Loading...
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drmP.h>
29#include <drm/drm_vma_manager.h>
30#include <drm/i915_drm.h>
31#include "i915_drv.h"
32#include "i915_vgpu.h"
33#include "i915_trace.h"
34#include "intel_drv.h"
35#include <linux/shmem_fs.h>
36#include <linux/slab.h>
37#include <linux/swap.h>
38#include <linux/pci.h>
39#include <linux/dma-buf.h>
40
41#define RQ_BUG_ON(expr)
42
43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45static void
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81}
82
83static int
84i915_gem_wait_for_error(struct i915_gpu_error *error)
85{
86 int ret;
87
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107#undef EXIT_COND
108
109 return 0;
110}
111
112int i915_mutex_lock_interruptible(struct drm_device *dev)
113{
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127}
128
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132{
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->gtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153}
154
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157{
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 put_page(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 put_page(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360}
361
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372}
373
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379{
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401}
402
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413}
414
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426}
427
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
454static inline int
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519static int
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540}
541
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591}
592
593static int
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598{
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676}
677
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686{
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728out:
729 drm_gem_object_unreference(&obj->base);
730unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733}
734
735/* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744{
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756}
757
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762static int
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767{
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825out:
826 return ret;
827}
828
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833static int
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839{
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858}
859
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862static int
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868{
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892}
893
894static int
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899{
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 needs_clflush_after = true;
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014 else
1015 obj->cache_dirty = true;
1016
1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 return ret;
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 struct drm_file *file)
1029{
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_i915_gem_pwrite *args = data;
1032 struct drm_i915_gem_object *obj;
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
1039 to_user_ptr(args->data_ptr),
1040 args->size))
1041 return -EFAULT;
1042
1043 if (likely(!i915.prefault_disable)) {
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
1049
1050 intel_runtime_pm_get(dev_priv);
1051
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto put_rpm;
1055
1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 if (&obj->base == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
1060 }
1061
1062 /* Bounds check destination. */
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
1065 ret = -EINVAL;
1066 goto out;
1067 }
1068
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079 ret = -EFAULT;
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
1093 }
1094
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
1101
1102out:
1103 drm_gem_object_unreference(&obj->base);
1104unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
1109 return ret;
1110}
1111
1112int
1113i915_gem_check_wedge(struct i915_gpu_error *error,
1114 bool interruptible)
1115{
1116 if (i915_reset_in_progress(error)) {
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
1124 return -EIO;
1125
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
1133 }
1134
1135 return 0;
1136}
1137
1138static void fake_irq(unsigned long data)
1139{
1140 wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
1144 struct intel_engine_cs *ring)
1145{
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
1149static unsigned long local_clock_us(unsigned *cpu)
1150{
1151 unsigned long t;
1152
1153 /* Cheaply and approximately convert from nanoseconds to microseconds.
1154 * The result and subsequent calculations are also defined in the same
1155 * approximate microseconds units. The principal source of timing
1156 * error here is from the simple truncation.
1157 *
1158 * Note that local_clock() is only defined wrt to the current CPU;
1159 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 * blocking preemption for the entire busywait, we can detect the CPU
1161 * switch and use that as indicator of system load and a reason to
1162 * stop busywaiting, see busywait_stop().
1163 */
1164 *cpu = get_cpu();
1165 t = local_clock() >> 10;
1166 put_cpu();
1167
1168 return t;
1169}
1170
1171static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172{
1173 unsigned this_cpu;
1174
1175 if (time_after(local_clock_us(&this_cpu), timeout))
1176 return true;
1177
1178 return this_cpu != cpu;
1179}
1180
1181static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182{
1183 unsigned long timeout;
1184 unsigned cpu;
1185
1186 /* When waiting for high frequency requests, e.g. during synchronous
1187 * rendering split between the CPU and GPU, the finite amount of time
1188 * required to set up the irq and wait upon it limits the response
1189 * rate. By busywaiting on the request completion for a short while we
1190 * can service the high frequency waits as quick as possible. However,
1191 * if it is a slow request, we want to sleep as quickly as possible.
1192 * The tradeoff between waiting and sleeping is roughly the time it
1193 * takes to sleep on a request, on the order of a microsecond.
1194 */
1195
1196 if (req->ring->irq_refcount)
1197 return -EBUSY;
1198
1199 /* Only spin if we know the GPU is processing this request */
1200 if (!i915_gem_request_started(req, true))
1201 return -EAGAIN;
1202
1203 timeout = local_clock_us(&cpu) + 5;
1204 while (!need_resched()) {
1205 if (i915_gem_request_completed(req, true))
1206 return 0;
1207
1208 if (signal_pending_state(state, current))
1209 break;
1210
1211 if (busywait_stop(timeout, cpu))
1212 break;
1213
1214 cpu_relax_lowlatency();
1215 }
1216
1217 if (i915_gem_request_completed(req, false))
1218 return 0;
1219
1220 return -EAGAIN;
1221}
1222
1223/**
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
1237 * Returns 0 if the request was found within the alloted time. Else returns the
1238 * errno with remaining time filled in timeout argument.
1239 */
1240int __i915_wait_request(struct drm_i915_gem_request *req,
1241 unsigned reset_counter,
1242 bool interruptible,
1243 s64 *timeout,
1244 struct intel_rps_client *rps)
1245{
1246 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247 struct drm_device *dev = ring->dev;
1248 struct drm_i915_private *dev_priv = dev->dev_private;
1249 const bool irq_test_in_progress =
1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252 DEFINE_WAIT(wait);
1253 unsigned long timeout_expire;
1254 s64 before = 0; /* Only to silence a compiler warning. */
1255 int ret;
1256
1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259 if (list_empty(&req->list))
1260 return 0;
1261
1262 if (i915_gem_request_completed(req, true))
1263 return 0;
1264
1265 timeout_expire = 0;
1266 if (timeout) {
1267 if (WARN_ON(*timeout < 0))
1268 return -EINVAL;
1269
1270 if (*timeout == 0)
1271 return -ETIME;
1272
1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274
1275 /*
1276 * Record current time in case interrupted by signal, or wedged.
1277 */
1278 before = ktime_get_raw_ns();
1279 }
1280
1281 if (INTEL_INFO(dev_priv)->gen >= 6)
1282 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283
1284 trace_i915_gem_request_wait_begin(req);
1285
1286 /* Optimistic spin for the next jiffie before touching IRQs */
1287 ret = __i915_spin_request(req, state);
1288 if (ret == 0)
1289 goto out;
1290
1291 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1292 ret = -ENODEV;
1293 goto out;
1294 }
1295
1296 for (;;) {
1297 struct timer_list timer;
1298
1299 prepare_to_wait(&ring->irq_queue, &wait, state);
1300
1301 /* We need to check whether any gpu reset happened in between
1302 * the caller grabbing the seqno and now ... */
1303 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305 * is truely gone. */
1306 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307 if (ret == 0)
1308 ret = -EAGAIN;
1309 break;
1310 }
1311
1312 if (i915_gem_request_completed(req, false)) {
1313 ret = 0;
1314 break;
1315 }
1316
1317 if (signal_pending_state(state, current)) {
1318 ret = -ERESTARTSYS;
1319 break;
1320 }
1321
1322 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323 ret = -ETIME;
1324 break;
1325 }
1326
1327 timer.function = NULL;
1328 if (timeout || missed_irq(dev_priv, ring)) {
1329 unsigned long expire;
1330
1331 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1333 mod_timer(&timer, expire);
1334 }
1335
1336 io_schedule();
1337
1338 if (timer.function) {
1339 del_singleshot_timer_sync(&timer);
1340 destroy_timer_on_stack(&timer);
1341 }
1342 }
1343 if (!irq_test_in_progress)
1344 ring->irq_put(ring);
1345
1346 finish_wait(&ring->irq_queue, &wait);
1347
1348out:
1349 trace_i915_gem_request_wait_end(req);
1350
1351 if (timeout) {
1352 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353
1354 *timeout = tres < 0 ? 0 : tres;
1355
1356 /*
1357 * Apparently ktime isn't accurate enough and occasionally has a
1358 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359 * things up to make the test happy. We allow up to 1 jiffy.
1360 *
1361 * This is a regrssion from the timespec->ktime conversion.
1362 */
1363 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364 *timeout = 0;
1365 }
1366
1367 return ret;
1368}
1369
1370int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371 struct drm_file *file)
1372{
1373 struct drm_i915_private *dev_private;
1374 struct drm_i915_file_private *file_priv;
1375
1376 WARN_ON(!req || !file || req->file_priv);
1377
1378 if (!req || !file)
1379 return -EINVAL;
1380
1381 if (req->file_priv)
1382 return -EINVAL;
1383
1384 dev_private = req->ring->dev->dev_private;
1385 file_priv = file->driver_priv;
1386
1387 spin_lock(&file_priv->mm.lock);
1388 req->file_priv = file_priv;
1389 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1390 spin_unlock(&file_priv->mm.lock);
1391
1392 req->pid = get_pid(task_pid(current));
1393
1394 return 0;
1395}
1396
1397static inline void
1398i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1399{
1400 struct drm_i915_file_private *file_priv = request->file_priv;
1401
1402 if (!file_priv)
1403 return;
1404
1405 spin_lock(&file_priv->mm.lock);
1406 list_del(&request->client_list);
1407 request->file_priv = NULL;
1408 spin_unlock(&file_priv->mm.lock);
1409
1410 put_pid(request->pid);
1411 request->pid = NULL;
1412}
1413
1414static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1415{
1416 trace_i915_gem_request_retire(request);
1417
1418 /* We know the GPU must have read the request to have
1419 * sent us the seqno + interrupt, so use the position
1420 * of tail of the request to update the last known position
1421 * of the GPU head.
1422 *
1423 * Note this requires that we are always called in request
1424 * completion order.
1425 */
1426 request->ringbuf->last_retired_head = request->postfix;
1427
1428 list_del_init(&request->list);
1429 i915_gem_request_remove_from_client(request);
1430
1431 i915_gem_request_unreference(request);
1432}
1433
1434static void
1435__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1436{
1437 struct intel_engine_cs *engine = req->ring;
1438 struct drm_i915_gem_request *tmp;
1439
1440 lockdep_assert_held(&engine->dev->struct_mutex);
1441
1442 if (list_empty(&req->list))
1443 return;
1444
1445 do {
1446 tmp = list_first_entry(&engine->request_list,
1447 typeof(*tmp), list);
1448
1449 i915_gem_request_retire(tmp);
1450 } while (tmp != req);
1451
1452 WARN_ON(i915_verify_lists(engine->dev));
1453}
1454
1455/**
1456 * Waits for a request to be signaled, and cleans up the
1457 * request and object lists appropriately for that event.
1458 */
1459int
1460i915_wait_request(struct drm_i915_gem_request *req)
1461{
1462 struct drm_device *dev;
1463 struct drm_i915_private *dev_priv;
1464 bool interruptible;
1465 int ret;
1466
1467 BUG_ON(req == NULL);
1468
1469 dev = req->ring->dev;
1470 dev_priv = dev->dev_private;
1471 interruptible = dev_priv->mm.interruptible;
1472
1473 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1474
1475 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1476 if (ret)
1477 return ret;
1478
1479 ret = __i915_wait_request(req,
1480 atomic_read(&dev_priv->gpu_error.reset_counter),
1481 interruptible, NULL, NULL);
1482 if (ret)
1483 return ret;
1484
1485 __i915_gem_request_retire__upto(req);
1486 return 0;
1487}
1488
1489/**
1490 * Ensures that all rendering to the object has completed and the object is
1491 * safe to unbind from the GTT or access from the CPU.
1492 */
1493int
1494i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1495 bool readonly)
1496{
1497 int ret, i;
1498
1499 if (!obj->active)
1500 return 0;
1501
1502 if (readonly) {
1503 if (obj->last_write_req != NULL) {
1504 ret = i915_wait_request(obj->last_write_req);
1505 if (ret)
1506 return ret;
1507
1508 i = obj->last_write_req->ring->id;
1509 if (obj->last_read_req[i] == obj->last_write_req)
1510 i915_gem_object_retire__read(obj, i);
1511 else
1512 i915_gem_object_retire__write(obj);
1513 }
1514 } else {
1515 for (i = 0; i < I915_NUM_RINGS; i++) {
1516 if (obj->last_read_req[i] == NULL)
1517 continue;
1518
1519 ret = i915_wait_request(obj->last_read_req[i]);
1520 if (ret)
1521 return ret;
1522
1523 i915_gem_object_retire__read(obj, i);
1524 }
1525 RQ_BUG_ON(obj->active);
1526 }
1527
1528 return 0;
1529}
1530
1531static void
1532i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1533 struct drm_i915_gem_request *req)
1534{
1535 int ring = req->ring->id;
1536
1537 if (obj->last_read_req[ring] == req)
1538 i915_gem_object_retire__read(obj, ring);
1539 else if (obj->last_write_req == req)
1540 i915_gem_object_retire__write(obj);
1541
1542 __i915_gem_request_retire__upto(req);
1543}
1544
1545/* A nonblocking variant of the above wait. This is a highly dangerous routine
1546 * as the object state may change during this call.
1547 */
1548static __must_check int
1549i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1550 struct intel_rps_client *rps,
1551 bool readonly)
1552{
1553 struct drm_device *dev = obj->base.dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1556 unsigned reset_counter;
1557 int ret, i, n = 0;
1558
1559 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1560 BUG_ON(!dev_priv->mm.interruptible);
1561
1562 if (!obj->active)
1563 return 0;
1564
1565 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1566 if (ret)
1567 return ret;
1568
1569 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1570
1571 if (readonly) {
1572 struct drm_i915_gem_request *req;
1573
1574 req = obj->last_write_req;
1575 if (req == NULL)
1576 return 0;
1577
1578 requests[n++] = i915_gem_request_reference(req);
1579 } else {
1580 for (i = 0; i < I915_NUM_RINGS; i++) {
1581 struct drm_i915_gem_request *req;
1582
1583 req = obj->last_read_req[i];
1584 if (req == NULL)
1585 continue;
1586
1587 requests[n++] = i915_gem_request_reference(req);
1588 }
1589 }
1590
1591 mutex_unlock(&dev->struct_mutex);
1592 for (i = 0; ret == 0 && i < n; i++)
1593 ret = __i915_wait_request(requests[i], reset_counter, true,
1594 NULL, rps);
1595 mutex_lock(&dev->struct_mutex);
1596
1597 for (i = 0; i < n; i++) {
1598 if (ret == 0)
1599 i915_gem_object_retire_request(obj, requests[i]);
1600 i915_gem_request_unreference(requests[i]);
1601 }
1602
1603 return ret;
1604}
1605
1606static struct intel_rps_client *to_rps_client(struct drm_file *file)
1607{
1608 struct drm_i915_file_private *fpriv = file->driver_priv;
1609 return &fpriv->rps;
1610}
1611
1612/**
1613 * Called when user space prepares to use an object with the CPU, either
1614 * through the mmap ioctl's mapping or a GTT mapping.
1615 */
1616int
1617i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1618 struct drm_file *file)
1619{
1620 struct drm_i915_gem_set_domain *args = data;
1621 struct drm_i915_gem_object *obj;
1622 uint32_t read_domains = args->read_domains;
1623 uint32_t write_domain = args->write_domain;
1624 int ret;
1625
1626 /* Only handle setting domains to types used by the CPU. */
1627 if (write_domain & I915_GEM_GPU_DOMAINS)
1628 return -EINVAL;
1629
1630 if (read_domains & I915_GEM_GPU_DOMAINS)
1631 return -EINVAL;
1632
1633 /* Having something in the write domain implies it's in the read
1634 * domain, and only that read domain. Enforce that in the request.
1635 */
1636 if (write_domain != 0 && read_domains != write_domain)
1637 return -EINVAL;
1638
1639 ret = i915_mutex_lock_interruptible(dev);
1640 if (ret)
1641 return ret;
1642
1643 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1644 if (&obj->base == NULL) {
1645 ret = -ENOENT;
1646 goto unlock;
1647 }
1648
1649 /* Try to flush the object off the GPU without holding the lock.
1650 * We will repeat the flush holding the lock in the normal manner
1651 * to catch cases where we are gazumped.
1652 */
1653 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1654 to_rps_client(file),
1655 !write_domain);
1656 if (ret)
1657 goto unref;
1658
1659 if (read_domains & I915_GEM_DOMAIN_GTT)
1660 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1661 else
1662 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1663
1664 if (write_domain != 0)
1665 intel_fb_obj_invalidate(obj,
1666 write_domain == I915_GEM_DOMAIN_GTT ?
1667 ORIGIN_GTT : ORIGIN_CPU);
1668
1669unref:
1670 drm_gem_object_unreference(&obj->base);
1671unlock:
1672 mutex_unlock(&dev->struct_mutex);
1673 return ret;
1674}
1675
1676/**
1677 * Called when user space has done writes to this buffer
1678 */
1679int
1680i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1681 struct drm_file *file)
1682{
1683 struct drm_i915_gem_sw_finish *args = data;
1684 struct drm_i915_gem_object *obj;
1685 int ret = 0;
1686
1687 ret = i915_mutex_lock_interruptible(dev);
1688 if (ret)
1689 return ret;
1690
1691 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1692 if (&obj->base == NULL) {
1693 ret = -ENOENT;
1694 goto unlock;
1695 }
1696
1697 /* Pinned buffers may be scanout, so flush the cache */
1698 if (obj->pin_display)
1699 i915_gem_object_flush_cpu_write_domain(obj);
1700
1701 drm_gem_object_unreference(&obj->base);
1702unlock:
1703 mutex_unlock(&dev->struct_mutex);
1704 return ret;
1705}
1706
1707/**
1708 * Maps the contents of an object, returning the address it is mapped
1709 * into.
1710 *
1711 * While the mapping holds a reference on the contents of the object, it doesn't
1712 * imply a ref on the object itself.
1713 *
1714 * IMPORTANT:
1715 *
1716 * DRM driver writers who look a this function as an example for how to do GEM
1717 * mmap support, please don't implement mmap support like here. The modern way
1718 * to implement DRM mmap support is with an mmap offset ioctl (like
1719 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1720 * That way debug tooling like valgrind will understand what's going on, hiding
1721 * the mmap call in a driver private ioctl will break that. The i915 driver only
1722 * does cpu mmaps this way because we didn't know better.
1723 */
1724int
1725i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1726 struct drm_file *file)
1727{
1728 struct drm_i915_gem_mmap *args = data;
1729 struct drm_gem_object *obj;
1730 unsigned long addr;
1731
1732 if (args->flags & ~(I915_MMAP_WC))
1733 return -EINVAL;
1734
1735 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1736 return -ENODEV;
1737
1738 obj = drm_gem_object_lookup(dev, file, args->handle);
1739 if (obj == NULL)
1740 return -ENOENT;
1741
1742 /* prime objects have no backing filp to GEM mmap
1743 * pages from.
1744 */
1745 if (!obj->filp) {
1746 drm_gem_object_unreference_unlocked(obj);
1747 return -EINVAL;
1748 }
1749
1750 addr = vm_mmap(obj->filp, 0, args->size,
1751 PROT_READ | PROT_WRITE, MAP_SHARED,
1752 args->offset);
1753 if (args->flags & I915_MMAP_WC) {
1754 struct mm_struct *mm = current->mm;
1755 struct vm_area_struct *vma;
1756
1757 down_write(&mm->mmap_sem);
1758 vma = find_vma(mm, addr);
1759 if (vma)
1760 vma->vm_page_prot =
1761 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1762 else
1763 addr = -ENOMEM;
1764 up_write(&mm->mmap_sem);
1765 }
1766 drm_gem_object_unreference_unlocked(obj);
1767 if (IS_ERR((void *)addr))
1768 return addr;
1769
1770 args->addr_ptr = (uint64_t) addr;
1771
1772 return 0;
1773}
1774
1775/**
1776 * i915_gem_fault - fault a page into the GTT
1777 * @vma: VMA in question
1778 * @vmf: fault info
1779 *
1780 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1781 * from userspace. The fault handler takes care of binding the object to
1782 * the GTT (if needed), allocating and programming a fence register (again,
1783 * only if needed based on whether the old reg is still valid or the object
1784 * is tiled) and inserting a new PTE into the faulting process.
1785 *
1786 * Note that the faulting process may involve evicting existing objects
1787 * from the GTT and/or fence registers to make room. So performance may
1788 * suffer if the GTT working set is large or there are few fence registers
1789 * left.
1790 */
1791int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1792{
1793 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1794 struct drm_device *dev = obj->base.dev;
1795 struct drm_i915_private *dev_priv = dev->dev_private;
1796 struct i915_ggtt_view view = i915_ggtt_view_normal;
1797 pgoff_t page_offset;
1798 unsigned long pfn;
1799 int ret = 0;
1800 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801
1802 intel_runtime_pm_get(dev_priv);
1803
1804 /* We don't use vmf->pgoff since that has the fake offset */
1805 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806 PAGE_SHIFT;
1807
1808 ret = i915_mutex_lock_interruptible(dev);
1809 if (ret)
1810 goto out;
1811
1812 trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
1814 /* Try to flush the object off the GPU first without holding the lock.
1815 * Upon reacquiring the lock, we will perform our sanity checks and then
1816 * repeat the flush holding the lock in the normal manner to catch cases
1817 * where we are gazumped.
1818 */
1819 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820 if (ret)
1821 goto unlock;
1822
1823 /* Access to snoopable pages through the GTT is incoherent. */
1824 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825 ret = -EFAULT;
1826 goto unlock;
1827 }
1828
1829 /* Use a partial view if the object is bigger than the aperture. */
1830 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1831 obj->tiling_mode == I915_TILING_NONE) {
1832 static const unsigned int chunk_size = 256; // 1 MiB
1833
1834 memset(&view, 0, sizeof(view));
1835 view.type = I915_GGTT_VIEW_PARTIAL;
1836 view.params.partial.offset = rounddown(page_offset, chunk_size);
1837 view.params.partial.size =
1838 min_t(unsigned int,
1839 chunk_size,
1840 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841 view.params.partial.offset);
1842 }
1843
1844 /* Now pin it into the GTT if needed */
1845 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846 if (ret)
1847 goto unlock;
1848
1849 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850 if (ret)
1851 goto unpin;
1852
1853 ret = i915_gem_object_get_fence(obj);
1854 if (ret)
1855 goto unpin;
1856
1857 /* Finally, remap it using the new GTT offset */
1858 pfn = dev_priv->gtt.mappable_base +
1859 i915_gem_obj_ggtt_offset_view(obj, &view);
1860 pfn >>= PAGE_SHIFT;
1861
1862 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863 /* Overriding existing pages in partial view does not cause
1864 * us any trouble as TLBs are still valid because the fault
1865 * is due to userspace losing part of the mapping or never
1866 * having accessed it before (at this partials' range).
1867 */
1868 unsigned long base = vma->vm_start +
1869 (view.params.partial.offset << PAGE_SHIFT);
1870 unsigned int i;
1871
1872 for (i = 0; i < view.params.partial.size; i++) {
1873 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874 if (ret)
1875 break;
1876 }
1877
1878 obj->fault_mappable = true;
1879 } else {
1880 if (!obj->fault_mappable) {
1881 unsigned long size = min_t(unsigned long,
1882 vma->vm_end - vma->vm_start,
1883 obj->base.size);
1884 int i;
1885
1886 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887 ret = vm_insert_pfn(vma,
1888 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889 pfn + i);
1890 if (ret)
1891 break;
1892 }
1893
1894 obj->fault_mappable = true;
1895 } else
1896 ret = vm_insert_pfn(vma,
1897 (unsigned long)vmf->virtual_address,
1898 pfn + page_offset);
1899 }
1900unpin:
1901 i915_gem_object_ggtt_unpin_view(obj, &view);
1902unlock:
1903 mutex_unlock(&dev->struct_mutex);
1904out:
1905 switch (ret) {
1906 case -EIO:
1907 /*
1908 * We eat errors when the gpu is terminally wedged to avoid
1909 * userspace unduly crashing (gl has no provisions for mmaps to
1910 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911 * and so needs to be reported.
1912 */
1913 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914 ret = VM_FAULT_SIGBUS;
1915 break;
1916 }
1917 case -EAGAIN:
1918 /*
1919 * EAGAIN means the gpu is hung and we'll wait for the error
1920 * handler to reset everything when re-faulting in
1921 * i915_mutex_lock_interruptible.
1922 */
1923 case 0:
1924 case -ERESTARTSYS:
1925 case -EINTR:
1926 case -EBUSY:
1927 /*
1928 * EBUSY is ok: this just means that another thread
1929 * already did the job.
1930 */
1931 ret = VM_FAULT_NOPAGE;
1932 break;
1933 case -ENOMEM:
1934 ret = VM_FAULT_OOM;
1935 break;
1936 case -ENOSPC:
1937 case -EFAULT:
1938 ret = VM_FAULT_SIGBUS;
1939 break;
1940 default:
1941 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942 ret = VM_FAULT_SIGBUS;
1943 break;
1944 }
1945
1946 intel_runtime_pm_put(dev_priv);
1947 return ret;
1948}
1949
1950/**
1951 * i915_gem_release_mmap - remove physical page mappings
1952 * @obj: obj in question
1953 *
1954 * Preserve the reservation of the mmapping with the DRM core code, but
1955 * relinquish ownership of the pages back to the system.
1956 *
1957 * It is vital that we remove the page mapping if we have mapped a tiled
1958 * object through the GTT and then lose the fence register due to
1959 * resource pressure. Similarly if the object has been moved out of the
1960 * aperture, than pages mapped into userspace must be revoked. Removing the
1961 * mapping will then trigger a page fault on the next user access, allowing
1962 * fixup by i915_gem_fault().
1963 */
1964void
1965i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966{
1967 if (!obj->fault_mappable)
1968 return;
1969
1970 drm_vma_node_unmap(&obj->base.vma_node,
1971 obj->base.dev->anon_inode->i_mapping);
1972 obj->fault_mappable = false;
1973}
1974
1975void
1976i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977{
1978 struct drm_i915_gem_object *obj;
1979
1980 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981 i915_gem_release_mmap(obj);
1982}
1983
1984uint32_t
1985i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986{
1987 uint32_t gtt_size;
1988
1989 if (INTEL_INFO(dev)->gen >= 4 ||
1990 tiling_mode == I915_TILING_NONE)
1991 return size;
1992
1993 /* Previous chips need a power-of-two fence region when tiling */
1994 if (INTEL_INFO(dev)->gen == 3)
1995 gtt_size = 1024*1024;
1996 else
1997 gtt_size = 512*1024;
1998
1999 while (gtt_size < size)
2000 gtt_size <<= 1;
2001
2002 return gtt_size;
2003}
2004
2005/**
2006 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007 * @obj: object to check
2008 *
2009 * Return the required GTT alignment for an object, taking into account
2010 * potential fence register mapping.
2011 */
2012uint32_t
2013i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014 int tiling_mode, bool fenced)
2015{
2016 /*
2017 * Minimum alignment is 4k (GTT page size), but might be greater
2018 * if a fence register is needed for the object.
2019 */
2020 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021 tiling_mode == I915_TILING_NONE)
2022 return 4096;
2023
2024 /*
2025 * Previous chips need to be aligned to the size of the smallest
2026 * fence register that can contain the object.
2027 */
2028 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029}
2030
2031static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032{
2033 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034 int ret;
2035
2036 if (drm_vma_node_has_offset(&obj->base.vma_node))
2037 return 0;
2038
2039 dev_priv->mm.shrinker_no_lock_stealing = true;
2040
2041 ret = drm_gem_create_mmap_offset(&obj->base);
2042 if (ret != -ENOSPC)
2043 goto out;
2044
2045 /* Badly fragmented mmap space? The only way we can recover
2046 * space is by destroying unwanted objects. We can't randomly release
2047 * mmap_offsets as userspace expects them to be persistent for the
2048 * lifetime of the objects. The closest we can is to release the
2049 * offsets on purgeable objects by truncating it and marking it purged,
2050 * which prevents userspace from ever using that object again.
2051 */
2052 i915_gem_shrink(dev_priv,
2053 obj->base.size >> PAGE_SHIFT,
2054 I915_SHRINK_BOUND |
2055 I915_SHRINK_UNBOUND |
2056 I915_SHRINK_PURGEABLE);
2057 ret = drm_gem_create_mmap_offset(&obj->base);
2058 if (ret != -ENOSPC)
2059 goto out;
2060
2061 i915_gem_shrink_all(dev_priv);
2062 ret = drm_gem_create_mmap_offset(&obj->base);
2063out:
2064 dev_priv->mm.shrinker_no_lock_stealing = false;
2065
2066 return ret;
2067}
2068
2069static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070{
2071 drm_gem_free_mmap_offset(&obj->base);
2072}
2073
2074int
2075i915_gem_mmap_gtt(struct drm_file *file,
2076 struct drm_device *dev,
2077 uint32_t handle,
2078 uint64_t *offset)
2079{
2080 struct drm_i915_gem_object *obj;
2081 int ret;
2082
2083 ret = i915_mutex_lock_interruptible(dev);
2084 if (ret)
2085 return ret;
2086
2087 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088 if (&obj->base == NULL) {
2089 ret = -ENOENT;
2090 goto unlock;
2091 }
2092
2093 if (obj->madv != I915_MADV_WILLNEED) {
2094 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095 ret = -EFAULT;
2096 goto out;
2097 }
2098
2099 ret = i915_gem_object_create_mmap_offset(obj);
2100 if (ret)
2101 goto out;
2102
2103 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104
2105out:
2106 drm_gem_object_unreference(&obj->base);
2107unlock:
2108 mutex_unlock(&dev->struct_mutex);
2109 return ret;
2110}
2111
2112/**
2113 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114 * @dev: DRM device
2115 * @data: GTT mapping ioctl data
2116 * @file: GEM object info
2117 *
2118 * Simply returns the fake offset to userspace so it can mmap it.
2119 * The mmap call will end up in drm_gem_mmap(), which will set things
2120 * up so we can get faults in the handler above.
2121 *
2122 * The fault handler will take care of binding the object into the GTT
2123 * (since it may have been evicted to make room for something), allocating
2124 * a fence register, and mapping the appropriate aperture address into
2125 * userspace.
2126 */
2127int
2128i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129 struct drm_file *file)
2130{
2131 struct drm_i915_gem_mmap_gtt *args = data;
2132
2133 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134}
2135
2136/* Immediately discard the backing storage */
2137static void
2138i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139{
2140 i915_gem_object_free_mmap_offset(obj);
2141
2142 if (obj->base.filp == NULL)
2143 return;
2144
2145 /* Our goal here is to return as much of the memory as
2146 * is possible back to the system as we are called from OOM.
2147 * To do this we must instruct the shmfs to drop all of its
2148 * backing pages, *now*.
2149 */
2150 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2151 obj->madv = __I915_MADV_PURGED;
2152}
2153
2154/* Try to discard unwanted pages */
2155static void
2156i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2157{
2158 struct address_space *mapping;
2159
2160 switch (obj->madv) {
2161 case I915_MADV_DONTNEED:
2162 i915_gem_object_truncate(obj);
2163 case __I915_MADV_PURGED:
2164 return;
2165 }
2166
2167 if (obj->base.filp == NULL)
2168 return;
2169
2170 mapping = file_inode(obj->base.filp)->i_mapping,
2171 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172}
2173
2174static void
2175i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2176{
2177 struct sg_page_iter sg_iter;
2178 int ret;
2179
2180 BUG_ON(obj->madv == __I915_MADV_PURGED);
2181
2182 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183 if (ret) {
2184 /* In the event of a disaster, abandon all caches and
2185 * hope for the best.
2186 */
2187 WARN_ON(ret != -EIO);
2188 i915_gem_clflush_object(obj, true);
2189 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190 }
2191
2192 i915_gem_gtt_finish_object(obj);
2193
2194 if (i915_gem_object_needs_bit17_swizzle(obj))
2195 i915_gem_object_save_bit_17_swizzle(obj);
2196
2197 if (obj->madv == I915_MADV_DONTNEED)
2198 obj->dirty = 0;
2199
2200 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201 struct page *page = sg_page_iter_page(&sg_iter);
2202
2203 if (obj->dirty)
2204 set_page_dirty(page);
2205
2206 if (obj->madv == I915_MADV_WILLNEED)
2207 mark_page_accessed(page);
2208
2209 put_page(page);
2210 }
2211 obj->dirty = 0;
2212
2213 sg_free_table(obj->pages);
2214 kfree(obj->pages);
2215}
2216
2217int
2218i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219{
2220 const struct drm_i915_gem_object_ops *ops = obj->ops;
2221
2222 if (obj->pages == NULL)
2223 return 0;
2224
2225 if (obj->pages_pin_count)
2226 return -EBUSY;
2227
2228 BUG_ON(i915_gem_obj_bound_any(obj));
2229
2230 /* ->put_pages might need to allocate memory for the bit17 swizzle
2231 * array, hence protect them from being reaped by removing them from gtt
2232 * lists early. */
2233 list_del(&obj->global_list);
2234
2235 ops->put_pages(obj);
2236 obj->pages = NULL;
2237
2238 i915_gem_object_invalidate(obj);
2239
2240 return 0;
2241}
2242
2243static int
2244i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245{
2246 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247 int page_count, i;
2248 struct address_space *mapping;
2249 struct sg_table *st;
2250 struct scatterlist *sg;
2251 struct sg_page_iter sg_iter;
2252 struct page *page;
2253 unsigned long last_pfn = 0; /* suppress gcc warning */
2254 int ret;
2255 gfp_t gfp;
2256
2257 /* Assert that the object is not currently in any GPU domain. As it
2258 * wasn't in the GTT, there shouldn't be any way it could have been in
2259 * a GPU cache
2260 */
2261 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263
2264 st = kmalloc(sizeof(*st), GFP_KERNEL);
2265 if (st == NULL)
2266 return -ENOMEM;
2267
2268 page_count = obj->base.size / PAGE_SIZE;
2269 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2270 kfree(st);
2271 return -ENOMEM;
2272 }
2273
2274 /* Get the list of pages out of our struct file. They'll be pinned
2275 * at this point until we release them.
