Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drmP.h>
  29#include <drm/drm_vma_manager.h>
  30#include <drm/i915_drm.h>
  31#include "i915_drv.h"
 
  32#include "i915_vgpu.h"
  33#include "i915_trace.h"
  34#include "intel_drv.h"
 
 
 
 
 
 
  35#include <linux/shmem_fs.h>
  36#include <linux/slab.h>
 
  37#include <linux/swap.h>
  38#include <linux/pci.h>
  39#include <linux/dma-buf.h>
  40
  41#define RQ_BUG_ON(expr)
  42
  43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  45static void
  46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
  47static void
  48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
  49
  50static bool cpu_cache_is_coherent(struct drm_device *dev,
  51				  enum i915_cache_level level)
  52{
  53	return HAS_LLC(dev) || level != I915_CACHE_NONE;
 
 
 
 
 
 
  54}
  55
  56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
 
 
  57{
  58	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  59		return true;
 
 
 
 
  60
  61	return obj->pin_display;
 
 
 
  62}
  63
  64/* some bookkeeping */
  65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  66				  size_t size)
  67{
  68	spin_lock(&dev_priv->mm.object_stat_lock);
  69	dev_priv->mm.object_count++;
  70	dev_priv->mm.object_memory += size;
  71	spin_unlock(&dev_priv->mm.object_stat_lock);
  72}
  73
  74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  75				     size_t size)
  76{
  77	spin_lock(&dev_priv->mm.object_stat_lock);
  78	dev_priv->mm.object_count--;
  79	dev_priv->mm.object_memory -= size;
  80	spin_unlock(&dev_priv->mm.object_stat_lock);
  81}
  82
  83static int
  84i915_gem_wait_for_error(struct i915_gpu_error *error)
  85{
  86	int ret;
  87
  88#define EXIT_COND (!i915_reset_in_progress(error) || \
  89		   i915_terminally_wedged(error))
  90	if (EXIT_COND)
  91		return 0;
  92
  93	/*
  94	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  95	 * userspace. If it takes that long something really bad is going on and
  96	 * we should simply try to bail out and fail as gracefully as possible.
  97	 */
  98	ret = wait_event_interruptible_timeout(error->reset_queue,
  99					       EXIT_COND,
 100					       10*HZ);
 101	if (ret == 0) {
 102		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
 103		return -EIO;
 104	} else if (ret < 0) {
 105		return ret;
 
 
 106	}
 107#undef EXIT_COND
 108
 109	return 0;
 110}
 111
 112int i915_mutex_lock_interruptible(struct drm_device *dev)
 113{
 114	struct drm_i915_private *dev_priv = dev->dev_private;
 115	int ret;
 116
 117	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
 118	if (ret)
 119		return ret;
 120
 121	ret = mutex_lock_interruptible(&dev->struct_mutex);
 122	if (ret)
 123		return ret;
 124
 125	WARN_ON(i915_verify_lists(dev));
 126	return 0;
 127}
 128
 129int
 130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 131			    struct drm_file *file)
 132{
 133	struct drm_i915_private *dev_priv = dev->dev_private;
 
 134	struct drm_i915_gem_get_aperture *args = data;
 135	struct i915_gtt *ggtt = &dev_priv->gtt;
 136	struct i915_vma *vma;
 137	size_t pinned;
 138
 139	pinned = 0;
 140	mutex_lock(&dev->struct_mutex);
 141	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
 142		if (vma->pin_count)
 143			pinned += vma->node.size;
 144	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
 145		if (vma->pin_count)
 146			pinned += vma->node.size;
 147	mutex_unlock(&dev->struct_mutex);
 148
 149	args->aper_size = dev_priv->gtt.base.total;
 150	args->aper_available_size = args->aper_size - pinned;
 151
 152	return 0;
 153}
 154
 155static int
 156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
 157{
 158	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
 159	char *vaddr = obj->phys_handle->vaddr;
 160	struct sg_table *st;
 161	struct scatterlist *sg;
 
 162	int i;
 
 163
 164	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
 165		return -EINVAL;
 166
 
 
 
 
 
 
 
 
 
 
 
 167	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 168		struct page *page;
 169		char *src;
 170
 171		page = shmem_read_mapping_page(mapping, i);
 172		if (IS_ERR(page))
 173			return PTR_ERR(page);
 
 
 174
 175		src = kmap_atomic(page);
 176		memcpy(vaddr, src, PAGE_SIZE);
 177		drm_clflush_virt_range(vaddr, PAGE_SIZE);
 178		kunmap_atomic(src);
 179
 180		put_page(page);
 181		vaddr += PAGE_SIZE;
 182	}
 183
 184	i915_gem_chipset_flush(obj->base.dev);
 185
 186	st = kmalloc(sizeof(*st), GFP_KERNEL);
 187	if (st == NULL)
 188		return -ENOMEM;
 
 
 189
 190	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
 191		kfree(st);
 192		return -ENOMEM;
 
 193	}
 194
 195	sg = st->sgl;
 196	sg->offset = 0;
 197	sg->length = obj->base.size;
 198
 199	sg_dma_address(sg) = obj->phys_handle->busaddr;
 200	sg_dma_len(sg) = obj->base.size;
 201
 202	obj->pages = st;
 
 
 
 203	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 204}
 205
 206static void
 207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
 
 
 208{
 209	int ret;
 210
 211	BUG_ON(obj->madv == __I915_MADV_PURGED);
 
 212
 213	ret = i915_gem_object_set_to_cpu_domain(obj, true);
 214	if (ret) {
 215		/* In the event of a disaster, abandon all caches and
 216		 * hope for the best.
 217		 */
 218		WARN_ON(ret != -EIO);
 219		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
 220	}
 221
 222	if (obj->madv == I915_MADV_DONTNEED)
 223		obj->dirty = 0;
 
 
 
 
 
 
 224
 225	if (obj->dirty) {
 226		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
 227		char *vaddr = obj->phys_handle->vaddr;
 228		int i;
 229
 230		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 231			struct page *page;
 232			char *dst;
 233
 234			page = shmem_read_mapping_page(mapping, i);
 235			if (IS_ERR(page))
 236				continue;
 237
 238			dst = kmap_atomic(page);
 239			drm_clflush_virt_range(vaddr, PAGE_SIZE);
 240			memcpy(dst, vaddr, PAGE_SIZE);
 241			kunmap_atomic(dst);
 242
 243			set_page_dirty(page);
 244			if (obj->madv == I915_MADV_WILLNEED)
 245				mark_page_accessed(page);
 246			put_page(page);
 247			vaddr += PAGE_SIZE;
 248		}
 249		obj->dirty = 0;
 250	}
 251
 252	sg_free_table(obj->pages);
 253	kfree(obj->pages);
 
 
 254}
 255
 256static void
 257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
 258{
 259	drm_pci_free(obj->base.dev, obj->phys_handle);
 260}
 261
 262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
 263	.get_pages = i915_gem_object_get_pages_phys,
 264	.put_pages = i915_gem_object_put_pages_phys,
 265	.release = i915_gem_object_release_phys,
 266};
 267
 268static int
 269drop_pages(struct drm_i915_gem_object *obj)
 
 270{
 271	struct i915_vma *vma, *next;
 
 272	int ret;
 273
 274	drm_gem_object_reference(&obj->base);
 275	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
 276		if (i915_vma_unbind(vma))
 277			break;
 278
 279	ret = i915_gem_object_put_pages(obj);
 280	drm_gem_object_unreference(&obj->base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281
 282	return ret;
 283}
 284
 285int
 286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
 287			    int align)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288{
 289	drm_dma_handle_t *phys;
 290	int ret;
 
 291
 292	if (obj->phys_handle) {
 293		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
 294			return -EBUSY;
 
 295
 296		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297	}
 298
 299	if (obj->madv != I915_MADV_WILLNEED)
 300		return -EFAULT;
 
 301
 302	if (obj->base.filp == NULL)
 303		return -EINVAL;
 304
 305	ret = drop_pages(obj);
 306	if (ret)
 307		return ret;
 
 
 
 
 
 
 
 
 
 308
 309	/* create a new object */
 310	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
 311	if (!phys)
 312		return -ENOMEM;
 313
 314	obj->phys_handle = phys;
 315	obj->ops = &i915_gem_phys_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316
 317	return i915_gem_object_get_pages(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318}
 319
 320static int
 321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
 322		     struct drm_i915_gem_pwrite *args,
 323		     struct drm_file *file_priv)
 324{
 325	struct drm_device *dev = obj->base.dev;
 326	void *vaddr = obj->phys_handle->vaddr + args->offset;
 327	char __user *user_data = to_user_ptr(args->data_ptr);
 328	int ret = 0;
 329
 330	/* We manually control the domain here and pretend that it
 331	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
 332	 */
 333	ret = i915_gem_object_wait_rendering(obj, false);
 334	if (ret)
 335		return ret;
 336
 337	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 338	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
 339		unsigned long unwritten;
 340
 341		/* The physical object once assigned is fixed for the lifetime
 342		 * of the obj, so we can safely drop the lock and continue
 343		 * to access vaddr.
 344		 */
 345		mutex_unlock(&dev->struct_mutex);
 346		unwritten = copy_from_user(vaddr, user_data, args->size);
 347		mutex_lock(&dev->struct_mutex);
 348		if (unwritten) {
 349			ret = -EFAULT;
 350			goto out;
 351		}
 352	}
 353
 354	drm_clflush_virt_range(vaddr, args->size);
 355	i915_gem_chipset_flush(dev);
 356
 357out:
 358	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
 359	return ret;
 360}
 361
 362void *i915_gem_object_alloc(struct drm_device *dev)
 363{
 364	struct drm_i915_private *dev_priv = dev->dev_private;
 365	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
 366}
 367
 368void i915_gem_object_free(struct drm_i915_gem_object *obj)
 369{
 370	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
 371	kmem_cache_free(dev_priv->objects, obj);
 372}
 373
 374static int
 375i915_gem_create(struct drm_file *file,
 376		struct drm_device *dev,
 377		uint64_t size,
 378		uint32_t *handle_p)
 379{
 380	struct drm_i915_gem_object *obj;
 381	int ret;
 382	u32 handle;
 383
 384	size = roundup(size, PAGE_SIZE);
 385	if (size == 0)
 386		return -EINVAL;
 387
 388	/* Allocate the new object */
 389	obj = i915_gem_alloc_object(dev, size);
 390	if (obj == NULL)
 391		return -ENOMEM;
 392
 393	ret = drm_gem_handle_create(file, &obj->base, &handle);
 394	/* drop reference from allocate - handle holds it now */
 395	drm_gem_object_unreference_unlocked(&obj->base);
 396	if (ret)
 397		return ret;
 398
 399	*handle_p = handle;
 400	return 0;
 401}
 402
 403int
 404i915_gem_dumb_create(struct drm_file *file,
 405		     struct drm_device *dev,
 406		     struct drm_mode_create_dumb *args)
 407{
 408	/* have to work out size/pitch and return them */
 409	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
 410	args->size = args->pitch * args->height;
 411	return i915_gem_create(file, dev,
 412			       args->size, &args->handle);
 413}
 414
 
 
 
 
 
 
 415/**
 416 * Creates a new mm object and returns a handle to it.
 
 
 
 417 */
 418int
 419i915_gem_create_ioctl(struct drm_device *dev, void *data,
 420		      struct drm_file *file)
 421{
 
 422	struct drm_i915_gem_create *args = data;
 423
 424	return i915_gem_create(file, dev,
 
 
 425			       args->size, &args->handle);
 426}
 427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428static inline int
 429__copy_to_user_swizzled(char __user *cpu_vaddr,
 430			const char *gpu_vaddr, int gpu_offset,
 431			int length)
 432{
 433	int ret, cpu_offset = 0;
 434
 435	while (length > 0) {
 436		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 437		int this_length = min(cacheline_end - gpu_offset, length);
 438		int swizzled_gpu_offset = gpu_offset ^ 64;
 439
 440		ret = __copy_to_user(cpu_vaddr + cpu_offset,
 441				     gpu_vaddr + swizzled_gpu_offset,
 442				     this_length);
 443		if (ret)
 444			return ret + length;
 445
 446		cpu_offset += this_length;
 447		gpu_offset += this_length;
 448		length -= this_length;
 449	}
 450
 451	return 0;
 452}
 453
 454static inline int
 455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
 456			  const char __user *cpu_vaddr,
 457			  int length)
 458{
 459	int ret, cpu_offset = 0;
 460
 461	while (length > 0) {
 462		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 463		int this_length = min(cacheline_end - gpu_offset, length);
 464		int swizzled_gpu_offset = gpu_offset ^ 64;
 465
 466		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
 467				       cpu_vaddr + cpu_offset,
 468				       this_length);
 469		if (ret)
 470			return ret + length;
 471
 472		cpu_offset += this_length;
 473		gpu_offset += this_length;
 474		length -= this_length;
 475	}
 476
 477	return 0;
 478}
 479
 480/*
 481 * Pins the specified object's pages and synchronizes the object with
 482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 483 * flush the object from the CPU cache.
 484 */
 485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
 486				    int *needs_clflush)
 487{
 488	int ret;
 489
 
 
 490	*needs_clflush = 0;
 
 
 491
 492	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
 493		return -EINVAL;
 
 
 
 
 
 494
 495	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
 496		/* If we're not in the cpu read domain, set ourself into the gtt
 497		 * read domain and manually flush cachelines (if required). This
 498		 * optimizes for the case when the gpu will dirty the data
 499		 * anyway again before the next pread happens. */
 500		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
 501							obj->cache_level);
 502		ret = i915_gem_object_wait_rendering(obj, true);
 503		if (ret)
 504			return ret;
 
 
 505	}
 506
 507	ret = i915_gem_object_get_pages(obj);
 508	if (ret)
 509		return ret;
 510
 511	i915_gem_object_pin_pages(obj);
 
 
 
 
 
 
 
 512
 
 
 
 
 
 
 513	return ret;
 514}
 515
 516/* Per-page copy function for the shmem pread fastpath.
 517 * Flushes invalid cachelines before reading the target if
 518 * needs_clflush is set. */
 519static int
 520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
 521		 char __user *user_data,
 522		 bool page_do_bit17_swizzling, bool needs_clflush)
 523{
 524	char *vaddr;
 525	int ret;
 526
 527	if (unlikely(page_do_bit17_swizzling))
 528		return -EINVAL;
 529
 530	vaddr = kmap_atomic(page);
 531	if (needs_clflush)
 532		drm_clflush_virt_range(vaddr + shmem_page_offset,
 533				       page_length);
 534	ret = __copy_to_user_inatomic(user_data,
 535				      vaddr + shmem_page_offset,
 536				      page_length);
 537	kunmap_atomic(vaddr);
 538
 539	return ret ? -EFAULT : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540}
 541
 542static void
 543shmem_clflush_swizzled_range(char *addr, unsigned long length,
 544			     bool swizzled)
 545{
 546	if (unlikely(swizzled)) {
 547		unsigned long start = (unsigned long) addr;
 548		unsigned long end = (unsigned long) addr + length;
 549
 550		/* For swizzling simply ensure that we always flush both
 551		 * channels. Lame, but simple and it works. Swizzled
 552		 * pwrite/pread is far from a hotpath - current userspace
 553		 * doesn't use it at all. */
 554		start = round_down(start, 128);
 555		end = round_up(end, 128);
 556
 557		drm_clflush_virt_range((void *)start, end - start);
 558	} else {
 559		drm_clflush_virt_range(addr, length);
 560	}
 561
 562}
 563
 564/* Only difference to the fast-path function is that this can handle bit17
 565 * and uses non-atomic copy and kmap functions. */
 566static int
 567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
 568		 char __user *user_data,
 569		 bool page_do_bit17_swizzling, bool needs_clflush)
 570{
 571	char *vaddr;
 572	int ret;
 573
 574	vaddr = kmap(page);
 575	if (needs_clflush)
 576		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 577					     page_length,
 578					     page_do_bit17_swizzling);
 579
 580	if (page_do_bit17_swizzling)
 581		ret = __copy_to_user_swizzled(user_data,
 582					      vaddr, shmem_page_offset,
 583					      page_length);
 584	else
 585		ret = __copy_to_user(user_data,
 586				     vaddr + shmem_page_offset,
 587				     page_length);
 588	kunmap(page);
 589
 590	return ret ? - EFAULT : 0;
 591}
 592
 593static int
 594i915_gem_shmem_pread(struct drm_device *dev,
 595		     struct drm_i915_gem_object *obj,
 596		     struct drm_i915_gem_pread *args,
 597		     struct drm_file *file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598{
 599	char __user *user_data;
 600	ssize_t remain;
 601	loff_t offset;
 602	int shmem_page_offset, page_length, ret = 0;
 603	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 604	int prefaulted = 0;
 605	int needs_clflush = 0;
 606	struct sg_page_iter sg_iter;
 607
 608	user_data = to_user_ptr(args->data_ptr);
 609	remain = args->size;
 
 610
 611	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 
 
 612
 613	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
 
 614	if (ret)
 615		return ret;
 616
 617	offset = args->offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618
 619	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
 620			 offset >> PAGE_SHIFT) {
 621		struct page *page = sg_page_iter_page(&sg_iter);
 
 622
 623		if (remain <= 0)
 624			break;
 
 625
 626		/* Operation in this page
 627		 *
 628		 * shmem_page_offset = offset within page in shmem file
 629		 * page_length = bytes to copy for this page
 630		 */
 631		shmem_page_offset = offset_in_page(offset);
 632		page_length = remain;
 633		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 634			page_length = PAGE_SIZE - shmem_page_offset;
 635
 636		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 637			(page_to_phys(page) & (1 << 17)) != 0;
 638
 639		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
 640				       user_data, page_do_bit17_swizzling,
 641				       needs_clflush);
 642		if (ret == 0)
 643			goto next_page;
 644
 645		mutex_unlock(&dev->struct_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646
 647		if (likely(!i915.prefault_disable) && !prefaulted) {
 648			ret = fault_in_multipages_writeable(user_data, remain);
 649			/* Userspace is tricking us, but we've already clobbered
 650			 * its pages with the prefault and promised to write the
 651			 * data up to the first fault. Hence ignore any errors
 652			 * and just continue. */
 653			(void)ret;
 654			prefaulted = 1;
 
 
 
 
 655		}
 
 
 
 
 
 
 
 656
 657		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
 658				       user_data, page_do_bit17_swizzling,
 659				       needs_clflush);
 660
 661		mutex_lock(&dev->struct_mutex);
 662
 663		if (ret)
 664			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665
 666next_page:
 667		remain -= page_length;
 668		user_data += page_length;
 669		offset += page_length;
 670	}
 671
 672out:
 673	i915_gem_object_unpin_pages(obj);
 
 
 
 
 
 
 
 
 
 
 
 674
 675	return ret;
 676}
 677
 678/**
 679 * Reads data from the object referenced by handle.
 
 
 
 680 *
 681 * On error, the contents of *data are undefined.
 682 */
 683int
 684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 685		     struct drm_file *file)
 686{
 687	struct drm_i915_gem_pread *args = data;
 688	struct drm_i915_gem_object *obj;
 689	int ret = 0;
 690
 691	if (args->size == 0)
 692		return 0;
 693
 694	if (!access_ok(VERIFY_WRITE,
 695		       to_user_ptr(args->data_ptr),
 696		       args->size))
 697		return -EFAULT;
 698
 699	ret = i915_mutex_lock_interruptible(dev);
 700	if (ret)
 701		return ret;
 702
 703	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 704	if (&obj->base == NULL) {
 705		ret = -ENOENT;
 706		goto unlock;
 707	}
 708
 709	/* Bounds check source.  */
 710	if (args->offset > obj->base.size ||
 711	    args->size > obj->base.size - args->offset) {
 712		ret = -EINVAL;
 713		goto out;
 714	}
 715
 716	/* prime objects have no backing filp to GEM pread/pwrite
 717	 * pages from.
 718	 */
 719	if (!obj->base.filp) {
 720		ret = -EINVAL;
 
 
 721		goto out;
 722	}
 723
 724	trace_i915_gem_object_pread(obj, args->offset, args->size);
 
 
 725
 726	ret = i915_gem_shmem_pread(dev, obj, args, file);
 
 
 727
 
 728out:
 729	drm_gem_object_unreference(&obj->base);
 730unlock:
 731	mutex_unlock(&dev->struct_mutex);
 732	return ret;
 733}
 734
 735/* This is the fast write path which cannot handle
 736 * page faults in the source data
 737 */
 738
 739static inline int
 740fast_user_write(struct io_mapping *mapping,
 741		loff_t page_base, int page_offset,
 742		char __user *user_data,
 743		int length)
 744{
 745	void __iomem *vaddr_atomic;
 746	void *vaddr;
 747	unsigned long unwritten;
 748
 749	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 750	/* We can use the cpu mem copy function because this is X86. */
 751	vaddr = (void __force*)vaddr_atomic + page_offset;
 752	unwritten = __copy_from_user_inatomic_nocache(vaddr,
 753						      user_data, length);
 754	io_mapping_unmap_atomic(vaddr_atomic);
 
 
 
 
 
 
 
 755	return unwritten;
 756}
 757
 758/**
 759 * This is the fast pwrite path, where we copy the data directly from the
 760 * user into the GTT, uncached.
 
 
 761 */
 762static int
 763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
 764			 struct drm_i915_gem_object *obj,
 765			 struct drm_i915_gem_pwrite *args,
 766			 struct drm_file *file)
 767{
 768	struct drm_i915_private *dev_priv = dev->dev_private;
 769	ssize_t remain;
 770	loff_t offset, page_base;
 771	char __user *user_data;
 772	int page_offset, page_length, ret;
 
 
 773
 774	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
 775	if (ret)
 776		goto out;
 777
 778	ret = i915_gem_object_set_to_gtt_domain(obj, true);
 779	if (ret)
 780		goto out_unpin;
 
 
 
 
 
 
 
 
 
 
 
 
 
 781
 782	ret = i915_gem_object_put_fence(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 783	if (ret)
 784		goto out_unpin;
 785
 786	user_data = to_user_ptr(args->data_ptr);
 787	remain = args->size;
 788
 789	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
 790
 791	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
 792
 793	while (remain > 0) {
 
 
 
 794		/* Operation in this page
 795		 *
 796		 * page_base = page offset within aperture
 797		 * page_offset = offset within page
 798		 * page_length = bytes to copy for this page
 799		 */
 800		page_base = offset & PAGE_MASK;
 801		page_offset = offset_in_page(offset);
 802		page_length = remain;
 803		if ((page_offset + remain) > PAGE_SIZE)
 804			page_length = PAGE_SIZE - page_offset;
 805
 
 
 
 
 
 
 
 806		/* If we get a fault while copying data, then (presumably) our
 807		 * source page isn't available.  Return the error and we'll
 808		 * retry in the slow path.
 
 
 809		 */
 810		if (fast_user_write(dev_priv->gtt.mappable, page_base,
 811				    page_offset, user_data, page_length)) {
 812			ret = -EFAULT;
 813			goto out_flush;
 814		}
 815
 816		remain -= page_length;
 817		user_data += page_length;
 818		offset += page_length;
 819	}
 
 820
 821out_flush:
 822	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
 823out_unpin:
 824	i915_gem_object_ggtt_unpin(obj);
 825out:
 
 
 
 
 
 
 
 
 
 
 826	return ret;
 827}
 828
 829/* Per-page copy function for the shmem pwrite fastpath.
 830 * Flushes invalid cachelines before writing to the target if
 831 * needs_clflush_before is set and flushes out any written cachelines after
 832 * writing if needs_clflush is set. */
 833static int
 834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
 835		  char __user *user_data,
 836		  bool page_do_bit17_swizzling,
 837		  bool needs_clflush_before,
 838		  bool needs_clflush_after)
 839{
 840	char *vaddr;
 841	int ret;
 842
 843	if (unlikely(page_do_bit17_swizzling))
 844		return -EINVAL;
 845
 846	vaddr = kmap_atomic(page);
 847	if (needs_clflush_before)
 848		drm_clflush_virt_range(vaddr + shmem_page_offset,
 849				       page_length);
 850	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
 851					user_data, page_length);
 852	if (needs_clflush_after)
 853		drm_clflush_virt_range(vaddr + shmem_page_offset,
 854				       page_length);
 855	kunmap_atomic(vaddr);
 856
 857	return ret ? -EFAULT : 0;
 858}
 859
 860/* Only difference to the fast-path function is that this can handle bit17
 861 * and uses non-atomic copy and kmap functions. */
 862static int
 863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
 864		  char __user *user_data,
 865		  bool page_do_bit17_swizzling,
 866		  bool needs_clflush_before,
 867		  bool needs_clflush_after)
 868{
 869	char *vaddr;
 870	int ret;
 871
 872	vaddr = kmap(page);
 873	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
 874		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 875					     page_length,
 876					     page_do_bit17_swizzling);
 877	if (page_do_bit17_swizzling)
 878		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
 879						user_data,
 880						page_length);
 881	else
 882		ret = __copy_from_user(vaddr + shmem_page_offset,
 883				       user_data,
 884				       page_length);
 885	if (needs_clflush_after)
 886		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 887					     page_length,
 888					     page_do_bit17_swizzling);
 889	kunmap(page);
 890
 891	return ret ? -EFAULT : 0;
 892}
 893
 
 
 
 
 
 894static int
 895i915_gem_shmem_pwrite(struct drm_device *dev,
 896		      struct drm_i915_gem_object *obj,
 897		      struct drm_i915_gem_pwrite *args,
 898		      struct drm_file *file)
 899{
 900	ssize_t remain;
 901	loff_t offset;
 902	char __user *user_data;
 903	int shmem_page_offset, page_length, ret = 0;
 904	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 905	int hit_slowpath = 0;
 906	int needs_clflush_after = 0;
 907	int needs_clflush_before = 0;
 908	struct sg_page_iter sg_iter;
 909
 910	user_data = to_user_ptr(args->data_ptr);
 911	remain = args->size;
 912
 913	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 
 
 
 
 
 
 
 
 914
 915	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 916		/* If we're not in the cpu write domain, set ourself into the gtt
 917		 * write domain and manually flush cachelines (if required). This
 918		 * optimizes for the case when the gpu will use the data
 919		 * right away and we therefore have to clflush anyway. */
 920		needs_clflush_after = cpu_write_needs_clflush(obj);
 921		ret = i915_gem_object_wait_rendering(obj, false);
 922		if (ret)
 923			return ret;
 924	}
 925	/* Same trick applies to invalidate partially written cachelines read
 926	 * before writing. */
 927	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
 928		needs_clflush_before =
 929			!cpu_cache_is_coherent(dev, obj->cache_level);
 930
 931	ret = i915_gem_object_get_pages(obj);
 932	if (ret)
 933		return ret;
 934
 935	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 936
 937	i915_gem_object_pin_pages(obj);
 938
 939	offset = args->offset;
 940	obj->dirty = 1;
 941
 942	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
 943			 offset >> PAGE_SHIFT) {
 944		struct page *page = sg_page_iter_page(&sg_iter);
 945		int partial_cacheline_write;
 946
 947		if (remain <= 0)
 948			break;
 
 
 
 
 
 
 
 
 
 
 949
 950		/* Operation in this page
 951		 *
 952		 * shmem_page_offset = offset within page in shmem file
 953		 * page_length = bytes to copy for this page
 954		 */
 955		shmem_page_offset = offset_in_page(offset);
 956
 957		page_length = remain;
 958		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 959			page_length = PAGE_SIZE - shmem_page_offset;
 960
 961		/* If we don't overwrite a cacheline completely we need to be
 962		 * careful to have up-to-date data by first clflushing. Don't
 963		 * overcomplicate things and flush the entire patch. */
 964		partial_cacheline_write = needs_clflush_before &&
 965			((shmem_page_offset | page_length)
 966				& (boot_cpu_data.x86_clflush_size - 1));
 967
 968		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 969			(page_to_phys(page) & (1 << 17)) != 0;
 970
 971		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
 972					user_data, page_do_bit17_swizzling,
 973					partial_cacheline_write,
 974					needs_clflush_after);
 975		if (ret == 0)
 976			goto next_page;
 977
 978		hit_slowpath = 1;
 979		mutex_unlock(&dev->struct_mutex);
 980		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
 981					user_data, page_do_bit17_swizzling,
 982					partial_cacheline_write,
 983					needs_clflush_after);
 984
 985		mutex_lock(&dev->struct_mutex);
 
 
 
 
 
 
 986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987		if (ret)
 988			goto out;
 989
 990next_page:
 991		remain -= page_length;
 992		user_data += page_length;
 993		offset += page_length;
 994	}
 995
 996out:
 997	i915_gem_object_unpin_pages(obj);
 998
 999	if (hit_slowpath) {
1000		/*
1001		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002		 * cachelines in-line while writing and the object moved
1003		 * out of the cpu write domain while we've dropped the lock.
1004		 */
1005		if (!needs_clflush_after &&
1006		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007			if (i915_gem_clflush_object(obj, obj->pin_display))
1008				needs_clflush_after = true;
1009		}
1010	}
1011
1012	if (needs_clflush_after)
1013		i915_gem_chipset_flush(dev);
1014	else
1015		obj->cache_dirty = true;
1016
1017	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018	return ret;
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
 
 
 
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028		      struct drm_file *file)
1029{
1030	struct drm_i915_private *dev_priv = dev->dev_private;
1031	struct drm_i915_gem_pwrite *args = data;
1032	struct drm_i915_gem_object *obj;
1033	int ret;
1034
1035	if (args->size == 0)
1036		return 0;
1037
1038	if (!access_ok(VERIFY_READ,
1039		       to_user_ptr(args->data_ptr),
1040		       args->size))
1041		return -EFAULT;
1042
1043	if (likely(!i915.prefault_disable)) {
1044		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045						   args->size);
1046		if (ret)
1047			return -EFAULT;
1048	}
1049
1050	intel_runtime_pm_get(dev_priv);
1051
1052	ret = i915_mutex_lock_interruptible(dev);
1053	if (ret)
1054		goto put_rpm;
1055
1056	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057	if (&obj->base == NULL) {
1058		ret = -ENOENT;
1059		goto unlock;
1060	}
1061
1062	/* Bounds check destination. */
1063	if (args->offset > obj->base.size ||
1064	    args->size > obj->base.size - args->offset) {
1065		ret = -EINVAL;
1066		goto out;
1067	}
1068
1069	/* prime objects have no backing filp to GEM pread/pwrite
1070	 * pages from.
1071	 */
1072	if (!obj->base.filp) {
1073		ret = -EINVAL;
1074		goto out;
1075	}
1076
1077	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1079	ret = -EFAULT;
1080	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1081	 * it would end up going through the fenced access, and we'll get
1082	 * different detiling behavior between reading and writing.
1083	 * pread/pwrite currently are reading and writing from the CPU
1084	 * perspective, requiring manual detiling by the client.
1085	 */
1086	if (obj->tiling_mode == I915_TILING_NONE &&
1087	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088	    cpu_write_needs_clflush(obj)) {
1089		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090		/* Note that the gtt paths might fail with non-page-backed user
1091		 * pointers (e.g. gtt mappings when moving data between
1092		 * textures). Fallback to the shmem path in that case. */
1093	}
 
1094
1095	if (ret == -EFAULT || ret == -ENOSPC) {
1096		if (obj->phys_handle)
1097			ret = i915_gem_phys_pwrite(obj, args, file);
1098		else
1099			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100	}
1101
1102out:
1103	drm_gem_object_unreference(&obj->base);
1104unlock:
1105	mutex_unlock(&dev->struct_mutex);
1106put_rpm:
1107	intel_runtime_pm_put(dev_priv);
1108
1109	return ret;
1110}
1111
1112int
1113i915_gem_check_wedge(struct i915_gpu_error *error,
1114		     bool interruptible)
1115{
1116	if (i915_reset_in_progress(error)) {
1117		/* Non-interruptible callers can't handle -EAGAIN, hence return
1118		 * -EIO unconditionally for these. */
1119		if (!interruptible)
1120			return -EIO;
1121
1122		/* Recovery complete, but the reset failed ... */
1123		if (i915_terminally_wedged(error))
1124			return -EIO;
1125
1126		/*
1127		 * Check if GPU Reset is in progress - we need intel_ring_begin
1128		 * to work properly to reinit the hw state while the gpu is
1129		 * still marked as reset-in-progress. Handle this with a flag.
1130		 */
1131		if (!error->reload_in_reset)
1132			return -EAGAIN;
1133	}
1134
1135	return 0;
1136}
1137
1138static void fake_irq(unsigned long data)
1139{
1140	wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
1144		       struct intel_engine_cs *ring)
1145{
1146	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
1149static unsigned long local_clock_us(unsigned *cpu)
1150{
1151	unsigned long t;
1152
1153	/* Cheaply and approximately convert from nanoseconds to microseconds.
1154	 * The result and subsequent calculations are also defined in the same
1155	 * approximate microseconds units. The principal source of timing
1156	 * error here is from the simple truncation.
1157	 *
1158	 * Note that local_clock() is only defined wrt to the current CPU;
1159	 * the comparisons are no longer valid if we switch CPUs. Instead of
1160	 * blocking preemption for the entire busywait, we can detect the CPU
1161	 * switch and use that as indicator of system load and a reason to
1162	 * stop busywaiting, see busywait_stop().
1163	 */
1164	*cpu = get_cpu();
1165	t = local_clock() >> 10;
1166	put_cpu();
1167
1168	return t;
1169}
1170
1171static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172{
1173	unsigned this_cpu;
1174
1175	if (time_after(local_clock_us(&this_cpu), timeout))
1176		return true;
1177
1178	return this_cpu != cpu;
1179}
1180
1181static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182{
1183	unsigned long timeout;
1184	unsigned cpu;
1185
1186	/* When waiting for high frequency requests, e.g. during synchronous
1187	 * rendering split between the CPU and GPU, the finite amount of time
1188	 * required to set up the irq and wait upon it limits the response
1189	 * rate. By busywaiting on the request completion for a short while we
1190	 * can service the high frequency waits as quick as possible. However,
1191	 * if it is a slow request, we want to sleep as quickly as possible.
1192	 * The tradeoff between waiting and sleeping is roughly the time it
1193	 * takes to sleep on a request, on the order of a microsecond.
1194	 */
1195
1196	if (req->ring->irq_refcount)
1197		return -EBUSY;
1198
1199	/* Only spin if we know the GPU is processing this request */
1200	if (!i915_gem_request_started(req, true))
1201		return -EAGAIN;
1202
1203	timeout = local_clock_us(&cpu) + 5;
1204	while (!need_resched()) {
1205		if (i915_gem_request_completed(req, true))
1206			return 0;
1207
1208		if (signal_pending_state(state, current))
1209			break;
1210
1211		if (busywait_stop(timeout, cpu))
1212			break;
1213
1214		cpu_relax_lowlatency();
1215	}
1216
1217	if (i915_gem_request_completed(req, false))
1218		return 0;
1219
1220	return -EAGAIN;
1221}
1222
1223/**
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
1237 * Returns 0 if the request was found within the alloted time. Else returns the
1238 * errno with remaining time filled in timeout argument.
1239 */
1240int __i915_wait_request(struct drm_i915_gem_request *req,
1241			unsigned reset_counter,
1242			bool interruptible,
1243			s64 *timeout,
1244			struct intel_rps_client *rps)
1245{
1246	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247	struct drm_device *dev = ring->dev;
1248	struct drm_i915_private *dev_priv = dev->dev_private;
1249	const bool irq_test_in_progress =
1250		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252	DEFINE_WAIT(wait);
1253	unsigned long timeout_expire;
1254	s64 before = 0; /* Only to silence a compiler warning. */
1255	int ret;
1256
1257	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259	if (list_empty(&req->list))
1260		return 0;
1261
1262	if (i915_gem_request_completed(req, true))
1263		return 0;
1264
1265	timeout_expire = 0;
1266	if (timeout) {
1267		if (WARN_ON(*timeout < 0))
1268			return -EINVAL;
1269
1270		if (*timeout == 0)
1271			return -ETIME;
1272
1273		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274
1275		/*
1276		 * Record current time in case interrupted by signal, or wedged.
1277		 */
1278		before = ktime_get_raw_ns();
1279	}
1280
1281	if (INTEL_INFO(dev_priv)->gen >= 6)
1282		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283
1284	trace_i915_gem_request_wait_begin(req);
1285
1286	/* Optimistic spin for the next jiffie before touching IRQs */
1287	ret = __i915_spin_request(req, state);
1288	if (ret == 0)
1289		goto out;
1290
1291	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1292		ret = -ENODEV;
1293		goto out;
1294	}
1295
1296	for (;;) {
1297		struct timer_list timer;
1298
1299		prepare_to_wait(&ring->irq_queue, &wait, state);
1300
1301		/* We need to check whether any gpu reset happened in between
1302		 * the caller grabbing the seqno and now ... */
1303		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305			 * is truely gone. */
1306			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307			if (ret == 0)
1308				ret = -EAGAIN;
1309			break;
1310		}
1311
1312		if (i915_gem_request_completed(req, false)) {
1313			ret = 0;
1314			break;
1315		}
1316
1317		if (signal_pending_state(state, current)) {
1318			ret = -ERESTARTSYS;
1319			break;
1320		}
1321
1322		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323			ret = -ETIME;
1324			break;
1325		}
1326
1327		timer.function = NULL;
1328		if (timeout || missed_irq(dev_priv, ring)) {
1329			unsigned long expire;
1330
1331			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1333			mod_timer(&timer, expire);
1334		}
1335
1336		io_schedule();
1337
1338		if (timer.function) {
1339			del_singleshot_timer_sync(&timer);
1340			destroy_timer_on_stack(&timer);
1341		}
1342	}
1343	if (!irq_test_in_progress)
1344		ring->irq_put(ring);
1345
1346	finish_wait(&ring->irq_queue, &wait);
1347
1348out:
1349	trace_i915_gem_request_wait_end(req);
1350
1351	if (timeout) {
1352		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353
1354		*timeout = tres < 0 ? 0 : tres;
1355
1356		/*
1357		 * Apparently ktime isn't accurate enough and occasionally has a
1358		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359		 * things up to make the test happy. We allow up to 1 jiffy.
1360		 *
1361		 * This is a regrssion from the timespec->ktime conversion.
1362		 */
1363		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364			*timeout = 0;
1365	}
1366
 
 
 
1367	return ret;
1368}
1369
1370int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371				   struct drm_file *file)
1372{
1373	struct drm_i915_private *dev_private;
1374	struct drm_i915_file_private *file_priv;
1375
1376	WARN_ON(!req || !file || req->file_priv);
1377
1378	if (!req || !file)
1379		return -EINVAL;
1380
1381	if (req->file_priv)
1382		return -EINVAL;
1383
1384	dev_private = req->ring->dev->dev_private;
1385	file_priv = file->driver_priv;
1386
1387	spin_lock(&file_priv->mm.lock);
1388	req->file_priv = file_priv;
1389	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1390	spin_unlock(&file_priv->mm.lock);
1391
1392	req->pid = get_pid(task_pid(current));
1393
1394	return 0;
1395}
1396
1397static inline void
1398i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1399{
1400	struct drm_i915_file_private *file_priv = request->file_priv;
1401
1402	if (!file_priv)
1403		return;
1404
1405	spin_lock(&file_priv->mm.lock);
1406	list_del(&request->client_list);
1407	request->file_priv = NULL;
1408	spin_unlock(&file_priv->mm.lock);
1409
1410	put_pid(request->pid);
1411	request->pid = NULL;
1412}
1413
1414static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1415{
1416	trace_i915_gem_request_retire(request);
1417
1418	/* We know the GPU must have read the request to have
1419	 * sent us the seqno + interrupt, so use the position
1420	 * of tail of the request to update the last known position
1421	 * of the GPU head.
1422	 *
1423	 * Note this requires that we are always called in request
1424	 * completion order.
1425	 */
1426	request->ringbuf->last_retired_head = request->postfix;
1427
1428	list_del_init(&request->list);
1429	i915_gem_request_remove_from_client(request);
1430
1431	i915_gem_request_unreference(request);
1432}
1433
1434static void
1435__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1436{
1437	struct intel_engine_cs *engine = req->ring;
1438	struct drm_i915_gem_request *tmp;
1439
1440	lockdep_assert_held(&engine->dev->struct_mutex);
1441
1442	if (list_empty(&req->list))
1443		return;
1444
1445	do {
1446		tmp = list_first_entry(&engine->request_list,
1447				       typeof(*tmp), list);
1448
1449		i915_gem_request_retire(tmp);
1450	} while (tmp != req);
1451
1452	WARN_ON(i915_verify_lists(engine->dev));
1453}
1454
1455/**
1456 * Waits for a request to be signaled, and cleans up the
1457 * request and object lists appropriately for that event.
1458 */
1459int
1460i915_wait_request(struct drm_i915_gem_request *req)
1461{
1462	struct drm_device *dev;
1463	struct drm_i915_private *dev_priv;
1464	bool interruptible;
1465	int ret;
1466
1467	BUG_ON(req == NULL);
1468
1469	dev = req->ring->dev;
1470	dev_priv = dev->dev_private;
1471	interruptible = dev_priv->mm.interruptible;
1472
1473	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1474
1475	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1476	if (ret)
1477		return ret;
1478
1479	ret = __i915_wait_request(req,
1480				  atomic_read(&dev_priv->gpu_error.reset_counter),
1481				  interruptible, NULL, NULL);
1482	if (ret)
1483		return ret;
1484
1485	__i915_gem_request_retire__upto(req);
1486	return 0;
1487}
1488
1489/**
1490 * Ensures that all rendering to the object has completed and the object is
1491 * safe to unbind from the GTT or access from the CPU.
1492 */
1493int
1494i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1495			       bool readonly)
1496{
1497	int ret, i;
1498
1499	if (!obj->active)
1500		return 0;
1501
1502	if (readonly) {
1503		if (obj->last_write_req != NULL) {
1504			ret = i915_wait_request(obj->last_write_req);
1505			if (ret)
1506				return ret;
1507
1508			i = obj->last_write_req->ring->id;
1509			if (obj->last_read_req[i] == obj->last_write_req)
1510				i915_gem_object_retire__read(obj, i);
1511			else
1512				i915_gem_object_retire__write(obj);
1513		}
1514	} else {
1515		for (i = 0; i < I915_NUM_RINGS; i++) {
1516			if (obj->last_read_req[i] == NULL)
1517				continue;
1518
1519			ret = i915_wait_request(obj->last_read_req[i]);
1520			if (ret)
1521				return ret;
1522
1523			i915_gem_object_retire__read(obj, i);
1524		}
1525		RQ_BUG_ON(obj->active);
1526	}
1527
1528	return 0;
1529}
1530
1531static void
1532i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1533			       struct drm_i915_gem_request *req)
1534{
1535	int ring = req->ring->id;
1536
1537	if (obj->last_read_req[ring] == req)
1538		i915_gem_object_retire__read(obj, ring);
1539	else if (obj->last_write_req == req)
1540		i915_gem_object_retire__write(obj);
1541
1542	__i915_gem_request_retire__upto(req);
1543}
1544
1545/* A nonblocking variant of the above wait. This is a highly dangerous routine
1546 * as the object state may change during this call.
1547 */
1548static __must_check int
1549i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1550					    struct intel_rps_client *rps,
1551					    bool readonly)
1552{
1553	struct drm_device *dev = obj->base.dev;
1554	struct drm_i915_private *dev_priv = dev->dev_private;
1555	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1556	unsigned reset_counter;
1557	int ret, i, n = 0;
1558
1559	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1560	BUG_ON(!dev_priv->mm.interruptible);
1561
1562	if (!obj->active)
1563		return 0;
1564
1565	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1566	if (ret)
1567		return ret;
1568
1569	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1570
1571	if (readonly) {
1572		struct drm_i915_gem_request *req;
1573
1574		req = obj->last_write_req;
1575		if (req == NULL)
1576			return 0;
1577
1578		requests[n++] = i915_gem_request_reference(req);
1579	} else {
1580		for (i = 0; i < I915_NUM_RINGS; i++) {
1581			struct drm_i915_gem_request *req;
1582
1583			req = obj->last_read_req[i];
1584			if (req == NULL)
1585				continue;
1586
1587			requests[n++] = i915_gem_request_reference(req);
1588		}
1589	}
1590
1591	mutex_unlock(&dev->struct_mutex);
1592	for (i = 0; ret == 0 && i < n; i++)
1593		ret = __i915_wait_request(requests[i], reset_counter, true,
1594					  NULL, rps);
1595	mutex_lock(&dev->struct_mutex);
1596
1597	for (i = 0; i < n; i++) {
1598		if (ret == 0)
1599			i915_gem_object_retire_request(obj, requests[i]);
1600		i915_gem_request_unreference(requests[i]);
1601	}
1602
1603	return ret;
1604}
1605
1606static struct intel_rps_client *to_rps_client(struct drm_file *file)
1607{
1608	struct drm_i915_file_private *fpriv = file->driver_priv;
1609	return &fpriv->rps;
1610}
1611
1612/**
1613 * Called when user space prepares to use an object with the CPU, either
1614 * through the mmap ioctl's mapping or a GTT mapping.
 
