Loading...
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drmP.h>
29#include <drm/drm_vma_manager.h>
30#include <drm/i915_drm.h>
31#include "i915_drv.h"
32#include "i915_vgpu.h"
33#include "i915_trace.h"
34#include "intel_drv.h"
35#include <linux/shmem_fs.h>
36#include <linux/slab.h>
37#include <linux/swap.h>
38#include <linux/pci.h>
39#include <linux/dma-buf.h>
40
41#define RQ_BUG_ON(expr)
42
43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45static void
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81}
82
83static int
84i915_gem_wait_for_error(struct i915_gpu_error *error)
85{
86 int ret;
87
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107#undef EXIT_COND
108
109 return 0;
110}
111
112int i915_mutex_lock_interruptible(struct drm_device *dev)
113{
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127}
128
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132{
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->gtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153}
154
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157{
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 put_page(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 put_page(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360}
361
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372}
373
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379{
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401}
402
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413}
414
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426}
427
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
454static inline int
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519static int
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540}
541
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591}
592
593static int
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598{
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676}
677
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686{
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728out:
729 drm_gem_object_unreference(&obj->base);
730unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733}
734
735/* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744{
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756}
757
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762static int
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767{
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825out:
826 return ret;
827}
828
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833static int
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839{
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858}
859
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862static int
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868{
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892}
893
894static int
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899{
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 needs_clflush_after = true;
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014 else
1015 obj->cache_dirty = true;
1016
1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 return ret;
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 struct drm_file *file)
1029{
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_i915_gem_pwrite *args = data;
1032 struct drm_i915_gem_object *obj;
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
1039 to_user_ptr(args->data_ptr),
1040 args->size))
1041 return -EFAULT;
1042
1043 if (likely(!i915.prefault_disable)) {
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
1049
1050 intel_runtime_pm_get(dev_priv);
1051
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto put_rpm;
1055
1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 if (&obj->base == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
1060 }
1061
1062 /* Bounds check destination. */
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
1065 ret = -EINVAL;
1066 goto out;
1067 }
1068
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079 ret = -EFAULT;
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
1093 }
1094
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
1101
1102out:
1103 drm_gem_object_unreference(&obj->base);
1104unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
1109 return ret;
1110}
1111
1112int
1113i915_gem_check_wedge(struct i915_gpu_error *error,
1114 bool interruptible)
1115{
1116 if (i915_reset_in_progress(error)) {
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
1124 return -EIO;
1125
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
1133 }
1134
1135 return 0;
1136}
1137
1138static void fake_irq(unsigned long data)
1139{
1140 wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
1144 struct intel_engine_cs *ring)
1145{
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
1149static unsigned long local_clock_us(unsigned *cpu)
1150{
1151 unsigned long t;
1152
1153 /* Cheaply and approximately convert from nanoseconds to microseconds.
1154 * The result and subsequent calculations are also defined in the same
1155 * approximate microseconds units. The principal source of timing
1156 * error here is from the simple truncation.
1157 *
1158 * Note that local_clock() is only defined wrt to the current CPU;
1159 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 * blocking preemption for the entire busywait, we can detect the CPU
1161 * switch and use that as indicator of system load and a reason to
1162 * stop busywaiting, see busywait_stop().
1163 */
1164 *cpu = get_cpu();
1165 t = local_clock() >> 10;
1166 put_cpu();
1167
1168 return t;
1169}
1170
1171static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172{
1173 unsigned this_cpu;
1174
1175 if (time_after(local_clock_us(&this_cpu), timeout))
1176 return true;
1177
1178 return this_cpu != cpu;
1179}
1180
1181static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182{
1183 unsigned long timeout;
1184 unsigned cpu;
1185
1186 /* When waiting for high frequency requests, e.g. during synchronous
1187 * rendering split between the CPU and GPU, the finite amount of time
1188 * required to set up the irq and wait upon it limits the response
1189 * rate. By busywaiting on the request completion for a short while we
1190 * can service the high frequency waits as quick as possible. However,
1191 * if it is a slow request, we want to sleep as quickly as possible.
1192 * The tradeoff between waiting and sleeping is roughly the time it
1193 * takes to sleep on a request, on the order of a microsecond.
1194 */
1195
1196 if (req->ring->irq_refcount)
1197 return -EBUSY;
1198
1199 /* Only spin if we know the GPU is processing this request */
1200 if (!i915_gem_request_started(req, true))
1201 return -EAGAIN;
1202
1203 timeout = local_clock_us(&cpu) + 5;
1204 while (!need_resched()) {
1205 if (i915_gem_request_completed(req, true))
1206 return 0;
1207
1208 if (signal_pending_state(state, current))
1209 break;
1210
1211 if (busywait_stop(timeout, cpu))
1212 break;
1213
1214 cpu_relax_lowlatency();
1215 }
1216
1217 if (i915_gem_request_completed(req, false))
1218 return 0;
1219
1220 return -EAGAIN;
1221}
1222
1223/**
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
1237 * Returns 0 if the request was found within the alloted time. Else returns the
1238 * errno with remaining time filled in timeout argument.
1239 */
1240int __i915_wait_request(struct drm_i915_gem_request *req,
1241 unsigned reset_counter,
1242 bool interruptible,
1243 s64 *timeout,
1244 struct intel_rps_client *rps)
1245{
1246 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247 struct drm_device *dev = ring->dev;
1248 struct drm_i915_private *dev_priv = dev->dev_private;
1249 const bool irq_test_in_progress =
1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252 DEFINE_WAIT(wait);
1253 unsigned long timeout_expire;
1254 s64 before = 0; /* Only to silence a compiler warning. */
1255 int ret;
1256
1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259 if (list_empty(&req->list))
1260 return 0;
1261
1262 if (i915_gem_request_completed(req, true))
1263 return 0;
1264
1265 timeout_expire = 0;
1266 if (timeout) {
1267 if (WARN_ON(*timeout < 0))
1268 return -EINVAL;
1269
1270 if (*timeout == 0)
1271 return -ETIME;
1272
1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274
1275 /*
1276 * Record current time in case interrupted by signal, or wedged.
1277 */
1278 before = ktime_get_raw_ns();
1279 }
1280
1281 if (INTEL_INFO(dev_priv)->gen >= 6)
1282 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283
1284 trace_i915_gem_request_wait_begin(req);
1285
1286 /* Optimistic spin for the next jiffie before touching IRQs */
1287 ret = __i915_spin_request(req, state);
1288 if (ret == 0)
1289 goto out;
1290
1291 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1292 ret = -ENODEV;
1293 goto out;
1294 }
1295
1296 for (;;) {
1297 struct timer_list timer;
1298
1299 prepare_to_wait(&ring->irq_queue, &wait, state);
1300
1301 /* We need to check whether any gpu reset happened in between
1302 * the caller grabbing the seqno and now ... */
1303 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305 * is truely gone. */
1306 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307 if (ret == 0)
1308 ret = -EAGAIN;
1309 break;
1310 }
1311
1312 if (i915_gem_request_completed(req, false)) {
1313 ret = 0;
1314 break;
1315 }
1316
1317 if (signal_pending_state(state, current)) {
1318 ret = -ERESTARTSYS;
1319 break;
1320 }
1321
1322 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323 ret = -ETIME;
1324 break;
1325 }
1326
1327 timer.function = NULL;
1328 if (timeout || missed_irq(dev_priv, ring)) {
1329 unsigned long expire;
1330
1331 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1333 mod_timer(&timer, expire);
1334 }
1335
1336 io_schedule();
1337
1338 if (timer.function) {
1339 del_singleshot_timer_sync(&timer);
1340 destroy_timer_on_stack(&timer);
1341 }
1342 }
1343 if (!irq_test_in_progress)
1344 ring->irq_put(ring);
1345
1346 finish_wait(&ring->irq_queue, &wait);
1347
1348out:
1349 trace_i915_gem_request_wait_end(req);
1350
1351 if (timeout) {
1352 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353
1354 *timeout = tres < 0 ? 0 : tres;
1355
1356 /*
1357 * Apparently ktime isn't accurate enough and occasionally has a
1358 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359 * things up to make the test happy. We allow up to 1 jiffy.
1360 *
1361 * This is a regrssion from the timespec->ktime conversion.
1362 */
1363 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364 *timeout = 0;
1365 }
1366
1367 return ret;
1368}
1369
1370int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371 struct drm_file *file)
1372{
1373 struct drm_i915_private *dev_private;
1374 struct drm_i915_file_private *file_priv;
1375
1376 WARN_ON(!req || !file || req->file_priv);
1377
1378 if (!req || !file)
1379 return -EINVAL;
1380
1381 if (req->file_priv)
1382 return -EINVAL;
1383
1384 dev_private = req->ring->dev->dev_private;
1385 file_priv = file->driver_priv;
1386
1387 spin_lock(&file_priv->mm.lock);
1388 req->file_priv = file_priv;
1389 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1390 spin_unlock(&file_priv->mm.lock);
1391
1392 req->pid = get_pid(task_pid(current));
1393
1394 return 0;
1395}
1396
1397static inline void
1398i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1399{
1400 struct drm_i915_file_private *file_priv = request->file_priv;
1401
1402 if (!file_priv)
1403 return;
1404
1405 spin_lock(&file_priv->mm.lock);
1406 list_del(&request->client_list);
1407 request->file_priv = NULL;
1408 spin_unlock(&file_priv->mm.lock);
1409
1410 put_pid(request->pid);
1411 request->pid = NULL;
1412}
1413
1414static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1415{
1416 trace_i915_gem_request_retire(request);
1417
1418 /* We know the GPU must have read the request to have
1419 * sent us the seqno + interrupt, so use the position
1420 * of tail of the request to update the last known position
1421 * of the GPU head.
1422 *
1423 * Note this requires that we are always called in request
1424 * completion order.
1425 */
1426 request->ringbuf->last_retired_head = request->postfix;
1427
1428 list_del_init(&request->list);
1429 i915_gem_request_remove_from_client(request);
1430
1431 i915_gem_request_unreference(request);
1432}
1433
1434static void
1435__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1436{
1437 struct intel_engine_cs *engine = req->ring;
1438 struct drm_i915_gem_request *tmp;
1439
1440 lockdep_assert_held(&engine->dev->struct_mutex);
1441
1442 if (list_empty(&req->list))
1443 return;
1444
1445 do {
1446 tmp = list_first_entry(&engine->request_list,
1447 typeof(*tmp), list);
1448
1449 i915_gem_request_retire(tmp);
1450 } while (tmp != req);
1451
1452 WARN_ON(i915_verify_lists(engine->dev));
1453}
1454
1455/**
1456 * Waits for a request to be signaled, and cleans up the
1457 * request and object lists appropriately for that event.
1458 */
1459int
1460i915_wait_request(struct drm_i915_gem_request *req)
1461{
1462 struct drm_device *dev;
1463 struct drm_i915_private *dev_priv;
1464 bool interruptible;
1465 int ret;
1466
1467 BUG_ON(req == NULL);
1468
1469 dev = req->ring->dev;
1470 dev_priv = dev->dev_private;
1471 interruptible = dev_priv->mm.interruptible;
1472
1473 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1474
1475 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1476 if (ret)
1477 return ret;
1478
1479 ret = __i915_wait_request(req,
1480 atomic_read(&dev_priv->gpu_error.reset_counter),
1481 interruptible, NULL, NULL);
1482 if (ret)
1483 return ret;
1484
1485 __i915_gem_request_retire__upto(req);
1486 return 0;
1487}
1488
1489/**
1490 * Ensures that all rendering to the object has completed and the object is
1491 * safe to unbind from the GTT or access from the CPU.
1492 */
1493int
1494i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1495 bool readonly)
1496{
1497 int ret, i;
1498
1499 if (!obj->active)
1500 return 0;
1501
1502 if (readonly) {
1503 if (obj->last_write_req != NULL) {
1504 ret = i915_wait_request(obj->last_write_req);
1505 if (ret)
1506 return ret;
1507
1508 i = obj->last_write_req->ring->id;
1509 if (obj->last_read_req[i] == obj->last_write_req)
1510 i915_gem_object_retire__read(obj, i);
1511 else
1512 i915_gem_object_retire__write(obj);
1513 }
1514 } else {
1515 for (i = 0; i < I915_NUM_RINGS; i++) {
1516 if (obj->last_read_req[i] == NULL)
1517 continue;
1518
1519 ret = i915_wait_request(obj->last_read_req[i]);
1520 if (ret)
1521 return ret;
1522
1523 i915_gem_object_retire__read(obj, i);
1524 }
1525 RQ_BUG_ON(obj->active);
1526 }
1527
1528 return 0;
1529}
1530
1531static void
1532i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1533 struct drm_i915_gem_request *req)
1534{
1535 int ring = req->ring->id;
1536
1537 if (obj->last_read_req[ring] == req)
1538 i915_gem_object_retire__read(obj, ring);
1539 else if (obj->last_write_req == req)
1540 i915_gem_object_retire__write(obj);
1541
1542 __i915_gem_request_retire__upto(req);
1543}
1544
1545/* A nonblocking variant of the above wait. This is a highly dangerous routine
1546 * as the object state may change during this call.
1547 */
1548static __must_check int
1549i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1550 struct intel_rps_client *rps,
1551 bool readonly)
1552{
1553 struct drm_device *dev = obj->base.dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1556 unsigned reset_counter;
1557 int ret, i, n = 0;
1558
1559 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1560 BUG_ON(!dev_priv->mm.interruptible);
1561
1562 if (!obj->active)
1563 return 0;
1564
1565 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1566 if (ret)
1567 return ret;
1568
1569 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1570
1571 if (readonly) {
1572 struct drm_i915_gem_request *req;
1573
1574 req = obj->last_write_req;
1575 if (req == NULL)
1576 return 0;
1577
1578 requests[n++] = i915_gem_request_reference(req);
1579 } else {
1580 for (i = 0; i < I915_NUM_RINGS; i++) {
1581 struct drm_i915_gem_request *req;
1582
1583 req = obj->last_read_req[i];
1584 if (req == NULL)
1585 continue;
1586
1587 requests[n++] = i915_gem_request_reference(req);
1588 }
1589 }
1590
1591 mutex_unlock(&dev->struct_mutex);
1592 for (i = 0; ret == 0 && i < n; i++)
1593 ret = __i915_wait_request(requests[i], reset_counter, true,
1594 NULL, rps);
1595 mutex_lock(&dev->struct_mutex);
1596
1597 for (i = 0; i < n; i++) {
1598 if (ret == 0)
1599 i915_gem_object_retire_request(obj, requests[i]);
1600 i915_gem_request_unreference(requests[i]);
1601 }
1602
1603 return ret;
1604}
1605
1606static struct intel_rps_client *to_rps_client(struct drm_file *file)
1607{
1608 struct drm_i915_file_private *fpriv = file->driver_priv;
1609 return &fpriv->rps;
1610}
1611
1612/**
1613 * Called when user space prepares to use an object with the CPU, either
1614 * through the mmap ioctl's mapping or a GTT mapping.
1615 */
1616int
1617i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1618 struct drm_file *file)
1619{
1620 struct drm_i915_gem_set_domain *args = data;
1621 struct drm_i915_gem_object *obj;
1622 uint32_t read_domains = args->read_domains;
1623 uint32_t write_domain = args->write_domain;
1624 int ret;
1625
1626 /* Only handle setting domains to types used by the CPU. */
1627 if (write_domain & I915_GEM_GPU_DOMAINS)
1628 return -EINVAL;
1629
1630 if (read_domains & I915_GEM_GPU_DOMAINS)
1631 return -EINVAL;
1632
1633 /* Having something in the write domain implies it's in the read
1634 * domain, and only that read domain. Enforce that in the request.
1635 */
1636 if (write_domain != 0 && read_domains != write_domain)
1637 return -EINVAL;
1638
1639 ret = i915_mutex_lock_interruptible(dev);
1640 if (ret)
1641 return ret;
1642
1643 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1644 if (&obj->base == NULL) {
1645 ret = -ENOENT;
1646 goto unlock;
1647 }
1648
1649 /* Try to flush the object off the GPU without holding the lock.
1650 * We will repeat the flush holding the lock in the normal manner
1651 * to catch cases where we are gazumped.
1652 */
1653 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1654 to_rps_client(file),
1655 !write_domain);
1656 if (ret)
1657 goto unref;
1658
1659 if (read_domains & I915_GEM_DOMAIN_GTT)
1660 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1661 else
1662 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1663
1664 if (write_domain != 0)
1665 intel_fb_obj_invalidate(obj,
1666 write_domain == I915_GEM_DOMAIN_GTT ?
1667 ORIGIN_GTT : ORIGIN_CPU);
1668
1669unref:
1670 drm_gem_object_unreference(&obj->base);
1671unlock:
1672 mutex_unlock(&dev->struct_mutex);
1673 return ret;
1674}
1675
1676/**
1677 * Called when user space has done writes to this buffer
1678 */
1679int
1680i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1681 struct drm_file *file)
1682{
1683 struct drm_i915_gem_sw_finish *args = data;
1684 struct drm_i915_gem_object *obj;
1685 int ret = 0;
1686
1687 ret = i915_mutex_lock_interruptible(dev);
1688 if (ret)
1689 return ret;
1690
1691 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1692 if (&obj->base == NULL) {
1693 ret = -ENOENT;
1694 goto unlock;
1695 }
1696
1697 /* Pinned buffers may be scanout, so flush the cache */
1698 if (obj->pin_display)
1699 i915_gem_object_flush_cpu_write_domain(obj);
1700
1701 drm_gem_object_unreference(&obj->base);
1702unlock:
1703 mutex_unlock(&dev->struct_mutex);
1704 return ret;
1705}
1706
1707/**
1708 * Maps the contents of an object, returning the address it is mapped
1709 * into.
1710 *
1711 * While the mapping holds a reference on the contents of the object, it doesn't
1712 * imply a ref on the object itself.
1713 *
1714 * IMPORTANT:
1715 *
1716 * DRM driver writers who look a this function as an example for how to do GEM
1717 * mmap support, please don't implement mmap support like here. The modern way
1718 * to implement DRM mmap support is with an mmap offset ioctl (like
1719 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1720 * That way debug tooling like valgrind will understand what's going on, hiding
1721 * the mmap call in a driver private ioctl will break that. The i915 driver only
1722 * does cpu mmaps this way because we didn't know better.
1723 */
1724int
1725i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1726 struct drm_file *file)
1727{
1728 struct drm_i915_gem_mmap *args = data;
1729 struct drm_gem_object *obj;
1730 unsigned long addr;
1731
1732 if (args->flags & ~(I915_MMAP_WC))
1733 return -EINVAL;
1734
1735 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1736 return -ENODEV;
1737
1738 obj = drm_gem_object_lookup(dev, file, args->handle);
1739 if (obj == NULL)
1740 return -ENOENT;
1741
1742 /* prime objects have no backing filp to GEM mmap
1743 * pages from.
1744 */
1745 if (!obj->filp) {
1746 drm_gem_object_unreference_unlocked(obj);
1747 return -EINVAL;
1748 }
1749
1750 addr = vm_mmap(obj->filp, 0, args->size,
1751 PROT_READ | PROT_WRITE, MAP_SHARED,
1752 args->offset);
1753 if (args->flags & I915_MMAP_WC) {
1754 struct mm_struct *mm = current->mm;
1755 struct vm_area_struct *vma;
1756
1757 down_write(&mm->mmap_sem);
1758 vma = find_vma(mm, addr);
1759 if (vma)
1760 vma->vm_page_prot =
1761 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1762 else
1763 addr = -ENOMEM;
1764 up_write(&mm->mmap_sem);
1765 }
1766 drm_gem_object_unreference_unlocked(obj);
1767 if (IS_ERR((void *)addr))
1768 return addr;
1769
1770 args->addr_ptr = (uint64_t) addr;
1771
1772 return 0;
1773}
1774
1775/**
1776 * i915_gem_fault - fault a page into the GTT
1777 * @vma: VMA in question
1778 * @vmf: fault info
1779 *
1780 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1781 * from userspace. The fault handler takes care of binding the object to
1782 * the GTT (if needed), allocating and programming a fence register (again,
1783 * only if needed based on whether the old reg is still valid or the object
1784 * is tiled) and inserting a new PTE into the faulting process.
1785 *
1786 * Note that the faulting process may involve evicting existing objects
1787 * from the GTT and/or fence registers to make room. So performance may
1788 * suffer if the GTT working set is large or there are few fence registers
1789 * left.
1790 */
1791int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1792{
1793 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1794 struct drm_device *dev = obj->base.dev;
1795 struct drm_i915_private *dev_priv = dev->dev_private;
1796 struct i915_ggtt_view view = i915_ggtt_view_normal;
1797 pgoff_t page_offset;
1798 unsigned long pfn;
1799 int ret = 0;
1800 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801
1802 intel_runtime_pm_get(dev_priv);
1803
1804 /* We don't use vmf->pgoff since that has the fake offset */
1805 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806 PAGE_SHIFT;
1807
1808 ret = i915_mutex_lock_interruptible(dev);
1809 if (ret)
1810 goto out;
1811
1812 trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
1814 /* Try to flush the object off the GPU first without holding the lock.
1815 * Upon reacquiring the lock, we will perform our sanity checks and then
1816 * repeat the flush holding the lock in the normal manner to catch cases
1817 * where we are gazumped.
1818 */
1819 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820 if (ret)
1821 goto unlock;
1822
1823 /* Access to snoopable pages through the GTT is incoherent. */
1824 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825 ret = -EFAULT;
1826 goto unlock;
1827 }
1828
1829 /* Use a partial view if the object is bigger than the aperture. */
1830 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1831 obj->tiling_mode == I915_TILING_NONE) {
1832 static const unsigned int chunk_size = 256; // 1 MiB
1833
1834 memset(&view, 0, sizeof(view));
1835 view.type = I915_GGTT_VIEW_PARTIAL;
1836 view.params.partial.offset = rounddown(page_offset, chunk_size);
1837 view.params.partial.size =
1838 min_t(unsigned int,
1839 chunk_size,
1840 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841 view.params.partial.offset);
1842 }
1843
1844 /* Now pin it into the GTT if needed */
1845 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846 if (ret)
1847 goto unlock;
1848
1849 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850 if (ret)
1851 goto unpin;
1852
1853 ret = i915_gem_object_get_fence(obj);
1854 if (ret)
1855 goto unpin;
1856
1857 /* Finally, remap it using the new GTT offset */
1858 pfn = dev_priv->gtt.mappable_base +
1859 i915_gem_obj_ggtt_offset_view(obj, &view);
1860 pfn >>= PAGE_SHIFT;
1861
1862 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863 /* Overriding existing pages in partial view does not cause
1864 * us any trouble as TLBs are still valid because the fault
1865 * is due to userspace losing part of the mapping or never
1866 * having accessed it before (at this partials' range).
1867 */
1868 unsigned long base = vma->vm_start +
1869 (view.params.partial.offset << PAGE_SHIFT);
1870 unsigned int i;
1871
1872 for (i = 0; i < view.params.partial.size; i++) {
1873 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874 if (ret)
1875 break;
1876 }
1877
1878 obj->fault_mappable = true;
1879 } else {
1880 if (!obj->fault_mappable) {
1881 unsigned long size = min_t(unsigned long,
1882 vma->vm_end - vma->vm_start,
1883 obj->base.size);
1884 int i;
1885
1886 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887 ret = vm_insert_pfn(vma,
1888 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889 pfn + i);
1890 if (ret)
1891 break;
1892 }
1893
1894 obj->fault_mappable = true;
1895 } else
1896 ret = vm_insert_pfn(vma,
1897 (unsigned long)vmf->virtual_address,
1898 pfn + page_offset);
1899 }
1900unpin:
1901 i915_gem_object_ggtt_unpin_view(obj, &view);
1902unlock:
1903 mutex_unlock(&dev->struct_mutex);
1904out:
1905 switch (ret) {
1906 case -EIO:
1907 /*
1908 * We eat errors when the gpu is terminally wedged to avoid
1909 * userspace unduly crashing (gl has no provisions for mmaps to
1910 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911 * and so needs to be reported.
1912 */
1913 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914 ret = VM_FAULT_SIGBUS;
1915 break;
1916 }
1917 case -EAGAIN:
1918 /*
1919 * EAGAIN means the gpu is hung and we'll wait for the error
1920 * handler to reset everything when re-faulting in
1921 * i915_mutex_lock_interruptible.
1922 */
1923 case 0:
1924 case -ERESTARTSYS:
1925 case -EINTR:
1926 case -EBUSY:
1927 /*
1928 * EBUSY is ok: this just means that another thread
1929 * already did the job.
1930 */
1931 ret = VM_FAULT_NOPAGE;
1932 break;
1933 case -ENOMEM:
1934 ret = VM_FAULT_OOM;
1935 break;
1936 case -ENOSPC:
1937 case -EFAULT:
1938 ret = VM_FAULT_SIGBUS;
1939 break;
1940 default:
1941 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942 ret = VM_FAULT_SIGBUS;
1943 break;
1944 }
1945
1946 intel_runtime_pm_put(dev_priv);
1947 return ret;
1948}
1949
1950/**
1951 * i915_gem_release_mmap - remove physical page mappings
1952 * @obj: obj in question
1953 *
1954 * Preserve the reservation of the mmapping with the DRM core code, but
1955 * relinquish ownership of the pages back to the system.
1956 *
1957 * It is vital that we remove the page mapping if we have mapped a tiled
1958 * object through the GTT and then lose the fence register due to
1959 * resource pressure. Similarly if the object has been moved out of the
1960 * aperture, than pages mapped into userspace must be revoked. Removing the
1961 * mapping will then trigger a page fault on the next user access, allowing
1962 * fixup by i915_gem_fault().
1963 */
1964void
1965i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966{
1967 if (!obj->fault_mappable)
1968 return;
1969
1970 drm_vma_node_unmap(&obj->base.vma_node,
1971 obj->base.dev->anon_inode->i_mapping);
1972 obj->fault_mappable = false;
1973}
1974
1975void
1976i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977{
1978 struct drm_i915_gem_object *obj;
1979
1980 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981 i915_gem_release_mmap(obj);
1982}
1983
1984uint32_t
1985i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986{
1987 uint32_t gtt_size;
1988
1989 if (INTEL_INFO(dev)->gen >= 4 ||
1990 tiling_mode == I915_TILING_NONE)
1991 return size;
1992
1993 /* Previous chips need a power-of-two fence region when tiling */
1994 if (INTEL_INFO(dev)->gen == 3)
1995 gtt_size = 1024*1024;
1996 else
1997 gtt_size = 512*1024;
1998
1999 while (gtt_size < size)
2000 gtt_size <<= 1;
2001
2002 return gtt_size;
2003}
2004
2005/**
2006 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007 * @obj: object to check
2008 *
2009 * Return the required GTT alignment for an object, taking into account
2010 * potential fence register mapping.
2011 */
2012uint32_t
2013i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014 int tiling_mode, bool fenced)
2015{
2016 /*
2017 * Minimum alignment is 4k (GTT page size), but might be greater
2018 * if a fence register is needed for the object.
2019 */
2020 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021 tiling_mode == I915_TILING_NONE)
2022 return 4096;
2023
2024 /*
2025 * Previous chips need to be aligned to the size of the smallest
2026 * fence register that can contain the object.
2027 */
2028 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029}
2030
2031static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032{
2033 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034 int ret;
2035
2036 if (drm_vma_node_has_offset(&obj->base.vma_node))
2037 return 0;
2038
2039 dev_priv->mm.shrinker_no_lock_stealing = true;
2040
2041 ret = drm_gem_create_mmap_offset(&obj->base);
2042 if (ret != -ENOSPC)
2043 goto out;
2044
2045 /* Badly fragmented mmap space? The only way we can recover
2046 * space is by destroying unwanted objects. We can't randomly release
2047 * mmap_offsets as userspace expects them to be persistent for the
2048 * lifetime of the objects. The closest we can is to release the
2049 * offsets on purgeable objects by truncating it and marking it purged,
2050 * which prevents userspace from ever using that object again.
2051 */
2052 i915_gem_shrink(dev_priv,
2053 obj->base.size >> PAGE_SHIFT,
2054 I915_SHRINK_BOUND |
2055 I915_SHRINK_UNBOUND |
2056 I915_SHRINK_PURGEABLE);
2057 ret = drm_gem_create_mmap_offset(&obj->base);
2058 if (ret != -ENOSPC)
2059 goto out;
2060
2061 i915_gem_shrink_all(dev_priv);
2062 ret = drm_gem_create_mmap_offset(&obj->base);
2063out:
2064 dev_priv->mm.shrinker_no_lock_stealing = false;
2065
2066 return ret;
2067}
2068
2069static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070{
2071 drm_gem_free_mmap_offset(&obj->base);
2072}
2073
2074int
2075i915_gem_mmap_gtt(struct drm_file *file,
2076 struct drm_device *dev,
2077 uint32_t handle,
2078 uint64_t *offset)
2079{
2080 struct drm_i915_gem_object *obj;
2081 int ret;
2082
2083 ret = i915_mutex_lock_interruptible(dev);
2084 if (ret)
2085 return ret;
2086
2087 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088 if (&obj->base == NULL) {
2089 ret = -ENOENT;
2090 goto unlock;
2091 }
2092
2093 if (obj->madv != I915_MADV_WILLNEED) {
2094 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095 ret = -EFAULT;
2096 goto out;
2097 }
2098
2099 ret = i915_gem_object_create_mmap_offset(obj);
2100 if (ret)
2101 goto out;
2102
2103 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104
2105out:
2106 drm_gem_object_unreference(&obj->base);
2107unlock:
2108 mutex_unlock(&dev->struct_mutex);
2109 return ret;
2110}
2111
2112/**
2113 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114 * @dev: DRM device
2115 * @data: GTT mapping ioctl data
2116 * @file: GEM object info
2117 *
2118 * Simply returns the fake offset to userspace so it can mmap it.
2119 * The mmap call will end up in drm_gem_mmap(), which will set things
2120 * up so we can get faults in the handler above.
2121 *
2122 * The fault handler will take care of binding the object into the GTT
2123 * (since it may have been evicted to make room for something), allocating
2124 * a fence register, and mapping the appropriate aperture address into
2125 * userspace.
2126 */
2127int
2128i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129 struct drm_file *file)
2130{
2131 struct drm_i915_gem_mmap_gtt *args = data;
2132
2133 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134}
2135
2136/* Immediately discard the backing storage */
2137static void
2138i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139{
2140 i915_gem_object_free_mmap_offset(obj);
2141
2142 if (obj->base.filp == NULL)
2143 return;
2144
2145 /* Our goal here is to return as much of the memory as
2146 * is possible back to the system as we are called from OOM.
2147 * To do this we must instruct the shmfs to drop all of its
2148 * backing pages, *now*.
2149 */
2150 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2151 obj->madv = __I915_MADV_PURGED;
2152}
2153
2154/* Try to discard unwanted pages */
2155static void
2156i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2157{
2158 struct address_space *mapping;
2159
2160 switch (obj->madv) {
2161 case I915_MADV_DONTNEED:
2162 i915_gem_object_truncate(obj);
2163 case __I915_MADV_PURGED:
2164 return;
2165 }
2166
2167 if (obj->base.filp == NULL)
2168 return;
2169
2170 mapping = file_inode(obj->base.filp)->i_mapping,
2171 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172}
2173
2174static void
2175i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2176{
2177 struct sg_page_iter sg_iter;
2178 int ret;
2179
2180 BUG_ON(obj->madv == __I915_MADV_PURGED);
2181
2182 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183 if (ret) {
2184 /* In the event of a disaster, abandon all caches and
2185 * hope for the best.
2186 */
2187 WARN_ON(ret != -EIO);
2188 i915_gem_clflush_object(obj, true);
2189 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190 }
2191
2192 i915_gem_gtt_finish_object(obj);
2193
2194 if (i915_gem_object_needs_bit17_swizzle(obj))
2195 i915_gem_object_save_bit_17_swizzle(obj);
2196
2197 if (obj->madv == I915_MADV_DONTNEED)
2198 obj->dirty = 0;
2199
2200 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201 struct page *page = sg_page_iter_page(&sg_iter);
2202
2203 if (obj->dirty)
2204 set_page_dirty(page);
2205
2206 if (obj->madv == I915_MADV_WILLNEED)
2207 mark_page_accessed(page);
2208
2209 put_page(page);
2210 }
2211 obj->dirty = 0;
2212
2213 sg_free_table(obj->pages);
2214 kfree(obj->pages);
2215}
2216
2217int
2218i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219{
2220 const struct drm_i915_gem_object_ops *ops = obj->ops;
2221
2222 if (obj->pages == NULL)
2223 return 0;
2224
2225 if (obj->pages_pin_count)
2226 return -EBUSY;
2227
2228 BUG_ON(i915_gem_obj_bound_any(obj));
2229
2230 /* ->put_pages might need to allocate memory for the bit17 swizzle
2231 * array, hence protect them from being reaped by removing them from gtt
2232 * lists early. */
2233 list_del(&obj->global_list);
2234
2235 ops->put_pages(obj);
2236 obj->pages = NULL;
2237
2238 i915_gem_object_invalidate(obj);
2239
2240 return 0;
2241}
2242
2243static int
2244i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245{
2246 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247 int page_count, i;
2248 struct address_space *mapping;
2249 struct sg_table *st;
2250 struct scatterlist *sg;
2251 struct sg_page_iter sg_iter;
2252 struct page *page;
2253 unsigned long last_pfn = 0; /* suppress gcc warning */
2254 int ret;
2255 gfp_t gfp;
2256
2257 /* Assert that the object is not currently in any GPU domain. As it
2258 * wasn't in the GTT, there shouldn't be any way it could have been in
2259 * a GPU cache
2260 */
2261 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263
2264 st = kmalloc(sizeof(*st), GFP_KERNEL);
2265 if (st == NULL)
2266 return -ENOMEM;
2267
2268 page_count = obj->base.size / PAGE_SIZE;
2269 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2270 kfree(st);
2271 return -ENOMEM;
2272 }
2273
2274 /* Get the list of pages out of our struct file. They'll be pinned
2275 * at this point until we release them.
2276 *
2277 * Fail silently without starting the shrinker
2278 */
2279 mapping = file_inode(obj->base.filp)->i_mapping;
2280 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282 sg = st->sgl;
2283 st->nents = 0;
2284 for (i = 0; i < page_count; i++) {
2285 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286 if (IS_ERR(page)) {
2287 i915_gem_shrink(dev_priv,
2288 page_count,
2289 I915_SHRINK_BOUND |
2290 I915_SHRINK_UNBOUND |
2291 I915_SHRINK_PURGEABLE);
2292 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293 }
2294 if (IS_ERR(page)) {
2295 /* We've tried hard to allocate the memory by reaping
2296 * our own buffer, now let the real VM do its job and
2297 * go down in flames if truly OOM.
2298 */
2299 i915_gem_shrink_all(dev_priv);
2300 page = shmem_read_mapping_page(mapping, i);
2301 if (IS_ERR(page)) {
2302 ret = PTR_ERR(page);
2303 goto err_pages;
2304 }
2305 }
2306#ifdef CONFIG_SWIOTLB
2307 if (swiotlb_nr_tbl()) {
2308 st->nents++;
2309 sg_set_page(sg, page, PAGE_SIZE, 0);
2310 sg = sg_next(sg);
2311 continue;
2312 }
2313#endif
2314 if (!i || page_to_pfn(page) != last_pfn + 1) {
2315 if (i)
2316 sg = sg_next(sg);
2317 st->nents++;
2318 sg_set_page(sg, page, PAGE_SIZE, 0);
2319 } else {
2320 sg->length += PAGE_SIZE;
2321 }
2322 last_pfn = page_to_pfn(page);
2323
2324 /* Check that the i965g/gm workaround works. */
2325 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326 }
2327#ifdef CONFIG_SWIOTLB
2328 if (!swiotlb_nr_tbl())
2329#endif
2330 sg_mark_end(sg);
2331 obj->pages = st;
2332
2333 ret = i915_gem_gtt_prepare_object(obj);
2334 if (ret)
2335 goto err_pages;
2336
2337 if (i915_gem_object_needs_bit17_swizzle(obj))
2338 i915_gem_object_do_bit_17_swizzle(obj);
2339
2340 if (obj->tiling_mode != I915_TILING_NONE &&
2341 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342 i915_gem_object_pin_pages(obj);
2343
2344 return 0;
2345
2346err_pages:
2347 sg_mark_end(sg);
2348 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2349 put_page(sg_page_iter_page(&sg_iter));
2350 sg_free_table(st);
2351 kfree(st);
2352
2353 /* shmemfs first checks if there is enough memory to allocate the page
2354 * and reports ENOSPC should there be insufficient, along with the usual
2355 * ENOMEM for a genuine allocation failure.
2356 *
2357 * We use ENOSPC in our driver to mean that we have run out of aperture
2358 * space and so want to translate the error from shmemfs back to our
2359 * usual understanding of ENOMEM.
2360 */
2361 if (ret == -ENOSPC)
2362 ret = -ENOMEM;
2363
2364 return ret;
2365}
2366
2367/* Ensure that the associated pages are gathered from the backing storage
2368 * and pinned into our object. i915_gem_object_get_pages() may be called
2369 * multiple times before they are released by a single call to
2370 * i915_gem_object_put_pages() - once the pages are no longer referenced
2371 * either as a result of memory pressure (reaping pages under the shrinker)
2372 * or as the object is itself released.
