Linux Audio

Check our new training course

Loading...
v4.6
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
  6#include <linux/bootmem.h>	/* for max_low_pfn */
  7
  8#include <asm/cacheflush.h>
  9#include <asm/e820.h>
 10#include <asm/init.h>
 11#include <asm/page.h>
 12#include <asm/page_types.h>
 13#include <asm/sections.h>
 14#include <asm/setup.h>
 15#include <asm/tlbflush.h>
 16#include <asm/tlb.h>
 17#include <asm/proto.h>
 18#include <asm/dma.h>		/* for MAX_DMA_PFN */
 19#include <asm/microcode.h>
 
 
 
 
 20
 21/*
 22 * We need to define the tracepoints somewhere, and tlb.c
 23 * is only compied when SMP=y.
 24 */
 25#define CREATE_TRACE_POINTS
 26#include <trace/events/tlb.h>
 27
 28#include "mm_internal.h"
 29
 30/*
 31 * Tables translating between page_cache_type_t and pte encoding.
 32 *
 33 * The default values are defined statically as minimal supported mode;
 34 * WC and WT fall back to UC-.  pat_init() updates these values to support
 35 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
 36 * for the details.  Note, __early_ioremap() used during early boot-time
 37 * takes pgprot_t (pte encoding) and does not use these tables.
 38 *
 39 *   Index into __cachemode2pte_tbl[] is the cachemode.
 40 *
 41 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
 42 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
 43 */
 44uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
 45	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
 46	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
 47	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
 48	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
 49	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
 50	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
 51};
 52EXPORT_SYMBOL(__cachemode2pte_tbl);
 53
 54uint8_t __pte2cachemode_tbl[8] = {
 55	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
 56	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 57	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 58	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
 59	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
 60	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 61	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 62	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
 63};
 64EXPORT_SYMBOL(__pte2cachemode_tbl);
 65
 66static unsigned long __initdata pgt_buf_start;
 67static unsigned long __initdata pgt_buf_end;
 68static unsigned long __initdata pgt_buf_top;
 69
 70static unsigned long min_pfn_mapped;
 71
 72static bool __initdata can_use_brk_pgt = true;
 73
 74/*
 75 * Pages returned are already directly mapped.
 76 *
 77 * Changing that is likely to break Xen, see commit:
 78 *
 79 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 80 *
 81 * for detailed information.
 82 */
 83__ref void *alloc_low_pages(unsigned int num)
 84{
 85	unsigned long pfn;
 86	int i;
 87
 88	if (after_bootmem) {
 89		unsigned int order;
 90
 91		order = get_order((unsigned long)num << PAGE_SHIFT);
 92		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
 93						__GFP_ZERO, order);
 94	}
 95
 96	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 97		unsigned long ret;
 98		if (min_pfn_mapped >= max_pfn_mapped)
 99			panic("alloc_low_pages: ran out of memory");
100		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
101					max_pfn_mapped << PAGE_SHIFT,
102					PAGE_SIZE * num , PAGE_SIZE);
103		if (!ret)
104			panic("alloc_low_pages: can not alloc memory");
105		memblock_reserve(ret, PAGE_SIZE * num);
106		pfn = ret >> PAGE_SHIFT;
107	} else {
108		pfn = pgt_buf_end;
109		pgt_buf_end += num;
110		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
111			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
112	}
113
114	for (i = 0; i < num; i++) {
115		void *adr;
116
117		adr = __va((pfn + i) << PAGE_SHIFT);
118		clear_page(adr);
119	}
120
121	return __va(pfn << PAGE_SHIFT);
122}
123
124/* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
125#define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
 
 
 
 
 
 
 
 
 
 
126RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
127void  __init early_alloc_pgt_buf(void)
128{
129	unsigned long tables = INIT_PGT_BUF_SIZE;
130	phys_addr_t base;
131
132	base = __pa(extend_brk(tables, PAGE_SIZE));
133
134	pgt_buf_start = base >> PAGE_SHIFT;
135	pgt_buf_end = pgt_buf_start;
136	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
137}
138
139int after_bootmem;
140
141early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
142
143struct map_range {
144	unsigned long start;
145	unsigned long end;
146	unsigned page_size_mask;
147};
148
149static int page_size_mask;
150
151static void __init probe_page_size_mask(void)
152{
153#if !defined(CONFIG_KMEMCHECK)
154	/*
155	 * For CONFIG_KMEMCHECK or pagealloc debugging, identity mapping will
156	 * use small pages.
157	 * This will simplify cpa(), which otherwise needs to support splitting
158	 * large pages into small in interrupt context, etc.
159	 */
160	if (cpu_has_pse && !debug_pagealloc_enabled())
161		page_size_mask |= 1 << PG_LEVEL_2M;
162#endif
 
163
164	/* Enable PSE if available */
165	if (cpu_has_pse)
166		cr4_set_bits_and_update_boot(X86_CR4_PSE);
167
168	/* Enable PGE if available */
169	if (cpu_has_pge) {
 
170		cr4_set_bits_and_update_boot(X86_CR4_PGE);
171		__supported_pte_mask |= _PAGE_GLOBAL;
172	} else
173		__supported_pte_mask &= ~_PAGE_GLOBAL;
 
 
 
 
 
