Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2018 Chen-Yu Tsai
  4 *
  5 * Chen-Yu Tsai <wens@csie.org>
  6 *
  7 * arch/arm/mach-sunxi/mc_smp.c
  8 *
  9 * Based on Allwinner code, arch/arm/mach-exynos/mcpm-exynos.c, and
 10 * arch/arm/mach-hisi/platmcpm.c
 11 * Cluster cache enable trampoline code adapted from MCPM framework
 12 */
 13
 14#include <linux/arm-cci.h>
 15#include <linux/cpu_pm.h>
 16#include <linux/delay.h>
 17#include <linux/io.h>
 18#include <linux/iopoll.h>
 19#include <linux/irqchip/arm-gic.h>
 20#include <linux/of.h>
 21#include <linux/of_address.h>
 22#include <linux/of_device.h>
 23#include <linux/smp.h>
 24
 25#include <asm/cacheflush.h>
 26#include <asm/cp15.h>
 27#include <asm/cputype.h>
 28#include <asm/idmap.h>
 29#include <asm/smp_plat.h>
 30#include <asm/suspend.h>
 31
 32#define SUNXI_CPUS_PER_CLUSTER		4
 33#define SUNXI_NR_CLUSTERS		2
 34
 35#define POLL_USEC	100
 36#define TIMEOUT_USEC	100000
 37
 38#define CPUCFG_CX_CTRL_REG0(c)		(0x10 * (c))
 39#define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(n)	BIT(n)
 40#define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL	0xf
 41#define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7	BIT(4)
 42#define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15	BIT(0)
 43#define CPUCFG_CX_CTRL_REG1(c)		(0x10 * (c) + 0x4)
 44#define CPUCFG_CX_CTRL_REG1_ACINACTM	BIT(0)
 45#define CPUCFG_CX_STATUS(c)		(0x30 + 0x4 * (c))
 46#define CPUCFG_CX_STATUS_STANDBYWFI(n)	BIT(16 + (n))
 47#define CPUCFG_CX_STATUS_STANDBYWFIL2	BIT(0)
 48#define CPUCFG_CX_RST_CTRL(c)		(0x80 + 0x4 * (c))
 49#define CPUCFG_CX_RST_CTRL_DBG_SOC_RST	BIT(24)
 50#define CPUCFG_CX_RST_CTRL_ETM_RST(n)	BIT(20 + (n))
 51#define CPUCFG_CX_RST_CTRL_ETM_RST_ALL	(0xf << 20)
 52#define CPUCFG_CX_RST_CTRL_DBG_RST(n)	BIT(16 + (n))
 53#define CPUCFG_CX_RST_CTRL_DBG_RST_ALL	(0xf << 16)
 54#define CPUCFG_CX_RST_CTRL_H_RST	BIT(12)
 55#define CPUCFG_CX_RST_CTRL_L2_RST	BIT(8)
 56#define CPUCFG_CX_RST_CTRL_CX_RST(n)	BIT(4 + (n))
 57#define CPUCFG_CX_RST_CTRL_CORE_RST(n)	BIT(n)
 58
 59#define PRCM_CPU_PO_RST_CTRL(c)		(0x4 + 0x4 * (c))
 60#define PRCM_CPU_PO_RST_CTRL_CORE(n)	BIT(n)
 61#define PRCM_CPU_PO_RST_CTRL_CORE_ALL	0xf
 62#define PRCM_PWROFF_GATING_REG(c)	(0x100 + 0x4 * (c))
 63#define PRCM_PWROFF_GATING_REG_CLUSTER	BIT(4)
 64#define PRCM_PWROFF_GATING_REG_CORE(n)	BIT(n)
 65#define PRCM_PWR_SWITCH_REG(c, cpu)	(0x140 + 0x10 * (c) + 0x4 * (cpu))
 66#define PRCM_CPU_SOFT_ENTRY_REG		0x164
 67
 68#define CPU0_SUPPORT_HOTPLUG_MAGIC0	0xFA50392F
 69#define CPU0_SUPPORT_HOTPLUG_MAGIC1	0x790DCA3A
 70
 71static void __iomem *cpucfg_base;
 72static void __iomem *prcm_base;
 73static void __iomem *sram_b_smp_base;
 74
 75static bool sunxi_core_is_cortex_a15(unsigned int core, unsigned int cluster)
 76{
 77	struct device_node *node;
 78	int cpu = cluster * SUNXI_CPUS_PER_CLUSTER + core;
 79
 80	node = of_cpu_device_node_get(cpu);
 81
 82	/* In case of_cpu_device_node_get fails */
 83	if (!node)
 84		node = of_get_cpu_node(cpu, NULL);
 85
 86	if (!node) {
 87		/*
 88		 * There's no point in returning an error, since we
 89		 * would be mid way in a core or cluster power sequence.
