Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1/*
  2 * (C) COPYRIGHT 2016 ARM Limited. All rights reserved.
  3 * Author: Liviu Dudau <Liviu.Dudau@arm.com>
  4 *
  5 * This program is free software and is provided to you under the terms of the
  6 * GNU General Public License version 2 as published by the Free Software
  7 * Foundation, and any use by you of this program is subject to the terms
  8 * of such GNU licence.
  9 *
 10 * ARM Mali DP500/DP550/DP650 driver (crtc operations)
 11 */
 12
 13#include <drm/drmP.h>
 14#include <drm/drm_atomic.h>
 15#include <drm/drm_atomic_helper.h>
 16#include <drm/drm_crtc.h>
 17#include <drm/drm_crtc_helper.h>
 18#include <linux/clk.h>
 19#include <linux/pm_runtime.h>
 20#include <video/videomode.h>
 21
 22#include "malidp_drv.h"
 23#include "malidp_hw.h"
 24
 25static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc,
 26						   const struct drm_display_mode *mode)
 27{
 28	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
 29	struct malidp_hw_device *hwdev = malidp->dev;
 30
 31	/*
 32	 * check that the hardware can drive the required clock rate,
 33	 * but skip the check if the clock is meant to be disabled (req_rate = 0)
 34	 */
 35	long rate, req_rate = mode->crtc_clock * 1000;
 36
 37	if (req_rate) {
 38		rate = clk_round_rate(hwdev->pxlclk, req_rate);
 39		if (rate != req_rate) {
 40			DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n",
 41					 req_rate);
 42			return MODE_NOCLOCK;
 43		}
 44	}
 45
 46	return MODE_OK;
 47}
 48
 49static void malidp_crtc_atomic_enable(struct drm_crtc *crtc,
 50				      struct drm_crtc_state *old_state)
 51{
 52	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
 53	struct malidp_hw_device *hwdev = malidp->dev;
 54	struct videomode vm;
 55	int err = pm_runtime_get_sync(crtc->dev->dev);
 56
 57	if (err < 0) {
 58		DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err);
 59		return;
 60	}
 61
 62	drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm);
 63	clk_prepare_enable(hwdev->pxlclk);
 64
 65	/* We rely on firmware to set mclk to a sensible level. */
 66	clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000);
 67
 68	hwdev->hw->modeset(hwdev, &vm);
 69	hwdev->hw->leave_config_mode(hwdev);
 70	drm_crtc_vblank_on(crtc);
 71}
 72
 73static void malidp_crtc_atomic_disable(struct drm_crtc *crtc,
 74				       struct drm_crtc_state *old_state)
 75{
 76	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
 77	struct malidp_hw_device *hwdev = malidp->dev;
 78	int err;
 79
 80	/* always disable planes on the CRTC that is being turned off */
 81	drm_atomic_helper_disable_planes_on_crtc(old_state, false);
 82
 83	drm_crtc_vblank_off(crtc);
 84	hwdev->hw->enter_config_mode(hwdev);
 85
 86	clk_disable_unprepare(hwdev->pxlclk);
 87
 88	err = pm_runtime_put(crtc->dev->dev);
 89	if (err < 0) {
 90		DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err);
 91	}
 92}
 93
 94static const struct gamma_curve_segment {
 95	u16 start;
 96	u16 end;
 97} segments[MALIDP_COEFFTAB_NUM_COEFFS] = {
 98	/* sector 0 */
 99	{    0,    0 }, {    1,    1 }, {    2,    2 }, {    3,    3 },
100	{    4,    4 }, {    5,    5 }, {    6,    6 }, {    7,    7 },
101	{    8,    8 }, {    9,    9 }, {   10,   10 }, {   11,   11 },
102	{   12,   12 }, {   13,   13 }, {   14,   14 }, {   15,   15 },
103	/* sector 1 */
104	{   16,   19 }, {   20,   23 }, {   24,   27 }, {   28,   31 },
105	/* sector 2 */
106	{   32,   39 }, {   40,   47 }, {   48,   55 }, {   56,   63 },
107	/* sector 3 */
108	{   64,   79 }, {   80,   95 }, {   96,  111 }, {  112,  127 },
109	/* sector 4 */
110	{  128,  159 }, {  160,  191 }, {  192,  223 }, {  224,  255 },
111	/* sector 5 */
112	{  256,  319 }, {  320,  383 }, {  384,  447 }, {  448,  511 },
113	/* sector 6 */
114	{  512,  639 }, {  640,  767 }, {  768,  895 }, {  896, 1023 },
115	{ 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 },
116	{ 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 },
117	{ 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 },
118	{ 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 },
119	{ 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 },
120	{ 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 },
121};
122
123#define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff)))
124
125static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob,
126					u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS])
127{
128	struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data;
129	int i;
130
131	for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) {
132		u32 a, b, delta_in, out_start, out_end;
133
134		delta_in = segments[i].end - segments[i].start;
135		/* DP has 12-bit internal precision for its LUTs. */
136		out_start = drm_color_lut_extract(lut[segments[i].start].green,
137						  12);
138		out_end = drm_color_lut_extract(lut[segments[i].end].green, 12);
139		a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in;
140		b = out_start;
141		coeffs[i] = DE_COEFTAB_DATA(a, b);
142	}
143}
144
145/*
146 * Check if there is a new gamma LUT and if it is of an acceptable size. Also,
147 * reject any LUTs that use distinct red, green, and blue curves.