2373 */
2374int
2375i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376{
2377 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378 const struct drm_i915_gem_object_ops *ops = obj->ops;
2379 int ret;
2380
2381 if (obj->pages)
2382 return 0;
2383
2384 if (obj->madv != I915_MADV_WILLNEED) {
2385 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386 return -EFAULT;
2387 }
2388
2389 BUG_ON(obj->pages_pin_count);
2390
2391 ret = ops->get_pages(obj);
2392 if (ret)
2393 return ret;
2394
2395 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396
2397 obj->get_page.sg = obj->pages->sgl;
2398 obj->get_page.last = 0;
2399
2400 return 0;
2401}
2402
2403void i915_vma_move_to_active(struct i915_vma *vma,
2404 struct drm_i915_gem_request *req)
2405{
2406 struct drm_i915_gem_object *obj = vma->obj;
2407 struct intel_engine_cs *ring;
2408
2409 ring = i915_gem_request_get_ring(req);
2410
2411 /* Add a reference if we're newly entering the active list. */
2412 if (obj->active == 0)
2413 drm_gem_object_reference(&obj->base);
2414 obj->active |= intel_ring_flag(ring);
2415
2416 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2417 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2418
2419 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2420}
2421
2422static void
2423i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2424{
2425 RQ_BUG_ON(obj->last_write_req == NULL);
2426 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2427
2428 i915_gem_request_assign(&obj->last_write_req, NULL);
2429 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2430}
2431
2432static void
2433i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2434{
2435 struct i915_vma *vma;
2436
2437 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2438 RQ_BUG_ON(!(obj->active & (1 << ring)));
2439
2440 list_del_init(&obj->ring_list[ring]);
2441 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2442
2443 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2444 i915_gem_object_retire__write(obj);
2445
2446 obj->active &= ~(1 << ring);
2447 if (obj->active)
2448 return;
2449
2450 /* Bump our place on the bound list to keep it roughly in LRU order
2451 * so that we don't steal from recently used but inactive objects
2452 * (unless we are forced to ofc!)
2453 */
2454 list_move_tail(&obj->global_list,
2455 &to_i915(obj->base.dev)->mm.bound_list);
2456
2457 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2458 if (!list_empty(&vma->vm_link))
2459 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2460 }
2461
2462 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2463 drm_gem_object_unreference(&obj->base);
2464}
2465
2466static int
2467i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2468{
2469 struct drm_i915_private *dev_priv = dev->dev_private;
2470 struct intel_engine_cs *ring;
2471 int ret, i, j;
2472
2473 /* Carefully retire all requests without writing to the rings */
2474 for_each_ring(ring, dev_priv, i) {
2475 ret = intel_ring_idle(ring);
2476 if (ret)
2477 return ret;
2478 }
2479 i915_gem_retire_requests(dev);
2480
2481 /* Finally reset hw state */
2482 for_each_ring(ring, dev_priv, i) {
2483 intel_ring_init_seqno(ring, seqno);
2484
2485 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2486 ring->semaphore.sync_seqno[j] = 0;
2487 }
2488
2489 return 0;
2490}
2491
2492int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2493{
2494 struct drm_i915_private *dev_priv = dev->dev_private;
2495 int ret;
2496
2497 if (seqno == 0)
2498 return -EINVAL;
2499
2500 /* HWS page needs to be set less than what we
2501 * will inject to ring
2502 */
2503 ret = i915_gem_init_seqno(dev, seqno - 1);
2504 if (ret)
2505 return ret;
2506
2507 /* Carefully set the last_seqno value so that wrap
2508 * detection still works
2509 */
2510 dev_priv->next_seqno = seqno;
2511 dev_priv->last_seqno = seqno - 1;
2512 if (dev_priv->last_seqno == 0)
2513 dev_priv->last_seqno--;
2514
2515 return 0;
2516}
2517
2518int
2519i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2520{
2521 struct drm_i915_private *dev_priv = dev->dev_private;
2522
2523 /* reserve 0 for non-seqno */
2524 if (dev_priv->next_seqno == 0) {
2525 int ret = i915_gem_init_seqno(dev, 0);
2526 if (ret)
2527 return ret;
2528
2529 dev_priv->next_seqno = 1;
2530 }
2531
2532 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2533 return 0;
2534}
2535
2536/*
2537 * NB: This function is not allowed to fail. Doing so would mean the the
2538 * request is not being tracked for completion but the work itself is
2539 * going to happen on the hardware. This would be a Bad Thing(tm).
2540 */
2541void __i915_add_request(struct drm_i915_gem_request *request,
2542 struct drm_i915_gem_object *obj,
2543 bool flush_caches)
2544{
2545 struct intel_engine_cs *ring;
2546 struct drm_i915_private *dev_priv;
2547 struct intel_ringbuffer *ringbuf;
2548 u32 request_start;
2549 int ret;
2550
2551 if (WARN_ON(request == NULL))
2552 return;
2553
2554 ring = request->ring;
2555 dev_priv = ring->dev->dev_private;
2556 ringbuf = request->ringbuf;
2557
2558 /*
2559 * To ensure that this call will not fail, space for its emissions
2560 * should already have been reserved in the ring buffer. Let the ring
2561 * know that it is time to use that space up.
2562 */
2563 intel_ring_reserved_space_use(ringbuf);
2564
2565 request_start = intel_ring_get_tail(ringbuf);
2566 /*
2567 * Emit any outstanding flushes - execbuf can fail to emit the flush
2568 * after having emitted the batchbuffer command. Hence we need to fix
2569 * things up similar to emitting the lazy request. The difference here
2570 * is that the flush _must_ happen before the next request, no matter
2571 * what.
2572 */
2573 if (flush_caches) {
2574 if (i915.enable_execlists)
2575 ret = logical_ring_flush_all_caches(request);
2576 else
2577 ret = intel_ring_flush_all_caches(request);
2578 /* Not allowed to fail! */
2579 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2580 }
2581
2582 /* Record the position of the start of the request so that
2583 * should we detect the updated seqno part-way through the
2584 * GPU processing the request, we never over-estimate the
2585 * position of the head.
2586 */
2587 request->postfix = intel_ring_get_tail(ringbuf);
2588
2589 if (i915.enable_execlists)
2590 ret = ring->emit_request(request);
2591 else {
2592 ret = ring->add_request(request);
2593
2594 request->tail = intel_ring_get_tail(ringbuf);
2595 }
2596 /* Not allowed to fail! */
2597 WARN(ret, "emit|add_request failed: %d!\n", ret);
2598
2599 request->head = request_start;
2600
2601 /* Whilst this request exists, batch_obj will be on the
2602 * active_list, and so will hold the active reference. Only when this
2603 * request is retired will the the batch_obj be moved onto the
2604 * inactive_list and lose its active reference. Hence we do not need
2605 * to explicitly hold another reference here.
2606 */
2607 request->batch_obj = obj;
2608
2609 request->emitted_jiffies = jiffies;
2610 request->previous_seqno = ring->last_submitted_seqno;
2611 ring->last_submitted_seqno = request->seqno;
2612 list_add_tail(&request->list, &ring->request_list);
2613
2614 trace_i915_gem_request_add(request);
2615
2616 i915_queue_hangcheck(ring->dev);
2617
2618 queue_delayed_work(dev_priv->wq,
2619 &dev_priv->mm.retire_work,
2620 round_jiffies_up_relative(HZ));
2621 intel_mark_busy(dev_priv->dev);
2622
2623 /* Sanity check that the reserved size was large enough. */
2624 intel_ring_reserved_space_end(ringbuf);
2625}
2626
2627static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2628 const struct intel_context *ctx)
2629{
2630 unsigned long elapsed;
2631
2632 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2633
2634 if (ctx->hang_stats.banned)
2635 return true;
2636
2637 if (ctx->hang_stats.ban_period_seconds &&
2638 elapsed <= ctx->hang_stats.ban_period_seconds) {
2639 if (!i915_gem_context_is_default(ctx)) {
2640 DRM_DEBUG("context hanging too fast, banning!\n");
2641 return true;
2642 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2643 if (i915_stop_ring_allow_warn(dev_priv))
2644 DRM_ERROR("gpu hanging too fast, banning!\n");
2645 return true;
2646 }
2647 }
2648
2649 return false;
2650}
2651
2652static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2653 struct intel_context *ctx,
2654 const bool guilty)
2655{
2656 struct i915_ctx_hang_stats *hs;
2657
2658 if (WARN_ON(!ctx))
2659 return;
2660
2661 hs = &ctx->hang_stats;
2662
2663 if (guilty) {
2664 hs->banned = i915_context_is_banned(dev_priv, ctx);
2665 hs->batch_active++;
2666 hs->guilty_ts = get_seconds();
2667 } else {
2668 hs->batch_pending++;
2669 }
2670}
2671
2672void i915_gem_request_free(struct kref *req_ref)
2673{
2674 struct drm_i915_gem_request *req = container_of(req_ref,
2675 typeof(*req), ref);
2676 struct intel_context *ctx = req->ctx;
2677
2678 if (req->file_priv)
2679 i915_gem_request_remove_from_client(req);
2680
2681 if (ctx) {
2682 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2683 intel_lr_context_unpin(ctx, req->ring);
2684
2685 i915_gem_context_unreference(ctx);
2686 }
2687
2688 kmem_cache_free(req->i915->requests, req);
2689}
2690
2691static inline int
2692__i915_gem_request_alloc(struct intel_engine_cs *ring,
2693 struct intel_context *ctx,
2694 struct drm_i915_gem_request **req_out)
2695{
2696 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2697 struct drm_i915_gem_request *req;
2698 int ret;
2699
2700 if (!req_out)
2701 return -EINVAL;
2702
2703 *req_out = NULL;
2704
2705 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2706 if (req == NULL)
2707 return -ENOMEM;
2708
2709 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2710 if (ret)
2711 goto err;
2712
2713 kref_init(&req->ref);
2714 req->i915 = dev_priv;
2715 req->ring = ring;
2716 req->ctx = ctx;
2717 i915_gem_context_reference(req->ctx);
2718
2719 if (i915.enable_execlists)
2720 ret = intel_logical_ring_alloc_request_extras(req);
2721 else
2722 ret = intel_ring_alloc_request_extras(req);
2723 if (ret) {
2724 i915_gem_context_unreference(req->ctx);
2725 goto err;
2726 }
2727
2728 /*
2729 * Reserve space in the ring buffer for all the commands required to
2730 * eventually emit this request. This is to guarantee that the
2731 * i915_add_request() call can't fail. Note that the reserve may need
2732 * to be redone if the request is not actually submitted straight
2733 * away, e.g. because a GPU scheduler has deferred it.
2734 */
2735 if (i915.enable_execlists)
2736 ret = intel_logical_ring_reserve_space(req);
2737 else
2738 ret = intel_ring_reserve_space(req);
2739 if (ret) {
2740 /*
2741 * At this point, the request is fully allocated even if not
2742 * fully prepared. Thus it can be cleaned up using the proper
2743 * free code.
2744 */
2745 i915_gem_request_cancel(req);
2746 return ret;
2747 }
2748
2749 *req_out = req;
2750 return 0;
2751
2752err:
2753 kmem_cache_free(dev_priv->requests, req);
2754 return ret;
2755}
2756
2757/**
2758 * i915_gem_request_alloc - allocate a request structure
2759 *
2760 * @engine: engine that we wish to issue the request on.
2761 * @ctx: context that the request will be associated with.
2762 * This can be NULL if the request is not directly related to
2763 * any specific user context, in which case this function will
2764 * choose an appropriate context to use.
2765 *
2766 * Returns a pointer to the allocated request if successful,
2767 * or an error code if not.
2768 */
2769struct drm_i915_gem_request *
2770i915_gem_request_alloc(struct intel_engine_cs *engine,
2771 struct intel_context *ctx)
2772{
2773 struct drm_i915_gem_request *req;
2774 int err;
2775
2776 if (ctx == NULL)
2777 ctx = to_i915(engine->dev)->kernel_context;
2778 err = __i915_gem_request_alloc(engine, ctx, &req);
2779 return err ? ERR_PTR(err) : req;
2780}
2781
2782void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2783{
2784 intel_ring_reserved_space_cancel(req->ringbuf);
2785
2786 i915_gem_request_unreference(req);
2787}
2788
2789struct drm_i915_gem_request *
2790i915_gem_find_active_request(struct intel_engine_cs *ring)
2791{
2792 struct drm_i915_gem_request *request;
2793
2794 list_for_each_entry(request, &ring->request_list, list) {
2795 if (i915_gem_request_completed(request, false))
2796 continue;
2797
2798 return request;
2799 }
2800
2801 return NULL;
2802}
2803
2804static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2805 struct intel_engine_cs *ring)
2806{
2807 struct drm_i915_gem_request *request;
2808 bool ring_hung;
2809
2810 request = i915_gem_find_active_request(ring);
2811
2812 if (request == NULL)
2813 return;
2814
2815 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2816
2817 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2818
2819 list_for_each_entry_continue(request, &ring->request_list, list)
2820 i915_set_reset_status(dev_priv, request->ctx, false);
2821}
2822
2823static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2824 struct intel_engine_cs *ring)
2825{
2826 struct intel_ringbuffer *buffer;
2827
2828 while (!list_empty(&ring->active_list)) {
2829 struct drm_i915_gem_object *obj;
2830
2831 obj = list_first_entry(&ring->active_list,
2832 struct drm_i915_gem_object,
2833 ring_list[ring->id]);
2834
2835 i915_gem_object_retire__read(obj, ring->id);
2836 }
2837
2838 /*
2839 * Clear the execlists queue up before freeing the requests, as those
2840 * are the ones that keep the context and ringbuffer backing objects
2841 * pinned in place.
2842 */
2843
2844 if (i915.enable_execlists) {
2845 spin_lock_irq(&ring->execlist_lock);
2846
2847 /* list_splice_tail_init checks for empty lists */
2848 list_splice_tail_init(&ring->execlist_queue,
2849 &ring->execlist_retired_req_list);
2850
2851 spin_unlock_irq(&ring->execlist_lock);
2852 intel_execlists_retire_requests(ring);
2853 }
2854
2855 /*
2856 * We must free the requests after all the corresponding objects have
2857 * been moved off active lists. Which is the same order as the normal
2858 * retire_requests function does. This is important if object hold
2859 * implicit references on things like e.g. ppgtt address spaces through
2860 * the request.
2861 */
2862 while (!list_empty(&ring->request_list)) {
2863 struct drm_i915_gem_request *request;
2864
2865 request = list_first_entry(&ring->request_list,
2866 struct drm_i915_gem_request,
2867 list);
2868
2869 i915_gem_request_retire(request);
2870 }
2871
2872 /* Having flushed all requests from all queues, we know that all
2873 * ringbuffers must now be empty. However, since we do not reclaim
2874 * all space when retiring the request (to prevent HEADs colliding
2875 * with rapid ringbuffer wraparound) the amount of available space
2876 * upon reset is less than when we start. Do one more pass over
2877 * all the ringbuffers to reset last_retired_head.
2878 */
2879 list_for_each_entry(buffer, &ring->buffers, link) {
2880 buffer->last_retired_head = buffer->tail;
2881 intel_ring_update_space(buffer);
2882 }
2883}
2884
2885void i915_gem_reset(struct drm_device *dev)
2886{
2887 struct drm_i915_private *dev_priv = dev->dev_private;
2888 struct intel_engine_cs *ring;
2889 int i;
2890
2891 /*
2892 * Before we free the objects from the requests, we need to inspect
2893 * them for finding the guilty party. As the requests only borrow
2894 * their reference to the objects, the inspection must be done first.
2895 */
2896 for_each_ring(ring, dev_priv, i)
2897 i915_gem_reset_ring_status(dev_priv, ring);
2898
2899 for_each_ring(ring, dev_priv, i)
2900 i915_gem_reset_ring_cleanup(dev_priv, ring);
2901
2902 i915_gem_context_reset(dev);
2903
2904 i915_gem_restore_fences(dev);
2905
2906 WARN_ON(i915_verify_lists(dev));
2907}
2908
2909/**
2910 * This function clears the request list as sequence numbers are passed.
2911 */
2912void
2913i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2914{
2915 WARN_ON(i915_verify_lists(ring->dev));
2916
2917 /* Retire requests first as we use it above for the early return.
2918 * If we retire requests last, we may use a later seqno and so clear
2919 * the requests lists without clearing the active list, leading to
2920 * confusion.
2921 */
2922 while (!list_empty(&ring->request_list)) {
2923 struct drm_i915_gem_request *request;
2924
2925 request = list_first_entry(&ring->request_list,
2926 struct drm_i915_gem_request,
2927 list);
2928
2929 if (!i915_gem_request_completed(request, true))
2930 break;
2931
2932 i915_gem_request_retire(request);
2933 }
2934
2935 /* Move any buffers on the active list that are no longer referenced
2936 * by the ringbuffer to the flushing/inactive lists as appropriate,
2937 * before we free the context associated with the requests.
2938 */
2939 while (!list_empty(&ring->active_list)) {
2940 struct drm_i915_gem_object *obj;
2941
2942 obj = list_first_entry(&ring->active_list,
2943 struct drm_i915_gem_object,
2944 ring_list[ring->id]);
2945
2946 if (!list_empty(&obj->last_read_req[ring->id]->list))
2947 break;
2948
2949 i915_gem_object_retire__read(obj, ring->id);
2950 }
2951
2952 if (unlikely(ring->trace_irq_req &&
2953 i915_gem_request_completed(ring->trace_irq_req, true))) {
2954 ring->irq_put(ring);
2955 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2956 }
2957
2958 WARN_ON(i915_verify_lists(ring->dev));
2959}
2960
2961bool
2962i915_gem_retire_requests(struct drm_device *dev)
2963{
2964 struct drm_i915_private *dev_priv = dev->dev_private;
2965 struct intel_engine_cs *ring;
2966 bool idle = true;
2967 int i;
2968
2969 for_each_ring(ring, dev_priv, i) {
2970 i915_gem_retire_requests_ring(ring);
2971 idle &= list_empty(&ring->request_list);
2972 if (i915.enable_execlists) {
2973 spin_lock_irq(&ring->execlist_lock);
2974 idle &= list_empty(&ring->execlist_queue);
2975 spin_unlock_irq(&ring->execlist_lock);
2976
2977 intel_execlists_retire_requests(ring);
2978 }
2979 }
2980
2981 if (idle)
2982 mod_delayed_work(dev_priv->wq,
2983 &dev_priv->mm.idle_work,
2984 msecs_to_jiffies(100));
2985
2986 return idle;
2987}
2988
2989static void
2990i915_gem_retire_work_handler(struct work_struct *work)
2991{
2992 struct drm_i915_private *dev_priv =
2993 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2994 struct drm_device *dev = dev_priv->dev;
2995 bool idle;
2996
2997 /* Come back later if the device is busy... */
2998 idle = false;
2999 if (mutex_trylock(&dev->struct_mutex)) {
3000 idle = i915_gem_retire_requests(dev);
3001 mutex_unlock(&dev->struct_mutex);
3002 }
3003 if (!idle)
3004 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3005 round_jiffies_up_relative(HZ));
3006}
3007
3008static void
3009i915_gem_idle_work_handler(struct work_struct *work)
3010{
3011 struct drm_i915_private *dev_priv =
3012 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3013 struct drm_device *dev = dev_priv->dev;
3014 struct intel_engine_cs *ring;
3015 int i;
3016
3017 for_each_ring(ring, dev_priv, i)
3018 if (!list_empty(&ring->request_list))
3019 return;
3020
3021 /* we probably should sync with hangcheck here, using cancel_work_sync.
3022 * Also locking seems to be fubar here, ring->request_list is protected
3023 * by dev->struct_mutex. */
3024
3025 intel_mark_idle(dev);
3026
3027 if (mutex_trylock(&dev->struct_mutex)) {
3028 struct intel_engine_cs *ring;
3029 int i;
3030
3031 for_each_ring(ring, dev_priv, i)
3032 i915_gem_batch_pool_fini(&ring->batch_pool);
3033
3034 mutex_unlock(&dev->struct_mutex);
3035 }
3036}
3037
3038/**
3039 * Ensures that an object will eventually get non-busy by flushing any required
3040 * write domains, emitting any outstanding lazy request and retiring and
3041 * completed requests.
3042 */
3043static int
3044i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3045{
3046 int i;
3047
3048 if (!obj->active)
3049 return 0;
3050
3051 for (i = 0; i < I915_NUM_RINGS; i++) {
3052 struct drm_i915_gem_request *req;
3053
3054 req = obj->last_read_req[i];
3055 if (req == NULL)
3056 continue;
3057
3058 if (list_empty(&req->list))
3059 goto retire;
3060
3061 if (i915_gem_request_completed(req, true)) {
3062 __i915_gem_request_retire__upto(req);
3063retire:
3064 i915_gem_object_retire__read(obj, i);
3065 }
3066 }
3067
3068 return 0;
3069}
3070
3071/**
3072 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3073 * @DRM_IOCTL_ARGS: standard ioctl arguments
3074 *
3075 * Returns 0 if successful, else an error is returned with the remaining time in
3076 * the timeout parameter.
3077 * -ETIME: object is still busy after timeout
3078 * -ERESTARTSYS: signal interrupted the wait
3079 * -ENONENT: object doesn't exist
3080 * Also possible, but rare:
3081 * -EAGAIN: GPU wedged
3082 * -ENOMEM: damn
3083 * -ENODEV: Internal IRQ fail
3084 * -E?: The add request failed
3085 *
3086 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3087 * non-zero timeout parameter the wait ioctl will wait for the given number of
3088 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3089 * without holding struct_mutex the object may become re-busied before this
3090 * function completes. A similar but shorter * race condition exists in the busy
3091 * ioctl
3092 */
3093int
3094i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3095{
3096 struct drm_i915_private *dev_priv = dev->dev_private;
3097 struct drm_i915_gem_wait *args = data;
3098 struct drm_i915_gem_object *obj;
3099 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3100 unsigned reset_counter;
3101 int i, n = 0;
3102 int ret;
3103
3104 if (args->flags != 0)
3105 return -EINVAL;
3106
3107 ret = i915_mutex_lock_interruptible(dev);
3108 if (ret)
3109 return ret;
3110
3111 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3112 if (&obj->base == NULL) {
3113 mutex_unlock(&dev->struct_mutex);
3114 return -ENOENT;
3115 }
3116
3117 /* Need to make sure the object gets inactive eventually. */
3118 ret = i915_gem_object_flush_active(obj);
3119 if (ret)
3120 goto out;
3121
3122 if (!obj->active)
3123 goto out;
3124
3125 /* Do this after OLR check to make sure we make forward progress polling
3126 * on this IOCTL with a timeout == 0 (like busy ioctl)
3127 */
3128 if (args->timeout_ns == 0) {
3129 ret = -ETIME;
3130 goto out;
3131 }
3132
3133 drm_gem_object_unreference(&obj->base);
3134 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3135
3136 for (i = 0; i < I915_NUM_RINGS; i++) {
3137 if (obj->last_read_req[i] == NULL)
3138 continue;
3139
3140 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3141 }
3142
3143 mutex_unlock(&dev->struct_mutex);
3144
3145 for (i = 0; i < n; i++) {
3146 if (ret == 0)
3147 ret = __i915_wait_request(req[i], reset_counter, true,
3148 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3149 to_rps_client(file));
3150 i915_gem_request_unreference__unlocked(req[i]);
3151 }
3152 return ret;
3153
3154out:
3155 drm_gem_object_unreference(&obj->base);
3156 mutex_unlock(&dev->struct_mutex);
3157 return ret;
3158}
3159
3160static int
3161__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3162 struct intel_engine_cs *to,
3163 struct drm_i915_gem_request *from_req,
3164 struct drm_i915_gem_request **to_req)
3165{
3166 struct intel_engine_cs *from;
3167 int ret;
3168
3169 from = i915_gem_request_get_ring(from_req);
3170 if (to == from)
3171 return 0;
3172
3173 if (i915_gem_request_completed(from_req, true))
3174 return 0;
3175
3176 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3177 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3178 ret = __i915_wait_request(from_req,
3179 atomic_read(&i915->gpu_error.reset_counter),
3180 i915->mm.interruptible,
3181 NULL,
3182 &i915->rps.semaphores);
3183 if (ret)
3184 return ret;
3185
3186 i915_gem_object_retire_request(obj, from_req);
3187 } else {
3188 int idx = intel_ring_sync_index(from, to);
3189 u32 seqno = i915_gem_request_get_seqno(from_req);
3190
3191 WARN_ON(!to_req);
3192
3193 if (seqno <= from->semaphore.sync_seqno[idx])
3194 return 0;
3195
3196 if (*to_req == NULL) {
3197 struct drm_i915_gem_request *req;
3198
3199 req = i915_gem_request_alloc(to, NULL);
3200 if (IS_ERR(req))
3201 return PTR_ERR(req);
3202
3203 *to_req = req;
3204 }
3205
3206 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3207 ret = to->semaphore.sync_to(*to_req, from, seqno);
3208 if (ret)
3209 return ret;
3210
3211 /* We use last_read_req because sync_to()
3212 * might have just caused seqno wrap under
3213 * the radar.
3214 */
3215 from->semaphore.sync_seqno[idx] =
3216 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3217 }
3218
3219 return 0;
3220}
3221
3222/**
3223 * i915_gem_object_sync - sync an object to a ring.
3224 *
3225 * @obj: object which may be in use on another ring.
3226 * @to: ring we wish to use the object on. May be NULL.
3227 * @to_req: request we wish to use the object for. See below.
3228 * This will be allocated and returned if a request is
3229 * required but not passed in.
3230 *
3231 * This code is meant to abstract object synchronization with the GPU.
3232 * Calling with NULL implies synchronizing the object with the CPU
3233 * rather than a particular GPU ring. Conceptually we serialise writes
3234 * between engines inside the GPU. We only allow one engine to write
3235 * into a buffer at any time, but multiple readers. To ensure each has
3236 * a coherent view of memory, we must:
3237 *
3238 * - If there is an outstanding write request to the object, the new
3239 * request must wait for it to complete (either CPU or in hw, requests
3240 * on the same ring will be naturally ordered).
3241 *
3242 * - If we are a write request (pending_write_domain is set), the new
3243 * request must wait for outstanding read requests to complete.
3244 *
3245 * For CPU synchronisation (NULL to) no request is required. For syncing with
3246 * rings to_req must be non-NULL. However, a request does not have to be
3247 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3248 * request will be allocated automatically and returned through *to_req. Note
3249 * that it is not guaranteed that commands will be emitted (because the system
3250 * might already be idle). Hence there is no need to create a request that
3251 * might never have any work submitted. Note further that if a request is
3252 * returned in *to_req, it is the responsibility of the caller to submit
3253 * that request (after potentially adding more work to it).
3254 *
3255 * Returns 0 if successful, else propagates up the lower layer error.
3256 */
3257int
3258i915_gem_object_sync(struct drm_i915_gem_object *obj,
3259 struct intel_engine_cs *to,
3260 struct drm_i915_gem_request **to_req)
3261{
3262 const bool readonly = obj->base.pending_write_domain == 0;
3263 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3264 int ret, i, n;
3265
3266 if (!obj->active)
3267 return 0;
3268
3269 if (to == NULL)
3270 return i915_gem_object_wait_rendering(obj, readonly);
3271
3272 n = 0;
3273 if (readonly) {
3274 if (obj->last_write_req)
3275 req[n++] = obj->last_write_req;
3276 } else {
3277 for (i = 0; i < I915_NUM_RINGS; i++)
3278 if (obj->last_read_req[i])
3279 req[n++] = obj->last_read_req[i];
3280 }
3281 for (i = 0; i < n; i++) {
3282 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3283 if (ret)
3284 return ret;
3285 }
3286
3287 return 0;
3288}
3289
3290static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3291{
3292 u32 old_write_domain, old_read_domains;
3293
3294 /* Force a pagefault for domain tracking on next user access */
3295 i915_gem_release_mmap(obj);
3296
3297 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3298 return;
3299
3300 /* Wait for any direct GTT access to complete */
3301 mb();
3302
3303 old_read_domains = obj->base.read_domains;
3304 old_write_domain = obj->base.write_domain;
3305
3306 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3307 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3308
3309 trace_i915_gem_object_change_domain(obj,
3310 old_read_domains,
3311 old_write_domain);
3312}
3313
3314static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3315{
3316 struct drm_i915_gem_object *obj = vma->obj;
3317 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3318 int ret;
3319
3320 if (list_empty(&vma->obj_link))
3321 return 0;
3322
3323 if (!drm_mm_node_allocated(&vma->node)) {
3324 i915_gem_vma_destroy(vma);
3325 return 0;
3326 }
3327
3328 if (vma->pin_count)
3329 return -EBUSY;
3330
3331 BUG_ON(obj->pages == NULL);
3332
3333 if (wait) {
3334 ret = i915_gem_object_wait_rendering(obj, false);
3335 if (ret)
3336 return ret;
3337 }
3338
3339 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3340 i915_gem_object_finish_gtt(obj);
3341
3342 /* release the fence reg _after_ flushing */
3343 ret = i915_gem_object_put_fence(obj);
3344 if (ret)
3345 return ret;
3346 }
3347
3348 trace_i915_vma_unbind(vma);
3349
3350 vma->vm->unbind_vma(vma);
3351 vma->bound = 0;
3352
3353 list_del_init(&vma->vm_link);
3354 if (vma->is_ggtt) {
3355 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3356 obj->map_and_fenceable = false;
3357 } else if (vma->ggtt_view.pages) {
3358 sg_free_table(vma->ggtt_view.pages);
3359 kfree(vma->ggtt_view.pages);
3360 }
3361 vma->ggtt_view.pages = NULL;
3362 }
3363
3364 drm_mm_remove_node(&vma->node);
3365 i915_gem_vma_destroy(vma);
3366
3367 /* Since the unbound list is global, only move to that list if
3368 * no more VMAs exist. */
3369 if (list_empty(&obj->vma_list))
3370 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3371
3372 /* And finally now the object is completely decoupled from this vma,
3373 * we can drop its hold on the backing storage and allow it to be
3374 * reaped by the shrinker.
3375 */
3376 i915_gem_object_unpin_pages(obj);
3377
3378 return 0;
3379}
3380
3381int i915_vma_unbind(struct i915_vma *vma)
3382{
3383 return __i915_vma_unbind(vma, true);
3384}
3385
3386int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3387{
3388 return __i915_vma_unbind(vma, false);
3389}
3390
3391int i915_gpu_idle(struct drm_device *dev)
3392{
3393 struct drm_i915_private *dev_priv = dev->dev_private;
3394 struct intel_engine_cs *ring;
3395 int ret, i;
3396
3397 /* Flush everything onto the inactive list. */
3398 for_each_ring(ring, dev_priv, i) {
3399 if (!i915.enable_execlists) {
3400 struct drm_i915_gem_request *req;
3401
3402 req = i915_gem_request_alloc(ring, NULL);
3403 if (IS_ERR(req))
3404 return PTR_ERR(req);
3405
3406 ret = i915_switch_context(req);
3407 if (ret) {
3408 i915_gem_request_cancel(req);
3409 return ret;
3410 }
3411
3412 i915_add_request_no_flush(req);
3413 }
3414
3415 ret = intel_ring_idle(ring);
3416 if (ret)
3417 return ret;
3418 }
3419
3420 WARN_ON(i915_verify_lists(dev));
3421 return 0;
3422}
3423
3424static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3425 unsigned long cache_level)
3426{
3427 struct drm_mm_node *gtt_space = &vma->node;
3428 struct drm_mm_node *other;
3429
3430 /*
3431 * On some machines we have to be careful when putting differing types
3432 * of snoopable memory together to avoid the prefetcher crossing memory
3433 * domains and dying. During vm initialisation, we decide whether or not
3434 * these constraints apply and set the drm_mm.color_adjust
3435 * appropriately.
3436 */
3437 if (vma->vm->mm.color_adjust == NULL)
3438 return true;
3439
3440 if (!drm_mm_node_allocated(gtt_space))
3441 return true;
3442
3443 if (list_empty(>t_space->node_list))
3444 return true;
3445
3446 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3447 if (other->allocated && !other->hole_follows && other->color != cache_level)
3448 return false;
3449
3450 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3451 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3452 return false;
3453
3454 return true;
3455}
3456
3457/**
3458 * Finds free space in the GTT aperture and binds the object or a view of it
3459 * there.
3460 */
3461static struct i915_vma *
3462i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3463 struct i915_address_space *vm,
3464 const struct i915_ggtt_view *ggtt_view,
3465 unsigned alignment,
3466 uint64_t flags)
3467{
3468 struct drm_device *dev = obj->base.dev;
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470 u32 fence_alignment, unfenced_alignment;
3471 u32 search_flag, alloc_flag;
3472 u64 start, end;
3473 u64 size, fence_size;
3474 struct i915_vma *vma;
3475 int ret;
3476
3477 if (i915_is_ggtt(vm)) {
3478 u32 view_size;
3479
3480 if (WARN_ON(!ggtt_view))
3481 return ERR_PTR(-EINVAL);
3482
3483 view_size = i915_ggtt_view_size(obj, ggtt_view);
3484
3485 fence_size = i915_gem_get_gtt_size(dev,
3486 view_size,
3487 obj->tiling_mode);
3488 fence_alignment = i915_gem_get_gtt_alignment(dev,
3489 view_size,
3490 obj->tiling_mode,
3491 true);
3492 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3493 view_size,
3494 obj->tiling_mode,
3495 false);
3496 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3497 } else {
3498 fence_size = i915_gem_get_gtt_size(dev,
3499 obj->base.size,
3500 obj->tiling_mode);
3501 fence_alignment = i915_gem_get_gtt_alignment(dev,
3502 obj->base.size,
3503 obj->tiling_mode,
3504 true);
3505 unfenced_alignment =
3506 i915_gem_get_gtt_alignment(dev,
3507 obj->base.size,
3508 obj->tiling_mode,
3509 false);
3510 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3511 }
3512
3513 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3514 end = vm->total;
3515 if (flags & PIN_MAPPABLE)
3516 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3517 if (flags & PIN_ZONE_4G)
3518 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3519
3520 if (alignment == 0)
3521 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3522 unfenced_alignment;
3523 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3524 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3525 ggtt_view ? ggtt_view->type : 0,
3526 alignment);
3527 return ERR_PTR(-EINVAL);
3528 }
3529
3530 /* If binding the object/GGTT view requires more space than the entire
3531 * aperture has, reject it early before evicting everything in a vain
3532 * attempt to find space.
3533 */
3534 if (size > end) {
3535 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3536 ggtt_view ? ggtt_view->type : 0,
3537 size,
3538 flags & PIN_MAPPABLE ? "mappable" : "total",
3539 end);
3540 return ERR_PTR(-E2BIG);
3541 }
3542
3543 ret = i915_gem_object_get_pages(obj);
3544 if (ret)
3545 return ERR_PTR(ret);
3546
3547 i915_gem_object_pin_pages(obj);
3548
3549 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3550 i915_gem_obj_lookup_or_create_vma(obj, vm);
3551
3552 if (IS_ERR(vma))
3553 goto err_unpin;
3554
3555 if (flags & PIN_OFFSET_FIXED) {
3556 uint64_t offset = flags & PIN_OFFSET_MASK;
3557
3558 if (offset & (alignment - 1) || offset + size > end) {
3559 ret = -EINVAL;
3560 goto err_free_vma;
3561 }
3562 vma->node.start = offset;
3563 vma->node.size = size;
3564 vma->node.color = obj->cache_level;
3565 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3566 if (ret) {
3567 ret = i915_gem_evict_for_vma(vma);
3568 if (ret == 0)
3569 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3570 }
3571 if (ret)
3572 goto err_free_vma;
3573 } else {
3574 if (flags & PIN_HIGH) {
3575 search_flag = DRM_MM_SEARCH_BELOW;
3576 alloc_flag = DRM_MM_CREATE_TOP;
3577 } else {
3578 search_flag = DRM_MM_SEARCH_DEFAULT;
3579 alloc_flag = DRM_MM_CREATE_DEFAULT;
3580 }
3581
3582search_free:
3583 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3584 size, alignment,
3585 obj->cache_level,
3586 start, end,
3587 search_flag,
3588 alloc_flag);
3589 if (ret) {
3590 ret = i915_gem_evict_something(dev, vm, size, alignment,
3591 obj->cache_level,
3592 start, end,
3593 flags);
3594 if (ret == 0)
3595 goto search_free;
3596
3597 goto err_free_vma;
3598 }
3599 }
3600 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3601 ret = -EINVAL;
3602 goto err_remove_node;
3603 }
3604
3605 trace_i915_vma_bind(vma, flags);
3606 ret = i915_vma_bind(vma, obj->cache_level, flags);
3607 if (ret)
3608 goto err_remove_node;
3609
3610 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3611 list_add_tail(&vma->vm_link, &vm->inactive_list);
3612
3613 return vma;
3614
3615err_remove_node:
3616 drm_mm_remove_node(&vma->node);
3617err_free_vma:
3618 i915_gem_vma_destroy(vma);
3619 vma = ERR_PTR(ret);
3620err_unpin:
3621 i915_gem_object_unpin_pages(obj);
3622 return vma;
3623}
3624
3625bool
3626i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3627 bool force)
3628{
3629 /* If we don't have a page list set up, then we're not pinned
3630 * to GPU, and we can ignore the cache flush because it'll happen
3631 * again at bind time.
3632 */
3633 if (obj->pages == NULL)
3634 return false;
3635
3636 /*
3637 * Stolen memory is always coherent with the GPU as it is explicitly
3638 * marked as wc by the system, or the system is cache-coherent.
3639 */
3640 if (obj->stolen || obj->phys_handle)
3641 return false;
3642
3643 /* If the GPU is snooping the contents of the CPU cache,
3644 * we do not need to manually clear the CPU cache lines. However,
3645 * the caches are only snooped when the render cache is
3646 * flushed/invalidated. As we always have to emit invalidations
3647 * and flushes when moving into and out of the RENDER domain, correct
3648 * snooping behaviour occurs naturally as the result of our domain
3649 * tracking.
3650 */
3651 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3652 obj->cache_dirty = true;
3653 return false;
3654 }
3655
3656 trace_i915_gem_object_clflush(obj);
3657 drm_clflush_sg(obj->pages);
3658 obj->cache_dirty = false;
3659
3660 return true;
3661}
3662
3663/** Flushes the GTT write domain for the object if it's dirty. */
3664static void
3665i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3666{
3667 uint32_t old_write_domain;
3668
3669 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3670 return;
3671
3672 /* No actual flushing is required for the GTT write domain. Writes
3673 * to it immediately go to main memory as far as we know, so there's
3674 * no chipset flush. It also doesn't land in render cache.