174
175	/* Enable 1 GB linear kernel mappings if available: */
176	if (direct_gbpages && cpu_has_gbpages) {
177		printk(KERN_INFO "Using GB pages for direct mapping\n");
178		page_size_mask |= 1 << PG_LEVEL_1G;
179	} else {
180		direct_gbpages = 0;
181	}
182}
183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184#ifdef CONFIG_X86_32
185#define NR_RANGE_MR 3
186#else /* CONFIG_X86_64 */
187#define NR_RANGE_MR 5
188#endif
189
190static int __meminit save_mr(struct map_range *mr, int nr_range,
191			     unsigned long start_pfn, unsigned long end_pfn,
192			     unsigned long page_size_mask)
193{
194	if (start_pfn < end_pfn) {
195		if (nr_range >= NR_RANGE_MR)
196			panic("run out of range for init_memory_mapping\n");
197		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
198		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
199		mr[nr_range].page_size_mask = page_size_mask;
200		nr_range++;
201	}
202
203	return nr_range;
204}
205
206/*
207 * adjust the page_size_mask for small range to go with
208 *	big page size instead small one if nearby are ram too.
209 */
210static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
211							 int nr_range)
212{
213	int i;
214
215	for (i = 0; i < nr_range; i++) {
216		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
217		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
218			unsigned long start = round_down(mr[i].start, PMD_SIZE);
219			unsigned long end = round_up(mr[i].end, PMD_SIZE);
220
221#ifdef CONFIG_X86_32
222			if ((end >> PAGE_SHIFT) > max_low_pfn)
223				continue;
224#endif
225
226			if (memblock_is_region_memory(start, end - start))
227				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
228		}
229		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
230		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
231			unsigned long start = round_down(mr[i].start, PUD_SIZE);
232			unsigned long end = round_up(mr[i].end, PUD_SIZE);
233
234			if (memblock_is_region_memory(start, end - start))
235				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
236		}
237	}
238}
239
240static const char *page_size_string(struct map_range *mr)
241{
242	static const char str_1g[] = "1G";
243	static const char str_2m[] = "2M";
244	static const char str_4m[] = "4M";
245	static const char str_4k[] = "4k";
246
247	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
248		return str_1g;
249	/*
250	 * 32-bit without PAE has a 4M large page size.
251	 * PG_LEVEL_2M is misnamed, but we can at least
252	 * print out the right size in the string.
253	 */
254	if (IS_ENABLED(CONFIG_X86_32) &&
255	    !IS_ENABLED(CONFIG_X86_PAE) &&
256	    mr->page_size_mask & (1<<PG_LEVEL_2M))
257		return str_4m;
258
259	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
260		return str_2m;
261
262	return str_4k;
263}
264
265static int __meminit split_mem_range(struct map_range *mr, int nr_range,
266				     unsigned long start,
267				     unsigned long end)
268{
269	unsigned long start_pfn, end_pfn, limit_pfn;
270	unsigned long pfn;
271	int i;
272
273	limit_pfn = PFN_DOWN(end);
274
275	/* head if not big page alignment ? */
276	pfn = start_pfn = PFN_DOWN(start);
277#ifdef CONFIG_X86_32
278	/*
279	 * Don't use a large page for the first 2/4MB of memory
280	 * because there are often fixed size MTRRs in there
281	 * and overlapping MTRRs into large pages can cause
282	 * slowdowns.
283	 */
284	if (pfn == 0)
285		end_pfn = PFN_DOWN(PMD_SIZE);
286	else
287		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
288#else /* CONFIG_X86_64 */
289	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
290#endif
291	if (end_pfn > limit_pfn)
292		end_pfn = limit_pfn;
293	if (start_pfn < end_pfn) {
294		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
295		pfn = end_pfn;
296	}
297
298	/* big page (2M) range */
299	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
300#ifdef CONFIG_X86_32
301	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
302#else /* CONFIG_X86_64 */
303	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
304	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
305		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
306#endif
307
308	if (start_pfn < end_pfn) {
309		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
310				page_size_mask & (1<<PG_LEVEL_2M));
311		pfn = end_pfn;
312	}
313
314#ifdef CONFIG_X86_64
315	/* big page (1G) range */
316	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
317	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
318	if (start_pfn < end_pfn) {
319		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
320				page_size_mask &
321				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
322		pfn = end_pfn;
323	}
324
325	/* tail is not big page (1G) alignment */
326	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
327	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
328	if (start_pfn < end_pfn) {
329		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
330				page_size_mask & (1<<PG_LEVEL_2M));
331		pfn = end_pfn;
332	}
333#endif
334
335	/* tail is not big page (2M) alignment */
336	start_pfn = pfn;
337	end_pfn = limit_pfn;
338	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
339
340	if (!after_bootmem)
341		adjust_range_page_size_mask(mr, nr_range);
342
343	/* try to merge same page size and continuous */
344	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
345		unsigned long old_start;
346		if (mr[i].end != mr[i+1].start ||
347		    mr[i].page_size_mask != mr[i+1].page_size_mask)
348			continue;
349		/* move it */
350		old_start = mr[i].start;
351		memmove(&mr[i], &mr[i+1],
352			(nr_range - 1 - i) * sizeof(struct map_range));
353		mr[i--].start = old_start;
354		nr_range--;
355	}
356
357	for (i = 0; i < nr_range; i++)
358		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
359				mr[i].start, mr[i].end - 1,
360				page_size_string(&mr[i]));
361
362	return nr_range;
363}
364
365struct range pfn_mapped[E820_X_MAX];
366int nr_pfn_mapped;
367
368static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
369{
370	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
371					     nr_pfn_mapped, start_pfn, end_pfn);
372	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
373
374	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
375
376	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
377		max_low_pfn_mapped = max(max_low_pfn_mapped,
378					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
379}
380
381bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
382{
383	int i;
384
385	for (i = 0; i < nr_pfn_mapped; i++)
386		if ((start_pfn >= pfn_mapped[i].start) &&
387		    (end_pfn <= pfn_mapped[i].end))
388			return true;
389
390	return false;
391}
392
393/*
394 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
395 * This runs before bootmem is initialized and gets pages directly from
396 * the physical memory. To access them they are temporarily mapped.
397 */
398unsigned long __init_refok init_memory_mapping(unsigned long start,
399					       unsigned long end)
400{
401	struct map_range mr[NR_RANGE_MR];
402	unsigned long ret = 0;
403	int nr_range, i;
404
405	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
406	       start, end - 1);
407
408	memset(mr, 0, sizeof(mr));
409	nr_range = split_mem_range(mr, 0, start, end);
410
411	for (i = 0; i < nr_range; i++)
412		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
413						   mr[i].page_size_mask);
414
415	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
416
417	return ret >> PAGE_SHIFT;
418}
419
420/*
421 * We need to iterate through the E820 memory map and create direct mappings
422 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
423 * create direct mappings for all pfns from [0 to max_low_pfn) and
424 * [4GB to max_pfn) because of possible memory holes in high addresses
425 * that cannot be marked as UC by fixed/variable range MTRRs.
426 * Depending on the alignment of E820 ranges, this may possibly result
427 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
428 *
429 * init_mem_mapping() calls init_range_memory_mapping() with big range.
430 * That range would have hole in the middle or ends, and only ram parts
431 * will be mapped in init_range_memory_mapping().
432 */
433static unsigned long __init init_range_memory_mapping(
434					   unsigned long r_start,
435					   unsigned long r_end)
436{
437	unsigned long start_pfn, end_pfn;
438	unsigned long mapped_ram_size = 0;
439	int i;
440
441	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
442		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
443		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
444		if (start >= end)
445			continue;
446
447		/*
448		 * if it is overlapping with brk pgt, we need to
449		 * alloc pgt buf from memblock instead.
450		 */
451		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
452				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
453		init_memory_mapping(start, end);
454		mapped_ram_size += end - start;
455		can_use_brk_pgt = true;
456	}
457
458	return mapped_ram_size;
459}
460
461static unsigned long __init get_new_step_size(unsigned long step_size)
462{
463	/*
464	 * Initial mapped size is PMD_SIZE (2M).
465	 * We can not set step_size to be PUD_SIZE (1G) yet.
466	 * In worse case, when we cross the 1G boundary, and
467	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
468	 * to map 1G range with PTE. Hence we use one less than the
469	 * difference of page table level shifts.
470	 *
471	 * Don't need to worry about overflow in the top-down case, on 32bit,
472	 * when step_size is 0, round_down() returns 0 for start, and that
473	 * turns it into 0x100000000ULL.
474	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
475	 * needs to be taken into consideration by the code below.
476	 */
477	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
478}
479
480/**
481 * memory_map_top_down - Map [map_start, map_end) top down
482 * @map_start: start address of the target memory range
483 * @map_end: end address of the target memory range
484 *
485 * This function will setup direct mapping for memory range
486 * [map_start, map_end) in top-down. That said, the page tables
487 * will be allocated at the end of the memory, and we map the
488 * memory in top-down.
489 */
490static void __init memory_map_top_down(unsigned long map_start,
491				       unsigned long map_end)
492{
493	unsigned long real_end, start, last_start;
494	unsigned long step_size;
495	unsigned long addr;
496	unsigned long mapped_ram_size = 0;
497
498	/* xen has big range in reserved near end of ram, skip it at first.*/
499	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
500	real_end = addr + PMD_SIZE;
501
502	/* step_size need to be small so pgt_buf from BRK could cover it */
503	step_size = PMD_SIZE;
504	max_pfn_mapped = 0; /* will get exact value next */
505	min_pfn_mapped = real_end >> PAGE_SHIFT;
506	last_start = start = real_end;
507
508	/*
509	 * We start from the top (end of memory) and go to the bottom.
510	 * The memblock_find_in_range() gets us a block of RAM from the
511	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
512	 * for page table.
513	 */
514	while (last_start > map_start) {
515		if (last_start > step_size) {
516			start = round_down(last_start - 1, step_size);
517			if (start < map_start)
518				start = map_start;
519		} else
520			start = map_start;
521		mapped_ram_size += init_range_memory_mapping(start,
522							last_start);
523		last_start = start;
524		min_pfn_mapped = last_start >> PAGE_SHIFT;
525		if (mapped_ram_size >= step_size)
526			step_size = get_new_step_size(step_size);
527	}
528
529	if (real_end < map_end)
530		init_range_memory_mapping(real_end, map_end);
531}
532
533/**
534 * memory_map_bottom_up - Map [map_start, map_end) bottom up
535 * @map_start: start address of the target memory range
536 * @map_end: end address of the target memory range
537 *
538 * This function will setup direct mapping for memory range
539 * [map_start, map_end) in bottom-up. Since we have limited the
540 * bottom-up allocation above the kernel, the page tables will
541 * be allocated just above the kernel and we map the memory
542 * in [map_start, map_end) in bottom-up.
543 */
544static void __init memory_map_bottom_up(unsigned long map_start,
545					unsigned long map_end)
546{
547	unsigned long next, start;
548	unsigned long mapped_ram_size = 0;
549	/* step_size need to be small so pgt_buf from BRK could cover it */
550	unsigned long step_size = PMD_SIZE;
551
552	start = map_start;
553	min_pfn_mapped = start >> PAGE_SHIFT;
554
555	/*
556	 * We start from the bottom (@map_start) and go to the top (@map_end).
557	 * The memblock_find_in_range() gets us a block of RAM from the
558	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
559	 * for page table.
560	 */
561	while (start < map_end) {
562		if (step_size && map_end - start > step_size) {
563			next = round_up(start + 1, step_size);
564			if (next > map_end)
565				next = map_end;
566		} else {
567			next = map_end;
568		}
569
570		mapped_ram_size += init_range_memory_mapping(start, next);
571		start = next;
572
573		if (mapped_ram_size >= step_size)
574			step_size = get_new_step_size(step_size);
575	}
576}
577
578void __init init_mem_mapping(void)
579{
580	unsigned long end;
581
 
