Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drmP.h>
  29#include <drm/drm_vma_manager.h>
  30#include <drm/i915_drm.h>
  31#include "i915_drv.h"
  32#include "i915_vgpu.h"
  33#include "i915_trace.h"
  34#include "intel_drv.h"
  35#include <linux/shmem_fs.h>
  36#include <linux/slab.h>
  37#include <linux/swap.h>
  38#include <linux/pci.h>
  39#include <linux/dma-buf.h>
  40
  41#define RQ_BUG_ON(expr)
  42
  43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  45static void
  46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
  47static void
  48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  49
  50static bool cpu_cache_is_coherent(struct drm_device *dev,
  51				  enum i915_cache_level level)
  52{
  53	return HAS_LLC(dev) || level != I915_CACHE_NONE;
  54}
  55
  56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  57{
  58	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  59		return true;
  60
  61	return obj->pin_display;
  62}
  63
 
 
 
 
 
 
 
 
 
 
 
 
  64/* some bookkeeping */
  65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  66				  size_t size)
  67{
  68	spin_lock(&dev_priv->mm.object_stat_lock);
  69	dev_priv->mm.object_count++;
  70	dev_priv->mm.object_memory += size;
  71	spin_unlock(&dev_priv->mm.object_stat_lock);
  72}
  73
  74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  75				     size_t size)
  76{
  77	spin_lock(&dev_priv->mm.object_stat_lock);
  78	dev_priv->mm.object_count--;
  79	dev_priv->mm.object_memory -= size;
  80	spin_unlock(&dev_priv->mm.object_stat_lock);
  81}
  82
  83static int
  84i915_gem_wait_for_error(struct i915_gpu_error *error)
  85{
  86	int ret;
  87
  88#define EXIT_COND (!i915_reset_in_progress(error) || \
  89		   i915_terminally_wedged(error))
  90	if (EXIT_COND)
  91		return 0;
  92
  93	/*
  94	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  95	 * userspace. If it takes that long something really bad is going on and
  96	 * we should simply try to bail out and fail as gracefully as possible.
  97	 */
  98	ret = wait_event_interruptible_timeout(error->reset_queue,
  99					       EXIT_COND,
 100					       10*HZ);
 101	if (ret == 0) {
 102		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
 103		return -EIO;
 104	} else if (ret < 0) {
 105		return ret;
 106	}
 107#undef EXIT_COND
 108
 109	return 0;
 110}
 111
 112int i915_mutex_lock_interruptible(struct drm_device *dev)
 113{
 114	struct drm_i915_private *dev_priv = dev->dev_private;
 115	int ret;
 116
 117	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
 118	if (ret)
 119		return ret;
 120
 121	ret = mutex_lock_interruptible(&dev->struct_mutex);
 122	if (ret)
 123		return ret;
 124
 125	WARN_ON(i915_verify_lists(dev));
 126	return 0;
 127}
 128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129int
 130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 131			    struct drm_file *file)
 132{
 133	struct drm_i915_private *dev_priv = dev->dev_private;
 134	struct drm_i915_gem_get_aperture *args = data;
 135	struct i915_gtt *ggtt = &dev_priv->gtt;
 136	struct i915_vma *vma;
 137	size_t pinned;
 138
 139	pinned = 0;
 140	mutex_lock(&dev->struct_mutex);
 141	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
 142		if (vma->pin_count)
 143			pinned += vma->node.size;
 144	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
 145		if (vma->pin_count)
 146			pinned += vma->node.size;
 147	mutex_unlock(&dev->struct_mutex);
 148
 149	args->aper_size = dev_priv->gtt.base.total;
 150	args->aper_available_size = args->aper_size - pinned;
 151
 152	return 0;
 153}
 154
 155static int
 156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
 157{
 158	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
 159	char *vaddr = obj->phys_handle->vaddr;
 160	struct sg_table *st;
 161	struct scatterlist *sg;
 162	int i;
 163
 164	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
 165		return -EINVAL;
 166
 167	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 168		struct page *page;
 169		char *src;
 170
 171		page = shmem_read_mapping_page(mapping, i);
 172		if (IS_ERR(page))
 173			return PTR_ERR(page);
 174
 175		src = kmap_atomic(page);
 176		memcpy(vaddr, src, PAGE_SIZE);
 177		drm_clflush_virt_range(vaddr, PAGE_SIZE);
 178		kunmap_atomic(src);
 179
 180		put_page(page);
 181		vaddr += PAGE_SIZE;
 182	}
 183
 184	i915_gem_chipset_flush(obj->base.dev);
 185
 186	st = kmalloc(sizeof(*st), GFP_KERNEL);
 187	if (st == NULL)
 188		return -ENOMEM;
 189
 190	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
 191		kfree(st);
 192		return -ENOMEM;
 193	}
 194
 195	sg = st->sgl;
 196	sg->offset = 0;
 197	sg->length = obj->base.size;
 198
 199	sg_dma_address(sg) = obj->phys_handle->busaddr;
 200	sg_dma_len(sg) = obj->base.size;
 201
 202	obj->pages = st;
 203	return 0;
 204}
 205
 206static void
 207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
 208{
 209	int ret;
 210
 211	BUG_ON(obj->madv == __I915_MADV_PURGED);
 212
 213	ret = i915_gem_object_set_to_cpu_domain(obj, true);
 214	if (ret) {
 215		/* In the event of a disaster, abandon all caches and
 216		 * hope for the best.
 217		 */
 218		WARN_ON(ret != -EIO);
 219		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
 220	}
 221
 222	if (obj->madv == I915_MADV_DONTNEED)
 223		obj->dirty = 0;
 224
 225	if (obj->dirty) {
 226		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
 227		char *vaddr = obj->phys_handle->vaddr;
 228		int i;
 229
 230		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 231			struct page *page;
 232			char *dst;
 233
 234			page = shmem_read_mapping_page(mapping, i);
 235			if (IS_ERR(page))
 236				continue;
 237
 238			dst = kmap_atomic(page);
 239			drm_clflush_virt_range(vaddr, PAGE_SIZE);
 240			memcpy(dst, vaddr, PAGE_SIZE);
 241			kunmap_atomic(dst);
 242
 243			set_page_dirty(page);
 244			if (obj->madv == I915_MADV_WILLNEED)
 245				mark_page_accessed(page);
 246			put_page(page);
 
 247			vaddr += PAGE_SIZE;
 248		}
 249		obj->dirty = 0;
 250	}
 251
 252	sg_free_table(obj->pages);
 253	kfree(obj->pages);
 254}
 255
 256static void
 257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
 258{
 259	drm_pci_free(obj->base.dev, obj->phys_handle);
 260}
 261
 262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
 263	.get_pages = i915_gem_object_get_pages_phys,
 264	.put_pages = i915_gem_object_put_pages_phys,
 265	.release = i915_gem_object_release_phys,
 266};
 267
 268static int
 269drop_pages(struct drm_i915_gem_object *obj)
 270{
 271	struct i915_vma *vma, *next;
 272	int ret;
 273
 274	drm_gem_object_reference(&obj->base);
 275	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
 276		if (i915_vma_unbind(vma))
 277			break;
 278
 279	ret = i915_gem_object_put_pages(obj);
 280	drm_gem_object_unreference(&obj->base);
 281
 282	return ret;
 283}
 284
 285int
 286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
 287			    int align)
 288{
 289	drm_dma_handle_t *phys;
 290	int ret;
 
 
 291
 292	if (obj->phys_handle) {
 293		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
 294			return -EBUSY;
 295
 296		return 0;
 297	}
 298
 299	if (obj->madv != I915_MADV_WILLNEED)
 300		return -EFAULT;
 301
 302	if (obj->base.filp == NULL)
 303		return -EINVAL;
 304
 305	ret = drop_pages(obj);
 306	if (ret)
 307		return ret;
 308
 309	/* create a new object */
 310	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
 311	if (!phys)
 312		return -ENOMEM;
 313
 314	obj->phys_handle = phys;
 315	obj->ops = &i915_gem_phys_ops;
 
 
 
 
 
 
 316
 317	return i915_gem_object_get_pages(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318}
 319
 320static int
 321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
 322		     struct drm_i915_gem_pwrite *args,
 323		     struct drm_file *file_priv)
 324{
 325	struct drm_device *dev = obj->base.dev;
 326	void *vaddr = obj->phys_handle->vaddr + args->offset;
 327	char __user *user_data = to_user_ptr(args->data_ptr);
 328	int ret = 0;
 329
 330	/* We manually control the domain here and pretend that it
 331	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
 332	 */
 333	ret = i915_gem_object_wait_rendering(obj, false);
 334	if (ret)
 335		return ret;
 336
 337	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 338	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
 339		unsigned long unwritten;
 340
 341		/* The physical object once assigned is fixed for the lifetime
 342		 * of the obj, so we can safely drop the lock and continue
 343		 * to access vaddr.
 344		 */
 345		mutex_unlock(&dev->struct_mutex);
 346		unwritten = copy_from_user(vaddr, user_data, args->size);
 347		mutex_lock(&dev->struct_mutex);
 348		if (unwritten) {
 349			ret = -EFAULT;
 350			goto out;
 351		}
 352	}
 353
 354	drm_clflush_virt_range(vaddr, args->size);
 355	i915_gem_chipset_flush(dev);
 356
 357out:
 358	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
 359	return ret;
 360}
 361
 362void *i915_gem_object_alloc(struct drm_device *dev)
 363{
 364	struct drm_i915_private *dev_priv = dev->dev_private;
 365	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
 366}
 367
 368void i915_gem_object_free(struct drm_i915_gem_object *obj)
 369{
 370	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
 371	kmem_cache_free(dev_priv->objects, obj);
 372}
 373
 374static int
 375i915_gem_create(struct drm_file *file,
 376		struct drm_device *dev,
 377		uint64_t size,
 378		uint32_t *handle_p)
 379{
 380	struct drm_i915_gem_object *obj;
 381	int ret;
 382	u32 handle;
 383
 384	size = roundup(size, PAGE_SIZE);
 385	if (size == 0)
 386		return -EINVAL;
 387
 388	/* Allocate the new object */
 389	obj = i915_gem_alloc_object(dev, size);
 390	if (obj == NULL)
 391		return -ENOMEM;
 392
 393	ret = drm_gem_handle_create(file, &obj->base, &handle);
 394	/* drop reference from allocate - handle holds it now */
 395	drm_gem_object_unreference_unlocked(&obj->base);
 396	if (ret)
 397		return ret;
 398
 399	*handle_p = handle;
 400	return 0;
 401}
 402
 403int
 404i915_gem_dumb_create(struct drm_file *file,
 405		     struct drm_device *dev,
 406		     struct drm_mode_create_dumb *args)
 407{
 408	/* have to work out size/pitch and return them */
 409	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
 410	args->size = args->pitch * args->height;
 411	return i915_gem_create(file, dev,
 412			       args->size, &args->handle);
 413}
 414
 415/**
 416 * Creates a new mm object and returns a handle to it.
 417 */
 418int
 419i915_gem_create_ioctl(struct drm_device *dev, void *data,
 420		      struct drm_file *file)
 421{
 422	struct drm_i915_gem_create *args = data;
 423
 424	return i915_gem_create(file, dev,
 425			       args->size, &args->handle);
 426}
 427
 428static inline int
 429__copy_to_user_swizzled(char __user *cpu_vaddr,
 430			const char *gpu_vaddr, int gpu_offset,
 431			int length)
 432{
 433	int ret, cpu_offset = 0;
 434
 435	while (length > 0) {
 436		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 437		int this_length = min(cacheline_end - gpu_offset, length);
 438		int swizzled_gpu_offset = gpu_offset ^ 64;
 439
 440		ret = __copy_to_user(cpu_vaddr + cpu_offset,
 441				     gpu_vaddr + swizzled_gpu_offset,
 442				     this_length);
 443		if (ret)
 444			return ret + length;
 445
 446		cpu_offset += this_length;
 447		gpu_offset += this_length;
 448		length -= this_length;
 449	}
 450
 451	return 0;
 452}
 453
 454static inline int
 455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
 456			  const char __user *cpu_vaddr,
 457			  int length)
 458{
 459	int ret, cpu_offset = 0;
 460
 461	while (length > 0) {
 462		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 463		int this_length = min(cacheline_end - gpu_offset, length);
 464		int swizzled_gpu_offset = gpu_offset ^ 64;
 465
 466		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
 467				       cpu_vaddr + cpu_offset,
 468				       this_length);
 469		if (ret)
 470			return ret + length;
 471
 472		cpu_offset += this_length;
 473		gpu_offset += this_length;
 474		length -= this_length;
 475	}
 476
 477	return 0;
 478}
 479
 480/*
 481 * Pins the specified object's pages and synchronizes the object with
 482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 483 * flush the object from the CPU cache.
 484 */
 485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
 486				    int *needs_clflush)
 487{
 488	int ret;
 489
 490	*needs_clflush = 0;
 491
 492	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
 493		return -EINVAL;
 494
 495	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
 496		/* If we're not in the cpu read domain, set ourself into the gtt
 497		 * read domain and manually flush cachelines (if required). This
 498		 * optimizes for the case when the gpu will dirty the data
 499		 * anyway again before the next pread happens. */
 500		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
 501							obj->cache_level);
 502		ret = i915_gem_object_wait_rendering(obj, true);
 503		if (ret)
 504			return ret;
 505	}
 506
 507	ret = i915_gem_object_get_pages(obj);
 508	if (ret)
 509		return ret;
 510
 511	i915_gem_object_pin_pages(obj);
 512
 513	return ret;
 514}
 515
 516/* Per-page copy function for the shmem pread fastpath.
 517 * Flushes invalid cachelines before reading the target if
 518 * needs_clflush is set. */
 519static int
 520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
 521		 char __user *user_data,
 522		 bool page_do_bit17_swizzling, bool needs_clflush)
 523{
 524	char *vaddr;
 525	int ret;
 526
 527	if (unlikely(page_do_bit17_swizzling))
 528		return -EINVAL;
 529
 530	vaddr = kmap_atomic(page);
 531	if (needs_clflush)
 532		drm_clflush_virt_range(vaddr + shmem_page_offset,
 533				       page_length);
 534	ret = __copy_to_user_inatomic(user_data,
 535				      vaddr + shmem_page_offset,
 536				      page_length);
 537	kunmap_atomic(vaddr);
 538
 539	return ret ? -EFAULT : 0;
 540}
 541
 542static void
 543shmem_clflush_swizzled_range(char *addr, unsigned long length,
 544			     bool swizzled)
 545{
 546	if (unlikely(swizzled)) {
 547		unsigned long start = (unsigned long) addr;
 548		unsigned long end = (unsigned long) addr + length;
 549
 550		/* For swizzling simply ensure that we always flush both
 551		 * channels. Lame, but simple and it works. Swizzled
 552		 * pwrite/pread is far from a hotpath - current userspace
 553		 * doesn't use it at all. */
 554		start = round_down(start, 128);
 555		end = round_up(end, 128);
 556
 557		drm_clflush_virt_range((void *)start, end - start);
 558	} else {
 559		drm_clflush_virt_range(addr, length);
 560	}
 561
 562}
 563
 564/* Only difference to the fast-path function is that this can handle bit17
 565 * and uses non-atomic copy and kmap functions. */
 566static int
 567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
 568		 char __user *user_data,
 569		 bool page_do_bit17_swizzling, bool needs_clflush)
 570{
 571	char *vaddr;
 572	int ret;
 573
 574	vaddr = kmap(page);
 575	if (needs_clflush)
 576		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 577					     page_length,
 578					     page_do_bit17_swizzling);
 579
 580	if (page_do_bit17_swizzling)
 581		ret = __copy_to_user_swizzled(user_data,
 582					      vaddr, shmem_page_offset,
 583					      page_length);
 584	else
 585		ret = __copy_to_user(user_data,
 586				     vaddr + shmem_page_offset,
 587				     page_length);
 588	kunmap(page);
 589
 590	return ret ? - EFAULT : 0;
 591}
 592
 593static int
 594i915_gem_shmem_pread(struct drm_device *dev,
 595		     struct drm_i915_gem_object *obj,
 596		     struct drm_i915_gem_pread *args,
 597		     struct drm_file *file)
 598{
 599	char __user *user_data;
 600	ssize_t remain;
 601	loff_t offset;
 602	int shmem_page_offset, page_length, ret = 0;
 603	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 604	int prefaulted = 0;
 605	int needs_clflush = 0;
 606	struct sg_page_iter sg_iter;
 607
 608	user_data = to_user_ptr(args->data_ptr);
 609	remain = args->size;
 610
 611	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 612
 613	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
 614	if (ret)
 615		return ret;
 616
 617	offset = args->offset;
 618
 619	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
 620			 offset >> PAGE_SHIFT) {
 621		struct page *page = sg_page_iter_page(&sg_iter);
 622
 623		if (remain <= 0)
 624			break;
 625
 626		/* Operation in this page
 627		 *
 628		 * shmem_page_offset = offset within page in shmem file
 629		 * page_length = bytes to copy for this page
 630		 */
 631		shmem_page_offset = offset_in_page(offset);
 632		page_length = remain;
 633		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 634			page_length = PAGE_SIZE - shmem_page_offset;
 635
 636		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 637			(page_to_phys(page) & (1 << 17)) != 0;
 638
 639		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
 640				       user_data, page_do_bit17_swizzling,
 641				       needs_clflush);
 642		if (ret == 0)
 643			goto next_page;
 644
 645		mutex_unlock(&dev->struct_mutex);
 646
 647		if (likely(!i915.prefault_disable) && !prefaulted) {
 648			ret = fault_in_multipages_writeable(user_data, remain);
 649			/* Userspace is tricking us, but we've already clobbered
 650			 * its pages with the prefault and promised to write the
 651			 * data up to the first fault. Hence ignore any errors
 652			 * and just continue. */
 653			(void)ret;
 654			prefaulted = 1;
 655		}
 656
 657		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
 658				       user_data, page_do_bit17_swizzling,
 659				       needs_clflush);
 660
 661		mutex_lock(&dev->struct_mutex);
 662
 663		if (ret)
 664			goto out;
 665
 666next_page:
 667		remain -= page_length;
 668		user_data += page_length;
 669		offset += page_length;
 670	}
 671
 672out:
 673	i915_gem_object_unpin_pages(obj);
 674
 675	return ret;
 676}
 677
 678/**
 679 * Reads data from the object referenced by handle.
 680 *
 681 * On error, the contents of *data are undefined.
 682 */
 683int
 684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 685		     struct drm_file *file)
 686{
 687	struct drm_i915_gem_pread *args = data;
 688	struct drm_i915_gem_object *obj;
 689	int ret = 0;
 690
 691	if (args->size == 0)
 692		return 0;
 693
 694	if (!access_ok(VERIFY_WRITE,
 695		       to_user_ptr(args->data_ptr),
 696		       args->size))
 697		return -EFAULT;
 698
 699	ret = i915_mutex_lock_interruptible(dev);
 700	if (ret)
 701		return ret;
 702
 703	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 704	if (&obj->base == NULL) {
 705		ret = -ENOENT;
 706		goto unlock;
 707	}
 708
 709	/* Bounds check source.  */
 710	if (args->offset > obj->base.size ||
 711	    args->size > obj->base.size - args->offset) {
 712		ret = -EINVAL;
 713		goto out;
 714	}
 715
 716	/* prime objects have no backing filp to GEM pread/pwrite
 717	 * pages from.
 718	 */
 719	if (!obj->base.filp) {
 720		ret = -EINVAL;
 721		goto out;
 722	}
 723
 724	trace_i915_gem_object_pread(obj, args->offset, args->size);
 725
 726	ret = i915_gem_shmem_pread(dev, obj, args, file);
 727
 728out:
 729	drm_gem_object_unreference(&obj->base);
 730unlock:
 731	mutex_unlock(&dev->struct_mutex);
 732	return ret;
 733}
 734
 735/* This is the fast write path which cannot handle
 736 * page faults in the source data
 737 */
 738
 739static inline int
 740fast_user_write(struct io_mapping *mapping,
 741		loff_t page_base, int page_offset,
 742		char __user *user_data,
 743		int length)
 744{
 745	void __iomem *vaddr_atomic;
 746	void *vaddr;
 747	unsigned long unwritten;
 748
 749	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 750	/* We can use the cpu mem copy function because this is X86. */
 751	vaddr = (void __force*)vaddr_atomic + page_offset;
 752	unwritten = __copy_from_user_inatomic_nocache(vaddr,
 753						      user_data, length);
 754	io_mapping_unmap_atomic(vaddr_atomic);
 755	return unwritten;
 756}
 757
 758/**
 759 * This is the fast pwrite path, where we copy the data directly from the
 760 * user into the GTT, uncached.
 761 */
 762static int
 763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
 764			 struct drm_i915_gem_object *obj,
 765			 struct drm_i915_gem_pwrite *args,
 766			 struct drm_file *file)
 767{
 768	struct drm_i915_private *dev_priv = dev->dev_private;
 769	ssize_t remain;
 770	loff_t offset, page_base;
 771	char __user *user_data;
 772	int page_offset, page_length, ret;
 773
 774	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
 775	if (ret)
 776		goto out;
 777
 778	ret = i915_gem_object_set_to_gtt_domain(obj, true);
 779	if (ret)
 780		goto out_unpin;
 781
 782	ret = i915_gem_object_put_fence(obj);
 783	if (ret)
 784		goto out_unpin;
 785
 786	user_data = to_user_ptr(args->data_ptr);
 787	remain = args->size;
 788
 789	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
 790
 791	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
 792
 793	while (remain > 0) {
 794		/* Operation in this page
 795		 *
 796		 * page_base = page offset within aperture
 797		 * page_offset = offset within page
 798		 * page_length = bytes to copy for this page
 799		 */
 800		page_base = offset & PAGE_MASK;
 801		page_offset = offset_in_page(offset);
 802		page_length = remain;
 803		if ((page_offset + remain) > PAGE_SIZE)
 804			page_length = PAGE_SIZE - page_offset;
 805
 806		/* If we get a fault while copying data, then (presumably) our
 807		 * source page isn't available.  Return the error and we'll
 808		 * retry in the slow path.
 809		 */
 810		if (fast_user_write(dev_priv->gtt.mappable, page_base,
 811				    page_offset, user_data, page_length)) {
 812			ret = -EFAULT;
 813			goto out_flush;
 814		}
 815
 816		remain -= page_length;
 817		user_data += page_length;
 818		offset += page_length;
 819	}
 820
 821out_flush:
 822	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
 823out_unpin:
 824	i915_gem_object_ggtt_unpin(obj);
 825out:
 826	return ret;
 827}
 828
 829/* Per-page copy function for the shmem pwrite fastpath.
 830 * Flushes invalid cachelines before writing to the target if
 831 * needs_clflush_before is set and flushes out any written cachelines after
 832 * writing if needs_clflush is set. */
 833static int
 834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
 835		  char __user *user_data,
 836		  bool page_do_bit17_swizzling,
 837		  bool needs_clflush_before,
 838		  bool needs_clflush_after)
 839{
 840	char *vaddr;
 841	int ret;
 842
 843	if (unlikely(page_do_bit17_swizzling))
 844		return -EINVAL;
 845
 846	vaddr = kmap_atomic(page);
 847	if (needs_clflush_before)
 848		drm_clflush_virt_range(vaddr + shmem_page_offset,
 849				       page_length);
 850	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
 851					user_data, page_length);
 852	if (needs_clflush_after)
 853		drm_clflush_virt_range(vaddr + shmem_page_offset,
 854				       page_length);
 855	kunmap_atomic(vaddr);
 856
 857	return ret ? -EFAULT : 0;
 858}
 859
 860/* Only difference to the fast-path function is that this can handle bit17
 861 * and uses non-atomic copy and kmap functions. */
 862static int
 863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
 864		  char __user *user_data,
 865		  bool page_do_bit17_swizzling,
 866		  bool needs_clflush_before,
 867		  bool needs_clflush_after)
 868{
 869	char *vaddr;
 870	int ret;
 871
 872	vaddr = kmap(page);
 873	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
 874		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 875					     page_length,
 876					     page_do_bit17_swizzling);
 877	if (page_do_bit17_swizzling)
 878		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
 879						user_data,
 880						page_length);
 881	else
 882		ret = __copy_from_user(vaddr + shmem_page_offset,
 883				       user_data,
 884				       page_length);
 885	if (needs_clflush_after)
 886		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 887					     page_length,
 888					     page_do_bit17_swizzling);
 889	kunmap(page);
 890
 891	return ret ? -EFAULT : 0;
 892}
 893
 894static int
 895i915_gem_shmem_pwrite(struct drm_device *dev,
 896		      struct drm_i915_gem_object *obj,
 897		      struct drm_i915_gem_pwrite *args,
 898		      struct drm_file *file)
 899{
 900	ssize_t remain;
 901	loff_t offset;
 902	char __user *user_data;
 903	int shmem_page_offset, page_length, ret = 0;
 904	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 905	int hit_slowpath = 0;
 906	int needs_clflush_after = 0;
 907	int needs_clflush_before = 0;
 908	struct sg_page_iter sg_iter;
 909
 910	user_data = to_user_ptr(args->data_ptr);
 911	remain = args->size;
 912
 913	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 914
 915	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 916		/* If we're not in the cpu write domain, set ourself into the gtt
 917		 * write domain and manually flush cachelines (if required). This
 918		 * optimizes for the case when the gpu will use the data
 919		 * right away and we therefore have to clflush anyway. */
 920		needs_clflush_after = cpu_write_needs_clflush(obj);
 921		ret = i915_gem_object_wait_rendering(obj, false);
 922		if (ret)
 923			return ret;
 924	}
 925	/* Same trick applies to invalidate partially written cachelines read
 926	 * before writing. */
 927	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
 928		needs_clflush_before =
 929			!cpu_cache_is_coherent(dev, obj->cache_level);
 930
 931	ret = i915_gem_object_get_pages(obj);
 932	if (ret)
 933		return ret;
 934
 935	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 936
 937	i915_gem_object_pin_pages(obj);
 938
 939	offset = args->offset;
 940	obj->dirty = 1;
 941
 942	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
 943			 offset >> PAGE_SHIFT) {
 944		struct page *page = sg_page_iter_page(&sg_iter);
 945		int partial_cacheline_write;
 946
 947		if (remain <= 0)
 948			break;
 949
 950		/* Operation in this page
 951		 *
 952		 * shmem_page_offset = offset within page in shmem file
 953		 * page_length = bytes to copy for this page
 954		 */
 955		shmem_page_offset = offset_in_page(offset);
 956
 957		page_length = remain;
 958		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 959			page_length = PAGE_SIZE - shmem_page_offset;
 960
 961		/* If we don't overwrite a cacheline completely we need to be
 962		 * careful to have up-to-date data by first clflushing. Don't
 963		 * overcomplicate things and flush the entire patch. */
 964		partial_cacheline_write = needs_clflush_before &&
 965			((shmem_page_offset | page_length)
 966				& (boot_cpu_data.x86_clflush_size - 1));
 967
 968		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 969			(page_to_phys(page) & (1 << 17)) != 0;
 970
 971		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
 972					user_data, page_do_bit17_swizzling,
 973					partial_cacheline_write,
 974					needs_clflush_after);
 975		if (ret == 0)
 976			goto next_page;
 977
 978		hit_slowpath = 1;
 979		mutex_unlock(&dev->struct_mutex);
 980		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
 981					user_data, page_do_bit17_swizzling,
 982					partial_cacheline_write,
 983					needs_clflush_after);
 984
 985		mutex_lock(&dev->struct_mutex);
 986
 987		if (ret)
 988			goto out;
 989
 990next_page:
 991		remain -= page_length;
 992		user_data += page_length;
 993		offset += page_length;
 994	}
 995
 996out:
 997	i915_gem_object_unpin_pages(obj);
 998
 999	if (hit_slowpath) {
1000		/*
1001		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002		 * cachelines in-line while writing and the object moved
1003		 * out of the cpu write domain while we've dropped the lock.
1004		 */
1005		if (!needs_clflush_after &&
1006		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007			if (i915_gem_clflush_object(obj, obj->pin_display))
1008				needs_clflush_after = true;
1009		}
1010	}
1011
1012	if (needs_clflush_after)
1013		i915_gem_chipset_flush(dev);
1014	else
1015		obj->cache_dirty = true;
1016
1017	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018	return ret;
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028		      struct drm_file *file)
1029{
1030	struct drm_i915_private *dev_priv = dev->dev_private;
1031	struct drm_i915_gem_pwrite *args = data;
1032	struct drm_i915_gem_object *obj;
1033	int ret;
1034
1035	if (args->size == 0)
1036		return 0;
1037
1038	if (!access_ok(VERIFY_READ,
1039		       to_user_ptr(args->data_ptr),
1040		       args->size))
1041		return -EFAULT;
1042
1043	if (likely(!i915.prefault_disable)) {
1044		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045						   args->size);
1046		if (ret)
1047			return -EFAULT;
1048	}
1049
1050	intel_runtime_pm_get(dev_priv);
1051
1052	ret = i915_mutex_lock_interruptible(dev);
1053	if (ret)
1054		goto put_rpm;
1055
1056	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057	if (&obj->base == NULL) {
1058		ret = -ENOENT;
1059		goto unlock;
1060	}
1061
1062	/* Bounds check destination. */
1063	if (args->offset > obj->base.size ||
1064	    args->size > obj->base.size - args->offset) {
1065		ret = -EINVAL;
1066		goto out;
1067	}
1068
1069	/* prime objects have no backing filp to GEM pread/pwrite
1070	 * pages from.
1071	 */
1072	if (!obj->base.filp) {
1073		ret = -EINVAL;
1074		goto out;
1075	}
1076
1077	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079	ret = -EFAULT;
1080	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1081	 * it would end up going through the fenced access, and we'll get
1082	 * different detiling behavior between reading and writing.
1083	 * pread/pwrite currently are reading and writing from the CPU
1084	 * perspective, requiring manual detiling by the client.
1085	 */
 
 
 
 
 
1086	if (obj->tiling_mode == I915_TILING_NONE &&
1087	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088	    cpu_write_needs_clflush(obj)) {
1089		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090		/* Note that the gtt paths might fail with non-page-backed user
1091		 * pointers (e.g. gtt mappings when moving data between
1092		 * textures). Fallback to the shmem path in that case. */
1093	}
1094
1095	if (ret == -EFAULT || ret == -ENOSPC) {
1096		if (obj->phys_handle)
1097			ret = i915_gem_phys_pwrite(obj, args, file);
1098		else
1099			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100	}
1101
1102out:
1103	drm_gem_object_unreference(&obj->base);
1104unlock:
1105	mutex_unlock(&dev->struct_mutex);
1106put_rpm:
1107	intel_runtime_pm_put(dev_priv);
1108
1109	return ret;
1110}
1111
1112int
1113i915_gem_check_wedge(struct i915_gpu_error *error,
1114		     bool interruptible)
1115{
1116	if (i915_reset_in_progress(error)) {
1117		/* Non-interruptible callers can't handle -EAGAIN, hence return
1118		 * -EIO unconditionally for these. */
1119		if (!interruptible)
1120			return -EIO;
1121
1122		/* Recovery complete, but the reset failed ... */
1123		if (i915_terminally_wedged(error))
1124			return -EIO;
1125
1126		/*
1127		 * Check if GPU Reset is in progress - we need intel_ring_begin
1128		 * to work properly to reinit the hw state while the gpu is
1129		 * still marked as reset-in-progress. Handle this with a flag.
1130		 */
1131		if (!error->reload_in_reset)
1132			return -EAGAIN;
1133	}
1134
1135	return 0;
1136}
1137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138static void fake_irq(unsigned long data)
1139{
1140	wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
1144		       struct intel_engine_cs *ring)
1145{
1146	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
1149static unsigned long local_clock_us(unsigned *cpu)
1150{
1151	unsigned long t;
1152
1153	/* Cheaply and approximately convert from nanoseconds to microseconds.
1154	 * The result and subsequent calculations are also defined in the same
1155	 * approximate microseconds units. The principal source of timing
1156	 * error here is from the simple truncation.
1157	 *
1158	 * Note that local_clock() is only defined wrt to the current CPU;
1159	 * the comparisons are no longer valid if we switch CPUs. Instead of
1160	 * blocking preemption for the entire busywait, we can detect the CPU
1161	 * switch and use that as indicator of system load and a reason to
1162	 * stop busywaiting, see busywait_stop().
1163	 */
1164	*cpu = get_cpu();
1165	t = local_clock() >> 10;
1166	put_cpu();
1167
1168	return t;
1169}
1170
1171static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172{
1173	unsigned this_cpu;
1174
1175	if (time_after(local_clock_us(&this_cpu), timeout))
1176		return true;
1177
1178	return this_cpu != cpu;
1179}
1180
1181static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182{
1183	unsigned long timeout;
1184	unsigned cpu;
1185
1186	/* When waiting for high frequency requests, e.g. during synchronous
1187	 * rendering split between the CPU and GPU, the finite amount of time
1188	 * required to set up the irq and wait upon it limits the response
1189	 * rate. By busywaiting on the request completion for a short while we
1190	 * can service the high frequency waits as quick as possible. However,
1191	 * if it is a slow request, we want to sleep as quickly as possible.
1192	 * The tradeoff between waiting and sleeping is roughly the time it
1193	 * takes to sleep on a request, on the order of a microsecond.
1194	 */
1195
1196	if (req->ring->irq_refcount)
1197		return -EBUSY;
1198
1199	/* Only spin if we know the GPU is processing this request */
1200	if (!i915_gem_request_started(req, true))
1201		return -EAGAIN;
1202
1203	timeout = local_clock_us(&cpu) + 5;
1204	while (!need_resched()) {
1205		if (i915_gem_request_completed(req, true))
1206			return 0;
1207
1208		if (signal_pending_state(state, current))
1209			break;
1210
1211		if (busywait_stop(timeout, cpu))
1212			break;
1213
1214		cpu_relax_lowlatency();
1215	}
1216
1217	if (i915_gem_request_completed(req, false))
1218		return 0;
1219
1220	return -EAGAIN;
1221}
1222
1223/**
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
 
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
1237 * Returns 0 if the request was found within the alloted time. Else returns the
1238 * errno with remaining time filled in timeout argument.
1239 */
1240int __i915_wait_request(struct drm_i915_gem_request *req,
1241			unsigned reset_counter,
1242			bool interruptible,
1243			s64 *timeout,
1244			struct intel_rps_client *rps)
1245{
1246	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247	struct drm_device *dev = ring->dev;
1248	struct drm_i915_private *dev_priv = dev->dev_private;
1249	const bool irq_test_in_progress =
1250		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252	DEFINE_WAIT(wait);
1253	unsigned long timeout_expire;
1254	s64 before = 0; /* Only to silence a compiler warning. */
1255	int ret;
1256
1257	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259	if (list_empty(&req->list))
1260		return 0;
1261
1262	if (i915_gem_request_completed(req, true))
1263		return 0;
1264
1265	timeout_expire = 0;
1266	if (timeout) {
1267		if (WARN_ON(*timeout < 0))
1268			return -EINVAL;
1269
1270		if (*timeout == 0)
1271			return -ETIME;
1272
1273		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274
1275		/*
1276		 * Record current time in case interrupted by signal, or wedged.
1277		 */
1278		before = ktime_get_raw_ns();
 
 
1279	}
1280
1281	if (INTEL_INFO(dev_priv)->gen >= 6)
1282		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283
1284	trace_i915_gem_request_wait_begin(req);
1285
1286	/* Optimistic spin for the next jiffie before touching IRQs */
1287	ret = __i915_spin_request(req, state);
1288	if (ret == 0)
1289		goto out;
1290
1291	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1292		ret = -ENODEV;
1293		goto out;
1294	}
1295
 
 
 
1296	for (;;) {
1297		struct timer_list timer;
1298
1299		prepare_to_wait(&ring->irq_queue, &wait, state);
 
1300
1301		/* We need to check whether any gpu reset happened in between
1302		 * the caller grabbing the seqno and now ... */
1303		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305			 * is truely gone. */
1306			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307			if (ret == 0)
1308				ret = -EAGAIN;
1309			break;
1310		}
1311
1312		if (i915_gem_request_completed(req, false)) {
1313			ret = 0;
1314			break;
1315		}
1316
1317		if (signal_pending_state(state, current)) {
1318			ret = -ERESTARTSYS;
1319			break;
1320		}
1321
1322		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323			ret = -ETIME;
1324			break;
1325		}
1326
1327		timer.function = NULL;
1328		if (timeout || missed_irq(dev_priv, ring)) {
1329			unsigned long expire;
1330
1331			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1333			mod_timer(&timer, expire);
1334		}
1335
1336		io_schedule();
1337
1338		if (timer.function) {
1339			del_singleshot_timer_sync(&timer);
1340			destroy_timer_on_stack(&timer);
1341		}
1342	}
 
 
 
