Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  linux/mm/mempool.c
  3 *
  4 *  memory buffer pool support. Such pools are mostly used
  5 *  for guaranteed, deadlock-free memory allocations during
  6 *  extreme VM load.
  7 *
  8 *  started by Ingo Molnar, Copyright (C) 2001
  9 *  debugging by David Rientjes, Copyright (C) 2015
 10 */
 11
 12#include <linux/mm.h>
 13#include <linux/slab.h>
 14#include <linux/highmem.h>
 15#include <linux/kasan.h>
 16#include <linux/kmemleak.h>
 17#include <linux/export.h>
 18#include <linux/mempool.h>
 19#include <linux/blkdev.h>
 20#include <linux/writeback.h>
 21#include "slab.h"
 22
 23#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
 24static void poison_error(mempool_t *pool, void *element, size_t size,
 25			 size_t byte)
 26{
 27	const int nr = pool->curr_nr;
 28	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
 29	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
 30	int i;
 31
 32	pr_err("BUG: mempool element poison mismatch\n");
 33	pr_err("Mempool %p size %zu\n", pool, size);
 34	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
 35	for (i = start; i < end; i++)
 36		pr_cont("%x ", *(u8 *)(element + i));
 37	pr_cont("%s\n", end < size ? "..." : "");
 38	dump_stack();
 39}
 40
 41static void __check_element(mempool_t *pool, void *element, size_t size)
 42{
 43	u8 *obj = element;
 44	size_t i;
 45
 46	for (i = 0; i < size; i++) {
 47		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
 48
 49		if (obj[i] != exp) {
 50			poison_error(pool, element, size, i);
 51			return;
 52		}
 53	}
 54	memset(obj, POISON_INUSE, size);
 55}
 56
 57static void check_element(mempool_t *pool, void *element)
 58{
 59	/* Mempools backed by slab allocator */
 60	if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
 61		__check_element(pool, element, ksize(element));
 62
 63	/* Mempools backed by page allocator */
 64	if (pool->free == mempool_free_pages) {
 65		int order = (int)(long)pool->pool_data;
 66		void *addr = kmap_atomic((struct page *)element);
 67
 68		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
 69		kunmap_atomic(addr);
 70	}
 71}
 72
 73static void __poison_element(void *element, size_t size)
 74{
 75	u8 *obj = element;
 76
 77	memset(obj, POISON_FREE, size - 1);
 78	obj[size - 1] = POISON_END;
 79}
 80
 81static void poison_element(mempool_t *pool, void *element)
 82{
 83	/* Mempools backed by slab allocator */
 84	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
 85		__poison_element(element, ksize(element));
 86
 87	/* Mempools backed by page allocator */
 88	if (pool->alloc == mempool_alloc_pages) {
 89		int order = (int)(long)pool->pool_data;
 90		void *addr = kmap_atomic((struct page *)element);
 91
 92		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
 93		kunmap_atomic(addr);
 94	}
 95}
 96#else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
 97static inline void check_element(mempool_t *pool, void *element)
 98{
 99}
100static inline void poison_element(mempool_t *pool, void *element)
101{
102}
103#endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
104
105static void kasan_poison_element(mempool_t *pool, void *element)
106{
107	if (pool->alloc == mempool_alloc_slab)
108		kasan_slab_free(pool->pool_data, element);
109	if (pool->alloc == mempool_kmalloc)
110		kasan_kfree(element);
111	if (pool->alloc == mempool_alloc_pages)
112		kasan_free_pages(element, (unsigned long)pool->pool_data);
113}
114
115static void kasan_unpoison_element(mempool_t *pool, void *element, gfp_t flags)
116{
117	if (pool->alloc == mempool_alloc_slab)
118		kasan_slab_alloc(pool->pool_data, element, flags);
119	if (pool->alloc == mempool_kmalloc)
120		kasan_krealloc(element, (size_t)pool->pool_data, flags);
121	if (pool->alloc == mempool_alloc_pages)
122		kasan_alloc_pages(element, (unsigned long)pool->pool_data);
123}
124
125static void add_element(mempool_t *pool, void *element)
126{
127	BUG_ON(pool->curr_nr >= pool->min_nr);
128	poison_element(pool, element);
129	kasan_poison_element(pool, element);
130	pool->elements[pool->curr_nr++] = element;
131}
132
133static void *remove_element(mempool_t *pool, gfp_t flags)
134{
135	void *element = pool->elements[--pool->curr_nr];
136
137	BUG_ON(pool->curr_nr < 0);
138	kasan_unpoison_element(pool, element, flags);
139	check_element(pool, element);
140	return element;
141}
142
143/**
144 * mempool_destroy - deallocate a memory pool
145 * @pool:      pointer to the memory pool which was allocated via
146 *             mempool_create().