3675 *
3676 * However, we do have to enforce the order so that all writes through
3677 * the GTT land before any writes to the device, such as updates to
3678 * the GATT itself.
3679 */
3680 wmb();
3681
3682 old_write_domain = obj->base.write_domain;
3683 obj->base.write_domain = 0;
3684
3685 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3686
3687 trace_i915_gem_object_change_domain(obj,
3688 obj->base.read_domains,
3689 old_write_domain);
3690}
3691
3692/** Flushes the CPU write domain for the object if it's dirty. */
3693static void
3694i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3695{
3696 uint32_t old_write_domain;
3697
3698 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3699 return;
3700
3701 if (i915_gem_clflush_object(obj, obj->pin_display))
3702 i915_gem_chipset_flush(obj->base.dev);
3703
3704 old_write_domain = obj->base.write_domain;
3705 obj->base.write_domain = 0;
3706
3707 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3708
3709 trace_i915_gem_object_change_domain(obj,
3710 obj->base.read_domains,
3711 old_write_domain);
3712}
3713
3714/**
3715 * Moves a single object to the GTT read, and possibly write domain.
3716 *
3717 * This function returns when the move is complete, including waiting on
3718 * flushes to occur.
3719 */
3720int
3721i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3722{
3723 uint32_t old_write_domain, old_read_domains;
3724 struct i915_vma *vma;
3725 int ret;
3726
3727 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3728 return 0;
3729
3730 ret = i915_gem_object_wait_rendering(obj, !write);
3731 if (ret)
3732 return ret;
3733
3734 /* Flush and acquire obj->pages so that we are coherent through
3735 * direct access in memory with previous cached writes through
3736 * shmemfs and that our cache domain tracking remains valid.
3737 * For example, if the obj->filp was moved to swap without us
3738 * being notified and releasing the pages, we would mistakenly
3739 * continue to assume that the obj remained out of the CPU cached
3740 * domain.
3741 */
3742 ret = i915_gem_object_get_pages(obj);
3743 if (ret)
3744 return ret;
3745
3746 i915_gem_object_flush_cpu_write_domain(obj);
3747
3748 /* Serialise direct access to this object with the barriers for
3749 * coherent writes from the GPU, by effectively invalidating the
3750 * GTT domain upon first access.
3751 */
3752 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3753 mb();
3754
3755 old_write_domain = obj->base.write_domain;
3756 old_read_domains = obj->base.read_domains;
3757
3758 /* It should now be out of any other write domains, and we can update
3759 * the domain values for our changes.
3760 */
3761 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3762 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3763 if (write) {
3764 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3765 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3766 obj->dirty = 1;
3767 }
3768
3769 trace_i915_gem_object_change_domain(obj,
3770 old_read_domains,
3771 old_write_domain);
3772
3773 /* And bump the LRU for this access */
3774 vma = i915_gem_obj_to_ggtt(obj);
3775 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3776 list_move_tail(&vma->vm_link,
3777 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3778
3779 return 0;
3780}
3781
3782/**
3783 * Changes the cache-level of an object across all VMA.
3784 *
3785 * After this function returns, the object will be in the new cache-level
3786 * across all GTT and the contents of the backing storage will be coherent,
3787 * with respect to the new cache-level. In order to keep the backing storage
3788 * coherent for all users, we only allow a single cache level to be set
3789 * globally on the object and prevent it from being changed whilst the
3790 * hardware is reading from the object. That is if the object is currently
3791 * on the scanout it will be set to uncached (or equivalent display
3792 * cache coherency) and all non-MOCS GPU access will also be uncached so
3793 * that all direct access to the scanout remains coherent.
3794 */
3795int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3796 enum i915_cache_level cache_level)
3797{
3798 struct drm_device *dev = obj->base.dev;
3799 struct i915_vma *vma, *next;
3800 bool bound = false;
3801 int ret = 0;
3802
3803 if (obj->cache_level == cache_level)
3804 goto out;
3805
3806 /* Inspect the list of currently bound VMA and unbind any that would
3807 * be invalid given the new cache-level. This is principally to
3808 * catch the issue of the CS prefetch crossing page boundaries and
3809 * reading an invalid PTE on older architectures.
3810 */
3811 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3812 if (!drm_mm_node_allocated(&vma->node))
3813 continue;
3814
3815 if (vma->pin_count) {
3816 DRM_DEBUG("can not change the cache level of pinned objects\n");
3817 return -EBUSY;
3818 }
3819
3820 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3821 ret = i915_vma_unbind(vma);
3822 if (ret)
3823 return ret;
3824 } else
3825 bound = true;
3826 }
3827
3828 /* We can reuse the existing drm_mm nodes but need to change the
3829 * cache-level on the PTE. We could simply unbind them all and
3830 * rebind with the correct cache-level on next use. However since
3831 * we already have a valid slot, dma mapping, pages etc, we may as
3832 * rewrite the PTE in the belief that doing so tramples upon less
3833 * state and so involves less work.
3834 */
3835 if (bound) {
3836 /* Before we change the PTE, the GPU must not be accessing it.
3837 * If we wait upon the object, we know that all the bound
3838 * VMA are no longer active.
3839 */
3840 ret = i915_gem_object_wait_rendering(obj, false);
3841 if (ret)
3842 return ret;
3843
3844 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3845 /* Access to snoopable pages through the GTT is
3846 * incoherent and on some machines causes a hard
3847 * lockup. Relinquish the CPU mmaping to force
3848 * userspace to refault in the pages and we can
3849 * then double check if the GTT mapping is still
3850 * valid for that pointer access.
3851 */
3852 i915_gem_release_mmap(obj);
3853
3854 /* As we no longer need a fence for GTT access,
3855 * we can relinquish it now (and so prevent having
3856 * to steal a fence from someone else on the next
3857 * fence request). Note GPU activity would have
3858 * dropped the fence as all snoopable access is
3859 * supposed to be linear.
3860 */
3861 ret = i915_gem_object_put_fence(obj);
3862 if (ret)
3863 return ret;
3864 } else {
3865 /* We either have incoherent backing store and
3866 * so no GTT access or the architecture is fully
3867 * coherent. In such cases, existing GTT mmaps
3868 * ignore the cache bit in the PTE and we can
3869 * rewrite it without confusing the GPU or having
3870 * to force userspace to fault back in its mmaps.
3871 */
3872 }
3873
3874 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3875 if (!drm_mm_node_allocated(&vma->node))
3876 continue;
3877
3878 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3879 if (ret)
3880 return ret;
3881 }
3882 }
3883
3884 list_for_each_entry(vma, &obj->vma_list, obj_link)
3885 vma->node.color = cache_level;
3886 obj->cache_level = cache_level;
3887
3888out:
3889 /* Flush the dirty CPU caches to the backing storage so that the
3890 * object is now coherent at its new cache level (with respect
3891 * to the access domain).
3892 */
3893 if (obj->cache_dirty &&
3894 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3895 cpu_write_needs_clflush(obj)) {
3896 if (i915_gem_clflush_object(obj, true))
3897 i915_gem_chipset_flush(obj->base.dev);
3898 }
3899
3900 return 0;
3901}
3902
3903int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3904 struct drm_file *file)
3905{
3906 struct drm_i915_gem_caching *args = data;
3907 struct drm_i915_gem_object *obj;
3908
3909 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3910 if (&obj->base == NULL)
3911 return -ENOENT;
3912
3913 switch (obj->cache_level) {
3914 case I915_CACHE_LLC:
3915 case I915_CACHE_L3_LLC:
3916 args->caching = I915_CACHING_CACHED;
3917 break;
3918
3919 case I915_CACHE_WT:
3920 args->caching = I915_CACHING_DISPLAY;
3921 break;
3922
3923 default:
3924 args->caching = I915_CACHING_NONE;
3925 break;
3926 }
3927
3928 drm_gem_object_unreference_unlocked(&obj->base);
3929 return 0;
3930}
3931
3932int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3933 struct drm_file *file)
3934{
3935 struct drm_i915_private *dev_priv = dev->dev_private;
3936 struct drm_i915_gem_caching *args = data;
3937 struct drm_i915_gem_object *obj;
3938 enum i915_cache_level level;
3939 int ret;
3940
3941 switch (args->caching) {
3942 case I915_CACHING_NONE:
3943 level = I915_CACHE_NONE;
3944 break;
3945 case I915_CACHING_CACHED:
3946 /*
3947 * Due to a HW issue on BXT A stepping, GPU stores via a
3948 * snooped mapping may leave stale data in a corresponding CPU
3949 * cacheline, whereas normally such cachelines would get
3950 * invalidated.
3951 */
3952 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3953 return -ENODEV;
3954
3955 level = I915_CACHE_LLC;
3956 break;
3957 case I915_CACHING_DISPLAY:
3958 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3959 break;
3960 default:
3961 return -EINVAL;
3962 }
3963
3964 intel_runtime_pm_get(dev_priv);
3965
3966 ret = i915_mutex_lock_interruptible(dev);
3967 if (ret)
3968 goto rpm_put;
3969
3970 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3971 if (&obj->base == NULL) {
3972 ret = -ENOENT;
3973 goto unlock;
3974 }
3975
3976 ret = i915_gem_object_set_cache_level(obj, level);
3977
3978 drm_gem_object_unreference(&obj->base);
3979unlock:
3980 mutex_unlock(&dev->struct_mutex);
3981rpm_put:
3982 intel_runtime_pm_put(dev_priv);
3983
3984 return ret;
3985}
3986
3987/*
3988 * Prepare buffer for display plane (scanout, cursors, etc).
3989 * Can be called from an uninterruptible phase (modesetting) and allows
3990 * any flushes to be pipelined (for pageflips).
3991 */
3992int
3993i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3994 u32 alignment,
3995 const struct i915_ggtt_view *view)
3996{
3997 u32 old_read_domains, old_write_domain;
3998 int ret;
3999
4000 /* Mark the pin_display early so that we account for the
4001 * display coherency whilst setting up the cache domains.
4002 */
4003 obj->pin_display++;
4004
4005 /* The display engine is not coherent with the LLC cache on gen6. As
4006 * a result, we make sure that the pinning that is about to occur is
4007 * done with uncached PTEs. This is lowest common denominator for all
4008 * chipsets.
4009 *
4010 * However for gen6+, we could do better by using the GFDT bit instead
4011 * of uncaching, which would allow us to flush all the LLC-cached data
4012 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4013 */
4014 ret = i915_gem_object_set_cache_level(obj,
4015 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4016 if (ret)
4017 goto err_unpin_display;
4018
4019 /* As the user may map the buffer once pinned in the display plane
4020 * (e.g. libkms for the bootup splash), we have to ensure that we
4021 * always use map_and_fenceable for all scanout buffers.
4022 */
4023 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4024 view->type == I915_GGTT_VIEW_NORMAL ?
4025 PIN_MAPPABLE : 0);
4026 if (ret)
4027 goto err_unpin_display;
4028
4029 i915_gem_object_flush_cpu_write_domain(obj);
4030
4031 old_write_domain = obj->base.write_domain;
4032 old_read_domains = obj->base.read_domains;
4033
4034 /* It should now be out of any other write domains, and we can update
4035 * the domain values for our changes.
4036 */
4037 obj->base.write_domain = 0;
4038 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4039
4040 trace_i915_gem_object_change_domain(obj,
4041 old_read_domains,
4042 old_write_domain);
4043
4044 return 0;
4045
4046err_unpin_display:
4047 obj->pin_display--;
4048 return ret;
4049}
4050
4051void
4052i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4053 const struct i915_ggtt_view *view)
4054{
4055 if (WARN_ON(obj->pin_display == 0))
4056 return;
4057
4058 i915_gem_object_ggtt_unpin_view(obj, view);
4059
4060 obj->pin_display--;
4061}
4062
4063/**
4064 * Moves a single object to the CPU read, and possibly write domain.
4065 *
4066 * This function returns when the move is complete, including waiting on
4067 * flushes to occur.
4068 */
4069int
4070i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4071{
4072 uint32_t old_write_domain, old_read_domains;
4073 int ret;
4074
4075 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4076 return 0;
4077
4078 ret = i915_gem_object_wait_rendering(obj, !write);
4079 if (ret)
4080 return ret;
4081
4082 i915_gem_object_flush_gtt_write_domain(obj);
4083
4084 old_write_domain = obj->base.write_domain;
4085 old_read_domains = obj->base.read_domains;
4086
4087 /* Flush the CPU cache if it's still invalid. */
4088 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4089 i915_gem_clflush_object(obj, false);
4090
4091 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4092 }
4093
4094 /* It should now be out of any other write domains, and we can update
4095 * the domain values for our changes.
4096 */
4097 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4098
4099 /* If we're writing through the CPU, then the GPU read domains will
4100 * need to be invalidated at next use.
4101 */
4102 if (write) {
4103 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4104 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4105 }
4106
4107 trace_i915_gem_object_change_domain(obj,
4108 old_read_domains,
4109 old_write_domain);
4110
4111 return 0;
4112}
4113
4114/* Throttle our rendering by waiting until the ring has completed our requests
4115 * emitted over 20 msec ago.
4116 *
4117 * Note that if we were to use the current jiffies each time around the loop,
4118 * we wouldn't escape the function with any frames outstanding if the time to
4119 * render a frame was over 20ms.
4120 *
4121 * This should get us reasonable parallelism between CPU and GPU but also
4122 * relatively low latency when blocking on a particular request to finish.
4123 */
4124static int
4125i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4126{
4127 struct drm_i915_private *dev_priv = dev->dev_private;
4128 struct drm_i915_file_private *file_priv = file->driver_priv;
4129 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4130 struct drm_i915_gem_request *request, *target = NULL;
4131 unsigned reset_counter;
4132 int ret;
4133
4134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4135 if (ret)
4136 return ret;
4137
4138 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4139 if (ret)
4140 return ret;
4141
4142 spin_lock(&file_priv->mm.lock);
4143 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4144 if (time_after_eq(request->emitted_jiffies, recent_enough))
4145 break;
4146
4147 /*
4148 * Note that the request might not have been submitted yet.
4149 * In which case emitted_jiffies will be zero.
4150 */
4151 if (!request->emitted_jiffies)
4152 continue;
4153
4154 target = request;
4155 }
4156 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4157 if (target)
4158 i915_gem_request_reference(target);
4159 spin_unlock(&file_priv->mm.lock);
4160
4161 if (target == NULL)
4162 return 0;
4163
4164 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4165 if (ret == 0)
4166 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4167
4168 i915_gem_request_unreference__unlocked(target);
4169
4170 return ret;
4171}
4172
4173static bool
4174i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4175{
4176 struct drm_i915_gem_object *obj = vma->obj;
4177
4178 if (alignment &&
4179 vma->node.start & (alignment - 1))
4180 return true;
4181
4182 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4183 return true;
4184
4185 if (flags & PIN_OFFSET_BIAS &&
4186 vma->node.start < (flags & PIN_OFFSET_MASK))
4187 return true;
4188
4189 if (flags & PIN_OFFSET_FIXED &&
4190 vma->node.start != (flags & PIN_OFFSET_MASK))
4191 return true;
4192
4193 return false;
4194}
4195
4196void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4197{
4198 struct drm_i915_gem_object *obj = vma->obj;
4199 bool mappable, fenceable;
4200 u32 fence_size, fence_alignment;
4201
4202 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4203 obj->base.size,
4204 obj->tiling_mode);
4205 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4206 obj->base.size,
4207 obj->tiling_mode,
4208 true);
4209
4210 fenceable = (vma->node.size == fence_size &&
4211 (vma->node.start & (fence_alignment - 1)) == 0);
4212
4213 mappable = (vma->node.start + fence_size <=
4214 to_i915(obj->base.dev)->gtt.mappable_end);
4215
4216 obj->map_and_fenceable = mappable && fenceable;
4217}
4218
4219static int
4220i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4221 struct i915_address_space *vm,
4222 const struct i915_ggtt_view *ggtt_view,
4223 uint32_t alignment,
4224 uint64_t flags)
4225{
4226 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4227 struct i915_vma *vma;
4228 unsigned bound;
4229 int ret;
4230
4231 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4232 return -ENODEV;
4233
4234 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4235 return -EINVAL;
4236
4237 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4238 return -EINVAL;
4239
4240 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4241 return -EINVAL;
4242
4243 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4244 i915_gem_obj_to_vma(obj, vm);
4245
4246 if (IS_ERR(vma))
4247 return PTR_ERR(vma);
4248
4249 if (vma) {
4250 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4251 return -EBUSY;
4252
4253 if (i915_vma_misplaced(vma, alignment, flags)) {
4254 WARN(vma->pin_count,
4255 "bo is already pinned in %s with incorrect alignment:"
4256 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4257 " obj->map_and_fenceable=%d\n",
4258 ggtt_view ? "ggtt" : "ppgtt",
4259 upper_32_bits(vma->node.start),
4260 lower_32_bits(vma->node.start),
4261 alignment,
4262 !!(flags & PIN_MAPPABLE),
4263 obj->map_and_fenceable);
4264 ret = i915_vma_unbind(vma);
4265 if (ret)
4266 return ret;
4267
4268 vma = NULL;
4269 }
4270 }
4271
4272 bound = vma ? vma->bound : 0;
4273 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4274 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4275 flags);
4276 if (IS_ERR(vma))
4277 return PTR_ERR(vma);
4278 } else {
4279 ret = i915_vma_bind(vma, obj->cache_level, flags);
4280 if (ret)
4281 return ret;
4282 }
4283
4284 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4285 (bound ^ vma->bound) & GLOBAL_BIND) {
4286 __i915_vma_set_map_and_fenceable(vma);
4287 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4288 }
4289
4290 vma->pin_count++;
4291 return 0;
4292}
4293
4294int
4295i915_gem_object_pin(struct drm_i915_gem_object *obj,
4296 struct i915_address_space *vm,
4297 uint32_t alignment,
4298 uint64_t flags)
4299{
4300 return i915_gem_object_do_pin(obj, vm,
4301 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4302 alignment, flags);
4303}
4304
4305int
4306i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4307 const struct i915_ggtt_view *view,
4308 uint32_t alignment,
4309 uint64_t flags)
4310{
4311 if (WARN_ONCE(!view, "no view specified"))
4312 return -EINVAL;
4313
4314 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4315 alignment, flags | PIN_GLOBAL);
4316}
4317
4318void
4319i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4320 const struct i915_ggtt_view *view)
4321{
4322 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4323
4324 BUG_ON(!vma);
4325 WARN_ON(vma->pin_count == 0);
4326 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4327
4328 --vma->pin_count;
4329}
4330
4331int
4332i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4333 struct drm_file *file)
4334{
4335 struct drm_i915_gem_busy *args = data;
4336 struct drm_i915_gem_object *obj;
4337 int ret;
4338
4339 ret = i915_mutex_lock_interruptible(dev);
4340 if (ret)
4341 return ret;
4342
4343 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4344 if (&obj->base == NULL) {
4345 ret = -ENOENT;
4346 goto unlock;
4347 }
4348
4349 /* Count all active objects as busy, even if they are currently not used
4350 * by the gpu. Users of this interface expect objects to eventually
4351 * become non-busy without any further actions, therefore emit any
4352 * necessary flushes here.
4353 */
4354 ret = i915_gem_object_flush_active(obj);
4355 if (ret)
4356 goto unref;
4357
4358 args->busy = 0;
4359 if (obj->active) {
4360 int i;
4361
4362 for (i = 0; i < I915_NUM_RINGS; i++) {
4363 struct drm_i915_gem_request *req;
4364
4365 req = obj->last_read_req[i];
4366 if (req)
4367 args->busy |= 1 << (16 + req->ring->exec_id);
4368 }
4369 if (obj->last_write_req)
4370 args->busy |= obj->last_write_req->ring->exec_id;
4371 }
4372
4373unref:
4374 drm_gem_object_unreference(&obj->base);
4375unlock:
4376 mutex_unlock(&dev->struct_mutex);
4377 return ret;
4378}
4379
4380int
4381i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4382 struct drm_file *file_priv)
4383{
4384 return i915_gem_ring_throttle(dev, file_priv);
4385}
4386
4387int
4388i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4389 struct drm_file *file_priv)
4390{
4391 struct drm_i915_private *dev_priv = dev->dev_private;
4392 struct drm_i915_gem_madvise *args = data;
4393 struct drm_i915_gem_object *obj;
4394 int ret;
4395
4396 switch (args->madv) {
4397 case I915_MADV_DONTNEED:
4398 case I915_MADV_WILLNEED:
4399 break;
4400 default:
4401 return -EINVAL;
4402 }
4403
4404 ret = i915_mutex_lock_interruptible(dev);
4405 if (ret)
4406 return ret;
4407
4408 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4409 if (&obj->base == NULL) {
4410 ret = -ENOENT;
4411 goto unlock;
4412 }
4413
4414 if (i915_gem_obj_is_pinned(obj)) {
4415 ret = -EINVAL;
4416 goto out;
4417 }
4418
4419 if (obj->pages &&
4420 obj->tiling_mode != I915_TILING_NONE &&
4421 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4422 if (obj->madv == I915_MADV_WILLNEED)
4423 i915_gem_object_unpin_pages(obj);
4424 if (args->madv == I915_MADV_WILLNEED)
4425 i915_gem_object_pin_pages(obj);
4426 }
4427
4428 if (obj->madv != __I915_MADV_PURGED)
4429 obj->madv = args->madv;
4430
4431 /* if the object is no longer attached, discard its backing storage */
4432 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4433 i915_gem_object_truncate(obj);
4434
4435 args->retained = obj->madv != __I915_MADV_PURGED;
4436
4437out:
4438 drm_gem_object_unreference(&obj->base);
4439unlock:
4440 mutex_unlock(&dev->struct_mutex);
4441 return ret;
4442}
4443
4444void i915_gem_object_init(struct drm_i915_gem_object *obj,
4445 const struct drm_i915_gem_object_ops *ops)
4446{
4447 int i;
4448
4449 INIT_LIST_HEAD(&obj->global_list);
4450 for (i = 0; i < I915_NUM_RINGS; i++)
4451 INIT_LIST_HEAD(&obj->ring_list[i]);
4452 INIT_LIST_HEAD(&obj->obj_exec_link);
4453 INIT_LIST_HEAD(&obj->vma_list);
4454 INIT_LIST_HEAD(&obj->batch_pool_link);
4455
4456 obj->ops = ops;
4457
4458 obj->fence_reg = I915_FENCE_REG_NONE;
4459 obj->madv = I915_MADV_WILLNEED;
4460
4461 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4462}
4463
4464static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4465 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4466 .get_pages = i915_gem_object_get_pages_gtt,
4467 .put_pages = i915_gem_object_put_pages_gtt,
4468};
4469
4470struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4471 size_t size)
4472{
4473 struct drm_i915_gem_object *obj;
4474 struct address_space *mapping;
4475 gfp_t mask;
4476
4477 obj = i915_gem_object_alloc(dev);
4478 if (obj == NULL)
4479 return NULL;
4480
4481 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4482 i915_gem_object_free(obj);
4483 return NULL;
4484 }
4485
4486 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4487 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4488 /* 965gm cannot relocate objects above 4GiB. */
4489 mask &= ~__GFP_HIGHMEM;
4490 mask |= __GFP_DMA32;
4491 }
4492
4493 mapping = file_inode(obj->base.filp)->i_mapping;
4494 mapping_set_gfp_mask(mapping, mask);
4495
4496 i915_gem_object_init(obj, &i915_gem_object_ops);
4497
4498 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4499 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4500
4501 if (HAS_LLC(dev)) {
4502 /* On some devices, we can have the GPU use the LLC (the CPU
4503 * cache) for about a 10% performance improvement
4504 * compared to uncached. Graphics requests other than
4505 * display scanout are coherent with the CPU in
4506 * accessing this cache. This means in this mode we
4507 * don't need to clflush on the CPU side, and on the
4508 * GPU side we only need to flush internal caches to
4509 * get data visible to the CPU.
4510 *
4511 * However, we maintain the display planes as UC, and so
4512 * need to rebind when first used as such.
4513 */
4514 obj->cache_level = I915_CACHE_LLC;
4515 } else
4516 obj->cache_level = I915_CACHE_NONE;
4517
4518 trace_i915_gem_object_create(obj);
4519
4520 return obj;
4521}
4522
4523static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4524{
4525 /* If we are the last user of the backing storage (be it shmemfs
4526 * pages or stolen etc), we know that the pages are going to be
4527 * immediately released. In this case, we can then skip copying
4528 * back the contents from the GPU.
4529 */
4530
4531 if (obj->madv != I915_MADV_WILLNEED)
4532 return false;
4533
4534 if (obj->base.filp == NULL)
4535 return true;
4536
4537 /* At first glance, this looks racy, but then again so would be
4538 * userspace racing mmap against close. However, the first external
4539 * reference to the filp can only be obtained through the
4540 * i915_gem_mmap_ioctl() which safeguards us against the user
4541 * acquiring such a reference whilst we are in the middle of
4542 * freeing the object.
4543 */
4544 return atomic_long_read(&obj->base.filp->f_count) == 1;
4545}
4546
4547void i915_gem_free_object(struct drm_gem_object *gem_obj)
4548{
4549 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4550 struct drm_device *dev = obj->base.dev;
4551 struct drm_i915_private *dev_priv = dev->dev_private;
4552 struct i915_vma *vma, *next;
4553
4554 intel_runtime_pm_get(dev_priv);
4555
4556 trace_i915_gem_object_destroy(obj);
4557
4558 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4559 int ret;
4560
4561 vma->pin_count = 0;
4562 ret = i915_vma_unbind(vma);
4563 if (WARN_ON(ret == -ERESTARTSYS)) {
4564 bool was_interruptible;
4565
4566 was_interruptible = dev_priv->mm.interruptible;
4567 dev_priv->mm.interruptible = false;
4568
4569 WARN_ON(i915_vma_unbind(vma));
4570
4571 dev_priv->mm.interruptible = was_interruptible;
4572 }
4573 }
4574
4575 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4576 * before progressing. */
4577 if (obj->stolen)
4578 i915_gem_object_unpin_pages(obj);
4579
4580 WARN_ON(obj->frontbuffer_bits);
4581
4582 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4583 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4584 obj->tiling_mode != I915_TILING_NONE)
4585 i915_gem_object_unpin_pages(obj);
4586
4587 if (WARN_ON(obj->pages_pin_count))
4588 obj->pages_pin_count = 0;
4589 if (discard_backing_storage(obj))
4590 obj->madv = I915_MADV_DONTNEED;
4591 i915_gem_object_put_pages(obj);
4592 i915_gem_object_free_mmap_offset(obj);
4593
4594 BUG_ON(obj->pages);
4595
4596 if (obj->base.import_attach)
4597 drm_prime_gem_destroy(&obj->base, NULL);
4598
4599 if (obj->ops->release)
4600 obj->ops->release(obj);
4601
4602 drm_gem_object_release(&obj->base);
4603 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4604
4605 kfree(obj->bit_17);
4606 i915_gem_object_free(obj);
4607
4608 intel_runtime_pm_put(dev_priv);
4609}
4610
4611struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4612 struct i915_address_space *vm)
4613{
4614 struct i915_vma *vma;
4615 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4616 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4617 vma->vm == vm)
4618 return vma;
4619 }
4620 return NULL;
4621}
4622
4623struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4624 const struct i915_ggtt_view *view)
4625{
4626 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4627 struct i915_vma *vma;
4628
4629 if (WARN_ONCE(!view, "no view specified"))
4630 return ERR_PTR(-EINVAL);
4631
4632 list_for_each_entry(vma, &obj->vma_list, obj_link)
4633 if (vma->vm == ggtt &&
4634 i915_ggtt_view_equal(&vma->ggtt_view, view))
4635 return vma;
4636 return NULL;
4637}
4638
4639void i915_gem_vma_destroy(struct i915_vma *vma)
4640{
4641 WARN_ON(vma->node.allocated);
4642
4643 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4644 if (!list_empty(&vma->exec_list))
4645 return;
4646
4647 if (!vma->is_ggtt)
4648 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4649
4650 list_del(&vma->obj_link);
4651
4652 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4653}
4654
4655static void
4656i915_gem_stop_ringbuffers(struct drm_device *dev)
4657{
4658 struct drm_i915_private *dev_priv = dev->dev_private;
4659 struct intel_engine_cs *ring;
4660 int i;
4661
4662 for_each_ring(ring, dev_priv, i)
4663 dev_priv->gt.stop_ring(ring);
4664}
4665
4666int
4667i915_gem_suspend(struct drm_device *dev)
4668{
4669 struct drm_i915_private *dev_priv = dev->dev_private;
4670 int ret = 0;
4671
4672 mutex_lock(&dev->struct_mutex);
4673 ret = i915_gpu_idle(dev);
4674 if (ret)
4675 goto err;
4676
4677 i915_gem_retire_requests(dev);
4678
4679 i915_gem_stop_ringbuffers(dev);
4680 mutex_unlock(&dev->struct_mutex);
4681
4682 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4683 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4684 flush_delayed_work(&dev_priv->mm.idle_work);
4685
4686 /* Assert that we sucessfully flushed all the work and
4687 * reset the GPU back to its idle, low power state.
4688 */
4689 WARN_ON(dev_priv->mm.busy);
4690
4691 return 0;
4692
4693err:
4694 mutex_unlock(&dev->struct_mutex);
4695 return ret;
4696}
4697
4698int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4699{
4700 struct intel_engine_cs *ring = req->ring;
4701 struct drm_device *dev = ring->dev;
4702 struct drm_i915_private *dev_priv = dev->dev_private;
4703 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4704 int i, ret;
4705
4706 if (!HAS_L3_DPF(dev) || !remap_info)
4707 return 0;
4708
4709 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4710 if (ret)
4711 return ret;
4712
4713 /*
4714 * Note: We do not worry about the concurrent register cacheline hang
4715 * here because no other code should access these registers other than
4716 * at initialization time.
4717 */
4718 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4719 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4720 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4721 intel_ring_emit(ring, remap_info[i]);
4722 }
4723
4724 intel_ring_advance(ring);
4725
4726 return ret;
4727}
4728
4729void i915_gem_init_swizzling(struct drm_device *dev)
4730{
4731 struct drm_i915_private *dev_priv = dev->dev_private;
4732
4733 if (INTEL_INFO(dev)->gen < 5 ||
4734 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4735 return;
4736
4737 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4738 DISP_TILE_SURFACE_SWIZZLING);
4739
4740 if (IS_GEN5(dev))
4741 return;
4742
4743 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4744 if (IS_GEN6(dev))
4745 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4746 else if (IS_GEN7(dev))
4747 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4748 else if (IS_GEN8(dev))
4749 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4750 else
4751 BUG();
4752}
4753
4754static void init_unused_ring(struct drm_device *dev, u32 base)
4755{
4756 struct drm_i915_private *dev_priv = dev->dev_private;
4757
4758 I915_WRITE(RING_CTL(base), 0);
4759 I915_WRITE(RING_HEAD(base), 0);
4760 I915_WRITE(RING_TAIL(base), 0);
4761 I915_WRITE(RING_START(base), 0);
4762}
4763
4764static void init_unused_rings(struct drm_device *dev)
4765{
4766 if (IS_I830(dev)) {
4767 init_unused_ring(dev, PRB1_BASE);
4768 init_unused_ring(dev, SRB0_BASE);
4769 init_unused_ring(dev, SRB1_BASE);
4770 init_unused_ring(dev, SRB2_BASE);
4771 init_unused_ring(dev, SRB3_BASE);
4772 } else if (IS_GEN2(dev)) {
4773 init_unused_ring(dev, SRB0_BASE);
4774 init_unused_ring(dev, SRB1_BASE);
4775 } else if (IS_GEN3(dev)) {
4776 init_unused_ring(dev, PRB1_BASE);
4777 init_unused_ring(dev, PRB2_BASE);
4778 }
4779}
4780
4781int i915_gem_init_rings(struct drm_device *dev)
4782{
4783 struct drm_i915_private *dev_priv = dev->dev_private;
4784 int ret;
4785
4786 ret = intel_init_render_ring_buffer(dev);
4787 if (ret)
4788 return ret;
4789
4790 if (HAS_BSD(dev)) {
4791 ret = intel_init_bsd_ring_buffer(dev);
4792 if (ret)
4793 goto cleanup_render_ring;
4794 }
4795
4796 if (HAS_BLT(dev)) {
4797 ret = intel_init_blt_ring_buffer(dev);
4798 if (ret)
4799 goto cleanup_bsd_ring;
4800 }
4801
4802 if (HAS_VEBOX(dev)) {
4803 ret = intel_init_vebox_ring_buffer(dev);
4804 if (ret)
4805 goto cleanup_blt_ring;
4806 }
4807
4808 if (HAS_BSD2(dev)) {
4809 ret = intel_init_bsd2_ring_buffer(dev);
4810 if (ret)
4811 goto cleanup_vebox_ring;
4812 }
4813
4814 return 0;
4815
4816cleanup_vebox_ring:
4817 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4818cleanup_blt_ring:
4819 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4820cleanup_bsd_ring:
4821 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4822cleanup_render_ring:
4823 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4824
4825 return ret;
4826}
4827
4828int
4829i915_gem_init_hw(struct drm_device *dev)
4830{
4831 struct drm_i915_private *dev_priv = dev->dev_private;
4832 struct intel_engine_cs *ring;
4833 int ret, i, j;
4834
4835 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4836 return -EIO;
4837
4838 /* Double layer security blanket, see i915_gem_init() */
4839 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4840
4841 if (dev_priv->ellc_size)
4842 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4843
4844 if (IS_HASWELL(dev))
4845 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4846 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4847
4848 if (HAS_PCH_NOP(dev)) {
4849 if (IS_IVYBRIDGE(dev)) {
4850 u32 temp = I915_READ(GEN7_MSG_CTL);
4851 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4852 I915_WRITE(GEN7_MSG_CTL, temp);
4853 } else if (INTEL_INFO(dev)->gen >= 7) {
4854 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4855 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4856 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4857 }
4858 }
4859
4860 i915_gem_init_swizzling(dev);
4861
4862 /*
4863 * At least 830 can leave some of the unused rings
4864 * "active" (ie. head != tail) after resume which
4865 * will prevent c3 entry. Makes sure all unused rings
4866 * are totally idle.
4867 */
4868 init_unused_rings(dev);
4869
4870 BUG_ON(!dev_priv->kernel_context);
4871
4872 ret = i915_ppgtt_init_hw(dev);
4873 if (ret) {
4874 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4875 goto out;
4876 }
4877
4878 /* Need to do basic initialisation of all rings first: */
4879 for_each_ring(ring, dev_priv, i) {
4880 ret = ring->init_hw(ring);
4881 if (ret)
4882 goto out;
4883 }
4884
4885 /* We can't enable contexts until all firmware is loaded */
4886 if (HAS_GUC_UCODE(dev)) {
4887 ret = intel_guc_ucode_load(dev);
4888 if (ret) {
4889 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4890 ret = -EIO;
4891 goto out;
4892 }
4893 }
4894
4895 /*
4896 * Increment the next seqno by 0x100 so we have a visible break
4897 * on re-initialisation
4898 */
4899 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4900 if (ret)
4901 goto out;
4902
4903 /* Now it is safe to go back round and do everything else: */
4904 for_each_ring(ring, dev_priv, i) {
4905 struct drm_i915_gem_request *req;
4906
4907 req = i915_gem_request_alloc(ring, NULL);
4908 if (IS_ERR(req)) {
4909 ret = PTR_ERR(req);
4910 i915_gem_cleanup_ringbuffer(dev);
4911 goto out;
4912 }
4913
4914 if (ring->id == RCS) {
4915 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4916 i915_gem_l3_remap(req, j);
4917 }
4918
4919 ret = i915_ppgtt_init_ring(req);
4920 if (ret && ret != -EIO) {
4921 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4922 i915_gem_request_cancel(req);
4923 i915_gem_cleanup_ringbuffer(dev);
4924 goto out;
4925 }
4926
4927 ret = i915_gem_context_enable(req);
4928 if (ret && ret != -EIO) {
4929 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4930 i915_gem_request_cancel(req);
4931 i915_gem_cleanup_ringbuffer(dev);
4932 goto out;
4933 }
4934
4935 i915_add_request_no_flush(req);
4936 }
4937
4938out:
4939 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4940 return ret;
4941}
4942
4943int i915_gem_init(struct drm_device *dev)
4944{
4945 struct drm_i915_private *dev_priv = dev->dev_private;
4946 int ret;
4947
4948 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4949 i915.enable_execlists);
4950
4951 mutex_lock(&dev->struct_mutex);
4952
4953 if (!i915.enable_execlists) {
4954 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4955 dev_priv->gt.init_rings = i915_gem_init_rings;
4956 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4957 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4958 } else {
4959 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4960 dev_priv->gt.init_rings = intel_logical_rings_init;
4961 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4962 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4963 }
4964
4965 /* This is just a security blanket to placate dragons.
4966 * On some systems, we very sporadically observe that the first TLBs
4967 * used by the CS may be stale, despite us poking the TLB reset. If
4968 * we hold the forcewake during initialisation these problems
4969 * just magically go away.
4970 */
4971 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4972
4973 ret = i915_gem_init_userptr(dev);
4974 if (ret)
4975 goto out_unlock;
4976
4977 i915_gem_init_global_gtt(dev);
4978
4979 ret = i915_gem_context_init(dev);
4980 if (ret)
4981 goto out_unlock;
4982
4983 ret = dev_priv->gt.init_rings(dev);
4984 if (ret)
4985 goto out_unlock;
4986
4987 ret = i915_gem_init_hw(dev);
4988 if (ret == -EIO) {
4989 /* Allow ring initialisation to fail by marking the GPU as
4990 * wedged. But we only want to do this where the GPU is angry,
4991 * for all other failure, such as an allocation failure, bail.
4992 */
4993 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4994 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4995 ret = 0;
4996 }
4997
4998out_unlock:
4999 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5000 mutex_unlock(&dev->struct_mutex);
5001
5002 return ret;
5003}
5004
5005void
5006i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5007{
5008 struct drm_i915_private *dev_priv = dev->dev_private;
5009 struct intel_engine_cs *ring;
5010 int i;
5011
5012 for_each_ring(ring, dev_priv, i)
5013 dev_priv->gt.cleanup_ring(ring);
5014
5015 if (i915.enable_execlists)
5016 /*
5017 * Neither the BIOS, ourselves or any other kernel
5018 * expects the system to be in execlists mode on startup,
5019 * so we need to reset the GPU back to legacy mode.