148 */
149static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc,
150					  struct drm_crtc_state *state)
151{
152	struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
153	struct drm_color_lut *lut;
154	size_t lut_size;
155	int i;
156
157	if (!state->color_mgmt_changed || !state->gamma_lut)
158		return 0;
159
160	if (crtc->state->gamma_lut &&
161	    (crtc->state->gamma_lut->base.id == state->gamma_lut->base.id))
162		return 0;
163
164	if (state->gamma_lut->length % sizeof(struct drm_color_lut))
165		return -EINVAL;
166
167	lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut);
168	if (lut_size != MALIDP_GAMMA_LUT_SIZE)
169		return -EINVAL;
170
171	lut = (struct drm_color_lut *)state->gamma_lut->data;
172	for (i = 0; i < lut_size; ++i)
173		if (!((lut[i].red == lut[i].green) &&
174		      (lut[i].red == lut[i].blue)))
175			return -EINVAL;
176
177	if (!state->mode_changed) {
178		int ret;
179
180		state->mode_changed = true;
181		/*
182		 * Kerneldoc for drm_atomic_helper_check_modeset mandates that
183		 * it be invoked when the driver sets ->mode_changed. Since
184		 * changing the gamma LUT doesn't depend on any external
185		 * resources, it is safe to call it only once.
186		 */
187		ret = drm_atomic_helper_check_modeset(crtc->dev, state->state);
188		if (ret)
189			return ret;
190	}
191
192	malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs);
193	return 0;
194}
195
196/*
197 * Check if there is a new CTM and if it contains valid input. Valid here means
198 * that the number is inside the representable range for a Q3.12 number,
199 * excluding truncating the fractional part of the input data.
200 *
201 * The COLORADJ registers can be changed atomically.
202 */
203static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc,
204					struct drm_crtc_state *state)
205{
206	struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
207	struct drm_color_ctm *ctm;
208	int i;
209
210	if (!state->color_mgmt_changed)
211		return 0;
212
213	if (!state->ctm)
214		return 0;
215
216	if (crtc->state->ctm && (crtc->state->ctm->base.id ==
217				 state->ctm->base.id))
218		return 0;
219
220	/*
221	 * The size of the ctm is checked in
222	 * drm_atomic_replace_property_blob_from_id.
223	 */
224	ctm = (struct drm_color_ctm *)state->ctm->data;
225	for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) {
226		/* Convert from S31.32 to Q3.12. */
227		s64 val = ctm->matrix[i];
228		u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) &
229			  GENMASK_ULL(14, 0);
230
231		/*
232		 * Convert to 2s complement and check the destination's top bit
233		 * for overflow. NB: Can't check before converting or it'd
234		 * incorrectly reject the case:
235		 * sign == 1
236		 * mag == 0x2000
237		 */
238		if (val & BIT_ULL(63))
239			mag = ~mag + 1;
240		if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14)))
241			return -EINVAL;
242		mc->coloradj_coeffs[i] = mag;
243	}
244
245	return 0;
246}
247
248static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc,
249					    struct drm_crtc_state *state)
250{
251	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
252	struct malidp_hw_device *hwdev = malidp->dev;
253	struct malidp_crtc_state *cs = to_malidp_crtc_state(state);
254	struct malidp_se_config *s = &cs->scaler_config;
255	struct drm_plane *plane;
256	struct videomode vm;
257	const struct drm_plane_state *pstate;
258	u32 h_upscale_factor = 0; /* U16.16 */
259	u32 v_upscale_factor = 0; /* U16.16 */
260	u8 scaling = cs->scaled_planes_mask;
261	int ret;
262
263	if (!scaling) {
264		s->scale_enable = false;
265		goto mclk_calc;
266	}
267
268	/* The scaling engine can only handle one plane at a time. */
269	if (scaling & (scaling - 1))
270		return -EINVAL;
271
272	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
273		struct malidp_plane *mp = to_malidp_plane(plane);
274		u32 phase;
275
276		if (!(mp->layer->id & scaling))
277			continue;
278
279		/*
280		 * Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h]
281		 * to get the U16.16 result.