2276 *
2277 * Fail silently without starting the shrinker
2278 */
2279 mapping = file_inode(obj->base.filp)->i_mapping;
2280 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282 sg = st->sgl;
2283 st->nents = 0;
2284 for (i = 0; i < page_count; i++) {
2285 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286 if (IS_ERR(page)) {
2287 i915_gem_shrink(dev_priv,
2288 page_count,
2289 I915_SHRINK_BOUND |
2290 I915_SHRINK_UNBOUND |
2291 I915_SHRINK_PURGEABLE);
2292 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293 }
2294 if (IS_ERR(page)) {
2295 /* We've tried hard to allocate the memory by reaping
2296 * our own buffer, now let the real VM do its job and
2297 * go down in flames if truly OOM.
2298 */
2299 i915_gem_shrink_all(dev_priv);
2300 page = shmem_read_mapping_page(mapping, i);
2301 if (IS_ERR(page)) {
2302 ret = PTR_ERR(page);
2303 goto err_pages;
2304 }
2305 }
2306#ifdef CONFIG_SWIOTLB
2307 if (swiotlb_nr_tbl()) {
2308 st->nents++;
2309 sg_set_page(sg, page, PAGE_SIZE, 0);
2310 sg = sg_next(sg);
2311 continue;
2312 }
2313#endif
2314 if (!i || page_to_pfn(page) != last_pfn + 1) {
2315 if (i)
2316 sg = sg_next(sg);
2317 st->nents++;
2318 sg_set_page(sg, page, PAGE_SIZE, 0);
2319 } else {
2320 sg->length += PAGE_SIZE;
2321 }
2322 last_pfn = page_to_pfn(page);
2323
2324 /* Check that the i965g/gm workaround works. */
2325 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326 }
2327#ifdef CONFIG_SWIOTLB
2328 if (!swiotlb_nr_tbl())
2329#endif
2330 sg_mark_end(sg);
2331 obj->pages = st;
2332
2333 ret = i915_gem_gtt_prepare_object(obj);
2334 if (ret)
2335 goto err_pages;
2336
2337 if (i915_gem_object_needs_bit17_swizzle(obj))
2338 i915_gem_object_do_bit_17_swizzle(obj);
2339
2340 if (obj->tiling_mode != I915_TILING_NONE &&
2341 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342 i915_gem_object_pin_pages(obj);
2343
2344 return 0;
2345
2346err_pages:
2347 sg_mark_end(sg);
2348 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2349 put_page(sg_page_iter_page(&sg_iter));
2350 sg_free_table(st);
2351 kfree(st);
2352
2353 /* shmemfs first checks if there is enough memory to allocate the page
2354 * and reports ENOSPC should there be insufficient, along with the usual
2355 * ENOMEM for a genuine allocation failure.
2356 *
2357 * We use ENOSPC in our driver to mean that we have run out of aperture
2358 * space and so want to translate the error from shmemfs back to our
2359 * usual understanding of ENOMEM.
2360 */
2361 if (ret == -ENOSPC)
2362 ret = -ENOMEM;
2363
2364 return ret;
2365}
2366
2367/* Ensure that the associated pages are gathered from the backing storage
2368 * and pinned into our object. i915_gem_object_get_pages() may be called
2369 * multiple times before they are released by a single call to
2370 * i915_gem_object_put_pages() - once the pages are no longer referenced
2371 * either as a result of memory pressure (reaping pages under the shrinker)
2372 * or as the object is itself released.
2373 */
2374int
2375i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376{
2377 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378 const struct drm_i915_gem_object_ops *ops = obj->ops;
2379 int ret;
2380
2381 if (obj->pages)
2382 return 0;
2383
2384 if (obj->madv != I915_MADV_WILLNEED) {
2385 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386 return -EFAULT;
2387 }
2388
2389 BUG_ON(obj->pages_pin_count);
2390
2391 ret = ops->get_pages(obj);
2392 if (ret)
2393 return ret;
2394
2395 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396
2397 obj->get_page.sg = obj->pages->sgl;
2398 obj->get_page.last = 0;
2399
2400 return 0;
2401}
2402
2403void i915_vma_move_to_active(struct i915_vma *vma,
2404 struct drm_i915_gem_request *req)
2405{
2406 struct drm_i915_gem_object *obj = vma->obj;
2407 struct intel_engine_cs *ring;
2408
2409 ring = i915_gem_request_get_ring(req);
2410
2411 /* Add a reference if we're newly entering the active list. */
2412 if (obj->active == 0)
2413 drm_gem_object_reference(&obj->base);
2414 obj->active |= intel_ring_flag(ring);
2415
2416 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2417 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2418
2419 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2420}
2421
2422static void
2423i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2424{
2425 RQ_BUG_ON(obj->last_write_req == NULL);
2426 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2427
2428 i915_gem_request_assign(&obj->last_write_req, NULL);
2429 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2430}
2431
2432static void
2433i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2434{
2435 struct i915_vma *vma;
2436
2437 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2438 RQ_BUG_ON(!(obj->active & (1 << ring)));
2439
2440 list_del_init(&obj->ring_list[ring]);
2441 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2442
2443 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2444 i915_gem_object_retire__write(obj);
2445
2446 obj->active &= ~(1 << ring);
2447 if (obj->active)
2448 return;
2449
2450 /* Bump our place on the bound list to keep it roughly in LRU order
2451 * so that we don't steal from recently used but inactive objects
2452 * (unless we are forced to ofc!)
2453 */
2454 list_move_tail(&obj->global_list,
2455 &to_i915(obj->base.dev)->mm.bound_list);
2456
2457 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2458 if (!list_empty(&vma->vm_link))
2459 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2460 }
2461
2462 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2463 drm_gem_object_unreference(&obj->base);
2464}
2465
2466static int
2467i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2468{
2469 struct drm_i915_private *dev_priv = dev->dev_private;
2470 struct intel_engine_cs *ring;
2471 int ret, i, j;
2472
2473 /* Carefully retire all requests without writing to the rings */
2474 for_each_ring(ring, dev_priv, i) {
2475 ret = intel_ring_idle(ring);
2476 if (ret)
2477 return ret;
2478 }
2479 i915_gem_retire_requests(dev);
2480
2481 /* Finally reset hw state */
2482 for_each_ring(ring, dev_priv, i) {
2483 intel_ring_init_seqno(ring, seqno);
2484
2485 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2486 ring->semaphore.sync_seqno[j] = 0;
2487 }
2488
2489 return 0;
2490}
2491
2492int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2493{
2494 struct drm_i915_private *dev_priv = dev->dev_private;
2495 int ret;
2496
2497 if (seqno == 0)
2498 return -EINVAL;
2499
2500 /* HWS page needs to be set less than what we
2501 * will inject to ring
2502 */
2503 ret = i915_gem_init_seqno(dev, seqno - 1);
2504 if (ret)
2505 return ret;
2506
2507 /* Carefully set the last_seqno value so that wrap
2508 * detection still works
2509 */
2510 dev_priv->next_seqno = seqno;
2511 dev_priv->last_seqno = seqno - 1;
2512 if (dev_priv->last_seqno == 0)
2513 dev_priv->last_seqno--;
2514
2515 return 0;
2516}
2517
2518int
2519i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2520{
2521 struct drm_i915_private *dev_priv = dev->dev_private;
2522
2523 /* reserve 0 for non-seqno */
2524 if (dev_priv->next_seqno == 0) {
2525 int ret = i915_gem_init_seqno(dev, 0);
2526 if (ret)
2527 return ret;
2528
2529 dev_priv->next_seqno = 1;
2530 }
2531
2532 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2533 return 0;
2534}
2535
2536/*
2537 * NB: This function is not allowed to fail. Doing so would mean the the
2538 * request is not being tracked for completion but the work itself is
2539 * going to happen on the hardware. This would be a Bad Thing(tm).
2540 */
2541void __i915_add_request(struct drm_i915_gem_request *request,
2542 struct drm_i915_gem_object *obj,
2543 bool flush_caches)
2544{
2545 struct intel_engine_cs *ring;
2546 struct drm_i915_private *dev_priv;
2547 struct intel_ringbuffer *ringbuf;
2548 u32 request_start;
2549 int ret;
2550
2551 if (WARN_ON(request == NULL))
2552 return;
2553
2554 ring = request->ring;
2555 dev_priv = ring->dev->dev_private;
2556 ringbuf = request->ringbuf;
2557
2558 /*
2559 * To ensure that this call will not fail, space for its emissions
2560 * should already have been reserved in the ring buffer. Let the ring
2561 * know that it is time to use that space up.
2562 */
2563 intel_ring_reserved_space_use(ringbuf);
2564
2565 request_start = intel_ring_get_tail(ringbuf);
2566 /*
2567 * Emit any outstanding flushes - execbuf can fail to emit the flush
2568 * after having emitted the batchbuffer command. Hence we need to fix
2569 * things up similar to emitting the lazy request. The difference here
2570 * is that the flush _must_ happen before the next request, no matter
2571 * what.
2572 */
2573 if (flush_caches) {
2574 if (i915.enable_execlists)
2575 ret = logical_ring_flush_all_caches(request);
2576 else
2577 ret = intel_ring_flush_all_caches(request);
2578 /* Not allowed to fail! */
2579 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2580 }
2581
2582 /* Record the position of the start of the request so that
2583 * should we detect the updated seqno part-way through the
2584 * GPU processing the request, we never over-estimate the
2585 * position of the head.
2586 */
2587 request->postfix = intel_ring_get_tail(ringbuf);
2588
2589 if (i915.enable_execlists)
2590 ret = ring->emit_request(request);
2591 else {
2592 ret = ring->add_request(request);
2593
2594 request->tail = intel_ring_get_tail(ringbuf);
2595 }
2596 /* Not allowed to fail! */
2597 WARN(ret, "emit|add_request failed: %d!\n", ret);
2598
2599 request->head = request_start;
2600
2601 /* Whilst this request exists, batch_obj will be on the
2602 * active_list, and so will hold the active reference. Only when this
2603 * request is retired will the the batch_obj be moved onto the
2604 * inactive_list and lose its active reference. Hence we do not need
2605 * to explicitly hold another reference here.
2606 */
2607 request->batch_obj = obj;
2608
2609 request->emitted_jiffies = jiffies;
2610 request->previous_seqno = ring->last_submitted_seqno;
2611 ring->last_submitted_seqno = request->seqno;
2612 list_add_tail(&request->list, &ring->request_list);
2613
2614 trace_i915_gem_request_add(request);
2615
2616 i915_queue_hangcheck(ring->dev);
2617
2618 queue_delayed_work(dev_priv->wq,
2619 &dev_priv->mm.retire_work,
2620 round_jiffies_up_relative(HZ));
2621 intel_mark_busy(dev_priv->dev);
2622
2623 /* Sanity check that the reserved size was large enough. */
2624 intel_ring_reserved_space_end(ringbuf);
2625}
2626
2627static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2628 const struct intel_context *ctx)
2629{
2630 unsigned long elapsed;
2631
2632 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2633
2634 if (ctx->hang_stats.banned)
2635 return true;
2636
2637 if (ctx->hang_stats.ban_period_seconds &&
2638 elapsed <= ctx->hang_stats.ban_period_seconds) {
2639 if (!i915_gem_context_is_default(ctx)) {
2640 DRM_DEBUG("context hanging too fast, banning!\n");
2641 return true;
2642 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2643 if (i915_stop_ring_allow_warn(dev_priv))
2644 DRM_ERROR("gpu hanging too fast, banning!\n");
2645 return true;
2646 }
2647 }
2648
2649 return false;
2650}
2651
2652static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2653 struct intel_context *ctx,
2654 const bool guilty)
2655{
2656 struct i915_ctx_hang_stats *hs;
2657
2658 if (WARN_ON(!ctx))
2659 return;
2660
2661 hs = &ctx->hang_stats;
2662
2663 if (guilty) {
2664 hs->banned = i915_context_is_banned(dev_priv, ctx);
2665 hs->batch_active++;
2666 hs->guilty_ts = get_seconds();
2667 } else {
2668 hs->batch_pending++;
2669 }
2670}
2671
2672void i915_gem_request_free(struct kref *req_ref)
2673{
2674 struct drm_i915_gem_request *req = container_of(req_ref,
2675 typeof(*req), ref);
2676 struct intel_context *ctx = req->ctx;
2677
2678 if (req->file_priv)
2679 i915_gem_request_remove_from_client(req);
2680
2681 if (ctx) {
2682 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2683 intel_lr_context_unpin(ctx, req->ring);
2684
2685 i915_gem_context_unreference(ctx);
2686 }
2687
2688 kmem_cache_free(req->i915->requests, req);
2689}
2690
2691static inline int
2692__i915_gem_request_alloc(struct intel_engine_cs *ring,
2693 struct intel_context *ctx,
2694 struct drm_i915_gem_request **req_out)
2695{
2696 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2697 struct drm_i915_gem_request *req;
2698 int ret;
2699
2700 if (!req_out)
2701 return -EINVAL;
2702
2703 *req_out = NULL;
2704
2705 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2706 if (req == NULL)
2707 return -ENOMEM;
2708
2709 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2710 if (ret)
2711 goto err;
2712
2713 kref_init(&req->ref);
2714 req->i915 = dev_priv;
2715 req->ring = ring;
2716 req->ctx = ctx;
2717 i915_gem_context_reference(req->ctx);
2718
2719 if (i915.enable_execlists)
2720 ret = intel_logical_ring_alloc_request_extras(req);
2721 else
2722 ret = intel_ring_alloc_request_extras(req);
2723 if (ret) {
2724 i915_gem_context_unreference(req->ctx);
2725 goto err;
2726 }
2727
2728 /*
2729 * Reserve space in the ring buffer for all the commands required to
2730 * eventually emit this request. This is to guarantee that the
2731 * i915_add_request() call can't fail. Note that the reserve may need
2732 * to be redone if the request is not actually submitted straight
2733 * away, e.g. because a GPU scheduler has deferred it.
2734 */
2735 if (i915.enable_execlists)
2736 ret = intel_logical_ring_reserve_space(req);
2737 else
2738 ret = intel_ring_reserve_space(req);
2739 if (ret) {
2740 /*
2741 * At this point, the request is fully allocated even if not
2742 * fully prepared. Thus it can be cleaned up using the proper
2743 * free code.
2744 */
2745 i915_gem_request_cancel(req);
2746 return ret;
2747 }
2748
2749 *req_out = req;
2750 return 0;
2751
2752err:
2753 kmem_cache_free(dev_priv->requests, req);
2754 return ret;
2755}
2756
2757/**
2758 * i915_gem_request_alloc - allocate a request structure
2759 *
2760 * @engine: engine that we wish to issue the request on.
2761 * @ctx: context that the request will be associated with.
2762 * This can be NULL if the request is not directly related to
2763 * any specific user context, in which case this function will
2764 * choose an appropriate context to use.
2765 *
2766 * Returns a pointer to the allocated request if successful,
2767 * or an error code if not.
2768 */
2769struct drm_i915_gem_request *
2770i915_gem_request_alloc(struct intel_engine_cs *engine,
2771 struct intel_context *ctx)
2772{
2773 struct drm_i915_gem_request *req;
2774 int err;
2775
2776 if (ctx == NULL)
2777 ctx = to_i915(engine->dev)->kernel_context;
2778 err = __i915_gem_request_alloc(engine, ctx, &req);
2779 return err ? ERR_PTR(err) : req;
2780}
2781
2782void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2783{
2784 intel_ring_reserved_space_cancel(req->ringbuf);
2785
2786 i915_gem_request_unreference(req);
2787}
2788
2789struct drm_i915_gem_request *
2790i915_gem_find_active_request(struct intel_engine_cs *ring)
2791{
2792 struct drm_i915_gem_request *request;
2793
2794 list_for_each_entry(request, &ring->request_list, list) {
2795 if (i915_gem_request_completed(request, false))
2796 continue;
2797
2798 return request;
2799 }
2800
2801 return NULL;
2802}
2803
2804static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2805 struct intel_engine_cs *ring)
2806{
2807 struct drm_i915_gem_request *request;
2808 bool ring_hung;
2809
2810 request = i915_gem_find_active_request(ring);
2811
2812 if (request == NULL)
2813 return;
2814
2815 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2816
2817 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2818
2819 list_for_each_entry_continue(request, &ring->request_list, list)
2820 i915_set_reset_status(dev_priv, request->ctx, false);
2821}
2822
2823static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2824 struct intel_engine_cs *ring)
2825{
2826 struct intel_ringbuffer *buffer;
2827
2828 while (!list_empty(&ring->active_list)) {
2829 struct drm_i915_gem_object *obj;
2830
2831 obj = list_first_entry(&ring->active_list,
2832 struct drm_i915_gem_object,
2833 ring_list[ring->id]);
2834
2835 i915_gem_object_retire__read(obj, ring->id);
2836 }
2837
2838 /*
2839 * Clear the execlists queue up before freeing the requests, as those
2840 * are the ones that keep the context and ringbuffer backing objects
2841 * pinned in place.
2842 */
2843
2844 if (i915.enable_execlists) {
2845 spin_lock_irq(&ring->execlist_lock);
2846
2847 /* list_splice_tail_init checks for empty lists */
2848 list_splice_tail_init(&ring->execlist_queue,
2849 &ring->execlist_retired_req_list);
2850
2851 spin_unlock_irq(&ring->execlist_lock);
2852 intel_execlists_retire_requests(ring);
2853 }
2854
2855 /*
2856 * We must free the requests after all the corresponding objects have
2857 * been moved off active lists. Which is the same order as the normal
2858 * retire_requests function does. This is important if object hold
2859 * implicit references on things like e.g. ppgtt address spaces through
2860 * the request.
2861 */
2862 while (!list_empty(&ring->request_list)) {
2863 struct drm_i915_gem_request *request;
2864
2865 request = list_first_entry(&ring->request_list,
2866 struct drm_i915_gem_request,
2867 list);
2868
2869 i915_gem_request_retire(request);
2870 }
2871
2872 /* Having flushed all requests from all queues, we know that all
2873 * ringbuffers must now be empty. However, since we do not reclaim
2874 * all space when retiring the request (to prevent HEADs colliding
2875 * with rapid ringbuffer wraparound) the amount of available space
2876 * upon reset is less than when we start. Do one more pass over
2877 * all the ringbuffers to reset last_retired_head.
2878 */
2879 list_for_each_entry(buffer, &ring->buffers, link) {
2880 buffer->last_retired_head = buffer->tail;
2881 intel_ring_update_space(buffer);
2882 }
2883}
2884
2885void i915_gem_reset(struct drm_device *dev)
2886{
2887 struct drm_i915_private *dev_priv = dev->dev_private;
2888 struct intel_engine_cs *ring;
2889 int i;
2890
2891 /*
2892 * Before we free the objects from the requests, we need to inspect
2893 * them for finding the guilty party. As the requests only borrow
2894 * their reference to the objects, the inspection must be done first.
2895 */
2896 for_each_ring(ring, dev_priv, i)
2897 i915_gem_reset_ring_status(dev_priv, ring);
2898
2899 for_each_ring(ring, dev_priv, i)
2900 i915_gem_reset_ring_cleanup(dev_priv, ring);
2901
2902 i915_gem_context_reset(dev);
2903
2904 i915_gem_restore_fences(dev);
2905
2906 WARN_ON(i915_verify_lists(dev));
2907}
2908
2909/**
2910 * This function clears the request list as sequence numbers are passed.
2911 */
2912void
2913i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2914{
2915 WARN_ON(i915_verify_lists(ring->dev));
2916
2917 /* Retire requests first as we use it above for the early return.
2918 * If we retire requests last, we may use a later seqno and so clear
2919 * the requests lists without clearing the active list, leading to
2920 * confusion.
2921 */
2922 while (!list_empty(&ring->request_list)) {
2923 struct drm_i915_gem_request *request;
2924
2925 request = list_first_entry(&ring->request_list,
2926 struct drm_i915_gem_request,
2927 list);
2928
2929 if (!i915_gem_request_completed(request, true))
2930 break;
2931
2932 i915_gem_request_retire(request);
2933 }
2934
2935 /* Move any buffers on the active list that are no longer referenced
2936 * by the ringbuffer to the flushing/inactive lists as appropriate,
2937 * before we free the context associated with the requests.
2938 */
2939 while (!list_empty(&ring->active_list)) {
2940 struct drm_i915_gem_object *obj;
2941
2942 obj = list_first_entry(&ring->active_list,
2943 struct drm_i915_gem_object,
2944 ring_list[ring->id]);
2945
2946 if (!list_empty(&obj->last_read_req[ring->id]->list))
2947 break;
2948
2949 i915_gem_object_retire__read(obj, ring->id);
2950 }
2951
2952 if (unlikely(ring->trace_irq_req &&
2953 i915_gem_request_completed(ring->trace_irq_req, true))) {
2954 ring->irq_put(ring);
2955 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2956 }
2957
2958 WARN_ON(i915_verify_lists(ring->dev));
2959}
2960
2961bool
2962i915_gem_retire_requests(struct drm_device *dev)
2963{
2964 struct drm_i915_private *dev_priv = dev->dev_private;
2965 struct intel_engine_cs *ring;
2966 bool idle = true;
2967 int i;
2968
2969 for_each_ring(ring, dev_priv, i) {
2970 i915_gem_retire_requests_ring(ring);
2971 idle &= list_empty(&ring->request_list);
2972 if (i915.enable_execlists) {
2973 spin_lock_irq(&ring->execlist_lock);
2974 idle &= list_empty(&ring->execlist_queue);
2975 spin_unlock_irq(&ring->execlist_lock);
2976
2977 intel_execlists_retire_requests(ring);
2978 }
2979 }
2980
2981 if (idle)
2982 mod_delayed_work(dev_priv->wq,
2983 &dev_priv->mm.idle_work,
2984 msecs_to_jiffies(100));
2985
2986 return idle;
2987}
2988
2989static void
2990i915_gem_retire_work_handler(struct work_struct *work)
2991{
2992 struct drm_i915_private *dev_priv =
2993 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2994 struct drm_device *dev = dev_priv->dev;
2995 bool idle;
2996
2997 /* Come back later if the device is busy... */
2998 idle = false;
2999 if (mutex_trylock(&dev->struct_mutex)) {
3000 idle = i915_gem_retire_requests(dev);
3001 mutex_unlock(&dev->struct_mutex);
3002 }
3003 if (!idle)
3004 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3005 round_jiffies_up_relative(HZ));
3006}
3007
3008static void
3009i915_gem_idle_work_handler(struct work_struct *work)
3010{
3011 struct drm_i915_private *dev_priv =
3012 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3013 struct drm_device *dev = dev_priv->dev;
3014 struct intel_engine_cs *ring;
3015 int i;
3016
3017 for_each_ring(ring, dev_priv, i)
3018 if (!list_empty(&ring->request_list))
3019 return;
3020
3021 /* we probably should sync with hangcheck here, using cancel_work_sync.
3022 * Also locking seems to be fubar here, ring->request_list is protected
3023 * by dev->struct_mutex. */
3024
3025 intel_mark_idle(dev);
3026
3027 if (mutex_trylock(&dev->struct_mutex)) {
3028 struct intel_engine_cs *ring;
3029 int i;
3030
3031 for_each_ring(ring, dev_priv, i)
3032 i915_gem_batch_pool_fini(&ring->batch_pool);
3033
3034 mutex_unlock(&dev->struct_mutex);
3035 }
3036}
3037
3038/**
3039 * Ensures that an object will eventually get non-busy by flushing any required
3040 * write domains, emitting any outstanding lazy request and retiring and
3041 * completed requests.
3042 */
3043static int
3044i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3045{
3046 int i;
3047
3048 if (!obj->active)
3049 return 0;
3050
3051 for (i = 0; i < I915_NUM_RINGS; i++) {
3052 struct drm_i915_gem_request *req;
3053
3054 req = obj->last_read_req[i];
3055 if (req == NULL)
3056 continue;
3057
3058 if (list_empty(&req->list))
3059 goto retire;
3060
3061 if (i915_gem_request_completed(req, true)) {
3062 __i915_gem_request_retire__upto(req);
3063retire:
3064 i915_gem_object_retire__read(obj, i);
3065 }
3066 }
3067
3068 return 0;
3069}
3070
3071/**
3072 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3073 * @DRM_IOCTL_ARGS: standard ioctl arguments
3074 *
3075 * Returns 0 if successful, else an error is returned with the remaining time in
3076 * the timeout parameter.
3077 * -ETIME: object is still busy after timeout
3078 * -ERESTARTSYS: signal interrupted the wait
3079 * -ENONENT: object doesn't exist
3080 * Also possible, but rare:
3081 * -EAGAIN: GPU wedged
3082 * -ENOMEM: damn
3083 * -ENODEV: Internal IRQ fail
3084 * -E?: The add request failed
3085 *
3086 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3087 * non-zero timeout parameter the wait ioctl will wait for the given number of
3088 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3089 * without holding struct_mutex the object may become re-busied before this
3090 * function completes. A similar but shorter * race condition exists in the busy
3091 * ioctl
3092 */
3093int
3094i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3095{
3096 struct drm_i915_private *dev_priv = dev->dev_private;
3097 struct drm_i915_gem_wait *args = data;
3098 struct drm_i915_gem_object *obj;
3099 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3100 unsigned reset_counter;
3101 int i, n = 0;
3102 int ret;
3103
3104 if (args->flags != 0)
3105 return -EINVAL;
3106
3107 ret = i915_mutex_lock_interruptible(dev);
3108 if (ret)
3109 return ret;
3110
3111 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3112 if (&obj->base == NULL) {
3113 mutex_unlock(&dev->struct_mutex);
3114 return -ENOENT;
3115 }
3116
3117 /* Need to make sure the object gets inactive eventually. */
3118 ret = i915_gem_object_flush_active(obj);
3119 if (ret)
3120 goto out;
3121
3122 if (!obj->active)
3123 goto out;
3124
3125 /* Do this after OLR check to make sure we make forward progress polling
3126 * on this IOCTL with a timeout == 0 (like busy ioctl)
3127 */
3128 if (args->timeout_ns == 0) {
3129 ret = -ETIME;
3130 goto out;
3131 }
3132
3133 drm_gem_object_unreference(&obj->base);
3134 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3135
3136 for (i = 0; i < I915_NUM_RINGS; i++) {
3137 if (obj->last_read_req[i] == NULL)
3138 continue;
3139
3140 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3141 }
3142
3143 mutex_unlock(&dev->struct_mutex);
3144
3145 for (i = 0; i < n; i++) {
3146 if (ret == 0)
3147 ret = __i915_wait_request(req[i], reset_counter, true,
3148 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3149 to_rps_client(file));
3150 i915_gem_request_unreference__unlocked(req[i]);
3151 }
3152 return ret;
3153
3154out:
3155 drm_gem_object_unreference(&obj->base);
3156 mutex_unlock(&dev->struct_mutex);
3157 return ret;
3158}
3159
3160static int
3161__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3162 struct intel_engine_cs *to,
3163 struct drm_i915_gem_request *from_req,
3164 struct drm_i915_gem_request **to_req)
3165{
3166 struct intel_engine_cs *from;
3167 int ret;
3168
3169 from = i915_gem_request_get_ring(from_req);
3170 if (to == from)
3171 return 0;
3172
3173 if (i915_gem_request_completed(from_req, true))
3174 return 0;
3175
3176 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3177 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3178 ret = __i915_wait_request(from_req,
3179 atomic_read(&i915->gpu_error.reset_counter),
3180 i915->mm.interruptible,
3181 NULL,
3182 &i915->rps.semaphores);
3183 if (ret)
3184 return ret;
3185
3186 i915_gem_object_retire_request(obj, from_req);
3187 } else {
3188 int idx = intel_ring_sync_index(from, to);
3189 u32 seqno = i915_gem_request_get_seqno(from_req);
3190
3191 WARN_ON(!to_req);
3192
3193 if (seqno <= from->semaphore.sync_seqno[idx])
3194 return 0;
3195
3196 if (*to_req == NULL) {
3197 struct drm_i915_gem_request *req;
3198
3199 req = i915_gem_request_alloc(to, NULL);
3200 if (IS_ERR(req))
3201 return PTR_ERR(req);
3202
3203 *to_req = req;
3204 }
3205
3206 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3207 ret = to->semaphore.sync_to(*to_req, from, seqno);
3208 if (ret)
3209 return ret;
3210
3211 /* We use last_read_req because sync_to()
3212 * might have just caused seqno wrap under
3213 * the radar.
3214 */
3215 from->semaphore.sync_seqno[idx] =
3216 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3217 }
3218
3219 return 0;
3220}
3221
3222/**
3223 * i915_gem_object_sync - sync an object to a ring.
3224 *
3225 * @obj: object which may be in use on another ring.
3226 * @to: ring we wish to use the object on. May be NULL.
3227 * @to_req: request we wish to use the object for. See below.
3228 * This will be allocated and returned if a request is
3229 * required but not passed in.
3230 *
3231 * This code is meant to abstract object synchronization with the GPU.
3232 * Calling with NULL implies synchronizing the object with the CPU
3233 * rather than a particular GPU ring. Conceptually we serialise writes
3234 * between engines inside the GPU. We only allow one engine to write
3235 * into a buffer at any time, but multiple readers. To ensure each has
3236 * a coherent view of memory, we must:
3237 *
3238 * - If there is an outstanding write request to the object, the new
3239 * request must wait for it to complete (either CPU or in hw, requests
3240 * on the same ring will be naturally ordered).
3241 *
3242 * - If we are a write request (pending_write_domain is set), the new
3243 * request must wait for outstanding read requests to complete.
3244 *
3245 * For CPU synchronisation (NULL to) no request is required. For syncing with
3246 * rings to_req must be non-NULL. However, a request does not have to be
3247 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3248 * request will be allocated automatically and returned through *to_req. Note
3249 * that it is not guaranteed that commands will be emitted (because the system
3250 * might already be idle). Hence there is no need to create a request that
3251 * might never have any work submitted. Note further that if a request is
3252 * returned in *to_req, it is the responsibility of the caller to submit
3253 * that request (after potentially adding more work to it).
3254 *
3255 * Returns 0 if successful, else propagates up the lower layer error.
