Loading...
1/*
2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10#include <linux/clk.h>
11#include <linux/debugfs.h>
12#include <linux/iommu.h>
13#include <linux/reset.h>
14
15#include <soc/tegra/pmc.h>
16
17#include "dc.h"
18#include "drm.h"
19#include "gem.h"
20
21#include <drm/drm_atomic.h>
22#include <drm/drm_atomic_helper.h>
23#include <drm/drm_plane_helper.h>
24
25struct tegra_dc_soc_info {
26 bool supports_border_color;
27 bool supports_interlacing;
28 bool supports_cursor;
29 bool supports_block_linear;
30 unsigned int pitch_align;
31 bool has_powergate;
32};
33
34struct tegra_plane {
35 struct drm_plane base;
36 unsigned int index;
37};
38
39static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
40{
41 return container_of(plane, struct tegra_plane, base);
42}
43
44struct tegra_dc_state {
45 struct drm_crtc_state base;
46
47 struct clk *clk;
48 unsigned long pclk;
49 unsigned int div;
50
51 u32 planes;
52};
53
54static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
55{
56 if (state)
57 return container_of(state, struct tegra_dc_state, base);
58
59 return NULL;
60}
61
62struct tegra_plane_state {
63 struct drm_plane_state base;
64
65 struct tegra_bo_tiling tiling;
66 u32 format;
67 u32 swap;
68};
69
70static inline struct tegra_plane_state *
71to_tegra_plane_state(struct drm_plane_state *state)
72{
73 if (state)
74 return container_of(state, struct tegra_plane_state, base);
75
76 return NULL;
77}
78
79static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
80{
81 stats->frames = 0;
82 stats->vblank = 0;
83 stats->underflow = 0;
84 stats->overflow = 0;
85}
86
87/*
88 * Reads the active copy of a register. This takes the dc->lock spinlock to
89 * prevent races with the VBLANK processing which also needs access to the
90 * active copy of some registers.
91 */
92static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
93{
94 unsigned long flags;
95 u32 value;
96
97 spin_lock_irqsave(&dc->lock, flags);
98
99 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
100 value = tegra_dc_readl(dc, offset);
101 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
102
103 spin_unlock_irqrestore(&dc->lock, flags);
104 return value;
105}
106
107/*
108 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
109 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
110 * Latching happens mmediately if the display controller is in STOP mode or
111 * on the next frame boundary otherwise.
112 *
113 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
114 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
115 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
116 * into the ACTIVE copy, either immediately if the display controller is in
117 * STOP mode, or at the next frame boundary otherwise.
118 */
119void tegra_dc_commit(struct tegra_dc *dc)
120{
121 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
122 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
123}
124
125static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
126{
127 /* assume no swapping of fetched data */
128 if (swap)
129 *swap = BYTE_SWAP_NOSWAP;
130
131 switch (fourcc) {
132 case DRM_FORMAT_XBGR8888:
133 *format = WIN_COLOR_DEPTH_R8G8B8A8;
134 break;
135
136 case DRM_FORMAT_XRGB8888:
137 *format = WIN_COLOR_DEPTH_B8G8R8A8;
138 break;
139
140 case DRM_FORMAT_RGB565:
141 *format = WIN_COLOR_DEPTH_B5G6R5;
142 break;
143
144 case DRM_FORMAT_UYVY:
145 *format = WIN_COLOR_DEPTH_YCbCr422;
146 break;
147
148 case DRM_FORMAT_YUYV:
149 if (swap)
150 *swap = BYTE_SWAP_SWAP2;
151
152 *format = WIN_COLOR_DEPTH_YCbCr422;
153 break;
154
155 case DRM_FORMAT_YUV420:
156 *format = WIN_COLOR_DEPTH_YCbCr420P;
157 break;
158
159 case DRM_FORMAT_YUV422:
160 *format = WIN_COLOR_DEPTH_YCbCr422P;
161 break;
162
163 default:
164 return -EINVAL;
165 }
166
167 return 0;
168}
169
170static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
171{
172 switch (format) {
173 case WIN_COLOR_DEPTH_YCbCr422:
174 case WIN_COLOR_DEPTH_YUV422:
175 if (planar)
176 *planar = false;
177
178 return true;
179
180 case WIN_COLOR_DEPTH_YCbCr420P:
181 case WIN_COLOR_DEPTH_YUV420P:
182 case WIN_COLOR_DEPTH_YCbCr422P:
183 case WIN_COLOR_DEPTH_YUV422P:
184 case WIN_COLOR_DEPTH_YCbCr422R:
185 case WIN_COLOR_DEPTH_YUV422R:
186 case WIN_COLOR_DEPTH_YCbCr422RA:
187 case WIN_COLOR_DEPTH_YUV422RA:
188 if (planar)
189 *planar = true;
190
191 return true;
192 }
193
194 if (planar)
195 *planar = false;
196
197 return false;
198}
199
200static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
201 unsigned int bpp)
202{
203 fixed20_12 outf = dfixed_init(out);
204 fixed20_12 inf = dfixed_init(in);
205 u32 dda_inc;
206 int max;
207
208 if (v)
209 max = 15;
210 else {
211 switch (bpp) {
212 case 2:
213 max = 8;
214 break;
215
216 default:
217 WARN_ON_ONCE(1);
218 /* fallthrough */
219 case 4:
220 max = 4;
221 break;
222 }
223 }
224
225 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
226 inf.full -= dfixed_const(1);
227
228 dda_inc = dfixed_div(inf, outf);
229 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
230
231 return dda_inc;
232}
233
234static inline u32 compute_initial_dda(unsigned int in)
235{
236 fixed20_12 inf = dfixed_init(in);
237 return dfixed_frac(inf);
238}
239
240static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
241 const struct tegra_dc_window *window)
242{
243 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
244 unsigned long value, flags;
245 bool yuv, planar;
246
247 /*
248 * For YUV planar modes, the number of bytes per pixel takes into
249 * account only the luma component and therefore is 1.
250 */
251 yuv = tegra_dc_format_is_yuv(window->format, &planar);
252 if (!yuv)
253 bpp = window->bits_per_pixel / 8;
254 else
255 bpp = planar ? 1 : 2;
256
257 spin_lock_irqsave(&dc->lock, flags);
258
259 value = WINDOW_A_SELECT << index;
260 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
261
262 tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
263 tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
264
265 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
266 tegra_dc_writel(dc, value, DC_WIN_POSITION);
267
268 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
269 tegra_dc_writel(dc, value, DC_WIN_SIZE);
270
271 h_offset = window->src.x * bpp;
272 v_offset = window->src.y;
273 h_size = window->src.w * bpp;
274 v_size = window->src.h;
275
276 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
277 tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
278
279 /*
280 * For DDA computations the number of bytes per pixel for YUV planar
281 * modes needs to take into account all Y, U and V components.
282 */
283 if (yuv && planar)
284 bpp = 2;
285
286 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
287 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
288
289 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
290 tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
291
292 h_dda = compute_initial_dda(window->src.x);
293 v_dda = compute_initial_dda(window->src.y);
294
295 tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
296 tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
297
298 tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
299 tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
300
301 tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
302
303 if (yuv && planar) {
304 tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
305 tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
306 value = window->stride[1] << 16 | window->stride[0];
307 tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
308 } else {
309 tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
310 }
311
312 if (window->bottom_up)
313 v_offset += window->src.h - 1;
314
315 tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
316 tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
317
318 if (dc->soc->supports_block_linear) {
319 unsigned long height = window->tiling.value;
320
321 switch (window->tiling.mode) {
322 case TEGRA_BO_TILING_MODE_PITCH:
323 value = DC_WINBUF_SURFACE_KIND_PITCH;
324 break;
325
326 case TEGRA_BO_TILING_MODE_TILED:
327 value = DC_WINBUF_SURFACE_KIND_TILED;
328 break;
329
330 case TEGRA_BO_TILING_MODE_BLOCK:
331 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
332 DC_WINBUF_SURFACE_KIND_BLOCK;
333 break;
334 }
335
336 tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
337 } else {
338 switch (window->tiling.mode) {
339 case TEGRA_BO_TILING_MODE_PITCH:
340 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
341 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
342 break;
343
344 case TEGRA_BO_TILING_MODE_TILED:
345 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
346 DC_WIN_BUFFER_ADDR_MODE_TILE;
347 break;
348
349 case TEGRA_BO_TILING_MODE_BLOCK:
350 /*
351 * No need to handle this here because ->atomic_check
352 * will already have filtered it out.
353 */
354 break;
355 }
356
357 tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
358 }
359
360 value = WIN_ENABLE;
361
362 if (yuv) {
363 /* setup default colorspace conversion coefficients */
364 tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
365 tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
366 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
367 tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
368 tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
369 tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
370 tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
371 tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
372
373 value |= CSC_ENABLE;
374 } else if (window->bits_per_pixel < 24) {
375 value |= COLOR_EXPAND;
376 }
377
378 if (window->bottom_up)
379 value |= V_DIRECTION;
380
381 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
382
383 /*
384 * Disable blending and assume Window A is the bottom-most window,
385 * Window C is the top-most window and Window B is in the middle.
386 */
387 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
388 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
389
390 switch (index) {
391 case 0:
392 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
393 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
394 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
395 break;
396
397 case 1:
398 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
399 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
400 tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
401 break;
402
403 case 2:
404 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
405 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
406 tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
407 break;
408 }
409
410 spin_unlock_irqrestore(&dc->lock, flags);
411}
412
413static void tegra_plane_destroy(struct drm_plane *plane)
414{
415 struct tegra_plane *p = to_tegra_plane(plane);
416
417 drm_plane_cleanup(plane);
418 kfree(p);
419}
420
421static const u32 tegra_primary_plane_formats[] = {
422 DRM_FORMAT_XBGR8888,
423 DRM_FORMAT_XRGB8888,
424 DRM_FORMAT_RGB565,
425};
426
427static void tegra_primary_plane_destroy(struct drm_plane *plane)
428{
429 tegra_plane_destroy(plane);
430}
431
432static void tegra_plane_reset(struct drm_plane *plane)
433{
434 struct tegra_plane_state *state;
435
436 if (plane->state)
437 __drm_atomic_helper_plane_destroy_state(plane, plane->state);
438
439 kfree(plane->state);
440 plane->state = NULL;
441
442 state = kzalloc(sizeof(*state), GFP_KERNEL);
443 if (state) {
444 plane->state = &state->base;
445 plane->state->plane = plane;
446 }
447}
448
449static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
450{
451 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
452 struct tegra_plane_state *copy;
453
454 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
455 if (!copy)
456 return NULL;
457
458 __drm_atomic_helper_plane_duplicate_state(plane, ©->base);
459 copy->tiling = state->tiling;
460 copy->format = state->format;
461 copy->swap = state->swap;
462
463 return ©->base;
464}
465
466static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
467 struct drm_plane_state *state)
468{
469 __drm_atomic_helper_plane_destroy_state(plane, state);
470 kfree(state);
471}
472
473static const struct drm_plane_funcs tegra_primary_plane_funcs = {
474 .update_plane = drm_atomic_helper_update_plane,
475 .disable_plane = drm_atomic_helper_disable_plane,
476 .destroy = tegra_primary_plane_destroy,
477 .reset = tegra_plane_reset,
478 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
479 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
480};
481
482static int tegra_plane_prepare_fb(struct drm_plane *plane,
483 const struct drm_plane_state *new_state)
484{
485 return 0;
486}
487
488static void tegra_plane_cleanup_fb(struct drm_plane *plane,
489 const struct drm_plane_state *old_fb)
490{
491}
492
493static int tegra_plane_state_add(struct tegra_plane *plane,
494 struct drm_plane_state *state)
495{
496 struct drm_crtc_state *crtc_state;
497 struct tegra_dc_state *tegra;
498
499 /* Propagate errors from allocation or locking failures. */
500 crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
501 if (IS_ERR(crtc_state))
502 return PTR_ERR(crtc_state);
503
504 tegra = to_dc_state(crtc_state);
505
506 tegra->planes |= WIN_A_ACT_REQ << plane->index;
507
508 return 0;
509}
510
511static int tegra_plane_atomic_check(struct drm_plane *plane,
512 struct drm_plane_state *state)
513{
514 struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
515 struct tegra_bo_tiling *tiling = &plane_state->tiling;
516 struct tegra_plane *tegra = to_tegra_plane(plane);
517 struct tegra_dc *dc = to_tegra_dc(state->crtc);
518 int err;
519
520 /* no need for further checks if the plane is being disabled */
521 if (!state->crtc)
522 return 0;
523
524 err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
525 &plane_state->swap);
526 if (err < 0)
527 return err;
528
529 err = tegra_fb_get_tiling(state->fb, tiling);
530 if (err < 0)
531 return err;
532
533 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
534 !dc->soc->supports_block_linear) {
535 DRM_ERROR("hardware doesn't support block linear mode\n");
536 return -EINVAL;
537 }
538
539 /*
540 * Tegra doesn't support different strides for U and V planes so we
541 * error out if the user tries to display a framebuffer with such a
542 * configuration.
543 */
544 if (drm_format_num_planes(state->fb->pixel_format) > 2) {
545 if (state->fb->pitches[2] != state->fb->pitches[1]) {
546 DRM_ERROR("unsupported UV-plane configuration\n");
547 return -EINVAL;
548 }
549 }
550
551 err = tegra_plane_state_add(tegra, state);
552 if (err < 0)
553 return err;
554
555 return 0;
556}
557
558static void tegra_plane_atomic_update(struct drm_plane *plane,
559 struct drm_plane_state *old_state)
560{
561 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
562 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
563 struct drm_framebuffer *fb = plane->state->fb;
564 struct tegra_plane *p = to_tegra_plane(plane);
565 struct tegra_dc_window window;
566 unsigned int i;
567
568 /* rien ne va plus */
569 if (!plane->state->crtc || !plane->state->fb)
570 return;
571
572 memset(&window, 0, sizeof(window));
573 window.src.x = plane->state->src_x >> 16;
574 window.src.y = plane->state->src_y >> 16;
575 window.src.w = plane->state->src_w >> 16;
576 window.src.h = plane->state->src_h >> 16;
577 window.dst.x = plane->state->crtc_x;
578 window.dst.y = plane->state->crtc_y;
579 window.dst.w = plane->state->crtc_w;
580 window.dst.h = plane->state->crtc_h;
581 window.bits_per_pixel = fb->bits_per_pixel;
582 window.bottom_up = tegra_fb_is_bottom_up(fb);
583
584 /* copy from state */
585 window.tiling = state->tiling;
586 window.format = state->format;
587 window.swap = state->swap;
588
589 for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
590 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
591
592 window.base[i] = bo->paddr + fb->offsets[i];
593 window.stride[i] = fb->pitches[i];
594 }
595
596 tegra_dc_setup_window(dc, p->index, &window);
597}
598
599static void tegra_plane_atomic_disable(struct drm_plane *plane,
600 struct drm_plane_state *old_state)
601{
602 struct tegra_plane *p = to_tegra_plane(plane);
603 struct tegra_dc *dc;
604 unsigned long flags;
605 u32 value;
606
607 /* rien ne va plus */
608 if (!old_state || !old_state->crtc)
609 return;
610
611 dc = to_tegra_dc(old_state->crtc);
612
613 spin_lock_irqsave(&dc->lock, flags);
614
615 value = WINDOW_A_SELECT << p->index;
616 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
617
618 value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
619 value &= ~WIN_ENABLE;
620 tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
621
622 spin_unlock_irqrestore(&dc->lock, flags);
623}
624
625static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
626 .prepare_fb = tegra_plane_prepare_fb,
627 .cleanup_fb = tegra_plane_cleanup_fb,
628 .atomic_check = tegra_plane_atomic_check,
629 .atomic_update = tegra_plane_atomic_update,
630 .atomic_disable = tegra_plane_atomic_disable,
631};
632
633static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
634 struct tegra_dc *dc)
635{
636 /*
637 * Ideally this would use drm_crtc_mask(), but that would require the
638 * CRTC to already be in the mode_config's list of CRTCs. However, it
639 * will only be added to that list in the drm_crtc_init_with_planes()
640 * (in tegra_dc_init()), which in turn requires registration of these
641 * planes. So we have ourselves a nice little chicken and egg problem
642 * here.
