Linux Audio

Check our new training course

Loading...
v4.6
  1/* Large capacity key type
  2 *
 
  3 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
  4 * Written by David Howells (dhowells@redhat.com)
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public Licence
  8 * as published by the Free Software Foundation; either version
  9 * 2 of the Licence, or (at your option) any later version.
 10 */
 11
 
 12#include <linux/init.h>
 13#include <linux/seq_file.h>
 14#include <linux/file.h>
 15#include <linux/shmem_fs.h>
 16#include <linux/err.h>
 
 
 
 17#include <keys/user-type.h>
 18#include <keys/big_key-type.h>
 
 
 
 
 
 
 
 
 19
 20/*
 21 * Layout of key payload words.
 22 */
 23enum {
 24	big_key_data,
 25	big_key_path,
 26	big_key_path_2nd_part,
 27	big_key_len,
 28};
 29
 30/*
 
 
 
 
 
 
 
 
 31 * If the data is under this limit, there's no point creating a shm file to
 32 * hold it as the permanently resident metadata for the shmem fs will be at
 33 * least as large as the data.
 34 */
 35#define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
 36
 37/*
 
 
 
 
 
 
 
 
 
 
 38 * big_key defined keys take an arbitrary string as the description and an
 39 * arbitrary blob of data as the payload
 40 */
 41struct key_type key_type_big_key = {
 42	.name			= "big_key",
 43	.preparse		= big_key_preparse,
 44	.free_preparse		= big_key_free_preparse,
 45	.instantiate		= generic_key_instantiate,
 46	.revoke			= big_key_revoke,
 47	.destroy		= big_key_destroy,
 48	.describe		= big_key_describe,
 49	.read			= big_key_read,
 
 50};
 51
 52/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53 * Preparse a big key
 54 */
 55int big_key_preparse(struct key_preparsed_payload *prep)
 56{
 
 57	struct path *path = (struct path *)&prep->payload.data[big_key_path];
 58	struct file *file;
 
 59	ssize_t written;
 60	size_t datalen = prep->datalen;
 61	int ret;
 62
 63	ret = -EINVAL;
 64	if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
 65		goto error;
 66
 67	/* Set an arbitrary quota */
 68	prep->quotalen = 16;
 69
 70	prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
 71
 72	if (datalen > BIG_KEY_FILE_THRESHOLD) {
 73		/* Create a shmem file to store the data in.  This will permit the data
 74		 * to be swapped out if needed.
 75		 *
 76		 * TODO: Encrypt the stored data with a temporary key.
 77		 */
 78		file = shmem_kernel_file_setup("", datalen, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79		if (IS_ERR(file)) {
 80			ret = PTR_ERR(file);
 81			goto error;
 82		}
 83
 84		written = kernel_write(file, prep->data, prep->datalen, 0);
 85		if (written != datalen) {
 86			ret = written;
 87			if (written >= 0)
 88				ret = -ENOMEM;
 89			goto err_fput;
 90		}
 91
 92		/* Pin the mount and dentry to the key so that we can open it again
 93		 * later
 94		 */
 
 95		*path = file->f_path;
 96		path_get(path);
 97		fput(file);
 
 98	} else {
 99		/* Just store the data in a buffer */
100		void *data = kmalloc(datalen, GFP_KERNEL);
 
101		if (!data)
102			return -ENOMEM;
103
104		prep->payload.data[big_key_data] = data;
105		memcpy(data, prep->data, prep->datalen);
106	}
107	return 0;
108
109err_fput:
110	fput(file);
 
 
111error:
 
112	return ret;
113}
114
115/*
116 * Clear preparsement.
117 */
118void big_key_free_preparse(struct key_preparsed_payload *prep)
119{
120	if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
121		struct path *path = (struct path *)&prep->payload.data[big_key_path];
 
122		path_put(path);
123	} else {
124		kfree(prep->payload.data[big_key_data]);
125	}
 
126}
127
128/*
129 * dispose of the links from a revoked keyring
130 * - called with the key sem write-locked
131 */
132void big_key_revoke(struct key *key)
133{
134	struct path *path = (struct path *)&key->payload.data[big_key_path];
135
136	/* clear the quota */
137	key_payload_reserve(key, 0);
138	if (key_is_instantiated(key) &&
139	    (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
140		vfs_truncate(path, 0);
141}
142
143/*
144 * dispose of the data dangling from the corpse of a big_key key
145 */
146void big_key_destroy(struct key *key)
147{
148	size_t datalen = (size_t)key->payload.data[big_key_len];
149
150	if (datalen) {
151		struct path *path = (struct path *)&key->payload.data[big_key_path];
 