 90		 */
 91		pr_err("%s: Couldn't get CPU cluster %u core %u device node\n",
 92		       __func__, cluster, core);
 93
 94		return false;
 95	}
 96
 97	return of_device_is_compatible(node, "arm,cortex-a15");
 98}
 99
100static int sunxi_cpu_power_switch_set(unsigned int cpu, unsigned int cluster,
101				      bool enable)
102{
103	u32 reg;
104
105	/* control sequence from Allwinner A80 user manual v1.2 PRCM section */
106	reg = readl(prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
107	if (enable) {
108		if (reg == 0x00) {
109			pr_debug("power clamp for cluster %u cpu %u already open\n",
110				 cluster, cpu);
111			return 0;
112		}
113
114		writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
115		udelay(10);
116		writel(0xfe, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
117		udelay(10);
118		writel(0xf8, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
119		udelay(10);
120		writel(0xf0, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
121		udelay(10);
122		writel(0x00, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
123		udelay(10);
124	} else {
125		writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
126		udelay(10);
127	}
128
129	return 0;
130}
131
132static void sunxi_cpu0_hotplug_support_set(bool enable)
133{
134	if (enable) {
135		writel(CPU0_SUPPORT_HOTPLUG_MAGIC0, sram_b_smp_base);
136		writel(CPU0_SUPPORT_HOTPLUG_MAGIC1, sram_b_smp_base + 0x4);
137	} else {
138		writel(0x0, sram_b_smp_base);
139		writel(0x0, sram_b_smp_base + 0x4);
140	}
141}
142
143static int sunxi_cpu_powerup(unsigned int cpu, unsigned int cluster)
144{
145	u32 reg;
146
147	pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
148	if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS)
149		return -EINVAL;
150
151	/* Set hotplug support magic flags for cpu0 */
152	if (cluster == 0 && cpu == 0)
153		sunxi_cpu0_hotplug_support_set(true);
154
155	/* assert processor power-on reset */
156	reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
157	reg &= ~PRCM_CPU_PO_RST_CTRL_CORE(cpu);
158	writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
159
160	/* Cortex-A7: hold L1 reset disable signal low */
161	if (!sunxi_core_is_cortex_a15(cpu, cluster)) {
162		reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
163		reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(cpu);
164		writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
165	}
166
167	/* assert processor related resets */
168	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
169	reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST(cpu);
170
171	/*
172	 * Allwinner code also asserts resets for NEON on A15. According
173	 * to ARM manuals, asserting power-on reset is sufficient.