3256 */
3257int
3258i915_gem_object_sync(struct drm_i915_gem_object *obj,
3259 struct intel_engine_cs *to,
3260 struct drm_i915_gem_request **to_req)
3261{
3262 const bool readonly = obj->base.pending_write_domain == 0;
3263 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3264 int ret, i, n;
3265
3266 if (!obj->active)
3267 return 0;
3268
3269 if (to == NULL)
3270 return i915_gem_object_wait_rendering(obj, readonly);
3271
3272 n = 0;
3273 if (readonly) {
3274 if (obj->last_write_req)
3275 req[n++] = obj->last_write_req;
3276 } else {
3277 for (i = 0; i < I915_NUM_RINGS; i++)
3278 if (obj->last_read_req[i])
3279 req[n++] = obj->last_read_req[i];
3280 }
3281 for (i = 0; i < n; i++) {
3282 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3283 if (ret)
3284 return ret;
3285 }
3286
3287 return 0;
3288}
3289
3290static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3291{
3292 u32 old_write_domain, old_read_domains;
3293
3294 /* Force a pagefault for domain tracking on next user access */
3295 i915_gem_release_mmap(obj);
3296
3297 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3298 return;
3299
3300 /* Wait for any direct GTT access to complete */
3301 mb();
3302
3303 old_read_domains = obj->base.read_domains;
3304 old_write_domain = obj->base.write_domain;
3305
3306 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3307 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3308
3309 trace_i915_gem_object_change_domain(obj,
3310 old_read_domains,
3311 old_write_domain);
3312}
3313
3314static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3315{
3316 struct drm_i915_gem_object *obj = vma->obj;
3317 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3318 int ret;
3319
3320 if (list_empty(&vma->obj_link))
3321 return 0;
3322
3323 if (!drm_mm_node_allocated(&vma->node)) {
3324 i915_gem_vma_destroy(vma);
3325 return 0;
3326 }
3327
3328 if (vma->pin_count)
3329 return -EBUSY;
3330
3331 BUG_ON(obj->pages == NULL);
3332
3333 if (wait) {
3334 ret = i915_gem_object_wait_rendering(obj, false);
3335 if (ret)
3336 return ret;
3337 }
3338
3339 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3340 i915_gem_object_finish_gtt(obj);
3341
3342 /* release the fence reg _after_ flushing */
3343 ret = i915_gem_object_put_fence(obj);
3344 if (ret)
3345 return ret;
3346 }
3347
3348 trace_i915_vma_unbind(vma);
3349
3350 vma->vm->unbind_vma(vma);
3351 vma->bound = 0;
3352
3353 list_del_init(&vma->vm_link);
3354 if (vma->is_ggtt) {
3355 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3356 obj->map_and_fenceable = false;
3357 } else if (vma->ggtt_view.pages) {
3358 sg_free_table(vma->ggtt_view.pages);
3359 kfree(vma->ggtt_view.pages);
3360 }
3361 vma->ggtt_view.pages = NULL;
3362 }
3363
3364 drm_mm_remove_node(&vma->node);
3365 i915_gem_vma_destroy(vma);
3366
3367 /* Since the unbound list is global, only move to that list if
3368 * no more VMAs exist. */
3369 if (list_empty(&obj->vma_list))
3370 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3371
3372 /* And finally now the object is completely decoupled from this vma,
3373 * we can drop its hold on the backing storage and allow it to be
3374 * reaped by the shrinker.
3375 */
3376 i915_gem_object_unpin_pages(obj);
3377
3378 return 0;
3379}
3380
3381int i915_vma_unbind(struct i915_vma *vma)
3382{
3383 return __i915_vma_unbind(vma, true);
3384}
3385
3386int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3387{
3388 return __i915_vma_unbind(vma, false);
3389}
3390
3391int i915_gpu_idle(struct drm_device *dev)
3392{
3393 struct drm_i915_private *dev_priv = dev->dev_private;
3394 struct intel_engine_cs *ring;
3395 int ret, i;
3396
3397 /* Flush everything onto the inactive list. */
3398 for_each_ring(ring, dev_priv, i) {
3399 if (!i915.enable_execlists) {
3400 struct drm_i915_gem_request *req;
3401
3402 req = i915_gem_request_alloc(ring, NULL);
3403 if (IS_ERR(req))
3404 return PTR_ERR(req);
3405
3406 ret = i915_switch_context(req);
3407 if (ret) {
3408 i915_gem_request_cancel(req);
3409 return ret;
3410 }
3411
3412 i915_add_request_no_flush(req);
3413 }
3414
3415 ret = intel_ring_idle(ring);
3416 if (ret)
3417 return ret;
3418 }
3419
3420 WARN_ON(i915_verify_lists(dev));
3421 return 0;
3422}
3423
3424static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3425 unsigned long cache_level)
3426{
3427 struct drm_mm_node *gtt_space = &vma->node;
3428 struct drm_mm_node *other;
3429
3430 /*
3431 * On some machines we have to be careful when putting differing types
3432 * of snoopable memory together to avoid the prefetcher crossing memory
3433 * domains and dying. During vm initialisation, we decide whether or not
3434 * these constraints apply and set the drm_mm.color_adjust
3435 * appropriately.
3436 */
3437 if (vma->vm->mm.color_adjust == NULL)
3438 return true;
3439
3440 if (!drm_mm_node_allocated(gtt_space))
3441 return true;
3442
3443 if (list_empty(>t_space->node_list))
3444 return true;
3445
3446 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3447 if (other->allocated && !other->hole_follows && other->color != cache_level)
3448 return false;
3449
3450 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3451 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3452 return false;
3453
3454 return true;
3455}
3456
3457/**
3458 * Finds free space in the GTT aperture and binds the object or a view of it
3459 * there.
3460 */
3461static struct i915_vma *
3462i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3463 struct i915_address_space *vm,
3464 const struct i915_ggtt_view *ggtt_view,
3465 unsigned alignment,
3466 uint64_t flags)
3467{
3468 struct drm_device *dev = obj->base.dev;
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470 u32 fence_alignment, unfenced_alignment;
3471 u32 search_flag, alloc_flag;
3472 u64 start, end;
3473 u64 size, fence_size;
3474 struct i915_vma *vma;
3475 int ret;
3476
3477 if (i915_is_ggtt(vm)) {
3478 u32 view_size;
3479
3480 if (WARN_ON(!ggtt_view))
3481 return ERR_PTR(-EINVAL);
3482
3483 view_size = i915_ggtt_view_size(obj, ggtt_view);
3484
3485 fence_size = i915_gem_get_gtt_size(dev,
3486 view_size,
3487 obj->tiling_mode);
3488 fence_alignment = i915_gem_get_gtt_alignment(dev,
3489 view_size,
3490 obj->tiling_mode,
3491 true);
3492 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3493 view_size,
3494 obj->tiling_mode,
3495 false);
3496 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3497 } else {
3498 fence_size = i915_gem_get_gtt_size(dev,
3499 obj->base.size,
3500 obj->tiling_mode);
3501 fence_alignment = i915_gem_get_gtt_alignment(dev,
3502 obj->base.size,
3503 obj->tiling_mode,
3504 true);
3505 unfenced_alignment =
3506 i915_gem_get_gtt_alignment(dev,
3507 obj->base.size,
3508 obj->tiling_mode,
3509 false);
3510 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3511 }
3512
3513 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3514 end = vm->total;
3515 if (flags & PIN_MAPPABLE)
3516 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3517 if (flags & PIN_ZONE_4G)
3518 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3519
3520 if (alignment == 0)
3521 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3522 unfenced_alignment;
3523 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3524 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3525 ggtt_view ? ggtt_view->type : 0,
3526 alignment);
3527 return ERR_PTR(-EINVAL);
3528 }
3529
3530 /* If binding the object/GGTT view requires more space than the entire
3531 * aperture has, reject it early before evicting everything in a vain
3532 * attempt to find space.
3533 */
3534 if (size > end) {
3535 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3536 ggtt_view ? ggtt_view->type : 0,
3537 size,
3538 flags & PIN_MAPPABLE ? "mappable" : "total",
3539 end);
3540 return ERR_PTR(-E2BIG);
3541 }
3542
3543 ret = i915_gem_object_get_pages(obj);
3544 if (ret)
3545 return ERR_PTR(ret);
3546
3547 i915_gem_object_pin_pages(obj);
3548
3549 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3550 i915_gem_obj_lookup_or_create_vma(obj, vm);
3551
3552 if (IS_ERR(vma))
3553 goto err_unpin;
3554
3555 if (flags & PIN_OFFSET_FIXED) {
3556 uint64_t offset = flags & PIN_OFFSET_MASK;
3557
3558 if (offset & (alignment - 1) || offset + size > end) {
3559 ret = -EINVAL;
3560 goto err_free_vma;
3561 }
3562 vma->node.start = offset;
3563 vma->node.size = size;
3564 vma->node.color = obj->cache_level;
3565 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3566 if (ret) {
3567 ret = i915_gem_evict_for_vma(vma);
3568 if (ret == 0)
3569 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3570 }
3571 if (ret)
3572 goto err_free_vma;
3573 } else {
3574 if (flags & PIN_HIGH) {
3575 search_flag = DRM_MM_SEARCH_BELOW;
3576 alloc_flag = DRM_MM_CREATE_TOP;
3577 } else {
3578 search_flag = DRM_MM_SEARCH_DEFAULT;
3579 alloc_flag = DRM_MM_CREATE_DEFAULT;
3580 }
3581
3582search_free:
3583 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3584 size, alignment,
3585 obj->cache_level,
3586 start, end,
3587 search_flag,
3588 alloc_flag);
3589 if (ret) {
3590 ret = i915_gem_evict_something(dev, vm, size, alignment,
3591 obj->cache_level,
3592 start, end,
3593 flags);
3594 if (ret == 0)
3595 goto search_free;
3596
3597 goto err_free_vma;
3598 }
3599 }
3600 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3601 ret = -EINVAL;
3602 goto err_remove_node;
3603 }
3604
3605 trace_i915_vma_bind(vma, flags);
3606 ret = i915_vma_bind(vma, obj->cache_level, flags);
3607 if (ret)
3608 goto err_remove_node;
3609
3610 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3611 list_add_tail(&vma->vm_link, &vm->inactive_list);
3612
3613 return vma;
3614
3615err_remove_node:
3616 drm_mm_remove_node(&vma->node);
3617err_free_vma:
3618 i915_gem_vma_destroy(vma);
3619 vma = ERR_PTR(ret);
3620err_unpin:
3621 i915_gem_object_unpin_pages(obj);
3622 return vma;
3623}
3624
3625bool
3626i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3627 bool force)
3628{
3629 /* If we don't have a page list set up, then we're not pinned
3630 * to GPU, and we can ignore the cache flush because it'll happen
3631 * again at bind time.
3632 */
3633 if (obj->pages == NULL)
3634 return false;
3635
3636 /*
3637 * Stolen memory is always coherent with the GPU as it is explicitly
3638 * marked as wc by the system, or the system is cache-coherent.
3639 */
3640 if (obj->stolen || obj->phys_handle)
3641 return false;
3642
3643 /* If the GPU is snooping the contents of the CPU cache,
3644 * we do not need to manually clear the CPU cache lines. However,
3645 * the caches are only snooped when the render cache is
3646 * flushed/invalidated. As we always have to emit invalidations
3647 * and flushes when moving into and out of the RENDER domain, correct
3648 * snooping behaviour occurs naturally as the result of our domain
3649 * tracking.
3650 */
3651 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3652 obj->cache_dirty = true;
3653 return false;
3654 }
3655
3656 trace_i915_gem_object_clflush(obj);
3657 drm_clflush_sg(obj->pages);
3658 obj->cache_dirty = false;
3659
3660 return true;
3661}
3662
3663/** Flushes the GTT write domain for the object if it's dirty. */
3664static void
3665i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3666{
3667 uint32_t old_write_domain;
3668
3669 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3670 return;
3671
3672 /* No actual flushing is required for the GTT write domain. Writes
3673 * to it immediately go to main memory as far as we know, so there's
3674 * no chipset flush. It also doesn't land in render cache.
3675 *
3676 * However, we do have to enforce the order so that all writes through
3677 * the GTT land before any writes to the device, such as updates to
3678 * the GATT itself.
3679 */
3680 wmb();
3681
3682 old_write_domain = obj->base.write_domain;
3683 obj->base.write_domain = 0;
3684
3685 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3686
3687 trace_i915_gem_object_change_domain(obj,
3688 obj->base.read_domains,
3689 old_write_domain);
3690}
3691
3692/** Flushes the CPU write domain for the object if it's dirty. */
3693static void
3694i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3695{
3696 uint32_t old_write_domain;
3697
3698 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3699 return;
3700
3701 if (i915_gem_clflush_object(obj, obj->pin_display))
3702 i915_gem_chipset_flush(obj->base.dev);
3703
3704 old_write_domain = obj->base.write_domain;
3705 obj->base.write_domain = 0;
3706
3707 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3708
3709 trace_i915_gem_object_change_domain(obj,
3710 obj->base.read_domains,
3711 old_write_domain);
3712}
3713
3714/**
3715 * Moves a single object to the GTT read, and possibly write domain.
3716 *
3717 * This function returns when the move is complete, including waiting on
3718 * flushes to occur.
3719 */
3720int
3721i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3722{
3723 uint32_t old_write_domain, old_read_domains;
3724 struct i915_vma *vma;
3725 int ret;
3726
3727 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3728 return 0;
3729
3730 ret = i915_gem_object_wait_rendering(obj, !write);
3731 if (ret)
3732 return ret;
3733
3734 /* Flush and acquire obj->pages so that we are coherent through
3735 * direct access in memory with previous cached writes through
3736 * shmemfs and that our cache domain tracking remains valid.
3737 * For example, if the obj->filp was moved to swap without us
3738 * being notified and releasing the pages, we would mistakenly
3739 * continue to assume that the obj remained out of the CPU cached
3740 * domain.
3741 */
3742 ret = i915_gem_object_get_pages(obj);
3743 if (ret)
3744 return ret;
3745
3746 i915_gem_object_flush_cpu_write_domain(obj);
3747
3748 /* Serialise direct access to this object with the barriers for
3749 * coherent writes from the GPU, by effectively invalidating the
3750 * GTT domain upon first access.
3751 */
3752 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3753 mb();
3754
3755 old_write_domain = obj->base.write_domain;
3756 old_read_domains = obj->base.read_domains;
3757
3758 /* It should now be out of any other write domains, and we can update
3759 * the domain values for our changes.
3760 */
3761 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3762 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3763 if (write) {
3764 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3765 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3766 obj->dirty = 1;
3767 }
3768
3769 trace_i915_gem_object_change_domain(obj,
3770 old_read_domains,
3771 old_write_domain);
3772
3773 /* And bump the LRU for this access */
3774 vma = i915_gem_obj_to_ggtt(obj);
3775 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3776 list_move_tail(&vma->vm_link,
3777 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3778
3779 return 0;
3780}
3781
3782/**
3783 * Changes the cache-level of an object across all VMA.
3784 *
3785 * After this function returns, the object will be in the new cache-level
3786 * across all GTT and the contents of the backing storage will be coherent,
3787 * with respect to the new cache-level. In order to keep the backing storage
3788 * coherent for all users, we only allow a single cache level to be set
3789 * globally on the object and prevent it from being changed whilst the
3790 * hardware is reading from the object. That is if the object is currently
3791 * on the scanout it will be set to uncached (or equivalent display
3792 * cache coherency) and all non-MOCS GPU access will also be uncached so
3793 * that all direct access to the scanout remains coherent.
3794 */
3795int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3796 enum i915_cache_level cache_level)
3797{
3798 struct drm_device *dev = obj->base.dev;
3799 struct i915_vma *vma, *next;
3800 bool bound = false;
3801 int ret = 0;
3802
3803 if (obj->cache_level == cache_level)
3804 goto out;
3805
3806 /* Inspect the list of currently bound VMA and unbind any that would
3807 * be invalid given the new cache-level. This is principally to
3808 * catch the issue of the CS prefetch crossing page boundaries and
3809 * reading an invalid PTE on older architectures.
3810 */
3811 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3812 if (!drm_mm_node_allocated(&vma->node))
3813 continue;
3814
3815 if (vma->pin_count) {
3816 DRM_DEBUG("can not change the cache level of pinned objects\n");
3817 return -EBUSY;
3818 }
3819
3820 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3821 ret = i915_vma_unbind(vma);
3822 if (ret)
3823 return ret;
3824 } else
3825 bound = true;
3826 }
3827
3828 /* We can reuse the existing drm_mm nodes but need to change the
3829 * cache-level on the PTE. We could simply unbind them all and
3830 * rebind with the correct cache-level on next use. However since
3831 * we already have a valid slot, dma mapping, pages etc, we may as
3832 * rewrite the PTE in the belief that doing so tramples upon less
3833 * state and so involves less work.
3834 */
3835 if (bound) {
3836 /* Before we change the PTE, the GPU must not be accessing it.
3837 * If we wait upon the object, we know that all the bound
3838 * VMA are no longer active.
3839 */
3840 ret = i915_gem_object_wait_rendering(obj, false);
3841 if (ret)
3842 return ret;
3843
3844 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3845 /* Access to snoopable pages through the GTT is
3846 * incoherent and on some machines causes a hard
3847 * lockup. Relinquish the CPU mmaping to force
3848 * userspace to refault in the pages and we can
3849 * then double check if the GTT mapping is still
3850 * valid for that pointer access.
3851 */
3852 i915_gem_release_mmap(obj);
3853
3854 /* As we no longer need a fence for GTT access,
3855 * we can relinquish it now (and so prevent having
3856 * to steal a fence from someone else on the next
3857 * fence request). Note GPU activity would have
3858 * dropped the fence as all snoopable access is
3859 * supposed to be linear.
3860 */
3861 ret = i915_gem_object_put_fence(obj);
3862 if (ret)
3863 return ret;
3864 } else {
3865 /* We either have incoherent backing store and
3866 * so no GTT access or the architecture is fully
3867 * coherent. In such cases, existing GTT mmaps
3868 * ignore the cache bit in the PTE and we can
3869 * rewrite it without confusing the GPU or having
3870 * to force userspace to fault back in its mmaps.
3871 */
3872 }
3873
3874 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3875 if (!drm_mm_node_allocated(&vma->node))
3876 continue;
3877
3878 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3879 if (ret)
3880 return ret;
3881 }
3882 }
3883
3884 list_for_each_entry(vma, &obj->vma_list, obj_link)
3885 vma->node.color = cache_level;
3886 obj->cache_level = cache_level;
3887
3888out:
3889 /* Flush the dirty CPU caches to the backing storage so that the
3890 * object is now coherent at its new cache level (with respect
3891 * to the access domain).
3892 */
3893 if (obj->cache_dirty &&
3894 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3895 cpu_write_needs_clflush(obj)) {
3896 if (i915_gem_clflush_object(obj, true))
3897 i915_gem_chipset_flush(obj->base.dev);
3898 }
3899
3900 return 0;
3901}
3902
3903int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3904 struct drm_file *file)
3905{
3906 struct drm_i915_gem_caching *args = data;
3907 struct drm_i915_gem_object *obj;
3908
3909 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3910 if (&obj->base == NULL)
3911 return -ENOENT;
3912
3913 switch (obj->cache_level) {
3914 case I915_CACHE_LLC:
3915 case I915_CACHE_L3_LLC:
3916 args->caching = I915_CACHING_CACHED;
3917 break;
3918
3919 case I915_CACHE_WT:
3920 args->caching = I915_CACHING_DISPLAY;
3921 break;
3922
3923 default:
3924 args->caching = I915_CACHING_NONE;
3925 break;
3926 }
3927
3928 drm_gem_object_unreference_unlocked(&obj->base);
3929 return 0;
3930}
3931
3932int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3933 struct drm_file *file)
3934{
3935 struct drm_i915_private *dev_priv = dev->dev_private;
3936 struct drm_i915_gem_caching *args = data;
3937 struct drm_i915_gem_object *obj;
3938 enum i915_cache_level level;
3939 int ret;
3940
3941 switch (args->caching) {
3942 case I915_CACHING_NONE:
3943 level = I915_CACHE_NONE;
3944 break;
3945 case I915_CACHING_CACHED:
3946 /*
3947 * Due to a HW issue on BXT A stepping, GPU stores via a
3948 * snooped mapping may leave stale data in a corresponding CPU
3949 * cacheline, whereas normally such cachelines would get
3950 * invalidated.
3951 */
3952 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3953 return -ENODEV;
3954
3955 level = I915_CACHE_LLC;
3956 break;
3957 case I915_CACHING_DISPLAY:
3958 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3959 break;
3960 default:
3961 return -EINVAL;
3962 }
3963
3964 intel_runtime_pm_get(dev_priv);
3965
3966 ret = i915_mutex_lock_interruptible(dev);
3967 if (ret)
3968 goto rpm_put;
3969
3970 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3971 if (&obj->base == NULL) {
3972 ret = -ENOENT;
3973 goto unlock;
3974 }
3975
3976 ret = i915_gem_object_set_cache_level(obj, level);
3977
3978 drm_gem_object_unreference(&obj->base);
3979unlock:
3980 mutex_unlock(&dev->struct_mutex);
3981rpm_put:
3982 intel_runtime_pm_put(dev_priv);
3983
3984 return ret;
3985}
3986
3987/*
3988 * Prepare buffer for display plane (scanout, cursors, etc).
3989 * Can be called from an uninterruptible phase (modesetting) and allows
3990 * any flushes to be pipelined (for pageflips).
3991 */
3992int
3993i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3994 u32 alignment,
3995 const struct i915_ggtt_view *view)
3996{
3997 u32 old_read_domains, old_write_domain;
3998 int ret;
3999
4000 /* Mark the pin_display early so that we account for the
4001 * display coherency whilst setting up the cache domains.
4002 */
4003 obj->pin_display++;
4004
4005 /* The display engine is not coherent with the LLC cache on gen6. As
4006 * a result, we make sure that the pinning that is about to occur is
4007 * done with uncached PTEs. This is lowest common denominator for all
4008 * chipsets.
4009 *
4010 * However for gen6+, we could do better by using the GFDT bit instead
4011 * of uncaching, which would allow us to flush all the LLC-cached data
4012 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4013 */
4014 ret = i915_gem_object_set_cache_level(obj,
4015 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4016 if (ret)
4017 goto err_unpin_display;
4018
4019 /* As the user may map the buffer once pinned in the display plane
4020 * (e.g. libkms for the bootup splash), we have to ensure that we
4021 * always use map_and_fenceable for all scanout buffers.
4022 */
4023 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4024 view->type == I915_GGTT_VIEW_NORMAL ?
4025 PIN_MAPPABLE : 0);
4026 if (ret)
4027 goto err_unpin_display;
4028
4029 i915_gem_object_flush_cpu_write_domain(obj);
4030
4031 old_write_domain = obj->base.write_domain;
4032 old_read_domains = obj->base.read_domains;
4033
4034 /* It should now be out of any other write domains, and we can update
4035 * the domain values for our changes.
4036 */
4037 obj->base.write_domain = 0;
4038 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4039
4040 trace_i915_gem_object_change_domain(obj,
4041 old_read_domains,
4042 old_write_domain);
4043
4044 return 0;
4045
4046err_unpin_display:
4047 obj->pin_display--;
4048 return ret;
4049}
4050
4051void
4052i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4053 const struct i915_ggtt_view *view)
4054{
4055 if (WARN_ON(obj->pin_display == 0))
4056 return;
4057
4058 i915_gem_object_ggtt_unpin_view(obj, view);
4059
4060 obj->pin_display--;
4061}
4062
4063/**
4064 * Moves a single object to the CPU read, and possibly write domain.
4065 *
4066 * This function returns when the move is complete, including waiting on
4067 * flushes to occur.
4068 */
4069int
4070i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4071{
4072 uint32_t old_write_domain, old_read_domains;
4073 int ret;
4074
4075 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4076 return 0;
4077
4078 ret = i915_gem_object_wait_rendering(obj, !write);
4079 if (ret)
4080 return ret;
4081
4082 i915_gem_object_flush_gtt_write_domain(obj);
4083
4084 old_write_domain = obj->base.write_domain;
4085 old_read_domains = obj->base.read_domains;
4086
4087 /* Flush the CPU cache if it's still invalid. */
4088 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4089 i915_gem_clflush_object(obj, false);
4090
4091 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4092 }
4093
4094 /* It should now be out of any other write domains, and we can update
4095 * the domain values for our changes.
4096 */
4097 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4098
4099 /* If we're writing through the CPU, then the GPU read domains will
4100 * need to be invalidated at next use.
4101 */
4102 if (write) {
4103 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4104 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4105 }
4106
4107 trace_i915_gem_object_change_domain(obj,
4108 old_read_domains,
4109 old_write_domain);
4110
4111 return 0;
4112}
4113
4114/* Throttle our rendering by waiting until the ring has completed our requests
4115 * emitted over 20 msec ago.
4116 *
4117 * Note that if we were to use the current jiffies each time around the loop,
4118 * we wouldn't escape the function with any frames outstanding if the time to
4119 * render a frame was over 20ms.
4120 *
4121 * This should get us reasonable parallelism between CPU and GPU but also
4122 * relatively low latency when blocking on a particular request to finish.
4123 */
4124static int
4125i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4126{
4127 struct drm_i915_private *dev_priv = dev->dev_private;
4128 struct drm_i915_file_private *file_priv = file->driver_priv;
4129 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4130 struct drm_i915_gem_request *request, *target = NULL;
4131 unsigned reset_counter;
4132 int ret;
4133
4134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4135 if (ret)
4136 return ret;
4137
4138 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4139 if (ret)
4140 return ret;
4141
4142 spin_lock(&file_priv->mm.lock);
4143 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4144 if (time_after_eq(request->emitted_jiffies, recent_enough))
4145 break;
4146
4147 /*
4148 * Note that the request might not have been submitted yet.
4149 * In which case emitted_jiffies will be zero.
4150 */
4151 if (!request->emitted_jiffies)
4152 continue;
4153
4154 target = request;
4155 }
4156 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4157 if (target)
4158 i915_gem_request_reference(target);
4159 spin_unlock(&file_priv->mm.lock);
4160
4161 if (target == NULL)
4162 return 0;
4163
4164 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4165 if (ret == 0)
4166 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4167
4168 i915_gem_request_unreference__unlocked(target);
4169
4170 return ret;
4171}
4172
4173static bool
4174i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4175{
4176 struct drm_i915_gem_object *obj = vma->obj;
4177
4178 if (alignment &&
4179 vma->node.start & (alignment - 1))
4180 return true;
4181
4182 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4183 return true;
4184
4185 if (flags & PIN_OFFSET_BIAS &&
4186 vma->node.start < (flags & PIN_OFFSET_MASK))
4187 return true;
4188
4189 if (flags & PIN_OFFSET_FIXED &&
4190 vma->node.start != (flags & PIN_OFFSET_MASK))
4191 return true;
4192
4193 return false;
4194}
4195
4196void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4197{
4198 struct drm_i915_gem_object *obj = vma->obj;
4199 bool mappable, fenceable;
4200 u32 fence_size, fence_alignment;
4201
4202 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4203 obj->base.size,
4204 obj->tiling_mode);
4205 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4206 obj->base.size,
4207 obj->tiling_mode,
4208 true);
4209
4210 fenceable = (vma->node.size == fence_size &&
4211 (vma->node.start & (fence_alignment - 1)) == 0);
4212
4213 mappable = (vma->node.start + fence_size <=
4214 to_i915(obj->base.dev)->gtt.mappable_end);
4215
4216 obj->map_and_fenceable = mappable && fenceable;
4217}
4218
4219static int
4220i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4221 struct i915_address_space *vm,
4222 const struct i915_ggtt_view *ggtt_view,
4223 uint32_t alignment,
4224 uint64_t flags)
4225{
4226 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4227 struct i915_vma *vma;
4228 unsigned bound;
4229 int ret;
4230
4231 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4232 return -ENODEV;
4233
4234 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4235 return -EINVAL;
4236
4237 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4238 return -EINVAL;
4239
4240 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4241 return -EINVAL;
4242
4243 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4244 i915_gem_obj_to_vma(obj, vm);
4245
4246 if (IS_ERR(vma))
4247 return PTR_ERR(vma);
4248
4249 if (vma) {
4250 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4251 return -EBUSY;
4252
4253 if (i915_vma_misplaced(vma, alignment, flags)) {
4254 WARN(vma->pin_count,
4255 "bo is already pinned in %s with incorrect alignment:"
4256 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4257 " obj->map_and_fenceable=%d\n",
4258 ggtt_view ? "ggtt" : "ppgtt",
4259 upper_32_bits(vma->node.start),
4260 lower_32_bits(vma->node.start),
4261 alignment,
4262 !!(flags & PIN_MAPPABLE),
4263 obj->map_and_fenceable);
4264 ret = i915_vma_unbind(vma);
4265 if (ret)
4266 return ret;
4267
4268 vma = NULL;
4269 }
4270 }
4271
4272 bound = vma ? vma->bound : 0;
4273 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4274 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4275 flags);
4276 if (IS_ERR(vma))
4277 return PTR_ERR(vma);
4278 } else {
4279 ret = i915_vma_bind(vma, obj->cache_level, flags);
4280 if (ret)
4281 return ret;
4282 }
4283
4284 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4285 (bound ^ vma->bound) & GLOBAL_BIND) {
4286 __i915_vma_set_map_and_fenceable(vma);
4287 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4288 }
4289
4290 vma->pin_count++;
4291 return 0;
4292}
4293
4294int
4295i915_gem_object_pin(struct drm_i915_gem_object *obj,
4296 struct i915_address_space *vm,
4297 uint32_t alignment,
4298 uint64_t flags)
4299{
4300 return i915_gem_object_do_pin(obj, vm,
4301 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4302 alignment, flags);
4303}
4304
4305int
4306i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4307 const struct i915_ggtt_view *view,
4308 uint32_t alignment,
4309 uint64_t flags)
4310{
4311 if (WARN_ONCE(!view, "no view specified"))
4312 return -EINVAL;
4313
4314 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4315 alignment, flags | PIN_GLOBAL);
4316}
4317
4318void
4319i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4320 const struct i915_ggtt_view *view)
4321{
4322 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4323
4324 BUG_ON(!vma);
4325 WARN_ON(vma->pin_count == 0);
4326 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4327
4328 --vma->pin_count;
4329}
4330
4331int
4332i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4333 struct drm_file *file)
4334{
4335 struct drm_i915_gem_busy *args = data;
4336 struct drm_i915_gem_object *obj;
4337 int ret;
4338
4339 ret = i915_mutex_lock_interruptible(dev);
4340 if (ret)
4341 return ret;
4342
4343 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4344 if (&obj->base == NULL) {
4345 ret = -ENOENT;
4346 goto unlock;
4347 }
4348
4349 /* Count all active objects as busy, even if they are currently not used
4350 * by the gpu. Users of this interface expect objects to eventually
4351 * become non-busy without any further actions, therefore emit any
4352 * necessary flushes here.
4353 */
4354 ret = i915_gem_object_flush_active(obj);
4355 if (ret)
4356 goto unref;
4357
4358 args->busy = 0;
4359 if (obj->active) {
4360 int i;
4361
4362 for (i = 0; i < I915_NUM_RINGS; i++) {
4363 struct drm_i915_gem_request *req;
4364
4365 req = obj->last_read_req[i];
4366 if (req)
4367 args->busy |= 1 << (16 + req->ring->exec_id);
4368 }
4369 if (obj->last_write_req)
4370 args->busy |= obj->last_write_req->ring->exec_id;
4371 }
4372
4373unref:
4374 drm_gem_object_unreference(&obj->base);
4375unlock:
4376 mutex_unlock(&dev->struct_mutex);
4377 return ret;
4378}
4379
4380int
4381i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4382 struct drm_file *file_priv)
4383{
4384 return i915_gem_ring_throttle(dev, file_priv);
4385}
4386
4387int
4388i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4389 struct drm_file *file_priv)
4390{
4391 struct drm_i915_private *dev_priv = dev->dev_private;
4392 struct drm_i915_gem_madvise *args = data;
4393 struct drm_i915_gem_object *obj;
4394 int ret;
4395
4396 switch (args->madv) {
4397 case I915_MADV_DONTNEED:
4398 case I915_MADV_WILLNEED:
4399 break;
4400 default:
4401 return -EINVAL;
4402 }
4403
4404 ret = i915_mutex_lock_interruptible(dev);
4405 if (ret)
4406 return ret;
4407
4408 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4409 if (&obj->base == NULL) {
4410 ret = -ENOENT;
4411 goto unlock;
4412 }
4413
4414 if (i915_gem_obj_is_pinned(obj)) {
4415 ret = -EINVAL;
4416 goto out;
4417 }
4418
4419 if (obj->pages &&
4420 obj->tiling_mode != I915_TILING_NONE &&
4421 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4422 if (obj->madv == I915_MADV_WILLNEED)
4423 i915_gem_object_unpin_pages(obj);
4424 if (args->madv == I915_MADV_WILLNEED)
4425 i915_gem_object_pin_pages(obj);
4426 }
4427
4428 if (obj->madv != __I915_MADV_PURGED)
4429 obj->madv = args->madv;
4430
4431 /* if the object is no longer attached, discard its backing storage */
4432 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4433 i915_gem_object_truncate(obj);
4434
4435 args->retained = obj->madv != __I915_MADV_PURGED;
4436
4437out:
4438 drm_gem_object_unreference(&obj->base);
4439unlock:
4440 mutex_unlock(&dev->struct_mutex);
4441 return ret;
4442}
4443
4444void i915_gem_object_init(struct drm_i915_gem_object *obj,
4445 const struct drm_i915_gem_object_ops *ops)
4446{
4447 int i;
4448
4449 INIT_LIST_HEAD(&obj->global_list);
4450 for (i = 0; i < I915_NUM_RINGS; i++)
4451 INIT_LIST_HEAD(&obj->ring_list[i]);
4452 INIT_LIST_HEAD(&obj->obj_exec_link);
4453 INIT_LIST_HEAD(&obj->vma_list);
4454 INIT_LIST_HEAD(&obj->batch_pool_link);
4455
4456 obj->ops = ops;
4457
4458 obj->fence_reg = I915_FENCE_REG_NONE;
4459 obj->madv = I915_MADV_WILLNEED;
4460
4461 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4462}
4463
4464static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4465 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4466 .get_pages = i915_gem_object_get_pages_gtt,
4467 .put_pages = i915_gem_object_put_pages_gtt,
4468};
4469
4470struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4471 size_t size)
4472{
4473 struct drm_i915_gem_object *obj;
4474 struct address_space *mapping;
4475 gfp_t mask;
4476
4477 obj = i915_gem_object_alloc(dev);
4478 if (obj == NULL)
4479 return NULL;
4480
4481 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4482 i915_gem_object_free(obj);
4483 return NULL;
4484 }
4485
4486 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4487 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4488 /* 965gm cannot relocate objects above 4GiB. */
4489 mask &= ~__GFP_HIGHMEM;
4490 mask |= __GFP_DMA32;
4491 }
4492
4493 mapping = file_inode(obj->base.filp)->i_mapping;
4494 mapping_set_gfp_mask(mapping, mask);
4495
4496 i915_gem_object_init(obj, &i915_gem_object_ops);
4497
4498 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4499 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4500
4501 if (HAS_LLC(dev)) {
4502 /* On some devices, we can have the GPU use the LLC (the CPU
4503 * cache) for about a 10% performance improvement
4504 * compared to uncached. Graphics requests other than
4505 * display scanout are coherent with the CPU in
4506 * accessing this cache. This means in this mode we
4507 * don't need to clflush on the CPU side, and on the
4508 * GPU side we only need to flush internal caches to
4509 * get data visible to the CPU.