643 *
644 * We work around this by manually creating the mask from the number
645 * of CRTCs that have been registered, and should therefore always be
646 * the same as drm_crtc_index() after registration.
647 */
648 unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
649 struct tegra_plane *plane;
650 unsigned int num_formats;
651 const u32 *formats;
652 int err;
653
654 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
655 if (!plane)
656 return ERR_PTR(-ENOMEM);
657
658 num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
659 formats = tegra_primary_plane_formats;
660
661 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
662 &tegra_primary_plane_funcs, formats,
663 num_formats, DRM_PLANE_TYPE_PRIMARY,
664 NULL);
665 if (err < 0) {
666 kfree(plane);
667 return ERR_PTR(err);
668 }
669
670 drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
671
672 return &plane->base;
673}
674
675static const u32 tegra_cursor_plane_formats[] = {
676 DRM_FORMAT_RGBA8888,
677};
678
679static int tegra_cursor_atomic_check(struct drm_plane *plane,
680 struct drm_plane_state *state)
681{
682 struct tegra_plane *tegra = to_tegra_plane(plane);
683 int err;
684
685 /* no need for further checks if the plane is being disabled */
686 if (!state->crtc)
687 return 0;
688
689 /* scaling not supported for cursor */
690 if ((state->src_w >> 16 != state->crtc_w) ||
691 (state->src_h >> 16 != state->crtc_h))
692 return -EINVAL;
693
694 /* only square cursors supported */
695 if (state->src_w != state->src_h)
696 return -EINVAL;
697
698 if (state->crtc_w != 32 && state->crtc_w != 64 &&
699 state->crtc_w != 128 && state->crtc_w != 256)
700 return -EINVAL;
701
702 err = tegra_plane_state_add(tegra, state);
703 if (err < 0)
704 return err;
705
706 return 0;
707}
708
709static void tegra_cursor_atomic_update(struct drm_plane *plane,
710 struct drm_plane_state *old_state)
711{
712 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
713 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
714 struct drm_plane_state *state = plane->state;
715 u32 value = CURSOR_CLIP_DISPLAY;
716
717 /* rien ne va plus */
718 if (!plane->state->crtc || !plane->state->fb)
719 return;
720
721 switch (state->crtc_w) {
722 case 32:
723 value |= CURSOR_SIZE_32x32;
724 break;
725
726 case 64:
727 value |= CURSOR_SIZE_64x64;
728 break;
729
730 case 128:
731 value |= CURSOR_SIZE_128x128;
732 break;
733
734 case 256:
735 value |= CURSOR_SIZE_256x256;
736 break;
737
738 default:
739 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
740 state->crtc_h);
741 return;
742 }
743
744 value |= (bo->paddr >> 10) & 0x3fffff;
745 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
746
747#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
748 value = (bo->paddr >> 32) & 0x3;
749 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
750#endif
751
752 /* enable cursor and set blend mode */
753 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
754 value |= CURSOR_ENABLE;
755 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
756
757 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
758 value &= ~CURSOR_DST_BLEND_MASK;
759 value &= ~CURSOR_SRC_BLEND_MASK;
760 value |= CURSOR_MODE_NORMAL;
761 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
762 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
763 value |= CURSOR_ALPHA;
764 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
765
766 /* position the cursor */
767 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
768 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
769}
770
771static void tegra_cursor_atomic_disable(struct drm_plane *plane,
772 struct drm_plane_state *old_state)
773{
774 struct tegra_dc *dc;
775 u32 value;
776
777 /* rien ne va plus */
778 if (!old_state || !old_state->crtc)
779 return;
780
781 dc = to_tegra_dc(old_state->crtc);
782
783 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
784 value &= ~CURSOR_ENABLE;
785 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
786}
787
788static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
789 .update_plane = drm_atomic_helper_update_plane,
790 .disable_plane = drm_atomic_helper_disable_plane,
791 .destroy = tegra_plane_destroy,
792 .reset = tegra_plane_reset,
793 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
794 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
795};
796
797static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
798 .prepare_fb = tegra_plane_prepare_fb,
799 .cleanup_fb = tegra_plane_cleanup_fb,
800 .atomic_check = tegra_cursor_atomic_check,
801 .atomic_update = tegra_cursor_atomic_update,
802 .atomic_disable = tegra_cursor_atomic_disable,
803};
804
805static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
806 struct tegra_dc *dc)
807{
808 struct tegra_plane *plane;
809 unsigned int num_formats;
810 const u32 *formats;
811 int err;
812
813 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
814 if (!plane)
815 return ERR_PTR(-ENOMEM);
816
817 /*
818 * This index is kind of fake. The cursor isn't a regular plane, but
819 * its update and activation request bits in DC_CMD_STATE_CONTROL do
820 * use the same programming. Setting this fake index here allows the
821 * code in tegra_add_plane_state() to do the right thing without the
822 * need to special-casing the cursor plane.
823 */
824 plane->index = 6;
825
826 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
827 formats = tegra_cursor_plane_formats;
828
829 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
830 &tegra_cursor_plane_funcs, formats,
831 num_formats, DRM_PLANE_TYPE_CURSOR,
832 NULL);
833 if (err < 0) {
834 kfree(plane);
835 return ERR_PTR(err);
836 }
837
838 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
839
840 return &plane->base;
841}
842
843static void tegra_overlay_plane_destroy(struct drm_plane *plane)
844{
845 tegra_plane_destroy(plane);
846}
847
848static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
849 .update_plane = drm_atomic_helper_update_plane,
850 .disable_plane = drm_atomic_helper_disable_plane,
851 .destroy = tegra_overlay_plane_destroy,
852 .reset = tegra_plane_reset,
853 .atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
854 .atomic_destroy_state = tegra_plane_atomic_destroy_state,
855};
856
857static const uint32_t tegra_overlay_plane_formats[] = {
858 DRM_FORMAT_XBGR8888,
859 DRM_FORMAT_XRGB8888,
860 DRM_FORMAT_RGB565,
861 DRM_FORMAT_UYVY,
862 DRM_FORMAT_YUYV,
863 DRM_FORMAT_YUV420,
864 DRM_FORMAT_YUV422,
865};
866
867static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
868 .prepare_fb = tegra_plane_prepare_fb,
869 .cleanup_fb = tegra_plane_cleanup_fb,
870 .atomic_check = tegra_plane_atomic_check,
871 .atomic_update = tegra_plane_atomic_update,
872 .atomic_disable = tegra_plane_atomic_disable,
873};
874
875static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
876 struct tegra_dc *dc,
877 unsigned int index)
878{
879 struct tegra_plane *plane;
880 unsigned int num_formats;
881 const u32 *formats;
882 int err;
883
884 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
885 if (!plane)
886 return ERR_PTR(-ENOMEM);
887
888 plane->index = index;
889
890 num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
891 formats = tegra_overlay_plane_formats;
892
893 err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
894 &tegra_overlay_plane_funcs, formats,
895 num_formats, DRM_PLANE_TYPE_OVERLAY,
896 NULL);
897 if (err < 0) {
898 kfree(plane);
899 return ERR_PTR(err);
900 }
901
902 drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
903
904 return &plane->base;
905}
906
907static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
908{
909 struct drm_plane *plane;
910 unsigned int i;
911
912 for (i = 0; i < 2; i++) {
913 plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
914 if (IS_ERR(plane))
915 return PTR_ERR(plane);
916 }
917
918 return 0;
919}
920
921u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
922{
923 if (dc->syncpt)
924 return host1x_syncpt_read(dc->syncpt);
925
926 /* fallback to software emulated VBLANK counter */
927 return drm_crtc_vblank_count(&dc->base);
928}
929
930void tegra_dc_enable_vblank(struct tegra_dc *dc)
931{
932 unsigned long value, flags;
933
934 spin_lock_irqsave(&dc->lock, flags);
935
936 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
937 value |= VBLANK_INT;
938 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
939
940 spin_unlock_irqrestore(&dc->lock, flags);
941}
942
943void tegra_dc_disable_vblank(struct tegra_dc *dc)
944{
945 unsigned long value, flags;
946
947 spin_lock_irqsave(&dc->lock, flags);
948
949 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
950 value &= ~VBLANK_INT;
951 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
952
953 spin_unlock_irqrestore(&dc->lock, flags);
954}
955
956static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
957{
958 struct drm_device *drm = dc->base.dev;
959 struct drm_crtc *crtc = &dc->base;
960 unsigned long flags, base;
961 struct tegra_bo *bo;
962
963 spin_lock_irqsave(&drm->event_lock, flags);
964
965 if (!dc->event) {
966 spin_unlock_irqrestore(&drm->event_lock, flags);
967 return;
968 }
969
970 bo = tegra_fb_get_plane(crtc->primary->fb, 0);
971
972 spin_lock(&dc->lock);
973
974 /* check if new start address has been latched */
975 tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
976 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
977 base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
978 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
979
980 spin_unlock(&dc->lock);
981
982 if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
983 drm_crtc_send_vblank_event(crtc, dc->event);
984 drm_crtc_vblank_put(crtc);
985 dc->event = NULL;
986 }
987
988 spin_unlock_irqrestore(&drm->event_lock, flags);
989}
990
991static void tegra_dc_destroy(struct drm_crtc *crtc)
992{
993 drm_crtc_cleanup(crtc);
994}
995
996static void tegra_crtc_reset(struct drm_crtc *crtc)
997{
998 struct tegra_dc_state *state;
999
1000 if (crtc->state)
1001 __drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1002
1003 kfree(crtc->state);
1004 crtc->state = NULL;
1005
1006 state = kzalloc(sizeof(*state), GFP_KERNEL);
1007 if (state) {
1008 crtc->state = &state->base;
1009 crtc->state->crtc = crtc;
1010 }
1011
1012 drm_crtc_vblank_reset(crtc);
1013}
1014
1015static struct drm_crtc_state *
1016tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1017{
1018 struct tegra_dc_state *state = to_dc_state(crtc->state);
1019 struct tegra_dc_state *copy;
1020
1021 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1022 if (!copy)
1023 return NULL;
1024
1025 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base);
1026 copy->clk = state->clk;
1027 copy->pclk = state->pclk;
1028 copy->div = state->div;
1029 copy->planes = state->planes;
1030
1031 return ©->base;
1032}
1033
1034static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1035 struct drm_crtc_state *state)
1036{
1037 __drm_atomic_helper_crtc_destroy_state(crtc, state);
1038 kfree(state);
1039}
1040
1041static const struct drm_crtc_funcs tegra_crtc_funcs = {
1042 .page_flip = drm_atomic_helper_page_flip,
1043 .set_config = drm_atomic_helper_set_config,
1044 .destroy = tegra_dc_destroy,
1045 .reset = tegra_crtc_reset,
1046 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1047 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1048};
1049
1050static int tegra_dc_set_timings(struct tegra_dc *dc,
1051 struct drm_display_mode *mode)
1052{
1053 unsigned int h_ref_to_sync = 1;
1054 unsigned int v_ref_to_sync = 1;
1055 unsigned long value;
1056
1057 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1058
1059 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1060 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1061
1062 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1063 ((mode->hsync_end - mode->hsync_start) << 0);
1064 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1065
1066 value = ((mode->vtotal - mode->vsync_end) << 16) |
1067 ((mode->htotal - mode->hsync_end) << 0);
1068 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1069
1070 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1071 ((mode->hsync_start - mode->hdisplay) << 0);
1072 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1073
1074 value = (mode->vdisplay << 16) | mode->hdisplay;
1075 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1076
1077 return 0;
1078}
1079
1080/**
1081 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1082 * state
1083 * @dc: display controller
1084 * @crtc_state: CRTC atomic state
1085 * @clk: parent clock for display controller
1086 * @pclk: pixel clock
1087 * @div: shift clock divider
1088 *
1089 * Returns:
1090 * 0 on success or a negative error-code on failure.
1091 */
1092int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1093 struct drm_crtc_state *crtc_state,
1094 struct clk *clk, unsigned long pclk,
1095 unsigned int div)
1096{
1097 struct tegra_dc_state *state = to_dc_state(crtc_state);
1098
1099 if (!clk_has_parent(dc->clk, clk))
1100 return -EINVAL;
1101
1102 state->clk = clk;
1103 state->pclk = pclk;
1104 state->div = div;
1105
1106 return 0;
1107}
1108
1109static void tegra_dc_commit_state(struct tegra_dc *dc,
1110 struct tegra_dc_state *state)
1111{
1112 u32 value;
1113 int err;
1114
1115 err = clk_set_parent(dc->clk, state->clk);
1116 if (err < 0)
1117 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1118
1119 /*
1120 * Outputs may not want to change the parent clock rate. This is only
1121 * relevant to Tegra20 where only a single display PLL is available.
1122 * Since that PLL would typically be used for HDMI, an internal LVDS
1123 * panel would need to be driven by some other clock such as PLL_P
1124 * which is shared with other peripherals. Changing the clock rate
1125 * should therefore be avoided.