147 *
148 * Free all reserved elements in @pool and @pool itself.  This function
149 * only sleeps if the free_fn() function sleeps.
150 */
151void mempool_destroy(mempool_t *pool)
152{
153	if (unlikely(!pool))
154		return;
155
156	while (pool->curr_nr) {
157		void *element = remove_element(pool, GFP_KERNEL);
158		pool->free(element, pool->pool_data);
159	}
160	kfree(pool->elements);
161	kfree(pool);
162}
163EXPORT_SYMBOL(mempool_destroy);
164
165/**
166 * mempool_create - create a memory pool
167 * @min_nr:    the minimum number of elements guaranteed to be
168 *             allocated for this pool.
169 * @alloc_fn:  user-defined element-allocation function.
170 * @free_fn:   user-defined element-freeing function.
171 * @pool_data: optional private data available to the user-defined functions.
172 *
173 * this function creates and allocates a guaranteed size, preallocated
174 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
175 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
176 * functions might sleep - as long as the mempool_alloc() function is not called
177 * from IRQ contexts.
178 */
179mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
180				mempool_free_t *free_fn, void *pool_data)
181{
182	return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
183				   GFP_KERNEL, NUMA_NO_NODE);
184}
185EXPORT_SYMBOL(mempool_create);
186
187mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
188			       mempool_free_t *free_fn, void *pool_data,
189			       gfp_t gfp_mask, int node_id)
190{
191	mempool_t *pool;
192	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
193	if (!pool)
194		return NULL;
195	pool->elements = kmalloc_node(min_nr * sizeof(void *),
196				      gfp_mask, node_id);
197	if (!pool->elements) {
198		kfree(pool);
199		return NULL;
200	}
201	spin_lock_init(&pool->lock);
202	pool->min_nr = min_nr;
203	pool->pool_data = pool_data;
204	init_waitqueue_head(&pool->wait);
205	pool->alloc = alloc_fn;
206	pool->free = free_fn;
207
208	/*
209	 * First pre-allocate the guaranteed number of buffers.
210	 */
211	while (pool->curr_nr < pool->min_nr) {
212		void *element;
213
214		element = pool->alloc(gfp_mask, pool->pool_data);
215		if (unlikely(!element)) {
216			mempool_destroy(pool);
217			return NULL;
218		}
219		add_element(pool, element);
220	}
221	return pool;
222}
223EXPORT_SYMBOL(mempool_create_node);
224
225/**
226 * mempool_resize - resize an existing memory pool
227 * @pool:       pointer to the memory pool which was allocated via
228 *              mempool_create().
229 * @new_min_nr: the new minimum number of elements guaranteed to be
230 *              allocated for this pool.
231 *
232 * This function shrinks/grows the pool. In the case of growing,
233 * it cannot be guaranteed that the pool will be grown to the new
234 * size immediately, but new mempool_free() calls will refill it.
235 * This function may sleep.
236 *
237 * Note, the caller must guarantee that no mempool_destroy is called
238 * while this function is running. mempool_alloc() & mempool_free()
239 * might be called (eg. from IRQ contexts) while this function executes.
