Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2018 Chen-Yu Tsai * * Chen-Yu Tsai <wens@csie.org> * * arch/arm/mach-sunxi/mc_smp.c * * Based on Allwinner code, arch/arm/mach-exynos/mcpm-exynos.c, and * arch/arm/mach-hisi/platmcpm.c * Cluster cache enable trampoline code adapted from MCPM framework */ #include <linux/arm-cci.h> #include <linux/cpu_pm.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/irqchip/arm-gic.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/smp.h> #include <asm/cacheflush.h> #include <asm/cp15.h> #include <asm/cputype.h> #include <asm/idmap.h> #include <asm/smp_plat.h> #include <asm/suspend.h> #define SUNXI_CPUS_PER_CLUSTER 4 #define SUNXI_NR_CLUSTERS 2 #define POLL_USEC 100 #define TIMEOUT_USEC 100000 #define CPUCFG_CX_CTRL_REG0(c) (0x10 * (c)) #define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(n) BIT(n) #define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL 0xf #define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7 BIT(4) #define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15 BIT(0) #define CPUCFG_CX_CTRL_REG1(c) (0x10 * (c) + 0x4) #define CPUCFG_CX_CTRL_REG1_ACINACTM BIT(0) #define CPUCFG_CX_STATUS(c) (0x30 + 0x4 * (c)) #define CPUCFG_CX_STATUS_STANDBYWFI(n) BIT(16 + (n)) #define CPUCFG_CX_STATUS_STANDBYWFIL2 BIT(0) #define CPUCFG_CX_RST_CTRL(c) (0x80 + 0x4 * (c)) #define CPUCFG_CX_RST_CTRL_DBG_SOC_RST BIT(24) #define CPUCFG_CX_RST_CTRL_ETM_RST(n) BIT(20 + (n)) #define CPUCFG_CX_RST_CTRL_ETM_RST_ALL (0xf << 20) #define CPUCFG_CX_RST_CTRL_DBG_RST(n) BIT(16 + (n)) #define CPUCFG_CX_RST_CTRL_DBG_RST_ALL (0xf << 16) #define CPUCFG_CX_RST_CTRL_H_RST BIT(12) #define CPUCFG_CX_RST_CTRL_L2_RST BIT(8) #define CPUCFG_CX_RST_CTRL_CX_RST(n) BIT(4 + (n)) #define CPUCFG_CX_RST_CTRL_CORE_RST(n) BIT(n) #define CPUCFG_CX_RST_CTRL_CORE_RST_ALL (0xf << 0) #define PRCM_CPU_PO_RST_CTRL(c) (0x4 + 0x4 * (c)) #define PRCM_CPU_PO_RST_CTRL_CORE(n) BIT(n) #define PRCM_CPU_PO_RST_CTRL_CORE_ALL 0xf #define PRCM_PWROFF_GATING_REG(c) (0x100 + 0x4 * (c)) /* The power off register for clusters are different from a80 and a83t */ #define PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I BIT(0) #define PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I BIT(4) #define PRCM_PWROFF_GATING_REG_CORE(n) BIT(n) #define PRCM_PWR_SWITCH_REG(c, cpu) (0x140 + 0x10 * (c) + 0x4 * (cpu)) #define PRCM_CPU_SOFT_ENTRY_REG 0x164 /* R_CPUCFG registers, specific to sun8i-a83t */ #define R_CPUCFG_CLUSTER_PO_RST_CTRL(c) (0x30 + (c) * 0x4) #define R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(n) BIT(n) #define R_CPUCFG_CPU_SOFT_ENTRY_REG 0x01a4 #define CPU0_SUPPORT_HOTPLUG_MAGIC0 0xFA50392F #define CPU0_SUPPORT_HOTPLUG_MAGIC1 0x790DCA3A static void __iomem *cpucfg_base; static void __iomem *prcm_base; static void __iomem *sram_b_smp_base; static void __iomem *r_cpucfg_base; extern void sunxi_mc_smp_secondary_startup(void); extern void sunxi_mc_smp_resume(void); static bool is_a83t; static bool sunxi_core_is_cortex_a15(unsigned int core, unsigned int cluster) { struct device_node *node; int cpu = cluster * SUNXI_CPUS_PER_CLUSTER + core; bool is_compatible; node = of_cpu_device_node_get(cpu); /* In case of_cpu_device_node_get fails */ if (!node) node = of_get_cpu_node(cpu, NULL); if (!node) { /* * There's no point in returning an error, since we * would be mid way in a core or cluster power sequence. */ pr_err("%s: Couldn't get CPU cluster %u core %u device node\n", __func__, cluster, core); return false; } is_compatible = of_device_is_compatible(node, "arm,cortex-a15"); of_node_put(node); return is_compatible; } static int sunxi_cpu_power_switch_set(unsigned int cpu, unsigned int cluster, bool enable) { u32 reg; /* control sequence from Allwinner A80 user manual v1.2 PRCM section */ reg = readl(prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu)); if (enable) { if (reg == 0x00) { pr_debug("power clamp for cluster %u cpu %u already open\n", cluster, cpu); return 0; } writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu)); udelay(10); writel(0xfe, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu)); udelay(10); writel(0xf8, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu)); udelay(10); writel(0xf0, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu)); udelay(10); writel(0x00, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu)); udelay(10); } else { writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu)); udelay(10); } return 0; } static void sunxi_cpu0_hotplug_support_set(bool enable) { if (enable) { writel(CPU0_SUPPORT_HOTPLUG_MAGIC0, sram_b_smp_base); writel(CPU0_SUPPORT_HOTPLUG_MAGIC1, sram_b_smp_base + 0x4); } else { writel(0x0, sram_b_smp_base); writel(0x0, sram_b_smp_base + 0x4); } } static int sunxi_cpu_powerup(unsigned int cpu, unsigned int cluster) { u32 reg; pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu); if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS) return -EINVAL; /* Set hotplug support magic flags for cpu0 */ if (cluster == 0 && cpu == 0) sunxi_cpu0_hotplug_support_set(true); /* assert processor power-on reset */ reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); reg &= ~PRCM_CPU_PO_RST_CTRL_CORE(cpu); writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); if (is_a83t) { /* assert cpu power-on reset */ reg = readl(r_cpucfg_base + R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster)); reg &= ~(R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu)); writel(reg, r_cpucfg_base + R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster)); udelay(10); } /* Cortex-A7: hold L1 reset disable signal low */ if (!sunxi_core_is_cortex_a15(cpu, cluster)) { reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster)); reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(cpu); writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster)); } /* assert processor related resets */ reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST(cpu); /* * Allwinner code also asserts resets for NEON on A15. According * to ARM manuals, asserting power-on reset is sufficient. */ if (!sunxi_core_is_cortex_a15(cpu, cluster)) reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST(cpu); writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); /* open power switch */ sunxi_cpu_power_switch_set(cpu, cluster, true); /* Handle A83T bit swap */ if (is_a83t) { if (cpu == 0) cpu = 4; } /* clear processor power gate */ reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster)); reg &= ~PRCM_PWROFF_GATING_REG_CORE(cpu); writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster)); udelay(20); /* Handle A83T bit swap */ if (is_a83t) { if (cpu == 4) cpu = 0; } /* de-assert processor power-on reset */ reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); reg |= PRCM_CPU_PO_RST_CTRL_CORE(cpu); writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); if (is_a83t) { reg = readl(r_cpucfg_base + R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster)); reg |= R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu); writel(reg, r_cpucfg_base + R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster)); udelay(10); } /* de-assert all processor resets */ reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); reg |= CPUCFG_CX_RST_CTRL_DBG_RST(cpu); reg |= CPUCFG_CX_RST_CTRL_CORE_RST(cpu); if (!sunxi_core_is_cortex_a15(cpu, cluster)) reg |= CPUCFG_CX_RST_CTRL_ETM_RST(cpu); else reg |= CPUCFG_CX_RST_CTRL_CX_RST(cpu); /* NEON */ writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); return 0; } static int sunxi_cluster_powerup(unsigned int cluster) { u32 reg; pr_debug("%s: cluster %u\n", __func__, cluster); if (cluster >= SUNXI_NR_CLUSTERS) return -EINVAL; /* For A83T, assert cluster cores resets */ if (is_a83t) { reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); reg &= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL; /* Core Reset */ writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); udelay(10); } /* assert ACINACTM */ reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster)); reg |= CPUCFG_CX_CTRL_REG1_ACINACTM; writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster)); /* assert cluster processor power-on resets */ reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); reg &= ~PRCM_CPU_PO_RST_CTRL_CORE_ALL; writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster)); /* assert cluster cores resets */ if (is_a83t) { reg = readl(r_cpucfg_base + R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster)); reg &= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL; writel(reg, r_cpucfg_base + R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster)); udelay(10); } /* assert cluster resets */ reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST; reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST_ALL; reg &= ~CPUCFG_CX_RST_CTRL_H_RST; reg &= ~CPUCFG_CX_RST_CTRL_L2_RST; /* * Allwinner code also asserts resets for NEON on A15. According * to ARM manuals, asserting power-on reset is sufficient. */ if (!sunxi_core_is_cortex_a15(0, cluster)) reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST_ALL; writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); /* hold L1/L2 reset disable signals low */ reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster)); if (sunxi_core_is_cortex_a15(0, cluster)) { /* Cortex-A15: hold L2RSTDISABLE low */ reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15; } else { /* Cortex-A7: hold L1RSTDISABLE and L2RSTDISABLE low */ reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL; reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7; } writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster)); /* clear cluster power gate */ reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster)); if (is_a83t) reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I; else reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I; writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster)); udelay(20); /* de-assert cluster resets */ reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); reg |= CPUCFG_CX_RST_CTRL_DBG_SOC_RST; reg |= CPUCFG_CX_RST_CTRL_H_RST; reg |= CPUCFG_CX_RST_CTRL_L2_RST; writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); /* de-assert ACINACTM */ reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster)); reg &= ~CPUCFG_CX_CTRL_REG1_ACINACTM; writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster)); return 0; } /* * This bit is shared between the initial nocache_trampoline call to * enable CCI-400 and proper cluster cache disable before power down. */ static void sunxi_cluster_cache_disable_without_axi(void) { if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) { /* * On the Cortex-A15 we need to disable * L2 prefetching before flushing the cache. */ asm volatile( "mcr p15, 1, %0, c15, c0, 3\n" "isb\n" "dsb" : : "r" (0x400)); } /* Flush all cache levels for this cluster. */ v7_exit_coherency_flush(all); /* * Disable cluster-level coherency by masking * incoming snoops and DVM messages: */ cci_disable_port_by_cpu(read_cpuid_mpidr()); } static int sunxi_mc_smp_cpu_table[SUNXI_NR_CLUSTERS][SUNXI_CPUS_PER_CLUSTER]; int sunxi_mc_smp_first_comer; static DEFINE_SPINLOCK(boot_lock); static bool sunxi_mc_smp_cluster_is_down(unsigned int cluster) { int i; for (i = 0; i < SUNXI_CPUS_PER_CLUSTER; i++) if (sunxi_mc_smp_cpu_table[cluster][i]) return false; return true; } static void sunxi_mc_smp_secondary_init(unsigned int cpu) { /* Clear hotplug support magic flags for cpu0 */ if (cpu == 0) sunxi_cpu0_hotplug_support_set(false); } static int sunxi_mc_smp_boot_secondary(unsigned int l_cpu, struct task_struct *idle) { unsigned int mpidr, cpu, cluster; mpidr = cpu_logical_map(l_cpu); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); if (!cpucfg_base) return -ENODEV; if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER) return -EINVAL; spin_lock_irq(&boot_lock); if (sunxi_mc_smp_cpu_table[cluster][cpu]) goto out; if (sunxi_mc_smp_cluster_is_down(cluster)) { sunxi_mc_smp_first_comer = true; sunxi_cluster_powerup(cluster); } else { sunxi_mc_smp_first_comer = false; } /* This is read by incoming CPUs with their cache and MMU disabled */ sync_cache_w(&sunxi_mc_smp_first_comer); sunxi_cpu_powerup(cpu, cluster); out: sunxi_mc_smp_cpu_table[cluster][cpu]++; spin_unlock_irq(&boot_lock); return 0; } #ifdef CONFIG_HOTPLUG_CPU static void sunxi_cluster_cache_disable(void) { unsigned int cluster = MPIDR_AFFINITY_LEVEL(read_cpuid_mpidr(), 1); u32 reg; pr_debug("%s: cluster %u\n", __func__, cluster); sunxi_cluster_cache_disable_without_axi(); /* last man standing, assert ACINACTM */ reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster)); reg |= CPUCFG_CX_CTRL_REG1_ACINACTM; writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster)); } static void sunxi_mc_smp_cpu_die(unsigned int l_cpu) { unsigned int mpidr, cpu, cluster; bool last_man; mpidr = cpu_logical_map(l_cpu); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu); spin_lock(&boot_lock); sunxi_mc_smp_cpu_table[cluster][cpu]--; if (sunxi_mc_smp_cpu_table[cluster][cpu] == 1) { /* A power_up request went ahead of us. */ pr_debug("%s: aborting due to a power up request\n", __func__); spin_unlock(&boot_lock); return; } else if (sunxi_mc_smp_cpu_table[cluster][cpu] > 1) { pr_err("Cluster %d CPU%d boots multiple times\n", cluster, cpu); BUG(); } last_man = sunxi_mc_smp_cluster_is_down(cluster); spin_unlock(&boot_lock); gic_cpu_if_down(0); if (last_man) sunxi_cluster_cache_disable(); else v7_exit_coherency_flush(louis); for (;;) wfi(); } static int sunxi_cpu_powerdown(unsigned int cpu, unsigned int cluster) { u32 reg; int gating_bit = cpu; pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu); if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS) return -EINVAL; if (is_a83t && cpu == 0) gating_bit = 4; /* gate processor power */ reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster)); reg |= PRCM_PWROFF_GATING_REG_CORE(gating_bit); writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster)); udelay(20); /* close power switch */ sunxi_cpu_power_switch_set(cpu, cluster, false); return 0; } static int sunxi_cluster_powerdown(unsigned int cluster) { u32 reg; pr_debug("%s: cluster %u\n", __func__, cluster); if (cluster >= SUNXI_NR_CLUSTERS) return -EINVAL; /* assert cluster resets or system will hang */ pr_debug("%s: assert cluster reset\n", __func__); reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST; reg &= ~CPUCFG_CX_RST_CTRL_H_RST; reg &= ~CPUCFG_CX_RST_CTRL_L2_RST; writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster)); /* gate cluster power */ pr_debug("%s: gate cluster power\n", __func__); reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster)); if (is_a83t) reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I; else reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I; writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster)); udelay(20); return 0; } static int sunxi_mc_smp_cpu_kill(unsigned int l_cpu) { unsigned int mpidr, cpu, cluster; unsigned int tries, count; int ret = 0; u32 reg; mpidr = cpu_logical_map(l_cpu); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); /* This should never happen */ if (WARN_ON(cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER)) return 0; /* wait for CPU core to die and enter WFI */ count = TIMEOUT_USEC / POLL_USEC; spin_lock_irq(&boot_lock); for (tries = 0; tries < count; tries++) { spin_unlock_irq(&boot_lock); usleep_range(POLL_USEC / 2, POLL_USEC); spin_lock_irq(&boot_lock); /* * If the user turns off a bunch of cores at the same * time, the kernel might call cpu_kill before some of * them are ready. This is because boot_lock serializes * both cpu_die and cpu_kill callbacks. Either one could * run first. We should wait for cpu_die to complete. */ if (sunxi_mc_smp_cpu_table[cluster][cpu]) continue; reg = readl(cpucfg_base + CPUCFG_CX_STATUS(cluster)); if (reg & CPUCFG_CX_STATUS_STANDBYWFI(cpu)) break; } if (tries >= count) { ret = ETIMEDOUT; goto out; } /* power down CPU core */ sunxi_cpu_powerdown(cpu, cluster); if (!sunxi_mc_smp_cluster_is_down(cluster)) goto out; /* wait for cluster L2 WFI */ ret = readl_poll_timeout(cpucfg_base + CPUCFG_CX_STATUS(cluster), reg, reg & CPUCFG_CX_STATUS_STANDBYWFIL2, POLL_USEC, TIMEOUT_USEC); if (ret) { /* * Ignore timeout on the cluster. Leaving the cluster on * will not affect system execution, just use a bit more * power. But returning an error here will only confuse * the user as the CPU has already been shutdown. */ ret = 0; goto out; } /* Power down cluster */ sunxi_cluster_powerdown(cluster); out: spin_unlock_irq(&boot_lock); pr_debug("%s: cluster %u cpu %u powerdown: %d\n", __func__, cluster, cpu, ret); return !ret; } static bool sunxi_mc_smp_cpu_can_disable(unsigned int cpu) { /* CPU0 hotplug not handled for sun8i-a83t */ if (is_a83t) if (cpu == 0) return false; return true; } #endif static const struct smp_operations sunxi_mc_smp_smp_ops __initconst = { .smp_secondary_init = sunxi_mc_smp_secondary_init, .smp_boot_secondary = sunxi_mc_smp_boot_secondary, #ifdef CONFIG_HOTPLUG_CPU .cpu_die = sunxi_mc_smp_cpu_die, .cpu_kill = sunxi_mc_smp_cpu_kill, .cpu_can_disable = sunxi_mc_smp_cpu_can_disable, #endif }; static bool __init sunxi_mc_smp_cpu_table_init(void) { unsigned int mpidr, cpu, cluster; mpidr = read_cpuid_mpidr(); cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER) { pr_err("%s: boot CPU is out of bounds!\n", __func__); return false; } sunxi_mc_smp_cpu_table[cluster][cpu] = 1; return true; } /* * Adapted from arch/arm/common/mc_smp_entry.c * * We need the trampoline code to enable CCI-400 on the first cluster */ typedef typeof(cpu_reset) phys_reset_t; static int __init nocache_trampoline(unsigned long __unused) { phys_reset_t phys_reset; setup_mm_for_reboot(); sunxi_cluster_cache_disable_without_axi(); phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset); phys_reset(__pa_symbol(sunxi_mc_smp_resume), false); BUG(); } static int __init sunxi_mc_smp_loopback(void) { int ret; /* * We're going to soft-restart the current CPU through the * low-level MCPM code by leveraging the suspend/resume * infrastructure. Let's play it safe by using cpu_pm_enter() * in case the CPU init code path resets the VFP or similar. */ sunxi_mc_smp_first_comer = true; local_irq_disable(); local_fiq_disable(); ret = cpu_pm_enter(); if (!ret) { ret = cpu_suspend(0, nocache_trampoline); cpu_pm_exit(); } local_fiq_enable(); local_irq_enable(); sunxi_mc_smp_first_comer = false; return ret; } /* * This holds any device nodes that we requested resources for, * so that we may easily release resources in the error path. */ struct sunxi_mc_smp_nodes { struct device_node *prcm_node; struct device_node *cpucfg_node; struct device_node *sram_node; struct device_node *r_cpucfg_node; }; /* This structure holds SoC-specific bits tied to an enable-method string. */ struct sunxi_mc_smp_data { const char *enable_method; int (*get_smp_nodes)(struct sunxi_mc_smp_nodes *nodes); bool is_a83t; }; static void __init sunxi_mc_smp_put_nodes(struct sunxi_mc_smp_nodes *nodes) { of_node_put(nodes->prcm_node); of_node_put(nodes->cpucfg_node); of_node_put(nodes->sram_node); of_node_put(nodes->r_cpucfg_node); memset(nodes, 0, sizeof(*nodes)); } static int __init sun9i_a80_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes) { nodes->prcm_node = of_find_compatible_node(NULL, NULL, "allwinner,sun9i-a80-prcm"); if (!nodes->prcm_node) { pr_err("%s: PRCM not available\n", __func__); return -ENODEV; } nodes->cpucfg_node = of_find_compatible_node(NULL, NULL, "allwinner,sun9i-a80-cpucfg"); if (!nodes->cpucfg_node) { pr_err("%s: CPUCFG not available\n", __func__); return -ENODEV; } nodes->sram_node = of_find_compatible_node(NULL, NULL, "allwinner,sun9i-a80-smp-sram"); if (!nodes->sram_node) { pr_err("%s: Secure SRAM not available\n", __func__); return -ENODEV; } return 0; } static int __init sun8i_a83t_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes) { nodes->prcm_node = of_find_compatible_node(NULL, NULL, "allwinner,sun8i-a83t-r-ccu"); if (!nodes->prcm_node) { pr_err("%s: PRCM not