174	 */
175	if (!sunxi_core_is_cortex_a15(cpu, cluster))
176		reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST(cpu);
177
178	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
179
180	/* open power switch */
181	sunxi_cpu_power_switch_set(cpu, cluster, true);
182
183	/* clear processor power gate */
184	reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
185	reg &= ~PRCM_PWROFF_GATING_REG_CORE(cpu);
186	writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
187	udelay(20);
188
189	/* de-assert processor power-on reset */
190	reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
191	reg |= PRCM_CPU_PO_RST_CTRL_CORE(cpu);
192	writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
193
194	/* de-assert all processor resets */
195	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
196	reg |= CPUCFG_CX_RST_CTRL_DBG_RST(cpu);
197	reg |= CPUCFG_CX_RST_CTRL_CORE_RST(cpu);
198	if (!sunxi_core_is_cortex_a15(cpu, cluster))
199		reg |= CPUCFG_CX_RST_CTRL_ETM_RST(cpu);
200	else
201		reg |= CPUCFG_CX_RST_CTRL_CX_RST(cpu); /* NEON */
202	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
203
204	return 0;
205}
206
207static int sunxi_cluster_powerup(unsigned int cluster)
208{
209	u32 reg;
210
211	pr_debug("%s: cluster %u\n", __func__, cluster);
212	if (cluster >= SUNXI_NR_CLUSTERS)
213		return -EINVAL;
214
215	/* assert ACINACTM */
216	reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
217	reg |= CPUCFG_CX_CTRL_REG1_ACINACTM;
218	writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
219
220	/* assert cluster processor power-on resets */
221	reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
222	reg &= ~PRCM_CPU_PO_RST_CTRL_CORE_ALL;
223	writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
224
225	/* assert cluster resets */
226	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
227	reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
228	reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST_ALL;
229	reg &= ~CPUCFG_CX_RST_CTRL_H_RST;
230	reg &= ~CPUCFG_CX_RST_CTRL_L2_RST;
231
232	/*
233	 * Allwinner code also asserts resets for NEON on A15. According
234	 * to ARM manuals, asserting power-on reset is sufficient.
235	 */
236	if (!sunxi_core_is_cortex_a15(0, cluster))
237		reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST_ALL;
238
239	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
240
241	/* hold L1/L2 reset disable signals low */
242	reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
243	if (sunxi_core_is_cortex_a15(0, cluster)) {
244		/* Cortex-A15: hold L2RSTDISABLE low */
245		reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15;
246	} else {
247		/* Cortex-A7: hold L1RSTDISABLE and L2RSTDISABLE low */
248		reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL;
249		reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7;
250	}
251	writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
252
253	/* clear cluster power gate */
254	reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
255	reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER;
256	writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
257	udelay(20);
258
259	/* de-assert cluster resets */
260	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
261	reg |= CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
262	reg |= CPUCFG_CX_RST_CTRL_H_RST;
263	reg |= CPUCFG_CX_RST_CTRL_L2_RST;
264	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
265
266	/* de-assert ACINACTM */
267	reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
268	reg &= ~CPUCFG_CX_CTRL_REG1_ACINACTM;
269	writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
270
271	return 0;
272}
273
274/*
275 * This bit is shared between the initial nocache_trampoline call to
276 * enable CCI-400 and proper cluster cache disable before power down.
277 */
278static void sunxi_cluster_cache_disable_without_axi(void)
279{
280	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) {
281		/*
282		 * On the Cortex-A15 we need to disable
283		 * L2 prefetching before flushing the cache.
284		 */
285		asm volatile(
286		"mcr	p15, 1, %0, c15, c0, 3\n"
287		"isb\n"
288		"dsb"
289		: : "r" (0x400));
290	}
291
292	/* Flush all cache levels for this cluster. */
293	v7_exit_coherency_flush(all);
294
295	/*
296	 * Disable cluster-level coherency by masking
297	 * incoming snoops and DVM messages:
298	 */
299	cci_disable_port_by_cpu(read_cpuid_mpidr());
300}
301
302static int sunxi_mc_smp_cpu_table[SUNXI_NR_CLUSTERS][SUNXI_CPUS_PER_CLUSTER];
303static int sunxi_mc_smp_first_comer;
304
305/*
306 * Enable cluster-level coherency, in preparation for turning on the MMU.
307 *
308 * Also enable regional clock gating and L2 data latency settings for
309 * Cortex-A15. These settings are from the vendor kernel.