582	probe_page_size_mask();
 
583
584#ifdef CONFIG_X86_64
585	end = max_pfn << PAGE_SHIFT;
586#else
587	end = max_low_pfn << PAGE_SHIFT;
588#endif
589
590	/* the ISA range is always mapped regardless of memory holes */
591	init_memory_mapping(0, ISA_END_ADDRESS);
592
 
 
 
593	/*
594	 * If the allocation is in bottom-up direction, we setup direct mapping
595	 * in bottom-up, otherwise we setup direct mapping in top-down.
596	 */
597	if (memblock_bottom_up()) {
598		unsigned long kernel_end = __pa_symbol(_end);
599
600		/*
601		 * we need two separate calls here. This is because we want to
602		 * allocate page tables above the kernel. So we first map
603		 * [kernel_end, end) to make memory above the kernel be mapped
604		 * as soon as possible. And then use page tables allocated above
605		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
606		 */
607		memory_map_bottom_up(kernel_end, end);
608		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
609	} else {
610		memory_map_top_down(ISA_END_ADDRESS, end);
611	}
612
613#ifdef CONFIG_X86_64
614	if (max_pfn > max_low_pfn) {
615		/* can we preseve max_low_pfn ?*/
616		max_low_pfn = max_pfn;
617	}
618#else
619	early_ioremap_page_table_range_init();
620#endif
621
622	load_cr3(swapper_pg_dir);
623	__flush_tlb_all();
624
 
 
625	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
626}
627
628/*
629 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
630 * is valid. The argument is a physical page number.
631 *
632 *
633 * On x86, access has to be given to the first megabyte of ram because that area
634 * contains BIOS code and data regions used by X and dosemu and similar apps.
635 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
636 * mmio resources as well as potential bios/acpi data regions.
 
 
637 */
638int devmem_is_allowed(unsigned long pagenr)
639{
640	if (pagenr < 256)
641		return 1;
642	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643		return 0;
644	if (!page_is_ram(pagenr))
645		return 1;
646	return 0;
647}
648
649void free_init_pages(char *what, unsigned long begin, unsigned long end)
650{
651	unsigned long begin_aligned, end_aligned;
652
653	/* Make sure boundaries are page aligned */
654	begin_aligned = PAGE_ALIGN(begin);
655	end_aligned   = end & PAGE_MASK;
656
657	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
658		begin = begin_aligned;
659		end   = end_aligned;
660	}
661
662	if (begin >= end)
663		return;
664
665	/*
666	 * If debugging page accesses then do not free this memory but
667	 * mark them not present - any buggy init-section access will
668	 * create a kernel page fault:
669	 */
670	if (debug_pagealloc_enabled()) {
671		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
672			begin, end - 1);
673		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
674	} else {
675		/*
676		 * We just marked the kernel text read only above, now that
677		 * we are going to free part of that, we need to make that
678		 * writeable and non-executable first.
679		 */
680		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
681		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
682
683		free_reserved_area((void *)begin, (void *)end,
684				   POISON_FREE_INITMEM, what);
685	}
686}
687
688void free_initmem(void)
689{
 
 
690	free_init_pages("unused kernel",
691			(unsigned long)(&__init_begin),
692			(unsigned long)(&__init_end));
693}
694
695#ifdef CONFIG_BLK_DEV_INITRD
696void __init free_initrd_mem(unsigned long start, unsigned long end)
697{
698	/*
699	 * Remember, initrd memory may contain microcode or other useful things.
700	 * Before we lose initrd mem, we need to find a place to hold them
701	 * now that normal virtual memory is enabled.
702	 */
703	save_microcode_in_initrd();
704
705	/*
706	 * end could be not aligned, and We can not align that,
707	 * decompresser could be confused by aligned initrd_end
708	 * We already reserve the end partial page before in
709	 *   - i386_start_kernel()
710	 *   - x86_64_start_kernel()
711	 *   - relocate_initrd()
712	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
713	 */
714	free_init_pages("initrd", start, PAGE_ALIGN(end));
715}
716#endif
717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
718void __init zone_sizes_init(void)
719{
720	unsigned long max_zone_pfns[MAX_NR_ZONES];
721
722	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
723
724#ifdef CONFIG_ZONE_DMA
725	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
726#endif
727#ifdef CONFIG_ZONE_DMA32
728	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
729#endif
730	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
731#ifdef CONFIG_HIGHMEM
732	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
733#endif
734
735	free_area_init_nodes(max_zone_pfns);
736}
737
738DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
739#ifdef CONFIG_SMP
740	.active_mm = &init_mm,
741	.state = 0,
742#endif
743	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
744};
745EXPORT_SYMBOL_GPL(cpu_tlbstate);
746
747void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
748{
749	/* entry 0 MUST be WB (hardwired to speed up translations) */
750	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
751
752	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
753	__pte2cachemode_tbl[entry] = cache;
754}
v4.17
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
  6#include <linux/bootmem.h>	/* for max_low_pfn */
  7
  8#include <asm/set_memory.h>
  9#include <asm/e820/api.h>
 10#include <asm/init.h>
 11#include <asm/page.h>
 12#include <asm/page_types.h>
 13#include <asm/sections.h>
 14#include <asm/setup.h>
 15#include <asm/tlbflush.h>
 16#include <asm/tlb.h>
 17#include <asm/proto.h>
 18#include <asm/dma.h>		/* for MAX_DMA_PFN */
 19#include <asm/microcode.h>
 20#include <asm/kaslr.h>
 21#include <asm/hypervisor.h>
 22#include <asm/cpufeature.h>
 23#include <asm/pti.h>
 24
 25/*
 26 * We need to define the tracepoints somewhere, and tlb.c
 27 * is only compied when SMP=y.
 28 */
 29#define CREATE_TRACE_POINTS
 30#include <trace/events/tlb.h>
 31
 32#include "mm_internal.h"
 33
 34/*
 35 * Tables translating between page_cache_type_t and pte encoding.
 36 *
 37 * The default values are defined statically as minimal supported mode;
 38 * WC and WT fall back to UC-.  pat_init() updates these values to support
 39 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
 40 * for the details.  Note, __early_ioremap() used during early boot-time
 41 * takes pgprot_t (pte encoding) and does not use these tables.
 42 *
 43 *   Index into __cachemode2pte_tbl[] is the cachemode.
 44 *
 45 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
 46 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
 47 */
 48uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
 49	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
 50	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
 51	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
 52	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
 53	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
 54	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
 55};
 56EXPORT_SYMBOL(__cachemode2pte_tbl);
 57
 58uint8_t __pte2cachemode_tbl[8] = {
 59	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
 60	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 61	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 62	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
 63	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
 64	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 65	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 66	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
 67};
 68EXPORT_SYMBOL(__pte2cachemode_tbl);
 69
 70static unsigned long __initdata pgt_buf_start;
 71static unsigned long __initdata pgt_buf_end;
 72static unsigned long __initdata pgt_buf_top;
 73
 74static unsigned long min_pfn_mapped;
 75
 76static bool __initdata can_use_brk_pgt = true;
 77
 78/*
 79 * Pages returned are already directly mapped.
 80 *
 81 * Changing that is likely to break Xen, see commit:
 82 *
 83 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 84 *
 85 * for detailed information.
 86 */
 87__ref void *alloc_low_pages(unsigned int num)
 88{
 89	unsigned long pfn;
 90	int i;
 91
 92	if (after_bootmem) {
 93		unsigned int order;
 94
 95		order = get_order((unsigned long)num << PAGE_SHIFT);
 96		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
 