1126 */
1127 if (state->pclk > 0) {
1128 err = clk_set_rate(state->clk, state->pclk);
1129 if (err < 0)
1130 dev_err(dc->dev,
1131 "failed to set clock rate to %lu Hz\n",
1132 state->pclk);
1133 }
1134
1135 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1136 state->div);
1137 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1138
1139 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1140 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1141}
1142
1143static void tegra_dc_stop(struct tegra_dc *dc)
1144{
1145 u32 value;
1146
1147 /* stop the display controller */
1148 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1149 value &= ~DISP_CTRL_MODE_MASK;
1150 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1151
1152 tegra_dc_commit(dc);
1153}
1154
1155static bool tegra_dc_idle(struct tegra_dc *dc)
1156{
1157 u32 value;
1158
1159 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1160
1161 return (value & DISP_CTRL_MODE_MASK) == 0;
1162}
1163
1164static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1165{
1166 timeout = jiffies + msecs_to_jiffies(timeout);
1167
1168 while (time_before(jiffies, timeout)) {
1169 if (tegra_dc_idle(dc))
1170 return 0;
1171
1172 usleep_range(1000, 2000);
1173 }
1174
1175 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1176 return -ETIMEDOUT;
1177}
1178
1179static void tegra_crtc_disable(struct drm_crtc *crtc)
1180{
1181 struct tegra_dc *dc = to_tegra_dc(crtc);
1182 u32 value;
1183
1184 if (!tegra_dc_idle(dc)) {
1185 tegra_dc_stop(dc);
1186
1187 /*
1188 * Ignore the return value, there isn't anything useful to do
1189 * in case this fails.
1190 */
1191 tegra_dc_wait_idle(dc, 100);
1192 }
1193
1194 /*
1195 * This should really be part of the RGB encoder driver, but clearing
1196 * these bits has the side-effect of stopping the display controller.
1197 * When that happens no VBLANK interrupts will be raised. At the same
1198 * time the encoder is disabled before the display controller, so the
1199 * above code is always going to timeout waiting for the controller
1200 * to go idle.
1201 *
1202 * Given the close coupling between the RGB encoder and the display
1203 * controller doing it here is still kind of okay. None of the other
1204 * encoder drivers require these bits to be cleared.
1205 *
1206 * XXX: Perhaps given that the display controller is switched off at
1207 * this point anyway maybe clearing these bits isn't even useful for
1208 * the RGB encoder?
1209 */
1210 if (dc->rgb) {
1211 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1212 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1213 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1214 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1215 }
1216
1217 tegra_dc_stats_reset(&dc->stats);
1218 drm_crtc_vblank_off(crtc);
1219}
1220
1221static void tegra_crtc_enable(struct drm_crtc *crtc)
1222{
1223 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1224 struct tegra_dc_state *state = to_dc_state(crtc->state);
1225 struct tegra_dc *dc = to_tegra_dc(crtc);
1226 u32 value;
1227
1228 tegra_dc_commit_state(dc, state);
1229
1230 /* program display mode */
1231 tegra_dc_set_timings(dc, mode);
1232
1233 /* interlacing isn't supported yet, so disable it */
1234 if (dc->soc->supports_interlacing) {
1235 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1236 value &= ~INTERLACE_ENABLE;
1237 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1238 }
1239
1240 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1241 value &= ~DISP_CTRL_MODE_MASK;
1242 value |= DISP_CTRL_MODE_C_DISPLAY;
1243 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1244
1245 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1246 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1247 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1248 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1249
1250 tegra_dc_commit(dc);
1251
1252 drm_crtc_vblank_on(crtc);
1253}
1254
1255static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1256 struct drm_crtc_state *state)
1257{
1258 return 0;
1259}
1260
1261static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1262 struct drm_crtc_state *old_crtc_state)
1263{
1264 struct tegra_dc *dc = to_tegra_dc(crtc);
1265
1266 if (crtc->state->event) {
1267 crtc->state->event->pipe = drm_crtc_index(crtc);
1268
1269 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1270
1271 dc->event = crtc->state->event;
1272 crtc->state->event = NULL;
1273 }
1274}
1275
1276static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1277 struct drm_crtc_state *old_crtc_state)
1278{
1279 struct tegra_dc_state *state = to_dc_state(crtc->state);
1280 struct tegra_dc *dc = to_tegra_dc(crtc);
1281
1282 tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1283 tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1284}
1285
1286static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1287 .disable = tegra_crtc_disable,
1288 .enable = tegra_crtc_enable,
1289 .atomic_check = tegra_crtc_atomic_check,
1290 .atomic_begin = tegra_crtc_atomic_begin,
1291 .atomic_flush = tegra_crtc_atomic_flush,
1292};
1293
1294static irqreturn_t tegra_dc_irq(int irq, void *data)
1295{
1296 struct tegra_dc *dc = data;
1297 unsigned long status;
1298
1299 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1300 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1301
1302 if (status & FRAME_END_INT) {
1303 /*
1304 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1305 */
1306 dc->stats.frames++;
1307 }
1308
1309 if (status & VBLANK_INT) {
1310 /*
1311 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1312 */
1313 drm_crtc_handle_vblank(&dc->base);
1314 tegra_dc_finish_page_flip(dc);
1315 dc->stats.vblank++;
1316 }
1317
1318 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1319 /*
1320 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1321 */
1322 dc->stats.underflow++;
1323 }
1324
1325 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1326 /*
1327 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1328 */
1329 dc->stats.overflow++;
1330 }
1331
1332 return IRQ_HANDLED;
1333}
1334
1335static int tegra_dc_show_regs(struct seq_file *s, void *data)
1336{
1337 struct drm_info_node *node = s->private;
1338 struct tegra_dc *dc = node->info_ent->data;
1339 int err = 0;
1340
1341 drm_modeset_lock_crtc(&dc->base, NULL);
1342
1343 if (!dc->base.state->active) {
1344 err = -EBUSY;
1345 goto unlock;
1346 }
1347
1348#define DUMP_REG(name) \
1349 seq_printf(s, "%-40s %#05x %08x\n", #name, name, \
1350 tegra_dc_readl(dc, name))
1351
1352 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1353 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1354 DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1355 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1356 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1357 DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1358 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1359 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1360 DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1361 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1362 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1363 DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1364 DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1365 DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1366 DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1367 DUMP_REG(DC_CMD_SIGNAL_RAISE);
1368 DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1369 DUMP_REG(DC_CMD_INT_STATUS);
1370 DUMP_REG(DC_CMD_INT_MASK);
1371 DUMP_REG(DC_CMD_INT_ENABLE);
1372 DUMP_REG(DC_CMD_INT_TYPE);
1373 DUMP_REG(DC_CMD_INT_POLARITY);
1374 DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1375 DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1376 DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1377 DUMP_REG(DC_CMD_STATE_ACCESS);
1378 DUMP_REG(DC_CMD_STATE_CONTROL);
1379 DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1380 DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1381 DUMP_REG(DC_COM_CRC_CONTROL);
1382 DUMP_REG(DC_COM_CRC_CHECKSUM);
1383 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1384 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1385 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1386 DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1387 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1388 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1389 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1390 DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1391 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1392 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1393 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1394 DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1395 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1396 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1397 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1398 DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1399 DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1400 DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1401 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1402 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1403 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1404 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1405 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1406 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1407 DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1408 DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1409 DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1410 DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1411 DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1412 DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1413 DUMP_REG(DC_COM_SPI_CONTROL);
1414 DUMP_REG(DC_COM_SPI_START_BYTE);
1415 DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1416 DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1417 DUMP_REG(DC_COM_HSPI_CS_DC);
1418 DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1419 DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1420 DUMP_REG(DC_COM_GPIO_CTRL);
1421 DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1422 DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1423 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1424 DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1425 DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1426 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1427 DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1428 DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1429 DUMP_REG(DC_DISP_REF_TO_SYNC);
1430 DUMP_REG(DC_DISP_SYNC_WIDTH);
1431 DUMP_REG(DC_DISP_BACK_PORCH);
1432 DUMP_REG(DC_DISP_ACTIVE);
1433 DUMP_REG(DC_DISP_FRONT_PORCH);
1434 DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1435 DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1436 DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1437 DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1438 DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1439 DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1440 DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1441 DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1442 DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1443 DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1444 DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1445 DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1446 DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1447 DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1448 DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1449 DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1450 DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1451 DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1452 DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1453 DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1454 DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1455 DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1456 DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1457 DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1458 DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1459 DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1460 DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1461 DUMP_REG(DC_DISP_M0_CONTROL);
1462 DUMP_REG(DC_DISP_M1_CONTROL);
1463 DUMP_REG(DC_DISP_DI_CONTROL);
1464 DUMP_REG(DC_DISP_PP_CONTROL);
1465 DUMP_REG(DC_DISP_PP_SELECT_A);
1466 DUMP_REG(DC_DISP_PP_SELECT_B);
1467 DUMP_REG(DC_DISP_PP_SELECT_C);
1468 DUMP_REG(DC_DISP_PP_SELECT_D);
1469 DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1470 DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1471 DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1472 DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1473 DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1474 DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1475 DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1476 DUMP_REG(DC_DISP_BORDER_COLOR);
1477 DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1478 DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1479 DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1480 DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1481 DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1482 DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1483 DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1484 DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1485 DUMP_REG(DC_DISP_CURSOR_POSITION);
1486 DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1487 DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1488 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1489 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1490 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1491 DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1492 DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1493 DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1494 DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1495 DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1496 DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1497 DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1498 DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1499 DUMP_REG(DC_DISP_SD_CONTROL);
1500 DUMP_REG(DC_DISP_SD_CSC_COEFF);
1501 DUMP_REG(DC_DISP_SD_LUT(0));
1502 DUMP_REG(DC_DISP_SD_LUT(1));
1503 DUMP_REG(DC_DISP_SD_LUT(2));
1504 DUMP_REG(DC_DISP_SD_LUT(3));
1505 DUMP_REG(DC_DISP_SD_LUT(4));
1506 DUMP_REG(DC_DISP_SD_LUT(5));
1507 DUMP_REG(DC_DISP_SD_LUT(6));
1508 DUMP_REG(DC_DISP_SD_LUT(7));
1509 DUMP_REG(DC_DISP_SD_LUT(8));
1510 DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1511 DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1512 DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1513 DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1514 DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1515 DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1516 DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1517 DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1518 DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1519 DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1520 DUMP_REG(DC_DISP_SD_BL_TF(0));
1521 DUMP_REG(DC_DISP_SD_BL_TF(1));
1522 DUMP_REG(DC_DISP_SD_BL_TF(2));
1523 DUMP_REG(DC_DISP_SD_BL_TF(3));
1524 DUMP_REG(DC_DISP_SD_BL_CONTROL);
1525 DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1526 DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1527 DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1528 DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1529 DUMP_REG(DC_WIN_WIN_OPTIONS);
1530 DUMP_REG(DC_WIN_BYTE_SWAP);
1531 DUMP_REG(DC_WIN_BUFFER_CONTROL);
1532 DUMP_REG(DC_WIN_COLOR_DEPTH);
1533 DUMP_REG(DC_WIN_POSITION);
1534 DUMP_REG(DC_WIN_SIZE);
1535 DUMP_REG(DC_WIN_PRESCALED_SIZE);
1536 DUMP_REG(DC_WIN_H_INITIAL_DDA);
1537 DUMP_REG(DC_WIN_V_INITIAL_DDA);
1538 DUMP_REG(DC_WIN_DDA_INC);
1539 DUMP_REG(DC_WIN_LINE_STRIDE);
1540 DUMP_REG(DC_WIN_BUF_STRIDE);
1541 DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1542 DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1543 DUMP_REG(DC_WIN_DV_CONTROL);
1544 DUMP_REG(DC_WIN_BLEND_NOKEY);
1545 DUMP_REG(DC_WIN_BLEND_1WIN);
1546 DUMP_REG(DC_WIN_BLEND_2WIN_X);
1547 DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1548 DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1549 DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1550 DUMP_REG(DC_WINBUF_START_ADDR);
1551 DUMP_REG(DC_WINBUF_START_ADDR_NS);
1552 DUMP_REG(DC_WINBUF_START_ADDR_U);
1553 DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1554 DUMP_REG(DC_WINBUF_START_ADDR_V);
1555 DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1556 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1557 DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1558 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1559 DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1560 DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1561 DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1562 DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1563 DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1564
1565#undef DUMP_REG
1566
1567unlock:
1568 drm_modeset_unlock_crtc(&dc->base);
1569 return err;
1570}
1571
1572static int tegra_dc_show_crc(struct seq_file *s, void *data)
1573{
1574 struct drm_info_node *node = s->private;
1575 struct tegra_dc *dc = node->info_ent->data;
1576 int err = 0;
1577 u32 value;
1578
1579 drm_modeset_lock_crtc(&dc->base, NULL);
1580
1581 if (!dc->base.state->active) {
1582 err = -EBUSY;
1583 goto unlock;
1584 }
1585
1586 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1587 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1588 tegra_dc_commit(dc);
1589
1590 drm_crtc_wait_one_vblank(&dc->base);
1591 drm_crtc_wait_one_vblank(&dc->base);
1592
1593 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1594 seq_printf(s, "%08x\n", value);
1595
1596 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1597
1598unlock:
1599 drm_modeset_unlock_crtc(&dc->base);
1600 return err;
1601}
1602
1603static int tegra_dc_show_stats(struct seq_file *s, void *data)
1604{
1605 struct drm_info_node *node = s->private;
1606 struct tegra_dc *dc = node->info_ent->data;
1607
1608 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1609 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1610 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1611 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1612
1613 return 0;
1614}
1615
1616static struct drm_info_list debugfs_files[] = {
1617 { "regs", tegra_dc_show_regs, 0, NULL },
1618 { "crc", tegra_dc_show_crc, 0, NULL },
1619 { "stats", tegra_dc_show_stats, 0, NULL },
1620};
1621
1622static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1623{
1624 unsigned int i;
1625 char *name;
1626 int err;
1627
1628 name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1629 dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1630 kfree(name);
1631
1632 if (!dc->debugfs)
1633 return -ENOMEM;
1634
1635 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1636 GFP_KERNEL);
1637 if (!dc->debugfs_files) {
1638 err = -ENOMEM;
1639 goto remove;
1640 }
1641
1642 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1643 dc->debugfs_files[i].data = dc;
1644
1645 err = drm_debugfs_create_files(dc->debugfs_files,
1646 ARRAY_SIZE(debugfs_files),
1647 dc->debugfs, minor);
1648 if (err < 0)
1649 goto free;
1650
1651 dc->minor = minor;
1652
1653 return 0;
1654
1655free:
1656 kfree(dc->debugfs_files);
1657 dc->debugfs_files = NULL;
1658remove:
1659 debugfs_remove(dc->debugfs);
1660 dc->debugfs = NULL;
1661
1662 return err;
1663}
1664
1665static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1666{
1667 drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1668 dc->minor);
1669 dc->minor = NULL;
1670
1671 kfree(dc->debugfs_files);
1672 dc->debugfs_files = NULL;
1673
1674 debugfs_remove(dc->debugfs);
1675 dc->debugfs = NULL;
1676
1677 return 0;
1678}
1679
1680static int tegra_dc_init(struct host1x_client *client)
1681{
1682 struct drm_device *drm = dev_get_drvdata(client->parent);
1683 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1684 struct tegra_dc *dc = host1x_client_to_dc(client);
1685 struct tegra_drm *tegra = drm->dev_private;
1686 struct drm_plane *primary = NULL;
1687 struct drm_plane *cursor = NULL;
1688 u32 value;
1689 int err;
1690
1691 dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1692 if (!dc->syncpt)
1693 dev_warn(dc->dev, "failed to allocate syncpoint\n");
1694
1695 if (tegra->domain) {
1696 err = iommu_attach_device(tegra->domain, dc->dev);
1697 if (err < 0) {
1698 dev_err(dc->dev, "failed to attach to domain: %d\n",
1699 err);
1700 return err;
1701 }
1702
1703 dc->domain = tegra->domain;
1704 }
1705
1706 primary = tegra_dc_primary_plane_create(drm, dc);
1707 if (IS_ERR(primary)) {
1708 err = PTR_ERR(primary);
1709 goto cleanup;
1710 }
1711
1712 if (dc->soc->supports_cursor) {
1713 cursor = tegra_dc_cursor_plane_create(drm, dc);
1714 if (IS_ERR(cursor)) {
1715 err = PTR_ERR(cursor);
1716 goto cleanup;
1717 }
1718 }
1719
1720 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1721 &tegra_crtc_funcs, NULL);
1722 if (err < 0)
1723 goto cleanup;
1724
1725 drm_mode_crtc_set_gamma_size(&dc->base, 256);
1726 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1727
1728 /*
1729 * Keep track of the minimum pitch alignment across all display
1730 * controllers.