 
 
1615 */
1616int
1617i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1618			  struct drm_file *file)
1619{
1620	struct drm_i915_gem_set_domain *args = data;
1621	struct drm_i915_gem_object *obj;
1622	uint32_t read_domains = args->read_domains;
1623	uint32_t write_domain = args->write_domain;
1624	int ret;
1625
1626	/* Only handle setting domains to types used by the CPU. */
1627	if (write_domain & I915_GEM_GPU_DOMAINS)
1628		return -EINVAL;
1629
1630	if (read_domains & I915_GEM_GPU_DOMAINS)
1631		return -EINVAL;
1632
1633	/* Having something in the write domain implies it's in the read
1634	 * domain, and only that read domain.  Enforce that in the request.
1635	 */
1636	if (write_domain != 0 && read_domains != write_domain)
1637		return -EINVAL;
1638
1639	ret = i915_mutex_lock_interruptible(dev);
1640	if (ret)
1641		return ret;
1642
1643	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1644	if (&obj->base == NULL) {
1645		ret = -ENOENT;
1646		goto unlock;
1647	}
1648
1649	/* Try to flush the object off the GPU without holding the lock.
1650	 * We will repeat the flush holding the lock in the normal manner
1651	 * to catch cases where we are gazumped.
1652	 */
1653	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1654							  to_rps_client(file),
1655							  !write_domain);
1656	if (ret)
1657		goto unref;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658
1659	if (read_domains & I915_GEM_DOMAIN_GTT)
1660		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
 
 
1661	else
1662		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
 
 
 
 
 
1663
1664	if (write_domain != 0)
1665		intel_fb_obj_invalidate(obj,
1666					write_domain == I915_GEM_DOMAIN_GTT ?
1667					ORIGIN_GTT : ORIGIN_CPU);
1668
1669unref:
1670	drm_gem_object_unreference(&obj->base);
1671unlock:
1672	mutex_unlock(&dev->struct_mutex);
1673	return ret;
1674}
1675
1676/**
1677 * Called when user space has done writes to this buffer
 
 
 
1678 */
1679int
1680i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1681			 struct drm_file *file)
1682{
1683	struct drm_i915_gem_sw_finish *args = data;
1684	struct drm_i915_gem_object *obj;
1685	int ret = 0;
1686
1687	ret = i915_mutex_lock_interruptible(dev);
1688	if (ret)
1689		return ret;
1690
1691	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1692	if (&obj->base == NULL) {
1693		ret = -ENOENT;
1694		goto unlock;
1695	}
1696
1697	/* Pinned buffers may be scanout, so flush the cache */
1698	if (obj->pin_display)
1699		i915_gem_object_flush_cpu_write_domain(obj);
1700
1701	drm_gem_object_unreference(&obj->base);
1702unlock:
1703	mutex_unlock(&dev->struct_mutex);
1704	return ret;
1705}
1706
1707/**
1708 * Maps the contents of an object, returning the address it is mapped
1709 * into.
 
 
 
1710 *
1711 * While the mapping holds a reference on the contents of the object, it doesn't
1712 * imply a ref on the object itself.
1713 *
1714 * IMPORTANT:
1715 *
1716 * DRM driver writers who look a this function as an example for how to do GEM
1717 * mmap support, please don't implement mmap support like here. The modern way
1718 * to implement DRM mmap support is with an mmap offset ioctl (like
1719 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1720 * That way debug tooling like valgrind will understand what's going on, hiding
1721 * the mmap call in a driver private ioctl will break that. The i915 driver only
1722 * does cpu mmaps this way because we didn't know better.
1723 */
1724int
1725i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1726		    struct drm_file *file)
1727{
1728	struct drm_i915_gem_mmap *args = data;
1729	struct drm_gem_object *obj;
1730	unsigned long addr;
1731
1732	if (args->flags & ~(I915_MMAP_WC))
1733		return -EINVAL;
1734
1735	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1736		return -ENODEV;
1737
1738	obj = drm_gem_object_lookup(dev, file, args->handle);
1739	if (obj == NULL)
1740		return -ENOENT;
1741
1742	/* prime objects have no backing filp to GEM mmap
1743	 * pages from.
1744	 */
1745	if (!obj->filp) {
1746		drm_gem_object_unreference_unlocked(obj);
1747		return -EINVAL;
1748	}
1749
1750	addr = vm_mmap(obj->filp, 0, args->size,
1751		       PROT_READ | PROT_WRITE, MAP_SHARED,
1752		       args->offset);
1753	if (args->flags & I915_MMAP_WC) {
1754		struct mm_struct *mm = current->mm;
1755		struct vm_area_struct *vma;
1756
1757		down_write(&mm->mmap_sem);
 
 
 
1758		vma = find_vma(mm, addr);
1759		if (vma)
1760			vma->vm_page_prot =
1761				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1762		else
1763			addr = -ENOMEM;
1764		up_write(&mm->mmap_sem);
 
 
 
1765	}
1766	drm_gem_object_unreference_unlocked(obj);
1767	if (IS_ERR((void *)addr))
1768		return addr;
1769
1770	args->addr_ptr = (uint64_t) addr;
1771
1772	return 0;
1773}
1774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1775/**
1776 * i915_gem_fault - fault a page into the GTT
1777 * @vma: VMA in question
1778 * @vmf: fault info
1779 *
1780 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1781 * from userspace.  The fault handler takes care of binding the object to
1782 * the GTT (if needed), allocating and programming a fence register (again,
1783 * only if needed based on whether the old reg is still valid or the object
1784 * is tiled) and inserting a new PTE into the faulting process.
1785 *
1786 * Note that the faulting process may involve evicting existing objects
1787 * from the GTT and/or fence registers to make room.  So performance may
1788 * suffer if the GTT working set is large or there are few fence registers
1789 * left.
 
 
 
1790 */
1791int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1792{
1793	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
 
 
1794	struct drm_device *dev = obj->base.dev;
1795	struct drm_i915_private *dev_priv = dev->dev_private;
1796	struct i915_ggtt_view view = i915_ggtt_view_normal;
1797	pgoff_t page_offset;
1798	unsigned long pfn;
1799	int ret = 0;
1800	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801
1802	intel_runtime_pm_get(dev_priv);
 
 
1803
1804	/* We don't use vmf->pgoff since that has the fake offset */
1805	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806		PAGE_SHIFT;
1807
1808	ret = i915_mutex_lock_interruptible(dev);
1809	if (ret)
1810		goto out;
1811
1812	trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
1814	/* Try to flush the object off the GPU first without holding the lock.
1815	 * Upon reacquiring the lock, we will perform our sanity checks and then
1816	 * repeat the flush holding the lock in the normal manner to catch cases
1817	 * where we are gazumped.
1818	 */
1819	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
 
 
 
1820	if (ret)
1821		goto unlock;
 
 
 
 
 
 
 
 
 
 
1822
1823	/* Access to snoopable pages through the GTT is incoherent. */
1824	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825		ret = -EFAULT;
1826		goto unlock;
1827	}
1828
1829	/* Use a partial view if the object is bigger than the aperture. */
1830	if (obj->base.size >= dev_priv->gtt.mappable_end &&
1831	    obj->tiling_mode == I915_TILING_NONE) {
1832		static const unsigned int chunk_size = 256; // 1 MiB
1833
1834		memset(&view, 0, sizeof(view));
1835		view.type = I915_GGTT_VIEW_PARTIAL;
1836		view.params.partial.offset = rounddown(page_offset, chunk_size);
1837		view.params.partial.size =
1838			min_t(unsigned int,
1839			      chunk_size,
1840			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841			      view.params.partial.offset);
1842	}
1843
1844	/* Now pin it into the GTT if needed */
1845	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846	if (ret)
1847		goto unlock;
 
 
 
 
 
 
 
1848
1849	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850	if (ret)
1851		goto unpin;
1852
1853	ret = i915_gem_object_get_fence(obj);
1854	if (ret)
1855		goto unpin;
1856
1857	/* Finally, remap it using the new GTT offset */
1858	pfn = dev_priv->gtt.mappable_base +
1859		i915_gem_obj_ggtt_offset_view(obj, &view);
1860	pfn >>= PAGE_SHIFT;
1861
1862	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863		/* Overriding existing pages in partial view does not cause
1864		 * us any trouble as TLBs are still valid because the fault
1865		 * is due to userspace losing part of the mapping or never
1866		 * having accessed it before (at this partials' range).
1867		 */
1868		unsigned long base = vma->vm_start +
1869				     (view.params.partial.offset << PAGE_SHIFT);
1870		unsigned int i;
1871
1872		for (i = 0; i < view.params.partial.size; i++) {
1873			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874			if (ret)
1875				break;
1876		}
1877
1878		obj->fault_mappable = true;
1879	} else {
1880		if (!obj->fault_mappable) {
1881			unsigned long size = min_t(unsigned long,
1882						   vma->vm_end - vma->vm_start,
1883						   obj->base.size);
1884			int i;
1885
1886			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887				ret = vm_insert_pfn(vma,
1888						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889						    pfn + i);
1890				if (ret)
1891					break;
1892			}
1893
1894			obj->fault_mappable = true;
1895		} else
1896			ret = vm_insert_pfn(vma,
1897					    (unsigned long)vmf->virtual_address,
1898					    pfn + page_offset);
1899	}
1900unpin:
1901	i915_gem_object_ggtt_unpin_view(obj, &view);
1902unlock:
1903	mutex_unlock(&dev->struct_mutex);
1904out:
 
 
 
1905	switch (ret) {
1906	case -EIO:
1907		/*
1908		 * We eat errors when the gpu is terminally wedged to avoid
1909		 * userspace unduly crashing (gl has no provisions for mmaps to
1910		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911		 * and so needs to be reported.
1912		 */
1913		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914			ret = VM_FAULT_SIGBUS;
1915			break;
1916		}
1917	case -EAGAIN:
1918		/*
1919		 * EAGAIN means the gpu is hung and we'll wait for the error
1920		 * handler to reset everything when re-faulting in
1921		 * i915_mutex_lock_interruptible.
1922		 */
1923	case 0:
1924	case -ERESTARTSYS:
1925	case -EINTR:
1926	case -EBUSY:
1927		/*
1928		 * EBUSY is ok: this just means that another thread
1929		 * already did the job.
1930		 */
1931		ret = VM_FAULT_NOPAGE;
1932		break;
1933	case -ENOMEM:
1934		ret = VM_FAULT_OOM;
1935		break;
1936	case -ENOSPC:
1937	case -EFAULT:
1938		ret = VM_FAULT_SIGBUS;
1939		break;
1940	default:
1941		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942		ret = VM_FAULT_SIGBUS;
1943		break;
1944	}
1945
1946	intel_runtime_pm_put(dev_priv);
1947	return ret;
1948}
1949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950/**
1951 * i915_gem_release_mmap - remove physical page mappings
1952 * @obj: obj in question
1953 *
1954 * Preserve the reservation of the mmapping with the DRM core code, but
1955 * relinquish ownership of the pages back to the system.
1956 *
1957 * It is vital that we remove the page mapping if we have mapped a tiled
1958 * object through the GTT and then lose the fence register due to
1959 * resource pressure. Similarly if the object has been moved out of the
1960 * aperture, than pages mapped into userspace must be revoked. Removing the
1961 * mapping will then trigger a page fault on the next user access, allowing
1962 * fixup by i915_gem_fault().
1963 */
1964void
1965i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966{
1967	if (!obj->fault_mappable)
1968		return;
1969
1970	drm_vma_node_unmap(&obj->base.vma_node,
1971			   obj->base.dev->anon_inode->i_mapping);
1972	obj->fault_mappable = false;
1973}
1974
1975void
1976i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977{
1978	struct drm_i915_gem_object *obj;
1979
1980	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981		i915_gem_release_mmap(obj);
1982}
1983
1984uint32_t
1985i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986{
1987	uint32_t gtt_size;
 
 
 
 
 
 
1988
1989	if (INTEL_INFO(dev)->gen >= 4 ||
1990	    tiling_mode == I915_TILING_NONE)
1991		return size;
1992
1993	/* Previous chips need a power-of-two fence region when tiling */
1994	if (INTEL_INFO(dev)->gen == 3)
1995		gtt_size = 1024*1024;
1996	else
1997		gtt_size = 512*1024;
1998
1999	while (gtt_size < size)
2000		gtt_size <<= 1;
 
 
 
 
 
 
2001
2002	return gtt_size;
 
2003}
2004
2005/**
2006 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007 * @obj: object to check
2008 *
2009 * Return the required GTT alignment for an object, taking into account
2010 * potential fence register mapping.
2011 */
2012uint32_t
2013i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014			   int tiling_mode, bool fenced)
2015{
2016	/*
2017	 * Minimum alignment is 4k (GTT page size), but might be greater
2018	 * if a fence register is needed for the object.
2019	 */
2020	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021	    tiling_mode == I915_TILING_NONE)
2022		return 4096;
2023
2024	/*
2025	 * Previous chips need to be aligned to the size of the smallest
2026	 * fence register that can contain the object.
2027	 */
2028	return i915_gem_get_gtt_size(dev, size, tiling_mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2029}
2030
2031static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032{
2033	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034	int ret;
2035
2036	if (drm_vma_node_has_offset(&obj->base.vma_node))
 
2037		return 0;
2038
2039	dev_priv->mm.shrinker_no_lock_stealing = true;
2040
2041	ret = drm_gem_create_mmap_offset(&obj->base);
2042	if (ret != -ENOSPC)
2043		goto out;
2044
2045	/* Badly fragmented mmap space? The only way we can recover
2046	 * space is by destroying unwanted objects. We can't randomly release
2047	 * mmap_offsets as userspace expects them to be persistent for the
2048	 * lifetime of the objects. The closest we can is to release the
2049	 * offsets on purgeable objects by truncating it and marking it purged,
2050	 * which prevents userspace from ever using that object again.
2051	 */
2052	i915_gem_shrink(dev_priv,
2053			obj->base.size >> PAGE_SHIFT,
2054			I915_SHRINK_BOUND |
2055			I915_SHRINK_UNBOUND |
2056			I915_SHRINK_PURGEABLE);
2057	ret = drm_gem_create_mmap_offset(&obj->base);
2058	if (ret != -ENOSPC)
2059		goto out;
2060
2061	i915_gem_shrink_all(dev_priv);
2062	ret = drm_gem_create_mmap_offset(&obj->base);
2063out:
2064	dev_priv->mm.shrinker_no_lock_stealing = false;
2065
2066	return ret;
2067}
2068
2069static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070{
2071	drm_gem_free_mmap_offset(&obj->base);
2072}
2073
2074int
2075i915_gem_mmap_gtt(struct drm_file *file,
2076		  struct drm_device *dev,
2077		  uint32_t handle,
2078		  uint64_t *offset)
2079{
2080	struct drm_i915_gem_object *obj;
2081	int ret;
2082
2083	ret = i915_mutex_lock_interruptible(dev);
2084	if (ret)
2085		return ret;
2086
2087	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088	if (&obj->base == NULL) {
2089		ret = -ENOENT;
2090		goto unlock;
2091	}
2092
2093	if (obj->madv != I915_MADV_WILLNEED) {
2094		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095		ret = -EFAULT;
2096		goto out;
2097	}
2098
2099	ret = i915_gem_object_create_mmap_offset(obj);
2100	if (ret)
2101		goto out;
2102
2103	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104
2105out:
2106	drm_gem_object_unreference(&obj->base);
2107unlock:
2108	mutex_unlock(&dev->struct_mutex);
2109	return ret;
2110}
2111
2112/**
2113 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114 * @dev: DRM device
2115 * @data: GTT mapping ioctl data
2116 * @file: GEM object info
2117 *
2118 * Simply returns the fake offset to userspace so it can mmap it.
2119 * The mmap call will end up in drm_gem_mmap(), which will set things
2120 * up so we can get faults in the handler above.
2121 *
2122 * The fault handler will take care of binding the object into the GTT
2123 * (since it may have been evicted to make room for something), allocating
2124 * a fence register, and mapping the appropriate aperture address into
2125 * userspace.
2126 */
2127int
2128i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129			struct drm_file *file)
2130{
2131	struct drm_i915_gem_mmap_gtt *args = data;
2132
2133	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134}
2135
2136/* Immediately discard the backing storage */
2137static void
2138i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139{
2140	i915_gem_object_free_mmap_offset(obj);
2141
2142	if (obj->base.filp == NULL)
2143		return;
2144
2145	/* Our goal here is to return as much of the memory as
2146	 * is possible back to the system as we are called from OOM.
2147	 * To do this we must instruct the shmfs to drop all of its
2148	 * backing pages, *now*.
2149	 */
2150	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2151	obj->madv = __I915_MADV_PURGED;
 
2152}
2153
2154/* Try to discard unwanted pages */
2155static void
2156i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2157{
2158	struct address_space *mapping;
2159
2160	switch (obj->madv) {
 
 
 
2161	case I915_MADV_DONTNEED:
2162		i915_gem_object_truncate(obj);
2163	case __I915_MADV_PURGED:
2164		return;
2165	}
2166
2167	if (obj->base.filp == NULL)
2168		return;
2169
2170	mapping = file_inode(obj->base.filp)->i_mapping,
2171	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172}
2173
2174static void
2175i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
 
2176{
2177	struct sg_page_iter sg_iter;
2178	int ret;
2179
2180	BUG_ON(obj->madv == __I915_MADV_PURGED);
2181
2182	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183	if (ret) {
2184		/* In the event of a disaster, abandon all caches and
2185		 * hope for the best.
2186		 */
2187		WARN_ON(ret != -EIO);
2188		i915_gem_clflush_object(obj, true);
2189		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190	}
2191
2192	i915_gem_gtt_finish_object(obj);
2193
2194	if (i915_gem_object_needs_bit17_swizzle(obj))
2195		i915_gem_object_save_bit_17_swizzle(obj);
2196
2197	if (obj->madv == I915_MADV_DONTNEED)
2198		obj->dirty = 0;
2199
2200	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201		struct page *page = sg_page_iter_page(&sg_iter);
2202
2203		if (obj->dirty)
2204			set_page_dirty(page);
2205
2206		if (obj->madv == I915_MADV_WILLNEED)
2207			mark_page_accessed(page);
2208
2209		put_page(page);
2210	}
2211	obj->dirty = 0;
2212
2213	sg_free_table(obj->pages);
2214	kfree(obj->pages);
2215}
2216
2217int
2218i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219{
2220	const struct drm_i915_gem_object_ops *ops = obj->ops;
 
2221
2222	if (obj->pages == NULL)
2223		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
2224
2225	if (obj->pages_pin_count)
2226		return -EBUSY;
 
2227
2228	BUG_ON(i915_gem_obj_bound_any(obj));
 
 
 
2229
2230	/* ->put_pages might need to allocate memory for the bit17 swizzle
2231	 * array, hence protect them from being reaped by removing them from gtt
2232	 * lists early. */
2233	list_del(&obj->global_list);
 
2234
2235	ops->put_pages(obj);
2236	obj->pages = NULL;
 
 
 
 
 
 
 
 
 
 
2237
2238	i915_gem_object_invalidate(obj);
 
2239
2240	return 0;
 
 
 
 
 
 
 
 
2241}
2242
2243static int
2244i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2245{
2246	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247	int page_count, i;
 
2248	struct address_space *mapping;
2249	struct sg_table *st;
2250	struct scatterlist *sg;
2251	struct sg_page_iter sg_iter;
2252	struct page *page;
2253	unsigned long last_pfn = 0;	/* suppress gcc warning */
 
 
 
2254	int ret;
2255	gfp_t gfp;
2256
2257	/* Assert that the object is not currently in any GPU domain. As it
2258	 * wasn't in the GTT, there shouldn't be any way it could have been in
2259	 * a GPU cache
2260	 */
2261	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263
2264	st = kmalloc(sizeof(*st), GFP_KERNEL);
2265	if (st == NULL)
2266		return -ENOMEM;
2267
2268	page_count = obj->base.size / PAGE_SIZE;
2269	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2270		kfree(st);
2271		return -ENOMEM;
2272	}
2273
2274	/* Get the list of pages out of our struct file.  They'll be pinned
2275	 * at this point until we release them.
2276	 *
2277	 * Fail silently without starting the shrinker
2278	 */
2279	mapping = file_inode(obj->base.filp)->i_mapping;
2280	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281	gfp |= __GFP_NORETRY | __GFP_NOWARN;
 
2282	sg = st->sgl;
2283	st->nents = 0;
 
2284	for (i = 0; i < page_count; i++) {
2285		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286		if (IS_ERR(page)) {
2287			i915_gem_shrink(dev_priv,
2288					page_count,
2289					I915_SHRINK_BOUND |
2290					I915_SHRINK_UNBOUND |
2291					I915_SHRINK_PURGEABLE);
2292			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293		}
2294		if (IS_ERR(page)) {
 
 
 
 
 
 
 
 
 
2295			/* We've tried hard to allocate the memory by reaping
2296			 * our own buffer, now let the real VM do its job and
2297			 * go down in flames if truly OOM.
 
 
 
 
2298			 */
2299			i915_gem_shrink_all(dev_priv);
2300			page = shmem_read_mapping_page(mapping, i);
2301			if (IS_ERR(page)) {
2302				ret = PTR_ERR(page);
2303				goto err_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
2304			}
2305		}
2306#ifdef CONFIG_SWIOTLB
2307		if (swiotlb_nr_tbl()) {
2308			st->nents++;
2309			sg_set_page(sg, page, PAGE_SIZE, 0);
2310			sg = sg_next(sg);
2311			continue;
2312		}
2313#endif
2314		if (!i || page_to_pfn(page) != last_pfn + 1) {
2315			if (i)
2316				sg = sg_next(sg);
 
2317			st->nents++;
2318			sg_set_page(sg, page, PAGE_SIZE, 0);
2319		} else {
2320			sg->length += PAGE_SIZE;
2321		}
2322		last_pfn = page_to_pfn(page);
2323
2324		/* Check that the i965g/gm workaround works. */
2325		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326	}
2327#ifdef CONFIG_SWIOTLB
2328	if (!swiotlb_nr_tbl())
2329#endif
2330		sg_mark_end(sg);
2331	obj->pages = st;
2332
2333	ret = i915_gem_gtt_prepare_object(obj);
2334	if (ret)
2335		goto err_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2336
2337	if (i915_gem_object_needs_bit17_swizzle(obj))
2338		i915_gem_object_do_bit_17_swizzle(obj);
2339
2340	if (obj->tiling_mode != I915_TILING_NONE &&
2341	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342		i915_gem_object_pin_pages(obj);
2343
2344	return 0;
2345
2346err_pages:
2347	sg_mark_end(sg);
2348	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2349		put_page(sg_page_iter_page(&sg_iter));
 
2350	sg_free_table(st);
2351	kfree(st);
2352
2353	/* shmemfs first checks if there is enough memory to allocate the page
2354	 * and reports ENOSPC should there be insufficient, along with the usual
2355	 * ENOMEM for a genuine allocation failure.
2356	 *
2357	 * We use ENOSPC in our driver to mean that we have run out of aperture
2358	 * space and so want to translate the error from shmemfs back to our
2359	 * usual understanding of ENOMEM.
2360	 */
2361	if (ret == -ENOSPC)
2362		ret = -ENOMEM;
2363
2364	return ret;
2365}
2366
2367/* Ensure that the associated pages are gathered from the backing storage
2368 * and pinned into our object. i915_gem_object_get_pages() may be called
2369 * multiple times before they are released by a single call to
2370 * i915_gem_object_put_pages() - once the pages are no longer referenced
2371 * either as a result of memory pressure (reaping pages under the shrinker)
2372 * or as the object is itself released.
2373 */
2374int
2375i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376{
2377	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378	const struct drm_i915_gem_object_ops *ops = obj->ops;
2379	int ret;
2380
2381	if (obj->pages)
2382		return 0;
2383
2384	if (obj->madv != I915_MADV_WILLNEED) {
2385		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386		return -EFAULT;
2387	}
2388
2389	BUG_ON(obj->pages_pin_count);
 
2390
2391	ret = ops->get_pages(obj);
2392	if (ret)
2393		return ret;
2394
2395	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
 
 
 
 
 
2396
2397	obj->get_page.sg = obj->pages->sgl;
2398	obj->get_page.last = 0;
2399
2400	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2401}
2402
2403void i915_vma_move_to_active(struct i915_vma *vma,
2404			     struct drm_i915_gem_request *req)
2405{
2406	struct drm_i915_gem_object *obj = vma->obj;
2407	struct intel_engine_cs *ring;
2408
2409	ring = i915_gem_request_get_ring(req);
2410
2411	/* Add a reference if we're newly entering the active list. */
2412	if (obj->active == 0)
2413		drm_gem_object_reference(&obj->base);
2414	obj->active |= intel_ring_flag(ring);
2415
2416	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2417	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2418
2419	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2420}
 
 
2421
2422static void
2423i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2424{
2425	RQ_BUG_ON(obj->last_write_req == NULL);
2426	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2427
2428	i915_gem_request_assign(&obj->last_write_req, NULL);
2429	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2430}
2431
2432static void
2433i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
 
 
 
 
 
 
2434{
2435	struct i915_vma *vma;
2436
2437	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2438	RQ_BUG_ON(!(obj->active & (1 << ring)));
2439
2440	list_del_init(&obj->ring_list[ring]);
2441	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2442
2443	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2444		i915_gem_object_retire__write(obj);
 
2445
2446	obj->active &= ~(1 << ring);
2447	if (obj->active)
2448		return;
2449
2450	/* Bump our place on the bound list to keep it roughly in LRU order
2451	 * so that we don't steal from recently used but inactive objects
2452	 * (unless we are forced to ofc!)
2453	 */
2454	list_move_tail(&obj->global_list,
2455		       &to_i915(obj->base.dev)->mm.bound_list);
2456
2457	list_for_each_entry(vma, &obj->vma_list, obj_link) {
2458		if (!list_empty(&vma->vm_link))
2459			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2460	}
 
2461
2462	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2463	drm_gem_object_unreference(&obj->base);
 
2464}
2465
2466static int
2467i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
 
2468{
2469	struct drm_i915_private *dev_priv = dev->dev_private;
2470	struct intel_engine_cs *ring;
2471	int ret, i, j;
2472
2473	/* Carefully retire all requests without writing to the rings */
2474	for_each_ring(ring, dev_priv, i) {
2475		ret = intel_ring_idle(ring);
2476		if (ret)
2477			return ret;
 
 
 
 
 
 
 
 
 
 
2478	}
2479	i915_gem_retire_requests(dev);
2480
2481	/* Finally reset hw state */
2482	for_each_ring(ring, dev_priv, i) {
2483		intel_ring_init_seqno(ring, seqno);
 
 
2484
2485		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2486			ring->semaphore.sync_seqno[j] = 0;
 
 
 
 
 
 
 
 
2487	}
 
2488
2489	return 0;
 
 
 
2490}
2491
2492int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
 
 
2493{
2494	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
2495	int ret;
2496
2497	if (seqno == 0)
2498		return -EINVAL;
2499
2500	/* HWS page needs to be set less than what we
2501	 * will inject to ring
2502	 */
2503	ret = i915_gem_init_seqno(dev, seqno - 1);
2504	if (ret)
2505		return ret;
2506
2507	/* Carefully set the last_seqno value so that wrap
2508	 * detection still works
2509	 */
2510	dev_priv->next_seqno = seqno;
2511	dev_priv->last_seqno = seqno - 1;
2512	if (dev_priv->last_seqno == 0)
2513		dev_priv->last_seqno--;
2514
2515	return 0;
2516}
 
2517
2518int
2519i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2520{
2521	struct drm_i915_private *dev_priv = dev->dev_private;
2522
2523	/* reserve 0 for non-seqno */
2524	if (dev_priv->next_seqno == 0) {
2525		int ret = i915_gem_init_seqno(dev, 0);
2526		if (ret)
2527			return ret;
2528
2529		dev_priv->next_seqno = 1;
 
 
 
2530	}
 
2531
2532	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2533	return 0;
2534}
2535
2536/*
2537 * NB: This function is not allowed to fail. Doing so would mean the the
2538 * request is not being tracked for completion but the work itself is
2539 * going to happen on the hardware. This would be a Bad Thing(tm).
2540 */
2541void __i915_add_request(struct drm_i915_gem_request *request,
2542			struct drm_i915_gem_object *obj,
2543			bool flush_caches)
2544{
2545	struct intel_engine_cs *ring;
2546	struct drm_i915_private *dev_priv;
2547	struct intel_ringbuffer *ringbuf;
2548	u32 request_start;
2549	int ret;
2550
2551	if (WARN_ON(request == NULL))
2552		return;
 
 
2553
2554	ring = request->ring;
2555	dev_priv = ring->dev->dev_private;
2556	ringbuf = request->ringbuf;
2557
2558	/*
2559	 * To ensure that this call will not fail, space for its emissions
2560	 * should already have been reserved in the ring buffer. Let the ring
2561	 * know that it is time to use that space up.
2562	 */
2563	intel_ring_reserved_space_use(ringbuf);
2564
2565	request_start = intel_ring_get_tail(ringbuf);
2566	/*
2567	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2568	 * after having emitted the batchbuffer command. Hence we need to fix
2569	 * things up similar to emitting the lazy request. The difference here
2570	 * is that the flush _must_ happen before the next request, no matter
2571	 * what.
2572	 */
2573	if (flush_caches) {
2574		if (i915.enable_execlists)
2575			ret = logical_ring_flush_all_caches(request);
2576		else
2577			ret = intel_ring_flush_all_caches(request);
2578		/* Not allowed to fail! */
2579		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2580	}
2581
2582	/* Record the position of the start of the request so that
2583	 * should we detect the updated seqno part-way through the
2584	 * GPU processing the request, we never over-estimate the
2585	 * position of the head.
2586	 */
2587	request->postfix = intel_ring_get_tail(ringbuf);
2588
2589	if (i915.enable_execlists)
2590		ret = ring->emit_request(request);
2591	else {
2592		ret = ring->add_request(request);
 
 
2593
2594		request->tail = intel_ring_get_tail(ringbuf);
2595	}
2596	/* Not allowed to fail! */
2597	WARN(ret, "emit|add_request failed: %d!\n", ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2598
2599	request->head = request_start;
 
2600
2601	/* Whilst this request exists, batch_obj will be on the
2602	 * active_list, and so will hold the active reference. Only when this
2603	 * request is retired will the the batch_obj be moved onto the
2604	 * inactive_list and lose its active reference. Hence we do not need
2605	 * to explicitly hold another reference here.
2606	 */
2607	request->batch_obj = obj;
2608
2609	request->emitted_jiffies = jiffies;
2610	request->previous_seqno = ring->last_submitted_seqno;
2611	ring->last_submitted_seqno = request->seqno;
2612	list_add_tail(&request->list, &ring->request_list);
2613
2614	trace_i915_gem_request_add(request);
 
 
 
 
2615
2616	i915_queue_hangcheck(ring->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2617
2618	queue_delayed_work(dev_priv->wq,
2619			   &dev_priv->mm.retire_work,
2620			   round_jiffies_up_relative(HZ));
2621	intel_mark_busy(dev_priv->dev);
 
2622
2623	/* Sanity check that the reserved size was large enough. */
2624	intel_ring_reserved_space_end(ringbuf);
2625}
2626
2627static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2628				   const struct intel_context *ctx)
2629{
2630	unsigned long elapsed;
2631
2632	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2633
2634	if (ctx->hang_stats.banned)
2635		return true;
 
2636
2637	if (ctx->hang_stats.ban_period_seconds &&
2638	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2639		if (!i915_gem_context_is_default(ctx)) {
2640			DRM_DEBUG("context hanging too fast, banning!\n");
2641			return true;
2642		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2643			if (i915_stop_ring_allow_warn(dev_priv))
2644				DRM_ERROR("gpu hanging too fast, banning!\n");
2645			return true;
2646		}
2647	}
 
 
2648
2649	return false;
 
 
 
 
 
2650}
2651
2652static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2653				  struct intel_context *ctx,
2654				  const bool guilty)
2655{
2656	struct i915_ctx_hang_stats *hs;
2657
2658	if (WARN_ON(!ctx))
2659		return;
2660
2661	hs = &ctx->hang_stats;
2662
2663	if (guilty) {
2664		hs->banned = i915_context_is_banned(dev_priv, ctx);
2665		hs->batch_active++;
2666		hs->guilty_ts = get_seconds();
2667	} else {
2668		hs->batch_pending++;
2669	}
2670}
2671
2672void i915_gem_request_free(struct kref *req_ref)
 
2673{
2674	struct drm_i915_gem_request *req = container_of(req_ref,
2675						 typeof(*req), ref);
2676	struct intel_context *ctx = req->ctx;
2677
2678	if (req->file_priv)
2679		i915_gem_request_remove_from_client(req);
 
 
 
 
 
 
 
 
 
 
2680
2681	if (ctx) {
2682		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2683			intel_lr_context_unpin(ctx, req->ring);
2684
2685		i915_gem_context_unreference(ctx);
 
2686	}
 
2687
2688	kmem_cache_free(req->i915->requests, req);
2689}
2690
2691static inline int
2692__i915_gem_request_alloc(struct intel_engine_cs *ring,
2693			 struct intel_context *ctx,
2694			 struct drm_i915_gem_request **req_out)
2695{
2696	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2697	struct drm_i915_gem_request *req;
2698	int ret;
2699
2700	if (!req_out)
2701		return -EINVAL;
 
 
 
2702
2703	*req_out = NULL;
 
2704
2705	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2706	if (req == NULL)
2707		return -ENOMEM;
 
 
 
 
 
2708
2709	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2710	if (ret)
2711		goto err;
 
 
 
 
 
2712
2713	kref_init(&req->ref);
2714	req->i915 = dev_priv;
2715	req->ring = ring;
2716	req->ctx  = ctx;
2717	i915_gem_context_reference(req->ctx);
 
 
 
 
 
 
2718
2719	if (i915.enable_execlists)
2720		ret = intel_logical_ring_alloc_request_extras(req);
2721	else
2722		ret = intel_ring_alloc_request_extras(req);
2723	if (ret) {
2724		i915_gem_context_unreference(req->ctx);
2725		goto err;
2726	}
 
 
 
 
 
 
 
 
 
 
 
2727
2728	/*
2729	 * Reserve space in the ring buffer for all the commands required to
2730	 * eventually emit this request. This is to guarantee that the
2731	 * i915_add_request() call can't fail. Note that the reserve may need
2732	 * to be redone if the request is not actually submitted straight
2733	 * away, e.g. because a GPU scheduler has deferred it.
2734	 */
2735	if (i915.enable_execlists)
2736		ret = intel_logical_ring_reserve_space(req);
2737	else
2738		ret = intel_ring_reserve_space(req);
2739	if (ret) {
2740		/*
2741		 * At this point, the request is fully allocated even if not
2742		 * fully prepared. Thus it can be cleaned up using the proper
2743		 * free code.
2744		 */
2745		i915_gem_request_cancel(req);
2746		return ret;
2747	}
2748
2749	*req_out = req;
2750	return 0;
2751
2752err:
2753	kmem_cache_free(dev_priv->requests, req);
2754	return ret;
 
 
2755}
2756
2757/**
2758 * i915_gem_request_alloc - allocate a request structure
2759 *
2760 * @engine: engine that we wish to issue the request on.
2761 * @ctx: context that the request will be associated with.
2762 *       This can be NULL if the request is not directly related to
2763 *       any specific user context, in which case this function will
2764 *       choose an appropriate context to use.
2765 *
2766 * Returns a pointer to the allocated request if successful,
2767 * or an error code if not.
2768 */
2769struct drm_i915_gem_request *
2770i915_gem_request_alloc(struct intel_engine_cs *engine,
2771		       struct intel_context *ctx)
2772{
2773	struct drm_i915_gem_request *req;
2774	int err;
 
 
2775
2776	if (ctx == NULL)
2777		ctx = to_i915(engine->dev)->kernel_context;
2778	err = __i915_gem_request_alloc(engine, ctx, &req);
2779	return err ? ERR_PTR(err) : req;
2780}
 
2781
2782void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2783{
2784	intel_ring_reserved_space_cancel(req->ringbuf);
 
2785
2786	i915_gem_request_unreference(req);
2787}
2788
2789struct drm_i915_gem_request *
2790i915_gem_find_active_request(struct intel_engine_cs *ring)
2791{
2792	struct drm_i915_gem_request *request;
 
2793
2794	list_for_each_entry(request, &ring->request_list, list) {
2795		if (i915_gem_request_completed(request, false))
2796			continue;
2797
2798		return request;
 
 
 
2799	}
 
2800
2801	return NULL;
2802}
2803
2804static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2805				       struct intel_engine_cs *ring)
2806{
2807	struct drm_i915_gem_request *request;
2808	bool ring_hung;
 
 
2809
2810	request = i915_gem_find_active_request(ring);
2811
2812	if (request == NULL)
2813		return;
2814
2815	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
 
 
2816
2817	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
 
2818
2819	list_for_each_entry_continue(request, &ring->request_list, list)
2820		i915_set_reset_status(dev_priv, request->ctx, false);
2821}
2822
2823static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2824					struct intel_engine_cs *ring)
 
 
2825{
2826	struct intel_ringbuffer *buffer;
2827
2828	while (!list_empty(&ring->active_list)) {
2829		struct drm_i915_gem_object *obj;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2830
2831		obj = list_first_entry(&ring->active_list,
2832				       struct drm_i915_gem_object,
2833				       ring_list[ring->id]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2834
2835		i915_gem_object_retire__read(obj, ring->id);
 
 
 
 
 
 
2836	}
2837
 
 
 
 
 
 
2838	/*
2839	 * Clear the execlists queue up before freeing the requests, as those
2840	 * are the ones that keep the context and ringbuffer backing objects
2841	 * pinned in place.
2842	 */
 
2843
2844	if (i915.enable_execlists) {
2845		spin_lock_irq(&ring->execlist_lock);
2846
2847		/* list_splice_tail_init checks for empty lists */
2848		list_splice_tail_init(&ring->execlist_queue,
2849				      &ring->execlist_retired_req_list);
2850
2851		spin_unlock_irq(&ring->execlist_lock);
2852		intel_execlists_retire_requests(ring);
2853	}
2854
2855	/*
2856	 * We must free the requests after all the corresponding objects have
2857	 * been moved off active lists. Which is the same order as the normal
2858	 * retire_requests function does. This is important if object hold
2859	 * implicit references on things like e.g. ppgtt address spaces through
2860	 * the request.
2861	 */
2862	while (!list_empty(&ring->request_list)) {
2863		struct drm_i915_gem_request *request;
 
 
 
 
 
 
 
 
 
 
 
2864
2865		request = list_first_entry(&ring->request_list,
2866					   struct drm_i915_gem_request,
2867					   list);
 
 
 
 
 
 
 
 
 
2868
2869		i915_gem_request_retire(request);
 
 
 
 
2870	}
2871
2872	/* Having flushed all requests from all queues, we know that all
2873	 * ringbuffers must now be empty. However, since we do not reclaim
2874	 * all space when retiring the request (to prevent HEADs colliding
2875	 * with rapid ringbuffer wraparound) the amount of available space
2876	 * upon reset is less than when we start. Do one more pass over
2877	 * all the ringbuffers to reset last_retired_head.
2878	 */
2879	list_for_each_entry(buffer, &ring->buffers, link) {
2880		buffer->last_retired_head = buffer->tail;
2881		intel_ring_update_space(buffer);
2882	}
2883}
2884
2885void i915_gem_reset(struct drm_device *dev)
2886{
2887	struct drm_i915_private *dev_priv = dev->dev_private;
2888	struct intel_engine_cs *ring;
2889	int i;
2890
2891	/*
2892	 * Before we free the objects from the requests, we need to inspect
2893	 * them for finding the guilty party. As the requests only borrow
2894	 * their reference to the objects, the inspection must be done first.
2895	 */
2896	for_each_ring(ring, dev_priv, i)
2897		i915_gem_reset_ring_status(dev_priv, ring);
2898
2899	for_each_ring(ring, dev_priv, i)
2900		i915_gem_reset_ring_cleanup(dev_priv, ring);
2901
2902	i915_gem_context_reset(dev);
 
 
 
 
2903
2904	i915_gem_restore_fences(dev);
 
 
2905
2906	WARN_ON(i915_verify_lists(dev));
2907}
2908
2909/**
2910 * This function clears the request list as sequence numbers are passed.
2911 */
2912void
2913i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2914{
2915	WARN_ON(i915_verify_lists(ring->dev));
2916
2917	/* Retire requests first as we use it above for the early return.
2918	 * If we retire requests last, we may use a later seqno and so clear
2919	 * the requests lists without clearing the active list, leading to
2920	 * confusion.
2921	 */
2922	while (!list_empty(&ring->request_list)) {
2923		struct drm_i915_gem_request *request;
2924
2925		request = list_first_entry(&ring->request_list,
2926					   struct drm_i915_gem_request,
2927					   list);
 
 
2928
2929		if (!i915_gem_request_completed(request, true))
2930			break;
 
 
2931
2932		i915_gem_request_retire(request);
 
 
 
 
2933	}
2934
2935	/* Move any buffers on the active list that are no longer referenced
2936	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2937	 * before we free the context associated with the requests.
 