240 */
241int mempool_resize(mempool_t *pool, int new_min_nr)
242{
243	void *element;
244	void **new_elements;
245	unsigned long flags;
246
247	BUG_ON(new_min_nr <= 0);
248	might_sleep();
249
250	spin_lock_irqsave(&pool->lock, flags);
251	if (new_min_nr <= pool->min_nr) {
252		while (new_min_nr < pool->curr_nr) {
253			element = remove_element(pool, GFP_KERNEL);
254			spin_unlock_irqrestore(&pool->lock, flags);
255			pool->free(element, pool->pool_data);
256			spin_lock_irqsave(&pool->lock, flags);
257		}
258		pool->min_nr = new_min_nr;
259		goto out_unlock;
260	}
261	spin_unlock_irqrestore(&pool->lock, flags);
262
263	/* Grow the pool */
264	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
265				     GFP_KERNEL);
266	if (!new_elements)
267		return -ENOMEM;
268
269	spin_lock_irqsave(&pool->lock, flags);
270	if (unlikely(new_min_nr <= pool->min_nr)) {
271		/* Raced, other resize will do our work */
272		spin_unlock_irqrestore(&pool->lock, flags);
273		kfree(new_elements);
274		goto out;
275	}
276	memcpy(new_elements, pool->elements,
277			pool->curr_nr * sizeof(*new_elements));
278	kfree(pool->elements);
279	pool->elements = new_elements;
280	pool->min_nr = new_min_nr;
281
282	while (pool->curr_nr < pool->min_nr) {
283		spin_unlock_irqrestore(&pool->lock, flags);
284		element = pool->alloc(GFP_KERNEL, pool->pool_data);
285		if (!element)
286			goto out;
287		spin_lock_irqsave(&pool->lock, flags);
288		if (pool->curr_nr < pool->min_nr) {
289			add_element(pool, element);
290		} else {
291			spin_unlock_irqrestore(&pool->lock, flags);
292			pool->free(element, pool->pool_data);	/* Raced */
293			goto out;
294		}
295	}
296out_unlock:
297	spin_unlock_irqrestore(&pool->lock, flags);
298out:
299	return 0;
300}
301EXPORT_SYMBOL(mempool_resize);
302
303/**
304 * mempool_alloc - allocate an element from a specific memory pool
305 * @pool:      pointer to the memory pool which was allocated via
306 *             mempool_create().
307 * @gfp_mask:  the usual allocation bitmask.
308 *
309 * this function only sleeps if the alloc_fn() function sleeps or
310 * returns NULL. Note that due to preallocation, this function
311 * *never* fails when called from process contexts. (it might
312 * fail if called from an IRQ context.)
313 * Note: neither __GFP_NOMEMALLOC nor __GFP_ZERO are supported.
314 */
315void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
316{
317	void *element;
318	unsigned long flags;
319	wait_queue_t wait;
320	gfp_t gfp_temp;
321
322	/* If oom killed, memory reserves are essential to prevent livelock */
323	VM_WARN_ON_ONCE(gfp_mask & __GFP_NOMEMALLOC);
324	/* No element size to zero on allocation */
325	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
326
327	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
328
 
329	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
330	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
331
332	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
333
334repeat_alloc:
335	if (likely(pool->curr_nr)) {
336		/*
337		 * Don't allocate from emergency reserves if there are
338		 * elements available.  This check is racy, but it will
339		 * be rechecked each loop.
340		 */
341		gfp_temp |= __GFP_NOMEMALLOC;
342	}
343
344	element = pool->alloc(gfp_temp, pool->pool_data);
345	if (likely(element != NULL))
346		return element;
347
348	spin_lock_irqsave(&pool->lock, flags);
349	if (likely(pool->curr_nr)) {
350		element = remove_element(pool, gfp_temp);
351		spin_unlock_irqrestore(&pool->lock, flags);
352		/* paired with rmb in mempool_free(), read comment there */
353		smp_wmb();
354		/*
355		 * Update the allocation stack trace as this is more useful
356		 * for debugging.
357		 */
358		kmemleak_update_trace(element);
359		return element;
360	}
361
362	/*
363	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
364	 * alloc failed with that and @pool was empty, retry immediately.