310 */
311static void __naked sunxi_mc_smp_cluster_cache_enable(void)
312{
313	asm volatile (
314		"mrc	p15, 0, r1, c0, c0, 0\n"
315		"movw	r2, #" __stringify(ARM_CPU_PART_MASK & 0xffff) "\n"
316		"movt	r2, #" __stringify(ARM_CPU_PART_MASK >> 16) "\n"
317		"and	r1, r1, r2\n"
318		"movw	r2, #" __stringify(ARM_CPU_PART_CORTEX_A15 & 0xffff) "\n"
319		"movt	r2, #" __stringify(ARM_CPU_PART_CORTEX_A15 >> 16) "\n"
320		"cmp	r1, r2\n"
321		"bne	not_a15\n"
322
323		/* The following is Cortex-A15 specific */
324
325		/* ACTLR2: Enable CPU regional clock gates */
326		"mrc p15, 1, r1, c15, c0, 4\n"
327		"orr r1, r1, #(0x1<<31)\n"
328		"mcr p15, 1, r1, c15, c0, 4\n"
329
330		/* L2ACTLR */
331		"mrc p15, 1, r1, c15, c0, 0\n"
332		/* Enable L2, GIC, and Timer regional clock gates */
333		"orr r1, r1, #(0x1<<26)\n"
334		/* Disable clean/evict from being pushed to external */
335		"orr r1, r1, #(0x1<<3)\n"
336		"mcr p15, 1, r1, c15, c0, 0\n"
337
338		/* L2CTRL: L2 data RAM latency */
339		"mrc p15, 1, r1, c9, c0, 2\n"
340		"bic r1, r1, #(0x7<<0)\n"
341		"orr r1, r1, #(0x3<<0)\n"
342		"mcr p15, 1, r1, c9, c0, 2\n"
343
344		/* End of Cortex-A15 specific setup */
345		"not_a15:\n"
346
347		/* Get value of sunxi_mc_smp_first_comer */
348		"adr	r1, first\n"
349		"ldr	r0, [r1]\n"
350		"ldr	r0, [r1, r0]\n"
351
352		/* Skip cci_enable_port_for_self if not first comer */
353		"cmp	r0, #0\n"
354		"bxeq	lr\n"
355		"b	cci_enable_port_for_self\n"
356
357		".align 2\n"
358		"first: .word sunxi_mc_smp_first_comer - .\n"
359	);
360}
361
362static void __naked sunxi_mc_smp_secondary_startup(void)
363{
364	asm volatile(
365		"bl	sunxi_mc_smp_cluster_cache_enable\n"
366		"b	secondary_startup"
367		/* Let compiler know about sunxi_mc_smp_cluster_cache_enable */
368		:: "i" (sunxi_mc_smp_cluster_cache_enable)
369	);
370}
371
372static DEFINE_SPINLOCK(boot_lock);
373
374static bool sunxi_mc_smp_cluster_is_down(unsigned int cluster)
375{
376	int i;
377
378	for (i = 0; i < SUNXI_CPUS_PER_CLUSTER; i++)
379		if (sunxi_mc_smp_cpu_table[cluster][i])
380			return false;
381	return true;
382}
383
384static void sunxi_mc_smp_secondary_init(unsigned int cpu)
385{
386	/* Clear hotplug support magic flags for cpu0 */
387	if (cpu == 0)
388		sunxi_cpu0_hotplug_support_set(false);
389}
390
391static int sunxi_mc_smp_boot_secondary(unsigned int l_cpu, struct task_struct *idle)
392{
393	unsigned int mpidr, cpu, cluster;
394
395	mpidr = cpu_logical_map(l_cpu);
396	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
397	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
398
399	if (!cpucfg_base)
400		return -ENODEV;
401	if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER)
402		return -EINVAL;
403
404	spin_lock_irq(&boot_lock);
405
406	if (sunxi_mc_smp_cpu_table[cluster][cpu])
407		goto out;
408
409	if (sunxi_mc_smp_cluster_is_down(cluster)) {
410		sunxi_mc_smp_first_comer = true;
411		sunxi_cluster_powerup(cluster);
412	} else {
413		sunxi_mc_smp_first_comer = false;
414	}
415
416	/* This is read by incoming CPUs with their cache and MMU disabled */
417	sync_cache_w(&sunxi_mc_smp_first_comer);
418	sunxi_cpu_powerup(cpu, cluster);
419
420out:
421	sunxi_mc_smp_cpu_table[cluster][cpu]++;
422	spin_unlock_irq(&boot_lock);
423
424	return 0;
425}
426
427#ifdef CONFIG_HOTPLUG_CPU
428static void sunxi_cluster_cache_disable(void)
429{
430	unsigned int cluster = MPIDR_AFFINITY_LEVEL(read_cpuid_mpidr(), 1);
431	u32 reg;
432
433	pr_debug("%s: cluster %u\n", __func__, cluster);
434
435	sunxi_cluster_cache_disable_without_axi();
436
437	/* last man standing, assert ACINACTM */
438	reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
