT) {
1790		/*
1791		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1792		*/
1793		dc->stats.frames++;
1794	}
1795
1796	if (status & VBLANK_INT) {
1797		/*
1798		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1799		*/
1800		drm_crtc_handle_vblank(&dc->base);
 
1801		dc->stats.vblank++;
1802	}
1803
1804	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1805		/*
1806		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1807		*/
1808		dc->stats.underflow++;
1809	}
1810
1811	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1812		/*
1813		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1814		*/
1815		dc->stats.overflow++;
1816	}
1817
1818	if (status & HEAD_UF_INT) {
1819		dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1820		dc->stats.underflow++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1821	}
1822
1823	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1824}
1825
1826static int tegra_dc_init(struct host1x_client *client)
1827{
1828	struct drm_device *drm = dev_get_drvdata(client->parent);
1829	struct iommu_group *group = iommu_group_get(client->dev);
1830	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1831	struct tegra_dc *dc = host1x_client_to_dc(client);
1832	struct tegra_drm *tegra = drm->dev_private;
1833	struct drm_plane *primary = NULL;
1834	struct drm_plane *cursor = NULL;
 
1835	int err;
1836
1837	dc->syncpt = host1x_syncpt_request(client, flags);
1838	if (!dc->syncpt)
1839		dev_warn(dc->dev, "failed to allocate syncpoint\n");
1840
1841	if (group && tegra->domain) {
1842		if (group != tegra->group) {
1843			err = iommu_attach_group(tegra->domain, group);
1844			if (err < 0) {
1845				dev_err(dc->dev,
1846					"failed to attach to domain: %d\n",
1847					err);
1848				return err;
1849			}
1850
1851			tegra->group = group;
1852		}
1853
1854		dc->domain = tegra->domain;
1855	}
1856
1857	if (dc->soc->wgrps)
1858		primary = tegra_dc_add_shared_planes(drm, dc);
1859	else
1860		primary = tegra_dc_add_planes(drm, dc);
1861
1862	if (IS_ERR(primary)) {
1863		err = PTR_ERR(primary);
1864		goto cleanup;
1865	}
1866
1867	if (dc->soc->supports_cursor) {
1868		cursor = tegra_dc_cursor_plane_create(drm, dc);
1869		if (IS_ERR(cursor)) {
1870			err = PTR_ERR(cursor);
1871			goto cleanup;
1872		}
1873	} else {
1874		/* dedicate one overlay to mouse cursor */
1875		cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
1876		if (IS_ERR(cursor)) {
1877			err = PTR_ERR(cursor);
1878			goto cleanup;
1879		}
1880	}
1881
1882	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1883					&tegra_crtc_funcs, NULL);
1884	if (err < 0)
1885		goto cleanup;
1886
 
1887	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1888
1889	/*
1890	 * Keep track of the minimum pitch alignment across all display
1891	 * controllers.
1892	 */
1893	if (dc->soc->pitch_align > tegra->pitch_align)
1894		tegra->pitch_align = dc->soc->pitch_align;
1895
1896	err = tegra_dc_rgb_init(drm, dc);
1897	if (err < 0 && err != -ENODEV) {
1898		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1899		goto cleanup;
1900	}
1901
 
 
 
 
 
 
 
 
 
 
1902	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1903			       dev_name(dc->dev), dc);
1904	if (err < 0) {
1905		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1906			err);
1907		goto cleanup;
1908	}
1909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910	return 0;
1911
1912cleanup:
1913	if (!IS_ERR_OR_NULL(cursor))
1914		drm_plane_cleanup(cursor);
1915
1916	if (!IS_ERR(primary))
1917		drm_plane_cleanup(primary);
1918
1919	if (group && dc->domain) {
1920		if (group == tegra->group) {
1921			iommu_detach_group(dc->domain, group);
1922			tegra->group = NULL;
1923		}
1924
1925		dc->domain = NULL;
1926	}
1927
1928	return err;
1929}
1930
1931static int tegra_dc_exit(struct host1x_client *client)
1932{
1933	struct drm_device *drm = dev_get_drvdata(client->parent);
1934	struct iommu_group *group = iommu_group_get(client->dev);
1935	struct tegra_dc *dc = host1x_client_to_dc(client);
1936	struct tegra_drm *tegra = drm->dev_private;
1937	int err;
1938
1939	devm_free_irq(dc->dev, dc->irq, dc);
1940
 