4510 *
4511 * However, we maintain the display planes as UC, and so
4512 * need to rebind when first used as such.
4513 */
4514 obj->cache_level = I915_CACHE_LLC;
4515 } else
4516 obj->cache_level = I915_CACHE_NONE;
4517
4518 trace_i915_gem_object_create(obj);
4519
4520 return obj;
4521}
4522
4523static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4524{
4525 /* If we are the last user of the backing storage (be it shmemfs
4526 * pages or stolen etc), we know that the pages are going to be
4527 * immediately released. In this case, we can then skip copying
4528 * back the contents from the GPU.
4529 */
4530
4531 if (obj->madv != I915_MADV_WILLNEED)
4532 return false;
4533
4534 if (obj->base.filp == NULL)
4535 return true;
4536
4537 /* At first glance, this looks racy, but then again so would be
4538 * userspace racing mmap against close. However, the first external
4539 * reference to the filp can only be obtained through the
4540 * i915_gem_mmap_ioctl() which safeguards us against the user
4541 * acquiring such a reference whilst we are in the middle of
4542 * freeing the object.
4543 */
4544 return atomic_long_read(&obj->base.filp->f_count) == 1;
4545}
4546
4547void i915_gem_free_object(struct drm_gem_object *gem_obj)
4548{
4549 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4550 struct drm_device *dev = obj->base.dev;
4551 struct drm_i915_private *dev_priv = dev->dev_private;
4552 struct i915_vma *vma, *next;
4553
4554 intel_runtime_pm_get(dev_priv);
4555
4556 trace_i915_gem_object_destroy(obj);
4557
4558 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4559 int ret;
4560
4561 vma->pin_count = 0;
4562 ret = i915_vma_unbind(vma);
4563 if (WARN_ON(ret == -ERESTARTSYS)) {
4564 bool was_interruptible;
4565
4566 was_interruptible = dev_priv->mm.interruptible;
4567 dev_priv->mm.interruptible = false;
4568
4569 WARN_ON(i915_vma_unbind(vma));
4570
4571 dev_priv->mm.interruptible = was_interruptible;
4572 }
4573 }
4574
4575 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4576 * before progressing. */
4577 if (obj->stolen)
4578 i915_gem_object_unpin_pages(obj);
4579
4580 WARN_ON(obj->frontbuffer_bits);
4581
4582 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4583 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4584 obj->tiling_mode != I915_TILING_NONE)
4585 i915_gem_object_unpin_pages(obj);
4586
4587 if (WARN_ON(obj->pages_pin_count))
4588 obj->pages_pin_count = 0;
4589 if (discard_backing_storage(obj))
4590 obj->madv = I915_MADV_DONTNEED;
4591 i915_gem_object_put_pages(obj);
4592 i915_gem_object_free_mmap_offset(obj);
4593
4594 BUG_ON(obj->pages);
4595
4596 if (obj->base.import_attach)
4597 drm_prime_gem_destroy(&obj->base, NULL);
4598
4599 if (obj->ops->release)
4600 obj->ops->release(obj);
4601
4602 drm_gem_object_release(&obj->base);
4603 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4604
4605 kfree(obj->bit_17);
4606 i915_gem_object_free(obj);
4607
4608 intel_runtime_pm_put(dev_priv);
4609}
4610
4611struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4612 struct i915_address_space *vm)
4613{
4614 struct i915_vma *vma;
4615 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4616 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4617 vma->vm == vm)
4618 return vma;
4619 }
4620 return NULL;
4621}
4622
4623struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4624 const struct i915_ggtt_view *view)
4625{
4626 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4627 struct i915_vma *vma;
4628
4629 if (WARN_ONCE(!view, "no view specified"))
4630 return ERR_PTR(-EINVAL);
4631
4632 list_for_each_entry(vma, &obj->vma_list, obj_link)
4633 if (vma->vm == ggtt &&
4634 i915_ggtt_view_equal(&vma->ggtt_view, view))
4635 return vma;
4636 return NULL;
4637}
4638
4639void i915_gem_vma_destroy(struct i915_vma *vma)
4640{
4641 WARN_ON(vma->node.allocated);
4642
4643 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4644 if (!list_empty(&vma->exec_list))
4645 return;
4646
4647 if (!vma->is_ggtt)
4648 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4649
4650 list_del(&vma->obj_link);
4651
4652 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4653}
4654
4655static void
4656i915_gem_stop_ringbuffers(struct drm_device *dev)
4657{
4658 struct drm_i915_private *dev_priv = dev->dev_private;
4659 struct intel_engine_cs *ring;
4660 int i;
4661
4662 for_each_ring(ring, dev_priv, i)
4663 dev_priv->gt.stop_ring(ring);
4664}
4665
4666int
4667i915_gem_suspend(struct drm_device *dev)
4668{
4669 struct drm_i915_private *dev_priv = dev->dev_private;
4670 int ret = 0;
4671
4672 mutex_lock(&dev->struct_mutex);
4673 ret = i915_gpu_idle(dev);
4674 if (ret)
4675 goto err;
4676
4677 i915_gem_retire_requests(dev);
4678
4679 i915_gem_stop_ringbuffers(dev);
4680 mutex_unlock(&dev->struct_mutex);
4681
4682 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4683 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4684 flush_delayed_work(&dev_priv->mm.idle_work);
4685
4686 /* Assert that we sucessfully flushed all the work and
4687 * reset the GPU back to its idle, low power state.
4688 */
4689 WARN_ON(dev_priv->mm.busy);
4690
4691 return 0;
4692
4693err:
4694 mutex_unlock(&dev->struct_mutex);
4695 return ret;
4696}
4697
4698int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4699{
4700 struct intel_engine_cs *ring = req->ring;
4701 struct drm_device *dev = ring->dev;
4702 struct drm_i915_private *dev_priv = dev->dev_private;
4703 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4704 int i, ret;
4705
4706 if (!HAS_L3_DPF(dev) || !remap_info)
4707 return 0;
4708
4709 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4710 if (ret)
4711 return ret;
4712
4713 /*
4714 * Note: We do not worry about the concurrent register cacheline hang
4715 * here because no other code should access these registers other than
4716 * at initialization time.
4717 */
4718 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4719 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4720 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4721 intel_ring_emit(ring, remap_info[i]);
4722 }
4723
4724 intel_ring_advance(ring);
4725
4726 return ret;
4727}
4728
4729void i915_gem_init_swizzling(struct drm_device *dev)
4730{
4731 struct drm_i915_private *dev_priv = dev->dev_private;
4732
4733 if (INTEL_INFO(dev)->gen < 5 ||
4734 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4735 return;
4736
4737 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4738 DISP_TILE_SURFACE_SWIZZLING);
4739
4740 if (IS_GEN5(dev))
4741 return;
4742
4743 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4744 if (IS_GEN6(dev))
4745 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4746 else if (IS_GEN7(dev))
4747 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4748 else if (IS_GEN8(dev))
4749 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4750 else
4751 BUG();
4752}
4753
4754static void init_unused_ring(struct drm_device *dev, u32 base)
4755{
4756 struct drm_i915_private *dev_priv = dev->dev_private;
4757
4758 I915_WRITE(RING_CTL(base), 0);
4759 I915_WRITE(RING_HEAD(base), 0);
4760 I915_WRITE(RING_TAIL(base), 0);
4761 I915_WRITE(RING_START(base), 0);
4762}
4763
4764static void init_unused_rings(struct drm_device *dev)
4765{
4766 if (IS_I830(dev)) {
4767 init_unused_ring(dev, PRB1_BASE);
4768 init_unused_ring(dev, SRB0_BASE);
4769 init_unused_ring(dev, SRB1_BASE);
4770 init_unused_ring(dev, SRB2_BASE);
4771 init_unused_ring(dev, SRB3_BASE);
4772 } else if (IS_GEN2(dev)) {
4773 init_unused_ring(dev, SRB0_BASE);
4774 init_unused_ring(dev, SRB1_BASE);
4775 } else if (IS_GEN3(dev)) {
4776 init_unused_ring(dev, PRB1_BASE);
4777 init_unused_ring(dev, PRB2_BASE);
4778 }
4779}
4780
4781int i915_gem_init_rings(struct drm_device *dev)
4782{
4783 struct drm_i915_private *dev_priv = dev->dev_private;
4784 int ret;
4785
4786 ret = intel_init_render_ring_buffer(dev);
4787 if (ret)
4788 return ret;
4789
4790 if (HAS_BSD(dev)) {
4791 ret = intel_init_bsd_ring_buffer(dev);
4792 if (ret)
4793 goto cleanup_render_ring;
4794 }
4795
4796 if (HAS_BLT(dev)) {
4797 ret = intel_init_blt_ring_buffer(dev);
4798 if (ret)
4799 goto cleanup_bsd_ring;
4800 }
4801
4802 if (HAS_VEBOX(dev)) {
4803 ret = intel_init_vebox_ring_buffer(dev);
4804 if (ret)
4805 goto cleanup_blt_ring;
4806 }
4807
4808 if (HAS_BSD2(dev)) {
4809 ret = intel_init_bsd2_ring_buffer(dev);
4810 if (ret)
4811 goto cleanup_vebox_ring;
4812 }
4813
4814 return 0;
4815
4816cleanup_vebox_ring:
4817 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4818cleanup_blt_ring:
4819 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4820cleanup_bsd_ring:
4821 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4822cleanup_render_ring:
4823 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4824
4825 return ret;
4826}
4827
4828int
4829i915_gem_init_hw(struct drm_device *dev)
4830{
4831 struct drm_i915_private *dev_priv = dev->dev_private;
4832 struct intel_engine_cs *ring;
4833 int ret, i, j;
4834
4835 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4836 return -EIO;
4837
4838 /* Double layer security blanket, see i915_gem_init() */
4839 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4840
4841 if (dev_priv->ellc_size)
4842 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4843
4844 if (IS_HASWELL(dev))
4845 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4846 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4847
4848 if (HAS_PCH_NOP(dev)) {
4849 if (IS_IVYBRIDGE(dev)) {
4850 u32 temp = I915_READ(GEN7_MSG_CTL);
4851 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4852 I915_WRITE(GEN7_MSG_CTL, temp);
4853 } else if (INTEL_INFO(dev)->gen >= 7) {
4854 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4855 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4856 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4857 }
4858 }
4859
4860 i915_gem_init_swizzling(dev);
4861
4862 /*
4863 * At least 830 can leave some of the unused rings
4864 * "active" (ie. head != tail) after resume which
4865 * will prevent c3 entry. Makes sure all unused rings
4866 * are totally idle.
4867 */
4868 init_unused_rings(dev);
4869
4870 BUG_ON(!dev_priv->kernel_context);
4871
4872 ret = i915_ppgtt_init_hw(dev);
4873 if (ret) {
4874 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4875 goto out;
4876 }
4877
4878 /* Need to do basic initialisation of all rings first: */
4879 for_each_ring(ring, dev_priv, i) {
4880 ret = ring->init_hw(ring);
4881 if (ret)
4882 goto out;
4883 }
4884
4885 /* We can't enable contexts until all firmware is loaded */
4886 if (HAS_GUC_UCODE(dev)) {
4887 ret = intel_guc_ucode_load(dev);
4888 if (ret) {
4889 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4890 ret = -EIO;
4891 goto out;
4892 }
4893 }
4894
4895 /*
4896 * Increment the next seqno by 0x100 so we have a visible break
4897 * on re-initialisation
4898 */
4899 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4900 if (ret)
4901 goto out;
4902
4903 /* Now it is safe to go back round and do everything else: */
4904 for_each_ring(ring, dev_priv, i) {
4905 struct drm_i915_gem_request *req;
4906
4907 req = i915_gem_request_alloc(ring, NULL);
4908 if (IS_ERR(req)) {
4909 ret = PTR_ERR(req);
4910 i915_gem_cleanup_ringbuffer(dev);
4911 goto out;
4912 }
4913
4914 if (ring->id == RCS) {
4915 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4916 i915_gem_l3_remap(req, j);
4917 }
4918
4919 ret = i915_ppgtt_init_ring(req);
4920 if (ret && ret != -EIO) {
4921 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4922 i915_gem_request_cancel(req);
4923 i915_gem_cleanup_ringbuffer(dev);
4924 goto out;
4925 }
4926
4927 ret = i915_gem_context_enable(req);
4928 if (ret && ret != -EIO) {
4929 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4930 i915_gem_request_cancel(req);
4931 i915_gem_cleanup_ringbuffer(dev);
4932 goto out;
4933 }
4934
4935 i915_add_request_no_flush(req);
4936 }
4937
4938out:
4939 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4940 return ret;
4941}
4942
4943int i915_gem_init(struct drm_device *dev)
4944{
4945 struct drm_i915_private *dev_priv = dev->dev_private;
4946 int ret;
4947
4948 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4949 i915.enable_execlists);
4950
4951 mutex_lock(&dev->struct_mutex);
4952
4953 if (!i915.enable_execlists) {
4954 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4955 dev_priv->gt.init_rings = i915_gem_init_rings;
4956 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4957 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4958 } else {
4959 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4960 dev_priv->gt.init_rings = intel_logical_rings_init;
4961 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4962 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4963 }
4964
4965 /* This is just a security blanket to placate dragons.
4966 * On some systems, we very sporadically observe that the first TLBs
4967 * used by the CS may be stale, despite us poking the TLB reset. If
4968 * we hold the forcewake during initialisation these problems
4969 * just magically go away.
4970 */
4971 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4972
4973 ret = i915_gem_init_userptr(dev);
4974 if (ret)
4975 goto out_unlock;
4976
4977 i915_gem_init_global_gtt(dev);
4978
4979 ret = i915_gem_context_init(dev);
4980 if (ret)
4981 goto out_unlock;
4982
4983 ret = dev_priv->gt.init_rings(dev);
4984 if (ret)
4985 goto out_unlock;
4986
4987 ret = i915_gem_init_hw(dev);
4988 if (ret == -EIO) {
4989 /* Allow ring initialisation to fail by marking the GPU as
4990 * wedged. But we only want to do this where the GPU is angry,
4991 * for all other failure, such as an allocation failure, bail.
4992 */
4993 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4994 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4995 ret = 0;
4996 }
4997
4998out_unlock:
4999 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5000 mutex_unlock(&dev->struct_mutex);
5001
5002 return ret;
5003}
5004
5005void
5006i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5007{
5008 struct drm_i915_private *dev_priv = dev->dev_private;
5009 struct intel_engine_cs *ring;
5010 int i;
5011
5012 for_each_ring(ring, dev_priv, i)
5013 dev_priv->gt.cleanup_ring(ring);
5014
5015 if (i915.enable_execlists)
5016 /*
5017 * Neither the BIOS, ourselves or any other kernel
5018 * expects the system to be in execlists mode on startup,
5019 * so we need to reset the GPU back to legacy mode.
5020 */
5021 intel_gpu_reset(dev);
5022}
5023
5024static void
5025init_ring_lists(struct intel_engine_cs *ring)
5026{
5027 INIT_LIST_HEAD(&ring->active_list);
5028 INIT_LIST_HEAD(&ring->request_list);
5029}
5030
5031void
5032i915_gem_load_init(struct drm_device *dev)
5033{
5034 struct drm_i915_private *dev_priv = dev->dev_private;
5035 int i;
5036
5037 dev_priv->objects =
5038 kmem_cache_create("i915_gem_object",
5039 sizeof(struct drm_i915_gem_object), 0,
5040 SLAB_HWCACHE_ALIGN,
5041 NULL);
5042 dev_priv->vmas =
5043 kmem_cache_create("i915_gem_vma",
5044 sizeof(struct i915_vma), 0,
5045 SLAB_HWCACHE_ALIGN,
5046 NULL);
5047 dev_priv->requests =
5048 kmem_cache_create("i915_gem_request",
5049 sizeof(struct drm_i915_gem_request), 0,
5050 SLAB_HWCACHE_ALIGN,
5051 NULL);
5052
5053 INIT_LIST_HEAD(&dev_priv->vm_list);
5054 INIT_LIST_HEAD(&dev_priv->context_list);
5055 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5056 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5057 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5058 for (i = 0; i < I915_NUM_RINGS; i++)
5059 init_ring_lists(&dev_priv->ring[i]);
5060 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5061 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5062 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5063 i915_gem_retire_work_handler);
5064 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5065 i915_gem_idle_work_handler);
5066 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5067
5068 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5069
5070 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5071 dev_priv->num_fence_regs = 32;
5072 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5073 dev_priv->num_fence_regs = 16;
5074 else
5075 dev_priv->num_fence_regs = 8;
5076
5077 if (intel_vgpu_active(dev))
5078 dev_priv->num_fence_regs =
5079 I915_READ(vgtif_reg(avail_rs.fence_num));
5080
5081 /*
5082 * Set initial sequence number for requests.
5083 * Using this number allows the wraparound to happen early,
5084 * catching any obvious problems.
5085 */
5086 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5087 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5088
5089 /* Initialize fence registers to zero */
5090 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5091 i915_gem_restore_fences(dev);
5092
5093 i915_gem_detect_bit_6_swizzle(dev);
5094 init_waitqueue_head(&dev_priv->pending_flip_queue);
5095
5096 dev_priv->mm.interruptible = true;
5097
5098 mutex_init(&dev_priv->fb_tracking.lock);
5099}
5100
5101void i915_gem_load_cleanup(struct drm_device *dev)
5102{
5103 struct drm_i915_private *dev_priv = to_i915(dev);
5104
5105 kmem_cache_destroy(dev_priv->requests);
5106 kmem_cache_destroy(dev_priv->vmas);
5107 kmem_cache_destroy(dev_priv->objects);
5108}
5109
5110void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5111{
5112 struct drm_i915_file_private *file_priv = file->driver_priv;
5113
5114 /* Clean up our request list when the client is going away, so that
5115 * later retire_requests won't dereference our soon-to-be-gone
5116 * file_priv.
5117 */
5118 spin_lock(&file_priv->mm.lock);
5119 while (!list_empty(&file_priv->mm.request_list)) {
5120 struct drm_i915_gem_request *request;
5121
5122 request = list_first_entry(&file_priv->mm.request_list,
5123 struct drm_i915_gem_request,
5124 client_list);
5125 list_del(&request->client_list);
5126 request->file_priv = NULL;
5127 }
5128 spin_unlock(&file_priv->mm.lock);
5129
5130 if (!list_empty(&file_priv->rps.link)) {
5131 spin_lock(&to_i915(dev)->rps.client_lock);
5132 list_del(&file_priv->rps.link);
5133 spin_unlock(&to_i915(dev)->rps.client_lock);
5134 }
5135}
5136
5137int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5138{
5139 struct drm_i915_file_private *file_priv;
5140 int ret;
5141
5142 DRM_DEBUG_DRIVER("\n");
5143
5144 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5145 if (!file_priv)
5146 return -ENOMEM;
5147
5148 file->driver_priv = file_priv;
5149 file_priv->dev_priv = dev->dev_private;
5150 file_priv->file = file;
5151 INIT_LIST_HEAD(&file_priv->rps.link);
5152
5153 spin_lock_init(&file_priv->mm.lock);
5154 INIT_LIST_HEAD(&file_priv->mm.request_list);
5155
5156 file_priv->bsd_ring = -1;
5157
5158 ret = i915_gem_context_open(dev, file);
5159 if (ret)
5160 kfree(file_priv);
5161
5162 return ret;
5163}
5164
5165/**
5166 * i915_gem_track_fb - update frontbuffer tracking
5167 * @old: current GEM buffer for the frontbuffer slots
5168 * @new: new GEM buffer for the frontbuffer slots
5169 * @frontbuffer_bits: bitmask of frontbuffer slots
5170 *
5171 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5172 * from @old and setting them in @new. Both @old and @new can be NULL.
5173 */
5174void i915_gem_track_fb(struct drm_i915_gem_object *old,
5175 struct drm_i915_gem_object *new,
5176 unsigned frontbuffer_bits)
5177{
5178 if (old) {
5179 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5180 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5181 old->frontbuffer_bits &= ~frontbuffer_bits;
5182 }
5183
5184 if (new) {
5185 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5186 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5187 new->frontbuffer_bits |= frontbuffer_bits;
5188 }
5189}
5190
5191/* All the new VM stuff */
5192u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5193 struct i915_address_space *vm)
5194{
5195 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5196 struct i915_vma *vma;
5197
5198 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5199
5200 list_for_each_entry(vma, &o->vma_list, obj_link) {
5201 if (vma->is_ggtt &&
5202 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5203 continue;
5204 if (vma->vm == vm)
5205 return vma->node.start;
5206 }
5207
5208 WARN(1, "%s vma for this object not found.\n",
5209 i915_is_ggtt(vm) ? "global" : "ppgtt");
5210 return -1;
5211}
5212
5213u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5214 const struct i915_ggtt_view *view)
5215{
5216 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5217 struct i915_vma *vma;
5218
5219 list_for_each_entry(vma, &o->vma_list, obj_link)
5220 if (vma->vm == ggtt &&
5221 i915_ggtt_view_equal(&vma->ggtt_view, view))
5222 return vma->node.start;
5223
5224 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5225 return -1;
5226}
5227
5228bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5229 struct i915_address_space *vm)
5230{
5231 struct i915_vma *vma;
5232
5233 list_for_each_entry(vma, &o->vma_list, obj_link) {
5234 if (vma->is_ggtt &&
5235 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5236 continue;
5237 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5238 return true;
5239 }
5240
5241 return false;
5242}
5243
5244bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5245 const struct i915_ggtt_view *view)
5246{
5247 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5248 struct i915_vma *vma;
5249
5250 list_for_each_entry(vma, &o->vma_list, obj_link)
5251 if (vma->vm == ggtt &&
5252 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5253 drm_mm_node_allocated(&vma->node))
5254 return true;
5255
5256 return false;
5257}
5258
5259bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5260{
5261 struct i915_vma *vma;
5262
5263 list_for_each_entry(vma, &o->vma_list, obj_link)
5264 if (drm_mm_node_allocated(&vma->node))
5265 return true;
5266
5267 return false;
5268}
5269
5270unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5271 struct i915_address_space *vm)
5272{
5273 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5274 struct i915_vma *vma;
5275
5276 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5277
5278 BUG_ON(list_empty(&o->vma_list));
5279
5280 list_for_each_entry(vma, &o->vma_list, obj_link) {
5281 if (vma->is_ggtt &&
5282 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5283 continue;
5284 if (vma->vm == vm)
5285 return vma->node.size;
5286 }
5287 return 0;
5288}
5289
5290bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5291{
5292 struct i915_vma *vma;
5293 list_for_each_entry(vma, &obj->vma_list, obj_link)
5294 if (vma->pin_count > 0)
5295 return true;
5296
5297 return false;
5298}
5299
5300/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5301struct page *
5302i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5303{
5304 struct page *page;
5305
5306 /* Only default objects have per-page dirty tracking */
5307 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5308 return NULL;
5309
5310 page = i915_gem_object_get_page(obj, n);
5311 set_page_dirty(page);
5312 return page;
5313}
5314
5315/* Allocate a new GEM object and fill it with the supplied data */
5316struct drm_i915_gem_object *
5317i915_gem_object_create_from_data(struct drm_device *dev,
5318 const void *data, size_t size)
5319{
5320 struct drm_i915_gem_object *obj;
5321 struct sg_table *sg;
5322 size_t bytes;
5323 int ret;
5324
5325 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5326 if (IS_ERR_OR_NULL(obj))
5327 return obj;
5328
5329 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5330 if (ret)
5331 goto fail;
5332
5333 ret = i915_gem_object_get_pages(obj);
5334 if (ret)
5335 goto fail;
5336
5337 i915_gem_object_pin_pages(obj);
5338 sg = obj->pages;
5339 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5340 obj->dirty = 1; /* Backing store is now out of date */
5341 i915_gem_object_unpin_pages(obj);
5342
5343 if (WARN_ON(bytes != size)) {
5344 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5345 ret = -EFAULT;
5346 goto fail;
5347 }
5348
5349 return obj;
5350
5351fail:
5352 drm_gem_object_unreference(&obj->base);
5353 return ERR_PTR(ret);
5354}
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drmP.h>
29#include <drm/drm_vma_manager.h>
30#include <drm/i915_drm.h>
31#include "i915_drv.h"
32#include "i915_trace.h"
33#include "intel_drv.h"
34#include <linux/shmem_fs.h>
35#include <linux/slab.h>
36#include <linux/swap.h>
37#include <linux/pci.h>
38#include <linux/dma-buf.h>
39
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43static __must_check int
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46
47static void i915_gem_write_fence(struct drm_device *dev, int reg,
48 struct drm_i915_gem_object *obj);
49static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
50 struct drm_i915_fence_reg *fence,
51 bool enable);
52
53static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
54 struct shrink_control *sc);
55static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
56 struct shrink_control *sc);
57static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
58static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
59static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
60static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
61
62static bool cpu_cache_is_coherent(struct drm_device *dev,
63 enum i915_cache_level level)
64{
65 return HAS_LLC(dev) || level != I915_CACHE_NONE;
66}
67
68static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
69{
70 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
71 return true;
72
73 return obj->pin_display;
74}
75
76static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
77{
78 if (obj->tiling_mode)
79 i915_gem_release_mmap(obj);
80
81 /* As we do not have an associated fence register, we will force
82 * a tiling change if we ever need to acquire one.
83 */
84 obj->fence_dirty = false;
85 obj->fence_reg = I915_FENCE_REG_NONE;
86}
87
88/* some bookkeeping */
89static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
90 size_t size)
91{
92 spin_lock(&dev_priv->mm.object_stat_lock);
93 dev_priv->mm.object_count++;
94 dev_priv->mm.object_memory += size;
95 spin_unlock(&dev_priv->mm.object_stat_lock);
96}
97
98static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100{
101 spin_lock(&dev_priv->mm.object_stat_lock);
102 dev_priv->mm.object_count--;
103 dev_priv->mm.object_memory -= size;
104 spin_unlock(&dev_priv->mm.object_stat_lock);
105}
106
107static int
108i915_gem_wait_for_error(struct i915_gpu_error *error)
109{
110 int ret;
111
112#define EXIT_COND (!i915_reset_in_progress(error) || \
113 i915_terminally_wedged(error))
114 if (EXIT_COND)
115 return 0;
116
117 /*
118 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
119 * userspace. If it takes that long something really bad is going on and
120 * we should simply try to bail out and fail as gracefully as possible.
121 */
122 ret = wait_event_interruptible_timeout(error->reset_queue,
123 EXIT_COND,
124 10*HZ);
125 if (ret == 0) {
126 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
127 return -EIO;
128 } else if (ret < 0) {
129 return ret;
130 }
131#undef EXIT_COND
132
133 return 0;
134}
135
136int i915_mutex_lock_interruptible(struct drm_device *dev)
137{
138 struct drm_i915_private *dev_priv = dev->dev_private;
139 int ret;
140
141 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
142 if (ret)
143 return ret;
144
145 ret = mutex_lock_interruptible(&dev->struct_mutex);
146 if (ret)
147 return ret;
148
149 WARN_ON(i915_verify_lists(dev));
150 return 0;
151}
152
153static inline bool
154i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
155{
156 return i915_gem_obj_bound_any(obj) && !obj->active;
157}
158
159int
160i915_gem_init_ioctl(struct drm_device *dev, void *data,
161 struct drm_file *file)
162{
163 struct drm_i915_private *dev_priv = dev->dev_private;
164 struct drm_i915_gem_init *args = data;
165
166 if (drm_core_check_feature(dev, DRIVER_MODESET))
167 return -ENODEV;
168
169 if (args->gtt_start >= args->gtt_end ||
170 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
171 return -EINVAL;
172
173 /* GEM with user mode setting was never supported on ilk and later. */
174 if (INTEL_INFO(dev)->gen >= 5)
175 return -ENODEV;
176
177 mutex_lock(&dev->struct_mutex);
178 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
179 args->gtt_end);
180 dev_priv->gtt.mappable_end = args->gtt_end;
181 mutex_unlock(&dev->struct_mutex);
182
183 return 0;
184}
185
186int
187i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
188 struct drm_file *file)
189{
190 struct drm_i915_private *dev_priv = dev->dev_private;
191 struct drm_i915_gem_get_aperture *args = data;
192 struct drm_i915_gem_object *obj;
193 size_t pinned;
194
195 pinned = 0;
196 mutex_lock(&dev->struct_mutex);
197 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
198 if (i915_gem_obj_is_pinned(obj))
199 pinned += i915_gem_obj_ggtt_size(obj);
200 mutex_unlock(&dev->struct_mutex);
201
202 args->aper_size = dev_priv->gtt.base.total;
203 args->aper_available_size = args->aper_size - pinned;
204
205 return 0;
206}
207
208static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
209{
210 drm_dma_handle_t *phys = obj->phys_handle;
211
212 if (!phys)
213 return;
214
215 if (obj->madv == I915_MADV_WILLNEED) {
216 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
217 char *vaddr = phys->vaddr;
218 int i;
219
220 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
221 struct page *page = shmem_read_mapping_page(mapping, i);
222 if (!IS_ERR(page)) {
223 char *dst = kmap_atomic(page);
224 memcpy(dst, vaddr, PAGE_SIZE);
225 drm_clflush_virt_range(dst, PAGE_SIZE);
226 kunmap_atomic(dst);
227
228 set_page_dirty(page);
229 mark_page_accessed(page);
230 page_cache_release(page);
231 }
232 vaddr += PAGE_SIZE;
233 }
234 i915_gem_chipset_flush(obj->base.dev);
235 }
236
237#ifdef CONFIG_X86
238 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
239#endif
240 drm_pci_free(obj->base.dev, phys);
241 obj->phys_handle = NULL;
242}
243
244int
245i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
246 int align)
247{
248 drm_dma_handle_t *phys;
249 struct address_space *mapping;
250 char *vaddr;
251 int i;
252
253 if (obj->phys_handle) {
254 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
255 return -EBUSY;
256
257 return 0;
258 }
259
260 if (obj->madv != I915_MADV_WILLNEED)
261 return -EFAULT;
262
263 if (obj->base.filp == NULL)
264 return -EINVAL;
265
266 /* create a new object */
267 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
268 if (!phys)
269 return -ENOMEM;
270
271 vaddr = phys->vaddr;
272#ifdef CONFIG_X86
273 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
274#endif
275 mapping = file_inode(obj->base.filp)->i_mapping;
276 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
277 struct page *page;
278 char *src;
279
280 page = shmem_read_mapping_page(mapping, i);
281 if (IS_ERR(page)) {
282#ifdef CONFIG_X86
283 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
284#endif
285 drm_pci_free(obj->base.dev, phys);
286 return PTR_ERR(page);
287 }
288
289 src = kmap_atomic(page);
290 memcpy(vaddr, src, PAGE_SIZE);
291 kunmap_atomic(src);
292
293 mark_page_accessed(page);
294 page_cache_release(page);
295
296 vaddr += PAGE_SIZE;
297 }
298
299 obj->phys_handle = phys;
300 return 0;
301}
302
303static int
304i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
305 struct drm_i915_gem_pwrite *args,
306 struct drm_file *file_priv)
307{
308 struct drm_device *dev = obj->base.dev;
309 void *vaddr = obj->phys_handle->vaddr + args->offset;
310 char __user *user_data = to_user_ptr(args->data_ptr);
311
312 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
313 unsigned long unwritten;
314
315 /* The physical object once assigned is fixed for the lifetime
316 * of the obj, so we can safely drop the lock and continue
317 * to access vaddr.