1731 */
1732 if (dc->soc->pitch_align > tegra->pitch_align)
1733 tegra->pitch_align = dc->soc->pitch_align;
1734
1735 err = tegra_dc_rgb_init(drm, dc);
1736 if (err < 0 && err != -ENODEV) {
1737 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1738 goto cleanup;
1739 }
1740
1741 err = tegra_dc_add_planes(drm, dc);
1742 if (err < 0)
1743 goto cleanup;
1744
1745 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1746 err = tegra_dc_debugfs_init(dc, drm->primary);
1747 if (err < 0)
1748 dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1749 }
1750
1751 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1752 dev_name(dc->dev), dc);
1753 if (err < 0) {
1754 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1755 err);
1756 goto cleanup;
1757 }
1758
1759 /* initialize display controller */
1760 if (dc->syncpt) {
1761 u32 syncpt = host1x_syncpt_id(dc->syncpt);
1762
1763 value = SYNCPT_CNTRL_NO_STALL;
1764 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1765
1766 value = SYNCPT_VSYNC_ENABLE | syncpt;
1767 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1768 }
1769
1770 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1771 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1772 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1773
1774 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1775 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1776 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1777
1778 /* initialize timer */
1779 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1780 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1781 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1782
1783 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1784 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1785 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1786
1787 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1788 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1789 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1790
1791 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1792 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1793 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1794
1795 if (dc->soc->supports_border_color)
1796 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1797
1798 tegra_dc_stats_reset(&dc->stats);
1799
1800 return 0;
1801
1802cleanup:
1803 if (cursor)
1804 drm_plane_cleanup(cursor);
1805
1806 if (primary)
1807 drm_plane_cleanup(primary);
1808
1809 if (tegra->domain) {
1810 iommu_detach_device(tegra->domain, dc->dev);
1811 dc->domain = NULL;
1812 }
1813
1814 return err;
1815}
1816
1817static int tegra_dc_exit(struct host1x_client *client)
1818{
1819 struct tegra_dc *dc = host1x_client_to_dc(client);
1820 int err;
1821
1822 devm_free_irq(dc->dev, dc->irq, dc);
1823
1824 if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1825 err = tegra_dc_debugfs_exit(dc);
1826 if (err < 0)
1827 dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1828 }
1829
1830 err = tegra_dc_rgb_exit(dc);
1831 if (err) {
1832 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1833 return err;
1834 }
1835
1836 if (dc->domain) {
1837 iommu_detach_device(dc->domain, dc->dev);
1838 dc->domain = NULL;
1839 }
1840
1841 host1x_syncpt_free(dc->syncpt);
1842
1843 return 0;
1844}
1845
1846static const struct host1x_client_ops dc_client_ops = {
1847 .init = tegra_dc_init,
1848 .exit = tegra_dc_exit,
1849};
1850
1851static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1852 .supports_border_color = true,
1853 .supports_interlacing = false,
1854 .supports_cursor = false,
1855 .supports_block_linear = false,
1856 .pitch_align = 8,
1857 .has_powergate = false,
1858};
1859
1860static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1861 .supports_border_color = true,
1862 .supports_interlacing = false,
1863 .supports_cursor = false,
1864 .supports_block_linear = false,
1865 .pitch_align = 8,
1866 .has_powergate = false,
1867};
1868
1869static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1870 .supports_border_color = true,
1871 .supports_interlacing = false,
1872 .supports_cursor = false,
1873 .supports_block_linear = false,
1874 .pitch_align = 64,
1875 .has_powergate = true,
1876};
1877
1878static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1879 .supports_border_color = false,
1880 .supports_interlacing = true,
1881 .supports_cursor = true,
1882 .supports_block_linear = true,
1883 .pitch_align = 64,
1884 .has_powergate = true,
1885};
1886
1887static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1888 .supports_border_color = false,
1889 .supports_interlacing = true,
1890 .supports_cursor = true,
1891 .supports_block_linear = true,
1892 .pitch_align = 64,
1893 .has_powergate = true,
1894};
1895
1896static const struct of_device_id tegra_dc_of_match[] = {
1897 {
1898 .compatible = "nvidia,tegra210-dc",
1899 .data = &tegra210_dc_soc_info,
1900 }, {
1901 .compatible = "nvidia,tegra124-dc",
1902 .data = &tegra124_dc_soc_info,
1903 }, {
1904 .compatible = "nvidia,tegra114-dc",
1905 .data = &tegra114_dc_soc_info,
1906 }, {
1907 .compatible = "nvidia,tegra30-dc",
1908 .data = &tegra30_dc_soc_info,
1909 }, {
1910 .compatible = "nvidia,tegra20-dc",
1911 .data = &tegra20_dc_soc_info,
1912 }, {
1913 /* sentinel */
1914 }
1915};
1916MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1917
1918static int tegra_dc_parse_dt(struct tegra_dc *dc)
1919{
1920 struct device_node *np;
1921 u32 value = 0;
1922 int err;
1923
1924 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1925 if (err < 0) {
1926 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1927
1928 /*
1929 * If the nvidia,head property isn't present, try to find the
1930 * correct head number by looking up the position of this
1931 * display controller's node within the device tree. Assuming
1932 * that the nodes are ordered properly in the DTS file and
1933 * that the translation into a flattened device tree blob
1934 * preserves that ordering this will actually yield the right
1935 * head number.
1936 *
1937 * If those assumptions don't hold, this will still work for
1938 * cases where only a single display controller is used.
1939 */
1940 for_each_matching_node(np, tegra_dc_of_match) {
1941 if (np == dc->dev->of_node) {
1942 of_node_put(np);
1943 break;
1944 }
1945
1946 value++;
1947 }
1948 }
1949
1950 dc->pipe = value;
1951
1952 return 0;
1953}
1954
1955static int tegra_dc_probe(struct platform_device *pdev)
1956{
1957 const struct of_device_id *id;
1958 struct resource *regs;
1959 struct tegra_dc *dc;
1960 int err;
1961
1962 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1963 if (!dc)
1964 return -ENOMEM;
1965
1966 id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1967 if (!id)
1968 return -ENODEV;
1969
1970 spin_lock_init(&dc->lock);
1971 INIT_LIST_HEAD(&dc->list);
1972 dc->dev = &pdev->dev;
1973 dc->soc = id->data;
1974
1975 err = tegra_dc_parse_dt(dc);
1976 if (err < 0)
1977 return err;
1978
1979 dc->clk = devm_clk_get(&pdev->dev, NULL);
1980 if (IS_ERR(dc->clk)) {
1981 dev_err(&pdev->dev, "failed to get clock\n");
1982 return PTR_ERR(dc->clk);
1983 }
1984
1985 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1986 if (IS_ERR(dc->rst)) {
1987 dev_err(&pdev->dev, "failed to get reset\n");
1988 return PTR_ERR(dc->rst);
1989 }
1990
1991 if (dc->soc->has_powergate) {
1992 if (dc->pipe == 0)
1993 dc->powergate = TEGRA_POWERGATE_DIS;
1994 else
1995 dc->powergate = TEGRA_POWERGATE_DISB;
1996
1997 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
1998 dc->rst);
1999 if (err < 0) {
2000 dev_err(&pdev->dev, "failed to power partition: %d\n",
2001 err);
2002 return err;
2003 }
2004 } else {
2005 err = clk_prepare_enable(dc->clk);
2006 if (err < 0) {
2007 dev_err(&pdev->dev, "failed to enable clock: %d\n",
2008 err);
2009 return err;
2010 }
2011
2012 err = reset_control_deassert(dc->rst);
2013 if (err < 0) {
2014 dev_err(&pdev->dev, "failed to deassert reset: %d\n",
2015 err);
2016 return err;
2017 }
2018 }
2019
2020 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2021 dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2022 if (IS_ERR(dc->regs))
2023 return PTR_ERR(dc->regs);
2024
2025 dc->irq = platform_get_irq(pdev, 0);
2026 if (dc->irq < 0) {
2027 dev_err(&pdev->dev, "failed to get IRQ\n");
2028 return -ENXIO;
2029 }
2030
2031 INIT_LIST_HEAD(&dc->client.list);
2032 dc->client.ops = &dc_client_ops;
2033 dc->client.dev = &pdev->dev;
2034
2035 err = tegra_dc_rgb_probe(dc);
2036 if (err < 0 && err != -ENODEV) {
2037 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2038 return err;
2039 }
2040
2041 err = host1x_client_register(&dc->client);
2042 if (err < 0) {
2043 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2044 err);
2045 return err;
2046 }
2047
2048 platform_set_drvdata(pdev, dc);
2049
2050 return 0;
2051}
2052
2053static int tegra_dc_remove(struct platform_device *pdev)
2054{
2055 struct tegra_dc *dc = platform_get_drvdata(pdev);
2056 int err;
2057
2058 err = host1x_client_unregister(&dc->client);
2059 if (err < 0) {
2060 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2061 err);
2062 return err;
2063 }
2064
2065 err = tegra_dc_rgb_remove(dc);
2066 if (err < 0) {
2067 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2068 return err;
2069 }
2070
2071 reset_control_assert(dc->rst);
2072
2073 if (dc->soc->has_powergate)
2074 tegra_powergate_power_off(dc->powergate);
2075
2076 clk_disable_unprepare(dc->clk);
2077
2078 return 0;
2079}
2080
2081struct platform_driver tegra_dc_driver = {
2082 .driver = {
2083 .name = "tegra-dc",
2084 .of_match_table = tegra_dc_of_match,
2085 },
2086 .probe = tegra_dc_probe,
2087 .remove = tegra_dc_remove,
2088};
1/*
2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10#include <linux/clk.h>
11#include <linux/debugfs.h>
12#include <linux/iommu.h>
13#include <linux/of_device.h>
14#include <linux/pm_runtime.h>
15#include <linux/reset.h>
16
17#include <soc/tegra/pmc.h>
18
19#include "dc.h"
20#include "drm.h"
21#include "gem.h"
22#include "hub.h"
23#include "plane.h"
24
25#include <drm/drm_atomic.h>
26#include <drm/drm_atomic_helper.h>
27#include <drm/drm_plane_helper.h>
28
29static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
30{
31 stats->frames = 0;
32 stats->vblank = 0;
33 stats->underflow = 0;
34 stats->overflow = 0;
35}
36
37/* Reads the active copy of a register. */
38static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
39{
40 u32 value;
41
42 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
43 value = tegra_dc_readl(dc, offset);
44 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
45
46 return value;
47}
48
49static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
50 unsigned int offset)
51{
52 if (offset >= 0x500 && offset <= 0x638) {
53 offset = 0x000 + (offset - 0x500);
54 return plane->offset + offset;
55 }
56
57 if (offset >= 0x700 && offset <= 0x719) {
58 offset = 0x180 + (offset - 0x700);
59 return plane->offset + offset;
60 }
61
62 if (offset >= 0x800 && offset <= 0x839) {
63 offset = 0x1c0 + (offset - 0x800);
64 return plane->offset + offset;
65 }
66
67 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
68
69 return plane->offset + offset;
70}
71
72static inline u32 tegra_plane_readl(struct tegra_plane *plane,
73 unsigned int offset)
74{
75 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
76}
77
78static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
79 unsigned int offset)
80{
81 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
82}
83
84bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
85{
86 struct device_node *np = dc->dev->of_node;
87 struct of_phandle_iterator it;
88 int err;
89
90 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
91 if (it.node == dev->of_node)
92 return true;
93
94 return false;
95}
96
97/*
98 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
99 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
100 * Latching happens mmediately if the display controller is in STOP mode or
101 * on the next frame boundary otherwise.
102 *
103 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
104 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
105 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
106 * into the ACTIVE copy, either immediately if the display controller is in
107 * STOP mode, or at the next frame boundary otherwise.
108 */
109void tegra_dc_commit(struct tegra_dc *dc)
110{
111 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
112 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
113}
114
115static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
116 unsigned int bpp)
117{
118 fixed20_12 outf = dfixed_init(out);
119 fixed20_12 inf = dfixed_init(in);
120 u32 dda_inc;
121 int max;
122
123 if (v)
124 max = 15;
125 else {
126 switch (bpp) {
127 case 2:
128 max = 8;
129 break;
130
131 default:
132 WARN_ON_ONCE(1);
133 /* fallthrough */
134 case 4:
135 max = 4;
136 break;
137 }
138 }
139
140 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
141 inf.full -= dfixed_const(1);
142
143 dda_inc = dfixed_div(inf, outf);
144 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
145
146 return dda_inc;
147}
148
149static inline u32 compute_initial_dda(unsigned int in)
150{
151 fixed20_12 inf = dfixed_init(in);
152 return dfixed_frac(inf);
153}
154
155static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
156{
157 u32 background[3] = {
158 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
159 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
160 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
161 };
162 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
163 BLEND_COLOR_KEY_NONE;
164 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
165 struct tegra_plane_state *state;
166 unsigned int i;
167
168 state = to_tegra_plane_state(plane->base.state);
169
170 /* alpha contribution is 1 minus sum of overlapping windows */
171 for (i = 0; i < 3; i++) {
172 if (state->dependent[i])
173 background[i] |= BLEND_CONTROL_DEPENDENT;
174 }
175
176 /* enable alpha blending if pixel format has an alpha component */
177 if (!state->opaque)
178 foreground |= BLEND_CONTROL_ALPHA;
179
180 /*
181 * Disable blending and assume Window A is the bottom-most window,
182 * Window C is the top-most window and Window B is in the middle.