 97	}
 98
 99	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
100		unsigned long ret;
101		if (min_pfn_mapped >= max_pfn_mapped)
102			panic("alloc_low_pages: ran out of memory");
103		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
104					max_pfn_mapped << PAGE_SHIFT,
105					PAGE_SIZE * num , PAGE_SIZE);
106		if (!ret)
107			panic("alloc_low_pages: can not alloc memory");
108		memblock_reserve(ret, PAGE_SIZE * num);
109		pfn = ret >> PAGE_SHIFT;
110	} else {
111		pfn = pgt_buf_end;
112		pgt_buf_end += num;
113		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
114			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
115	}
116
117	for (i = 0; i < num; i++) {
118		void *adr;
119
120		adr = __va((pfn + i) << PAGE_SHIFT);
121		clear_page(adr);
122	}
123
124	return __va(pfn << PAGE_SHIFT);
125}
126
127/*
128 * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
129 * With KASLR memory randomization, depending on the machine e820 memory
130 * and the PUD alignment. We may need twice more pages when KASLR memory
131 * randomization is enabled.
132 */
133#ifndef CONFIG_RANDOMIZE_MEMORY
134#define INIT_PGD_PAGE_COUNT      6
135#else
136#define INIT_PGD_PAGE_COUNT      12
137#endif
138#define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
139RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
140void  __init early_alloc_pgt_buf(void)
141{
142	unsigned long tables = INIT_PGT_BUF_SIZE;
143	phys_addr_t base;
144
145	base = __pa(extend_brk(tables, PAGE_SIZE));
146
147	pgt_buf_start = base >> PAGE_SHIFT;
148	pgt_buf_end = pgt_buf_start;
149	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
150}
151
152int after_bootmem;
153
154early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
155
156struct map_range {
157	unsigned long start;
158	unsigned long end;
159	unsigned page_size_mask;
160};
161
162static int page_size_mask;
163
164static void __init probe_page_size_mask(void)
165{
 
166	/*
167	 * For pagealloc debugging, identity mapping will use small pages.
 