 
 
 
2938	 */
2939	while (!list_empty(&ring->active_list)) {
2940		struct drm_i915_gem_object *obj;
2941
2942		obj = list_first_entry(&ring->active_list,
2943				      struct drm_i915_gem_object,
2944				      ring_list[ring->id]);
 
2945
2946		if (!list_empty(&obj->last_read_req[ring->id]->list))
2947			break;
 
 
 
 
 
 
 
 
2948
2949		i915_gem_object_retire__read(obj, ring->id);
 
 
 
 
2950	}
2951
2952	if (unlikely(ring->trace_irq_req &&
2953		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2954		ring->irq_put(ring);
2955		i915_gem_request_assign(&ring->trace_irq_req, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2956	}
2957
2958	WARN_ON(i915_verify_lists(ring->dev));
2959}
2960
2961bool
2962i915_gem_retire_requests(struct drm_device *dev)
2963{
2964	struct drm_i915_private *dev_priv = dev->dev_private;
2965	struct intel_engine_cs *ring;
2966	bool idle = true;
2967	int i;
2968
2969	for_each_ring(ring, dev_priv, i) {
2970		i915_gem_retire_requests_ring(ring);
2971		idle &= list_empty(&ring->request_list);
2972		if (i915.enable_execlists) {
2973			spin_lock_irq(&ring->execlist_lock);
2974			idle &= list_empty(&ring->execlist_queue);
2975			spin_unlock_irq(&ring->execlist_lock);
2976
2977			intel_execlists_retire_requests(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2978		}
2979	}
2980
2981	if (idle)
2982		mod_delayed_work(dev_priv->wq,
2983				   &dev_priv->mm.idle_work,
2984				   msecs_to_jiffies(100));
 
 
 
 
 
 
2985
2986	return idle;
 
 
 
2987}
2988
2989static void
2990i915_gem_retire_work_handler(struct work_struct *work)
2991{
2992	struct drm_i915_private *dev_priv =
2993		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2994	struct drm_device *dev = dev_priv->dev;
2995	bool idle;
2996
2997	/* Come back later if the device is busy... */
2998	idle = false;
2999	if (mutex_trylock(&dev->struct_mutex)) {
3000		idle = i915_gem_retire_requests(dev);
3001		mutex_unlock(&dev->struct_mutex);
3002	}
3003	if (!idle)
3004		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
 
 
 
 
 
 
 
3005				   round_jiffies_up_relative(HZ));
3006}
3007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3008static void
3009i915_gem_idle_work_handler(struct work_struct *work)
3010{
3011	struct drm_i915_private *dev_priv =
3012		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3013	struct drm_device *dev = dev_priv->dev;
3014	struct intel_engine_cs *ring;
3015	int i;
3016
3017	for_each_ring(ring, dev_priv, i)
3018		if (!list_empty(&ring->request_list))
3019			return;
3020
3021	/* we probably should sync with hangcheck here, using cancel_work_sync.
3022	 * Also locking seems to be fubar here, ring->request_list is protected
3023	 * by dev->struct_mutex. */
 
 
 
 
 
 
 
 
 
3024
3025	intel_mark_idle(dev);
 
3026
3027	if (mutex_trylock(&dev->struct_mutex)) {
3028		struct intel_engine_cs *ring;
3029		int i;
 
 
 
 
3030
3031		for_each_ring(ring, dev_priv, i)
3032			i915_gem_batch_pool_fini(&ring->batch_pool);
 
 
 
 
3033
3034		mutex_unlock(&dev->struct_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035	}
3036}
3037
3038/**
3039 * Ensures that an object will eventually get non-busy by flushing any required
3040 * write domains, emitting any outstanding lazy request and retiring and
3041 * completed requests.
3042 */
3043static int
3044i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3045{
3046	int i;
 
 
 
3047
3048	if (!obj->active)
3049		return 0;
3050
3051	for (i = 0; i < I915_NUM_RINGS; i++) {
3052		struct drm_i915_gem_request *req;
 
3053
3054		req = obj->last_read_req[i];
3055		if (req == NULL)
3056			continue;
3057
3058		if (list_empty(&req->list))
3059			goto retire;
3060
3061		if (i915_gem_request_completed(req, true)) {
3062			__i915_gem_request_retire__upto(req);
3063retire:
3064			i915_gem_object_retire__read(obj, i);
3065		}
 
 
 
 
 
 
 
3066	}
3067
3068	return 0;
 
 
 
 
 
 
 
 
 
 
 
3069}
3070
3071/**
3072 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3073 * @DRM_IOCTL_ARGS: standard ioctl arguments
 
 
3074 *
3075 * Returns 0 if successful, else an error is returned with the remaining time in
3076 * the timeout parameter.
3077 *  -ETIME: object is still busy after timeout
3078 *  -ERESTARTSYS: signal interrupted the wait
3079 *  -ENONENT: object doesn't exist
3080 * Also possible, but rare:
3081 *  -EAGAIN: GPU wedged
3082 *  -ENOMEM: damn
3083 *  -ENODEV: Internal IRQ fail
3084 *  -E?: The add request failed
3085 *
3086 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3087 * non-zero timeout parameter the wait ioctl will wait for the given number of
3088 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3089 * without holding struct_mutex the object may become re-busied before this
3090 * function completes. A similar but shorter * race condition exists in the busy
3091 * ioctl
3092 */
3093int
3094i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3095{
3096	struct drm_i915_private *dev_priv = dev->dev_private;
3097	struct drm_i915_gem_wait *args = data;
3098	struct drm_i915_gem_object *obj;
3099	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3100	unsigned reset_counter;
3101	int i, n = 0;
3102	int ret;
3103
3104	if (args->flags != 0)
3105		return -EINVAL;
3106
3107	ret = i915_mutex_lock_interruptible(dev);
3108	if (ret)
3109		return ret;
3110
3111	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3112	if (&obj->base == NULL) {
3113		mutex_unlock(&dev->struct_mutex);
3114		return -ENOENT;
3115	}
3116
3117	/* Need to make sure the object gets inactive eventually. */
3118	ret = i915_gem_object_flush_active(obj);
3119	if (ret)
3120		goto out;
3121
3122	if (!obj->active)
3123		goto out;
3124
3125	/* Do this after OLR check to make sure we make forward progress polling
3126	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3127	 */
3128	if (args->timeout_ns == 0) {
3129		ret = -ETIME;
3130		goto out;
3131	}
3132
3133	drm_gem_object_unreference(&obj->base);
3134	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
 
 
 
 
 
 
 
3135
3136	for (i = 0; i < I915_NUM_RINGS; i++) {
3137		if (obj->last_read_req[i] == NULL)
3138			continue;
3139
3140		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3141	}
3142
3143	mutex_unlock(&dev->struct_mutex);
 
3144
3145	for (i = 0; i < n; i++) {
3146		if (ret == 0)
3147			ret = __i915_wait_request(req[i], reset_counter, true,
3148						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3149						  to_rps_client(file));
3150		i915_gem_request_unreference__unlocked(req[i]);
3151	}
3152	return ret;
3153
3154out:
3155	drm_gem_object_unreference(&obj->base);
3156	mutex_unlock(&dev->struct_mutex);
3157	return ret;
3158}
3159
3160static int
3161__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3162		       struct intel_engine_cs *to,
3163		       struct drm_i915_gem_request *from_req,
3164		       struct drm_i915_gem_request **to_req)
3165{
3166	struct intel_engine_cs *from;
3167	int ret;
3168
3169	from = i915_gem_request_get_ring(from_req);
3170	if (to == from)
3171		return 0;
3172
3173	if (i915_gem_request_completed(from_req, true))
3174		return 0;
3175
3176	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3177		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3178		ret = __i915_wait_request(from_req,
3179					  atomic_read(&i915->gpu_error.reset_counter),
3180					  i915->mm.interruptible,
3181					  NULL,
3182					  &i915->rps.semaphores);
3183		if (ret)
3184			return ret;
3185
3186		i915_gem_object_retire_request(obj, from_req);
3187	} else {
3188		int idx = intel_ring_sync_index(from, to);
3189		u32 seqno = i915_gem_request_get_seqno(from_req);
3190
3191		WARN_ON(!to_req);
3192
3193		if (seqno <= from->semaphore.sync_seqno[idx])
3194			return 0;
3195
3196		if (*to_req == NULL) {
3197			struct drm_i915_gem_request *req;
3198
3199			req = i915_gem_request_alloc(to, NULL);
3200			if (IS_ERR(req))
3201				return PTR_ERR(req);
3202
3203			*to_req = req;
3204		}
3205
3206		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3207		ret = to->semaphore.sync_to(*to_req, from, seqno);
3208		if (ret)
3209			return ret;
3210
3211		/* We use last_read_req because sync_to()
3212		 * might have just caused seqno wrap under
3213		 * the radar.
3214		 */
3215		from->semaphore.sync_seqno[idx] =
3216			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3217	}
3218
3219	return 0;
3220}
3221
3222/**
3223 * i915_gem_object_sync - sync an object to a ring.
3224 *
3225 * @obj: object which may be in use on another ring.
3226 * @to: ring we wish to use the object on. May be NULL.
3227 * @to_req: request we wish to use the object for. See below.
3228 *          This will be allocated and returned if a request is
3229 *          required but not passed in.
3230 *
3231 * This code is meant to abstract object synchronization with the GPU.
3232 * Calling with NULL implies synchronizing the object with the CPU
3233 * rather than a particular GPU ring. Conceptually we serialise writes
3234 * between engines inside the GPU. We only allow one engine to write
3235 * into a buffer at any time, but multiple readers. To ensure each has
3236 * a coherent view of memory, we must:
3237 *
3238 * - If there is an outstanding write request to the object, the new
3239 *   request must wait for it to complete (either CPU or in hw, requests
3240 *   on the same ring will be naturally ordered).
3241 *
3242 * - If we are a write request (pending_write_domain is set), the new
3243 *   request must wait for outstanding read requests to complete.
3244 *
3245 * For CPU synchronisation (NULL to) no request is required. For syncing with
3246 * rings to_req must be non-NULL. However, a request does not have to be
3247 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3248 * request will be allocated automatically and returned through *to_req. Note
3249 * that it is not guaranteed that commands will be emitted (because the system
3250 * might already be idle). Hence there is no need to create a request that
3251 * might never have any work submitted. Note further that if a request is
3252 * returned in *to_req, it is the responsibility of the caller to submit
3253 * that request (after potentially adding more work to it).
3254 *
3255 * Returns 0 if successful, else propagates up the lower layer error.
3256 */
3257int
3258i915_gem_object_sync(struct drm_i915_gem_object *obj,
3259		     struct intel_engine_cs *to,
3260		     struct drm_i915_gem_request **to_req)
3261{
3262	const bool readonly = obj->base.pending_write_domain == 0;
3263	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3264	int ret, i, n;
3265
3266	if (!obj->active)
3267		return 0;
3268
3269	if (to == NULL)
3270		return i915_gem_object_wait_rendering(obj, readonly);
3271
3272	n = 0;
3273	if (readonly) {
3274		if (obj->last_write_req)
3275			req[n++] = obj->last_write_req;
3276	} else {
3277		for (i = 0; i < I915_NUM_RINGS; i++)
3278			if (obj->last_read_req[i])
3279				req[n++] = obj->last_read_req[i];
3280	}
3281	for (i = 0; i < n; i++) {
3282		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3283		if (ret)
3284			return ret;
3285	}
3286
3287	return 0;
3288}
3289
3290static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3291{
3292	u32 old_write_domain, old_read_domains;
3293
3294	/* Force a pagefault for domain tracking on next user access */
3295	i915_gem_release_mmap(obj);
3296
3297	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3298		return;
3299
3300	/* Wait for any direct GTT access to complete */
3301	mb();
3302
3303	old_read_domains = obj->base.read_domains;
3304	old_write_domain = obj->base.write_domain;
3305
3306	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3307	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3308
3309	trace_i915_gem_object_change_domain(obj,
3310					    old_read_domains,
3311					    old_write_domain);
3312}
3313
3314static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3315{
3316	struct drm_i915_gem_object *obj = vma->obj;
3317	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3318	int ret;
3319
3320	if (list_empty(&vma->obj_link))
3321		return 0;
3322
3323	if (!drm_mm_node_allocated(&vma->node)) {
3324		i915_gem_vma_destroy(vma);
3325		return 0;
3326	}
3327
3328	if (vma->pin_count)
3329		return -EBUSY;
3330
3331	BUG_ON(obj->pages == NULL);
3332
3333	if (wait) {
3334		ret = i915_gem_object_wait_rendering(obj, false);
3335		if (ret)
3336			return ret;
3337	}
3338
3339	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3340		i915_gem_object_finish_gtt(obj);
3341
3342		/* release the fence reg _after_ flushing */
3343		ret = i915_gem_object_put_fence(obj);
3344		if (ret)
3345			return ret;
3346	}
3347
3348	trace_i915_vma_unbind(vma);
3349
3350	vma->vm->unbind_vma(vma);
3351	vma->bound = 0;
3352
3353	list_del_init(&vma->vm_link);
3354	if (vma->is_ggtt) {
3355		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3356			obj->map_and_fenceable = false;
3357		} else if (vma->ggtt_view.pages) {
3358			sg_free_table(vma->ggtt_view.pages);
3359			kfree(vma->ggtt_view.pages);
3360		}
3361		vma->ggtt_view.pages = NULL;
3362	}
3363
3364	drm_mm_remove_node(&vma->node);
3365	i915_gem_vma_destroy(vma);
3366
3367	/* Since the unbound list is global, only move to that list if
3368	 * no more VMAs exist. */
3369	if (list_empty(&obj->vma_list))
3370		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3371
3372	/* And finally now the object is completely decoupled from this vma,
3373	 * we can drop its hold on the backing storage and allow it to be
3374	 * reaped by the shrinker.
3375	 */
3376	i915_gem_object_unpin_pages(obj);
3377
3378	return 0;
3379}
3380
3381int i915_vma_unbind(struct i915_vma *vma)
3382{
3383	return __i915_vma_unbind(vma, true);
3384}
3385
3386int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3387{
3388	return __i915_vma_unbind(vma, false);
3389}
3390
3391int i915_gpu_idle(struct drm_device *dev)
3392{
3393	struct drm_i915_private *dev_priv = dev->dev_private;
3394	struct intel_engine_cs *ring;
3395	int ret, i;
3396
3397	/* Flush everything onto the inactive list. */
3398	for_each_ring(ring, dev_priv, i) {
3399		if (!i915.enable_execlists) {
3400			struct drm_i915_gem_request *req;
3401
3402			req = i915_gem_request_alloc(ring, NULL);
3403			if (IS_ERR(req))
3404				return PTR_ERR(req);
3405
3406			ret = i915_switch_context(req);
3407			if (ret) {
3408				i915_gem_request_cancel(req);
3409				return ret;
3410			}
3411
3412			i915_add_request_no_flush(req);
3413		}
 
3414
3415		ret = intel_ring_idle(ring);
3416		if (ret)
3417			return ret;
3418	}
3419
3420	WARN_ON(i915_verify_lists(dev));
3421	return 0;
3422}
3423
3424static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3425				     unsigned long cache_level)
3426{
3427	struct drm_mm_node *gtt_space = &vma->node;
3428	struct drm_mm_node *other;
3429
3430	/*
3431	 * On some machines we have to be careful when putting differing types
3432	 * of snoopable memory together to avoid the prefetcher crossing memory
3433	 * domains and dying. During vm initialisation, we decide whether or not
3434	 * these constraints apply and set the drm_mm.color_adjust
3435	 * appropriately.
3436	 */
3437	if (vma->vm->mm.color_adjust == NULL)
3438		return true;
3439
3440	if (!drm_mm_node_allocated(gtt_space))
3441		return true;
3442
3443	if (list_empty(&gtt_space->node_list))
3444		return true;
3445
3446	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3447	if (other->allocated && !other->hole_follows && other->color != cache_level)
3448		return false;
3449
3450	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3451	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3452		return false;
 
3453
3454	return true;
 
 
3455}
3456
3457/**
3458 * Finds free space in the GTT aperture and binds the object or a view of it
3459 * there.
 
 
 
 
3460 */
3461static struct i915_vma *
3462i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3463			   struct i915_address_space *vm,
3464			   const struct i915_ggtt_view *ggtt_view,
3465			   unsigned alignment,
3466			   uint64_t flags)
3467{
3468	struct drm_device *dev = obj->base.dev;
3469	struct drm_i915_private *dev_priv = dev->dev_private;
3470	u32 fence_alignment, unfenced_alignment;
3471	u32 search_flag, alloc_flag;
3472	u64 start, end;
3473	u64 size, fence_size;
3474	struct i915_vma *vma;
3475	int ret;
3476
3477	if (i915_is_ggtt(vm)) {
3478		u32 view_size;
3479
3480		if (WARN_ON(!ggtt_view))
3481			return ERR_PTR(-EINVAL);
3482
3483		view_size = i915_ggtt_view_size(obj, ggtt_view);
3484
3485		fence_size = i915_gem_get_gtt_size(dev,
3486						   view_size,
3487						   obj->tiling_mode);
3488		fence_alignment = i915_gem_get_gtt_alignment(dev,
3489							     view_size,
3490							     obj->tiling_mode,
3491							     true);
3492		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3493								view_size,
3494								obj->tiling_mode,
3495								false);
3496		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3497	} else {
3498		fence_size = i915_gem_get_gtt_size(dev,
3499						   obj->base.size,
3500						   obj->tiling_mode);
3501		fence_alignment = i915_gem_get_gtt_alignment(dev,
3502							     obj->base.size,
3503							     obj->tiling_mode,
3504							     true);
3505		unfenced_alignment =
3506			i915_gem_get_gtt_alignment(dev,
3507						   obj->base.size,
3508						   obj->tiling_mode,
3509						   false);
3510		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3511	}
3512
3513	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3514	end = vm->total;
3515	if (flags & PIN_MAPPABLE)
3516		end = min_t(u64, end, dev_priv->gtt.mappable_end);
3517	if (flags & PIN_ZONE_4G)
3518		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3519
3520	if (alignment == 0)
3521		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3522						unfenced_alignment;
3523	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3524		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3525			  ggtt_view ? ggtt_view->type : 0,
3526			  alignment);
3527		return ERR_PTR(-EINVAL);
3528	}
3529
3530	/* If binding the object/GGTT view requires more space than the entire
3531	 * aperture has, reject it early before evicting everything in a vain
3532	 * attempt to find space.
3533	 */
3534	if (size > end) {
3535		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3536			  ggtt_view ? ggtt_view->type : 0,
3537			  size,
3538			  flags & PIN_MAPPABLE ? "mappable" : "total",
3539			  end);
3540		return ERR_PTR(-E2BIG);
3541	}
3542
3543	ret = i915_gem_object_get_pages(obj);
3544	if (ret)
3545		return ERR_PTR(ret);
3546
3547	i915_gem_object_pin_pages(obj);
3548
3549	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3550			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3551
3552	if (IS_ERR(vma))
3553		goto err_unpin;
3554
3555	if (flags & PIN_OFFSET_FIXED) {
3556		uint64_t offset = flags & PIN_OFFSET_MASK;
3557
3558		if (offset & (alignment - 1) || offset + size > end) {
3559			ret = -EINVAL;
3560			goto err_free_vma;
3561		}
3562		vma->node.start = offset;
3563		vma->node.size = size;
3564		vma->node.color = obj->cache_level;
3565		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3566		if (ret) {
3567			ret = i915_gem_evict_for_vma(vma);
3568			if (ret == 0)
3569				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3570		}
3571		if (ret)
3572			goto err_free_vma;
3573	} else {
3574		if (flags & PIN_HIGH) {
3575			search_flag = DRM_MM_SEARCH_BELOW;
3576			alloc_flag = DRM_MM_CREATE_TOP;
3577		} else {
3578			search_flag = DRM_MM_SEARCH_DEFAULT;
3579			alloc_flag = DRM_MM_CREATE_DEFAULT;
3580		}
3581
3582search_free:
3583		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3584							  size, alignment,
3585							  obj->cache_level,
3586							  start, end,
3587							  search_flag,
3588							  alloc_flag);
3589		if (ret) {
3590			ret = i915_gem_evict_something(dev, vm, size, alignment,
3591						       obj->cache_level,
3592						       start, end,
3593						       flags);
3594			if (ret == 0)
3595				goto search_free;
3596
3597			goto err_free_vma;
3598		}
3599	}
3600	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3601		ret = -EINVAL;
3602		goto err_remove_node;
3603	}
3604
3605	trace_i915_vma_bind(vma, flags);
3606	ret = i915_vma_bind(vma, obj->cache_level, flags);
 
 
 
 
 
 
 
3607	if (ret)
3608		goto err_remove_node;
3609
3610	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3611	list_add_tail(&vma->vm_link, &vm->inactive_list);
3612
3613	return vma;
3614
3615err_remove_node:
3616	drm_mm_remove_node(&vma->node);
3617err_free_vma:
3618	i915_gem_vma_destroy(vma);
3619	vma = ERR_PTR(ret);
3620err_unpin:
3621	i915_gem_object_unpin_pages(obj);
3622	return vma;
3623}
3624
3625bool
3626i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3627			bool force)
3628{
3629	/* If we don't have a page list set up, then we're not pinned
3630	 * to GPU, and we can ignore the cache flush because it'll happen
3631	 * again at bind time.
3632	 */
3633	if (obj->pages == NULL)
3634		return false;
3635
3636	/*
3637	 * Stolen memory is always coherent with the GPU as it is explicitly
3638	 * marked as wc by the system, or the system is cache-coherent.
3639	 */
3640	if (obj->stolen || obj->phys_handle)
3641		return false;
3642
3643	/* If the GPU is snooping the contents of the CPU cache,
3644	 * we do not need to manually clear the CPU cache lines.  However,
3645	 * the caches are only snooped when the render cache is
3646	 * flushed/invalidated.  As we always have to emit invalidations
3647	 * and flushes when moving into and out of the RENDER domain, correct
3648	 * snooping behaviour occurs naturally as the result of our domain
3649	 * tracking.
3650	 */
3651	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3652		obj->cache_dirty = true;
3653		return false;
 
 
 
3654	}
3655
3656	trace_i915_gem_object_clflush(obj);
3657	drm_clflush_sg(obj->pages);
3658	obj->cache_dirty = false;
3659
3660	return true;
3661}
3662
3663/** Flushes the GTT write domain for the object if it's dirty. */
3664static void
3665i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3666{
3667	uint32_t old_write_domain;
3668
3669	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3670		return;
3671
3672	/* No actual flushing is required for the GTT write domain.  Writes
3673	 * to it immediately go to main memory as far as we know, so there's
3674	 * no chipset flush.  It also doesn't land in render cache.
3675	 *
3676	 * However, we do have to enforce the order so that all writes through
3677	 * the GTT land before any writes to the device, such as updates to
3678	 * the GATT itself.
3679	 */
3680	wmb();
3681
3682	old_write_domain = obj->base.write_domain;
3683	obj->base.write_domain = 0;
3684
3685	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3686
3687	trace_i915_gem_object_change_domain(obj,
3688					    obj->base.read_domains,
3689					    old_write_domain);
3690}
3691
3692/** Flushes the CPU write domain for the object if it's dirty. */
3693static void
3694i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3695{
3696	uint32_t old_write_domain;
3697
3698	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3699		return;
3700
3701	if (i915_gem_clflush_object(obj, obj->pin_display))
3702		i915_gem_chipset_flush(obj->base.dev);
3703
3704	old_write_domain = obj->base.write_domain;
3705	obj->base.write_domain = 0;
3706
3707	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3708
3709	trace_i915_gem_object_change_domain(obj,
3710					    obj->base.read_domains,
3711					    old_write_domain);
3712}
3713
3714/**
3715 * Moves a single object to the GTT read, and possibly write domain.
 
 
3716 *
3717 * This function returns when the move is complete, including waiting on
3718 * flushes to occur.
3719 */
3720int
3721i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3722{
3723	uint32_t old_write_domain, old_read_domains;
3724	struct i915_vma *vma;
3725	int ret;
3726
3727	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3728		return 0;
3729
3730	ret = i915_gem_object_wait_rendering(obj, !write);
 
 
 
 
 
3731	if (ret)
3732		return ret;
3733
 
 
 
3734	/* Flush and acquire obj->pages so that we are coherent through
3735	 * direct access in memory with previous cached writes through
3736	 * shmemfs and that our cache domain tracking remains valid.
3737	 * For example, if the obj->filp was moved to swap without us
3738	 * being notified and releasing the pages, we would mistakenly
3739	 * continue to assume that the obj remained out of the CPU cached
3740	 * domain.
3741	 */
3742	ret = i915_gem_object_get_pages(obj);
3743	if (ret)
3744		return ret;
3745
3746	i915_gem_object_flush_cpu_write_domain(obj);
3747
3748	/* Serialise direct access to this object with the barriers for
3749	 * coherent writes from the GPU, by effectively invalidating the
3750	 * GTT domain upon first access.
3751	 */
3752	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3753		mb();
3754
3755	old_write_domain = obj->base.write_domain;
3756	old_read_domains = obj->base.read_domains;
3757
3758	/* It should now be out of any other write domains, and we can update
3759	 * the domain values for our changes.
3760	 */
3761	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3762	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3763	if (write) {
3764		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3765		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3766		obj->dirty = 1;
3767	}
3768
3769	trace_i915_gem_object_change_domain(obj,
3770					    old_read_domains,
3771					    old_write_domain);
3772
3773	/* And bump the LRU for this access */
3774	vma = i915_gem_obj_to_ggtt(obj);
3775	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3776		list_move_tail(&vma->vm_link,
3777			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3778
3779	return 0;
3780}
3781
3782/**
3783 * Changes the cache-level of an object across all VMA.
 
 
3784 *
3785 * After this function returns, the object will be in the new cache-level
3786 * across all GTT and the contents of the backing storage will be coherent,
3787 * with respect to the new cache-level. In order to keep the backing storage
3788 * coherent for all users, we only allow a single cache level to be set
3789 * globally on the object and prevent it from being changed whilst the
3790 * hardware is reading from the object. That is if the object is currently
3791 * on the scanout it will be set to uncached (or equivalent display
3792 * cache coherency) and all non-MOCS GPU access will also be uncached so
3793 * that all direct access to the scanout remains coherent.
3794 */
3795int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3796				    enum i915_cache_level cache_level)
3797{
3798	struct drm_device *dev = obj->base.dev;
3799	struct i915_vma *vma, *next;
3800	bool bound = false;
3801	int ret = 0;
3802
3803	if (obj->cache_level == cache_level)
3804		goto out;
3805
3806	/* Inspect the list of currently bound VMA and unbind any that would
3807	 * be invalid given the new cache-level. This is principally to
3808	 * catch the issue of the CS prefetch crossing page boundaries and
3809	 * reading an invalid PTE on older architectures.
3810	 */
3811	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
 
3812		if (!drm_mm_node_allocated(&vma->node))
3813			continue;
3814
3815		if (vma->pin_count) {
3816			DRM_DEBUG("can not change the cache level of pinned objects\n");
3817			return -EBUSY;
3818		}
3819
3820		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3821			ret = i915_vma_unbind(vma);
3822			if (ret)
3823				return ret;
3824		} else
3825			bound = true;
 
 
 
 
 
 
 
3826	}
3827
3828	/* We can reuse the existing drm_mm nodes but need to change the
3829	 * cache-level on the PTE. We could simply unbind them all and
3830	 * rebind with the correct cache-level on next use. However since
3831	 * we already have a valid slot, dma mapping, pages etc, we may as
3832	 * rewrite the PTE in the belief that doing so tramples upon less
3833	 * state and so involves less work.
3834	 */
3835	if (bound) {
3836		/* Before we change the PTE, the GPU must not be accessing it.
3837		 * If we wait upon the object, we know that all the bound
3838		 * VMA are no longer active.
3839		 */
3840		ret = i915_gem_object_wait_rendering(obj, false);
 
 
 
 
 
3841		if (ret)
3842			return ret;
3843
3844		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
 
3845			/* Access to snoopable pages through the GTT is
3846			 * incoherent and on some machines causes a hard
3847			 * lockup. Relinquish the CPU mmaping to force
3848			 * userspace to refault in the pages and we can
3849			 * then double check if the GTT mapping is still
3850			 * valid for that pointer access.
3851			 */
3852			i915_gem_release_mmap(obj);
3853
3854			/* As we no longer need a fence for GTT access,
3855			 * we can relinquish it now (and so prevent having
3856			 * to steal a fence from someone else on the next
3857			 * fence request). Note GPU activity would have
3858			 * dropped the fence as all snoopable access is
3859			 * supposed to be linear.
3860			 */
3861			ret = i915_gem_object_put_fence(obj);
3862			if (ret)
3863				return ret;
 
 
3864		} else {
3865			/* We either have incoherent backing store and
3866			 * so no GTT access or the architecture is fully
3867			 * coherent. In such cases, existing GTT mmaps
3868			 * ignore the cache bit in the PTE and we can
3869			 * rewrite it without confusing the GPU or having
3870			 * to force userspace to fault back in its mmaps.
3871			 */
3872		}
3873
3874		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3875			if (!drm_mm_node_allocated(&vma->node))
3876				continue;
3877
3878			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3879			if (ret)
3880				return ret;
3881		}
3882	}
3883
3884	list_for_each_entry(vma, &obj->vma_list, obj_link)
3885		vma->node.color = cache_level;
3886	obj->cache_level = cache_level;
3887
3888out:
3889	/* Flush the dirty CPU caches to the backing storage so that the
3890	 * object is now coherent at its new cache level (with respect
3891	 * to the access domain).
3892	 */
3893	if (obj->cache_dirty &&
3894	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3895	    cpu_write_needs_clflush(obj)) {
3896		if (i915_gem_clflush_object(obj, true))
3897			i915_gem_chipset_flush(obj->base.dev);
3898	}
3899
3900	return 0;
3901}
3902
3903int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3904			       struct drm_file *file)
3905{
3906	struct drm_i915_gem_caching *args = data;
3907	struct drm_i915_gem_object *obj;
 
3908
3909	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3910	if (&obj->base == NULL)
3911		return -ENOENT;
 
 
 
3912
3913	switch (obj->cache_level) {
3914	case I915_CACHE_LLC:
3915	case I915_CACHE_L3_LLC:
3916		args->caching = I915_CACHING_CACHED;
3917		break;
3918
3919	case I915_CACHE_WT:
3920		args->caching = I915_CACHING_DISPLAY;
3921		break;
3922
3923	default:
3924		args->caching = I915_CACHING_NONE;
3925		break;
3926	}
3927
3928	drm_gem_object_unreference_unlocked(&obj->base);
3929	return 0;
3930}
3931
3932int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3933			       struct drm_file *file)
3934{
3935	struct drm_i915_private *dev_priv = dev->dev_private;
3936	struct drm_i915_gem_caching *args = data;
3937	struct drm_i915_gem_object *obj;
3938	enum i915_cache_level level;
3939	int ret;
3940
3941	switch (args->caching) {
3942	case I915_CACHING_NONE:
3943		level = I915_CACHE_NONE;
3944		break;
3945	case I915_CACHING_CACHED:
3946		/*
3947		 * Due to a HW issue on BXT A stepping, GPU stores via a
3948		 * snooped mapping may leave stale data in a corresponding CPU
3949		 * cacheline, whereas normally such cachelines would get
3950		 * invalidated.
3951		 */
3952		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3953			return -ENODEV;
3954
3955		level = I915_CACHE_LLC;
3956		break;
3957	case I915_CACHING_DISPLAY:
3958		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3959		break;
3960	default:
3961		return -EINVAL;
3962	}
3963
3964	intel_runtime_pm_get(dev_priv);
 
 
3965
3966	ret = i915_mutex_lock_interruptible(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3967	if (ret)
3968		goto rpm_put;
3969
3970	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3971	if (&obj->base == NULL) {
3972		ret = -ENOENT;
3973		goto unlock;
3974	}
3975
3976	ret = i915_gem_object_set_cache_level(obj, level);
3977
3978	drm_gem_object_unreference(&obj->base);
3979unlock:
3980	mutex_unlock(&dev->struct_mutex);
3981rpm_put:
3982	intel_runtime_pm_put(dev_priv);
3983
 
 
3984	return ret;
3985}
3986
3987/*
3988 * Prepare buffer for display plane (scanout, cursors, etc).
3989 * Can be called from an uninterruptible phase (modesetting) and allows
3990 * any flushes to be pipelined (for pageflips).
3991 */
3992int
3993i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3994				     u32 alignment,
3995				     const struct i915_ggtt_view *view)
 
3996{
3997	u32 old_read_domains, old_write_domain;
3998	int ret;
3999
4000	/* Mark the pin_display early so that we account for the
 
 
4001	 * display coherency whilst setting up the cache domains.
4002	 */
4003	obj->pin_display++;
4004
4005	/* The display engine is not coherent with the LLC cache on gen6.  As
4006	 * a result, we make sure that the pinning that is about to occur is
4007	 * done with uncached PTEs. This is lowest common denominator for all
4008	 * chipsets.
4009	 *
4010	 * However for gen6+, we could do better by using the GFDT bit instead
4011	 * of uncaching, which would allow us to flush all the LLC-cached data
4012	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4013	 */
4014	ret = i915_gem_object_set_cache_level(obj,
4015					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4016	if (ret)
4017		goto err_unpin_display;
 
 
 
4018
4019	/* As the user may map the buffer once pinned in the display plane
4020	 * (e.g. libkms for the bootup splash), we have to ensure that we
4021	 * always use map_and_fenceable for all scanout buffers.
4022	 */
4023	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4024				       view->type == I915_GGTT_VIEW_NORMAL ?
4025				       PIN_MAPPABLE : 0);
4026	if (ret)
4027		goto err_unpin_display;
 
 
 
 
 
 
 
 
 
4028
4029	i915_gem_object_flush_cpu_write_domain(obj);
4030
4031	old_write_domain = obj->base.write_domain;
4032	old_read_domains = obj->base.read_domains;
 
4033
4034	/* It should now be out of any other write domains, and we can update
4035	 * the domain values for our changes.
4036	 */
4037	obj->base.write_domain = 0;
4038	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4039
4040	trace_i915_gem_object_change_domain(obj,
4041					    old_read_domains,
4042					    old_write_domain);
4043
4044	return 0;
4045
4046err_unpin_display:
4047	obj->pin_display--;
4048	return ret;
4049}
4050
4051void
4052i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4053					 const struct i915_ggtt_view *view)
4054{
4055	if (WARN_ON(obj->pin_display == 0))
 
 
4056		return;
4057
4058	i915_gem_object_ggtt_unpin_view(obj, view);
 
 
 
 
4059
4060	obj->pin_display--;
4061}
4062
4063/**
4064 * Moves a single object to the CPU read, and possibly write domain.
 
 
4065 *
4066 * This function returns when the move is complete, including waiting on
4067 * flushes to occur.
4068 */
4069int
4070i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4071{
4072	uint32_t old_write_domain, old_read_domains;
4073	int ret;
4074
4075	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4076		return 0;
4077
4078	ret = i915_gem_object_wait_rendering(obj, !write);
 
 
 
 
 
4079	if (ret)
4080		return ret;
4081
4082	i915_gem_object_flush_gtt_write_domain(obj);
4083
4084	old_write_domain = obj->base.write_domain;
4085	old_read_domains = obj->base.read_domains;
4086
4087	/* Flush the CPU cache if it's still invalid. */
4088	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4089		i915_gem_clflush_object(obj, false);
4090
4091		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4092	}
4093
4094	/* It should now be out of any other write domains, and we can update
4095	 * the domain values for our changes.
4096	 */
4097	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4098
4099	/* If we're writing through the CPU, then the GPU read domains will
4100	 * need to be invalidated at next use.
4101	 */
4102	if (write) {
4103		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4104		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4105	}
4106
4107	trace_i915_gem_object_change_domain(obj,
4108					    old_read_domains,
4109					    old_write_domain);
4110
4111	return 0;
4112}
4113
4114/* Throttle our rendering by waiting until the ring has completed our requests
4115 * emitted over 20 msec ago.
4116 *
4117 * Note that if we were to use the current jiffies each time around the loop,
4118 * we wouldn't escape the function with any frames outstanding if the time to
4119 * render a frame was over 20ms.
4120 *
4121 * This should get us reasonable parallelism between CPU and GPU but also
4122 * relatively low latency when blocking on a particular request to finish.
4123 */
4124static int
4125i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4126{
4127	struct drm_i915_private *dev_priv = dev->dev_private;
4128	struct drm_i915_file_private *file_priv = file->driver_priv;
4129	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4130	struct drm_i915_gem_request *request, *target = NULL;
4131	unsigned reset_counter;
4132	int ret;
4133
4134	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4135	if (ret)
4136		return ret;
4137
4138	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4139	if (ret)
4140		return ret;
4141
4142	spin_lock(&file_priv->mm.lock);
4143	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4144		if (time_after_eq(request->emitted_jiffies, recent_enough))
4145			break;
4146
4147		/*
4148		 * Note that the request might not have been submitted yet.
4149		 * In which case emitted_jiffies will be zero.
4150		 */
4151		if (!request->emitted_jiffies)
4152			continue;
4153
4154		target = request;
4155	}
4156	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4157	if (target)
4158		i915_gem_request_reference(target);
4159	spin_unlock(&file_priv->mm.lock);
4160
4161	if (target == NULL)
4162		return 0;
4163
4164	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4165	if (ret == 0)
4166		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4167
4168	i915_gem_request_unreference__unlocked(target);
4169
4170	return ret;
4171}
4172
4173static bool
4174i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
 
 
 
 
4175{
4176	struct drm_i915_gem_object *obj = vma->obj;
 
 
 
4177
4178	if (alignment &&
4179	    vma->node.start & (alignment - 1))
4180		return true;
4181
4182	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4183		return true;
 
 
 
 
 
 
 
 
 
4184
4185	if (flags & PIN_OFFSET_BIAS &&
4186	    vma->node.start < (flags & PIN_OFFSET_MASK))
4187		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4188
4189	if (flags & PIN_OFFSET_FIXED &&
4190	    vma->node.start != (flags & PIN_OFFSET_MASK))
4191		return true;
4192
4193	return false;
4194}
4195
4196void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4197{
4198	struct drm_i915_gem_object *obj = vma->obj;
4199	bool mappable, fenceable;
4200	u32 fence_size, fence_alignment;
4201
4202	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4203					   obj->base.size,
4204					   obj->tiling_mode);
4205	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4206						     obj->base.size,
4207						     obj->tiling_mode,
4208						     true);
4209
4210	fenceable = (vma->node.size == fence_size &&
4211		     (vma->node.start & (fence_alignment - 1)) == 0);
4212
4213	mappable = (vma->node.start + fence_size <=
4214		    to_i915(obj->base.dev)->gtt.mappable_end);
4215
4216	obj->map_and_fenceable = mappable && fenceable;
4217}
4218
4219static int
4220i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4221		       struct i915_address_space *vm,
4222		       const struct i915_ggtt_view *ggtt_view,
4223		       uint32_t alignment,
4224		       uint64_t flags)
4225{
4226	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4227	struct i915_vma *vma;
4228	unsigned bound;
4229	int ret;
4230
4231	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4232		return -ENODEV;
4233
4234	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4235		return -EINVAL;
4236
4237	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4238		return -EINVAL;
4239
4240	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4241		return -EINVAL;
4242
4243	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4244			  i915_gem_obj_to_vma(obj, vm);
4245
4246	if (IS_ERR(vma))
4247		return PTR_ERR(vma);
4248
4249	if (vma) {
4250		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4251			return -EBUSY;
4252
4253		if (i915_vma_misplaced(vma, alignment, flags)) {
4254			WARN(vma->pin_count,
4255			     "bo is already pinned in %s with incorrect alignment:"
4256			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4257			     " obj->map_and_fenceable=%d\n",
4258			     ggtt_view ? "ggtt" : "ppgtt",
4259			     upper_32_bits(vma->node.start),
4260			     lower_32_bits(vma->node.start),
4261			     alignment,
4262			     !!(flags & PIN_MAPPABLE),
4263			     obj->map_and_fenceable);
4264			ret = i915_vma_unbind(vma);
4265			if (ret)
4266				return ret;
4267
4268			vma = NULL;
4269		}
4270	}
4271
4272	bound = vma ? vma->bound : 0;
4273	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4274		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4275						 flags);
4276		if (IS_ERR(vma))
4277			return PTR_ERR(vma);
4278	} else {
4279		ret = i915_vma_bind(vma, obj->cache_level, flags);
4280		if (ret)
4281			return ret;
4282	}
4283
4284	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4285	    (bound ^ vma->bound) & GLOBAL_BIND) {
4286		__i915_vma_set_map_and_fenceable(vma);
4287		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4288	}
 
 
 
 
4289
4290	vma->pin_count++;
4291	return 0;
4292}
 
4293
4294int
4295i915_gem_object_pin(struct drm_i915_gem_object *obj,
4296		    struct i915_address_space *vm,
4297		    uint32_t alignment,
4298		    uint64_t flags)
4299{
4300	return i915_gem_object_do_pin(obj, vm,
4301				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4302				      alignment, flags);
4303}
4304
4305int
4306i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4307			 const struct i915_ggtt_view *view,
4308			 uint32_t alignment,
4309			 uint64_t flags)
4310{
4311	if (WARN_ONCE(!view, "no view specified"))
4312		return -EINVAL;
4313
4314	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4315				      alignment, flags | PIN_GLOBAL);
4316}
4317
4318void
4319i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4320				const struct i915_ggtt_view *view)
4321{
4322	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4323
4324	BUG_ON(!vma);
4325	WARN_ON(vma->pin_count == 0);
4326	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4327
4328	--vma->pin_count;
4329}
4330
4331int
4332i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4333		    struct drm_file *file)
4334{
4335	struct drm_i915_gem_busy *args = data;
4336	struct drm_i915_gem_object *obj;
4337	int ret;
4338
4339	ret = i915_mutex_lock_interruptible(dev);
4340	if (ret)
4341		return ret;
4342
4343	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4344	if (&obj->base == NULL) {
4345		ret = -ENOENT;
4346		goto unlock;
4347	}
4348
4349	/* Count all active objects as busy, even if they are currently not used
4350	 * by the gpu. Users of this interface expect objects to eventually
4351	 * become non-busy without any further actions, therefore emit any
4352	 * necessary flushes here.
 