1343	if (!irq_test_in_progress)
1344		ring->irq_put(ring);
1345
1346	finish_wait(&ring->irq_queue, &wait);
1347
1348out:
1349	trace_i915_gem_request_wait_end(req);
1350
1351	if (timeout) {
1352		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353
1354		*timeout = tres < 0 ? 0 : tres;
1355
1356		/*
1357		 * Apparently ktime isn't accurate enough and occasionally has a
1358		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359		 * things up to make the test happy. We allow up to 1 jiffy.
1360		 *
1361		 * This is a regrssion from the timespec->ktime conversion.
1362		 */
1363		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364			*timeout = 0;
1365	}
1366
1367	return ret;
1368}
1369
1370int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371				   struct drm_file *file)
1372{
1373	struct drm_i915_private *dev_private;
1374	struct drm_i915_file_private *file_priv;
1375
1376	WARN_ON(!req || !file || req->file_priv);
1377
1378	if (!req || !file)
1379		return -EINVAL;
1380
1381	if (req->file_priv)
1382		return -EINVAL;
1383
1384	dev_private = req->ring->dev->dev_private;
1385	file_priv = file->driver_priv;
1386
1387	spin_lock(&file_priv->mm.lock);
1388	req->file_priv = file_priv;
1389	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1390	spin_unlock(&file_priv->mm.lock);
1391
1392	req->pid = get_pid(task_pid(current));
1393
1394	return 0;
1395}
1396
1397static inline void
1398i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1399{
1400	struct drm_i915_file_private *file_priv = request->file_priv;
1401
1402	if (!file_priv)
1403		return;
1404
1405	spin_lock(&file_priv->mm.lock);
1406	list_del(&request->client_list);
1407	request->file_priv = NULL;
1408	spin_unlock(&file_priv->mm.lock);
1409
1410	put_pid(request->pid);
1411	request->pid = NULL;
1412}
1413
1414static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1415{
1416	trace_i915_gem_request_retire(request);
1417
1418	/* We know the GPU must have read the request to have
1419	 * sent us the seqno + interrupt, so use the position
1420	 * of tail of the request to update the last known position
1421	 * of the GPU head.
1422	 *
1423	 * Note this requires that we are always called in request
1424	 * completion order.
1425	 */
1426	request->ringbuf->last_retired_head = request->postfix;
1427
1428	list_del_init(&request->list);
1429	i915_gem_request_remove_from_client(request);
1430
1431	i915_gem_request_unreference(request);
1432}
1433
1434static void
1435__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1436{
1437	struct intel_engine_cs *engine = req->ring;
1438	struct drm_i915_gem_request *tmp;
1439
1440	lockdep_assert_held(&engine->dev->struct_mutex);
1441
1442	if (list_empty(&req->list))
1443		return;
1444
1445	do {
1446		tmp = list_first_entry(&engine->request_list,
1447				       typeof(*tmp), list);
1448
1449		i915_gem_request_retire(tmp);
1450	} while (tmp != req);
1451
1452	WARN_ON(i915_verify_lists(engine->dev));
1453}
1454
1455/**
1456 * Waits for a request to be signaled, and cleans up the
1457 * request and object lists appropriately for that event.
1458 */
1459int
1460i915_wait_request(struct drm_i915_gem_request *req)
1461{
1462	struct drm_device *dev;
1463	struct drm_i915_private *dev_priv;
1464	bool interruptible;
1465	int ret;
1466
1467	BUG_ON(req == NULL);
1468
1469	dev = req->ring->dev;
1470	dev_priv = dev->dev_private;
1471	interruptible = dev_priv->mm.interruptible;
1472
1473	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
 
1474
1475	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1476	if (ret)
1477		return ret;
1478
1479	ret = __i915_wait_request(req,
1480				  atomic_read(&dev_priv->gpu_error.reset_counter),
1481				  interruptible, NULL, NULL);
1482	if (ret)
1483		return ret;
1484
1485	__i915_gem_request_retire__upto(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486	return 0;
1487}
1488
1489/**
1490 * Ensures that all rendering to the object has completed and the object is
1491 * safe to unbind from the GTT or access from the CPU.
1492 */
1493int
1494i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1495			       bool readonly)
1496{
1497	int ret, i;
 
 
1498
1499	if (!obj->active)
 
1500		return 0;
1501
1502	if (readonly) {
1503		if (obj->last_write_req != NULL) {
1504			ret = i915_wait_request(obj->last_write_req);
1505			if (ret)
1506				return ret;
1507
1508			i = obj->last_write_req->ring->id;
1509			if (obj->last_read_req[i] == obj->last_write_req)
1510				i915_gem_object_retire__read(obj, i);
1511			else
1512				i915_gem_object_retire__write(obj);
1513		}
1514	} else {
1515		for (i = 0; i < I915_NUM_RINGS; i++) {
1516			if (obj->last_read_req[i] == NULL)
1517				continue;
1518
1519			ret = i915_wait_request(obj->last_read_req[i]);
1520			if (ret)
1521				return ret;
1522
1523			i915_gem_object_retire__read(obj, i);
1524		}
1525		RQ_BUG_ON(obj->active);
1526	}
1527
1528	return 0;
1529}
1530
1531static void
1532i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1533			       struct drm_i915_gem_request *req)
1534{
1535	int ring = req->ring->id;
1536
1537	if (obj->last_read_req[ring] == req)
1538		i915_gem_object_retire__read(obj, ring);
1539	else if (obj->last_write_req == req)
1540		i915_gem_object_retire__write(obj);
1541
1542	__i915_gem_request_retire__upto(req);
1543}
1544
1545/* A nonblocking variant of the above wait. This is a highly dangerous routine
1546 * as the object state may change during this call.
1547 */
1548static __must_check int
1549i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1550					    struct intel_rps_client *rps,
1551					    bool readonly)
1552{
1553	struct drm_device *dev = obj->base.dev;
1554	struct drm_i915_private *dev_priv = dev->dev_private;
1555	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1556	unsigned reset_counter;
1557	int ret, i, n = 0;
 
1558
1559	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1560	BUG_ON(!dev_priv->mm.interruptible);
1561
1562	if (!obj->active)
 
1563		return 0;
1564
1565	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1566	if (ret)
1567		return ret;
1568
1569	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1570
1571	if (readonly) {
1572		struct drm_i915_gem_request *req;
1573
1574		req = obj->last_write_req;
1575		if (req == NULL)
1576			return 0;
1577
1578		requests[n++] = i915_gem_request_reference(req);
1579	} else {
1580		for (i = 0; i < I915_NUM_RINGS; i++) {
1581			struct drm_i915_gem_request *req;
1582
1583			req = obj->last_read_req[i];
1584			if (req == NULL)
1585				continue;
1586
1587			requests[n++] = i915_gem_request_reference(req);
1588		}
1589	}
1590
 
1591	mutex_unlock(&dev->struct_mutex);
1592	for (i = 0; ret == 0 && i < n; i++)
1593		ret = __i915_wait_request(requests[i], reset_counter, true,
1594					  NULL, rps);
1595	mutex_lock(&dev->struct_mutex);
 
 
1596
1597	for (i = 0; i < n; i++) {
1598		if (ret == 0)
1599			i915_gem_object_retire_request(obj, requests[i]);
1600		i915_gem_request_unreference(requests[i]);
1601	}
1602
1603	return ret;
1604}
1605
1606static struct intel_rps_client *to_rps_client(struct drm_file *file)
1607{
1608	struct drm_i915_file_private *fpriv = file->driver_priv;
1609	return &fpriv->rps;
1610}
1611
1612/**
1613 * Called when user space prepares to use an object with the CPU, either
1614 * through the mmap ioctl's mapping or a GTT mapping.
1615 */
1616int
1617i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1618			  struct drm_file *file)
1619{
1620	struct drm_i915_gem_set_domain *args = data;
1621	struct drm_i915_gem_object *obj;
1622	uint32_t read_domains = args->read_domains;
1623	uint32_t write_domain = args->write_domain;
1624	int ret;
1625
1626	/* Only handle setting domains to types used by the CPU. */
1627	if (write_domain & I915_GEM_GPU_DOMAINS)
1628		return -EINVAL;
1629
1630	if (read_domains & I915_GEM_GPU_DOMAINS)
1631		return -EINVAL;
1632
1633	/* Having something in the write domain implies it's in the read
1634	 * domain, and only that read domain.  Enforce that in the request.
1635	 */
1636	if (write_domain != 0 && read_domains != write_domain)
1637		return -EINVAL;
1638
1639	ret = i915_mutex_lock_interruptible(dev);
1640	if (ret)
1641		return ret;
1642
1643	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1644	if (&obj->base == NULL) {
1645		ret = -ENOENT;
1646		goto unlock;
1647	}
1648
1649	/* Try to flush the object off the GPU without holding the lock.
1650	 * We will repeat the flush holding the lock in the normal manner
1651	 * to catch cases where we are gazumped.
1652	 */
1653	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1654							  to_rps_client(file),
1655							  !write_domain);
1656	if (ret)
1657		goto unref;
1658
1659	if (read_domains & I915_GEM_DOMAIN_GTT)
1660		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1661	else
1662		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1663
1664	if (write_domain != 0)
1665		intel_fb_obj_invalidate(obj,
1666					write_domain == I915_GEM_DOMAIN_GTT ?
1667					ORIGIN_GTT : ORIGIN_CPU);
 
 
 
 
 
1668
1669unref:
1670	drm_gem_object_unreference(&obj->base);
1671unlock:
1672	mutex_unlock(&dev->struct_mutex);
1673	return ret;
1674}
1675
1676/**
1677 * Called when user space has done writes to this buffer
1678 */
1679int
1680i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1681			 struct drm_file *file)
1682{
1683	struct drm_i915_gem_sw_finish *args = data;
1684	struct drm_i915_gem_object *obj;
1685	int ret = 0;
1686
1687	ret = i915_mutex_lock_interruptible(dev);
1688	if (ret)
1689		return ret;
1690
1691	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1692	if (&obj->base == NULL) {
1693		ret = -ENOENT;
1694		goto unlock;
1695	}
1696
1697	/* Pinned buffers may be scanout, so flush the cache */
1698	if (obj->pin_display)
1699		i915_gem_object_flush_cpu_write_domain(obj);
1700
1701	drm_gem_object_unreference(&obj->base);
1702unlock:
1703	mutex_unlock(&dev->struct_mutex);
1704	return ret;
1705}
1706
1707/**
1708 * Maps the contents of an object, returning the address it is mapped
1709 * into.
1710 *
1711 * While the mapping holds a reference on the contents of the object, it doesn't
1712 * imply a ref on the object itself.
1713 *
1714 * IMPORTANT:
1715 *
1716 * DRM driver writers who look a this function as an example for how to do GEM
1717 * mmap support, please don't implement mmap support like here. The modern way
1718 * to implement DRM mmap support is with an mmap offset ioctl (like
1719 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1720 * That way debug tooling like valgrind will understand what's going on, hiding
1721 * the mmap call in a driver private ioctl will break that. The i915 driver only
1722 * does cpu mmaps this way because we didn't know better.
1723 */
1724int
1725i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1726		    struct drm_file *file)
1727{
1728	struct drm_i915_gem_mmap *args = data;
1729	struct drm_gem_object *obj;
1730	unsigned long addr;
1731
1732	if (args->flags & ~(I915_MMAP_WC))
1733		return -EINVAL;
1734
1735	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1736		return -ENODEV;
1737
1738	obj = drm_gem_object_lookup(dev, file, args->handle);
1739	if (obj == NULL)
1740		return -ENOENT;
1741
1742	/* prime objects have no backing filp to GEM mmap
1743	 * pages from.
1744	 */
1745	if (!obj->filp) {
1746		drm_gem_object_unreference_unlocked(obj);
1747		return -EINVAL;
1748	}
1749
1750	addr = vm_mmap(obj->filp, 0, args->size,
1751		       PROT_READ | PROT_WRITE, MAP_SHARED,
1752		       args->offset);
1753	if (args->flags & I915_MMAP_WC) {
1754		struct mm_struct *mm = current->mm;
1755		struct vm_area_struct *vma;
1756
1757		down_write(&mm->mmap_sem);
1758		vma = find_vma(mm, addr);
1759		if (vma)
1760			vma->vm_page_prot =
1761				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1762		else
1763			addr = -ENOMEM;
1764		up_write(&mm->mmap_sem);
1765	}
1766	drm_gem_object_unreference_unlocked(obj);
1767	if (IS_ERR((void *)addr))
1768		return addr;
1769
1770	args->addr_ptr = (uint64_t) addr;
1771
1772	return 0;
1773}
1774
1775/**
1776 * i915_gem_fault - fault a page into the GTT
1777 * @vma: VMA in question
1778 * @vmf: fault info
1779 *
1780 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1781 * from userspace.  The fault handler takes care of binding the object to
1782 * the GTT (if needed), allocating and programming a fence register (again,
1783 * only if needed based on whether the old reg is still valid or the object
1784 * is tiled) and inserting a new PTE into the faulting process.
1785 *
1786 * Note that the faulting process may involve evicting existing objects
1787 * from the GTT and/or fence registers to make room.  So performance may
1788 * suffer if the GTT working set is large or there are few fence registers
1789 * left.
1790 */
1791int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1792{
1793	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1794	struct drm_device *dev = obj->base.dev;
1795	struct drm_i915_private *dev_priv = dev->dev_private;
1796	struct i915_ggtt_view view = i915_ggtt_view_normal;
1797	pgoff_t page_offset;
1798	unsigned long pfn;
1799	int ret = 0;
1800	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801
1802	intel_runtime_pm_get(dev_priv);
1803
1804	/* We don't use vmf->pgoff since that has the fake offset */
1805	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806		PAGE_SHIFT;
1807
1808	ret = i915_mutex_lock_interruptible(dev);
1809	if (ret)
1810		goto out;
1811
1812	trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
1814	/* Try to flush the object off the GPU first without holding the lock.
1815	 * Upon reacquiring the lock, we will perform our sanity checks and then
1816	 * repeat the flush holding the lock in the normal manner to catch cases
1817	 * where we are gazumped.
1818	 */
1819	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820	if (ret)
1821		goto unlock;
1822
1823	/* Access to snoopable pages through the GTT is incoherent. */
1824	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825		ret = -EFAULT;
1826		goto unlock;
1827	}
1828
1829	/* Use a partial view if the object is bigger than the aperture. */
1830	if (obj->base.size >= dev_priv->gtt.mappable_end &&
1831	    obj->tiling_mode == I915_TILING_NONE) {
1832		static const unsigned int chunk_size = 256; // 1 MiB
1833
1834		memset(&view, 0, sizeof(view));
1835		view.type = I915_GGTT_VIEW_PARTIAL;
1836		view.params.partial.offset = rounddown(page_offset, chunk_size);
1837		view.params.partial.size =
1838			min_t(unsigned int,
1839			      chunk_size,
1840			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841			      view.params.partial.offset);
1842	}
1843
1844	/* Now pin it into the GTT if needed */
1845	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846	if (ret)
1847		goto unlock;
1848
1849	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850	if (ret)
1851		goto unpin;
1852
1853	ret = i915_gem_object_get_fence(obj);
1854	if (ret)
1855		goto unpin;
1856
1857	/* Finally, remap it using the new GTT offset */
1858	pfn = dev_priv->gtt.mappable_base +
1859		i915_gem_obj_ggtt_offset_view(obj, &view);
1860	pfn >>= PAGE_SHIFT;
1861
1862	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863		/* Overriding existing pages in partial view does not cause
1864		 * us any trouble as TLBs are still valid because the fault
1865		 * is due to userspace losing part of the mapping or never
1866		 * having accessed it before (at this partials' range).
1867		 */
1868		unsigned long base = vma->vm_start +
1869				     (view.params.partial.offset << PAGE_SHIFT);
1870		unsigned int i;
1871
1872		for (i = 0; i < view.params.partial.size; i++) {
1873			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874			if (ret)
1875				break;
1876		}
1877
1878		obj->fault_mappable = true;
1879	} else {
1880		if (!obj->fault_mappable) {
1881			unsigned long size = min_t(unsigned long,
1882						   vma->vm_end - vma->vm_start,
1883						   obj->base.size);
1884			int i;
1885
1886			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887				ret = vm_insert_pfn(vma,
1888						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889						    pfn + i);
1890				if (ret)
1891					break;
1892			}
1893
1894			obj->fault_mappable = true;
1895		} else
1896			ret = vm_insert_pfn(vma,
1897					    (unsigned long)vmf->virtual_address,
1898					    pfn + page_offset);
1899	}
1900unpin:
1901	i915_gem_object_ggtt_unpin_view(obj, &view);
1902unlock:
1903	mutex_unlock(&dev->struct_mutex);
1904out:
1905	switch (ret) {
1906	case -EIO:
1907		/*
1908		 * We eat errors when the gpu is terminally wedged to avoid
1909		 * userspace unduly crashing (gl has no provisions for mmaps to
1910		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911		 * and so needs to be reported.
1912		 */
1913		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914			ret = VM_FAULT_SIGBUS;
1915			break;
1916		}
1917	case -EAGAIN:
1918		/*
1919		 * EAGAIN means the gpu is hung and we'll wait for the error
1920		 * handler to reset everything when re-faulting in
1921		 * i915_mutex_lock_interruptible.
1922		 */
1923	case 0:
1924	case -ERESTARTSYS:
1925	case -EINTR:
1926	case -EBUSY:
1927		/*
1928		 * EBUSY is ok: this just means that another thread
1929		 * already did the job.
1930		 */
1931		ret = VM_FAULT_NOPAGE;
1932		break;
1933	case -ENOMEM:
1934		ret = VM_FAULT_OOM;
1935		break;
1936	case -ENOSPC:
1937	case -EFAULT:
1938		ret = VM_FAULT_SIGBUS;
1939		break;
1940	default:
1941		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942		ret = VM_FAULT_SIGBUS;
1943		break;
1944	}
1945
1946	intel_runtime_pm_put(dev_priv);
1947	return ret;
1948}
1949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950/**
1951 * i915_gem_release_mmap - remove physical page mappings
1952 * @obj: obj in question
1953 *
1954 * Preserve the reservation of the mmapping with the DRM core code, but
1955 * relinquish ownership of the pages back to the system.
1956 *
1957 * It is vital that we remove the page mapping if we have mapped a tiled
1958 * object through the GTT and then lose the fence register due to
1959 * resource pressure. Similarly if the object has been moved out of the
1960 * aperture, than pages mapped into userspace must be revoked. Removing the
1961 * mapping will then trigger a page fault on the next user access, allowing
1962 * fixup by i915_gem_fault().
1963 */
1964void
1965i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966{
1967	if (!obj->fault_mappable)
1968		return;
1969
1970	drm_vma_node_unmap(&obj->base.vma_node,
1971			   obj->base.dev->anon_inode->i_mapping);
1972	obj->fault_mappable = false;
1973}
1974
1975void
1976i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977{
1978	struct drm_i915_gem_object *obj;
1979
1980	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981		i915_gem_release_mmap(obj);
1982}
1983
1984uint32_t
1985i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986{
1987	uint32_t gtt_size;
1988
1989	if (INTEL_INFO(dev)->gen >= 4 ||
1990	    tiling_mode == I915_TILING_NONE)
1991		return size;
1992
1993	/* Previous chips need a power-of-two fence region when tiling */
1994	if (INTEL_INFO(dev)->gen == 3)
1995		gtt_size = 1024*1024;
1996	else
1997		gtt_size = 512*1024;
1998
1999	while (gtt_size < size)
2000		gtt_size <<= 1;
2001
2002	return gtt_size;
2003}
2004
2005/**
2006 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007 * @obj: object to check
2008 *
2009 * Return the required GTT alignment for an object, taking into account
2010 * potential fence register mapping.
2011 */
2012uint32_t
2013i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014			   int tiling_mode, bool fenced)
2015{
2016	/*
2017	 * Minimum alignment is 4k (GTT page size), but might be greater
2018	 * if a fence register is needed for the object.
2019	 */
2020	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021	    tiling_mode == I915_TILING_NONE)
2022		return 4096;
2023
2024	/*
2025	 * Previous chips need to be aligned to the size of the smallest
2026	 * fence register that can contain the object.
2027	 */
2028	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029}
2030
2031static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032{
2033	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034	int ret;
2035
2036	if (drm_vma_node_has_offset(&obj->base.vma_node))
2037		return 0;
2038
2039	dev_priv->mm.shrinker_no_lock_stealing = true;
2040
2041	ret = drm_gem_create_mmap_offset(&obj->base);
2042	if (ret != -ENOSPC)
2043		goto out;
2044
2045	/* Badly fragmented mmap space? The only way we can recover
2046	 * space is by destroying unwanted objects. We can't randomly release
2047	 * mmap_offsets as userspace expects them to be persistent for the
2048	 * lifetime of the objects. The closest we can is to release the
2049	 * offsets on purgeable objects by truncating it and marking it purged,
2050	 * which prevents userspace from ever using that object again.
2051	 */
2052	i915_gem_shrink(dev_priv,
2053			obj->base.size >> PAGE_SHIFT,
2054			I915_SHRINK_BOUND |
2055			I915_SHRINK_UNBOUND |
2056			I915_SHRINK_PURGEABLE);
2057	ret = drm_gem_create_mmap_offset(&obj->base);
2058	if (ret != -ENOSPC)
2059		goto out;
2060
2061	i915_gem_shrink_all(dev_priv);
2062	ret = drm_gem_create_mmap_offset(&obj->base);
2063out:
2064	dev_priv->mm.shrinker_no_lock_stealing = false;
2065
2066	return ret;
2067}
2068
2069static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070{
2071	drm_gem_free_mmap_offset(&obj->base);
2072}
2073
2074int
2075i915_gem_mmap_gtt(struct drm_file *file,
2076		  struct drm_device *dev,
2077		  uint32_t handle,
2078		  uint64_t *offset)
2079{
 
2080	struct drm_i915_gem_object *obj;
2081	int ret;
2082
2083	ret = i915_mutex_lock_interruptible(dev);
2084	if (ret)
2085		return ret;
2086
2087	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088	if (&obj->base == NULL) {
2089		ret = -ENOENT;
2090		goto unlock;
2091	}
2092
 
 
 
 
 
2093	if (obj->madv != I915_MADV_WILLNEED) {
2094		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095		ret = -EFAULT;
2096		goto out;
2097	}
2098
2099	ret = i915_gem_object_create_mmap_offset(obj);
2100	if (ret)
2101		goto out;
2102
2103	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104
2105out:
2106	drm_gem_object_unreference(&obj->base);
2107unlock:
2108	mutex_unlock(&dev->struct_mutex);
2109	return ret;
2110}
2111
2112/**
2113 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114 * @dev: DRM device
2115 * @data: GTT mapping ioctl data
2116 * @file: GEM object info
2117 *
2118 * Simply returns the fake offset to userspace so it can mmap it.
2119 * The mmap call will end up in drm_gem_mmap(), which will set things
2120 * up so we can get faults in the handler above.
2121 *
2122 * The fault handler will take care of binding the object into the GTT
2123 * (since it may have been evicted to make room for something), allocating
2124 * a fence register, and mapping the appropriate aperture address into
2125 * userspace.
2126 */
2127int
2128i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129			struct drm_file *file)
2130{
2131	struct drm_i915_gem_mmap_gtt *args = data;
2132
2133	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134}
2135
2136/* Immediately discard the backing storage */
2137static void
2138i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139{
 
 
2140	i915_gem_object_free_mmap_offset(obj);
2141
2142	if (obj->base.filp == NULL)
2143		return;
2144
2145	/* Our goal here is to return as much of the memory as
2146	 * is possible back to the system as we are called from OOM.
2147	 * To do this we must instruct the shmfs to drop all of its
2148	 * backing pages, *now*.
2149	 */
2150	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
 
 
2151	obj->madv = __I915_MADV_PURGED;
2152}
2153
2154/* Try to discard unwanted pages */
2155static void
2156i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2157{
2158	struct address_space *mapping;
2159
2160	switch (obj->madv) {
2161	case I915_MADV_DONTNEED:
2162		i915_gem_object_truncate(obj);
2163	case __I915_MADV_PURGED:
2164		return;
2165	}
2166
2167	if (obj->base.filp == NULL)
2168		return;
2169
2170	mapping = file_inode(obj->base.filp)->i_mapping,
2171	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172}
2173
2174static void
2175i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2176{
2177	struct sg_page_iter sg_iter;
2178	int ret;
2179
2180	BUG_ON(obj->madv == __I915_MADV_PURGED);
2181
2182	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183	if (ret) {
2184		/* In the event of a disaster, abandon all caches and
2185		 * hope for the best.
2186		 */
2187		WARN_ON(ret != -EIO);
2188		i915_gem_clflush_object(obj, true);
2189		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190	}
2191
2192	i915_gem_gtt_finish_object(obj);
2193
2194	if (i915_gem_object_needs_bit17_swizzle(obj))
2195		i915_gem_object_save_bit_17_swizzle(obj);
2196
2197	if (obj->madv == I915_MADV_DONTNEED)
2198		obj->dirty = 0;
2199
2200	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201		struct page *page = sg_page_iter_page(&sg_iter);
2202
2203		if (obj->dirty)
2204			set_page_dirty(page);
2205
2206		if (obj->madv == I915_MADV_WILLNEED)
2207			mark_page_accessed(page);
2208
2209		put_page(page);
2210	}
2211	obj->dirty = 0;
2212
2213	sg_free_table(obj->pages);
2214	kfree(obj->pages);
2215}
2216
2217int
2218i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219{
2220	const struct drm_i915_gem_object_ops *ops = obj->ops;
2221
2222	if (obj->pages == NULL)
2223		return 0;
2224
2225	if (obj->pages_pin_count)
2226		return -EBUSY;
2227
2228	BUG_ON(i915_gem_obj_bound_any(obj));
2229
2230	/* ->put_pages might need to allocate memory for the bit17 swizzle
2231	 * array, hence protect them from being reaped by removing them from gtt
2232	 * lists early. */
2233	list_del(&obj->global_list);
2234
2235	ops->put_pages(obj);
2236	obj->pages = NULL;
2237
2238	i915_gem_object_invalidate(obj);
 
2239
2240	return 0;
2241}
2242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2243static int
2244i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245{
2246	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247	int page_count, i;
2248	struct address_space *mapping;
2249	struct sg_table *st;
2250	struct scatterlist *sg;
2251	struct sg_page_iter sg_iter;
2252	struct page *page;
2253	unsigned long last_pfn = 0;	/* suppress gcc warning */
2254	int ret;
2255	gfp_t gfp;
2256
2257	/* Assert that the object is not currently in any GPU domain. As it
2258	 * wasn't in the GTT, there shouldn't be any way it could have been in
2259	 * a GPU cache
2260	 */
2261	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263
2264	st = kmalloc(sizeof(*st), GFP_KERNEL);
2265	if (st == NULL)
2266		return -ENOMEM;
2267
2268	page_count = obj->base.size / PAGE_SIZE;
2269	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2270		kfree(st);
2271		return -ENOMEM;
2272	}
2273
2274	/* Get the list of pages out of our struct file.  They'll be pinned
2275	 * at this point until we release them.
2276	 *
2277	 * Fail silently without starting the shrinker
2278	 */
2279	mapping = file_inode(obj->base.filp)->i_mapping;
2280	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281	gfp |= __GFP_NORETRY | __GFP_NOWARN;
 
2282	sg = st->sgl;
2283	st->nents = 0;
2284	for (i = 0; i < page_count; i++) {
2285		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286		if (IS_ERR(page)) {
2287			i915_gem_shrink(dev_priv,
2288					page_count,
2289					I915_SHRINK_BOUND |
2290					I915_SHRINK_UNBOUND |
2291					I915_SHRINK_PURGEABLE);
2292			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293		}
2294		if (IS_ERR(page)) {
2295			/* We've tried hard to allocate the memory by reaping
2296			 * our own buffer, now let the real VM do its job and
2297			 * go down in flames if truly OOM.
2298			 */
 
 
 
2299			i915_gem_shrink_all(dev_priv);
2300			page = shmem_read_mapping_page(mapping, i);
2301			if (IS_ERR(page)) {
2302				ret = PTR_ERR(page);
2303				goto err_pages;
2304			}
 
 
2305		}
2306#ifdef CONFIG_SWIOTLB
2307		if (swiotlb_nr_tbl()) {
2308			st->nents++;
2309			sg_set_page(sg, page, PAGE_SIZE, 0);
2310			sg = sg_next(sg);
2311			continue;
2312		}
2313#endif
2314		if (!i || page_to_pfn(page) != last_pfn + 1) {
2315			if (i)
2316				sg = sg_next(sg);
2317			st->nents++;
2318			sg_set_page(sg, page, PAGE_SIZE, 0);
2319		} else {
2320			sg->length += PAGE_SIZE;
2321		}
2322		last_pfn = page_to_pfn(page);
2323
2324		/* Check that the i965g/gm workaround works. */
2325		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326	}
2327#ifdef CONFIG_SWIOTLB
2328	if (!swiotlb_nr_tbl())
2329#endif
2330		sg_mark_end(sg);
2331	obj->pages = st;
2332
2333	ret = i915_gem_gtt_prepare_object(obj);
2334	if (ret)
2335		goto err_pages;
2336
2337	if (i915_gem_object_needs_bit17_swizzle(obj))
2338		i915_gem_object_do_bit_17_swizzle(obj);
2339
2340	if (obj->tiling_mode != I915_TILING_NONE &&
2341	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342		i915_gem_object_pin_pages(obj);
2343
2344	return 0;
2345
2346err_pages:
2347	sg_mark_end(sg);
2348	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2349		put_page(sg_page_iter_page(&sg_iter));
2350	sg_free_table(st);
2351	kfree(st);
2352
2353	/* shmemfs first checks if there is enough memory to allocate the page
2354	 * and reports ENOSPC should there be insufficient, along with the usual
2355	 * ENOMEM for a genuine allocation failure.
2356	 *
2357	 * We use ENOSPC in our driver to mean that we have run out of aperture
2358	 * space and so want to translate the error from shmemfs back to our
2359	 * usual understanding of ENOMEM.
2360	 */
2361	if (ret == -ENOSPC)
2362		ret = -ENOMEM;
2363
2364	return ret;
2365}
2366
2367/* Ensure that the associated pages are gathered from the backing storage
2368 * and pinned into our object. i915_gem_object_get_pages() may be called
2369 * multiple times before they are released by a single call to
2370 * i915_gem_object_put_pages() - once the pages are no longer referenced
2371 * either as a result of memory pressure (reaping pages under the shrinker)
2372 * or as the object is itself released.
2373 */
2374int
2375i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376{
2377	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378	const struct drm_i915_gem_object_ops *ops = obj->ops;
2379	int ret;
2380
2381	if (obj->pages)
2382		return 0;
2383
2384	if (obj->madv != I915_MADV_WILLNEED) {
2385		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386		return -EFAULT;
2387	}
2388
2389	BUG_ON(obj->pages_pin_count);
2390
2391	ret = ops->get_pages(obj);
2392	if (ret)
2393		return ret;
2394
2395	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396
2397	obj->get_page.sg = obj->pages->sgl;
2398	obj->get_page.last = 0;
2399
2400	return 0;
2401}
2402
2403void i915_vma_move_to_active(struct i915_vma *vma,
2404			     struct drm_i915_gem_request *req)
 
2405{
2406	struct drm_i915_gem_object *obj = vma->obj;
2407	struct intel_engine_cs *ring;
 
2408
2409	ring = i915_gem_request_get_ring(req);
 
 
 
 
 
2410
2411	/* Add a reference if we're newly entering the active list. */
2412	if (obj->active == 0)
2413		drm_gem_object_reference(&obj->base);
2414	obj->active |= intel_ring_flag(ring);
 
 
 
 
 
2415
2416	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2417	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2418
2419	list_move_tail(&vma->vm_link, &vma->vm->active_list);
 
 
 
 
 
 
 
 
2420}
2421
2422static void
2423i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2424{
2425	RQ_BUG_ON(obj->last_write_req == NULL);
2426	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2427
2428	i915_gem_request_assign(&obj->last_write_req, NULL);
2429	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2430}
2431
2432static void
2433i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2434{
 
 
2435	struct i915_vma *vma;
2436
2437	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2438	RQ_BUG_ON(!(obj->active & (1 << ring)));
2439
2440	list_del_init(&obj->ring_list[ring]);
2441	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
 
 
 
2442
2443	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2444		i915_gem_object_retire__write(obj);
2445
2446	obj->active &= ~(1 << ring);
2447	if (obj->active)
2448		return;
2449
2450	/* Bump our place on the bound list to keep it roughly in LRU order
2451	 * so that we don't steal from recently used but inactive objects
2452	 * (unless we are forced to ofc!)
2453	 */
2454	list_move_tail(&obj->global_list,
2455		       &to_i915(obj->base.dev)->mm.bound_list);
2456
2457	list_for_each_entry(vma, &obj->vma_list, obj_link) {
2458		if (!list_empty(&vma->vm_link))
2459			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2460	}
2461
2462	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2463	drm_gem_object_unreference(&obj->base);
 
 
2464}
2465
2466static int
2467i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2468{
2469	struct drm_i915_private *dev_priv = dev->dev_private;
2470	struct intel_engine_cs *ring;
2471	int ret, i, j;
2472
2473	/* Carefully retire all requests without writing to the rings */
2474	for_each_ring(ring, dev_priv, i) {
2475		ret = intel_ring_idle(ring);
2476		if (ret)
2477			return ret;
2478	}
2479	i915_gem_retire_requests(dev);
2480
2481	/* Finally reset hw state */
2482	for_each_ring(ring, dev_priv, i) {
2483		intel_ring_init_seqno(ring, seqno);
2484
2485		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2486			ring->semaphore.sync_seqno[j] = 0;
2487	}
2488
2489	return 0;
2490}
2491
2492int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2493{
2494	struct drm_i915_private *dev_priv = dev->dev_private;
2495	int ret;
2496
2497	if (seqno == 0)
2498		return -EINVAL;
2499
2500	/* HWS page needs to be set less than what we
2501	 * will inject to ring
2502	 */
2503	ret = i915_gem_init_seqno(dev, seqno - 1);
2504	if (ret)
2505		return ret;
2506
2507	/* Carefully set the last_seqno value so that wrap
2508	 * detection still works
2509	 */
2510	dev_priv->next_seqno = seqno;
2511	dev_priv->last_seqno = seqno - 1;
2512	if (dev_priv->last_seqno == 0)
2513		dev_priv->last_seqno--;
2514
2515	return 0;
2516}
2517
2518int
2519i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2520{
2521	struct drm_i915_private *dev_priv = dev->dev_private;
2522
2523	/* reserve 0 for non-seqno */
2524	if (dev_priv->next_seqno == 0) {
2525		int ret = i915_gem_init_seqno(dev, 0);
2526		if (ret)
2527			return ret;
2528
2529		dev_priv->next_seqno = 1;
2530	}
2531
2532	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2533	return 0;
2534}
2535
2536/*
2537 * NB: This function is not allowed to fail. Doing so would mean the the
2538 * request is not being tracked for completion but the work itself is
2539 * going to happen on the hardware. This would be a Bad Thing(tm).
2540 */
2541void __i915_add_request(struct drm_i915_gem_request *request,
2542			struct drm_i915_gem_object *obj,
2543			bool flush_caches)
2544{
2545	struct intel_engine_cs *ring;
2546	struct drm_i915_private *dev_priv;
2547	struct intel_ringbuffer *ringbuf;
2548	u32 request_start;
2549	int ret;
2550
2551	if (WARN_ON(request == NULL))
2552		return;
2553
2554	ring = request->ring;
2555	dev_priv = ring->dev->dev_private;
2556	ringbuf = request->ringbuf;
2557
2558	/*
2559	 * To ensure that this call will not fail, space for its emissions
2560	 * should already have been reserved in the ring buffer. Let the ring
2561	 * know that it is time to use that space up.
2562	 */
2563	intel_ring_reserved_space_use(ringbuf);
2564
2565	request_start = intel_ring_get_tail(ringbuf);
2566	/*
2567	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2568	 * after having emitted the batchbuffer command. Hence we need to fix
2569	 * things up similar to emitting the lazy request. The difference here
2570	 * is that the flush _must_ happen before the next request, no matter
2571	 * what.
2572	 */
2573	if (flush_caches) {
2574		if (i915.enable_execlists)
2575			ret = logical_ring_flush_all_caches(request);
2576		else
2577			ret = intel_ring_flush_all_caches(request);
2578		/* Not allowed to fail! */
2579		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2580	}
2581
2582	/* Record the position of the start of the request so that
2583	 * should we detect the updated seqno part-way through the
2584	 * GPU processing the request, we never over-estimate the
2585	 * position of the head.
2586	 */
2587	request->postfix = intel_ring_get_tail(ringbuf);
2588
2589	if (i915.enable_execlists)
2590		ret = ring->emit_request(request);
2591	else {
2592		ret = ring->add_request(request);
2593
2594		request->tail = intel_ring_get_tail(ringbuf);
2595	}
2596	/* Not allowed to fail! */
2597	WARN(ret, "emit|add_request failed: %d!\n", ret);
2598
 
 
2599	request->head = request_start;
 
2600
2601	/* Whilst this request exists, batch_obj will be on the
2602	 * active_list, and so will hold the active reference. Only when this
2603	 * request is retired will the the batch_obj be moved onto the
2604	 * inactive_list and lose its active reference. Hence we do not need
2605	 * to explicitly hold another reference here.
2606	 */
2607	request->batch_obj = obj;
2608
 
 
 
 
 
 
 
2609	request->emitted_jiffies = jiffies;
2610	request->previous_seqno = ring->last_submitted_seqno;
2611	ring->last_submitted_seqno = request->seqno;
2612	list_add_tail(&request->list, &ring->request_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2613
2614	trace_i915_gem_request_add(request);
 
 
 
2615
2616	i915_queue_hangcheck(ring->dev);
 
 
 
2617
2618	queue_delayed_work(dev_priv->wq,
2619			   &dev_priv->mm.retire_work,
2620			   round_jiffies_up_relative(HZ));
2621	intel_mark_busy(dev_priv->dev);
2622
2623	/* Sanity check that the reserved size was large enough. */
2624	intel_ring_reserved_space_end(ringbuf);
 