168	 * This will simplify cpa(), which otherwise needs to support splitting
169	 * large pages into small in interrupt context, etc.
170	 */
171	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
172		page_size_mask |= 1 << PG_LEVEL_2M;
173	else
174		direct_gbpages = 0;
175
176	/* Enable PSE if available */
177	if (boot_cpu_has(X86_FEATURE_PSE))
178		cr4_set_bits_and_update_boot(X86_CR4_PSE);
179
180	/* Enable PGE if available */
181	__supported_pte_mask &= ~_PAGE_GLOBAL;
182	if (boot_cpu_has(X86_FEATURE_PGE)) {
183		cr4_set_bits_and_update_boot(X86_CR4_PGE);
184		__supported_pte_mask |= _PAGE_GLOBAL;
185	}
186
187	/* By the default is everything supported: */
188	__default_kernel_pte_mask = __supported_pte_mask;
189	/* Except when with PTI where the kernel is mostly non-Global: */
190	if (cpu_feature_enabled(X86_FEATURE_PTI))
191		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
192
193	/* Enable 1 GB linear kernel mappings if available: */
194	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
195		printk(KERN_INFO "Using GB pages for direct mapping\n");
196		page_size_mask |= 1 << PG_LEVEL_1G;
197	} else {
198		direct_gbpages = 0;
199	}
200}
201
202static void setup_pcid(void)
203{
204	if (!IS_ENABLED(CONFIG_X86_64))
205		return;
206
207	if (!boot_cpu_has(X86_FEATURE_PCID))
208		return;
209
210	if (boot_cpu_has(X86_FEATURE_PGE)) {
211		/*
212		 * This can't be cr4_set_bits_and_update_boot() -- the
213		 * trampoline code can't handle CR4.PCIDE and it wouldn't
214		 * do any good anyway.  Despite the name,
215		 * cr4_set_bits_and_update_boot() doesn't actually cause
216		 * the bits in question to remain set all the way through
217		 * the secondary boot asm.
218		 *
219		 * Instead, we brute-force it and set CR4.PCIDE manually in
220		 * start_secondary().
221		 */
222		cr4_set_bits(X86_CR4_PCIDE);
223
224		/*
225		 * INVPCID's single-context modes (2/3) only work if we set
226		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
227		 * on systems that have X86_CR4_PCIDE clear, or that have
228		 * no INVPCID support at all.
229		 */
230		if (boot_cpu_has(X86_FEATURE_INVPCID))
231			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
232	} else {
233		/*
234		 * flush_tlb_all(), as currently implemented, won't work if
235		 * PCID is on but PGE is not.  Since that combination
236		 * doesn't exist on real hardware, there's no reason to try
237		 * to fully support it, but it's polite to avoid corrupting
238		 * data if we're on an improperly configured VM.
239		 */
240		setup_clear_cpu_cap(X86_FEATURE_PCID);
241	}
242}
243
244#ifdef CONFIG_X86_32
245#define NR_RANGE_MR 3
246#else /* CONFIG_X86_64 */
247#define NR_RANGE_MR 5
248#endif
249
250static int __meminit save_mr(struct map_range *mr, int nr_range,
251			     unsigned long start_pfn, unsigned long end_pfn,
252			     unsigned long page_size_mask)
253{
254	if (start_pfn < end_pfn) {
255		if (nr_range >= NR_RANGE_MR)
256			panic("run out of range for init_memory_mapping\n");
257		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
258		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
259		mr[nr_range].page_size_mask = page_size_mask;
260		nr_range++;
261	}
262
263	return nr_range;
264}
265
266/*
267 * adjust the page_size_mask for small range to go with
268 *	big page size instead small one if nearby are ram too.
269 */
270static void __ref adjust_range_page_size_mask(struct map_range *mr,
271							 int nr_range)
272{
273	int i;
274
275	for (i = 0; i < nr_range; i++) {
276		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
277		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
278			unsigned long start = round_down(mr[i].start, PMD_SIZE);
279			unsigned long end = round_up(mr[i].end, PMD_SIZE);
280
281#ifdef CONFIG_X86_32
282			if ((end >> PAGE_SHIFT) > max_low_pfn)
283				continue;
284#endif
285
286			if (memblock_is_region_memory(start, end - start))
287				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
288		}
289		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
290		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
291			unsigned long start = round_down(mr[i].start, PUD_SIZE);
292			unsigned long end = round_up(mr[i].end, PUD_SIZE);
293
294			if (memblock_is_region_memory(start, end - start))
295				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
296		}
297	}
298}
299
300static const char *page_size_string(struct map_range *mr)
301{
302	static const char str_1g[] = "1G";
303	static const char str_2m[] = "2M";
304	static const char str_4m[] = "4M";
305	static const char str_4k[] = "4k";
306
307	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
308		return str_1g;
309	/*
310	 * 32-bit without PAE has a 4M large page size.
311	 * PG_LEVEL_2M is misnamed, but we can at least
312	 * print out the right size in the string.
313	 */
314	if (IS_ENABLED(CONFIG_X86_32) &&
315	    !IS_ENABLED(CONFIG_X86_PAE) &&
316	    mr->page_size_mask & (1<<PG_LEVEL_2M))
317		return str_4m;
318
319	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
320		return str_2m;
321
322	return str_4k;
323}
324
325static int __meminit split_mem_range(struct map_range *mr, int nr_range,
326				     unsigned long start,
327				     unsigned long end)
328{
329	unsigned long start_pfn, end_pfn, limit_pfn;
330	unsigned long pfn;
331	int i;
332
333	limit_pfn = PFN_DOWN(end);
334
335	/* head if not big page alignment ? */
336	pfn = start_pfn = PFN_DOWN(start);
337#ifdef CONFIG_X86_32
338	/*
339	 * Don't use a large page for the first 2/4MB of memory
340	 * because there are often fixed size MTRRs in there
341	 * and overlapping MTRRs into large pages can cause
342	 * slowdowns.
343	 */
344	if (pfn == 0)
345		end_pfn = PFN_DOWN(PMD_SIZE);
346	else
347		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
348#else /* CONFIG_X86_64 */
349	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
350#endif
351	if (end_pfn > limit_pfn)
352		end_pfn = limit_pfn;
353	if (start_pfn < end_pfn) {
354		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
355		pfn = end_pfn;
356	}
357
358	/* big page (2M) range */
359	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
360#ifdef CONFIG_X86_32
361	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
362#else /* CONFIG_X86_64 */
363	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
364	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
365		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
366#endif
367
368	if (start_pfn < end_pfn) {
369		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
370				page_size_mask & (1<<PG_LEVEL_2M));
371		pfn = end_pfn;
372	}
373
374#ifdef CONFIG_X86_64