available\n", __func__); return -ENODEV; } nodes->cpucfg_node = of_find_compatible_node(NULL, NULL, "allwinner,sun8i-a83t-cpucfg"); if (!nodes->cpucfg_node) { pr_err("%s: CPUCFG not available\n", __func__); return -ENODEV; } nodes->r_cpucfg_node = of_find_compatible_node(NULL, NULL, "allwinner,sun8i-a83t-r-cpucfg"); if (!nodes->r_cpucfg_node) { pr_err("%s: RCPUCFG not available\n", __func__); return -ENODEV; } return 0; } static const struct sunxi_mc_smp_data sunxi_mc_smp_data[] __initconst = { { .enable_method = "allwinner,sun9i-a80-smp", .get_smp_nodes = sun9i_a80_get_smp_nodes, }, { .enable_method = "allwinner,sun8i-a83t-smp", .get_smp_nodes = sun8i_a83t_get_smp_nodes, .is_a83t = true, }, }; static int __init sunxi_mc_smp_init(void) { struct sunxi_mc_smp_nodes nodes = { 0 }; struct device_node *node; struct resource res; void __iomem *addr; int i, ret; /* * Don't bother checking the "cpus" node, as an enable-method * property in that node is undocumented. */ node = of_cpu_device_node_get(0); if (!node) return -ENODEV; /* * We can't actually use the enable-method magic in the kernel. * Our loopback / trampoline code uses the CPU suspend framework, * which requires the identity mapping be available. It would not * yet be available if we used the .init_cpus or .prepare_cpus * callbacks in smp_operations, which we would use if we were to * use CPU_METHOD_OF_DECLARE */ for (i = 0; i < ARRAY_SIZE(sunxi_mc_smp_data); i++) { ret = of_property_match_string(node, "enable-method", sunxi_mc_smp_data[i].enable_method); if (ret >= 0) break; } of_node_put(node); if (ret < 0) return -ENODEV; is_a83t = sunxi_mc_smp_data[i].is_a83t; if (!sunxi_mc_smp_cpu_table_init()) return -EINVAL; if (!cci_probed()) { pr_err("%s: CCI-400 not available\n", __func__); return -ENODEV; } /* Get needed device tree nodes */ ret = sunxi_mc_smp_data[i].get_smp_nodes(&nodes); if (ret) goto err_put_nodes; /* * Unfortunately we can not request the I/O region for the PRCM. * It is shared with the PRCM clock. */ prcm_base = of_iomap(nodes.prcm_node, 0); if (!prcm_base) { pr_err("%s: failed to map PRCM registers\n", __func__); ret = -ENOMEM; goto err_put_nodes; } cpucfg_base = of_io_request_and_map(nodes.cpucfg_node, 0, "sunxi-mc-smp"); if (IS_ERR(cpucfg_base)) { ret = PTR_ERR(cpucfg_base); pr_err("%s: failed to map CPUCFG registers: %d\n", __func__, ret); goto err_unmap_prcm; } if (is_a83t) { r_cpucfg_base = of_io_request_and_map(nodes.r_cpucfg_node, 0, "sunxi-mc-smp"); if (IS_ERR(r_cpucfg_base)) { ret = PTR_ERR(r_cpucfg_base); pr_err("%s: failed to map R-CPUCFG registers\n", __func__); goto err_unmap_release_cpucfg; } } else { sram_b_smp_base = of_io_request_and_map(nodes.sram_node, 0, "sunxi-mc-smp"); if (IS_ERR(sram_b_smp_base)) { ret = PTR_ERR(sram_b_smp_base); pr_err("%s: failed to map secure SRAM\n", __func__); goto err_unmap_release_cpucfg; } } /* Configure CCI-400 for boot cluster */ ret = sunxi_mc_smp_loopback(); if (ret) { pr_err("%s: failed to configure boot cluster: %d\n", __func__, ret); goto err_unmap_release_sram_rcpucfg; } /* We don't need the device nodes anymore */ sunxi_mc_smp_put_nodes(&nodes); /* Set the hardware entry point address */ if (is_a83t) addr = r_cpucfg_base + R_CPUCFG_CPU_SOFT_ENTRY_REG; else addr = prcm_base + PRCM_CPU_SOFT_ENTRY_REG; writel(__pa_symbol(sunxi_mc_smp_secondary_startup), addr); /* Actually enable multi cluster SMP */ smp_set_ops(&sunxi_mc_smp_smp_ops); pr_info("sunxi multi cluster SMP support installed\n"); return 0; err_unmap_release_sram_rcpucfg: if (is_a83t) { iounmap(r_cpucfg_base); of_address_to_resource(nodes.r_cpucfg_node, 0, &res); } else { iounmap(sram_b_smp_base); of_address_to_resource(nodes.sram_node, 0, &res); } release_mem_region(res.start, resource_size(&res)); err_unmap_release_cpucfg: iounmap(cpucfg_base); of_address_to_resource(nodes.cpucfg_node, 0, &res); release_mem_region(res.start, resource_size(&res)); err_unmap_prcm: iounmap(prcm_base); err_put_nodes: sunxi_mc_smp_put_nodes(&nodes); return ret; } early_initcall(sunxi_mc_smp_init); |