365	 */
366	if ((gfp_temp & ~__GFP_NOMEMALLOC) != gfp_mask) {
367		spin_unlock_irqrestore(&pool->lock, flags);
368		gfp_temp = gfp_mask;
369		goto repeat_alloc;
370	}
371	gfp_temp = gfp_mask;
372
373	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
374	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
375		spin_unlock_irqrestore(&pool->lock, flags);
376		return NULL;
377	}
378
379	/* Let's wait for someone else to return an element to @pool */
380	init_wait(&wait);
381	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
382
383	spin_unlock_irqrestore(&pool->lock, flags);
384
385	/*
386	 * FIXME: this should be io_schedule().  The timeout is there as a
387	 * workaround for some DM problems in 2.6.18.
388	 */
389	io_schedule_timeout(5*HZ);
390
391	finish_wait(&pool->wait, &wait);
392	goto repeat_alloc;
393}
394EXPORT_SYMBOL(mempool_alloc);
395
396/**
397 * mempool_free - return an element to the pool.
398 * @element:   pool element pointer.
399 * @pool:      pointer to the memory pool which was allocated via
400 *             mempool_create().
401 *
402 * this function only sleeps if the free_fn() function sleeps.
403 */
404void mempool_free(void *element, mempool_t *pool)
405{
406	unsigned long flags;
407
408	if (unlikely(element == NULL))
409		return;
410
411	/*
412	 * Paired with the wmb in mempool_alloc().  The preceding read is
413	 * for @element and the following @pool->curr_nr.  This ensures
414	 * that the visible value of @pool->curr_nr is from after the
415	 * allocation of @element.  This is necessary for fringe cases
416	 * where @element was passed to this task without going through
417	 * barriers.
418	 *
419	 * For example, assume @p is %NULL at the beginning and one task
420	 * performs "p = mempool_alloc(...);" while another task is doing
421	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
422	 * may end up using curr_nr value which is from before allocation
423	 * of @p without the following rmb.
424	 */
425	smp_rmb();
426
427	/*
428	 * For correctness, we need a test which is guaranteed to trigger
429	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
430	 * without locking achieves that and refilling as soon as possible
431	 * is desirable.
432	 *
433	 * Because curr_nr visible here is always a value after the
434	 * allocation of @element, any task which decremented curr_nr below
435	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
436	 * incremented to min_nr afterwards.  If curr_nr gets incremented
437	 * to min_nr after the allocation of @element, the elements
438	 * allocated after that are subject to the same guarantee.
439	 *
440	 * Waiters happen iff curr_nr is 0 and the above guarantee also
441	 * ensures that there will be frees which return elements to the
442	 * pool waking up the waiters.
443	 */
444	if (unlikely(pool->curr_nr < pool->min_nr)) {
445		spin_lock_irqsave(&pool->lock, flags);
446		if (likely(pool->curr_nr < pool->min_nr)) {
447			add_element(pool, element);
448			spin_unlock_irqrestore(&pool->lock, flags);
449			wake_up(&pool->wait);
450			return;
451		}
452		spin_unlock_irqrestore(&pool->lock, flags);
453	}
454	pool->free(element, pool->pool_data);
455}
456EXPORT_SYMBOL(mempool_free);
457
458/*
459 * A commonly used alloc and free fn.
460 */
461void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
462{
463	struct kmem_cache *mem = pool_data;
464	VM_BUG_ON(mem->ctor);
465	return kmem_cache_alloc(mem, gfp_mask);
466}
467EXPORT_SYMBOL(mempool_alloc_slab);
468
469void mempool_free_slab(void *element, void *pool_data)
470{
471	struct kmem_cache *mem = pool_data;
472	kmem_cache_free(mem, element);
473}
474EXPORT_SYMBOL(mempool_free_slab);
475
476/*
477 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
478 * specified by pool_data
479 */
480void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
481{
482	size_t size = (size_t)pool_data;
483	return kmalloc(size, gfp_mask);
484}
485EXPORT_SYMBOL(mempool_kmalloc);
486
487void mempool_kfree(void *element, void *pool_data)
488{
489	kfree(element);
490}
491EXPORT_SYMBOL(mempool_kfree);
492
493/*
494 * A simple mempool-backed page allocator that allocates pages
495 * of the order specified by pool_data.