375	/* big page (1G) range */
376	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
377	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
378	if (start_pfn < end_pfn) {
379		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
380				page_size_mask &
381				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
382		pfn = end_pfn;
383	}
384
385	/* tail is not big page (1G) alignment */
386	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
387	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
388	if (start_pfn < end_pfn) {
389		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
390				page_size_mask & (1<<PG_LEVEL_2M));
391		pfn = end_pfn;
392	}
393#endif
394
395	/* tail is not big page (2M) alignment */
396	start_pfn = pfn;
397	end_pfn = limit_pfn;
398	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
399
400	if (!after_bootmem)
401		adjust_range_page_size_mask(mr, nr_range);
402
403	/* try to merge same page size and continuous */
404	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
405		unsigned long old_start;
406		if (mr[i].end != mr[i+1].start ||
407		    mr[i].page_size_mask != mr[i+1].page_size_mask)
408			continue;
409		/* move it */
410		old_start = mr[i].start;
411		memmove(&mr[i], &mr[i+1],
412			(nr_range - 1 - i) * sizeof(struct map_range));
413		mr[i--].start = old_start;
414		nr_range--;
415	}
416
417	for (i = 0; i < nr_range; i++)
418		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
419				mr[i].start, mr[i].end - 1,
420				page_size_string(&mr[i]));
421
422	return nr_range;
423}
424
425struct range pfn_mapped[E820_MAX_ENTRIES];
426int nr_pfn_mapped;
427
428static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
429{
430	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
431					     nr_pfn_mapped, start_pfn, end_pfn);
432	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
433
434	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
435
436	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
437		max_low_pfn_mapped = max(max_low_pfn_mapped,
438					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
439}
440
441bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
442{
443	int i;
444
445	for (i = 0; i < nr_pfn_mapped; i++)
446		if ((start_pfn >= pfn_mapped[i].start) &&
447		    (end_pfn <= pfn_mapped[i].end))
448			return true;
449
450	return false;
451}
452
453/*
454 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
455 * This runs before bootmem is initialized and gets pages directly from
456 * the physical memory. To access them they are temporarily mapped.
457 */
458unsigned long __ref init_memory_mapping(unsigned long start,
459					       unsigned long end)
460{
461	struct map_range mr[NR_RANGE_MR];
462	unsigned long ret = 0;
463	int nr_range, i;
464
465	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
466	       start, end - 1);
467
468	memset(mr, 0, sizeof(mr));
469	nr_range = split_mem_range(mr, 0, start, end);
470
471	for (i = 0; i < nr_range; i++)
472		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
473						   mr[i].page_size_mask);
474
475	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
476
477	return ret >> PAGE_SHIFT;
478}
479
480/*
481 * We need to iterate through the E820 memory map and create direct mappings
482 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
483 * create direct mappings for all pfns from [0 to max_low_pfn) and
484 * [4GB to max_pfn) because of possible memory holes in high addresses
485 * that cannot be marked as UC by fixed/variable range MTRRs.
486 * Depending on the alignment of E820 ranges, this may possibly result
487 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
488 *
489 * init_mem_mapping() calls init_range_memory_mapping() with big range.
490 * That range would have hole in the middle or ends, and only ram parts
491 * will be mapped in init_range_memory_mapping().
492 */
493static unsigned long __init init_range_memory_mapping(
494					   unsigned long r_start,
495					   unsigned long r_end)
496{
497	unsigned long start_pfn, end_pfn;
498	unsigned long mapped_ram_size = 0;
499	int i;
500
501	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
502		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
503		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
504		if (start >= end)
505			continue;
506
507		/*
508		 * if it is overlapping with brk pgt, we need to
509		 * alloc pgt buf from memblock instead.
510		 */
511		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
512				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
513		init_memory_mapping(start, end);
514		mapped_ram_size += end - start;
515		can_use_brk_pgt = true;
516	}
517
518	return mapped_ram_size;
519}
520
521static unsigned long __init get_new_step_size(unsigned long step_size)
522{
523	/*
524	 * Initial mapped size is PMD_SIZE (2M).
525	 * We can not set step_size to be PUD_SIZE (1G) yet.
526	 * In worse case, when we cross the 1G boundary, and
527	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
528	 * to map 1G range with PTE. Hence we use one less than the
529	 * difference of page table level shifts.
530	 *
531	 * Don't need to worry about overflow in the top-down case, on 32bit,
532	 * when step_size is 0, round_down() returns 0 for start, and that
533	 * turns it into 0x100000000ULL.
534	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
535	 * needs to be taken into consideration by the code below.
536	 */
537	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
538}
539
540/**
541 * memory_map_top_down - Map [map_start, map_end) top down
542 * @map_start: start address of the target memory range
543 * @map_end: end address of the target memory range
544 *
545 * This function will setup direct mapping for memory range
546 * [map_start, map_end) in top-down. That said, the page tables
547 * will be allocated at the end of the memory, and we map the
548 * memory in top-down.
549 */
550static void __init memory_map_top_down(unsigned long map_start,
551				       unsigned long map_end)
552{
553	unsigned long real_end, start, last_start;
554	unsigned long step_size;
555	unsigned long addr;
556	unsigned long mapped_ram_size = 0;
557
558	/* xen has big range in reserved near end of ram, skip it at first.*/
559	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
560	real_end = addr + PMD_SIZE;
561
562	/* step_size need to be small so pgt_buf from BRK could cover it */
563	step_size = PMD_SIZE;
564	max_pfn_mapped = 0; /* will get exact value next */
565	min_pfn_mapped = real_end >> PAGE_SHIFT;
566	last_start = start = real_end;
567
568	/*
569	 * We start from the top (end of memory) and go to the bottom.