 
 
 
 
 
 
 
 
 
 
4353	 */
4354	ret = i915_gem_object_flush_active(obj);
4355	if (ret)
4356		goto unref;
4357
4358	args->busy = 0;
4359	if (obj->active) {
4360		int i;
 
 
 
 
4361
4362		for (i = 0; i < I915_NUM_RINGS; i++) {
4363			struct drm_i915_gem_request *req;
 
4364
4365			req = obj->last_read_req[i];
4366			if (req)
4367				args->busy |= 1 << (16 + req->ring->exec_id);
4368		}
4369		if (obj->last_write_req)
4370			args->busy |= obj->last_write_req->ring->exec_id;
4371	}
4372
4373unref:
4374	drm_gem_object_unreference(&obj->base);
4375unlock:
4376	mutex_unlock(&dev->struct_mutex);
4377	return ret;
 
 
4378}
4379
4380int
4381i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4382			struct drm_file *file_priv)
4383{
4384	return i915_gem_ring_throttle(dev, file_priv);
4385}
4386
4387int
4388i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4389		       struct drm_file *file_priv)
4390{
4391	struct drm_i915_private *dev_priv = dev->dev_private;
4392	struct drm_i915_gem_madvise *args = data;
4393	struct drm_i915_gem_object *obj;
4394	int ret;
4395
4396	switch (args->madv) {
4397	case I915_MADV_DONTNEED:
4398	case I915_MADV_WILLNEED:
4399	    break;
4400	default:
4401	    return -EINVAL;
4402	}
4403
4404	ret = i915_mutex_lock_interruptible(dev);
4405	if (ret)
4406		return ret;
4407
4408	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4409	if (&obj->base == NULL) {
4410		ret = -ENOENT;
4411		goto unlock;
4412	}
4413
4414	if (i915_gem_obj_is_pinned(obj)) {
4415		ret = -EINVAL;
4416		goto out;
4417	}
4418
4419	if (obj->pages &&
4420	    obj->tiling_mode != I915_TILING_NONE &&
4421	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4422		if (obj->madv == I915_MADV_WILLNEED)
4423			i915_gem_object_unpin_pages(obj);
4424		if (args->madv == I915_MADV_WILLNEED)
4425			i915_gem_object_pin_pages(obj);
 
 
 
 
 
 
4426	}
4427
4428	if (obj->madv != __I915_MADV_PURGED)
4429		obj->madv = args->madv;
4430
4431	/* if the object is no longer attached, discard its backing storage */
4432	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
 
4433		i915_gem_object_truncate(obj);
4434
4435	args->retained = obj->madv != __I915_MADV_PURGED;
 
4436
4437out:
4438	drm_gem_object_unreference(&obj->base);
4439unlock:
4440	mutex_unlock(&dev->struct_mutex);
4441	return ret;
 
 
 
 
 
 
 
4442}
4443
4444void i915_gem_object_init(struct drm_i915_gem_object *obj,
4445			  const struct drm_i915_gem_object_ops *ops)
4446{
4447	int i;
4448
4449	INIT_LIST_HEAD(&obj->global_list);
4450	for (i = 0; i < I915_NUM_RINGS; i++)
4451		INIT_LIST_HEAD(&obj->ring_list[i]);
4452	INIT_LIST_HEAD(&obj->obj_exec_link);
4453	INIT_LIST_HEAD(&obj->vma_list);
 
4454	INIT_LIST_HEAD(&obj->batch_pool_link);
4455
4456	obj->ops = ops;
4457
4458	obj->fence_reg = I915_FENCE_REG_NONE;
4459	obj->madv = I915_MADV_WILLNEED;
 
 
 
 
 
 
 
4460
4461	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4462}
4463
4464static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4465	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
 
 
4466	.get_pages = i915_gem_object_get_pages_gtt,
4467	.put_pages = i915_gem_object_put_pages_gtt,
 
 
4468};
4469
4470struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4471						  size_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4472{
4473	struct drm_i915_gem_object *obj;
4474	struct address_space *mapping;
 
4475	gfp_t mask;
 
 
 
 
 
 
 
 
 
4476
4477	obj = i915_gem_object_alloc(dev);
 
 
 
4478	if (obj == NULL)
4479		return NULL;
4480
4481	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4482		i915_gem_object_free(obj);
4483		return NULL;
4484	}
4485
4486	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4487	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4488		/* 965gm cannot relocate objects above 4GiB. */
4489		mask &= ~__GFP_HIGHMEM;
4490		mask |= __GFP_DMA32;
4491	}
4492
4493	mapping = file_inode(obj->base.filp)->i_mapping;
4494	mapping_set_gfp_mask(mapping, mask);
 
4495
4496	i915_gem_object_init(obj, &i915_gem_object_ops);
4497
4498	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4499	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4500
4501	if (HAS_LLC(dev)) {
4502		/* On some devices, we can have the GPU use the LLC (the CPU
4503		 * cache) for about a 10% performance improvement
4504		 * compared to uncached.  Graphics requests other than
4505		 * display scanout are coherent with the CPU in
4506		 * accessing this cache.  This means in this mode we
4507		 * don't need to clflush on the CPU side, and on the
4508		 * GPU side we only need to flush internal caches to
4509		 * get data visible to the CPU.
4510		 *
4511		 * However, we maintain the display planes as UC, and so
4512		 * need to rebind when first used as such.
4513		 */
4514		obj->cache_level = I915_CACHE_LLC;
4515	} else
4516		obj->cache_level = I915_CACHE_NONE;
 
 
4517
4518	trace_i915_gem_object_create(obj);
4519
4520	return obj;
 
 
 
 
4521}
4522
4523static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4524{
4525	/* If we are the last user of the backing storage (be it shmemfs
4526	 * pages or stolen etc), we know that the pages are going to be
4527	 * immediately released. In this case, we can then skip copying
4528	 * back the contents from the GPU.
4529	 */
4530
4531	if (obj->madv != I915_MADV_WILLNEED)
4532		return false;
4533
4534	if (obj->base.filp == NULL)
4535		return true;
4536
4537	/* At first glance, this looks racy, but then again so would be
4538	 * userspace racing mmap against close. However, the first external
4539	 * reference to the filp can only be obtained through the
4540	 * i915_gem_mmap_ioctl() which safeguards us against the user
4541	 * acquiring such a reference whilst we are in the middle of
4542	 * freeing the object.
4543	 */
4544	return atomic_long_read(&obj->base.filp->f_count) == 1;
4545}
4546
4547void i915_gem_free_object(struct drm_gem_object *gem_obj)
 
4548{
4549	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4550	struct drm_device *dev = obj->base.dev;
4551	struct drm_i915_private *dev_priv = dev->dev_private;
4552	struct i915_vma *vma, *next;
4553
4554	intel_runtime_pm_get(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4555
4556	trace_i915_gem_object_destroy(obj);
4557
4558	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4559		int ret;
 
 
4560
4561		vma->pin_count = 0;
4562		ret = i915_vma_unbind(vma);
4563		if (WARN_ON(ret == -ERESTARTSYS)) {
4564			bool was_interruptible;
4565
4566			was_interruptible = dev_priv->mm.interruptible;
4567			dev_priv->mm.interruptible = false;
 
 
4568
4569			WARN_ON(i915_vma_unbind(vma));
 
4570
4571			dev_priv->mm.interruptible = was_interruptible;
4572		}
4573	}
4574
4575	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4576	 * before progressing. */
4577	if (obj->stolen)
4578		i915_gem_object_unpin_pages(obj);
4579
4580	WARN_ON(obj->frontbuffer_bits);
 
4581
4582	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4583	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4584	    obj->tiling_mode != I915_TILING_NONE)
4585		i915_gem_object_unpin_pages(obj);
 
4586
4587	if (WARN_ON(obj->pages_pin_count))
4588		obj->pages_pin_count = 0;
4589	if (discard_backing_storage(obj))
4590		obj->madv = I915_MADV_DONTNEED;
4591	i915_gem_object_put_pages(obj);
4592	i915_gem_object_free_mmap_offset(obj);
4593
4594	BUG_ON(obj->pages);
 
 
 
 
 
 
 
 
 
 
 
 
4595
4596	if (obj->base.import_attach)
4597		drm_prime_gem_destroy(&obj->base, NULL);
 
 
 
4598
4599	if (obj->ops->release)
4600		obj->ops->release(obj);
 
 
 
 
 
 
4601
4602	drm_gem_object_release(&obj->base);
4603	i915_gem_info_remove_obj(dev_priv, obj->base.size);
 
4604
4605	kfree(obj->bit_17);
4606	i915_gem_object_free(obj);
 
4607
4608	intel_runtime_pm_put(dev_priv);
 
 
4609}
4610
4611struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4612				     struct i915_address_space *vm)
4613{
4614	struct i915_vma *vma;
4615	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4616		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4617		    vma->vm == vm)
4618			return vma;
4619	}
4620	return NULL;
 
 
 
 
 
 
 
 
 
4621}
4622
4623struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4624					   const struct i915_ggtt_view *view)
4625{
4626	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4627	struct i915_vma *vma;
4628
4629	if (WARN_ONCE(!view, "no view specified"))
4630		return ERR_PTR(-EINVAL);
4631
4632	list_for_each_entry(vma, &obj->vma_list, obj_link)
4633		if (vma->vm == ggtt &&
4634		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4635			return vma;
4636	return NULL;
 
 
 
 
 
 
4637}
4638
4639void i915_gem_vma_destroy(struct i915_vma *vma)
4640{
4641	WARN_ON(vma->node.allocated);
4642
4643	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4644	if (!list_empty(&vma->exec_list))
4645		return;
4646
4647	if (!vma->is_ggtt)
4648		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
 
 
 
 
4649
4650	list_del(&vma->obj_link);
 
 
 
 
4651
4652	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
 
 
 
4653}
4654
4655static void
4656i915_gem_stop_ringbuffers(struct drm_device *dev)
4657{
4658	struct drm_i915_private *dev_priv = dev->dev_private;
4659	struct intel_engine_cs *ring;
4660	int i;
 
 
4661
4662	for_each_ring(ring, dev_priv, i)
4663		dev_priv->gt.stop_ring(ring);
 
 
 
 
 
 
 
 
4664}
4665
4666int
4667i915_gem_suspend(struct drm_device *dev)
4668{
4669	struct drm_i915_private *dev_priv = dev->dev_private;
4670	int ret = 0;
 
 
 
4671
4672	mutex_lock(&dev->struct_mutex);
4673	ret = i915_gpu_idle(dev);
4674	if (ret)
4675		goto err;
4676
4677	i915_gem_retire_requests(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4678
4679	i915_gem_stop_ringbuffers(dev);
 
 
4680	mutex_unlock(&dev->struct_mutex);
4681
 
 
4682	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4683	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4684	flush_delayed_work(&dev_priv->mm.idle_work);
 
 
 
 
4685
4686	/* Assert that we sucessfully flushed all the work and
4687	 * reset the GPU back to its idle, low power state.
4688	 */
4689	WARN_ON(dev_priv->mm.busy);
 
 
4690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4691	return 0;
4692
4693err:
4694	mutex_unlock(&dev->struct_mutex);
 
4695	return ret;
4696}
4697
4698int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4699{
4700	struct intel_engine_cs *ring = req->ring;
4701	struct drm_device *dev = ring->dev;
4702	struct drm_i915_private *dev_priv = dev->dev_private;
4703	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4704	int i, ret;
4705
4706	if (!HAS_L3_DPF(dev) || !remap_info)
4707		return 0;
4708
4709	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4710	if (ret)
4711		return ret;
4712
4713	/*
4714	 * Note: We do not worry about the concurrent register cacheline hang
4715	 * here because no other code should access these registers other than
4716	 * at initialization time.
4717	 */
4718	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4719		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4720		intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4721		intel_ring_emit(ring, remap_info[i]);
4722	}
4723
4724	intel_ring_advance(ring);
 
4725
4726	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4727}
4728
4729void i915_gem_init_swizzling(struct drm_device *dev)
4730{
4731	struct drm_i915_private *dev_priv = dev->dev_private;
4732
4733	if (INTEL_INFO(dev)->gen < 5 ||
4734	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4735		return;
4736
4737	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4738				 DISP_TILE_SURFACE_SWIZZLING);
4739
4740	if (IS_GEN5(dev))
4741		return;
4742
4743	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4744	if (IS_GEN6(dev))
4745		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4746	else if (IS_GEN7(dev))
4747		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4748	else if (IS_GEN8(dev))
4749		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4750	else
4751		BUG();
4752}
4753
4754static void init_unused_ring(struct drm_device *dev, u32 base)
4755{
4756	struct drm_i915_private *dev_priv = dev->dev_private;
4757
4758	I915_WRITE(RING_CTL(base), 0);
4759	I915_WRITE(RING_HEAD(base), 0);
4760	I915_WRITE(RING_TAIL(base), 0);
4761	I915_WRITE(RING_START(base), 0);
4762}
4763
4764static void init_unused_rings(struct drm_device *dev)
4765{
4766	if (IS_I830(dev)) {
4767		init_unused_ring(dev, PRB1_BASE);
4768		init_unused_ring(dev, SRB0_BASE);
4769		init_unused_ring(dev, SRB1_BASE);
4770		init_unused_ring(dev, SRB2_BASE);
4771		init_unused_ring(dev, SRB3_BASE);
4772	} else if (IS_GEN2(dev)) {
4773		init_unused_ring(dev, SRB0_BASE);
4774		init_unused_ring(dev, SRB1_BASE);
4775	} else if (IS_GEN3(dev)) {
4776		init_unused_ring(dev, PRB1_BASE);
4777		init_unused_ring(dev, PRB2_BASE);
4778	}
4779}
4780
4781int i915_gem_init_rings(struct drm_device *dev)
4782{
4783	struct drm_i915_private *dev_priv = dev->dev_private;
4784	int ret;
4785
4786	ret = intel_init_render_ring_buffer(dev);
4787	if (ret)
4788		return ret;
4789
4790	if (HAS_BSD(dev)) {
4791		ret = intel_init_bsd_ring_buffer(dev);
4792		if (ret)
4793			goto cleanup_render_ring;
4794	}
4795
4796	if (HAS_BLT(dev)) {
4797		ret = intel_init_blt_ring_buffer(dev);
4798		if (ret)
4799			goto cleanup_bsd_ring;
4800	}
4801
4802	if (HAS_VEBOX(dev)) {
4803		ret = intel_init_vebox_ring_buffer(dev);
4804		if (ret)
4805			goto cleanup_blt_ring;
4806	}
4807
4808	if (HAS_BSD2(dev)) {
4809		ret = intel_init_bsd2_ring_buffer(dev);
4810		if (ret)
4811			goto cleanup_vebox_ring;
 
 
 
4812	}
4813
4814	return 0;
4815
4816cleanup_vebox_ring:
4817	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4818cleanup_blt_ring:
4819	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4820cleanup_bsd_ring:
4821	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4822cleanup_render_ring:
4823	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4824
4825	return ret;
4826}
4827
4828int
4829i915_gem_init_hw(struct drm_device *dev)
4830{
4831	struct drm_i915_private *dev_priv = dev->dev_private;
4832	struct intel_engine_cs *ring;
4833	int ret, i, j;
4834
4835	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4836		return -EIO;
4837
4838	/* Double layer security blanket, see i915_gem_init() */
4839	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4840
4841	if (dev_priv->ellc_size)
4842		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4843
4844	if (IS_HASWELL(dev))
4845		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4846			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4847
4848	if (HAS_PCH_NOP(dev)) {
4849		if (IS_IVYBRIDGE(dev)) {
4850			u32 temp = I915_READ(GEN7_MSG_CTL);
4851			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4852			I915_WRITE(GEN7_MSG_CTL, temp);
4853		} else if (INTEL_INFO(dev)->gen >= 7) {
4854			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4855			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4856			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4857		}
4858	}
4859
4860	i915_gem_init_swizzling(dev);
4861
4862	/*
4863	 * At least 830 can leave some of the unused rings
4864	 * "active" (ie. head != tail) after resume which
4865	 * will prevent c3 entry. Makes sure all unused rings
4866	 * are totally idle.
4867	 */
4868	init_unused_rings(dev);
4869
4870	BUG_ON(!dev_priv->kernel_context);
4871
4872	ret = i915_ppgtt_init_hw(dev);
4873	if (ret) {
4874		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4875		goto out;
4876	}
4877
4878	/* Need to do basic initialisation of all rings first: */
4879	for_each_ring(ring, dev_priv, i) {
4880		ret = ring->init_hw(ring);
4881		if (ret)
4882			goto out;
4883	}
4884
4885	/* We can't enable contexts until all firmware is loaded */
4886	if (HAS_GUC_UCODE(dev)) {
4887		ret = intel_guc_ucode_load(dev);
4888		if (ret) {
4889			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4890			ret = -EIO;
4891			goto out;
4892		}
4893	}
4894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4895	/*
4896	 * Increment the next seqno by 0x100 so we have a visible break
4897	 * on re-initialisation
 
 
 
 
4898	 */
4899	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4900	if (ret)
4901		goto out;
4902
4903	/* Now it is safe to go back round and do everything else: */
4904	for_each_ring(ring, dev_priv, i) {
4905		struct drm_i915_gem_request *req;
4906
4907		req = i915_gem_request_alloc(ring, NULL);
4908		if (IS_ERR(req)) {
4909			ret = PTR_ERR(req);
4910			i915_gem_cleanup_ringbuffer(dev);
4911			goto out;
4912		}
4913
4914		if (ring->id == RCS) {
4915			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4916				i915_gem_l3_remap(req, j);
4917		}
4918
4919		ret = i915_ppgtt_init_ring(req);
4920		if (ret && ret != -EIO) {
4921			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4922			i915_gem_request_cancel(req);
4923			i915_gem_cleanup_ringbuffer(dev);
4924			goto out;
4925		}
4926
4927		ret = i915_gem_context_enable(req);
4928		if (ret && ret != -EIO) {
4929			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4930			i915_gem_request_cancel(req);
4931			i915_gem_cleanup_ringbuffer(dev);
4932			goto out;
4933		}
4934
4935		i915_add_request_no_flush(req);
 
 
4936	}
4937
4938out:
4939	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4940	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4941}
4942
4943int i915_gem_init(struct drm_device *dev)
4944{
4945	struct drm_i915_private *dev_priv = dev->dev_private;
4946	int ret;
4947
4948	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4949			i915.enable_execlists);
4950
4951	mutex_lock(&dev->struct_mutex);
4952
4953	if (!i915.enable_execlists) {
4954		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4955		dev_priv->gt.init_rings = i915_gem_init_rings;
4956		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4957		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
 
 
 
 
4958	} else {
4959		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4960		dev_priv->gt.init_rings = intel_logical_rings_init;
4961		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4962		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4963	}
4964
 
 
 
 
 
 
 
 
4965	/* This is just a security blanket to placate dragons.
4966	 * On some systems, we very sporadically observe that the first TLBs
4967	 * used by the CS may be stale, despite us poking the TLB reset. If
4968	 * we hold the forcewake during initialisation these problems
4969	 * just magically go away.
4970	 */
 
4971	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4972
4973	ret = i915_gem_init_userptr(dev);
4974	if (ret)
4975		goto out_unlock;
 
 
4976
4977	i915_gem_init_global_gtt(dev);
 
 
 
 
 
 
 
 
 
 
4978
4979	ret = i915_gem_context_init(dev);
 
 
4980	if (ret)
4981		goto out_unlock;
4982
4983	ret = dev_priv->gt.init_rings(dev);
4984	if (ret)
4985		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4986
4987	ret = i915_gem_init_hw(dev);
4988	if (ret == -EIO) {
4989		/* Allow ring initialisation to fail by marking the GPU as
 
4990		 * wedged. But we only want to do this where the GPU is angry,
4991		 * for all other failure, such as an allocation failure, bail.
4992		 */
4993		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4994		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
 
 
4995		ret = 0;
4996	}
4997
4998out_unlock:
4999	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5000	mutex_unlock(&dev->struct_mutex);
5001
5002	return ret;
5003}
5004
5005void
5006i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5007{
5008	struct drm_i915_private *dev_priv = dev->dev_private;
5009	struct intel_engine_cs *ring;
5010	int i;
5011
5012	for_each_ring(ring, dev_priv, i)
5013		dev_priv->gt.cleanup_ring(ring);
5014
5015    if (i915.enable_execlists)
5016            /*
5017             * Neither the BIOS, ourselves or any other kernel
5018             * expects the system to be in execlists mode on startup,
5019             * so we need to reset the GPU back to legacy mode.
5020             */
5021            intel_gpu_reset(dev);
5022}
5023
5024static void
5025init_ring_lists(struct intel_engine_cs *ring)
5026{
5027	INIT_LIST_HEAD(&ring->active_list);
5028	INIT_LIST_HEAD(&ring->request_list);
 
 
 
5029}
5030
5031void
5032i915_gem_load_init(struct drm_device *dev)
5033{
5034	struct drm_i915_private *dev_priv = dev->dev_private;
5035	int i;
5036
5037	dev_priv->objects =
5038		kmem_cache_create("i915_gem_object",
5039				  sizeof(struct drm_i915_gem_object), 0,
5040				  SLAB_HWCACHE_ALIGN,
5041				  NULL);
5042	dev_priv->vmas =
5043		kmem_cache_create("i915_gem_vma",
5044				  sizeof(struct i915_vma), 0,
5045				  SLAB_HWCACHE_ALIGN,
5046				  NULL);
5047	dev_priv->requests =
5048		kmem_cache_create("i915_gem_request",
5049				  sizeof(struct drm_i915_gem_request), 0,
5050				  SLAB_HWCACHE_ALIGN,
5051				  NULL);
5052
5053	INIT_LIST_HEAD(&dev_priv->vm_list);
5054	INIT_LIST_HEAD(&dev_priv->context_list);
5055	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5056	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5057	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5058	for (i = 0; i < I915_NUM_RINGS; i++)
5059		init_ring_lists(&dev_priv->ring[i]);
5060	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5061		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5062	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5063			  i915_gem_retire_work_handler);
5064	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5065			  i915_gem_idle_work_handler);
5066	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5067
5068	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5069
5070	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5071		dev_priv->num_fence_regs = 32;
5072	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
 
 
5073		dev_priv->num_fence_regs = 16;
5074	else
5075		dev_priv->num_fence_regs = 8;
5076
5077	if (intel_vgpu_active(dev))
5078		dev_priv->num_fence_regs =
5079				I915_READ(vgtif_reg(avail_rs.fence_num));
5080
5081	/*
5082	 * Set initial sequence number for requests.
5083	 * Using this number allows the wraparound to happen early,
5084	 * catching any obvious problems.
5085	 */
5086	dev_priv->next_seqno = ((u32)~0 - 0x1100);
5087	dev_priv->last_seqno = ((u32)~0 - 0x1101);
5088
5089	/* Initialize fence registers to zero */
5090	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5091	i915_gem_restore_fences(dev);
5092
5093	i915_gem_detect_bit_6_swizzle(dev);
5094	init_waitqueue_head(&dev_priv->pending_flip_queue);
 
 
 
5095
5096	dev_priv->mm.interruptible = true;
 
 
 
 
 
 
 
 
 
5097
5098	mutex_init(&dev_priv->fb_tracking.lock);
 
 
 
 
 
5099}
5100
5101void i915_gem_load_cleanup(struct drm_device *dev)
 
5102{
5103	struct drm_i915_private *dev_priv = to_i915(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5104
 
 
 
 
 
 
 
5105	kmem_cache_destroy(dev_priv->requests);
 
 
 
5106	kmem_cache_destroy(dev_priv->vmas);
 
5107	kmem_cache_destroy(dev_priv->objects);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5108}
5109
5110void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5111{
5112	struct drm_i915_file_private *file_priv = file->driver_priv;
 
5113
5114	/* Clean up our request list when the client is going away, so that
5115	 * later retire_requests won't dereference our soon-to-be-gone
5116	 * file_priv.
5117	 */
5118	spin_lock(&file_priv->mm.lock);
5119	while (!list_empty(&file_priv->mm.request_list)) {
5120		struct drm_i915_gem_request *request;
5121
5122		request = list_first_entry(&file_priv->mm.request_list,
5123					   struct drm_i915_gem_request,
5124					   client_list);
5125		list_del(&request->client_list);
5126		request->file_priv = NULL;
5127	}
5128	spin_unlock(&file_priv->mm.lock);
5129
5130	if (!list_empty(&file_priv->rps.link)) {
5131		spin_lock(&to_i915(dev)->rps.client_lock);
5132		list_del(&file_priv->rps.link);
5133		spin_unlock(&to_i915(dev)->rps.client_lock);
5134	}
5135}
5136
5137int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5138{
5139	struct drm_i915_file_private *file_priv;
5140	int ret;
5141
5142	DRM_DEBUG_DRIVER("\n");
5143
5144	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5145	if (!file_priv)
5146		return -ENOMEM;
5147
5148	file->driver_priv = file_priv;
5149	file_priv->dev_priv = dev->dev_private;
5150	file_priv->file = file;
5151	INIT_LIST_HEAD(&file_priv->rps.link);
5152
5153	spin_lock_init(&file_priv->mm.lock);
5154	INIT_LIST_HEAD(&file_priv->mm.request_list);
5155
5156	file_priv->bsd_ring = -1;
5157
5158	ret = i915_gem_context_open(dev, file);
5159	if (ret)
5160		kfree(file_priv);
5161
5162	return ret;
5163}
5164
5165/**
5166 * i915_gem_track_fb - update frontbuffer tracking
5167 * @old: current GEM buffer for the frontbuffer slots
5168 * @new: new GEM buffer for the frontbuffer slots
5169 * @frontbuffer_bits: bitmask of frontbuffer slots
5170 *
5171 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5172 * from @old and setting them in @new. Both @old and @new can be NULL.
5173 */
5174void i915_gem_track_fb(struct drm_i915_gem_object *old,
5175		       struct drm_i915_gem_object *new,
5176		       unsigned frontbuffer_bits)
5177{
 
 
 
 
 
 
 
 
 
5178	if (old) {
5179		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5180		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5181		old->frontbuffer_bits &= ~frontbuffer_bits;
5182	}
5183
5184	if (new) {
5185		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5186		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5187		new->frontbuffer_bits |= frontbuffer_bits;
5188	}
5189}
5190
5191/* All the new VM stuff */
5192u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5193			struct i915_address_space *vm)
 
5194{
5195	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5196	struct i915_vma *vma;
 
 
5197
5198	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
 
 
5199
5200	list_for_each_entry(vma, &o->vma_list, obj_link) {
5201		if (vma->is_ggtt &&
5202		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5203			continue;
5204		if (vma->vm == vm)
5205			return vma->node.start;
5206	}
5207
5208	WARN(1, "%s vma for this object not found.\n",
5209	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5210	return -1;
5211}
 
 
5212
5213u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5214				  const struct i915_ggtt_view *view)
5215{
5216	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5217	struct i915_vma *vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5218
5219	list_for_each_entry(vma, &o->vma_list, obj_link)
5220		if (vma->vm == ggtt &&
5221		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5222			return vma->node.start;
5223
5224	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5225	return -1;
 
5226}
5227
5228bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5229			struct i915_address_space *vm)
 
 
5230{
5231	struct i915_vma *vma;
 
 
5232
5233	list_for_each_entry(vma, &o->vma_list, obj_link) {
5234		if (vma->is_ggtt &&
5235		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5236			continue;
5237		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5238			return true;
5239	}
 
 
 
 
 
 
 
 
5240
5241	return false;
5242}
5243
5244bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5245				  const struct i915_ggtt_view *view)
5246{
5247	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5248	struct i915_vma *vma;
5249
5250	list_for_each_entry(vma, &o->vma_list, obj_link)
5251		if (vma->vm == ggtt &&
5252		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5253		    drm_mm_node_allocated(&vma->node))
5254			return true;
5255
5256	return false;
5257}
 
5258
5259bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5260{
5261	struct i915_vma *vma;
 
 
 
 
 
 
 
 
5262
5263	list_for_each_entry(vma, &o->vma_list, obj_link)
5264		if (drm_mm_node_allocated(&vma->node))
5265			return true;
 
 
 
 
 
 
5266
5267	return false;
5268}
 
 
5269
5270unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5271				struct i915_address_space *vm)
5272{
5273	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5274	struct i915_vma *vma;
5275
5276	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5277
5278	BUG_ON(list_empty(&o->vma_list));
 
5279
5280	list_for_each_entry(vma, &o->vma_list, obj_link) {
5281		if (vma->is_ggtt &&
5282		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5283			continue;
5284		if (vma->vm == vm)
5285			return vma->node.size;
 
5286	}
5287	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5288}
5289
5290bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
 
5291{
5292	struct i915_vma *vma;
5293	list_for_each_entry(vma, &obj->vma_list, obj_link)
5294		if (vma->pin_count > 0)
5295			return true;
5296
5297	return false;
 
 
 
5298}
5299
5300/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5301struct page *
5302i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
 
5303{
5304	struct page *page;
5305
5306	/* Only default objects have per-page dirty tracking */
5307	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5308		return NULL;
5309
5310	page = i915_gem_object_get_page(obj, n);
5311	set_page_dirty(page);
 
 
5312	return page;
5313}
5314
5315/* Allocate a new GEM object and fill it with the supplied data */
5316struct drm_i915_gem_object *
5317i915_gem_object_create_from_data(struct drm_device *dev,
5318			         const void *data, size_t size)
5319{
5320	struct drm_i915_gem_object *obj;
5321	struct sg_table *sg;
5322	size_t bytes;
5323	int ret;
5324
5325	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5326	if (IS_ERR_OR_NULL(obj))
5327		return obj;
5328
5329	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5330	if (ret)
5331		goto fail;
 
5332
5333	ret = i915_gem_object_get_pages(obj);
5334	if (ret)
5335		goto fail;
5336
5337	i915_gem_object_pin_pages(obj);
5338	sg = obj->pages;
5339	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5340	obj->dirty = 1;		/* Backing store is now out of date */
5341	i915_gem_object_unpin_pages(obj);
5342
5343	if (WARN_ON(bytes != size)) {
5344		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5345		ret = -EFAULT;
5346		goto fail;
 
 
 
 
 
 
 
 
5347	}
5348
5349	return obj;
 
 
 
5350
5351fail:
5352	drm_gem_object_unreference(&obj->base);
5353	return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5354}
v4.17
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drmP.h>
  29#include <drm/drm_vma_manager.h>
  30#include <drm/i915_drm.h>
  31#include "i915_drv.h"
  32#include "i915_gem_clflush.h"
  33#include "i915_vgpu.h"
  34#include "i915_trace.h"
  35#include "intel_drv.h"
  36#include "intel_frontbuffer.h"
  37#include "intel_mocs.h"
  38#include "i915_gemfs.h"
  39#include <linux/dma-fence-array.h>
  40#include <linux/kthread.h>
  41#include <linux/reservation.h>
  42#include <linux/shmem_fs.h>
  43#include <linux/slab.h>
  44#include <linux/stop_machine.h>
  45#include <linux/swap.h>
  46#include <linux/pci.h>
  47#include <linux/dma-buf.h>
  48
  49static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
  50
  51static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
 
 
 
 
 
 
 
 
  52{
  53	if (obj->cache_dirty)
  54		return false;
  55
  56	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
  57		return true;
  58
  59	return obj->pin_global; /* currently in use by HW, keep flushed */
  60}
  61
  62static int
  63insert_mappable_node(struct i915_ggtt *ggtt,
  64                     struct drm_mm_node *node, u32 size)
  65{
  66	memset(node, 0, sizeof(*node));
  67	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
  68					   size, 0, I915_COLOR_UNEVICTABLE,
  69					   0, ggtt->mappable_end,
  70					   DRM_MM_INSERT_LOW);
  71}
  72
  73static void
  74remove_mappable_node(struct drm_mm_node *node)
  75{
  76	drm_mm_remove_node(node);
  77}
  78
  79/* some bookkeeping */
  80static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  81				  u64 size)
  82{
  83	spin_lock(&dev_priv->mm.object_stat_lock);
  84	dev_priv->mm.object_count++;
  85	dev_priv->mm.object_memory += size;
  86	spin_unlock(&dev_priv->mm.object_stat_lock);
  87}
  88
  89static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  90				     u64 size)
  91{
  92	spin_lock(&dev_priv->mm.object_stat_lock);
  93	dev_priv->mm.object_count--;
  94	dev_priv->mm.object_memory -= size;
  95	spin_unlock(&dev_priv->mm.object_stat_lock);
  96}
  97
  98static int
  99i915_gem_wait_for_error(struct i915_gpu_error *error)
 100{
 101	int ret;
 102
 103	might_sleep();
 
 
 
 104
 105	/*
 106	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
 107	 * userspace. If it takes that long something really bad is going on and
 108	 * we should simply try to bail out and fail as gracefully as possible.
 109	 */
 110	ret = wait_event_interruptible_timeout(error->reset_queue,
 111					       !i915_reset_backoff(error),
 112					       I915_RESET_TIMEOUT);
 113	if (ret == 0) {
 114		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
 115		return -EIO;
 116	} else if (ret < 0) {
 117		return ret;
 118	} else {
 119		return 0;
 120	}
 
 
 
 121}
 122
 123int i915_mutex_lock_interruptible(struct drm_device *dev)
 124{
 125	struct drm_i915_private *dev_priv = to_i915(dev);
 126	int ret;
 127
 128	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
 129	if (ret)
 130		return ret;
 131
 132	ret = mutex_lock_interruptible(&dev->struct_mutex);
 133	if (ret)
 134		return ret;
 135
 
 136	return 0;
 137}
 138
 139int
 140i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 141			    struct drm_file *file)
 142{
 143	struct drm_i915_private *dev_priv = to_i915(dev);
 144	struct i915_ggtt *ggtt = &dev_priv->ggtt;
 145	struct drm_i915_gem_get_aperture *args = data;
 
 146	struct i915_vma *vma;
 147	u64 pinned;
 148
 149	pinned = ggtt->base.reserved;
 150	mutex_lock(&dev->struct_mutex);
 151	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
 152		if (i915_vma_is_pinned(vma))
 153			pinned += vma->node.size;
 154	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
 155		if (i915_vma_is_pinned(vma))
 156			pinned += vma->node.size;
 157	mutex_unlock(&dev->struct_mutex);
 158
 159	args->aper_size = ggtt->base.total;
 160	args->aper_available_size = args->aper_size - pinned;
 161
 162	return 0;
 163}
 164
 165static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
 
 166{
 167	struct address_space *mapping = obj->base.filp->f_mapping;
 168	drm_dma_handle_t *phys;
 169	struct sg_table *st;
 170	struct scatterlist *sg;
 171	char *vaddr;
 172	int i;
 173	int err;
 174
 175	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
 176		return -EINVAL;
 177
 178	/* Always aligning to the object size, allows a single allocation
 179	 * to handle all possible callers, and given typical object sizes,
 180	 * the alignment of the buddy allocation will naturally match.
 181	 */
 182	phys = drm_pci_alloc(obj->base.dev,
 183			     roundup_pow_of_two(obj->base.size),
 184			     roundup_pow_of_two(obj->base.size));
 185	if (!phys)
 186		return -ENOMEM;
 187
 188	vaddr = phys->vaddr;
 189	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 190		struct page *page;
 191		char *src;
 192
 193		page = shmem_read_mapping_page(mapping, i);
 194		if (IS_ERR(page)) {
 195			err = PTR_ERR(page);
 196			goto err_phys;
 197		}
 198
 199		src = kmap_atomic(page);
 200		memcpy(vaddr, src, PAGE_SIZE);
 201		drm_clflush_virt_range(vaddr, PAGE_SIZE);
 202		kunmap_atomic(src);
 203
 204		put_page(page);
 205		vaddr += PAGE_SIZE;
 206	}
 207
 208	i915_gem_chipset_flush(to_i915(obj->base.dev));
 209
 210	st = kmalloc(sizeof(*st), GFP_KERNEL);
 211	if (!st) {
 212		err = -ENOMEM;
 213		goto err_phys;
 214	}
 215
 216	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
 217		kfree(st);
 218		err = -ENOMEM;
 219		goto err_phys;
 220	}
 221
 222	sg = st->sgl;
 223	sg->offset = 0;
 224	sg->length = obj->base.size;
 225
 226	sg_dma_address(sg) = phys->busaddr;
 227	sg_dma_len(sg) = obj->base.size;
 228
 229	obj->phys_handle = phys;
 230
 231	__i915_gem_object_set_pages(obj, st, sg->length);
 232
 233	return 0;
 234
 235err_phys:
 236	drm_pci_free(obj->base.dev, phys);
 237
 238	return err;
 239}
 240
 241static void __start_cpu_write(struct drm_i915_gem_object *obj)
 242{
 243	obj->read_domains = I915_GEM_DOMAIN_CPU;
 244	obj->write_domain = I915_GEM_DOMAIN_CPU;
 245	if (cpu_write_needs_clflush(obj))
 246		obj->cache_dirty = true;
 247}
 248
 249static void
 250__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
 251				struct sg_table *pages,
 252				bool needs_clflush)
 253{
 254	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
 255
 256	if (obj->mm.madv == I915_MADV_DONTNEED)
 257		obj->mm.dirty = false;
 258
 259	if (needs_clflush &&
 260	    (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
 261	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
 262		drm_clflush_sg(pages);
 
 
 
 
 263
 264	__start_cpu_write(obj);
 265}
 266
 267static void
 268i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
 269			       struct sg_table *pages)
 270{
 271	__i915_gem_object_release_shmem(obj, pages, false);
 272
 273	if (obj->mm.dirty) {
 274		struct address_space *mapping = obj->base.filp->f_mapping;
 275		char *vaddr = obj->phys_handle->vaddr;
 276		int i;
 277
 278		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 279			struct page *page;
 280			char *dst;
 281
 282			page = shmem_read_mapping_page(mapping, i);
 283			if (IS_ERR(page))
 284				continue;
 285
 286			dst = kmap_atomic(page);
 287			drm_clflush_virt_range(vaddr, PAGE_SIZE);
 288			memcpy(dst, vaddr, PAGE_SIZE);
 289			kunmap_atomic(dst);
 290
 291			set_page_dirty(page);
 292			if (obj->mm.madv == I915_MADV_WILLNEED)
 293				mark_page_accessed(page);
 294			put_page(page);
 295			vaddr += PAGE_SIZE;
 296		}
 297		obj->mm.dirty = false;
 298	}
 299
 300	sg_free_table(pages);
 301	kfree(pages);
 302
 303	drm_pci_free(obj->base.dev, obj->phys_handle);
 304}
 305
 306static void
 307i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
 308{
 309	i915_gem_object_unpin_pages(obj);
 310}
 311
 312static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
 313	.get_pages = i915_gem_object_get_pages_phys,
 314	.put_pages = i915_gem_object_put_pages_phys,
 315	.release = i915_gem_object_release_phys,
 316};
 317
 318static const struct drm_i915_gem_object_ops i915_gem_object_ops;
 319
 320int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
 321{
 322	struct i915_vma *vma;
 323	LIST_HEAD(still_in_list);
 324	int ret;
 325
 326	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
 
 
 327
 328	/* Closed vma are removed from the obj->vma_list - but they may
 329	 * still have an active binding on the object. To remove those we
 330	 * must wait for all rendering to complete to the object (as unbinding
 331	 * must anyway), and retire the requests.
 332	 */
 333	ret = i915_gem_object_set_to_cpu_domain(obj, false);
 334	if (ret)
 335		return ret;
 336
 337	while ((vma = list_first_entry_or_null(&obj->vma_list,
 338					       struct i915_vma,
 339					       obj_link))) {
 340		list_move_tail(&vma->obj_link, &still_in_list);
 341		ret = i915_vma_unbind(vma);
 342		if (ret)
 343			break;
 344	}
 345	list_splice(&still_in_list, &obj->vma_list);
 346
 347	return ret;
 348}
 349
 350static long
 351i915_gem_object_wait_fence(struct dma_fence *fence,
 352			   unsigned int flags,
 353			   long timeout,
 354			   struct intel_rps_client *rps_client)
 355{
 356	struct i915_request *rq;
 357
 358	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
 359
 360	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
 361		return timeout;
 362
 363	if (!dma_fence_is_i915(fence))
 364		return dma_fence_wait_timeout(fence,
 365					      flags & I915_WAIT_INTERRUPTIBLE,
 366					      timeout);
 367
 368	rq = to_request(fence);
 369	if (i915_request_completed(rq))
 370		goto out;
 371
 372	/*
 373	 * This client is about to stall waiting for the GPU. In many cases
 374	 * this is undesirable and limits the throughput of the system, as
 375	 * many clients cannot continue processing user input/output whilst
 376	 * blocked. RPS autotuning may take tens of milliseconds to respond
 377	 * to the GPU load and thus incurs additional latency for the client.
 378	 * We can circumvent that by promoting the GPU frequency to maximum
 379	 * before we wait. This makes the GPU throttle up much more quickly
 380	 * (good for benchmarks and user experience, e.g. window animations),
 381	 * but at a cost of spending more power processing the workload
 382	 * (bad for battery). Not all clients even want their results
 383	 * immediately and for them we should just let the GPU select its own
 384	 * frequency to maximise efficiency. To prevent a single client from
 385	 * forcing the clocks too high for the whole system, we only allow
 386	 * each client to waitboost once in a busy period.
 387	 */
 388	if (rps_client && !i915_request_started(rq)) {
 389		if (INTEL_GEN(rq->i915) >= 6)
 390			gen6_rps_boost(rq, rps_client);
 391	}
 392
 393	timeout = i915_request_wait(rq, flags, timeout);
 394
 395out:
 396	if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
 397		i915_request_retire_upto(rq);
 398
 399	return timeout;
 400}
 401
 402static long
 403i915_gem_object_wait_reservation(struct reservation_object *resv,
 404				 unsigned int flags,
 405				 long timeout,
 406				 struct intel_rps_client *rps_client)
 407{
 408	unsigned int seq = __read_seqcount_begin(&resv->seq);
 409	struct dma_fence *excl;
 410	bool prune_fences = false;
 411
 412	if (flags & I915_WAIT_ALL) {
 413		struct dma_fence **shared;
 414		unsigned int count, i;
 415		int ret;
 416
 417		ret = reservation_object_get_fences_rcu(resv,
 418							&excl, &count, &shared);
 419		if (ret)
 420			return ret;
 421
 422		for (i = 0; i < count; i++) {
 423			timeout = i915_gem_object_wait_fence(shared[i],
 424							     flags, timeout,
 425							     rps_client);
 426			if (timeout < 0)
 427				break;
 428
 429			dma_fence_put(shared[i]);
 430		}
 431
 432		for (; i < count; i++)
 433			dma_fence_put(shared[i]);
 434		kfree(shared);
 435
 436		/*
 437		 * If both shared fences and an exclusive fence exist,
 438		 * then by construction the shared fences must be later
 439		 * than the exclusive fence. If we successfully wait for
 440		 * all the shared fences, we know that the exclusive fence
 441		 * must all be signaled. If all the shared fences are
 442		 * signaled, we can prune the array and recover the
 443		 * floating references on the fences/requests.
 444		 */
 445		prune_fences = count && timeout >= 0;
 446	} else {
 447		excl = reservation_object_get_excl_rcu(resv);
 448	}
 449
 450	if (excl && timeout >= 0)
 451		timeout = i915_gem_object_wait_fence(excl, flags, timeout,
 452						     rps_client);
 453
 454	dma_fence_put(excl);
 
 455
 456	/*
 457	 * Opportunistically prune the fences iff we know they have *all* been
 458	 * signaled and that the reservation object has not been changed (i.e.
 459	 * no new fences have been added).
 460	 */
 461	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
 462		if (reservation_object_trylock(resv)) {
 463			if (!__read_seqcount_retry(&resv->seq, seq))
 464				reservation_object_add_excl_fence(resv, NULL);
 465			reservation_object_unlock(resv);
 466		}
 467	}
 468
 469	return timeout;
 470}
 