496 */
497void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
498{
499	int order = (int)(long)pool_data;
500	return alloc_pages(gfp_mask, order);
501}
502EXPORT_SYMBOL(mempool_alloc_pages);
503
504void mempool_free_pages(void *element, void *pool_data)
505{
506	int order = (int)(long)pool_data;
507	__free_pages(element, order);
508}
509EXPORT_SYMBOL(mempool_free_pages);
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/mm/mempool.c
  4 *
  5 *  memory buffer pool support. Such pools are mostly used
  6 *  for guaranteed, deadlock-free memory allocations during
  7 *  extreme VM load.
  8 *
  9 *  started by Ingo Molnar, Copyright (C) 2001
 10 *  debugging by David Rientjes, Copyright (C) 2015
 11 */
 12
 13#include <linux/mm.h>
 14#include <linux/slab.h>
 15#include <linux/highmem.h>
 16#include <linux/kasan.h>
 17#include <linux/kmemleak.h>
 18#include <linux/export.h>
 19#include <linux/mempool.h>
 20#include <linux/blkdev.h>
 21#include <linux/writeback.h>
 22#include "slab.h"
 23
 24#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
 25static void poison_error(mempool_t *pool, void *element, size_t size,
 26			 size_t byte)
 27{
 28	const int nr = pool->curr_nr;
 29	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
 30	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
 31	int i;
 32
 33	pr_err("BUG: mempool element poison mismatch\n");
 34	pr_err("Mempool %p size %zu\n", pool, size);
 35	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
 36	for (i = start; i < end; i++)
 37		pr_cont("%x ", *(u8 *)(element + i));
 38	pr_cont("%s\n", end < size ? "..." : "");
 39	dump_stack();
 40}
 41
 42static void __check_element(mempool_t *pool, void *element, size_t size)
 43{
 44	u8 *obj = element;
 45	size_t i;
 46
 47	for (i = 0; i < size; i++) {
 48		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
 49
 50		if (obj[i] != exp) {
 51			poison_error(pool, element, size, i);
 52			return;
 53		}
 54	}
 55	memset(obj, POISON_INUSE, size);
 56}
 57
 58static void check_element(mempool_t *pool, void *element)
 59{
 60	/* Mempools backed by slab allocator */
 61	if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
 62		__check_element(pool, element, ksize(element));
 63
 64	/* Mempools backed by page allocator */
 65	if (pool->free == mempool_free_pages) {
 66		int order = (int)(long)pool->pool_data;
 67		void *addr = kmap_atomic((struct page *)element);
 68
 69		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
 70		kunmap_atomic(addr);
 71	}
 72}
 73
 74static void __poison_element(void *element, size_t size)
 75{
 76	u8 *obj = element;
 77
 78	memset(obj, POISON_FREE, size - 1);
 79	obj[size - 1] = POISON_END;
 80}
 81
 82static void poison_element(mempool_t *pool, void *element)
 83{
 84	/* Mempools backed by slab allocator */
 85	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
 86		__poison_element(element, ksize(element));
 87
 88	/* Mempools backed by page allocator */
 89	if (pool->alloc == mempool_alloc_pages) {
 90		int order = (int)(long)pool->pool_data;
 91		void *addr = kmap_atomic((struct page *)element);
 92
 93		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
 94		kunmap_atomic(addr);
 95	}
 96}
 97#else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
 98static inline void check_element(mempool_t *pool, void *element)
 99{
100}
101static inline void poison_element(mempool_t *pool, void *element)
102{
103}
104#endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
105
106static __always_inline void kasan_poison_element(mempool_t *pool, void *element)
107{
108	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
109		kasan_poison_kfree(element, _RET_IP_);
 
 
110	if (pool->alloc == mempool_alloc_pages)
111		kasan_free_pages(element, (unsigned long)pool->pool_data);
112}
113
114static void kasan_unpoison_element(mempool_t *pool, void *element, gfp_t flags)
115{
116	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
117		kasan_unpoison_slab(element);
 
 
118	if (pool->alloc == mempool_alloc_pages)
119		kasan_alloc_pages(element, (unsigned long)pool->pool_data);
120}
121
122static __always_inline void add_element(mempool_t *pool, void *element)
123{
124	BUG_ON(pool->curr_nr >= pool->min_nr);
125	poison_element(pool, element);
126	kasan_poison_element(pool, element);
127	pool->elements[pool->curr_nr++] = element;
128}
129
130static void *remove_element(mempool_t *pool, gfp_t flags)
131{
132	void *element = pool->elements[--pool->curr_nr];
133
134	BUG_ON(pool->curr_nr < 0);
135	kasan_unpoison_element(pool, element, flags);
136	check_element(pool, element);
137	return element;
138}
139
140/**
141 * mempool_destroy - deallocate a memory pool
142 * @pool:      pointer to the memory pool which was allocated via
143 *             mempool_create().