570	 * The memblock_find_in_range() gets us a block of RAM from the
571	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
572	 * for page table.
573	 */
574	while (last_start > map_start) {
575		if (last_start > step_size) {
576			start = round_down(last_start - 1, step_size);
577			if (start < map_start)
578				start = map_start;
579		} else
580			start = map_start;
581		mapped_ram_size += init_range_memory_mapping(start,
582							last_start);
583		last_start = start;
584		min_pfn_mapped = last_start >> PAGE_SHIFT;
585		if (mapped_ram_size >= step_size)
586			step_size = get_new_step_size(step_size);
587	}
588
589	if (real_end < map_end)
590		init_range_memory_mapping(real_end, map_end);
591}
592
593/**
594 * memory_map_bottom_up - Map [map_start, map_end) bottom up
595 * @map_start: start address of the target memory range
596 * @map_end: end address of the target memory range
597 *
598 * This function will setup direct mapping for memory range
599 * [map_start, map_end) in bottom-up. Since we have limited the
600 * bottom-up allocation above the kernel, the page tables will
601 * be allocated just above the kernel and we map the memory
602 * in [map_start, map_end) in bottom-up.
603 */
604static void __init memory_map_bottom_up(unsigned long map_start,
605					unsigned long map_end)
606{
607	unsigned long next, start;
608	unsigned long mapped_ram_size = 0;
609	/* step_size need to be small so pgt_buf from BRK could cover it */
610	unsigned long step_size = PMD_SIZE;
611
612	start = map_start;
613	min_pfn_mapped = start >> PAGE_SHIFT;
614
615	/*
616	 * We start from the bottom (@map_start) and go to the top (@map_end).
617	 * The memblock_find_in_range() gets us a block of RAM from the
618	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
619	 * for page table.
620	 */
621	while (start < map_end) {
622		if (step_size && map_end - start > step_size) {
623			next = round_up(start + 1, step_size);
624			if (next > map_end)
625				next = map_end;
626		} else {
627			next = map_end;
628		}
629
630		mapped_ram_size += init_range_memory_mapping(start, next);
631		start = next;
632
633		if (mapped_ram_size >= step_size)
634			step_size = get_new_step_size(step_size);
635	}
636}
637
638void __init init_mem_mapping(void)
639{
640	unsigned long end;
641
642	pti_check_boottime_disable();
643	probe_page_size_mask();
644	setup_pcid();
645
646#ifdef CONFIG_X86_64
647	end = max_pfn << PAGE_SHIFT;
648#else
649	end = max_low_pfn << PAGE_SHIFT;
650#endif
651
652	/* the ISA range is always mapped regardless of memory holes */
653	init_memory_mapping(0, ISA_END_ADDRESS);
654
655	/* Init the trampoline, possibly with KASLR memory offset */
656	init_trampoline();
657
658	/*
659	 * If the allocation is in bottom-up direction, we setup direct mapping
660	 * in bottom-up, otherwise we setup direct mapping in top-down.
661	 */
662	if (memblock_bottom_up()) {
663		unsigned long kernel_end = __pa_symbol(_end);
664
665		/*
666		 * we need two separate calls here. This is because we want to
667		 * allocate page tables above the kernel. So we first map
668		 * [kernel_end, end) to make memory above the kernel be mapped
669		 * as soon as possible. And then use page tables allocated above
670		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
671		 */
672		memory_map_bottom_up(kernel_end, end);
673		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
674	} else {
675		memory_map_top_down(ISA_END_ADDRESS, end);
676	}
677
678#ifdef CONFIG_X86_64
679	if (max_pfn > max_low_pfn) {
680		/* can we preseve max_low_pfn ?*/
681		max_low_pfn = max_pfn;
682	}
683#else
684	early_ioremap_page_table_range_init();
685#endif
686
687	load_cr3(swapper_pg_dir);
688	__flush_tlb_all();
689
690	x86_init.hyper.init_mem_mapping();
691
692	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
693}
694
695/*
696 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
697 * is valid. The argument is a physical page number.
698 *
699 * On x86, access has to be given to the first megabyte of RAM because that
700 * area traditionally contains BIOS code and data regions used by X, dosemu,
701 * and similar apps. Since they map the entire memory range, the whole range
702 * must be allowed (for mapping), but any areas that would otherwise be
703 * disallowed are flagged as being "zero filled" instead of rejected.
704 * Access has to be given to non-kernel-ram areas as well, these contain the
705 * PCI mmio resources as well as potential bios/acpi data regions.
706 */
707int devmem_is_allowed(unsigned long pagenr)
708{
709	if (page_is_ram(pagenr)) {
710		/*
711		 * For disallowed memory regions in the low 1MB range,
712		 * request that the page be shown as all zeros.
713		 */
714		if (pagenr < 256)
715			return 2;
716
717		return 0;
718	}
719
720	/*
721	 * This must follow RAM test, since System RAM is considered a
722	 * restricted resource under CONFIG_STRICT_IOMEM.
723	 */
724	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
725		/* Low 1MB bypasses iomem restrictions. */
726		if (pagenr < 256)
727			return 1;
728
729		return 0;
730	}
731
732	return 1;
733}
734
735void free_init_pages(char *what, unsigned long begin, unsigned long end)
736{
737	unsigned long begin_aligned, end_aligned;
738
739	/* Make sure boundaries are page aligned */
740	begin_aligned = PAGE_ALIGN(begin);
741	end_aligned   = end & PAGE_MASK;
742
743	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
744		begin = begin_aligned;
745		end   = end_aligned;
746	}
747
748	if (begin >= end)
749		return;
750
751	/*
752	 * If debugging page accesses then do not free this memory but
753	 * mark them not present - any buggy init-section access will
754	 * create a kernel page fault:
755	 */
756	if (debug_pagealloc_enabled()) {
757		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
758			begin, end - 1);
759		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
760	} else {
761		/*
762		 * We just marked the kernel text read only above, now that
763		 * we are going to free part of that, we need to make that
764		 * writeable and non-executable first.
765		 */
766		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
767		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
768
769		free_reserved_area((void *)begin, (void *)end,
770				   POISON_FREE_INITMEM, what);
771	}
772}
773
774void __ref free_initmem(void)
775{
776	e820__reallocate_tables();
777
778	free_init_pages("unused kernel",
779			(unsigned long)(&__init_begin),
780			(unsigned long)(&__init_end));
781}
782
783#ifdef CONFIG_BLK_DEV_INITRD
784void __init free_initrd_mem(unsigned long start, unsigned long end)
785{
786	/*
 