 
 
 
 
 
1941	err = tegra_dc_rgb_exit(dc);
1942	if (err) {
1943		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1944		return err;
1945	}
1946
1947	if (group && dc->domain) {
1948		if (group == tegra->group) {
1949			iommu_detach_group(dc->domain, group);
1950			tegra->group = NULL;
1951		}
1952
1953		dc->domain = NULL;
1954	}
1955
1956	host1x_syncpt_free(dc->syncpt);
1957
1958	return 0;
1959}
1960
1961static const struct host1x_client_ops dc_client_ops = {
1962	.init = tegra_dc_init,
1963	.exit = tegra_dc_exit,
1964};
1965
1966static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1967	.supports_background_color = false,
1968	.supports_interlacing = false,
1969	.supports_cursor = false,
1970	.supports_block_linear = false,
1971	.supports_blending = false,
1972	.pitch_align = 8,
1973	.has_powergate = false,
1974	.coupled_pm = true,
1975	.has_nvdisplay = false,
1976	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
1977	.primary_formats = tegra20_primary_formats,
1978	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
1979	.overlay_formats = tegra20_overlay_formats,
1980	.modifiers = tegra20_modifiers,
1981};
1982
1983static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1984	.supports_background_color = false,
1985	.supports_interlacing = false,
1986	.supports_cursor = false,
1987	.supports_block_linear = false,
1988	.supports_blending = false,
1989	.pitch_align = 8,
1990	.has_powergate = false,
1991	.coupled_pm = false,
1992	.has_nvdisplay = false,
1993	.num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
1994	.primary_formats = tegra20_primary_formats,
1995	.num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
1996	.overlay_formats = tegra20_overlay_formats,
1997	.modifiers = tegra20_modifiers,
1998};
1999
2000static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2001	.supports_background_color = false,
2002	.supports_interlacing = false,
2003	.supports_cursor = false,
2004	.supports_block_linear = false,
2005	.supports_blending = false,
2006	.pitch_align = 64,
2007	.has_powergate = true,
2008	.coupled_pm = false,
2009	.has_nvdisplay = false,
2010	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2011	.primary_formats = tegra114_primary_formats,
2012	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2013	.overlay_formats = tegra114_overlay_formats,
2014	.modifiers = tegra20_modifiers,
2015};
2016
2017static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2018	.supports_background_color = true,
2019	.supports_interlacing = true,
2020	.supports_cursor = true,
2021	.supports_block_linear = true,
2022	.supports_blending = true,
2023	.pitch_align = 64,
2024	.has_powergate = true,
2025	.coupled_pm = false,
2026	.has_nvdisplay = false,
2027	.num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2028	.primary_formats = tegra124_primary_formats,
2029	.num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2030	.overlay_formats = tegra124_overlay_formats,
2031	.modifiers = tegra124_modifiers,
2032};
2033
2034static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2035	.supports_background_color = true,
2036	.supports_interlacing = true,
2037	.supports_cursor = true,
2038	.supports_block_linear = true,
2039	.supports_blending = true,
2040	.pitch_align = 64,
2041	.has_powergate = true,
2042	.coupled_pm = false,
2043	.has_nvdisplay = false,
2044	.num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2045	.primary_formats = tegra114_primary_formats,
2046	.num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2047	.overlay_formats = tegra114_overlay_formats,
2048	.modifiers = tegra124_modifiers,
2049};
2050
2051static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2052	{
2053		.index = 0,
2054		.dc = 0,
2055		.windows = (const unsigned int[]) { 0 },
2056		.num_windows = 1,
2057	}, {
2058		.index = 1,
2059		.dc = 1,
2060		.windows = (const unsigned int[]) { 1 },