152		path_put(path);
153		path->mnt = NULL;
154		path->dentry = NULL;
155	} else {
156		kfree(key->payload.data[big_key_data]);
157		key->payload.data[big_key_data] = NULL;
158	}
 
 
159}
160
161/*
162 * describe the big_key key
163 */
164void big_key_describe(const struct key *key, struct seq_file *m)
165{
166	size_t datalen = (size_t)key->payload.data[big_key_len];
167
168	seq_puts(m, key->description);
169
170	if (key_is_instantiated(key))
171		seq_printf(m, ": %zu [%s]",
172			   datalen,
173			   datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
174}
175
176/*
177 * read the key data
178 * - the key's semaphore is read-locked
179 */
180long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
181{
182	size_t datalen = (size_t)key->payload.data[big_key_len];
183	long ret;
184
185	if (!buffer || buflen < datalen)
186		return datalen;
187
188	if (datalen > BIG_KEY_FILE_THRESHOLD) {
 
189		struct path *path = (struct path *)&key->payload.data[big_key_path];
190		struct file *file;
191		loff_t pos;
 
 
 
 
 
 
192
193		file = dentry_open(path, O_RDONLY, current_cred());
194		if (IS_ERR(file))
195			return PTR_ERR(file);
 
 
196
197		pos = 0;
198		ret = vfs_read(file, buffer, datalen, &pos);
199		fput(file);
200		if (ret >= 0 && ret != datalen)
201			ret = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202	} else {
203		ret = datalen;
204		if (copy_to_user(buffer, key->payload.data[big_key_data],
205				 datalen) != 0)
206			ret = -EFAULT;
207	}
208
209	return ret;
210}
211
 
 
 
212static int __init big_key_init(void)
213{
214	return register_key_type(&key_type_big_key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215}
216device_initcall(big_key_init);
 