144 *
145 * Free all reserved elements in @pool and @pool itself.  This function
146 * only sleeps if the free_fn() function sleeps.
147 */
148void mempool_destroy(mempool_t *pool)
149{
150	if (unlikely(!pool))
151		return;
152
153	while (pool->curr_nr) {
154		void *element = remove_element(pool, GFP_KERNEL);
155		pool->free(element, pool->pool_data);
156	}
157	kfree(pool->elements);
158	kfree(pool);
159}
160EXPORT_SYMBOL(mempool_destroy);
161
162/**
163 * mempool_create - create a memory pool
164 * @min_nr:    the minimum number of elements guaranteed to be
165 *             allocated for this pool.
166 * @alloc_fn:  user-defined element-allocation function.
167 * @free_fn:   user-defined element-freeing function.
168 * @pool_data: optional private data available to the user-defined functions.
169 *
170 * this function creates and allocates a guaranteed size, preallocated
171 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
172 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
173 * functions might sleep - as long as the mempool_alloc() function is not called
174 * from IRQ contexts.
175 */
176mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
177				mempool_free_t *free_fn, void *pool_data)
178{
179	return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
180				   GFP_KERNEL, NUMA_NO_NODE);
181}
182EXPORT_SYMBOL(mempool_create);
183
184mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
185			       mempool_free_t *free_fn, void *pool_data,
186			       gfp_t gfp_mask, int node_id)
187{
188	mempool_t *pool;
189	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
190	if (!pool)
191		return NULL;
192	pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
193				      gfp_mask, node_id);
194	if (!pool->elements) {
195		kfree(pool);
196		return NULL;
197	}
198	spin_lock_init(&pool->lock);
199	pool->min_nr = min_nr;
200	pool->pool_data = pool_data;
201	init_waitqueue_head(&pool->wait);
202	pool->alloc = alloc_fn;
203	pool->free = free_fn;
204
205	/*
206	 * First pre-allocate the guaranteed number of buffers.
207	 */
208	while (pool->curr_nr < pool->min_nr) {
209		void *element;
210
211		element = pool->alloc(gfp_mask, pool->pool_data);
212		if (unlikely(!element)) {
213			mempool_destroy(pool);
214			return NULL;
215		}
216		add_element(pool, element);
217	}
218	return pool;
219}
220EXPORT_SYMBOL(mempool_create_node);
221
222/**
223 * mempool_resize - resize an existing memory pool
224 * @pool:       pointer to the memory pool which was allocated via
225 *              mempool_create().
226 * @new_min_nr: the new minimum number of elements guaranteed to be
227 *              allocated for this pool.
228 *
229 * This function shrinks/grows the pool. In the case of growing,
230 * it cannot be guaranteed that the pool will be grown to the new
231 * size immediately, but new mempool_free() calls will refill it.
232 * This function may sleep.
233 *
234 * Note, the caller must guarantee that no mempool_destroy is called
235 * while this function is running. mempool_alloc() & mempool_free()
236 * might be called (eg. from IRQ contexts) while this function executes.