 
 471
 472static void __fence_set_priority(struct dma_fence *fence, int prio)
 473{
 474	struct i915_request *rq;
 475	struct intel_engine_cs *engine;
 476
 477	if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
 478		return;
 479
 480	rq = to_request(fence);
 481	engine = rq->engine;
 482
 483	rcu_read_lock();
 484	if (engine->schedule)
 485		engine->schedule(rq, prio);
 486	rcu_read_unlock();
 487}
 488
 489static void fence_set_priority(struct dma_fence *fence, int prio)
 490{
 491	/* Recurse once into a fence-array */
 492	if (dma_fence_is_array(fence)) {
 493		struct dma_fence_array *array = to_dma_fence_array(fence);
 494		int i;
 495
 496		for (i = 0; i < array->num_fences; i++)
 497			__fence_set_priority(array->fences[i], prio);
 498	} else {
 499		__fence_set_priority(fence, prio);
 500	}
 501}
 502
 503int
 504i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
 505			      unsigned int flags,
 506			      int prio)
 507{
 508	struct dma_fence *excl;
 509
 510	if (flags & I915_WAIT_ALL) {
 511		struct dma_fence **shared;
 512		unsigned int count, i;
 513		int ret;
 514
 515		ret = reservation_object_get_fences_rcu(obj->resv,
 516							&excl, &count, &shared);
 517		if (ret)
 518			return ret;
 519
 520		for (i = 0; i < count; i++) {
 521			fence_set_priority(shared[i], prio);
 522			dma_fence_put(shared[i]);
 523		}
 524
 525		kfree(shared);
 526	} else {
 527		excl = reservation_object_get_excl_rcu(obj->resv);
 528	}
 529
 530	if (excl) {
 531		fence_set_priority(excl, prio);
 532		dma_fence_put(excl);
 533	}
 534	return 0;
 535}
 536
 537/**
 538 * Waits for rendering to the object to be completed
 539 * @obj: i915 gem object
 540 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 541 * @timeout: how long to wait
 542 * @rps_client: client (user process) to charge for any waitboosting
 543 */
 544int
 545i915_gem_object_wait(struct drm_i915_gem_object *obj,
 546		     unsigned int flags,
 547		     long timeout,
 548		     struct intel_rps_client *rps_client)
 549{
 550	might_sleep();
 551#if IS_ENABLED(CONFIG_LOCKDEP)
 552	GEM_BUG_ON(debug_locks &&
 553		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
 554		   !!(flags & I915_WAIT_LOCKED));
 555#endif
 556	GEM_BUG_ON(timeout < 0);
 557
 558	timeout = i915_gem_object_wait_reservation(obj->resv,
 559						   flags, timeout,
 560						   rps_client);
 561	return timeout < 0 ? timeout : 0;
 562}
 563
 564static struct intel_rps_client *to_rps_client(struct drm_file *file)
 565{
 566	struct drm_i915_file_private *fpriv = file->driver_priv;
 567
 568	return &fpriv->rps_client;
 569}
 570
 571static int
 572i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
 573		     struct drm_i915_gem_pwrite *args,
 574		     struct drm_file *file)
 575{
 
 576	void *vaddr = obj->phys_handle->vaddr + args->offset;
 577	char __user *user_data = u64_to_user_ptr(args->data_ptr);
 
 578
 579	/* We manually control the domain here and pretend that it
 580	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
 581	 */
 
 
 
 
 582	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 583	if (copy_from_user(vaddr, user_data, args->size))
 584		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 585
 586	drm_clflush_virt_range(vaddr, args->size);
 587	i915_gem_chipset_flush(to_i915(obj->base.dev));
 588
 589	intel_fb_obj_flush(obj, ORIGIN_CPU);
 590	return 0;
 
 591}
 592
 593void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
 594{
 
 595	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
 596}
 597
 598void i915_gem_object_free(struct drm_i915_gem_object *obj)
 599{
 600	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
 601	kmem_cache_free(dev_priv->objects, obj);
 602}
 603
 604static int
 605i915_gem_create(struct drm_file *file,
 606		struct drm_i915_private *dev_priv,
 607		uint64_t size,
 608		uint32_t *handle_p)
 609{
 610	struct drm_i915_gem_object *obj;
 611	int ret;
 612	u32 handle;
 613
 614	size = roundup(size, PAGE_SIZE);
 615	if (size == 0)
 616		return -EINVAL;
 617
 618	/* Allocate the new object */
 619	obj = i915_gem_object_create(dev_priv, size);
 620	if (IS_ERR(obj))
 621		return PTR_ERR(obj);
 622
 623	ret = drm_gem_handle_create(file, &obj->base, &handle);
 624	/* drop reference from allocate - handle holds it now */
 625	i915_gem_object_put(obj);
 626	if (ret)
 627		return ret;
 628
 629	*handle_p = handle;
 630	return 0;
 631}
 632
 633int
 634i915_gem_dumb_create(struct drm_file *file,
 635		     struct drm_device *dev,
 636		     struct drm_mode_create_dumb *args)
 637{
 638	/* have to work out size/pitch and return them */
 639	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
 640	args->size = args->pitch * args->height;
 641	return i915_gem_create(file, to_i915(dev),
 642			       args->size, &args->handle);
 643}
 644
 645static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
 646{
 647	return !(obj->cache_level == I915_CACHE_NONE ||
 648		 obj->cache_level == I915_CACHE_WT);
 649}
 650
 651/**
 652 * Creates a new mm object and returns a handle to it.
 653 * @dev: drm device pointer
 654 * @data: ioctl data blob
 655 * @file: drm file pointer
 656 */
 657int
 658i915_gem_create_ioctl(struct drm_device *dev, void *data,
 659		      struct drm_file *file)
 660{
 661	struct drm_i915_private *dev_priv = to_i915(dev);
 662	struct drm_i915_gem_create *args = data;
 663
 664	i915_gem_flush_free_objects(dev_priv);
 665
 666	return i915_gem_create(file, dev_priv,
 667			       args->size, &args->handle);
 668}
 669
 670static inline enum fb_op_origin
 671fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
 672{
 673	return (domain == I915_GEM_DOMAIN_GTT ?
 674		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
 675}
 676
 677void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
 678{
 679	/*
 680	 * No actual flushing is required for the GTT write domain for reads
 681	 * from the GTT domain. Writes to it "immediately" go to main memory
 682	 * as far as we know, so there's no chipset flush. It also doesn't
 683	 * land in the GPU render cache.
 684	 *
 685	 * However, we do have to enforce the order so that all writes through
 686	 * the GTT land before any writes to the device, such as updates to
 687	 * the GATT itself.
 688	 *
 689	 * We also have to wait a bit for the writes to land from the GTT.
 690	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
 691	 * timing. This issue has only been observed when switching quickly
 692	 * between GTT writes and CPU reads from inside the kernel on recent hw,
 693	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
 694	 * system agents we cannot reproduce this behaviour, until Cannonlake
 695	 * that was!).
 696	 */
 697
 698	wmb();
 699
 700	intel_runtime_pm_get(dev_priv);
 701	spin_lock_irq(&dev_priv->uncore.lock);
 702
 703	POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
 704
 705	spin_unlock_irq(&dev_priv->uncore.lock);
 706	intel_runtime_pm_put(dev_priv);
 707}
 708
 709static void
 710flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
 711{
 712	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
 713	struct i915_vma *vma;
 714
 715	if (!(obj->write_domain & flush_domains))
 716		return;
 717
 718	switch (obj->write_domain) {
 719	case I915_GEM_DOMAIN_GTT:
 720		i915_gem_flush_ggtt_writes(dev_priv);
 721
 722		intel_fb_obj_flush(obj,
 723				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
 724
 725		for_each_ggtt_vma(vma, obj) {
 726			if (vma->iomap)
 727				continue;
 728
 729			i915_vma_unset_ggtt_write(vma);
 730		}
 731		break;
 732
 733	case I915_GEM_DOMAIN_CPU:
 734		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
 735		break;
 736
 737	case I915_GEM_DOMAIN_RENDER:
 738		if (gpu_write_needs_clflush(obj))
 739			obj->cache_dirty = true;
 740		break;
 741	}
 742
 743	obj->write_domain = 0;
 744}
 745
 746static inline int
 747__copy_to_user_swizzled(char __user *cpu_vaddr,
 748			const char *gpu_vaddr, int gpu_offset,
 749			int length)
 750{
 751	int ret, cpu_offset = 0;
 752
 753	while (length > 0) {
 754		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 755		int this_length = min(cacheline_end - gpu_offset, length);
 756		int swizzled_gpu_offset = gpu_offset ^ 64;
 757
 758		ret = __copy_to_user(cpu_vaddr + cpu_offset,
 759				     gpu_vaddr + swizzled_gpu_offset,
 760				     this_length);
 761		if (ret)
 762			return ret + length;
 763
 764		cpu_offset += this_length;
 765		gpu_offset += this_length;
 766		length -= this_length;
 767	}
 768
 769	return 0;
 770}
 771
 772static inline int
 773__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
 774			  const char __user *cpu_vaddr,
 775			  int length)
 776{
 777	int ret, cpu_offset = 0;
 778
 779	while (length > 0) {
 780		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 781		int this_length = min(cacheline_end - gpu_offset, length);
 782		int swizzled_gpu_offset = gpu_offset ^ 64;
 783
 784		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
 785				       cpu_vaddr + cpu_offset,
 786				       this_length);
 787		if (ret)
 788			return ret + length;
 789
 790		cpu_offset += this_length;
 791		gpu_offset += this_length;
 792		length -= this_length;
 793	}
 794
 795	return 0;
 796}
 797
 798/*
 799 * Pins the specified object's pages and synchronizes the object with
 800 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 801 * flush the object from the CPU cache.
 802 */
 803int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
 804				    unsigned int *needs_clflush)
 805{
 806	int ret;
 807
 808	lockdep_assert_held(&obj->base.dev->struct_mutex);
 809
 810	*needs_clflush = 0;
 811	if (!i915_gem_object_has_struct_page(obj))
 812		return -ENODEV;
 813
 814	ret = i915_gem_object_wait(obj,
 815				   I915_WAIT_INTERRUPTIBLE |
 816				   I915_WAIT_LOCKED,
 817				   MAX_SCHEDULE_TIMEOUT,
 818				   NULL);
 819	if (ret)
 820		return ret;
 821
 822	ret = i915_gem_object_pin_pages(obj);
 823	if (ret)
 824		return ret;
 825
 826	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
 827	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 828		ret = i915_gem_object_set_to_cpu_domain(obj, false);
 
 829		if (ret)
 830			goto err_unpin;
 831		else
 832			goto out;
 833	}
 834
 835	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
 
 
 836
 837	/* If we're not in the cpu read domain, set ourself into the gtt
 838	 * read domain and manually flush cachelines (if required). This
 839	 * optimizes for the case when the gpu will dirty the data
 840	 * anyway again before the next pread happens.
 841	 */
 842	if (!obj->cache_dirty &&
 843	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
 844		*needs_clflush = CLFLUSH_BEFORE;
 845
 846out:
 847	/* return with the pages pinned */
 848	return 0;
 849
 850err_unpin:
 851	i915_gem_object_unpin_pages(obj);
 852	return ret;
 853}
 854
 855int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
 856				     unsigned int *needs_clflush)
 
 
 
 
 
 857{
 
 858	int ret;
 859
 860	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
 861
 862	*needs_clflush = 0;
 863	if (!i915_gem_object_has_struct_page(obj))
 864		return -ENODEV;
 
 
 
 
 
 865
 866	ret = i915_gem_object_wait(obj,
 867				   I915_WAIT_INTERRUPTIBLE |
 868				   I915_WAIT_LOCKED |
 869				   I915_WAIT_ALL,
 870				   MAX_SCHEDULE_TIMEOUT,
 871				   NULL);
 872	if (ret)
 873		return ret;
 874
 875	ret = i915_gem_object_pin_pages(obj);
 876	if (ret)
 877		return ret;
 878
 879	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
 880	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 881		ret = i915_gem_object_set_to_cpu_domain(obj, true);
 882		if (ret)
 883			goto err_unpin;
 884		else
 885			goto out;
 886	}
 887
 888	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
 889
 890	/* If we're not in the cpu write domain, set ourself into the
 891	 * gtt write domain and manually flush cachelines (as required).
 892	 * This optimizes for the case when the gpu will use the data
 893	 * right away and we therefore have to clflush anyway.
 894	 */
 895	if (!obj->cache_dirty) {
 896		*needs_clflush |= CLFLUSH_AFTER;
 897
 898		/*
 899		 * Same trick applies to invalidate partially written
 900		 * cachelines read before writing.
 901		 */
 902		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
 903			*needs_clflush |= CLFLUSH_BEFORE;
 904	}
 905
 906out:
 907	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 908	obj->mm.dirty = true;
 909	/* return with the pages pinned */
 910	return 0;
 911
 912err_unpin:
 913	i915_gem_object_unpin_pages(obj);
 914	return ret;
 915}
 916
 917static void
 918shmem_clflush_swizzled_range(char *addr, unsigned long length,
 919			     bool swizzled)
 920{
 921	if (unlikely(swizzled)) {
 922		unsigned long start = (unsigned long) addr;
 923		unsigned long end = (unsigned long) addr + length;
 924
 925		/* For swizzling simply ensure that we always flush both
 926		 * channels. Lame, but simple and it works. Swizzled
 927		 * pwrite/pread is far from a hotpath - current userspace
 928		 * doesn't use it at all. */
 929		start = round_down(start, 128);
 930		end = round_up(end, 128);
 931
 932		drm_clflush_virt_range((void *)start, end - start);
 933	} else {
 934		drm_clflush_virt_range(addr, length);
 935	}
 936
 937}
 938
 939/* Only difference to the fast-path function is that this can handle bit17
 940 * and uses non-atomic copy and kmap functions. */
 941static int
 942shmem_pread_slow(struct page *page, int offset, int length,
 943		 char __user *user_data,
 944		 bool page_do_bit17_swizzling, bool needs_clflush)
 945{
 946	char *vaddr;
 947	int ret;
 948
 949	vaddr = kmap(page);
 950	if (needs_clflush)
 951		shmem_clflush_swizzled_range(vaddr + offset, length,
 
 952					     page_do_bit17_swizzling);
 953
 954	if (page_do_bit17_swizzling)
 955		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
 
 
 956	else
 957		ret = __copy_to_user(user_data, vaddr + offset, length);
 
 
 958	kunmap(page);
 959
 960	return ret ? - EFAULT : 0;
 961}
 962
 963static int
 964shmem_pread(struct page *page, int offset, int length, char __user *user_data,
 965	    bool page_do_bit17_swizzling, bool needs_clflush)
 966{
 967	int ret;
 968
 969	ret = -ENODEV;
 970	if (!page_do_bit17_swizzling) {
 971		char *vaddr = kmap_atomic(page);
 972
 973		if (needs_clflush)
 974			drm_clflush_virt_range(vaddr + offset, length);
 975		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
 976		kunmap_atomic(vaddr);
 977	}
 978	if (ret == 0)
 979		return 0;
 980
 981	return shmem_pread_slow(page, offset, length, user_data,
 982				page_do_bit17_swizzling, needs_clflush);
 983}
 984
 985static int
 986i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 987		     struct drm_i915_gem_pread *args)
 988{
 989	char __user *user_data;
 990	u64 remain;
 991	unsigned int obj_do_bit17_swizzling;
 992	unsigned int needs_clflush;
 993	unsigned int idx, offset;
 994	int ret;
 
 
 995
 996	obj_do_bit17_swizzling = 0;
 997	if (i915_gem_object_needs_bit17_swizzle(obj))
 998		obj_do_bit17_swizzling = BIT(17);
 999
1000	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1001	if (ret)
1002		return ret;
1003
1004	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1005	mutex_unlock(&obj->base.dev->struct_mutex);
1006	if (ret)
1007		return ret;
1008
1009	remain = args->size;
1010	user_data = u64_to_user_ptr(args->data_ptr);
1011	offset = offset_in_page(args->offset);
1012	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1013		struct page *page = i915_gem_object_get_page(obj, idx);
1014		int length;
1015
1016		length = remain;
1017		if (offset + length > PAGE_SIZE)
1018			length = PAGE_SIZE - offset;
1019
1020		ret = shmem_pread(page, offset, length, user_data,
1021				  page_to_phys(page) & obj_do_bit17_swizzling,
1022				  needs_clflush);
1023		if (ret)
1024			break;
1025
1026		remain -= length;
1027		user_data += length;
1028		offset = 0;
1029	}
1030
1031	i915_gem_obj_finish_shmem_access(obj);
1032	return ret;
1033}
1034
1035static inline bool
1036gtt_user_read(struct io_mapping *mapping,
1037	      loff_t base, int offset,
1038	      char __user *user_data, int length)
1039{
1040	void __iomem *vaddr;
1041	unsigned long unwritten;
 
 
 
 
 
 
 
 
 
 
 
1042
1043	/* We can use the cpu mem copy function because this is X86. */
1044	vaddr = io_mapping_map_atomic_wc(mapping, base);
1045	unwritten = __copy_to_user_inatomic(user_data,
1046					    (void __force *)vaddr + offset,
1047					    length);
1048	io_mapping_unmap_atomic(vaddr);
1049	if (unwritten) {
1050		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1051		unwritten = copy_to_user(user_data,
1052					 (void __force *)vaddr + offset,
1053					 length);
1054		io_mapping_unmap(vaddr);
1055	}
1056	return unwritten;
1057}
1058
1059static int
1060i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1061		   const struct drm_i915_gem_pread *args)
1062{
1063	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1064	struct i915_ggtt *ggtt = &i915->ggtt;
1065	struct drm_mm_node node;
1066	struct i915_vma *vma;
1067	void __user *user_data;
1068	u64 remain, offset;
1069	int ret;
1070
1071	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1072	if (ret)
1073		return ret;
1074
1075	intel_runtime_pm_get(i915);
1076	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1077				       PIN_MAPPABLE |
1078				       PIN_NONFAULT |
1079				       PIN_NONBLOCK);
1080	if (!IS_ERR(vma)) {
1081		node.start = i915_ggtt_offset(vma);
1082		node.allocated = false;
1083		ret = i915_vma_put_fence(vma);
1084		if (ret) {
1085			i915_vma_unpin(vma);
1086			vma = ERR_PTR(ret);
1087		}
1088	}
1089	if (IS_ERR(vma)) {
1090		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1091		if (ret)
1092			goto out_unlock;
1093		GEM_BUG_ON(!node.allocated);
1094	}
1095
1096	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1097	if (ret)
1098		goto out_unpin;
1099
1100	mutex_unlock(&i915->drm.struct_mutex);
1101
1102	user_data = u64_to_user_ptr(args->data_ptr);
1103	remain = args->size;
1104	offset = args->offset;
1105
1106	while (remain > 0) {
1107		/* Operation in this page
1108		 *
1109		 * page_base = page offset within aperture
1110		 * page_offset = offset within page
1111		 * page_length = bytes to copy for this page
1112		 */
1113		u32 page_base = node.start;
1114		unsigned page_offset = offset_in_page(offset);
1115		unsigned page_length = PAGE_SIZE - page_offset;
1116		page_length = remain < page_length ? remain : page_length;
1117		if (node.allocated) {
1118			wmb();
1119			ggtt->base.insert_page(&ggtt->base,
1120					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1121					       node.start, I915_CACHE_NONE, 0);
1122			wmb();
1123		} else {
1124			page_base += offset & PAGE_MASK;
1125		}
1126
1127		if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1128				  user_data, page_length)) {
1129			ret = -EFAULT;
1130			break;
1131		}
1132
 
1133		remain -= page_length;
1134		user_data += page_length;
1135		offset += page_length;
1136	}
1137
1138	mutex_lock(&i915->drm.struct_mutex);
1139out_unpin:
1140	if (node.allocated) {
1141		wmb();
1142		ggtt->base.clear_range(&ggtt->base,
1143				       node.start, node.size);
1144		remove_mappable_node(&node);
1145	} else {
1146		i915_vma_unpin(vma);
1147	}
1148out_unlock:
1149	intel_runtime_pm_put(i915);
1150	mutex_unlock(&i915->drm.struct_mutex);
1151
1152	return ret;
1153}
1154
1155/**
1156 * Reads data from the object referenced by handle.
1157 * @dev: drm device pointer
1158 * @data: ioctl data blob
1159 * @file: drm file pointer
1160 *
1161 * On error, the contents of *data are undefined.
1162 */
1163int
1164i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1165		     struct drm_file *file)
1166{
1167	struct drm_i915_gem_pread *args = data;
1168	struct drm_i915_gem_object *obj;
1169	int ret;
1170
1171	if (args->size == 0)
1172		return 0;
1173
1174	if (!access_ok(VERIFY_WRITE,
1175		       u64_to_user_ptr(args->data_ptr),
1176		       args->size))
1177		return -EFAULT;
1178
1179	obj = i915_gem_object_lookup(file, args->handle);
1180	if (!obj)
1181		return -ENOENT;
 
 
 
 
 
 
1182
1183	/* Bounds check source.  */
1184	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 
1185		ret = -EINVAL;
1186		goto out;
1187	}
1188
1189	trace_i915_gem_object_pread(obj, args->offset, args->size);
1190
1191	ret = i915_gem_object_wait(obj,
1192				   I915_WAIT_INTERRUPTIBLE,
1193				   MAX_SCHEDULE_TIMEOUT,
1194				   to_rps_client(file));
1195	if (ret)
1196		goto out;
 
1197
1198	ret = i915_gem_object_pin_pages(obj);
1199	if (ret)
1200		goto out;
1201
1202	ret = i915_gem_shmem_pread(obj, args);
1203	if (ret == -EFAULT || ret == -ENODEV)
1204		ret = i915_gem_gtt_pread(obj, args);
1205
1206	i915_gem_object_unpin_pages(obj);
1207out:
1208	i915_gem_object_put(obj);
 
 
1209	return ret;
1210}
1211
1212/* This is the fast write path which cannot handle
1213 * page faults in the source data
1214 */
1215
1216static inline bool
1217ggtt_write(struct io_mapping *mapping,
1218	   loff_t base, int offset,
1219	   char __user *user_data, int length)
 
1220{
1221	void __iomem *vaddr;
 
1222	unsigned long unwritten;
1223
 
1224	/* We can use the cpu mem copy function because this is X86. */
1225	vaddr = io_mapping_map_atomic_wc(mapping, base);
1226	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1227						      user_data, length);
1228	io_mapping_unmap_atomic(vaddr);
1229	if (unwritten) {
1230		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1231		unwritten = copy_from_user((void __force *)vaddr + offset,
1232					   user_data, length);
1233		io_mapping_unmap(vaddr);
1234	}
1235
1236	return unwritten;
1237}
1238
1239/**
1240 * This is the fast pwrite path, where we copy the data directly from the
1241 * user into the GTT, uncached.
1242 * @obj: i915 GEM object
1243 * @args: pwrite arguments structure
1244 */
1245static int
1246i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1247			 const struct drm_i915_gem_pwrite *args)
 
 
1248{
1249	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1250	struct i915_ggtt *ggtt = &i915->ggtt;
1251	struct drm_mm_node node;
1252	struct i915_vma *vma;
1253	u64 remain, offset;
1254	void __user *user_data;
1255	int ret;
1256
1257	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1258	if (ret)
1259		return ret;
1260
1261	if (i915_gem_object_has_struct_page(obj)) {
1262		/*
1263		 * Avoid waking the device up if we can fallback, as
1264		 * waking/resuming is very slow (worst-case 10-100 ms
1265		 * depending on PCI sleeps and our own resume time).
1266		 * This easily dwarfs any performance advantage from
1267		 * using the cache bypass of indirect GGTT access.
1268		 */
1269		if (!intel_runtime_pm_get_if_in_use(i915)) {
1270			ret = -EFAULT;
1271			goto out_unlock;
1272		}
1273	} else {
1274		/* No backing pages, no fallback, we must force GGTT access */
1275		intel_runtime_pm_get(i915);
1276	}
1277
1278	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1279				       PIN_MAPPABLE |
1280				       PIN_NONFAULT |
1281				       PIN_NONBLOCK);
1282	if (!IS_ERR(vma)) {
1283		node.start = i915_ggtt_offset(vma);
1284		node.allocated = false;
1285		ret = i915_vma_put_fence(vma);
1286		if (ret) {
1287			i915_vma_unpin(vma);
1288			vma = ERR_PTR(ret);
1289		}
1290	}
1291	if (IS_ERR(vma)) {
1292		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1293		if (ret)
1294			goto out_rpm;
1295		GEM_BUG_ON(!node.allocated);
1296	}
1297
1298	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1299	if (ret)
1300		goto out_unpin;
1301
1302	mutex_unlock(&i915->drm.struct_mutex);
 
 
 
1303
1304	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1305
1306	user_data = u64_to_user_ptr(args->data_ptr);
1307	offset = args->offset;
1308	remain = args->size;
1309	while (remain) {
1310		/* Operation in this page
1311		 *
1312		 * page_base = page offset within aperture
1313		 * page_offset = offset within page
1314		 * page_length = bytes to copy for this page
1315		 */
1316		u32 page_base = node.start;
1317		unsigned int page_offset = offset_in_page(offset);
1318		unsigned int page_length = PAGE_SIZE - page_offset;
1319		page_length = remain < page_length ? remain : page_length;
1320		if (node.allocated) {
1321			wmb(); /* flush the write before we modify the GGTT */
1322			ggtt->base.insert_page(&ggtt->base,
1323					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1324					       node.start, I915_CACHE_NONE, 0);
1325			wmb(); /* flush modifications to the GGTT (insert_page) */
1326		} else {
1327			page_base += offset & PAGE_MASK;
1328		}
1329		/* If we get a fault while copying data, then (presumably) our
1330		 * source page isn't available.  Return the error and we'll
1331		 * retry in the slow path.
1332		 * If the object is non-shmem backed, we retry again with the
1333		 * path that handles page fault.
1334		 */
1335		if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1336			       user_data, page_length)) {
1337			ret = -EFAULT;
1338			break;
1339		}
1340
1341		remain -= page_length;
1342		user_data += page_length;
1343		offset += page_length;
1344	}
1345	intel_fb_obj_flush(obj, ORIGIN_CPU);
1346
1347	mutex_lock(&i915->drm.struct_mutex);
 
1348out_unpin:
1349	if (node.allocated) {
1350		wmb();
1351		ggtt->base.clear_range(&ggtt->base,
1352				       node.start, node.size);
1353		remove_mappable_node(&node);
1354	} else {
1355		i915_vma_unpin(vma);
1356	}
1357out_rpm:
1358	intel_runtime_pm_put(i915);
1359out_unlock:
1360	mutex_unlock(&i915->drm.struct_mutex);
1361	return ret;
1362}
1363
 
 
 
 
1364static int
1365shmem_pwrite_slow(struct page *page, int offset, int length,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366		  char __user *user_data,
1367		  bool page_do_bit17_swizzling,
1368		  bool needs_clflush_before,
1369		  bool needs_clflush_after)
1370{
1371	char *vaddr;
1372	int ret;
1373
1374	vaddr = kmap(page);
1375	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1376		shmem_clflush_swizzled_range(vaddr + offset, length,
 
1377					     page_do_bit17_swizzling);
1378	if (page_do_bit17_swizzling)
1379		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1380						length);
 
1381	else
1382		ret = __copy_from_user(vaddr + offset, user_data, length);
 
 
1383	if (needs_clflush_after)
1384		shmem_clflush_swizzled_range(vaddr + offset, length,
 
1385					     page_do_bit17_swizzling);
1386	kunmap(page);
1387
1388	return ret ? -EFAULT : 0;
1389}
1390
1391/* Per-page copy function for the shmem pwrite fastpath.
1392 * Flushes invalid cachelines before writing to the target if
1393 * needs_clflush_before is set and flushes out any written cachelines after
1394 * writing if needs_clflush is set.
1395 */
1396static int
1397shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1398	     bool page_do_bit17_swizzling,
1399	     bool needs_clflush_before,
1400	     bool needs_clflush_after)
1401{
1402	int ret;
 
 
 
 
 
 
 
 
 
 
 
1403
1404	ret = -ENODEV;
1405	if (!page_do_bit17_swizzling) {
1406		char *vaddr = kmap_atomic(page);
1407
1408		if (needs_clflush_before)
1409			drm_clflush_virt_range(vaddr + offset, len);
1410		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1411		if (needs_clflush_after)
1412			drm_clflush_virt_range(vaddr + offset, len);
1413
1414		kunmap_atomic(vaddr);
 
 
 
 
 
 
 
 
1415	}
1416	if (ret == 0)
 
 
 
 
 
 
 
1417		return ret;
1418
1419	return shmem_pwrite_slow(page, offset, len, user_data,
1420				 page_do_bit17_swizzling,
1421				 needs_clflush_before,
1422				 needs_clflush_after);
1423}
 
 
 
 
 
 
1424
1425static int
1426i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1427		      const struct drm_i915_gem_pwrite *args)
1428{
1429	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1430	void __user *user_data;
1431	u64 remain;
1432	unsigned int obj_do_bit17_swizzling;
1433	unsigned int partial_cacheline_write;
1434	unsigned int needs_clflush;
1435	unsigned int offset, idx;
1436	int ret;
1437
1438	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1439	if (ret)
1440		return ret;
 
 
 
1441
1442	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1443	mutex_unlock(&i915->drm.struct_mutex);
1444	if (ret)
1445		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446
1447	obj_do_bit17_swizzling = 0;
1448	if (i915_gem_object_needs_bit17_swizzle(obj))
1449		obj_do_bit17_swizzling = BIT(17);
 
 
 
1450
1451	/* If we don't overwrite a cacheline completely we need to be
1452	 * careful to have up-to-date data by first clflushing. Don't
1453	 * overcomplicate things and flush the entire patch.
1454	 */
1455	partial_cacheline_write = 0;
1456	if (needs_clflush & CLFLUSH_BEFORE)
1457		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1458
1459	user_data = u64_to_user_ptr(args->data_ptr);
1460	remain = args->size;
1461	offset = offset_in_page(args->offset);
1462	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1463		struct page *page = i915_gem_object_get_page(obj, idx);
1464		int length;
1465
1466		length = remain;
1467		if (offset + length > PAGE_SIZE)
1468			length = PAGE_SIZE - offset;
1469
1470		ret = shmem_pwrite(page, offset, length, user_data,
1471				   page_to_phys(page) & obj_do_bit17_swizzling,
1472				   (offset | length) & partial_cacheline_write,
1473				   needs_clflush & CLFLUSH_AFTER);
1474		if (ret)
1475			break;
 
 
 
 
 
 
 
 
 
1476
1477		remain -= length;
1478		user_data += length;
1479		offset = 0;
 
 
 
 
 
 
 
 
1480	}
1481
1482	intel_fb_obj_flush(obj, ORIGIN_CPU);
1483	i915_gem_obj_finish_shmem_access(obj);
 
 
 
 
1484	return ret;
1485}
1486
1487/**
1488 * Writes data to the object referenced by handle.
1489 * @dev: drm device
1490 * @data: ioctl data blob
1491 * @file: drm file
1492 *
1493 * On error, the contents of the buffer that were to be modified are undefined.
1494 */
1495int
1496i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1497		      struct drm_file *file)
1498{
 
1499	struct drm_i915_gem_pwrite *args = data;
1500	struct drm_i915_gem_object *obj;
1501	int ret;
1502
1503	if (args->size == 0)
1504		return 0;
1505
1506	if (!access_ok(VERIFY_READ,
1507		       u64_to_user_ptr(args->data_ptr),
1508		       args->size))
1509		return -EFAULT;
1510
1511	obj = i915_gem_object_lookup(file, args->handle);
1512	if (!obj)
1513		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1514
1515	/* Bounds check destination. */
1516	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
 
 
 
 
 
 
 
 
 
1517		ret = -EINVAL;
1518		goto err;
1519	}
1520
1521	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1522
1523	ret = -ENODEV;
1524	if (obj->ops->pwrite)
1525		ret = obj->ops->pwrite(obj, args);
1526	if (ret != -ENODEV)
1527		goto err;
1528
1529	ret = i915_gem_object_wait(obj,
1530				   I915_WAIT_INTERRUPTIBLE |
1531				   I915_WAIT_ALL,
1532				   MAX_SCHEDULE_TIMEOUT,
1533				   to_rps_client(file));
1534	if (ret)
1535		goto err;
1536
1537	ret = i915_gem_object_pin_pages(obj);
1538	if (ret)
1539		goto err;
1540
1541	ret = -EFAULT;
1542	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1543	 * it would end up going through the fenced access, and we'll get
1544	 * different detiling behavior between reading and writing.
1545	 * pread/pwrite currently are reading and writing from the CPU
1546	 * perspective, requiring manual detiling by the client.
1547	 */
1548	if (!i915_gem_object_has_struct_page(obj) ||
1549	    cpu_write_needs_clflush(obj))
 
 
1550		/* Note that the gtt paths might fail with non-page-backed user
1551		 * pointers (e.g. gtt mappings when moving data between
1552		 * textures). Fallback to the shmem path in that case.
1553		 */
1554		ret = i915_gem_gtt_pwrite_fast(obj, args);
1555
1556	if (ret == -EFAULT || ret == -ENOSPC) {
1557		if (obj->phys_handle)
1558			ret = i915_gem_phys_pwrite(obj, args, file);
1559		else
1560			ret = i915_gem_shmem_pwrite(obj, args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561	}
1562
1563	i915_gem_object_unpin_pages(obj);
1564err:
1565	i915_gem_object_put(obj);
1566	return ret;
1567}
1568
1569static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570{
1571	struct drm_i915_private *i915;
1572	struct list_head *list;
1573	struct i915_vma *vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1574
1575	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
 
 
1576
1577	for_each_ggtt_vma(vma, obj) {
1578		if (i915_vma_is_active(vma))
1579			continue;
1580
1581		if (!drm_mm_node_allocated(&vma->node))
1582			continue;
 
 
 
1583
1584		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
 
 
 
1585	}
1586
1587	i915 = to_i915(obj->base.dev);
1588	spin_lock(&i915->mm.obj_lock);
1589	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1590	list_move_tail(&obj->mm.link, list);
1591	spin_unlock(&i915->mm.obj_lock);
 
 
1592}
1593
1594/**
1595 * Called when user space prepares to use an object with the CPU, either
1596 * through the mmap ioctl's mapping or a GTT mapping.
1597 * @dev: drm device
1598 * @data: ioctl data blob
1599 * @file: drm file
1600 */
1601int
1602i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1603			  struct drm_file *file)
1604{
1605	struct drm_i915_gem_set_domain *args = data;
1606	struct drm_i915_gem_object *obj;
1607	uint32_t read_domains = args->read_domains;
1608	uint32_t write_domain = args->write_domain;
1609	int err;
1610
1611	/* Only handle setting domains to types used by the CPU. */
1612	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
 
 
 
1613		return -EINVAL;
1614
1615	/* Having something in the write domain implies it's in the read
1616	 * domain, and only that read domain.  Enforce that in the request.
1617	 */
1618	if (write_domain != 0 && read_domains != write_domain)
1619		return -EINVAL;
1620
1621	obj = i915_gem_object_lookup(file, args->handle);
1622	if (!obj)
1623		return -ENOENT;
 
 
 
 
 
 
1624
1625	/* Try to flush the object off the GPU without holding the lock.
1626	 * We will repeat the flush holding the lock in the normal manner
1627	 * to catch cases where we are gazumped.
1628	 */
1629	err = i915_gem_object_wait(obj,
1630				   I915_WAIT_INTERRUPTIBLE |
1631				   (write_domain ? I915_WAIT_ALL : 0),
1632				   MAX_SCHEDULE_TIMEOUT,
1633				   to_rps_client(file));
1634	if (err)
1635		goto out;
1636
1637	/*
1638	 * Proxy objects do not control access to the backing storage, ergo
1639	 * they cannot be used as a means to manipulate the cache domain
1640	 * tracking for that backing storage. The proxy object is always
1641	 * considered to be outside of any cache domain.
1642	 */
1643	if (i915_gem_object_is_proxy(obj)) {
1644		err = -ENXIO;
1645		goto out;
1646	}
1647
1648	/*
1649	 * Flush and acquire obj->pages so that we are coherent through
1650	 * direct access in memory with previous cached writes through
1651	 * shmemfs and that our cache domain tracking remains valid.
1652	 * For example, if the obj->filp was moved to swap without us
1653	 * being notified and releasing the pages, we would mistakenly
1654	 * continue to assume that the obj remained out of the CPU cached
1655	 * domain.
1656	 */
1657	err = i915_gem_object_pin_pages(obj);
1658	if (err)
1659		goto out;
1660
1661	err = i915_mutex_lock_interruptible(dev);
1662	if (err)
1663		goto out_unpin;
1664
1665	if (read_domains & I915_GEM_DOMAIN_WC)
1666		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1667	else if (read_domains & I915_GEM_DOMAIN_GTT)
1668		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1669	else
1670		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1671
1672	/* And bump the LRU for this access */
1673	i915_gem_object_bump_inactive_ggtt(obj);
1674
1675	mutex_unlock(&dev->struct_mutex);
1676
1677	if (write_domain != 0)
1678		intel_fb_obj_invalidate(obj,
1679					fb_write_origin(obj, write_domain));
 
1680
1681out_unpin:
1682	i915_gem_object_unpin_pages(obj);
1683out:
1684	i915_gem_object_put(obj);
1685	return err;
1686}
1687
1688/**
1689 * Called when user space has done writes to this buffer
1690 * @dev: drm device
1691 * @data: ioctl data blob
1692 * @file: drm file
1693 */
1694int
1695i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1696			 struct drm_file *file)
1697{
1698	struct drm_i915_gem_sw_finish *args = data;
1699	struct drm_i915_gem_object *obj;
 
1700
1701	obj = i915_gem_object_lookup(file, args->handle);
1702	if (!obj)
1703		return -ENOENT;
1704
1705	/*
1706	 * Proxy objects are barred from CPU access, so there is no
1707	 * need to ban sw_finish as it is a nop.
1708	 */
 
1709
1710	/* Pinned buffers may be scanout, so flush the cache */
1711	i915_gem_object_flush_if_display(obj);
1712	i915_gem_object_put(obj);
1713
1714	return 0;
 
 
 
1715}
1716
1717/**
1718 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1719 *			 it is mapped to.
1720 * @dev: drm device
1721 * @data: ioctl data blob
1722 * @file: drm file
1723 *
1724 * While the mapping holds a reference on the contents of the object, it doesn't
1725 * imply a ref on the object itself.
1726 *
1727 * IMPORTANT:
1728 *
1729 * DRM driver writers who look a this function as an example for how to do GEM
1730 * mmap support, please don't implement mmap support like here. The modern way
1731 * to implement DRM mmap support is with an mmap offset ioctl (like
1732 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1733 * That way debug tooling like valgrind will understand what's going on, hiding
1734 * the mmap call in a driver private ioctl will break that. The i915 driver only
1735 * does cpu mmaps this way because we didn't know better.
1736 */
1737int
1738i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1739		    struct drm_file *file)
1740{
1741	struct drm_i915_gem_mmap *args = data;
1742	struct drm_i915_gem_object *obj;
1743	unsigned long addr;
1744
1745	if (args->flags & ~(I915_MMAP_WC))
1746		return -EINVAL;
1747
1748	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1749		return -ENODEV;
1750
1751	obj = i915_gem_object_lookup(file, args->handle);
1752	if (!obj)
1753		return -ENOENT;
1754
1755	/* prime objects have no backing filp to GEM mmap
1756	 * pages from.
1757	 */
1758	if (!obj->base.filp) {
1759		i915_gem_object_put(obj);
1760		return -ENXIO;
1761	}
1762
1763	addr = vm_mmap(obj->base.filp, 0, args->size,
1764		       PROT_READ | PROT_WRITE, MAP_SHARED,
1765		       args->offset);
1766	if (args->flags & I915_MMAP_WC) {
1767		struct mm_struct *mm = current->mm;
1768		struct vm_area_struct *vma;
1769
1770		if (down_write_killable(&mm->mmap_sem)) {
1771			i915_gem_object_put(obj);
1772			return -EINTR;
1773		}
1774		vma = find_vma(mm, addr);
1775		if (vma)
1776			vma->vm_page_prot =
1777				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1778		else
1779			addr = -ENOMEM;
1780		up_write(&mm->mmap_sem);
1781
1782		/* This may race, but that's ok, it only gets set */
1783		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1784	}
1785	i915_gem_object_put(obj);
1786	if (IS_ERR((void *)addr))
1787		return addr;
1788
1789	args->addr_ptr = (uint64_t) addr;
1790
1791	return 0;
1792}
1793
1794static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1795{
1796	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1797}
1798
1799/**
1800 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1801 *
1802 * A history of the GTT mmap interface:
1803 *
1804 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1805 *     aligned and suitable for fencing, and still fit into the available
1806 *     mappable space left by the pinned display objects. A classic problem
1807 *     we called the page-fault-of-doom where we would ping-pong between
1808 *     two objects that could not fit inside the GTT and so the memcpy
1809 *     would page one object in at the expense of the other between every
1810 *     single byte.
1811 *
1812 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1813 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1814 *     object is too large for the available space (or simply too large
1815 *     for the mappable aperture!), a view is created instead and faulted
1816 *     into userspace. (This view is aligned and sized appropriately for
1817 *     fenced access.)
1818 *
1819 * 2 - Recognise WC as a separate cache domain so that we can flush the
1820 *     delayed writes via GTT before performing direct access via WC.
1821 *
1822 * Restrictions:
1823 *
1824 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1825 *    hangs on some architectures, corruption on others. An attempt to service
1826 *    a GTT page fault from a snoopable object will generate a SIGBUS.
1827 *
1828 *  * the object must be able to fit into RAM (physical memory, though no
1829 *    limited to the mappable aperture).
1830 *
1831 *
1832 * Caveats:
1833 *
1834 *  * a new GTT page fault will synchronize rendering from the GPU and flush
1835 *    all data to system memory. Subsequent access will not be synchronized.
1836 *
1837 *  * all mappings are revoked on runtime device suspend.
1838 *
1839 *  * there are only 8, 16 or 32 fence registers to share between all users
1840 *    (older machines require fence register for display and blitter access
1841 *    as well). Contention of the fence registers will cause the previous users
1842 *    to be unmapped and any new access will generate new page faults.
1843 *
1844 *  * running out of memory while servicing a fault may generate a SIGBUS,
1845 *    rather than the expected SIGSEGV.
1846 */
1847int i915_gem_mmap_gtt_version(void)
1848{
1849	return 2;
1850}
1851
1852static inline struct i915_ggtt_view
1853compute_partial_view(struct drm_i915_gem_object *obj,
1854		     pgoff_t page_offset,
1855		     unsigned int chunk)
1856{
1857	struct i915_ggtt_view view;
1858
1859	if (i915_gem_object_is_tiled(obj))
1860		chunk = roundup(chunk, tile_row_pages(obj));
1861
1862	view.type = I915_GGTT_VIEW_PARTIAL;
1863	view.partial.offset = rounddown(page_offset, chunk);
1864	view.partial.size =
1865		min_t(unsigned int, chunk,
1866		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1867
1868	/* If the partial covers the entire object, just create a normal VMA. */
1869	if (chunk >= obj->base.size >> PAGE_SHIFT)
1870		view.type = I915_GGTT_VIEW_NORMAL;
1871
1872	return view;
1873}
1874
1875/**
1876 * i915_gem_fault - fault a page into the GTT
 
1877 * @vmf: fault info
1878 *
1879 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1880 * from userspace.  The fault handler takes care of binding the object to
1881 * the GTT (if needed), allocating and programming a fence register (again,
1882 * only if needed based on whether the old reg is still valid or the object
1883 * is tiled) and inserting a new PTE into the faulting process.
1884 *
1885 * Note that the faulting process may involve evicting existing objects
1886 * from the GTT and/or fence registers to make room.  So performance may
1887 * suffer if the GTT working set is large or there are few fence registers
1888 * left.
1889 *
1890 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1891 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1892 */
1893int i915_gem_fault(struct vm_fault *vmf)
1894{
1895#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1896	struct vm_area_struct *area = vmf->vma;
1897	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1898	struct drm_device *dev = obj->base.dev;
1899	struct drm_i915_private *dev_priv = to_i915(dev);
1900	struct i915_ggtt *ggtt = &dev_priv->ggtt;
 
 
 
1901	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1902	struct i915_vma *vma;
1903	pgoff_t page_offset;
1904	unsigned int flags;
1905	int ret;
1906
1907	/* We don't use vmf->pgoff since that has the fake offset */
1908	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
 
 
 
 
 