 
2625}
2626
2627static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2628				   const struct intel_context *ctx)
2629{
2630	unsigned long elapsed;
2631
2632	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2633
2634	if (ctx->hang_stats.banned)
2635		return true;
2636
2637	if (ctx->hang_stats.ban_period_seconds &&
2638	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2639		if (!i915_gem_context_is_default(ctx)) {
2640			DRM_DEBUG("context hanging too fast, banning!\n");
2641			return true;
2642		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2643			if (i915_stop_ring_allow_warn(dev_priv))
2644				DRM_ERROR("gpu hanging too fast, banning!\n");
2645			return true;
2646		}
2647	}
2648
2649	return false;
2650}
2651
2652static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2653				  struct intel_context *ctx,
2654				  const bool guilty)
2655{
2656	struct i915_ctx_hang_stats *hs;
2657
2658	if (WARN_ON(!ctx))
2659		return;
2660
2661	hs = &ctx->hang_stats;
2662
2663	if (guilty) {
2664		hs->banned = i915_context_is_banned(dev_priv, ctx);
2665		hs->batch_active++;
2666		hs->guilty_ts = get_seconds();
2667	} else {
2668		hs->batch_pending++;
2669	}
2670}
2671
2672void i915_gem_request_free(struct kref *req_ref)
2673{
2674	struct drm_i915_gem_request *req = container_of(req_ref,
2675						 typeof(*req), ref);
2676	struct intel_context *ctx = req->ctx;
2677
2678	if (req->file_priv)
2679		i915_gem_request_remove_from_client(req);
2680
2681	if (ctx) {
2682		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2683			intel_lr_context_unpin(ctx, req->ring);
2684
2685		i915_gem_context_unreference(ctx);
2686	}
2687
2688	kmem_cache_free(req->i915->requests, req);
2689}
2690
2691static inline int
2692__i915_gem_request_alloc(struct intel_engine_cs *ring,
2693			 struct intel_context *ctx,
2694			 struct drm_i915_gem_request **req_out)
2695{
2696	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2697	struct drm_i915_gem_request *req;
2698	int ret;
2699
2700	if (!req_out)
2701		return -EINVAL;
2702
2703	*req_out = NULL;
2704
2705	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2706	if (req == NULL)
2707		return -ENOMEM;
2708
2709	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2710	if (ret)
2711		goto err;
2712
2713	kref_init(&req->ref);
2714	req->i915 = dev_priv;
2715	req->ring = ring;
2716	req->ctx  = ctx;
2717	i915_gem_context_reference(req->ctx);
2718
2719	if (i915.enable_execlists)
2720		ret = intel_logical_ring_alloc_request_extras(req);
2721	else
2722		ret = intel_ring_alloc_request_extras(req);
2723	if (ret) {
2724		i915_gem_context_unreference(req->ctx);
2725		goto err;
2726	}
2727
2728	/*
2729	 * Reserve space in the ring buffer for all the commands required to
2730	 * eventually emit this request. This is to guarantee that the
2731	 * i915_add_request() call can't fail. Note that the reserve may need
2732	 * to be redone if the request is not actually submitted straight
2733	 * away, e.g. because a GPU scheduler has deferred it.
2734	 */
2735	if (i915.enable_execlists)
2736		ret = intel_logical_ring_reserve_space(req);
2737	else
2738		ret = intel_ring_reserve_space(req);
2739	if (ret) {
2740		/*
2741		 * At this point, the request is fully allocated even if not
2742		 * fully prepared. Thus it can be cleaned up using the proper
2743		 * free code.
2744		 */
2745		i915_gem_request_cancel(req);
2746		return ret;
2747	}
2748
2749	*req_out = req;
2750	return 0;
2751
2752err:
2753	kmem_cache_free(dev_priv->requests, req);
2754	return ret;
2755}
2756
2757/**
2758 * i915_gem_request_alloc - allocate a request structure
2759 *
2760 * @engine: engine that we wish to issue the request on.
2761 * @ctx: context that the request will be associated with.
2762 *       This can be NULL if the request is not directly related to
2763 *       any specific user context, in which case this function will
2764 *       choose an appropriate context to use.
2765 *
2766 * Returns a pointer to the allocated request if successful,
2767 * or an error code if not.
2768 */
2769struct drm_i915_gem_request *
2770i915_gem_request_alloc(struct intel_engine_cs *engine,
2771		       struct intel_context *ctx)
2772{
2773	struct drm_i915_gem_request *req;
2774	int err;
2775
2776	if (ctx == NULL)
2777		ctx = to_i915(engine->dev)->kernel_context;
2778	err = __i915_gem_request_alloc(engine, ctx, &req);
2779	return err ? ERR_PTR(err) : req;
2780}
2781
2782void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2783{
2784	intel_ring_reserved_space_cancel(req->ringbuf);
2785
2786	i915_gem_request_unreference(req);
2787}
2788
2789struct drm_i915_gem_request *
2790i915_gem_find_active_request(struct intel_engine_cs *ring)
2791{
2792	struct drm_i915_gem_request *request;
 
 
 
2793
2794	list_for_each_entry(request, &ring->request_list, list) {
2795		if (i915_gem_request_completed(request, false))
2796			continue;
2797
2798		return request;
2799	}
2800
2801	return NULL;
2802}
2803
2804static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2805				       struct intel_engine_cs *ring)
2806{
2807	struct drm_i915_gem_request *request;
2808	bool ring_hung;
2809
2810	request = i915_gem_find_active_request(ring);
2811
2812	if (request == NULL)
2813		return;
2814
2815	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2816
2817	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2818
2819	list_for_each_entry_continue(request, &ring->request_list, list)
2820		i915_set_reset_status(dev_priv, request->ctx, false);
2821}
2822
2823static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2824					struct intel_engine_cs *ring)
2825{
2826	struct intel_ringbuffer *buffer;
2827
2828	while (!list_empty(&ring->active_list)) {
2829		struct drm_i915_gem_object *obj;
2830
2831		obj = list_first_entry(&ring->active_list,
2832				       struct drm_i915_gem_object,
2833				       ring_list[ring->id]);
2834
2835		i915_gem_object_retire__read(obj, ring->id);
2836	}
2837
2838	/*
2839	 * Clear the execlists queue up before freeing the requests, as those
2840	 * are the ones that keep the context and ringbuffer backing objects
2841	 * pinned in place.
2842	 */
2843
2844	if (i915.enable_execlists) {
2845		spin_lock_irq(&ring->execlist_lock);
2846
2847		/* list_splice_tail_init checks for empty lists */
2848		list_splice_tail_init(&ring->execlist_queue,
2849				      &ring->execlist_retired_req_list);
2850
2851		spin_unlock_irq(&ring->execlist_lock);
2852		intel_execlists_retire_requests(ring);
2853	}
2854
2855	/*
2856	 * We must free the requests after all the corresponding objects have
2857	 * been moved off active lists. Which is the same order as the normal
2858	 * retire_requests function does. This is important if object hold
2859	 * implicit references on things like e.g. ppgtt address spaces through
2860	 * the request.
2861	 */
2862	while (!list_empty(&ring->request_list)) {
2863		struct drm_i915_gem_request *request;
2864
2865		request = list_first_entry(&ring->request_list,
2866					   struct drm_i915_gem_request,
2867					   list);
2868
2869		i915_gem_request_retire(request);
2870	}
 
2871
2872	/* Having flushed all requests from all queues, we know that all
2873	 * ringbuffers must now be empty. However, since we do not reclaim
2874	 * all space when retiring the request (to prevent HEADs colliding
2875	 * with rapid ringbuffer wraparound) the amount of available space
2876	 * upon reset is less than when we start. Do one more pass over
2877	 * all the ringbuffers to reset last_retired_head.
2878	 */
2879	list_for_each_entry(buffer, &ring->buffers, link) {
2880		buffer->last_retired_head = buffer->tail;
2881		intel_ring_update_space(buffer);
 
 
 
 
 
 
 
 
2882	}
2883}
2884
2885void i915_gem_reset(struct drm_device *dev)
2886{
2887	struct drm_i915_private *dev_priv = dev->dev_private;
2888	struct intel_engine_cs *ring;
2889	int i;
2890
2891	/*
2892	 * Before we free the objects from the requests, we need to inspect
2893	 * them for finding the guilty party. As the requests only borrow
2894	 * their reference to the objects, the inspection must be done first.
2895	 */
2896	for_each_ring(ring, dev_priv, i)
2897		i915_gem_reset_ring_status(dev_priv, ring);
2898
2899	for_each_ring(ring, dev_priv, i)
2900		i915_gem_reset_ring_cleanup(dev_priv, ring);
2901
 
 
2902	i915_gem_context_reset(dev);
2903
2904	i915_gem_restore_fences(dev);
2905
2906	WARN_ON(i915_verify_lists(dev));
2907}
2908
2909/**
2910 * This function clears the request list as sequence numbers are passed.
2911 */
2912void
2913i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2914{
2915	WARN_ON(i915_verify_lists(ring->dev));
2916
2917	/* Retire requests first as we use it above for the early return.
2918	 * If we retire requests last, we may use a later seqno and so clear
2919	 * the requests lists without clearing the active list, leading to
2920	 * confusion.
2921	 */
2922	while (!list_empty(&ring->request_list)) {
2923		struct drm_i915_gem_request *request;
2924
2925		request = list_first_entry(&ring->request_list,
2926					   struct drm_i915_gem_request,
2927					   list);
2928
2929		if (!i915_gem_request_completed(request, true))
2930			break;
2931
2932		i915_gem_request_retire(request);
2933	}
2934
2935	/* Move any buffers on the active list that are no longer referenced
2936	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2937	 * before we free the context associated with the requests.
2938	 */
2939	while (!list_empty(&ring->active_list)) {
2940		struct drm_i915_gem_object *obj;
2941
2942		obj = list_first_entry(&ring->active_list,
2943				      struct drm_i915_gem_object,
2944				      ring_list[ring->id]);
 
 
 
2945
2946		if (!list_empty(&obj->last_read_req[ring->id]->list))
 
 
 
 
 
 
 
 
 
 
 
2947			break;
2948
2949		i915_gem_object_retire__read(obj, ring->id);
 
 
 
 
 
 
 
 
2950	}
2951
2952	if (unlikely(ring->trace_irq_req &&
2953		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2954		ring->irq_put(ring);
2955		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2956	}
2957
2958	WARN_ON(i915_verify_lists(ring->dev));
2959}
2960
2961bool
2962i915_gem_retire_requests(struct drm_device *dev)
2963{
2964	struct drm_i915_private *dev_priv = dev->dev_private;
2965	struct intel_engine_cs *ring;
2966	bool idle = true;
2967	int i;
2968
2969	for_each_ring(ring, dev_priv, i) {
2970		i915_gem_retire_requests_ring(ring);
2971		idle &= list_empty(&ring->request_list);
2972		if (i915.enable_execlists) {
2973			spin_lock_irq(&ring->execlist_lock);
2974			idle &= list_empty(&ring->execlist_queue);
2975			spin_unlock_irq(&ring->execlist_lock);
2976
2977			intel_execlists_retire_requests(ring);
2978		}
2979	}
2980
2981	if (idle)
2982		mod_delayed_work(dev_priv->wq,
2983				   &dev_priv->mm.idle_work,
2984				   msecs_to_jiffies(100));
2985
2986	return idle;
2987}
2988
2989static void
2990i915_gem_retire_work_handler(struct work_struct *work)
2991{
2992	struct drm_i915_private *dev_priv =
2993		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2994	struct drm_device *dev = dev_priv->dev;
2995	bool idle;
2996
2997	/* Come back later if the device is busy... */
2998	idle = false;
2999	if (mutex_trylock(&dev->struct_mutex)) {
3000		idle = i915_gem_retire_requests(dev);
3001		mutex_unlock(&dev->struct_mutex);
3002	}
3003	if (!idle)
3004		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3005				   round_jiffies_up_relative(HZ));
3006}
3007
3008static void
3009i915_gem_idle_work_handler(struct work_struct *work)
3010{
3011	struct drm_i915_private *dev_priv =
3012		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3013	struct drm_device *dev = dev_priv->dev;
3014	struct intel_engine_cs *ring;
3015	int i;
3016
3017	for_each_ring(ring, dev_priv, i)
3018		if (!list_empty(&ring->request_list))
3019			return;
3020
3021	/* we probably should sync with hangcheck here, using cancel_work_sync.
3022	 * Also locking seems to be fubar here, ring->request_list is protected
3023	 * by dev->struct_mutex. */
3024
3025	intel_mark_idle(dev);
3026
3027	if (mutex_trylock(&dev->struct_mutex)) {
3028		struct intel_engine_cs *ring;
3029		int i;
3030
3031		for_each_ring(ring, dev_priv, i)
3032			i915_gem_batch_pool_fini(&ring->batch_pool);
3033
3034		mutex_unlock(&dev->struct_mutex);
3035	}
3036}
3037
3038/**
3039 * Ensures that an object will eventually get non-busy by flushing any required
3040 * write domains, emitting any outstanding lazy request and retiring and
3041 * completed requests.
3042 */
3043static int
3044i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3045{
3046	int i;
3047
3048	if (!obj->active)
3049		return 0;
3050
3051	for (i = 0; i < I915_NUM_RINGS; i++) {
3052		struct drm_i915_gem_request *req;
3053
3054		req = obj->last_read_req[i];
3055		if (req == NULL)
3056			continue;
3057
3058		if (list_empty(&req->list))
3059			goto retire;
 
 
3060
3061		if (i915_gem_request_completed(req, true)) {
3062			__i915_gem_request_retire__upto(req);
3063retire:
3064			i915_gem_object_retire__read(obj, i);
3065		}
3066	}
3067
3068	return 0;
3069}
3070
3071/**
3072 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3073 * @DRM_IOCTL_ARGS: standard ioctl arguments
3074 *
3075 * Returns 0 if successful, else an error is returned with the remaining time in
3076 * the timeout parameter.
3077 *  -ETIME: object is still busy after timeout
3078 *  -ERESTARTSYS: signal interrupted the wait
3079 *  -ENONENT: object doesn't exist
3080 * Also possible, but rare:
3081 *  -EAGAIN: GPU wedged
3082 *  -ENOMEM: damn
3083 *  -ENODEV: Internal IRQ fail
3084 *  -E?: The add request failed
3085 *
3086 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3087 * non-zero timeout parameter the wait ioctl will wait for the given number of
3088 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3089 * without holding struct_mutex the object may become re-busied before this
3090 * function completes. A similar but shorter * race condition exists in the busy
3091 * ioctl
3092 */
3093int
3094i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3095{
3096	struct drm_i915_private *dev_priv = dev->dev_private;
3097	struct drm_i915_gem_wait *args = data;
3098	struct drm_i915_gem_object *obj;
3099	struct drm_i915_gem_request *req[I915_NUM_RINGS];
 
3100	unsigned reset_counter;
3101	int i, n = 0;
3102	int ret;
3103
3104	if (args->flags != 0)
3105		return -EINVAL;
 
 
3106
3107	ret = i915_mutex_lock_interruptible(dev);
3108	if (ret)
3109		return ret;
3110
3111	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3112	if (&obj->base == NULL) {
3113		mutex_unlock(&dev->struct_mutex);
3114		return -ENOENT;
3115	}
3116
3117	/* Need to make sure the object gets inactive eventually. */
3118	ret = i915_gem_object_flush_active(obj);
3119	if (ret)
3120		goto out;
3121
3122	if (!obj->active)
3123		goto out;
 
 
 
 
 
3124
3125	/* Do this after OLR check to make sure we make forward progress polling
3126	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3127	 */
3128	if (args->timeout_ns == 0) {
3129		ret = -ETIME;
3130		goto out;
3131	}
3132
3133	drm_gem_object_unreference(&obj->base);
3134	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3135
3136	for (i = 0; i < I915_NUM_RINGS; i++) {
3137		if (obj->last_read_req[i] == NULL)
3138			continue;
3139
3140		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3141	}
3142
3143	mutex_unlock(&dev->struct_mutex);
3144
3145	for (i = 0; i < n; i++) {
3146		if (ret == 0)
3147			ret = __i915_wait_request(req[i], reset_counter, true,
3148						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3149						  to_rps_client(file));
3150		i915_gem_request_unreference__unlocked(req[i]);
3151	}
3152	return ret;
3153
3154out:
3155	drm_gem_object_unreference(&obj->base);
3156	mutex_unlock(&dev->struct_mutex);
3157	return ret;
3158}
3159
3160static int
3161__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3162		       struct intel_engine_cs *to,
3163		       struct drm_i915_gem_request *from_req,
3164		       struct drm_i915_gem_request **to_req)
3165{
3166	struct intel_engine_cs *from;
3167	int ret;
3168
3169	from = i915_gem_request_get_ring(from_req);
3170	if (to == from)
3171		return 0;
3172
3173	if (i915_gem_request_completed(from_req, true))
3174		return 0;
3175
3176	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3177		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3178		ret = __i915_wait_request(from_req,
3179					  atomic_read(&i915->gpu_error.reset_counter),
3180					  i915->mm.interruptible,
3181					  NULL,
3182					  &i915->rps.semaphores);
3183		if (ret)
3184			return ret;
3185
3186		i915_gem_object_retire_request(obj, from_req);
3187	} else {
3188		int idx = intel_ring_sync_index(from, to);
3189		u32 seqno = i915_gem_request_get_seqno(from_req);
3190
3191		WARN_ON(!to_req);
3192
3193		if (seqno <= from->semaphore.sync_seqno[idx])
3194			return 0;
3195
3196		if (*to_req == NULL) {
3197			struct drm_i915_gem_request *req;
3198
3199			req = i915_gem_request_alloc(to, NULL);
3200			if (IS_ERR(req))
3201				return PTR_ERR(req);
3202
3203			*to_req = req;
3204		}
3205
3206		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3207		ret = to->semaphore.sync_to(*to_req, from, seqno);
3208		if (ret)
3209			return ret;
3210
3211		/* We use last_read_req because sync_to()
3212		 * might have just caused seqno wrap under
3213		 * the radar.
3214		 */
3215		from->semaphore.sync_seqno[idx] =
3216			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3217	}
3218
3219	return 0;
3220}
3221
3222/**
3223 * i915_gem_object_sync - sync an object to a ring.
3224 *
3225 * @obj: object which may be in use on another ring.
3226 * @to: ring we wish to use the object on. May be NULL.
3227 * @to_req: request we wish to use the object for. See below.
3228 *          This will be allocated and returned if a request is
3229 *          required but not passed in.
3230 *
3231 * This code is meant to abstract object synchronization with the GPU.
3232 * Calling with NULL implies synchronizing the object with the CPU
3233 * rather than a particular GPU ring. Conceptually we serialise writes
3234 * between engines inside the GPU. We only allow one engine to write
3235 * into a buffer at any time, but multiple readers. To ensure each has
3236 * a coherent view of memory, we must:
3237 *
3238 * - If there is an outstanding write request to the object, the new
3239 *   request must wait for it to complete (either CPU or in hw, requests
3240 *   on the same ring will be naturally ordered).
3241 *
3242 * - If we are a write request (pending_write_domain is set), the new
3243 *   request must wait for outstanding read requests to complete.
3244 *
3245 * For CPU synchronisation (NULL to) no request is required. For syncing with
3246 * rings to_req must be non-NULL. However, a request does not have to be
3247 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3248 * request will be allocated automatically and returned through *to_req. Note
3249 * that it is not guaranteed that commands will be emitted (because the system
3250 * might already be idle). Hence there is no need to create a request that
3251 * might never have any work submitted. Note further that if a request is
3252 * returned in *to_req, it is the responsibility of the caller to submit
3253 * that request (after potentially adding more work to it).
3254 *
3255 * Returns 0 if successful, else propagates up the lower layer error.
3256 */
3257int
3258i915_gem_object_sync(struct drm_i915_gem_object *obj,
3259		     struct intel_engine_cs *to,
3260		     struct drm_i915_gem_request **to_req)
3261{
3262	const bool readonly = obj->base.pending_write_domain == 0;
3263	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3264	int ret, i, n;
3265
3266	if (!obj->active)
3267		return 0;
3268
3269	if (to == NULL)
3270		return i915_gem_object_wait_rendering(obj, readonly);
3271
3272	n = 0;
3273	if (readonly) {
3274		if (obj->last_write_req)
3275			req[n++] = obj->last_write_req;
3276	} else {
3277		for (i = 0; i < I915_NUM_RINGS; i++)
3278			if (obj->last_read_req[i])
3279				req[n++] = obj->last_read_req[i];
3280	}
3281	for (i = 0; i < n; i++) {
3282		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3283		if (ret)
3284			return ret;
3285	}
3286
3287	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3288}
3289
3290static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3291{
3292	u32 old_write_domain, old_read_domains;
3293
3294	/* Force a pagefault for domain tracking on next user access */
3295	i915_gem_release_mmap(obj);
3296
3297	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3298		return;
3299
3300	/* Wait for any direct GTT access to complete */
3301	mb();
3302
3303	old_read_domains = obj->base.read_domains;
3304	old_write_domain = obj->base.write_domain;
3305
3306	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3307	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3308
3309	trace_i915_gem_object_change_domain(obj,
3310					    old_read_domains,
3311					    old_write_domain);
3312}
3313
3314static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3315{
3316	struct drm_i915_gem_object *obj = vma->obj;
3317	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3318	int ret;
3319
3320	if (list_empty(&vma->obj_link))
3321		return 0;
3322
3323	if (!drm_mm_node_allocated(&vma->node)) {
3324		i915_gem_vma_destroy(vma);
3325		return 0;
3326	}
3327
3328	if (vma->pin_count)
3329		return -EBUSY;
3330
3331	BUG_ON(obj->pages == NULL);
3332
3333	if (wait) {
3334		ret = i915_gem_object_wait_rendering(obj, false);
3335		if (ret)
3336			return ret;
3337	}
 
 
3338
3339	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3340		i915_gem_object_finish_gtt(obj);
3341
3342		/* release the fence reg _after_ flushing */
3343		ret = i915_gem_object_put_fence(obj);
3344		if (ret)
3345			return ret;
3346	}
3347
3348	trace_i915_vma_unbind(vma);
3349
3350	vma->vm->unbind_vma(vma);
3351	vma->bound = 0;
3352
3353	list_del_init(&vma->vm_link);
3354	if (vma->is_ggtt) {
3355		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3356			obj->map_and_fenceable = false;
3357		} else if (vma->ggtt_view.pages) {
3358			sg_free_table(vma->ggtt_view.pages);
3359			kfree(vma->ggtt_view.pages);
3360		}
3361		vma->ggtt_view.pages = NULL;
3362	}
3363
3364	drm_mm_remove_node(&vma->node);
3365	i915_gem_vma_destroy(vma);
3366
3367	/* Since the unbound list is global, only move to that list if
3368	 * no more VMAs exist. */
3369	if (list_empty(&obj->vma_list))
3370		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3371
3372	/* And finally now the object is completely decoupled from this vma,
3373	 * we can drop its hold on the backing storage and allow it to be
3374	 * reaped by the shrinker.
3375	 */
3376	i915_gem_object_unpin_pages(obj);
3377
3378	return 0;
3379}
3380
3381int i915_vma_unbind(struct i915_vma *vma)
3382{
3383	return __i915_vma_unbind(vma, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3384}
3385
3386int __i915_vma_unbind_no_wait(struct i915_vma *vma)
 
3387{
3388	return __i915_vma_unbind(vma, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3389}
3390
3391int i915_gpu_idle(struct drm_device *dev)
 
3392{
3393	struct drm_i915_private *dev_priv = dev->dev_private;
3394	struct intel_engine_cs *ring;
3395	int ret, i;
3396
3397	/* Flush everything onto the inactive list. */
3398	for_each_ring(ring, dev_priv, i) {
3399		if (!i915.enable_execlists) {
3400			struct drm_i915_gem_request *req;
 
 
 
 
 
 
3401
3402			req = i915_gem_request_alloc(ring, NULL);
3403			if (IS_ERR(req))
3404				return PTR_ERR(req);
3405
3406			ret = i915_switch_context(req);
3407			if (ret) {
3408				i915_gem_request_cancel(req);
3409				return ret;
3410			}
3411
3412			i915_add_request_no_flush(req);
3413		}
 
 
 
 
 
 
 
 
 
 
3414
3415		ret = intel_ring_idle(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3416		if (ret)
3417			return ret;
 
 
3418	}
3419
3420	WARN_ON(i915_verify_lists(dev));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3421	return 0;
3422}
3423
3424static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3425				     unsigned long cache_level)
3426{
3427	struct drm_mm_node *gtt_space = &vma->node;
3428	struct drm_mm_node *other;
3429
3430	/*
3431	 * On some machines we have to be careful when putting differing types
3432	 * of snoopable memory together to avoid the prefetcher crossing memory
3433	 * domains and dying. During vm initialisation, we decide whether or not
3434	 * these constraints apply and set the drm_mm.color_adjust
3435	 * appropriately.
3436	 */
3437	if (vma->vm->mm.color_adjust == NULL)
3438		return true;
3439
3440	if (!drm_mm_node_allocated(gtt_space))
3441		return true;
3442
3443	if (list_empty(&gtt_space->node_list))
3444		return true;
3445
3446	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3447	if (other->allocated && !other->hole_follows && other->color != cache_level)
3448		return false;
3449
3450	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3451	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3452		return false;
3453
3454	return true;
3455}
3456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3457/**
3458 * Finds free space in the GTT aperture and binds the object or a view of it
3459 * there.
3460 */
3461static struct i915_vma *
3462i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3463			   struct i915_address_space *vm,
3464			   const struct i915_ggtt_view *ggtt_view,
3465			   unsigned alignment,
3466			   uint64_t flags)
3467{
3468	struct drm_device *dev = obj->base.dev;
3469	struct drm_i915_private *dev_priv = dev->dev_private;
3470	u32 fence_alignment, unfenced_alignment;
3471	u32 search_flag, alloc_flag;
3472	u64 start, end;
3473	u64 size, fence_size;
 
3474	struct i915_vma *vma;
3475	int ret;
3476
3477	if (i915_is_ggtt(vm)) {
3478		u32 view_size;
3479
3480		if (WARN_ON(!ggtt_view))
3481			return ERR_PTR(-EINVAL);
3482
3483		view_size = i915_ggtt_view_size(obj, ggtt_view);
3484
3485		fence_size = i915_gem_get_gtt_size(dev,
3486						   view_size,
3487						   obj->tiling_mode);
3488		fence_alignment = i915_gem_get_gtt_alignment(dev,
3489							     view_size,
3490							     obj->tiling_mode,
3491							     true);
3492		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3493								view_size,
3494								obj->tiling_mode,
3495								false);
3496		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3497	} else {
3498		fence_size = i915_gem_get_gtt_size(dev,
3499						   obj->base.size,
3500						   obj->tiling_mode);
3501		fence_alignment = i915_gem_get_gtt_alignment(dev,
3502							     obj->base.size,
3503							     obj->tiling_mode,
3504							     true);
3505		unfenced_alignment =
3506			i915_gem_get_gtt_alignment(dev,
3507						   obj->base.size,
3508						   obj->tiling_mode,
3509						   false);
3510		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3511	}
3512
3513	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3514	end = vm->total;
3515	if (flags & PIN_MAPPABLE)
3516		end = min_t(u64, end, dev_priv->gtt.mappable_end);
3517	if (flags & PIN_ZONE_4G)
3518		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3519
3520	if (alignment == 0)
3521		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3522						unfenced_alignment;
3523	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3524		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3525			  ggtt_view ? ggtt_view->type : 0,
3526			  alignment);
3527		return ERR_PTR(-EINVAL);
3528	}
3529
3530	/* If binding the object/GGTT view requires more space than the entire
3531	 * aperture has, reject it early before evicting everything in a vain
3532	 * attempt to find space.
3533	 */
3534	if (size > end) {
3535		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3536			  ggtt_view ? ggtt_view->type : 0,
3537			  size,
3538			  flags & PIN_MAPPABLE ? "mappable" : "total",
3539			  end);
3540		return ERR_PTR(-E2BIG);
3541	}
3542
3543	ret = i915_gem_object_get_pages(obj);
3544	if (ret)
3545		return ERR_PTR(ret);
3546
3547	i915_gem_object_pin_pages(obj);
3548
3549	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3550			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3551
3552	if (IS_ERR(vma))
3553		goto err_unpin;
3554
3555	if (flags & PIN_OFFSET_FIXED) {
3556		uint64_t offset = flags & PIN_OFFSET_MASK;
3557
3558		if (offset & (alignment - 1) || offset + size > end) {
3559			ret = -EINVAL;
3560			goto err_free_vma;
3561		}
3562		vma->node.start = offset;
3563		vma->node.size = size;
3564		vma->node.color = obj->cache_level;
3565		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3566		if (ret) {
3567			ret = i915_gem_evict_for_vma(vma);
3568			if (ret == 0)
3569				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3570		}
3571		if (ret)
3572			goto err_free_vma;
3573	} else {
3574		if (flags & PIN_HIGH) {
3575			search_flag = DRM_MM_SEARCH_BELOW;
3576			alloc_flag = DRM_MM_CREATE_TOP;
3577		} else {
3578			search_flag = DRM_MM_SEARCH_DEFAULT;
3579			alloc_flag = DRM_MM_CREATE_DEFAULT;
3580		}
3581
3582search_free:
3583		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3584							  size, alignment,
3585							  obj->cache_level,
3586							  start, end,
3587							  search_flag,
3588							  alloc_flag);
3589		if (ret) {
3590			ret = i915_gem_evict_something(dev, vm, size, alignment,
3591						       obj->cache_level,
3592						       start, end,
3593						       flags);
3594			if (ret == 0)
3595				goto search_free;
3596
3597			goto err_free_vma;
3598		}
3599	}
3600	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
 
3601		ret = -EINVAL;
3602		goto err_remove_node;
3603	}
3604
3605	trace_i915_vma_bind(vma, flags);
3606	ret = i915_vma_bind(vma, obj->cache_level, flags);
3607	if (ret)
3608		goto err_remove_node;
3609
3610	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3611	list_add_tail(&vma->vm_link, &vm->inactive_list);
3612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3613	return vma;
3614
3615err_remove_node:
3616	drm_mm_remove_node(&vma->node);
3617err_free_vma:
3618	i915_gem_vma_destroy(vma);
3619	vma = ERR_PTR(ret);
3620err_unpin:
3621	i915_gem_object_unpin_pages(obj);
3622	return vma;
3623}
3624
3625bool
3626i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3627			bool force)
3628{
3629	/* If we don't have a page list set up, then we're not pinned
3630	 * to GPU, and we can ignore the cache flush because it'll happen
3631	 * again at bind time.
3632	 */
3633	if (obj->pages == NULL)
3634		return false;
3635
3636	/*
3637	 * Stolen memory is always coherent with the GPU as it is explicitly
3638	 * marked as wc by the system, or the system is cache-coherent.
3639	 */
3640	if (obj->stolen || obj->phys_handle)
3641		return false;
3642
3643	/* If the GPU is snooping the contents of the CPU cache,
3644	 * we do not need to manually clear the CPU cache lines.  However,
3645	 * the caches are only snooped when the render cache is
3646	 * flushed/invalidated.  As we always have to emit invalidations
3647	 * and flushes when moving into and out of the RENDER domain, correct
3648	 * snooping behaviour occurs naturally as the result of our domain
3649	 * tracking.
3650	 */
3651	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3652		obj->cache_dirty = true;
3653		return false;
3654	}
3655
3656	trace_i915_gem_object_clflush(obj);
3657	drm_clflush_sg(obj->pages);
3658	obj->cache_dirty = false;
3659
3660	return true;
3661}
3662
3663/** Flushes the GTT write domain for the object if it's dirty. */
3664static void
3665i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3666{
3667	uint32_t old_write_domain;
3668
3669	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3670		return;
3671
3672	/* No actual flushing is required for the GTT write domain.  Writes
3673	 * to it immediately go to main memory as far as we know, so there's
3674	 * no chipset flush.  It also doesn't land in render cache.
3675	 *
3676	 * However, we do have to enforce the order so that all writes through
3677	 * the GTT land before any writes to the device, such as updates to
3678	 * the GATT itself.
3679	 */
3680	wmb();
3681
3682	old_write_domain = obj->base.write_domain;
3683	obj->base.write_domain = 0;
3684
3685	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3686
3687	trace_i915_gem_object_change_domain(obj,
3688					    obj->base.read_domains,
3689					    old_write_domain);
3690}
3691
3692/** Flushes the CPU write domain for the object if it's dirty. */
3693static void
3694i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
 
3695{
3696	uint32_t old_write_domain;
3697
3698	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3699		return;
3700
3701	if (i915_gem_clflush_object(obj, obj->pin_display))
3702		i915_gem_chipset_flush(obj->base.dev);
3703
3704	old_write_domain = obj->base.write_domain;
3705	obj->base.write_domain = 0;
3706
3707	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3708
3709	trace_i915_gem_object_change_domain(obj,
3710					    obj->base.read_domains,
3711					    old_write_domain);
3712}
3713
3714/**
3715 * Moves a single object to the GTT read, and possibly write domain.
3716 *
3717 * This function returns when the move is complete, including waiting on
3718 * flushes to occur.
3719 */
3720int
3721i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3722{
 
3723	uint32_t old_write_domain, old_read_domains;
3724	struct i915_vma *vma;
3725	int ret;
3726
 
 
 
 
3727	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3728		return 0;
3729
3730	ret = i915_gem_object_wait_rendering(obj, !write);
3731	if (ret)
3732		return ret;
3733
3734	/* Flush and acquire obj->pages so that we are coherent through
3735	 * direct access in memory with previous cached writes through
3736	 * shmemfs and that our cache domain tracking remains valid.
3737	 * For example, if the obj->filp was moved to swap without us
3738	 * being notified and releasing the pages, we would mistakenly
3739	 * continue to assume that the obj remained out of the CPU cached
3740	 * domain.
3741	 */
3742	ret = i915_gem_object_get_pages(obj);
3743	if (ret)
3744		return ret;
3745
3746	i915_gem_object_flush_cpu_write_domain(obj);
3747
3748	/* Serialise direct access to this object with the barriers for
3749	 * coherent writes from the GPU, by effectively invalidating the
3750	 * GTT domain upon first access.
3751	 */
3752	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3753		mb();
3754
3755	old_write_domain = obj->base.write_domain;
3756	old_read_domains = obj->base.read_domains;
3757
3758	/* It should now be out of any other write domains, and we can update
3759	 * the domain values for our changes.
3760	 */
3761	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3762	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3763	if (write) {
3764		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3765		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3766		obj->dirty = 1;
3767	}
3768
3769	trace_i915_gem_object_change_domain(obj,
3770					    old_read_domains,
3771					    old_write_domain);
3772
3773	/* And bump the LRU for this access */
3774	vma = i915_gem_obj_to_ggtt(obj);
3775	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3776		list_move_tail(&vma->vm_link,
3777			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
 
 
 
3778
3779	return 0;
3780}
3781
3782/**
3783 * Changes the cache-level of an object across all VMA.
3784 *
3785 * After this function returns, the object will be in the new cache-level
3786 * across all GTT and the contents of the backing storage will be coherent,
3787 * with respect to the new cache-level. In order to keep the backing storage
3788 * coherent for all users, we only allow a single cache level to be set
3789 * globally on the object and prevent it from being changed whilst the
3790 * hardware is reading from the object. That is if the object is currently
3791 * on the scanout it will be set to uncached (or equivalent display
3792 * cache coherency) and all non-MOCS GPU access will also be uncached so
3793 * that all direct access to the scanout remains coherent.
3794 */
3795int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3796				    enum i915_cache_level cache_level)
3797{
3798	struct drm_device *dev = obj->base.dev;
3799	struct i915_vma *vma, *next;
3800	bool bound = false;
3801	int ret = 0;
3802
3803	if (obj->cache_level == cache_level)
3804		goto out;
3805
3806	/* Inspect the list of currently bound VMA and unbind any that would
3807	 * be invalid given the new cache-level. This is principally to
3808	 * catch the issue of the CS prefetch crossing page boundaries and
3809	 * reading an invalid PTE on older architectures.
3810	 */
3811	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3812		if (!drm_mm_node_allocated(&vma->node))
3813			continue;
3814
3815		if (vma->pin_count) {
3816			DRM_DEBUG("can not change the cache level of pinned objects\n");
3817			return -EBUSY;
3818		}
3819
3820		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
 
3821			ret = i915_vma_unbind(vma);
3822			if (ret)
3823				return ret;
3824		} else
3825			bound = true;
3826	}
3827
3828	/* We can reuse the existing drm_mm nodes but need to change the
3829	 * cache-level on the PTE. We could simply unbind them all and
3830	 * rebind with the correct cache-level on next use. However since
3831	 * we already have a valid slot, dma mapping, pages etc, we may as
3832	 * rewrite the PTE in the belief that doing so tramples upon less
3833	 * state and so involves less work.
3834	 */
3835	if (bound) {
3836		/* Before we change the PTE, the GPU must not be accessing it.
3837		 * If we wait upon the object, we know that all the bound
3838		 * VMA are no longer active.
3839		 */
3840		ret = i915_gem_object_wait_rendering(obj, false);
3841		if (ret)
3842			return ret;
3843
3844		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3845			/* Access to snoopable pages through the GTT is
3846			 * incoherent and on some machines causes a hard
3847			 * lockup. Relinquish the CPU mmaping to force
3848			 * userspace to refault in the pages and we can
3849			 * then double check if the GTT mapping is still
3850			 * valid for that pointer access.
3851			 */
3852			i915_gem_release_mmap(obj);
3853
3854			/* As we no longer need a fence for GTT access,
3855			 * we can relinquish it now (and so prevent having
3856			 * to steal a fence from someone else on the next
3857			 * fence request). Note GPU activity would have
3858			 * dropped the fence as all snoopable access is
3859			 * supposed to be linear.
3860			 */
3861			ret = i915_gem_object_put_fence(obj);
3862			if (ret)
3863				return ret;
3864		} else {
3865			/* We either have incoherent backing store and
3866			 * so no GTT access or the architecture is fully
3867			 * coherent. In such cases, existing GTT mmaps
3868			 * ignore the cache bit in the PTE and we can
3869			 * rewrite it without confusing the GPU or having
3870			 * to force userspace to fault back in its mmaps.
3871			 */
3872		}
3873
3874		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3875			if (!drm_mm_node_allocated(&vma->node))
3876				continue;
3877
3878			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3879			if (ret)
3880				return ret;
3881		}
3882	}
3883
3884	list_for_each_entry(vma, &obj->vma_list, obj_link)
3885		vma->node.color = cache_level;
3886	obj->cache_level = cache_level;
3887
3888out:
3889	/* Flush the dirty CPU caches to the backing storage so that the
3890	 * object is now coherent at its new cache level (with respect
3891	 * to the access domain).
3892	 */
3893	if (obj->cache_dirty &&
3894	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3895	    cpu_write_needs_clflush(obj)) {
3896		if (i915_gem_clflush_object(obj, true))
3897			i915_gem_chipset_flush(obj->base.dev);
 