183 */
184 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
185 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
186
187 switch (plane->index) {
188 case 0:
189 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
190 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
191 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
192 break;
193
194 case 1:
195 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
196 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
197 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
198 break;
199
200 case 2:
201 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
202 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
203 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
204 break;
205 }
206}
207
208static void tegra_plane_setup_blending(struct tegra_plane *plane,
209 const struct tegra_dc_window *window)
210{
211 u32 value;
212
213 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
214 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
215 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
216 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
217
218 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
219 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
220 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
221 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
222
223 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
224 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
225}
226
227static void tegra_dc_setup_window(struct tegra_plane *plane,
228 const struct tegra_dc_window *window)
229{
230 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
231 struct tegra_dc *dc = plane->dc;
232 bool yuv, planar;
233 u32 value;
234
235 /*
236 * For YUV planar modes, the number of bytes per pixel takes into
237 * account only the luma component and therefore is 1.
238 */
239 yuv = tegra_plane_format_is_yuv(window->format, &planar);
240 if (!yuv)
241 bpp = window->bits_per_pixel / 8;
242 else
243 bpp = planar ? 1 : 2;
244
245 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
246 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
247
248 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
249 tegra_plane_writel(plane, value, DC_WIN_POSITION);
250
251 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
252 tegra_plane_writel(plane, value, DC_WIN_SIZE);
253
254 h_offset = window->src.x * bpp;
255 v_offset = window->src.y;
256 h_size = window->src.w * bpp;
257 v_size = window->src.h;
258
259 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
260 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
261
262 /*
263 * For DDA computations the number of bytes per pixel for YUV planar
264 * modes needs to take into account all Y, U and V components.
265 */
266 if (yuv && planar)
267 bpp = 2;
268
269 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
270 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
271
272 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
273 tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
274
275 h_dda = compute_initial_dda(window->src.x);
276 v_dda = compute_initial_dda(window->src.y);
277
278 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
279 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
280
281 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
282 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
283
284 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
285
286 if (yuv && planar) {
287 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
288 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
289 value = window->stride[1] << 16 | window->stride[0];
290 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
291 } else {
292 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
293 }
294
295 if (window->bottom_up)
296 v_offset += window->src.h - 1;
297
298 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
299 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
300
301 if (dc->soc->supports_block_linear) {
302 unsigned long height = window->tiling.value;
303
304 switch (window->tiling.mode) {
305 case TEGRA_BO_TILING_MODE_PITCH:
306 value = DC_WINBUF_SURFACE_KIND_PITCH;
307 break;
308
309 case TEGRA_BO_TILING_MODE_TILED:
310 value = DC_WINBUF_SURFACE_KIND_TILED;
311 break;
312
313 case TEGRA_BO_TILING_MODE_BLOCK:
314 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
315 DC_WINBUF_SURFACE_KIND_BLOCK;
316 break;
317 }
318
319 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
320 } else {
321 switch (window->tiling.mode) {
322 case TEGRA_BO_TILING_MODE_PITCH:
323 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
324 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
325 break;
326
327 case TEGRA_BO_TILING_MODE_TILED:
328 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
329 DC_WIN_BUFFER_ADDR_MODE_TILE;
330 break;
331
332 case TEGRA_BO_TILING_MODE_BLOCK:
333 /*
334 * No need to handle this here because ->atomic_check
335 * will already have filtered it out.
336 */
337 break;
338 }
339
340 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
341 }
342
343 value = WIN_ENABLE;
344
345 if (yuv) {
346 /* setup default colorspace conversion coefficients */
347 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
348 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
349 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
350 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
351 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
352 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
353 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
354 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
355
356 value |= CSC_ENABLE;
357 } else if (window->bits_per_pixel < 24) {
358 value |= COLOR_EXPAND;
359 }
360
361 if (window->bottom_up)
362 value |= V_DIRECTION;
363
364 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
365
366 if (dc->soc->supports_blending)
367 tegra_plane_setup_blending(plane, window);
368 else
369 tegra_plane_setup_blending_legacy(plane);
370}
371
372static const u32 tegra20_primary_formats[] = {
373 DRM_FORMAT_ARGB4444,
374 DRM_FORMAT_ARGB1555,
375 DRM_FORMAT_RGB565,
376 DRM_FORMAT_RGBA5551,
377 DRM_FORMAT_ABGR8888,
378 DRM_FORMAT_ARGB8888,
379 /* non-native formats */
380 DRM_FORMAT_XRGB1555,
381 DRM_FORMAT_RGBX5551,
382 DRM_FORMAT_XBGR8888,
383 DRM_FORMAT_XRGB8888,
384};
385
386static const u64 tegra20_modifiers[] = {
387 DRM_FORMAT_MOD_LINEAR,
388 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
389 DRM_FORMAT_MOD_INVALID
390};
391
392static const u32 tegra114_primary_formats[] = {
393 DRM_FORMAT_ARGB4444,
394 DRM_FORMAT_ARGB1555,
395 DRM_FORMAT_RGB565,
396 DRM_FORMAT_RGBA5551,
397 DRM_FORMAT_ABGR8888,
398 DRM_FORMAT_ARGB8888,
399 /* new on Tegra114 */
400 DRM_FORMAT_ABGR4444,
401 DRM_FORMAT_ABGR1555,
402 DRM_FORMAT_BGRA5551,
403 DRM_FORMAT_XRGB1555,
404 DRM_FORMAT_RGBX5551,
405 DRM_FORMAT_XBGR1555,
406 DRM_FORMAT_BGRX5551,
407 DRM_FORMAT_BGR565,
408 DRM_FORMAT_BGRA8888,
409 DRM_FORMAT_RGBA8888,
410 DRM_FORMAT_XRGB8888,
411 DRM_FORMAT_XBGR8888,
412};
413
414static const u32 tegra124_primary_formats[] = {
415 DRM_FORMAT_ARGB4444,
416 DRM_FORMAT_ARGB1555,
417 DRM_FORMAT_RGB565,
418 DRM_FORMAT_RGBA5551,
419 DRM_FORMAT_ABGR8888,
420 DRM_FORMAT_ARGB8888,
421 /* new on Tegra114 */
422 DRM_FORMAT_ABGR4444,
423 DRM_FORMAT_ABGR1555,
424 DRM_FORMAT_BGRA5551,
425 DRM_FORMAT_XRGB1555,
426 DRM_FORMAT_RGBX5551,
427 DRM_FORMAT_XBGR1555,
428 DRM_FORMAT_BGRX5551,
429 DRM_FORMAT_BGR565,
430 DRM_FORMAT_BGRA8888,
431 DRM_FORMAT_RGBA8888,
432 DRM_FORMAT_XRGB8888,
433 DRM_FORMAT_XBGR8888,
434 /* new on Tegra124 */
435 DRM_FORMAT_RGBX8888,
436 DRM_FORMAT_BGRX8888,
437};
438
439static const u64 tegra124_modifiers[] = {
440 DRM_FORMAT_MOD_LINEAR,
441 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
442 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
443 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
444 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
445 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
446 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
447 DRM_FORMAT_MOD_INVALID
448};
449
450static int tegra_plane_atomic_check(struct drm_plane *plane,
451 struct drm_plane_state *state)
452{
453 struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
454 struct tegra_bo_tiling *tiling = &plane_state->tiling;
455 struct tegra_plane *tegra = to_tegra_plane(plane);
456 struct tegra_dc *dc = to_tegra_dc(state->crtc);
457 unsigned int format;
458 int err;
459
460 /* no need for further checks if the plane is being disabled */
461 if (!state->crtc)
462 return 0;
463
464 err = tegra_plane_format(state->fb->format->format, &format,
465 &plane_state->swap);
466 if (err < 0)
467 return err;
468
469 /*
470 * Tegra20 and Tegra30 are special cases here because they support
471 * only variants of specific formats with an alpha component, but not
472 * the corresponding opaque formats. However, the opaque formats can
473 * be emulated by disabling alpha blending for the plane.
474 */
475 if (!dc->soc->supports_blending) {
476 if (!tegra_plane_format_has_alpha(format)) {
477 err = tegra_plane_format_get_alpha(format, &format);
478 if (err < 0)
479 return err;
480
481 plane_state->opaque = true;
482 } else {
483 plane_state->opaque = false;
484 }
485
486 tegra_plane_check_dependent(tegra, plane_state);
487 }
488
489 plane_state->format = format;
490
491 err = tegra_fb_get_tiling(state->fb, tiling);
492 if (err < 0)
493 return err;
494
495 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
496 !dc->soc->supports_block_linear) {
497 DRM_ERROR("hardware doesn't support block linear mode\n");
498 return -EINVAL;
499 }
500
501 /*
502 * Tegra doesn't support different strides for U and V planes so we
503 * error out if the user tries to display a framebuffer with such a
504 * configuration.
505 */
506 if (state->fb->format->num_planes > 2) {
507 if (state->fb->pitches[2] != state->fb->pitches[1]) {
508 DRM_ERROR("unsupported UV-plane configuration\n");
509 return -EINVAL;
510 }
511 }
512
513 err = tegra_plane_state_add(tegra, state);
514 if (err < 0)
515 return err;
516
517 return 0;
518}
519
520static void tegra_plane_atomic_disable(struct drm_plane *plane,
521 struct drm_plane_state *old_state)
522{
523 struct tegra_plane *p = to_tegra_plane(plane);
524 u32 value;
525
526 /* rien ne va plus */
527 if (!old_state || !old_state->crtc)
528 return;
529
530 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
531 value &= ~WIN_ENABLE;
532 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
533}
534
535static void tegra_plane_atomic_update(struct drm_plane *plane,
536 struct drm_plane_state *old_state)
537{
538 struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
539 struct drm_framebuffer *fb = plane->state->fb;
540 struct tegra_plane *p = to_tegra_plane(plane);
541 struct tegra_dc_window window;
542 unsigned int i;
543
544 /* rien ne va plus */
545 if (!plane->state->crtc || !plane->state->fb)
546 return;
547
548 if (!plane->state->visible)
549 return tegra_plane_atomic_disable(plane, old_state);
550
551 memset(&window, 0, sizeof(window));
552 window.src.x = plane->state->src.x1 >> 16;
553 window.src.y = plane->state->src.y1 >> 16;
554 window.src.w = drm_rect_width(&plane->state->src) >> 16;
555 window.src.h = drm_rect_height(&plane->state->src) >> 16;
556 window.dst.x = plane->state->dst.x1;
557 window.dst.y = plane->state->dst.y1;
558 window.dst.w = drm_rect_width(&plane->state->dst);
559 window.dst.h = drm_rect_height(&plane->state->dst);
560 window.bits_per_pixel = fb->format->cpp[0] * 8;
561 window.bottom_up = tegra_fb_is_bottom_up(fb);
562
563 /* copy from state */
564 window.zpos = plane->state->normalized_zpos;
565 window.tiling = state->tiling;
566 window.format = state->format;
567 window.swap = state->swap;
568
569 for (i = 0; i < fb->format->num_planes; i++) {
570 struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
571
572 window.base[i] = bo->paddr + fb->offsets[i];
573
574 /*
575 * Tegra uses a shared stride for UV planes. Framebuffers are
576 * already checked for this in the tegra_plane_atomic_check()
577 * function, so it's safe to ignore the V-plane pitch here.
578 */
579 if (i < 2)
580 window.stride[i] = fb->pitches[i];
581 }
582
583 tegra_dc_setup_window(p, &window);
584}
585
586static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
587 .atomic_check = tegra_plane_atomic_check,
588 .atomic_disable = tegra_plane_atomic_disable,
589 .atomic_update = tegra_plane_atomic_update,
590};
591
592static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
593{
594 /*
595 * Ideally this would use drm_crtc_mask(), but that would require the
596 * CRTC to already be in the mode_config's list of CRTCs. However, it
597 * will only be added to that list in the drm_crtc_init_with_planes()
598 * (in tegra_dc_init()), which in turn requires registration of these
599 * planes. So we have ourselves a nice little chicken and egg problem
600 * here.
601 *
602 * We work around this by manually creating the mask from the number
603 * of CRTCs that have been registered, and should therefore always be
604 * the same as drm_crtc_index() after registration.