1909
1910	trace_i915_gem_object_fault(obj, page_offset, true, write);
1911
1912	/* Try to flush the object off the GPU first without holding the lock.
1913	 * Upon acquiring the lock, we will perform our sanity checks and then
1914	 * repeat the flush holding the lock in the normal manner to catch cases
1915	 * where we are gazumped.
1916	 */
1917	ret = i915_gem_object_wait(obj,
1918				   I915_WAIT_INTERRUPTIBLE,
1919				   MAX_SCHEDULE_TIMEOUT,
1920				   NULL);
1921	if (ret)
1922		goto err;
1923
1924	ret = i915_gem_object_pin_pages(obj);
1925	if (ret)
1926		goto err;
1927
1928	intel_runtime_pm_get(dev_priv);
1929
1930	ret = i915_mutex_lock_interruptible(dev);
1931	if (ret)
1932		goto err_rpm;
1933
1934	/* Access to snoopable pages through the GTT is incoherent. */
1935	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1936		ret = -EFAULT;
1937		goto err_unlock;
1938	}
1939
1940	/* If the object is smaller than a couple of partial vma, it is
1941	 * not worth only creating a single partial vma - we may as well
1942	 * clear enough space for the full object.
1943	 */
1944	flags = PIN_MAPPABLE;
1945	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1946		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1947
1948	/* Now pin it into the GTT as needed */
1949	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1950	if (IS_ERR(vma)) {
1951		/* Use a partial view if it is bigger than available space */
1952		struct i915_ggtt_view view =
1953			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1954
1955		/* Userspace is now writing through an untracked VMA, abandon
1956		 * all hope that the hardware is able to track future writes.
1957		 */
1958		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1959
1960		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1961	}
1962	if (IS_ERR(vma)) {
1963		ret = PTR_ERR(vma);
1964		goto err_unlock;
1965	}
1966
1967	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1968	if (ret)
1969		goto err_unpin;
1970
1971	ret = i915_vma_pin_fence(vma);
1972	if (ret)
1973		goto err_unpin;
1974
1975	/* Finally, remap it using the new GTT offset */
1976	ret = remap_io_mapping(area,
1977			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1978			       (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1979			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1980			       &ggtt->iomap);
1981	if (ret)
1982		goto err_fence;
1983
1984	/* Mark as being mmapped into userspace for later revocation */
1985	assert_rpm_wakelock_held(dev_priv);
1986	if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1987		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1988	GEM_BUG_ON(!obj->userfault_count);
 
 
 
 
 
 
1989
1990	i915_vma_set_ggtt_write(vma);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991
1992err_fence:
1993	i915_vma_unpin_fence(vma);
1994err_unpin:
1995	__i915_vma_unpin(vma);
1996err_unlock:
 
 
 
 
1997	mutex_unlock(&dev->struct_mutex);
1998err_rpm:
1999	intel_runtime_pm_put(dev_priv);
2000	i915_gem_object_unpin_pages(obj);
2001err:
2002	switch (ret) {
2003	case -EIO:
2004		/*
2005		 * We eat errors when the gpu is terminally wedged to avoid
2006		 * userspace unduly crashing (gl has no provisions for mmaps to
2007		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2008		 * and so needs to be reported.
2009		 */
2010		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2011			ret = VM_FAULT_SIGBUS;
2012			break;
2013		}
2014	case -EAGAIN:
2015		/*
2016		 * EAGAIN means the gpu is hung and we'll wait for the error
2017		 * handler to reset everything when re-faulting in
2018		 * i915_mutex_lock_interruptible.
2019		 */
2020	case 0:
2021	case -ERESTARTSYS:
2022	case -EINTR:
2023	case -EBUSY:
2024		/*
2025		 * EBUSY is ok: this just means that another thread
2026		 * already did the job.
2027		 */
2028		ret = VM_FAULT_NOPAGE;
2029		break;
2030	case -ENOMEM:
2031		ret = VM_FAULT_OOM;
2032		break;
2033	case -ENOSPC:
2034	case -EFAULT:
2035		ret = VM_FAULT_SIGBUS;
2036		break;
2037	default:
2038		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2039		ret = VM_FAULT_SIGBUS;
2040		break;
2041	}
 
 
2042	return ret;
2043}
2044
2045static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2046{
2047	struct i915_vma *vma;
2048
2049	GEM_BUG_ON(!obj->userfault_count);
2050
2051	obj->userfault_count = 0;
2052	list_del(&obj->userfault_link);
2053	drm_vma_node_unmap(&obj->base.vma_node,
2054			   obj->base.dev->anon_inode->i_mapping);
2055
2056	for_each_ggtt_vma(vma, obj)
2057		i915_vma_unset_userfault(vma);
2058}
2059
2060/**
2061 * i915_gem_release_mmap - remove physical page mappings
2062 * @obj: obj in question
2063 *
2064 * Preserve the reservation of the mmapping with the DRM core code, but
2065 * relinquish ownership of the pages back to the system.
2066 *
2067 * It is vital that we remove the page mapping if we have mapped a tiled
2068 * object through the GTT and then lose the fence register due to
2069 * resource pressure. Similarly if the object has been moved out of the
2070 * aperture, than pages mapped into userspace must be revoked. Removing the
2071 * mapping will then trigger a page fault on the next user access, allowing
2072 * fixup by i915_gem_fault().
2073 */
2074void
2075i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2076{
2077	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2078
2079	/* Serialisation between user GTT access and our code depends upon
2080	 * revoking the CPU's PTE whilst the mutex is held. The next user
2081	 * pagefault then has to wait until we release the mutex.
2082	 *
2083	 * Note that RPM complicates somewhat by adding an additional
2084	 * requirement that operations to the GGTT be made holding the RPM
2085	 * wakeref.
2086	 */
2087	lockdep_assert_held(&i915->drm.struct_mutex);
2088	intel_runtime_pm_get(i915);
2089
2090	if (!obj->userfault_count)
2091		goto out;
 
2092
2093	__i915_gem_object_release_mmap(obj);
 
 
 
 
2094
2095	/* Ensure that the CPU's PTE are revoked and there are not outstanding
2096	 * memory transactions from userspace before we return. The TLB
2097	 * flushing implied above by changing the PTE above *should* be
2098	 * sufficient, an extra barrier here just provides us with a bit
2099	 * of paranoid documentation about our requirement to serialise
2100	 * memory writes before touching registers / GSM.
2101	 */
2102	wmb();
2103
2104out:
2105	intel_runtime_pm_put(i915);
2106}
2107
2108void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
2109{
2110	struct drm_i915_gem_object *obj, *on;
2111	int i;
 
 
 
 
 
2112
2113	/*
2114	 * Only called during RPM suspend. All users of the userfault_list
2115	 * must be holding an RPM wakeref to ensure that this can not
2116	 * run concurrently with themselves (and use the struct_mutex for
2117	 * protection between themselves).
2118	 */
2119
2120	list_for_each_entry_safe(obj, on,
2121				 &dev_priv->mm.userfault_list, userfault_link)
2122		__i915_gem_object_release_mmap(obj);
2123
2124	/* The fence will be lost when the device powers down. If any were
2125	 * in use by hardware (i.e. they are pinned), we should not be powering
2126	 * down! All other fences will be reacquired by the user upon waking.
2127	 */
2128	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2129		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2130
2131		/* Ideally we want to assert that the fence register is not
2132		 * live at this point (i.e. that no piece of code will be
2133		 * trying to write through fence + GTT, as that both violates
2134		 * our tracking of activity and associated locking/barriers,
2135		 * but also is illegal given that the hw is powered down).
2136		 *
2137		 * Previously we used reg->pin_count as a "liveness" indicator.
2138		 * That is not sufficient, and we need a more fine-grained
2139		 * tool if we want to have a sanity check here.
2140		 */
2141
2142		if (!reg->vma)
2143			continue;
2144
2145		GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2146		reg->dirty = true;
2147	}
2148}
2149
2150static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2151{
2152	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2153	int err;
2154
2155	err = drm_gem_create_mmap_offset(&obj->base);
2156	if (likely(!err))
2157		return 0;
2158
2159	/* Attempt to reap some mmap space from dead objects */
2160	do {
2161		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2162		if (err)
2163			break;
2164
2165		i915_gem_drain_freed_objects(dev_priv);
2166		err = drm_gem_create_mmap_offset(&obj->base);
2167		if (!err)
2168			break;
 
 
 
 
 
 
 
 
 
 
 
2169
2170	} while (flush_delayed_work(&dev_priv->gt.retire_work));
 
 
 
2171
2172	return err;
2173}
2174
2175static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2176{
2177	drm_gem_free_mmap_offset(&obj->base);
2178}
2179
2180int
2181i915_gem_mmap_gtt(struct drm_file *file,
2182		  struct drm_device *dev,
2183		  uint32_t handle,
2184		  uint64_t *offset)
2185{
2186	struct drm_i915_gem_object *obj;
2187	int ret;
2188
2189	obj = i915_gem_object_lookup(file, handle);
2190	if (!obj)
2191		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
2192
2193	ret = i915_gem_object_create_mmap_offset(obj);
2194	if (ret == 0)
2195		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
 
 
2196
2197	i915_gem_object_put(obj);
 
 
 
2198	return ret;
2199}
2200
2201/**
2202 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2203 * @dev: DRM device
2204 * @data: GTT mapping ioctl data
2205 * @file: GEM object info
2206 *
2207 * Simply returns the fake offset to userspace so it can mmap it.
2208 * The mmap call will end up in drm_gem_mmap(), which will set things
2209 * up so we can get faults in the handler above.
2210 *
2211 * The fault handler will take care of binding the object into the GTT
2212 * (since it may have been evicted to make room for something), allocating
2213 * a fence register, and mapping the appropriate aperture address into
2214 * userspace.
2215 */
2216int
2217i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2218			struct drm_file *file)
2219{
2220	struct drm_i915_gem_mmap_gtt *args = data;
2221
2222	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2223}
2224
2225/* Immediately discard the backing storage */
2226static void
2227i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2228{
2229	i915_gem_object_free_mmap_offset(obj);
2230
2231	if (obj->base.filp == NULL)
2232		return;
2233
2234	/* Our goal here is to return as much of the memory as
2235	 * is possible back to the system as we are called from OOM.
2236	 * To do this we must instruct the shmfs to drop all of its
2237	 * backing pages, *now*.
2238	 */
2239	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2240	obj->mm.madv = __I915_MADV_PURGED;
2241	obj->mm.pages = ERR_PTR(-EFAULT);
2242}
2243
2244/* Try to discard unwanted pages */
2245void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
 
2246{
2247	struct address_space *mapping;
2248
2249	lockdep_assert_held(&obj->mm.lock);
2250	GEM_BUG_ON(i915_gem_object_has_pages(obj));
2251
2252	switch (obj->mm.madv) {
2253	case I915_MADV_DONTNEED:
2254		i915_gem_object_truncate(obj);
2255	case __I915_MADV_PURGED:
2256		return;
2257	}
2258
2259	if (obj->base.filp == NULL)
2260		return;
2261
2262	mapping = obj->base.filp->f_mapping,
2263	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2264}
2265
2266static void
2267i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2268			      struct sg_table *pages)
2269{
2270	struct sgt_iter sgt_iter;
2271	struct page *page;
 
 
2272
2273	__i915_gem_object_release_shmem(obj, pages, true);
 
 
 
 
 
 
 
 
2274
2275	i915_gem_gtt_finish_pages(obj, pages);
2276
2277	if (i915_gem_object_needs_bit17_swizzle(obj))
2278		i915_gem_object_save_bit_17_swizzle(obj, pages);
2279
2280	for_each_sgt_page(page, sgt_iter, pages) {
2281		if (obj->mm.dirty)
 
 
 
 
 
2282			set_page_dirty(page);
2283
2284		if (obj->mm.madv == I915_MADV_WILLNEED)
2285			mark_page_accessed(page);
2286
2287		put_page(page);
2288	}
2289	obj->mm.dirty = false;
2290
2291	sg_free_table(pages);
2292	kfree(pages);
2293}
2294
2295static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
 
2296{
2297	struct radix_tree_iter iter;
2298	void __rcu **slot;
2299
2300	rcu_read_lock();
2301	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2302		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2303	rcu_read_unlock();
2304}
2305
2306void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2307				 enum i915_mm_subclass subclass)
2308{
2309	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2310	struct sg_table *pages;
2311
2312	if (i915_gem_object_has_pinned_pages(obj))
2313		return;
2314
2315	GEM_BUG_ON(obj->bind_count);
2316	if (!i915_gem_object_has_pages(obj))
2317		return;
2318
2319	/* May be called by shrinker from within get_pages() (on another bo) */
2320	mutex_lock_nested(&obj->mm.lock, subclass);
2321	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2322		goto unlock;
2323
2324	/* ->put_pages might need to allocate memory for the bit17 swizzle
2325	 * array, hence protect them from being reaped by removing them from gtt
2326	 * lists early. */
2327	pages = fetch_and_zero(&obj->mm.pages);
2328	GEM_BUG_ON(!pages);
2329
2330	spin_lock(&i915->mm.obj_lock);
2331	list_del(&obj->mm.link);
2332	spin_unlock(&i915->mm.obj_lock);
2333
2334	if (obj->mm.mapping) {
2335		void *ptr;
2336
2337		ptr = page_mask_bits(obj->mm.mapping);
2338		if (is_vmalloc_addr(ptr))
2339			vunmap(ptr);
2340		else
2341			kunmap(kmap_to_page(ptr));
2342
2343		obj->mm.mapping = NULL;
2344	}
2345
2346	__i915_gem_object_reset_page_iter(obj);
2347
2348	if (!IS_ERR(pages))
2349		obj->ops->put_pages(obj, pages);
2350
2351	obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2352
2353unlock:
2354	mutex_unlock(&obj->mm.lock);
2355}
2356
2357static bool i915_sg_trim(struct sg_table *orig_st)
2358{
2359	struct sg_table new_st;
2360	struct scatterlist *sg, *new_sg;
2361	unsigned int i;
2362
2363	if (orig_st->nents == orig_st->orig_nents)
2364		return false;
2365
2366	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2367		return false;
2368
2369	new_sg = new_st.sgl;
2370	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2371		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2372		/* called before being DMA mapped, no need to copy sg->dma_* */
2373		new_sg = sg_next(new_sg);
2374	}
2375	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2376
2377	sg_free_table(orig_st);
2378
2379	*orig_st = new_st;
2380	return true;
2381}
2382
2383static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2384{
2385	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2386	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2387	unsigned long i;
2388	struct address_space *mapping;
2389	struct sg_table *st;
2390	struct scatterlist *sg;
2391	struct sgt_iter sgt_iter;
2392	struct page *page;
2393	unsigned long last_pfn = 0;	/* suppress gcc warning */
2394	unsigned int max_segment = i915_sg_segment_size();
2395	unsigned int sg_page_sizes;
2396	gfp_t noreclaim;
2397	int ret;
 
2398
2399	/* Assert that the object is not currently in any GPU domain. As it
2400	 * wasn't in the GTT, there shouldn't be any way it could have been in
2401	 * a GPU cache
2402	 */
2403	GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2404	GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2405
2406	st = kmalloc(sizeof(*st), GFP_KERNEL);
2407	if (st == NULL)
2408		return -ENOMEM;
2409
2410rebuild_st:
2411	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2412		kfree(st);
2413		return -ENOMEM;
2414	}
2415
2416	/* Get the list of pages out of our struct file.  They'll be pinned
2417	 * at this point until we release them.
2418	 *
2419	 * Fail silently without starting the shrinker
2420	 */
2421	mapping = obj->base.filp->f_mapping;
2422	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2423	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2424
2425	sg = st->sgl;
2426	st->nents = 0;
2427	sg_page_sizes = 0;
2428	for (i = 0; i < page_count; i++) {
2429		const unsigned int shrink[] = {
2430			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2431			0,
2432		}, *s = shrink;
2433		gfp_t gfp = noreclaim;
2434
2435		do {
2436			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2437			if (likely(!IS_ERR(page)))
2438				break;
2439
2440			if (!*s) {
2441				ret = PTR_ERR(page);
2442				goto err_sg;
2443			}
2444
2445			i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2446			cond_resched();
2447
2448			/* We've tried hard to allocate the memory by reaping
2449			 * our own buffer, now let the real VM do its job and
2450			 * go down in flames if truly OOM.
2451			 *
2452			 * However, since graphics tend to be disposable,
2453			 * defer the oom here by reporting the ENOMEM back
2454			 * to userspace.
2455			 */
2456			if (!*s) {
2457				/* reclaim and warn, but no oom */
2458				gfp = mapping_gfp_mask(mapping);
2459
2460				/* Our bo are always dirty and so we require
2461				 * kswapd to reclaim our pages (direct reclaim
2462				 * does not effectively begin pageout of our
2463				 * buffers on its own). However, direct reclaim
2464				 * only waits for kswapd when under allocation
2465				 * congestion. So as a result __GFP_RECLAIM is
2466				 * unreliable and fails to actually reclaim our
2467				 * dirty pages -- unless you try over and over
2468				 * again with !__GFP_NORETRY. However, we still
2469				 * want to fail this allocation rather than
2470				 * trigger the out-of-memory killer and for
2471				 * this we want __GFP_RETRY_MAYFAIL.
2472				 */
2473				gfp |= __GFP_RETRY_MAYFAIL;
2474			}
2475		} while (1);
2476
2477		if (!i ||
2478		    sg->length >= max_segment ||
2479		    page_to_pfn(page) != last_pfn + 1) {
2480			if (i) {
2481				sg_page_sizes |= sg->length;
 
 
 
 
2482				sg = sg_next(sg);
2483			}
2484			st->nents++;
2485			sg_set_page(sg, page, PAGE_SIZE, 0);
2486		} else {
2487			sg->length += PAGE_SIZE;
2488		}
2489		last_pfn = page_to_pfn(page);
2490
2491		/* Check that the i965g/gm workaround works. */
2492		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2493	}
2494	if (sg) { /* loop terminated early; short sg table */
2495		sg_page_sizes |= sg->length;
 
2496		sg_mark_end(sg);
2497	}
2498
2499	/* Trim unused sg entries to avoid wasting memory. */
2500	i915_sg_trim(st);
2501
2502	ret = i915_gem_gtt_prepare_pages(obj, st);
2503	if (ret) {
2504		/* DMA remapping failed? One possible cause is that
2505		 * it could not reserve enough large entries, asking
2506		 * for PAGE_SIZE chunks instead may be helpful.
2507		 */
2508		if (max_segment > PAGE_SIZE) {
2509			for_each_sgt_page(page, sgt_iter, st)
2510				put_page(page);
2511			sg_free_table(st);
2512
2513			max_segment = PAGE_SIZE;
2514			goto rebuild_st;
2515		} else {
2516			dev_warn(&dev_priv->drm.pdev->dev,
2517				 "Failed to DMA remap %lu pages\n",
2518				 page_count);
2519			goto err_pages;
2520		}
2521	}
2522
2523	if (i915_gem_object_needs_bit17_swizzle(obj))
2524		i915_gem_object_do_bit_17_swizzle(obj, st);
2525
2526	__i915_gem_object_set_pages(obj, st, sg_page_sizes);
 
 
2527
2528	return 0;
2529
2530err_sg:
2531	sg_mark_end(sg);
2532err_pages:
2533	for_each_sgt_page(page, sgt_iter, st)
2534		put_page(page);
2535	sg_free_table(st);
2536	kfree(st);
2537
2538	/* shmemfs first checks if there is enough memory to allocate the page
2539	 * and reports ENOSPC should there be insufficient, along with the usual
2540	 * ENOMEM for a genuine allocation failure.
2541	 *
2542	 * We use ENOSPC in our driver to mean that we have run out of aperture
2543	 * space and so want to translate the error from shmemfs back to our
2544	 * usual understanding of ENOMEM.
2545	 */
2546	if (ret == -ENOSPC)
2547		ret = -ENOMEM;
2548
2549	return ret;
2550}
2551
2552void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2553				 struct sg_table *pages,
2554				 unsigned int sg_page_sizes)
 
 
 
 
 
 
2555{
2556	struct drm_i915_private *i915 = to_i915(obj->base.dev);
2557	unsigned long supported = INTEL_INFO(i915)->page_sizes;
2558	int i;
 
 
 
2559
2560	lockdep_assert_held(&obj->mm.lock);
 
 
 
2561
2562	obj->mm.get_page.sg_pos = pages->sgl;
2563	obj->mm.get_page.sg_idx = 0;
2564
2565	obj->mm.pages = pages;
 
 
2566
2567	if (i915_gem_object_is_tiled(obj) &&
2568	    i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2569		GEM_BUG_ON(obj->mm.quirked);
2570		__i915_gem_object_pin_pages(obj);
2571		obj->mm.quirked = true;
2572	}
2573
2574	GEM_BUG_ON(!sg_page_sizes);
2575	obj->mm.page_sizes.phys = sg_page_sizes;
2576
2577	/*
2578	 * Calculate the supported page-sizes which fit into the given
2579	 * sg_page_sizes. This will give us the page-sizes which we may be able
2580	 * to use opportunistically when later inserting into the GTT. For
2581	 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2582	 * 64K or 4K pages, although in practice this will depend on a number of
2583	 * other factors.
2584	 */
2585	obj->mm.page_sizes.sg = 0;
2586	for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2587		if (obj->mm.page_sizes.phys & ~0u << i)
2588			obj->mm.page_sizes.sg |= BIT(i);
2589	}
2590	GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2591
2592	spin_lock(&i915->mm.obj_lock);
2593	list_add(&obj->mm.link, &i915->mm.unbound_list);
2594	spin_unlock(&i915->mm.obj_lock);
2595}
2596
2597static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
 
2598{
2599	int err;
 
 
 
 
 
 
 
 
 
 
 
2600
2601	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2602		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2603		return -EFAULT;
2604	}
2605
2606	err = obj->ops->get_pages(obj);
2607	GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
 
 
 
2608
2609	return err;
 
2610}
2611
2612/* Ensure that the associated pages are gathered from the backing storage
2613 * and pinned into our object. i915_gem_object_pin_pages() may be called
2614 * multiple times before they are released by a single call to
2615 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2616 * either as a result of memory pressure (reaping pages under the shrinker)
2617 * or as the object is itself released.
2618 */
2619int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2620{
2621	int err;
 
 
 
 
 
 
2622
2623	err = mutex_lock_interruptible(&obj->mm.lock);
2624	if (err)
2625		return err;
2626
2627	if (unlikely(!i915_gem_object_has_pages(obj))) {
2628		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
 
2629
2630		err = ____i915_gem_object_get_pages(obj);
2631		if (err)
2632			goto unlock;
 
 
 
2633
2634		smp_mb__before_atomic();
 
 
2635	}
2636	atomic_inc(&obj->mm.pages_pin_count);
2637
2638unlock:
2639	mutex_unlock(&obj->mm.lock);
2640	return err;
2641}
2642
2643/* The 'mapping' part of i915_gem_object_pin_map() below */
2644static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2645				 enum i915_map_type type)
2646{
2647	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2648	struct sg_table *sgt = obj->mm.pages;
2649	struct sgt_iter sgt_iter;
2650	struct page *page;
2651	struct page *stack_pages[32];
2652	struct page **pages = stack_pages;
2653	unsigned long i = 0;
2654	pgprot_t pgprot;
2655	void *addr;
2656
2657	/* A single page can always be kmapped */
2658	if (n_pages == 1 && type == I915_MAP_WB)
2659		return kmap(sg_page(sgt->sgl));
2660
2661	if (n_pages > ARRAY_SIZE(stack_pages)) {
2662		/* Too big for stack -- allocate temporary array instead */
2663		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2664		if (!pages)
2665			return NULL;
2666	}
 
2667
2668	for_each_sgt_page(page, sgt_iter, sgt)
2669		pages[i++] = page;
2670
2671	/* Check that we have the expected number of pages */
2672	GEM_BUG_ON(i != n_pages);
2673
2674	switch (type) {
2675	default:
2676		MISSING_CASE(type);
2677		/* fallthrough to use PAGE_KERNEL anyway */
2678	case I915_MAP_WB:
2679		pgprot = PAGE_KERNEL;
2680		break;
2681	case I915_MAP_WC:
2682		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2683		break;
2684	}
2685	addr = vmap(pages, n_pages, 0, pgprot);
2686
2687	if (pages != stack_pages)
2688		kvfree(pages);
2689
2690	return addr;
2691}
2692
2693/* get, pin, and map the pages of the object into kernel space */
2694void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2695			      enum i915_map_type type)
2696{
2697	enum i915_map_type has_type;
2698	bool pinned;
2699	void *ptr;
2700	int ret;
2701
2702	if (unlikely(!i915_gem_object_has_struct_page(obj)))
2703		return ERR_PTR(-ENXIO);
2704
2705	ret = mutex_lock_interruptible(&obj->mm.lock);
 
 
 
2706	if (ret)
2707		return ERR_PTR(ret);
2708
2709	pinned = !(type & I915_MAP_OVERRIDE);
2710	type &= ~I915_MAP_OVERRIDE;
 
 
 
 
 
2711
2712	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2713		if (unlikely(!i915_gem_object_has_pages(obj))) {
2714			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2715
2716			ret = ____i915_gem_object_get_pages(obj);
2717			if (ret)
2718				goto err_unlock;
 
 
 
 
 
 
 
2719
2720			smp_mb__before_atomic();
2721		}
2722		atomic_inc(&obj->mm.pages_pin_count);
2723		pinned = false;
2724	}
2725	GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2726
2727	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2728	if (ptr && has_type != type) {
2729		if (pinned) {
2730			ret = -EBUSY;
2731			goto err_unpin;
2732		}
 
 
 
 
 
 
 
 
 
 
 
 
2733
2734		if (is_vmalloc_addr(ptr))
2735			vunmap(ptr);
2736		else
2737			kunmap(kmap_to_page(ptr));
2738
2739		ptr = obj->mm.mapping = NULL;
2740	}
 
2741
2742	if (!ptr) {
2743		ptr = i915_gem_object_map(obj, type);
2744		if (!ptr) {
2745			ret = -ENOMEM;
2746			goto err_unpin;
2747		}
2748
2749		obj->mm.mapping = page_pack_bits(ptr, type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2750	}
2751
2752out_unlock:
2753	mutex_unlock(&obj->mm.lock);
2754	return ptr;
 
 
 
2755
2756err_unpin:
2757	atomic_dec(&obj->mm.pages_pin_count);
2758err_unlock:
2759	ptr = ERR_PTR(ret);
2760	goto out_unlock;
2761}
2762
2763static int
2764i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2765			   const struct drm_i915_gem_pwrite *arg)
2766{
2767	struct address_space *mapping = obj->base.filp->f_mapping;
2768	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2769	u64 remain, offset;
2770	unsigned int pg;
2771
2772	/* Before we instantiate/pin the backing store for our use, we
2773	 * can prepopulate the shmemfs filp efficiently using a write into
2774	 * the pagecache. We avoid the penalty of instantiating all the
2775	 * pages, important if the user is just writing to a few and never
2776	 * uses the object on the GPU, and using a direct write into shmemfs
2777	 * allows it to avoid the cost of retrieving a page (either swapin
2778	 * or clearing-before-use) before it is overwritten.
2779	 */
2780	if (i915_gem_object_has_pages(obj))
2781		return -ENODEV;
2782
2783	if (obj->mm.madv != I915_MADV_WILLNEED)
2784		return -EFAULT;
2785
2786	/* Before the pages are instantiated the object is treated as being
2787	 * in the CPU domain. The pages will be clflushed as required before
2788	 * use, and we can freely write into the pages directly. If userspace
2789	 * races pwrite with any other operation; corruption will ensue -
2790	 * that is userspace's prerogative!
2791	 */
 
2792
2793	remain = arg->size;
2794	offset = arg->offset;
2795	pg = offset_in_page(offset);
 
2796
2797	do {
2798		unsigned int len, unwritten;
2799		struct page *page;
2800		void *data, *vaddr;
2801		int err;
2802
2803		len = PAGE_SIZE - pg;
2804		if (len > remain)
2805			len = remain;
2806
2807		err = pagecache_write_begin(obj->base.filp, mapping,
2808					    offset, len, 0,
2809					    &page, &data);
2810		if (err < 0)
2811			return err;
2812
2813		vaddr = kmap(page);
2814		unwritten = copy_from_user(vaddr + pg, user_data, len);
2815		kunmap(page);
2816
2817		err = pagecache_write_end(obj->base.filp, mapping,
2818					  offset, len, len - unwritten,
2819					  page, data);
2820		if (err < 0)
2821			return err;
2822
2823		if (unwritten)
2824			return -EFAULT;
2825
2826		remain -= len;
2827		user_data += len;
2828		offset += len;
2829		pg = 0;
2830	} while (remain);
2831
2832	return 0;
 
2833}
2834
2835static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
 
2836{
2837	bool banned;
2838
2839	atomic_inc(&ctx->guilty_count);
2840
2841	banned = false;
2842	if (i915_gem_context_is_bannable(ctx)) {
2843		unsigned int score;
2844
2845		score = atomic_add_return(CONTEXT_SCORE_GUILTY,
2846					  &ctx->ban_score);
2847		banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
2848
2849		DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2850				 ctx->name, score, yesno(banned));
 
 
 
 
2851	}
2852	if (!banned)
2853		return;
2854
2855	i915_gem_context_set_banned(ctx);
2856	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2857		atomic_inc(&ctx->file_priv->context_bans);
2858		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2859				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2860	}
2861}
2862
2863static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
 
 
2864{
2865	atomic_inc(&ctx->active_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
2866}
2867
2868struct i915_request *
2869i915_gem_find_active_request(struct intel_engine_cs *engine)
2870{
2871	struct i915_request *request, *active = NULL;
2872	unsigned long flags;
 
2873
2874	/* We are called by the error capture and reset at a random
2875	 * point in time. In particular, note that neither is crucially
2876	 * ordered with an interrupt. After a hang, the GPU is dead and we
2877	 * assume that no more writes can happen (we waited long enough for
2878	 * all writes that were in transaction to be flushed) - adding an
2879	 * extra delay for a recent interrupt is pointless. Hence, we do
2880	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2881	 */
2882	spin_lock_irqsave(&engine->timeline->lock, flags);
2883	list_for_each_entry(request, &engine->timeline->requests, link) {
2884		if (__i915_request_completed(request, request->global_seqno))
2885			continue;
2886
2887		GEM_BUG_ON(request->engine != engine);
2888		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2889				    &request->fence.flags));
2890
2891		active = request;
2892		break;
2893	}
2894	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2895
2896	return active;
2897}
2898
2899static bool engine_stalled(struct intel_engine_cs *engine)
 
 
 
2900{
2901	if (!engine->hangcheck.stalled)
2902		return false;
 
2903
2904	/* Check for possible seqno movement after hang declaration */
2905	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2906		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2907		return false;
2908	}
2909
2910	return true;
2911}
2912
2913/*
2914 * Ensure irq handler finishes, and not run again.
2915 * Also return the active request so that we only search for it once.
2916 */
2917struct i915_request *
2918i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2919{
2920	struct i915_request *request = NULL;
2921
2922	/*
2923	 * During the reset sequence, we must prevent the engine from
2924	 * entering RC6. As the context state is undefined until we restart
2925	 * the engine, if it does enter RC6 during the reset, the state
2926	 * written to the powercontext is undefined and so we may lose
2927	 * GPU state upon resume, i.e. fail to restart after a reset.
2928	 */
2929	intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2930
2931	/*
2932	 * Prevent the signaler thread from updating the request
2933	 * state (by calling dma_fence_signal) as we are processing
2934	 * the reset. The write from the GPU of the seqno is
2935	 * asynchronous and the signaler thread may see a different
2936	 * value to us and declare the request complete, even though
2937	 * the reset routine have picked that request as the active
2938	 * (incomplete) request. This conflict is not handled
2939	 * gracefully!
2940	 */
2941	kthread_park(engine->breadcrumbs.signaler);
2942
2943	/*
2944	 * Prevent request submission to the hardware until we have
2945	 * completed the reset in i915_gem_reset_finish(). If a request
2946	 * is completed by one engine, it may then queue a request
2947	 * to a second via its execlists->tasklet *just* as we are
2948	 * calling engine->init_hw() and also writing the ELSP.
2949	 * Turning off the execlists->tasklet until the reset is over
2950	 * prevents the race.
2951	 *
2952	 * Note that this needs to be a single atomic operation on the
2953	 * tasklet (flush existing tasks, prevent new tasks) to prevent
2954	 * a race between reset and set-wedged. It is not, so we do the best
2955	 * we can atm and make sure we don't lock the machine up in the more
2956	 * common case of recursively being called from set-wedged from inside
2957	 * i915_reset.
2958	 */
2959	if (!atomic_read(&engine->execlists.tasklet.count))
2960		tasklet_kill(&engine->execlists.tasklet);
2961	tasklet_disable(&engine->execlists.tasklet);
2962
2963	/*
2964	 * We're using worker to queue preemption requests from the tasklet in
2965	 * GuC submission mode.
2966	 * Even though tasklet was disabled, we may still have a worker queued.
2967	 * Let's make sure that all workers scheduled before disabling the
2968	 * tasklet are completed before continuing with the reset.
2969	 */
2970	if (engine->i915->guc.preempt_wq)
2971		flush_workqueue(engine->i915->guc.preempt_wq);
 
 
 
 
 
 
 
 
 
 
 
2972
2973	if (engine->irq_seqno_barrier)
2974		engine->irq_seqno_barrier(engine);
2975
2976	request = i915_gem_find_active_request(engine);
2977	if (request && request->fence.error == -EIO)
2978		request = ERR_PTR(-EIO); /* Previous reset failed! */
2979
2980	return request;
2981}
2982
2983int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2984{
2985	struct intel_engine_cs *engine;
2986	struct i915_request *request;
2987	enum intel_engine_id id;
2988	int err = 0;
2989
2990	for_each_engine(engine, dev_priv, id) {
2991		request = i915_gem_reset_prepare_engine(engine);
2992		if (IS_ERR(request)) {
2993			err = PTR_ERR(request);
2994			continue;
2995		}
2996
2997		engine->hangcheck.active_request = request;
2998	}
2999
3000	i915_gem_revoke_fences(dev_priv);
3001
3002	return err;
3003}
3004
3005static void skip_request(struct i915_request *request)
 
3006{
3007	void *vaddr = request->ring->vaddr;
3008	u32 head;
3009
3010	/* As this request likely depends on state from the lost
3011	 * context, clear out all the user operations leaving the
3012	 * breadcrumb at the end (so we get the fence notifications).
3013	 */
3014	head = request->head;
3015	if (request->postfix < head) {
3016		memset(vaddr + head, 0, request->ring->size - head);
3017		head = 0;
3018	}
3019	memset(vaddr + head, 0, request->postfix - head);
3020
3021	dma_fence_set_error(&request->fence, -EIO);
3022}
3023
3024static void engine_skip_context(struct i915_request *request)
 
3025{
3026	struct intel_engine_cs *engine = request->engine;
3027	struct i915_gem_context *hung_ctx = request->ctx;
3028	struct intel_timeline *timeline;
3029	unsigned long flags;
3030
3031	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
3032
3033	spin_lock_irqsave(&engine->timeline->lock, flags);
3034	spin_lock(&timeline->lock);
3035
3036	list_for_each_entry_continue(request, &engine->timeline->requests, link)
3037		if (request->ctx == hung_ctx)
3038			skip_request(request);
3039
3040	list_for_each_entry(request, &timeline->requests, link)
3041		skip_request(request);
3042
3043	spin_unlock(&timeline->lock);
3044	spin_unlock_irqrestore(&engine->timeline->lock, flags);
3045}
3046
3047/* Returns the request if it was guilty of the hang */
3048static struct i915_request *
3049i915_gem_reset_request(struct intel_engine_cs *engine,
3050		       struct i915_request *request)
3051{
3052	/* The guilty request will get skipped on a hung engine.
3053	 *
3054	 * Users of client default contexts do not rely on logical
3055	 * state preserved between batches so it is safe to execute
3056	 * queued requests following the hang. Non default contexts
3057	 * rely on preserved state, so skipping a batch loses the
3058	 * evolution of the state and it needs to be considered corrupted.
3059	 * Executing more queued batches on top of corrupted state is
3060	 * risky. But we take the risk by trying to advance through
3061	 * the queued requests in order to make the client behaviour
3062	 * more predictable around resets, by not throwing away random
3063	 * amount of batches it has prepared for execution. Sophisticated
3064	 * clients can use gem_reset_stats_ioctl and dma fence status
3065	 * (exported via sync_file info ioctl on explicit fences) to observe
3066	 * when it loses the context state and should rebuild accordingly.
3067	 *
3068	 * The context ban, and ultimately the client ban, mechanism are safety
3069	 * valves if client submission ends up resulting in nothing more than
3070	 * subsequent hangs.
3071	 */
3072
3073	if (engine_stalled(engine)) {
3074		i915_gem_context_mark_guilty(request->ctx);
3075		skip_request(request);
3076
3077		/* If this context is now banned, skip all pending requests. */
3078		if (i915_gem_context_is_banned(request->ctx))
3079			engine_skip_context(request);
3080	} else {
3081		/*
3082		 * Since this is not the hung engine, it may have advanced
3083		 * since the hang declaration. Double check by refinding
3084		 * the active request at the time of the reset.
3085		 */
3086		request = i915_gem_find_active_request(engine);
3087		if (request) {
3088			i915_gem_context_mark_innocent(request->ctx);
3089			dma_fence_set_error(&request->fence, -EAGAIN);
3090
3091			/* Rewind the engine to replay the incomplete rq */
3092			spin_lock_irq(&engine->timeline->lock);
3093			request = list_prev_entry(request, link);
3094			if (&request->link == &engine->timeline->requests)
3095				request = NULL;
3096			spin_unlock_irq(&engine->timeline->lock);
3097		}
3098	}
3099
3100	return request;
3101}
3102
3103void i915_gem_reset_engine(struct intel_engine_cs *engine,
3104			   struct i915_request *request)
3105{
3106	/*
3107	 * Make sure this write is visible before we re-enable the interrupt
3108	 * handlers on another CPU, as tasklet_enable() resolves to just
3109	 * a compiler barrier which is insufficient for our purpose here.
3110	 */
3111	smp_store_mb(engine->irq_posted, 0);
3112
3113	if (request)
3114		request = i915_gem_reset_request(engine, request);
3115
3116	if (request) {
3117		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3118				 engine->name, request->global_seqno);
 
 
 
3119	}
3120
3121	/* Setup the CS to resume from the breadcrumb of the hung request */
3122	engine->reset_hw(engine, request);
3123}
3124
3125void i915_gem_reset(struct drm_i915_private *dev_priv)
3126{
3127	struct intel_engine_cs *engine;
3128	enum intel_engine_id id;
3129
3130	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3131
3132	i915_retire_requests(dev_priv);
3133
3134	for_each_engine(engine, dev_priv, id) {
3135		struct i915_gem_context *ctx;
3136
3137		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3138		ctx = fetch_and_zero(&engine->last_retired_context);
3139		if (ctx)
3140			engine->context_unpin(engine, ctx);
3141
3142		/*
3143		 * Ostensibily, we always want a context loaded for powersaving,
3144		 * so if the engine is idle after the reset, send a request
3145		 * to load our scratch kernel_context.
3146		 *
3147		 * More mysteriously, if we leave the engine idle after a reset,
3148		 * the next userspace batch may hang, with what appears to be
3149		 * an incoherent read by the CS (presumably stale TLB). An
3150		 * empty request appears sufficient to paper over the glitch.
3151		 */
3152		if (intel_engine_is_idle(engine)) {
3153			struct i915_request *rq;
3154
3155			rq = i915_request_alloc(engine,
3156						dev_priv->kernel_context);
3157			if (!IS_ERR(rq))
3158				__i915_request_add(rq, false);
3159		}
3160	}
3161
3162	i915_gem_restore_fences(dev_priv);
3163
3164	if (dev_priv->gt.awake) {
3165		intel_sanitize_gt_powersave(dev_priv);
3166		intel_enable_gt_powersave(dev_priv);
3167		if (INTEL_GEN(dev_priv) >= 6)
3168			gen6_rps_busy(dev_priv);
 
 
 
3169	}
3170}
3171
3172void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3173{
3174	tasklet_enable(&engine->execlists.tasklet);
3175	kthread_unpark(engine->breadcrumbs.signaler);
 
3176
3177	intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3178}
3179
3180void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3181{
3182	struct intel_engine_cs *engine;
3183	enum intel_engine_id id;
3184
3185	lockdep_assert_held(&dev_priv->drm.struct_mutex);
 
3186
3187	for_each_engine(engine, dev_priv, id) {
3188		engine->hangcheck.active_request = NULL;
3189		i915_gem_reset_finish_engine(engine);
3190	}
3191}
3192
3193static void nop_submit_request(struct i915_request *request)
3194{
3195	dma_fence_set_error(&request->fence, -EIO);
3196
3197	i915_request_submit(request);
3198}
3199
3200static void nop_complete_submit_request(struct i915_request *request)
 
 
 
 
3201{
3202	unsigned long flags;
3203
3204	dma_fence_set_error(&request->fence, -EIO);
 
 
 
 
 
 
3205
3206	spin_lock_irqsave(&request->engine->timeline->lock, flags);
3207	__i915_request_submit(request);
3208	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3209	spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3210}
3211
3212void i915_gem_set_wedged(struct drm_i915_private *i915)
3213{
3214	struct intel_engine_cs *engine;
3215	enum intel_engine_id id;
3216
3217	if (drm_debug & DRM_UT_DRIVER) {
3218		struct drm_printer p = drm_debug_printer(__func__);
3219
3220		for_each_engine(engine, i915, id)
3221			intel_engine_dump(engine, &p, "%s\n", engine->name);
3222	}
3223
3224	set_bit(I915_WEDGED, &i915->gpu_error.flags);
3225	smp_mb__after_atomic();
3226
3227	/*
3228	 * First, stop submission to hw, but do not yet complete requests by
3229	 * rolling the global seqno forward (since this would complete requests
3230	 * for which we haven't set the fence error to EIO yet).
3231	 */
3232	for_each_engine(engine, i915, id) {
3233		i915_gem_reset_prepare_engine(engine);
3234
3235		engine->submit_request = nop_submit_request;
3236		engine->schedule = NULL;
3237	}
3238	i915->caps.scheduler = 0;
3239
3240	/*
3241	 * Make sure no one is running the old callback before we proceed with
3242	 * cancelling requests and resetting the completion tracking. Otherwise
3243	 * we might submit a request to the hardware which never completes.
3244	 */
3245	synchronize_rcu();
3246
3247	for_each_engine(engine, i915, id) {
3248		/* Mark all executing requests as skipped */
3249		engine->cancel_requests(engine);
3250
3251		/*
3252		 * Only once we've force-cancelled all in-flight requests can we
3253		 * start to complete all requests.
3254		 */
3255		engine->submit_request = nop_complete_submit_request;
3256	}
3257
3258	/*
3259	 * Make sure no request can slip through without getting completed by
3260	 * either this call here to intel_engine_init_global_seqno, or the one
3261	 * in nop_complete_submit_request.
3262	 */
3263	synchronize_rcu();
3264
3265	for_each_engine(engine, i915, id) {
3266		unsigned long flags;
3267
3268		/*
3269		 * Mark all pending requests as complete so that any concurrent
3270		 * (lockless) lookup doesn't try and wait upon the request as we
3271		 * reset it.
3272		 */
3273		spin_lock_irqsave(&engine->timeline->lock, flags);
3274		intel_engine_init_global_seqno(engine,
3275					       intel_engine_last_submit(engine));
3276		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3277
3278		i915_gem_reset_finish_engine(engine);
3279	}
3280
3281	wake_up_all(&i915->gpu_error.reset_queue);
3282}
3283
3284bool i915_gem_unset_wedged(struct drm_i915_private *i915)
 