v4.17
  1/* Large capacity key type
  2 *
  3 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
  4 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public Licence
  9 * as published by the Free Software Foundation; either version
 10 * 2 of the Licence, or (at your option) any later version.
 11 */
 12
 13#define pr_fmt(fmt) "big_key: "fmt
 14#include <linux/init.h>
 15#include <linux/seq_file.h>
 16#include <linux/file.h>
 17#include <linux/shmem_fs.h>
 18#include <linux/err.h>
 19#include <linux/scatterlist.h>
 20#include <linux/random.h>
 21#include <linux/vmalloc.h>
 22#include <keys/user-type.h>
 23#include <keys/big_key-type.h>
 24#include <crypto/aead.h>
 25
 26struct big_key_buf {
 27	unsigned int		nr_pages;
 28	void			*virt;
 29	struct scatterlist	*sg;
 30	struct page		*pages[];
 31};
 32
 33/*
 34 * Layout of key payload words.
 35 */
 36enum {
 37	big_key_data,
 38	big_key_path,
 39	big_key_path_2nd_part,
 40	big_key_len,
 41};
 42
 43/*
 44 * Crypto operation with big_key data
 45 */
 46enum big_key_op {
 47	BIG_KEY_ENC,
 48	BIG_KEY_DEC,
 49};
 50
 51/*
 52 * If the data is under this limit, there's no point creating a shm file to
 53 * hold it as the permanently resident metadata for the shmem fs will be at
 54 * least as large as the data.
 55 */
 56#define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
 57
 58/*
 59 * Key size for big_key data encryption
 60 */
 61#define ENC_KEY_SIZE 32
 62
 63/*
 64 * Authentication tag length
 65 */
 66#define ENC_AUTHTAG_SIZE 16
 67
 68/*
 69 * big_key defined keys take an arbitrary string as the description and an
 70 * arbitrary blob of data as the payload
 71 */
 72struct key_type key_type_big_key = {
 73	.name			= "big_key",
 74	.preparse		= big_key_preparse,
 75	.free_preparse		= big_key_free_preparse,
 76	.instantiate		= generic_key_instantiate,
 77	.revoke			= big_key_revoke,
 78	.destroy		= big_key_destroy,
 79	.describe		= big_key_describe,
 80	.read			= big_key_read,
 81	/* no ->update(); don't add it without changing big_key_crypt() nonce */
 82};
 83
 84/*
 85 * Crypto names for big_key data authenticated encryption
 86 */
 87static const char big_key_alg_name[] = "gcm(aes)";
 88
 89/*
 90 * Crypto algorithms for big_key data authenticated encryption
 91 */
 92static struct crypto_aead *big_key_aead;
 93
 94/*
 95 * Since changing the key affects the entire object, we need a mutex.
 96 */
 97static DEFINE_MUTEX(big_key_aead_lock);
 98
 99/*
100 * Encrypt/decrypt big_key data
101 */
102static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key)
103{
104	int ret;
105	struct aead_request *aead_req;
106	/* We always use a zero nonce. The reason we can get away with this is
107	 * because we're using a different randomly generated key for every
108	 * different encryption. Notably, too, key_type_big_key doesn't define
109	 * an .update function, so there's no chance we'll wind up reusing the
110	 * key to encrypt updated data. Simply put: one key, one encryption.
111	 */
112	u8 zero_nonce[crypto_aead_ivsize(big_key_aead)];
113
114	aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
115	if (!aead_req)
116		return -ENOMEM;
117
118	memset(zero_nonce, 0, sizeof(zero_nonce));
119	aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce);
120	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
121	aead_request_set_ad(aead_req, 0);
122
123	mutex_lock(&big_key_aead_lock);
124	if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
125		ret = -EAGAIN;
126		goto error;
127	}
128	if (op == BIG_KEY_ENC)
129		ret = crypto_aead_encrypt(aead_req);
130	else
131		ret = crypto_aead_decrypt(aead_req);
132error:
133	mutex_unlock(&big_key_aead_lock);
134	aead_request_free(aead_req);
135	return ret;
136}
137
138/*
139 * Free up the buffer.
140 */
141static void big_key_free_buffer(struct big_key_buf *buf)
142{
143	unsigned int i;
144
145	if (buf->virt) {
146		memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE);
147		vunmap(buf->virt);
148	}
149
150	for (i = 0; i < buf->nr_pages; i++)
151		if (buf->pages[i])
152			__free_page(buf->pages[i]);
153
154	kfree(buf);
155}
156
157/*
158 * Allocate a buffer consisting of a set of pages with a virtual mapping
159 * applied over them.
160 */
161static void *big_key_alloc_buffer(size_t len)
162{
163	struct big_key_buf *buf;
164	unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
165	unsigned int i, l;
166
167	buf = kzalloc(sizeof(struct big_key_buf) +
168		      sizeof(struct page) * npg +
169		      sizeof(struct scatterlist) * npg,
170		      GFP_KERNEL);
171	if (!buf)
172		return NULL;
173
174	buf->nr_pages = npg;
175	buf->sg = (void *)(buf->pages + npg);
176	sg_init_table(buf->sg, npg);
177
178	for (i = 0; i < buf->nr_pages; i++) {
179		buf->pages[i] = alloc_page(GFP_KERNEL);
180		if (!buf->pages[i])
181			goto nomem;
182
183		l = min_t(size_t, len, PAGE_SIZE);
184		sg_set_page(&buf->sg[i], buf->pages[i], l, 0);
185		len -= l;
186	}
187
188	buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL);
189	if (!buf->virt)
190		goto nomem;
191
192	return buf;
193
194nomem:
195	big_key_free_buffer(buf);
196	return NULL;
197}
198
199/*
200 * Preparse a big key
201 */
202int big_key_preparse(struct key_preparsed_payload *prep)
203{
204	struct big_key_buf *buf;
205	struct path *path = (struct path *)&prep->payload.data[big_key_path];
206	struct file *file;
207	u8 *enckey;
208	ssize_t written;
209	size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE;
210	int ret;
211
 
212	if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
213		return -EINVAL;
214
215	/* Set an arbitrary quota */
216	prep->quotalen = 16;
217
218	prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
219
220	if (datalen > BIG_KEY_FILE_THRESHOLD) {
221		/* Create a shmem file to store the data in.  This will permit the data
222		 * to be swapped out if needed.
223		 *
224		 * File content is stored encrypted with randomly generated key.
225		 */
226		loff_t pos = 0;
227
228		buf = big_key_alloc_buffer(enclen);
229		if (!buf)
230			return -ENOMEM;
231		memcpy(buf->virt, prep->data, datalen);
232
233		/* generate random key */
234		enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
235		if (!enckey) {
236			ret = -ENOMEM;
237			goto error;
238		}
239		ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
240		if (unlikely(ret))
241			goto err_enckey;
242
243		/* encrypt aligned data */
244		ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey);
245		if (ret)
246			goto err_enckey;
247
248		/* save aligned data to file */
249		file = shmem_kernel_file_setup("", enclen, 0);
250		if (IS_ERR(file)) {
251			ret = PTR_ERR(file);
252			goto err_enckey;
253		}
254
255		written = kernel_write(file, buf->virt, enclen, &pos);
256		if (written != enclen) {
257			ret = written;
258			if (written >= 0)
259				ret = -ENOMEM;
260			goto err_fput;
261		}
262
263		/* Pin the mount and dentry to the key so that we can open it again
264		 * later
265		 */
266		prep->payload.data[big_key_data] = enckey;
267		*path = file->f_path;
268		path_get(path);
269		fput(file);
270		big_key_free_buffer(buf);
271	} else {
272		/* Just store the data in a buffer */
273		void *data = kmalloc(datalen, GFP_KERNEL);
274
275		if (!data)
276			return -ENOMEM;
277
278		prep->payload.data[big_key_data] = data;
279		memcpy(data, prep->data, prep->datalen);
280	}
281	return 0;
282
283err_fput:
284	fput(file);
285err_enckey:
286	kzfree(enckey);
287error:
288	big_key_free_buffer(buf);
289	return ret;
290}
291
292/*
293 * Clear preparsement.
294 */
295void big_key_free_preparse(struct key_preparsed_payload *prep)
296{
297	if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
298		struct path *path = (struct path *)&prep->payload.data[big_key_path];
299
300		path_put(path);
 