605 */
606 return 1 << drm->mode_config.num_crtc;
607}
608
609static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
610 struct tegra_dc *dc)
611{
612 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
613 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
614 struct tegra_plane *plane;
615 unsigned int num_formats;
616 const u64 *modifiers;
617 const u32 *formats;
618 int err;
619
620 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
621 if (!plane)
622 return ERR_PTR(-ENOMEM);
623
624 /* Always use window A as primary window */
625 plane->offset = 0xa00;
626 plane->index = 0;
627 plane->dc = dc;
628
629 num_formats = dc->soc->num_primary_formats;
630 formats = dc->soc->primary_formats;
631 modifiers = dc->soc->modifiers;
632
633 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
634 &tegra_plane_funcs, formats,
635 num_formats, modifiers, type, NULL);
636 if (err < 0) {
637 kfree(plane);
638 return ERR_PTR(err);
639 }
640
641 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
642
643 if (dc->soc->supports_blending)
644 drm_plane_create_zpos_property(&plane->base, 0, 0, 255);
645
646 return &plane->base;
647}
648
649static const u32 tegra_cursor_plane_formats[] = {
650 DRM_FORMAT_RGBA8888,
651};
652
653static int tegra_cursor_atomic_check(struct drm_plane *plane,
654 struct drm_plane_state *state)
655{
656 struct tegra_plane *tegra = to_tegra_plane(plane);
657 int err;
658
659 /* no need for further checks if the plane is being disabled */
660 if (!state->crtc)
661 return 0;
662
663 /* scaling not supported for cursor */
664 if ((state->src_w >> 16 != state->crtc_w) ||
665 (state->src_h >> 16 != state->crtc_h))
666 return -EINVAL;
667
668 /* only square cursors supported */
669 if (state->src_w != state->src_h)
670 return -EINVAL;
671
672 if (state->crtc_w != 32 && state->crtc_w != 64 &&
673 state->crtc_w != 128 && state->crtc_w != 256)
674 return -EINVAL;
675
676 err = tegra_plane_state_add(tegra, state);
677 if (err < 0)
678 return err;
679
680 return 0;
681}
682
683static void tegra_cursor_atomic_update(struct drm_plane *plane,
684 struct drm_plane_state *old_state)
685{
686 struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
687 struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
688 struct drm_plane_state *state = plane->state;
689 u32 value = CURSOR_CLIP_DISPLAY;
690
691 /* rien ne va plus */
692 if (!plane->state->crtc || !plane->state->fb)
693 return;
694
695 switch (state->crtc_w) {
696 case 32:
697 value |= CURSOR_SIZE_32x32;
698 break;
699
700 case 64:
701 value |= CURSOR_SIZE_64x64;
702 break;
703
704 case 128:
705 value |= CURSOR_SIZE_128x128;
706 break;
707
708 case 256:
709 value |= CURSOR_SIZE_256x256;
710 break;
711
712 default:
713 WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
714 state->crtc_h);
715 return;
716 }
717
718 value |= (bo->paddr >> 10) & 0x3fffff;
719 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
720
721#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
722 value = (bo->paddr >> 32) & 0x3;
723 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
724#endif
725
726 /* enable cursor and set blend mode */
727 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
728 value |= CURSOR_ENABLE;
729 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
730
731 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
732 value &= ~CURSOR_DST_BLEND_MASK;
733 value &= ~CURSOR_SRC_BLEND_MASK;
734 value |= CURSOR_MODE_NORMAL;
735 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
736 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
737 value |= CURSOR_ALPHA;
738 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
739
740 /* position the cursor */
741 value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
742 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
743}
744
745static void tegra_cursor_atomic_disable(struct drm_plane *plane,
746 struct drm_plane_state *old_state)
747{
748 struct tegra_dc *dc;
749 u32 value;
750
751 /* rien ne va plus */
752 if (!old_state || !old_state->crtc)
753 return;
754
755 dc = to_tegra_dc(old_state->crtc);
756
757 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
758 value &= ~CURSOR_ENABLE;
759 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
760}
761
762static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
763 .atomic_check = tegra_cursor_atomic_check,
764 .atomic_update = tegra_cursor_atomic_update,
765 .atomic_disable = tegra_cursor_atomic_disable,
766};
767
768static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
769 struct tegra_dc *dc)
770{
771 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
772 struct tegra_plane *plane;
773 unsigned int num_formats;
774 const u32 *formats;
775 int err;
776
777 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
778 if (!plane)
779 return ERR_PTR(-ENOMEM);
780
781 /*
782 * This index is kind of fake. The cursor isn't a regular plane, but
783 * its update and activation request bits in DC_CMD_STATE_CONTROL do
784 * use the same programming. Setting this fake index here allows the
785 * code in tegra_add_plane_state() to do the right thing without the
786 * need to special-casing the cursor plane.
787 */
788 plane->index = 6;
789 plane->dc = dc;
790
791 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
792 formats = tegra_cursor_plane_formats;
793
794 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
795 &tegra_plane_funcs, formats,
796 num_formats, NULL,
797 DRM_PLANE_TYPE_CURSOR, NULL);
798 if (err < 0) {
799 kfree(plane);
800 return ERR_PTR(err);
801 }
802
803 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
804
805 return &plane->base;
806}
807
808static const u32 tegra20_overlay_formats[] = {
809 DRM_FORMAT_ARGB4444,
810 DRM_FORMAT_ARGB1555,
811 DRM_FORMAT_RGB565,
812 DRM_FORMAT_RGBA5551,
813 DRM_FORMAT_ABGR8888,
814 DRM_FORMAT_ARGB8888,
815 /* non-native formats */
816 DRM_FORMAT_XRGB1555,
817 DRM_FORMAT_RGBX5551,
818 DRM_FORMAT_XBGR8888,
819 DRM_FORMAT_XRGB8888,
820 /* planar formats */
821 DRM_FORMAT_UYVY,
822 DRM_FORMAT_YUYV,
823 DRM_FORMAT_YUV420,
824 DRM_FORMAT_YUV422,
825};
826
827static const u32 tegra114_overlay_formats[] = {
828 DRM_FORMAT_ARGB4444,
829 DRM_FORMAT_ARGB1555,
830 DRM_FORMAT_RGB565,
831 DRM_FORMAT_RGBA5551,
832 DRM_FORMAT_ABGR8888,
833 DRM_FORMAT_ARGB8888,
834 /* new on Tegra114 */
835 DRM_FORMAT_ABGR4444,
836 DRM_FORMAT_ABGR1555,
837 DRM_FORMAT_BGRA5551,
838 DRM_FORMAT_XRGB1555,
839 DRM_FORMAT_RGBX5551,
840 DRM_FORMAT_XBGR1555,
841 DRM_FORMAT_BGRX5551,
842 DRM_FORMAT_BGR565,
843 DRM_FORMAT_BGRA8888,
844 DRM_FORMAT_RGBA8888,
845 DRM_FORMAT_XRGB8888,
846 DRM_FORMAT_XBGR8888,
847 /* planar formats */
848 DRM_FORMAT_UYVY,
849 DRM_FORMAT_YUYV,
850 DRM_FORMAT_YUV420,
851 DRM_FORMAT_YUV422,
852};
853
854static const u32 tegra124_overlay_formats[] = {
855 DRM_FORMAT_ARGB4444,
856 DRM_FORMAT_ARGB1555,
857 DRM_FORMAT_RGB565,
858 DRM_FORMAT_RGBA5551,
859 DRM_FORMAT_ABGR8888,
860 DRM_FORMAT_ARGB8888,
861 /* new on Tegra114 */
862 DRM_FORMAT_ABGR4444,
863 DRM_FORMAT_ABGR1555,
864 DRM_FORMAT_BGRA5551,
865 DRM_FORMAT_XRGB1555,
866 DRM_FORMAT_RGBX5551,
867 DRM_FORMAT_XBGR1555,
868 DRM_FORMAT_BGRX5551,
869 DRM_FORMAT_BGR565,
870 DRM_FORMAT_BGRA8888,
871 DRM_FORMAT_RGBA8888,
872 DRM_FORMAT_XRGB8888,
873 DRM_FORMAT_XBGR8888,
874 /* new on Tegra124 */
875 DRM_FORMAT_RGBX8888,
876 DRM_FORMAT_BGRX8888,
877 /* planar formats */
878 DRM_FORMAT_UYVY,
879 DRM_FORMAT_YUYV,
880 DRM_FORMAT_YUV420,
881 DRM_FORMAT_YUV422,
882};
883
884static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
885 struct tegra_dc *dc,
886 unsigned int index,
887 bool cursor)
888{
889 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
890 struct tegra_plane *plane;
891 unsigned int num_formats;
892 enum drm_plane_type type;
893 const u32 *formats;
894 int err;
895
896 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
897 if (!plane)
898 return ERR_PTR(-ENOMEM);
899
900 plane->offset = 0xa00 + 0x200 * index;
901 plane->index = index;
902 plane->dc = dc;
903
904 num_formats = dc->soc->num_overlay_formats;
905 formats = dc->soc->overlay_formats;
906
907 if (!cursor)
908 type = DRM_PLANE_TYPE_OVERLAY;
909 else
910 type = DRM_PLANE_TYPE_CURSOR;
911
912 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
913 &tegra_plane_funcs, formats,
914 num_formats, NULL, type, NULL);
915 if (err < 0) {
916 kfree(plane);
917 return ERR_PTR(err);
918 }
919
920 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
921
922 if (dc->soc->supports_blending)
923 drm_plane_create_zpos_property(&plane->base, 0, 0, 255);
924
925 return &plane->base;
926}
927
928static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
929 struct tegra_dc *dc)
930{
931 struct drm_plane *plane, *primary = NULL;
932 unsigned int i, j;
933
934 for (i = 0; i < dc->soc->num_wgrps; i++) {
935 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
936
937 if (wgrp->dc == dc->pipe) {
938 for (j = 0; j < wgrp->num_windows; j++) {
939 unsigned int index = wgrp->windows[j];
940
941 plane = tegra_shared_plane_create(drm, dc,
942 wgrp->index,
943 index);
944 if (IS_ERR(plane))
945 return plane;
946
947 /*
948 * Choose the first shared plane owned by this
949 * head as the primary plane.
950 */
951 if (!primary) {
952 plane->type = DRM_PLANE_TYPE_PRIMARY;
953 primary = plane;
954 }
955 }
956 }
957 }
958
959 return primary;
960}
961
962static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
963 struct tegra_dc *dc)
964{
965 struct drm_plane *planes[2], *primary;
966 unsigned int planes_num;
967 unsigned int i;
968 int err;
969
970 primary = tegra_primary_plane_create(drm, dc);
971 if (IS_ERR(primary))
972 return primary;
973
974 if (dc->soc->supports_cursor)
975 planes_num = 2;
976 else
977 planes_num = 1;
978
979 for (i = 0; i < planes_num; i++) {
980 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
981 false);
982 if (IS_ERR(planes[i])) {
983 err = PTR_ERR(planes[i]);
984
985 while (i--)
986 tegra_plane_funcs.destroy(planes[i]);
987
988 tegra_plane_funcs.destroy(primary);
989 return ERR_PTR(err);
990 }
991 }
992
993 return primary;
994}
995
996static void tegra_dc_destroy(struct drm_crtc *crtc)
997{
998 drm_crtc_cleanup(crtc);
999}
1000
1001static void tegra_crtc_reset(struct drm_crtc *crtc)
1002{
1003 struct tegra_dc_state *state;
1004
1005 if (crtc->state)
1006 __drm_atomic_helper_crtc_destroy_state(crtc->state);
1007
1008 kfree(crtc->state);
1009 crtc->state = NULL;
1010
1011 state = kzalloc(sizeof(*state), GFP_KERNEL);
1012 if (state) {
1013 crtc->state = &state->base;
1014 crtc->state->crtc = crtc;
1015 }
1016
1017 drm_crtc_vblank_reset(crtc);
1018}
1019
1020static struct drm_crtc_state *
1021tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1022{
1023 struct tegra_dc_state *state = to_dc_state(crtc->state);
1024 struct tegra_dc_state *copy;
1025
1026 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1027 if (!copy)
1028 return NULL;
1029
1030 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base);
1031 copy->clk = state->clk;
1032 copy->pclk = state->pclk;
1033 copy->div = state->div;
1034 copy->planes = state->planes;
1035
1036 return ©->base;
1037}
1038
1039static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1040 struct drm_crtc_state *state)
1041{
1042 __drm_atomic_helper_crtc_destroy_state(state);
1043 kfree(state);
1044}
1045
1046#define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1047
1048static const struct debugfs_reg32 tegra_dc_regs[] = {
1049 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1050 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1051 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1052 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1053 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1054 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1055 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1056 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1057 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1058 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1059 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1060 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1061 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1062 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1063 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1064 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1065 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1066 DEBUGFS_REG32(DC_CMD_INT_STATUS),
1067 DEBUGFS_REG32(DC_CMD_INT_MASK),
1068 DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1069 DEBUGFS_REG32(DC_CMD_INT_TYPE),
1070 DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1071 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1072 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1073 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1074 DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1075 DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1076 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1077 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1078 DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1079 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1080 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1081 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1082 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1083 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1084 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1085 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1086 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1087 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1088 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1089 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1090 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1091 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1092 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1093 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1094 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1095 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1096 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1097 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1098 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1099 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1100 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1101 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1102 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1103 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1104 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1105 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1106 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1107 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1108 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1109 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1110 DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1111 DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1112 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1113 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1114 DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1115 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1116 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1117 DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1118 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1119 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1120 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1121 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1122 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1123 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1124 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1125 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1126 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1127 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1128 DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1129 DEBUGFS_REG32(DC_DISP_ACTIVE),
1130 DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1131 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1132 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1133 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1134 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1135 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1136 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1137 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1138 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1139 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1140 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1141 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1142 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1143 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1144 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1145 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1146 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1147 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1148 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1149 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1150 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1151 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1152 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1153 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1154 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1155 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1156 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1157 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1158 DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1159 DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1160 DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1161 DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1162 DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1163 DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1164 DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1165 DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1166 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1167 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1168 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1169 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1170 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1171 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1172 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1173 DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1174 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1175 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1176 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1177 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1178 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1179 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1180 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1181 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1182 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1183 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1184 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1185 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1186 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1187 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1188 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1189 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1190 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1191 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1192 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1193 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1194 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1195 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1196 DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1197 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1198 DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1199 DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1200 DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1201 DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1202 DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1203 DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1204 DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1205 DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1206 DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1207 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1208 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1209 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1210 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1211 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1212 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1213 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1214 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1215 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1216 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1217 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1218 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1219 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1220 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1221 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1222 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1223 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1224 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1225 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1226 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1227 DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1228 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1229 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1230 DEBUGFS_REG32(DC_WIN_POSITION),