2061		.num_windows = 1,
2062	}, {
2063		.index = 2,
2064		.dc = 1,
2065		.windows = (const unsigned int[]) { 2 },
2066		.num_windows = 1,
2067	}, {
2068		.index = 3,
2069		.dc = 2,
2070		.windows = (const unsigned int[]) { 3 },
2071		.num_windows = 1,
2072	}, {
2073		.index = 4,
2074		.dc = 2,
2075		.windows = (const unsigned int[]) { 4 },
2076		.num_windows = 1,
2077	}, {
2078		.index = 5,
2079		.dc = 2,
2080		.windows = (const unsigned int[]) { 5 },
2081		.num_windows = 1,
2082	},
2083};
2084
2085static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2086	.supports_background_color = true,
2087	.supports_interlacing = true,
2088	.supports_cursor = true,
2089	.supports_block_linear = true,
2090	.supports_blending = true,
2091	.pitch_align = 64,
2092	.has_powergate = false,
2093	.coupled_pm = false,
2094	.has_nvdisplay = true,
2095	.wgrps = tegra186_dc_wgrps,
2096	.num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2097};
2098
2099static const struct of_device_id tegra_dc_of_match[] = {
2100	{
2101		.compatible = "nvidia,tegra186-dc",
2102		.data = &tegra186_dc_soc_info,
2103	}, {
2104		.compatible = "nvidia,tegra210-dc",
2105		.data = &tegra210_dc_soc_info,
2106	}, {
2107		.compatible = "nvidia,tegra124-dc",
2108		.data = &tegra124_dc_soc_info,
2109	}, {
2110		.compatible = "nvidia,tegra114-dc",
2111		.data = &tegra114_dc_soc_info,
2112	}, {
2113		.compatible = "nvidia,tegra30-dc",
2114		.data = &tegra30_dc_soc_info,
2115	}, {
2116		.compatible = "nvidia,tegra20-dc",
2117		.data = &tegra20_dc_soc_info,
2118	}, {
2119		/* sentinel */
2120	}
2121};
2122MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2123
2124static int tegra_dc_parse_dt(struct tegra_dc *dc)
2125{
2126	struct device_node *np;
2127	u32 value = 0;
2128	int err;
2129
2130	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2131	if (err < 0) {
2132		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2133
2134		/*
2135		 * If the nvidia,head property isn't present, try to find the
2136		 * correct head number by looking up the position of this
2137		 * display controller's node within the device tree. Assuming
2138		 * that the nodes are ordered properly in the DTS file and
2139		 * that the translation into a flattened device tree blob
2140		 * preserves that ordering this will actually yield the right
2141		 * head number.
2142		 *
2143		 * If those assumptions don't hold, this will still work for
2144		 * cases where only a single display controller is used.
2145		 */
2146		for_each_matching_node(np, tegra_dc_of_match) {
2147			if (np == dc->dev->of_node) {
2148				of_node_put(np);
2149				break;
2150			}
2151
2152			value++;
2153		}
2154	}
2155
2156	dc->pipe = value;
2157
2158	return 0;
2159}
2160
2161static int tegra_dc_match_by_pipe(struct device *dev, void *data)
2162{
2163	struct tegra_dc *dc = dev_get_drvdata(dev);
2164	unsigned int pipe = (unsigned long)data;
2165
2166	return dc->pipe == pipe;
2167}
2168
2169static int tegra_dc_couple(struct tegra_dc *dc)
2170{
2171	/*
2172	 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2173	 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2174	 * POWER_CONTROL registers during CRTC enabling.
2175	 */
2176	if (dc->soc->coupled_pm && dc->pipe == 1) {
2177		u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE;
2178		struct device_link *link;
2179		struct device *partner;
2180
2181		partner = driver_find_device(dc->dev->driver, NULL, NULL,
2182					     tegra_dc_match_by_pipe);
2183		if (!partner)
2184			return -EPROBE_DEFER;
2185
2186		link = device_link_add(dc->dev, partner, flags);
2187		if (!link) {
2188			dev_err(dc->dev, "failed to link controllers\n");
2189			return -EINVAL;
2190		}
2191
2192		dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2193	}
2194
2195	return 0;
2196}
2197
2198static int tegra_dc_probe(struct platform_device *pdev)
2199{
 