5020 */
5021 intel_gpu_reset(dev);
5022}
5023
5024static void
5025init_ring_lists(struct intel_engine_cs *ring)
5026{
5027 INIT_LIST_HEAD(&ring->active_list);
5028 INIT_LIST_HEAD(&ring->request_list);
5029}
5030
5031void
5032i915_gem_load_init(struct drm_device *dev)
5033{
5034 struct drm_i915_private *dev_priv = dev->dev_private;
5035 int i;
5036
5037 dev_priv->objects =
5038 kmem_cache_create("i915_gem_object",
5039 sizeof(struct drm_i915_gem_object), 0,
5040 SLAB_HWCACHE_ALIGN,
5041 NULL);
5042 dev_priv->vmas =
5043 kmem_cache_create("i915_gem_vma",
5044 sizeof(struct i915_vma), 0,
5045 SLAB_HWCACHE_ALIGN,
5046 NULL);
5047 dev_priv->requests =
5048 kmem_cache_create("i915_gem_request",
5049 sizeof(struct drm_i915_gem_request), 0,
5050 SLAB_HWCACHE_ALIGN,
5051 NULL);
5052
5053 INIT_LIST_HEAD(&dev_priv->vm_list);
5054 INIT_LIST_HEAD(&dev_priv->context_list);
5055 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5056 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5057 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5058 for (i = 0; i < I915_NUM_RINGS; i++)
5059 init_ring_lists(&dev_priv->ring[i]);
5060 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5061 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5062 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5063 i915_gem_retire_work_handler);
5064 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5065 i915_gem_idle_work_handler);
5066 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5067
5068 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5069
5070 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5071 dev_priv->num_fence_regs = 32;
5072 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5073 dev_priv->num_fence_regs = 16;
5074 else
5075 dev_priv->num_fence_regs = 8;
5076
5077 if (intel_vgpu_active(dev))
5078 dev_priv->num_fence_regs =
5079 I915_READ(vgtif_reg(avail_rs.fence_num));
5080
5081 /*
5082 * Set initial sequence number for requests.
5083 * Using this number allows the wraparound to happen early,
5084 * catching any obvious problems.
5085 */
5086 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5087 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5088
5089 /* Initialize fence registers to zero */
5090 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5091 i915_gem_restore_fences(dev);
5092
5093 i915_gem_detect_bit_6_swizzle(dev);
5094 init_waitqueue_head(&dev_priv->pending_flip_queue);
5095
5096 dev_priv->mm.interruptible = true;
5097
5098 mutex_init(&dev_priv->fb_tracking.lock);
5099}
5100
5101void i915_gem_load_cleanup(struct drm_device *dev)
5102{
5103 struct drm_i915_private *dev_priv = to_i915(dev);
5104
5105 kmem_cache_destroy(dev_priv->requests);
5106 kmem_cache_destroy(dev_priv->vmas);
5107 kmem_cache_destroy(dev_priv->objects);
5108}
5109
5110void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5111{
5112 struct drm_i915_file_private *file_priv = file->driver_priv;
5113
5114 /* Clean up our request list when the client is going away, so that
5115 * later retire_requests won't dereference our soon-to-be-gone
5116 * file_priv.
5117 */
5118 spin_lock(&file_priv->mm.lock);
5119 while (!list_empty(&file_priv->mm.request_list)) {
5120 struct drm_i915_gem_request *request;
5121
5122 request = list_first_entry(&file_priv->mm.request_list,
5123 struct drm_i915_gem_request,
5124 client_list);
5125 list_del(&request->client_list);
5126 request->file_priv = NULL;
5127 }
5128 spin_unlock(&file_priv->mm.lock);
5129
5130 if (!list_empty(&file_priv->rps.link)) {
5131 spin_lock(&to_i915(dev)->rps.client_lock);
5132 list_del(&file_priv->rps.link);
5133 spin_unlock(&to_i915(dev)->rps.client_lock);
5134 }
5135}
5136
5137int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5138{
5139 struct drm_i915_file_private *file_priv;
5140 int ret;
5141
5142 DRM_DEBUG_DRIVER("\n");
5143
5144 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5145 if (!file_priv)
5146 return -ENOMEM;
5147
5148 file->driver_priv = file_priv;
5149 file_priv->dev_priv = dev->dev_private;
5150 file_priv->file = file;
5151 INIT_LIST_HEAD(&file_priv->rps.link);
5152
5153 spin_lock_init(&file_priv->mm.lock);
5154 INIT_LIST_HEAD(&file_priv->mm.request_list);
5155
5156 file_priv->bsd_ring = -1;
5157
5158 ret = i915_gem_context_open(dev, file);
5159 if (ret)
5160 kfree(file_priv);
5161
5162 return ret;
5163}
5164
5165/**
5166 * i915_gem_track_fb - update frontbuffer tracking
5167 * @old: current GEM buffer for the frontbuffer slots
5168 * @new: new GEM buffer for the frontbuffer slots
5169 * @frontbuffer_bits: bitmask of frontbuffer slots
5170 *
5171 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5172 * from @old and setting them in @new. Both @old and @new can be NULL.
5173 */
5174void i915_gem_track_fb(struct drm_i915_gem_object *old,
5175 struct drm_i915_gem_object *new,
5176 unsigned frontbuffer_bits)
5177{
5178 if (old) {
5179 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5180 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5181 old->frontbuffer_bits &= ~frontbuffer_bits;
5182 }
5183
5184 if (new) {
5185 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5186 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5187 new->frontbuffer_bits |= frontbuffer_bits;
5188 }
5189}
5190
5191/* All the new VM stuff */
5192u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5193 struct i915_address_space *vm)
5194{
5195 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5196 struct i915_vma *vma;
5197
5198 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5199
5200 list_for_each_entry(vma, &o->vma_list, obj_link) {
5201 if (vma->is_ggtt &&
5202 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5203 continue;
5204 if (vma->vm == vm)
5205 return vma->node.start;
5206 }
5207
5208 WARN(1, "%s vma for this object not found.\n",
5209 i915_is_ggtt(vm) ? "global" : "ppgtt");
5210 return -1;
5211}
5212
5213u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5214 const struct i915_ggtt_view *view)
5215{
5216 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5217 struct i915_vma *vma;
5218
5219 list_for_each_entry(vma, &o->vma_list, obj_link)
5220 if (vma->vm == ggtt &&
5221 i915_ggtt_view_equal(&vma->ggtt_view, view))
5222 return vma->node.start;
5223
5224 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5225 return -1;
5226}
5227
5228bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5229 struct i915_address_space *vm)
5230{
5231 struct i915_vma *vma;
5232
5233 list_for_each_entry(vma, &o->vma_list, obj_link) {
5234 if (vma->is_ggtt &&
5235 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5236 continue;
5237 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5238 return true;
5239 }
5240
5241 return false;
5242}
5243
5244bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5245 const struct i915_ggtt_view *view)
5246{
5247 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5248 struct i915_vma *vma;
5249
5250 list_for_each_entry(vma, &o->vma_list, obj_link)
5251 if (vma->vm == ggtt &&
5252 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5253 drm_mm_node_allocated(&vma->node))
5254 return true;
5255
5256 return false;
5257}
5258
5259bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5260{
5261 struct i915_vma *vma;
5262
5263 list_for_each_entry(vma, &o->vma_list, obj_link)
5264 if (drm_mm_node_allocated(&vma->node))
5265 return true;
5266
5267 return false;
5268}
5269
5270unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5271 struct i915_address_space *vm)
5272{
5273 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5274 struct i915_vma *vma;
5275
5276 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5277
5278 BUG_ON(list_empty(&o->vma_list));
5279
5280 list_for_each_entry(vma, &o->vma_list, obj_link) {
5281 if (vma->is_ggtt &&
5282 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5283 continue;
5284 if (vma->vm == vm)
5285 return vma->node.size;
5286 }
5287 return 0;
5288}
5289
5290bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5291{
5292 struct i915_vma *vma;
5293 list_for_each_entry(vma, &obj->vma_list, obj_link)
5294 if (vma->pin_count > 0)
5295 return true;
5296
5297 return false;
5298}
5299
5300/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5301struct page *
5302i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5303{
5304 struct page *page;
5305
5306 /* Only default objects have per-page dirty tracking */
5307 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5308 return NULL;
5309
5310 page = i915_gem_object_get_page(obj, n);
5311 set_page_dirty(page);
5312 return page;
5313}
5314
5315/* Allocate a new GEM object and fill it with the supplied data */
5316struct drm_i915_gem_object *
5317i915_gem_object_create_from_data(struct drm_device *dev,
5318 const void *data, size_t size)
5319{
5320 struct drm_i915_gem_object *obj;
5321 struct sg_table *sg;
5322 size_t bytes;
5323 int ret;
5324
5325 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5326 if (IS_ERR_OR_NULL(obj))
5327 return obj;
5328
5329 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5330 if (ret)
5331 goto fail;
5332
5333 ret = i915_gem_object_get_pages(obj);
5334 if (ret)
5335 goto fail;
5336
5337 i915_gem_object_pin_pages(obj);
5338 sg = obj->pages;
5339 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5340 obj->dirty = 1; /* Backing store is now out of date */
5341 i915_gem_object_unpin_pages(obj);
5342
5343 if (WARN_ON(bytes != size)) {
5344 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5345 ret = -EFAULT;
5346 goto fail;
5347 }
5348
5349 return obj;
5350
5351fail:
5352 drm_gem_object_unreference(&obj->base);
5353 return ERR_PTR(ret);
5354}
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drmP.h>
29#include <drm/drm_vma_manager.h>
30#include <drm/i915_drm.h>
31#include "i915_drv.h"
32#include "i915_gem_clflush.h"
33#include "i915_vgpu.h"
34#include "i915_trace.h"
35#include "intel_drv.h"
36#include "intel_frontbuffer.h"
37#include "intel_mocs.h"
38#include "i915_gemfs.h"
39#include <linux/dma-fence-array.h>
40#include <linux/kthread.h>
41#include <linux/reservation.h>
42#include <linux/shmem_fs.h>
43#include <linux/slab.h>
44#include <linux/stop_machine.h>
45#include <linux/swap.h>
46#include <linux/pci.h>
47#include <linux/dma-buf.h>
48
49static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50
51static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
52{
53 if (obj->cache_dirty)
54 return false;
55
56 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 return true;
58
59 return obj->pin_global; /* currently in use by HW, keep flushed */
60}
61
62static int
63insert_mappable_node(struct i915_ggtt *ggtt,
64 struct drm_mm_node *node, u32 size)
65{
66 memset(node, 0, sizeof(*node));
67 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68 size, 0, I915_COLOR_UNEVICTABLE,
69 0, ggtt->mappable_end,
70 DRM_MM_INSERT_LOW);
71}
72
73static void
74remove_mappable_node(struct drm_mm_node *node)
75{
76 drm_mm_remove_node(node);
77}
78
79/* some bookkeeping */
80static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81 u64 size)
82{
83 spin_lock(&dev_priv->mm.object_stat_lock);
84 dev_priv->mm.object_count++;
85 dev_priv->mm.object_memory += size;
86 spin_unlock(&dev_priv->mm.object_stat_lock);
87}
88
89static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90 u64 size)
91{
92 spin_lock(&dev_priv->mm.object_stat_lock);
93 dev_priv->mm.object_count--;
94 dev_priv->mm.object_memory -= size;
95 spin_unlock(&dev_priv->mm.object_stat_lock);
96}
97
98static int
99i915_gem_wait_for_error(struct i915_gpu_error *error)
100{
101 int ret;
102
103 might_sleep();
104
105 /*
106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 * userspace. If it takes that long something really bad is going on and
108 * we should simply try to bail out and fail as gracefully as possible.
109 */
110 ret = wait_event_interruptible_timeout(error->reset_queue,
111 !i915_reset_backoff(error),
112 I915_RESET_TIMEOUT);
113 if (ret == 0) {
114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115 return -EIO;
116 } else if (ret < 0) {
117 return ret;
118 } else {
119 return 0;
120 }
121}
122
123int i915_mutex_lock_interruptible(struct drm_device *dev)
124{
125 struct drm_i915_private *dev_priv = to_i915(dev);
126 int ret;
127
128 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 if (ret)
130 return ret;
131
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
133 if (ret)
134 return ret;
135
136 return 0;
137}
138
139int
140i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141 struct drm_file *file)
142{
143 struct drm_i915_private *dev_priv = to_i915(dev);
144 struct i915_ggtt *ggtt = &dev_priv->ggtt;
145 struct drm_i915_gem_get_aperture *args = data;
146 struct i915_vma *vma;
147 u64 pinned;
148
149 pinned = ggtt->base.reserved;
150 mutex_lock(&dev->struct_mutex);
151 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152 if (i915_vma_is_pinned(vma))
153 pinned += vma->node.size;
154 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155 if (i915_vma_is_pinned(vma))
156 pinned += vma->node.size;
157 mutex_unlock(&dev->struct_mutex);
158
159 args->aper_size = ggtt->base.total;
160 args->aper_available_size = args->aper_size - pinned;
161
162 return 0;
163}
164
165static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166{
167 struct address_space *mapping = obj->base.filp->f_mapping;
168 drm_dma_handle_t *phys;
169 struct sg_table *st;
170 struct scatterlist *sg;
171 char *vaddr;
172 int i;
173 int err;
174
175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176 return -EINVAL;
177
178 /* Always aligning to the object size, allows a single allocation
179 * to handle all possible callers, and given typical object sizes,
180 * the alignment of the buddy allocation will naturally match.
181 */
182 phys = drm_pci_alloc(obj->base.dev,
183 roundup_pow_of_two(obj->base.size),
184 roundup_pow_of_two(obj->base.size));
185 if (!phys)
186 return -ENOMEM;
187
188 vaddr = phys->vaddr;
189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 struct page *page;
191 char *src;
192
193 page = shmem_read_mapping_page(mapping, i);
194 if (IS_ERR(page)) {
195 err = PTR_ERR(page);
196 goto err_phys;
197 }
198
199 src = kmap_atomic(page);
200 memcpy(vaddr, src, PAGE_SIZE);
201 drm_clflush_virt_range(vaddr, PAGE_SIZE);
202 kunmap_atomic(src);
203
204 put_page(page);
205 vaddr += PAGE_SIZE;
206 }
207
208 i915_gem_chipset_flush(to_i915(obj->base.dev));
209
210 st = kmalloc(sizeof(*st), GFP_KERNEL);
211 if (!st) {
212 err = -ENOMEM;
213 goto err_phys;
214 }
215
216 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217 kfree(st);
218 err = -ENOMEM;
219 goto err_phys;
220 }
221
222 sg = st->sgl;
223 sg->offset = 0;
224 sg->length = obj->base.size;
225
226 sg_dma_address(sg) = phys->busaddr;
227 sg_dma_len(sg) = obj->base.size;
228
229 obj->phys_handle = phys;
230
231 __i915_gem_object_set_pages(obj, st, sg->length);
232
233 return 0;
234
235err_phys:
236 drm_pci_free(obj->base.dev, phys);
237
238 return err;
239}
240
241static void __start_cpu_write(struct drm_i915_gem_object *obj)
242{
243 obj->read_domains = I915_GEM_DOMAIN_CPU;
244 obj->write_domain = I915_GEM_DOMAIN_CPU;
245 if (cpu_write_needs_clflush(obj))
246 obj->cache_dirty = true;
247}
248
249static void
250__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 struct sg_table *pages,
252 bool needs_clflush)
253{
254 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
255
256 if (obj->mm.madv == I915_MADV_DONTNEED)
257 obj->mm.dirty = false;
258
259 if (needs_clflush &&
260 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262 drm_clflush_sg(pages);
263
264 __start_cpu_write(obj);
265}
266
267static void
268i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269 struct sg_table *pages)
270{
271 __i915_gem_object_release_shmem(obj, pages, false);
272
273 if (obj->mm.dirty) {
274 struct address_space *mapping = obj->base.filp->f_mapping;
275 char *vaddr = obj->phys_handle->vaddr;
276 int i;
277
278 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279 struct page *page;
280 char *dst;
281
282 page = shmem_read_mapping_page(mapping, i);
283 if (IS_ERR(page))
284 continue;
285
286 dst = kmap_atomic(page);
287 drm_clflush_virt_range(vaddr, PAGE_SIZE);
288 memcpy(dst, vaddr, PAGE_SIZE);
289 kunmap_atomic(dst);
290
291 set_page_dirty(page);
292 if (obj->mm.madv == I915_MADV_WILLNEED)
293 mark_page_accessed(page);
294 put_page(page);
295 vaddr += PAGE_SIZE;
296 }
297 obj->mm.dirty = false;
298 }
299
300 sg_free_table(pages);
301 kfree(pages);
302
303 drm_pci_free(obj->base.dev, obj->phys_handle);
304}
305
306static void
307i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
308{
309 i915_gem_object_unpin_pages(obj);
310}
311
312static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313 .get_pages = i915_gem_object_get_pages_phys,
314 .put_pages = i915_gem_object_put_pages_phys,
315 .release = i915_gem_object_release_phys,
316};
317
318static const struct drm_i915_gem_object_ops i915_gem_object_ops;
319
320int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
321{
322 struct i915_vma *vma;
323 LIST_HEAD(still_in_list);
324 int ret;
325
326 lockdep_assert_held(&obj->base.dev->struct_mutex);
327
328 /* Closed vma are removed from the obj->vma_list - but they may
329 * still have an active binding on the object. To remove those we
330 * must wait for all rendering to complete to the object (as unbinding
331 * must anyway), and retire the requests.
332 */
333 ret = i915_gem_object_set_to_cpu_domain(obj, false);
334 if (ret)
335 return ret;
336
337 while ((vma = list_first_entry_or_null(&obj->vma_list,
338 struct i915_vma,
339 obj_link))) {
340 list_move_tail(&vma->obj_link, &still_in_list);
341 ret = i915_vma_unbind(vma);
342 if (ret)
343 break;
344 }
345 list_splice(&still_in_list, &obj->vma_list);
346
347 return ret;
348}
349
350static long
351i915_gem_object_wait_fence(struct dma_fence *fence,
352 unsigned int flags,
353 long timeout,
354 struct intel_rps_client *rps_client)
355{
356 struct i915_request *rq;
357
358 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359
360 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
361 return timeout;
362
363 if (!dma_fence_is_i915(fence))
364 return dma_fence_wait_timeout(fence,
365 flags & I915_WAIT_INTERRUPTIBLE,
366 timeout);
367
368 rq = to_request(fence);
369 if (i915_request_completed(rq))
370 goto out;
371
372 /*
373 * This client is about to stall waiting for the GPU. In many cases
374 * this is undesirable and limits the throughput of the system, as
375 * many clients cannot continue processing user input/output whilst
376 * blocked. RPS autotuning may take tens of milliseconds to respond
377 * to the GPU load and thus incurs additional latency for the client.
378 * We can circumvent that by promoting the GPU frequency to maximum
379 * before we wait. This makes the GPU throttle up much more quickly
380 * (good for benchmarks and user experience, e.g. window animations),
381 * but at a cost of spending more power processing the workload
382 * (bad for battery). Not all clients even want their results
383 * immediately and for them we should just let the GPU select its own
384 * frequency to maximise efficiency. To prevent a single client from
385 * forcing the clocks too high for the whole system, we only allow
386 * each client to waitboost once in a busy period.
387 */
388 if (rps_client && !i915_request_started(rq)) {
389 if (INTEL_GEN(rq->i915) >= 6)
390 gen6_rps_boost(rq, rps_client);
391 }
392
393 timeout = i915_request_wait(rq, flags, timeout);
394
395out:
396 if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
397 i915_request_retire_upto(rq);
398
399 return timeout;
400}
401
402static long
403i915_gem_object_wait_reservation(struct reservation_object *resv,
404 unsigned int flags,
405 long timeout,
406 struct intel_rps_client *rps_client)
407{
408 unsigned int seq = __read_seqcount_begin(&resv->seq);
409 struct dma_fence *excl;
410 bool prune_fences = false;
411
412 if (flags & I915_WAIT_ALL) {
413 struct dma_fence **shared;
414 unsigned int count, i;
415 int ret;
416
417 ret = reservation_object_get_fences_rcu(resv,
418 &excl, &count, &shared);
419 if (ret)
420 return ret;
421
422 for (i = 0; i < count; i++) {
423 timeout = i915_gem_object_wait_fence(shared[i],
424 flags, timeout,
425 rps_client);
426 if (timeout < 0)
427 break;
428
429 dma_fence_put(shared[i]);
430 }
431
432 for (; i < count; i++)
433 dma_fence_put(shared[i]);
434 kfree(shared);
435
436 /*
437 * If both shared fences and an exclusive fence exist,
438 * then by construction the shared fences must be later
439 * than the exclusive fence. If we successfully wait for
440 * all the shared fences, we know that the exclusive fence
441 * must all be signaled. If all the shared fences are
442 * signaled, we can prune the array and recover the
443 * floating references on the fences/requests.
444 */
445 prune_fences = count && timeout >= 0;
446 } else {
447 excl = reservation_object_get_excl_rcu(resv);
448 }
449
450 if (excl && timeout >= 0)
451 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
452 rps_client);
453
454 dma_fence_put(excl);
455
456 /*
457 * Opportunistically prune the fences iff we know they have *all* been
458 * signaled and that the reservation object has not been changed (i.e.
459 * no new fences have been added).
460 */
461 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
462 if (reservation_object_trylock(resv)) {
463 if (!__read_seqcount_retry(&resv->seq, seq))
464 reservation_object_add_excl_fence(resv, NULL);
465 reservation_object_unlock(resv);
466 }
467 }
468
469 return timeout;
470}
471
472static void __fence_set_priority(struct dma_fence *fence, int prio)
473{
474 struct i915_request *rq;
475 struct intel_engine_cs *engine;
476
477 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
478 return;
479
480 rq = to_request(fence);
481 engine = rq->engine;
482
483 rcu_read_lock();
484 if (engine->schedule)
485 engine->schedule(rq, prio);
486 rcu_read_unlock();
487}
488
489static void fence_set_priority(struct dma_fence *fence, int prio)
490{
491 /* Recurse once into a fence-array */
492 if (dma_fence_is_array(fence)) {
493 struct dma_fence_array *array = to_dma_fence_array(fence);
494 int i;
495
496 for (i = 0; i < array->num_fences; i++)
497 __fence_set_priority(array->fences[i], prio);
498 } else {
499 __fence_set_priority(fence, prio);
500 }
501}
502
503int
504i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
505 unsigned int flags,
506 int prio)
507{
508 struct dma_fence *excl;
509
510 if (flags & I915_WAIT_ALL) {
511 struct dma_fence **shared;
512 unsigned int count, i;
513 int ret;
514
515 ret = reservation_object_get_fences_rcu(obj->resv,
516 &excl, &count, &shared);
517 if (ret)
518 return ret;
519
520 for (i = 0; i < count; i++) {
521 fence_set_priority(shared[i], prio);
522 dma_fence_put(shared[i]);
523 }
524
525 kfree(shared);
526 } else {
527 excl = reservation_object_get_excl_rcu(obj->resv);
528 }
529
530 if (excl) {
531 fence_set_priority(excl, prio);
532 dma_fence_put(excl);
533 }
534 return 0;
535}
536
537/**
538 * Waits for rendering to the object to be completed
539 * @obj: i915 gem object
540 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
541 * @timeout: how long to wait
542 * @rps_client: client (user process) to charge for any waitboosting
543 */
544int
545i915_gem_object_wait(struct drm_i915_gem_object *obj,
546 unsigned int flags,
547 long timeout,
548 struct intel_rps_client *rps_client)
549{
550 might_sleep();
551#if IS_ENABLED(CONFIG_LOCKDEP)
552 GEM_BUG_ON(debug_locks &&
553 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
554 !!(flags & I915_WAIT_LOCKED));
555#endif
556 GEM_BUG_ON(timeout < 0);
557
558 timeout = i915_gem_object_wait_reservation(obj->resv,
559 flags, timeout,
560 rps_client);
561 return timeout < 0 ? timeout : 0;
562}
563
564static struct intel_rps_client *to_rps_client(struct drm_file *file)
565{
566 struct drm_i915_file_private *fpriv = file->driver_priv;
567
568 return &fpriv->rps_client;
569}
570
571static int
572i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
573 struct drm_i915_gem_pwrite *args,
574 struct drm_file *file)
575{
576 void *vaddr = obj->phys_handle->vaddr + args->offset;
577 char __user *user_data = u64_to_user_ptr(args->data_ptr);
578
579 /* We manually control the domain here and pretend that it
580 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
581 */
582 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
583 if (copy_from_user(vaddr, user_data, args->size))
584 return -EFAULT;
585
586 drm_clflush_virt_range(vaddr, args->size);
587 i915_gem_chipset_flush(to_i915(obj->base.dev));
588
589 intel_fb_obj_flush(obj, ORIGIN_CPU);
590 return 0;
591}
592
593void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
594{
595 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
596}
597
598void i915_gem_object_free(struct drm_i915_gem_object *obj)
599{
600 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
601 kmem_cache_free(dev_priv->objects, obj);
602}
603
604static int
605i915_gem_create(struct drm_file *file,
606 struct drm_i915_private *dev_priv,
607 uint64_t size,
608 uint32_t *handle_p)
609{
610 struct drm_i915_gem_object *obj;
611 int ret;
612 u32 handle;
613
614 size = roundup(size, PAGE_SIZE);
615 if (size == 0)
616 return -EINVAL;
617
618 /* Allocate the new object */
619 obj = i915_gem_object_create(dev_priv, size);
620 if (IS_ERR(obj))
621 return PTR_ERR(obj);
622
623 ret = drm_gem_handle_create(file, &obj->base, &handle);
624 /* drop reference from allocate - handle holds it now */
625 i915_gem_object_put(obj);
626 if (ret)
627 return ret;
628
629 *handle_p = handle;
630 return 0;
631}
632
633int
634i915_gem_dumb_create(struct drm_file *file,
635 struct drm_device *dev,
636 struct drm_mode_create_dumb *args)
637{
638 /* have to work out size/pitch and return them */
639 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
640 args->size = args->pitch * args->height;
641 return i915_gem_create(file, to_i915(dev),
642 args->size, &args->handle);
643}
644
645static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
646{
647 return !(obj->cache_level == I915_CACHE_NONE ||
648 obj->cache_level == I915_CACHE_WT);
649}
650
651/**
652 * Creates a new mm object and returns a handle to it.
653 * @dev: drm device pointer
654 * @data: ioctl data blob
655 * @file: drm file pointer
656 */
657int
658i915_gem_create_ioctl(struct drm_device *dev, void *data,
659 struct drm_file *file)
660{
661 struct drm_i915_private *dev_priv = to_i915(dev);
662 struct drm_i915_gem_create *args = data;
663
664 i915_gem_flush_free_objects(dev_priv);
665
666 return i915_gem_create(file, dev_priv,
667 args->size, &args->handle);
668}
669
670static inline enum fb_op_origin
671fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
672{
673 return (domain == I915_GEM_DOMAIN_GTT ?
674 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
675}
676
677void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
678{
679 /*
680 * No actual flushing is required for the GTT write domain for reads
681 * from the GTT domain. Writes to it "immediately" go to main memory
682 * as far as we know, so there's no chipset flush. It also doesn't
683 * land in the GPU render cache.
684 *
685 * However, we do have to enforce the order so that all writes through
686 * the GTT land before any writes to the device, such as updates to
687 * the GATT itself.
688 *
689 * We also have to wait a bit for the writes to land from the GTT.
690 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
691 * timing. This issue has only been observed when switching quickly
692 * between GTT writes and CPU reads from inside the kernel on recent hw,
693 * and it appears to only affect discrete GTT blocks (i.e. on LLC
694 * system agents we cannot reproduce this behaviour, until Cannonlake
695 * that was!).
696 */
697
698 wmb();
699
700 intel_runtime_pm_get(dev_priv);
701 spin_lock_irq(&dev_priv->uncore.lock);
702
703 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
704
705 spin_unlock_irq(&dev_priv->uncore.lock);
706 intel_runtime_pm_put(dev_priv);
707}
708
709static void
710flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
711{
712 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
713 struct i915_vma *vma;
714
715 if (!(obj->write_domain & flush_domains))
716 return;
717
718 switch (obj->write_domain) {
719 case I915_GEM_DOMAIN_GTT:
720 i915_gem_flush_ggtt_writes(dev_priv);
721
722 intel_fb_obj_flush(obj,
723 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
724
725 for_each_ggtt_vma(vma, obj) {
726 if (vma->iomap)
727 continue;
728
729 i915_vma_unset_ggtt_write(vma);
730 }
731 break;
732
733 case I915_GEM_DOMAIN_CPU:
734 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
735 break;
736
737 case I915_GEM_DOMAIN_RENDER:
738 if (gpu_write_needs_clflush(obj))
739 obj->cache_dirty = true;
740 break;
741 }
742
743 obj->write_domain = 0;
744}
745
746static inline int
747__copy_to_user_swizzled(char __user *cpu_vaddr,
748 const char *gpu_vaddr, int gpu_offset,
749 int length)
750{
751 int ret, cpu_offset = 0;
752
753 while (length > 0) {
754 int cacheline_end = ALIGN(gpu_offset + 1, 64);
755 int this_length = min(cacheline_end - gpu_offset, length);
756 int swizzled_gpu_offset = gpu_offset ^ 64;
757
758 ret = __copy_to_user(cpu_vaddr + cpu_offset,
759 gpu_vaddr + swizzled_gpu_offset,
760 this_length);
761 if (ret)
762 return ret + length;
763
764 cpu_offset += this_length;
765 gpu_offset += this_length;
766 length -= this_length;
767 }
768
769 return 0;
770}
771
772static inline int
773__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
774 const char __user *cpu_vaddr,
775 int length)
776{
777 int ret, cpu_offset = 0;
778
779 while (length > 0) {
780 int cacheline_end = ALIGN(gpu_offset + 1, 64);
781 int this_length = min(cacheline_end - gpu_offset, length);
782 int swizzled_gpu_offset = gpu_offset ^ 64;
783
784 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
785 cpu_vaddr + cpu_offset,
786 this_length);
787 if (ret)
788 return ret + length;
789
790 cpu_offset += this_length;
791 gpu_offset += this_length;
792 length -= this_length;
793 }
794
795 return 0;
796}
797
798/*
799 * Pins the specified object's pages and synchronizes the object with
800 * GPU accesses. Sets needs_clflush to non-zero if the caller should
801 * flush the object from the CPU cache.
802 */
803int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
804 unsigned int *needs_clflush)
805{
806 int ret;
807
808 lockdep_assert_held(&obj->base.dev->struct_mutex);
809
810 *needs_clflush = 0;
811 if (!i915_gem_object_has_struct_page(obj))
812 return -ENODEV;
813
814 ret = i915_gem_object_wait(obj,
815 I915_WAIT_INTERRUPTIBLE |
816 I915_WAIT_LOCKED,
817 MAX_SCHEDULE_TIMEOUT,
818 NULL);
819 if (ret)
820 return ret;
821
822 ret = i915_gem_object_pin_pages(obj);
823 if (ret)
824 return ret;
825
826 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
827 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
828 ret = i915_gem_object_set_to_cpu_domain(obj, false);
829 if (ret)
830 goto err_unpin;
831 else
832 goto out;
833 }
834
835 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
836
837 /* If we're not in the cpu read domain, set ourself into the gtt
838 * read domain and manually flush cachelines (if required). This
839 * optimizes for the case when the gpu will dirty the data
840 * anyway again before the next pread happens.
841 */
842 if (!obj->cache_dirty &&
843 !(obj->read_domains & I915_GEM_DOMAIN_CPU))
844 *needs_clflush = CLFLUSH_BEFORE;
845
846out:
847 /* return with the pages pinned */
848 return 0;
849
850err_unpin:
851 i915_gem_object_unpin_pages(obj);
852 return ret;
853}
854
855int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
856 unsigned int *needs_clflush)
857{
858 int ret;
859
860 lockdep_assert_held(&obj->base.dev->struct_mutex);
861
862 *needs_clflush = 0;
863 if (!i915_gem_object_has_struct_page(obj))
864 return -ENODEV;
865
866 ret = i915_gem_object_wait(obj,
867 I915_WAIT_INTERRUPTIBLE |
868 I915_WAIT_LOCKED |
869 I915_WAIT_ALL,
870 MAX_SCHEDULE_TIMEOUT,
871 NULL);
872 if (ret)
873 return ret;
874
875 ret = i915_gem_object_pin_pages(obj);
876 if (ret)
877 return ret;
878
879 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
880 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
881 ret = i915_gem_object_set_to_cpu_domain(obj, true);
882 if (ret)
883 goto err_unpin;
884 else
885 goto out;
886 }
887
888 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
889
890 /* If we're not in the cpu write domain, set ourself into the
891 * gtt write domain and manually flush cachelines (as required).
892 * This optimizes for the case when the gpu will use the data
893 * right away and we therefore have to clflush anyway.
894 */
895 if (!obj->cache_dirty) {
896 *needs_clflush |= CLFLUSH_AFTER;
897
898 /*
899 * Same trick applies to invalidate partially written
900 * cachelines read before writing.
901 */
902 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
903 *needs_clflush |= CLFLUSH_BEFORE;
904 }
905
906out:
907 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
908 obj->mm.dirty = true;
909 /* return with the pages pinned */
910 return 0;
911
912err_unpin:
913 i915_gem_object_unpin_pages(obj);
914 return ret;
915}
916
917static void
918shmem_clflush_swizzled_range(char *addr, unsigned long length,
919 bool swizzled)
920{
921 if (unlikely(swizzled)) {
922 unsigned long start = (unsigned long) addr;
923 unsigned long end = (unsigned long) addr + length;
924
925 /* For swizzling simply ensure that we always flush both
926 * channels. Lame, but simple and it works. Swizzled
927 * pwrite/pread is far from a hotpath - current userspace
928 * doesn't use it at all. */
929 start = round_down(start, 128);
930 end = round_up(end, 128);
931
932 drm_clflush_virt_range((void *)start, end - start);
933 } else {
934 drm_clflush_virt_range(addr, length);
935 }
936
937}
938
939/* Only difference to the fast-path function is that this can handle bit17
940 * and uses non-atomic copy and kmap functions. */
941static int
942shmem_pread_slow(struct page *page, int offset, int length,
943 char __user *user_data,
944 bool page_do_bit17_swizzling, bool needs_clflush)
945{
946 char *vaddr;
947 int ret;
948
949 vaddr = kmap(page);
950 if (needs_clflush)
951 shmem_clflush_swizzled_range(vaddr + offset, length,
952 page_do_bit17_swizzling);
953
954 if (page_do_bit17_swizzling)
955 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
956 else
957 ret = __copy_to_user(user_data, vaddr + offset, length);
958 kunmap(page);
959
960 return ret ? - EFAULT : 0;
961}
962
963static int
964shmem_pread(struct page *page, int offset, int length, char __user *user_data,
965 bool page_do_bit17_swizzling, bool needs_clflush)
966{
967 int ret;
968
969 ret = -ENODEV;
970 if (!page_do_bit17_swizzling) {
971 char *vaddr = kmap_atomic(page);
972
973 if (needs_clflush)
974 drm_clflush_virt_range(vaddr + offset, length);
975 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
976 kunmap_atomic(vaddr);
977 }
978 if (ret == 0)
979 return 0;
980
981 return shmem_pread_slow(page, offset, length, user_data,
982 page_do_bit17_swizzling, needs_clflush);
983}
984
985static int
986i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
987 struct drm_i915_gem_pread *args)
988{
989 char __user *user_data;
990 u64 remain;
991 unsigned int obj_do_bit17_swizzling;
992 unsigned int needs_clflush;
993 unsigned int idx, offset;
994 int ret;
995
996 obj_do_bit17_swizzling = 0;
997 if (i915_gem_object_needs_bit17_swizzle(obj))
998 obj_do_bit17_swizzling = BIT(17);
999
1000 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1001 if (ret)
1002 return ret;
1003
1004 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1005 mutex_unlock(&obj->base.dev->struct_mutex);
1006 if (ret)
1007 return ret;
1008
1009 remain = args->size;
1010 user_data = u64_to_user_ptr(args->data_ptr);
1011 offset = offset_in_page(args->offset);
1012 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1013 struct page *page = i915_gem_object_get_page(obj, idx);
1014 int length;
1015
1016 length = remain;
1017 if (offset + length > PAGE_SIZE)
1018 length = PAGE_SIZE - offset;
1019
1020 ret = shmem_pread(page, offset, length, user_data,
1021 page_to_phys(page) & obj_do_bit17_swizzling,
1022 needs_clflush);
1023 if (ret)
1024 break;
1025
1026 remain -= length;
1027 user_data += length;
1028 offset = 0;
1029 }
1030
1031 i915_gem_obj_finish_shmem_access(obj);
1032 return ret;
1033}
1034
1035static inline bool
1036gtt_user_read(struct io_mapping *mapping,
1037 loff_t base, int offset,
1038 char __user *user_data, int length)
1039{
1040 void __iomem *vaddr;
1041 unsigned long unwritten;
1042
1043 /* We can use the cpu mem copy function because this is X86. */
1044 vaddr = io_mapping_map_atomic_wc(mapping, base);
1045 unwritten = __copy_to_user_inatomic(user_data,
1046 (void __force *)vaddr + offset,
1047 length);
1048 io_mapping_unmap_atomic(vaddr);
1049 if (unwritten) {
1050 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1051 unwritten = copy_to_user(user_data,
1052 (void __force *)vaddr + offset,
1053 length);
1054 io_mapping_unmap(vaddr);
1055 }
1056 return unwritten;
1057}
1058
1059static int
1060i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1061 const struct drm_i915_gem_pread *args)
1062{
1063 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1064 struct i915_ggtt *ggtt = &i915->ggtt;
1065 struct drm_mm_node node;
1066 struct i915_vma *vma;
1067 void __user *user_data;
1068 u64 remain, offset;
1069 int ret;
1070
1071 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1072 if (ret)
1073 return ret;
1074
1075 intel_runtime_pm_get(i915);
1076 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1077 PIN_MAPPABLE |
1078 PIN_NONFAULT |
1079 PIN_NONBLOCK);
1080 if (!IS_ERR(vma)) {
1081 node.start = i915_ggtt_offset(vma);
1082 node.allocated = false;
1083 ret = i915_vma_put_fence(vma);
1084 if (ret) {
1085 i915_vma_unpin(vma);
1086 vma = ERR_PTR(ret);
1087 }
1088 }
1089 if (IS_ERR(vma)) {
1090 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1091 if (ret)
1092 goto out_unlock;
1093 GEM_BUG_ON(!node.allocated);
1094 }
1095
1096 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1097 if (ret)
1098 goto out_unpin;
1099
1100 mutex_unlock(&i915->drm.struct_mutex);
1101
1102 user_data = u64_to_user_ptr(args->data_ptr);
1103 remain = args->size;
1104 offset = args->offset;
1105
1106 while (remain > 0) {
1107 /* Operation in this page
1108 *
1109 * page_base = page offset within aperture
1110 * page_offset = offset within page
1111 * page_length = bytes to copy for this page
1112 */
1113 u32 page_base = node.start;
1114 unsigned page_offset = offset_in_page(offset);
1115 unsigned page_length = PAGE_SIZE - page_offset;
1116 page_length = remain < page_length ? remain : page_length;
1117 if (node.allocated) {
1118 wmb();
1119 ggtt->base.insert_page(&ggtt->base,
1120 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1121 node.start, I915_CACHE_NONE, 0);
1122 wmb();
1123 } else {
1124 page_base += offset & PAGE_MASK;
1125 }
1126
1127 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1128 user_data, page_length)) {
1129 ret = -EFAULT;
1130 break;
1131 }
1132
1133 remain -= page_length;
1134 user_data += page_length;
1135 offset += page_length;
1136 }
1137
1138 mutex_lock(&i915->drm.struct_mutex);
1139out_unpin:
1140 if (node.allocated) {
1141 wmb();
1142 ggtt->base.clear_range(&ggtt->base,
1143 node.start, node.size);
1144 remove_mappable_node(&node);
1145 } else {
1146 i915_vma_unpin(vma);
1147 }
1148out_unlock:
1149 intel_runtime_pm_put(i915);
1150 mutex_unlock(&i915->drm.struct_mutex);
1151
1152 return ret;
1153}
1154
1155/**
1156 * Reads data from the object referenced by handle.