439	reg |= CPUCFG_CX_CTRL_REG1_ACINACTM;
440	writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
441}
442
443static void sunxi_mc_smp_cpu_die(unsigned int l_cpu)
444{
445	unsigned int mpidr, cpu, cluster;
446	bool last_man;
447
448	mpidr = cpu_logical_map(l_cpu);
449	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
450	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
451	pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
452
453	spin_lock(&boot_lock);
454	sunxi_mc_smp_cpu_table[cluster][cpu]--;
455	if (sunxi_mc_smp_cpu_table[cluster][cpu] == 1) {
456		/* A power_up request went ahead of us. */
457		pr_debug("%s: aborting due to a power up request\n",
458			 __func__);
459		spin_unlock(&boot_lock);
460		return;
461	} else if (sunxi_mc_smp_cpu_table[cluster][cpu] > 1) {
462		pr_err("Cluster %d CPU%d boots multiple times\n",
463		       cluster, cpu);
464		BUG();
465	}
466
467	last_man = sunxi_mc_smp_cluster_is_down(cluster);
468	spin_unlock(&boot_lock);
469
470	gic_cpu_if_down(0);
471	if (last_man)
472		sunxi_cluster_cache_disable();
473	else
474		v7_exit_coherency_flush(louis);
475
476	for (;;)
477		wfi();
478}
479
480static int sunxi_cpu_powerdown(unsigned int cpu, unsigned int cluster)
481{
482	u32 reg;
483
484	pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
485	if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS)
486		return -EINVAL;
487
488	/* gate processor power */
489	reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
490	reg |= PRCM_PWROFF_GATING_REG_CORE(cpu);
491	writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
492	udelay(20);
493
494	/* close power switch */
495	sunxi_cpu_power_switch_set(cpu, cluster, false);
496
497	return 0;
498}
499
500static int sunxi_cluster_powerdown(unsigned int cluster)
501{
502	u32 reg;
503
504	pr_debug("%s: cluster %u\n", __func__, cluster);
505	if (cluster >= SUNXI_NR_CLUSTERS)
506		return -EINVAL;
507
508	/* assert cluster resets or system will hang */
509	pr_debug("%s: assert cluster reset\n", __func__);
510	reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
511	reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
512	reg &= ~CPUCFG_CX_RST_CTRL_H_RST;
513	reg &= ~CPUCFG_CX_RST_CTRL_L2_RST;
514	writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
515
516	/* gate cluster power */
517	pr_debug("%s: gate cluster power\n", __func__);
518	reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
519	reg |= PRCM_PWROFF_GATING_REG_CLUSTER;
520	writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
521	udelay(20);
522
523	return 0;
524}
525
526static int sunxi_mc_smp_cpu_kill(unsigned int l_cpu)
527{
528	unsigned int mpidr, cpu, cluster;
529	unsigned int tries, count;
530	int ret = 0;
531	u32 reg;
532
533	mpidr = cpu_logical_map(l_cpu);
534	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
535	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
536
537	/* This should never happen */
538	if (WARN_ON(cluster >= SUNXI_NR_CLUSTERS ||
539		    cpu >= SUNXI_CPUS_PER_CLUSTER))
540		return 0;
541
542	/* wait for CPU core to die and enter WFI */
543	count = TIMEOUT_USEC / POLL_USEC;
544	spin_lock_irq(&boot_lock);
545	for (tries = 0; tries < count; tries++) {
546		spin_unlock_irq(&boot_lock);
547		usleep_range(POLL_USEC / 2, POLL_USEC);
548		spin_lock_irq(&boot_lock);
549
550		/*
551		 * If the user turns off a bunch of cores at the same
552		 * time, the kernel might call cpu_kill before some of
553		 * them are ready. This is because boot_lock serializes
554		 * both cpu_die and cpu_kill callbacks. Either one could
555		 * run first. We should wait for cpu_die to complete.