 
 
 
 
 
 
 
 
 
3898	}
3899
 
3900	return 0;
3901}
3902
3903int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3904			       struct drm_file *file)
3905{
3906	struct drm_i915_gem_caching *args = data;
3907	struct drm_i915_gem_object *obj;
 
 
 
 
 
3908
3909	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3910	if (&obj->base == NULL)
3911		return -ENOENT;
 
 
3912
3913	switch (obj->cache_level) {
3914	case I915_CACHE_LLC:
3915	case I915_CACHE_L3_LLC:
3916		args->caching = I915_CACHING_CACHED;
3917		break;
3918
3919	case I915_CACHE_WT:
3920		args->caching = I915_CACHING_DISPLAY;
3921		break;
3922
3923	default:
3924		args->caching = I915_CACHING_NONE;
3925		break;
3926	}
3927
3928	drm_gem_object_unreference_unlocked(&obj->base);
3929	return 0;
 
 
3930}
3931
3932int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3933			       struct drm_file *file)
3934{
3935	struct drm_i915_private *dev_priv = dev->dev_private;
3936	struct drm_i915_gem_caching *args = data;
3937	struct drm_i915_gem_object *obj;
3938	enum i915_cache_level level;
3939	int ret;
3940
3941	switch (args->caching) {
3942	case I915_CACHING_NONE:
3943		level = I915_CACHE_NONE;
3944		break;
3945	case I915_CACHING_CACHED:
3946		/*
3947		 * Due to a HW issue on BXT A stepping, GPU stores via a
3948		 * snooped mapping may leave stale data in a corresponding CPU
3949		 * cacheline, whereas normally such cachelines would get
3950		 * invalidated.
3951		 */
3952		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3953			return -ENODEV;
3954
3955		level = I915_CACHE_LLC;
3956		break;
3957	case I915_CACHING_DISPLAY:
3958		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3959		break;
3960	default:
3961		return -EINVAL;
3962	}
3963
3964	intel_runtime_pm_get(dev_priv);
3965
3966	ret = i915_mutex_lock_interruptible(dev);
3967	if (ret)
3968		goto rpm_put;
3969
3970	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3971	if (&obj->base == NULL) {
3972		ret = -ENOENT;
3973		goto unlock;
3974	}
3975
3976	ret = i915_gem_object_set_cache_level(obj, level);
3977
3978	drm_gem_object_unreference(&obj->base);
3979unlock:
3980	mutex_unlock(&dev->struct_mutex);
3981rpm_put:
3982	intel_runtime_pm_put(dev_priv);
3983
3984	return ret;
3985}
3986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3987/*
3988 * Prepare buffer for display plane (scanout, cursors, etc).
3989 * Can be called from an uninterruptible phase (modesetting) and allows
3990 * any flushes to be pipelined (for pageflips).
3991 */
3992int
3993i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3994				     u32 alignment,
3995				     const struct i915_ggtt_view *view)
3996{
3997	u32 old_read_domains, old_write_domain;
3998	int ret;
3999
 
 
 
 
 
 
4000	/* Mark the pin_display early so that we account for the
4001	 * display coherency whilst setting up the cache domains.
4002	 */
4003	obj->pin_display++;
4004
4005	/* The display engine is not coherent with the LLC cache on gen6.  As
4006	 * a result, we make sure that the pinning that is about to occur is
4007	 * done with uncached PTEs. This is lowest common denominator for all
4008	 * chipsets.
4009	 *
4010	 * However for gen6+, we could do better by using the GFDT bit instead
4011	 * of uncaching, which would allow us to flush all the LLC-cached data
4012	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4013	 */
4014	ret = i915_gem_object_set_cache_level(obj,
4015					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4016	if (ret)
4017		goto err_unpin_display;
4018
4019	/* As the user may map the buffer once pinned in the display plane
4020	 * (e.g. libkms for the bootup splash), we have to ensure that we
4021	 * always use map_and_fenceable for all scanout buffers.
4022	 */
4023	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4024				       view->type == I915_GGTT_VIEW_NORMAL ?
4025				       PIN_MAPPABLE : 0);
4026	if (ret)
4027		goto err_unpin_display;
4028
4029	i915_gem_object_flush_cpu_write_domain(obj);
4030
4031	old_write_domain = obj->base.write_domain;
4032	old_read_domains = obj->base.read_domains;
4033
4034	/* It should now be out of any other write domains, and we can update
4035	 * the domain values for our changes.
4036	 */
4037	obj->base.write_domain = 0;
4038	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4039
4040	trace_i915_gem_object_change_domain(obj,
4041					    old_read_domains,
4042					    old_write_domain);
4043
4044	return 0;
4045
4046err_unpin_display:
4047	obj->pin_display--;
4048	return ret;
4049}
4050
4051void
4052i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4053					 const struct i915_ggtt_view *view)
4054{
4055	if (WARN_ON(obj->pin_display == 0))
4056		return;
 
 
 
 
 
 
4057
4058	i915_gem_object_ggtt_unpin_view(obj, view);
 
 
 
 
 
4059
4060	obj->pin_display--;
 
 
4061}
4062
4063/**
4064 * Moves a single object to the CPU read, and possibly write domain.
4065 *
4066 * This function returns when the move is complete, including waiting on
4067 * flushes to occur.
4068 */
4069int
4070i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4071{
4072	uint32_t old_write_domain, old_read_domains;
4073	int ret;
4074
4075	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4076		return 0;
4077
4078	ret = i915_gem_object_wait_rendering(obj, !write);
4079	if (ret)
4080		return ret;
4081
4082	i915_gem_object_flush_gtt_write_domain(obj);
4083
4084	old_write_domain = obj->base.write_domain;
4085	old_read_domains = obj->base.read_domains;
4086
4087	/* Flush the CPU cache if it's still invalid. */
4088	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4089		i915_gem_clflush_object(obj, false);
4090
4091		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4092	}
4093
4094	/* It should now be out of any other write domains, and we can update
4095	 * the domain values for our changes.
4096	 */
4097	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4098
4099	/* If we're writing through the CPU, then the GPU read domains will
4100	 * need to be invalidated at next use.
4101	 */
4102	if (write) {
4103		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4104		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4105	}
4106
4107	trace_i915_gem_object_change_domain(obj,
4108					    old_read_domains,
4109					    old_write_domain);
4110
4111	return 0;
4112}
4113
4114/* Throttle our rendering by waiting until the ring has completed our requests
4115 * emitted over 20 msec ago.
4116 *
4117 * Note that if we were to use the current jiffies each time around the loop,
4118 * we wouldn't escape the function with any frames outstanding if the time to
4119 * render a frame was over 20ms.
4120 *
4121 * This should get us reasonable parallelism between CPU and GPU but also
4122 * relatively low latency when blocking on a particular request to finish.
4123 */
4124static int
4125i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4126{
4127	struct drm_i915_private *dev_priv = dev->dev_private;
4128	struct drm_i915_file_private *file_priv = file->driver_priv;
4129	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4130	struct drm_i915_gem_request *request, *target = NULL;
 
4131	unsigned reset_counter;
 
4132	int ret;
4133
4134	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4135	if (ret)
4136		return ret;
4137
4138	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4139	if (ret)
4140		return ret;
4141
4142	spin_lock(&file_priv->mm.lock);
4143	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4144		if (time_after_eq(request->emitted_jiffies, recent_enough))
4145			break;
4146
4147		/*
4148		 * Note that the request might not have been submitted yet.
4149		 * In which case emitted_jiffies will be zero.
4150		 */
4151		if (!request->emitted_jiffies)
4152			continue;
4153
4154		target = request;
4155	}
4156	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4157	if (target)
4158		i915_gem_request_reference(target);
4159	spin_unlock(&file_priv->mm.lock);
4160
4161	if (target == NULL)
4162		return 0;
4163
4164	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4165	if (ret == 0)
4166		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4167
4168	i915_gem_request_unreference__unlocked(target);
4169
4170	return ret;
4171}
4172
4173static bool
4174i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4175{
4176	struct drm_i915_gem_object *obj = vma->obj;
4177
4178	if (alignment &&
4179	    vma->node.start & (alignment - 1))
4180		return true;
4181
4182	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4183		return true;
4184
4185	if (flags & PIN_OFFSET_BIAS &&
4186	    vma->node.start < (flags & PIN_OFFSET_MASK))
4187		return true;
4188
4189	if (flags & PIN_OFFSET_FIXED &&
4190	    vma->node.start != (flags & PIN_OFFSET_MASK))
4191		return true;
4192
4193	return false;
4194}
4195
4196void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4197{
4198	struct drm_i915_gem_object *obj = vma->obj;
4199	bool mappable, fenceable;
4200	u32 fence_size, fence_alignment;
4201
4202	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4203					   obj->base.size,
4204					   obj->tiling_mode);
4205	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4206						     obj->base.size,
4207						     obj->tiling_mode,
4208						     true);
4209
4210	fenceable = (vma->node.size == fence_size &&
4211		     (vma->node.start & (fence_alignment - 1)) == 0);
4212
4213	mappable = (vma->node.start + fence_size <=
4214		    to_i915(obj->base.dev)->gtt.mappable_end);
4215
4216	obj->map_and_fenceable = mappable && fenceable;
4217}
4218
4219static int
4220i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4221		       struct i915_address_space *vm,
4222		       const struct i915_ggtt_view *ggtt_view,
4223		       uint32_t alignment,
4224		       uint64_t flags)
4225{
4226	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4227	struct i915_vma *vma;
4228	unsigned bound;
4229	int ret;
4230
4231	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4232		return -ENODEV;
4233
4234	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4235		return -EINVAL;
4236
4237	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4238		return -EINVAL;
4239
4240	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4241		return -EINVAL;
4242
4243	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4244			  i915_gem_obj_to_vma(obj, vm);
4245
4246	if (IS_ERR(vma))
4247		return PTR_ERR(vma);
4248
4249	if (vma) {
4250		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4251			return -EBUSY;
4252
4253		if (i915_vma_misplaced(vma, alignment, flags)) {
4254			WARN(vma->pin_count,
4255			     "bo is already pinned in %s with incorrect alignment:"
4256			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4257			     " obj->map_and_fenceable=%d\n",
4258			     ggtt_view ? "ggtt" : "ppgtt",
4259			     upper_32_bits(vma->node.start),
4260			     lower_32_bits(vma->node.start),
4261			     alignment,
4262			     !!(flags & PIN_MAPPABLE),
4263			     obj->map_and_fenceable);
4264			ret = i915_vma_unbind(vma);
4265			if (ret)
4266				return ret;
4267
4268			vma = NULL;
4269		}
4270	}
4271
4272	bound = vma ? vma->bound : 0;
4273	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4274		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4275						 flags);
4276		if (IS_ERR(vma))
4277			return PTR_ERR(vma);
4278	} else {
4279		ret = i915_vma_bind(vma, obj->cache_level, flags);
4280		if (ret)
4281			return ret;
4282	}
4283
4284	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4285	    (bound ^ vma->bound) & GLOBAL_BIND) {
4286		__i915_vma_set_map_and_fenceable(vma);
4287		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4288	}
4289
4290	vma->pin_count++;
 
 
 
4291	return 0;
4292}
4293
4294int
4295i915_gem_object_pin(struct drm_i915_gem_object *obj,
4296		    struct i915_address_space *vm,
4297		    uint32_t alignment,
4298		    uint64_t flags)
4299{
4300	return i915_gem_object_do_pin(obj, vm,
4301				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4302				      alignment, flags);
 
 
 
 
 
4303}
4304
4305int
4306i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4307			 const struct i915_ggtt_view *view,
4308			 uint32_t alignment,
4309			 uint64_t flags)
4310{
4311	if (WARN_ONCE(!view, "no view specified"))
4312		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4313
4314	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4315				      alignment, flags | PIN_GLOBAL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4316}
4317
4318void
4319i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4320				const struct i915_ggtt_view *view)
4321{
4322	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
 
 
4323
4324	BUG_ON(!vma);
4325	WARN_ON(vma->pin_count == 0);
4326	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4327
4328	--vma->pin_count;
 
 
 
 
4329}
4330
4331int
4332i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4333		    struct drm_file *file)
4334{
4335	struct drm_i915_gem_busy *args = data;
4336	struct drm_i915_gem_object *obj;
4337	int ret;
4338
4339	ret = i915_mutex_lock_interruptible(dev);
4340	if (ret)
4341		return ret;
4342
4343	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4344	if (&obj->base == NULL) {
4345		ret = -ENOENT;
4346		goto unlock;
4347	}
4348
4349	/* Count all active objects as busy, even if they are currently not used
4350	 * by the gpu. Users of this interface expect objects to eventually
4351	 * become non-busy without any further actions, therefore emit any
4352	 * necessary flushes here.
4353	 */
4354	ret = i915_gem_object_flush_active(obj);
4355	if (ret)
4356		goto unref;
4357
4358	args->busy = 0;
4359	if (obj->active) {
4360		int i;
4361
4362		for (i = 0; i < I915_NUM_RINGS; i++) {
4363			struct drm_i915_gem_request *req;
4364
4365			req = obj->last_read_req[i];
4366			if (req)
4367				args->busy |= 1 << (16 + req->ring->exec_id);
4368		}
4369		if (obj->last_write_req)
4370			args->busy |= obj->last_write_req->ring->exec_id;
4371	}
4372
4373unref:
4374	drm_gem_object_unreference(&obj->base);
4375unlock:
4376	mutex_unlock(&dev->struct_mutex);
4377	return ret;
4378}
4379
4380int
4381i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4382			struct drm_file *file_priv)
4383{
4384	return i915_gem_ring_throttle(dev, file_priv);
4385}
4386
4387int
4388i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4389		       struct drm_file *file_priv)
4390{
4391	struct drm_i915_private *dev_priv = dev->dev_private;
4392	struct drm_i915_gem_madvise *args = data;
4393	struct drm_i915_gem_object *obj;
4394	int ret;
4395
4396	switch (args->madv) {
4397	case I915_MADV_DONTNEED:
4398	case I915_MADV_WILLNEED:
4399	    break;
4400	default:
4401	    return -EINVAL;
4402	}
4403
4404	ret = i915_mutex_lock_interruptible(dev);
4405	if (ret)
4406		return ret;
4407
4408	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4409	if (&obj->base == NULL) {
4410		ret = -ENOENT;
4411		goto unlock;
4412	}
4413
4414	if (i915_gem_obj_is_pinned(obj)) {
4415		ret = -EINVAL;
4416		goto out;
4417	}
4418
4419	if (obj->pages &&
4420	    obj->tiling_mode != I915_TILING_NONE &&
4421	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4422		if (obj->madv == I915_MADV_WILLNEED)
4423			i915_gem_object_unpin_pages(obj);
4424		if (args->madv == I915_MADV_WILLNEED)
4425			i915_gem_object_pin_pages(obj);
4426	}
4427
4428	if (obj->madv != __I915_MADV_PURGED)
4429		obj->madv = args->madv;
4430
4431	/* if the object is no longer attached, discard its backing storage */
4432	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4433		i915_gem_object_truncate(obj);
4434
4435	args->retained = obj->madv != __I915_MADV_PURGED;
4436
4437out:
4438	drm_gem_object_unreference(&obj->base);
4439unlock:
4440	mutex_unlock(&dev->struct_mutex);
4441	return ret;
4442}
4443
4444void i915_gem_object_init(struct drm_i915_gem_object *obj,
4445			  const struct drm_i915_gem_object_ops *ops)
4446{
4447	int i;
4448
4449	INIT_LIST_HEAD(&obj->global_list);
4450	for (i = 0; i < I915_NUM_RINGS; i++)
4451		INIT_LIST_HEAD(&obj->ring_list[i]);
4452	INIT_LIST_HEAD(&obj->obj_exec_link);
4453	INIT_LIST_HEAD(&obj->vma_list);
4454	INIT_LIST_HEAD(&obj->batch_pool_link);
4455
4456	obj->ops = ops;
4457
4458	obj->fence_reg = I915_FENCE_REG_NONE;
4459	obj->madv = I915_MADV_WILLNEED;
 
 
4460
4461	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4462}
4463
4464static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4465	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4466	.get_pages = i915_gem_object_get_pages_gtt,
4467	.put_pages = i915_gem_object_put_pages_gtt,
4468};
4469
4470struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4471						  size_t size)
4472{
4473	struct drm_i915_gem_object *obj;
4474	struct address_space *mapping;
4475	gfp_t mask;
4476
4477	obj = i915_gem_object_alloc(dev);
4478	if (obj == NULL)
4479		return NULL;
4480
4481	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4482		i915_gem_object_free(obj);
4483		return NULL;
4484	}
4485
4486	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4487	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4488		/* 965gm cannot relocate objects above 4GiB. */
4489		mask &= ~__GFP_HIGHMEM;
4490		mask |= __GFP_DMA32;
4491	}
4492
4493	mapping = file_inode(obj->base.filp)->i_mapping;
4494	mapping_set_gfp_mask(mapping, mask);
4495
4496	i915_gem_object_init(obj, &i915_gem_object_ops);
4497
4498	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4499	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4500
4501	if (HAS_LLC(dev)) {
4502		/* On some devices, we can have the GPU use the LLC (the CPU
4503		 * cache) for about a 10% performance improvement
4504		 * compared to uncached.  Graphics requests other than
4505		 * display scanout are coherent with the CPU in
4506		 * accessing this cache.  This means in this mode we
4507		 * don't need to clflush on the CPU side, and on the
4508		 * GPU side we only need to flush internal caches to
4509		 * get data visible to the CPU.
4510		 *
4511		 * However, we maintain the display planes as UC, and so
4512		 * need to rebind when first used as such.
4513		 */
4514		obj->cache_level = I915_CACHE_LLC;
4515	} else
4516		obj->cache_level = I915_CACHE_NONE;
4517
4518	trace_i915_gem_object_create(obj);
4519
4520	return obj;
4521}
4522
4523static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4524{
4525	/* If we are the last user of the backing storage (be it shmemfs
4526	 * pages or stolen etc), we know that the pages are going to be
4527	 * immediately released. In this case, we can then skip copying
4528	 * back the contents from the GPU.
4529	 */
4530
4531	if (obj->madv != I915_MADV_WILLNEED)
4532		return false;
4533
4534	if (obj->base.filp == NULL)
4535		return true;
4536
4537	/* At first glance, this looks racy, but then again so would be
4538	 * userspace racing mmap against close. However, the first external
4539	 * reference to the filp can only be obtained through the
4540	 * i915_gem_mmap_ioctl() which safeguards us against the user
4541	 * acquiring such a reference whilst we are in the middle of
4542	 * freeing the object.
4543	 */
4544	return atomic_long_read(&obj->base.filp->f_count) == 1;
4545}
4546
4547void i915_gem_free_object(struct drm_gem_object *gem_obj)
4548{
4549	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4550	struct drm_device *dev = obj->base.dev;
4551	struct drm_i915_private *dev_priv = dev->dev_private;
4552	struct i915_vma *vma, *next;
4553
4554	intel_runtime_pm_get(dev_priv);
4555
4556	trace_i915_gem_object_destroy(obj);
4557
4558	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4559		int ret;
4560
4561		vma->pin_count = 0;
4562		ret = i915_vma_unbind(vma);
4563		if (WARN_ON(ret == -ERESTARTSYS)) {
4564			bool was_interruptible;
4565
4566			was_interruptible = dev_priv->mm.interruptible;
4567			dev_priv->mm.interruptible = false;
4568
4569			WARN_ON(i915_vma_unbind(vma));
4570
4571			dev_priv->mm.interruptible = was_interruptible;
4572		}
4573	}
4574
 
 
4575	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4576	 * before progressing. */
4577	if (obj->stolen)
4578		i915_gem_object_unpin_pages(obj);
4579
4580	WARN_ON(obj->frontbuffer_bits);
4581
4582	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4583	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4584	    obj->tiling_mode != I915_TILING_NONE)
4585		i915_gem_object_unpin_pages(obj);
4586
4587	if (WARN_ON(obj->pages_pin_count))
4588		obj->pages_pin_count = 0;
4589	if (discard_backing_storage(obj))
4590		obj->madv = I915_MADV_DONTNEED;
4591	i915_gem_object_put_pages(obj);
4592	i915_gem_object_free_mmap_offset(obj);
 
4593
4594	BUG_ON(obj->pages);
4595
4596	if (obj->base.import_attach)
4597		drm_prime_gem_destroy(&obj->base, NULL);
4598
4599	if (obj->ops->release)
4600		obj->ops->release(obj);
4601
4602	drm_gem_object_release(&obj->base);
4603	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4604
4605	kfree(obj->bit_17);
4606	i915_gem_object_free(obj);
4607
4608	intel_runtime_pm_put(dev_priv);
4609}
4610
4611struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4612				     struct i915_address_space *vm)
4613{
4614	struct i915_vma *vma;
4615	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4616		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4617		    vma->vm == vm)
4618			return vma;
4619	}
4620	return NULL;
4621}
4622
4623struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4624					   const struct i915_ggtt_view *view)
4625{
4626	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4627	struct i915_vma *vma;
4628
4629	if (WARN_ONCE(!view, "no view specified"))
4630		return ERR_PTR(-EINVAL);
4631
4632	list_for_each_entry(vma, &obj->vma_list, obj_link)
4633		if (vma->vm == ggtt &&
4634		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4635			return vma;
4636	return NULL;
4637}
4638
4639void i915_gem_vma_destroy(struct i915_vma *vma)
4640{
4641	WARN_ON(vma->node.allocated);
4642
4643	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4644	if (!list_empty(&vma->exec_list))
4645		return;
4646
4647	if (!vma->is_ggtt)
4648		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4649
4650	list_del(&vma->obj_link);
4651
4652	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4653}
4654
4655static void
4656i915_gem_stop_ringbuffers(struct drm_device *dev)
4657{
4658	struct drm_i915_private *dev_priv = dev->dev_private;
4659	struct intel_engine_cs *ring;
4660	int i;
4661
4662	for_each_ring(ring, dev_priv, i)
4663		dev_priv->gt.stop_ring(ring);
4664}
4665
4666int
4667i915_gem_suspend(struct drm_device *dev)
4668{
4669	struct drm_i915_private *dev_priv = dev->dev_private;
4670	int ret = 0;
4671
4672	mutex_lock(&dev->struct_mutex);
 
 
 
4673	ret = i915_gpu_idle(dev);
4674	if (ret)
4675		goto err;
4676
4677	i915_gem_retire_requests(dev);
4678
4679	i915_gem_stop_ringbuffers(dev);
 
 
 
 
 
 
 
 
 
 
 
 
4680	mutex_unlock(&dev->struct_mutex);
4681
4682	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4683	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4684	flush_delayed_work(&dev_priv->mm.idle_work);
4685
4686	/* Assert that we sucessfully flushed all the work and
4687	 * reset the GPU back to its idle, low power state.
4688	 */
4689	WARN_ON(dev_priv->mm.busy);
4690
4691	return 0;
4692
4693err:
4694	mutex_unlock(&dev->struct_mutex);
4695	return ret;
4696}
4697
4698int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4699{
4700	struct intel_engine_cs *ring = req->ring;
4701	struct drm_device *dev = ring->dev;
4702	struct drm_i915_private *dev_priv = dev->dev_private;
 
4703	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4704	int i, ret;
4705
4706	if (!HAS_L3_DPF(dev) || !remap_info)
4707		return 0;
4708
4709	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4710	if (ret)
4711		return ret;
4712
4713	/*
4714	 * Note: We do not worry about the concurrent register cacheline hang
4715	 * here because no other code should access these registers other than
4716	 * at initialization time.
4717	 */
4718	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4719		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4720		intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4721		intel_ring_emit(ring, remap_info[i]);
4722	}
4723
4724	intel_ring_advance(ring);
4725
4726	return ret;
4727}
4728
4729void i915_gem_init_swizzling(struct drm_device *dev)
4730{
4731	struct drm_i915_private *dev_priv = dev->dev_private;
4732
4733	if (INTEL_INFO(dev)->gen < 5 ||
4734	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4735		return;
4736
4737	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4738				 DISP_TILE_SURFACE_SWIZZLING);
4739
4740	if (IS_GEN5(dev))
4741		return;
4742
4743	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4744	if (IS_GEN6(dev))
4745		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4746	else if (IS_GEN7(dev))
4747		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4748	else if (IS_GEN8(dev))
4749		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4750	else
4751		BUG();
4752}
4753
4754static void init_unused_ring(struct drm_device *dev, u32 base)
 
4755{
4756	struct drm_i915_private *dev_priv = dev->dev_private;
 
4757
4758	I915_WRITE(RING_CTL(base), 0);
4759	I915_WRITE(RING_HEAD(base), 0);
4760	I915_WRITE(RING_TAIL(base), 0);
4761	I915_WRITE(RING_START(base), 0);
4762}
4763
4764static void init_unused_rings(struct drm_device *dev)
4765{
4766	if (IS_I830(dev)) {
4767		init_unused_ring(dev, PRB1_BASE);
4768		init_unused_ring(dev, SRB0_BASE);
4769		init_unused_ring(dev, SRB1_BASE);
4770		init_unused_ring(dev, SRB2_BASE);
4771		init_unused_ring(dev, SRB3_BASE);
4772	} else if (IS_GEN2(dev)) {
4773		init_unused_ring(dev, SRB0_BASE);
4774		init_unused_ring(dev, SRB1_BASE);
4775	} else if (IS_GEN3(dev)) {
4776		init_unused_ring(dev, PRB1_BASE);
4777		init_unused_ring(dev, PRB2_BASE);
4778	}
 
 
4779}
4780
4781int i915_gem_init_rings(struct drm_device *dev)
4782{
4783	struct drm_i915_private *dev_priv = dev->dev_private;
4784	int ret;
4785
4786	ret = intel_init_render_ring_buffer(dev);
4787	if (ret)
4788		return ret;
4789
4790	if (HAS_BSD(dev)) {
4791		ret = intel_init_bsd_ring_buffer(dev);
4792		if (ret)
4793			goto cleanup_render_ring;
4794	}
4795
4796	if (HAS_BLT(dev)) {
4797		ret = intel_init_blt_ring_buffer(dev);
4798		if (ret)
4799			goto cleanup_bsd_ring;
4800	}
4801
4802	if (HAS_VEBOX(dev)) {
4803		ret = intel_init_vebox_ring_buffer(dev);
4804		if (ret)
4805			goto cleanup_blt_ring;
4806	}
4807
4808	if (HAS_BSD2(dev)) {
4809		ret = intel_init_bsd2_ring_buffer(dev);
4810		if (ret)
4811			goto cleanup_vebox_ring;
4812	}
4813
4814	return 0;
4815
4816cleanup_vebox_ring:
4817	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4818cleanup_blt_ring:
4819	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4820cleanup_bsd_ring:
4821	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4822cleanup_render_ring:
4823	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4824
4825	return ret;
4826}
4827
4828int
4829i915_gem_init_hw(struct drm_device *dev)
4830{
4831	struct drm_i915_private *dev_priv = dev->dev_private;
4832	struct intel_engine_cs *ring;
4833	int ret, i, j;
4834
4835	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4836		return -EIO;
4837
4838	/* Double layer security blanket, see i915_gem_init() */
4839	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4840
4841	if (dev_priv->ellc_size)
4842		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4843
4844	if (IS_HASWELL(dev))
4845		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4846			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4847
4848	if (HAS_PCH_NOP(dev)) {
4849		if (IS_IVYBRIDGE(dev)) {
4850			u32 temp = I915_READ(GEN7_MSG_CTL);
4851			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4852			I915_WRITE(GEN7_MSG_CTL, temp);
4853		} else if (INTEL_INFO(dev)->gen >= 7) {
4854			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4855			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4856			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4857		}
4858	}
4859
4860	i915_gem_init_swizzling(dev);
4861
4862	/*
4863	 * At least 830 can leave some of the unused rings
4864	 * "active" (ie. head != tail) after resume which
4865	 * will prevent c3 entry. Makes sure all unused rings
4866	 * are totally idle.
4867	 */
4868	init_unused_rings(dev);
4869
4870	BUG_ON(!dev_priv->kernel_context);
 
4871
4872	ret = i915_ppgtt_init_hw(dev);
 
 
 
 
 
 
 
4873	if (ret) {
4874		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4875		goto out;
4876	}
4877
4878	/* Need to do basic initialisation of all rings first: */
4879	for_each_ring(ring, dev_priv, i) {
4880		ret = ring->init_hw(ring);
4881		if (ret)
4882			goto out;
4883	}
4884
4885	/* We can't enable contexts until all firmware is loaded */
4886	if (HAS_GUC_UCODE(dev)) {
4887		ret = intel_guc_ucode_load(dev);
4888		if (ret) {
4889			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4890			ret = -EIO;
4891			goto out;
4892		}
4893	}
4894
4895	/*
4896	 * Increment the next seqno by 0x100 so we have a visible break
4897	 * on re-initialisation
4898	 */
4899	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4900	if (ret)
4901		goto out;
4902
4903	/* Now it is safe to go back round and do everything else: */
4904	for_each_ring(ring, dev_priv, i) {
4905		struct drm_i915_gem_request *req;
 
4906
4907		req = i915_gem_request_alloc(ring, NULL);
4908		if (IS_ERR(req)) {
4909			ret = PTR_ERR(req);
4910			i915_gem_cleanup_ringbuffer(dev);
4911			goto out;
4912		}
4913
4914		if (ring->id == RCS) {
4915			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4916				i915_gem_l3_remap(req, j);
4917		}
 
 
4918
4919		ret = i915_ppgtt_init_ring(req);
4920		if (ret && ret != -EIO) {
4921			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4922			i915_gem_request_cancel(req);
4923			i915_gem_cleanup_ringbuffer(dev);
4924			goto out;
4925		}
4926
4927		ret = i915_gem_context_enable(req);
4928		if (ret && ret != -EIO) {
4929			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4930			i915_gem_request_cancel(req);
4931			i915_gem_cleanup_ringbuffer(dev);
4932			goto out;
4933		}
4934
4935		i915_add_request_no_flush(req);
 
 
 
 
 
 
4936	}
4937
4938out:
4939	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4940	return ret;
 
4941}
4942
4943int i915_gem_init(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
4944{
4945	struct drm_i915_private *dev_priv = dev->dev_private;
4946	int ret;
4947
4948	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4949			i915.enable_execlists);
 
 
 
 
 
4950
4951	mutex_lock(&dev->struct_mutex);
 
4952
4953	if (!i915.enable_execlists) {
4954		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4955		dev_priv->gt.init_rings = i915_gem_init_rings;
4956		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4957		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4958	} else {
4959		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4960		dev_priv->gt.init_rings = intel_logical_rings_init;
4961		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4962		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4963	}
4964
4965	/* This is just a security blanket to placate dragons.
4966	 * On some systems, we very sporadically observe that the first TLBs
4967	 * used by the CS may be stale, despite us poking the TLB reset. If
4968	 * we hold the forcewake during initialisation these problems
4969	 * just magically go away.
4970	 */
4971	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4972
4973	ret = i915_gem_init_userptr(dev);
4974	if (ret)
4975		goto out_unlock;
4976
4977	i915_gem_init_global_gtt(dev);
4978
4979	ret = i915_gem_context_init(dev);
4980	if (ret)
4981		goto out_unlock;
 
 
4982
4983	ret = dev_priv->gt.init_rings(dev);
4984	if (ret)
4985		goto out_unlock;
4986
4987	ret = i915_gem_init_hw(dev);
4988	if (ret == -EIO) {
4989		/* Allow ring initialisation to fail by marking the GPU as
4990		 * wedged. But we only want to do this where the GPU is angry,
4991		 * for all other failure, such as an allocation failure, bail.
4992		 */
4993		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4994		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4995		ret = 0;
4996	}
4997
4998out_unlock:
4999	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5000	mutex_unlock(&dev->struct_mutex);
5001
5002	return ret;
5003}
5004
5005void
5006i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5007{
5008	struct drm_i915_private *dev_priv = dev->dev_private;
5009	struct intel_engine_cs *ring;
5010	int i;
5011
5012	for_each_ring(ring, dev_priv, i)
5013		dev_priv->gt.cleanup_ring(ring);
5014
5015    if (i915.enable_execlists)
5016            /*
5017             * Neither the BIOS, ourselves or any other kernel
5018             * expects the system to be in execlists mode on startup,
5019             * so we need to reset the GPU back to legacy mode.
5020             */
5021            intel_gpu_reset(dev);
5022}
5023
5024static void
5025init_ring_lists(struct intel_engine_cs *ring)
5026{
5027	INIT_LIST_HEAD(&ring->active_list);
5028	INIT_LIST_HEAD(&ring->request_list);
5029}
5030
 
 
 
 
 
 
 
 
 
 
 
 
5031void
5032i915_gem_load_init(struct drm_device *dev)
5033{
5034	struct drm_i915_private *dev_priv = dev->dev_private;
5035	int i;
5036
5037	dev_priv->objects =
5038		kmem_cache_create("i915_gem_object",
5039				  sizeof(struct drm_i915_gem_object), 0,
5040				  SLAB_HWCACHE_ALIGN,
5041				  NULL);
5042	dev_priv->vmas =
5043		kmem_cache_create("i915_gem_vma",
5044				  sizeof(struct i915_vma), 0,
5045				  SLAB_HWCACHE_ALIGN,
5046				  NULL);
5047	dev_priv->requests =
5048		kmem_cache_create("i915_gem_request",
5049				  sizeof(struct drm_i915_gem_request), 0,
5050				  SLAB_HWCACHE_ALIGN,
5051				  NULL);
5052
5053	INIT_LIST_HEAD(&dev_priv->vm_list);
 
 
5054	INIT_LIST_HEAD(&dev_priv->context_list);
5055	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5056	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5057	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5058	for (i = 0; i < I915_NUM_RINGS; i++)
5059		init_ring_lists(&dev_priv->ring[i]);
5060	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5061		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5062	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5063			  i915_gem_retire_work_handler);
5064	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5065			  i915_gem_idle_work_handler);
5066	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5067
 
 
 
 
 
 
5068	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5069
5070	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
 
 
 
 
5071		dev_priv->num_fence_regs = 32;
5072	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5073		dev_priv->num_fence_regs = 16;
5074	else
5075		dev_priv->num_fence_regs = 8;
5076
5077	if (intel_vgpu_active(dev))
5078		dev_priv->num_fence_regs =
5079				I915_READ(vgtif_reg(avail_rs.fence_num));
5080
5081	/*
5082	 * Set initial sequence number for requests.
5083	 * Using this number allows the wraparound to happen early,
5084	 * catching any obvious problems.
5085	 */
5086	dev_priv->next_seqno = ((u32)~0 - 0x1100);
5087	dev_priv->last_seqno = ((u32)~0 - 0x1101);
5088
5089	/* Initialize fence registers to zero */
5090	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5091	i915_gem_restore_fences(dev);
5092
5093	i915_gem_detect_bit_6_swizzle(dev);
5094	init_waitqueue_head(&dev_priv->pending_flip_queue);
5095
5096	dev_priv->mm.interruptible = true;
5097
5098	mutex_init(&dev_priv->fb_tracking.lock);
5099}
5100
5101void i915_gem_load_cleanup(struct drm_device *dev)
5102{
5103	struct drm_i915_private *dev_priv = to_i915(dev);
5104
5105	kmem_cache_destroy(dev_priv->requests);
5106	kmem_cache_destroy(dev_priv->vmas);
5107	kmem_cache_destroy(dev_priv->objects);
5108}
5109
5110void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5111{
5112	struct drm_i915_file_private *file_priv = file->driver_priv;
5113
 
 
5114	/* Clean up our request list when the client is going away, so that
5115	 * later retire_requests won't dereference our soon-to-be-gone
5116	 * file_priv.
5117	 */
5118	spin_lock(&file_priv->mm.lock);
5119	while (!list_empty(&file_priv->mm.request_list)) {
5120		struct drm_i915_gem_request *request;
5121
5122		request = list_first_entry(&file_priv->mm.request_list,
5123					   struct drm_i915_gem_request,
5124					   client_list);
5125		list_del(&request->client_list);
5126		request->file_priv = NULL;
5127	}
5128	spin_unlock(&file_priv->mm.lock);
 
5129
5130	if (!list_empty(&file_priv->rps.link)) {
5131		spin_lock(&to_i915(dev)->rps.client_lock);
5132		list_del(&file_priv->rps.link);
5133		spin_unlock(&to_i915(dev)->rps.client_lock);
5134	}
 
 
5135}
5136
5137int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5138{
5139	struct drm_i915_file_private *file_priv;
5140	int ret;
5141
5142	DRM_DEBUG_DRIVER("\n");
5143
5144	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5145	if (!file_priv)
5146		return -ENOMEM;
5147
5148	file->driver_priv = file_priv;
5149	file_priv->dev_priv = dev->dev_private;
5150	file_priv->file = file;
5151	INIT_LIST_HEAD(&file_priv->rps.link);
5152
5153	spin_lock_init(&file_priv->mm.lock);
5154	INIT_LIST_HEAD(&file_priv->mm.request_list);
5155
5156	file_priv->bsd_ring = -1;
5157
5158	ret = i915_gem_context_open(dev, file);
5159	if (ret)
5160		kfree(file_priv);
5161
5162	return ret;
5163}
5164
5165/**
5166 * i915_gem_track_fb - update frontbuffer tracking
5167 * @old: current GEM buffer for the frontbuffer slots
5168 * @new: new GEM buffer for the frontbuffer slots
5169 * @frontbuffer_bits: bitmask of frontbuffer slots
5170 *
5171 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5172 * from @old and setting them in @new. Both @old and @new can be NULL.
5173 */
5174void i915_gem_track_fb(struct drm_i915_gem_object *old,
5175		       struct drm_i915_gem_object *new,
5176		       unsigned frontbuffer_bits)
5177{
5178	if (old) {
5179		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5180		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5181		old->frontbuffer_bits &= ~frontbuffer_bits;
5182	}
5183
5184	if (new) {
5185		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5186		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5187		new->frontbuffer_bits |= frontbuffer_bits;
5188	}
 