282		 */
283		h_upscale_factor = div_u64((u64)pstate->crtc_w << 32,
284					   pstate->src_w);
285		v_upscale_factor = div_u64((u64)pstate->crtc_h << 32,
286					   pstate->src_h);
287
288		s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 ||
289				      (v_upscale_factor >> 16) >= 2);
290
291		if (pstate->rotation & MALIDP_ROTATED_MASK) {
292			s->input_w = pstate->src_h >> 16;
293			s->input_h = pstate->src_w >> 16;
294		} else {
295			s->input_w = pstate->src_w >> 16;
296			s->input_h = pstate->src_h >> 16;
297		}
298
299		s->output_w = pstate->crtc_w;
300		s->output_h = pstate->crtc_h;
301
302#define SE_N_PHASE 4
303#define SE_SHIFT_N_PHASE 12
304		/* Calculate initial_phase and delta_phase for horizontal. */
305		phase = s->input_w;
306		s->h_init_phase =
307				((phase << SE_N_PHASE) / s->output_w + 1) / 2;
308
309		phase = s->input_w;
310		phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
311		s->h_delta_phase = phase / s->output_w;
312
313		/* Same for vertical. */
314		phase = s->input_h;
315		s->v_init_phase =
316				((phase << SE_N_PHASE) / s->output_h + 1) / 2;
317
318		phase = s->input_h;
319		phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
320		s->v_delta_phase = phase / s->output_h;
321#undef SE_N_PHASE
322#undef SE_SHIFT_N_PHASE
323		s->plane_src_id = mp->layer->id;
324	}
325
326	s->scale_enable = true;
327	s->hcoeff = malidp_se_select_coeffs(h_upscale_factor);
328	s->vcoeff = malidp_se_select_coeffs(v_upscale_factor);
329
330mclk_calc:
331	drm_display_mode_to_videomode(&state->adjusted_mode, &vm);
332	ret = hwdev->hw->se_calc_mclk(hwdev, s, &vm);
333	if (ret < 0)
334		return -EINVAL;
335	return 0;
336}
337
338static int malidp_crtc_atomic_check(struct drm_crtc *crtc,
339				    struct drm_crtc_state *state)
340{
341	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
342	struct malidp_hw_device *hwdev = malidp->dev;
343	struct drm_plane *plane;
344	const struct drm_plane_state *pstate;
345	u32 rot_mem_free, rot_mem_usable;
346	int rotated_planes = 0;
347	int ret;
348
349	/*
350	 * check if there is enough rotation memory available for planes
351	 * that need 90° and 270° rotation. Each plane has set its required
352	 * memory size in the ->plane_check() callback, here we only make
353	 * sure that the sums are less that the total usable memory.
354	 *
355	 * The rotation memory allocation algorithm (for each plane):
356	 *  a. If no more rotated planes exist, all remaining rotate
357	 *     memory in the bank is available for use by the plane.
358	 *  b. If other rotated planes exist, and plane's layer ID is
359	 *     DE_VIDEO1, it can use all the memory from first bank if
360	 *     secondary rotation memory bank is available, otherwise it can
361	 *     use up to half the bank's memory.
362	 *  c. If other rotated planes exist, and plane's layer ID is not
363	 *     DE_VIDEO1, it can use half of the available memory
364	 *
365	 * Note: this algorithm assumes that the order in which the planes are
366	 * checked always has DE_VIDEO1 plane first in the list if it is
367	 * rotated. Because that is how we create the planes in the first
368	 * place, under current DRM version things work, but if ever the order
369	 * in which drm_atomic_crtc_state_for_each_plane() iterates over planes
370	 * changes, we need to pre-sort the planes before validation.