237 */
238int mempool_resize(mempool_t *pool, int new_min_nr)
239{
240	void *element;
241	void **new_elements;
242	unsigned long flags;
243
244	BUG_ON(new_min_nr <= 0);
245	might_sleep();
246
247	spin_lock_irqsave(&pool->lock, flags);
248	if (new_min_nr <= pool->min_nr) {
249		while (new_min_nr < pool->curr_nr) {
250			element = remove_element(pool, GFP_KERNEL);
251			spin_unlock_irqrestore(&pool->lock, flags);
252			pool->free(element, pool->pool_data);
253			spin_lock_irqsave(&pool->lock, flags);
254		}
255		pool->min_nr = new_min_nr;
256		goto out_unlock;
257	}
258	spin_unlock_irqrestore(&pool->lock, flags);
259
260	/* Grow the pool */
261	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
262				     GFP_KERNEL);
263	if (!new_elements)
264		return -ENOMEM;
265
266	spin_lock_irqsave(&pool->lock, flags);
267	if (unlikely(new_min_nr <= pool->min_nr)) {
268		/* Raced, other resize will do our work */
269		spin_unlock_irqrestore(&pool->lock, flags);
270		kfree(new_elements);
271		goto out;
272	}
273	memcpy(new_elements, pool->elements,
274			pool->curr_nr * sizeof(*new_elements));
275	kfree(pool->elements);
276	pool->elements = new_elements;
277	pool->min_nr = new_min_nr;
278
279	while (pool->curr_nr < pool->min_nr) {
280		spin_unlock_irqrestore(&pool->lock, flags);
281		element = pool->alloc(GFP_KERNEL, pool->pool_data);
282		if (!element)
283			goto out;
284		spin_lock_irqsave(&pool->lock, flags);
285		if (pool->curr_nr < pool->min_nr) {
286			add_element(pool, element);
287		} else {
288			spin_unlock_irqrestore(&pool->lock, flags);
289			pool->free(element, pool->pool_data);	/* Raced */
290			goto out;
291		}
292	}
293out_unlock:
294	spin_unlock_irqrestore(&pool->lock, flags);
295out:
296	return 0;
297}
298EXPORT_SYMBOL(mempool_resize);
299
300/**
301 * mempool_alloc - allocate an element from a specific memory pool
302 * @pool:      pointer to the memory pool which was allocated via
303 *             mempool_create().
304 * @gfp_mask:  the usual allocation bitmask.
305 *
306 * this function only sleeps if the alloc_fn() function sleeps or
307 * returns NULL. Note that due to preallocation, this function
308 * *never* fails when called from process contexts. (it might
309 * fail if called from an IRQ context.)
310 * Note: using __GFP_ZERO is not supported.
311 */
312void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
313{
314	void *element;
315	unsigned long flags;
316	wait_queue_entry_t wait;
317	gfp_t gfp_temp;
318
 
 
 
319	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
 
320	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
321
322	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
323	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
324	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
325
326	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
327
328repeat_alloc:
 
 
 
 
 
 
 
 
329
330	element = pool->alloc(gfp_temp, pool->pool_data);
331	if (likely(element != NULL))
332		return element;
333
334	spin_lock_irqsave(&pool->lock, flags);
335	if (likely(pool->curr_nr)) {
336		element = remove_element(pool, gfp_temp);
337		spin_unlock_irqrestore(&pool->lock, flags);
338		/* paired with rmb in mempool_free(), read comment there */
339		smp_wmb();
340		/*
341		 * Update the allocation stack trace as this is more useful
342		 * for debugging.
343		 */
344		kmemleak_update_trace(element);
345		return element;
346	}
347
348	/*
349	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
350	 * alloc failed with that and @pool was empty, retry immediately.
351	 */
352	if (gfp_temp != gfp_mask) {
353		spin_unlock_irqrestore(&pool->lock, flags);
354		gfp_temp = gfp_mask;
355		goto repeat_alloc;
356	}
 
357
358	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
359	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
360		spin_unlock_irqrestore(&pool->lock, flags);
361		return NULL;
362	}
363
364	/* Let's wait for someone else to return an element to @pool */
365	init_wait(&wait);
366	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
367
368	spin_unlock_irqrestore(&pool->lock, flags);
369
370	/*
371	 * FIXME: this should be io_schedule().  The timeout is there as a
372	 * workaround for some DM problems in 2.6.18.