5189}
5190
5191/* All the new VM stuff */
5192u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5193			struct i915_address_space *vm)
5194{
5195	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5196	struct i915_vma *vma;
 
 
 
 
 
 
 
 
 
 
5197
5198	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
 
5199
5200	list_for_each_entry(vma, &o->vma_list, obj_link) {
5201		if (vma->is_ggtt &&
5202		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
 
 
 
 
 
 
 
5203			continue;
5204		if (vma->vm == vm)
5205			return vma->node.start;
 
5206	}
5207
5208	WARN(1, "%s vma for this object not found.\n",
5209	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5210	return -1;
 
5211}
5212
5213u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5214				  const struct i915_ggtt_view *view)
 
5215{
5216	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5217	struct i915_vma *vma;
5218
5219	list_for_each_entry(vma, &o->vma_list, obj_link)
5220		if (vma->vm == ggtt &&
5221		    i915_ggtt_view_equal(&vma->ggtt_view, view))
 
 
 
 
5222			return vma->node.start;
5223
5224	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5225	return -1;
5226}
5227
5228bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5229			struct i915_address_space *vm)
5230{
5231	struct i915_vma *vma;
5232
5233	list_for_each_entry(vma, &o->vma_list, obj_link) {
5234		if (vma->is_ggtt &&
5235		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5236			continue;
5237		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5238			return true;
5239	}
5240
5241	return false;
5242}
5243
5244bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5245				  const struct i915_ggtt_view *view)
5246{
5247	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5248	struct i915_vma *vma;
5249
5250	list_for_each_entry(vma, &o->vma_list, obj_link)
5251		if (vma->vm == ggtt &&
5252		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5253		    drm_mm_node_allocated(&vma->node))
5254			return true;
5255
5256	return false;
5257}
5258
5259bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5260{
5261	struct i915_vma *vma;
5262
5263	list_for_each_entry(vma, &o->vma_list, obj_link)
5264		if (drm_mm_node_allocated(&vma->node))
5265			return true;
5266
5267	return false;
5268}
5269
5270unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5271				struct i915_address_space *vm)
5272{
5273	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5274	struct i915_vma *vma;
5275
5276	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
 
 
5277
5278	BUG_ON(list_empty(&o->vma_list));
5279
5280	list_for_each_entry(vma, &o->vma_list, obj_link) {
5281		if (vma->is_ggtt &&
5282		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5283			continue;
5284		if (vma->vm == vm)
5285			return vma->node.size;
5286	}
5287	return 0;
5288}
5289
5290bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5291{
5292	struct i915_vma *vma;
5293	list_for_each_entry(vma, &obj->vma_list, obj_link)
5294		if (vma->pin_count > 0)
5295			return true;
5296
5297	return false;
5298}
5299
5300/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5301struct page *
5302i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5303{
5304	struct page *page;
 
 
 
 
 
 
5305
5306	/* Only default objects have per-page dirty tracking */
5307	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5308		return NULL;
5309
5310	page = i915_gem_object_get_page(obj, n);
5311	set_page_dirty(page);
5312	return page;
5313}
5314
5315/* Allocate a new GEM object and fill it with the supplied data */
5316struct drm_i915_gem_object *
5317i915_gem_object_create_from_data(struct drm_device *dev,
5318			         const void *data, size_t size)
5319{
5320	struct drm_i915_gem_object *obj;
5321	struct sg_table *sg;
5322	size_t bytes;
5323	int ret;
5324
5325	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5326	if (IS_ERR_OR_NULL(obj))
5327		return obj;
 
 
 
 
5328
5329	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5330	if (ret)
5331		goto fail;
5332
5333	ret = i915_gem_object_get_pages(obj);
5334	if (ret)
5335		goto fail;
5336
5337	i915_gem_object_pin_pages(obj);
5338	sg = obj->pages;
5339	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5340	obj->dirty = 1;		/* Backing store is now out of date */
5341	i915_gem_object_unpin_pages(obj);
5342
5343	if (WARN_ON(bytes != size)) {
5344		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5345		ret = -EFAULT;
5346		goto fail;
5347	}
5348
5349	return obj;
 
 
5350
5351fail:
5352	drm_gem_object_unreference(&obj->base);
5353	return ERR_PTR(ret);
5354}
v3.15
   1/*
   2 * Copyright © 2008 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drmP.h>
  29#include <drm/drm_vma_manager.h>
  30#include <drm/i915_drm.h>
  31#include "i915_drv.h"
 
  32#include "i915_trace.h"
  33#include "intel_drv.h"
  34#include <linux/shmem_fs.h>
  35#include <linux/slab.h>
  36#include <linux/swap.h>
  37#include <linux/pci.h>
  38#include <linux/dma-buf.h>
  39
 
 
  40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
  42						   bool force);
  43static __must_check int
  44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  45			       bool readonly);
  46
  47static void i915_gem_write_fence(struct drm_device *dev, int reg,
  48				 struct drm_i915_gem_object *obj);
  49static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  50					 struct drm_i915_fence_reg *fence,
  51					 bool enable);
  52
  53static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
  54					     struct shrink_control *sc);
  55static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
  56					    struct shrink_control *sc);
  57static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  58static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  59static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  60static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
  61
  62static bool cpu_cache_is_coherent(struct drm_device *dev,
  63				  enum i915_cache_level level)
  64{
  65	return HAS_LLC(dev) || level != I915_CACHE_NONE;
  66}
  67
  68static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  69{
  70	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  71		return true;
  72
  73	return obj->pin_display;
  74}
  75
  76static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  77{
  78	if (obj->tiling_mode)
  79		i915_gem_release_mmap(obj);
  80
  81	/* As we do not have an associated fence register, we will force
  82	 * a tiling change if we ever need to acquire one.
  83	 */
  84	obj->fence_dirty = false;
  85	obj->fence_reg = I915_FENCE_REG_NONE;
  86}
  87
  88/* some bookkeeping */
  89static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  90				  size_t size)
  91{
  92	spin_lock(&dev_priv->mm.object_stat_lock);
  93	dev_priv->mm.object_count++;
  94	dev_priv->mm.object_memory += size;
  95	spin_unlock(&dev_priv->mm.object_stat_lock);
  96}
  97
  98static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  99				     size_t size)
 100{
 101	spin_lock(&dev_priv->mm.object_stat_lock);
 102	dev_priv->mm.object_count--;
 103	dev_priv->mm.object_memory -= size;
 104	spin_unlock(&dev_priv->mm.object_stat_lock);
 105}
 106
 107static int
 108i915_gem_wait_for_error(struct i915_gpu_error *error)
 109{
 110	int ret;
 111
 112#define EXIT_COND (!i915_reset_in_progress(error) || \
 113		   i915_terminally_wedged(error))
 114	if (EXIT_COND)
 115		return 0;
 116
 117	/*
 118	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
 119	 * userspace. If it takes that long something really bad is going on and
 120	 * we should simply try to bail out and fail as gracefully as possible.
 121	 */
 122	ret = wait_event_interruptible_timeout(error->reset_queue,
 123					       EXIT_COND,
 124					       10*HZ);
 125	if (ret == 0) {
 126		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
 127		return -EIO;
 128	} else if (ret < 0) {
 129		return ret;
 130	}
 131#undef EXIT_COND
 132
 133	return 0;
 134}
 135
 136int i915_mutex_lock_interruptible(struct drm_device *dev)
 137{
 138	struct drm_i915_private *dev_priv = dev->dev_private;
 139	int ret;
 140
 141	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
 142	if (ret)
 143		return ret;
 144
 145	ret = mutex_lock_interruptible(&dev->struct_mutex);
 146	if (ret)
 147		return ret;
 148
 149	WARN_ON(i915_verify_lists(dev));
 150	return 0;
 151}
 152
 153static inline bool
 154i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
 155{
 156	return i915_gem_obj_bound_any(obj) && !obj->active;
 157}
 158
 159int
 160i915_gem_init_ioctl(struct drm_device *dev, void *data,
 161		    struct drm_file *file)
 162{
 163	struct drm_i915_private *dev_priv = dev->dev_private;
 164	struct drm_i915_gem_init *args = data;
 165
 166	if (drm_core_check_feature(dev, DRIVER_MODESET))
 167		return -ENODEV;
 168
 169	if (args->gtt_start >= args->gtt_end ||
 170	    (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
 171		return -EINVAL;
 172
 173	/* GEM with user mode setting was never supported on ilk and later. */
 174	if (INTEL_INFO(dev)->gen >= 5)
 175		return -ENODEV;
 176
 177	mutex_lock(&dev->struct_mutex);
 178	i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
 179				  args->gtt_end);
 180	dev_priv->gtt.mappable_end = args->gtt_end;
 181	mutex_unlock(&dev->struct_mutex);
 182
 183	return 0;
 184}
 185
 186int
 187i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 188			    struct drm_file *file)
 189{
 190	struct drm_i915_private *dev_priv = dev->dev_private;
 191	struct drm_i915_gem_get_aperture *args = data;
 192	struct drm_i915_gem_object *obj;
 
 193	size_t pinned;
 194
 195	pinned = 0;
 196	mutex_lock(&dev->struct_mutex);
 197	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
 198		if (i915_gem_obj_is_pinned(obj))
 199			pinned += i915_gem_obj_ggtt_size(obj);
 
 
 
 200	mutex_unlock(&dev->struct_mutex);
 201
 202	args->aper_size = dev_priv->gtt.base.total;
 203	args->aper_available_size = args->aper_size - pinned;
 204
 205	return 0;
 206}
 207
 208static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 209{
 210	drm_dma_handle_t *phys = obj->phys_handle;
 
 
 
 
 
 
 
 
 
 
 
 211
 212	if (!phys)
 213		return;
 214
 215	if (obj->madv == I915_MADV_WILLNEED) {
 216		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
 217		char *vaddr = phys->vaddr;
 218		int i;
 219
 220		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 221			struct page *page = shmem_read_mapping_page(mapping, i);
 222			if (!IS_ERR(page)) {
 223				char *dst = kmap_atomic(page);
 224				memcpy(dst, vaddr, PAGE_SIZE);
 225				drm_clflush_virt_range(dst, PAGE_SIZE);
 226				kunmap_atomic(dst);
 227
 228				set_page_dirty(page);
 
 
 
 
 
 
 229				mark_page_accessed(page);
 230				page_cache_release(page);
 231			}
 232			vaddr += PAGE_SIZE;
 233		}
 234		i915_gem_chipset_flush(obj->base.dev);
 235	}
 236
 237#ifdef CONFIG_X86
 238	set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
 239#endif
 240	drm_pci_free(obj->base.dev, phys);
 241	obj->phys_handle = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242}
 243
 244int
 245i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
 246			    int align)
 247{
 248	drm_dma_handle_t *phys;
 249	struct address_space *mapping;
 250	char *vaddr;
 251	int i;
 252
 253	if (obj->phys_handle) {
 254		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
 255			return -EBUSY;
 256
 257		return 0;
 258	}
 259
 260	if (obj->madv != I915_MADV_WILLNEED)
 261		return -EFAULT;
 262
 263	if (obj->base.filp == NULL)
 264		return -EINVAL;
 265
 
 
 
 
 266	/* create a new object */
 267	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
 268	if (!phys)
 269		return -ENOMEM;
 270
 271	vaddr = phys->vaddr;
 272#ifdef CONFIG_X86
 273	set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
 274#endif
 275	mapping = file_inode(obj->base.filp)->i_mapping;
 276	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 277		struct page *page;
 278		char *src;
 279
 280		page = shmem_read_mapping_page(mapping, i);
 281		if (IS_ERR(page)) {
 282#ifdef CONFIG_X86
 283			set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
 284#endif
 285			drm_pci_free(obj->base.dev, phys);
 286			return PTR_ERR(page);
 287		}
 288
 289		src = kmap_atomic(page);
 290		memcpy(vaddr, src, PAGE_SIZE);
 291		kunmap_atomic(src);
 292
 293		mark_page_accessed(page);
 294		page_cache_release(page);
 295
 296		vaddr += PAGE_SIZE;
 297	}
 298
 299	obj->phys_handle = phys;
 300	return 0;
 301}
 302
 303static int
 304i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
 305		     struct drm_i915_gem_pwrite *args,
 306		     struct drm_file *file_priv)
 307{
 308	struct drm_device *dev = obj->base.dev;
 309	void *vaddr = obj->phys_handle->vaddr + args->offset;
 310	char __user *user_data = to_user_ptr(args->data_ptr);
 
 311
 
 
 
 
 
 
 
 
 312	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
 313		unsigned long unwritten;
 314
 315		/* The physical object once assigned is fixed for the lifetime
 316		 * of the obj, so we can safely drop the lock and continue
 317		 * to access vaddr.
 318		 */
 319		mutex_unlock(&dev->struct_mutex);
 320		unwritten = copy_from_user(vaddr, user_data, args->size);
 321		mutex_lock(&dev->struct_mutex);
 322		if (unwritten)
 323			return -EFAULT;
 
 
 324	}
 325
 
 326	i915_gem_chipset_flush(dev);
 327	return 0;
 
 
 
 328}
 329
 330void *i915_gem_object_alloc(struct drm_device *dev)
 331{
 332	struct drm_i915_private *dev_priv = dev->dev_private;
 333	return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
 334}
 335
 336void i915_gem_object_free(struct drm_i915_gem_object *obj)
 337{
 338	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
 339	kmem_cache_free(dev_priv->slab, obj);
 340}
 341
 342static int
 343i915_gem_create(struct drm_file *file,
 344		struct drm_device *dev,
 345		uint64_t size,
 346		uint32_t *handle_p)
 347{
 348	struct drm_i915_gem_object *obj;
 349	int ret;
 350	u32 handle;
 351
 352	size = roundup(size, PAGE_SIZE);
 353	if (size == 0)
 354		return -EINVAL;
 355
 356	/* Allocate the new object */
 357	obj = i915_gem_alloc_object(dev, size);
 358	if (obj == NULL)
 359		return -ENOMEM;
 360
 361	ret = drm_gem_handle_create(file, &obj->base, &handle);
 362	/* drop reference from allocate - handle holds it now */
 363	drm_gem_object_unreference_unlocked(&obj->base);
 364	if (ret)
 365		return ret;
 366
 367	*handle_p = handle;
 368	return 0;
 369}
 370
 371int
 372i915_gem_dumb_create(struct drm_file *file,
 373		     struct drm_device *dev,
 374		     struct drm_mode_create_dumb *args)
 375{
 376	/* have to work out size/pitch and return them */
 377	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
 378	args->size = args->pitch * args->height;
 379	return i915_gem_create(file, dev,
 380			       args->size, &args->handle);
 381}
 382
 383/**
 384 * Creates a new mm object and returns a handle to it.
 385 */
 386int
 387i915_gem_create_ioctl(struct drm_device *dev, void *data,
 388		      struct drm_file *file)
 389{
 390	struct drm_i915_gem_create *args = data;
 391
 392	return i915_gem_create(file, dev,
 393			       args->size, &args->handle);
 394}
 395
 396static inline int
 397__copy_to_user_swizzled(char __user *cpu_vaddr,
 398			const char *gpu_vaddr, int gpu_offset,
 399			int length)
 400{
 401	int ret, cpu_offset = 0;
 402
 403	while (length > 0) {
 404		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 405		int this_length = min(cacheline_end - gpu_offset, length);
 406		int swizzled_gpu_offset = gpu_offset ^ 64;
 407
 408		ret = __copy_to_user(cpu_vaddr + cpu_offset,
 409				     gpu_vaddr + swizzled_gpu_offset,
 410				     this_length);
 411		if (ret)
 412			return ret + length;
 413
 414		cpu_offset += this_length;
 415		gpu_offset += this_length;
 416		length -= this_length;
 417	}
 418
 419	return 0;
 420}
 421
 422static inline int
 423__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
 424			  const char __user *cpu_vaddr,
 425			  int length)
 426{
 427	int ret, cpu_offset = 0;
 428
 429	while (length > 0) {
 430		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 431		int this_length = min(cacheline_end - gpu_offset, length);
 432		int swizzled_gpu_offset = gpu_offset ^ 64;
 433
 434		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
 435				       cpu_vaddr + cpu_offset,
 436				       this_length);
 437		if (ret)
 438			return ret + length;
 439
 440		cpu_offset += this_length;
 441		gpu_offset += this_length;
 442		length -= this_length;
 443	}
 444
 445	return 0;
 446}
 447
 448/*
 449 * Pins the specified object's pages and synchronizes the object with
 450 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 451 * flush the object from the CPU cache.
 452 */
 453int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
 454				    int *needs_clflush)
 455{
 456	int ret;
 457
 458	*needs_clflush = 0;
 459
 460	if (!obj->base.filp)
 461		return -EINVAL;
 462
 463	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
 464		/* If we're not in the cpu read domain, set ourself into the gtt
 465		 * read domain and manually flush cachelines (if required). This
 466		 * optimizes for the case when the gpu will dirty the data
 467		 * anyway again before the next pread happens. */
 468		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
 469							obj->cache_level);
 470		ret = i915_gem_object_wait_rendering(obj, true);
 471		if (ret)
 472			return ret;
 473	}
 474
 475	ret = i915_gem_object_get_pages(obj);
 476	if (ret)
 477		return ret;
 478
 479	i915_gem_object_pin_pages(obj);
 480
 481	return ret;
 482}
 483
 484/* Per-page copy function for the shmem pread fastpath.
 485 * Flushes invalid cachelines before reading the target if
 486 * needs_clflush is set. */
 487static int
 488shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
 489		 char __user *user_data,
 490		 bool page_do_bit17_swizzling, bool needs_clflush)
 491{
 492	char *vaddr;
 493	int ret;
 494
 495	if (unlikely(page_do_bit17_swizzling))
 496		return -EINVAL;
 497
 498	vaddr = kmap_atomic(page);
 499	if (needs_clflush)
 500		drm_clflush_virt_range(vaddr + shmem_page_offset,
 501				       page_length);
 502	ret = __copy_to_user_inatomic(user_data,
 503				      vaddr + shmem_page_offset,
 504				      page_length);
 505	kunmap_atomic(vaddr);
 506
 507	return ret ? -EFAULT : 0;
 508}
 509
 510static void
 511shmem_clflush_swizzled_range(char *addr, unsigned long length,
 512			     bool swizzled)
 513{
 514	if (unlikely(swizzled)) {
 515		unsigned long start = (unsigned long) addr;
 516		unsigned long end = (unsigned long) addr + length;
 517
 518		/* For swizzling simply ensure that we always flush both
 519		 * channels. Lame, but simple and it works. Swizzled
 520		 * pwrite/pread is far from a hotpath - current userspace
 521		 * doesn't use it at all. */
 522		start = round_down(start, 128);
 523		end = round_up(end, 128);
 524
 525		drm_clflush_virt_range((void *)start, end - start);
 526	} else {
 527		drm_clflush_virt_range(addr, length);
 528	}
 529
 530}
 531
 532/* Only difference to the fast-path function is that this can handle bit17
 533 * and uses non-atomic copy and kmap functions. */
 534static int
 535shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
 536		 char __user *user_data,
 537		 bool page_do_bit17_swizzling, bool needs_clflush)
 538{
 539	char *vaddr;
 540	int ret;
 541
 542	vaddr = kmap(page);
 543	if (needs_clflush)
 544		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 545					     page_length,
 546					     page_do_bit17_swizzling);
 547
 548	if (page_do_bit17_swizzling)
 549		ret = __copy_to_user_swizzled(user_data,
 550					      vaddr, shmem_page_offset,
 551					      page_length);
 552	else
 553		ret = __copy_to_user(user_data,
 554				     vaddr + shmem_page_offset,
 555				     page_length);
 556	kunmap(page);
 557
 558	return ret ? - EFAULT : 0;
 559}
 560
 561static int
 562i915_gem_shmem_pread(struct drm_device *dev,
 563		     struct drm_i915_gem_object *obj,
 564		     struct drm_i915_gem_pread *args,
 565		     struct drm_file *file)
 566{
 567	char __user *user_data;
 568	ssize_t remain;
 569	loff_t offset;
 570	int shmem_page_offset, page_length, ret = 0;
 571	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 572	int prefaulted = 0;
 573	int needs_clflush = 0;
 574	struct sg_page_iter sg_iter;
 575
 576	user_data = to_user_ptr(args->data_ptr);
 577	remain = args->size;
 578
 579	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 580
 581	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
 582	if (ret)
 583		return ret;
 584
 585	offset = args->offset;
 586
 587	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
 588			 offset >> PAGE_SHIFT) {
 589		struct page *page = sg_page_iter_page(&sg_iter);
 590
 591		if (remain <= 0)
 592			break;
 593
 594		/* Operation in this page
 595		 *
 596		 * shmem_page_offset = offset within page in shmem file
 597		 * page_length = bytes to copy for this page
 598		 */
 599		shmem_page_offset = offset_in_page(offset);
 600		page_length = remain;
 601		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 602			page_length = PAGE_SIZE - shmem_page_offset;
 603
 604		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 605			(page_to_phys(page) & (1 << 17)) != 0;
 606
 607		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
 608				       user_data, page_do_bit17_swizzling,
 609				       needs_clflush);
 610		if (ret == 0)
 611			goto next_page;
 612
 613		mutex_unlock(&dev->struct_mutex);
 614
 615		if (likely(!i915.prefault_disable) && !prefaulted) {
 616			ret = fault_in_multipages_writeable(user_data, remain);
 617			/* Userspace is tricking us, but we've already clobbered
 618			 * its pages with the prefault and promised to write the
 619			 * data up to the first fault. Hence ignore any errors
 620			 * and just continue. */
 621			(void)ret;
 622			prefaulted = 1;
 623		}
 624
 625		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
 626				       user_data, page_do_bit17_swizzling,
 627				       needs_clflush);
 628
 629		mutex_lock(&dev->struct_mutex);
 630
 631		if (ret)
 632			goto out;
 633
 634next_page:
 635		remain -= page_length;
 636		user_data += page_length;
 637		offset += page_length;
 638	}
 639
 640out:
 641	i915_gem_object_unpin_pages(obj);
 642
 643	return ret;
 644}
 645
 646/**
 647 * Reads data from the object referenced by handle.
 648 *
 649 * On error, the contents of *data are undefined.
 650 */
 651int
 652i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 653		     struct drm_file *file)
 654{
 655	struct drm_i915_gem_pread *args = data;
 656	struct drm_i915_gem_object *obj;
 657	int ret = 0;
 658
 659	if (args->size == 0)
 660		return 0;
 661
 662	if (!access_ok(VERIFY_WRITE,
 663		       to_user_ptr(args->data_ptr),
 664		       args->size))
 665		return -EFAULT;
 666
 667	ret = i915_mutex_lock_interruptible(dev);
 668	if (ret)
 669		return ret;
 670
 671	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 672	if (&obj->base == NULL) {
 673		ret = -ENOENT;
 674		goto unlock;
 675	}
 676
 677	/* Bounds check source.  */
 678	if (args->offset > obj->base.size ||
 679	    args->size > obj->base.size - args->offset) {
 680		ret = -EINVAL;
 681		goto out;
 682	}
 683
 684	/* prime objects have no backing filp to GEM pread/pwrite
 685	 * pages from.
 686	 */
 687	if (!obj->base.filp) {
 688		ret = -EINVAL;
 689		goto out;
 690	}
 691
 692	trace_i915_gem_object_pread(obj, args->offset, args->size);
 693
 694	ret = i915_gem_shmem_pread(dev, obj, args, file);
 695
 696out:
 697	drm_gem_object_unreference(&obj->base);
 698unlock:
 699	mutex_unlock(&dev->struct_mutex);
 700	return ret;
 701}
 702
 703/* This is the fast write path which cannot handle
 704 * page faults in the source data
 705 */
 706
 707static inline int
 708fast_user_write(struct io_mapping *mapping,
 709		loff_t page_base, int page_offset,
 710		char __user *user_data,
 711		int length)
 712{
 713	void __iomem *vaddr_atomic;
 714	void *vaddr;
 715	unsigned long unwritten;
 716
 717	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 718	/* We can use the cpu mem copy function because this is X86. */
 719	vaddr = (void __force*)vaddr_atomic + page_offset;
 720	unwritten = __copy_from_user_inatomic_nocache(vaddr,
 721						      user_data, length);
 722	io_mapping_unmap_atomic(vaddr_atomic);
 723	return unwritten;
 724}
 725
 726/**
 727 * This is the fast pwrite path, where we copy the data directly from the
 728 * user into the GTT, uncached.
 729 */
 730static int
 731i915_gem_gtt_pwrite_fast(struct drm_device *dev,
 732			 struct drm_i915_gem_object *obj,
 733			 struct drm_i915_gem_pwrite *args,
 734			 struct drm_file *file)
 735{
 736	struct drm_i915_private *dev_priv = dev->dev_private;
 737	ssize_t remain;
 738	loff_t offset, page_base;
 739	char __user *user_data;
 740	int page_offset, page_length, ret;
 741
 742	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
 743	if (ret)
 744		goto out;
 745
 746	ret = i915_gem_object_set_to_gtt_domain(obj, true);
 747	if (ret)
 748		goto out_unpin;
 749
 750	ret = i915_gem_object_put_fence(obj);
 751	if (ret)
 752		goto out_unpin;
 753
 754	user_data = to_user_ptr(args->data_ptr);
 755	remain = args->size;
 756
 757	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
 758
 
 
 759	while (remain > 0) {
 760		/* Operation in this page
 761		 *
 762		 * page_base = page offset within aperture
 763		 * page_offset = offset within page
 764		 * page_length = bytes to copy for this page
 765		 */
 766		page_base = offset & PAGE_MASK;
 767		page_offset = offset_in_page(offset);
 768		page_length = remain;
 769		if ((page_offset + remain) > PAGE_SIZE)
 770			page_length = PAGE_SIZE - page_offset;
 771
 772		/* If we get a fault while copying data, then (presumably) our
 773		 * source page isn't available.  Return the error and we'll
 774		 * retry in the slow path.
 775		 */
 776		if (fast_user_write(dev_priv->gtt.mappable, page_base,
 777				    page_offset, user_data, page_length)) {
 778			ret = -EFAULT;
 779			goto out_unpin;
 780		}
 781
 782		remain -= page_length;
 783		user_data += page_length;
 784		offset += page_length;
 785	}
 786
 
 
 787out_unpin:
 788	i915_gem_object_ggtt_unpin(obj);
 789out:
 790	return ret;
 791}
 792
 793/* Per-page copy function for the shmem pwrite fastpath.
 794 * Flushes invalid cachelines before writing to the target if
 795 * needs_clflush_before is set and flushes out any written cachelines after
 796 * writing if needs_clflush is set. */
 797static int
 798shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
 799		  char __user *user_data,
 800		  bool page_do_bit17_swizzling,
 801		  bool needs_clflush_before,
 802		  bool needs_clflush_after)
 803{
 804	char *vaddr;
 805	int ret;
 806
 807	if (unlikely(page_do_bit17_swizzling))
 808		return -EINVAL;
 809
 810	vaddr = kmap_atomic(page);
 811	if (needs_clflush_before)
 812		drm_clflush_virt_range(vaddr + shmem_page_offset,
 813				       page_length);
 814	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
 815					user_data, page_length);
 816	if (needs_clflush_after)
 817		drm_clflush_virt_range(vaddr + shmem_page_offset,
 818				       page_length);
 819	kunmap_atomic(vaddr);
 820
 821	return ret ? -EFAULT : 0;
 822}
 823
 824/* Only difference to the fast-path function is that this can handle bit17
 825 * and uses non-atomic copy and kmap functions. */
 826static int
 827shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
 828		  char __user *user_data,
 829		  bool page_do_bit17_swizzling,
 830		  bool needs_clflush_before,
 831		  bool needs_clflush_after)
 832{
 833	char *vaddr;
 834	int ret;
 835
 836	vaddr = kmap(page);
 837	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
 838		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 839					     page_length,
 840					     page_do_bit17_swizzling);
 841	if (page_do_bit17_swizzling)
 842		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
 843						user_data,
 844						page_length);
 845	else
 846		ret = __copy_from_user(vaddr + shmem_page_offset,
 847				       user_data,
 848				       page_length);
 849	if (needs_clflush_after)
 850		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 851					     page_length,
 852					     page_do_bit17_swizzling);
 853	kunmap(page);
 854
 855	return ret ? -EFAULT : 0;
 856}
 857
 858static int
 859i915_gem_shmem_pwrite(struct drm_device *dev,
 860		      struct drm_i915_gem_object *obj,
 861		      struct drm_i915_gem_pwrite *args,
 862		      struct drm_file *file)
 863{
 864	ssize_t remain;
 865	loff_t offset;
 866	char __user *user_data;
 867	int shmem_page_offset, page_length, ret = 0;
 868	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 869	int hit_slowpath = 0;
 870	int needs_clflush_after = 0;
 871	int needs_clflush_before = 0;
 872	struct sg_page_iter sg_iter;
 873
 874	user_data = to_user_ptr(args->data_ptr);
 875	remain = args->size;
 876
 877	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 878
 879	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 880		/* If we're not in the cpu write domain, set ourself into the gtt
 881		 * write domain and manually flush cachelines (if required). This
 882		 * optimizes for the case when the gpu will use the data
 883		 * right away and we therefore have to clflush anyway. */
 884		needs_clflush_after = cpu_write_needs_clflush(obj);
 885		ret = i915_gem_object_wait_rendering(obj, false);
 886		if (ret)
 887			return ret;
 888	}
 889	/* Same trick applies to invalidate partially written cachelines read
 890	 * before writing. */
 891	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
 892		needs_clflush_before =
 893			!cpu_cache_is_coherent(dev, obj->cache_level);
 894
 895	ret = i915_gem_object_get_pages(obj);
 896	if (ret)
 897		return ret;
 898
 
 
 899	i915_gem_object_pin_pages(obj);
 900
 901	offset = args->offset;
 902	obj->dirty = 1;
 903
 904	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
 905			 offset >> PAGE_SHIFT) {
 906		struct page *page = sg_page_iter_page(&sg_iter);
 907		int partial_cacheline_write;
 908
 909		if (remain <= 0)
 910			break;
 911
 912		/* Operation in this page
 913		 *
 914		 * shmem_page_offset = offset within page in shmem file
 915		 * page_length = bytes to copy for this page
 916		 */
 917		shmem_page_offset = offset_in_page(offset);
 918
 919		page_length = remain;
 920		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 921			page_length = PAGE_SIZE - shmem_page_offset;
 922
 923		/* If we don't overwrite a cacheline completely we need to be
 924		 * careful to have up-to-date data by first clflushing. Don't
 925		 * overcomplicate things and flush the entire patch. */
 926		partial_cacheline_write = needs_clflush_before &&
 927			((shmem_page_offset | page_length)
 928				& (boot_cpu_data.x86_clflush_size - 1));
 929
 930		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 931			(page_to_phys(page) & (1 << 17)) != 0;
 932
 933		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
 934					user_data, page_do_bit17_swizzling,
 935					partial_cacheline_write,
 936					needs_clflush_after);
 937		if (ret == 0)
 938			goto next_page;
 939
 940		hit_slowpath = 1;
 941		mutex_unlock(&dev->struct_mutex);
 942		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
 943					user_data, page_do_bit17_swizzling,
 944					partial_cacheline_write,
 945					needs_clflush_after);
 946
 947		mutex_lock(&dev->struct_mutex);
 948
 949		if (ret)
 950			goto out;
 951
 952next_page:
 953		remain -= page_length;
 954		user_data += page_length;
 955		offset += page_length;
 956	}
 957
 958out:
 959	i915_gem_object_unpin_pages(obj);
 960
 961	if (hit_slowpath) {
 962		/*
 963		 * Fixup: Flush cpu caches in case we didn't flush the dirty
 964		 * cachelines in-line while writing and the object moved
 965		 * out of the cpu write domain while we've dropped the lock.
 966		 */
 967		if (!needs_clflush_after &&
 968		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 969			if (i915_gem_clflush_object(obj, obj->pin_display))
 970				i915_gem_chipset_flush(dev);
 971		}
 972	}
 973
 974	if (needs_clflush_after)
 975		i915_gem_chipset_flush(dev);
 
 
 976
 
 977	return ret;
 978}
 979
 980/**
 981 * Writes data to the object referenced by handle.
 982 *
 983 * On error, the contents of the buffer that were to be modified are undefined.
 984 */
 985int
 986i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
 987		      struct drm_file *file)
 988{
 
 989	struct drm_i915_gem_pwrite *args = data;
 990	struct drm_i915_gem_object *obj;
 991	int ret;
 992
 993	if (args->size == 0)
 994		return 0;
 995
 996	if (!access_ok(VERIFY_READ,
 997		       to_user_ptr(args->data_ptr),
 998		       args->size))
 999		return -EFAULT;
1000
1001	if (likely(!i915.prefault_disable)) {
1002		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1003						   args->size);
1004		if (ret)
1005			return -EFAULT;
1006	}
1007
 
 
1008	ret = i915_mutex_lock_interruptible(dev);
1009	if (ret)
1010		return ret;
1011
1012	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1013	if (&obj->base == NULL) {
1014		ret = -ENOENT;
1015		goto unlock;
1016	}
1017
1018	/* Bounds check destination. */
1019	if (args->offset > obj->base.size ||
1020	    args->size > obj->base.size - args->offset) {
1021		ret = -EINVAL;
1022		goto out;
1023	}
1024
1025	/* prime objects have no backing filp to GEM pread/pwrite
1026	 * pages from.
1027	 */
1028	if (!obj->base.filp) {
1029		ret = -EINVAL;
1030		goto out;
1031	}
1032
1033	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1034
1035	ret = -EFAULT;
1036	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1037	 * it would end up going through the fenced access, and we'll get
1038	 * different detiling behavior between reading and writing.
1039	 * pread/pwrite currently are reading and writing from the CPU
1040	 * perspective, requiring manual detiling by the client.
1041	 */
1042	if (obj->phys_handle) {
1043		ret = i915_gem_phys_pwrite(obj, args, file);
1044		goto out;
1045	}
1046
1047	if (obj->tiling_mode == I915_TILING_NONE &&
1048	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1049	    cpu_write_needs_clflush(obj)) {
1050		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1051		/* Note that the gtt paths might fail with non-page-backed user
1052		 * pointers (e.g. gtt mappings when moving data between
1053		 * textures). Fallback to the shmem path in that case. */
1054	}
1055
1056	if (ret == -EFAULT || ret == -ENOSPC)
1057		ret = i915_gem_shmem_pwrite(dev, obj, args, file);
 
 
 
 
1058
1059out:
1060	drm_gem_object_unreference(&obj->base);
1061unlock:
1062	mutex_unlock(&dev->struct_mutex);
 
 
 
1063	return ret;
1064}
1065
1066int
1067i915_gem_check_wedge(struct i915_gpu_error *error,
1068		     bool interruptible)
1069{
1070	if (i915_reset_in_progress(error)) {
1071		/* Non-interruptible callers can't handle -EAGAIN, hence return
1072		 * -EIO unconditionally for these. */
1073		if (!interruptible)
1074			return -EIO;
1075
1076		/* Recovery complete, but the reset failed ... */
1077		if (i915_terminally_wedged(error))
1078			return -EIO;
1079
1080		return -EAGAIN;
 
 
 
 
 
 
1081	}
1082
1083	return 0;
1084}
1085
1086/*
1087 * Compare seqno against outstanding lazy request. Emit a request if they are
1088 * equal.
1089 */
1090static int
1091i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1092{
1093	int ret;
1094
1095	BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1096
1097	ret = 0;
1098	if (seqno == ring->outstanding_lazy_seqno)
1099		ret = i915_add_request(ring, NULL);
1100
1101	return ret;
1102}
1103
1104static void fake_irq(unsigned long data)
1105{
1106	wake_up_process((struct task_struct *)data);
1107}
1108
1109static bool missed_irq(struct drm_i915_private *dev_priv,
1110		       struct intel_ring_buffer *ring)
1111{
1112	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1113}
1114
1115static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1116{
1117	if (file_priv == NULL)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118		return true;
1119
1120	return !atomic_xchg(&file_priv->rps_wait_boost, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121}
1122
1123/**
1124 * __wait_seqno - wait until execution of seqno has finished
1125 * @ring: the ring expected to report seqno
1126 * @seqno: duh!
1127 * @reset_counter: reset sequence associated with the given seqno
1128 * @interruptible: do an interruptible wait (normally yes)
1129 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1130 *
1131 * Note: It is of utmost importance that the passed in seqno and reset_counter
1132 * values have been read by the caller in an smp safe manner. Where read-side
1133 * locks are involved, it is sufficient to read the reset_counter before
1134 * unlocking the lock that protects the seqno. For lockless tricks, the
1135 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1136 * inserted.
1137 *
1138 * Returns 0 if the seqno was found within the alloted time. Else returns the
1139 * errno with remaining time filled in timeout argument.
1140 */
1141static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1142			unsigned reset_counter,
1143			bool interruptible,
1144			struct timespec *timeout,
1145			struct drm_i915_file_private *file_priv)
1146{
 
1147	struct drm_device *dev = ring->dev;
1148	struct drm_i915_private *dev_priv = dev->dev_private;
1149	const bool irq_test_in_progress =
1150		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1151	struct timespec before, now;
1152	DEFINE_WAIT(wait);
1153	unsigned long timeout_expire;
 
1154	int ret;
1155
1156	WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1157
1158	if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1159		return 0;
1160
1161	timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
 
 
 
 
 
 
 
 
 
 
 