556		 */
557		if (sunxi_mc_smp_cpu_table[cluster][cpu])
558			continue;
559
560		reg = readl(cpucfg_base + CPUCFG_CX_STATUS(cluster));
561		if (reg & CPUCFG_CX_STATUS_STANDBYWFI(cpu))
562			break;
563	}
564
565	if (tries >= count) {
566		ret = ETIMEDOUT;
567		goto out;
568	}
569
570	/* power down CPU core */
571	sunxi_cpu_powerdown(cpu, cluster);
572
573	if (!sunxi_mc_smp_cluster_is_down(cluster))
574		goto out;
575
576	/* wait for cluster L2 WFI */
577	ret = readl_poll_timeout(cpucfg_base + CPUCFG_CX_STATUS(cluster), reg,
578				 reg & CPUCFG_CX_STATUS_STANDBYWFIL2,
579				 POLL_USEC, TIMEOUT_USEC);
580	if (ret) {
581		/*
582		 * Ignore timeout on the cluster. Leaving the cluster on
583		 * will not affect system execution, just use a bit more
584		 * power. But returning an error here will only confuse
585		 * the user as the CPU has already been shutdown.
586		 */
587		ret = 0;
588		goto out;
589	}
590
591	/* Power down cluster */
592	sunxi_cluster_powerdown(cluster);
593
594out:
595	spin_unlock_irq(&boot_lock);
596	pr_debug("%s: cluster %u cpu %u powerdown: %d\n",
597		 __func__, cluster, cpu, ret);
598	return !ret;
599}
600
601static bool sunxi_mc_smp_cpu_can_disable(unsigned int __unused)
602{
603	return true;
604}
605#endif
606
607static const struct smp_operations sunxi_mc_smp_smp_ops __initconst = {
608	.smp_secondary_init	= sunxi_mc_smp_secondary_init,
609	.smp_boot_secondary	= sunxi_mc_smp_boot_secondary,
610#ifdef CONFIG_HOTPLUG_CPU
611	.cpu_die		= sunxi_mc_smp_cpu_die,
612	.cpu_kill		= sunxi_mc_smp_cpu_kill,
613	.cpu_can_disable	= sunxi_mc_smp_cpu_can_disable,
614#endif
615};
616
617static bool __init sunxi_mc_smp_cpu_table_init(void)
618{
619	unsigned int mpidr, cpu, cluster;
620
621	mpidr = read_cpuid_mpidr();
622	cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
623	cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
624
625	if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER) {
626		pr_err("%s: boot CPU is out of bounds!\n", __func__);
627		return false;
628	}
629	sunxi_mc_smp_cpu_table[cluster][cpu] = 1;
630	return true;
631}
632
633/*
634 * Adapted from arch/arm/common/mc_smp_entry.c
635 *
636 * We need the trampoline code to enable CCI-400 on the first cluster
637 */
638typedef typeof(cpu_reset) phys_reset_t;
639
640static void __init __naked sunxi_mc_smp_resume(void)
641{
642	asm volatile(
643		"bl	sunxi_mc_smp_cluster_cache_enable\n"
644		"b	cpu_resume"
645		/* Let compiler know about sunxi_mc_smp_cluster_cache_enable */
646		:: "i" (sunxi_mc_smp_cluster_cache_enable)
647	);
648}
649
650static int __init nocache_trampoline(unsigned long __unused)
651{
652	phys_reset_t phys_reset;
653
654	setup_mm_for_reboot();
655	sunxi_cluster_cache_disable_without_axi();
656
657	phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
658	phys_reset(__pa_symbol(sunxi_mc_smp_resume), false);
659	BUG();
660}
661
662static int __init sunxi_mc_smp_loopback(void)
663{
664	int ret;
665
666	/*
667	 * We're going to soft-restart the current CPU through the
668	 * low-level MCPM code by leveraging the suspend/resume
669	 * infrastructure. Let's play it safe by using cpu_pm_enter()
670	 * in case the CPU init code path resets the VFP or similar.