3285{
3286	struct i915_gem_timeline *tl;
 
 
3287	int i;
3288
3289	lockdep_assert_held(&i915->drm.struct_mutex);
3290	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3291		return true;
 
 
 
 
3292
3293	/* Before unwedging, make sure that all pending operations
3294	 * are flushed and errored out - we may have requests waiting upon
3295	 * third party fences. We marked all inflight requests as EIO, and
3296	 * every execbuf since returned EIO, for consistency we want all
3297	 * the currently pending requests to also be marked as EIO, which
3298	 * is done inside our nop_submit_request - and so we must wait.
3299	 *
3300	 * No more can be submitted until we reset the wedged bit.
3301	 */
3302	list_for_each_entry(tl, &i915->gt.timelines, link) {
3303		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3304			struct i915_request *rq;
3305
3306			rq = i915_gem_active_peek(&tl->engine[i].last_request,
3307						  &i915->drm.struct_mutex);
3308			if (!rq)
3309				continue;
3310
3311			/* We can't use our normal waiter as we want to
3312			 * avoid recursively trying to handle the current
3313			 * reset. The basic dma_fence_default_wait() installs
3314			 * a callback for dma_fence_signal(), which is
3315			 * triggered by our nop handler (indirectly, the
3316			 * callback enables the signaler thread which is
3317			 * woken by the nop_submit_request() advancing the seqno
3318			 * and when the seqno passes the fence, the signaler
3319			 * then signals the fence waking us up).
3320			 */
3321			if (dma_fence_default_wait(&rq->fence, true,
3322						   MAX_SCHEDULE_TIMEOUT) < 0)
3323				return false;
3324		}
3325	}
3326
3327	/* Undo nop_submit_request. We prevent all new i915 requests from
3328	 * being queued (by disallowing execbuf whilst wedged) so having
3329	 * waited for all active requests above, we know the system is idle
3330	 * and do not have to worry about a thread being inside
3331	 * engine->submit_request() as we swap over. So unlike installing
3332	 * the nop_submit_request on reset, we can do this from normal
3333	 * context and do not require stop_machine().
3334	 */
3335	intel_engines_reset_default_submission(i915);
3336	i915_gem_contexts_lost(i915);
3337
3338	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3339	clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3340
3341	return true;
3342}
3343
3344static void
3345i915_gem_retire_work_handler(struct work_struct *work)
3346{
3347	struct drm_i915_private *dev_priv =
3348		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3349	struct drm_device *dev = &dev_priv->drm;
 
3350
3351	/* Come back later if the device is busy... */
 
3352	if (mutex_trylock(&dev->struct_mutex)) {
3353		i915_retire_requests(dev_priv);
3354		mutex_unlock(&dev->struct_mutex);
3355	}
3356
3357	/*
3358	 * Keep the retire handler running until we are finally idle.
3359	 * We do not need to do this test under locking as in the worst-case
3360	 * we queue the retire worker once too often.
3361	 */
3362	if (READ_ONCE(dev_priv->gt.awake))
3363		queue_delayed_work(dev_priv->wq,
3364				   &dev_priv->gt.retire_work,
3365				   round_jiffies_up_relative(HZ));
3366}
3367
3368static void shrink_caches(struct drm_i915_private *i915)
3369{
3370	/*
3371	 * kmem_cache_shrink() discards empty slabs and reorders partially
3372	 * filled slabs to prioritise allocating from the mostly full slabs,
3373	 * with the aim of reducing fragmentation.
3374	 */
3375	kmem_cache_shrink(i915->priorities);
3376	kmem_cache_shrink(i915->dependencies);
3377	kmem_cache_shrink(i915->requests);
3378	kmem_cache_shrink(i915->luts);
3379	kmem_cache_shrink(i915->vmas);
3380	kmem_cache_shrink(i915->objects);
3381}
3382
3383struct sleep_rcu_work {
3384	union {
3385		struct rcu_head rcu;
3386		struct work_struct work;
3387	};
3388	struct drm_i915_private *i915;
3389	unsigned int epoch;
3390};
3391
3392static inline bool
3393same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3394{
3395	/*
3396	 * There is a small chance that the epoch wrapped since we started
3397	 * sleeping. If we assume that epoch is at least a u32, then it will
3398	 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3399	 */
3400	return epoch == READ_ONCE(i915->gt.epoch);
3401}
3402
3403static void __sleep_work(struct work_struct *work)
3404{
3405	struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3406	struct drm_i915_private *i915 = s->i915;
3407	unsigned int epoch = s->epoch;
3408
3409	kfree(s);
3410	if (same_epoch(i915, epoch))
3411		shrink_caches(i915);
3412}
3413
3414static void __sleep_rcu(struct rcu_head *rcu)
3415{
3416	struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3417	struct drm_i915_private *i915 = s->i915;
3418
3419	if (same_epoch(i915, s->epoch)) {
3420		INIT_WORK(&s->work, __sleep_work);
3421		queue_work(i915->wq, &s->work);
3422	} else {
3423		kfree(s);
3424	}
3425}
3426
3427static inline bool
3428new_requests_since_last_retire(const struct drm_i915_private *i915)
3429{
3430	return (READ_ONCE(i915->gt.active_requests) ||
3431		work_pending(&i915->gt.idle_work.work));
3432}
3433
3434static void
3435i915_gem_idle_work_handler(struct work_struct *work)
3436{
3437	struct drm_i915_private *dev_priv =
3438		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3439	unsigned int epoch = I915_EPOCH_INVALID;
3440	bool rearm_hangcheck;
 
3441
3442	if (!READ_ONCE(dev_priv->gt.awake))
3443		return;
 
3444
3445	/*
3446	 * Wait for last execlists context complete, but bail out in case a
3447	 * new request is submitted. As we don't trust the hardware, we
3448	 * continue on if the wait times out. This is necessary to allow
3449	 * the machine to suspend even if the hardware dies, and we will
3450	 * try to recover in resume (after depriving the hardware of power,
3451	 * it may be in a better mmod).
3452	 */
3453	__wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3454		   intel_engines_are_idle(dev_priv),
3455		   I915_IDLE_ENGINES_TIMEOUT * 1000,
3456		   10, 500);
3457
3458	rearm_hangcheck =
3459		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3460
3461	if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3462		/* Currently busy, come back later */
3463		mod_delayed_work(dev_priv->wq,
3464				 &dev_priv->gt.idle_work,
3465				 msecs_to_jiffies(50));
3466		goto out_rearm;
3467	}
3468
3469	/*
3470	 * New request retired after this work handler started, extend active
3471	 * period until next instance of the work.
3472	 */
3473	if (new_requests_since_last_retire(dev_priv))
3474		goto out_unlock;
3475
3476	/*
3477	 * Be paranoid and flush a concurrent interrupt to make sure
3478	 * we don't reactivate any irq tasklets after parking.
3479	 *
3480	 * FIXME: Note that even though we have waited for execlists to be idle,
3481	 * there may still be an in-flight interrupt even though the CSB
3482	 * is now empty. synchronize_irq() makes sure that a residual interrupt
3483	 * is completed before we continue, but it doesn't prevent the HW from
3484	 * raising a spurious interrupt later. To complete the shield we should
3485	 * coordinate disabling the CS irq with flushing the interrupts.
3486	 */
3487	synchronize_irq(dev_priv->drm.irq);
3488
3489	intel_engines_park(dev_priv);
3490	i915_gem_timelines_park(dev_priv);
3491
3492	i915_pmu_gt_parked(dev_priv);
3493
3494	GEM_BUG_ON(!dev_priv->gt.awake);
3495	dev_priv->gt.awake = false;
3496	epoch = dev_priv->gt.epoch;
3497	GEM_BUG_ON(epoch == I915_EPOCH_INVALID);
3498	rearm_hangcheck = false;
3499
3500	if (INTEL_GEN(dev_priv) >= 6)
3501		gen6_rps_idle(dev_priv);
3502
3503	intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ);
3504
3505	intel_runtime_pm_put(dev_priv);
3506out_unlock:
3507	mutex_unlock(&dev_priv->drm.struct_mutex);
3508
3509out_rearm:
3510	if (rearm_hangcheck) {
3511		GEM_BUG_ON(!dev_priv->gt.awake);
3512		i915_queue_hangcheck(dev_priv);
3513	}
3514
3515	/*
3516	 * When we are idle, it is an opportune time to reap our caches.
3517	 * However, we have many objects that utilise RCU and the ordered
3518	 * i915->wq that this work is executing on. To try and flush any
3519	 * pending frees now we are idle, we first wait for an RCU grace
3520	 * period, and then queue a task (that will run last on the wq) to
3521	 * shrink and re-optimize the caches.
3522	 */
3523	if (same_epoch(dev_priv, epoch)) {
3524		struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3525		if (s) {
3526			s->i915 = dev_priv;
3527			s->epoch = epoch;
3528			call_rcu(&s->rcu, __sleep_rcu);
3529		}
3530	}
3531}
3532
3533void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
 
 
 
 
 
 
3534{
3535	struct drm_i915_private *i915 = to_i915(gem->dev);
3536	struct drm_i915_gem_object *obj = to_intel_bo(gem);
3537	struct drm_i915_file_private *fpriv = file->driver_priv;
3538	struct i915_lut_handle *lut, *ln;
3539
3540	mutex_lock(&i915->drm.struct_mutex);
 
3541
3542	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3543		struct i915_gem_context *ctx = lut->ctx;
3544		struct i915_vma *vma;
3545
3546		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3547		if (ctx->file_priv != fpriv)
3548			continue;
3549
3550		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3551		GEM_BUG_ON(vma->obj != obj);
3552
3553		/* We allow the process to have multiple handles to the same
3554		 * vma, in the same fd namespace, by virtue of flink/open.
3555		 */
3556		GEM_BUG_ON(!vma->open_count);
3557		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3558			i915_vma_close(vma);
3559
3560		list_del(&lut->obj_link);
3561		list_del(&lut->ctx_link);
3562
3563		kmem_cache_free(i915->luts, lut);
3564		__i915_gem_object_release_unless_active(obj);
3565	}
3566
3567	mutex_unlock(&i915->drm.struct_mutex);
3568}
3569
3570static unsigned long to_wait_timeout(s64 timeout_ns)
3571{
3572	if (timeout_ns < 0)
3573		return MAX_SCHEDULE_TIMEOUT;
3574
3575	if (timeout_ns == 0)
3576		return 0;
3577
3578	return nsecs_to_jiffies_timeout(timeout_ns);
3579}
3580
3581/**
3582 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3583 * @dev: drm device pointer
3584 * @data: ioctl data blob
3585 * @file: drm file pointer
3586 *
3587 * Returns 0 if successful, else an error is returned with the remaining time in
3588 * the timeout parameter.
3589 *  -ETIME: object is still busy after timeout
3590 *  -ERESTARTSYS: signal interrupted the wait
3591 *  -ENONENT: object doesn't exist
3592 * Also possible, but rare:
3593 *  -EAGAIN: incomplete, restart syscall
3594 *  -ENOMEM: damn
3595 *  -ENODEV: Internal IRQ fail
3596 *  -E?: The add request failed
3597 *
3598 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3599 * non-zero timeout parameter the wait ioctl will wait for the given number of
3600 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3601 * without holding struct_mutex the object may become re-busied before this
3602 * function completes. A similar but shorter * race condition exists in the busy
3603 * ioctl
3604 */
3605int
3606i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3607{
 
3608	struct drm_i915_gem_wait *args = data;
3609	struct drm_i915_gem_object *obj;
3610	ktime_t start;
3611	long ret;
 
 
3612
3613	if (args->flags != 0)
3614		return -EINVAL;
3615
3616	obj = i915_gem_object_lookup(file, args->bo_handle);
3617	if (!obj)
 
 
 
 
 
3618		return -ENOENT;
 
3619
3620	start = ktime_get();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3621
3622	ret = i915_gem_object_wait(obj,
3623				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3624				   to_wait_timeout(args->timeout_ns),
3625				   to_rps_client(file));
3626
3627	if (args->timeout_ns > 0) {
3628		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3629		if (args->timeout_ns < 0)
3630			args->timeout_ns = 0;
3631
3632		/*
3633		 * Apparently ktime isn't accurate enough and occasionally has a
3634		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3635		 * things up to make the test happy. We allow up to 1 jiffy.
3636		 *
3637		 * This is a regression from the timespec->ktime conversion.
3638		 */
3639		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3640			args->timeout_ns = 0;
3641
3642		/* Asked to wait beyond the jiffie/scheduler precision? */
3643		if (ret == -ETIME && args->timeout_ns)
3644			ret = -EAGAIN;
 
 
 
3645	}
 
3646
3647	i915_gem_object_put(obj);
 
 
3648	return ret;
3649}
3650
3651static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
 
 
 
 
3652{
3653	int ret, i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3654
3655	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3656		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3657		if (ret)
3658			return ret;
 
 
 
 
 
 
 
3659	}
3660
3661	return 0;
3662}
3663
3664static int wait_for_engines(struct drm_i915_private *i915)
3665{
3666	if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3667		dev_err(i915->drm.dev,
3668			"Failed to idle engines, declaring wedged!\n");
3669		if (drm_debug & DRM_UT_DRIVER) {
3670			struct drm_printer p = drm_debug_printer(__func__);
3671			struct intel_engine_cs *engine;
3672			enum intel_engine_id id;
3673
3674			for_each_engine(engine, i915, id)
3675				intel_engine_dump(engine, &p,
3676						  "%s\n", engine->name);
3677		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3678
3679		i915_gem_set_wedged(i915);
3680		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
3681	}
3682
3683	return 0;
3684}
3685
3686int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3687{
 
 
3688	int ret;
3689
3690	/* If the device is asleep, we have no requests outstanding */
3691	if (!READ_ONCE(i915->gt.awake))
 
 
 
3692		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3693
3694	if (flags & I915_WAIT_LOCKED) {
3695		struct i915_gem_timeline *tl;
 
 
3696
3697		lockdep_assert_held(&i915->drm.struct_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
3698
3699		list_for_each_entry(tl, &i915->gt.timelines, link) {
3700			ret = wait_for_timeline(tl, flags);
3701			if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3702				return ret;
 
 
 
3703		}
3704		i915_retire_requests(i915);
3705
3706		ret = wait_for_engines(i915);
3707	} else {
3708		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3709	}
3710
3711	return ret;
 
3712}
3713
3714static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
 
3715{
 
 
 
3716	/*
3717	 * We manually flush the CPU domain so that we can override and
3718	 * force the flush for the display, and perform it asyncrhonously.
 
 
 
3719	 */
3720	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3721	if (obj->cache_dirty)
3722		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3723	obj->write_domain = 0;
3724}
 
 
 
 
 
 
 
3725
3726void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3727{
3728	if (!READ_ONCE(obj->pin_global))
3729		return;
3730
3731	mutex_lock(&obj->base.dev->struct_mutex);
3732	__i915_gem_object_flush_for_display(obj);
3733	mutex_unlock(&obj->base.dev->struct_mutex);
3734}
3735
3736/**
3737 * Moves a single object to the WC read, and possibly write domain.
3738 * @obj: object to act on
3739 * @write: ask for write access or read only
3740 *
3741 * This function returns when the move is complete, including waiting on
3742 * flushes to occur.
3743 */
3744int
3745i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
 
 
 
 
3746{
 
 
 
 
 
 
 
3747	int ret;
3748
3749	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
 
 
 
3750
3751	ret = i915_gem_object_wait(obj,
3752				   I915_WAIT_INTERRUPTIBLE |
3753				   I915_WAIT_LOCKED |
3754				   (write ? I915_WAIT_ALL : 0),
3755				   MAX_SCHEDULE_TIMEOUT,
3756				   NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3757	if (ret)
3758		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3759
3760	if (obj->write_domain == I915_GEM_DOMAIN_WC)
3761		return 0;
 
 
 
 
 
3762
3763	/* Flush and acquire obj->pages so that we are coherent through
3764	 * direct access in memory with previous cached writes through
3765	 * shmemfs and that our cache domain tracking remains valid.
3766	 * For example, if the obj->filp was moved to swap without us
3767	 * being notified and releasing the pages, we would mistakenly
3768	 * continue to assume that the obj remained out of the CPU cached
3769	 * domain.
3770	 */
3771	ret = i915_gem_object_pin_pages(obj);
3772	if (ret)
3773		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3774
3775	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
 
 
 
 
 
 
 
 
 
3776
3777	/* Serialise direct access to this object with the barriers for
3778	 * coherent writes from the GPU, by effectively invalidating the
3779	 * WC domain upon first access.
3780	 */
3781	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3782		mb();
3783
3784	/* It should now be out of any other write domains, and we can update
3785	 * the domain values for our changes.
 
 
 
 
 
3786	 */
3787	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3788	obj->read_domains |= I915_GEM_DOMAIN_WC;
3789	if (write) {
3790		obj->read_domains = I915_GEM_DOMAIN_WC;
3791		obj->write_domain = I915_GEM_DOMAIN_WC;
3792		obj->mm.dirty = true;
3793	}
3794
3795	i915_gem_object_unpin_pages(obj);
3796	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3797}
3798
3799/**
3800 * Moves a single object to the GTT read, and possibly write domain.
3801 * @obj: object to act on
3802 * @write: ask for write access or read only
3803 *
3804 * This function returns when the move is complete, including waiting on
3805 * flushes to occur.
3806 */
3807int
3808i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3809{
 
 
3810	int ret;
3811
3812	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
3813
3814	ret = i915_gem_object_wait(obj,
3815				   I915_WAIT_INTERRUPTIBLE |
3816				   I915_WAIT_LOCKED |
3817				   (write ? I915_WAIT_ALL : 0),
3818				   MAX_SCHEDULE_TIMEOUT,
3819				   NULL);
3820	if (ret)
3821		return ret;
3822
3823	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3824		return 0;
3825
3826	/* Flush and acquire obj->pages so that we are coherent through
3827	 * direct access in memory with previous cached writes through
3828	 * shmemfs and that our cache domain tracking remains valid.
3829	 * For example, if the obj->filp was moved to swap without us
3830	 * being notified and releasing the pages, we would mistakenly
3831	 * continue to assume that the obj remained out of the CPU cached
3832	 * domain.
3833	 */
3834	ret = i915_gem_object_pin_pages(obj);
3835	if (ret)
3836		return ret;
3837
3838	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3839
3840	/* Serialise direct access to this object with the barriers for
3841	 * coherent writes from the GPU, by effectively invalidating the
3842	 * GTT domain upon first access.
3843	 */
3844	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3845		mb();
3846
 
 
 
3847	/* It should now be out of any other write domains, and we can update
3848	 * the domain values for our changes.
3849	 */
3850	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3851	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3852	if (write) {
3853		obj->read_domains = I915_GEM_DOMAIN_GTT;
3854		obj->write_domain = I915_GEM_DOMAIN_GTT;
3855		obj->mm.dirty = true;
3856	}
3857
3858	i915_gem_object_unpin_pages(obj);
 
 
 
 
 
 
 
 
 
3859	return 0;
3860}
3861
3862/**
3863 * Changes the cache-level of an object across all VMA.
3864 * @obj: object to act on
3865 * @cache_level: new cache level to set for the object
3866 *
3867 * After this function returns, the object will be in the new cache-level
3868 * across all GTT and the contents of the backing storage will be coherent,
3869 * with respect to the new cache-level. In order to keep the backing storage
3870 * coherent for all users, we only allow a single cache level to be set
3871 * globally on the object and prevent it from being changed whilst the
3872 * hardware is reading from the object. That is if the object is currently
3873 * on the scanout it will be set to uncached (or equivalent display
3874 * cache coherency) and all non-MOCS GPU access will also be uncached so
3875 * that all direct access to the scanout remains coherent.
3876 */
3877int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3878				    enum i915_cache_level cache_level)
3879{
3880	struct i915_vma *vma;
3881	int ret;
3882
3883	lockdep_assert_held(&obj->base.dev->struct_mutex);
3884
3885	if (obj->cache_level == cache_level)
3886		return 0;
3887
3888	/* Inspect the list of currently bound VMA and unbind any that would
3889	 * be invalid given the new cache-level. This is principally to
3890	 * catch the issue of the CS prefetch crossing page boundaries and
3891	 * reading an invalid PTE on older architectures.
3892	 */
3893restart:
3894	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3895		if (!drm_mm_node_allocated(&vma->node))
3896			continue;
3897
3898		if (i915_vma_is_pinned(vma)) {
3899			DRM_DEBUG("can not change the cache level of pinned objects\n");
3900			return -EBUSY;
3901		}
3902
3903		if (!i915_vma_is_closed(vma) &&
3904		    i915_gem_valid_gtt_space(vma, cache_level))
3905			continue;
3906
3907		ret = i915_vma_unbind(vma);
3908		if (ret)
3909			return ret;
3910
3911		/* As unbinding may affect other elements in the
3912		 * obj->vma_list (due to side-effects from retiring
3913		 * an active vma), play safe and restart the iterator.
3914		 */
3915		goto restart;
3916	}
3917
3918	/* We can reuse the existing drm_mm nodes but need to change the
3919	 * cache-level on the PTE. We could simply unbind them all and
3920	 * rebind with the correct cache-level on next use. However since
3921	 * we already have a valid slot, dma mapping, pages etc, we may as
3922	 * rewrite the PTE in the belief that doing so tramples upon less
3923	 * state and so involves less work.
3924	 */
3925	if (obj->bind_count) {
3926		/* Before we change the PTE, the GPU must not be accessing it.
3927		 * If we wait upon the object, we know that all the bound
3928		 * VMA are no longer active.
3929		 */
3930		ret = i915_gem_object_wait(obj,
3931					   I915_WAIT_INTERRUPTIBLE |
3932					   I915_WAIT_LOCKED |
3933					   I915_WAIT_ALL,
3934					   MAX_SCHEDULE_TIMEOUT,
3935					   NULL);
3936		if (ret)
3937			return ret;
3938
3939		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3940		    cache_level != I915_CACHE_NONE) {
3941			/* Access to snoopable pages through the GTT is
3942			 * incoherent and on some machines causes a hard
3943			 * lockup. Relinquish the CPU mmaping to force
3944			 * userspace to refault in the pages and we can
3945			 * then double check if the GTT mapping is still
3946			 * valid for that pointer access.
3947			 */
3948			i915_gem_release_mmap(obj);
3949
3950			/* As we no longer need a fence for GTT access,
3951			 * we can relinquish it now (and so prevent having
3952			 * to steal a fence from someone else on the next
3953			 * fence request). Note GPU activity would have
3954			 * dropped the fence as all snoopable access is
3955			 * supposed to be linear.
3956			 */
3957			for_each_ggtt_vma(vma, obj) {
3958				ret = i915_vma_put_fence(vma);
3959				if (ret)
3960					return ret;
3961			}
3962		} else {
3963			/* We either have incoherent backing store and
3964			 * so no GTT access or the architecture is fully
3965			 * coherent. In such cases, existing GTT mmaps
3966			 * ignore the cache bit in the PTE and we can
3967			 * rewrite it without confusing the GPU or having
3968			 * to force userspace to fault back in its mmaps.
3969			 */
3970		}
3971
3972		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3973			if (!drm_mm_node_allocated(&vma->node))
3974				continue;
3975
3976			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3977			if (ret)
3978				return ret;
3979		}
3980	}
3981
3982	list_for_each_entry(vma, &obj->vma_list, obj_link)
3983		vma->node.color = cache_level;
3984	i915_gem_object_set_cache_coherency(obj, cache_level);
3985	obj->cache_dirty = true; /* Always invalidate stale cachelines */
 
 
 
 
 
 
 
 
 
 
 
3986
3987	return 0;
3988}
3989
3990int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3991			       struct drm_file *file)
3992{
3993	struct drm_i915_gem_caching *args = data;
3994	struct drm_i915_gem_object *obj;
3995	int err = 0;
3996
3997	rcu_read_lock();
3998	obj = i915_gem_object_lookup_rcu(file, args->handle);
3999	if (!obj) {
4000		err = -ENOENT;
4001		goto out;
4002	}
4003
4004	switch (obj->cache_level) {
4005	case I915_CACHE_LLC:
4006	case I915_CACHE_L3_LLC:
4007		args->caching = I915_CACHING_CACHED;
4008		break;
4009
4010	case I915_CACHE_WT:
4011		args->caching = I915_CACHING_DISPLAY;
4012		break;
4013
4014	default:
4015		args->caching = I915_CACHING_NONE;
4016		break;
4017	}
4018out:
4019	rcu_read_unlock();
4020	return err;
4021}
4022
4023int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4024			       struct drm_file *file)
4025{
4026	struct drm_i915_private *i915 = to_i915(dev);
4027	struct drm_i915_gem_caching *args = data;
4028	struct drm_i915_gem_object *obj;
4029	enum i915_cache_level level;
4030	int ret = 0;
4031
4032	switch (args->caching) {
4033	case I915_CACHING_NONE:
4034		level = I915_CACHE_NONE;
4035		break;
4036	case I915_CACHING_CACHED:
4037		/*
4038		 * Due to a HW issue on BXT A stepping, GPU stores via a
4039		 * snooped mapping may leave stale data in a corresponding CPU
4040		 * cacheline, whereas normally such cachelines would get
4041		 * invalidated.
4042		 */
4043		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4044			return -ENODEV;
4045
4046		level = I915_CACHE_LLC;
4047		break;
4048	case I915_CACHING_DISPLAY:
4049		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4050		break;
4051	default:
4052		return -EINVAL;
4053	}
4054
4055	obj = i915_gem_object_lookup(file, args->handle);
4056	if (!obj)
4057		return -ENOENT;
4058
4059	/*
4060	 * The caching mode of proxy object is handled by its generator, and
4061	 * not allowed to be changed by userspace.
4062	 */
4063	if (i915_gem_object_is_proxy(obj)) {
4064		ret = -ENXIO;
4065		goto out;
4066	}
4067
4068	if (obj->cache_level == level)
4069		goto out;
4070
4071	ret = i915_gem_object_wait(obj,
4072				   I915_WAIT_INTERRUPTIBLE,
4073				   MAX_SCHEDULE_TIMEOUT,
4074				   to_rps_client(file));
4075	if (ret)
4076		goto out;
4077
4078	ret = i915_mutex_lock_interruptible(dev);
4079	if (ret)
4080		goto out;
 
 
4081
4082	ret = i915_gem_object_set_cache_level(obj, level);
 
 
 
4083	mutex_unlock(&dev->struct_mutex);
 
 
4084
4085out:
4086	i915_gem_object_put(obj);
4087	return ret;
4088}
4089
4090/*
4091 * Prepare buffer for display plane (scanout, cursors, etc).
4092 * Can be called from an uninterruptible phase (modesetting) and allows
4093 * any flushes to be pipelined (for pageflips).
4094 */
4095struct i915_vma *
4096i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4097				     u32 alignment,
4098				     const struct i915_ggtt_view *view,
4099				     unsigned int flags)
4100{
4101	struct i915_vma *vma;
4102	int ret;
4103
4104	lockdep_assert_held(&obj->base.dev->struct_mutex);
4105
4106	/* Mark the global pin early so that we account for the
4107	 * display coherency whilst setting up the cache domains.
4108	 */
4109	obj->pin_global++;
4110
4111	/* The display engine is not coherent with the LLC cache on gen6.  As
4112	 * a result, we make sure that the pinning that is about to occur is
4113	 * done with uncached PTEs. This is lowest common denominator for all
4114	 * chipsets.
4115	 *
4116	 * However for gen6+, we could do better by using the GFDT bit instead
4117	 * of uncaching, which would allow us to flush all the LLC-cached data
4118	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4119	 */
4120	ret = i915_gem_object_set_cache_level(obj,
4121					      HAS_WT(to_i915(obj->base.dev)) ?
4122					      I915_CACHE_WT : I915_CACHE_NONE);
4123	if (ret) {
4124		vma = ERR_PTR(ret);
4125		goto err_unpin_global;
4126	}
4127
4128	/* As the user may map the buffer once pinned in the display plane
4129	 * (e.g. libkms for the bootup splash), we have to ensure that we
4130	 * always use map_and_fenceable for all scanout buffers. However,
4131	 * it may simply be too big to fit into mappable, in which case
4132	 * put it anyway and hope that userspace can cope (but always first
4133	 * try to preserve the existing ABI).
4134	 */
4135	vma = ERR_PTR(-ENOSPC);
4136	if ((flags & PIN_MAPPABLE) == 0 &&
4137	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
4138		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4139					       flags |
4140					       PIN_MAPPABLE |
4141					       PIN_NONBLOCK);
4142	if (IS_ERR(vma))
4143		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4144	if (IS_ERR(vma))
4145		goto err_unpin_global;
4146
4147	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4148
4149	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4150	__i915_gem_object_flush_for_display(obj);
4151	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
4152
4153	/* It should now be out of any other write domains, and we can update
4154	 * the domain values for our changes.
4155	 */
4156	obj->read_domains |= I915_GEM_DOMAIN_GTT;
 
 
 
 
 
4157
4158	return vma;
4159
4160err_unpin_global:
4161	obj->pin_global--;
4162	return vma;
4163}
4164
4165void
4166i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
 
4167{
4168	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4169
4170	if (WARN_ON(vma->obj->pin_global == 0))
4171		return;
4172
4173	if (--vma->obj->pin_global == 0)
4174		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4175
4176	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
4177	i915_gem_object_bump_inactive_ggtt(vma->obj);
4178
4179	i915_vma_unpin(vma);
4180}
4181
4182/**
4183 * Moves a single object to the CPU read, and possibly write domain.
4184 * @obj: object to act on
4185 * @write: requesting write or read-only access
4186 *
4187 * This function returns when the move is complete, including waiting on
4188 * flushes to occur.
4189 */
4190int
4191i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4192{
 
4193	int ret;
4194
4195	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
4196
4197	ret = i915_gem_object_wait(obj,
4198				   I915_WAIT_INTERRUPTIBLE |
4199				   I915_WAIT_LOCKED |
4200				   (write ? I915_WAIT_ALL : 0),
4201				   MAX_SCHEDULE_TIMEOUT,
4202				   NULL);
4203	if (ret)
4204		return ret;
4205
4206	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
 
 
 
4207
4208	/* Flush the CPU cache if it's still invalid. */
4209	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4210		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4211		obj->read_domains |= I915_GEM_DOMAIN_CPU;
 
4212	}
4213
4214	/* It should now be out of any other write domains, and we can update
4215	 * the domain values for our changes.
4216	 */
4217	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4218
4219	/* If we're writing through the CPU, then the GPU read domains will
4220	 * need to be invalidated at next use.
4221	 */
4222	if (write)
4223		__start_cpu_write(obj);
 
 
 
 
 
 
4224
4225	return 0;
4226}
4227
4228/* Throttle our rendering by waiting until the ring has completed our requests
4229 * emitted over 20 msec ago.
4230 *
4231 * Note that if we were to use the current jiffies each time around the loop,
4232 * we wouldn't escape the function with any frames outstanding if the time to
4233 * render a frame was over 20ms.
4234 *
4235 * This should get us reasonable parallelism between CPU and GPU but also
4236 * relatively low latency when blocking on a particular request to finish.
4237 */
4238static int
4239i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4240{
4241	struct drm_i915_private *dev_priv = to_i915(dev);
4242	struct drm_i915_file_private *file_priv = file->driver_priv;
4243	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4244	struct i915_request *request, *target = NULL;
4245	long ret;
 
4246
4247	/* ABI: return -EIO if already wedged */
4248	if (i915_terminally_wedged(&dev_priv->gpu_error))
4249		return -EIO;
 
 
 
 
4250
4251	spin_lock(&file_priv->mm.lock);
4252	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4253		if (time_after_eq(request->emitted_jiffies, recent_enough))
4254			break;
4255
4256		if (target) {
4257			list_del(&target->client_link);
4258			target->file_priv = NULL;
4259		}
 
 
4260
4261		target = request;
4262	}
 
4263	if (target)
4264		i915_request_get(target);
4265	spin_unlock(&file_priv->mm.lock);
4266
4267	if (target == NULL)
4268		return 0;
4269
4270	ret = i915_request_wait(target,
4271				I915_WAIT_INTERRUPTIBLE,
4272				MAX_SCHEDULE_TIMEOUT);
4273	i915_request_put(target);
 
4274
4275	return ret < 0 ? ret : 0;
4276}
4277
4278struct i915_vma *
4279i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4280			 const struct i915_ggtt_view *view,
4281			 u64 size,
4282			 u64 alignment,
4283			 u64 flags)
4284{
4285	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4286	struct i915_address_space *vm = &dev_priv->ggtt.base;
4287	struct i915_vma *vma;
4288	int ret;
4289
4290	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
 
4291
4292	if (flags & PIN_MAPPABLE &&
4293	    (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4294		/* If the required space is larger than the available
4295		 * aperture, we will not able to find a slot for the
4296		 * object and unbinding the object now will be in
4297		 * vain. Worse, doing so may cause us to ping-pong
4298		 * the object in and out of the Global GTT and
4299		 * waste a lot of cycles under the mutex.
4300		 */
4301		if (obj->base.size > dev_priv->ggtt.mappable_end)
4302			return ERR_PTR(-E2BIG);
4303
4304		/* If NONBLOCK is set the caller is optimistically
4305		 * trying to cache the full object within the mappable
4306		 * aperture, and *must* have a fallback in place for
4307		 * situations where we cannot bind the object. We
4308		 * can be a little more lax here and use the fallback
4309		 * more often to avoid costly migrations of ourselves
4310		 * and other objects within the aperture.
4311		 *
4312		 * Half-the-aperture is used as a simple heuristic.
4313		 * More interesting would to do search for a free
4314		 * block prior to making the commitment to unbind.
4315		 * That caters for the self-harm case, and with a
4316		 * little more heuristics (e.g. NOFAULT, NOEVICT)
4317		 * we could try to minimise harm to others.
4318		 */
4319		if (flags & PIN_NONBLOCK &&
4320		    obj->base.size > dev_priv->ggtt.mappable_end / 2)
4321			return ERR_PTR(-ENOSPC);
4322	}
4323
4324	vma = i915_vma_instance(obj, vm, view);
4325	if (unlikely(IS_ERR(vma)))
4326		return vma;
4327
4328	if (i915_vma_misplaced(vma, size, alignment, flags)) {
4329		if (flags & PIN_NONBLOCK) {
4330			if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4331				return ERR_PTR(-ENOSPC);
4332
4333			if (flags & PIN_MAPPABLE &&
4334			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4335				return ERR_PTR(-ENOSPC);
4336		}
4337
4338		WARN(i915_vma_is_pinned(vma),
4339		     "bo is already pinned in ggtt with incorrect alignment:"
4340		     " offset=%08x, req.alignment=%llx,"
4341		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4342		     i915_ggtt_offset(vma), alignment,
4343		     !!(flags & PIN_MAPPABLE),
4344		     i915_vma_is_map_and_fenceable(vma));
4345		ret = i915_vma_unbind(vma);
4346		if (ret)
4347			return ERR_PTR(ret);
4348	}
4349
4350	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4351	if (ret)
4352		return ERR_PTR(ret);
4353
4354	return vma;
4355}
4356
4357static __always_inline unsigned int __busy_read_flag(unsigned int id)
4358{
4359	/* Note that we could alias engines in the execbuf API, but
4360	 * that would be very unwise as it prevents userspace from
4361	 * fine control over engine selection. Ahem.
4362	 *
4363	 * This should be something like EXEC_MAX_ENGINE instead of
4364	 * I915_NUM_ENGINES.
4365	 */
4366	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4367	return 0x10000 << id;
 
 
 
 
 
 
 
 
 
 
4368}
4369
4370static __always_inline unsigned int __busy_write_id(unsigned int id)
 
 
 
 
 
4371{
4372	/* The uABI guarantees an active writer is also amongst the read
4373	 * engines. This would be true if we accessed the activity tracking
4374	 * under the lock, but as we perform the lookup of the object and
4375	 * its activity locklessly we can not guarantee that the last_write
4376	 * being active implies that we have set the same engine flag from
4377	 * last_read - hence we always set both read and write busy for
4378	 * last_write.
4379	 */
4380	return id | __busy_read_flag(id);
4381}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4382
4383static __always_inline unsigned int
4384__busy_set_if_active(const struct dma_fence *fence,
4385		     unsigned int (*flag)(unsigned int id))
4386{
4387	struct i915_request *rq;
 
 
 
 
 
 
4388
4389	/* We have to check the current hw status of the fence as the uABI
4390	 * guarantees forward progress. We could rely on the idle worker
4391	 * to eventually flush us, but to minimise latency just ask the
4392	 * hardware.
4393	 *
4394	 * Note we only report on the status of native fences.
4395	 */
4396	if (!dma_fence_is_i915(fence))
4397		return 0;
4398
4399	/* opencode to_request() in order to avoid const warnings */
4400	rq = container_of(fence, struct i915_request, fence);
4401	if (i915_request_completed(rq))
4402		return 0;
4403
4404	return flag(rq->engine->uabi_id);
 
 
 
 
 
 
 
 
4405}
4406
4407static __always_inline unsigned int
4408busy_check_reader(const struct dma_fence *fence)
 
 
 
4409{
4410	return __busy_set_if_active(fence, __busy_read_flag);
 
 
 
 
4411}
4412
4413static __always_inline unsigned int
4414busy_check_writer(const struct dma_fence *fence)
 
4415{
4416	if (!fence)
4417		return 0;
 
 
 
4418
4419	return __busy_set_if_active(fence, __busy_write_id);
4420}
4421
4422int
4423i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4424		    struct drm_file *file)
4425{
4426	struct drm_i915_gem_busy *args = data;
4427	struct drm_i915_gem_object *obj;
4428	struct reservation_object_list *list;
4429	unsigned int seq;
4430	int err;
 
 
4431
4432	err = -ENOENT;
4433	rcu_read_lock();
4434	obj = i915_gem_object_lookup_rcu(file, args->handle);
4435	if (!obj)
4436		goto out;
4437
4438	/* A discrepancy here is that we do not report the status of
4439	 * non-i915 fences, i.e. even though we may report the object as idle,
4440	 * a call to set-domain may still stall waiting for foreign rendering.
4441	 * This also means that wait-ioctl may report an object as busy,
4442	 * where busy-ioctl considers it idle.
4443	 *
4444	 * We trade the ability to warn of foreign fences to report on which
4445	 * i915 engines are active for the object.
4446	 *
4447	 * Alternatively, we can trade that extra information on read/write
4448	 * activity with
4449	 *	args->busy =
4450	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
4451	 * to report the overall busyness. This is what the wait-ioctl does.
4452	 *
4453	 */
4454retry:
4455	seq = raw_read_seqcount(&obj->resv->seq);
 
4456
4457	/* Translate the exclusive fence to the READ *and* WRITE engine */
4458	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4459
4460	/* Translate shared fences to READ set of engines */
4461	list = rcu_dereference(obj->resv->fence);
4462	if (list) {
4463		unsigned int shared_count = list->shared_count, i;
4464
4465		for (i = 0; i < shared_count; ++i) {
4466			struct dma_fence *fence =
4467				rcu_dereference(list->shared[i]);
4468
4469			args->busy |= busy_check_reader(fence);
 
 
4470		}
 
 
4471	}
4472
4473	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4474		goto retry;
4475
4476	err = 0;
4477out:
4478	rcu_read_unlock();
4479	return err;
4480}
4481
4482int
4483i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4484			struct drm_file *file_priv)
4485{
4486	return i915_gem_ring_throttle(dev, file_priv);
4487}
4488
4489int
4490i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4491		       struct drm_file *file_priv)
4492{
4493	struct drm_i915_private *dev_priv = to_i915(dev);
4494	struct drm_i915_gem_madvise *args = data;
4495	struct drm_i915_gem_object *obj;
4496	int err;
4497
4498	switch (args->madv) {
4499	case I915_MADV_DONTNEED:
4500	case I915_MADV_WILLNEED:
4501	    break;
4502	default:
4503	    return -EINVAL;
4504	}
4505
4506	obj = i915_gem_object_lookup(file_priv, args->handle);
4507	if (!obj)
4508		return -ENOENT;
 
 
 
 
 
 
4509
4510	err = mutex_lock_interruptible(&obj->mm.lock);
4511	if (err)
4512		goto out;
 
4513
4514	if (i915_gem_object_has_pages(obj) &&
4515	    i915_gem_object_is_tiled(obj) &&
4516	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4517		if (obj->mm.madv == I915_MADV_WILLNEED) {
4518			GEM_BUG_ON(!obj->mm.quirked);
4519			__i915_gem_object_unpin_pages(obj);
4520			obj->mm.quirked = false;
4521		}
4522		if (args->madv == I915_MADV_WILLNEED) {
4523			GEM_BUG_ON(obj->mm.quirked);
4524			__i915_gem_object_pin_pages(obj);
4525			obj->mm.quirked = true;
4526		}
4527	}
4528
4529	if (obj->mm.madv != __I915_MADV_PURGED)
4530		obj->mm.madv = args->madv;
4531
4532	/* if the object is no longer attached, discard its backing storage */
4533	if (obj->mm.madv == I915_MADV_DONTNEED &&
4534	    !i915_gem_object_has_pages(obj))
4535		i915_gem_object_truncate(obj);
4536
4537	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4538	mutex_unlock(&obj->mm.lock);
4539
4540out:
4541	i915_gem_object_put(obj);
4542	return err;
4543}
4544
4545static void
4546frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4547{
4548	struct drm_i915_gem_object *obj =
4549		container_of(active, typeof(*obj), frontbuffer_write);
4550
4551	intel_fb_obj_flush(obj, ORIGIN_CS);
4552}
4553
4554void i915_gem_object_init(struct drm_i915_gem_object *obj,
4555			  const struct drm_i915_gem_object_ops *ops)
4556{
4557	mutex_init(&obj->mm.lock);
4558
 
 
 
 
4559	INIT_LIST_HEAD(&obj->vma_list);
4560	INIT_LIST_HEAD(&obj->lut_list);
4561	INIT_LIST_HEAD(&obj->batch_pool_link);
4562
4563	obj->ops = ops;
4564
4565	reservation_object_init(&obj->__builtin_resv);
4566	obj->resv = &obj->__builtin_resv;
4567
4568	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4569	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4570
4571	obj->mm.madv = I915_MADV_WILLNEED;
4572	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4573	mutex_init(&obj->mm.get_page.lock);
4574
4575	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4576}
4577
4578static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4579	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4580		 I915_GEM_OBJECT_IS_SHRINKABLE,
4581
4582	.get_pages = i915_gem_object_get_pages_gtt,
4583	.put_pages = i915_gem_object_put_pages_gtt,
4584
4585	.pwrite = i915_gem_object_pwrite_gtt,
4586};
4587
4588static int i915_gem_object_create_shmem(struct drm_device *dev,
4589					struct drm_gem_object *obj,
4590					size_t size)
4591{
4592	struct drm_i915_private *i915 = to_i915(dev);
4593	unsigned long flags = VM_NORESERVE;
4594	struct file *filp;
4595
4596	drm_gem_private_object_init(dev, obj, size);
4597
4598	if (i915->mm.gemfs)
4599		filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4600						 flags);
4601	else
4602		filp = shmem_file_setup("i915", size, flags);
4603
4604	if (IS_ERR(filp))
4605		return PTR_ERR(filp);
4606
4607	obj->filp = filp;
4608
4609	return 0;
4610}
4611
4612struct drm_i915_gem_object *
4613i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4614{
4615	struct drm_i915_gem_object *obj;
4616	struct address_space *mapping;
4617	unsigned int cache_level;
4618	gfp_t mask;
4619	int ret;
4620
4621	/* There is a prevalence of the assumption that we fit the object's
4622	 * page count inside a 32bit _signed_ variable. Let's document this and
4623	 * catch if we ever need to fix it. In the meantime, if you do spot
4624	 * such a local variable, please consider fixing!
4625	 */
4626	if (size >> PAGE_SHIFT > INT_MAX)
4627		return ERR_PTR(-E2BIG);
4628
4629	if (overflows_type(size, obj->base.size))
4630		return ERR_PTR(-E2BIG);
4631
4632	obj = i915_gem_object_alloc(dev_priv);
4633	if (obj == NULL)
4634		return ERR_PTR(-ENOMEM);
4635
4636	ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4637	if (ret)
4638		goto fail;
 