1162
1163	if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1164		gen6_rps_boost(dev_priv);
1165		if (file_priv)
1166			mod_delayed_work(dev_priv->wq,
1167					 &file_priv->mm.idle_work,
1168					 msecs_to_jiffies(100));
1169	}
1170
1171	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1172		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
1173
1174	/* Record current time in case interrupted by signal, or wedged */
1175	trace_i915_gem_request_wait_begin(ring, seqno);
1176	getrawmonotonic(&before);
1177	for (;;) {
1178		struct timer_list timer;
1179
1180		prepare_to_wait(&ring->irq_queue, &wait,
1181				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1182
1183		/* We need to check whether any gpu reset happened in between
1184		 * the caller grabbing the seqno and now ... */
1185		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1186			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1187			 * is truely gone. */
1188			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1189			if (ret == 0)
1190				ret = -EAGAIN;
1191			break;
1192		}
1193
1194		if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1195			ret = 0;
1196			break;
1197		}
1198
1199		if (interruptible && signal_pending(current)) {
1200			ret = -ERESTARTSYS;
1201			break;
1202		}
1203
1204		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1205			ret = -ETIME;
1206			break;
1207		}
1208
1209		timer.function = NULL;
1210		if (timeout || missed_irq(dev_priv, ring)) {
1211			unsigned long expire;
1212
1213			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1214			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1215			mod_timer(&timer, expire);
1216		}
1217
1218		io_schedule();
1219
1220		if (timer.function) {
1221			del_singleshot_timer_sync(&timer);
1222			destroy_timer_on_stack(&timer);
1223		}
1224	}
1225	getrawmonotonic(&now);
1226	trace_i915_gem_request_wait_end(ring, seqno);
1227
1228	if (!irq_test_in_progress)
1229		ring->irq_put(ring);
1230
1231	finish_wait(&ring->irq_queue, &wait);
1232
 
 
 
1233	if (timeout) {
1234		struct timespec sleep_time = timespec_sub(now, before);
1235		*timeout = timespec_sub(*timeout, sleep_time);
1236		if (!timespec_valid(timeout)) /* i.e. negative time remains */
1237			set_normalized_timespec(timeout, 0, 0);
 
 
 
 
 
 
 
 
 
1238	}
1239
1240	return ret;
1241}
1242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243/**
1244 * Waits for a sequence number to be signaled, and cleans up the
1245 * request and object lists appropriately for that event.
1246 */
1247int
1248i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1249{
1250	struct drm_device *dev = ring->dev;
1251	struct drm_i915_private *dev_priv = dev->dev_private;
1252	bool interruptible = dev_priv->mm.interruptible;
1253	int ret;
1254
 
 
 
 
 
 
1255	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1256	BUG_ON(seqno == 0);
1257
1258	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259	if (ret)
1260		return ret;
1261
1262	ret = i915_gem_check_olr(ring, seqno);
 
 
1263	if (ret)
1264		return ret;
1265
1266	return __wait_seqno(ring, seqno,
1267			    atomic_read(&dev_priv->gpu_error.reset_counter),
1268			    interruptible, NULL, NULL);
1269}
1270
1271static int
1272i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1273				     struct intel_ring_buffer *ring)
1274{
1275	i915_gem_retire_requests_ring(ring);
1276
1277	/* Manually manage the write flush as we may have not yet
1278	 * retired the buffer.
1279	 *
1280	 * Note that the last_write_seqno is always the earlier of
1281	 * the two (read/write) seqno, so if we haved successfully waited,
1282	 * we know we have passed the last write.
1283	 */
1284	obj->last_write_seqno = 0;
1285	obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1286
1287	return 0;
1288}
1289
1290/**
1291 * Ensures that all rendering to the object has completed and the object is
1292 * safe to unbind from the GTT or access from the CPU.
1293 */
1294static __must_check int
1295i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1296			       bool readonly)
1297{
1298	struct intel_ring_buffer *ring = obj->ring;
1299	u32 seqno;
1300	int ret;
1301
1302	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1303	if (seqno == 0)
1304		return 0;
1305
1306	ret = i915_wait_seqno(ring, seqno);
1307	if (ret)
1308		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309
1310	return i915_gem_object_wait_rendering__tail(obj, ring);
1311}
1312
1313/* A nonblocking variant of the above wait. This is a highly dangerous routine
1314 * as the object state may change during this call.
1315 */
1316static __must_check int
1317i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1318					    struct drm_i915_file_private *file_priv,
1319					    bool readonly)
1320{
1321	struct drm_device *dev = obj->base.dev;
1322	struct drm_i915_private *dev_priv = dev->dev_private;
1323	struct intel_ring_buffer *ring = obj->ring;
1324	unsigned reset_counter;
1325	u32 seqno;
1326	int ret;
1327
1328	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1329	BUG_ON(!dev_priv->mm.interruptible);
1330
1331	seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1332	if (seqno == 0)
1333		return 0;
1334
1335	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1336	if (ret)
1337		return ret;
1338
1339	ret = i915_gem_check_olr(ring, seqno);
1340	if (ret)
1341		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342
1343	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1344	mutex_unlock(&dev->struct_mutex);
1345	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
 
 
1346	mutex_lock(&dev->struct_mutex);
1347	if (ret)
1348		return ret;
1349
1350	return i915_gem_object_wait_rendering__tail(obj, ring);
 
 
 
 
 
 
 
 
 
 
 
 
1351}
1352
1353/**
1354 * Called when user space prepares to use an object with the CPU, either
1355 * through the mmap ioctl's mapping or a GTT mapping.
1356 */
1357int
1358i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1359			  struct drm_file *file)
1360{
1361	struct drm_i915_gem_set_domain *args = data;
1362	struct drm_i915_gem_object *obj;
1363	uint32_t read_domains = args->read_domains;
1364	uint32_t write_domain = args->write_domain;
1365	int ret;
1366
1367	/* Only handle setting domains to types used by the CPU. */
1368	if (write_domain & I915_GEM_GPU_DOMAINS)
1369		return -EINVAL;
1370
1371	if (read_domains & I915_GEM_GPU_DOMAINS)
1372		return -EINVAL;
1373
1374	/* Having something in the write domain implies it's in the read
1375	 * domain, and only that read domain.  Enforce that in the request.
1376	 */
1377	if (write_domain != 0 && read_domains != write_domain)
1378		return -EINVAL;
1379
1380	ret = i915_mutex_lock_interruptible(dev);
1381	if (ret)
1382		return ret;
1383
1384	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1385	if (&obj->base == NULL) {
1386		ret = -ENOENT;
1387		goto unlock;
1388	}
1389
1390	/* Try to flush the object off the GPU without holding the lock.
1391	 * We will repeat the flush holding the lock in the normal manner
1392	 * to catch cases where we are gazumped.
1393	 */
1394	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1395							  file->driver_priv,
1396							  !write_domain);
1397	if (ret)
1398		goto unref;
1399
1400	if (read_domains & I915_GEM_DOMAIN_GTT) {
1401		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
 
 
1402
1403		/* Silently promote "you're not bound, there was nothing to do"
1404		 * to success, since the client was just asking us to
1405		 * make sure everything was done.
1406		 */
1407		if (ret == -EINVAL)
1408			ret = 0;
1409	} else {
1410		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1411	}
1412
1413unref:
1414	drm_gem_object_unreference(&obj->base);
1415unlock:
1416	mutex_unlock(&dev->struct_mutex);
1417	return ret;
1418}
1419
1420/**
1421 * Called when user space has done writes to this buffer
1422 */
1423int
1424i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1425			 struct drm_file *file)
1426{
1427	struct drm_i915_gem_sw_finish *args = data;
1428	struct drm_i915_gem_object *obj;
1429	int ret = 0;
1430
1431	ret = i915_mutex_lock_interruptible(dev);
1432	if (ret)
1433		return ret;
1434
1435	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1436	if (&obj->base == NULL) {
1437		ret = -ENOENT;
1438		goto unlock;
1439	}
1440
1441	/* Pinned buffers may be scanout, so flush the cache */
1442	if (obj->pin_display)
1443		i915_gem_object_flush_cpu_write_domain(obj, true);
1444
1445	drm_gem_object_unreference(&obj->base);
1446unlock:
1447	mutex_unlock(&dev->struct_mutex);
1448	return ret;
1449}
1450
1451/**
1452 * Maps the contents of an object, returning the address it is mapped
1453 * into.
1454 *
1455 * While the mapping holds a reference on the contents of the object, it doesn't
1456 * imply a ref on the object itself.
 
 
 
 
 
 
 
 
 
 
1457 */
1458int
1459i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1460		    struct drm_file *file)
1461{
1462	struct drm_i915_gem_mmap *args = data;
1463	struct drm_gem_object *obj;
1464	unsigned long addr;
1465
 
 
 
 
 
 
1466	obj = drm_gem_object_lookup(dev, file, args->handle);
1467	if (obj == NULL)
1468		return -ENOENT;
1469
1470	/* prime objects have no backing filp to GEM mmap
1471	 * pages from.
1472	 */
1473	if (!obj->filp) {
1474		drm_gem_object_unreference_unlocked(obj);
1475		return -EINVAL;
1476	}
1477
1478	addr = vm_mmap(obj->filp, 0, args->size,
1479		       PROT_READ | PROT_WRITE, MAP_SHARED,
1480		       args->offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
1481	drm_gem_object_unreference_unlocked(obj);
1482	if (IS_ERR((void *)addr))
1483		return addr;
1484
1485	args->addr_ptr = (uint64_t) addr;
1486
1487	return 0;
1488}
1489
1490/**
1491 * i915_gem_fault - fault a page into the GTT
1492 * vma: VMA in question
1493 * vmf: fault info
1494 *
1495 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1496 * from userspace.  The fault handler takes care of binding the object to
1497 * the GTT (if needed), allocating and programming a fence register (again,
1498 * only if needed based on whether the old reg is still valid or the object
1499 * is tiled) and inserting a new PTE into the faulting process.
1500 *
1501 * Note that the faulting process may involve evicting existing objects
1502 * from the GTT and/or fence registers to make room.  So performance may
1503 * suffer if the GTT working set is large or there are few fence registers
1504 * left.
1505 */
1506int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1507{
1508	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1509	struct drm_device *dev = obj->base.dev;
1510	struct drm_i915_private *dev_priv = dev->dev_private;
 
1511	pgoff_t page_offset;
1512	unsigned long pfn;
1513	int ret = 0;
1514	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1515
1516	intel_runtime_pm_get(dev_priv);
1517
1518	/* We don't use vmf->pgoff since that has the fake offset */
1519	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1520		PAGE_SHIFT;
1521
1522	ret = i915_mutex_lock_interruptible(dev);
1523	if (ret)
1524		goto out;
1525
1526	trace_i915_gem_object_fault(obj, page_offset, true, write);
1527
1528	/* Try to flush the object off the GPU first without holding the lock.
1529	 * Upon reacquiring the lock, we will perform our sanity checks and then
1530	 * repeat the flush holding the lock in the normal manner to catch cases
1531	 * where we are gazumped.
1532	 */
1533	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1534	if (ret)
1535		goto unlock;
1536
1537	/* Access to snoopable pages through the GTT is incoherent. */
1538	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1539		ret = -EINVAL;
1540		goto unlock;
1541	}
1542
1543	/* Now bind it into the GTT if needed */
1544	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1545	if (ret)
1546		goto unlock;
1547
1548	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1549	if (ret)
1550		goto unpin;
1551
1552	ret = i915_gem_object_get_fence(obj);
1553	if (ret)
1554		goto unpin;
1555
1556	obj->fault_mappable = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
1557
1558	pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1559	pfn >>= PAGE_SHIFT;
1560	pfn += page_offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561
1562	/* Finally, remap it using the new GTT offset */
1563	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
 
 
 
 
1564unpin:
1565	i915_gem_object_ggtt_unpin(obj);
1566unlock:
1567	mutex_unlock(&dev->struct_mutex);
1568out:
1569	switch (ret) {
1570	case -EIO:
1571		/* If this -EIO is due to a gpu hang, give the reset code a
1572		 * chance to clean up the mess. Otherwise return the proper
1573		 * SIGBUS. */
1574		if (i915_terminally_wedged(&dev_priv->gpu_error)) {
 
 
 
1575			ret = VM_FAULT_SIGBUS;
1576			break;
1577		}
1578	case -EAGAIN:
1579		/*
1580		 * EAGAIN means the gpu is hung and we'll wait for the error
1581		 * handler to reset everything when re-faulting in
1582		 * i915_mutex_lock_interruptible.
1583		 */
1584	case 0:
1585	case -ERESTARTSYS:
1586	case -EINTR:
1587	case -EBUSY:
1588		/*
1589		 * EBUSY is ok: this just means that another thread
1590		 * already did the job.
1591		 */
1592		ret = VM_FAULT_NOPAGE;
1593		break;
1594	case -ENOMEM:
1595		ret = VM_FAULT_OOM;
1596		break;
1597	case -ENOSPC:
1598	case -EFAULT:
1599		ret = VM_FAULT_SIGBUS;
1600		break;
1601	default:
1602		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1603		ret = VM_FAULT_SIGBUS;
1604		break;
1605	}
1606
1607	intel_runtime_pm_put(dev_priv);
1608	return ret;
1609}
1610
1611void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1612{
1613	struct i915_vma *vma;
1614
1615	/*
1616	 * Only the global gtt is relevant for gtt memory mappings, so restrict
1617	 * list traversal to objects bound into the global address space. Note
1618	 * that the active list should be empty, but better safe than sorry.
1619	 */
1620	WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1621	list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1622		i915_gem_release_mmap(vma->obj);
1623	list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1624		i915_gem_release_mmap(vma->obj);
1625}
1626
1627/**
1628 * i915_gem_release_mmap - remove physical page mappings
1629 * @obj: obj in question
1630 *
1631 * Preserve the reservation of the mmapping with the DRM core code, but
1632 * relinquish ownership of the pages back to the system.
1633 *
1634 * It is vital that we remove the page mapping if we have mapped a tiled
1635 * object through the GTT and then lose the fence register due to
1636 * resource pressure. Similarly if the object has been moved out of the
1637 * aperture, than pages mapped into userspace must be revoked. Removing the
1638 * mapping will then trigger a page fault on the next user access, allowing
1639 * fixup by i915_gem_fault().
1640 */
1641void
1642i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1643{
1644	if (!obj->fault_mappable)
1645		return;
1646
1647	drm_vma_node_unmap(&obj->base.vma_node,
1648			   obj->base.dev->anon_inode->i_mapping);
1649	obj->fault_mappable = false;
1650}
1651
 
 
 
 
 
 
 
 
 
1652uint32_t
1653i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1654{
1655	uint32_t gtt_size;
1656
1657	if (INTEL_INFO(dev)->gen >= 4 ||
1658	    tiling_mode == I915_TILING_NONE)
1659		return size;
1660
1661	/* Previous chips need a power-of-two fence region when tiling */
1662	if (INTEL_INFO(dev)->gen == 3)
1663		gtt_size = 1024*1024;
1664	else
1665		gtt_size = 512*1024;
1666
1667	while (gtt_size < size)
1668		gtt_size <<= 1;
1669
1670	return gtt_size;
1671}
1672
1673/**
1674 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1675 * @obj: object to check
1676 *
1677 * Return the required GTT alignment for an object, taking into account
1678 * potential fence register mapping.
1679 */
1680uint32_t
1681i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1682			   int tiling_mode, bool fenced)
1683{
1684	/*
1685	 * Minimum alignment is 4k (GTT page size), but might be greater
1686	 * if a fence register is needed for the object.
1687	 */
1688	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1689	    tiling_mode == I915_TILING_NONE)
1690		return 4096;
1691
1692	/*
1693	 * Previous chips need to be aligned to the size of the smallest
1694	 * fence register that can contain the object.
1695	 */
1696	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1697}
1698
1699static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1700{
1701	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1702	int ret;
1703
1704	if (drm_vma_node_has_offset(&obj->base.vma_node))
1705		return 0;
1706
1707	dev_priv->mm.shrinker_no_lock_stealing = true;
1708
1709	ret = drm_gem_create_mmap_offset(&obj->base);
1710	if (ret != -ENOSPC)
1711		goto out;
1712
1713	/* Badly fragmented mmap space? The only way we can recover
1714	 * space is by destroying unwanted objects. We can't randomly release
1715	 * mmap_offsets as userspace expects them to be persistent for the
1716	 * lifetime of the objects. The closest we can is to release the
1717	 * offsets on purgeable objects by truncating it and marking it purged,
1718	 * which prevents userspace from ever using that object again.
1719	 */
1720	i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
 
 
 
 
1721	ret = drm_gem_create_mmap_offset(&obj->base);
1722	if (ret != -ENOSPC)
1723		goto out;
1724
1725	i915_gem_shrink_all(dev_priv);
1726	ret = drm_gem_create_mmap_offset(&obj->base);
1727out:
1728	dev_priv->mm.shrinker_no_lock_stealing = false;
1729
1730	return ret;
1731}
1732
1733static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1734{
1735	drm_gem_free_mmap_offset(&obj->base);
1736}
1737
1738int
1739i915_gem_mmap_gtt(struct drm_file *file,
1740		  struct drm_device *dev,
1741		  uint32_t handle,
1742		  uint64_t *offset)
1743{
1744	struct drm_i915_private *dev_priv = dev->dev_private;
1745	struct drm_i915_gem_object *obj;
1746	int ret;
1747
1748	ret = i915_mutex_lock_interruptible(dev);
1749	if (ret)
1750		return ret;
1751
1752	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1753	if (&obj->base == NULL) {
1754		ret = -ENOENT;
1755		goto unlock;
1756	}
1757
1758	if (obj->base.size > dev_priv->gtt.mappable_end) {
1759		ret = -E2BIG;
1760		goto out;
1761	}
1762
1763	if (obj->madv != I915_MADV_WILLNEED) {
1764		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1765		ret = -EFAULT;
1766		goto out;
1767	}
1768
1769	ret = i915_gem_object_create_mmap_offset(obj);
1770	if (ret)
1771		goto out;
1772
1773	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1774
1775out:
1776	drm_gem_object_unreference(&obj->base);
1777unlock:
1778	mutex_unlock(&dev->struct_mutex);
1779	return ret;
1780}
1781
1782/**
1783 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1784 * @dev: DRM device
1785 * @data: GTT mapping ioctl data
1786 * @file: GEM object info
1787 *
1788 * Simply returns the fake offset to userspace so it can mmap it.
1789 * The mmap call will end up in drm_gem_mmap(), which will set things
1790 * up so we can get faults in the handler above.
1791 *
1792 * The fault handler will take care of binding the object into the GTT
1793 * (since it may have been evicted to make room for something), allocating
1794 * a fence register, and mapping the appropriate aperture address into
1795 * userspace.
1796 */
1797int
1798i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1799			struct drm_file *file)
1800{
1801	struct drm_i915_gem_mmap_gtt *args = data;
1802
1803	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1804}
1805
1806/* Immediately discard the backing storage */
1807static void
1808i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1809{
1810	struct inode *inode;
1811
1812	i915_gem_object_free_mmap_offset(obj);
1813
1814	if (obj->base.filp == NULL)
1815		return;
1816
1817	/* Our goal here is to return as much of the memory as
1818	 * is possible back to the system as we are called from OOM.
1819	 * To do this we must instruct the shmfs to drop all of its
1820	 * backing pages, *now*.
1821	 */
1822	inode = file_inode(obj->base.filp);
1823	shmem_truncate_range(inode, 0, (loff_t)-1);
1824
1825	obj->madv = __I915_MADV_PURGED;
1826}
1827
1828static inline int
1829i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
 
1830{
1831	return obj->madv == I915_MADV_DONTNEED;
 
 
 
 
 
 
 
 
 
 
 
 
 
1832}
1833
1834static void
1835i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1836{
1837	struct sg_page_iter sg_iter;
1838	int ret;
1839
1840	BUG_ON(obj->madv == __I915_MADV_PURGED);
1841
1842	ret = i915_gem_object_set_to_cpu_domain(obj, true);
1843	if (ret) {
1844		/* In the event of a disaster, abandon all caches and
1845		 * hope for the best.
1846		 */
1847		WARN_ON(ret != -EIO);
1848		i915_gem_clflush_object(obj, true);
1849		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1850	}
1851
 
 
1852	if (i915_gem_object_needs_bit17_swizzle(obj))
1853		i915_gem_object_save_bit_17_swizzle(obj);
1854
1855	if (obj->madv == I915_MADV_DONTNEED)
1856		obj->dirty = 0;
1857
1858	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1859		struct page *page = sg_page_iter_page(&sg_iter);
1860
1861		if (obj->dirty)
1862			set_page_dirty(page);
1863
1864		if (obj->madv == I915_MADV_WILLNEED)
1865			mark_page_accessed(page);
1866
1867		page_cache_release(page);
1868	}
1869	obj->dirty = 0;
1870
1871	sg_free_table(obj->pages);
1872	kfree(obj->pages);
1873}
1874
1875int
1876i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1877{
1878	const struct drm_i915_gem_object_ops *ops = obj->ops;
1879
1880	if (obj->pages == NULL)
1881		return 0;
1882
1883	if (obj->pages_pin_count)
1884		return -EBUSY;
1885
1886	BUG_ON(i915_gem_obj_bound_any(obj));
1887
1888	/* ->put_pages might need to allocate memory for the bit17 swizzle
1889	 * array, hence protect them from being reaped by removing them from gtt
1890	 * lists early. */
1891	list_del(&obj->global_list);
1892
1893	ops->put_pages(obj);
1894	obj->pages = NULL;
1895
1896	if (i915_gem_object_is_purgeable(obj))
1897		i915_gem_object_truncate(obj);
1898
1899	return 0;
1900}
1901
1902static unsigned long
1903__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1904		  bool purgeable_only)
1905{
1906	struct list_head still_bound_list;
1907	struct drm_i915_gem_object *obj, *next;
1908	unsigned long count = 0;
1909
1910	list_for_each_entry_safe(obj, next,
1911				 &dev_priv->mm.unbound_list,
1912				 global_list) {
1913		if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1914		    i915_gem_object_put_pages(obj) == 0) {
1915			count += obj->base.size >> PAGE_SHIFT;
1916			if (count >= target)
1917				return count;
1918		}
1919	}
1920
1921	/*
1922	 * As we may completely rewrite the bound list whilst unbinding
1923	 * (due to retiring requests) we have to strictly process only
1924	 * one element of the list at the time, and recheck the list
1925	 * on every iteration.
1926	 */
1927	INIT_LIST_HEAD(&still_bound_list);
1928	while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1929		struct i915_vma *vma, *v;
1930
1931		obj = list_first_entry(&dev_priv->mm.bound_list,
1932				       typeof(*obj), global_list);
1933		list_move_tail(&obj->global_list, &still_bound_list);
1934
1935		if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1936			continue;
1937
1938		/*
1939		 * Hold a reference whilst we unbind this object, as we may
1940		 * end up waiting for and retiring requests. This might
1941		 * release the final reference (held by the active list)
1942		 * and result in the object being freed from under us.
1943		 * in this object being freed.
1944		 *
1945		 * Note 1: Shrinking the bound list is special since only active
1946		 * (and hence bound objects) can contain such limbo objects, so
1947		 * we don't need special tricks for shrinking the unbound list.
1948		 * The only other place where we have to be careful with active
1949		 * objects suddenly disappearing due to retiring requests is the
1950		 * eviction code.
1951		 *
1952		 * Note 2: Even though the bound list doesn't hold a reference
1953		 * to the object we can safely grab one here: The final object
1954		 * unreferencing and the bound_list are both protected by the
1955		 * dev->struct_mutex and so we won't ever be able to observe an
1956		 * object on the bound_list with a reference count equals 0.
1957		 */
1958		drm_gem_object_reference(&obj->base);
1959
1960		list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1961			if (i915_vma_unbind(vma))
1962				break;
1963
1964		if (i915_gem_object_put_pages(obj) == 0)
1965			count += obj->base.size >> PAGE_SHIFT;
1966
1967		drm_gem_object_unreference(&obj->base);
1968	}
1969	list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1970
1971	return count;
1972}
1973
1974static unsigned long
1975i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1976{
1977	return __i915_gem_shrink(dev_priv, target, true);
1978}
1979
1980static unsigned long
1981i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1982{
1983	struct drm_i915_gem_object *obj, *next;
1984	long freed = 0;
1985
1986	i915_gem_evict_everything(dev_priv->dev);
1987
1988	list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1989				 global_list) {
1990		if (i915_gem_object_put_pages(obj) == 0)
1991			freed += obj->base.size >> PAGE_SHIFT;
1992	}
1993	return freed;
1994}
1995
1996static int
1997i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1998{
1999	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2000	int page_count, i;
2001	struct address_space *mapping;
2002	struct sg_table *st;
2003	struct scatterlist *sg;
2004	struct sg_page_iter sg_iter;
2005	struct page *page;
2006	unsigned long last_pfn = 0;	/* suppress gcc warning */
 
2007	gfp_t gfp;
2008
2009	/* Assert that the object is not currently in any GPU domain. As it
2010	 * wasn't in the GTT, there shouldn't be any way it could have been in
2011	 * a GPU cache
2012	 */
2013	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2014	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2015
2016	st = kmalloc(sizeof(*st), GFP_KERNEL);
2017	if (st == NULL)
2018		return -ENOMEM;
2019
2020	page_count = obj->base.size / PAGE_SIZE;
2021	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2022		kfree(st);
2023		return -ENOMEM;
2024	}
2025
2026	/* Get the list of pages out of our struct file.  They'll be pinned
2027	 * at this point until we release them.
2028	 *
2029	 * Fail silently without starting the shrinker
2030	 */
2031	mapping = file_inode(obj->base.filp)->i_mapping;
2032	gfp = mapping_gfp_mask(mapping);
2033	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2034	gfp &= ~(__GFP_IO | __GFP_WAIT);
2035	sg = st->sgl;
2036	st->nents = 0;
2037	for (i = 0; i < page_count; i++) {
2038		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2039		if (IS_ERR(page)) {
2040			i915_gem_purge(dev_priv, page_count);
 
 
 
 
2041			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2042		}
2043		if (IS_ERR(page)) {
2044			/* We've tried hard to allocate the memory by reaping
2045			 * our own buffer, now let the real VM do its job and
2046			 * go down in flames if truly OOM.
2047			 */
2048			gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2049			gfp |= __GFP_IO | __GFP_WAIT;
2050
2051			i915_gem_shrink_all(dev_priv);
2052			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2053			if (IS_ERR(page))
 
2054				goto err_pages;
2055
2056			gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2057			gfp &= ~(__GFP_IO | __GFP_WAIT);
2058		}
2059#ifdef CONFIG_SWIOTLB
2060		if (swiotlb_nr_tbl()) {
2061			st->nents++;
2062			sg_set_page(sg, page, PAGE_SIZE, 0);
2063			sg = sg_next(sg);
2064			continue;
2065		}
2066#endif
2067		if (!i || page_to_pfn(page) != last_pfn + 1) {
2068			if (i)
2069				sg = sg_next(sg);
2070			st->nents++;
2071			sg_set_page(sg, page, PAGE_SIZE, 0);
2072		} else {
2073			sg->length += PAGE_SIZE;
2074		}
2075		last_pfn = page_to_pfn(page);
2076
2077		/* Check that the i965g/gm workaround works. */
2078		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2079	}
2080#ifdef CONFIG_SWIOTLB
2081	if (!swiotlb_nr_tbl())
2082#endif
2083		sg_mark_end(sg);
2084	obj->pages = st;
2085
 
 
 
 
2086	if (i915_gem_object_needs_bit17_swizzle(obj))
2087		i915_gem_object_do_bit_17_swizzle(obj);
2088
 
 
 
 
2089	return 0;
2090
2091err_pages:
2092	sg_mark_end(sg);
2093	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2094		page_cache_release(sg_page_iter_page(&sg_iter));
2095	sg_free_table(st);
2096	kfree(st);
2097	return PTR_ERR(page);
 
 
 
 
 
 
 
 
 
 
 
 
2098}
2099
2100/* Ensure that the associated pages are gathered from the backing storage
2101 * and pinned into our object. i915_gem_object_get_pages() may be called
2102 * multiple times before they are released by a single call to
2103 * i915_gem_object_put_pages() - once the pages are no longer referenced
2104 * either as a result of memory pressure (reaping pages under the shrinker)
2105 * or as the object is itself released.
2106 */
2107int
2108i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2109{
2110	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2111	const struct drm_i915_gem_object_ops *ops = obj->ops;
2112	int ret;
2113
2114	if (obj->pages)
2115		return 0;
2116
2117	if (obj->madv != I915_MADV_WILLNEED) {
2118		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2119		return -EFAULT;
2120	}
2121
2122	BUG_ON(obj->pages_pin_count);
2123
2124	ret = ops->get_pages(obj);
2125	if (ret)
2126		return ret;
2127
2128	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
 
 
 
 
2129	return 0;
2130}
2131
2132static void
2133i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2134			       struct intel_ring_buffer *ring)
2135{
2136	struct drm_device *dev = obj->base.dev;
2137	struct drm_i915_private *dev_priv = dev->dev_private;
2138	u32 seqno = intel_ring_get_seqno(ring);
2139
2140	BUG_ON(ring == NULL);
2141	if (obj->ring != ring && obj->last_write_seqno) {
2142		/* Keep the seqno relative to the current ring */
2143		obj->last_write_seqno = seqno;
2144	}
2145	obj->ring = ring;
2146
2147	/* Add a reference if we're newly entering the active list. */
2148	if (!obj->active) {
2149		drm_gem_object_reference(&obj->base);
2150		obj->active = 1;
2151	}
2152
2153	list_move_tail(&obj->ring_list, &ring->active_list);
2154
2155	obj->last_read_seqno = seqno;
2156
2157	if (obj->fenced_gpu_access) {
2158		obj->last_fenced_seqno = seqno;
2159
2160		/* Bump MRU to take account of the delayed flush */
2161		if (obj->fence_reg != I915_FENCE_REG_NONE) {
2162			struct drm_i915_fence_reg *reg;
2163
2164			reg = &dev_priv->fence_regs[obj->fence_reg];
2165			list_move_tail(&reg->lru_list,
2166				       &dev_priv->mm.fence_list);
2167		}
2168	}
2169}
2170
2171void i915_vma_move_to_active(struct i915_vma *vma,
2172			     struct intel_ring_buffer *ring)
2173{
2174	list_move_tail(&vma->mm_list, &vma->vm->active_list);
2175	return i915_gem_object_move_to_active(vma->obj, ring);
 
 
 
2176}
2177
2178static void
2179i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2180{
2181	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182	struct i915_address_space *vm;
2183	struct i915_vma *vma;
2184
2185	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2186	BUG_ON(!obj->active);
2187
2188	list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2189		vma = i915_gem_obj_to_vma(obj, vm);
2190		if (vma && !list_empty(&vma->mm_list))
2191			list_move_tail(&vma->mm_list, &vm->inactive_list);
2192	}
2193
2194	list_del_init(&obj->ring_list);
2195	obj->ring = NULL;
2196
2197	obj->last_read_seqno = 0;
2198	obj->last_write_seqno = 0;
2199	obj->base.write_domain = 0;
 
 
 
 
 
 
 
2200
2201	obj->last_fenced_seqno = 0;
2202	obj->fenced_gpu_access = false;
 
 
2203
2204	obj->active = 0;
2205	drm_gem_object_unreference(&obj->base);
2206
2207	WARN_ON(i915_verify_lists(dev));
2208}
2209
2210static int
2211i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2212{
2213	struct drm_i915_private *dev_priv = dev->dev_private;
2214	struct intel_ring_buffer *ring;
2215	int ret, i, j;
2216
2217	/* Carefully retire all requests without writing to the rings */
2218	for_each_ring(ring, dev_priv, i) {
2219		ret = intel_ring_idle(ring);
2220		if (ret)
2221			return ret;
2222	}
2223	i915_gem_retire_requests(dev);
2224
2225	/* Finally reset hw state */
2226	for_each_ring(ring, dev_priv, i) {
2227		intel_ring_init_seqno(ring, seqno);
2228
2229		for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2230			ring->sync_seqno[j] = 0;
2231	}
2232
2233	return 0;
2234}
2235
2236int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2237{
2238	struct drm_i915_private *dev_priv = dev->dev_private;
2239	int ret;
2240
2241	if (seqno == 0)
2242		return -EINVAL;
2243
2244	/* HWS page needs to be set less than what we
2245	 * will inject to ring
2246	 */
2247	ret = i915_gem_init_seqno(dev, seqno - 1);
2248	if (ret)
2249		return ret;
2250
2251	/* Carefully set the last_seqno value so that wrap
2252	 * detection still works
2253	 */
2254	dev_priv->next_seqno = seqno;
2255	dev_priv->last_seqno = seqno - 1;
2256	if (dev_priv->last_seqno == 0)
2257		dev_priv->last_seqno--;
2258
2259	return 0;
2260}
2261
2262int
2263i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2264{
2265	struct drm_i915_private *dev_priv = dev->dev_private;
2266
2267	/* reserve 0 for non-seqno */
2268	if (dev_priv->next_seqno == 0) {
2269		int ret = i915_gem_init_seqno(dev, 0);
2270		if (ret)
2271			return ret;
2272
2273		dev_priv->next_seqno = 1;
2274	}
2275
2276	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2277	return 0;
2278}
2279
2280int __i915_add_request(struct intel_ring_buffer *ring,
2281		       struct drm_file *file,
2282		       struct drm_i915_gem_object *obj,
2283		       u32 *out_seqno)
2284{
2285	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2286	struct drm_i915_gem_request *request;
2287	u32 request_ring_position, request_start;
 
 
 
 
 
2288	int ret;
2289
2290	request_start = intel_ring_get_tail(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2291	/*
2292	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2293	 * after having emitted the batchbuffer command. Hence we need to fix
2294	 * things up similar to emitting the lazy request. The difference here
2295	 * is that the flush _must_ happen before the next request, no matter
2296	 * what.
2297	 */
2298	ret = intel_ring_flush_all_caches(ring);
2299	if (ret)
2300		return ret;
2301
2302	request = ring->preallocated_lazy_request;
2303	if (WARN_ON(request == NULL))
2304		return -ENOMEM;
 
2305
2306	/* Record the position of the start of the request so that
2307	 * should we detect the updated seqno part-way through the
2308	 * GPU processing the request, we never over-estimate the
2309	 * position of the head.
2310	 */
2311	request_ring_position = intel_ring_get_tail(ring);
2312
2313	ret = ring->add_request(ring);
2314	if (ret)
2315		return ret;
 
 
 
 
 
 
2316
2317	request->seqno = intel_ring_get_seqno(ring);
2318	request->ring = ring;
2319	request->head = request_start;
2320	request->tail = request_ring_position;
2321
2322	/* Whilst this request exists, batch_obj will be on the
2323	 * active_list, and so will hold the active reference. Only when this
2324	 * request is retired will the the batch_obj be moved onto the
2325	 * inactive_list and lose its active reference. Hence we do not need
2326	 * to explicitly hold another reference here.
2327	 */
2328	request->batch_obj = obj;
2329
2330	/* Hold a reference to the current context so that we can inspect
2331	 * it later in case a hangcheck error event fires.
2332	 */
2333	request->ctx = ring->last_context;
2334	if (request->ctx)
2335		i915_gem_context_reference(request->ctx);
2336
2337	request->emitted_jiffies = jiffies;
 
 
2338	list_add_tail(&request->list, &ring->request_list);
2339	request->file_priv = NULL;
2340
2341	if (file) {
2342		struct drm_i915_file_private *file_priv = file->driver_priv;
2343
2344		spin_lock(&file_priv->mm.lock);
2345		request->file_priv = file_priv;
2346		list_add_tail(&request->client_list,
2347			      &file_priv->mm.request_list);
2348		spin_unlock(&file_priv->mm.lock);
2349	}
2350
2351	trace_i915_gem_request_add(ring, request->seqno);
2352	ring->outstanding_lazy_seqno = 0;
2353	ring->preallocated_lazy_request = NULL;
2354
2355	if (!dev_priv->ums.mm_suspended) {
2356		i915_queue_hangcheck(ring->dev);
2357
2358		cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2359		queue_delayed_work(dev_priv->wq,
2360				   &dev_priv->mm.retire_work,
2361				   round_jiffies_up_relative(HZ));
2362		intel_mark_busy(dev_priv->dev);
2363	}
2364
2365	if (out_seqno)
2366		*out_seqno = request->seqno;
2367	return 0;
2368}
2369
2370static inline void
2371i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2372{
2373	struct drm_i915_file_private *file_priv = request->file_priv;
2374
2375	if (!file_priv)
2376		return;
 
 
2377
2378	spin_lock(&file_priv->mm.lock);
2379	list_del(&request->client_list);
2380	request->file_priv = NULL;
2381	spin_unlock(&file_priv->mm.lock);
2382}
2383
2384static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2385				   const struct i915_hw_context *ctx)
2386{
2387	unsigned long elapsed;
2388
2389	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2390
2391	if (ctx->hang_stats.banned)
2392		return true;
2393
2394	if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
 
2395		if (!i915_gem_context_is_default(ctx)) {
2396			DRM_DEBUG("context hanging too fast, banning!\n");
2397			return true;
2398		} else if (dev_priv->gpu_error.stop_rings == 0) {
2399			DRM_ERROR("gpu hanging too fast, banning!\n");
 
2400			return true;
2401		}
2402	}
2403
2404	return false;
2405}
2406
2407static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2408				  struct i915_hw_context *ctx,
2409				  const bool guilty)
2410{
2411	struct i915_ctx_hang_stats *hs;
2412
2413	if (WARN_ON(!ctx))
2414		return;
2415
2416	hs = &ctx->hang_stats;
2417
2418	if (guilty) {
2419		hs->banned = i915_context_is_banned(dev_priv, ctx);
2420		hs->batch_active++;
2421		hs->guilty_ts = get_seconds();
2422	} else {
2423		hs->batch_pending++;
2424	}
2425}
2426
2427static void i915_gem_free_request(struct drm_i915_gem_request *request)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2428{
2429	list_del(&request->list);
2430	i915_gem_request_remove_from_client(request);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2431
2432	if (request->ctx)
2433		i915_gem_context_unreference(request->ctx);
 