671	 */
672	sunxi_mc_smp_first_comer = true;
673	local_irq_disable();
674	local_fiq_disable();
675	ret = cpu_pm_enter();
676	if (!ret) {
677		ret = cpu_suspend(0, nocache_trampoline);
678		cpu_pm_exit();
679	}
680	local_fiq_enable();
681	local_irq_enable();
682	sunxi_mc_smp_first_comer = false;
683
684	return ret;
685}
686
687/*
688 * This holds any device nodes that we requested resources for,
689 * so that we may easily release resources in the error path.
690 */
691struct sunxi_mc_smp_nodes {
692	struct device_node *prcm_node;
693	struct device_node *cpucfg_node;
694	struct device_node *sram_node;
695};
696
697/* This structure holds SoC-specific bits tied to an enable-method string. */
698struct sunxi_mc_smp_data {
699	const char *enable_method;
700	int (*get_smp_nodes)(struct sunxi_mc_smp_nodes *nodes);
701};
702
703static void __init sunxi_mc_smp_put_nodes(struct sunxi_mc_smp_nodes *nodes)
704{
705	of_node_put(nodes->prcm_node);
706	of_node_put(nodes->cpucfg_node);
707	of_node_put(nodes->sram_node);
708	memset(nodes, 0, sizeof(*nodes));
709}
710
711static int __init sun9i_a80_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes)
712{
713	nodes->prcm_node = of_find_compatible_node(NULL, NULL,
714						   "allwinner,sun9i-a80-prcm");
715	if (!nodes->prcm_node) {
716		pr_err("%s: PRCM not available\n", __func__);
717		return -ENODEV;
718	}
719
720	nodes->cpucfg_node = of_find_compatible_node(NULL, NULL,
721						     "allwinner,sun9i-a80-cpucfg");
722	if (!nodes->cpucfg_node) {
723		pr_err("%s: CPUCFG not available\n", __func__);
724		return -ENODEV;
725	}
726
727	nodes->sram_node = of_find_compatible_node(NULL, NULL,
728						   "allwinner,sun9i-a80-smp-sram");
729	if (!nodes->sram_node) {
730		pr_err("%s: Secure SRAM not available\n", __func__);
731		return -ENODEV;
732	}
733
734	return 0;
735}
736
737static const struct sunxi_mc_smp_data sunxi_mc_smp_data[] __initconst = {
738	{
739		.enable_method	= "allwinner,sun9i-a80-smp",
740		.get_smp_nodes	= sun9i_a80_get_smp_nodes,
741	},
742};
743
744static int __init sunxi_mc_smp_init(void)
745{
746	struct sunxi_mc_smp_nodes nodes = { 0 };
747	struct device_node *node;
748	struct resource res;
749	int i, ret;
750
751	/*
752	 * Don't bother checking the "cpus" node, as an enable-method
753	 * property in that node is undocumented.