1157 * @dev: drm device pointer
1158 * @data: ioctl data blob
1159 * @file: drm file pointer
1160 *
1161 * On error, the contents of *data are undefined.
1162 */
1163int
1164i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1165 struct drm_file *file)
1166{
1167 struct drm_i915_gem_pread *args = data;
1168 struct drm_i915_gem_object *obj;
1169 int ret;
1170
1171 if (args->size == 0)
1172 return 0;
1173
1174 if (!access_ok(VERIFY_WRITE,
1175 u64_to_user_ptr(args->data_ptr),
1176 args->size))
1177 return -EFAULT;
1178
1179 obj = i915_gem_object_lookup(file, args->handle);
1180 if (!obj)
1181 return -ENOENT;
1182
1183 /* Bounds check source. */
1184 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1185 ret = -EINVAL;
1186 goto out;
1187 }
1188
1189 trace_i915_gem_object_pread(obj, args->offset, args->size);
1190
1191 ret = i915_gem_object_wait(obj,
1192 I915_WAIT_INTERRUPTIBLE,
1193 MAX_SCHEDULE_TIMEOUT,
1194 to_rps_client(file));
1195 if (ret)
1196 goto out;
1197
1198 ret = i915_gem_object_pin_pages(obj);
1199 if (ret)
1200 goto out;
1201
1202 ret = i915_gem_shmem_pread(obj, args);
1203 if (ret == -EFAULT || ret == -ENODEV)
1204 ret = i915_gem_gtt_pread(obj, args);
1205
1206 i915_gem_object_unpin_pages(obj);
1207out:
1208 i915_gem_object_put(obj);
1209 return ret;
1210}
1211
1212/* This is the fast write path which cannot handle
1213 * page faults in the source data
1214 */
1215
1216static inline bool
1217ggtt_write(struct io_mapping *mapping,
1218 loff_t base, int offset,
1219 char __user *user_data, int length)
1220{
1221 void __iomem *vaddr;
1222 unsigned long unwritten;
1223
1224 /* We can use the cpu mem copy function because this is X86. */
1225 vaddr = io_mapping_map_atomic_wc(mapping, base);
1226 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1227 user_data, length);
1228 io_mapping_unmap_atomic(vaddr);
1229 if (unwritten) {
1230 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1231 unwritten = copy_from_user((void __force *)vaddr + offset,
1232 user_data, length);
1233 io_mapping_unmap(vaddr);
1234 }
1235
1236 return unwritten;
1237}
1238
1239/**
1240 * This is the fast pwrite path, where we copy the data directly from the
1241 * user into the GTT, uncached.
1242 * @obj: i915 GEM object
1243 * @args: pwrite arguments structure
1244 */
1245static int
1246i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1247 const struct drm_i915_gem_pwrite *args)
1248{
1249 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1250 struct i915_ggtt *ggtt = &i915->ggtt;
1251 struct drm_mm_node node;
1252 struct i915_vma *vma;
1253 u64 remain, offset;
1254 void __user *user_data;
1255 int ret;
1256
1257 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1258 if (ret)
1259 return ret;
1260
1261 if (i915_gem_object_has_struct_page(obj)) {
1262 /*
1263 * Avoid waking the device up if we can fallback, as
1264 * waking/resuming is very slow (worst-case 10-100 ms
1265 * depending on PCI sleeps and our own resume time).
1266 * This easily dwarfs any performance advantage from
1267 * using the cache bypass of indirect GGTT access.
1268 */
1269 if (!intel_runtime_pm_get_if_in_use(i915)) {
1270 ret = -EFAULT;
1271 goto out_unlock;
1272 }
1273 } else {
1274 /* No backing pages, no fallback, we must force GGTT access */
1275 intel_runtime_pm_get(i915);
1276 }
1277
1278 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1279 PIN_MAPPABLE |
1280 PIN_NONFAULT |
1281 PIN_NONBLOCK);
1282 if (!IS_ERR(vma)) {
1283 node.start = i915_ggtt_offset(vma);
1284 node.allocated = false;
1285 ret = i915_vma_put_fence(vma);
1286 if (ret) {
1287 i915_vma_unpin(vma);
1288 vma = ERR_PTR(ret);
1289 }
1290 }
1291 if (IS_ERR(vma)) {
1292 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1293 if (ret)
1294 goto out_rpm;
1295 GEM_BUG_ON(!node.allocated);
1296 }
1297
1298 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1299 if (ret)
1300 goto out_unpin;
1301
1302 mutex_unlock(&i915->drm.struct_mutex);
1303
1304 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1305
1306 user_data = u64_to_user_ptr(args->data_ptr);
1307 offset = args->offset;
1308 remain = args->size;
1309 while (remain) {
1310 /* Operation in this page
1311 *
1312 * page_base = page offset within aperture
1313 * page_offset = offset within page
1314 * page_length = bytes to copy for this page
1315 */
1316 u32 page_base = node.start;
1317 unsigned int page_offset = offset_in_page(offset);
1318 unsigned int page_length = PAGE_SIZE - page_offset;
1319 page_length = remain < page_length ? remain : page_length;
1320 if (node.allocated) {
1321 wmb(); /* flush the write before we modify the GGTT */
1322 ggtt->base.insert_page(&ggtt->base,
1323 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1324 node.start, I915_CACHE_NONE, 0);
1325 wmb(); /* flush modifications to the GGTT (insert_page) */
1326 } else {
1327 page_base += offset & PAGE_MASK;
1328 }
1329 /* If we get a fault while copying data, then (presumably) our
1330 * source page isn't available. Return the error and we'll
1331 * retry in the slow path.
1332 * If the object is non-shmem backed, we retry again with the
1333 * path that handles page fault.
1334 */
1335 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1336 user_data, page_length)) {
1337 ret = -EFAULT;
1338 break;
1339 }
1340
1341 remain -= page_length;
1342 user_data += page_length;
1343 offset += page_length;
1344 }
1345 intel_fb_obj_flush(obj, ORIGIN_CPU);
1346
1347 mutex_lock(&i915->drm.struct_mutex);
1348out_unpin:
1349 if (node.allocated) {
1350 wmb();
1351 ggtt->base.clear_range(&ggtt->base,
1352 node.start, node.size);
1353 remove_mappable_node(&node);
1354 } else {
1355 i915_vma_unpin(vma);
1356 }
1357out_rpm:
1358 intel_runtime_pm_put(i915);
1359out_unlock:
1360 mutex_unlock(&i915->drm.struct_mutex);
1361 return ret;
1362}
1363
1364static int
1365shmem_pwrite_slow(struct page *page, int offset, int length,
1366 char __user *user_data,
1367 bool page_do_bit17_swizzling,
1368 bool needs_clflush_before,
1369 bool needs_clflush_after)
1370{
1371 char *vaddr;
1372 int ret;
1373
1374 vaddr = kmap(page);
1375 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1376 shmem_clflush_swizzled_range(vaddr + offset, length,
1377 page_do_bit17_swizzling);
1378 if (page_do_bit17_swizzling)
1379 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1380 length);
1381 else
1382 ret = __copy_from_user(vaddr + offset, user_data, length);
1383 if (needs_clflush_after)
1384 shmem_clflush_swizzled_range(vaddr + offset, length,
1385 page_do_bit17_swizzling);
1386 kunmap(page);
1387
1388 return ret ? -EFAULT : 0;
1389}
1390
1391/* Per-page copy function for the shmem pwrite fastpath.
1392 * Flushes invalid cachelines before writing to the target if
1393 * needs_clflush_before is set and flushes out any written cachelines after
1394 * writing if needs_clflush is set.
1395 */
1396static int
1397shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1398 bool page_do_bit17_swizzling,
1399 bool needs_clflush_before,
1400 bool needs_clflush_after)
1401{
1402 int ret;
1403
1404 ret = -ENODEV;
1405 if (!page_do_bit17_swizzling) {
1406 char *vaddr = kmap_atomic(page);
1407
1408 if (needs_clflush_before)
1409 drm_clflush_virt_range(vaddr + offset, len);
1410 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1411 if (needs_clflush_after)
1412 drm_clflush_virt_range(vaddr + offset, len);
1413
1414 kunmap_atomic(vaddr);
1415 }
1416 if (ret == 0)
1417 return ret;
1418
1419 return shmem_pwrite_slow(page, offset, len, user_data,
1420 page_do_bit17_swizzling,
1421 needs_clflush_before,
1422 needs_clflush_after);
1423}
1424
1425static int
1426i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1427 const struct drm_i915_gem_pwrite *args)
1428{
1429 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1430 void __user *user_data;
1431 u64 remain;
1432 unsigned int obj_do_bit17_swizzling;
1433 unsigned int partial_cacheline_write;
1434 unsigned int needs_clflush;
1435 unsigned int offset, idx;
1436 int ret;
1437
1438 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1439 if (ret)
1440 return ret;
1441
1442 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1443 mutex_unlock(&i915->drm.struct_mutex);
1444 if (ret)
1445 return ret;
1446
1447 obj_do_bit17_swizzling = 0;
1448 if (i915_gem_object_needs_bit17_swizzle(obj))
1449 obj_do_bit17_swizzling = BIT(17);
1450
1451 /* If we don't overwrite a cacheline completely we need to be
1452 * careful to have up-to-date data by first clflushing. Don't
1453 * overcomplicate things and flush the entire patch.
1454 */
1455 partial_cacheline_write = 0;
1456 if (needs_clflush & CLFLUSH_BEFORE)
1457 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1458
1459 user_data = u64_to_user_ptr(args->data_ptr);
1460 remain = args->size;
1461 offset = offset_in_page(args->offset);
1462 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1463 struct page *page = i915_gem_object_get_page(obj, idx);
1464 int length;
1465
1466 length = remain;
1467 if (offset + length > PAGE_SIZE)
1468 length = PAGE_SIZE - offset;
1469
1470 ret = shmem_pwrite(page, offset, length, user_data,
1471 page_to_phys(page) & obj_do_bit17_swizzling,
1472 (offset | length) & partial_cacheline_write,
1473 needs_clflush & CLFLUSH_AFTER);
1474 if (ret)
1475 break;
1476
1477 remain -= length;
1478 user_data += length;
1479 offset = 0;
1480 }
1481
1482 intel_fb_obj_flush(obj, ORIGIN_CPU);
1483 i915_gem_obj_finish_shmem_access(obj);
1484 return ret;
1485}
1486
1487/**
1488 * Writes data to the object referenced by handle.
1489 * @dev: drm device
1490 * @data: ioctl data blob
1491 * @file: drm file
1492 *
1493 * On error, the contents of the buffer that were to be modified are undefined.
1494 */
1495int
1496i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1497 struct drm_file *file)
1498{
1499 struct drm_i915_gem_pwrite *args = data;
1500 struct drm_i915_gem_object *obj;
1501 int ret;
1502
1503 if (args->size == 0)
1504 return 0;
1505
1506 if (!access_ok(VERIFY_READ,
1507 u64_to_user_ptr(args->data_ptr),
1508 args->size))
1509 return -EFAULT;
1510
1511 obj = i915_gem_object_lookup(file, args->handle);
1512 if (!obj)
1513 return -ENOENT;
1514
1515 /* Bounds check destination. */
1516 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1517 ret = -EINVAL;
1518 goto err;
1519 }
1520
1521 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1522
1523 ret = -ENODEV;
1524 if (obj->ops->pwrite)
1525 ret = obj->ops->pwrite(obj, args);
1526 if (ret != -ENODEV)
1527 goto err;
1528
1529 ret = i915_gem_object_wait(obj,
1530 I915_WAIT_INTERRUPTIBLE |
1531 I915_WAIT_ALL,
1532 MAX_SCHEDULE_TIMEOUT,
1533 to_rps_client(file));
1534 if (ret)
1535 goto err;
1536
1537 ret = i915_gem_object_pin_pages(obj);
1538 if (ret)
1539 goto err;
1540
1541 ret = -EFAULT;
1542 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1543 * it would end up going through the fenced access, and we'll get
1544 * different detiling behavior between reading and writing.
1545 * pread/pwrite currently are reading and writing from the CPU
1546 * perspective, requiring manual detiling by the client.
1547 */
1548 if (!i915_gem_object_has_struct_page(obj) ||
1549 cpu_write_needs_clflush(obj))
1550 /* Note that the gtt paths might fail with non-page-backed user
1551 * pointers (e.g. gtt mappings when moving data between
1552 * textures). Fallback to the shmem path in that case.
1553 */
1554 ret = i915_gem_gtt_pwrite_fast(obj, args);
1555
1556 if (ret == -EFAULT || ret == -ENOSPC) {
1557 if (obj->phys_handle)
1558 ret = i915_gem_phys_pwrite(obj, args, file);
1559 else
1560 ret = i915_gem_shmem_pwrite(obj, args);
1561 }
1562
1563 i915_gem_object_unpin_pages(obj);
1564err:
1565 i915_gem_object_put(obj);
1566 return ret;
1567}
1568
1569static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1570{
1571 struct drm_i915_private *i915;
1572 struct list_head *list;
1573 struct i915_vma *vma;
1574
1575 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1576
1577 for_each_ggtt_vma(vma, obj) {
1578 if (i915_vma_is_active(vma))
1579 continue;
1580
1581 if (!drm_mm_node_allocated(&vma->node))
1582 continue;
1583
1584 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1585 }
1586
1587 i915 = to_i915(obj->base.dev);
1588 spin_lock(&i915->mm.obj_lock);
1589 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1590 list_move_tail(&obj->mm.link, list);
1591 spin_unlock(&i915->mm.obj_lock);
1592}
1593
1594/**
1595 * Called when user space prepares to use an object with the CPU, either
1596 * through the mmap ioctl's mapping or a GTT mapping.
1597 * @dev: drm device
1598 * @data: ioctl data blob
1599 * @file: drm file
1600 */
1601int
1602i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1603 struct drm_file *file)
1604{
1605 struct drm_i915_gem_set_domain *args = data;
1606 struct drm_i915_gem_object *obj;
1607 uint32_t read_domains = args->read_domains;
1608 uint32_t write_domain = args->write_domain;
1609 int err;
1610
1611 /* Only handle setting domains to types used by the CPU. */
1612 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1613 return -EINVAL;
1614
1615 /* Having something in the write domain implies it's in the read
1616 * domain, and only that read domain. Enforce that in the request.
1617 */
1618 if (write_domain != 0 && read_domains != write_domain)
1619 return -EINVAL;
1620
1621 obj = i915_gem_object_lookup(file, args->handle);
1622 if (!obj)
1623 return -ENOENT;
1624
1625 /* Try to flush the object off the GPU without holding the lock.
1626 * We will repeat the flush holding the lock in the normal manner
1627 * to catch cases where we are gazumped.
1628 */
1629 err = i915_gem_object_wait(obj,
1630 I915_WAIT_INTERRUPTIBLE |
1631 (write_domain ? I915_WAIT_ALL : 0),
1632 MAX_SCHEDULE_TIMEOUT,
1633 to_rps_client(file));
1634 if (err)
1635 goto out;
1636
1637 /*
1638 * Proxy objects do not control access to the backing storage, ergo
1639 * they cannot be used as a means to manipulate the cache domain
1640 * tracking for that backing storage. The proxy object is always
1641 * considered to be outside of any cache domain.
1642 */
1643 if (i915_gem_object_is_proxy(obj)) {
1644 err = -ENXIO;
1645 goto out;
1646 }
1647
1648 /*
1649 * Flush and acquire obj->pages so that we are coherent through
1650 * direct access in memory with previous cached writes through
1651 * shmemfs and that our cache domain tracking remains valid.
1652 * For example, if the obj->filp was moved to swap without us
1653 * being notified and releasing the pages, we would mistakenly
1654 * continue to assume that the obj remained out of the CPU cached
1655 * domain.
1656 */
1657 err = i915_gem_object_pin_pages(obj);
1658 if (err)
1659 goto out;
1660
1661 err = i915_mutex_lock_interruptible(dev);
1662 if (err)
1663 goto out_unpin;
1664
1665 if (read_domains & I915_GEM_DOMAIN_WC)
1666 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1667 else if (read_domains & I915_GEM_DOMAIN_GTT)
1668 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1669 else
1670 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1671
1672 /* And bump the LRU for this access */
1673 i915_gem_object_bump_inactive_ggtt(obj);
1674
1675 mutex_unlock(&dev->struct_mutex);
1676
1677 if (write_domain != 0)
1678 intel_fb_obj_invalidate(obj,
1679 fb_write_origin(obj, write_domain));
1680
1681out_unpin:
1682 i915_gem_object_unpin_pages(obj);
1683out:
1684 i915_gem_object_put(obj);
1685 return err;
1686}
1687
1688/**
1689 * Called when user space has done writes to this buffer
1690 * @dev: drm device
1691 * @data: ioctl data blob
1692 * @file: drm file
1693 */
1694int
1695i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1696 struct drm_file *file)
1697{
1698 struct drm_i915_gem_sw_finish *args = data;
1699 struct drm_i915_gem_object *obj;
1700
1701 obj = i915_gem_object_lookup(file, args->handle);
1702 if (!obj)
1703 return -ENOENT;
1704
1705 /*
1706 * Proxy objects are barred from CPU access, so there is no
1707 * need to ban sw_finish as it is a nop.
1708 */
1709
1710 /* Pinned buffers may be scanout, so flush the cache */
1711 i915_gem_object_flush_if_display(obj);
1712 i915_gem_object_put(obj);
1713
1714 return 0;
1715}
1716
1717/**
1718 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1719 * it is mapped to.
1720 * @dev: drm device
1721 * @data: ioctl data blob
1722 * @file: drm file
1723 *
1724 * While the mapping holds a reference on the contents of the object, it doesn't
1725 * imply a ref on the object itself.
1726 *
1727 * IMPORTANT:
1728 *
1729 * DRM driver writers who look a this function as an example for how to do GEM
1730 * mmap support, please don't implement mmap support like here. The modern way
1731 * to implement DRM mmap support is with an mmap offset ioctl (like
1732 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1733 * That way debug tooling like valgrind will understand what's going on, hiding
1734 * the mmap call in a driver private ioctl will break that. The i915 driver only
1735 * does cpu mmaps this way because we didn't know better.
1736 */
1737int
1738i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1739 struct drm_file *file)
1740{
1741 struct drm_i915_gem_mmap *args = data;
1742 struct drm_i915_gem_object *obj;
1743 unsigned long addr;
1744
1745 if (args->flags & ~(I915_MMAP_WC))
1746 return -EINVAL;
1747
1748 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1749 return -ENODEV;
1750
1751 obj = i915_gem_object_lookup(file, args->handle);
1752 if (!obj)
1753 return -ENOENT;
1754
1755 /* prime objects have no backing filp to GEM mmap
1756 * pages from.
1757 */
1758 if (!obj->base.filp) {
1759 i915_gem_object_put(obj);
1760 return -ENXIO;
1761 }
1762
1763 addr = vm_mmap(obj->base.filp, 0, args->size,
1764 PROT_READ | PROT_WRITE, MAP_SHARED,
1765 args->offset);
1766 if (args->flags & I915_MMAP_WC) {
1767 struct mm_struct *mm = current->mm;
1768 struct vm_area_struct *vma;
1769
1770 if (down_write_killable(&mm->mmap_sem)) {
1771 i915_gem_object_put(obj);
1772 return -EINTR;
1773 }
1774 vma = find_vma(mm, addr);
1775 if (vma)
1776 vma->vm_page_prot =
1777 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1778 else
1779 addr = -ENOMEM;
1780 up_write(&mm->mmap_sem);
1781
1782 /* This may race, but that's ok, it only gets set */
1783 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1784 }
1785 i915_gem_object_put(obj);
1786 if (IS_ERR((void *)addr))
1787 return addr;
1788
1789 args->addr_ptr = (uint64_t) addr;
1790
1791 return 0;
1792}
1793
1794static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1795{
1796 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1797}
1798
1799/**
1800 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1801 *
1802 * A history of the GTT mmap interface:
1803 *
1804 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1805 * aligned and suitable for fencing, and still fit into the available
1806 * mappable space left by the pinned display objects. A classic problem
1807 * we called the page-fault-of-doom where we would ping-pong between
1808 * two objects that could not fit inside the GTT and so the memcpy
1809 * would page one object in at the expense of the other between every
1810 * single byte.
1811 *
1812 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1813 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1814 * object is too large for the available space (or simply too large
1815 * for the mappable aperture!), a view is created instead and faulted
1816 * into userspace. (This view is aligned and sized appropriately for
1817 * fenced access.)
1818 *
1819 * 2 - Recognise WC as a separate cache domain so that we can flush the
1820 * delayed writes via GTT before performing direct access via WC.
1821 *
1822 * Restrictions:
1823 *
1824 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1825 * hangs on some architectures, corruption on others. An attempt to service
1826 * a GTT page fault from a snoopable object will generate a SIGBUS.
1827 *
1828 * * the object must be able to fit into RAM (physical memory, though no
1829 * limited to the mappable aperture).
1830 *
1831 *
1832 * Caveats:
1833 *
1834 * * a new GTT page fault will synchronize rendering from the GPU and flush
1835 * all data to system memory. Subsequent access will not be synchronized.
1836 *
1837 * * all mappings are revoked on runtime device suspend.
1838 *
1839 * * there are only 8, 16 or 32 fence registers to share between all users
1840 * (older machines require fence register for display and blitter access
1841 * as well). Contention of the fence registers will cause the previous users
1842 * to be unmapped and any new access will generate new page faults.
1843 *
1844 * * running out of memory while servicing a fault may generate a SIGBUS,
1845 * rather than the expected SIGSEGV.
1846 */
1847int i915_gem_mmap_gtt_version(void)
1848{
1849 return 2;
1850}
1851
1852static inline struct i915_ggtt_view
1853compute_partial_view(struct drm_i915_gem_object *obj,
1854 pgoff_t page_offset,
1855 unsigned int chunk)
1856{
1857 struct i915_ggtt_view view;
1858
1859 if (i915_gem_object_is_tiled(obj))
1860 chunk = roundup(chunk, tile_row_pages(obj));
1861
1862 view.type = I915_GGTT_VIEW_PARTIAL;
1863 view.partial.offset = rounddown(page_offset, chunk);
1864 view.partial.size =
1865 min_t(unsigned int, chunk,
1866 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1867
1868 /* If the partial covers the entire object, just create a normal VMA. */
1869 if (chunk >= obj->base.size >> PAGE_SHIFT)
1870 view.type = I915_GGTT_VIEW_NORMAL;
1871
1872 return view;
1873}
1874
1875/**
1876 * i915_gem_fault - fault a page into the GTT
1877 * @vmf: fault info
1878 *
1879 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1880 * from userspace. The fault handler takes care of binding the object to
1881 * the GTT (if needed), allocating and programming a fence register (again,
1882 * only if needed based on whether the old reg is still valid or the object
1883 * is tiled) and inserting a new PTE into the faulting process.
1884 *
1885 * Note that the faulting process may involve evicting existing objects
1886 * from the GTT and/or fence registers to make room. So performance may
1887 * suffer if the GTT working set is large or there are few fence registers
1888 * left.
1889 *
1890 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1891 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1892 */
1893int i915_gem_fault(struct vm_fault *vmf)
1894{
1895#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1896 struct vm_area_struct *area = vmf->vma;
1897 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1898 struct drm_device *dev = obj->base.dev;
1899 struct drm_i915_private *dev_priv = to_i915(dev);
1900 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1901 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1902 struct i915_vma *vma;
1903 pgoff_t page_offset;
1904 unsigned int flags;
1905 int ret;
1906
1907 /* We don't use vmf->pgoff since that has the fake offset */
1908 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1909
1910 trace_i915_gem_object_fault(obj, page_offset, true, write);
1911
1912 /* Try to flush the object off the GPU first without holding the lock.
1913 * Upon acquiring the lock, we will perform our sanity checks and then
1914 * repeat the flush holding the lock in the normal manner to catch cases
1915 * where we are gazumped.
1916 */
1917 ret = i915_gem_object_wait(obj,
1918 I915_WAIT_INTERRUPTIBLE,
1919 MAX_SCHEDULE_TIMEOUT,
1920 NULL);
1921 if (ret)
1922 goto err;
1923
1924 ret = i915_gem_object_pin_pages(obj);
1925 if (ret)
1926 goto err;
1927
1928 intel_runtime_pm_get(dev_priv);
1929
1930 ret = i915_mutex_lock_interruptible(dev);
1931 if (ret)
1932 goto err_rpm;
1933
1934 /* Access to snoopable pages through the GTT is incoherent. */
1935 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1936 ret = -EFAULT;
1937 goto err_unlock;
1938 }
1939
1940 /* If the object is smaller than a couple of partial vma, it is
1941 * not worth only creating a single partial vma - we may as well
1942 * clear enough space for the full object.
1943 */
1944 flags = PIN_MAPPABLE;
1945 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1946 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1947
1948 /* Now pin it into the GTT as needed */
1949 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1950 if (IS_ERR(vma)) {
1951 /* Use a partial view if it is bigger than available space */
1952 struct i915_ggtt_view view =
1953 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1954
1955 /* Userspace is now writing through an untracked VMA, abandon
1956 * all hope that the hardware is able to track future writes.
1957 */
1958 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1959
1960 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1961 }
1962 if (IS_ERR(vma)) {
1963 ret = PTR_ERR(vma);
1964 goto err_unlock;
1965 }
1966
1967 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1968 if (ret)
1969 goto err_unpin;
1970
1971 ret = i915_vma_pin_fence(vma);
1972 if (ret)
1973 goto err_unpin;
1974
1975 /* Finally, remap it using the new GTT offset */
1976 ret = remap_io_mapping(area,
1977 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1978 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1979 min_t(u64, vma->size, area->vm_end - area->vm_start),
1980 &ggtt->iomap);
1981 if (ret)
1982 goto err_fence;
1983
1984 /* Mark as being mmapped into userspace for later revocation */
1985 assert_rpm_wakelock_held(dev_priv);
1986 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1987 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1988 GEM_BUG_ON(!obj->userfault_count);
1989
1990 i915_vma_set_ggtt_write(vma);
1991
1992err_fence:
1993 i915_vma_unpin_fence(vma);
1994err_unpin:
1995 __i915_vma_unpin(vma);
1996err_unlock:
1997 mutex_unlock(&dev->struct_mutex);
1998err_rpm:
1999 intel_runtime_pm_put(dev_priv);
2000 i915_gem_object_unpin_pages(obj);
2001err:
2002 switch (ret) {
2003 case -EIO:
2004 /*
2005 * We eat errors when the gpu is terminally wedged to avoid
2006 * userspace unduly crashing (gl has no provisions for mmaps to
2007 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2008 * and so needs to be reported.
2009 */
2010 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2011 ret = VM_FAULT_SIGBUS;
2012 break;
2013 }
2014 case -EAGAIN:
2015 /*
2016 * EAGAIN means the gpu is hung and we'll wait for the error
2017 * handler to reset everything when re-faulting in
2018 * i915_mutex_lock_interruptible.
2019 */
2020 case 0:
2021 case -ERESTARTSYS:
2022 case -EINTR:
2023 case -EBUSY:
2024 /*
2025 * EBUSY is ok: this just means that another thread
2026 * already did the job.
2027 */
2028 ret = VM_FAULT_NOPAGE;
2029 break;
2030 case -ENOMEM:
2031 ret = VM_FAULT_OOM;
2032 break;
2033 case -ENOSPC:
2034 case -EFAULT:
2035 ret = VM_FAULT_SIGBUS;
2036 break;
2037 default:
2038 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2039 ret = VM_FAULT_SIGBUS;
2040 break;
2041 }
2042 return ret;
2043}
2044
2045static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2046{
2047 struct i915_vma *vma;
2048
2049 GEM_BUG_ON(!obj->userfault_count);
2050
2051 obj->userfault_count = 0;
2052 list_del(&obj->userfault_link);
2053 drm_vma_node_unmap(&obj->base.vma_node,
2054 obj->base.dev->anon_inode->i_mapping);
2055
2056 for_each_ggtt_vma(vma, obj)
2057 i915_vma_unset_userfault(vma);
2058}
2059
2060/**
2061 * i915_gem_release_mmap - remove physical page mappings
2062 * @obj: obj in question
2063 *
2064 * Preserve the reservation of the mmapping with the DRM core code, but
2065 * relinquish ownership of the pages back to the system.
2066 *
2067 * It is vital that we remove the page mapping if we have mapped a tiled
2068 * object through the GTT and then lose the fence register due to
2069 * resource pressure. Similarly if the object has been moved out of the
2070 * aperture, than pages mapped into userspace must be revoked. Removing the
2071 * mapping will then trigger a page fault on the next user access, allowing
2072 * fixup by i915_gem_fault().
2073 */
2074void
2075i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2076{
2077 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2078
2079 /* Serialisation between user GTT access and our code depends upon
2080 * revoking the CPU's PTE whilst the mutex is held. The next user
2081 * pagefault then has to wait until we release the mutex.
2082 *
2083 * Note that RPM complicates somewhat by adding an additional
2084 * requirement that operations to the GGTT be made holding the RPM
2085 * wakeref.
2086 */
2087 lockdep_assert_held(&i915->drm.struct_mutex);
2088 intel_runtime_pm_get(i915);
2089
2090 if (!obj->userfault_count)
2091 goto out;
2092
2093 __i915_gem_object_release_mmap(obj);
2094
2095 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2096 * memory transactions from userspace before we return. The TLB
2097 * flushing implied above by changing the PTE above *should* be
2098 * sufficient, an extra barrier here just provides us with a bit
2099 * of paranoid documentation about our requirement to serialise
2100 * memory writes before touching registers / GSM.
2101 */
2102 wmb();
2103
2104out:
2105 intel_runtime_pm_put(i915);
2106}
2107
2108void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2109{
2110 struct drm_i915_gem_object *obj, *on;
2111 int i;
2112
2113 /*
2114 * Only called during RPM suspend. All users of the userfault_list
2115 * must be holding an RPM wakeref to ensure that this can not
2116 * run concurrently with themselves (and use the struct_mutex for
2117 * protection between themselves).
2118 */
2119
2120 list_for_each_entry_safe(obj, on,
2121 &dev_priv->mm.userfault_list, userfault_link)
2122 __i915_gem_object_release_mmap(obj);
2123
2124 /* The fence will be lost when the device powers down. If any were
2125 * in use by hardware (i.e. they are pinned), we should not be powering
2126 * down! All other fences will be reacquired by the user upon waking.
2127 */
2128 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2129 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2130
2131 /* Ideally we want to assert that the fence register is not
2132 * live at this point (i.e. that no piece of code will be
2133 * trying to write through fence + GTT, as that both violates
2134 * our tracking of activity and associated locking/barriers,
2135 * but also is illegal given that the hw is powered down).
2136 *
2137 * Previously we used reg->pin_count as a "liveness" indicator.
2138 * That is not sufficient, and we need a more fine-grained
2139 * tool if we want to have a sanity check here.
2140 */
2141
2142 if (!reg->vma)
2143 continue;
2144
2145 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2146 reg->dirty = true;
2147 }
2148}
2149
2150static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2151{
2152 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2153 int err;
2154
2155 err = drm_gem_create_mmap_offset(&obj->base);
2156 if (likely(!err))
2157 return 0;
2158
2159 /* Attempt to reap some mmap space from dead objects */
2160 do {
2161 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2162 if (err)
2163 break;
2164
2165 i915_gem_drain_freed_objects(dev_priv);
2166 err = drm_gem_create_mmap_offset(&obj->base);
2167 if (!err)
2168 break;
2169
2170 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2171
2172 return err;
2173}
2174
2175static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2176{
2177 drm_gem_free_mmap_offset(&obj->base);
2178}
2179
2180int
2181i915_gem_mmap_gtt(struct drm_file *file,
2182 struct drm_device *dev,
2183 uint32_t handle,
2184 uint64_t *offset)
2185{
2186 struct drm_i915_gem_object *obj;
2187 int ret;
2188
2189 obj = i915_gem_object_lookup(file, handle);
2190 if (!obj)
2191 return -ENOENT;
2192
2193 ret = i915_gem_object_create_mmap_offset(obj);
2194 if (ret == 0)
2195 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2196
2197 i915_gem_object_put(obj);
2198 return ret;
2199}
2200
2201/**
2202 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2203 * @dev: DRM device
2204 * @data: GTT mapping ioctl data
2205 * @file: GEM object info
2206 *
2207 * Simply returns the fake offset to userspace so it can mmap it.
2208 * The mmap call will end up in drm_gem_mmap(), which will set things
2209 * up so we can get faults in the handler above.
2210 *
2211 * The fault handler will take care of binding the object into the GTT
2212 * (since it may have been evicted to make room for something), allocating
2213 * a fence register, and mapping the appropriate aperture address into
2214 * userspace.
2215 */
2216int
2217i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2218 struct drm_file *file)
2219{
2220 struct drm_i915_gem_mmap_gtt *args = data;
2221
2222 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2223}
2224
2225/* Immediately discard the backing storage */
2226static void
2227i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2228{
2229 i915_gem_object_free_mmap_offset(obj);
2230
2231 if (obj->base.filp == NULL)
2232 return;
2233
2234 /* Our goal here is to return as much of the memory as
2235 * is possible back to the system as we are called from OOM.
2236 * To do this we must instruct the shmfs to drop all of its
2237 * backing pages, *now*.