 
301	}
302	kzfree(prep->payload.data[big_key_data]);
303}
304
305/*
306 * dispose of the links from a revoked keyring
307 * - called with the key sem write-locked
308 */
309void big_key_revoke(struct key *key)
310{
311	struct path *path = (struct path *)&key->payload.data[big_key_path];
312
313	/* clear the quota */
314	key_payload_reserve(key, 0);
315	if (key_is_positive(key) &&
316	    (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
317		vfs_truncate(path, 0);
318}
319
320/*
321 * dispose of the data dangling from the corpse of a big_key key
322 */
323void big_key_destroy(struct key *key)
324{
325	size_t datalen = (size_t)key->payload.data[big_key_len];
326
327	if (datalen > BIG_KEY_FILE_THRESHOLD) {
328		struct path *path = (struct path *)&key->payload.data[big_key_path];
329
330		path_put(path);
331		path->mnt = NULL;
332		path->dentry = NULL;
 
 
 
333	}
334	kzfree(key->payload.data[big_key_data]);
335	key->payload.data[big_key_data] = NULL;
336}
337
338/*
339 * describe the big_key key
340 */
341void big_key_describe(const struct key *key, struct seq_file *m)
342{
343	size_t datalen = (size_t)key->payload.data[big_key_len];
344
345	seq_puts(m, key->description);
346
347	if (key_is_positive(key))
348		seq_printf(m, ": %zu [%s]",
349			   datalen,
350			   datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
351}
352
353/*
354 * read the key data
355 * - the key's semaphore is read-locked
356 */
357long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
358{
359	size_t datalen = (size_t)key->payload.data[big_key_len];
360	long ret;
361
362	if (!buffer || buflen < datalen)
363		return datalen;
364
365	if (datalen > BIG_KEY_FILE_THRESHOLD) {
366		struct big_key_buf *buf;
367		struct path *path = (struct path *)&key->payload.data[big_key_path];
368		struct file *file;
369		u8 *enckey = (u8 *)key->payload.data[big_key_data];
370		size_t enclen = datalen + ENC_AUTHTAG_SIZE;
371		loff_t pos = 0;
372
373		buf = big_key_alloc_buffer(enclen);
374		if (!buf)
375			return -ENOMEM;
376
377		file = dentry_open(path, O_RDONLY, current_cred());
378		if (IS_ERR(file)) {
379			ret = PTR_ERR(file);
380			goto error;
381		}
382
383		/* read file to kernel and decrypt */
384		ret = kernel_read(file, buf->virt, enclen, &pos);
385		if (ret >= 0 && ret != enclen) {
 
386			ret = -EIO;
387			goto err_fput;
388		}
389
390		ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey);
391		if (ret)
392			goto err_fput;
393
394		ret = datalen;
395
396		/* copy decrypted data to user */
397		if (copy_to_user(buffer, buf->virt, datalen) != 0)
398			ret = -EFAULT;
399
400err_fput:
401		fput(file);
402error:
403		big_key_free_buffer(buf);
404	} else {
405		ret = datalen;
406		if (copy_to_user(buffer, key->payload.data[big_key_data],
407				 datalen) != 0)
408			ret = -EFAULT;
409	}
410
411	return ret;
412}
413
414/*
415 * Register key type
416 */
417static int __init big_key_init(void)
418{
419	int ret;
420
421	/* init block cipher */
422	big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
423	if (IS_ERR(big_key_aead)) {
424		ret = PTR_ERR(big_key_aead);
425		pr_err("Can't alloc crypto: %d\n", ret);
426		return ret;
427	}
428	ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
429	if (ret < 0) {
430		pr_err("Can't set crypto auth tag len: %d\n", ret);
431		goto free_aead;
432	}
433
434	ret = register_key_type(&key_type_big_key);
435	if (ret < 0) {
436		pr_err("Can't register type: %d\n", ret);
437		goto free_aead;
438	}
439
440	return 0;
441
442free_aead:
443	crypto_free_aead(big_key_aead);
444	return ret;
445}
446
447late_initcall(big_key_init);