318 */
319 mutex_unlock(&dev->struct_mutex);
320 unwritten = copy_from_user(vaddr, user_data, args->size);
321 mutex_lock(&dev->struct_mutex);
322 if (unwritten)
323 return -EFAULT;
324 }
325
326 i915_gem_chipset_flush(dev);
327 return 0;
328}
329
330void *i915_gem_object_alloc(struct drm_device *dev)
331{
332 struct drm_i915_private *dev_priv = dev->dev_private;
333 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
334}
335
336void i915_gem_object_free(struct drm_i915_gem_object *obj)
337{
338 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
339 kmem_cache_free(dev_priv->slab, obj);
340}
341
342static int
343i915_gem_create(struct drm_file *file,
344 struct drm_device *dev,
345 uint64_t size,
346 uint32_t *handle_p)
347{
348 struct drm_i915_gem_object *obj;
349 int ret;
350 u32 handle;
351
352 size = roundup(size, PAGE_SIZE);
353 if (size == 0)
354 return -EINVAL;
355
356 /* Allocate the new object */
357 obj = i915_gem_alloc_object(dev, size);
358 if (obj == NULL)
359 return -ENOMEM;
360
361 ret = drm_gem_handle_create(file, &obj->base, &handle);
362 /* drop reference from allocate - handle holds it now */
363 drm_gem_object_unreference_unlocked(&obj->base);
364 if (ret)
365 return ret;
366
367 *handle_p = handle;
368 return 0;
369}
370
371int
372i915_gem_dumb_create(struct drm_file *file,
373 struct drm_device *dev,
374 struct drm_mode_create_dumb *args)
375{
376 /* have to work out size/pitch and return them */
377 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
378 args->size = args->pitch * args->height;
379 return i915_gem_create(file, dev,
380 args->size, &args->handle);
381}
382
383/**
384 * Creates a new mm object and returns a handle to it.
385 */
386int
387i915_gem_create_ioctl(struct drm_device *dev, void *data,
388 struct drm_file *file)
389{
390 struct drm_i915_gem_create *args = data;
391
392 return i915_gem_create(file, dev,
393 args->size, &args->handle);
394}
395
396static inline int
397__copy_to_user_swizzled(char __user *cpu_vaddr,
398 const char *gpu_vaddr, int gpu_offset,
399 int length)
400{
401 int ret, cpu_offset = 0;
402
403 while (length > 0) {
404 int cacheline_end = ALIGN(gpu_offset + 1, 64);
405 int this_length = min(cacheline_end - gpu_offset, length);
406 int swizzled_gpu_offset = gpu_offset ^ 64;
407
408 ret = __copy_to_user(cpu_vaddr + cpu_offset,
409 gpu_vaddr + swizzled_gpu_offset,
410 this_length);
411 if (ret)
412 return ret + length;
413
414 cpu_offset += this_length;
415 gpu_offset += this_length;
416 length -= this_length;
417 }
418
419 return 0;
420}
421
422static inline int
423__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
424 const char __user *cpu_vaddr,
425 int length)
426{
427 int ret, cpu_offset = 0;
428
429 while (length > 0) {
430 int cacheline_end = ALIGN(gpu_offset + 1, 64);
431 int this_length = min(cacheline_end - gpu_offset, length);
432 int swizzled_gpu_offset = gpu_offset ^ 64;
433
434 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
435 cpu_vaddr + cpu_offset,
436 this_length);
437 if (ret)
438 return ret + length;
439
440 cpu_offset += this_length;
441 gpu_offset += this_length;
442 length -= this_length;
443 }
444
445 return 0;
446}
447
448/*
449 * Pins the specified object's pages and synchronizes the object with
450 * GPU accesses. Sets needs_clflush to non-zero if the caller should
451 * flush the object from the CPU cache.
452 */
453int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
454 int *needs_clflush)
455{
456 int ret;
457
458 *needs_clflush = 0;
459
460 if (!obj->base.filp)
461 return -EINVAL;
462
463 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
464 /* If we're not in the cpu read domain, set ourself into the gtt
465 * read domain and manually flush cachelines (if required). This
466 * optimizes for the case when the gpu will dirty the data
467 * anyway again before the next pread happens. */
468 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
469 obj->cache_level);
470 ret = i915_gem_object_wait_rendering(obj, true);
471 if (ret)
472 return ret;
473 }
474
475 ret = i915_gem_object_get_pages(obj);
476 if (ret)
477 return ret;
478
479 i915_gem_object_pin_pages(obj);
480
481 return ret;
482}
483
484/* Per-page copy function for the shmem pread fastpath.
485 * Flushes invalid cachelines before reading the target if
486 * needs_clflush is set. */
487static int
488shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
489 char __user *user_data,
490 bool page_do_bit17_swizzling, bool needs_clflush)
491{
492 char *vaddr;
493 int ret;
494
495 if (unlikely(page_do_bit17_swizzling))
496 return -EINVAL;
497
498 vaddr = kmap_atomic(page);
499 if (needs_clflush)
500 drm_clflush_virt_range(vaddr + shmem_page_offset,
501 page_length);
502 ret = __copy_to_user_inatomic(user_data,
503 vaddr + shmem_page_offset,
504 page_length);
505 kunmap_atomic(vaddr);
506
507 return ret ? -EFAULT : 0;
508}
509
510static void
511shmem_clflush_swizzled_range(char *addr, unsigned long length,
512 bool swizzled)
513{
514 if (unlikely(swizzled)) {
515 unsigned long start = (unsigned long) addr;
516 unsigned long end = (unsigned long) addr + length;
517
518 /* For swizzling simply ensure that we always flush both
519 * channels. Lame, but simple and it works. Swizzled
520 * pwrite/pread is far from a hotpath - current userspace
521 * doesn't use it at all. */
522 start = round_down(start, 128);
523 end = round_up(end, 128);
524
525 drm_clflush_virt_range((void *)start, end - start);
526 } else {
527 drm_clflush_virt_range(addr, length);
528 }
529
530}
531
532/* Only difference to the fast-path function is that this can handle bit17
533 * and uses non-atomic copy and kmap functions. */
534static int
535shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
536 char __user *user_data,
537 bool page_do_bit17_swizzling, bool needs_clflush)
538{
539 char *vaddr;
540 int ret;
541
542 vaddr = kmap(page);
543 if (needs_clflush)
544 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
545 page_length,
546 page_do_bit17_swizzling);
547
548 if (page_do_bit17_swizzling)
549 ret = __copy_to_user_swizzled(user_data,
550 vaddr, shmem_page_offset,
551 page_length);
552 else
553 ret = __copy_to_user(user_data,
554 vaddr + shmem_page_offset,
555 page_length);
556 kunmap(page);
557
558 return ret ? - EFAULT : 0;
559}
560
561static int
562i915_gem_shmem_pread(struct drm_device *dev,
563 struct drm_i915_gem_object *obj,
564 struct drm_i915_gem_pread *args,
565 struct drm_file *file)
566{
567 char __user *user_data;
568 ssize_t remain;
569 loff_t offset;
570 int shmem_page_offset, page_length, ret = 0;
571 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
572 int prefaulted = 0;
573 int needs_clflush = 0;
574 struct sg_page_iter sg_iter;
575
576 user_data = to_user_ptr(args->data_ptr);
577 remain = args->size;
578
579 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
580
581 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
582 if (ret)
583 return ret;
584
585 offset = args->offset;
586
587 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
588 offset >> PAGE_SHIFT) {
589 struct page *page = sg_page_iter_page(&sg_iter);
590
591 if (remain <= 0)
592 break;
593
594 /* Operation in this page
595 *
596 * shmem_page_offset = offset within page in shmem file
597 * page_length = bytes to copy for this page
598 */
599 shmem_page_offset = offset_in_page(offset);
600 page_length = remain;
601 if ((shmem_page_offset + page_length) > PAGE_SIZE)
602 page_length = PAGE_SIZE - shmem_page_offset;
603
604 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
605 (page_to_phys(page) & (1 << 17)) != 0;
606
607 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
608 user_data, page_do_bit17_swizzling,
609 needs_clflush);
610 if (ret == 0)
611 goto next_page;
612
613 mutex_unlock(&dev->struct_mutex);
614
615 if (likely(!i915.prefault_disable) && !prefaulted) {
616 ret = fault_in_multipages_writeable(user_data, remain);
617 /* Userspace is tricking us, but we've already clobbered
618 * its pages with the prefault and promised to write the
619 * data up to the first fault. Hence ignore any errors
620 * and just continue. */
621 (void)ret;
622 prefaulted = 1;
623 }
624
625 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
626 user_data, page_do_bit17_swizzling,
627 needs_clflush);
628
629 mutex_lock(&dev->struct_mutex);
630
631 if (ret)
632 goto out;
633
634next_page:
635 remain -= page_length;
636 user_data += page_length;
637 offset += page_length;
638 }
639
640out:
641 i915_gem_object_unpin_pages(obj);
642
643 return ret;
644}
645
646/**
647 * Reads data from the object referenced by handle.
648 *
649 * On error, the contents of *data are undefined.
650 */
651int
652i915_gem_pread_ioctl(struct drm_device *dev, void *data,
653 struct drm_file *file)
654{
655 struct drm_i915_gem_pread *args = data;
656 struct drm_i915_gem_object *obj;
657 int ret = 0;
658
659 if (args->size == 0)
660 return 0;
661
662 if (!access_ok(VERIFY_WRITE,
663 to_user_ptr(args->data_ptr),
664 args->size))
665 return -EFAULT;
666
667 ret = i915_mutex_lock_interruptible(dev);
668 if (ret)
669 return ret;
670
671 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
672 if (&obj->base == NULL) {
673 ret = -ENOENT;
674 goto unlock;
675 }
676
677 /* Bounds check source. */
678 if (args->offset > obj->base.size ||
679 args->size > obj->base.size - args->offset) {
680 ret = -EINVAL;
681 goto out;
682 }
683
684 /* prime objects have no backing filp to GEM pread/pwrite
685 * pages from.
686 */
687 if (!obj->base.filp) {
688 ret = -EINVAL;
689 goto out;
690 }
691
692 trace_i915_gem_object_pread(obj, args->offset, args->size);
693
694 ret = i915_gem_shmem_pread(dev, obj, args, file);
695
696out:
697 drm_gem_object_unreference(&obj->base);
698unlock:
699 mutex_unlock(&dev->struct_mutex);
700 return ret;
701}
702
703/* This is the fast write path which cannot handle
704 * page faults in the source data
705 */
706
707static inline int
708fast_user_write(struct io_mapping *mapping,
709 loff_t page_base, int page_offset,
710 char __user *user_data,
711 int length)
712{
713 void __iomem *vaddr_atomic;
714 void *vaddr;
715 unsigned long unwritten;
716
717 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
718 /* We can use the cpu mem copy function because this is X86. */
719 vaddr = (void __force*)vaddr_atomic + page_offset;
720 unwritten = __copy_from_user_inatomic_nocache(vaddr,
721 user_data, length);
722 io_mapping_unmap_atomic(vaddr_atomic);
723 return unwritten;
724}
725
726/**
727 * This is the fast pwrite path, where we copy the data directly from the
728 * user into the GTT, uncached.
729 */
730static int
731i915_gem_gtt_pwrite_fast(struct drm_device *dev,
732 struct drm_i915_gem_object *obj,
733 struct drm_i915_gem_pwrite *args,
734 struct drm_file *file)
735{
736 struct drm_i915_private *dev_priv = dev->dev_private;
737 ssize_t remain;
738 loff_t offset, page_base;
739 char __user *user_data;
740 int page_offset, page_length, ret;
741
742 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
743 if (ret)
744 goto out;
745
746 ret = i915_gem_object_set_to_gtt_domain(obj, true);
747 if (ret)
748 goto out_unpin;
749
750 ret = i915_gem_object_put_fence(obj);
751 if (ret)
752 goto out_unpin;
753
754 user_data = to_user_ptr(args->data_ptr);
755 remain = args->size;
756
757 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
758
759 while (remain > 0) {
760 /* Operation in this page
761 *
762 * page_base = page offset within aperture
763 * page_offset = offset within page
764 * page_length = bytes to copy for this page
765 */
766 page_base = offset & PAGE_MASK;
767 page_offset = offset_in_page(offset);
768 page_length = remain;
769 if ((page_offset + remain) > PAGE_SIZE)
770 page_length = PAGE_SIZE - page_offset;
771
772 /* If we get a fault while copying data, then (presumably) our
773 * source page isn't available. Return the error and we'll
774 * retry in the slow path.
775 */
776 if (fast_user_write(dev_priv->gtt.mappable, page_base,
777 page_offset, user_data, page_length)) {
778 ret = -EFAULT;
779 goto out_unpin;
780 }
781
782 remain -= page_length;
783 user_data += page_length;
784 offset += page_length;
785 }
786
787out_unpin:
788 i915_gem_object_ggtt_unpin(obj);
789out:
790 return ret;
791}
792
793/* Per-page copy function for the shmem pwrite fastpath.
794 * Flushes invalid cachelines before writing to the target if
795 * needs_clflush_before is set and flushes out any written cachelines after
796 * writing if needs_clflush is set. */
797static int
798shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
799 char __user *user_data,
800 bool page_do_bit17_swizzling,
801 bool needs_clflush_before,
802 bool needs_clflush_after)
803{
804 char *vaddr;
805 int ret;
806
807 if (unlikely(page_do_bit17_swizzling))
808 return -EINVAL;
809
810 vaddr = kmap_atomic(page);
811 if (needs_clflush_before)
812 drm_clflush_virt_range(vaddr + shmem_page_offset,
813 page_length);
814 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
815 user_data, page_length);
816 if (needs_clflush_after)
817 drm_clflush_virt_range(vaddr + shmem_page_offset,
818 page_length);
819 kunmap_atomic(vaddr);
820
821 return ret ? -EFAULT : 0;
822}
823
824/* Only difference to the fast-path function is that this can handle bit17
825 * and uses non-atomic copy and kmap functions. */
826static int
827shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
828 char __user *user_data,
829 bool page_do_bit17_swizzling,
830 bool needs_clflush_before,
831 bool needs_clflush_after)
832{
833 char *vaddr;
834 int ret;
835
836 vaddr = kmap(page);
837 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
838 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
839 page_length,
840 page_do_bit17_swizzling);
841 if (page_do_bit17_swizzling)
842 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
843 user_data,
844 page_length);
845 else
846 ret = __copy_from_user(vaddr + shmem_page_offset,
847 user_data,
848 page_length);
849 if (needs_clflush_after)
850 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
851 page_length,
852 page_do_bit17_swizzling);
853 kunmap(page);
854
855 return ret ? -EFAULT : 0;
856}
857
858static int
859i915_gem_shmem_pwrite(struct drm_device *dev,
860 struct drm_i915_gem_object *obj,
861 struct drm_i915_gem_pwrite *args,
862 struct drm_file *file)
863{
864 ssize_t remain;
865 loff_t offset;
866 char __user *user_data;
867 int shmem_page_offset, page_length, ret = 0;
868 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
869 int hit_slowpath = 0;
870 int needs_clflush_after = 0;
871 int needs_clflush_before = 0;
872 struct sg_page_iter sg_iter;
873
874 user_data = to_user_ptr(args->data_ptr);
875 remain = args->size;
876
877 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
878
879 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
880 /* If we're not in the cpu write domain, set ourself into the gtt
881 * write domain and manually flush cachelines (if required). This
882 * optimizes for the case when the gpu will use the data
883 * right away and we therefore have to clflush anyway. */
884 needs_clflush_after = cpu_write_needs_clflush(obj);
885 ret = i915_gem_object_wait_rendering(obj, false);
886 if (ret)
887 return ret;
888 }
889 /* Same trick applies to invalidate partially written cachelines read
890 * before writing. */
891 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
892 needs_clflush_before =
893 !cpu_cache_is_coherent(dev, obj->cache_level);
894
895 ret = i915_gem_object_get_pages(obj);
896 if (ret)
897 return ret;
898
899 i915_gem_object_pin_pages(obj);
900
901 offset = args->offset;
902 obj->dirty = 1;
903
904 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
905 offset >> PAGE_SHIFT) {
906 struct page *page = sg_page_iter_page(&sg_iter);
907 int partial_cacheline_write;
908
909 if (remain <= 0)
910 break;
911
912 /* Operation in this page
913 *
914 * shmem_page_offset = offset within page in shmem file
915 * page_length = bytes to copy for this page
916 */
917 shmem_page_offset = offset_in_page(offset);
918
919 page_length = remain;
920 if ((shmem_page_offset + page_length) > PAGE_SIZE)
921 page_length = PAGE_SIZE - shmem_page_offset;
922
923 /* If we don't overwrite a cacheline completely we need to be
924 * careful to have up-to-date data by first clflushing. Don't
925 * overcomplicate things and flush the entire patch. */
926 partial_cacheline_write = needs_clflush_before &&
927 ((shmem_page_offset | page_length)
928 & (boot_cpu_data.x86_clflush_size - 1));
929
930 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
931 (page_to_phys(page) & (1 << 17)) != 0;
932
933 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
934 user_data, page_do_bit17_swizzling,
935 partial_cacheline_write,
936 needs_clflush_after);
937 if (ret == 0)
938 goto next_page;
939
940 hit_slowpath = 1;
941 mutex_unlock(&dev->struct_mutex);
942 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
943 user_data, page_do_bit17_swizzling,
944 partial_cacheline_write,
945 needs_clflush_after);
946
947 mutex_lock(&dev->struct_mutex);
948
949 if (ret)
950 goto out;
951
952next_page:
953 remain -= page_length;
954 user_data += page_length;
955 offset += page_length;
956 }
957
958out:
959 i915_gem_object_unpin_pages(obj);
960
961 if (hit_slowpath) {
962 /*
963 * Fixup: Flush cpu caches in case we didn't flush the dirty
964 * cachelines in-line while writing and the object moved
965 * out of the cpu write domain while we've dropped the lock.
966 */
967 if (!needs_clflush_after &&
968 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
969 if (i915_gem_clflush_object(obj, obj->pin_display))
970 i915_gem_chipset_flush(dev);
971 }
972 }
973
974 if (needs_clflush_after)
975 i915_gem_chipset_flush(dev);
976
977 return ret;
978}
979
980/**
981 * Writes data to the object referenced by handle.
982 *
983 * On error, the contents of the buffer that were to be modified are undefined.
984 */
985int
986i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
987 struct drm_file *file)
988{
989 struct drm_i915_gem_pwrite *args = data;
990 struct drm_i915_gem_object *obj;
991 int ret;
992
993 if (args->size == 0)
994 return 0;
995
996 if (!access_ok(VERIFY_READ,
997 to_user_ptr(args->data_ptr),
998 args->size))
999 return -EFAULT;
1000
1001 if (likely(!i915.prefault_disable)) {
1002 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1003 args->size);
1004 if (ret)
1005 return -EFAULT;
1006 }
1007
1008 ret = i915_mutex_lock_interruptible(dev);
1009 if (ret)
1010 return ret;
1011
1012 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1013 if (&obj->base == NULL) {
1014 ret = -ENOENT;
1015 goto unlock;
1016 }
1017
1018 /* Bounds check destination. */
1019 if (args->offset > obj->base.size ||
1020 args->size > obj->base.size - args->offset) {
1021 ret = -EINVAL;
1022 goto out;
1023 }
1024
1025 /* prime objects have no backing filp to GEM pread/pwrite
1026 * pages from.
1027 */
1028 if (!obj->base.filp) {
1029 ret = -EINVAL;
1030 goto out;
1031 }
1032
1033 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1034
1035 ret = -EFAULT;
1036 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1037 * it would end up going through the fenced access, and we'll get
1038 * different detiling behavior between reading and writing.
1039 * pread/pwrite currently are reading and writing from the CPU
1040 * perspective, requiring manual detiling by the client.
1041 */
1042 if (obj->phys_handle) {
1043 ret = i915_gem_phys_pwrite(obj, args, file);
1044 goto out;
1045 }
1046
1047 if (obj->tiling_mode == I915_TILING_NONE &&
1048 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1049 cpu_write_needs_clflush(obj)) {
1050 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1051 /* Note that the gtt paths might fail with non-page-backed user
1052 * pointers (e.g. gtt mappings when moving data between
1053 * textures). Fallback to the shmem path in that case. */
1054 }
1055
1056 if (ret == -EFAULT || ret == -ENOSPC)
1057 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1058
1059out:
1060 drm_gem_object_unreference(&obj->base);
1061unlock:
1062 mutex_unlock(&dev->struct_mutex);
1063 return ret;
1064}
1065
1066int
1067i915_gem_check_wedge(struct i915_gpu_error *error,
1068 bool interruptible)
1069{
1070 if (i915_reset_in_progress(error)) {
1071 /* Non-interruptible callers can't handle -EAGAIN, hence return
1072 * -EIO unconditionally for these. */
1073 if (!interruptible)
1074 return -EIO;
1075
1076 /* Recovery complete, but the reset failed ... */
1077 if (i915_terminally_wedged(error))
1078 return -EIO;
1079
1080 return -EAGAIN;
1081 }
1082
1083 return 0;
1084}
1085
1086/*
1087 * Compare seqno against outstanding lazy request. Emit a request if they are
1088 * equal.
1089 */
1090static int
1091i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1092{
1093 int ret;
1094
1095 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1096
1097 ret = 0;
1098 if (seqno == ring->outstanding_lazy_seqno)
1099 ret = i915_add_request(ring, NULL);
1100
1101 return ret;
1102}
1103
1104static void fake_irq(unsigned long data)
1105{
1106 wake_up_process((struct task_struct *)data);
1107}
1108
1109static bool missed_irq(struct drm_i915_private *dev_priv,
1110 struct intel_ring_buffer *ring)
1111{
1112 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1113}
1114
1115static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1116{
1117 if (file_priv == NULL)
1118 return true;
1119
1120 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1121}
1122
1123/**
1124 * __wait_seqno - wait until execution of seqno has finished
1125 * @ring: the ring expected to report seqno
1126 * @seqno: duh!
1127 * @reset_counter: reset sequence associated with the given seqno
1128 * @interruptible: do an interruptible wait (normally yes)
1129 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1130 *
1131 * Note: It is of utmost importance that the passed in seqno and reset_counter
1132 * values have been read by the caller in an smp safe manner. Where read-side
1133 * locks are involved, it is sufficient to read the reset_counter before
1134 * unlocking the lock that protects the seqno. For lockless tricks, the
1135 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1136 * inserted.
1137 *
1138 * Returns 0 if the seqno was found within the alloted time. Else returns the
1139 * errno with remaining time filled in timeout argument.
1140 */
1141static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1142 unsigned reset_counter,
1143 bool interruptible,
1144 struct timespec *timeout,
1145 struct drm_i915_file_private *file_priv)
1146{
1147 struct drm_device *dev = ring->dev;
1148 struct drm_i915_private *dev_priv = dev->dev_private;
1149 const bool irq_test_in_progress =
1150 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1151 struct timespec before, now;
1152 DEFINE_WAIT(wait);
1153 unsigned long timeout_expire;
1154 int ret;
1155
1156 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1157
1158 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1159 return 0;
1160
1161 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1162
1163 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1164 gen6_rps_boost(dev_priv);
1165 if (file_priv)
1166 mod_delayed_work(dev_priv->wq,
1167 &file_priv->mm.idle_work,
1168 msecs_to_jiffies(100));
1169 }
1170
1171 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1172 return -ENODEV;
1173
1174 /* Record current time in case interrupted by signal, or wedged */
1175 trace_i915_gem_request_wait_begin(ring, seqno);
1176 getrawmonotonic(&before);
1177 for (;;) {
1178 struct timer_list timer;
1179
1180 prepare_to_wait(&ring->irq_queue, &wait,
1181 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1182
1183 /* We need to check whether any gpu reset happened in between
1184 * the caller grabbing the seqno and now ... */
1185 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1186 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1187 * is truely gone. */
1188 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1189 if (ret == 0)
1190 ret = -EAGAIN;
1191 break;
1192 }
1193
1194 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1195 ret = 0;
1196 break;
1197 }
1198
1199 if (interruptible && signal_pending(current)) {
1200 ret = -ERESTARTSYS;
1201 break;
1202 }
1203
1204 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1205 ret = -ETIME;
1206 break;
1207 }
1208
1209 timer.function = NULL;
1210 if (timeout || missed_irq(dev_priv, ring)) {
1211 unsigned long expire;
1212
1213 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1214 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1215 mod_timer(&timer, expire);
1216 }
1217
1218 io_schedule();
1219
1220 if (timer.function) {
1221 del_singleshot_timer_sync(&timer);
1222 destroy_timer_on_stack(&timer);
1223 }
1224 }
1225 getrawmonotonic(&now);
1226 trace_i915_gem_request_wait_end(ring, seqno);
1227
1228 if (!irq_test_in_progress)
1229 ring->irq_put(ring);
1230
1231 finish_wait(&ring->irq_queue, &wait);
1232
1233 if (timeout) {
1234 struct timespec sleep_time = timespec_sub(now, before);
1235 *timeout = timespec_sub(*timeout, sleep_time);
1236 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1237 set_normalized_timespec(timeout, 0, 0);
1238 }
1239
1240 return ret;
1241}
1242
1243/**
1244 * Waits for a sequence number to be signaled, and cleans up the
1245 * request and object lists appropriately for that event.
1246 */
1247int
1248i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1249{
1250 struct drm_device *dev = ring->dev;
1251 struct drm_i915_private *dev_priv = dev->dev_private;
1252 bool interruptible = dev_priv->mm.interruptible;
1253 int ret;
1254
1255 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1256 BUG_ON(seqno == 0);
1257
1258 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1259 if (ret)
1260 return ret;
1261
1262 ret = i915_gem_check_olr(ring, seqno);
1263 if (ret)
1264 return ret;
1265
1266 return __wait_seqno(ring, seqno,
1267 atomic_read(&dev_priv->gpu_error.reset_counter),
1268 interruptible, NULL, NULL);
1269}
1270
1271static int
1272i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1273 struct intel_ring_buffer *ring)
1274{
1275 i915_gem_retire_requests_ring(ring);
1276
1277 /* Manually manage the write flush as we may have not yet
1278 * retired the buffer.
1279 *
1280 * Note that the last_write_seqno is always the earlier of
1281 * the two (read/write) seqno, so if we haved successfully waited,
1282 * we know we have passed the last write.
1283 */
1284 obj->last_write_seqno = 0;
1285 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1286
1287 return 0;
1288}
1289
1290/**
1291 * Ensures that all rendering to the object has completed and the object is
1292 * safe to unbind from the GTT or access from the CPU.
1293 */
1294static __must_check int
1295i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1296 bool readonly)
1297{
1298 struct intel_ring_buffer *ring = obj->ring;
1299 u32 seqno;
1300 int ret;
1301
1302 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1303 if (seqno == 0)
1304 return 0;
1305
1306 ret = i915_wait_seqno(ring, seqno);
1307 if (ret)
1308 return ret;
1309
1310 return i915_gem_object_wait_rendering__tail(obj, ring);
1311}
1312
1313/* A nonblocking variant of the above wait. This is a highly dangerous routine
1314 * as the object state may change during this call.
1315 */
1316static __must_check int
1317i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1318 struct drm_i915_file_private *file_priv,
1319 bool readonly)
1320{
1321 struct drm_device *dev = obj->base.dev;
1322 struct drm_i915_private *dev_priv = dev->dev_private;
1323 struct intel_ring_buffer *ring = obj->ring;
1324 unsigned reset_counter;
1325 u32 seqno;
1326 int ret;
1327
1328 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1329 BUG_ON(!dev_priv->mm.interruptible);
1330
1331 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1332 if (seqno == 0)
1333 return 0;
1334
1335 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1336 if (ret)
1337 return ret;
1338
1339 ret = i915_gem_check_olr(ring, seqno);
1340 if (ret)
1341 return ret;
1342
1343 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1344 mutex_unlock(&dev->struct_mutex);
1345 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1346 mutex_lock(&dev->struct_mutex);
1347 if (ret)
1348 return ret;
1349
1350 return i915_gem_object_wait_rendering__tail(obj, ring);
1351}
1352
1353/**
1354 * Called when user space prepares to use an object with the CPU, either
1355 * through the mmap ioctl's mapping or a GTT mapping.
1356 */
1357int
1358i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1359 struct drm_file *file)
1360{
1361 struct drm_i915_gem_set_domain *args = data;
1362 struct drm_i915_gem_object *obj;
1363 uint32_t read_domains = args->read_domains;
1364 uint32_t write_domain = args->write_domain;
1365 int ret;
1366
1367 /* Only handle setting domains to types used by the CPU. */
1368 if (write_domain & I915_GEM_GPU_DOMAINS)
1369 return -EINVAL;
1370
1371 if (read_domains & I915_GEM_GPU_DOMAINS)
1372 return -EINVAL;
1373
1374 /* Having something in the write domain implies it's in the read
1375 * domain, and only that read domain. Enforce that in the request.
1376 */
1377 if (write_domain != 0 && read_domains != write_domain)
1378 return -EINVAL;
1379
1380 ret = i915_mutex_lock_interruptible(dev);
1381 if (ret)
1382 return ret;
1383
1384 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1385 if (&obj->base == NULL) {
1386 ret = -ENOENT;
1387 goto unlock;
1388 }
1389
1390 /* Try to flush the object off the GPU without holding the lock.
1391 * We will repeat the flush holding the lock in the normal manner
1392 * to catch cases where we are gazumped.
1393 */
1394 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1395 file->driver_priv,
1396 !write_domain);
1397 if (ret)
1398 goto unref;
1399
1400 if (read_domains & I915_GEM_DOMAIN_GTT) {
1401 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1402
1403 /* Silently promote "you're not bound, there was nothing to do"
1404 * to success, since the client was just asking us to
1405 * make sure everything was done.
1406 */
1407 if (ret == -EINVAL)
1408 ret = 0;
1409 } else {
1410 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1411 }
1412
1413unref:
1414 drm_gem_object_unreference(&obj->base);
1415unlock:
1416 mutex_unlock(&dev->struct_mutex);
1417 return ret;
1418}
1419
1420/**
1421 * Called when user space has done writes to this buffer
1422 */
1423int
1424i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1425 struct drm_file *file)
1426{
1427 struct drm_i915_gem_sw_finish *args = data;
1428 struct drm_i915_gem_object *obj;
1429 int ret = 0;
1430
1431 ret = i915_mutex_lock_interruptible(dev);
1432 if (ret)
1433 return ret;
1434
1435 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1436 if (&obj->base == NULL) {
1437 ret = -ENOENT;
1438 goto unlock;
1439 }
1440
1441 /* Pinned buffers may be scanout, so flush the cache */
1442 if (obj->pin_display)
1443 i915_gem_object_flush_cpu_write_domain(obj, true);
1444
1445 drm_gem_object_unreference(&obj->base);
1446unlock:
1447 mutex_unlock(&dev->struct_mutex);
1448 return ret;
1449}
1450
1451/**
1452 * Maps the contents of an object, returning the address it is mapped
1453 * into.
1454 *
1455 * While the mapping holds a reference on the contents of the object, it doesn't
1456 * imply a ref on the object itself.
1457 */
1458int
1459i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1460 struct drm_file *file)
1461{
1462 struct drm_i915_gem_mmap *args = data;
1463 struct drm_gem_object *obj;
1464 unsigned long addr;
1465
1466 obj = drm_gem_object_lookup(dev, file, args->handle);
1467 if (obj == NULL)
1468 return -ENOENT;
1469
1470 /* prime objects have no backing filp to GEM mmap
1471 * pages from.
1472 */
1473 if (!obj->filp) {
1474 drm_gem_object_unreference_unlocked(obj);
1475 return -EINVAL;
1476 }
1477
1478 addr = vm_mmap(obj->filp, 0, args->size,
1479 PROT_READ | PROT_WRITE, MAP_SHARED,
1480 args->offset);
1481 drm_gem_object_unreference_unlocked(obj);
1482 if (IS_ERR((void *)addr))
1483 return addr;
1484
1485 args->addr_ptr = (uint64_t) addr;
1486
1487 return 0;
1488}
1489
1490/**
1491 * i915_gem_fault - fault a page into the GTT
1492 * vma: VMA in question
1493 * vmf: fault info
1494 *
1495 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1496 * from userspace. The fault handler takes care of binding the object to
1497 * the GTT (if needed), allocating and programming a fence register (again,
1498 * only if needed based on whether the old reg is still valid or the object
1499 * is tiled) and inserting a new PTE into the faulting process.
1500 *
1501 * Note that the faulting process may involve evicting existing objects
1502 * from the GTT and/or fence registers to make room. So performance may
1503 * suffer if the GTT working set is large or there are few fence registers
1504 * left.
1505 */
1506int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1507{
1508 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1509 struct drm_device *dev = obj->base.dev;
1510 struct drm_i915_private *dev_priv = dev->dev_private;
1511 pgoff_t page_offset;
1512 unsigned long pfn;
1513 int ret = 0;
1514 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1515
1516 intel_runtime_pm_get(dev_priv);
1517
1518 /* We don't use vmf->pgoff since that has the fake offset */
1519 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1520 PAGE_SHIFT;
1521
1522 ret = i915_mutex_lock_interruptible(dev);
1523 if (ret)
1524 goto out;
1525
1526 trace_i915_gem_object_fault(obj, page_offset, true, write);
1527
1528 /* Try to flush the object off the GPU first without holding the lock.