2200	struct resource *regs;
2201	struct tegra_dc *dc;
2202	int err;
2203
2204	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2205	if (!dc)
2206		return -ENOMEM;
2207
2208	dc->soc = of_device_get_match_data(&pdev->dev);
 
 
2209
 
2210	INIT_LIST_HEAD(&dc->list);
2211	dc->dev = &pdev->dev;
 
2212
2213	err = tegra_dc_parse_dt(dc);
2214	if (err < 0)
2215		return err;
2216
2217	err = tegra_dc_couple(dc);
2218	if (err < 0)
2219		return err;
2220
2221	dc->clk = devm_clk_get(&pdev->dev, NULL);
2222	if (IS_ERR(dc->clk)) {
2223		dev_err(&pdev->dev, "failed to get clock\n");
2224		return PTR_ERR(dc->clk);
2225	}
2226
2227	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2228	if (IS_ERR(dc->rst)) {
2229		dev_err(&pdev->dev, "failed to get reset\n");
2230		return PTR_ERR(dc->rst);
2231	}
2232
2233	/* assert reset and disable clock */
2234	err = clk_prepare_enable(dc->clk);
2235	if (err < 0)
2236		return err;
2237
2238	usleep_range(2000, 4000);
2239
2240	err = reset_control_assert(dc->rst);
2241	if (err < 0)
2242		return err;
2243
2244	usleep_range(2000, 4000);
2245
2246	clk_disable_unprepare(dc->clk);
2247
2248	if (dc->soc->has_powergate) {
2249		if (dc->pipe == 0)
2250			dc->powergate = TEGRA_POWERGATE_DIS;
2251		else
2252			dc->powergate = TEGRA_POWERGATE_DISB;
2253
2254		tegra_powergate_power_off(dc->powergate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255	}
2256
2257	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2258	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2259	if (IS_ERR(dc->regs))
2260		return PTR_ERR(dc->regs);
2261
2262	dc->irq = platform_get_irq(pdev, 0);
2263	if (dc->irq < 0) {
2264		dev_err(&pdev->dev, "failed to get IRQ\n");
2265		return -ENXIO;
2266	}
2267
 
 
 
 
2268	err = tegra_dc_rgb_probe(dc);
2269	if (err < 0 && err != -ENODEV) {
2270		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2271		return err;
2272	}
2273
2274	platform_set_drvdata(pdev, dc);
2275	pm_runtime_enable(&pdev->dev);
2276
2277	INIT_LIST_HEAD(&dc->client.list);
2278	dc->client.ops = &dc_client_ops;
2279	dc->client.dev = &pdev->dev;
2280
2281	err = host1x_client_register(&dc->client);
2282	if (err < 0) {
2283		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2284			err);
2285		return err;
2286	}
2287
 
 
2288	return 0;
2289}
2290
2291static int tegra_dc_remove(struct platform_device *pdev)
2292{
2293	struct tegra_dc *dc = platform_get_drvdata(pdev);
2294	int err;
2295
2296	err = host1x_client_unregister(&dc->client);
2297	if (err < 0) {
2298		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2299			err);
2300		return err;
2301	}
2302
2303	err = tegra_dc_rgb_remove(dc);
2304	if (err < 0) {
2305		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2306		return err;
2307	}
2308
2309	pm_runtime_disable(&pdev->dev);
2310
2311	return 0;
2312}
2313
2314#ifdef CONFIG_PM
2315static int tegra_dc_suspend(struct device *dev)
2316{
2317	struct tegra_dc *dc = dev_get_drvdata(dev);
2318	int err;
2319
2320	err = reset_control_assert(dc->rst);
2321	if (err < 0) {
2322		dev_err(dev, "failed to assert reset: %d\n", err);
2323		return err;
2324	}
2325
2326	if (dc->soc->has_powergate)
2327		tegra_powergate_power_off(dc->powergate);
2328
2329	clk_disable_unprepare(dc->clk);
2330
2331	return 0;
2332}
2333
2334static int tegra_dc_resume(struct device *dev)
2335{
2336	struct tegra_dc *dc = dev_get_drvdata(dev);
2337	int err;
2338
2339	if (dc->soc->has_powergate) {
2340		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2341							dc->rst);
2342		if (err < 0) {
2343			dev_err(dev, "failed to power partition: %d\n", err);
2344			return err;
2345		}
2346	} else {
2347		err = clk_prepare_enable(dc->clk);
2348		if (err < 0) {
2349			dev_err(dev, "failed to enable clock: %d\n", err);
2350			return err;
2351		}
2352
2353		err = reset_control_deassert(dc->rst);
2354		if (err < 0) {
2355			dev_err(dev, "failed to deassert reset: %d\n", err);
2356			return err;
2357		}
2358	}
2359
2360	return 0;
2361}
2362#endif
2363
2364static const struct dev_pm_ops tegra_dc_pm_ops = {
2365	SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2366};
2367
2368struct platform_driver tegra_dc_driver = {
2369	.driver = {
2370		.name = "tegra-dc",
2371		.of_match_table = tegra_dc_of_match,
2372		.pm = &tegra_dc_pm_ops,
2373	},
2374	.probe = tegra_dc_probe,
2375	.remove = tegra_dc_remove,
2376};