2238 */
2239 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2240 obj->mm.madv = __I915_MADV_PURGED;
2241 obj->mm.pages = ERR_PTR(-EFAULT);
2242}
2243
2244/* Try to discard unwanted pages */
2245void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2246{
2247 struct address_space *mapping;
2248
2249 lockdep_assert_held(&obj->mm.lock);
2250 GEM_BUG_ON(i915_gem_object_has_pages(obj));
2251
2252 switch (obj->mm.madv) {
2253 case I915_MADV_DONTNEED:
2254 i915_gem_object_truncate(obj);
2255 case __I915_MADV_PURGED:
2256 return;
2257 }
2258
2259 if (obj->base.filp == NULL)
2260 return;
2261
2262 mapping = obj->base.filp->f_mapping,
2263 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2264}
2265
2266static void
2267i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2268 struct sg_table *pages)
2269{
2270 struct sgt_iter sgt_iter;
2271 struct page *page;
2272
2273 __i915_gem_object_release_shmem(obj, pages, true);
2274
2275 i915_gem_gtt_finish_pages(obj, pages);
2276
2277 if (i915_gem_object_needs_bit17_swizzle(obj))
2278 i915_gem_object_save_bit_17_swizzle(obj, pages);
2279
2280 for_each_sgt_page(page, sgt_iter, pages) {
2281 if (obj->mm.dirty)
2282 set_page_dirty(page);
2283
2284 if (obj->mm.madv == I915_MADV_WILLNEED)
2285 mark_page_accessed(page);
2286
2287 put_page(page);
2288 }
2289 obj->mm.dirty = false;
2290
2291 sg_free_table(pages);
2292 kfree(pages);
2293}
2294
2295static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2296{
2297 struct radix_tree_iter iter;
2298 void __rcu **slot;
2299
2300 rcu_read_lock();
2301 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2302 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2303 rcu_read_unlock();
2304}
2305
2306void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2307 enum i915_mm_subclass subclass)
2308{
2309 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2310 struct sg_table *pages;
2311
2312 if (i915_gem_object_has_pinned_pages(obj))
2313 return;
2314
2315 GEM_BUG_ON(obj->bind_count);
2316 if (!i915_gem_object_has_pages(obj))
2317 return;
2318
2319 /* May be called by shrinker from within get_pages() (on another bo) */
2320 mutex_lock_nested(&obj->mm.lock, subclass);
2321 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2322 goto unlock;
2323
2324 /* ->put_pages might need to allocate memory for the bit17 swizzle
2325 * array, hence protect them from being reaped by removing them from gtt
2326 * lists early. */
2327 pages = fetch_and_zero(&obj->mm.pages);
2328 GEM_BUG_ON(!pages);
2329
2330 spin_lock(&i915->mm.obj_lock);
2331 list_del(&obj->mm.link);
2332 spin_unlock(&i915->mm.obj_lock);
2333
2334 if (obj->mm.mapping) {
2335 void *ptr;
2336
2337 ptr = page_mask_bits(obj->mm.mapping);
2338 if (is_vmalloc_addr(ptr))
2339 vunmap(ptr);
2340 else
2341 kunmap(kmap_to_page(ptr));
2342
2343 obj->mm.mapping = NULL;
2344 }
2345
2346 __i915_gem_object_reset_page_iter(obj);
2347
2348 if (!IS_ERR(pages))
2349 obj->ops->put_pages(obj, pages);
2350
2351 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2352
2353unlock:
2354 mutex_unlock(&obj->mm.lock);
2355}
2356
2357static bool i915_sg_trim(struct sg_table *orig_st)
2358{
2359 struct sg_table new_st;
2360 struct scatterlist *sg, *new_sg;
2361 unsigned int i;
2362
2363 if (orig_st->nents == orig_st->orig_nents)
2364 return false;
2365
2366 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2367 return false;
2368
2369 new_sg = new_st.sgl;
2370 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2371 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2372 /* called before being DMA mapped, no need to copy sg->dma_* */
2373 new_sg = sg_next(new_sg);
2374 }
2375 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2376
2377 sg_free_table(orig_st);
2378
2379 *orig_st = new_st;
2380 return true;
2381}
2382
2383static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2384{
2385 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2386 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2387 unsigned long i;
2388 struct address_space *mapping;
2389 struct sg_table *st;
2390 struct scatterlist *sg;
2391 struct sgt_iter sgt_iter;
2392 struct page *page;
2393 unsigned long last_pfn = 0; /* suppress gcc warning */
2394 unsigned int max_segment = i915_sg_segment_size();
2395 unsigned int sg_page_sizes;
2396 gfp_t noreclaim;
2397 int ret;
2398
2399 /* Assert that the object is not currently in any GPU domain. As it
2400 * wasn't in the GTT, there shouldn't be any way it could have been in
2401 * a GPU cache
2402 */
2403 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2404 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2405
2406 st = kmalloc(sizeof(*st), GFP_KERNEL);
2407 if (st == NULL)
2408 return -ENOMEM;
2409
2410rebuild_st:
2411 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2412 kfree(st);
2413 return -ENOMEM;
2414 }
2415
2416 /* Get the list of pages out of our struct file. They'll be pinned
2417 * at this point until we release them.
2418 *
2419 * Fail silently without starting the shrinker
2420 */
2421 mapping = obj->base.filp->f_mapping;
2422 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2423 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2424
2425 sg = st->sgl;
2426 st->nents = 0;
2427 sg_page_sizes = 0;
2428 for (i = 0; i < page_count; i++) {
2429 const unsigned int shrink[] = {
2430 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2431 0,
2432 }, *s = shrink;
2433 gfp_t gfp = noreclaim;
2434
2435 do {
2436 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2437 if (likely(!IS_ERR(page)))
2438 break;
2439
2440 if (!*s) {
2441 ret = PTR_ERR(page);
2442 goto err_sg;
2443 }
2444
2445 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2446 cond_resched();
2447
2448 /* We've tried hard to allocate the memory by reaping
2449 * our own buffer, now let the real VM do its job and
2450 * go down in flames if truly OOM.
2451 *
2452 * However, since graphics tend to be disposable,
2453 * defer the oom here by reporting the ENOMEM back
2454 * to userspace.
2455 */
2456 if (!*s) {
2457 /* reclaim and warn, but no oom */
2458 gfp = mapping_gfp_mask(mapping);
2459
2460 /* Our bo are always dirty and so we require
2461 * kswapd to reclaim our pages (direct reclaim
2462 * does not effectively begin pageout of our
2463 * buffers on its own). However, direct reclaim
2464 * only waits for kswapd when under allocation
2465 * congestion. So as a result __GFP_RECLAIM is
2466 * unreliable and fails to actually reclaim our
2467 * dirty pages -- unless you try over and over
2468 * again with !__GFP_NORETRY. However, we still
2469 * want to fail this allocation rather than
2470 * trigger the out-of-memory killer and for
2471 * this we want __GFP_RETRY_MAYFAIL.
2472 */
2473 gfp |= __GFP_RETRY_MAYFAIL;
2474 }
2475 } while (1);
2476
2477 if (!i ||
2478 sg->length >= max_segment ||
2479 page_to_pfn(page) != last_pfn + 1) {
2480 if (i) {
2481 sg_page_sizes |= sg->length;
2482 sg = sg_next(sg);
2483 }
2484 st->nents++;
2485 sg_set_page(sg, page, PAGE_SIZE, 0);
2486 } else {
2487 sg->length += PAGE_SIZE;
2488 }
2489 last_pfn = page_to_pfn(page);
2490
2491 /* Check that the i965g/gm workaround works. */
2492 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2493 }
2494 if (sg) { /* loop terminated early; short sg table */
2495 sg_page_sizes |= sg->length;
2496 sg_mark_end(sg);
2497 }
2498
2499 /* Trim unused sg entries to avoid wasting memory. */
2500 i915_sg_trim(st);
2501
2502 ret = i915_gem_gtt_prepare_pages(obj, st);
2503 if (ret) {
2504 /* DMA remapping failed? One possible cause is that
2505 * it could not reserve enough large entries, asking
2506 * for PAGE_SIZE chunks instead may be helpful.
2507 */
2508 if (max_segment > PAGE_SIZE) {
2509 for_each_sgt_page(page, sgt_iter, st)
2510 put_page(page);
2511 sg_free_table(st);
2512
2513 max_segment = PAGE_SIZE;
2514 goto rebuild_st;
2515 } else {
2516 dev_warn(&dev_priv->drm.pdev->dev,
2517 "Failed to DMA remap %lu pages\n",
2518 page_count);
2519 goto err_pages;
2520 }
2521 }
2522
2523 if (i915_gem_object_needs_bit17_swizzle(obj))
2524 i915_gem_object_do_bit_17_swizzle(obj, st);
2525
2526 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2527
2528 return 0;
2529
2530err_sg:
2531 sg_mark_end(sg);
2532err_pages:
2533 for_each_sgt_page(page, sgt_iter, st)
2534 put_page(page);
2535 sg_free_table(st);
2536 kfree(st);
2537
2538 /* shmemfs first checks if there is enough memory to allocate the page
2539 * and reports ENOSPC should there be insufficient, along with the usual
2540 * ENOMEM for a genuine allocation failure.
2541 *
2542 * We use ENOSPC in our driver to mean that we have run out of aperture
2543 * space and so want to translate the error from shmemfs back to our
2544 * usual understanding of ENOMEM.
2545 */
2546 if (ret == -ENOSPC)
2547 ret = -ENOMEM;
2548
2549 return ret;
2550}
2551
2552void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2553 struct sg_table *pages,
2554 unsigned int sg_page_sizes)
2555{
2556 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2557 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2558 int i;
2559
2560 lockdep_assert_held(&obj->mm.lock);
2561
2562 obj->mm.get_page.sg_pos = pages->sgl;
2563 obj->mm.get_page.sg_idx = 0;
2564
2565 obj->mm.pages = pages;
2566
2567 if (i915_gem_object_is_tiled(obj) &&
2568 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2569 GEM_BUG_ON(obj->mm.quirked);
2570 __i915_gem_object_pin_pages(obj);
2571 obj->mm.quirked = true;
2572 }
2573
2574 GEM_BUG_ON(!sg_page_sizes);
2575 obj->mm.page_sizes.phys = sg_page_sizes;
2576
2577 /*
2578 * Calculate the supported page-sizes which fit into the given
2579 * sg_page_sizes. This will give us the page-sizes which we may be able
2580 * to use opportunistically when later inserting into the GTT. For
2581 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2582 * 64K or 4K pages, although in practice this will depend on a number of
2583 * other factors.
2584 */
2585 obj->mm.page_sizes.sg = 0;
2586 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2587 if (obj->mm.page_sizes.phys & ~0u << i)
2588 obj->mm.page_sizes.sg |= BIT(i);
2589 }
2590 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2591
2592 spin_lock(&i915->mm.obj_lock);
2593 list_add(&obj->mm.link, &i915->mm.unbound_list);
2594 spin_unlock(&i915->mm.obj_lock);
2595}
2596
2597static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2598{
2599 int err;
2600
2601 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2602 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2603 return -EFAULT;
2604 }
2605
2606 err = obj->ops->get_pages(obj);
2607 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2608
2609 return err;
2610}
2611
2612/* Ensure that the associated pages are gathered from the backing storage
2613 * and pinned into our object. i915_gem_object_pin_pages() may be called
2614 * multiple times before they are released by a single call to
2615 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2616 * either as a result of memory pressure (reaping pages under the shrinker)
2617 * or as the object is itself released.
2618 */
2619int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2620{
2621 int err;
2622
2623 err = mutex_lock_interruptible(&obj->mm.lock);
2624 if (err)
2625 return err;
2626
2627 if (unlikely(!i915_gem_object_has_pages(obj))) {
2628 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2629
2630 err = ____i915_gem_object_get_pages(obj);
2631 if (err)
2632 goto unlock;
2633
2634 smp_mb__before_atomic();
2635 }
2636 atomic_inc(&obj->mm.pages_pin_count);
2637
2638unlock:
2639 mutex_unlock(&obj->mm.lock);
2640 return err;
2641}
2642
2643/* The 'mapping' part of i915_gem_object_pin_map() below */
2644static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2645 enum i915_map_type type)
2646{
2647 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2648 struct sg_table *sgt = obj->mm.pages;
2649 struct sgt_iter sgt_iter;
2650 struct page *page;
2651 struct page *stack_pages[32];
2652 struct page **pages = stack_pages;
2653 unsigned long i = 0;
2654 pgprot_t pgprot;
2655 void *addr;
2656
2657 /* A single page can always be kmapped */
2658 if (n_pages == 1 && type == I915_MAP_WB)
2659 return kmap(sg_page(sgt->sgl));
2660
2661 if (n_pages > ARRAY_SIZE(stack_pages)) {
2662 /* Too big for stack -- allocate temporary array instead */
2663 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2664 if (!pages)
2665 return NULL;
2666 }
2667
2668 for_each_sgt_page(page, sgt_iter, sgt)
2669 pages[i++] = page;
2670
2671 /* Check that we have the expected number of pages */
2672 GEM_BUG_ON(i != n_pages);
2673
2674 switch (type) {
2675 default:
2676 MISSING_CASE(type);
2677 /* fallthrough to use PAGE_KERNEL anyway */
2678 case I915_MAP_WB:
2679 pgprot = PAGE_KERNEL;
2680 break;
2681 case I915_MAP_WC:
2682 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2683 break;
2684 }
2685 addr = vmap(pages, n_pages, 0, pgprot);
2686
2687 if (pages != stack_pages)
2688 kvfree(pages);
2689
2690 return addr;
2691}
2692
2693/* get, pin, and map the pages of the object into kernel space */
2694void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2695 enum i915_map_type type)
2696{
2697 enum i915_map_type has_type;
2698 bool pinned;
2699 void *ptr;
2700 int ret;
2701
2702 if (unlikely(!i915_gem_object_has_struct_page(obj)))
2703 return ERR_PTR(-ENXIO);
2704
2705 ret = mutex_lock_interruptible(&obj->mm.lock);
2706 if (ret)
2707 return ERR_PTR(ret);
2708
2709 pinned = !(type & I915_MAP_OVERRIDE);
2710 type &= ~I915_MAP_OVERRIDE;
2711
2712 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2713 if (unlikely(!i915_gem_object_has_pages(obj))) {
2714 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2715
2716 ret = ____i915_gem_object_get_pages(obj);
2717 if (ret)
2718 goto err_unlock;
2719
2720 smp_mb__before_atomic();
2721 }
2722 atomic_inc(&obj->mm.pages_pin_count);
2723 pinned = false;
2724 }
2725 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2726
2727 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2728 if (ptr && has_type != type) {
2729 if (pinned) {
2730 ret = -EBUSY;
2731 goto err_unpin;
2732 }
2733
2734 if (is_vmalloc_addr(ptr))
2735 vunmap(ptr);
2736 else
2737 kunmap(kmap_to_page(ptr));
2738
2739 ptr = obj->mm.mapping = NULL;
2740 }
2741
2742 if (!ptr) {
2743 ptr = i915_gem_object_map(obj, type);
2744 if (!ptr) {
2745 ret = -ENOMEM;
2746 goto err_unpin;
2747 }
2748
2749 obj->mm.mapping = page_pack_bits(ptr, type);
2750 }
2751
2752out_unlock:
2753 mutex_unlock(&obj->mm.lock);
2754 return ptr;
2755
2756err_unpin:
2757 atomic_dec(&obj->mm.pages_pin_count);
2758err_unlock:
2759 ptr = ERR_PTR(ret);
2760 goto out_unlock;
2761}
2762
2763static int
2764i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2765 const struct drm_i915_gem_pwrite *arg)
2766{
2767 struct address_space *mapping = obj->base.filp->f_mapping;
2768 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2769 u64 remain, offset;
2770 unsigned int pg;
2771
2772 /* Before we instantiate/pin the backing store for our use, we
2773 * can prepopulate the shmemfs filp efficiently using a write into
2774 * the pagecache. We avoid the penalty of instantiating all the
2775 * pages, important if the user is just writing to a few and never
2776 * uses the object on the GPU, and using a direct write into shmemfs
2777 * allows it to avoid the cost of retrieving a page (either swapin
2778 * or clearing-before-use) before it is overwritten.
2779 */
2780 if (i915_gem_object_has_pages(obj))
2781 return -ENODEV;
2782
2783 if (obj->mm.madv != I915_MADV_WILLNEED)
2784 return -EFAULT;
2785
2786 /* Before the pages are instantiated the object is treated as being
2787 * in the CPU domain. The pages will be clflushed as required before
2788 * use, and we can freely write into the pages directly. If userspace
2789 * races pwrite with any other operation; corruption will ensue -
2790 * that is userspace's prerogative!
2791 */
2792
2793 remain = arg->size;
2794 offset = arg->offset;
2795 pg = offset_in_page(offset);
2796
2797 do {
2798 unsigned int len, unwritten;
2799 struct page *page;
2800 void *data, *vaddr;
2801 int err;
2802
2803 len = PAGE_SIZE - pg;
2804 if (len > remain)
2805 len = remain;
2806
2807 err = pagecache_write_begin(obj->base.filp, mapping,
2808 offset, len, 0,
2809 &page, &data);
2810 if (err < 0)
2811 return err;
2812
2813 vaddr = kmap(page);
2814 unwritten = copy_from_user(vaddr + pg, user_data, len);
2815 kunmap(page);
2816
2817 err = pagecache_write_end(obj->base.filp, mapping,
2818 offset, len, len - unwritten,
2819 page, data);
2820 if (err < 0)
2821 return err;
2822
2823 if (unwritten)
2824 return -EFAULT;
2825
2826 remain -= len;
2827 user_data += len;
2828 offset += len;
2829 pg = 0;
2830 } while (remain);
2831
2832 return 0;
2833}
2834
2835static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2836{
2837 bool banned;
2838
2839 atomic_inc(&ctx->guilty_count);
2840
2841 banned = false;
2842 if (i915_gem_context_is_bannable(ctx)) {
2843 unsigned int score;
2844
2845 score = atomic_add_return(CONTEXT_SCORE_GUILTY,
2846 &ctx->ban_score);
2847 banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
2848
2849 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2850 ctx->name, score, yesno(banned));
2851 }
2852 if (!banned)
2853 return;
2854
2855 i915_gem_context_set_banned(ctx);
2856 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2857 atomic_inc(&ctx->file_priv->context_bans);
2858 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2859 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2860 }
2861}
2862
2863static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2864{
2865 atomic_inc(&ctx->active_count);
2866}
2867
2868struct i915_request *
2869i915_gem_find_active_request(struct intel_engine_cs *engine)
2870{
2871 struct i915_request *request, *active = NULL;
2872 unsigned long flags;
2873
2874 /* We are called by the error capture and reset at a random
2875 * point in time. In particular, note that neither is crucially
2876 * ordered with an interrupt. After a hang, the GPU is dead and we
2877 * assume that no more writes can happen (we waited long enough for
2878 * all writes that were in transaction to be flushed) - adding an
2879 * extra delay for a recent interrupt is pointless. Hence, we do
2880 * not need an engine->irq_seqno_barrier() before the seqno reads.
2881 */
2882 spin_lock_irqsave(&engine->timeline->lock, flags);
2883 list_for_each_entry(request, &engine->timeline->requests, link) {
2884 if (__i915_request_completed(request, request->global_seqno))
2885 continue;
2886
2887 GEM_BUG_ON(request->engine != engine);
2888 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2889 &request->fence.flags));
2890
2891 active = request;
2892 break;
2893 }
2894 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2895
2896 return active;
2897}
2898
2899static bool engine_stalled(struct intel_engine_cs *engine)
2900{
2901 if (!engine->hangcheck.stalled)
2902 return false;
2903
2904 /* Check for possible seqno movement after hang declaration */
2905 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2906 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2907 return false;
2908 }
2909
2910 return true;
2911}
2912
2913/*
2914 * Ensure irq handler finishes, and not run again.
2915 * Also return the active request so that we only search for it once.
2916 */
2917struct i915_request *
2918i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2919{
2920 struct i915_request *request = NULL;
2921
2922 /*
2923 * During the reset sequence, we must prevent the engine from
2924 * entering RC6. As the context state is undefined until we restart
2925 * the engine, if it does enter RC6 during the reset, the state
2926 * written to the powercontext is undefined and so we may lose
2927 * GPU state upon resume, i.e. fail to restart after a reset.
2928 */
2929 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2930
2931 /*
2932 * Prevent the signaler thread from updating the request
2933 * state (by calling dma_fence_signal) as we are processing
2934 * the reset. The write from the GPU of the seqno is
2935 * asynchronous and the signaler thread may see a different
2936 * value to us and declare the request complete, even though
2937 * the reset routine have picked that request as the active
2938 * (incomplete) request. This conflict is not handled
2939 * gracefully!
2940 */
2941 kthread_park(engine->breadcrumbs.signaler);
2942
2943 /*
2944 * Prevent request submission to the hardware until we have
2945 * completed the reset in i915_gem_reset_finish(). If a request
2946 * is completed by one engine, it may then queue a request
2947 * to a second via its execlists->tasklet *just* as we are
2948 * calling engine->init_hw() and also writing the ELSP.
2949 * Turning off the execlists->tasklet until the reset is over
2950 * prevents the race.
2951 *
2952 * Note that this needs to be a single atomic operation on the
2953 * tasklet (flush existing tasks, prevent new tasks) to prevent
2954 * a race between reset and set-wedged. It is not, so we do the best
2955 * we can atm and make sure we don't lock the machine up in the more
2956 * common case of recursively being called from set-wedged from inside
2957 * i915_reset.
2958 */
2959 if (!atomic_read(&engine->execlists.tasklet.count))
2960 tasklet_kill(&engine->execlists.tasklet);
2961 tasklet_disable(&engine->execlists.tasklet);
2962
2963 /*
2964 * We're using worker to queue preemption requests from the tasklet in
2965 * GuC submission mode.
2966 * Even though tasklet was disabled, we may still have a worker queued.
2967 * Let's make sure that all workers scheduled before disabling the
2968 * tasklet are completed before continuing with the reset.
2969 */
2970 if (engine->i915->guc.preempt_wq)
2971 flush_workqueue(engine->i915->guc.preempt_wq);
2972
2973 if (engine->irq_seqno_barrier)
2974 engine->irq_seqno_barrier(engine);
2975
2976 request = i915_gem_find_active_request(engine);
2977 if (request && request->fence.error == -EIO)
2978 request = ERR_PTR(-EIO); /* Previous reset failed! */
2979
2980 return request;
2981}
2982
2983int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2984{
2985 struct intel_engine_cs *engine;
2986 struct i915_request *request;
2987 enum intel_engine_id id;
2988 int err = 0;
2989
2990 for_each_engine(engine, dev_priv, id) {
2991 request = i915_gem_reset_prepare_engine(engine);
2992 if (IS_ERR(request)) {
2993 err = PTR_ERR(request);
2994 continue;
2995 }
2996
2997 engine->hangcheck.active_request = request;
2998 }
2999
3000 i915_gem_revoke_fences(dev_priv);
3001
3002 return err;
3003}
3004
3005static void skip_request(struct i915_request *request)
3006{
3007 void *vaddr = request->ring->vaddr;
3008 u32 head;
3009
3010 /* As this request likely depends on state from the lost
3011 * context, clear out all the user operations leaving the
3012 * breadcrumb at the end (so we get the fence notifications).
3013 */
3014 head = request->head;
3015 if (request->postfix < head) {
3016 memset(vaddr + head, 0, request->ring->size - head);
3017 head = 0;
3018 }
3019 memset(vaddr + head, 0, request->postfix - head);
3020
3021 dma_fence_set_error(&request->fence, -EIO);
3022}
3023
3024static void engine_skip_context(struct i915_request *request)
3025{
3026 struct intel_engine_cs *engine = request->engine;
3027 struct i915_gem_context *hung_ctx = request->ctx;
3028 struct intel_timeline *timeline;
3029 unsigned long flags;
3030
3031 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
3032
3033 spin_lock_irqsave(&engine->timeline->lock, flags);
3034 spin_lock(&timeline->lock);
3035
3036 list_for_each_entry_continue(request, &engine->timeline->requests, link)
3037 if (request->ctx == hung_ctx)
3038 skip_request(request);
3039
3040 list_for_each_entry(request, &timeline->requests, link)
3041 skip_request(request);
3042
3043 spin_unlock(&timeline->lock);
3044 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3045}
3046
3047/* Returns the request if it was guilty of the hang */
3048static struct i915_request *
3049i915_gem_reset_request(struct intel_engine_cs *engine,
3050 struct i915_request *request)
3051{
3052 /* The guilty request will get skipped on a hung engine.
3053 *
3054 * Users of client default contexts do not rely on logical
3055 * state preserved between batches so it is safe to execute
3056 * queued requests following the hang. Non default contexts
3057 * rely on preserved state, so skipping a batch loses the
3058 * evolution of the state and it needs to be considered corrupted.
3059 * Executing more queued batches on top of corrupted state is
3060 * risky. But we take the risk by trying to advance through
3061 * the queued requests in order to make the client behaviour
3062 * more predictable around resets, by not throwing away random
3063 * amount of batches it has prepared for execution. Sophisticated
3064 * clients can use gem_reset_stats_ioctl and dma fence status
3065 * (exported via sync_file info ioctl on explicit fences) to observe
3066 * when it loses the context state and should rebuild accordingly.
3067 *
3068 * The context ban, and ultimately the client ban, mechanism are safety
3069 * valves if client submission ends up resulting in nothing more than
3070 * subsequent hangs.
3071 */
3072
3073 if (engine_stalled(engine)) {
3074 i915_gem_context_mark_guilty(request->ctx);
3075 skip_request(request);
3076
3077 /* If this context is now banned, skip all pending requests. */
3078 if (i915_gem_context_is_banned(request->ctx))
3079 engine_skip_context(request);
3080 } else {
3081 /*
3082 * Since this is not the hung engine, it may have advanced
3083 * since the hang declaration. Double check by refinding
3084 * the active request at the time of the reset.
3085 */
3086 request = i915_gem_find_active_request(engine);
3087 if (request) {
3088 i915_gem_context_mark_innocent(request->ctx);
3089 dma_fence_set_error(&request->fence, -EAGAIN);
3090
3091 /* Rewind the engine to replay the incomplete rq */
3092 spin_lock_irq(&engine->timeline->lock);
3093 request = list_prev_entry(request, link);
3094 if (&request->link == &engine->timeline->requests)
3095 request = NULL;
3096 spin_unlock_irq(&engine->timeline->lock);
3097 }
3098 }
3099
3100 return request;
3101}
3102
3103void i915_gem_reset_engine(struct intel_engine_cs *engine,
3104 struct i915_request *request)
3105{
3106 /*
3107 * Make sure this write is visible before we re-enable the interrupt
3108 * handlers on another CPU, as tasklet_enable() resolves to just
3109 * a compiler barrier which is insufficient for our purpose here.
3110 */
3111 smp_store_mb(engine->irq_posted, 0);
3112
3113 if (request)
3114 request = i915_gem_reset_request(engine, request);
3115
3116 if (request) {
3117 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3118 engine->name, request->global_seqno);
3119 }
3120
3121 /* Setup the CS to resume from the breadcrumb of the hung request */
3122 engine->reset_hw(engine, request);
3123}
3124
3125void i915_gem_reset(struct drm_i915_private *dev_priv)
3126{
3127 struct intel_engine_cs *engine;
3128 enum intel_engine_id id;
3129
3130 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3131
3132 i915_retire_requests(dev_priv);
3133
3134 for_each_engine(engine, dev_priv, id) {
3135 struct i915_gem_context *ctx;
3136
3137 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3138 ctx = fetch_and_zero(&engine->last_retired_context);
3139 if (ctx)
3140 engine->context_unpin(engine, ctx);
3141
3142 /*
3143 * Ostensibily, we always want a context loaded for powersaving,
3144 * so if the engine is idle after the reset, send a request
3145 * to load our scratch kernel_context.
3146 *
3147 * More mysteriously, if we leave the engine idle after a reset,
3148 * the next userspace batch may hang, with what appears to be
3149 * an incoherent read by the CS (presumably stale TLB). An
3150 * empty request appears sufficient to paper over the glitch.
3151 */
3152 if (intel_engine_is_idle(engine)) {
3153 struct i915_request *rq;
3154
3155 rq = i915_request_alloc(engine,
3156 dev_priv->kernel_context);
3157 if (!IS_ERR(rq))
3158 __i915_request_add(rq, false);
3159 }
3160 }
3161
3162 i915_gem_restore_fences(dev_priv);
3163
3164 if (dev_priv->gt.awake) {
3165 intel_sanitize_gt_powersave(dev_priv);
3166 intel_enable_gt_powersave(dev_priv);
3167 if (INTEL_GEN(dev_priv) >= 6)
3168 gen6_rps_busy(dev_priv);
3169 }
3170}
3171
3172void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3173{
3174 tasklet_enable(&engine->execlists.tasklet);
3175 kthread_unpark(engine->breadcrumbs.signaler);
3176
3177 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3178}
3179
3180void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3181{
3182 struct intel_engine_cs *engine;
3183 enum intel_engine_id id;
3184
3185 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3186
3187 for_each_engine(engine, dev_priv, id) {
3188 engine->hangcheck.active_request = NULL;
3189 i915_gem_reset_finish_engine(engine);
3190 }
3191}
3192
3193static void nop_submit_request(struct i915_request *request)
3194{
3195 dma_fence_set_error(&request->fence, -EIO);
3196
3197 i915_request_submit(request);
3198}
3199
3200static void nop_complete_submit_request(struct i915_request *request)
3201{
3202 unsigned long flags;
3203
3204 dma_fence_set_error(&request->fence, -EIO);
3205
3206 spin_lock_irqsave(&request->engine->timeline->lock, flags);
3207 __i915_request_submit(request);
3208 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3209 spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3210}
3211
3212void i915_gem_set_wedged(struct drm_i915_private *i915)
3213{
3214 struct intel_engine_cs *engine;
3215 enum intel_engine_id id;
3216
3217 if (drm_debug & DRM_UT_DRIVER) {
3218 struct drm_printer p = drm_debug_printer(__func__);
3219
3220 for_each_engine(engine, i915, id)
3221 intel_engine_dump(engine, &p, "%s\n", engine->name);
3222 }
3223
3224 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3225 smp_mb__after_atomic();
3226
3227 /*
3228 * First, stop submission to hw, but do not yet complete requests by
3229 * rolling the global seqno forward (since this would complete requests
3230 * for which we haven't set the fence error to EIO yet).
3231 */
3232 for_each_engine(engine, i915, id) {
3233 i915_gem_reset_prepare_engine(engine);
3234
3235 engine->submit_request = nop_submit_request;
3236 engine->schedule = NULL;
3237 }
3238 i915->caps.scheduler = 0;
3239
3240 /*
3241 * Make sure no one is running the old callback before we proceed with
3242 * cancelling requests and resetting the completion tracking. Otherwise
3243 * we might submit a request to the hardware which never completes.
3244 */
3245 synchronize_rcu();
3246
3247 for_each_engine(engine, i915, id) {
3248 /* Mark all executing requests as skipped */
3249 engine->cancel_requests(engine);
3250
3251 /*
3252 * Only once we've force-cancelled all in-flight requests can we
3253 * start to complete all requests.
3254 */
3255 engine->submit_request = nop_complete_submit_request;
3256 }
3257
3258 /*
3259 * Make sure no request can slip through without getting completed by
3260 * either this call here to intel_engine_init_global_seqno, or the one
3261 * in nop_complete_submit_request.
3262 */
3263 synchronize_rcu();
3264
3265 for_each_engine(engine, i915, id) {
3266 unsigned long flags;
3267
3268 /*
3269 * Mark all pending requests as complete so that any concurrent
3270 * (lockless) lookup doesn't try and wait upon the request as we
3271 * reset it.
3272 */
3273 spin_lock_irqsave(&engine->timeline->lock, flags);
3274 intel_engine_init_global_seqno(engine,
3275 intel_engine_last_submit(engine));
3276 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3277
3278 i915_gem_reset_finish_engine(engine);
3279 }
3280
3281 wake_up_all(&i915->gpu_error.reset_queue);
3282}
3283
3284bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3285{
3286 struct i915_gem_timeline *tl;
3287 int i;
3288
3289 lockdep_assert_held(&i915->drm.struct_mutex);
3290 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3291 return true;
3292
3293 /* Before unwedging, make sure that all pending operations
3294 * are flushed and errored out - we may have requests waiting upon
3295 * third party fences. We marked all inflight requests as EIO, and
3296 * every execbuf since returned EIO, for consistency we want all
3297 * the currently pending requests to also be marked as EIO, which
3298 * is done inside our nop_submit_request - and so we must wait.
3299 *
3300 * No more can be submitted until we reset the wedged bit.
3301 */
3302 list_for_each_entry(tl, &i915->gt.timelines, link) {
3303 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3304 struct i915_request *rq;
3305
3306 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3307 &i915->drm.struct_mutex);
3308 if (!rq)
3309 continue;
3310
3311 /* We can't use our normal waiter as we want to
3312 * avoid recursively trying to handle the current
3313 * reset. The basic dma_fence_default_wait() installs
3314 * a callback for dma_fence_signal(), which is
3315 * triggered by our nop handler (indirectly, the
3316 * callback enables the signaler thread which is
3317 * woken by the nop_submit_request() advancing the seqno
3318 * and when the seqno passes the fence, the signaler
3319 * then signals the fence waking us up).
3320 */
3321 if (dma_fence_default_wait(&rq->fence, true,
3322 MAX_SCHEDULE_TIMEOUT) < 0)
3323 return false;
3324 }
3325 }
3326
3327 /* Undo nop_submit_request. We prevent all new i915 requests from
3328 * being queued (by disallowing execbuf whilst wedged) so having
3329 * waited for all active requests above, we know the system is idle
3330 * and do not have to worry about a thread being inside
3331 * engine->submit_request() as we swap over. So unlike installing
3332 * the nop_submit_request on reset, we can do this from normal
3333 * context and do not require stop_machine().
3334 */
3335 intel_engines_reset_default_submission(i915);
3336 i915_gem_contexts_lost(i915);
3337
3338 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3339 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3340
3341 return true;
3342}
3343
3344static void
3345i915_gem_retire_work_handler(struct work_struct *work)
3346{
3347 struct drm_i915_private *dev_priv =
3348 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3349 struct drm_device *dev = &dev_priv->drm;
3350
3351 /* Come back later if the device is busy... */
3352 if (mutex_trylock(&dev->struct_mutex)) {
3353 i915_retire_requests(dev_priv);
3354 mutex_unlock(&dev->struct_mutex);
3355 }
3356
3357 /*
3358 * Keep the retire handler running until we are finally idle.
3359 * We do not need to do this test under locking as in the worst-case
3360 * we queue the retire worker once too often.
3361 */
3362 if (READ_ONCE(dev_priv->gt.awake))
3363 queue_delayed_work(dev_priv->wq,
3364 &dev_priv->gt.retire_work,
3365 round_jiffies_up_relative(HZ));
3366}
3367
3368static void shrink_caches(struct drm_i915_private *i915)
3369{
3370 /*
3371 * kmem_cache_shrink() discards empty slabs and reorders partially
3372 * filled slabs to prioritise allocating from the mostly full slabs,
3373 * with the aim of reducing fragmentation.
3374 */
3375 kmem_cache_shrink(i915->priorities);
3376 kmem_cache_shrink(i915->dependencies);
3377 kmem_cache_shrink(i915->requests);
3378 kmem_cache_shrink(i915->luts);
3379 kmem_cache_shrink(i915->vmas);
3380 kmem_cache_shrink(i915->objects);
3381}
3382
3383struct sleep_rcu_work {
3384 union {
3385 struct rcu_head rcu;
3386 struct work_struct work;
3387 };
3388 struct drm_i915_private *i915;
3389 unsigned int epoch;
3390};
3391
3392static inline bool
3393same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3394{
3395 /*
3396 * There is a small chance that the epoch wrapped since we started
3397 * sleeping. If we assume that epoch is at least a u32, then it will
3398 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3399 */
3400 return epoch == READ_ONCE(i915->gt.epoch);
3401}
3402
3403static void __sleep_work(struct work_struct *work)
3404{
3405 struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3406 struct drm_i915_private *i915 = s->i915;
3407 unsigned int epoch = s->epoch;
3408
3409 kfree(s);
3410 if (same_epoch(i915, epoch))
3411 shrink_caches(i915);
3412}
3413
3414static void __sleep_rcu(struct rcu_head *rcu)
3415{
3416 struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3417 struct drm_i915_private *i915 = s->i915;
3418
3419 if (same_epoch(i915, s->epoch)) {
3420 INIT_WORK(&s->work, __sleep_work);
3421 queue_work(i915->wq, &s->work);
3422 } else {
3423 kfree(s);
3424 }
3425}
3426
3427static inline bool
3428new_requests_since_last_retire(const struct drm_i915_private *i915)
3429{
3430 return (READ_ONCE(i915->gt.active_requests) ||
3431 work_pending(&i915->gt.idle_work.work));
3432}
3433
3434static void
3435i915_gem_idle_work_handler(struct work_struct *work)
3436{
3437 struct drm_i915_private *dev_priv =
3438 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3439 unsigned int epoch = I915_EPOCH_INVALID;
3440 bool rearm_hangcheck;
3441
3442 if (!READ_ONCE(dev_priv->gt.awake))
3443 return;
3444
3445 /*
3446 * Wait for last execlists context complete, but bail out in case a
3447 * new request is submitted. As we don't trust the hardware, we
3448 * continue on if the wait times out. This is necessary to allow
3449 * the machine to suspend even if the hardware dies, and we will
3450 * try to recover in resume (after depriving the hardware of power,
3451 * it may be in a better mmod).
3452 */
3453 __wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3454 intel_engines_are_idle(dev_priv),
3455 I915_IDLE_ENGINES_TIMEOUT * 1000,
3456 10, 500);
3457
3458 rearm_hangcheck =
3459 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3460
3461 if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3462 /* Currently busy, come back later */
3463 mod_delayed_work(dev_priv->wq,
3464 &dev_priv->gt.idle_work,
3465 msecs_to_jiffies(50));
3466 goto out_rearm;
3467 }
3468
3469 /*
3470 * New request retired after this work handler started, extend active
3471 * period until next instance of the work.
3472 */
3473 if (new_requests_since_last_retire(dev_priv))
3474 goto out_unlock;
3475
3476 /*
3477 * Be paranoid and flush a concurrent interrupt to make sure
3478 * we don't reactivate any irq tasklets after parking.
3479 *
3480 * FIXME: Note that even though we have waited for execlists to be idle,
3481 * there may still be an in-flight interrupt even though the CSB
3482 * is now empty. synchronize_irq() makes sure that a residual interrupt
3483 * is completed before we continue, but it doesn't prevent the HW from
3484 * raising a spurious interrupt later. To complete the shield we should
3485 * coordinate disabling the CS irq with flushing the interrupts.
3486 */
3487 synchronize_irq(dev_priv->drm.irq);
3488
3489 intel_engines_park(dev_priv);
3490 i915_gem_timelines_park(dev_priv);
3491
3492 i915_pmu_gt_parked(dev_priv);
3493
3494 GEM_BUG_ON(!dev_priv->gt.awake);
3495 dev_priv->gt.awake = false;
3496 epoch = dev_priv->gt.epoch;
3497 GEM_BUG_ON(epoch == I915_EPOCH_INVALID);
3498 rearm_hangcheck = false;
3499
3500 if (INTEL_GEN(dev_priv) >= 6)
3501 gen6_rps_idle(dev_priv);
3502
3503 intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ);
3504
3505 intel_runtime_pm_put(dev_priv);
3506out_unlock:
3507 mutex_unlock(&dev_priv->drm.struct_mutex);
3508
3509out_rearm:
3510 if (rearm_hangcheck) {
3511 GEM_BUG_ON(!dev_priv->gt.awake);
3512 i915_queue_hangcheck(dev_priv);
3513 }
3514
3515 /*
3516 * When we are idle, it is an opportune time to reap our caches.
3517 * However, we have many objects that utilise RCU and the ordered
3518 * i915->wq that this work is executing on. To try and flush any
3519 * pending frees now we are idle, we first wait for an RCU grace
3520 * period, and then queue a task (that will run last on the wq) to
3521 * shrink and re-optimize the caches.