1529 * Upon reacquiring the lock, we will perform our sanity checks and then
1530 * repeat the flush holding the lock in the normal manner to catch cases
1531 * where we are gazumped.
1532 */
1533 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1534 if (ret)
1535 goto unlock;
1536
1537 /* Access to snoopable pages through the GTT is incoherent. */
1538 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1539 ret = -EINVAL;
1540 goto unlock;
1541 }
1542
1543 /* Now bind it into the GTT if needed */
1544 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1545 if (ret)
1546 goto unlock;
1547
1548 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1549 if (ret)
1550 goto unpin;
1551
1552 ret = i915_gem_object_get_fence(obj);
1553 if (ret)
1554 goto unpin;
1555
1556 obj->fault_mappable = true;
1557
1558 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1559 pfn >>= PAGE_SHIFT;
1560 pfn += page_offset;
1561
1562 /* Finally, remap it using the new GTT offset */
1563 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1564unpin:
1565 i915_gem_object_ggtt_unpin(obj);
1566unlock:
1567 mutex_unlock(&dev->struct_mutex);
1568out:
1569 switch (ret) {
1570 case -EIO:
1571 /* If this -EIO is due to a gpu hang, give the reset code a
1572 * chance to clean up the mess. Otherwise return the proper
1573 * SIGBUS. */
1574 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1575 ret = VM_FAULT_SIGBUS;
1576 break;
1577 }
1578 case -EAGAIN:
1579 /*
1580 * EAGAIN means the gpu is hung and we'll wait for the error
1581 * handler to reset everything when re-faulting in
1582 * i915_mutex_lock_interruptible.
1583 */
1584 case 0:
1585 case -ERESTARTSYS:
1586 case -EINTR:
1587 case -EBUSY:
1588 /*
1589 * EBUSY is ok: this just means that another thread
1590 * already did the job.
1591 */
1592 ret = VM_FAULT_NOPAGE;
1593 break;
1594 case -ENOMEM:
1595 ret = VM_FAULT_OOM;
1596 break;
1597 case -ENOSPC:
1598 case -EFAULT:
1599 ret = VM_FAULT_SIGBUS;
1600 break;
1601 default:
1602 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1603 ret = VM_FAULT_SIGBUS;
1604 break;
1605 }
1606
1607 intel_runtime_pm_put(dev_priv);
1608 return ret;
1609}
1610
1611void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1612{
1613 struct i915_vma *vma;
1614
1615 /*
1616 * Only the global gtt is relevant for gtt memory mappings, so restrict
1617 * list traversal to objects bound into the global address space. Note
1618 * that the active list should be empty, but better safe than sorry.
1619 */
1620 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1621 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1622 i915_gem_release_mmap(vma->obj);
1623 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1624 i915_gem_release_mmap(vma->obj);
1625}
1626
1627/**
1628 * i915_gem_release_mmap - remove physical page mappings
1629 * @obj: obj in question
1630 *
1631 * Preserve the reservation of the mmapping with the DRM core code, but
1632 * relinquish ownership of the pages back to the system.
1633 *
1634 * It is vital that we remove the page mapping if we have mapped a tiled
1635 * object through the GTT and then lose the fence register due to
1636 * resource pressure. Similarly if the object has been moved out of the
1637 * aperture, than pages mapped into userspace must be revoked. Removing the
1638 * mapping will then trigger a page fault on the next user access, allowing
1639 * fixup by i915_gem_fault().
1640 */
1641void
1642i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1643{
1644 if (!obj->fault_mappable)
1645 return;
1646
1647 drm_vma_node_unmap(&obj->base.vma_node,
1648 obj->base.dev->anon_inode->i_mapping);
1649 obj->fault_mappable = false;
1650}
1651
1652uint32_t
1653i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1654{
1655 uint32_t gtt_size;
1656
1657 if (INTEL_INFO(dev)->gen >= 4 ||
1658 tiling_mode == I915_TILING_NONE)
1659 return size;
1660
1661 /* Previous chips need a power-of-two fence region when tiling */
1662 if (INTEL_INFO(dev)->gen == 3)
1663 gtt_size = 1024*1024;
1664 else
1665 gtt_size = 512*1024;
1666
1667 while (gtt_size < size)
1668 gtt_size <<= 1;
1669
1670 return gtt_size;
1671}
1672
1673/**
1674 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1675 * @obj: object to check
1676 *
1677 * Return the required GTT alignment for an object, taking into account
1678 * potential fence register mapping.
1679 */
1680uint32_t
1681i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1682 int tiling_mode, bool fenced)
1683{
1684 /*
1685 * Minimum alignment is 4k (GTT page size), but might be greater
1686 * if a fence register is needed for the object.
1687 */
1688 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1689 tiling_mode == I915_TILING_NONE)
1690 return 4096;
1691
1692 /*
1693 * Previous chips need to be aligned to the size of the smallest
1694 * fence register that can contain the object.
1695 */
1696 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1697}
1698
1699static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1700{
1701 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1702 int ret;
1703
1704 if (drm_vma_node_has_offset(&obj->base.vma_node))
1705 return 0;
1706
1707 dev_priv->mm.shrinker_no_lock_stealing = true;
1708
1709 ret = drm_gem_create_mmap_offset(&obj->base);
1710 if (ret != -ENOSPC)
1711 goto out;
1712
1713 /* Badly fragmented mmap space? The only way we can recover
1714 * space is by destroying unwanted objects. We can't randomly release
1715 * mmap_offsets as userspace expects them to be persistent for the
1716 * lifetime of the objects. The closest we can is to release the
1717 * offsets on purgeable objects by truncating it and marking it purged,
1718 * which prevents userspace from ever using that object again.
1719 */
1720 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1721 ret = drm_gem_create_mmap_offset(&obj->base);
1722 if (ret != -ENOSPC)
1723 goto out;
1724
1725 i915_gem_shrink_all(dev_priv);
1726 ret = drm_gem_create_mmap_offset(&obj->base);
1727out:
1728 dev_priv->mm.shrinker_no_lock_stealing = false;
1729
1730 return ret;
1731}
1732
1733static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1734{
1735 drm_gem_free_mmap_offset(&obj->base);
1736}
1737
1738int
1739i915_gem_mmap_gtt(struct drm_file *file,
1740 struct drm_device *dev,
1741 uint32_t handle,
1742 uint64_t *offset)
1743{
1744 struct drm_i915_private *dev_priv = dev->dev_private;
1745 struct drm_i915_gem_object *obj;
1746 int ret;
1747
1748 ret = i915_mutex_lock_interruptible(dev);
1749 if (ret)
1750 return ret;
1751
1752 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1753 if (&obj->base == NULL) {
1754 ret = -ENOENT;
1755 goto unlock;
1756 }
1757
1758 if (obj->base.size > dev_priv->gtt.mappable_end) {
1759 ret = -E2BIG;
1760 goto out;
1761 }
1762
1763 if (obj->madv != I915_MADV_WILLNEED) {
1764 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1765 ret = -EFAULT;
1766 goto out;
1767 }
1768
1769 ret = i915_gem_object_create_mmap_offset(obj);
1770 if (ret)
1771 goto out;
1772
1773 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1774
1775out:
1776 drm_gem_object_unreference(&obj->base);
1777unlock:
1778 mutex_unlock(&dev->struct_mutex);
1779 return ret;
1780}
1781
1782/**
1783 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1784 * @dev: DRM device
1785 * @data: GTT mapping ioctl data
1786 * @file: GEM object info
1787 *
1788 * Simply returns the fake offset to userspace so it can mmap it.
1789 * The mmap call will end up in drm_gem_mmap(), which will set things
1790 * up so we can get faults in the handler above.
1791 *
1792 * The fault handler will take care of binding the object into the GTT
1793 * (since it may have been evicted to make room for something), allocating
1794 * a fence register, and mapping the appropriate aperture address into
1795 * userspace.
1796 */
1797int
1798i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1799 struct drm_file *file)
1800{
1801 struct drm_i915_gem_mmap_gtt *args = data;
1802
1803 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1804}
1805
1806/* Immediately discard the backing storage */
1807static void
1808i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1809{
1810 struct inode *inode;
1811
1812 i915_gem_object_free_mmap_offset(obj);
1813
1814 if (obj->base.filp == NULL)
1815 return;
1816
1817 /* Our goal here is to return as much of the memory as
1818 * is possible back to the system as we are called from OOM.
1819 * To do this we must instruct the shmfs to drop all of its
1820 * backing pages, *now*.
1821 */
1822 inode = file_inode(obj->base.filp);
1823 shmem_truncate_range(inode, 0, (loff_t)-1);
1824
1825 obj->madv = __I915_MADV_PURGED;
1826}
1827
1828static inline int
1829i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1830{
1831 return obj->madv == I915_MADV_DONTNEED;
1832}
1833
1834static void
1835i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1836{
1837 struct sg_page_iter sg_iter;
1838 int ret;
1839
1840 BUG_ON(obj->madv == __I915_MADV_PURGED);
1841
1842 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1843 if (ret) {
1844 /* In the event of a disaster, abandon all caches and
1845 * hope for the best.
1846 */
1847 WARN_ON(ret != -EIO);
1848 i915_gem_clflush_object(obj, true);
1849 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1850 }
1851
1852 if (i915_gem_object_needs_bit17_swizzle(obj))
1853 i915_gem_object_save_bit_17_swizzle(obj);
1854
1855 if (obj->madv == I915_MADV_DONTNEED)
1856 obj->dirty = 0;
1857
1858 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1859 struct page *page = sg_page_iter_page(&sg_iter);
1860
1861 if (obj->dirty)
1862 set_page_dirty(page);
1863
1864 if (obj->madv == I915_MADV_WILLNEED)
1865 mark_page_accessed(page);
1866
1867 page_cache_release(page);
1868 }
1869 obj->dirty = 0;
1870
1871 sg_free_table(obj->pages);
1872 kfree(obj->pages);
1873}
1874
1875int
1876i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1877{
1878 const struct drm_i915_gem_object_ops *ops = obj->ops;
1879
1880 if (obj->pages == NULL)
1881 return 0;
1882
1883 if (obj->pages_pin_count)
1884 return -EBUSY;
1885
1886 BUG_ON(i915_gem_obj_bound_any(obj));
1887
1888 /* ->put_pages might need to allocate memory for the bit17 swizzle
1889 * array, hence protect them from being reaped by removing them from gtt
1890 * lists early. */
1891 list_del(&obj->global_list);
1892
1893 ops->put_pages(obj);
1894 obj->pages = NULL;
1895
1896 if (i915_gem_object_is_purgeable(obj))
1897 i915_gem_object_truncate(obj);
1898
1899 return 0;
1900}
1901
1902static unsigned long
1903__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1904 bool purgeable_only)
1905{
1906 struct list_head still_bound_list;
1907 struct drm_i915_gem_object *obj, *next;
1908 unsigned long count = 0;
1909
1910 list_for_each_entry_safe(obj, next,
1911 &dev_priv->mm.unbound_list,
1912 global_list) {
1913 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1914 i915_gem_object_put_pages(obj) == 0) {
1915 count += obj->base.size >> PAGE_SHIFT;
1916 if (count >= target)
1917 return count;
1918 }
1919 }
1920
1921 /*
1922 * As we may completely rewrite the bound list whilst unbinding
1923 * (due to retiring requests) we have to strictly process only
1924 * one element of the list at the time, and recheck the list
1925 * on every iteration.
1926 */
1927 INIT_LIST_HEAD(&still_bound_list);
1928 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1929 struct i915_vma *vma, *v;
1930
1931 obj = list_first_entry(&dev_priv->mm.bound_list,
1932 typeof(*obj), global_list);
1933 list_move_tail(&obj->global_list, &still_bound_list);
1934
1935 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1936 continue;
1937
1938 /*
1939 * Hold a reference whilst we unbind this object, as we may
1940 * end up waiting for and retiring requests. This might
1941 * release the final reference (held by the active list)
1942 * and result in the object being freed from under us.
1943 * in this object being freed.
1944 *
1945 * Note 1: Shrinking the bound list is special since only active
1946 * (and hence bound objects) can contain such limbo objects, so
1947 * we don't need special tricks for shrinking the unbound list.
1948 * The only other place where we have to be careful with active
1949 * objects suddenly disappearing due to retiring requests is the
1950 * eviction code.
1951 *
1952 * Note 2: Even though the bound list doesn't hold a reference
1953 * to the object we can safely grab one here: The final object
1954 * unreferencing and the bound_list are both protected by the
1955 * dev->struct_mutex and so we won't ever be able to observe an
1956 * object on the bound_list with a reference count equals 0.
1957 */
1958 drm_gem_object_reference(&obj->base);
1959
1960 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1961 if (i915_vma_unbind(vma))
1962 break;
1963
1964 if (i915_gem_object_put_pages(obj) == 0)
1965 count += obj->base.size >> PAGE_SHIFT;
1966
1967 drm_gem_object_unreference(&obj->base);
1968 }
1969 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1970
1971 return count;
1972}
1973
1974static unsigned long
1975i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1976{
1977 return __i915_gem_shrink(dev_priv, target, true);
1978}
1979
1980static unsigned long
1981i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1982{
1983 struct drm_i915_gem_object *obj, *next;
1984 long freed = 0;
1985
1986 i915_gem_evict_everything(dev_priv->dev);
1987
1988 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1989 global_list) {
1990 if (i915_gem_object_put_pages(obj) == 0)
1991 freed += obj->base.size >> PAGE_SHIFT;
1992 }
1993 return freed;
1994}
1995
1996static int
1997i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1998{
1999 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2000 int page_count, i;
2001 struct address_space *mapping;
2002 struct sg_table *st;
2003 struct scatterlist *sg;
2004 struct sg_page_iter sg_iter;
2005 struct page *page;
2006 unsigned long last_pfn = 0; /* suppress gcc warning */
2007 gfp_t gfp;
2008
2009 /* Assert that the object is not currently in any GPU domain. As it
2010 * wasn't in the GTT, there shouldn't be any way it could have been in
2011 * a GPU cache
2012 */
2013 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2014 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2015
2016 st = kmalloc(sizeof(*st), GFP_KERNEL);
2017 if (st == NULL)
2018 return -ENOMEM;
2019
2020 page_count = obj->base.size / PAGE_SIZE;
2021 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2022 kfree(st);
2023 return -ENOMEM;
2024 }
2025
2026 /* Get the list of pages out of our struct file. They'll be pinned
2027 * at this point until we release them.
2028 *
2029 * Fail silently without starting the shrinker
2030 */
2031 mapping = file_inode(obj->base.filp)->i_mapping;
2032 gfp = mapping_gfp_mask(mapping);
2033 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2034 gfp &= ~(__GFP_IO | __GFP_WAIT);
2035 sg = st->sgl;
2036 st->nents = 0;
2037 for (i = 0; i < page_count; i++) {
2038 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2039 if (IS_ERR(page)) {
2040 i915_gem_purge(dev_priv, page_count);
2041 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2042 }
2043 if (IS_ERR(page)) {
2044 /* We've tried hard to allocate the memory by reaping
2045 * our own buffer, now let the real VM do its job and
2046 * go down in flames if truly OOM.
2047 */
2048 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2049 gfp |= __GFP_IO | __GFP_WAIT;
2050
2051 i915_gem_shrink_all(dev_priv);
2052 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2053 if (IS_ERR(page))
2054 goto err_pages;
2055
2056 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2057 gfp &= ~(__GFP_IO | __GFP_WAIT);
2058 }
2059#ifdef CONFIG_SWIOTLB
2060 if (swiotlb_nr_tbl()) {
2061 st->nents++;
2062 sg_set_page(sg, page, PAGE_SIZE, 0);
2063 sg = sg_next(sg);
2064 continue;
2065 }
2066#endif
2067 if (!i || page_to_pfn(page) != last_pfn + 1) {
2068 if (i)
2069 sg = sg_next(sg);
2070 st->nents++;
2071 sg_set_page(sg, page, PAGE_SIZE, 0);
2072 } else {
2073 sg->length += PAGE_SIZE;
2074 }
2075 last_pfn = page_to_pfn(page);
2076
2077 /* Check that the i965g/gm workaround works. */
2078 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2079 }
2080#ifdef CONFIG_SWIOTLB
2081 if (!swiotlb_nr_tbl())
2082#endif
2083 sg_mark_end(sg);
2084 obj->pages = st;
2085
2086 if (i915_gem_object_needs_bit17_swizzle(obj))
2087 i915_gem_object_do_bit_17_swizzle(obj);
2088
2089 return 0;
2090
2091err_pages:
2092 sg_mark_end(sg);
2093 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2094 page_cache_release(sg_page_iter_page(&sg_iter));
2095 sg_free_table(st);
2096 kfree(st);
2097 return PTR_ERR(page);
2098}
2099
2100/* Ensure that the associated pages are gathered from the backing storage
2101 * and pinned into our object. i915_gem_object_get_pages() may be called
2102 * multiple times before they are released by a single call to
2103 * i915_gem_object_put_pages() - once the pages are no longer referenced
2104 * either as a result of memory pressure (reaping pages under the shrinker)
2105 * or as the object is itself released.
2106 */
2107int
2108i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2109{
2110 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2111 const struct drm_i915_gem_object_ops *ops = obj->ops;
2112 int ret;
2113
2114 if (obj->pages)
2115 return 0;
2116
2117 if (obj->madv != I915_MADV_WILLNEED) {
2118 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2119 return -EFAULT;
2120 }
2121
2122 BUG_ON(obj->pages_pin_count);
2123
2124 ret = ops->get_pages(obj);
2125 if (ret)
2126 return ret;
2127
2128 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2129 return 0;
2130}
2131
2132static void
2133i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2134 struct intel_ring_buffer *ring)
2135{
2136 struct drm_device *dev = obj->base.dev;
2137 struct drm_i915_private *dev_priv = dev->dev_private;
2138 u32 seqno = intel_ring_get_seqno(ring);
2139
2140 BUG_ON(ring == NULL);
2141 if (obj->ring != ring && obj->last_write_seqno) {
2142 /* Keep the seqno relative to the current ring */
2143 obj->last_write_seqno = seqno;
2144 }
2145 obj->ring = ring;
2146
2147 /* Add a reference if we're newly entering the active list. */
2148 if (!obj->active) {
2149 drm_gem_object_reference(&obj->base);
2150 obj->active = 1;
2151 }
2152
2153 list_move_tail(&obj->ring_list, &ring->active_list);
2154
2155 obj->last_read_seqno = seqno;
2156
2157 if (obj->fenced_gpu_access) {
2158 obj->last_fenced_seqno = seqno;
2159
2160 /* Bump MRU to take account of the delayed flush */
2161 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2162 struct drm_i915_fence_reg *reg;
2163
2164 reg = &dev_priv->fence_regs[obj->fence_reg];
2165 list_move_tail(®->lru_list,
2166 &dev_priv->mm.fence_list);
2167 }
2168 }
2169}
2170
2171void i915_vma_move_to_active(struct i915_vma *vma,
2172 struct intel_ring_buffer *ring)
2173{
2174 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2175 return i915_gem_object_move_to_active(vma->obj, ring);
2176}
2177
2178static void
2179i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2180{
2181 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182 struct i915_address_space *vm;
2183 struct i915_vma *vma;
2184
2185 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2186 BUG_ON(!obj->active);
2187
2188 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2189 vma = i915_gem_obj_to_vma(obj, vm);
2190 if (vma && !list_empty(&vma->mm_list))
2191 list_move_tail(&vma->mm_list, &vm->inactive_list);
2192 }
2193
2194 list_del_init(&obj->ring_list);
2195 obj->ring = NULL;
2196
2197 obj->last_read_seqno = 0;
2198 obj->last_write_seqno = 0;
2199 obj->base.write_domain = 0;
2200
2201 obj->last_fenced_seqno = 0;
2202 obj->fenced_gpu_access = false;
2203
2204 obj->active = 0;
2205 drm_gem_object_unreference(&obj->base);
2206
2207 WARN_ON(i915_verify_lists(dev));
2208}
2209
2210static int
2211i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2212{
2213 struct drm_i915_private *dev_priv = dev->dev_private;
2214 struct intel_ring_buffer *ring;
2215 int ret, i, j;
2216
2217 /* Carefully retire all requests without writing to the rings */
2218 for_each_ring(ring, dev_priv, i) {
2219 ret = intel_ring_idle(ring);
2220 if (ret)
2221 return ret;
2222 }
2223 i915_gem_retire_requests(dev);
2224
2225 /* Finally reset hw state */
2226 for_each_ring(ring, dev_priv, i) {
2227 intel_ring_init_seqno(ring, seqno);
2228
2229 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2230 ring->sync_seqno[j] = 0;
2231 }
2232
2233 return 0;
2234}
2235
2236int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2237{
2238 struct drm_i915_private *dev_priv = dev->dev_private;
2239 int ret;
2240
2241 if (seqno == 0)
2242 return -EINVAL;
2243
2244 /* HWS page needs to be set less than what we
2245 * will inject to ring
2246 */
2247 ret = i915_gem_init_seqno(dev, seqno - 1);
2248 if (ret)
2249 return ret;
2250
2251 /* Carefully set the last_seqno value so that wrap
2252 * detection still works
2253 */
2254 dev_priv->next_seqno = seqno;
2255 dev_priv->last_seqno = seqno - 1;
2256 if (dev_priv->last_seqno == 0)
2257 dev_priv->last_seqno--;
2258
2259 return 0;
2260}
2261
2262int
2263i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2264{
2265 struct drm_i915_private *dev_priv = dev->dev_private;
2266
2267 /* reserve 0 for non-seqno */
2268 if (dev_priv->next_seqno == 0) {
2269 int ret = i915_gem_init_seqno(dev, 0);
2270 if (ret)
2271 return ret;
2272
2273 dev_priv->next_seqno = 1;
2274 }
2275
2276 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2277 return 0;
2278}
2279
2280int __i915_add_request(struct intel_ring_buffer *ring,
2281 struct drm_file *file,
2282 struct drm_i915_gem_object *obj,
2283 u32 *out_seqno)
2284{
2285 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2286 struct drm_i915_gem_request *request;
2287 u32 request_ring_position, request_start;
2288 int ret;
2289
2290 request_start = intel_ring_get_tail(ring);
2291 /*
2292 * Emit any outstanding flushes - execbuf can fail to emit the flush
2293 * after having emitted the batchbuffer command. Hence we need to fix
2294 * things up similar to emitting the lazy request. The difference here
2295 * is that the flush _must_ happen before the next request, no matter
2296 * what.
2297 */
2298 ret = intel_ring_flush_all_caches(ring);
2299 if (ret)
2300 return ret;
2301
2302 request = ring->preallocated_lazy_request;
2303 if (WARN_ON(request == NULL))
2304 return -ENOMEM;
2305
2306 /* Record the position of the start of the request so that
2307 * should we detect the updated seqno part-way through the
2308 * GPU processing the request, we never over-estimate the
2309 * position of the head.
2310 */
2311 request_ring_position = intel_ring_get_tail(ring);
2312
2313 ret = ring->add_request(ring);
2314 if (ret)
2315 return ret;
2316
2317 request->seqno = intel_ring_get_seqno(ring);
2318 request->ring = ring;
2319 request->head = request_start;
2320 request->tail = request_ring_position;
2321
2322 /* Whilst this request exists, batch_obj will be on the
2323 * active_list, and so will hold the active reference. Only when this
2324 * request is retired will the the batch_obj be moved onto the
2325 * inactive_list and lose its active reference. Hence we do not need
2326 * to explicitly hold another reference here.
2327 */
2328 request->batch_obj = obj;
2329
2330 /* Hold a reference to the current context so that we can inspect
2331 * it later in case a hangcheck error event fires.
2332 */
2333 request->ctx = ring->last_context;
2334 if (request->ctx)
2335 i915_gem_context_reference(request->ctx);
2336
2337 request->emitted_jiffies = jiffies;
2338 list_add_tail(&request->list, &ring->request_list);
2339 request->file_priv = NULL;
2340
2341 if (file) {
2342 struct drm_i915_file_private *file_priv = file->driver_priv;
2343
2344 spin_lock(&file_priv->mm.lock);
2345 request->file_priv = file_priv;
2346 list_add_tail(&request->client_list,
2347 &file_priv->mm.request_list);
2348 spin_unlock(&file_priv->mm.lock);
2349 }
2350
2351 trace_i915_gem_request_add(ring, request->seqno);
2352 ring->outstanding_lazy_seqno = 0;
2353 ring->preallocated_lazy_request = NULL;
2354
2355 if (!dev_priv->ums.mm_suspended) {
2356 i915_queue_hangcheck(ring->dev);
2357
2358 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2359 queue_delayed_work(dev_priv->wq,
2360 &dev_priv->mm.retire_work,
2361 round_jiffies_up_relative(HZ));
2362 intel_mark_busy(dev_priv->dev);
2363 }
2364
2365 if (out_seqno)
2366 *out_seqno = request->seqno;
2367 return 0;
2368}
2369
2370static inline void
2371i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2372{
2373 struct drm_i915_file_private *file_priv = request->file_priv;
2374
2375 if (!file_priv)
2376 return;
2377
2378 spin_lock(&file_priv->mm.lock);
2379 list_del(&request->client_list);
2380 request->file_priv = NULL;
2381 spin_unlock(&file_priv->mm.lock);
2382}
2383
2384static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2385 const struct i915_hw_context *ctx)
2386{
2387 unsigned long elapsed;
2388
2389 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2390
2391 if (ctx->hang_stats.banned)
2392 return true;
2393
2394 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2395 if (!i915_gem_context_is_default(ctx)) {
2396 DRM_DEBUG("context hanging too fast, banning!\n");
2397 return true;
2398 } else if (dev_priv->gpu_error.stop_rings == 0) {
2399 DRM_ERROR("gpu hanging too fast, banning!\n");
2400 return true;
2401 }
2402 }
2403
2404 return false;
2405}
2406
2407static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2408 struct i915_hw_context *ctx,
2409 const bool guilty)
2410{
2411 struct i915_ctx_hang_stats *hs;
2412
2413 if (WARN_ON(!ctx))
2414 return;
2415
2416 hs = &ctx->hang_stats;
2417
2418 if (guilty) {
2419 hs->banned = i915_context_is_banned(dev_priv, ctx);
2420 hs->batch_active++;
2421 hs->guilty_ts = get_seconds();
2422 } else {
2423 hs->batch_pending++;
2424 }
2425}
2426
2427static void i915_gem_free_request(struct drm_i915_gem_request *request)
2428{
2429 list_del(&request->list);
2430 i915_gem_request_remove_from_client(request);
2431
2432 if (request->ctx)
2433 i915_gem_context_unreference(request->ctx);
2434
2435 kfree(request);
2436}
2437
2438struct drm_i915_gem_request *
2439i915_gem_find_active_request(struct intel_ring_buffer *ring)
2440{
2441 struct drm_i915_gem_request *request;
2442 u32 completed_seqno;
2443
2444 completed_seqno = ring->get_seqno(ring, false);
2445
2446 list_for_each_entry(request, &ring->request_list, list) {
2447 if (i915_seqno_passed(completed_seqno, request->seqno))
2448 continue;
2449
2450 return request;
2451 }
2452
2453 return NULL;
2454}
2455
2456static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2457 struct intel_ring_buffer *ring)
2458{
2459 struct drm_i915_gem_request *request;
2460 bool ring_hung;
2461
2462 request = i915_gem_find_active_request(ring);
2463
2464 if (request == NULL)
2465 return;
2466
2467 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2468
2469 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2470
2471 list_for_each_entry_continue(request, &ring->request_list, list)
2472 i915_set_reset_status(dev_priv, request->ctx, false);
2473}
2474
2475static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2476 struct intel_ring_buffer *ring)
2477{
2478 while (!list_empty(&ring->active_list)) {
2479 struct drm_i915_gem_object *obj;
2480
2481 obj = list_first_entry(&ring->active_list,
2482 struct drm_i915_gem_object,
2483 ring_list);
2484
2485 i915_gem_object_move_to_inactive(obj);
2486 }
2487
2488 /*
2489 * We must free the requests after all the corresponding objects have
2490 * been moved off active lists. Which is the same order as the normal
2491 * retire_requests function does. This is important if object hold
2492 * implicit references on things like e.g. ppgtt address spaces through
2493 * the request.
2494 */
2495 while (!list_empty(&ring->request_list)) {
2496 struct drm_i915_gem_request *request;
2497
2498 request = list_first_entry(&ring->request_list,
2499 struct drm_i915_gem_request,
2500 list);
2501
2502 i915_gem_free_request(request);
2503 }
2504}
2505
2506void i915_gem_restore_fences(struct drm_device *dev)
2507{
2508 struct drm_i915_private *dev_priv = dev->dev_private;
2509 int i;
2510
2511 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2512 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2513
2514 /*
2515 * Commit delayed tiling changes if we have an object still
2516 * attached to the fence, otherwise just clear the fence.
2517 */
2518 if (reg->obj) {
2519 i915_gem_object_update_fence(reg->obj, reg,
2520 reg->obj->tiling_mode);
2521 } else {
2522 i915_gem_write_fence(dev, i, NULL);
2523 }
2524 }
2525}
2526
2527void i915_gem_reset(struct drm_device *dev)
2528{
2529 struct drm_i915_private *dev_priv = dev->dev_private;
2530 struct intel_ring_buffer *ring;
2531 int i;
2532
2533 /*
2534 * Before we free the objects from the requests, we need to inspect
2535 * them for finding the guilty party. As the requests only borrow
2536 * their reference to the objects, the inspection must be done first.
2537 */
2538 for_each_ring(ring, dev_priv, i)
2539 i915_gem_reset_ring_status(dev_priv, ring);
2540
2541 for_each_ring(ring, dev_priv, i)
2542 i915_gem_reset_ring_cleanup(dev_priv, ring);
2543
2544 i915_gem_cleanup_ringbuffer(dev);
2545
2546 i915_gem_context_reset(dev);
2547
2548 i915_gem_restore_fences(dev);
2549}
2550
2551/**
2552 * This function clears the request list as sequence numbers are passed.
2553 */
2554static void
2555i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2556{
2557 uint32_t seqno;
2558
2559 if (list_empty(&ring->request_list))
2560 return;
2561
2562 WARN_ON(i915_verify_lists(ring->dev));
2563
2564 seqno = ring->get_seqno(ring, true);
2565
2566 /* Move any buffers on the active list that are no longer referenced
2567 * by the ringbuffer to the flushing/inactive lists as appropriate,
2568 * before we free the context associated with the requests.
2569 */
2570 while (!list_empty(&ring->active_list)) {
2571 struct drm_i915_gem_object *obj;
2572
2573 obj = list_first_entry(&ring->active_list,
2574 struct drm_i915_gem_object,
2575 ring_list);
2576
2577 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2578 break;
2579
2580 i915_gem_object_move_to_inactive(obj);
2581 }
2582
2583
2584 while (!list_empty(&ring->request_list)) {
2585 struct drm_i915_gem_request *request;
2586
2587 request = list_first_entry(&ring->request_list,
2588 struct drm_i915_gem_request,
2589 list);
2590
2591 if (!i915_seqno_passed(seqno, request->seqno))
2592 break;
2593
2594 trace_i915_gem_request_retire(ring, request->seqno);
2595 /* We know the GPU must have read the request to have
2596 * sent us the seqno + interrupt, so use the position
2597 * of tail of the request to update the last known position
2598 * of the GPU head.
2599 */
2600 ring->last_retired_head = request->tail;
2601
2602 i915_gem_free_request(request);
2603 }
2604
2605 if (unlikely(ring->trace_irq_seqno &&
2606 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2607 ring->irq_put(ring);
2608 ring->trace_irq_seqno = 0;
2609 }
2610
2611 WARN_ON(i915_verify_lists(ring->dev));
2612}
2613
2614bool
2615i915_gem_retire_requests(struct drm_device *dev)
2616{
2617 struct drm_i915_private *dev_priv = dev->dev_private;
2618 struct intel_ring_buffer *ring;
2619 bool idle = true;
2620 int i;
2621
2622 for_each_ring(ring, dev_priv, i) {
2623 i915_gem_retire_requests_ring(ring);
2624 idle &= list_empty(&ring->request_list);
2625 }
2626
2627 if (idle)
2628 mod_delayed_work(dev_priv->wq,
2629 &dev_priv->mm.idle_work,
2630 msecs_to_jiffies(100));
2631
2632 return idle;
2633}
2634
2635static void
2636i915_gem_retire_work_handler(struct work_struct *work)
2637{
2638 struct drm_i915_private *dev_priv =
2639 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2640 struct drm_device *dev = dev_priv->dev;
2641 bool idle;
2642
2643 /* Come back later if the device is busy... */
2644 idle = false;
2645 if (mutex_trylock(&dev->struct_mutex)) {
2646 idle = i915_gem_retire_requests(dev);
2647 mutex_unlock(&dev->struct_mutex);
2648 }
2649 if (!idle)
2650 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2651 round_jiffies_up_relative(HZ));
2652}
2653
2654static void
2655i915_gem_idle_work_handler(struct work_struct *work)
2656{
2657 struct drm_i915_private *dev_priv =
2658 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2659
2660 intel_mark_idle(dev_priv->dev);
2661}
2662
2663/**
2664 * Ensures that an object will eventually get non-busy by flushing any required
2665 * write domains, emitting any outstanding lazy request and retiring and
2666 * completed requests.