1231 DEBUGFS_REG32(DC_WIN_SIZE),
1232 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1233 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1234 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1235 DEBUGFS_REG32(DC_WIN_DDA_INC),
1236 DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1237 DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1238 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1239 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1240 DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1241 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1242 DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1243 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1244 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1245 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1246 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1247 DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1248 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1249 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1250 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1251 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1252 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1253 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1254 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1255 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1256 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1257 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1258 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1259 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1260 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1261};
1262
1263static int tegra_dc_show_regs(struct seq_file *s, void *data)
1264{
1265 struct drm_info_node *node = s->private;
1266 struct tegra_dc *dc = node->info_ent->data;
1267 unsigned int i;
1268 int err = 0;
1269
1270 drm_modeset_lock(&dc->base.mutex, NULL);
1271
1272 if (!dc->base.state->active) {
1273 err = -EBUSY;
1274 goto unlock;
1275 }
1276
1277 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1278 unsigned int offset = tegra_dc_regs[i].offset;
1279
1280 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1281 offset, tegra_dc_readl(dc, offset));
1282 }
1283
1284unlock:
1285 drm_modeset_unlock(&dc->base.mutex);
1286 return err;
1287}
1288
1289static int tegra_dc_show_crc(struct seq_file *s, void *data)
1290{
1291 struct drm_info_node *node = s->private;
1292 struct tegra_dc *dc = node->info_ent->data;
1293 int err = 0;
1294 u32 value;
1295
1296 drm_modeset_lock(&dc->base.mutex, NULL);
1297
1298 if (!dc->base.state->active) {
1299 err = -EBUSY;
1300 goto unlock;
1301 }
1302
1303 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1304 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1305 tegra_dc_commit(dc);
1306
1307 drm_crtc_wait_one_vblank(&dc->base);
1308 drm_crtc_wait_one_vblank(&dc->base);
1309
1310 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1311 seq_printf(s, "%08x\n", value);
1312
1313 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1314
1315unlock:
1316 drm_modeset_unlock(&dc->base.mutex);
1317 return err;
1318}
1319
1320static int tegra_dc_show_stats(struct seq_file *s, void *data)
1321{
1322 struct drm_info_node *node = s->private;
1323 struct tegra_dc *dc = node->info_ent->data;
1324
1325 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1326 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1327 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1328 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1329
1330 return 0;
1331}
1332
1333static struct drm_info_list debugfs_files[] = {
1334 { "regs", tegra_dc_show_regs, 0, NULL },
1335 { "crc", tegra_dc_show_crc, 0, NULL },
1336 { "stats", tegra_dc_show_stats, 0, NULL },
1337};
1338
1339static int tegra_dc_late_register(struct drm_crtc *crtc)
1340{
1341 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1342 struct drm_minor *minor = crtc->dev->primary;
1343 struct dentry *root;
1344 struct tegra_dc *dc = to_tegra_dc(crtc);
1345 int err;
1346
1347#ifdef CONFIG_DEBUG_FS
1348 root = crtc->debugfs_entry;
1349#else
1350 root = NULL;
1351#endif
1352
1353 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1354 GFP_KERNEL);
1355 if (!dc->debugfs_files)
1356 return -ENOMEM;
1357
1358 for (i = 0; i < count; i++)
1359 dc->debugfs_files[i].data = dc;
1360
1361 err = drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1362 if (err < 0)
1363 goto free;
1364
1365 return 0;
1366
1367free:
1368 kfree(dc->debugfs_files);
1369 dc->debugfs_files = NULL;
1370
1371 return err;
1372}
1373
1374static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1375{
1376 unsigned int count = ARRAY_SIZE(debugfs_files);
1377 struct drm_minor *minor = crtc->dev->primary;
1378 struct tegra_dc *dc = to_tegra_dc(crtc);
1379
1380 drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1381 kfree(dc->debugfs_files);
1382 dc->debugfs_files = NULL;
1383}
1384
1385static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1386{
1387 struct tegra_dc *dc = to_tegra_dc(crtc);
1388
1389 /* XXX vblank syncpoints don't work with nvdisplay yet */
1390 if (dc->syncpt && !dc->soc->has_nvdisplay)
1391 return host1x_syncpt_read(dc->syncpt);
1392
1393 /* fallback to software emulated VBLANK counter */
1394 return (u32)drm_crtc_vblank_count(&dc->base);
1395}
1396
1397static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1398{
1399 struct tegra_dc *dc = to_tegra_dc(crtc);
1400 u32 value;
1401
1402 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1403 value |= VBLANK_INT;
1404 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1405
1406 return 0;
1407}
1408
1409static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1410{
1411 struct tegra_dc *dc = to_tegra_dc(crtc);
1412 u32 value;
1413
1414 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1415 value &= ~VBLANK_INT;
1416 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1417}
1418
1419static const struct drm_crtc_funcs tegra_crtc_funcs = {
1420 .page_flip = drm_atomic_helper_page_flip,
1421 .set_config = drm_atomic_helper_set_config,
1422 .destroy = tegra_dc_destroy,
1423 .reset = tegra_crtc_reset,
1424 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1425 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1426 .late_register = tegra_dc_late_register,
1427 .early_unregister = tegra_dc_early_unregister,
1428 .get_vblank_counter = tegra_dc_get_vblank_counter,
1429 .enable_vblank = tegra_dc_enable_vblank,
1430 .disable_vblank = tegra_dc_disable_vblank,
1431};
1432
1433static int tegra_dc_set_timings(struct tegra_dc *dc,
1434 struct drm_display_mode *mode)
1435{
1436 unsigned int h_ref_to_sync = 1;
1437 unsigned int v_ref_to_sync = 1;
1438 unsigned long value;
1439
1440 if (!dc->soc->has_nvdisplay) {
1441 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1442
1443 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1444 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1445 }
1446
1447 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1448 ((mode->hsync_end - mode->hsync_start) << 0);
1449 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1450
1451 value = ((mode->vtotal - mode->vsync_end) << 16) |
1452 ((mode->htotal - mode->hsync_end) << 0);
1453 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1454
1455 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1456 ((mode->hsync_start - mode->hdisplay) << 0);
1457 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1458
1459 value = (mode->vdisplay << 16) | mode->hdisplay;
1460 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1461
1462 return 0;
1463}
1464
1465/**
1466 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1467 * state
1468 * @dc: display controller
1469 * @crtc_state: CRTC atomic state
1470 * @clk: parent clock for display controller
1471 * @pclk: pixel clock
1472 * @div: shift clock divider
1473 *
1474 * Returns:
1475 * 0 on success or a negative error-code on failure.
1476 */
1477int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1478 struct drm_crtc_state *crtc_state,
1479 struct clk *clk, unsigned long pclk,
1480 unsigned int div)
1481{
1482 struct tegra_dc_state *state = to_dc_state(crtc_state);
1483
1484 if (!clk_has_parent(dc->clk, clk))
1485 return -EINVAL;
1486
1487 state->clk = clk;
1488 state->pclk = pclk;
1489 state->div = div;
1490
1491 return 0;
1492}
1493
1494static void tegra_dc_commit_state(struct tegra_dc *dc,
1495 struct tegra_dc_state *state)
1496{
1497 u32 value;
1498 int err;
1499
1500 err = clk_set_parent(dc->clk, state->clk);
1501 if (err < 0)
1502 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1503
1504 /*
1505 * Outputs may not want to change the parent clock rate. This is only
1506 * relevant to Tegra20 where only a single display PLL is available.
1507 * Since that PLL would typically be used for HDMI, an internal LVDS
1508 * panel would need to be driven by some other clock such as PLL_P
1509 * which is shared with other peripherals. Changing the clock rate
1510 * should therefore be avoided.
1511 */
1512 if (state->pclk > 0) {
1513 err = clk_set_rate(state->clk, state->pclk);
1514 if (err < 0)
1515 dev_err(dc->dev,
1516 "failed to set clock rate to %lu Hz\n",
1517 state->pclk);
1518 }
1519
1520 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1521 state->div);
1522 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1523
1524 if (!dc->soc->has_nvdisplay) {
1525 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1526 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1527 }
1528
1529 err = clk_set_rate(dc->clk, state->pclk);
1530 if (err < 0)
1531 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1532 dc->clk, state->pclk, err);
1533}
1534
1535static void tegra_dc_stop(struct tegra_dc *dc)
1536{
1537 u32 value;
1538
1539 /* stop the display controller */
1540 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1541 value &= ~DISP_CTRL_MODE_MASK;
1542 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1543
1544 tegra_dc_commit(dc);
1545}
1546
1547static bool tegra_dc_idle(struct tegra_dc *dc)
1548{
1549 u32 value;
1550
1551 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1552
1553 return (value & DISP_CTRL_MODE_MASK) == 0;
1554}
1555
1556static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1557{
1558 timeout = jiffies + msecs_to_jiffies(timeout);
1559
1560 while (time_before(jiffies, timeout)) {
1561 if (tegra_dc_idle(dc))
1562 return 0;
1563
1564 usleep_range(1000, 2000);
1565 }
1566
1567 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1568 return -ETIMEDOUT;
1569}
1570
1571static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1572 struct drm_crtc_state *old_state)
1573{
1574 struct tegra_dc *dc = to_tegra_dc(crtc);
1575 u32 value;
1576
1577 if (!tegra_dc_idle(dc)) {
1578 tegra_dc_stop(dc);
1579
1580 /*
1581 * Ignore the return value, there isn't anything useful to do
1582 * in case this fails.
1583 */
1584 tegra_dc_wait_idle(dc, 100);
1585 }
1586
1587 /*
1588 * This should really be part of the RGB encoder driver, but clearing
1589 * these bits has the side-effect of stopping the display controller.
1590 * When that happens no VBLANK interrupts will be raised. At the same
1591 * time the encoder is disabled before the display controller, so the
1592 * above code is always going to timeout waiting for the controller
1593 * to go idle.
1594 *
1595 * Given the close coupling between the RGB encoder and the display
1596 * controller doing it here is still kind of okay. None of the other
1597 * encoder drivers require these bits to be cleared.
1598 *
1599 * XXX: Perhaps given that the display controller is switched off at
1600 * this point anyway maybe clearing these bits isn't even useful for
1601 * the RGB encoder?
1602 */
1603 if (dc->rgb) {
1604 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1605 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1606 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1607 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1608 }
1609
1610 tegra_dc_stats_reset(&dc->stats);
1611 drm_crtc_vblank_off(crtc);
1612
1613 spin_lock_irq(&crtc->dev->event_lock);
1614
1615 if (crtc->state->event) {
1616 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1617 crtc->state->event = NULL;
1618 }
1619
1620 spin_unlock_irq(&crtc->dev->event_lock);
1621
1622 pm_runtime_put_sync(dc->dev);
1623}
1624
1625static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1626 struct drm_crtc_state *old_state)
1627{
1628 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1629 struct tegra_dc_state *state = to_dc_state(crtc->state);
1630 struct tegra_dc *dc = to_tegra_dc(crtc);
1631 u32 value;
1632
1633 pm_runtime_get_sync(dc->dev);
1634
1635 /* initialize display controller */
1636 if (dc->syncpt) {
1637 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1638
1639 if (dc->soc->has_nvdisplay)
1640 enable = 1 << 31;
1641 else
1642 enable = 1 << 8;
1643
1644 value = SYNCPT_CNTRL_NO_STALL;
1645 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1646
1647 value = enable | syncpt;
1648 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1649 }
1650
1651 if (dc->soc->has_nvdisplay) {
1652 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1653 DSC_OBUF_UF_INT;
1654 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1655
1656 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1657 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1658 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1659 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1660 VBLANK_INT | FRAME_END_INT;
1661 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1662
1663 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1664 FRAME_END_INT;
1665 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1666
1667 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1668 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1669
1670 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1671 } else {
1672 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1673 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1674 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1675
1676 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1677 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1678 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1679
1680 /* initialize timer */
1681 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1682 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1683 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1684
1685 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1686 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1687 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1688
1689 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1690 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1691 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1692
1693 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1694 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1695 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1696 }
1697
1698 if (dc->soc->supports_background_color)
1699 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1700 else
1701 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1702
1703 /* apply PLL and pixel clock changes */
1704 tegra_dc_commit_state(dc, state);
1705
1706 /* program display mode */
1707 tegra_dc_set_timings(dc, mode);
1708
1709 /* interlacing isn't supported yet, so disable it */
1710 if (dc->soc->supports_interlacing) {
1711 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1712 value &= ~INTERLACE_ENABLE;
1713 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1714 }
1715
1716 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1717 value &= ~DISP_CTRL_MODE_MASK;
1718 value |= DISP_CTRL_MODE_C_DISPLAY;
1719 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1720
1721 if (!dc->soc->has_nvdisplay) {
1722 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1723 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1724 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1725 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1726 }
1727
1728 /* enable underflow reporting and display red for missing pixels */
1729 if (dc->soc->has_nvdisplay) {
1730 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1731 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1732 }
1733
1734 tegra_dc_commit(dc);
1735
1736 drm_crtc_vblank_on(crtc);
1737}
1738
1739static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1740 struct drm_crtc_state *old_crtc_state)
1741{
1742 unsigned long flags;
1743
1744 if (crtc->state->event) {
1745 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1746
1747 if (drm_crtc_vblank_get(crtc) != 0)
1748 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1749 else
1750 drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1751
1752 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1753
1754 crtc->state->event = NULL;
1755 }
1756}
1757
1758static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1759 struct drm_crtc_state *old_crtc_state)
1760{
1761 struct tegra_dc_state *state = to_dc_state(crtc->state);
1762 struct tegra_dc *dc = to_tegra_dc(crtc);
1763 u32 value;
1764
1765 value = state->planes << 8 | GENERAL_UPDATE;
1766 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1767 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1768
1769 value = state->planes | GENERAL_ACT_REQ;
1770 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1771 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1772}
1773
1774static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1775 .atomic_begin = tegra_crtc_atomic_begin,
1776 .atomic_flush = tegra_crtc_atomic_flush,
1777 .atomic_enable = tegra_crtc_atomic_enable,
1778 .atomic_disable = tegra_crtc_atomic_disable,
1779};
1780
1781static irqreturn_t tegra_dc_irq(int irq, void *data)
1782{
1783 struct tegra_dc *dc = data;
1784 unsigned long status;
1785
1786 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1787 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1788
1789 if (status & FRAME_END_INT) {
1790 /*
1791 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1792 */
1793 dc->stats.frames++;
1794 }
1795
1796 if (status & VBLANK_INT) {
1797 /*
1798 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1799 */
1800 drm_crtc_handle_vblank(&dc->base);
1801 dc->stats.vblank++;
1802 }
1803
1804 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1805 /*
1806 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1807 */
1808 dc->stats.underflow++;
1809 }
1810
1811 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1812 /*
1813 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1814 */
1815 dc->stats.overflow++;
1816 }
1817
1818 if (status & HEAD_UF_INT) {
1819 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1820 dc->stats.underflow++;
1821 }
1822
1823 return IRQ_HANDLED;
1824}
1825
1826static int tegra_dc_init(struct host1x_client *client)
1827{
1828 struct drm_device *drm = dev_get_drvdata(client->parent);
1829 struct iommu_group *group = iommu_group_get(client->dev);
1830 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1831 struct tegra_dc *dc = host1x_client_to_dc(client);
1832 struct tegra_drm *tegra = drm->dev_private;
1833 struct drm_plane *primary = NULL;
1834 struct drm_plane *cursor = NULL;
1835 int err;
1836
1837 dc->syncpt = host1x_syncpt_request(client, flags);
1838 if (!dc->syncpt)
1839 dev_warn(dc->dev, "failed to allocate syncpoint\n");
1840
1841 if (group && tegra->domain) {
1842 if (group != tegra->group) {
1843 err = iommu_attach_group(tegra->domain, group);
1844 if (err < 0) {
1845 dev_err(dc->dev,
1846 "failed to attach to domain: %d\n",
1847 err);
1848 return err;
1849 }
1850
1851 tegra->group = group;
1852 }
1853
1854 dc->domain = tegra->domain;
1855 }
1856
1857 if (dc->soc->wgrps)
1858 primary = tegra_dc_add_shared_planes(drm, dc);
1859 else
1860 primary = tegra_dc_add_planes(drm, dc);
1861
1862 if (IS_ERR(primary)) {
1863 err = PTR_ERR(primary);
1864 goto cleanup;
1865 }
1866
1867 if (dc->soc->supports_cursor) {
1868 cursor = tegra_dc_cursor_plane_create(drm, dc);
1869 if (IS_ERR(cursor)) {
1870 err = PTR_ERR(cursor);
1871 goto cleanup;
1872 }
1873 } else {
1874 /* dedicate one overlay to mouse cursor */
1875 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
1876 if (IS_ERR(cursor)) {
1877 err = PTR_ERR(cursor);
1878 goto cleanup;
1879 }
1880 }
1881
1882 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1883 &tegra_crtc_funcs, NULL);
1884 if (err < 0)
1885 goto cleanup;
1886
1887 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1888
1889 /*
1890 * Keep track of the minimum pitch alignment across all display
1891 * controllers.