3522 */
3523 if (same_epoch(dev_priv, epoch)) {
3524 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3525 if (s) {
3526 s->i915 = dev_priv;
3527 s->epoch = epoch;
3528 call_rcu(&s->rcu, __sleep_rcu);
3529 }
3530 }
3531}
3532
3533void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3534{
3535 struct drm_i915_private *i915 = to_i915(gem->dev);
3536 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3537 struct drm_i915_file_private *fpriv = file->driver_priv;
3538 struct i915_lut_handle *lut, *ln;
3539
3540 mutex_lock(&i915->drm.struct_mutex);
3541
3542 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3543 struct i915_gem_context *ctx = lut->ctx;
3544 struct i915_vma *vma;
3545
3546 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3547 if (ctx->file_priv != fpriv)
3548 continue;
3549
3550 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3551 GEM_BUG_ON(vma->obj != obj);
3552
3553 /* We allow the process to have multiple handles to the same
3554 * vma, in the same fd namespace, by virtue of flink/open.
3555 */
3556 GEM_BUG_ON(!vma->open_count);
3557 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3558 i915_vma_close(vma);
3559
3560 list_del(&lut->obj_link);
3561 list_del(&lut->ctx_link);
3562
3563 kmem_cache_free(i915->luts, lut);
3564 __i915_gem_object_release_unless_active(obj);
3565 }
3566
3567 mutex_unlock(&i915->drm.struct_mutex);
3568}
3569
3570static unsigned long to_wait_timeout(s64 timeout_ns)
3571{
3572 if (timeout_ns < 0)
3573 return MAX_SCHEDULE_TIMEOUT;
3574
3575 if (timeout_ns == 0)
3576 return 0;
3577
3578 return nsecs_to_jiffies_timeout(timeout_ns);
3579}
3580
3581/**
3582 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3583 * @dev: drm device pointer
3584 * @data: ioctl data blob
3585 * @file: drm file pointer
3586 *
3587 * Returns 0 if successful, else an error is returned with the remaining time in
3588 * the timeout parameter.
3589 * -ETIME: object is still busy after timeout
3590 * -ERESTARTSYS: signal interrupted the wait
3591 * -ENONENT: object doesn't exist
3592 * Also possible, but rare:
3593 * -EAGAIN: incomplete, restart syscall
3594 * -ENOMEM: damn
3595 * -ENODEV: Internal IRQ fail
3596 * -E?: The add request failed
3597 *
3598 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3599 * non-zero timeout parameter the wait ioctl will wait for the given number of
3600 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3601 * without holding struct_mutex the object may become re-busied before this
3602 * function completes. A similar but shorter * race condition exists in the busy
3603 * ioctl
3604 */
3605int
3606i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3607{
3608 struct drm_i915_gem_wait *args = data;
3609 struct drm_i915_gem_object *obj;
3610 ktime_t start;
3611 long ret;
3612
3613 if (args->flags != 0)
3614 return -EINVAL;
3615
3616 obj = i915_gem_object_lookup(file, args->bo_handle);
3617 if (!obj)
3618 return -ENOENT;
3619
3620 start = ktime_get();
3621
3622 ret = i915_gem_object_wait(obj,
3623 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3624 to_wait_timeout(args->timeout_ns),
3625 to_rps_client(file));
3626
3627 if (args->timeout_ns > 0) {
3628 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3629 if (args->timeout_ns < 0)
3630 args->timeout_ns = 0;
3631
3632 /*
3633 * Apparently ktime isn't accurate enough and occasionally has a
3634 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3635 * things up to make the test happy. We allow up to 1 jiffy.
3636 *
3637 * This is a regression from the timespec->ktime conversion.
3638 */
3639 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3640 args->timeout_ns = 0;
3641
3642 /* Asked to wait beyond the jiffie/scheduler precision? */
3643 if (ret == -ETIME && args->timeout_ns)
3644 ret = -EAGAIN;
3645 }
3646
3647 i915_gem_object_put(obj);
3648 return ret;
3649}
3650
3651static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3652{
3653 int ret, i;
3654
3655 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3656 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3657 if (ret)
3658 return ret;
3659 }
3660
3661 return 0;
3662}
3663
3664static int wait_for_engines(struct drm_i915_private *i915)
3665{
3666 if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3667 dev_err(i915->drm.dev,
3668 "Failed to idle engines, declaring wedged!\n");
3669 if (drm_debug & DRM_UT_DRIVER) {
3670 struct drm_printer p = drm_debug_printer(__func__);
3671 struct intel_engine_cs *engine;
3672 enum intel_engine_id id;
3673
3674 for_each_engine(engine, i915, id)
3675 intel_engine_dump(engine, &p,
3676 "%s\n", engine->name);
3677 }
3678
3679 i915_gem_set_wedged(i915);
3680 return -EIO;
3681 }
3682
3683 return 0;
3684}
3685
3686int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3687{
3688 int ret;
3689
3690 /* If the device is asleep, we have no requests outstanding */
3691 if (!READ_ONCE(i915->gt.awake))
3692 return 0;
3693
3694 if (flags & I915_WAIT_LOCKED) {
3695 struct i915_gem_timeline *tl;
3696
3697 lockdep_assert_held(&i915->drm.struct_mutex);
3698
3699 list_for_each_entry(tl, &i915->gt.timelines, link) {
3700 ret = wait_for_timeline(tl, flags);
3701 if (ret)
3702 return ret;
3703 }
3704 i915_retire_requests(i915);
3705
3706 ret = wait_for_engines(i915);
3707 } else {
3708 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3709 }
3710
3711 return ret;
3712}
3713
3714static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3715{
3716 /*
3717 * We manually flush the CPU domain so that we can override and
3718 * force the flush for the display, and perform it asyncrhonously.
3719 */
3720 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3721 if (obj->cache_dirty)
3722 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3723 obj->write_domain = 0;
3724}
3725
3726void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3727{
3728 if (!READ_ONCE(obj->pin_global))
3729 return;
3730
3731 mutex_lock(&obj->base.dev->struct_mutex);
3732 __i915_gem_object_flush_for_display(obj);
3733 mutex_unlock(&obj->base.dev->struct_mutex);
3734}
3735
3736/**
3737 * Moves a single object to the WC read, and possibly write domain.
3738 * @obj: object to act on
3739 * @write: ask for write access or read only
3740 *
3741 * This function returns when the move is complete, including waiting on
3742 * flushes to occur.
3743 */
3744int
3745i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3746{
3747 int ret;
3748
3749 lockdep_assert_held(&obj->base.dev->struct_mutex);
3750
3751 ret = i915_gem_object_wait(obj,
3752 I915_WAIT_INTERRUPTIBLE |
3753 I915_WAIT_LOCKED |
3754 (write ? I915_WAIT_ALL : 0),
3755 MAX_SCHEDULE_TIMEOUT,
3756 NULL);
3757 if (ret)
3758 return ret;
3759
3760 if (obj->write_domain == I915_GEM_DOMAIN_WC)
3761 return 0;
3762
3763 /* Flush and acquire obj->pages so that we are coherent through
3764 * direct access in memory with previous cached writes through
3765 * shmemfs and that our cache domain tracking remains valid.
3766 * For example, if the obj->filp was moved to swap without us
3767 * being notified and releasing the pages, we would mistakenly
3768 * continue to assume that the obj remained out of the CPU cached
3769 * domain.
3770 */
3771 ret = i915_gem_object_pin_pages(obj);
3772 if (ret)
3773 return ret;
3774
3775 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3776
3777 /* Serialise direct access to this object with the barriers for
3778 * coherent writes from the GPU, by effectively invalidating the
3779 * WC domain upon first access.
3780 */
3781 if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3782 mb();
3783
3784 /* It should now be out of any other write domains, and we can update
3785 * the domain values for our changes.
3786 */
3787 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3788 obj->read_domains |= I915_GEM_DOMAIN_WC;
3789 if (write) {
3790 obj->read_domains = I915_GEM_DOMAIN_WC;
3791 obj->write_domain = I915_GEM_DOMAIN_WC;
3792 obj->mm.dirty = true;
3793 }
3794
3795 i915_gem_object_unpin_pages(obj);
3796 return 0;
3797}
3798
3799/**
3800 * Moves a single object to the GTT read, and possibly write domain.
3801 * @obj: object to act on
3802 * @write: ask for write access or read only
3803 *
3804 * This function returns when the move is complete, including waiting on
3805 * flushes to occur.
3806 */
3807int
3808i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3809{
3810 int ret;
3811
3812 lockdep_assert_held(&obj->base.dev->struct_mutex);
3813
3814 ret = i915_gem_object_wait(obj,
3815 I915_WAIT_INTERRUPTIBLE |
3816 I915_WAIT_LOCKED |
3817 (write ? I915_WAIT_ALL : 0),
3818 MAX_SCHEDULE_TIMEOUT,
3819 NULL);
3820 if (ret)
3821 return ret;
3822
3823 if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3824 return 0;
3825
3826 /* Flush and acquire obj->pages so that we are coherent through
3827 * direct access in memory with previous cached writes through
3828 * shmemfs and that our cache domain tracking remains valid.
3829 * For example, if the obj->filp was moved to swap without us
3830 * being notified and releasing the pages, we would mistakenly
3831 * continue to assume that the obj remained out of the CPU cached
3832 * domain.
3833 */
3834 ret = i915_gem_object_pin_pages(obj);
3835 if (ret)
3836 return ret;
3837
3838 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3839
3840 /* Serialise direct access to this object with the barriers for
3841 * coherent writes from the GPU, by effectively invalidating the
3842 * GTT domain upon first access.
3843 */
3844 if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3845 mb();
3846
3847 /* It should now be out of any other write domains, and we can update
3848 * the domain values for our changes.
3849 */
3850 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3851 obj->read_domains |= I915_GEM_DOMAIN_GTT;
3852 if (write) {
3853 obj->read_domains = I915_GEM_DOMAIN_GTT;
3854 obj->write_domain = I915_GEM_DOMAIN_GTT;
3855 obj->mm.dirty = true;
3856 }
3857
3858 i915_gem_object_unpin_pages(obj);
3859 return 0;
3860}
3861
3862/**
3863 * Changes the cache-level of an object across all VMA.
3864 * @obj: object to act on
3865 * @cache_level: new cache level to set for the object
3866 *
3867 * After this function returns, the object will be in the new cache-level
3868 * across all GTT and the contents of the backing storage will be coherent,
3869 * with respect to the new cache-level. In order to keep the backing storage
3870 * coherent for all users, we only allow a single cache level to be set
3871 * globally on the object and prevent it from being changed whilst the
3872 * hardware is reading from the object. That is if the object is currently
3873 * on the scanout it will be set to uncached (or equivalent display
3874 * cache coherency) and all non-MOCS GPU access will also be uncached so
3875 * that all direct access to the scanout remains coherent.
3876 */
3877int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3878 enum i915_cache_level cache_level)
3879{
3880 struct i915_vma *vma;
3881 int ret;
3882
3883 lockdep_assert_held(&obj->base.dev->struct_mutex);
3884
3885 if (obj->cache_level == cache_level)
3886 return 0;
3887
3888 /* Inspect the list of currently bound VMA and unbind any that would
3889 * be invalid given the new cache-level. This is principally to
3890 * catch the issue of the CS prefetch crossing page boundaries and
3891 * reading an invalid PTE on older architectures.
3892 */
3893restart:
3894 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3895 if (!drm_mm_node_allocated(&vma->node))
3896 continue;
3897
3898 if (i915_vma_is_pinned(vma)) {
3899 DRM_DEBUG("can not change the cache level of pinned objects\n");
3900 return -EBUSY;
3901 }
3902
3903 if (!i915_vma_is_closed(vma) &&
3904 i915_gem_valid_gtt_space(vma, cache_level))
3905 continue;
3906
3907 ret = i915_vma_unbind(vma);
3908 if (ret)
3909 return ret;
3910
3911 /* As unbinding may affect other elements in the
3912 * obj->vma_list (due to side-effects from retiring
3913 * an active vma), play safe and restart the iterator.
3914 */
3915 goto restart;
3916 }
3917
3918 /* We can reuse the existing drm_mm nodes but need to change the
3919 * cache-level on the PTE. We could simply unbind them all and
3920 * rebind with the correct cache-level on next use. However since
3921 * we already have a valid slot, dma mapping, pages etc, we may as
3922 * rewrite the PTE in the belief that doing so tramples upon less
3923 * state and so involves less work.
3924 */
3925 if (obj->bind_count) {
3926 /* Before we change the PTE, the GPU must not be accessing it.
3927 * If we wait upon the object, we know that all the bound
3928 * VMA are no longer active.
3929 */
3930 ret = i915_gem_object_wait(obj,
3931 I915_WAIT_INTERRUPTIBLE |
3932 I915_WAIT_LOCKED |
3933 I915_WAIT_ALL,
3934 MAX_SCHEDULE_TIMEOUT,
3935 NULL);
3936 if (ret)
3937 return ret;
3938
3939 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3940 cache_level != I915_CACHE_NONE) {
3941 /* Access to snoopable pages through the GTT is
3942 * incoherent and on some machines causes a hard
3943 * lockup. Relinquish the CPU mmaping to force
3944 * userspace to refault in the pages and we can
3945 * then double check if the GTT mapping is still
3946 * valid for that pointer access.
3947 */
3948 i915_gem_release_mmap(obj);
3949
3950 /* As we no longer need a fence for GTT access,
3951 * we can relinquish it now (and so prevent having
3952 * to steal a fence from someone else on the next
3953 * fence request). Note GPU activity would have
3954 * dropped the fence as all snoopable access is
3955 * supposed to be linear.
3956 */
3957 for_each_ggtt_vma(vma, obj) {
3958 ret = i915_vma_put_fence(vma);
3959 if (ret)
3960 return ret;
3961 }
3962 } else {
3963 /* We either have incoherent backing store and
3964 * so no GTT access or the architecture is fully
3965 * coherent. In such cases, existing GTT mmaps
3966 * ignore the cache bit in the PTE and we can
3967 * rewrite it without confusing the GPU or having
3968 * to force userspace to fault back in its mmaps.
3969 */
3970 }
3971
3972 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3973 if (!drm_mm_node_allocated(&vma->node))
3974 continue;
3975
3976 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3977 if (ret)
3978 return ret;
3979 }
3980 }
3981
3982 list_for_each_entry(vma, &obj->vma_list, obj_link)
3983 vma->node.color = cache_level;
3984 i915_gem_object_set_cache_coherency(obj, cache_level);
3985 obj->cache_dirty = true; /* Always invalidate stale cachelines */
3986
3987 return 0;
3988}
3989
3990int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3991 struct drm_file *file)
3992{
3993 struct drm_i915_gem_caching *args = data;
3994 struct drm_i915_gem_object *obj;
3995 int err = 0;
3996
3997 rcu_read_lock();
3998 obj = i915_gem_object_lookup_rcu(file, args->handle);
3999 if (!obj) {
4000 err = -ENOENT;
4001 goto out;
4002 }
4003
4004 switch (obj->cache_level) {
4005 case I915_CACHE_LLC:
4006 case I915_CACHE_L3_LLC:
4007 args->caching = I915_CACHING_CACHED;
4008 break;
4009
4010 case I915_CACHE_WT:
4011 args->caching = I915_CACHING_DISPLAY;
4012 break;
4013
4014 default:
4015 args->caching = I915_CACHING_NONE;
4016 break;
4017 }
4018out:
4019 rcu_read_unlock();
4020 return err;
4021}
4022
4023int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4024 struct drm_file *file)
4025{
4026 struct drm_i915_private *i915 = to_i915(dev);
4027 struct drm_i915_gem_caching *args = data;
4028 struct drm_i915_gem_object *obj;
4029 enum i915_cache_level level;
4030 int ret = 0;
4031
4032 switch (args->caching) {
4033 case I915_CACHING_NONE:
4034 level = I915_CACHE_NONE;
4035 break;
4036 case I915_CACHING_CACHED:
4037 /*
4038 * Due to a HW issue on BXT A stepping, GPU stores via a
4039 * snooped mapping may leave stale data in a corresponding CPU
4040 * cacheline, whereas normally such cachelines would get
4041 * invalidated.
4042 */
4043 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4044 return -ENODEV;
4045
4046 level = I915_CACHE_LLC;
4047 break;
4048 case I915_CACHING_DISPLAY:
4049 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4050 break;
4051 default:
4052 return -EINVAL;
4053 }
4054
4055 obj = i915_gem_object_lookup(file, args->handle);
4056 if (!obj)
4057 return -ENOENT;
4058
4059 /*
4060 * The caching mode of proxy object is handled by its generator, and
4061 * not allowed to be changed by userspace.
4062 */
4063 if (i915_gem_object_is_proxy(obj)) {
4064 ret = -ENXIO;
4065 goto out;
4066 }
4067
4068 if (obj->cache_level == level)
4069 goto out;
4070
4071 ret = i915_gem_object_wait(obj,
4072 I915_WAIT_INTERRUPTIBLE,
4073 MAX_SCHEDULE_TIMEOUT,
4074 to_rps_client(file));
4075 if (ret)
4076 goto out;
4077
4078 ret = i915_mutex_lock_interruptible(dev);
4079 if (ret)
4080 goto out;
4081
4082 ret = i915_gem_object_set_cache_level(obj, level);
4083 mutex_unlock(&dev->struct_mutex);
4084
4085out:
4086 i915_gem_object_put(obj);
4087 return ret;
4088}
4089
4090/*
4091 * Prepare buffer for display plane (scanout, cursors, etc).
4092 * Can be called from an uninterruptible phase (modesetting) and allows
4093 * any flushes to be pipelined (for pageflips).
4094 */
4095struct i915_vma *
4096i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4097 u32 alignment,
4098 const struct i915_ggtt_view *view,
4099 unsigned int flags)
4100{
4101 struct i915_vma *vma;
4102 int ret;
4103
4104 lockdep_assert_held(&obj->base.dev->struct_mutex);
4105
4106 /* Mark the global pin early so that we account for the
4107 * display coherency whilst setting up the cache domains.
4108 */
4109 obj->pin_global++;
4110
4111 /* The display engine is not coherent with the LLC cache on gen6. As
4112 * a result, we make sure that the pinning that is about to occur is
4113 * done with uncached PTEs. This is lowest common denominator for all
4114 * chipsets.
4115 *
4116 * However for gen6+, we could do better by using the GFDT bit instead
4117 * of uncaching, which would allow us to flush all the LLC-cached data
4118 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4119 */
4120 ret = i915_gem_object_set_cache_level(obj,
4121 HAS_WT(to_i915(obj->base.dev)) ?
4122 I915_CACHE_WT : I915_CACHE_NONE);
4123 if (ret) {
4124 vma = ERR_PTR(ret);
4125 goto err_unpin_global;
4126 }
4127
4128 /* As the user may map the buffer once pinned in the display plane
4129 * (e.g. libkms for the bootup splash), we have to ensure that we
4130 * always use map_and_fenceable for all scanout buffers. However,
4131 * it may simply be too big to fit into mappable, in which case
4132 * put it anyway and hope that userspace can cope (but always first
4133 * try to preserve the existing ABI).
4134 */
4135 vma = ERR_PTR(-ENOSPC);
4136 if ((flags & PIN_MAPPABLE) == 0 &&
4137 (!view || view->type == I915_GGTT_VIEW_NORMAL))
4138 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4139 flags |
4140 PIN_MAPPABLE |
4141 PIN_NONBLOCK);
4142 if (IS_ERR(vma))
4143 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4144 if (IS_ERR(vma))
4145 goto err_unpin_global;
4146
4147 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4148
4149 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4150 __i915_gem_object_flush_for_display(obj);
4151 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
4152
4153 /* It should now be out of any other write domains, and we can update
4154 * the domain values for our changes.
4155 */
4156 obj->read_domains |= I915_GEM_DOMAIN_GTT;
4157
4158 return vma;
4159
4160err_unpin_global:
4161 obj->pin_global--;
4162 return vma;
4163}
4164
4165void
4166i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4167{
4168 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4169
4170 if (WARN_ON(vma->obj->pin_global == 0))
4171 return;
4172
4173 if (--vma->obj->pin_global == 0)
4174 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4175
4176 /* Bump the LRU to try and avoid premature eviction whilst flipping */
4177 i915_gem_object_bump_inactive_ggtt(vma->obj);
4178
4179 i915_vma_unpin(vma);
4180}
4181
4182/**
4183 * Moves a single object to the CPU read, and possibly write domain.
4184 * @obj: object to act on
4185 * @write: requesting write or read-only access
4186 *
4187 * This function returns when the move is complete, including waiting on
4188 * flushes to occur.
4189 */
4190int
4191i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4192{
4193 int ret;
4194
4195 lockdep_assert_held(&obj->base.dev->struct_mutex);
4196
4197 ret = i915_gem_object_wait(obj,
4198 I915_WAIT_INTERRUPTIBLE |
4199 I915_WAIT_LOCKED |
4200 (write ? I915_WAIT_ALL : 0),
4201 MAX_SCHEDULE_TIMEOUT,
4202 NULL);
4203 if (ret)
4204 return ret;
4205
4206 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4207
4208 /* Flush the CPU cache if it's still invalid. */
4209 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4210 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4211 obj->read_domains |= I915_GEM_DOMAIN_CPU;
4212 }
4213
4214 /* It should now be out of any other write domains, and we can update
4215 * the domain values for our changes.
4216 */
4217 GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4218
4219 /* If we're writing through the CPU, then the GPU read domains will
4220 * need to be invalidated at next use.
4221 */
4222 if (write)
4223 __start_cpu_write(obj);
4224
4225 return 0;
4226}
4227
4228/* Throttle our rendering by waiting until the ring has completed our requests
4229 * emitted over 20 msec ago.
4230 *
4231 * Note that if we were to use the current jiffies each time around the loop,
4232 * we wouldn't escape the function with any frames outstanding if the time to
4233 * render a frame was over 20ms.
4234 *
4235 * This should get us reasonable parallelism between CPU and GPU but also
4236 * relatively low latency when blocking on a particular request to finish.
4237 */
4238static int
4239i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4240{
4241 struct drm_i915_private *dev_priv = to_i915(dev);
4242 struct drm_i915_file_private *file_priv = file->driver_priv;
4243 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4244 struct i915_request *request, *target = NULL;
4245 long ret;
4246
4247 /* ABI: return -EIO if already wedged */
4248 if (i915_terminally_wedged(&dev_priv->gpu_error))
4249 return -EIO;
4250
4251 spin_lock(&file_priv->mm.lock);
4252 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4253 if (time_after_eq(request->emitted_jiffies, recent_enough))
4254 break;
4255
4256 if (target) {
4257 list_del(&target->client_link);
4258 target->file_priv = NULL;
4259 }
4260
4261 target = request;
4262 }
4263 if (target)
4264 i915_request_get(target);
4265 spin_unlock(&file_priv->mm.lock);
4266
4267 if (target == NULL)
4268 return 0;
4269
4270 ret = i915_request_wait(target,
4271 I915_WAIT_INTERRUPTIBLE,
4272 MAX_SCHEDULE_TIMEOUT);
4273 i915_request_put(target);
4274
4275 return ret < 0 ? ret : 0;
4276}
4277
4278struct i915_vma *
4279i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4280 const struct i915_ggtt_view *view,
4281 u64 size,
4282 u64 alignment,
4283 u64 flags)
4284{
4285 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4286 struct i915_address_space *vm = &dev_priv->ggtt.base;
4287 struct i915_vma *vma;
4288 int ret;
4289
4290 lockdep_assert_held(&obj->base.dev->struct_mutex);
4291
4292 if (flags & PIN_MAPPABLE &&
4293 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4294 /* If the required space is larger than the available
4295 * aperture, we will not able to find a slot for the
4296 * object and unbinding the object now will be in
4297 * vain. Worse, doing so may cause us to ping-pong
4298 * the object in and out of the Global GTT and
4299 * waste a lot of cycles under the mutex.
4300 */
4301 if (obj->base.size > dev_priv->ggtt.mappable_end)
4302 return ERR_PTR(-E2BIG);
4303
4304 /* If NONBLOCK is set the caller is optimistically
4305 * trying to cache the full object within the mappable
4306 * aperture, and *must* have a fallback in place for
4307 * situations where we cannot bind the object. We
4308 * can be a little more lax here and use the fallback
4309 * more often to avoid costly migrations of ourselves
4310 * and other objects within the aperture.
4311 *
4312 * Half-the-aperture is used as a simple heuristic.
4313 * More interesting would to do search for a free
4314 * block prior to making the commitment to unbind.
4315 * That caters for the self-harm case, and with a
4316 * little more heuristics (e.g. NOFAULT, NOEVICT)
4317 * we could try to minimise harm to others.
4318 */
4319 if (flags & PIN_NONBLOCK &&
4320 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4321 return ERR_PTR(-ENOSPC);
4322 }
4323
4324 vma = i915_vma_instance(obj, vm, view);
4325 if (unlikely(IS_ERR(vma)))
4326 return vma;
4327
4328 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4329 if (flags & PIN_NONBLOCK) {
4330 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4331 return ERR_PTR(-ENOSPC);
4332
4333 if (flags & PIN_MAPPABLE &&
4334 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4335 return ERR_PTR(-ENOSPC);
4336 }
4337
4338 WARN(i915_vma_is_pinned(vma),
4339 "bo is already pinned in ggtt with incorrect alignment:"
4340 " offset=%08x, req.alignment=%llx,"
4341 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4342 i915_ggtt_offset(vma), alignment,
4343 !!(flags & PIN_MAPPABLE),
4344 i915_vma_is_map_and_fenceable(vma));
4345 ret = i915_vma_unbind(vma);
4346 if (ret)
4347 return ERR_PTR(ret);
4348 }
4349
4350 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4351 if (ret)
4352 return ERR_PTR(ret);
4353
4354 return vma;
4355}
4356
4357static __always_inline unsigned int __busy_read_flag(unsigned int id)
4358{
4359 /* Note that we could alias engines in the execbuf API, but
4360 * that would be very unwise as it prevents userspace from
4361 * fine control over engine selection. Ahem.
4362 *
4363 * This should be something like EXEC_MAX_ENGINE instead of
4364 * I915_NUM_ENGINES.
4365 */
4366 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4367 return 0x10000 << id;
4368}
4369
4370static __always_inline unsigned int __busy_write_id(unsigned int id)
4371{
4372 /* The uABI guarantees an active writer is also amongst the read
4373 * engines. This would be true if we accessed the activity tracking
4374 * under the lock, but as we perform the lookup of the object and
4375 * its activity locklessly we can not guarantee that the last_write
4376 * being active implies that we have set the same engine flag from
4377 * last_read - hence we always set both read and write busy for
4378 * last_write.
4379 */
4380 return id | __busy_read_flag(id);
4381}
4382
4383static __always_inline unsigned int
4384__busy_set_if_active(const struct dma_fence *fence,
4385 unsigned int (*flag)(unsigned int id))
4386{
4387 struct i915_request *rq;
4388
4389 /* We have to check the current hw status of the fence as the uABI
4390 * guarantees forward progress. We could rely on the idle worker
4391 * to eventually flush us, but to minimise latency just ask the
4392 * hardware.
4393 *
4394 * Note we only report on the status of native fences.
4395 */
4396 if (!dma_fence_is_i915(fence))
4397 return 0;
4398
4399 /* opencode to_request() in order to avoid const warnings */
4400 rq = container_of(fence, struct i915_request, fence);
4401 if (i915_request_completed(rq))
4402 return 0;
4403
4404 return flag(rq->engine->uabi_id);
4405}
4406
4407static __always_inline unsigned int
4408busy_check_reader(const struct dma_fence *fence)
4409{
4410 return __busy_set_if_active(fence, __busy_read_flag);
4411}
4412
4413static __always_inline unsigned int
4414busy_check_writer(const struct dma_fence *fence)
4415{
4416 if (!fence)
4417 return 0;
4418
4419 return __busy_set_if_active(fence, __busy_write_id);
4420}
4421
4422int
4423i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4424 struct drm_file *file)
4425{
4426 struct drm_i915_gem_busy *args = data;
4427 struct drm_i915_gem_object *obj;
4428 struct reservation_object_list *list;
4429 unsigned int seq;
4430 int err;
4431
4432 err = -ENOENT;
4433 rcu_read_lock();
4434 obj = i915_gem_object_lookup_rcu(file, args->handle);
4435 if (!obj)
4436 goto out;
4437
4438 /* A discrepancy here is that we do not report the status of
4439 * non-i915 fences, i.e. even though we may report the object as idle,
4440 * a call to set-domain may still stall waiting for foreign rendering.
4441 * This also means that wait-ioctl may report an object as busy,
4442 * where busy-ioctl considers it idle.
4443 *
4444 * We trade the ability to warn of foreign fences to report on which
4445 * i915 engines are active for the object.
4446 *
4447 * Alternatively, we can trade that extra information on read/write
4448 * activity with
4449 * args->busy =
4450 * !reservation_object_test_signaled_rcu(obj->resv, true);
4451 * to report the overall busyness. This is what the wait-ioctl does.
4452 *
4453 */
4454retry:
4455 seq = raw_read_seqcount(&obj->resv->seq);
4456
4457 /* Translate the exclusive fence to the READ *and* WRITE engine */
4458 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4459
4460 /* Translate shared fences to READ set of engines */
4461 list = rcu_dereference(obj->resv->fence);
4462 if (list) {
4463 unsigned int shared_count = list->shared_count, i;
4464
4465 for (i = 0; i < shared_count; ++i) {
4466 struct dma_fence *fence =
4467 rcu_dereference(list->shared[i]);
4468
4469 args->busy |= busy_check_reader(fence);
4470 }
4471 }
4472
4473 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4474 goto retry;
4475
4476 err = 0;
4477out:
4478 rcu_read_unlock();
4479 return err;
4480}
4481
4482int
4483i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4484 struct drm_file *file_priv)
4485{
4486 return i915_gem_ring_throttle(dev, file_priv);
4487}
4488
4489int
4490i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4491 struct drm_file *file_priv)
4492{
4493 struct drm_i915_private *dev_priv = to_i915(dev);
4494 struct drm_i915_gem_madvise *args = data;
4495 struct drm_i915_gem_object *obj;
4496 int err;
4497
4498 switch (args->madv) {
4499 case I915_MADV_DONTNEED:
4500 case I915_MADV_WILLNEED:
4501 break;
4502 default:
4503 return -EINVAL;
4504 }
4505
4506 obj = i915_gem_object_lookup(file_priv, args->handle);
4507 if (!obj)
4508 return -ENOENT;
4509
4510 err = mutex_lock_interruptible(&obj->mm.lock);
4511 if (err)
4512 goto out;
4513
4514 if (i915_gem_object_has_pages(obj) &&
4515 i915_gem_object_is_tiled(obj) &&
4516 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4517 if (obj->mm.madv == I915_MADV_WILLNEED) {
4518 GEM_BUG_ON(!obj->mm.quirked);
4519 __i915_gem_object_unpin_pages(obj);
4520 obj->mm.quirked = false;
4521 }
4522 if (args->madv == I915_MADV_WILLNEED) {
4523 GEM_BUG_ON(obj->mm.quirked);
4524 __i915_gem_object_pin_pages(obj);
4525 obj->mm.quirked = true;
4526 }
4527 }
4528
4529 if (obj->mm.madv != __I915_MADV_PURGED)
4530 obj->mm.madv = args->madv;
4531
4532 /* if the object is no longer attached, discard its backing storage */
4533 if (obj->mm.madv == I915_MADV_DONTNEED &&
4534 !i915_gem_object_has_pages(obj))
4535 i915_gem_object_truncate(obj);
4536
4537 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4538 mutex_unlock(&obj->mm.lock);
4539
4540out:
4541 i915_gem_object_put(obj);
4542 return err;
4543}
4544
4545static void
4546frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4547{
4548 struct drm_i915_gem_object *obj =
4549 container_of(active, typeof(*obj), frontbuffer_write);
4550
4551 intel_fb_obj_flush(obj, ORIGIN_CS);
4552}
4553
4554void i915_gem_object_init(struct drm_i915_gem_object *obj,
4555 const struct drm_i915_gem_object_ops *ops)
4556{
4557 mutex_init(&obj->mm.lock);
4558
4559 INIT_LIST_HEAD(&obj->vma_list);
4560 INIT_LIST_HEAD(&obj->lut_list);
4561 INIT_LIST_HEAD(&obj->batch_pool_link);
4562
4563 obj->ops = ops;
4564
4565 reservation_object_init(&obj->__builtin_resv);
4566 obj->resv = &obj->__builtin_resv;
4567
4568 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4569 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4570
4571 obj->mm.madv = I915_MADV_WILLNEED;
4572 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4573 mutex_init(&obj->mm.get_page.lock);
4574
4575 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4576}
4577
4578static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4579 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4580 I915_GEM_OBJECT_IS_SHRINKABLE,
4581
4582 .get_pages = i915_gem_object_get_pages_gtt,
4583 .put_pages = i915_gem_object_put_pages_gtt,
4584
4585 .pwrite = i915_gem_object_pwrite_gtt,
4586};
4587
4588static int i915_gem_object_create_shmem(struct drm_device *dev,
4589 struct drm_gem_object *obj,
4590 size_t size)
4591{
4592 struct drm_i915_private *i915 = to_i915(dev);
4593 unsigned long flags = VM_NORESERVE;
4594 struct file *filp;
4595
4596 drm_gem_private_object_init(dev, obj, size);
4597
4598 if (i915->mm.gemfs)
4599 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4600 flags);
4601 else
4602 filp = shmem_file_setup("i915", size, flags);
4603
4604 if (IS_ERR(filp))
4605 return PTR_ERR(filp);
4606
4607 obj->filp = filp;
4608
4609 return 0;
4610}
4611
4612struct drm_i915_gem_object *
4613i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4614{
4615 struct drm_i915_gem_object *obj;
4616 struct address_space *mapping;
4617 unsigned int cache_level;
4618 gfp_t mask;
4619 int ret;
4620
4621 /* There is a prevalence of the assumption that we fit the object's
4622 * page count inside a 32bit _signed_ variable. Let's document this and
4623 * catch if we ever need to fix it. In the meantime, if you do spot
4624 * such a local variable, please consider fixing!
4625 */
4626 if (size >> PAGE_SHIFT > INT_MAX)
4627 return ERR_PTR(-E2BIG);
4628
4629 if (overflows_type(size, obj->base.size))
4630 return ERR_PTR(-E2BIG);
4631
4632 obj = i915_gem_object_alloc(dev_priv);
4633 if (obj == NULL)
4634 return ERR_PTR(-ENOMEM);
4635
4636 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4637 if (ret)
4638 goto fail;
4639
4640 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4641 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4642 /* 965gm cannot relocate objects above 4GiB. */
4643 mask &= ~__GFP_HIGHMEM;
4644 mask |= __GFP_DMA32;
4645 }
4646
4647 mapping = obj->base.filp->f_mapping;
4648 mapping_set_gfp_mask(mapping, mask);
4649 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4650
4651 i915_gem_object_init(obj, &i915_gem_object_ops);
4652
4653 obj->write_domain = I915_GEM_DOMAIN_CPU;
4654 obj->read_domains = I915_GEM_DOMAIN_CPU;
4655
4656 if (HAS_LLC(dev_priv))
4657 /* On some devices, we can have the GPU use the LLC (the CPU
4658 * cache) for about a 10% performance improvement
4659 * compared to uncached. Graphics requests other than
4660 * display scanout are coherent with the CPU in
4661 * accessing this cache. This means in this mode we
4662 * don't need to clflush on the CPU side, and on the
4663 * GPU side we only need to flush internal caches to
4664 * get data visible to the CPU.
4665 *
4666 * However, we maintain the display planes as UC, and so
4667 * need to rebind when first used as such.
4668 */
4669 cache_level = I915_CACHE_LLC;
4670 else
4671 cache_level = I915_CACHE_NONE;
4672
4673 i915_gem_object_set_cache_coherency(obj, cache_level);
4674
4675 trace_i915_gem_object_create(obj);
4676
4677 return obj;
4678
4679fail:
4680 i915_gem_object_free(obj);
4681 return ERR_PTR(ret);
4682}
4683
4684static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4685{
4686 /* If we are the last user of the backing storage (be it shmemfs
4687 * pages or stolen etc), we know that the pages are going to be
4688 * immediately released. In this case, we can then skip copying
4689 * back the contents from the GPU.
4690 */
4691
4692 if (obj->mm.madv != I915_MADV_WILLNEED)
4693 return false;
4694
4695 if (obj->base.filp == NULL)
4696 return true;
4697
4698 /* At first glance, this looks racy, but then again so would be
4699 * userspace racing mmap against close. However, the first external
4700 * reference to the filp can only be obtained through the
4701 * i915_gem_mmap_ioctl() which safeguards us against the user
4702 * acquiring such a reference whilst we are in the middle of
4703 * freeing the object.
4704 */
4705 return atomic_long_read(&obj->base.filp->f_count) == 1;
4706}
4707
4708static void __i915_gem_free_objects(struct drm_i915_private *i915,
4709 struct llist_node *freed)
4710{
4711 struct drm_i915_gem_object *obj, *on;
4712
4713 intel_runtime_pm_get(i915);
4714 llist_for_each_entry_safe(obj, on, freed, freed) {
4715 struct i915_vma *vma, *vn;
4716
4717 trace_i915_gem_object_destroy(obj);
4718
4719 mutex_lock(&i915->drm.struct_mutex);
4720
4721 GEM_BUG_ON(i915_gem_object_is_active(obj));
4722 list_for_each_entry_safe(vma, vn,
4723 &obj->vma_list, obj_link) {
4724 GEM_BUG_ON(i915_vma_is_active(vma));
4725 vma->flags &= ~I915_VMA_PIN_MASK;
4726 i915_vma_close(vma);
4727 }
4728 GEM_BUG_ON(!list_empty(&obj->vma_list));
4729 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4730
4731 /* This serializes freeing with the shrinker. Since the free
4732 * is delayed, first by RCU then by the workqueue, we want the
4733 * shrinker to be able to free pages of unreferenced objects,
4734 * or else we may oom whilst there are plenty of deferred
4735 * freed objects.