4639
4640	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4641	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4642		/* 965gm cannot relocate objects above 4GiB. */
4643		mask &= ~__GFP_HIGHMEM;
4644		mask |= __GFP_DMA32;
4645	}
4646
4647	mapping = obj->base.filp->f_mapping;
4648	mapping_set_gfp_mask(mapping, mask);
4649	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4650
4651	i915_gem_object_init(obj, &i915_gem_object_ops);
4652
4653	obj->write_domain = I915_GEM_DOMAIN_CPU;
4654	obj->read_domains = I915_GEM_DOMAIN_CPU;
4655
4656	if (HAS_LLC(dev_priv))
4657		/* On some devices, we can have the GPU use the LLC (the CPU
4658		 * cache) for about a 10% performance improvement
4659		 * compared to uncached.  Graphics requests other than
4660		 * display scanout are coherent with the CPU in
4661		 * accessing this cache.  This means in this mode we
4662		 * don't need to clflush on the CPU side, and on the
4663		 * GPU side we only need to flush internal caches to
4664		 * get data visible to the CPU.
4665		 *
4666		 * However, we maintain the display planes as UC, and so
4667		 * need to rebind when first used as such.
4668		 */
4669		cache_level = I915_CACHE_LLC;
4670	else
4671		cache_level = I915_CACHE_NONE;
4672
4673	i915_gem_object_set_cache_coherency(obj, cache_level);
4674
4675	trace_i915_gem_object_create(obj);
4676
4677	return obj;
4678
4679fail:
4680	i915_gem_object_free(obj);
4681	return ERR_PTR(ret);
4682}
4683
4684static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4685{
4686	/* If we are the last user of the backing storage (be it shmemfs
4687	 * pages or stolen etc), we know that the pages are going to be
4688	 * immediately released. In this case, we can then skip copying
4689	 * back the contents from the GPU.
4690	 */
4691
4692	if (obj->mm.madv != I915_MADV_WILLNEED)
4693		return false;
4694
4695	if (obj->base.filp == NULL)
4696		return true;
4697
4698	/* At first glance, this looks racy, but then again so would be
4699	 * userspace racing mmap against close. However, the first external
4700	 * reference to the filp can only be obtained through the
4701	 * i915_gem_mmap_ioctl() which safeguards us against the user
4702	 * acquiring such a reference whilst we are in the middle of
4703	 * freeing the object.
4704	 */
4705	return atomic_long_read(&obj->base.filp->f_count) == 1;
4706}
4707
4708static void __i915_gem_free_objects(struct drm_i915_private *i915,
4709				    struct llist_node *freed)
4710{
4711	struct drm_i915_gem_object *obj, *on;
 
 
 
4712
4713	intel_runtime_pm_get(i915);
4714	llist_for_each_entry_safe(obj, on, freed, freed) {
4715		struct i915_vma *vma, *vn;
4716
4717		trace_i915_gem_object_destroy(obj);
4718
4719		mutex_lock(&i915->drm.struct_mutex);
4720
4721		GEM_BUG_ON(i915_gem_object_is_active(obj));
4722		list_for_each_entry_safe(vma, vn,
4723					 &obj->vma_list, obj_link) {
4724			GEM_BUG_ON(i915_vma_is_active(vma));
4725			vma->flags &= ~I915_VMA_PIN_MASK;
4726			i915_vma_close(vma);
4727		}
4728		GEM_BUG_ON(!list_empty(&obj->vma_list));
4729		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4730
4731		/* This serializes freeing with the shrinker. Since the free
4732		 * is delayed, first by RCU then by the workqueue, we want the
4733		 * shrinker to be able to free pages of unreferenced objects,
4734		 * or else we may oom whilst there are plenty of deferred
4735		 * freed objects.
4736		 */
4737		if (i915_gem_object_has_pages(obj)) {
4738			spin_lock(&i915->mm.obj_lock);
4739			list_del_init(&obj->mm.link);
4740			spin_unlock(&i915->mm.obj_lock);
4741		}
4742
4743		mutex_unlock(&i915->drm.struct_mutex);
4744
4745		GEM_BUG_ON(obj->bind_count);
4746		GEM_BUG_ON(obj->userfault_count);
4747		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4748		GEM_BUG_ON(!list_empty(&obj->lut_list));
4749
4750		if (obj->ops->release)
4751			obj->ops->release(obj);
 
 
4752
4753		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4754			atomic_set(&obj->mm.pages_pin_count, 0);
4755		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4756		GEM_BUG_ON(i915_gem_object_has_pages(obj));
4757
4758		if (obj->base.import_attach)
4759			drm_prime_gem_destroy(&obj->base, NULL);
4760
4761		reservation_object_fini(&obj->__builtin_resv);
4762		drm_gem_object_release(&obj->base);
4763		i915_gem_info_remove_obj(i915, obj->base.size);
4764
4765		kfree(obj->bit_17);
4766		i915_gem_object_free(obj);
 
 
4767
4768		GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4769		atomic_dec(&i915->mm.free_count);
4770
4771		if (on)
4772			cond_resched();
4773	}
4774	intel_runtime_pm_put(i915);
4775}
4776
4777static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4778{
4779	struct llist_node *freed;
 
 
 
4780
4781	/* Free the oldest, most stale object to keep the free_list short */
4782	freed = NULL;
4783	if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4784		/* Only one consumer of llist_del_first() allowed */
4785		spin_lock(&i915->mm.free_lock);
4786		freed = llist_del_first(&i915->mm.free_list);
4787		spin_unlock(&i915->mm.free_lock);
4788	}
4789	if (unlikely(freed)) {
4790		freed->next = NULL;
4791		__i915_gem_free_objects(i915, freed);
4792	}
4793}
4794
4795static void __i915_gem_free_work(struct work_struct *work)
4796{
4797	struct drm_i915_private *i915 =
4798		container_of(work, struct drm_i915_private, mm.free_work);
4799	struct llist_node *freed;
4800
4801	/*
4802	 * All file-owned VMA should have been released by this point through
4803	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4804	 * However, the object may also be bound into the global GTT (e.g.
4805	 * older GPUs without per-process support, or for direct access through
4806	 * the GTT either for the user or for scanout). Those VMA still need to
4807	 * unbound now.
4808	 */
4809
4810	spin_lock(&i915->mm.free_lock);
4811	while ((freed = llist_del_all(&i915->mm.free_list))) {
4812		spin_unlock(&i915->mm.free_lock);
4813
4814		__i915_gem_free_objects(i915, freed);
4815		if (need_resched())
4816			return;
4817
4818		spin_lock(&i915->mm.free_lock);
4819	}
4820	spin_unlock(&i915->mm.free_lock);
4821}
4822
4823static void __i915_gem_free_object_rcu(struct rcu_head *head)
 
4824{
4825	struct drm_i915_gem_object *obj =
4826		container_of(head, typeof(*obj), rcu);
4827	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4828
4829	/*
4830	 * Since we require blocking on struct_mutex to unbind the freed
4831	 * object from the GPU before releasing resources back to the
4832	 * system, we can not do that directly from the RCU callback (which may
4833	 * be a softirq context), but must instead then defer that work onto a
4834	 * kthread. We use the RCU callback rather than move the freed object
4835	 * directly onto the work queue so that we can mix between using the
4836	 * worker and performing frees directly from subsequent allocations for
4837	 * crude but effective memory throttling.
4838	 */
4839	if (llist_add(&obj->freed, &i915->mm.free_list))
4840		queue_work(i915->wq, &i915->mm.free_work);
4841}
4842
4843void i915_gem_free_object(struct drm_gem_object *gem_obj)
 
4844{
4845	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
 
4846
4847	if (obj->mm.quirked)
4848		__i915_gem_object_unpin_pages(obj);
4849
4850	if (discard_backing_storage(obj))
4851		obj->mm.madv = I915_MADV_DONTNEED;
4852
4853	/*
4854	 * Before we free the object, make sure any pure RCU-only
4855	 * read-side critical sections are complete, e.g.
4856	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4857	 * lookup see i915_gem_object_lookup_rcu().
4858	 */
4859	atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
4860	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4861}
4862
4863void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4864{
4865	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
 
 
 
4866
4867	if (!i915_gem_object_has_active_reference(obj) &&
4868	    i915_gem_object_is_active(obj))
4869		i915_gem_object_set_active_reference(obj);
4870	else
4871		i915_gem_object_put(obj);
4872}
4873
4874static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4875{
4876	struct i915_gem_context *kernel_context = i915->kernel_context;
4877	struct intel_engine_cs *engine;
4878	enum intel_engine_id id;
4879
4880	for_each_engine(engine, i915, id) {
4881		GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
4882		GEM_BUG_ON(engine->last_retired_context != kernel_context);
4883	}
4884}
4885
4886void i915_gem_sanitize(struct drm_i915_private *i915)
 
4887{
4888	if (i915_terminally_wedged(&i915->gpu_error)) {
4889		mutex_lock(&i915->drm.struct_mutex);
4890		i915_gem_unset_wedged(i915);
4891		mutex_unlock(&i915->drm.struct_mutex);
4892	}
4893
4894	/*
4895	 * If we inherit context state from the BIOS or earlier occupants
4896	 * of the GPU, the GPU may be in an inconsistent state when we
4897	 * try to take over. The only way to remove the earlier state
4898	 * is by resetting. However, resetting on earlier gen is tricky as
4899	 * it may impact the display and we are uncertain about the stability
4900	 * of the reset, so this could be applied to even earlier gen.
4901	 */
4902	if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
4903		WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
4904}
4905
4906int i915_gem_suspend(struct drm_i915_private *dev_priv)
 
4907{
4908	struct drm_device *dev = &dev_priv->drm;
4909	int ret;
4910
4911	intel_runtime_pm_get(dev_priv);
4912	intel_suspend_gt_powersave(dev_priv);
4913
4914	mutex_lock(&dev->struct_mutex);
 
 
 
4915
4916	/* We have to flush all the executing contexts to main memory so
4917	 * that they can saved in the hibernation image. To ensure the last
4918	 * context image is coherent, we have to switch away from it. That
4919	 * leaves the dev_priv->kernel_context still active when
4920	 * we actually suspend, and its image in memory may not match the GPU
4921	 * state. Fortunately, the kernel_context is disposable and we do
4922	 * not rely on its state.
4923	 */
4924	if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4925		ret = i915_gem_switch_to_kernel_context(dev_priv);
4926		if (ret)
4927			goto err_unlock;
4928
4929		ret = i915_gem_wait_for_idle(dev_priv,
4930					     I915_WAIT_INTERRUPTIBLE |
4931					     I915_WAIT_LOCKED);
4932		if (ret && ret != -EIO)
4933			goto err_unlock;
4934
4935		assert_kernel_context_is_current(dev_priv);
4936	}
4937	i915_gem_contexts_lost(dev_priv);
4938	mutex_unlock(&dev->struct_mutex);
4939
4940	intel_uc_suspend(dev_priv);
4941
4942	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4943	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4944
4945	/* As the idle_work is rearming if it detects a race, play safe and
4946	 * repeat the flush until it is definitely idle.
4947	 */
4948	drain_delayed_work(&dev_priv->gt.idle_work);
4949
4950	/* Assert that we sucessfully flushed all the work and
4951	 * reset the GPU back to its idle, low power state.
4952	 */
4953	WARN_ON(dev_priv->gt.awake);
4954	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4955		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4956
4957	/*
4958	 * Neither the BIOS, ourselves or any other kernel
4959	 * expects the system to be in execlists mode on startup,
4960	 * so we need to reset the GPU back to legacy mode. And the only
4961	 * known way to disable logical contexts is through a GPU reset.
4962	 *
4963	 * So in order to leave the system in a known default configuration,
4964	 * always reset the GPU upon unload and suspend. Afterwards we then
4965	 * clean up the GEM state tracking, flushing off the requests and
4966	 * leaving the system in a known idle state.
4967	 *
4968	 * Note that is of the upmost importance that the GPU is idle and
4969	 * all stray writes are flushed *before* we dismantle the backing
4970	 * storage for the pinned objects.
4971	 *
4972	 * However, since we are uncertain that resetting the GPU on older
4973	 * machines is a good idea, we don't - just in case it leaves the
4974	 * machine in an unusable condition.
4975	 */
4976	i915_gem_sanitize(dev_priv);
4977
4978	intel_runtime_pm_put(dev_priv);
4979	return 0;
4980
4981err_unlock:
4982	mutex_unlock(&dev->struct_mutex);
4983	intel_runtime_pm_put(dev_priv);
4984	return ret;
4985}
4986
4987void i915_gem_resume(struct drm_i915_private *i915)
4988{
4989	WARN_ON(i915->gt.awake);
 
 
 
 
4990
4991	mutex_lock(&i915->drm.struct_mutex);
4992	intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4993
4994	i915_gem_restore_gtt_mappings(i915);
4995	i915_gem_restore_fences(i915);
 
4996
4997	/*
4998	 * As we didn't flush the kernel context before suspend, we cannot
4999	 * guarantee that the context image is complete. So let's just reset
5000	 * it and start again.
5001	 */
5002	i915->gt.resume(i915);
 
 
 
 
5003
5004	if (i915_gem_init_hw(i915))
5005		goto err_wedged;
5006
5007	intel_uc_resume(i915);
5008
5009	/* Always reload a context for powersaving. */
5010	if (i915_gem_switch_to_kernel_context(i915))
5011		goto err_wedged;
5012
5013out_unlock:
5014	intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5015	mutex_unlock(&i915->drm.struct_mutex);
5016	return;
5017
5018err_wedged:
5019	if (!i915_terminally_wedged(&i915->gpu_error)) {
5020		DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5021		i915_gem_set_wedged(i915);
5022	}
5023	goto out_unlock;
5024}
5025
5026void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5027{
5028	if (INTEL_GEN(dev_priv) < 5 ||
 
 
5029	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5030		return;
5031
5032	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5033				 DISP_TILE_SURFACE_SWIZZLING);
5034
5035	if (IS_GEN5(dev_priv))
5036		return;
5037
5038	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5039	if (IS_GEN6(dev_priv))
5040		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5041	else if (IS_GEN7(dev_priv))
5042		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5043	else if (IS_GEN8(dev_priv))
5044		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5045	else
5046		BUG();
5047}
5048
5049static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5050{
 
 
5051	I915_WRITE(RING_CTL(base), 0);
5052	I915_WRITE(RING_HEAD(base), 0);
5053	I915_WRITE(RING_TAIL(base), 0);
5054	I915_WRITE(RING_START(base), 0);
5055}
5056
5057static void init_unused_rings(struct drm_i915_private *dev_priv)
5058{
5059	if (IS_I830(dev_priv)) {
5060		init_unused_ring(dev_priv, PRB1_BASE);
5061		init_unused_ring(dev_priv, SRB0_BASE);
5062		init_unused_ring(dev_priv, SRB1_BASE);
5063		init_unused_ring(dev_priv, SRB2_BASE);
5064		init_unused_ring(dev_priv, SRB3_BASE);
5065	} else if (IS_GEN2(dev_priv)) {
5066		init_unused_ring(dev_priv, SRB0_BASE);
5067		init_unused_ring(dev_priv, SRB1_BASE);
5068	} else if (IS_GEN3(dev_priv)) {
5069		init_unused_ring(dev_priv, PRB1_BASE);
5070		init_unused_ring(dev_priv, PRB2_BASE);
5071	}
5072}
5073
5074static int __i915_gem_restart_engines(void *data)
5075{
5076	struct drm_i915_private *i915 = data;
5077	struct intel_engine_cs *engine;
5078	enum intel_engine_id id;
5079	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5080
5081	for_each_engine(engine, i915, id) {
5082		err = engine->init_hw(engine);
5083		if (err) {
5084			DRM_ERROR("Failed to restart %s (%d)\n",
5085				  engine->name, err);
5086			return err;
5087		}
5088	}
5089
5090	return 0;
 
 
 
 
 
 
 
 
 
 
 
5091}
5092
5093int i915_gem_init_hw(struct drm_i915_private *dev_priv)
 
5094{
5095	int ret;
 
 
5096
5097	dev_priv->gt.last_init_time = ktime_get();
 
5098
5099	/* Double layer security blanket, see i915_gem_init() */
5100	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5101
5102	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5103		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5104
5105	if (IS_HASWELL(dev_priv))
5106		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5107			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5108
5109	if (HAS_PCH_NOP(dev_priv)) {
5110		if (IS_IVYBRIDGE(dev_priv)) {
5111			u32 temp = I915_READ(GEN7_MSG_CTL);
5112			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5113			I915_WRITE(GEN7_MSG_CTL, temp);
5114		} else if (INTEL_GEN(dev_priv) >= 7) {
5115			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5116			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5117			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5118		}
5119	}
5120
5121	i915_gem_init_swizzling(dev_priv);
5122
5123	/*
5124	 * At least 830 can leave some of the unused rings
5125	 * "active" (ie. head != tail) after resume which
5126	 * will prevent c3 entry. Makes sure all unused rings
5127	 * are totally idle.
5128	 */
5129	init_unused_rings(dev_priv);
5130
5131	BUG_ON(!dev_priv->kernel_context);
5132	if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5133		ret = -EIO;
 
 
5134		goto out;
5135	}
5136
5137	ret = i915_ppgtt_init_hw(dev_priv);
5138	if (ret) {
5139		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5140		goto out;
 
5141	}
5142
5143	/* We can't enable contexts until all firmware is loaded */
5144	ret = intel_uc_init_hw(dev_priv);
5145	if (ret) {
5146		DRM_ERROR("Enabling uc failed (%d)\n", ret);
5147		goto out;
 
 
 
5148	}
5149
5150	intel_mocs_init_l3cc_table(dev_priv);
5151
5152	/* Only when the HW is re-initialised, can we replay the requests */
5153	ret = __i915_gem_restart_engines(dev_priv);
5154out:
5155	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5156	return ret;
5157}
5158
5159static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5160{
5161	struct i915_gem_context *ctx;
5162	struct intel_engine_cs *engine;
5163	enum intel_engine_id id;
5164	int err;
5165
5166	/*
5167	 * As we reset the gpu during very early sanitisation, the current
5168	 * register state on the GPU should reflect its defaults values.
5169	 * We load a context onto the hw (with restore-inhibit), then switch
5170	 * over to a second context to save that default register state. We
5171	 * can then prime every new context with that state so they all start
5172	 * from the same default HW values.
5173	 */
 
 
 
5174
5175	ctx = i915_gem_context_create_kernel(i915, 0);
5176	if (IS_ERR(ctx))
5177		return PTR_ERR(ctx);
 
 
 
 
 
 
 
5178
5179	for_each_engine(engine, i915, id) {
5180		struct i915_request *rq;
 
 
5181
5182		rq = i915_request_alloc(engine, ctx);
5183		if (IS_ERR(rq)) {
5184			err = PTR_ERR(rq);
5185			goto out_ctx;
 
 
5186		}
5187
5188		err = 0;
5189		if (engine->init_context)
5190			err = engine->init_context(rq);
 
 
 
 
5191
5192		__i915_request_add(rq, true);
5193		if (err)
5194			goto err_active;
5195	}
5196
5197	err = i915_gem_switch_to_kernel_context(i915);
5198	if (err)
5199		goto err_active;
5200
5201	err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
5202	if (err)
5203		goto err_active;
5204
5205	assert_kernel_context_is_current(i915);
5206
5207	for_each_engine(engine, i915, id) {
5208		struct i915_vma *state;
5209
5210		state = ctx->engine[id].state;
5211		if (!state)
5212			continue;
5213
5214		/*
5215		 * As we will hold a reference to the logical state, it will
5216		 * not be torn down with the context, and importantly the
5217		 * object will hold onto its vma (making it possible for a
5218		 * stray GTT write to corrupt our defaults). Unmap the vma
5219		 * from the GTT to prevent such accidents and reclaim the
5220		 * space.
5221		 */
5222		err = i915_vma_unbind(state);
5223		if (err)
5224			goto err_active;
5225
5226		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5227		if (err)
5228			goto err_active;
5229
5230		engine->default_state = i915_gem_object_get(state->obj);
5231	}
5232
5233	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5234		unsigned int found = intel_engines_has_context_isolation(i915);
5235
5236		/*
5237		 * Make sure that classes with multiple engine instances all
5238		 * share the same basic configuration.
5239		 */
5240		for_each_engine(engine, i915, id) {
5241			unsigned int bit = BIT(engine->uabi_class);
5242			unsigned int expected = engine->default_state ? bit : 0;
5243
5244			if ((found & bit) != expected) {
5245				DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5246					  engine->uabi_class, engine->name);
5247			}
5248		}
5249	}
5250
5251out_ctx:
5252	i915_gem_context_set_closed(ctx);
5253	i915_gem_context_put(ctx);
5254	return err;
5255
5256err_active:
5257	/*
5258	 * If we have to abandon now, we expect the engines to be idle
5259	 * and ready to be torn-down. First try to flush any remaining
5260	 * request, ensure we are pointing at the kernel context and
5261	 * then remove it.
5262	 */
5263	if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5264		goto out_ctx;
5265
5266	if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
5267		goto out_ctx;
5268
5269	i915_gem_contexts_lost(i915);
5270	goto out_ctx;
5271}
5272
5273int i915_gem_init(struct drm_i915_private *dev_priv)
5274{
 
5275	int ret;
5276
5277	/*
5278	 * We need to fallback to 4K pages since gvt gtt handling doesn't
5279	 * support huge page entries - we will need to check either hypervisor
5280	 * mm can support huge guest page or just do emulation in gvt.
5281	 */
5282	if (intel_vgpu_active(dev_priv))
5283		mkwrite_device_info(dev_priv)->page_sizes =
5284			I915_GTT_PAGE_SIZE_4K;
5285
5286	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5287
5288	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5289		dev_priv->gt.resume = intel_lr_context_resume;
5290		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5291	} else {
5292		dev_priv->gt.resume = intel_legacy_submission_resume;
5293		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
 
 
5294	}
5295
5296	ret = i915_gem_init_userptr(dev_priv);
5297	if (ret)
5298		return ret;
5299
5300	ret = intel_uc_init_misc(dev_priv);
5301	if (ret)
5302		return ret;
5303
5304	/* This is just a security blanket to placate dragons.
5305	 * On some systems, we very sporadically observe that the first TLBs
5306	 * used by the CS may be stale, despite us poking the TLB reset. If
5307	 * we hold the forcewake during initialisation these problems
5308	 * just magically go away.
5309	 */
5310	mutex_lock(&dev_priv->drm.struct_mutex);
5311	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5312
5313	ret = i915_gem_init_ggtt(dev_priv);
5314	if (ret) {
5315		GEM_BUG_ON(ret == -EIO);
5316		goto err_unlock;
5317	}
5318
5319	ret = i915_gem_contexts_init(dev_priv);
5320	if (ret) {
5321		GEM_BUG_ON(ret == -EIO);
5322		goto err_ggtt;
5323	}
5324
5325	ret = intel_engines_init(dev_priv);
5326	if (ret) {
5327		GEM_BUG_ON(ret == -EIO);
5328		goto err_context;
5329	}
5330
5331	intel_init_gt_powersave(dev_priv);
5332
5333	ret = intel_uc_init(dev_priv);
5334	if (ret)
5335		goto err_pm;
5336
5337	ret = i915_gem_init_hw(dev_priv);
5338	if (ret)
5339		goto err_uc_init;
5340
5341	/*
5342	 * Despite its name intel_init_clock_gating applies both display
5343	 * clock gating workarounds; GT mmio workarounds and the occasional
5344	 * GT power context workaround. Worse, sometimes it includes a context
5345	 * register workaround which we need to apply before we record the
5346	 * default HW state for all contexts.
5347	 *
5348	 * FIXME: break up the workarounds and apply them at the right time!
5349	 */
5350	intel_init_clock_gating(dev_priv);
5351
5352	ret = __intel_engines_record_defaults(dev_priv);
5353	if (ret)
5354		goto err_init_hw;
5355
5356	if (i915_inject_load_failure()) {
5357		ret = -ENODEV;
5358		goto err_init_hw;
5359	}
5360
5361	if (i915_inject_load_failure()) {
5362		ret = -EIO;
5363		goto err_init_hw;
5364	}
5365
5366	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5367	mutex_unlock(&dev_priv->drm.struct_mutex);
5368
5369	return 0;
5370
5371	/*
5372	 * Unwinding is complicated by that we want to handle -EIO to mean
5373	 * disable GPU submission but keep KMS alive. We want to mark the
5374	 * HW as irrevisibly wedged, but keep enough state around that the
5375	 * driver doesn't explode during runtime.
5376	 */
5377err_init_hw:
5378	i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
5379	i915_gem_contexts_lost(dev_priv);
5380	intel_uc_fini_hw(dev_priv);
5381err_uc_init:
5382	intel_uc_fini(dev_priv);
5383err_pm:
5384	if (ret != -EIO) {
5385		intel_cleanup_gt_powersave(dev_priv);
5386		i915_gem_cleanup_engines(dev_priv);
5387	}
5388err_context:
5389	if (ret != -EIO)
5390		i915_gem_contexts_fini(dev_priv);
5391err_ggtt:
5392err_unlock:
5393	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5394	mutex_unlock(&dev_priv->drm.struct_mutex);
5395
5396	intel_uc_fini_misc(dev_priv);
5397
5398	if (ret != -EIO)
5399		i915_gem_cleanup_userptr(dev_priv);
5400
 
5401	if (ret == -EIO) {
5402		/*
5403		 * Allow engine initialisation to fail by marking the GPU as
5404		 * wedged. But we only want to do this where the GPU is angry,
5405		 * for all other failure, such as an allocation failure, bail.
5406		 */
5407		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5408			DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5409			i915_gem_set_wedged(dev_priv);
5410		}
5411		ret = 0;
5412	}
5413
5414	i915_gem_drain_freed_objects(dev_priv);
 
 
 
5415	return ret;
5416}
5417
5418void i915_gem_init_mmio(struct drm_i915_private *i915)
 
5419{
5420	i915_gem_sanitize(i915);
 
 
 
 
 
 
 
 
 
 
 
 
 
5421}
5422
5423void
5424i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5425{
5426	struct intel_engine_cs *engine;
5427	enum intel_engine_id id;
5428
5429	for_each_engine(engine, dev_priv, id)
5430		dev_priv->gt.cleanup_engine(engine);
5431}
5432
5433void
5434i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5435{
 
5436	int i;
5437
5438	if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5439	    !IS_CHERRYVIEW(dev_priv))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5440		dev_priv->num_fence_regs = 32;
5441	else if (INTEL_GEN(dev_priv) >= 4 ||
5442		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5443		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5444		dev_priv->num_fence_regs = 16;
5445	else
5446		dev_priv->num_fence_regs = 8;
5447
5448	if (intel_vgpu_active(dev_priv))
5449		dev_priv->num_fence_regs =
5450				I915_READ(vgtif_reg(avail_rs.fence_num));
5451
 
 
 
 
 
 
 
 
5452	/* Initialize fence registers to zero */
5453	for (i = 0; i < dev_priv->num_fence_regs; i++) {
5454		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5455
5456		fence->i915 = dev_priv;
5457		fence->id = i;
5458		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5459	}
5460	i915_gem_restore_fences(dev_priv);
5461
5462	i915_gem_detect_bit_6_swizzle(dev_priv);
5463}
5464
5465static void i915_gem_init__mm(struct drm_i915_private *i915)
5466{
5467	spin_lock_init(&i915->mm.object_stat_lock);
5468	spin_lock_init(&i915->mm.obj_lock);
5469	spin_lock_init(&i915->mm.free_lock);
5470
5471	init_llist_head(&i915->mm.free_list);
5472
5473	INIT_LIST_HEAD(&i915->mm.unbound_list);
5474	INIT_LIST_HEAD(&i915->mm.bound_list);
5475	INIT_LIST_HEAD(&i915->mm.fence_list);
5476	INIT_LIST_HEAD(&i915->mm.userfault_list);
5477
5478	INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5479}
5480
5481int
5482i915_gem_load_init(struct drm_i915_private *dev_priv)
5483{
5484	int err = -ENOMEM;
5485
5486	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5487	if (!dev_priv->objects)
5488		goto err_out;
5489
5490	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5491	if (!dev_priv->vmas)
5492		goto err_objects;
5493
5494	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5495	if (!dev_priv->luts)
5496		goto err_vmas;
5497
5498	dev_priv->requests = KMEM_CACHE(i915_request,
5499					SLAB_HWCACHE_ALIGN |
5500					SLAB_RECLAIM_ACCOUNT |
5501					SLAB_TYPESAFE_BY_RCU);
5502	if (!dev_priv->requests)
5503		goto err_luts;
5504
5505	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5506					    SLAB_HWCACHE_ALIGN |
5507					    SLAB_RECLAIM_ACCOUNT);
5508	if (!dev_priv->dependencies)
5509		goto err_requests;
5510
5511	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5512	if (!dev_priv->priorities)
5513		goto err_dependencies;
5514
5515	mutex_lock(&dev_priv->drm.struct_mutex);
5516	INIT_LIST_HEAD(&dev_priv->gt.timelines);
5517	err = i915_gem_timeline_init__global(dev_priv);
5518	mutex_unlock(&dev_priv->drm.struct_mutex);
5519	if (err)
5520		goto err_priorities;
5521
5522	i915_gem_init__mm(dev_priv);
5523
5524	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5525			  i915_gem_retire_work_handler);
5526	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5527			  i915_gem_idle_work_handler);
5528	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5529	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5530
5531	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5532
5533	spin_lock_init(&dev_priv->fb_tracking.lock);
5534
5535	err = i915_gemfs_init(dev_priv);
5536	if (err)
5537		DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5538
5539	return 0;
5540
5541err_priorities:
5542	kmem_cache_destroy(dev_priv->priorities);
5543err_dependencies:
5544	kmem_cache_destroy(dev_priv->dependencies);
5545err_requests:
5546	kmem_cache_destroy(dev_priv->requests);
5547err_luts:
5548	kmem_cache_destroy(dev_priv->luts);
5549err_vmas:
5550	kmem_cache_destroy(dev_priv->vmas);
5551err_objects:
5552	kmem_cache_destroy(dev_priv->objects);
5553err_out:
5554	return err;
5555}
5556
5557void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5558{
5559	i915_gem_drain_freed_objects(dev_priv);
5560	GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5561	GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5562	WARN_ON(dev_priv->mm.object_count);
5563
5564	mutex_lock(&dev_priv->drm.struct_mutex);
5565	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5566	WARN_ON(!list_empty(&dev_priv->gt.timelines));
5567	mutex_unlock(&dev_priv->drm.struct_mutex);
5568
5569	kmem_cache_destroy(dev_priv->priorities);
5570	kmem_cache_destroy(dev_priv->dependencies);
5571	kmem_cache_destroy(dev_priv->requests);
5572	kmem_cache_destroy(dev_priv->luts);
5573	kmem_cache_destroy(dev_priv->vmas);
5574	kmem_cache_destroy(dev_priv->objects);
5575
5576	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5577	rcu_barrier();
5578
5579	i915_gemfs_fini(dev_priv);
5580}
5581
5582int i915_gem_freeze(struct drm_i915_private *dev_priv)
5583{
5584	/* Discard all purgeable objects, let userspace recover those as
5585	 * required after resuming.
5586	 */
5587	i915_gem_shrink_all(dev_priv);
5588
5589	return 0;
5590}
5591
5592int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5593{
5594	struct drm_i915_gem_object *obj;
5595	struct list_head *phases[] = {
5596		&dev_priv->mm.unbound_list,
5597		&dev_priv->mm.bound_list,
5598		NULL
5599	}, **p;
5600
5601	/* Called just before we write the hibernation image.
5602	 *
5603	 * We need to update the domain tracking to reflect that the CPU
5604	 * will be accessing all the pages to create and restore from the
5605	 * hibernation, and so upon restoration those pages will be in the
5606	 * CPU domain.
5607	 *
5608	 * To make sure the hibernation image contains the latest state,
5609	 * we update that state just before writing out the image.
5610	 *
5611	 * To try and reduce the hibernation image, we manually shrink
5612	 * the objects as well, see i915_gem_freeze()
5613	 */
5614
5615	i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5616	i915_gem_drain_freed_objects(dev_priv);
5617
5618	spin_lock(&dev_priv->mm.obj_lock);
5619	for (p = phases; *p; p++) {
5620		list_for_each_entry(obj, *p, mm.link)
5621			__start_cpu_write(obj);
5622	}
5623	spin_unlock(&dev_priv->mm.obj_lock);
5624
5625	return 0;
5626}
5627
5628void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5629{
5630	struct drm_i915_file_private *file_priv = file->driver_priv;
5631	struct i915_request *request;
5632
5633	/* Clean up our request list when the client is going away, so that
5634	 * later retire_requests won't dereference our soon-to-be-gone
5635	 * file_priv.
5636	 */
5637	spin_lock(&file_priv->mm.lock);
5638	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
 
 
 
 
 
 
5639		request->file_priv = NULL;
 
5640	spin_unlock(&file_priv->mm.lock);
 
 
 
 
 
 
5641}
5642
5643int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5644{
5645	struct drm_i915_file_private *file_priv;
5646	int ret;
5647
5648	DRM_DEBUG("\n");
5649
5650	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5651	if (!file_priv)
5652		return -ENOMEM;
5653
5654	file->driver_priv = file_priv;
5655	file_priv->dev_priv = i915;
5656	file_priv->file = file;
 
5657
5658	spin_lock_init(&file_priv->mm.lock);
5659	INIT_LIST_HEAD(&file_priv->mm.request_list);
5660
5661	file_priv->bsd_engine = -1;
5662
5663	ret = i915_gem_context_open(i915, file);
5664	if (ret)
5665		kfree(file_priv);
5666
5667	return ret;
5668}
5669
5670/**
5671 * i915_gem_track_fb - update frontbuffer tracking
5672 * @old: current GEM buffer for the frontbuffer slots
5673 * @new: new GEM buffer for the frontbuffer slots
5674 * @frontbuffer_bits: bitmask of frontbuffer slots
5675 *
5676 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5677 * from @old and setting them in @new. Both @old and @new can be NULL.
5678 */
5679void i915_gem_track_fb(struct drm_i915_gem_object *old,
5680		       struct drm_i915_gem_object *new,
5681		       unsigned frontbuffer_bits)
5682{
5683	/* Control of individual bits within the mask are guarded by
5684	 * the owning plane->mutex, i.e. we can never see concurrent
5685	 * manipulation of individual bits. But since the bitfield as a whole
5686	 * is updated using RMW, we need to use atomics in order to update
5687	 * the bits.
5688	 */
5689	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5690		     sizeof(atomic_t) * BITS_PER_BYTE);
5691
5692	if (old) {
5693		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5694		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
 
5695	}
5696
5697	if (new) {
5698		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5699		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
 
5700	}
5701}
5702
5703/* Allocate a new GEM object and fill it with the supplied data */
5704struct drm_i915_gem_object *
5705i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5706			         const void *data, size_t size)
5707{
5708	struct drm_i915_gem_object *obj;
5709	struct file *file;
5710	size_t offset;
5711	int err;
5712
5713	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5714	if (IS_ERR(obj))
5715		return obj;
5716
5717	GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
 
 
 
 
 
 
5718
5719	file = obj->base.filp;
5720	offset = 0;
5721	do {
5722		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5723		struct page *page;
5724		void *pgdata, *vaddr;
5725
5726		err = pagecache_write_begin(file, file->f_mapping,
5727					    offset, len, 0,
5728					    &page, &pgdata);
5729		if (err < 0)
5730			goto fail;
5731
5732		vaddr = kmap(page);
5733		memcpy(vaddr, data, len);
5734		kunmap(page);
5735
5736		err = pagecache_write_end(file, file->f_mapping,
5737					  offset, len, len,
5738					  page, pgdata);
5739		if (err < 0)
5740			goto fail;
5741
5742		size -= len;
5743		data += len;
5744		offset += len;
5745	} while (size);
5746
5747	return obj;
 
 
 
5748
5749fail:
5750	i915_gem_object_put(obj);
5751	return ERR_PTR(err);
5752}
5753
5754struct scatterlist *
5755i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5756		       unsigned int n,
5757		       unsigned int *offset)
5758{
5759	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5760	struct scatterlist *sg;
5761	unsigned int idx, count;
5762
5763	might_sleep();
5764	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5765	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5766
5767	/* As we iterate forward through the sg, we record each entry in a
5768	 * radixtree for quick repeated (backwards) lookups. If we have seen
5769	 * this index previously, we will have an entry for it.
5770	 *
5771	 * Initial lookup is O(N), but this is amortized to O(1) for
5772	 * sequential page access (where each new request is consecutive
5773	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5774	 * i.e. O(1) with a large constant!
5775	 */
5776	if (n < READ_ONCE(iter->sg_idx))
5777		goto lookup;
5778
5779	mutex_lock(&iter->lock);
 
5780
5781	/* We prefer to reuse the last sg so that repeated lookup of this
5782	 * (or the subsequent) sg are fast - comparing against the last
5783	 * sg is faster than going through the radixtree.
5784	 */
 
5785
5786	sg = iter->sg_pos;
5787	idx = iter->sg_idx;
5788	count = __sg_page_count(sg);
 
 
5789
5790	while (idx + count <= n) {
5791		unsigned long exception, i;
5792		int ret;
5793
5794		/* If we cannot allocate and insert this entry, or the
5795		 * individual pages from this range, cancel updating the
5796		 * sg_idx so that on this lookup we are forced to linearly
5797		 * scan onwards, but on future lookups we will try the
5798		 * insertion again (in which case we need to be careful of
5799		 * the error return reporting that we have already inserted
5800		 * this index).
5801		 */
5802		ret = radix_tree_insert(&iter->radix, idx, sg);
5803		if (ret && ret != -EEXIST)
5804			goto scan;
5805
5806		exception =
5807			RADIX_TREE_EXCEPTIONAL_ENTRY |
5808			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5809		for (i = 1; i < count; i++) {
5810			ret = radix_tree_insert(&iter->radix, idx + i,
5811						(void *)exception);
5812			if (ret && ret != -EEXIST)
5813				goto scan;
5814		}
5815
5816		idx += count;
5817		sg = ____sg_next(sg);
5818		count = __sg_page_count(sg);
5819	}
5820
5821scan:
5822	iter->sg_pos = sg;
5823	iter->sg_idx = idx;
 
 
5824
5825	mutex_unlock(&iter->lock);
5826
5827	if (unlikely(n < idx)) /* insertion completed by another thread */
5828		goto lookup;
5829
5830	/* In case we failed to insert the entry into the radixtree, we need
5831	 * to look beyond the current sg.
5832	 */
5833	while (idx + count <= n) {
5834		idx += count;
5835		sg = ____sg_next(sg);
5836		count = __sg_page_count(sg);
5837	}
5838
5839	*offset = n - idx;
5840	return sg;
5841
5842lookup:
5843	rcu_read_lock();
5844
5845	sg = radix_tree_lookup(&iter->radix, n);
5846	GEM_BUG_ON(!sg);
5847
5848	/* If this index is in the middle of multi-page sg entry,
5849	 * the radixtree will contain an exceptional entry that points
5850	 * to the start of that range. We will return the pointer to
5851	 * the base page and the offset of this page within the
5852	 * sg entry's range.
5853	 */
5854	*offset = 0;
5855	if (unlikely(radix_tree_exception(sg))) {
5856		unsigned long base =
5857			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5858
5859		sg = radix_tree_lookup(&iter->radix, base);
5860		GEM_BUG_ON(!sg);
5861
5862		*offset = n - base;
5863	}
5864
5865	rcu_read_unlock();
5866
5867	return sg;
5868}
5869
5870struct page *
5871i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5872{
5873	struct scatterlist *sg;
5874	unsigned int offset;
 
 
5875
5876	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5877
5878	sg = i915_gem_object_get_sg(obj, n, &offset);
5879	return nth_page(sg_page(sg), offset);
5880}
5881
5882/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5883struct page *
5884i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5885			       unsigned int n)
5886{
5887	struct page *page;
5888
 
 
 
 
5889	page = i915_gem_object_get_page(obj, n);
5890	if (!obj->mm.dirty)
5891		set_page_dirty(page);
5892
5893	return page;
5894}
5895
5896dma_addr_t
5897i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5898				unsigned long n)
 
5899{
5900	struct scatterlist *sg;
5901	unsigned int offset;
 
 
5902
5903	sg = i915_gem_object_get_sg(obj, n, &offset);
5904	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5905}
5906
5907int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5908{
5909	struct sg_table *pages;
5910	int err;
5911
5912	if (align > obj->base.size)
5913		return -EINVAL;
 
5914
5915	if (obj->ops == &i915_gem_phys_ops)
5916		return 0;
 
 
 
5917
5918	if (obj->ops != &i915_gem_object_ops)
5919		return -EINVAL;
5920
5921	err = i915_gem_object_unbind(obj);
5922	if (err)
5923		return err;
5924
5925	mutex_lock(&obj->mm.lock);
5926
5927	if (obj->mm.madv != I915_MADV_WILLNEED) {
5928		err = -EFAULT;
5929		goto err_unlock;
5930	}
5931
5932	if (obj->mm.quirked) {
5933		err = -EFAULT;
5934		goto err_unlock;
5935	}
5936
5937	if (obj->mm.mapping) {
5938		err = -EBUSY;
5939		goto err_unlock;
5940	}
5941
5942	pages = fetch_and_zero(&obj->mm.pages);
5943	if (pages) {
5944		struct drm_i915_private *i915 = to_i915(obj->base.dev);
5945
5946		__i915_gem_object_reset_page_iter(obj);
5947
5948		spin_lock(&i915->mm.obj_lock);
5949		list_del(&obj->mm.link);
5950		spin_unlock(&i915->mm.obj_lock);
5951	}
5952
5953	obj->ops = &i915_gem_phys_ops;
5954
5955	err = ____i915_gem_object_get_pages(obj);
5956	if (err)
5957		goto err_xfer;
5958
5959	/* Perma-pin (until release) the physical set of pages */
5960	__i915_gem_object_pin_pages(obj);
5961
5962	if (!IS_ERR_OR_NULL(pages))
5963		i915_gem_object_ops.put_pages(obj, pages);
5964	mutex_unlock(&obj->mm.lock);
5965	return 0;
5966
5967err_xfer:
5968	obj->ops = &i915_gem_object_ops;
5969	obj->mm.pages = pages;
5970err_unlock:
5971	mutex_unlock(&obj->mm.lock);
5972	return err;
5973}
5974
5975#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5976#include "selftests/scatterlist.c"
5977#include "selftests/mock_gem_device.c"
5978#include "selftests/huge_gem_object.c"
5979#include "selftests/huge_pages.c"
5980#include "selftests/i915_gem_object.c"
5981#include "selftests/i915_gem_coherency.c"
5982#endif