1892 */
1893 if (dc->soc->pitch_align > tegra->pitch_align)
1894 tegra->pitch_align = dc->soc->pitch_align;
1895
1896 err = tegra_dc_rgb_init(drm, dc);
1897 if (err < 0 && err != -ENODEV) {
1898 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1899 goto cleanup;
1900 }
1901
1902 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1903 dev_name(dc->dev), dc);
1904 if (err < 0) {
1905 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1906 err);
1907 goto cleanup;
1908 }
1909
1910 return 0;
1911
1912cleanup:
1913 if (!IS_ERR_OR_NULL(cursor))
1914 drm_plane_cleanup(cursor);
1915
1916 if (!IS_ERR(primary))
1917 drm_plane_cleanup(primary);
1918
1919 if (group && dc->domain) {
1920 if (group == tegra->group) {
1921 iommu_detach_group(dc->domain, group);
1922 tegra->group = NULL;
1923 }
1924
1925 dc->domain = NULL;
1926 }
1927
1928 return err;
1929}
1930
1931static int tegra_dc_exit(struct host1x_client *client)
1932{
1933 struct drm_device *drm = dev_get_drvdata(client->parent);
1934 struct iommu_group *group = iommu_group_get(client->dev);
1935 struct tegra_dc *dc = host1x_client_to_dc(client);
1936 struct tegra_drm *tegra = drm->dev_private;
1937 int err;
1938
1939 devm_free_irq(dc->dev, dc->irq, dc);
1940
1941 err = tegra_dc_rgb_exit(dc);
1942 if (err) {
1943 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1944 return err;
1945 }
1946
1947 if (group && dc->domain) {
1948 if (group == tegra->group) {
1949 iommu_detach_group(dc->domain, group);
1950 tegra->group = NULL;
1951 }
1952
1953 dc->domain = NULL;
1954 }
1955
1956 host1x_syncpt_free(dc->syncpt);
1957
1958 return 0;
1959}
1960
1961static const struct host1x_client_ops dc_client_ops = {
1962 .init = tegra_dc_init,
1963 .exit = tegra_dc_exit,
1964};
1965
1966static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1967 .supports_background_color = false,
1968 .supports_interlacing = false,
1969 .supports_cursor = false,
1970 .supports_block_linear = false,
1971 .supports_blending = false,
1972 .pitch_align = 8,
1973 .has_powergate = false,
1974 .coupled_pm = true,
1975 .has_nvdisplay = false,
1976 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
1977 .primary_formats = tegra20_primary_formats,
1978 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
1979 .overlay_formats = tegra20_overlay_formats,
1980 .modifiers = tegra20_modifiers,
1981};
1982
1983static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1984 .supports_background_color = false,
1985 .supports_interlacing = false,
1986 .supports_cursor = false,
1987 .supports_block_linear = false,
1988 .supports_blending = false,
1989 .pitch_align = 8,
1990 .has_powergate = false,
1991 .coupled_pm = false,
1992 .has_nvdisplay = false,
1993 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
1994 .primary_formats = tegra20_primary_formats,
1995 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
1996 .overlay_formats = tegra20_overlay_formats,
1997 .modifiers = tegra20_modifiers,
1998};
1999
2000static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2001 .supports_background_color = false,
2002 .supports_interlacing = false,
2003 .supports_cursor = false,
2004 .supports_block_linear = false,
2005 .supports_blending = false,
2006 .pitch_align = 64,
2007 .has_powergate = true,
2008 .coupled_pm = false,
2009 .has_nvdisplay = false,
2010 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2011 .primary_formats = tegra114_primary_formats,
2012 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2013 .overlay_formats = tegra114_overlay_formats,
2014 .modifiers = tegra20_modifiers,
2015};
2016
2017static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2018 .supports_background_color = true,
2019 .supports_interlacing = true,
2020 .supports_cursor = true,
2021 .supports_block_linear = true,
2022 .supports_blending = true,
2023 .pitch_align = 64,
2024 .has_powergate = true,
2025 .coupled_pm = false,
2026 .has_nvdisplay = false,
2027 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2028 .primary_formats = tegra124_primary_formats,
2029 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2030 .overlay_formats = tegra124_overlay_formats,
2031 .modifiers = tegra124_modifiers,
2032};
2033
2034static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2035 .supports_background_color = true,
2036 .supports_interlacing = true,
2037 .supports_cursor = true,
2038 .supports_block_linear = true,
2039 .supports_blending = true,
2040 .pitch_align = 64,
2041 .has_powergate = true,
2042 .coupled_pm = false,
2043 .has_nvdisplay = false,
2044 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2045 .primary_formats = tegra114_primary_formats,
2046 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2047 .overlay_formats = tegra114_overlay_formats,
2048 .modifiers = tegra124_modifiers,
2049};
2050
2051static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2052 {
2053 .index = 0,
2054 .dc = 0,
2055 .windows = (const unsigned int[]) { 0 },
2056 .num_windows = 1,
2057 }, {
2058 .index = 1,
2059 .dc = 1,
2060 .windows = (const unsigned int[]) { 1 },
2061 .num_windows = 1,
2062 }, {
2063 .index = 2,
2064 .dc = 1,
2065 .windows = (const unsigned int[]) { 2 },
2066 .num_windows = 1,
2067 }, {
2068 .index = 3,
2069 .dc = 2,
2070 .windows = (const unsigned int[]) { 3 },
2071 .num_windows = 1,
2072 }, {
2073 .index = 4,
2074 .dc = 2,
2075 .windows = (const unsigned int[]) { 4 },
2076 .num_windows = 1,
2077 }, {
2078 .index = 5,
2079 .dc = 2,
2080 .windows = (const unsigned int[]) { 5 },
2081 .num_windows = 1,
2082 },
2083};
2084
2085static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2086 .supports_background_color = true,
2087 .supports_interlacing = true,
2088 .supports_cursor = true,
2089 .supports_block_linear = true,
2090 .supports_blending = true,
2091 .pitch_align = 64,
2092 .has_powergate = false,
2093 .coupled_pm = false,
2094 .has_nvdisplay = true,
2095 .wgrps = tegra186_dc_wgrps,
2096 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2097};
2098
2099static const struct of_device_id tegra_dc_of_match[] = {
2100 {
2101 .compatible = "nvidia,tegra186-dc",
2102 .data = &tegra186_dc_soc_info,
2103 }, {
2104 .compatible = "nvidia,tegra210-dc",
2105 .data = &tegra210_dc_soc_info,
2106 }, {
2107 .compatible = "nvidia,tegra124-dc",
2108 .data = &tegra124_dc_soc_info,
2109 }, {
2110 .compatible = "nvidia,tegra114-dc",
2111 .data = &tegra114_dc_soc_info,
2112 }, {
2113 .compatible = "nvidia,tegra30-dc",
2114 .data = &tegra30_dc_soc_info,
2115 }, {
2116 .compatible = "nvidia,tegra20-dc",
2117 .data = &tegra20_dc_soc_info,
2118 }, {
2119 /* sentinel */
2120 }
2121};
2122MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2123
2124static int tegra_dc_parse_dt(struct tegra_dc *dc)
2125{
2126 struct device_node *np;
2127 u32 value = 0;
2128 int err;
2129
2130 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2131 if (err < 0) {
2132 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2133
2134 /*
2135 * If the nvidia,head property isn't present, try to find the
2136 * correct head number by looking up the position of this
2137 * display controller's node within the device tree. Assuming
2138 * that the nodes are ordered properly in the DTS file and
2139 * that the translation into a flattened device tree blob
2140 * preserves that ordering this will actually yield the right
2141 * head number.
2142 *
2143 * If those assumptions don't hold, this will still work for
2144 * cases where only a single display controller is used.
2145 */
2146 for_each_matching_node(np, tegra_dc_of_match) {
2147 if (np == dc->dev->of_node) {
2148 of_node_put(np);
2149 break;
2150 }
2151
2152 value++;
2153 }
2154 }
2155
2156 dc->pipe = value;
2157
2158 return 0;
2159}
2160
2161static int tegra_dc_match_by_pipe(struct device *dev, void *data)
2162{
2163 struct tegra_dc *dc = dev_get_drvdata(dev);
2164 unsigned int pipe = (unsigned long)data;
2165
2166 return dc->pipe == pipe;
2167}
2168
2169static int tegra_dc_couple(struct tegra_dc *dc)
2170{
2171 /*
2172 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2173 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2174 * POWER_CONTROL registers during CRTC enabling.
2175 */
2176 if (dc->soc->coupled_pm && dc->pipe == 1) {
2177 u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE;
2178 struct device_link *link;
2179 struct device *partner;
2180
2181 partner = driver_find_device(dc->dev->driver, NULL, NULL,
2182 tegra_dc_match_by_pipe);
2183 if (!partner)
2184 return -EPROBE_DEFER;
2185
2186 link = device_link_add(dc->dev, partner, flags);
2187 if (!link) {
2188 dev_err(dc->dev, "failed to link controllers\n");
2189 return -EINVAL;
2190 }
2191
2192 dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2193 }
2194
2195 return 0;
2196}
2197
2198static int tegra_dc_probe(struct platform_device *pdev)
2199{
2200 struct resource *regs;
2201 struct tegra_dc *dc;
2202 int err;
2203
2204 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2205 if (!dc)
2206 return -ENOMEM;
2207
2208 dc->soc = of_device_get_match_data(&pdev->dev);
2209
2210 INIT_LIST_HEAD(&dc->list);
2211 dc->dev = &pdev->dev;
2212
2213 err = tegra_dc_parse_dt(dc);
2214 if (err < 0)
2215 return err;
2216
2217 err = tegra_dc_couple(dc);
2218 if (err < 0)
2219 return err;
2220
2221 dc->clk = devm_clk_get(&pdev->dev, NULL);
2222 if (IS_ERR(dc->clk)) {
2223 dev_err(&pdev->dev, "failed to get clock\n");
2224 return PTR_ERR(dc->clk);
2225 }
2226
2227 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2228 if (IS_ERR(dc->rst)) {
2229 dev_err(&pdev->dev, "failed to get reset\n");
2230 return PTR_ERR(dc->rst);
2231 }
2232
2233 /* assert reset and disable clock */
2234 err = clk_prepare_enable(dc->clk);
2235 if (err < 0)
2236 return err;
2237
2238 usleep_range(2000, 4000);
2239
2240 err = reset_control_assert(dc->rst);
2241 if (err < 0)
2242 return err;
2243
2244 usleep_range(2000, 4000);
2245
2246 clk_disable_unprepare(dc->clk);
2247
2248 if (dc->soc->has_powergate) {
2249 if (dc->pipe == 0)
2250 dc->powergate = TEGRA_POWERGATE_DIS;
2251 else
2252 dc->powergate = TEGRA_POWERGATE_DISB;
2253
2254 tegra_powergate_power_off(dc->powergate);
2255 }
2256
2257 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2258 dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2259 if (IS_ERR(dc->regs))
2260 return PTR_ERR(dc->regs);
2261
2262 dc->irq = platform_get_irq(pdev, 0);
2263 if (dc->irq < 0) {
2264 dev_err(&pdev->dev, "failed to get IRQ\n");
2265 return -ENXIO;
2266 }
2267
2268 err = tegra_dc_rgb_probe(dc);
2269 if (err < 0 && err != -ENODEV) {
2270 dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2271 return err;
2272 }
2273
2274 platform_set_drvdata(pdev, dc);
2275 pm_runtime_enable(&pdev->dev);
2276
2277 INIT_LIST_HEAD(&dc->client.list);
2278 dc->client.ops = &dc_client_ops;
2279 dc->client.dev = &pdev->dev;
2280
2281 err = host1x_client_register(&dc->client);
2282 if (err < 0) {
2283 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2284 err);
2285 return err;
2286 }
2287
2288 return 0;
2289}
2290
2291static int tegra_dc_remove(struct platform_device *pdev)
2292{
2293 struct tegra_dc *dc = platform_get_drvdata(pdev);
2294 int err;
2295
2296 err = host1x_client_unregister(&dc->client);
2297 if (err < 0) {
2298 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2299 err);
2300 return err;
2301 }
2302
2303 err = tegra_dc_rgb_remove(dc);
2304 if (err < 0) {
2305 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2306 return err;
2307 }
2308
2309 pm_runtime_disable(&pdev->dev);
2310
2311 return 0;
2312}
2313
2314#ifdef CONFIG_PM
2315static int tegra_dc_suspend(struct device *dev)
2316{
2317 struct tegra_dc *dc = dev_get_drvdata(dev);
2318 int err;
2319
2320 err = reset_control_assert(dc->rst);
2321 if (err < 0) {
2322 dev_err(dev, "failed to assert reset: %d\n", err);
2323 return err;
2324 }
2325
2326 if (dc->soc->has_powergate)
2327 tegra_powergate_power_off(dc->powergate);
2328
2329 clk_disable_unprepare(dc->clk);
2330
2331 return 0;
2332}
2333
2334static int tegra_dc_resume(struct device *dev)
2335{
2336 struct tegra_dc *dc = dev_get_drvdata(dev);
2337 int err;
2338
2339 if (dc->soc->has_powergate) {
2340 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2341 dc->rst);
2342 if (err < 0) {
2343 dev_err(dev, "failed to power partition: %d\n", err);
2344 return err;
2345 }
2346 } else {
2347 err = clk_prepare_enable(dc->clk);
2348 if (err < 0) {
2349 dev_err(dev, "failed to enable clock: %d\n", err);
2350 return err;
2351 }
2352
2353 err = reset_control_deassert(dc->rst);
2354 if (err < 0) {
2355 dev_err(dev, "failed to deassert reset: %d\n", err);
2356 return err;
2357 }
2358 }
2359
2360 return 0;
2361}
2362#endif
2363
2364static const struct dev_pm_ops tegra_dc_pm_ops = {
2365 SET_RUNTIME_PM_OPS(tegra_dc_suspend, tegra_dc_resume, NULL)
2366};
2367
2368struct platform_driver tegra_dc_driver = {
2369 .driver = {
2370 .name = "tegra-dc",
2371 .of_match_table = tegra_dc_of_match,
2372 .pm = &tegra_dc_pm_ops,
2373 },
2374 .probe = tegra_dc_probe,
2375 .remove = tegra_dc_remove,
2376};