371	 */
372
373	/* first count the number of rotated planes */
374	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
375		if (pstate->rotation & MALIDP_ROTATED_MASK)
376			rotated_planes++;
377	}
378
379	rot_mem_free = hwdev->rotation_memory[0];
380	/*
381	 * if we have more than 1 plane using rotation memory, use the second
382	 * block of rotation memory as well
383	 */
384	if (rotated_planes > 1)
385		rot_mem_free += hwdev->rotation_memory[1];
386
387	/* now validate the rotation memory requirements */
388	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
389		struct malidp_plane *mp = to_malidp_plane(plane);
390		struct malidp_plane_state *ms = to_malidp_plane_state(pstate);
391
392		if (pstate->rotation & MALIDP_ROTATED_MASK) {
393			/* process current plane */
394			rotated_planes--;
395
396			if (!rotated_planes) {
397				/* no more rotated planes, we can use what's left */
398				rot_mem_usable = rot_mem_free;
399			} else {
400				if ((mp->layer->id != DE_VIDEO1) ||
401				    (hwdev->rotation_memory[1] == 0))
402					rot_mem_usable = rot_mem_free / 2;
403				else
404					rot_mem_usable = hwdev->rotation_memory[0];
405			}
406
407			rot_mem_free -= rot_mem_usable;
408
409			if (ms->rotmem_size > rot_mem_usable)
410				return -EINVAL;
411		}
412	}
413
414	ret = malidp_crtc_atomic_check_gamma(crtc, state);
415	ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, state);
416	ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, state);
417
418	return ret;
419}
420
421static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = {
422	.mode_valid = malidp_crtc_mode_valid,
423	.atomic_check = malidp_crtc_atomic_check,
424	.atomic_enable = malidp_crtc_atomic_enable,
425	.atomic_disable = malidp_crtc_atomic_disable,
426};
427
428static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc)
429{
430	struct malidp_crtc_state *state, *old_state;
431
432	if (WARN_ON(!crtc->state))
433		return NULL;
434
435	old_state = to_malidp_crtc_state(crtc->state);
436	state = kmalloc(sizeof(*state), GFP_KERNEL);
437	if (!state)
438		return NULL;
439
440	__drm_atomic_helper_crtc_duplicate_state(crtc, &state->base);
441	memcpy(state->gamma_coeffs, old_state->gamma_coeffs,
442	       sizeof(state->gamma_coeffs));
443	memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs,
444	       sizeof(state->coloradj_coeffs));
445	memcpy(&state->scaler_config, &old_state->scaler_config,
446	       sizeof(state->scaler_config));
447	state->scaled_planes_mask = 0;
448
449	return &state->base;
450}
451
452static void malidp_crtc_reset(struct drm_crtc *crtc)
453{
454	struct malidp_crtc_state *state = NULL;
455
456	if (crtc->state) {
457		state = to_malidp_crtc_state(crtc->state);
458		__drm_atomic_helper_crtc_destroy_state(crtc->state);
459	}
460
461	kfree(state);
462	state = kzalloc(sizeof(*state), GFP_KERNEL);
463	if (state) {
464		crtc->state = &state->base;
465		crtc->state->crtc = crtc;
466	}
467}
468
469static void malidp_crtc_destroy_state(struct drm_crtc *crtc,
470				      struct drm_crtc_state *state)
471{
472	struct malidp_crtc_state *mali_state = NULL;
473
474	if (state) {
475		mali_state = to_malidp_crtc_state(state);
476		__drm_atomic_helper_crtc_destroy_state(state);
477	}
478
479	kfree(mali_state);
480}
481
482static int malidp_crtc_enable_vblank(struct drm_crtc *crtc)
483{
484	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
485	struct malidp_hw_device *hwdev = malidp->dev;
486
487	malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK,
488			     hwdev->hw->map.de_irq_map.vsync_irq);
489	return 0;
490}
491
492static void malidp_crtc_disable_vblank(struct drm_crtc *crtc)
493{
494	struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
495	struct malidp_hw_device *hwdev = malidp->dev;
496
497	malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK,
498			      hwdev->hw->map.de_irq_map.vsync_irq);
499}
500
501static const struct drm_crtc_funcs malidp_crtc_funcs = {
502	.gamma_set = drm_atomic_helper_legacy_gamma_set,
503	.destroy = drm_crtc_cleanup,
504	.set_config = drm_atomic_helper_set_config,
505	.page_flip = drm_atomic_helper_page_flip,
506	.reset = malidp_crtc_reset,
507	.atomic_duplicate_state = malidp_crtc_duplicate_state,
508	.atomic_destroy_state = malidp_crtc_destroy_state,
509	.enable_vblank = malidp_crtc_enable_vblank,
510	.disable_vblank = malidp_crtc_disable_vblank,
511};
512
513int malidp_crtc_init(struct drm_device *drm)
514{
515	struct malidp_drm *malidp = drm->dev_private;
516	struct drm_plane *primary = NULL, *plane;
517	int ret;
518
519	ret = malidp_de_planes_init(drm);
520	if (ret < 0) {
521		DRM_ERROR("Failed to initialise planes\n");
522		return ret;
523	}
524
525	drm_for_each_plane(plane, drm) {
526		if (plane->type == DRM_PLANE_TYPE_PRIMARY) {
527			primary = plane;
528			break;
529		}
530	}
531
532	if (!primary) {
533		DRM_ERROR("no primary plane found\n");
534		return -EINVAL;
535	}
536
537	ret = drm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL,
538					&malidp_crtc_funcs, NULL);
539	if (ret)
540		return ret;
541
542	drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs);
543	drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE);
544	/* No inverse-gamma: it is per-plane. */
545	drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE);
546
547	malidp_se_set_enh_coeffs(malidp->dev);
548
549	return 0;
550}