 
 
 
 
 
 
787	 * end could be not aligned, and We can not align that,
788	 * decompresser could be confused by aligned initrd_end
789	 * We already reserve the end partial page before in
790	 *   - i386_start_kernel()
791	 *   - x86_64_start_kernel()
792	 *   - relocate_initrd()
793	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
794	 */
795	free_init_pages("initrd", start, PAGE_ALIGN(end));
796}
797#endif
798
799/*
800 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
801 * and pass it to the MM layer - to help it set zone watermarks more
802 * accurately.
803 *
804 * Done on 64-bit systems only for the time being, although 32-bit systems
805 * might benefit from this as well.
806 */
807void __init memblock_find_dma_reserve(void)
808{
809#ifdef CONFIG_X86_64
810	u64 nr_pages = 0, nr_free_pages = 0;
811	unsigned long start_pfn, end_pfn;
812	phys_addr_t start_addr, end_addr;
813	int i;
814	u64 u;
815
816	/*
817	 * Iterate over all memory ranges (free and reserved ones alike),
818	 * to calculate the total number of pages in the first 16 MB of RAM:
819	 */
820	nr_pages = 0;
821	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
822		start_pfn = min(start_pfn, MAX_DMA_PFN);
823		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
824
825		nr_pages += end_pfn - start_pfn;
826	}
827
828	/*
829	 * Iterate over free memory ranges to calculate the number of free
830	 * pages in the DMA zone, while not counting potential partial
831	 * pages at the beginning or the end of the range:
832	 */
833	nr_free_pages = 0;
834	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
835		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
836		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
837
838		if (start_pfn < end_pfn)
839			nr_free_pages += end_pfn - start_pfn;
840	}
841
842	set_dma_reserve(nr_pages - nr_free_pages);
843#endif
844}
845
846void __init zone_sizes_init(void)
847{
848	unsigned long max_zone_pfns[MAX_NR_ZONES];
849
850	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
851
852#ifdef CONFIG_ZONE_DMA
853	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
854#endif
855#ifdef CONFIG_ZONE_DMA32
856	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
857#endif
858	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
859#ifdef CONFIG_HIGHMEM
860	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
861#endif
862
863	free_area_init_nodes(max_zone_pfns);
864}
865
866__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
867	.loaded_mm = &init_mm,
868	.next_asid = 1,
 
 
869	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
870};
871EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
872
873void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
874{
875	/* entry 0 MUST be WB (hardwired to speed up translations) */
876	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
877
878	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
879	__pte2cachemode_tbl[entry] = cache;
880}