373	 */
374	io_schedule_timeout(5*HZ);
375
376	finish_wait(&pool->wait, &wait);
377	goto repeat_alloc;
378}
379EXPORT_SYMBOL(mempool_alloc);
380
381/**
382 * mempool_free - return an element to the pool.
383 * @element:   pool element pointer.
384 * @pool:      pointer to the memory pool which was allocated via
385 *             mempool_create().
386 *
387 * this function only sleeps if the free_fn() function sleeps.
388 */
389void mempool_free(void *element, mempool_t *pool)
390{
391	unsigned long flags;
392
393	if (unlikely(element == NULL))
394		return;
395
396	/*
397	 * Paired with the wmb in mempool_alloc().  The preceding read is
398	 * for @element and the following @pool->curr_nr.  This ensures
399	 * that the visible value of @pool->curr_nr is from after the
400	 * allocation of @element.  This is necessary for fringe cases
401	 * where @element was passed to this task without going through
402	 * barriers.
403	 *
404	 * For example, assume @p is %NULL at the beginning and one task
405	 * performs "p = mempool_alloc(...);" while another task is doing
406	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
407	 * may end up using curr_nr value which is from before allocation
408	 * of @p without the following rmb.
409	 */
410	smp_rmb();
411
412	/*
413	 * For correctness, we need a test which is guaranteed to trigger
414	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
415	 * without locking achieves that and refilling as soon as possible
416	 * is desirable.
417	 *
418	 * Because curr_nr visible here is always a value after the
419	 * allocation of @element, any task which decremented curr_nr below
420	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
421	 * incremented to min_nr afterwards.  If curr_nr gets incremented
422	 * to min_nr after the allocation of @element, the elements
423	 * allocated after that are subject to the same guarantee.
424	 *
425	 * Waiters happen iff curr_nr is 0 and the above guarantee also
426	 * ensures that there will be frees which return elements to the
427	 * pool waking up the waiters.
428	 */
429	if (unlikely(pool->curr_nr < pool->min_nr)) {
430		spin_lock_irqsave(&pool->lock, flags);
431		if (likely(pool->curr_nr < pool->min_nr)) {
432			add_element(pool, element);
433			spin_unlock_irqrestore(&pool->lock, flags);
434			wake_up(&pool->wait);
435			return;
436		}
437		spin_unlock_irqrestore(&pool->lock, flags);
438	}
439	pool->free(element, pool->pool_data);
440}
441EXPORT_SYMBOL(mempool_free);
442
443/*
444 * A commonly used alloc and free fn.
445 */
446void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
447{
448	struct kmem_cache *mem = pool_data;
449	VM_BUG_ON(mem->ctor);
450	return kmem_cache_alloc(mem, gfp_mask);
451}
452EXPORT_SYMBOL(mempool_alloc_slab);
453
454void mempool_free_slab(void *element, void *pool_data)
455{
456	struct kmem_cache *mem = pool_data;
457	kmem_cache_free(mem, element);
458}
459EXPORT_SYMBOL(mempool_free_slab);
460
461/*
462 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
463 * specified by pool_data
464 */
465void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
466{
467	size_t size = (size_t)pool_data;
468	return kmalloc(size, gfp_mask);
469}
470EXPORT_SYMBOL(mempool_kmalloc);
471
472void mempool_kfree(void *element, void *pool_data)
473{
474	kfree(element);
475}
476EXPORT_SYMBOL(mempool_kfree);
477
478/*
479 * A simple mempool-backed page allocator that allocates pages
480 * of the order specified by pool_data.
481 */
482void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
483{
484	int order = (int)(long)pool_data;
485	return alloc_pages(gfp_mask, order);
486}
487EXPORT_SYMBOL(mempool_alloc_pages);
488
489void mempool_free_pages(void *element, void *pool_data)
490{
491	int order = (int)(long)pool_data;
492	__free_pages(element, order);
493}
494EXPORT_SYMBOL(mempool_free_pages);