2434
2435	kfree(request);
2436}
2437
2438struct drm_i915_gem_request *
2439i915_gem_find_active_request(struct intel_ring_buffer *ring)
2440{
2441	struct drm_i915_gem_request *request;
2442	u32 completed_seqno;
2443
2444	completed_seqno = ring->get_seqno(ring, false);
2445
2446	list_for_each_entry(request, &ring->request_list, list) {
2447		if (i915_seqno_passed(completed_seqno, request->seqno))
2448			continue;
2449
2450		return request;
2451	}
2452
2453	return NULL;
2454}
2455
2456static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2457				       struct intel_ring_buffer *ring)
2458{
2459	struct drm_i915_gem_request *request;
2460	bool ring_hung;
2461
2462	request = i915_gem_find_active_request(ring);
2463
2464	if (request == NULL)
2465		return;
2466
2467	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2468
2469	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2470
2471	list_for_each_entry_continue(request, &ring->request_list, list)
2472		i915_set_reset_status(dev_priv, request->ctx, false);
2473}
2474
2475static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2476					struct intel_ring_buffer *ring)
2477{
 
 
2478	while (!list_empty(&ring->active_list)) {
2479		struct drm_i915_gem_object *obj;
2480
2481		obj = list_first_entry(&ring->active_list,
2482				       struct drm_i915_gem_object,
2483				       ring_list);
 
 
 
 
 
 
 
 
 
 
 
 
2484
2485		i915_gem_object_move_to_inactive(obj);
 
 
 
 
 
2486	}
2487
2488	/*
2489	 * We must free the requests after all the corresponding objects have
2490	 * been moved off active lists. Which is the same order as the normal
2491	 * retire_requests function does. This is important if object hold
2492	 * implicit references on things like e.g. ppgtt address spaces through
2493	 * the request.
2494	 */
2495	while (!list_empty(&ring->request_list)) {
2496		struct drm_i915_gem_request *request;
2497
2498		request = list_first_entry(&ring->request_list,
2499					   struct drm_i915_gem_request,
2500					   list);
2501
2502		i915_gem_free_request(request);
2503	}
2504}
2505
2506void i915_gem_restore_fences(struct drm_device *dev)
2507{
2508	struct drm_i915_private *dev_priv = dev->dev_private;
2509	int i;
2510
2511	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2512		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2513
2514		/*
2515		 * Commit delayed tiling changes if we have an object still
2516		 * attached to the fence, otherwise just clear the fence.
2517		 */
2518		if (reg->obj) {
2519			i915_gem_object_update_fence(reg->obj, reg,
2520						     reg->obj->tiling_mode);
2521		} else {
2522			i915_gem_write_fence(dev, i, NULL);
2523		}
2524	}
2525}
2526
2527void i915_gem_reset(struct drm_device *dev)
2528{
2529	struct drm_i915_private *dev_priv = dev->dev_private;
2530	struct intel_ring_buffer *ring;
2531	int i;
2532
2533	/*
2534	 * Before we free the objects from the requests, we need to inspect
2535	 * them for finding the guilty party. As the requests only borrow
2536	 * their reference to the objects, the inspection must be done first.
2537	 */
2538	for_each_ring(ring, dev_priv, i)
2539		i915_gem_reset_ring_status(dev_priv, ring);
2540
2541	for_each_ring(ring, dev_priv, i)
2542		i915_gem_reset_ring_cleanup(dev_priv, ring);
2543
2544	i915_gem_cleanup_ringbuffer(dev);
2545
2546	i915_gem_context_reset(dev);
2547
2548	i915_gem_restore_fences(dev);
 
 
2549}
2550
2551/**
2552 * This function clears the request list as sequence numbers are passed.
2553 */
2554static void
2555i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2556{
2557	uint32_t seqno;
 
 
 
 
 
 
 
 
2558
2559	if (list_empty(&ring->request_list))
2560		return;
 
2561
2562	WARN_ON(i915_verify_lists(ring->dev));
 
2563
2564	seqno = ring->get_seqno(ring, true);
 
2565
2566	/* Move any buffers on the active list that are no longer referenced
2567	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2568	 * before we free the context associated with the requests.
2569	 */
2570	while (!list_empty(&ring->active_list)) {
2571		struct drm_i915_gem_object *obj;
2572
2573		obj = list_first_entry(&ring->active_list,
2574				      struct drm_i915_gem_object,
2575				      ring_list);
2576
2577		if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2578			break;
2579
2580		i915_gem_object_move_to_inactive(obj);
2581	}
2582
2583
2584	while (!list_empty(&ring->request_list)) {
2585		struct drm_i915_gem_request *request;
2586
2587		request = list_first_entry(&ring->request_list,
2588					   struct drm_i915_gem_request,
2589					   list);
2590
2591		if (!i915_seqno_passed(seqno, request->seqno))
2592			break;
2593
2594		trace_i915_gem_request_retire(ring, request->seqno);
2595		/* We know the GPU must have read the request to have
2596		 * sent us the seqno + interrupt, so use the position
2597		 * of tail of the request to update the last known position
2598		 * of the GPU head.
2599		 */
2600		ring->last_retired_head = request->tail;
2601
2602		i915_gem_free_request(request);
2603	}
2604
2605	if (unlikely(ring->trace_irq_seqno &&
2606		     i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2607		ring->irq_put(ring);
2608		ring->trace_irq_seqno = 0;
2609	}
2610
2611	WARN_ON(i915_verify_lists(ring->dev));
2612}
2613
2614bool
2615i915_gem_retire_requests(struct drm_device *dev)
2616{
2617	struct drm_i915_private *dev_priv = dev->dev_private;
2618	struct intel_ring_buffer *ring;
2619	bool idle = true;
2620	int i;
2621
2622	for_each_ring(ring, dev_priv, i) {
2623		i915_gem_retire_requests_ring(ring);
2624		idle &= list_empty(&ring->request_list);
 
 
 
 
 
 
 
2625	}
2626
2627	if (idle)
2628		mod_delayed_work(dev_priv->wq,
2629				   &dev_priv->mm.idle_work,
2630				   msecs_to_jiffies(100));
2631
2632	return idle;
2633}
2634
2635static void
2636i915_gem_retire_work_handler(struct work_struct *work)
2637{
2638	struct drm_i915_private *dev_priv =
2639		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2640	struct drm_device *dev = dev_priv->dev;
2641	bool idle;
2642
2643	/* Come back later if the device is busy... */
2644	idle = false;
2645	if (mutex_trylock(&dev->struct_mutex)) {
2646		idle = i915_gem_retire_requests(dev);
2647		mutex_unlock(&dev->struct_mutex);
2648	}
2649	if (!idle)
2650		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2651				   round_jiffies_up_relative(HZ));
2652}
2653
2654static void
2655i915_gem_idle_work_handler(struct work_struct *work)
2656{
2657	struct drm_i915_private *dev_priv =
2658		container_of(work, typeof(*dev_priv), mm.idle_work.work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2659
2660	intel_mark_idle(dev_priv->dev);
 
 
 
 
2661}
2662
2663/**
2664 * Ensures that an object will eventually get non-busy by flushing any required
2665 * write domains, emitting any outstanding lazy request and retiring and
2666 * completed requests.
2667 */
2668static int
2669i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2670{
2671	int ret;
 
 
 
 
 
 
 
 
 
 
2672
2673	if (obj->active) {
2674		ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2675		if (ret)
2676			return ret;
2677
2678		i915_gem_retire_requests_ring(obj->ring);
 
 
 
 
2679	}
2680
2681	return 0;
2682}
2683
2684/**
2685 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2686 * @DRM_IOCTL_ARGS: standard ioctl arguments
2687 *
2688 * Returns 0 if successful, else an error is returned with the remaining time in
2689 * the timeout parameter.
2690 *  -ETIME: object is still busy after timeout
2691 *  -ERESTARTSYS: signal interrupted the wait
2692 *  -ENONENT: object doesn't exist
2693 * Also possible, but rare:
2694 *  -EAGAIN: GPU wedged
2695 *  -ENOMEM: damn
2696 *  -ENODEV: Internal IRQ fail
2697 *  -E?: The add request failed
2698 *
2699 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2700 * non-zero timeout parameter the wait ioctl will wait for the given number of
2701 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2702 * without holding struct_mutex the object may become re-busied before this
2703 * function completes. A similar but shorter * race condition exists in the busy
2704 * ioctl
2705 */
2706int
2707i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2708{
2709	struct drm_i915_private *dev_priv = dev->dev_private;
2710	struct drm_i915_gem_wait *args = data;
2711	struct drm_i915_gem_object *obj;
2712	struct intel_ring_buffer *ring = NULL;
2713	struct timespec timeout_stack, *timeout = NULL;
2714	unsigned reset_counter;
2715	u32 seqno = 0;
2716	int ret = 0;
2717
2718	if (args->timeout_ns >= 0) {
2719		timeout_stack = ns_to_timespec(args->timeout_ns);
2720		timeout = &timeout_stack;
2721	}
2722
2723	ret = i915_mutex_lock_interruptible(dev);
2724	if (ret)
2725		return ret;
2726
2727	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2728	if (&obj->base == NULL) {
2729		mutex_unlock(&dev->struct_mutex);
2730		return -ENOENT;
2731	}
2732
2733	/* Need to make sure the object gets inactive eventually. */
2734	ret = i915_gem_object_flush_active(obj);
2735	if (ret)
2736		goto out;
2737
2738	if (obj->active) {
2739		seqno = obj->last_read_seqno;
2740		ring = obj->ring;
2741	}
2742
2743	if (seqno == 0)
2744		 goto out;
2745
2746	/* Do this after OLR check to make sure we make forward progress polling
2747	 * on this IOCTL with a 0 timeout (like busy ioctl)
2748	 */
2749	if (!args->timeout_ns) {
2750		ret = -ETIME;
2751		goto out;
2752	}
2753
2754	drm_gem_object_unreference(&obj->base);
2755	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
 
 
 
 
 
 
 
 
2756	mutex_unlock(&dev->struct_mutex);
2757
2758	ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2759	if (timeout)
2760		args->timeout_ns = timespec_to_ns(timeout);
 
 
 
 
2761	return ret;
2762
2763out:
2764	drm_gem_object_unreference(&obj->base);
2765	mutex_unlock(&dev->struct_mutex);
2766	return ret;
2767}
2768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2769/**
2770 * i915_gem_object_sync - sync an object to a ring.
2771 *
2772 * @obj: object which may be in use on another ring.
2773 * @to: ring we wish to use the object on. May be NULL.
 
 
 
2774 *
2775 * This code is meant to abstract object synchronization with the GPU.
2776 * Calling with NULL implies synchronizing the object with the CPU
2777 * rather than a particular GPU ring.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2778 *
2779 * Returns 0 if successful, else propagates up the lower layer error.
2780 */
2781int
2782i915_gem_object_sync(struct drm_i915_gem_object *obj,
2783		     struct intel_ring_buffer *to)
 
2784{
2785	struct intel_ring_buffer *from = obj->ring;
2786	u32 seqno;
2787	int ret, idx;
2788
2789	if (from == NULL || to == from)
2790		return 0;
2791
2792	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2793		return i915_gem_object_wait_rendering(obj, false);
2794
2795	idx = intel_ring_sync_index(from, to);
 
 
 
 
 
 
 
 
 
 
 
 
 
2796
2797	seqno = obj->last_read_seqno;
2798	if (seqno <= from->sync_seqno[idx])
2799		return 0;
2800
2801	ret = i915_gem_check_olr(obj->ring, seqno);
2802	if (ret)
2803		return ret;
2804
2805	trace_i915_gem_ring_sync_to(from, to, seqno);
2806	ret = to->sync_to(to, from, seqno);
2807	if (!ret)
2808		/* We use last_read_seqno because sync_to()
2809		 * might have just caused seqno wrap under
2810		 * the radar.
2811		 */
2812		from->sync_seqno[idx] = obj->last_read_seqno;
2813
2814	return ret;
2815}
2816
2817static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2818{
2819	u32 old_write_domain, old_read_domains;
2820
2821	/* Force a pagefault for domain tracking on next user access */
2822	i915_gem_release_mmap(obj);
2823
2824	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2825		return;
2826
2827	/* Wait for any direct GTT access to complete */
2828	mb();
2829
2830	old_read_domains = obj->base.read_domains;
2831	old_write_domain = obj->base.write_domain;
2832
2833	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2834	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2835
2836	trace_i915_gem_object_change_domain(obj,
2837					    old_read_domains,
2838					    old_write_domain);
2839}
2840
2841int i915_vma_unbind(struct i915_vma *vma)
2842{
2843	struct drm_i915_gem_object *obj = vma->obj;
2844	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2845	int ret;
2846
2847	if (list_empty(&vma->vma_link))
2848		return 0;
2849
2850	if (!drm_mm_node_allocated(&vma->node)) {
2851		i915_gem_vma_destroy(vma);
2852		return 0;
2853	}
2854
2855	if (vma->pin_count)
2856		return -EBUSY;
2857
2858	BUG_ON(obj->pages == NULL);
2859
2860	ret = i915_gem_object_finish_gpu(obj);
2861	if (ret)
2862		return ret;
2863	/* Continue on if we fail due to EIO, the GPU is hung so we
2864	 * should be safe and we need to cleanup or else we might
2865	 * cause memory corruption through use-after-free.
2866	 */
2867
2868	i915_gem_object_finish_gtt(obj);
 
2869
2870	/* release the fence reg _after_ flushing */
2871	ret = i915_gem_object_put_fence(obj);
2872	if (ret)
2873		return ret;
 
2874
2875	trace_i915_vma_unbind(vma);
2876
2877	vma->unbind_vma(vma);
 
2878
2879	i915_gem_gtt_finish_object(obj);
2880
2881	list_del_init(&vma->mm_list);
2882	/* Avoid an unnecessary call to unbind on rebind. */
2883	if (i915_is_ggtt(vma->vm))
2884		obj->map_and_fenceable = true;
 
 
 
 
2885
2886	drm_mm_remove_node(&vma->node);
2887	i915_gem_vma_destroy(vma);
2888
2889	/* Since the unbound list is global, only move to that list if
2890	 * no more VMAs exist. */
2891	if (list_empty(&obj->vma_list))
2892		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2893
2894	/* And finally now the object is completely decoupled from this vma,
2895	 * we can drop its hold on the backing storage and allow it to be
2896	 * reaped by the shrinker.
2897	 */
2898	i915_gem_object_unpin_pages(obj);
2899
2900	return 0;
2901}
2902
2903int i915_gpu_idle(struct drm_device *dev)
2904{
2905	struct drm_i915_private *dev_priv = dev->dev_private;
2906	struct intel_ring_buffer *ring;
2907	int ret, i;
2908
2909	/* Flush everything onto the inactive list. */
2910	for_each_ring(ring, dev_priv, i) {
2911		ret = i915_switch_context(ring, ring->default_context);
2912		if (ret)
2913			return ret;
2914
2915		ret = intel_ring_idle(ring);
2916		if (ret)
2917			return ret;
2918	}
2919
2920	return 0;
2921}
2922
2923static void i965_write_fence_reg(struct drm_device *dev, int reg,
2924				 struct drm_i915_gem_object *obj)
2925{
2926	struct drm_i915_private *dev_priv = dev->dev_private;
2927	int fence_reg;
2928	int fence_pitch_shift;
2929
2930	if (INTEL_INFO(dev)->gen >= 6) {
2931		fence_reg = FENCE_REG_SANDYBRIDGE_0;
2932		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2933	} else {
2934		fence_reg = FENCE_REG_965_0;
2935		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2936	}
2937
2938	fence_reg += reg * 8;
2939
2940	/* To w/a incoherency with non-atomic 64-bit register updates,
2941	 * we split the 64-bit update into two 32-bit writes. In order
2942	 * for a partial fence not to be evaluated between writes, we
2943	 * precede the update with write to turn off the fence register,
2944	 * and only enable the fence as the last step.
2945	 *
2946	 * For extra levels of paranoia, we make sure each step lands
2947	 * before applying the next step.
2948	 */
2949	I915_WRITE(fence_reg, 0);
2950	POSTING_READ(fence_reg);
2951
2952	if (obj) {
2953		u32 size = i915_gem_obj_ggtt_size(obj);
2954		uint64_t val;
2955
2956		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2957				 0xfffff000) << 32;
2958		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2959		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2960		if (obj->tiling_mode == I915_TILING_Y)
2961			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2962		val |= I965_FENCE_REG_VALID;
2963
2964		I915_WRITE(fence_reg + 4, val >> 32);
2965		POSTING_READ(fence_reg + 4);
2966
2967		I915_WRITE(fence_reg + 0, val);
2968		POSTING_READ(fence_reg);
2969	} else {
2970		I915_WRITE(fence_reg + 4, 0);
2971		POSTING_READ(fence_reg + 4);
2972	}
2973}
2974
2975static void i915_write_fence_reg(struct drm_device *dev, int reg,
2976				 struct drm_i915_gem_object *obj)
2977{
2978	struct drm_i915_private *dev_priv = dev->dev_private;
2979	u32 val;
 
2980
2981	if (obj) {
2982		u32 size = i915_gem_obj_ggtt_size(obj);
2983		int pitch_val;
2984		int tile_width;
2985
2986		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2987		     (size & -size) != size ||
2988		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2989		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2990		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2991
2992		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2993			tile_width = 128;
2994		else
2995			tile_width = 512;
 
 
 
 
 
2996
2997		/* Note: pitch better be a power of two tile widths */
2998		pitch_val = obj->stride / tile_width;
2999		pitch_val = ffs(pitch_val) - 1;
3000
3001		val = i915_gem_obj_ggtt_offset(obj);
3002		if (obj->tiling_mode == I915_TILING_Y)
3003			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3004		val |= I915_FENCE_SIZE_BITS(size);
3005		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3006		val |= I830_FENCE_REG_VALID;
3007	} else
3008		val = 0;
3009
3010	if (reg < 8)
3011		reg = FENCE_REG_830_0 + reg * 4;
3012	else
3013		reg = FENCE_REG_945_8 + (reg - 8) * 4;
3014
3015	I915_WRITE(reg, val);
3016	POSTING_READ(reg);
3017}
3018
3019static void i830_write_fence_reg(struct drm_device *dev, int reg,
3020				struct drm_i915_gem_object *obj)
3021{
3022	struct drm_i915_private *dev_priv = dev->dev_private;
3023	uint32_t val;
3024
3025	if (obj) {
3026		u32 size = i915_gem_obj_ggtt_size(obj);
3027		uint32_t pitch_val;
3028
3029		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3030		     (size & -size) != size ||
3031		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3032		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3033		     i915_gem_obj_ggtt_offset(obj), size);
3034
3035		pitch_val = obj->stride / 128;
3036		pitch_val = ffs(pitch_val) - 1;
3037
3038		val = i915_gem_obj_ggtt_offset(obj);
3039		if (obj->tiling_mode == I915_TILING_Y)
3040			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3041		val |= I830_FENCE_SIZE_BITS(size);
3042		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3043		val |= I830_FENCE_REG_VALID;
3044	} else
3045		val = 0;
3046
3047	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3048	POSTING_READ(FENCE_REG_830_0 + reg * 4);
3049}
3050
3051inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3052{
3053	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3054}
3055
3056static void i915_gem_write_fence(struct drm_device *dev, int reg,
3057				 struct drm_i915_gem_object *obj)
3058{
3059	struct drm_i915_private *dev_priv = dev->dev_private;
3060
3061	/* Ensure that all CPU reads are completed before installing a fence
3062	 * and all writes before removing the fence.
3063	 */
3064	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3065		mb();
3066
3067	WARN(obj && (!obj->stride || !obj->tiling_mode),
3068	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3069	     obj->stride, obj->tiling_mode);
3070
3071	switch (INTEL_INFO(dev)->gen) {
3072	case 8:
3073	case 7:
3074	case 6:
3075	case 5:
3076	case 4: i965_write_fence_reg(dev, reg, obj); break;
3077	case 3: i915_write_fence_reg(dev, reg, obj); break;
3078	case 2: i830_write_fence_reg(dev, reg, obj); break;
3079	default: BUG();
3080	}
3081
3082	/* And similarly be paranoid that no direct access to this region
3083	 * is reordered to before the fence is installed.
3084	 */
3085	if (i915_gem_object_needs_mb(obj))
3086		mb();
3087}
3088
3089static inline int fence_number(struct drm_i915_private *dev_priv,
3090			       struct drm_i915_fence_reg *fence)
3091{
3092	return fence - dev_priv->fence_regs;
3093}
3094
3095static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3096					 struct drm_i915_fence_reg *fence,
3097					 bool enable)
3098{
3099	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3100	int reg = fence_number(dev_priv, fence);
3101
3102	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3103
3104	if (enable) {
3105		obj->fence_reg = reg;
3106		fence->obj = obj;
3107		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3108	} else {
3109		obj->fence_reg = I915_FENCE_REG_NONE;
3110		fence->obj = NULL;
3111		list_del_init(&fence->lru_list);
3112	}
3113	obj->fence_dirty = false;
3114}
3115
3116static int
3117i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3118{
3119	if (obj->last_fenced_seqno) {
3120		int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3121		if (ret)
3122			return ret;
3123
3124		obj->last_fenced_seqno = 0;
3125	}
3126
3127	obj->fenced_gpu_access = false;
3128	return 0;
3129}
3130
3131int
3132i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3133{
3134	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3135	struct drm_i915_fence_reg *fence;
3136	int ret;
3137
3138	ret = i915_gem_object_wait_fence(obj);
3139	if (ret)
3140		return ret;
3141
3142	if (obj->fence_reg == I915_FENCE_REG_NONE)
3143		return 0;
3144
3145	fence = &dev_priv->fence_regs[obj->fence_reg];
3146
3147	i915_gem_object_fence_lost(obj);
3148	i915_gem_object_update_fence(obj, fence, false);
3149
3150	return 0;
3151}
3152
3153static struct drm_i915_fence_reg *
3154i915_find_fence_reg(struct drm_device *dev)
3155{
3156	struct drm_i915_private *dev_priv = dev->dev_private;
3157	struct drm_i915_fence_reg *reg, *avail;
3158	int i;
3159
3160	/* First try to find a free reg */
3161	avail = NULL;
3162	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3163		reg = &dev_priv->fence_regs[i];
3164		if (!reg->obj)
3165			return reg;
3166
3167		if (!reg->pin_count)
3168			avail = reg;
3169	}
3170
3171	if (avail == NULL)
3172		goto deadlock;
3173
3174	/* None available, try to steal one or wait for a user to finish */
3175	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3176		if (reg->pin_count)
3177			continue;
3178
3179		return reg;
3180	}
3181
3182deadlock:
3183	/* Wait for completion of pending flips which consume fences */
3184	if (intel_has_pending_fb_unpin(dev))
3185		return ERR_PTR(-EAGAIN);
3186
3187	return ERR_PTR(-EDEADLK);
3188}
3189
3190/**
3191 * i915_gem_object_get_fence - set up fencing for an object
3192 * @obj: object to map through a fence reg
3193 *
3194 * When mapping objects through the GTT, userspace wants to be able to write
3195 * to them without having to worry about swizzling if the object is tiled.
3196 * This function walks the fence regs looking for a free one for @obj,
3197 * stealing one if it can't find any.
3198 *
3199 * It then sets up the reg based on the object's properties: address, pitch
3200 * and tiling format.
3201 *
3202 * For an untiled surface, this removes any existing fence.
3203 */
3204int
3205i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3206{
3207	struct drm_device *dev = obj->base.dev;
3208	struct drm_i915_private *dev_priv = dev->dev_private;
3209	bool enable = obj->tiling_mode != I915_TILING_NONE;
3210	struct drm_i915_fence_reg *reg;
3211	int ret;
3212
3213	/* Have we updated the tiling parameters upon the object and so
3214	 * will need to serialise the write to the associated fence register?
3215	 */
3216	if (obj->fence_dirty) {
3217		ret = i915_gem_object_wait_fence(obj);
3218		if (ret)
3219			return ret;
3220	}
3221
3222	/* Just update our place in the LRU if our fence is getting reused. */
3223	if (obj->fence_reg != I915_FENCE_REG_NONE) {
3224		reg = &dev_priv->fence_regs[obj->fence_reg];
3225		if (!obj->fence_dirty) {
3226			list_move_tail(&reg->lru_list,
3227				       &dev_priv->mm.fence_list);
3228			return 0;
3229		}
3230	} else if (enable) {
3231		reg = i915_find_fence_reg(dev);
3232		if (IS_ERR(reg))
3233			return PTR_ERR(reg);
3234
3235		if (reg->obj) {
3236			struct drm_i915_gem_object *old = reg->obj;
3237
3238			ret = i915_gem_object_wait_fence(old);
3239			if (ret)
3240				return ret;
3241
3242			i915_gem_object_fence_lost(old);
3243		}
3244	} else
3245		return 0;
3246
3247	i915_gem_object_update_fence(obj, reg, enable);
3248
3249	return 0;
3250}
3251
3252static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3253				     struct drm_mm_node *gtt_space,
3254				     unsigned long cache_level)
3255{
 
3256	struct drm_mm_node *other;
3257
3258	/* On non-LLC machines we have to be careful when putting differing
3259	 * types of snoopable memory together to avoid the prefetcher
3260	 * crossing memory domains and dying.
 
 
 
3261	 */
3262	if (HAS_LLC(dev))
3263		return true;
3264
3265	if (!drm_mm_node_allocated(gtt_space))
3266		return true;
3267
3268	if (list_empty(&gtt_space->node_list))
3269		return true;
3270
3271	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3272	if (other->allocated && !other->hole_follows && other->color != cache_level)
3273		return false;
3274
3275	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3276	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3277		return false;
3278
3279	return true;
3280}
3281
3282static void i915_gem_verify_gtt(struct drm_device *dev)
3283{
3284#if WATCH_GTT
3285	struct drm_i915_private *dev_priv = dev->dev_private;
3286	struct drm_i915_gem_object *obj;
3287	int err = 0;
3288
3289	list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3290		if (obj->gtt_space == NULL) {
3291			printk(KERN_ERR "object found on GTT list with no space reserved\n");
3292			err++;
3293			continue;
3294		}
3295
3296		if (obj->cache_level != obj->gtt_space->color) {
3297			printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3298			       i915_gem_obj_ggtt_offset(obj),
3299			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3300			       obj->cache_level,
3301			       obj->gtt_space->color);
3302			err++;
3303			continue;
3304		}
3305
3306		if (!i915_gem_valid_gtt_space(dev,
3307					      obj->gtt_space,
3308					      obj->cache_level)) {
3309			printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3310			       i915_gem_obj_ggtt_offset(obj),
3311			       i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3312			       obj->cache_level);
3313			err++;
3314			continue;
3315		}
3316	}
3317
3318	WARN_ON(err);
3319#endif
3320}
3321
3322/**
3323 * Finds free space in the GTT aperture and binds the object there.
 
3324 */
3325static struct i915_vma *
3326i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3327			   struct i915_address_space *vm,
 
3328			   unsigned alignment,
3329			   uint64_t flags)
3330{
3331	struct drm_device *dev = obj->base.dev;
3332	struct drm_i915_private *dev_priv = dev->dev_private;
3333	u32 size, fence_size, fence_alignment, unfenced_alignment;
3334	unsigned long start =
3335		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3336	unsigned long end =
3337		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3338	struct i915_vma *vma;
3339	int ret;
3340
3341	fence_size = i915_gem_get_gtt_size(dev,
3342					   obj->base.size,
3343					   obj->tiling_mode);
3344	fence_alignment = i915_gem_get_gtt_alignment(dev,
3345						     obj->base.size,
3346						     obj->tiling_mode, true);
3347	unfenced_alignment =
3348		i915_gem_get_gtt_alignment(dev,
3349					   obj->base.size,
3350					   obj->tiling_mode, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3351
3352	if (alignment == 0)
3353		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3354						unfenced_alignment;
3355	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3356		DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
 
 
3357		return ERR_PTR(-EINVAL);
3358	}
3359
3360	size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3361
3362	/* If the object is bigger than the entire aperture, reject it early
3363	 * before evicting everything in a vain attempt to find space.
3364	 */
3365	if (obj->base.size > end) {
3366		DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3367			  obj->base.size,
3368			  flags & PIN_MAPPABLE ? "mappable" : "total",
3369			  end);
3370		return ERR_PTR(-E2BIG);
3371	}
3372
3373	ret = i915_gem_object_get_pages(obj);
3374	if (ret)
3375		return ERR_PTR(ret);
3376
3377	i915_gem_object_pin_pages(obj);
3378
3379	vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
 
 
3380	if (IS_ERR(vma))
3381		goto err_unpin;
3382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3383search_free:
3384	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3385						  size, alignment,
3386						  obj->cache_level,
3387						  start, end,
3388						  DRM_MM_SEARCH_DEFAULT,
3389						  DRM_MM_CREATE_DEFAULT);
3390	if (ret) {
3391		ret = i915_gem_evict_something(dev, vm, size, alignment,
3392					       obj->cache_level,
3393					       start, end,
3394					       flags);
3395		if (ret == 0)
3396			goto search_free;
3397
3398		goto err_free_vma;
 
3399	}
3400	if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3401					      obj->cache_level))) {
3402		ret = -EINVAL;
3403		goto err_remove_node;
3404	}
3405
3406	ret = i915_gem_gtt_prepare_object(obj);
 
3407	if (ret)
3408		goto err_remove_node;
3409
3410	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3411	list_add_tail(&vma->mm_list, &vm->inactive_list);
3412
3413	if (i915_is_ggtt(vm)) {
3414		bool mappable, fenceable;
3415
3416		fenceable = (vma->node.size == fence_size &&
3417			     (vma->node.start & (fence_alignment - 1)) == 0);
3418
3419		mappable = (vma->node.start + obj->base.size <=
3420			    dev_priv->gtt.mappable_end);
3421
3422		obj->map_and_fenceable = mappable && fenceable;
3423	}
3424
3425	WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3426
3427	trace_i915_vma_bind(vma, flags);
3428	vma->bind_vma(vma, obj->cache_level,
3429		      flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3430
3431	i915_gem_verify_gtt(dev);
3432	return vma;
3433
3434err_remove_node:
3435	drm_mm_remove_node(&vma->node);
3436err_free_vma:
3437	i915_gem_vma_destroy(vma);
3438	vma = ERR_PTR(ret);
3439err_unpin:
3440	i915_gem_object_unpin_pages(obj);
3441	return vma;
3442}
3443
3444bool
3445i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3446			bool force)
3447{
3448	/* If we don't have a page list set up, then we're not pinned
3449	 * to GPU, and we can ignore the cache flush because it'll happen
3450	 * again at bind time.
3451	 */
3452	if (obj->pages == NULL)
3453		return false;
3454
3455	/*
3456	 * Stolen memory is always coherent with the GPU as it is explicitly
3457	 * marked as wc by the system, or the system is cache-coherent.
3458	 */
3459	if (obj->stolen)
3460		return false;
3461
3462	/* If the GPU is snooping the contents of the CPU cache,
3463	 * we do not need to manually clear the CPU cache lines.  However,
3464	 * the caches are only snooped when the render cache is
3465	 * flushed/invalidated.  As we always have to emit invalidations
3466	 * and flushes when moving into and out of the RENDER domain, correct
3467	 * snooping behaviour occurs naturally as the result of our domain
3468	 * tracking.
3469	 */
3470	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
 
3471		return false;
 
3472
3473	trace_i915_gem_object_clflush(obj);
3474	drm_clflush_sg(obj->pages);
 
3475
3476	return true;
3477}
3478
3479/** Flushes the GTT write domain for the object if it's dirty. */
3480static void
3481i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3482{
3483	uint32_t old_write_domain;
3484
3485	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3486		return;
3487
3488	/* No actual flushing is required for the GTT write domain.  Writes
3489	 * to it immediately go to main memory as far as we know, so there's
3490	 * no chipset flush.  It also doesn't land in render cache.
3491	 *
3492	 * However, we do have to enforce the order so that all writes through
3493	 * the GTT land before any writes to the device, such as updates to
3494	 * the GATT itself.
3495	 */
3496	wmb();
3497
3498	old_write_domain = obj->base.write_domain;
3499	obj->base.write_domain = 0;
3500
 
 
3501	trace_i915_gem_object_change_domain(obj,
3502					    obj->base.read_domains,
3503					    old_write_domain);
3504}
3505
3506/** Flushes the CPU write domain for the object if it's dirty. */
3507static void
3508i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3509				       bool force)
3510{
3511	uint32_t old_write_domain;
3512
3513	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3514		return;
3515
3516	if (i915_gem_clflush_object(obj, force))
3517		i915_gem_chipset_flush(obj->base.dev);
3518
3519	old_write_domain = obj->base.write_domain;
3520	obj->base.write_domain = 0;
3521
 
 
3522	trace_i915_gem_object_change_domain(obj,
3523					    obj->base.read_domains,
3524					    old_write_domain);
3525}
3526
3527/**
3528 * Moves a single object to the GTT read, and possibly write domain.
3529 *
3530 * This function returns when the move is complete, including waiting on
3531 * flushes to occur.
3532 */
3533int
3534i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3535{
3536	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3537	uint32_t old_write_domain, old_read_domains;
 
3538	int ret;
3539
3540	/* Not valid to be called on unbound objects. */
3541	if (!i915_gem_obj_bound_any(obj))
3542		return -EINVAL;
3543
3544	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3545		return 0;
3546
3547	ret = i915_gem_object_wait_rendering(obj, !write);
3548	if (ret)
3549		return ret;
3550
3551	i915_gem_object_flush_cpu_write_domain(obj, false);
 
 
 
 
 
 
 
 
 
 
 
 
3552
3553	/* Serialise direct access to this object with the barriers for
3554	 * coherent writes from the GPU, by effectively invalidating the
3555	 * GTT domain upon first access.
3556	 */
3557	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3558		mb();
3559
3560	old_write_domain = obj->base.write_domain;
3561	old_read_domains = obj->base.read_domains;
3562
3563	/* It should now be out of any other write domains, and we can update
3564	 * the domain values for our changes.
3565	 */
3566	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3567	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3568	if (write) {
3569		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3570		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3571		obj->dirty = 1;
3572	}
3573
3574	trace_i915_gem_object_change_domain(obj,
3575					    old_read_domains,
3576					    old_write_domain);
3577
3578	/* And bump the LRU for this access */
3579	if (i915_gem_object_is_inactive(obj)) {
3580		struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3581		if (vma)
3582			list_move_tail(&vma->mm_list,
3583				       &dev_priv->gtt.base.inactive_list);
3584
3585	}
3586
3587	return 0;
3588}
3589
 
 
 
 
 
 
 
 
 
 
 
 
 
3590int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3591				    enum i915_cache_level cache_level)
3592{
3593	struct drm_device *dev = obj->base.dev;
3594	struct i915_vma *vma, *next;
3595	int ret;
 
3596
3597	if (obj->cache_level == cache_level)
3598		return 0;
 
 
 
 
 
 
 
 
 
3599
3600	if (i915_gem_obj_is_pinned(obj)) {
3601		DRM_DEBUG("can not change the cache level of pinned objects\n");
3602		return -EBUSY;
3603	}
3604
3605	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3606		if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3607			ret = i915_vma_unbind(vma);
3608			if (ret)
3609				return ret;
3610		}
 
3611	}
3612
3613	if (i915_gem_obj_bound_any(obj)) {
3614		ret = i915_gem_object_finish_gpu(obj);
 
 
 
 
 
 
 
 
 
 
 
3615		if (ret)
3616			return ret;
3617
3618		i915_gem_object_finish_gtt(obj);
 
 
 
 
 
 
 
 
3619
3620		/* Before SandyBridge, you could not use tiling or fence
3621		 * registers with snooped memory, so relinquish any fences
3622		 * currently pointing to our region in the aperture.
3623		 */
3624		if (INTEL_INFO(dev)->gen < 6) {
 
 
3625			ret = i915_gem_object_put_fence(obj);
3626			if (ret)
3627				return ret;
 
 
 
 
 
 
 
 
3628		}
3629
3630		list_for_each_entry(vma, &obj->vma_list, vma_link)
3631			if (drm_mm_node_allocated(&vma->node))
3632				vma->bind_vma(vma, cache_level,
3633					      obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
 
 
 
 
3634	}
3635
3636	list_for_each_entry(vma, &obj->vma_list, vma_link)
3637		vma->node.color = cache_level;
3638	obj->cache_level = cache_level;
3639
3640	if (cpu_write_needs_clflush(obj)) {
3641		u32 old_read_domains, old_write_domain;
3642
3643		/* If we're coming from LLC cached, then we haven't
3644		 * actually been tracking whether the data is in the
3645		 * CPU cache or not, since we only allow one bit set
3646		 * in obj->write_domain and have been skipping the clflushes.
3647		 * Just set it to the CPU cache for now.
3648		 */
3649		WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3650
3651		old_read_domains = obj->base.read_domains;
3652		old_write_domain = obj->base.write_domain;
3653
3654		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3655		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3656
3657		trace_i915_gem_object_change_domain(obj,
3658						    old_read_domains,
3659						    old_write_domain);
3660	}
3661
3662	i915_gem_verify_gtt(dev);
3663	return 0;
3664}
3665
3666int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3667			       struct drm_file *file)
3668{
3669	struct drm_i915_gem_caching *args = data;
3670	struct drm_i915_gem_object *obj;
3671	int ret;
3672
3673	ret = i915_mutex_lock_interruptible(dev);
3674	if (ret)
3675		return ret;
3676
3677	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3678	if (&obj->base == NULL) {
3679		ret = -ENOENT;
3680		goto unlock;
3681	}
3682
3683	switch (obj->cache_level) {
3684	case I915_CACHE_LLC:
3685	case I915_CACHE_L3_LLC:
3686		args->caching = I915_CACHING_CACHED;
3687		break;
3688
3689	case I915_CACHE_WT:
3690		args->caching = I915_CACHING_DISPLAY;
3691		break;
3692
3693	default:
3694		args->caching = I915_CACHING_NONE;
3695		break;
3696	}
3697
3698	drm_gem_object_unreference(&obj->base);
3699unlock:
3700	mutex_unlock(&dev->struct_mutex);
3701	return ret;
3702}
3703
3704int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3705			       struct drm_file *file)
3706{
 