4736 */
4737 if (i915_gem_object_has_pages(obj)) {
4738 spin_lock(&i915->mm.obj_lock);
4739 list_del_init(&obj->mm.link);
4740 spin_unlock(&i915->mm.obj_lock);
4741 }
4742
4743 mutex_unlock(&i915->drm.struct_mutex);
4744
4745 GEM_BUG_ON(obj->bind_count);
4746 GEM_BUG_ON(obj->userfault_count);
4747 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4748 GEM_BUG_ON(!list_empty(&obj->lut_list));
4749
4750 if (obj->ops->release)
4751 obj->ops->release(obj);
4752
4753 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4754 atomic_set(&obj->mm.pages_pin_count, 0);
4755 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4756 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4757
4758 if (obj->base.import_attach)
4759 drm_prime_gem_destroy(&obj->base, NULL);
4760
4761 reservation_object_fini(&obj->__builtin_resv);
4762 drm_gem_object_release(&obj->base);
4763 i915_gem_info_remove_obj(i915, obj->base.size);
4764
4765 kfree(obj->bit_17);
4766 i915_gem_object_free(obj);
4767
4768 GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4769 atomic_dec(&i915->mm.free_count);
4770
4771 if (on)
4772 cond_resched();
4773 }
4774 intel_runtime_pm_put(i915);
4775}
4776
4777static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4778{
4779 struct llist_node *freed;
4780
4781 /* Free the oldest, most stale object to keep the free_list short */
4782 freed = NULL;
4783 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4784 /* Only one consumer of llist_del_first() allowed */
4785 spin_lock(&i915->mm.free_lock);
4786 freed = llist_del_first(&i915->mm.free_list);
4787 spin_unlock(&i915->mm.free_lock);
4788 }
4789 if (unlikely(freed)) {
4790 freed->next = NULL;
4791 __i915_gem_free_objects(i915, freed);
4792 }
4793}
4794
4795static void __i915_gem_free_work(struct work_struct *work)
4796{
4797 struct drm_i915_private *i915 =
4798 container_of(work, struct drm_i915_private, mm.free_work);
4799 struct llist_node *freed;
4800
4801 /*
4802 * All file-owned VMA should have been released by this point through
4803 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4804 * However, the object may also be bound into the global GTT (e.g.
4805 * older GPUs without per-process support, or for direct access through
4806 * the GTT either for the user or for scanout). Those VMA still need to
4807 * unbound now.
4808 */
4809
4810 spin_lock(&i915->mm.free_lock);
4811 while ((freed = llist_del_all(&i915->mm.free_list))) {
4812 spin_unlock(&i915->mm.free_lock);
4813
4814 __i915_gem_free_objects(i915, freed);
4815 if (need_resched())
4816 return;
4817
4818 spin_lock(&i915->mm.free_lock);
4819 }
4820 spin_unlock(&i915->mm.free_lock);
4821}
4822
4823static void __i915_gem_free_object_rcu(struct rcu_head *head)
4824{
4825 struct drm_i915_gem_object *obj =
4826 container_of(head, typeof(*obj), rcu);
4827 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4828
4829 /*
4830 * Since we require blocking on struct_mutex to unbind the freed
4831 * object from the GPU before releasing resources back to the
4832 * system, we can not do that directly from the RCU callback (which may
4833 * be a softirq context), but must instead then defer that work onto a
4834 * kthread. We use the RCU callback rather than move the freed object
4835 * directly onto the work queue so that we can mix between using the
4836 * worker and performing frees directly from subsequent allocations for
4837 * crude but effective memory throttling.
4838 */
4839 if (llist_add(&obj->freed, &i915->mm.free_list))
4840 queue_work(i915->wq, &i915->mm.free_work);
4841}
4842
4843void i915_gem_free_object(struct drm_gem_object *gem_obj)
4844{
4845 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4846
4847 if (obj->mm.quirked)
4848 __i915_gem_object_unpin_pages(obj);
4849
4850 if (discard_backing_storage(obj))
4851 obj->mm.madv = I915_MADV_DONTNEED;
4852
4853 /*
4854 * Before we free the object, make sure any pure RCU-only
4855 * read-side critical sections are complete, e.g.
4856 * i915_gem_busy_ioctl(). For the corresponding synchronized
4857 * lookup see i915_gem_object_lookup_rcu().
4858 */
4859 atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4860 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4861}
4862
4863void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4864{
4865 lockdep_assert_held(&obj->base.dev->struct_mutex);
4866
4867 if (!i915_gem_object_has_active_reference(obj) &&
4868 i915_gem_object_is_active(obj))
4869 i915_gem_object_set_active_reference(obj);
4870 else
4871 i915_gem_object_put(obj);
4872}
4873
4874static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4875{
4876 struct i915_gem_context *kernel_context = i915->kernel_context;
4877 struct intel_engine_cs *engine;
4878 enum intel_engine_id id;
4879
4880 for_each_engine(engine, i915, id) {
4881 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
4882 GEM_BUG_ON(engine->last_retired_context != kernel_context);
4883 }
4884}
4885
4886void i915_gem_sanitize(struct drm_i915_private *i915)
4887{
4888 if (i915_terminally_wedged(&i915->gpu_error)) {
4889 mutex_lock(&i915->drm.struct_mutex);
4890 i915_gem_unset_wedged(i915);
4891 mutex_unlock(&i915->drm.struct_mutex);
4892 }
4893
4894 /*
4895 * If we inherit context state from the BIOS or earlier occupants
4896 * of the GPU, the GPU may be in an inconsistent state when we
4897 * try to take over. The only way to remove the earlier state
4898 * is by resetting. However, resetting on earlier gen is tricky as
4899 * it may impact the display and we are uncertain about the stability
4900 * of the reset, so this could be applied to even earlier gen.
4901 */
4902 if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
4903 WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4904}
4905
4906int i915_gem_suspend(struct drm_i915_private *dev_priv)
4907{
4908 struct drm_device *dev = &dev_priv->drm;
4909 int ret;
4910
4911 intel_runtime_pm_get(dev_priv);
4912 intel_suspend_gt_powersave(dev_priv);
4913
4914 mutex_lock(&dev->struct_mutex);
4915
4916 /* We have to flush all the executing contexts to main memory so
4917 * that they can saved in the hibernation image. To ensure the last
4918 * context image is coherent, we have to switch away from it. That
4919 * leaves the dev_priv->kernel_context still active when
4920 * we actually suspend, and its image in memory may not match the GPU
4921 * state. Fortunately, the kernel_context is disposable and we do
4922 * not rely on its state.
4923 */
4924 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4925 ret = i915_gem_switch_to_kernel_context(dev_priv);
4926 if (ret)
4927 goto err_unlock;
4928
4929 ret = i915_gem_wait_for_idle(dev_priv,
4930 I915_WAIT_INTERRUPTIBLE |
4931 I915_WAIT_LOCKED);
4932 if (ret && ret != -EIO)
4933 goto err_unlock;
4934
4935 assert_kernel_context_is_current(dev_priv);
4936 }
4937 i915_gem_contexts_lost(dev_priv);
4938 mutex_unlock(&dev->struct_mutex);
4939
4940 intel_uc_suspend(dev_priv);
4941
4942 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4943 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4944
4945 /* As the idle_work is rearming if it detects a race, play safe and
4946 * repeat the flush until it is definitely idle.
4947 */
4948 drain_delayed_work(&dev_priv->gt.idle_work);
4949
4950 /* Assert that we sucessfully flushed all the work and
4951 * reset the GPU back to its idle, low power state.
4952 */
4953 WARN_ON(dev_priv->gt.awake);
4954 if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4955 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4956
4957 /*
4958 * Neither the BIOS, ourselves or any other kernel
4959 * expects the system to be in execlists mode on startup,
4960 * so we need to reset the GPU back to legacy mode. And the only
4961 * known way to disable logical contexts is through a GPU reset.
4962 *
4963 * So in order to leave the system in a known default configuration,
4964 * always reset the GPU upon unload and suspend. Afterwards we then
4965 * clean up the GEM state tracking, flushing off the requests and
4966 * leaving the system in a known idle state.
4967 *
4968 * Note that is of the upmost importance that the GPU is idle and
4969 * all stray writes are flushed *before* we dismantle the backing
4970 * storage for the pinned objects.
4971 *
4972 * However, since we are uncertain that resetting the GPU on older
4973 * machines is a good idea, we don't - just in case it leaves the
4974 * machine in an unusable condition.
4975 */
4976 i915_gem_sanitize(dev_priv);
4977
4978 intel_runtime_pm_put(dev_priv);
4979 return 0;
4980
4981err_unlock:
4982 mutex_unlock(&dev->struct_mutex);
4983 intel_runtime_pm_put(dev_priv);
4984 return ret;
4985}
4986
4987void i915_gem_resume(struct drm_i915_private *i915)
4988{
4989 WARN_ON(i915->gt.awake);
4990
4991 mutex_lock(&i915->drm.struct_mutex);
4992 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4993
4994 i915_gem_restore_gtt_mappings(i915);
4995 i915_gem_restore_fences(i915);
4996
4997 /*
4998 * As we didn't flush the kernel context before suspend, we cannot
4999 * guarantee that the context image is complete. So let's just reset
5000 * it and start again.
5001 */
5002 i915->gt.resume(i915);
5003
5004 if (i915_gem_init_hw(i915))
5005 goto err_wedged;
5006
5007 intel_uc_resume(i915);
5008
5009 /* Always reload a context for powersaving. */
5010 if (i915_gem_switch_to_kernel_context(i915))
5011 goto err_wedged;
5012
5013out_unlock:
5014 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5015 mutex_unlock(&i915->drm.struct_mutex);
5016 return;
5017
5018err_wedged:
5019 if (!i915_terminally_wedged(&i915->gpu_error)) {
5020 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5021 i915_gem_set_wedged(i915);
5022 }
5023 goto out_unlock;
5024}
5025
5026void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5027{
5028 if (INTEL_GEN(dev_priv) < 5 ||
5029 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5030 return;
5031
5032 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5033 DISP_TILE_SURFACE_SWIZZLING);
5034
5035 if (IS_GEN5(dev_priv))
5036 return;
5037
5038 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5039 if (IS_GEN6(dev_priv))
5040 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5041 else if (IS_GEN7(dev_priv))
5042 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5043 else if (IS_GEN8(dev_priv))
5044 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5045 else
5046 BUG();
5047}
5048
5049static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5050{
5051 I915_WRITE(RING_CTL(base), 0);
5052 I915_WRITE(RING_HEAD(base), 0);
5053 I915_WRITE(RING_TAIL(base), 0);
5054 I915_WRITE(RING_START(base), 0);
5055}
5056
5057static void init_unused_rings(struct drm_i915_private *dev_priv)
5058{
5059 if (IS_I830(dev_priv)) {
5060 init_unused_ring(dev_priv, PRB1_BASE);
5061 init_unused_ring(dev_priv, SRB0_BASE);
5062 init_unused_ring(dev_priv, SRB1_BASE);
5063 init_unused_ring(dev_priv, SRB2_BASE);
5064 init_unused_ring(dev_priv, SRB3_BASE);
5065 } else if (IS_GEN2(dev_priv)) {
5066 init_unused_ring(dev_priv, SRB0_BASE);
5067 init_unused_ring(dev_priv, SRB1_BASE);
5068 } else if (IS_GEN3(dev_priv)) {
5069 init_unused_ring(dev_priv, PRB1_BASE);
5070 init_unused_ring(dev_priv, PRB2_BASE);
5071 }
5072}
5073
5074static int __i915_gem_restart_engines(void *data)
5075{
5076 struct drm_i915_private *i915 = data;
5077 struct intel_engine_cs *engine;
5078 enum intel_engine_id id;
5079 int err;
5080
5081 for_each_engine(engine, i915, id) {
5082 err = engine->init_hw(engine);
5083 if (err) {
5084 DRM_ERROR("Failed to restart %s (%d)\n",
5085 engine->name, err);
5086 return err;
5087 }
5088 }
5089
5090 return 0;
5091}
5092
5093int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5094{
5095 int ret;
5096
5097 dev_priv->gt.last_init_time = ktime_get();
5098
5099 /* Double layer security blanket, see i915_gem_init() */
5100 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5101
5102 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5103 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5104
5105 if (IS_HASWELL(dev_priv))
5106 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5107 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5108
5109 if (HAS_PCH_NOP(dev_priv)) {
5110 if (IS_IVYBRIDGE(dev_priv)) {
5111 u32 temp = I915_READ(GEN7_MSG_CTL);
5112 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5113 I915_WRITE(GEN7_MSG_CTL, temp);
5114 } else if (INTEL_GEN(dev_priv) >= 7) {
5115 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5116 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5117 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5118 }
5119 }
5120
5121 i915_gem_init_swizzling(dev_priv);
5122
5123 /*
5124 * At least 830 can leave some of the unused rings
5125 * "active" (ie. head != tail) after resume which
5126 * will prevent c3 entry. Makes sure all unused rings
5127 * are totally idle.
5128 */
5129 init_unused_rings(dev_priv);
5130
5131 BUG_ON(!dev_priv->kernel_context);
5132 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5133 ret = -EIO;
5134 goto out;
5135 }
5136
5137 ret = i915_ppgtt_init_hw(dev_priv);
5138 if (ret) {
5139 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5140 goto out;
5141 }
5142
5143 /* We can't enable contexts until all firmware is loaded */
5144 ret = intel_uc_init_hw(dev_priv);
5145 if (ret) {
5146 DRM_ERROR("Enabling uc failed (%d)\n", ret);
5147 goto out;
5148 }
5149
5150 intel_mocs_init_l3cc_table(dev_priv);
5151
5152 /* Only when the HW is re-initialised, can we replay the requests */
5153 ret = __i915_gem_restart_engines(dev_priv);
5154out:
5155 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5156 return ret;
5157}
5158
5159static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5160{
5161 struct i915_gem_context *ctx;
5162 struct intel_engine_cs *engine;
5163 enum intel_engine_id id;
5164 int err;
5165
5166 /*
5167 * As we reset the gpu during very early sanitisation, the current
5168 * register state on the GPU should reflect its defaults values.
5169 * We load a context onto the hw (with restore-inhibit), then switch
5170 * over to a second context to save that default register state. We
5171 * can then prime every new context with that state so they all start
5172 * from the same default HW values.
5173 */
5174
5175 ctx = i915_gem_context_create_kernel(i915, 0);
5176 if (IS_ERR(ctx))
5177 return PTR_ERR(ctx);
5178
5179 for_each_engine(engine, i915, id) {
5180 struct i915_request *rq;
5181
5182 rq = i915_request_alloc(engine, ctx);
5183 if (IS_ERR(rq)) {
5184 err = PTR_ERR(rq);
5185 goto out_ctx;
5186 }
5187
5188 err = 0;
5189 if (engine->init_context)
5190 err = engine->init_context(rq);
5191
5192 __i915_request_add(rq, true);
5193 if (err)
5194 goto err_active;
5195 }
5196
5197 err = i915_gem_switch_to_kernel_context(i915);
5198 if (err)
5199 goto err_active;
5200
5201 err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
5202 if (err)
5203 goto err_active;
5204
5205 assert_kernel_context_is_current(i915);
5206
5207 for_each_engine(engine, i915, id) {
5208 struct i915_vma *state;
5209
5210 state = ctx->engine[id].state;
5211 if (!state)
5212 continue;
5213
5214 /*
5215 * As we will hold a reference to the logical state, it will
5216 * not be torn down with the context, and importantly the
5217 * object will hold onto its vma (making it possible for a
5218 * stray GTT write to corrupt our defaults). Unmap the vma
5219 * from the GTT to prevent such accidents and reclaim the
5220 * space.
5221 */
5222 err = i915_vma_unbind(state);
5223 if (err)
5224 goto err_active;
5225
5226 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5227 if (err)
5228 goto err_active;
5229
5230 engine->default_state = i915_gem_object_get(state->obj);
5231 }
5232
5233 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5234 unsigned int found = intel_engines_has_context_isolation(i915);
5235
5236 /*
5237 * Make sure that classes with multiple engine instances all
5238 * share the same basic configuration.
5239 */
5240 for_each_engine(engine, i915, id) {
5241 unsigned int bit = BIT(engine->uabi_class);
5242 unsigned int expected = engine->default_state ? bit : 0;
5243
5244 if ((found & bit) != expected) {
5245 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5246 engine->uabi_class, engine->name);
5247 }
5248 }
5249 }
5250
5251out_ctx:
5252 i915_gem_context_set_closed(ctx);
5253 i915_gem_context_put(ctx);
5254 return err;
5255
5256err_active:
5257 /*
5258 * If we have to abandon now, we expect the engines to be idle
5259 * and ready to be torn-down. First try to flush any remaining
5260 * request, ensure we are pointing at the kernel context and
5261 * then remove it.
5262 */
5263 if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5264 goto out_ctx;
5265
5266 if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
5267 goto out_ctx;
5268
5269 i915_gem_contexts_lost(i915);
5270 goto out_ctx;
5271}
5272
5273int i915_gem_init(struct drm_i915_private *dev_priv)
5274{
5275 int ret;
5276
5277 /*
5278 * We need to fallback to 4K pages since gvt gtt handling doesn't
5279 * support huge page entries - we will need to check either hypervisor
5280 * mm can support huge guest page or just do emulation in gvt.
5281 */
5282 if (intel_vgpu_active(dev_priv))
5283 mkwrite_device_info(dev_priv)->page_sizes =
5284 I915_GTT_PAGE_SIZE_4K;
5285
5286 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5287
5288 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5289 dev_priv->gt.resume = intel_lr_context_resume;
5290 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5291 } else {
5292 dev_priv->gt.resume = intel_legacy_submission_resume;
5293 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5294 }
5295
5296 ret = i915_gem_init_userptr(dev_priv);
5297 if (ret)
5298 return ret;
5299
5300 ret = intel_uc_init_misc(dev_priv);
5301 if (ret)
5302 return ret;
5303
5304 /* This is just a security blanket to placate dragons.
5305 * On some systems, we very sporadically observe that the first TLBs
5306 * used by the CS may be stale, despite us poking the TLB reset. If
5307 * we hold the forcewake during initialisation these problems
5308 * just magically go away.
5309 */
5310 mutex_lock(&dev_priv->drm.struct_mutex);
5311 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5312
5313 ret = i915_gem_init_ggtt(dev_priv);
5314 if (ret) {
5315 GEM_BUG_ON(ret == -EIO);
5316 goto err_unlock;
5317 }
5318
5319 ret = i915_gem_contexts_init(dev_priv);
5320 if (ret) {
5321 GEM_BUG_ON(ret == -EIO);
5322 goto err_ggtt;
5323 }
5324
5325 ret = intel_engines_init(dev_priv);
5326 if (ret) {
5327 GEM_BUG_ON(ret == -EIO);
5328 goto err_context;
5329 }
5330
5331 intel_init_gt_powersave(dev_priv);
5332
5333 ret = intel_uc_init(dev_priv);
5334 if (ret)
5335 goto err_pm;
5336
5337 ret = i915_gem_init_hw(dev_priv);
5338 if (ret)
5339 goto err_uc_init;
5340
5341 /*
5342 * Despite its name intel_init_clock_gating applies both display
5343 * clock gating workarounds; GT mmio workarounds and the occasional
5344 * GT power context workaround. Worse, sometimes it includes a context
5345 * register workaround which we need to apply before we record the
5346 * default HW state for all contexts.
5347 *
5348 * FIXME: break up the workarounds and apply them at the right time!
5349 */
5350 intel_init_clock_gating(dev_priv);
5351
5352 ret = __intel_engines_record_defaults(dev_priv);
5353 if (ret)
5354 goto err_init_hw;
5355
5356 if (i915_inject_load_failure()) {
5357 ret = -ENODEV;
5358 goto err_init_hw;
5359 }
5360
5361 if (i915_inject_load_failure()) {
5362 ret = -EIO;
5363 goto err_init_hw;
5364 }
5365
5366 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5367 mutex_unlock(&dev_priv->drm.struct_mutex);
5368
5369 return 0;
5370
5371 /*
5372 * Unwinding is complicated by that we want to handle -EIO to mean
5373 * disable GPU submission but keep KMS alive. We want to mark the
5374 * HW as irrevisibly wedged, but keep enough state around that the
5375 * driver doesn't explode during runtime.
5376 */
5377err_init_hw:
5378 i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
5379 i915_gem_contexts_lost(dev_priv);
5380 intel_uc_fini_hw(dev_priv);
5381err_uc_init:
5382 intel_uc_fini(dev_priv);
5383err_pm:
5384 if (ret != -EIO) {
5385 intel_cleanup_gt_powersave(dev_priv);
5386 i915_gem_cleanup_engines(dev_priv);
5387 }
5388err_context:
5389 if (ret != -EIO)
5390 i915_gem_contexts_fini(dev_priv);
5391err_ggtt:
5392err_unlock:
5393 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5394 mutex_unlock(&dev_priv->drm.struct_mutex);
5395
5396 intel_uc_fini_misc(dev_priv);
5397
5398 if (ret != -EIO)
5399 i915_gem_cleanup_userptr(dev_priv);
5400
5401 if (ret == -EIO) {
5402 /*
5403 * Allow engine initialisation to fail by marking the GPU as
5404 * wedged. But we only want to do this where the GPU is angry,
5405 * for all other failure, such as an allocation failure, bail.
5406 */
5407 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5408 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5409 i915_gem_set_wedged(dev_priv);
5410 }
5411 ret = 0;
5412 }
5413
5414 i915_gem_drain_freed_objects(dev_priv);
5415 return ret;
5416}
5417
5418void i915_gem_init_mmio(struct drm_i915_private *i915)
5419{
5420 i915_gem_sanitize(i915);
5421}
5422
5423void
5424i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5425{
5426 struct intel_engine_cs *engine;
5427 enum intel_engine_id id;
5428
5429 for_each_engine(engine, dev_priv, id)
5430 dev_priv->gt.cleanup_engine(engine);
5431}
5432
5433void
5434i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5435{
5436 int i;
5437
5438 if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5439 !IS_CHERRYVIEW(dev_priv))
5440 dev_priv->num_fence_regs = 32;
5441 else if (INTEL_GEN(dev_priv) >= 4 ||
5442 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5443 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5444 dev_priv->num_fence_regs = 16;
5445 else
5446 dev_priv->num_fence_regs = 8;
5447
5448 if (intel_vgpu_active(dev_priv))
5449 dev_priv->num_fence_regs =
5450 I915_READ(vgtif_reg(avail_rs.fence_num));
5451
5452 /* Initialize fence registers to zero */
5453 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5454 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5455
5456 fence->i915 = dev_priv;
5457 fence->id = i;
5458 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5459 }
5460 i915_gem_restore_fences(dev_priv);
5461
5462 i915_gem_detect_bit_6_swizzle(dev_priv);
5463}
5464
5465static void i915_gem_init__mm(struct drm_i915_private *i915)
5466{
5467 spin_lock_init(&i915->mm.object_stat_lock);
5468 spin_lock_init(&i915->mm.obj_lock);
5469 spin_lock_init(&i915->mm.free_lock);
5470
5471 init_llist_head(&i915->mm.free_list);
5472
5473 INIT_LIST_HEAD(&i915->mm.unbound_list);
5474 INIT_LIST_HEAD(&i915->mm.bound_list);
5475 INIT_LIST_HEAD(&i915->mm.fence_list);
5476 INIT_LIST_HEAD(&i915->mm.userfault_list);
5477
5478 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5479}
5480
5481int
5482i915_gem_load_init(struct drm_i915_private *dev_priv)
5483{
5484 int err = -ENOMEM;
5485
5486 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5487 if (!dev_priv->objects)
5488 goto err_out;
5489
5490 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5491 if (!dev_priv->vmas)
5492 goto err_objects;
5493
5494 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5495 if (!dev_priv->luts)
5496 goto err_vmas;
5497
5498 dev_priv->requests = KMEM_CACHE(i915_request,
5499 SLAB_HWCACHE_ALIGN |
5500 SLAB_RECLAIM_ACCOUNT |
5501 SLAB_TYPESAFE_BY_RCU);
5502 if (!dev_priv->requests)
5503 goto err_luts;
5504
5505 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5506 SLAB_HWCACHE_ALIGN |
5507 SLAB_RECLAIM_ACCOUNT);
5508 if (!dev_priv->dependencies)
5509 goto err_requests;
5510
5511 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5512 if (!dev_priv->priorities)
5513 goto err_dependencies;
5514
5515 mutex_lock(&dev_priv->drm.struct_mutex);
5516 INIT_LIST_HEAD(&dev_priv->gt.timelines);
5517 err = i915_gem_timeline_init__global(dev_priv);
5518 mutex_unlock(&dev_priv->drm.struct_mutex);
5519 if (err)
5520 goto err_priorities;
5521
5522 i915_gem_init__mm(dev_priv);
5523
5524 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5525 i915_gem_retire_work_handler);
5526 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5527 i915_gem_idle_work_handler);
5528 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5529 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5530
5531 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5532
5533 spin_lock_init(&dev_priv->fb_tracking.lock);
5534
5535 err = i915_gemfs_init(dev_priv);
5536 if (err)
5537 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5538
5539 return 0;
5540
5541err_priorities:
5542 kmem_cache_destroy(dev_priv->priorities);
5543err_dependencies:
5544 kmem_cache_destroy(dev_priv->dependencies);
5545err_requests:
5546 kmem_cache_destroy(dev_priv->requests);
5547err_luts:
5548 kmem_cache_destroy(dev_priv->luts);
5549err_vmas:
5550 kmem_cache_destroy(dev_priv->vmas);
5551err_objects:
5552 kmem_cache_destroy(dev_priv->objects);
5553err_out:
5554 return err;
5555}
5556
5557void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5558{
5559 i915_gem_drain_freed_objects(dev_priv);
5560 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5561 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5562 WARN_ON(dev_priv->mm.object_count);
5563
5564 mutex_lock(&dev_priv->drm.struct_mutex);
5565 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5566 WARN_ON(!list_empty(&dev_priv->gt.timelines));
5567 mutex_unlock(&dev_priv->drm.struct_mutex);
5568
5569 kmem_cache_destroy(dev_priv->priorities);
5570 kmem_cache_destroy(dev_priv->dependencies);
5571 kmem_cache_destroy(dev_priv->requests);
5572 kmem_cache_destroy(dev_priv->luts);
5573 kmem_cache_destroy(dev_priv->vmas);
5574 kmem_cache_destroy(dev_priv->objects);
5575
5576 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5577 rcu_barrier();
5578
5579 i915_gemfs_fini(dev_priv);
5580}
5581
5582int i915_gem_freeze(struct drm_i915_private *dev_priv)
5583{
5584 /* Discard all purgeable objects, let userspace recover those as
5585 * required after resuming.
5586 */
5587 i915_gem_shrink_all(dev_priv);
5588
5589 return 0;
5590}
5591
5592int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5593{
5594 struct drm_i915_gem_object *obj;
5595 struct list_head *phases[] = {
5596 &dev_priv->mm.unbound_list,
5597 &dev_priv->mm.bound_list,
5598 NULL
5599 }, **p;
5600
5601 /* Called just before we write the hibernation image.
5602 *
5603 * We need to update the domain tracking to reflect that the CPU
5604 * will be accessing all the pages to create and restore from the
5605 * hibernation, and so upon restoration those pages will be in the
5606 * CPU domain.
5607 *
5608 * To make sure the hibernation image contains the latest state,
5609 * we update that state just before writing out the image.
5610 *
5611 * To try and reduce the hibernation image, we manually shrink
5612 * the objects as well, see i915_gem_freeze()
5613 */
5614
5615 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5616 i915_gem_drain_freed_objects(dev_priv);
5617
5618 spin_lock(&dev_priv->mm.obj_lock);
5619 for (p = phases; *p; p++) {
5620 list_for_each_entry(obj, *p, mm.link)
5621 __start_cpu_write(obj);
5622 }
5623 spin_unlock(&dev_priv->mm.obj_lock);
5624
5625 return 0;
5626}
5627
5628void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5629{
5630 struct drm_i915_file_private *file_priv = file->driver_priv;
5631 struct i915_request *request;
5632
5633 /* Clean up our request list when the client is going away, so that
5634 * later retire_requests won't dereference our soon-to-be-gone
5635 * file_priv.
5636 */
5637 spin_lock(&file_priv->mm.lock);
5638 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5639 request->file_priv = NULL;
5640 spin_unlock(&file_priv->mm.lock);
5641}
5642
5643int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5644{
5645 struct drm_i915_file_private *file_priv;
5646 int ret;
5647
5648 DRM_DEBUG("\n");
5649
5650 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5651 if (!file_priv)
5652 return -ENOMEM;
5653
5654 file->driver_priv = file_priv;
5655 file_priv->dev_priv = i915;
5656 file_priv->file = file;
5657
5658 spin_lock_init(&file_priv->mm.lock);
5659 INIT_LIST_HEAD(&file_priv->mm.request_list);
5660
5661 file_priv->bsd_engine = -1;
5662
5663 ret = i915_gem_context_open(i915, file);
5664 if (ret)
5665 kfree(file_priv);
5666
5667 return ret;
5668}
5669
5670/**
5671 * i915_gem_track_fb - update frontbuffer tracking
5672 * @old: current GEM buffer for the frontbuffer slots
5673 * @new: new GEM buffer for the frontbuffer slots
5674 * @frontbuffer_bits: bitmask of frontbuffer slots
5675 *
5676 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5677 * from @old and setting them in @new. Both @old and @new can be NULL.
5678 */
5679void i915_gem_track_fb(struct drm_i915_gem_object *old,
5680 struct drm_i915_gem_object *new,
5681 unsigned frontbuffer_bits)
5682{
5683 /* Control of individual bits within the mask are guarded by
5684 * the owning plane->mutex, i.e. we can never see concurrent
5685 * manipulation of individual bits. But since the bitfield as a whole
5686 * is updated using RMW, we need to use atomics in order to update
5687 * the bits.
5688 */
5689 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5690 sizeof(atomic_t) * BITS_PER_BYTE);
5691
5692 if (old) {
5693 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5694 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5695 }
5696
5697 if (new) {
5698 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5699 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5700 }
5701}
5702
5703/* Allocate a new GEM object and fill it with the supplied data */
5704struct drm_i915_gem_object *
5705i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5706 const void *data, size_t size)
5707{
5708 struct drm_i915_gem_object *obj;
5709 struct file *file;
5710 size_t offset;
5711 int err;
5712
5713 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5714 if (IS_ERR(obj))
5715 return obj;
5716
5717 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
5718
5719 file = obj->base.filp;
5720 offset = 0;
5721 do {
5722 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5723 struct page *page;
5724 void *pgdata, *vaddr;
5725
5726 err = pagecache_write_begin(file, file->f_mapping,
5727 offset, len, 0,
5728 &page, &pgdata);
5729 if (err < 0)
5730 goto fail;
5731
5732 vaddr = kmap(page);
5733 memcpy(vaddr, data, len);
5734 kunmap(page);
5735
5736 err = pagecache_write_end(file, file->f_mapping,
5737 offset, len, len,
5738 page, pgdata);
5739 if (err < 0)
5740 goto fail;
5741
5742 size -= len;
5743 data += len;
5744 offset += len;
5745 } while (size);
5746
5747 return obj;
5748
5749fail:
5750 i915_gem_object_put(obj);
5751 return ERR_PTR(err);
5752}
5753
5754struct scatterlist *
5755i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5756 unsigned int n,
5757 unsigned int *offset)
5758{
5759 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5760 struct scatterlist *sg;
5761 unsigned int idx, count;
5762
5763 might_sleep();
5764 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5765 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5766
5767 /* As we iterate forward through the sg, we record each entry in a
5768 * radixtree for quick repeated (backwards) lookups. If we have seen
5769 * this index previously, we will have an entry for it.
5770 *
5771 * Initial lookup is O(N), but this is amortized to O(1) for
5772 * sequential page access (where each new request is consecutive
5773 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5774 * i.e. O(1) with a large constant!
5775 */
5776 if (n < READ_ONCE(iter->sg_idx))
5777 goto lookup;
5778
5779 mutex_lock(&iter->lock);
5780
5781 /* We prefer to reuse the last sg so that repeated lookup of this
5782 * (or the subsequent) sg are fast - comparing against the last
5783 * sg is faster than going through the radixtree.
5784 */
5785
5786 sg = iter->sg_pos;
5787 idx = iter->sg_idx;
5788 count = __sg_page_count(sg);
5789
5790 while (idx + count <= n) {
5791 unsigned long exception, i;
5792 int ret;
5793
5794 /* If we cannot allocate and insert this entry, or the
5795 * individual pages from this range, cancel updating the
5796 * sg_idx so that on this lookup we are forced to linearly
5797 * scan onwards, but on future lookups we will try the
5798 * insertion again (in which case we need to be careful of
5799 * the error return reporting that we have already inserted
5800 * this index).
5801 */
5802 ret = radix_tree_insert(&iter->radix, idx, sg);
5803 if (ret && ret != -EEXIST)
5804 goto scan;
5805
5806 exception =
5807 RADIX_TREE_EXCEPTIONAL_ENTRY |
5808 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5809 for (i = 1; i < count; i++) {
5810 ret = radix_tree_insert(&iter->radix, idx + i,
5811 (void *)exception);
5812 if (ret && ret != -EEXIST)
5813 goto scan;
5814 }
5815
5816 idx += count;
5817 sg = ____sg_next(sg);
5818 count = __sg_page_count(sg);
5819 }
5820
5821scan:
5822 iter->sg_pos = sg;
5823 iter->sg_idx = idx;
5824
5825 mutex_unlock(&iter->lock);
5826
5827 if (unlikely(n < idx)) /* insertion completed by another thread */
5828 goto lookup;
5829
5830 /* In case we failed to insert the entry into the radixtree, we need
5831 * to look beyond the current sg.
5832 */
5833 while (idx + count <= n) {
5834 idx += count;
5835 sg = ____sg_next(sg);
5836 count = __sg_page_count(sg);
5837 }
5838
5839 *offset = n - idx;
5840 return sg;
5841
5842lookup:
5843 rcu_read_lock();
5844
5845 sg = radix_tree_lookup(&iter->radix, n);
5846 GEM_BUG_ON(!sg);
5847
5848 /* If this index is in the middle of multi-page sg entry,
5849 * the radixtree will contain an exceptional entry that points
5850 * to the start of that range. We will return the pointer to
5851 * the base page and the offset of this page within the
5852 * sg entry's range.
5853 */
5854 *offset = 0;
5855 if (unlikely(radix_tree_exception(sg))) {
5856 unsigned long base =
5857 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5858
5859 sg = radix_tree_lookup(&iter->radix, base);
5860 GEM_BUG_ON(!sg);
5861
5862 *offset = n - base;
5863 }
5864
5865 rcu_read_unlock();
5866
5867 return sg;
5868}
5869
5870struct page *
5871i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5872{
5873 struct scatterlist *sg;
5874 unsigned int offset;
5875
5876 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5877
5878 sg = i915_gem_object_get_sg(obj, n, &offset);
5879 return nth_page(sg_page(sg), offset);
5880}
5881
5882/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5883struct page *
5884i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5885 unsigned int n)
5886{
5887 struct page *page;
5888
5889 page = i915_gem_object_get_page(obj, n);
5890 if (!obj->mm.dirty)
5891 set_page_dirty(page);
5892
5893 return page;
5894}
5895
5896dma_addr_t
5897i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5898 unsigned long n)
5899{
5900 struct scatterlist *sg;
5901 unsigned int offset;
5902
5903 sg = i915_gem_object_get_sg(obj, n, &offset);
5904 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5905}
5906
5907int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5908{
5909 struct sg_table *pages;
5910 int err;
5911
5912 if (align > obj->base.size)
5913 return -EINVAL;
5914
5915 if (obj->ops == &i915_gem_phys_ops)
5916 return 0;
5917
5918 if (obj->ops != &i915_gem_object_ops)
5919 return -EINVAL;
5920
5921 err = i915_gem_object_unbind(obj);
5922 if (err)
5923 return err;
5924
5925 mutex_lock(&obj->mm.lock);
5926
5927 if (obj->mm.madv != I915_MADV_WILLNEED) {
5928 err = -EFAULT;
5929 goto err_unlock;
5930 }
5931
5932 if (obj->mm.quirked) {
5933 err = -EFAULT;
5934 goto err_unlock;
5935 }
5936
5937 if (obj->mm.mapping) {
5938 err = -EBUSY;
5939 goto err_unlock;
5940 }
5941
5942 pages = fetch_and_zero(&obj->mm.pages);
5943 if (pages) {
5944 struct drm_i915_private *i915 = to_i915(obj->base.dev);
5945
5946 __i915_gem_object_reset_page_iter(obj);
5947
5948 spin_lock(&i915->mm.obj_lock);
5949 list_del(&obj->mm.link);
5950 spin_unlock(&i915->mm.obj_lock);
5951 }
5952
5953 obj->ops = &i915_gem_phys_ops;
5954
5955 err = ____i915_gem_object_get_pages(obj);
5956 if (err)
5957 goto err_xfer;
5958
5959 /* Perma-pin (until release) the physical set of pages */
5960 __i915_gem_object_pin_pages(obj);
5961
5962 if (!IS_ERR_OR_NULL(pages))
5963 i915_gem_object_ops.put_pages(obj, pages);
5964 mutex_unlock(&obj->mm.lock);
5965 return 0;
5966
5967err_xfer:
5968 obj->ops = &i915_gem_object_ops;
5969 obj->mm.pages = pages;
5970err_unlock:
5971 mutex_unlock(&obj->mm.lock);
5972 return err;
5973}
5974
5975#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5976#include "selftests/scatterlist.c"
5977#include "selftests/mock_gem_device.c"
5978#include "selftests/huge_gem_object.c"
5979#include "selftests/huge_pages.c"
5980#include "selftests/i915_gem_object.c"
5981#include "selftests/i915_gem_coherency.c"
5982#endif