754	 */
755	node = of_cpu_device_node_get(0);
756	if (!node)
757		return -ENODEV;
758
759	/*
760	 * We can't actually use the enable-method magic in the kernel.
761	 * Our loopback / trampoline code uses the CPU suspend framework,
762	 * which requires the identity mapping be available. It would not
763	 * yet be available if we used the .init_cpus or .prepare_cpus
764	 * callbacks in smp_operations, which we would use if we were to
765	 * use CPU_METHOD_OF_DECLARE
766	 */
767	for (i = 0; i < ARRAY_SIZE(sunxi_mc_smp_data); i++) {
768		ret = of_property_match_string(node, "enable-method",
769					       sunxi_mc_smp_data[i].enable_method);
770		if (!ret)
771			break;
772	}
773
774	of_node_put(node);
775	if (ret)
776		return -ENODEV;
777
778	if (!sunxi_mc_smp_cpu_table_init())
779		return -EINVAL;
780
781	if (!cci_probed()) {
782		pr_err("%s: CCI-400 not available\n", __func__);
783		return -ENODEV;
784	}
785
786	/* Get needed device tree nodes */
787	ret = sunxi_mc_smp_data[i].get_smp_nodes(&nodes);
788	if (ret)
789		goto err_put_nodes;
790
791	/*
792	 * Unfortunately we can not request the I/O region for the PRCM.
793	 * It is shared with the PRCM clock.
794	 */
795	prcm_base = of_iomap(nodes.prcm_node, 0);
796	if (!prcm_base) {
797		pr_err("%s: failed to map PRCM registers\n", __func__);
798		ret = -ENOMEM;
799		goto err_put_nodes;
800	}
801
802	cpucfg_base = of_io_request_and_map(nodes.cpucfg_node, 0,
803					    "sunxi-mc-smp");
804	if (IS_ERR(cpucfg_base)) {
805		ret = PTR_ERR(cpucfg_base);
806		pr_err("%s: failed to map CPUCFG registers: %d\n",
807		       __func__, ret);
808		goto err_unmap_prcm;
809	}
810
811	sram_b_smp_base = of_io_request_and_map(nodes.sram_node, 0,
812						"sunxi-mc-smp");
813	if (IS_ERR(sram_b_smp_base)) {
814		ret = PTR_ERR(sram_b_smp_base);
815		pr_err("%s: failed to map secure SRAM\n", __func__);
816		goto err_unmap_release_cpucfg;
817	}
818
819	/* Configure CCI-400 for boot cluster */
820	ret = sunxi_mc_smp_loopback();
821	if (ret) {
822		pr_err("%s: failed to configure boot cluster: %d\n",
823		       __func__, ret);
824		goto err_unmap_release_secure_sram;
825	}
826
827	/* We don't need the device nodes anymore */
828	sunxi_mc_smp_put_nodes(&nodes);
829
830	/* Set the hardware entry point address */
831	writel(__pa_symbol(sunxi_mc_smp_secondary_startup),
832	       prcm_base + PRCM_CPU_SOFT_ENTRY_REG);
833
834	/* Actually enable multi cluster SMP */
835	smp_set_ops(&sunxi_mc_smp_smp_ops);
836
837	pr_info("sunxi multi cluster SMP support installed\n");
838
839	return 0;
840
841err_unmap_release_secure_sram:
842	iounmap(sram_b_smp_base);
843	of_address_to_resource(nodes.sram_node, 0, &res);
844	release_mem_region(res.start, resource_size(&res));
845err_unmap_release_cpucfg:
846	iounmap(cpucfg_base);
847	of_address_to_resource(nodes.cpucfg_node, 0, &res);
848	release_mem_region(res.start, resource_size(&res));
849err_unmap_prcm:
850	iounmap(prcm_base);
851err_put_nodes:
852	sunxi_mc_smp_put_nodes(&nodes);
853	return ret;
854}
855
856early_initcall(sunxi_mc_smp_init);