2667 */
2668static int
2669i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2670{
2671 int ret;
2672
2673 if (obj->active) {
2674 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2675 if (ret)
2676 return ret;
2677
2678 i915_gem_retire_requests_ring(obj->ring);
2679 }
2680
2681 return 0;
2682}
2683
2684/**
2685 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2686 * @DRM_IOCTL_ARGS: standard ioctl arguments
2687 *
2688 * Returns 0 if successful, else an error is returned with the remaining time in
2689 * the timeout parameter.
2690 * -ETIME: object is still busy after timeout
2691 * -ERESTARTSYS: signal interrupted the wait
2692 * -ENONENT: object doesn't exist
2693 * Also possible, but rare:
2694 * -EAGAIN: GPU wedged
2695 * -ENOMEM: damn
2696 * -ENODEV: Internal IRQ fail
2697 * -E?: The add request failed
2698 *
2699 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2700 * non-zero timeout parameter the wait ioctl will wait for the given number of
2701 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2702 * without holding struct_mutex the object may become re-busied before this
2703 * function completes. A similar but shorter * race condition exists in the busy
2704 * ioctl
2705 */
2706int
2707i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2708{
2709 struct drm_i915_private *dev_priv = dev->dev_private;
2710 struct drm_i915_gem_wait *args = data;
2711 struct drm_i915_gem_object *obj;
2712 struct intel_ring_buffer *ring = NULL;
2713 struct timespec timeout_stack, *timeout = NULL;
2714 unsigned reset_counter;
2715 u32 seqno = 0;
2716 int ret = 0;
2717
2718 if (args->timeout_ns >= 0) {
2719 timeout_stack = ns_to_timespec(args->timeout_ns);
2720 timeout = &timeout_stack;
2721 }
2722
2723 ret = i915_mutex_lock_interruptible(dev);
2724 if (ret)
2725 return ret;
2726
2727 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2728 if (&obj->base == NULL) {
2729 mutex_unlock(&dev->struct_mutex);
2730 return -ENOENT;
2731 }
2732
2733 /* Need to make sure the object gets inactive eventually. */
2734 ret = i915_gem_object_flush_active(obj);
2735 if (ret)
2736 goto out;
2737
2738 if (obj->active) {
2739 seqno = obj->last_read_seqno;
2740 ring = obj->ring;
2741 }
2742
2743 if (seqno == 0)
2744 goto out;
2745
2746 /* Do this after OLR check to make sure we make forward progress polling
2747 * on this IOCTL with a 0 timeout (like busy ioctl)
2748 */
2749 if (!args->timeout_ns) {
2750 ret = -ETIME;
2751 goto out;
2752 }
2753
2754 drm_gem_object_unreference(&obj->base);
2755 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2756 mutex_unlock(&dev->struct_mutex);
2757
2758 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2759 if (timeout)
2760 args->timeout_ns = timespec_to_ns(timeout);
2761 return ret;
2762
2763out:
2764 drm_gem_object_unreference(&obj->base);
2765 mutex_unlock(&dev->struct_mutex);
2766 return ret;
2767}
2768
2769/**
2770 * i915_gem_object_sync - sync an object to a ring.
2771 *
2772 * @obj: object which may be in use on another ring.
2773 * @to: ring we wish to use the object on. May be NULL.
2774 *
2775 * This code is meant to abstract object synchronization with the GPU.
2776 * Calling with NULL implies synchronizing the object with the CPU
2777 * rather than a particular GPU ring.
2778 *
2779 * Returns 0 if successful, else propagates up the lower layer error.
2780 */
2781int
2782i915_gem_object_sync(struct drm_i915_gem_object *obj,
2783 struct intel_ring_buffer *to)
2784{
2785 struct intel_ring_buffer *from = obj->ring;
2786 u32 seqno;
2787 int ret, idx;
2788
2789 if (from == NULL || to == from)
2790 return 0;
2791
2792 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2793 return i915_gem_object_wait_rendering(obj, false);
2794
2795 idx = intel_ring_sync_index(from, to);
2796
2797 seqno = obj->last_read_seqno;
2798 if (seqno <= from->sync_seqno[idx])
2799 return 0;
2800
2801 ret = i915_gem_check_olr(obj->ring, seqno);
2802 if (ret)
2803 return ret;
2804
2805 trace_i915_gem_ring_sync_to(from, to, seqno);
2806 ret = to->sync_to(to, from, seqno);
2807 if (!ret)
2808 /* We use last_read_seqno because sync_to()
2809 * might have just caused seqno wrap under
2810 * the radar.
2811 */
2812 from->sync_seqno[idx] = obj->last_read_seqno;
2813
2814 return ret;
2815}
2816
2817static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2818{
2819 u32 old_write_domain, old_read_domains;
2820
2821 /* Force a pagefault for domain tracking on next user access */
2822 i915_gem_release_mmap(obj);
2823
2824 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2825 return;
2826
2827 /* Wait for any direct GTT access to complete */
2828 mb();
2829
2830 old_read_domains = obj->base.read_domains;
2831 old_write_domain = obj->base.write_domain;
2832
2833 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2834 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2835
2836 trace_i915_gem_object_change_domain(obj,
2837 old_read_domains,
2838 old_write_domain);
2839}
2840
2841int i915_vma_unbind(struct i915_vma *vma)
2842{
2843 struct drm_i915_gem_object *obj = vma->obj;
2844 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2845 int ret;
2846
2847 if (list_empty(&vma->vma_link))
2848 return 0;
2849
2850 if (!drm_mm_node_allocated(&vma->node)) {
2851 i915_gem_vma_destroy(vma);
2852 return 0;
2853 }
2854
2855 if (vma->pin_count)
2856 return -EBUSY;
2857
2858 BUG_ON(obj->pages == NULL);
2859
2860 ret = i915_gem_object_finish_gpu(obj);
2861 if (ret)
2862 return ret;
2863 /* Continue on if we fail due to EIO, the GPU is hung so we
2864 * should be safe and we need to cleanup or else we might
2865 * cause memory corruption through use-after-free.
2866 */
2867
2868 i915_gem_object_finish_gtt(obj);
2869
2870 /* release the fence reg _after_ flushing */
2871 ret = i915_gem_object_put_fence(obj);
2872 if (ret)
2873 return ret;
2874
2875 trace_i915_vma_unbind(vma);
2876
2877 vma->unbind_vma(vma);
2878
2879 i915_gem_gtt_finish_object(obj);
2880
2881 list_del_init(&vma->mm_list);
2882 /* Avoid an unnecessary call to unbind on rebind. */
2883 if (i915_is_ggtt(vma->vm))
2884 obj->map_and_fenceable = true;
2885
2886 drm_mm_remove_node(&vma->node);
2887 i915_gem_vma_destroy(vma);
2888
2889 /* Since the unbound list is global, only move to that list if
2890 * no more VMAs exist. */
2891 if (list_empty(&obj->vma_list))
2892 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2893
2894 /* And finally now the object is completely decoupled from this vma,
2895 * we can drop its hold on the backing storage and allow it to be
2896 * reaped by the shrinker.
2897 */
2898 i915_gem_object_unpin_pages(obj);
2899
2900 return 0;
2901}
2902
2903int i915_gpu_idle(struct drm_device *dev)
2904{
2905 struct drm_i915_private *dev_priv = dev->dev_private;
2906 struct intel_ring_buffer *ring;
2907 int ret, i;
2908
2909 /* Flush everything onto the inactive list. */
2910 for_each_ring(ring, dev_priv, i) {
2911 ret = i915_switch_context(ring, ring->default_context);
2912 if (ret)
2913 return ret;
2914
2915 ret = intel_ring_idle(ring);
2916 if (ret)
2917 return ret;
2918 }
2919
2920 return 0;
2921}
2922
2923static void i965_write_fence_reg(struct drm_device *dev, int reg,
2924 struct drm_i915_gem_object *obj)
2925{
2926 struct drm_i915_private *dev_priv = dev->dev_private;
2927 int fence_reg;
2928 int fence_pitch_shift;
2929
2930 if (INTEL_INFO(dev)->gen >= 6) {
2931 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2932 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2933 } else {
2934 fence_reg = FENCE_REG_965_0;
2935 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2936 }
2937
2938 fence_reg += reg * 8;
2939
2940 /* To w/a incoherency with non-atomic 64-bit register updates,
2941 * we split the 64-bit update into two 32-bit writes. In order
2942 * for a partial fence not to be evaluated between writes, we
2943 * precede the update with write to turn off the fence register,
2944 * and only enable the fence as the last step.
2945 *
2946 * For extra levels of paranoia, we make sure each step lands
2947 * before applying the next step.
2948 */
2949 I915_WRITE(fence_reg, 0);
2950 POSTING_READ(fence_reg);
2951
2952 if (obj) {
2953 u32 size = i915_gem_obj_ggtt_size(obj);
2954 uint64_t val;
2955
2956 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2957 0xfffff000) << 32;
2958 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2959 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2960 if (obj->tiling_mode == I915_TILING_Y)
2961 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2962 val |= I965_FENCE_REG_VALID;
2963
2964 I915_WRITE(fence_reg + 4, val >> 32);
2965 POSTING_READ(fence_reg + 4);
2966
2967 I915_WRITE(fence_reg + 0, val);
2968 POSTING_READ(fence_reg);
2969 } else {
2970 I915_WRITE(fence_reg + 4, 0);
2971 POSTING_READ(fence_reg + 4);
2972 }
2973}
2974
2975static void i915_write_fence_reg(struct drm_device *dev, int reg,
2976 struct drm_i915_gem_object *obj)
2977{
2978 struct drm_i915_private *dev_priv = dev->dev_private;
2979 u32 val;
2980
2981 if (obj) {
2982 u32 size = i915_gem_obj_ggtt_size(obj);
2983 int pitch_val;
2984 int tile_width;
2985
2986 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2987 (size & -size) != size ||
2988 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2989 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2990 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2991
2992 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2993 tile_width = 128;
2994 else
2995 tile_width = 512;
2996
2997 /* Note: pitch better be a power of two tile widths */
2998 pitch_val = obj->stride / tile_width;
2999 pitch_val = ffs(pitch_val) - 1;
3000
3001 val = i915_gem_obj_ggtt_offset(obj);
3002 if (obj->tiling_mode == I915_TILING_Y)
3003 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3004 val |= I915_FENCE_SIZE_BITS(size);
3005 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3006 val |= I830_FENCE_REG_VALID;
3007 } else
3008 val = 0;
3009
3010 if (reg < 8)
3011 reg = FENCE_REG_830_0 + reg * 4;
3012 else
3013 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3014
3015 I915_WRITE(reg, val);
3016 POSTING_READ(reg);
3017}
3018
3019static void i830_write_fence_reg(struct drm_device *dev, int reg,
3020 struct drm_i915_gem_object *obj)
3021{
3022 struct drm_i915_private *dev_priv = dev->dev_private;
3023 uint32_t val;
3024
3025 if (obj) {
3026 u32 size = i915_gem_obj_ggtt_size(obj);
3027 uint32_t pitch_val;
3028
3029 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3030 (size & -size) != size ||
3031 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3032 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3033 i915_gem_obj_ggtt_offset(obj), size);
3034
3035 pitch_val = obj->stride / 128;
3036 pitch_val = ffs(pitch_val) - 1;
3037
3038 val = i915_gem_obj_ggtt_offset(obj);
3039 if (obj->tiling_mode == I915_TILING_Y)
3040 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3041 val |= I830_FENCE_SIZE_BITS(size);
3042 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3043 val |= I830_FENCE_REG_VALID;
3044 } else
3045 val = 0;
3046
3047 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3048 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3049}
3050
3051inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3052{
3053 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3054}
3055
3056static void i915_gem_write_fence(struct drm_device *dev, int reg,
3057 struct drm_i915_gem_object *obj)
3058{
3059 struct drm_i915_private *dev_priv = dev->dev_private;
3060
3061 /* Ensure that all CPU reads are completed before installing a fence
3062 * and all writes before removing the fence.
3063 */
3064 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3065 mb();
3066
3067 WARN(obj && (!obj->stride || !obj->tiling_mode),
3068 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3069 obj->stride, obj->tiling_mode);
3070
3071 switch (INTEL_INFO(dev)->gen) {
3072 case 8:
3073 case 7:
3074 case 6:
3075 case 5:
3076 case 4: i965_write_fence_reg(dev, reg, obj); break;
3077 case 3: i915_write_fence_reg(dev, reg, obj); break;
3078 case 2: i830_write_fence_reg(dev, reg, obj); break;
3079 default: BUG();
3080 }
3081
3082 /* And similarly be paranoid that no direct access to this region
3083 * is reordered to before the fence is installed.
3084 */
3085 if (i915_gem_object_needs_mb(obj))
3086 mb();
3087}
3088
3089static inline int fence_number(struct drm_i915_private *dev_priv,
3090 struct drm_i915_fence_reg *fence)
3091{
3092 return fence - dev_priv->fence_regs;
3093}
3094
3095static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3096 struct drm_i915_fence_reg *fence,
3097 bool enable)
3098{
3099 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3100 int reg = fence_number(dev_priv, fence);
3101
3102 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3103
3104 if (enable) {
3105 obj->fence_reg = reg;
3106 fence->obj = obj;
3107 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3108 } else {
3109 obj->fence_reg = I915_FENCE_REG_NONE;
3110 fence->obj = NULL;
3111 list_del_init(&fence->lru_list);
3112 }
3113 obj->fence_dirty = false;
3114}
3115
3116static int
3117i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3118{
3119 if (obj->last_fenced_seqno) {
3120 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3121 if (ret)
3122 return ret;
3123
3124 obj->last_fenced_seqno = 0;
3125 }
3126
3127 obj->fenced_gpu_access = false;
3128 return 0;
3129}
3130
3131int
3132i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3133{
3134 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3135 struct drm_i915_fence_reg *fence;
3136 int ret;
3137
3138 ret = i915_gem_object_wait_fence(obj);
3139 if (ret)
3140 return ret;
3141
3142 if (obj->fence_reg == I915_FENCE_REG_NONE)
3143 return 0;
3144
3145 fence = &dev_priv->fence_regs[obj->fence_reg];
3146
3147 i915_gem_object_fence_lost(obj);
3148 i915_gem_object_update_fence(obj, fence, false);
3149
3150 return 0;
3151}
3152
3153static struct drm_i915_fence_reg *
3154i915_find_fence_reg(struct drm_device *dev)
3155{
3156 struct drm_i915_private *dev_priv = dev->dev_private;
3157 struct drm_i915_fence_reg *reg, *avail;
3158 int i;
3159
3160 /* First try to find a free reg */
3161 avail = NULL;
3162 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3163 reg = &dev_priv->fence_regs[i];
3164 if (!reg->obj)
3165 return reg;
3166
3167 if (!reg->pin_count)
3168 avail = reg;
3169 }
3170
3171 if (avail == NULL)
3172 goto deadlock;
3173
3174 /* None available, try to steal one or wait for a user to finish */
3175 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3176 if (reg->pin_count)
3177 continue;
3178
3179 return reg;
3180 }
3181
3182deadlock:
3183 /* Wait for completion of pending flips which consume fences */
3184 if (intel_has_pending_fb_unpin(dev))
3185 return ERR_PTR(-EAGAIN);
3186
3187 return ERR_PTR(-EDEADLK);
3188}
3189
3190/**
3191 * i915_gem_object_get_fence - set up fencing for an object
3192 * @obj: object to map through a fence reg
3193 *
3194 * When mapping objects through the GTT, userspace wants to be able to write
3195 * to them without having to worry about swizzling if the object is tiled.
3196 * This function walks the fence regs looking for a free one for @obj,
3197 * stealing one if it can't find any.
3198 *
3199 * It then sets up the reg based on the object's properties: address, pitch
3200 * and tiling format.
3201 *
3202 * For an untiled surface, this removes any existing fence.
3203 */
3204int
3205i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3206{
3207 struct drm_device *dev = obj->base.dev;
3208 struct drm_i915_private *dev_priv = dev->dev_private;
3209 bool enable = obj->tiling_mode != I915_TILING_NONE;
3210 struct drm_i915_fence_reg *reg;
3211 int ret;
3212
3213 /* Have we updated the tiling parameters upon the object and so
3214 * will need to serialise the write to the associated fence register?
3215 */
3216 if (obj->fence_dirty) {
3217 ret = i915_gem_object_wait_fence(obj);
3218 if (ret)
3219 return ret;
3220 }
3221
3222 /* Just update our place in the LRU if our fence is getting reused. */
3223 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3224 reg = &dev_priv->fence_regs[obj->fence_reg];
3225 if (!obj->fence_dirty) {
3226 list_move_tail(®->lru_list,
3227 &dev_priv->mm.fence_list);
3228 return 0;
3229 }
3230 } else if (enable) {
3231 reg = i915_find_fence_reg(dev);
3232 if (IS_ERR(reg))
3233 return PTR_ERR(reg);
3234
3235 if (reg->obj) {
3236 struct drm_i915_gem_object *old = reg->obj;
3237
3238 ret = i915_gem_object_wait_fence(old);
3239 if (ret)
3240 return ret;
3241
3242 i915_gem_object_fence_lost(old);
3243 }
3244 } else
3245 return 0;
3246
3247 i915_gem_object_update_fence(obj, reg, enable);
3248
3249 return 0;
3250}
3251
3252static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3253 struct drm_mm_node *gtt_space,
3254 unsigned long cache_level)
3255{
3256 struct drm_mm_node *other;
3257
3258 /* On non-LLC machines we have to be careful when putting differing
3259 * types of snoopable memory together to avoid the prefetcher
3260 * crossing memory domains and dying.
3261 */
3262 if (HAS_LLC(dev))
3263 return true;
3264
3265 if (!drm_mm_node_allocated(gtt_space))
3266 return true;
3267
3268 if (list_empty(>t_space->node_list))
3269 return true;
3270
3271 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3272 if (other->allocated && !other->hole_follows && other->color != cache_level)
3273 return false;
3274
3275 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3276 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3277 return false;
3278
3279 return true;
3280}
3281
3282static void i915_gem_verify_gtt(struct drm_device *dev)
3283{
3284#if WATCH_GTT
3285 struct drm_i915_private *dev_priv = dev->dev_private;
3286 struct drm_i915_gem_object *obj;
3287 int err = 0;
3288
3289 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3290 if (obj->gtt_space == NULL) {
3291 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3292 err++;
3293 continue;
3294 }
3295
3296 if (obj->cache_level != obj->gtt_space->color) {
3297 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3298 i915_gem_obj_ggtt_offset(obj),
3299 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3300 obj->cache_level,
3301 obj->gtt_space->color);
3302 err++;
3303 continue;
3304 }
3305
3306 if (!i915_gem_valid_gtt_space(dev,
3307 obj->gtt_space,
3308 obj->cache_level)) {
3309 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3310 i915_gem_obj_ggtt_offset(obj),
3311 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3312 obj->cache_level);
3313 err++;
3314 continue;
3315 }
3316 }
3317
3318 WARN_ON(err);
3319#endif
3320}
3321
3322/**
3323 * Finds free space in the GTT aperture and binds the object there.
3324 */
3325static struct i915_vma *
3326i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3327 struct i915_address_space *vm,
3328 unsigned alignment,
3329 uint64_t flags)
3330{
3331 struct drm_device *dev = obj->base.dev;
3332 struct drm_i915_private *dev_priv = dev->dev_private;
3333 u32 size, fence_size, fence_alignment, unfenced_alignment;
3334 unsigned long start =
3335 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3336 unsigned long end =
3337 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3338 struct i915_vma *vma;
3339 int ret;
3340
3341 fence_size = i915_gem_get_gtt_size(dev,
3342 obj->base.size,
3343 obj->tiling_mode);
3344 fence_alignment = i915_gem_get_gtt_alignment(dev,
3345 obj->base.size,
3346 obj->tiling_mode, true);
3347 unfenced_alignment =
3348 i915_gem_get_gtt_alignment(dev,
3349 obj->base.size,
3350 obj->tiling_mode, false);
3351
3352 if (alignment == 0)
3353 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3354 unfenced_alignment;
3355 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3356 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3357 return ERR_PTR(-EINVAL);
3358 }
3359
3360 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3361
3362 /* If the object is bigger than the entire aperture, reject it early
3363 * before evicting everything in a vain attempt to find space.
3364 */
3365 if (obj->base.size > end) {
3366 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3367 obj->base.size,
3368 flags & PIN_MAPPABLE ? "mappable" : "total",
3369 end);
3370 return ERR_PTR(-E2BIG);
3371 }
3372
3373 ret = i915_gem_object_get_pages(obj);
3374 if (ret)
3375 return ERR_PTR(ret);
3376
3377 i915_gem_object_pin_pages(obj);
3378
3379 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3380 if (IS_ERR(vma))
3381 goto err_unpin;
3382
3383search_free:
3384 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3385 size, alignment,
3386 obj->cache_level,
3387 start, end,
3388 DRM_MM_SEARCH_DEFAULT,
3389 DRM_MM_CREATE_DEFAULT);
3390 if (ret) {
3391 ret = i915_gem_evict_something(dev, vm, size, alignment,
3392 obj->cache_level,
3393 start, end,
3394 flags);
3395 if (ret == 0)
3396 goto search_free;
3397
3398 goto err_free_vma;
3399 }
3400 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3401 obj->cache_level))) {
3402 ret = -EINVAL;
3403 goto err_remove_node;
3404 }
3405
3406 ret = i915_gem_gtt_prepare_object(obj);
3407 if (ret)
3408 goto err_remove_node;
3409
3410 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3411 list_add_tail(&vma->mm_list, &vm->inactive_list);
3412
3413 if (i915_is_ggtt(vm)) {
3414 bool mappable, fenceable;
3415
3416 fenceable = (vma->node.size == fence_size &&
3417 (vma->node.start & (fence_alignment - 1)) == 0);
3418
3419 mappable = (vma->node.start + obj->base.size <=
3420 dev_priv->gtt.mappable_end);
3421
3422 obj->map_and_fenceable = mappable && fenceable;
3423 }
3424
3425 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3426
3427 trace_i915_vma_bind(vma, flags);
3428 vma->bind_vma(vma, obj->cache_level,
3429 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3430
3431 i915_gem_verify_gtt(dev);
3432 return vma;
3433
3434err_remove_node:
3435 drm_mm_remove_node(&vma->node);
3436err_free_vma:
3437 i915_gem_vma_destroy(vma);
3438 vma = ERR_PTR(ret);
3439err_unpin:
3440 i915_gem_object_unpin_pages(obj);
3441 return vma;
3442}
3443
3444bool
3445i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3446 bool force)
3447{
3448 /* If we don't have a page list set up, then we're not pinned
3449 * to GPU, and we can ignore the cache flush because it'll happen
3450 * again at bind time.
3451 */
3452 if (obj->pages == NULL)
3453 return false;
3454
3455 /*
3456 * Stolen memory is always coherent with the GPU as it is explicitly
3457 * marked as wc by the system, or the system is cache-coherent.
3458 */
3459 if (obj->stolen)
3460 return false;
3461
3462 /* If the GPU is snooping the contents of the CPU cache,
3463 * we do not need to manually clear the CPU cache lines. However,
3464 * the caches are only snooped when the render cache is
3465 * flushed/invalidated. As we always have to emit invalidations
3466 * and flushes when moving into and out of the RENDER domain, correct
3467 * snooping behaviour occurs naturally as the result of our domain
3468 * tracking.
3469 */
3470 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3471 return false;
3472
3473 trace_i915_gem_object_clflush(obj);
3474 drm_clflush_sg(obj->pages);
3475
3476 return true;
3477}
3478
3479/** Flushes the GTT write domain for the object if it's dirty. */
3480static void
3481i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3482{
3483 uint32_t old_write_domain;
3484
3485 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3486 return;
3487
3488 /* No actual flushing is required for the GTT write domain. Writes
3489 * to it immediately go to main memory as far as we know, so there's
3490 * no chipset flush. It also doesn't land in render cache.
3491 *
3492 * However, we do have to enforce the order so that all writes through
3493 * the GTT land before any writes to the device, such as updates to
3494 * the GATT itself.
3495 */
3496 wmb();
3497
3498 old_write_domain = obj->base.write_domain;
3499 obj->base.write_domain = 0;
3500
3501 trace_i915_gem_object_change_domain(obj,
3502 obj->base.read_domains,
3503 old_write_domain);
3504}
3505
3506/** Flushes the CPU write domain for the object if it's dirty. */
3507static void
3508i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3509 bool force)
3510{
3511 uint32_t old_write_domain;
3512
3513 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3514 return;
3515
3516 if (i915_gem_clflush_object(obj, force))
3517 i915_gem_chipset_flush(obj->base.dev);
3518
3519 old_write_domain = obj->base.write_domain;
3520 obj->base.write_domain = 0;
3521
3522 trace_i915_gem_object_change_domain(obj,
3523 obj->base.read_domains,
3524 old_write_domain);
3525}
3526
3527/**
3528 * Moves a single object to the GTT read, and possibly write domain.
3529 *
3530 * This function returns when the move is complete, including waiting on
3531 * flushes to occur.
3532 */
3533int
3534i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3535{
3536 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3537 uint32_t old_write_domain, old_read_domains;
3538 int ret;
3539
3540 /* Not valid to be called on unbound objects. */
3541 if (!i915_gem_obj_bound_any(obj))
3542 return -EINVAL;
3543
3544 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3545 return 0;
3546
3547 ret = i915_gem_object_wait_rendering(obj, !write);
3548 if (ret)
3549 return ret;
3550
3551 i915_gem_object_flush_cpu_write_domain(obj, false);
3552
3553 /* Serialise direct access to this object with the barriers for
3554 * coherent writes from the GPU, by effectively invalidating the
3555 * GTT domain upon first access.
3556 */
3557 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3558 mb();
3559
3560 old_write_domain = obj->base.write_domain;
3561 old_read_domains = obj->base.read_domains;
3562
3563 /* It should now be out of any other write domains, and we can update
3564 * the domain values for our changes.
3565 */
3566 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3567 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3568 if (write) {
3569 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3570 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3571 obj->dirty = 1;
3572 }
3573
3574 trace_i915_gem_object_change_domain(obj,
3575 old_read_domains,
3576 old_write_domain);
3577
3578 /* And bump the LRU for this access */
3579 if (i915_gem_object_is_inactive(obj)) {
3580 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3581 if (vma)
3582 list_move_tail(&vma->mm_list,
3583 &dev_priv->gtt.base.inactive_list);
3584
3585 }
3586
3587 return 0;
3588}
3589
3590int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3591 enum i915_cache_level cache_level)
3592{
3593 struct drm_device *dev = obj->base.dev;
3594 struct i915_vma *vma, *next;
3595 int ret;
3596
3597 if (obj->cache_level == cache_level)
3598 return 0;
3599
3600 if (i915_gem_obj_is_pinned(obj)) {
3601 DRM_DEBUG("can not change the cache level of pinned objects\n");
3602 return -EBUSY;
3603 }
3604
3605 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3606 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3607 ret = i915_vma_unbind(vma);
3608 if (ret)
3609 return ret;
3610 }
3611 }
3612
3613 if (i915_gem_obj_bound_any(obj)) {
3614 ret = i915_gem_object_finish_gpu(obj);
3615 if (ret)
3616 return ret;
3617
3618 i915_gem_object_finish_gtt(obj);
3619
3620 /* Before SandyBridge, you could not use tiling or fence
3621 * registers with snooped memory, so relinquish any fences
3622 * currently pointing to our region in the aperture.
3623 */
3624 if (INTEL_INFO(dev)->gen < 6) {
3625 ret = i915_gem_object_put_fence(obj);
3626 if (ret)
3627 return ret;
3628 }
3629
3630 list_for_each_entry(vma, &obj->vma_list, vma_link)
3631 if (drm_mm_node_allocated(&vma->node))
3632 vma->bind_vma(vma, cache_level,
3633 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3634 }
3635
3636 list_for_each_entry(vma, &obj->vma_list, vma_link)
3637 vma->node.color = cache_level;
3638 obj->cache_level = cache_level;
3639
3640 if (cpu_write_needs_clflush(obj)) {
3641 u32 old_read_domains, old_write_domain;
3642
3643 /* If we're coming from LLC cached, then we haven't
3644 * actually been tracking whether the data is in the
3645 * CPU cache or not, since we only allow one bit set
3646 * in obj->write_domain and have been skipping the clflushes.
3647 * Just set it to the CPU cache for now.
3648 */
3649 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3650
3651 old_read_domains = obj->base.read_domains;
3652 old_write_domain = obj->base.write_domain;
3653
3654 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3655 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3656
3657 trace_i915_gem_object_change_domain(obj,
3658 old_read_domains,
3659 old_write_domain);
3660 }
3661
3662 i915_gem_verify_gtt(dev);
3663 return 0;
3664}
3665
3666int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3667 struct drm_file *file)
3668{
3669 struct drm_i915_gem_caching *args = data;
3670 struct drm_i915_gem_object *obj;
3671 int ret;
3672
3673 ret = i915_mutex_lock_interruptible(dev);
3674 if (ret)
3675 return ret;
3676
3677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3678 if (&obj->base == NULL) {
3679 ret = -ENOENT;
3680 goto unlock;
3681 }
3682
3683 switch (obj->cache_level) {
3684 case I915_CACHE_LLC:
3685 case I915_CACHE_L3_LLC:
3686 args->caching = I915_CACHING_CACHED;
3687 break;
3688
3689 case I915_CACHE_WT:
3690 args->caching = I915_CACHING_DISPLAY;
3691 break;
3692
3693 default:
3694 args->caching = I915_CACHING_NONE;
3695 break;
3696 }
3697
3698 drm_gem_object_unreference(&obj->base);
3699unlock:
3700 mutex_unlock(&dev->struct_mutex);
3701 return ret;
3702}
3703
3704int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3705 struct drm_file *file)
3706{
3707 struct drm_i915_gem_caching *args = data;
3708 struct drm_i915_gem_object *obj;
3709 enum i915_cache_level level;
3710 int ret;
3711
3712 switch (args->caching) {
3713 case I915_CACHING_NONE:
3714 level = I915_CACHE_NONE;
3715 break;
3716 case I915_CACHING_CACHED:
3717 level = I915_CACHE_LLC;
3718 break;
3719 case I915_CACHING_DISPLAY:
3720 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3721 break;
3722 default:
3723 return -EINVAL;
3724 }
3725
3726 ret = i915_mutex_lock_interruptible(dev);
3727 if (ret)
3728 return ret;
3729
3730 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3731 if (&obj->base == NULL) {
3732 ret = -ENOENT;
3733 goto unlock;
3734 }
3735
3736 ret = i915_gem_object_set_cache_level(obj, level);
3737
3738 drm_gem_object_unreference(&obj->base);
3739unlock:
3740 mutex_unlock(&dev->struct_mutex);
3741 return ret;
3742}
3743
3744static bool is_pin_display(struct drm_i915_gem_object *obj)
3745{
3746 /* There are 3 sources that pin objects:
3747 * 1. The display engine (scanouts, sprites, cursors);
3748 * 2. Reservations for execbuffer;
3749 * 3. The user.
3750 *
3751 * We can ignore reservations as we hold the struct_mutex and
3752 * are only called outside of the reservation path. The user
3753 * can only increment pin_count once, and so if after
3754 * subtracting the potential reference by the user, any pin_count
3755 * remains, it must be due to another use by the display engine.
3756 */
3757 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3758}
3759
3760/*
3761 * Prepare buffer for display plane (scanout, cursors, etc).
3762 * Can be called from an uninterruptible phase (modesetting) and allows
3763 * any flushes to be pipelined (for pageflips).
3764 */
3765int
3766i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3767 u32 alignment,
3768 struct intel_ring_buffer *pipelined)
3769{
3770 u32 old_read_domains, old_write_domain;
3771 int ret;
3772
3773 if (pipelined != obj->ring) {
3774 ret = i915_gem_object_sync(obj, pipelined);
3775 if (ret)
3776 return ret;
3777 }
3778
3779 /* Mark the pin_display early so that we account for the
3780 * display coherency whilst setting up the cache domains.
3781 */
3782 obj->pin_display = true;
3783
3784 /* The display engine is not coherent with the LLC cache on gen6. As
3785 * a result, we make sure that the pinning that is about to occur is
3786 * done with uncached PTEs. This is lowest common denominator for all
3787 * chipsets.