3707	struct drm_i915_gem_caching *args = data;
3708	struct drm_i915_gem_object *obj;
3709	enum i915_cache_level level;
3710	int ret;
3711
3712	switch (args->caching) {
3713	case I915_CACHING_NONE:
3714		level = I915_CACHE_NONE;
3715		break;
3716	case I915_CACHING_CACHED:
 
 
 
 
 
 
 
 
 
3717		level = I915_CACHE_LLC;
3718		break;
3719	case I915_CACHING_DISPLAY:
3720		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3721		break;
3722	default:
3723		return -EINVAL;
3724	}
3725
 
 
3726	ret = i915_mutex_lock_interruptible(dev);
3727	if (ret)
3728		return ret;
3729
3730	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3731	if (&obj->base == NULL) {
3732		ret = -ENOENT;
3733		goto unlock;
3734	}
3735
3736	ret = i915_gem_object_set_cache_level(obj, level);
3737
3738	drm_gem_object_unreference(&obj->base);
3739unlock:
3740	mutex_unlock(&dev->struct_mutex);
 
 
 
3741	return ret;
3742}
3743
3744static bool is_pin_display(struct drm_i915_gem_object *obj)
3745{
3746	/* There are 3 sources that pin objects:
3747	 *   1. The display engine (scanouts, sprites, cursors);
3748	 *   2. Reservations for execbuffer;
3749	 *   3. The user.
3750	 *
3751	 * We can ignore reservations as we hold the struct_mutex and
3752	 * are only called outside of the reservation path.  The user
3753	 * can only increment pin_count once, and so if after
3754	 * subtracting the potential reference by the user, any pin_count
3755	 * remains, it must be due to another use by the display engine.
3756	 */
3757	return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3758}
3759
3760/*
3761 * Prepare buffer for display plane (scanout, cursors, etc).
3762 * Can be called from an uninterruptible phase (modesetting) and allows
3763 * any flushes to be pipelined (for pageflips).
3764 */
3765int
3766i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3767				     u32 alignment,
3768				     struct intel_ring_buffer *pipelined)
3769{
3770	u32 old_read_domains, old_write_domain;
3771	int ret;
3772
3773	if (pipelined != obj->ring) {
3774		ret = i915_gem_object_sync(obj, pipelined);
3775		if (ret)
3776			return ret;
3777	}
3778
3779	/* Mark the pin_display early so that we account for the
3780	 * display coherency whilst setting up the cache domains.
3781	 */
3782	obj->pin_display = true;
3783
3784	/* The display engine is not coherent with the LLC cache on gen6.  As
3785	 * a result, we make sure that the pinning that is about to occur is
3786	 * done with uncached PTEs. This is lowest common denominator for all
3787	 * chipsets.
3788	 *
3789	 * However for gen6+, we could do better by using the GFDT bit instead
3790	 * of uncaching, which would allow us to flush all the LLC-cached data
3791	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3792	 */
3793	ret = i915_gem_object_set_cache_level(obj,
3794					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3795	if (ret)
3796		goto err_unpin_display;
3797
3798	/* As the user may map the buffer once pinned in the display plane
3799	 * (e.g. libkms for the bootup splash), we have to ensure that we
3800	 * always use map_and_fenceable for all scanout buffers.
3801	 */
3802	ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
 
 
3803	if (ret)
3804		goto err_unpin_display;
3805
3806	i915_gem_object_flush_cpu_write_domain(obj, true);
3807
3808	old_write_domain = obj->base.write_domain;
3809	old_read_domains = obj->base.read_domains;
3810
3811	/* It should now be out of any other write domains, and we can update
3812	 * the domain values for our changes.
3813	 */
3814	obj->base.write_domain = 0;
3815	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3816
3817	trace_i915_gem_object_change_domain(obj,
3818					    old_read_domains,
3819					    old_write_domain);
3820
3821	return 0;
3822
3823err_unpin_display:
3824	obj->pin_display = is_pin_display(obj);
3825	return ret;
3826}
3827
3828void
3829i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
 
3830{
3831	i915_gem_object_ggtt_unpin(obj);
3832	obj->pin_display = is_pin_display(obj);
3833}
3834
3835int
3836i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3837{
3838	int ret;
3839
3840	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3841		return 0;
3842
3843	ret = i915_gem_object_wait_rendering(obj, false);
3844	if (ret)
3845		return ret;
3846
3847	/* Ensure that we invalidate the GPU's caches and TLBs. */
3848	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3849	return 0;
3850}
3851
3852/**
3853 * Moves a single object to the CPU read, and possibly write domain.
3854 *
3855 * This function returns when the move is complete, including waiting on
3856 * flushes to occur.
3857 */
3858int
3859i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3860{
3861	uint32_t old_write_domain, old_read_domains;
3862	int ret;
3863
3864	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3865		return 0;
3866
3867	ret = i915_gem_object_wait_rendering(obj, !write);
3868	if (ret)
3869		return ret;
3870
3871	i915_gem_object_flush_gtt_write_domain(obj);
3872
3873	old_write_domain = obj->base.write_domain;
3874	old_read_domains = obj->base.read_domains;
3875
3876	/* Flush the CPU cache if it's still invalid. */
3877	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3878		i915_gem_clflush_object(obj, false);
3879
3880		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3881	}
3882
3883	/* It should now be out of any other write domains, and we can update
3884	 * the domain values for our changes.
3885	 */
3886	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3887
3888	/* If we're writing through the CPU, then the GPU read domains will
3889	 * need to be invalidated at next use.
3890	 */
3891	if (write) {
3892		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3893		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3894	}
3895
3896	trace_i915_gem_object_change_domain(obj,
3897					    old_read_domains,
3898					    old_write_domain);
3899
3900	return 0;
3901}
3902
3903/* Throttle our rendering by waiting until the ring has completed our requests
3904 * emitted over 20 msec ago.
3905 *
3906 * Note that if we were to use the current jiffies each time around the loop,
3907 * we wouldn't escape the function with any frames outstanding if the time to
3908 * render a frame was over 20ms.
3909 *
3910 * This should get us reasonable parallelism between CPU and GPU but also
3911 * relatively low latency when blocking on a particular request to finish.
3912 */
3913static int
3914i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3915{
3916	struct drm_i915_private *dev_priv = dev->dev_private;
3917	struct drm_i915_file_private *file_priv = file->driver_priv;
3918	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3919	struct drm_i915_gem_request *request;
3920	struct intel_ring_buffer *ring = NULL;
3921	unsigned reset_counter;
3922	u32 seqno = 0;
3923	int ret;
3924
3925	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3926	if (ret)
3927		return ret;
3928
3929	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3930	if (ret)
3931		return ret;
3932
3933	spin_lock(&file_priv->mm.lock);
3934	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3935		if (time_after_eq(request->emitted_jiffies, recent_enough))
3936			break;
3937
3938		ring = request->ring;
3939		seqno = request->seqno;
 
 
 
 
 
 
3940	}
3941	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
 
 
3942	spin_unlock(&file_priv->mm.lock);
3943
3944	if (seqno == 0)
3945		return 0;
3946
3947	ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3948	if (ret == 0)
3949		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3950
 
 
3951	return ret;
3952}
3953
3954static bool
3955i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3956{
3957	struct drm_i915_gem_object *obj = vma->obj;
3958
3959	if (alignment &&
3960	    vma->node.start & (alignment - 1))
3961		return true;
3962
3963	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3964		return true;
3965
3966	if (flags & PIN_OFFSET_BIAS &&
3967	    vma->node.start < (flags & PIN_OFFSET_MASK))
3968		return true;
3969
 
 
 
 
3970	return false;
3971}
3972
3973int
3974i915_gem_object_pin(struct drm_i915_gem_object *obj,
3975		    struct i915_address_space *vm,
3976		    uint32_t alignment,
3977		    uint64_t flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3978{
 
3979	struct i915_vma *vma;
 
3980	int ret;
3981
 
 
 
3982	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3983		return -EINVAL;
3984
3985	vma = i915_gem_obj_to_vma(obj, vm);
 
 
 
 
 
 
 
 
 
 
 
3986	if (vma) {
3987		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3988			return -EBUSY;
3989
3990		if (i915_vma_misplaced(vma, alignment, flags)) {
3991			WARN(vma->pin_count,
3992			     "bo is already pinned with incorrect alignment:"
3993			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3994			     " obj->map_and_fenceable=%d\n",
3995			     i915_gem_obj_offset(obj, vm), alignment,
 
 
 
3996			     !!(flags & PIN_MAPPABLE),
3997			     obj->map_and_fenceable);
3998			ret = i915_vma_unbind(vma);
3999			if (ret)
4000				return ret;
4001
4002			vma = NULL;
4003		}
4004	}
4005
 
4006	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4007		vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
 
4008		if (IS_ERR(vma))
4009			return PTR_ERR(vma);
 
 
 
 
4010	}
4011
4012	if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4013		vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
 
 
 
4014
4015	vma->pin_count++;
4016	if (flags & PIN_MAPPABLE)
4017		obj->pin_mappable |= true;
4018
4019	return 0;
4020}
4021
4022void
4023i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
 
 
 
4024{
4025	struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4026
4027	BUG_ON(!vma);
4028	BUG_ON(vma->pin_count == 0);
4029	BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4030
4031	if (--vma->pin_count == 0)
4032		obj->pin_mappable = false;
4033}
4034
4035int
4036i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4037		   struct drm_file *file)
 
 
4038{
4039	struct drm_i915_gem_pin *args = data;
4040	struct drm_i915_gem_object *obj;
4041	int ret;
4042
4043	if (INTEL_INFO(dev)->gen >= 6)
4044		return -ENODEV;
4045
4046	ret = i915_mutex_lock_interruptible(dev);
4047	if (ret)
4048		return ret;
4049
4050	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4051	if (&obj->base == NULL) {
4052		ret = -ENOENT;
4053		goto unlock;
4054	}
4055
4056	if (obj->madv != I915_MADV_WILLNEED) {
4057		DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4058		ret = -EFAULT;
4059		goto out;
4060	}
4061
4062	if (obj->pin_filp != NULL && obj->pin_filp != file) {
4063		DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4064			  args->handle);
4065		ret = -EINVAL;
4066		goto out;
4067	}
4068
4069	if (obj->user_pin_count == ULONG_MAX) {
4070		ret = -EBUSY;
4071		goto out;
4072	}
4073
4074	if (obj->user_pin_count == 0) {
4075		ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4076		if (ret)
4077			goto out;
4078	}
4079
4080	obj->user_pin_count++;
4081	obj->pin_filp = file;
4082
4083	args->offset = i915_gem_obj_ggtt_offset(obj);
4084out:
4085	drm_gem_object_unreference(&obj->base);
4086unlock:
4087	mutex_unlock(&dev->struct_mutex);
4088	return ret;
4089}
4090
4091int
4092i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4093		     struct drm_file *file)
4094{
4095	struct drm_i915_gem_pin *args = data;
4096	struct drm_i915_gem_object *obj;
4097	int ret;
4098
4099	ret = i915_mutex_lock_interruptible(dev);
4100	if (ret)
4101		return ret;
4102
4103	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4104	if (&obj->base == NULL) {
4105		ret = -ENOENT;
4106		goto unlock;
4107	}
4108
4109	if (obj->pin_filp != file) {
4110		DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4111			  args->handle);
4112		ret = -EINVAL;
4113		goto out;
4114	}
4115	obj->user_pin_count--;
4116	if (obj->user_pin_count == 0) {
4117		obj->pin_filp = NULL;
4118		i915_gem_object_ggtt_unpin(obj);
4119	}
4120
4121out:
4122	drm_gem_object_unreference(&obj->base);
4123unlock:
4124	mutex_unlock(&dev->struct_mutex);
4125	return ret;
4126}
4127
4128int
4129i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4130		    struct drm_file *file)
4131{
4132	struct drm_i915_gem_busy *args = data;
4133	struct drm_i915_gem_object *obj;
4134	int ret;
4135
4136	ret = i915_mutex_lock_interruptible(dev);
4137	if (ret)
4138		return ret;
4139
4140	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4141	if (&obj->base == NULL) {
4142		ret = -ENOENT;
4143		goto unlock;
4144	}
4145
4146	/* Count all active objects as busy, even if they are currently not used
4147	 * by the gpu. Users of this interface expect objects to eventually
4148	 * become non-busy without any further actions, therefore emit any
4149	 * necessary flushes here.
4150	 */
4151	ret = i915_gem_object_flush_active(obj);
 
 
 
 
 
 
 
 
 
4152
4153	args->busy = obj->active;
4154	if (obj->ring) {
4155		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4156		args->busy |= intel_ring_flag(obj->ring) << 16;
 
 
4157	}
4158
 
4159	drm_gem_object_unreference(&obj->base);
4160unlock:
4161	mutex_unlock(&dev->struct_mutex);
4162	return ret;
4163}
4164
4165int
4166i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4167			struct drm_file *file_priv)
4168{
4169	return i915_gem_ring_throttle(dev, file_priv);
4170}
4171
4172int
4173i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4174		       struct drm_file *file_priv)
4175{
 
4176	struct drm_i915_gem_madvise *args = data;
4177	struct drm_i915_gem_object *obj;
4178	int ret;
4179
4180	switch (args->madv) {
4181	case I915_MADV_DONTNEED:
4182	case I915_MADV_WILLNEED:
4183	    break;
4184	default:
4185	    return -EINVAL;
4186	}
4187
4188	ret = i915_mutex_lock_interruptible(dev);
4189	if (ret)
4190		return ret;
4191
4192	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4193	if (&obj->base == NULL) {
4194		ret = -ENOENT;
4195		goto unlock;
4196	}
4197
4198	if (i915_gem_obj_is_pinned(obj)) {
4199		ret = -EINVAL;
4200		goto out;
4201	}
4202
 
 
 
 
 
 
 
 
 
4203	if (obj->madv != __I915_MADV_PURGED)
4204		obj->madv = args->madv;
4205
4206	/* if the object is no longer attached, discard its backing storage */
4207	if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4208		i915_gem_object_truncate(obj);
4209
4210	args->retained = obj->madv != __I915_MADV_PURGED;
4211
4212out:
4213	drm_gem_object_unreference(&obj->base);
4214unlock:
4215	mutex_unlock(&dev->struct_mutex);
4216	return ret;
4217}
4218
4219void i915_gem_object_init(struct drm_i915_gem_object *obj,
4220			  const struct drm_i915_gem_object_ops *ops)
4221{
 
 
4222	INIT_LIST_HEAD(&obj->global_list);
4223	INIT_LIST_HEAD(&obj->ring_list);
 
4224	INIT_LIST_HEAD(&obj->obj_exec_link);
4225	INIT_LIST_HEAD(&obj->vma_list);
 
4226
4227	obj->ops = ops;
4228
4229	obj->fence_reg = I915_FENCE_REG_NONE;
4230	obj->madv = I915_MADV_WILLNEED;
4231	/* Avoid an unnecessary call to unbind on the first bind. */
4232	obj->map_and_fenceable = true;
4233
4234	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4235}
4236
4237static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
 
4238	.get_pages = i915_gem_object_get_pages_gtt,
4239	.put_pages = i915_gem_object_put_pages_gtt,
4240};
4241
4242struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4243						  size_t size)
4244{
4245	struct drm_i915_gem_object *obj;
4246	struct address_space *mapping;
4247	gfp_t mask;
4248
4249	obj = i915_gem_object_alloc(dev);
4250	if (obj == NULL)
4251		return NULL;
4252
4253	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4254		i915_gem_object_free(obj);
4255		return NULL;
4256	}
4257
4258	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4259	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4260		/* 965gm cannot relocate objects above 4GiB. */
4261		mask &= ~__GFP_HIGHMEM;
4262		mask |= __GFP_DMA32;
4263	}
4264
4265	mapping = file_inode(obj->base.filp)->i_mapping;
4266	mapping_set_gfp_mask(mapping, mask);
4267
4268	i915_gem_object_init(obj, &i915_gem_object_ops);
4269
4270	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4271	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4272
4273	if (HAS_LLC(dev)) {
4274		/* On some devices, we can have the GPU use the LLC (the CPU
4275		 * cache) for about a 10% performance improvement
4276		 * compared to uncached.  Graphics requests other than
4277		 * display scanout are coherent with the CPU in
4278		 * accessing this cache.  This means in this mode we
4279		 * don't need to clflush on the CPU side, and on the
4280		 * GPU side we only need to flush internal caches to
4281		 * get data visible to the CPU.
4282		 *
4283		 * However, we maintain the display planes as UC, and so
4284		 * need to rebind when first used as such.
4285		 */
4286		obj->cache_level = I915_CACHE_LLC;
4287	} else
4288		obj->cache_level = I915_CACHE_NONE;
4289
4290	trace_i915_gem_object_create(obj);
4291
4292	return obj;
4293}
4294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4295void i915_gem_free_object(struct drm_gem_object *gem_obj)
4296{
4297	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4298	struct drm_device *dev = obj->base.dev;
4299	struct drm_i915_private *dev_priv = dev->dev_private;
4300	struct i915_vma *vma, *next;
4301
4302	intel_runtime_pm_get(dev_priv);
4303
4304	trace_i915_gem_object_destroy(obj);
4305
4306	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4307		int ret;
4308
4309		vma->pin_count = 0;
4310		ret = i915_vma_unbind(vma);
4311		if (WARN_ON(ret == -ERESTARTSYS)) {
4312			bool was_interruptible;
4313
4314			was_interruptible = dev_priv->mm.interruptible;
4315			dev_priv->mm.interruptible = false;
4316
4317			WARN_ON(i915_vma_unbind(vma));
4318
4319			dev_priv->mm.interruptible = was_interruptible;
4320		}
4321	}
4322
4323	i915_gem_object_detach_phys(obj);
4324
4325	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4326	 * before progressing. */
4327	if (obj->stolen)
4328		i915_gem_object_unpin_pages(obj);
4329
 
 
 
 
 
 
 
4330	if (WARN_ON(obj->pages_pin_count))
4331		obj->pages_pin_count = 0;
 
 
4332	i915_gem_object_put_pages(obj);
4333	i915_gem_object_free_mmap_offset(obj);
4334	i915_gem_object_release_stolen(obj);
4335
4336	BUG_ON(obj->pages);
4337
4338	if (obj->base.import_attach)
4339		drm_prime_gem_destroy(&obj->base, NULL);
4340
 
 
 
4341	drm_gem_object_release(&obj->base);
4342	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4343
4344	kfree(obj->bit_17);
4345	i915_gem_object_free(obj);
4346
4347	intel_runtime_pm_put(dev_priv);
4348}
4349
4350struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4351				     struct i915_address_space *vm)
4352{
4353	struct i915_vma *vma;
4354	list_for_each_entry(vma, &obj->vma_list, vma_link)
4355		if (vma->vm == vm)
 
4356			return vma;
 
 
 
 
 
 
 
 
 
 
 
 
4357
 
 
 
 
4358	return NULL;
4359}
4360
4361void i915_gem_vma_destroy(struct i915_vma *vma)
4362{
4363	WARN_ON(vma->node.allocated);
4364
4365	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4366	if (!list_empty(&vma->exec_list))
4367		return;
4368
4369	list_del(&vma->vma_link);
 
 
 
4370
4371	kfree(vma);
 
 
 
 
 
 
 
 
 
 
 
4372}
4373
4374int
4375i915_gem_suspend(struct drm_device *dev)
4376{
4377	struct drm_i915_private *dev_priv = dev->dev_private;
4378	int ret = 0;
4379
4380	mutex_lock(&dev->struct_mutex);
4381	if (dev_priv->ums.mm_suspended)
4382		goto err;
4383
4384	ret = i915_gpu_idle(dev);
4385	if (ret)
4386		goto err;
4387
4388	i915_gem_retire_requests(dev);
4389
4390	/* Under UMS, be paranoid and evict. */
4391	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4392		i915_gem_evict_everything(dev);
4393
4394	i915_kernel_lost_context(dev);
4395	i915_gem_cleanup_ringbuffer(dev);
4396
4397	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
4398	 * We need to replace this with a semaphore, or something.
4399	 * And not confound ums.mm_suspended!
4400	 */
4401	dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4402							     DRIVER_MODESET);
4403	mutex_unlock(&dev->struct_mutex);
4404
4405	del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4406	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4407	cancel_delayed_work_sync(&dev_priv->mm.idle_work);
 
 
 
 
 
4408
4409	return 0;
4410
4411err:
4412	mutex_unlock(&dev->struct_mutex);
4413	return ret;
4414}
4415
4416int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4417{
 
4418	struct drm_device *dev = ring->dev;
4419	struct drm_i915_private *dev_priv = dev->dev_private;
4420	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4421	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4422	int i, ret;
4423
4424	if (!HAS_L3_DPF(dev) || !remap_info)
4425		return 0;
4426
4427	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4428	if (ret)
4429		return ret;
4430
4431	/*
4432	 * Note: We do not worry about the concurrent register cacheline hang
4433	 * here because no other code should access these registers other than
4434	 * at initialization time.
4435	 */
4436	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4437		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4438		intel_ring_emit(ring, reg_base + i);
4439		intel_ring_emit(ring, remap_info[i/4]);
4440	}
4441
4442	intel_ring_advance(ring);
4443
4444	return ret;
4445}
4446
4447void i915_gem_init_swizzling(struct drm_device *dev)
4448{
4449	struct drm_i915_private *dev_priv = dev->dev_private;
4450
4451	if (INTEL_INFO(dev)->gen < 5 ||
4452	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4453		return;
4454
4455	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4456				 DISP_TILE_SURFACE_SWIZZLING);
4457
4458	if (IS_GEN5(dev))
4459		return;
4460
4461	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4462	if (IS_GEN6(dev))
4463		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4464	else if (IS_GEN7(dev))
4465		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4466	else if (IS_GEN8(dev))
4467		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4468	else
4469		BUG();
4470}
4471
4472static bool
4473intel_enable_blt(struct drm_device *dev)
4474{
4475	if (!HAS_BLT(dev))
4476		return false;
4477
4478	/* The blitter was dysfunctional on early prototypes */
4479	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4480		DRM_INFO("BLT not supported on this pre-production hardware;"
4481			 " graphics performance will be degraded.\n");
4482		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4483	}
4484
4485	return true;
4486}
4487
4488static int i915_gem_init_rings(struct drm_device *dev)
4489{
4490	struct drm_i915_private *dev_priv = dev->dev_private;
4491	int ret;
4492
4493	ret = intel_init_render_ring_buffer(dev);
4494	if (ret)
4495		return ret;
4496
4497	if (HAS_BSD(dev)) {
4498		ret = intel_init_bsd_ring_buffer(dev);
4499		if (ret)
4500			goto cleanup_render_ring;
4501	}
4502
4503	if (intel_enable_blt(dev)) {
4504		ret = intel_init_blt_ring_buffer(dev);
4505		if (ret)
4506			goto cleanup_bsd_ring;
4507	}
4508
4509	if (HAS_VEBOX(dev)) {
4510		ret = intel_init_vebox_ring_buffer(dev);
4511		if (ret)
4512			goto cleanup_blt_ring;
4513	}
4514
4515
4516	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4517	if (ret)
4518		goto cleanup_vebox_ring;
 
4519
4520	return 0;
4521
4522cleanup_vebox_ring:
4523	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4524cleanup_blt_ring:
4525	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4526cleanup_bsd_ring:
4527	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4528cleanup_render_ring:
4529	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4530
4531	return ret;
4532}
4533
4534int
4535i915_gem_init_hw(struct drm_device *dev)
4536{
4537	struct drm_i915_private *dev_priv = dev->dev_private;
4538	int ret, i;
 
4539
4540	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4541		return -EIO;
4542
 
 
 
4543	if (dev_priv->ellc_size)
4544		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4545
4546	if (IS_HASWELL(dev))
4547		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4548			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4549
4550	if (HAS_PCH_NOP(dev)) {
4551		if (IS_IVYBRIDGE(dev)) {
4552			u32 temp = I915_READ(GEN7_MSG_CTL);
4553			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4554			I915_WRITE(GEN7_MSG_CTL, temp);
4555		} else if (INTEL_INFO(dev)->gen >= 7) {
4556			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4557			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4558			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4559		}
4560	}
4561
4562	i915_gem_init_swizzling(dev);
4563
4564	ret = i915_gem_init_rings(dev);
4565	if (ret)
4566		return ret;
 
 
 
 
4567
4568	for (i = 0; i < NUM_L3_SLICES(dev); i++)
4569		i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4570
4571	/*
4572	 * XXX: Contexts should only be initialized once. Doing a switch to the
4573	 * default context switch however is something we'd like to do after
4574	 * reset or thaw (the latter may not actually be necessary for HW, but
4575	 * goes with our code better). Context switching requires rings (for
4576	 * the do_switch), but before enabling PPGTT. So don't move this.
4577	 */
4578	ret = i915_gem_context_enable(dev_priv);
4579	if (ret) {
4580		DRM_ERROR("Context enable failed %d\n", ret);
4581		goto err_out;
 
 
 
 
 
 
 
4582	}
4583
4584	return 0;
 
 
 
 
 
 
 
 
4585
4586err_out:
4587	i915_gem_cleanup_ringbuffer(dev);
4588	return ret;
4589}
 
 
 
4590
4591int i915_gem_init(struct drm_device *dev)
4592{
4593	struct drm_i915_private *dev_priv = dev->dev_private;
4594	int ret;
4595
4596	mutex_lock(&dev->struct_mutex);
 
 
 
 
 
4597
4598	if (IS_VALLEYVIEW(dev)) {
4599		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4600		I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4601		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4602			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4603	}
4604
4605	i915_gem_init_global_gtt(dev);
 
 
 
 
 
 
4606
4607	ret = i915_gem_context_init(dev);
4608	if (ret) {
4609		mutex_unlock(&dev->struct_mutex);
4610		return ret;
4611	}
 
 
4612
4613	ret = i915_gem_init_hw(dev);
4614	mutex_unlock(&dev->struct_mutex);
4615	if (ret) {
4616		WARN_ON(dev_priv->mm.aliasing_ppgtt);
4617		i915_gem_context_fini(dev);
4618		drm_mm_takedown(&dev_priv->gtt.base.mm);
4619		return ret;
4620	}
4621
4622	/* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4623	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4624		dev_priv->dri1.allow_batchbuffer = 1;
4625	return 0;
4626}
4627
4628void
4629i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4630{
4631	struct drm_i915_private *dev_priv = dev->dev_private;
4632	struct intel_ring_buffer *ring;
4633	int i;
4634
4635	for_each_ring(ring, dev_priv, i)
4636		intel_cleanup_ring_buffer(ring);
4637}
4638
4639int
4640i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4641		       struct drm_file *file_priv)
4642{
4643	struct drm_i915_private *dev_priv = dev->dev_private;
4644	int ret;
4645
4646	if (drm_core_check_feature(dev, DRIVER_MODESET))
4647		return 0;
4648
4649	if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4650		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4651		atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4652	}
4653
4654	mutex_lock(&dev->struct_mutex);
4655	dev_priv->ums.mm_suspended = 0;
4656
4657	ret = i915_gem_init_hw(dev);
4658	if (ret != 0) {
4659		mutex_unlock(&dev->struct_mutex);
4660		return ret;
 
 
 
 
 
 
4661	}
4662
4663	BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4664	mutex_unlock(&dev->struct_mutex);
 
 
 
 
 
4665
4666	ret = drm_irq_install(dev);
4667	if (ret)
4668		goto cleanup_ringbuffer;
4669
4670	return 0;
4671
4672cleanup_ringbuffer:
4673	mutex_lock(&dev->struct_mutex);
4674	i915_gem_cleanup_ringbuffer(dev);
4675	dev_priv->ums.mm_suspended = 1;
4676	mutex_unlock(&dev->struct_mutex);
4677
4678	return ret;
4679}
 
4680
4681int
4682i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4683		       struct drm_file *file_priv)
4684{
4685	if (drm_core_check_feature(dev, DRIVER_MODESET))
4686		return 0;
 
 
 
 
4687
4688	drm_irq_uninstall(dev);
 
 
4689
4690	return i915_gem_suspend(dev);
4691}
4692
4693void
4694i915_gem_lastclose(struct drm_device *dev)
4695{
4696	int ret;
 
 
4697
4698	if (drm_core_check_feature(dev, DRIVER_MODESET))
4699		return;
4700
4701	ret = i915_gem_suspend(dev);
4702	if (ret)
4703		DRM_ERROR("failed to idle hardware: %d\n", ret);
 
 
 
 
4704}
4705
4706static void
4707init_ring_lists(struct intel_ring_buffer *ring)
4708{
4709	INIT_LIST_HEAD(&ring->active_list);
4710	INIT_LIST_HEAD(&ring->request_list);
4711}
4712
4713void i915_init_vm(struct drm_i915_private *dev_priv,
4714		  struct i915_address_space *vm)
4715{
4716	if (!i915_is_ggtt(vm))
4717		drm_mm_init(&vm->mm, vm->start, vm->total);
4718	vm->dev = dev_priv->dev;
4719	INIT_LIST_HEAD(&vm->active_list);
4720	INIT_LIST_HEAD(&vm->inactive_list);
4721	INIT_LIST_HEAD(&vm->global_link);
4722	list_add_tail(&vm->global_link, &dev_priv->vm_list);
4723}
4724
4725void
4726i915_gem_load(struct drm_device *dev)
4727{
4728	struct drm_i915_private *dev_priv = dev->dev_private;
4729	int i;
4730
4731	dev_priv->slab =
4732		kmem_cache_create("i915_gem_object",
4733				  sizeof(struct drm_i915_gem_object), 0,
4734				  SLAB_HWCACHE_ALIGN,
4735				  NULL);
 
 
 
 
 
 
 
 
 
 
4736
4737	INIT_LIST_HEAD(&dev_priv->vm_list);
4738	i915_init_vm(dev_priv, &dev_priv->gtt.base);
4739
4740	INIT_LIST_HEAD(&dev_priv->context_list);
4741	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4742	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4743	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4744	for (i = 0; i < I915_NUM_RINGS; i++)
4745		init_ring_lists(&dev_priv->ring[i]);
4746	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4747		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4748	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4749			  i915_gem_retire_work_handler);
4750	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4751			  i915_gem_idle_work_handler);
4752	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4753
4754	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4755	if (IS_GEN3(dev)) {
4756		I915_WRITE(MI_ARB_STATE,
4757			   _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4758	}
4759
4760	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4761
4762	/* Old X drivers will take 0-2 for front, back, depth buffers */
4763	if (!drm_core_check_feature(dev, DRIVER_MODESET))
4764		dev_priv->fence_reg_start = 3;
4765
4766	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4767		dev_priv->num_fence_regs = 32;
4768	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4769		dev_priv->num_fence_regs = 16;
4770	else
4771		dev_priv->num_fence_regs = 8;
4772
 
 
 
 
 
 
 
 
 
 
 
 
4773	/* Initialize fence registers to zero */
4774	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4775	i915_gem_restore_fences(dev);
4776
4777	i915_gem_detect_bit_6_swizzle(dev);
4778	init_waitqueue_head(&dev_priv->pending_flip_queue);
4779
4780	dev_priv->mm.interruptible = true;
4781
4782	dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4783	dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4784	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4785	register_shrinker(&dev_priv->mm.inactive_shrinker);
 
 
 
 
 
 
4786}
4787
4788void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4789{
4790	struct drm_i915_file_private *file_priv = file->driver_priv;
4791
4792	cancel_delayed_work_sync(&file_priv->mm.idle_work);
4793
4794	/* Clean up our request list when the client is going away, so that
4795	 * later retire_requests won't dereference our soon-to-be-gone
4796	 * file_priv.
4797	 */
4798	spin_lock(&file_priv->mm.lock);
4799	while (!list_empty(&file_priv->mm.request_list)) {
4800		struct drm_i915_gem_request *request;
4801
4802		request = list_first_entry(&file_priv->mm.request_list,
4803					   struct drm_i915_gem_request,
4804					   client_list);
4805		list_del(&request->client_list);
4806		request->file_priv = NULL;
4807	}
4808	spin_unlock(&file_priv->mm.lock);
4809}
4810
4811static void
4812i915_gem_file_idle_work_handler(struct work_struct *work)
4813{
4814	struct drm_i915_file_private *file_priv =
4815		container_of(work, typeof(*file_priv), mm.idle_work.work);
4816
4817	atomic_set(&file_priv->rps_wait_boost, false);
4818}
4819
4820int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4821{
4822	struct drm_i915_file_private *file_priv;
4823	int ret;
4824
4825	DRM_DEBUG_DRIVER("\n");
4826
4827	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4828	if (!file_priv)
4829		return -ENOMEM;
4830
4831	file->driver_priv = file_priv;
4832	file_priv->dev_priv = dev->dev_private;
4833	file_priv->file = file;
 
4834
4835	spin_lock_init(&file_priv->mm.lock);
4836	INIT_LIST_HEAD(&file_priv->mm.request_list);
4837	INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4838			  i915_gem_file_idle_work_handler);
4839
4840	ret = i915_gem_context_open(dev, file);
4841	if (ret)
4842		kfree(file_priv);
4843
4844	return ret;
4845}
4846
4847static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4848{
4849	if (!mutex_is_locked(mutex))
4850		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4851
4852#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4853	return mutex->owner == task;
4854#else
4855	/* Since UP may be pre-empted, we cannot assume that we own the lock */
4856	return false;
4857#endif
4858}
4859
4860static unsigned long
4861i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
 
4862{
4863	struct drm_i915_private *dev_priv =
4864		container_of(shrinker,
4865			     struct drm_i915_private,
4866			     mm.inactive_shrinker);
4867	struct drm_device *dev = dev_priv->dev;
4868	struct drm_i915_gem_object *obj;
4869	bool unlock = true;
4870	unsigned long count;
4871
4872	if (!mutex_trylock(&dev->struct_mutex)) {
4873		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4874			return 0;
4875
4876		if (dev_priv->mm.shrinker_no_lock_stealing)
4877			return 0;
4878
4879		unlock = false;
4880	}
4881
4882	count = 0;
4883	list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4884		if (obj->pages_pin_count == 0)
4885			count += obj->base.size >> PAGE_SHIFT;
4886
4887	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4888		if (obj->active)
4889			continue;
4890
4891		if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4892			count += obj->base.size >> PAGE_SHIFT;
4893	}
4894
4895	if (unlock)
4896		mutex_unlock(&dev->struct_mutex);
4897
4898	return count;
4899}
4900
4901/* All the new VM stuff */
4902unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4903				  struct i915_address_space *vm)
4904{
4905	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4906	struct i915_vma *vma;
4907
4908	if (!dev_priv->mm.aliasing_ppgtt ||
4909	    vm == &dev_priv->mm.aliasing_ppgtt->base)
4910		vm = &dev_priv->gtt.base;
4911
4912	BUG_ON(list_empty(&o->vma_list));
4913	list_for_each_entry(vma, &o->vma_list, vma_link) {
4914		if (vma->vm == vm)
4915			return vma->node.start;
4916
4917	}
4918	return -1;
4919}
4920
4921bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4922			struct i915_address_space *vm)
4923{
4924	struct i915_vma *vma;
4925
4926	list_for_each_entry(vma, &o->vma_list, vma_link)
 
 
 
4927		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4928			return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4929
4930	return false;
4931}
4932
4933bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4934{
4935	struct i915_vma *vma;
4936
4937	list_for_each_entry(vma, &o->vma_list, vma_link)
4938		if (drm_mm_node_allocated(&vma->node))
4939			return true;
4940
4941	return false;
4942}
4943
4944unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4945				struct i915_address_space *vm)
4946{
4947	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4948	struct i915_vma *vma;
4949
4950	if (!dev_priv->mm.aliasing_ppgtt ||
4951	    vm == &dev_priv->mm.aliasing_ppgtt->base)
4952		vm = &dev_priv->gtt.base;
4953
4954	BUG_ON(list_empty(&o->vma_list));
4955
4956	list_for_each_entry(vma, &o->vma_list, vma_link)
 
 
 
4957		if (vma->vm == vm)
4958			return vma->node.size;
 
 
 
 
 
 
 
 
 
 
4959
4960	return 0;
4961}
4962
4963static unsigned long
4964i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
 
4965{
4966	struct drm_i915_private *dev_priv =
4967		container_of(shrinker,
4968			     struct drm_i915_private,
4969			     mm.inactive_shrinker);
4970	struct drm_device *dev = dev_priv->dev;
4971	unsigned long freed;
4972	bool unlock = true;
4973
4974	if (!mutex_trylock(&dev->struct_mutex)) {
4975		if (!mutex_is_locked_by(&dev->struct_mutex, current))
4976			return SHRINK_STOP;
4977
4978		if (dev_priv->mm.shrinker_no_lock_stealing)
4979			return SHRINK_STOP;
 
 
4980
4981		unlock = false;
4982	}
 
 
 
 
 
 
 
4983
4984	freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
4985	if (freed < sc->nr_to_scan)
4986		freed += __i915_gem_shrink(dev_priv,
4987					   sc->nr_to_scan - freed,
4988					   false);
4989	if (freed < sc->nr_to_scan)
4990		freed += i915_gem_shrink_all(dev_priv);
4991
4992	if (unlock)
4993		mutex_unlock(&dev->struct_mutex);
 
4994
4995	return freed;
4996}
 
4997
4998struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
4999{
5000	struct i915_vma *vma;
 
 
5001
5002	if (WARN_ON(list_empty(&obj->vma_list)))
5003		return NULL;
 
 
 
5004
5005	vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5006	if (vma->vm != obj_to_ggtt(obj))
5007		return NULL;
5008
5009	return vma;
 
 
5010}