3788 *
3789 * However for gen6+, we could do better by using the GFDT bit instead
3790 * of uncaching, which would allow us to flush all the LLC-cached data
3791 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3792 */
3793 ret = i915_gem_object_set_cache_level(obj,
3794 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3795 if (ret)
3796 goto err_unpin_display;
3797
3798 /* As the user may map the buffer once pinned in the display plane
3799 * (e.g. libkms for the bootup splash), we have to ensure that we
3800 * always use map_and_fenceable for all scanout buffers.
3801 */
3802 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3803 if (ret)
3804 goto err_unpin_display;
3805
3806 i915_gem_object_flush_cpu_write_domain(obj, true);
3807
3808 old_write_domain = obj->base.write_domain;
3809 old_read_domains = obj->base.read_domains;
3810
3811 /* It should now be out of any other write domains, and we can update
3812 * the domain values for our changes.
3813 */
3814 obj->base.write_domain = 0;
3815 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3816
3817 trace_i915_gem_object_change_domain(obj,
3818 old_read_domains,
3819 old_write_domain);
3820
3821 return 0;
3822
3823err_unpin_display:
3824 obj->pin_display = is_pin_display(obj);
3825 return ret;
3826}
3827
3828void
3829i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3830{
3831 i915_gem_object_ggtt_unpin(obj);
3832 obj->pin_display = is_pin_display(obj);
3833}
3834
3835int
3836i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3837{
3838 int ret;
3839
3840 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3841 return 0;
3842
3843 ret = i915_gem_object_wait_rendering(obj, false);
3844 if (ret)
3845 return ret;
3846
3847 /* Ensure that we invalidate the GPU's caches and TLBs. */
3848 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3849 return 0;
3850}
3851
3852/**
3853 * Moves a single object to the CPU read, and possibly write domain.
3854 *
3855 * This function returns when the move is complete, including waiting on
3856 * flushes to occur.
3857 */
3858int
3859i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3860{
3861 uint32_t old_write_domain, old_read_domains;
3862 int ret;
3863
3864 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3865 return 0;
3866
3867 ret = i915_gem_object_wait_rendering(obj, !write);
3868 if (ret)
3869 return ret;
3870
3871 i915_gem_object_flush_gtt_write_domain(obj);
3872
3873 old_write_domain = obj->base.write_domain;
3874 old_read_domains = obj->base.read_domains;
3875
3876 /* Flush the CPU cache if it's still invalid. */
3877 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3878 i915_gem_clflush_object(obj, false);
3879
3880 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3881 }
3882
3883 /* It should now be out of any other write domains, and we can update
3884 * the domain values for our changes.
3885 */
3886 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3887
3888 /* If we're writing through the CPU, then the GPU read domains will
3889 * need to be invalidated at next use.
3890 */
3891 if (write) {
3892 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3893 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3894 }
3895
3896 trace_i915_gem_object_change_domain(obj,
3897 old_read_domains,
3898 old_write_domain);
3899
3900 return 0;
3901}
3902
3903/* Throttle our rendering by waiting until the ring has completed our requests
3904 * emitted over 20 msec ago.
3905 *
3906 * Note that if we were to use the current jiffies each time around the loop,
3907 * we wouldn't escape the function with any frames outstanding if the time to
3908 * render a frame was over 20ms.
3909 *
3910 * This should get us reasonable parallelism between CPU and GPU but also
3911 * relatively low latency when blocking on a particular request to finish.
3912 */
3913static int
3914i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3915{
3916 struct drm_i915_private *dev_priv = dev->dev_private;
3917 struct drm_i915_file_private *file_priv = file->driver_priv;
3918 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3919 struct drm_i915_gem_request *request;
3920 struct intel_ring_buffer *ring = NULL;
3921 unsigned reset_counter;
3922 u32 seqno = 0;
3923 int ret;
3924
3925 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3926 if (ret)
3927 return ret;
3928
3929 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3930 if (ret)
3931 return ret;
3932
3933 spin_lock(&file_priv->mm.lock);
3934 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3935 if (time_after_eq(request->emitted_jiffies, recent_enough))
3936 break;
3937
3938 ring = request->ring;
3939 seqno = request->seqno;
3940 }
3941 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3942 spin_unlock(&file_priv->mm.lock);
3943
3944 if (seqno == 0)
3945 return 0;
3946
3947 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3948 if (ret == 0)
3949 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3950
3951 return ret;
3952}
3953
3954static bool
3955i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3956{
3957 struct drm_i915_gem_object *obj = vma->obj;
3958
3959 if (alignment &&
3960 vma->node.start & (alignment - 1))
3961 return true;
3962
3963 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3964 return true;
3965
3966 if (flags & PIN_OFFSET_BIAS &&
3967 vma->node.start < (flags & PIN_OFFSET_MASK))
3968 return true;
3969
3970 return false;
3971}
3972
3973int
3974i915_gem_object_pin(struct drm_i915_gem_object *obj,
3975 struct i915_address_space *vm,
3976 uint32_t alignment,
3977 uint64_t flags)
3978{
3979 struct i915_vma *vma;
3980 int ret;
3981
3982 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3983 return -EINVAL;
3984
3985 vma = i915_gem_obj_to_vma(obj, vm);
3986 if (vma) {
3987 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3988 return -EBUSY;
3989
3990 if (i915_vma_misplaced(vma, alignment, flags)) {
3991 WARN(vma->pin_count,
3992 "bo is already pinned with incorrect alignment:"
3993 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3994 " obj->map_and_fenceable=%d\n",
3995 i915_gem_obj_offset(obj, vm), alignment,
3996 !!(flags & PIN_MAPPABLE),
3997 obj->map_and_fenceable);
3998 ret = i915_vma_unbind(vma);
3999 if (ret)
4000 return ret;
4001
4002 vma = NULL;
4003 }
4004 }
4005
4006 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4007 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4008 if (IS_ERR(vma))
4009 return PTR_ERR(vma);
4010 }
4011
4012 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4013 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4014
4015 vma->pin_count++;
4016 if (flags & PIN_MAPPABLE)
4017 obj->pin_mappable |= true;
4018
4019 return 0;
4020}
4021
4022void
4023i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4024{
4025 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4026
4027 BUG_ON(!vma);
4028 BUG_ON(vma->pin_count == 0);
4029 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4030
4031 if (--vma->pin_count == 0)
4032 obj->pin_mappable = false;
4033}
4034
4035int
4036i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4037 struct drm_file *file)
4038{
4039 struct drm_i915_gem_pin *args = data;
4040 struct drm_i915_gem_object *obj;
4041 int ret;
4042
4043 if (INTEL_INFO(dev)->gen >= 6)
4044 return -ENODEV;
4045
4046 ret = i915_mutex_lock_interruptible(dev);
4047 if (ret)
4048 return ret;
4049
4050 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4051 if (&obj->base == NULL) {
4052 ret = -ENOENT;
4053 goto unlock;
4054 }
4055
4056 if (obj->madv != I915_MADV_WILLNEED) {
4057 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4058 ret = -EFAULT;
4059 goto out;
4060 }
4061
4062 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4063 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4064 args->handle);
4065 ret = -EINVAL;
4066 goto out;
4067 }
4068
4069 if (obj->user_pin_count == ULONG_MAX) {
4070 ret = -EBUSY;
4071 goto out;
4072 }
4073
4074 if (obj->user_pin_count == 0) {
4075 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4076 if (ret)
4077 goto out;
4078 }
4079
4080 obj->user_pin_count++;
4081 obj->pin_filp = file;
4082
4083 args->offset = i915_gem_obj_ggtt_offset(obj);
4084out:
4085 drm_gem_object_unreference(&obj->base);
4086unlock:
4087 mutex_unlock(&dev->struct_mutex);
4088 return ret;
4089}
4090
4091int
4092i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4093 struct drm_file *file)
4094{
4095 struct drm_i915_gem_pin *args = data;
4096 struct drm_i915_gem_object *obj;
4097 int ret;
4098
4099 ret = i915_mutex_lock_interruptible(dev);
4100 if (ret)
4101 return ret;
4102
4103 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4104 if (&obj->base == NULL) {
4105 ret = -ENOENT;
4106 goto unlock;
4107 }
4108
4109 if (obj->pin_filp != file) {
4110 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4111 args->handle);
4112 ret = -EINVAL;
4113 goto out;
4114 }
4115 obj->user_pin_count--;
4116 if (obj->user_pin_count == 0) {
4117 obj->pin_filp = NULL;
4118 i915_gem_object_ggtt_unpin(obj);
4119 }
4120
4121out:
4122 drm_gem_object_unreference(&obj->base);
4123unlock:
4124 mutex_unlock(&dev->struct_mutex);
4125 return ret;
4126}
4127
4128int
4129i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4130 struct drm_file *file)
4131{
4132 struct drm_i915_gem_busy *args = data;
4133 struct drm_i915_gem_object *obj;
4134 int ret;
4135
4136 ret = i915_mutex_lock_interruptible(dev);
4137 if (ret)
4138 return ret;
4139
4140 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4141 if (&obj->base == NULL) {
4142 ret = -ENOENT;
4143 goto unlock;
4144 }
4145
4146 /* Count all active objects as busy, even if they are currently not used
4147 * by the gpu. Users of this interface expect objects to eventually
4148 * become non-busy without any further actions, therefore emit any
4149 * necessary flushes here.
4150 */
4151 ret = i915_gem_object_flush_active(obj);
4152
4153 args->busy = obj->active;
4154 if (obj->ring) {
4155 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4156 args->busy |= intel_ring_flag(obj->ring) << 16;
4157 }
4158
4159 drm_gem_object_unreference(&obj->base);
4160unlock:
4161 mutex_unlock(&dev->struct_mutex);
4162 return ret;
4163}
4164
4165int
4166i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4167 struct drm_file *file_priv)
4168{
4169 return i915_gem_ring_throttle(dev, file_priv);
4170}
4171
4172int
4173i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4174 struct drm_file *file_priv)
4175{
4176 struct drm_i915_gem_madvise *args = data;
4177 struct drm_i915_gem_object *obj;
4178 int ret;
4179
4180 switch (args->madv) {
4181 case I915_MADV_DONTNEED:
4182 case I915_MADV_WILLNEED:
4183 break;
4184 default:
4185 return -EINVAL;
4186 }
4187
4188 ret = i915_mutex_lock_interruptible(dev);
4189 if (ret)
4190 return ret;
4191
4192 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4193 if (&obj->base == NULL) {
4194 ret = -ENOENT;
4195 goto unlock;
4196 }
4197
4198 if (i915_gem_obj_is_pinned(obj)) {
4199 ret = -EINVAL;
4200 goto out;
4201 }
4202
4203 if (obj->madv != __I915_MADV_PURGED)
4204 obj->madv = args->madv;
4205
4206 /* if the object is no longer attached, discard its backing storage */
4207 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4208 i915_gem_object_truncate(obj);
4209
4210 args->retained = obj->madv != __I915_MADV_PURGED;
4211
4212out:
4213 drm_gem_object_unreference(&obj->base);
4214unlock:
4215 mutex_unlock(&dev->struct_mutex);
4216 return ret;
4217}
4218
4219void i915_gem_object_init(struct drm_i915_gem_object *obj,
4220 const struct drm_i915_gem_object_ops *ops)
4221{
4222 INIT_LIST_HEAD(&obj->global_list);
4223 INIT_LIST_HEAD(&obj->ring_list);
4224 INIT_LIST_HEAD(&obj->obj_exec_link);
4225 INIT_LIST_HEAD(&obj->vma_list);
4226
4227 obj->ops = ops;
4228
4229 obj->fence_reg = I915_FENCE_REG_NONE;
4230 obj->madv = I915_MADV_WILLNEED;
4231 /* Avoid an unnecessary call to unbind on the first bind. */
4232 obj->map_and_fenceable = true;
4233
4234 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4235}
4236
4237static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4238 .get_pages = i915_gem_object_get_pages_gtt,
4239 .put_pages = i915_gem_object_put_pages_gtt,
4240};
4241
4242struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4243 size_t size)
4244{
4245 struct drm_i915_gem_object *obj;
4246 struct address_space *mapping;
4247 gfp_t mask;
4248
4249 obj = i915_gem_object_alloc(dev);
4250 if (obj == NULL)
4251 return NULL;
4252
4253 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4254 i915_gem_object_free(obj);
4255 return NULL;
4256 }
4257
4258 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4259 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4260 /* 965gm cannot relocate objects above 4GiB. */
4261 mask &= ~__GFP_HIGHMEM;
4262 mask |= __GFP_DMA32;
4263 }
4264
4265 mapping = file_inode(obj->base.filp)->i_mapping;
4266 mapping_set_gfp_mask(mapping, mask);
4267
4268 i915_gem_object_init(obj, &i915_gem_object_ops);
4269
4270 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4271 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4272
4273 if (HAS_LLC(dev)) {
4274 /* On some devices, we can have the GPU use the LLC (the CPU
4275 * cache) for about a 10% performance improvement
4276 * compared to uncached. Graphics requests other than
4277 * display scanout are coherent with the CPU in
4278 * accessing this cache. This means in this mode we
4279 * don't need to clflush on the CPU side, and on the
4280 * GPU side we only need to flush internal caches to
4281 * get data visible to the CPU.
4282 *
4283 * However, we maintain the display planes as UC, and so
4284 * need to rebind when first used as such.
4285 */
4286 obj->cache_level = I915_CACHE_LLC;
4287 } else
4288 obj->cache_level = I915_CACHE_NONE;
4289
4290 trace_i915_gem_object_create(obj);
4291
4292 return obj;
4293}
4294
4295void i915_gem_free_object(struct drm_gem_object *gem_obj)
4296{
4297 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4298 struct drm_device *dev = obj->base.dev;
4299 struct drm_i915_private *dev_priv = dev->dev_private;
4300 struct i915_vma *vma, *next;
4301
4302 intel_runtime_pm_get(dev_priv);
4303
4304 trace_i915_gem_object_destroy(obj);
4305
4306 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4307 int ret;
4308
4309 vma->pin_count = 0;
4310 ret = i915_vma_unbind(vma);
4311 if (WARN_ON(ret == -ERESTARTSYS)) {
4312 bool was_interruptible;
4313
4314 was_interruptible = dev_priv->mm.interruptible;
4315 dev_priv->mm.interruptible = false;
4316
4317 WARN_ON(i915_vma_unbind(vma));
4318
4319 dev_priv->mm.interruptible = was_interruptible;
4320 }
4321 }
4322
4323 i915_gem_object_detach_phys(obj);
4324
4325 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4326 * before progressing. */
4327 if (obj->stolen)
4328 i915_gem_object_unpin_pages(obj);
4329
4330 if (WARN_ON(obj->pages_pin_count))
4331 obj->pages_pin_count = 0;
4332 i915_gem_object_put_pages(obj);
4333 i915_gem_object_free_mmap_offset(obj);
4334 i915_gem_object_release_stolen(obj);
4335
4336 BUG_ON(obj->pages);
4337
4338 if (obj->base.import_attach)
4339 drm_prime_gem_destroy(&obj->base, NULL);
4340
4341 drm_gem_object_release(&obj->base);
4342 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4343
4344 kfree(obj->bit_17);
4345 i915_gem_object_free(obj);
4346
4347 intel_runtime_pm_put(dev_priv);
4348}
4349
4350struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4351 struct i915_address_space *vm)
4352{
4353 struct i915_vma *vma;
4354 list_for_each_entry(vma, &obj->vma_list, vma_link)
4355 if (vma->vm == vm)
4356 return vma;
4357
4358 return NULL;
4359}
4360
4361void i915_gem_vma_destroy(struct i915_vma *vma)
4362{
4363 WARN_ON(vma->node.allocated);
4364
4365 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4366 if (!list_empty(&vma->exec_list))
4367 return;
4368
4369 list_del(&vma->vma_link);
4370
4371 kfree(vma);
4372}
4373
4374int
4375i915_gem_suspend(struct drm_device *dev)
4376{
4377 struct drm_i915_private *dev_priv = dev->dev_private;
4378 int ret = 0;
4379
4380 mutex_lock(&dev->struct_mutex);
4381 if (dev_priv->ums.mm_suspended)
4382 goto err;
4383
4384 ret = i915_gpu_idle(dev);
4385 if (ret)
4386 goto err;
4387
4388 i915_gem_retire_requests(dev);
4389
4390 /* Under UMS, be paranoid and evict. */
4391 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4392 i915_gem_evict_everything(dev);
4393
4394 i915_kernel_lost_context(dev);
4395 i915_gem_cleanup_ringbuffer(dev);
4396
4397 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4398 * We need to replace this with a semaphore, or something.
4399 * And not confound ums.mm_suspended!
4400 */
4401 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4402 DRIVER_MODESET);
4403 mutex_unlock(&dev->struct_mutex);
4404
4405 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4406 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4407 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4408
4409 return 0;
4410
4411err:
4412 mutex_unlock(&dev->struct_mutex);
4413 return ret;
4414}
4415
4416int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4417{
4418 struct drm_device *dev = ring->dev;
4419 struct drm_i915_private *dev_priv = dev->dev_private;
4420 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4421 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4422 int i, ret;
4423
4424 if (!HAS_L3_DPF(dev) || !remap_info)
4425 return 0;
4426
4427 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4428 if (ret)
4429 return ret;
4430
4431 /*
4432 * Note: We do not worry about the concurrent register cacheline hang
4433 * here because no other code should access these registers other than
4434 * at initialization time.
4435 */
4436 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4437 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4438 intel_ring_emit(ring, reg_base + i);
4439 intel_ring_emit(ring, remap_info[i/4]);
4440 }
4441
4442 intel_ring_advance(ring);
4443
4444 return ret;
4445}
4446
4447void i915_gem_init_swizzling(struct drm_device *dev)
4448{
4449 struct drm_i915_private *dev_priv = dev->dev_private;
4450
4451 if (INTEL_INFO(dev)->gen < 5 ||
4452 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4453 return;
4454
4455 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4456 DISP_TILE_SURFACE_SWIZZLING);
4457
4458 if (IS_GEN5(dev))
4459 return;
4460
4461 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4462 if (IS_GEN6(dev))
4463 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4464 else if (IS_GEN7(dev))
4465 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4466 else if (IS_GEN8(dev))
4467 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4468 else
4469 BUG();
4470}
4471
4472static bool
4473intel_enable_blt(struct drm_device *dev)
4474{
4475 if (!HAS_BLT(dev))
4476 return false;
4477
4478 /* The blitter was dysfunctional on early prototypes */
4479 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4480 DRM_INFO("BLT not supported on this pre-production hardware;"
4481 " graphics performance will be degraded.\n");
4482 return false;
4483 }
4484
4485 return true;
4486}
4487
4488static int i915_gem_init_rings(struct drm_device *dev)
4489{
4490 struct drm_i915_private *dev_priv = dev->dev_private;
4491 int ret;
4492
4493 ret = intel_init_render_ring_buffer(dev);
4494 if (ret)
4495 return ret;
4496
4497 if (HAS_BSD(dev)) {
4498 ret = intel_init_bsd_ring_buffer(dev);
4499 if (ret)
4500 goto cleanup_render_ring;
4501 }
4502
4503 if (intel_enable_blt(dev)) {
4504 ret = intel_init_blt_ring_buffer(dev);
4505 if (ret)
4506 goto cleanup_bsd_ring;
4507 }
4508
4509 if (HAS_VEBOX(dev)) {
4510 ret = intel_init_vebox_ring_buffer(dev);
4511 if (ret)
4512 goto cleanup_blt_ring;
4513 }
4514
4515
4516 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4517 if (ret)
4518 goto cleanup_vebox_ring;
4519
4520 return 0;
4521
4522cleanup_vebox_ring:
4523 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4524cleanup_blt_ring:
4525 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4526cleanup_bsd_ring:
4527 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4528cleanup_render_ring:
4529 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4530
4531 return ret;
4532}
4533
4534int
4535i915_gem_init_hw(struct drm_device *dev)
4536{
4537 struct drm_i915_private *dev_priv = dev->dev_private;
4538 int ret, i;
4539
4540 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4541 return -EIO;
4542
4543 if (dev_priv->ellc_size)
4544 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4545
4546 if (IS_HASWELL(dev))
4547 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4548 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4549
4550 if (HAS_PCH_NOP(dev)) {
4551 if (IS_IVYBRIDGE(dev)) {
4552 u32 temp = I915_READ(GEN7_MSG_CTL);
4553 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4554 I915_WRITE(GEN7_MSG_CTL, temp);
4555 } else if (INTEL_INFO(dev)->gen >= 7) {
4556 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4557 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4558 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4559 }
4560 }
4561
4562 i915_gem_init_swizzling(dev);
4563
4564 ret = i915_gem_init_rings(dev);
4565 if (ret)
4566 return ret;
4567
4568 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4569 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4570
4571 /*
4572 * XXX: Contexts should only be initialized once. Doing a switch to the
4573 * default context switch however is something we'd like to do after
4574 * reset or thaw (the latter may not actually be necessary for HW, but
4575 * goes with our code better). Context switching requires rings (for
4576 * the do_switch), but before enabling PPGTT. So don't move this.
4577 */
4578 ret = i915_gem_context_enable(dev_priv);
4579 if (ret) {
4580 DRM_ERROR("Context enable failed %d\n", ret);
4581 goto err_out;
4582 }
4583
4584 return 0;
4585
4586err_out:
4587 i915_gem_cleanup_ringbuffer(dev);
4588 return ret;
4589}
4590
4591int i915_gem_init(struct drm_device *dev)
4592{
4593 struct drm_i915_private *dev_priv = dev->dev_private;
4594 int ret;
4595
4596 mutex_lock(&dev->struct_mutex);
4597
4598 if (IS_VALLEYVIEW(dev)) {
4599 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4600 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4601 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4602 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4603 }
4604
4605 i915_gem_init_global_gtt(dev);
4606
4607 ret = i915_gem_context_init(dev);
4608 if (ret) {
4609 mutex_unlock(&dev->struct_mutex);
4610 return ret;
4611 }
4612
4613 ret = i915_gem_init_hw(dev);
4614 mutex_unlock(&dev->struct_mutex);
4615 if (ret) {
4616 WARN_ON(dev_priv->mm.aliasing_ppgtt);
4617 i915_gem_context_fini(dev);
4618 drm_mm_takedown(&dev_priv->gtt.base.mm);
4619 return ret;
4620 }
4621
4622 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4623 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4624 dev_priv->dri1.allow_batchbuffer = 1;
4625 return 0;
4626}
4627
4628void
4629i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4630{
4631 struct drm_i915_private *dev_priv = dev->dev_private;
4632 struct intel_ring_buffer *ring;
4633 int i;
4634
4635 for_each_ring(ring, dev_priv, i)
4636 intel_cleanup_ring_buffer(ring);
4637}
4638
4639int
4640i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4641 struct drm_file *file_priv)
4642{
4643 struct drm_i915_private *dev_priv = dev->dev_private;
4644 int ret;
4645
4646 if (drm_core_check_feature(dev, DRIVER_MODESET))
4647 return 0;
4648
4649 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4650 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4651 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4652 }
4653
4654 mutex_lock(&dev->struct_mutex);
4655 dev_priv->ums.mm_suspended = 0;
4656
4657 ret = i915_gem_init_hw(dev);
4658 if (ret != 0) {
4659 mutex_unlock(&dev->struct_mutex);
4660 return ret;
4661 }
4662
4663 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4664 mutex_unlock(&dev->struct_mutex);
4665
4666 ret = drm_irq_install(dev);
4667 if (ret)
4668 goto cleanup_ringbuffer;
4669
4670 return 0;
4671
4672cleanup_ringbuffer:
4673 mutex_lock(&dev->struct_mutex);
4674 i915_gem_cleanup_ringbuffer(dev);
4675 dev_priv->ums.mm_suspended = 1;
4676 mutex_unlock(&dev->struct_mutex);
4677
4678 return ret;
4679}
4680
4681int
4682i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4683 struct drm_file *file_priv)
4684{
4685 if (drm_core_check_feature(dev, DRIVER_MODESET))
4686 return 0;
4687
4688 drm_irq_uninstall(dev);
4689
4690 return i915_gem_suspend(dev);
4691}
4692
4693void
4694i915_gem_lastclose(struct drm_device *dev)
4695{
4696 int ret;
4697
4698 if (drm_core_check_feature(dev, DRIVER_MODESET))
4699 return;
4700
4701 ret = i915_gem_suspend(dev);
4702 if (ret)
4703 DRM_ERROR("failed to idle hardware: %d\n", ret);
4704}
4705
4706static void
4707init_ring_lists(struct intel_ring_buffer *ring)
4708{
4709 INIT_LIST_HEAD(&ring->active_list);
4710 INIT_LIST_HEAD(&ring->request_list);
4711}
4712
4713void i915_init_vm(struct drm_i915_private *dev_priv,
4714 struct i915_address_space *vm)
4715{
4716 if (!i915_is_ggtt(vm))
4717 drm_mm_init(&vm->mm, vm->start, vm->total);
4718 vm->dev = dev_priv->dev;
4719 INIT_LIST_HEAD(&vm->active_list);
4720 INIT_LIST_HEAD(&vm->inactive_list);
4721 INIT_LIST_HEAD(&vm->global_link);
4722 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4723}
4724
4725void
4726i915_gem_load(struct drm_device *dev)
4727{
4728 struct drm_i915_private *dev_priv = dev->dev_private;
4729 int i;
4730
4731 dev_priv->slab =
4732 kmem_cache_create("i915_gem_object",
4733 sizeof(struct drm_i915_gem_object), 0,
4734 SLAB_HWCACHE_ALIGN,
4735 NULL);
4736
4737 INIT_LIST_HEAD(&dev_priv->vm_list);
4738 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4739
4740 INIT_LIST_HEAD(&dev_priv->context_list);
4741 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4742 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4743 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4744 for (i = 0; i < I915_NUM_RINGS; i++)
4745 init_ring_lists(&dev_priv->ring[i]);
4746 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4747 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4748 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4749 i915_gem_retire_work_handler);
4750 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4751 i915_gem_idle_work_handler);
4752 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4753
4754 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4755 if (IS_GEN3(dev)) {
4756 I915_WRITE(MI_ARB_STATE,
4757 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4758 }
4759
4760 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4761
4762 /* Old X drivers will take 0-2 for front, back, depth buffers */
4763 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4764 dev_priv->fence_reg_start = 3;
4765
4766 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4767 dev_priv->num_fence_regs = 32;
4768 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4769 dev_priv->num_fence_regs = 16;
4770 else
4771 dev_priv->num_fence_regs = 8;
4772
4773 /* Initialize fence registers to zero */
4774 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4775 i915_gem_restore_fences(dev);
4776
4777 i915_gem_detect_bit_6_swizzle(dev);
4778 init_waitqueue_head(&dev_priv->pending_flip_queue);
4779
4780 dev_priv->mm.interruptible = true;
4781
4782 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4783 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4784 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4785 register_shrinker(&dev_priv->mm.inactive_shrinker);
4786}
4787
4788void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4789{
4790 struct drm_i915_file_private *file_priv = file->driver_priv;
4791
4792 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4793
4794 /* Clean up our request list when the client is going away, so that
4795 * later retire_requests won't dereference our soon-to-be-gone
4796 * file_priv.
4797 */
4798 spin_lock(&file_priv->mm.lock);
4799 while (!list_empty(&file_priv->mm.request_list)) {
4800 struct drm_i915_gem_request *request;
4801
4802 request = list_first_entry(&file_priv->mm.request_list,
4803 struct drm_i915_gem_request,
4804 client_list);
4805 list_del(&request->client_list);
4806 request->file_priv = NULL;
4807 }
4808 spin_unlock(&file_priv->mm.lock);
4809}
4810
4811static void
4812i915_gem_file_idle_work_handler(struct work_struct *work)
4813{
4814 struct drm_i915_file_private *file_priv =
4815 container_of(work, typeof(*file_priv), mm.idle_work.work);
4816
4817 atomic_set(&file_priv->rps_wait_boost, false);
4818}
4819
4820int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4821{
4822 struct drm_i915_file_private *file_priv;
4823 int ret;
4824
4825 DRM_DEBUG_DRIVER("\n");
4826
4827 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4828 if (!file_priv)
4829 return -ENOMEM;
4830
4831 file->driver_priv = file_priv;
4832 file_priv->dev_priv = dev->dev_private;
4833 file_priv->file = file;
4834
4835 spin_lock_init(&file_priv->mm.lock);
4836 INIT_LIST_HEAD(&file_priv->mm.request_list);
4837 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4838 i915_gem_file_idle_work_handler);
4839
4840 ret = i915_gem_context_open(dev, file);
4841 if (ret)
4842 kfree(file_priv);
4843
4844 return ret;
4845}
4846
4847static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4848{
4849 if (!mutex_is_locked(mutex))
4850 return false;
4851
4852#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4853 return mutex->owner == task;
4854#else
4855 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4856 return false;
4857#endif
4858}
4859
4860static unsigned long
4861i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4862{
4863 struct drm_i915_private *dev_priv =
4864 container_of(shrinker,
4865 struct drm_i915_private,
4866 mm.inactive_shrinker);
4867 struct drm_device *dev = dev_priv->dev;
4868 struct drm_i915_gem_object *obj;
4869 bool unlock = true;
4870 unsigned long count;
4871
4872 if (!mutex_trylock(&dev->struct_mutex)) {
4873 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4874 return 0;
4875
4876 if (dev_priv->mm.shrinker_no_lock_stealing)
4877 return 0;
4878
4879 unlock = false;
4880 }
4881
4882 count = 0;
4883 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4884 if (obj->pages_pin_count == 0)
4885 count += obj->base.size >> PAGE_SHIFT;
4886
4887 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4888 if (obj->active)
4889 continue;
4890
4891 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4892 count += obj->base.size >> PAGE_SHIFT;
4893 }
4894
4895 if (unlock)
4896 mutex_unlock(&dev->struct_mutex);
4897
4898 return count;
4899}
4900
4901/* All the new VM stuff */
4902unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4903 struct i915_address_space *vm)
4904{
4905 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4906 struct i915_vma *vma;
4907
4908 if (!dev_priv->mm.aliasing_ppgtt ||
4909 vm == &dev_priv->mm.aliasing_ppgtt->base)
4910 vm = &dev_priv->gtt.base;
4911
4912 BUG_ON(list_empty(&o->vma_list));
4913 list_for_each_entry(vma, &o->vma_list, vma_link) {
4914 if (vma->vm == vm)
4915 return vma->node.start;
4916
4917 }
4918 return -1;
4919}
4920
4921bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4922 struct i915_address_space *vm)
4923{
4924 struct i915_vma *vma;
4925
4926 list_for_each_entry(vma, &o->vma_list, vma_link)
4927 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4928 return true;
4929
4930 return false;
4931}
4932
4933bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4934{
4935 struct i915_vma *vma;
4936
4937 list_for_each_entry(vma, &o->vma_list, vma_link)
4938 if (drm_mm_node_allocated(&vma->node))
4939 return true;
4940
4941 return false;
4942}
4943
4944unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4945 struct i915_address_space *vm)
4946{
4947 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4948 struct i915_vma *vma;
4949
4950 if (!dev_priv->mm.aliasing_ppgtt ||
4951 vm == &dev_priv->mm.aliasing_ppgtt->base)
4952 vm = &dev_priv->gtt.base;
4953
4954 BUG_ON(list_empty(&o->vma_list));
4955
4956 list_for_each_entry(vma, &o->vma_list, vma_link)
4957 if (vma->vm == vm)
4958 return vma->node.size;
4959
4960 return 0;
4961}
4962
4963static unsigned long
4964i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
4965{
4966 struct drm_i915_private *dev_priv =
4967 container_of(shrinker,
4968 struct drm_i915_private,
4969 mm.inactive_shrinker);
4970 struct drm_device *dev = dev_priv->dev;
4971 unsigned long freed;
4972 bool unlock = true;
4973
4974 if (!mutex_trylock(&dev->struct_mutex)) {
4975 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4976 return SHRINK_STOP;
4977
4978 if (dev_priv->mm.shrinker_no_lock_stealing)
4979 return SHRINK_STOP;
4980
4981 unlock = false;
4982 }
4983
4984 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
4985 if (freed < sc->nr_to_scan)
4986 freed += __i915_gem_shrink(dev_priv,
4987 sc->nr_to_scan - freed,
4988 false);
4989 if (freed < sc->nr_to_scan)
4990 freed += i915_gem_shrink_all(dev_priv);
4991
4992 if (unlock)
4993 mutex_unlock(&dev->struct_mutex);
4994
4995 return freed;
4996}
4997
4998struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
4999{
5000 struct i915_vma *vma;
5001
5002 if (WARN_ON(list_empty(&obj->vma_list)))
5003 return NULL;
5004
5005 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5006 if (vma->vm != obj_to_ggtt(obj))
5007 return NULL;
5008
5009 return vma;
5010}