Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *  linux/mm/mempool.c
  3 *
  4 *  memory buffer pool support. Such pools are mostly used
  5 *  for guaranteed, deadlock-free memory allocations during
  6 *  extreme VM load.
  7 *
  8 *  started by Ingo Molnar, Copyright (C) 2001
  9 *  debugging by David Rientjes, Copyright (C) 2015
 10 */
 11
 12#include <linux/mm.h>
 13#include <linux/slab.h>
 14#include <linux/highmem.h>
 15#include <linux/kasan.h>
 16#include <linux/kmemleak.h>
 17#include <linux/export.h>
 18#include <linux/mempool.h>
 19#include <linux/blkdev.h>
 20#include <linux/writeback.h>
 21#include "slab.h"
 22
 23#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
 24static void poison_error(mempool_t *pool, void *element, size_t size,
 25			 size_t byte)
 26{
 27	const int nr = pool->curr_nr;
 28	const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
 29	const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
 30	int i;
 31
 32	pr_err("BUG: mempool element poison mismatch\n");
 33	pr_err("Mempool %p size %zu\n", pool, size);
 34	pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
 35	for (i = start; i < end; i++)
 36		pr_cont("%x ", *(u8 *)(element + i));
 37	pr_cont("%s\n", end < size ? "..." : "");
 38	dump_stack();
 39}
 40
 41static void __check_element(mempool_t *pool, void *element, size_t size)
 42{
 43	u8 *obj = element;
 44	size_t i;
 45
 46	for (i = 0; i < size; i++) {
 47		u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
 48
 49		if (obj[i] != exp) {
 50			poison_error(pool, element, size, i);
 51			return;
 52		}
 53	}
 54	memset(obj, POISON_INUSE, size);
 55}
 56
 57static void check_element(mempool_t *pool, void *element)
 58{
 59	/* Mempools backed by slab allocator */
 60	if (pool->free == mempool_free_slab || pool->free == mempool_kfree)
 61		__check_element(pool, element, ksize(element));
 62
 63	/* Mempools backed by page allocator */
 64	if (pool->free == mempool_free_pages) {
 65		int order = (int)(long)pool->pool_data;
 66		void *addr = kmap_atomic((struct page *)element);
 67
 68		__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
 69		kunmap_atomic(addr);
 70	}
 71}
 72
 73static void __poison_element(void *element, size_t size)
 74{
 75	u8 *obj = element;
 76
 77	memset(obj, POISON_FREE, size - 1);
 78	obj[size - 1] = POISON_END;
 79}
 80
 81static void poison_element(mempool_t *pool, void *element)
 82{
 83	/* Mempools backed by slab allocator */
 84	if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
 85		__poison_element(element, ksize(element));
 86
 87	/* Mempools backed by page allocator */
 88	if (pool->alloc == mempool_alloc_pages) {
 89		int order = (int)(long)pool->pool_data;
 90		void *addr = kmap_atomic((struct page *)element);
 91
 92		__poison_element(addr, 1UL << (PAGE_SHIFT + order));
 93		kunmap_atomic(addr);
 94	}
 95}
 96#else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
 97static inline void check_element(mempool_t *pool, void *element)
 98{
 99}
100static inline void poison_element(mempool_t *pool, void *element)
101{
102}
103#endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
104
105static void kasan_poison_element(mempool_t *pool, void *element)
106{
107	if (pool->alloc == mempool_alloc_slab)
108		kasan_slab_free(pool->pool_data, element);
109	if (pool->alloc == mempool_kmalloc)
110		kasan_kfree(element);
111	if (pool->alloc == mempool_alloc_pages)
112		kasan_free_pages(element, (unsigned long)pool->pool_data);
113}
114
115static void kasan_unpoison_element(mempool_t *pool, void *element, gfp_t flags)
116{
117	if (pool->alloc == mempool_alloc_slab)
118		kasan_slab_alloc(pool->pool_data, element, flags);
119	if (pool->alloc == mempool_kmalloc)
120		kasan_krealloc(element, (size_t)pool->pool_data, flags);
121	if (pool->alloc == mempool_alloc_pages)
122		kasan_alloc_pages(element, (unsigned long)pool->pool_data);
123}
124
125static void add_element(mempool_t *pool, void *element)
126{
127	BUG_ON(pool->curr_nr >= pool->min_nr);
128	poison_element(pool, element);
129	kasan_poison_element(pool, element);
130	pool->elements[pool->curr_nr++] = element;
131}
132
133static void *remove_element(mempool_t *pool, gfp_t flags)
134{
135	void *element = pool->elements[--pool->curr_nr];
136
137	BUG_ON(pool->curr_nr < 0);
138	kasan_unpoison_element(pool, element, flags);
139	check_element(pool, element);
140	return element;
141}
142
143/**
144 * mempool_destroy - deallocate a memory pool
145 * @pool:      pointer to the memory pool which was allocated via
146 *             mempool_create().
147 *
148 * Free all reserved elements in @pool and @pool itself.  This function
149 * only sleeps if the free_fn() function sleeps.
150 */
151void mempool_destroy(mempool_t *pool)
152{
153	if (unlikely(!pool))
154		return;
155
156	while (pool->curr_nr) {
157		void *element = remove_element(pool, GFP_KERNEL);
158		pool->free(element, pool->pool_data);
159	}
160	kfree(pool->elements);
161	kfree(pool);
162}
163EXPORT_SYMBOL(mempool_destroy);
164
165/**
166 * mempool_create - create a memory pool
167 * @min_nr:    the minimum number of elements guaranteed to be
168 *             allocated for this pool.
169 * @alloc_fn:  user-defined element-allocation function.
170 * @free_fn:   user-defined element-freeing function.
171 * @pool_data: optional private data available to the user-defined functions.
172 *
173 * this function creates and allocates a guaranteed size, preallocated
174 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
175 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
176 * functions might sleep - as long as the mempool_alloc() function is not called
177 * from IRQ contexts.
178 */
179mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
180				mempool_free_t *free_fn, void *pool_data)
181{
182	return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
183				   GFP_KERNEL, NUMA_NO_NODE);
184}
185EXPORT_SYMBOL(mempool_create);
186
187mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
188			       mempool_free_t *free_fn, void *pool_data,
189			       gfp_t gfp_mask, int node_id)
190{
191	mempool_t *pool;
192	pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
193	if (!pool)
194		return NULL;
195	pool->elements = kmalloc_node(min_nr * sizeof(void *),
196				      gfp_mask, node_id);
197	if (!pool->elements) {
198		kfree(pool);
199		return NULL;
200	}
201	spin_lock_init(&pool->lock);
202	pool->min_nr = min_nr;
203	pool->pool_data = pool_data;
204	init_waitqueue_head(&pool->wait);
205	pool->alloc = alloc_fn;
206	pool->free = free_fn;
207
208	/*
209	 * First pre-allocate the guaranteed number of buffers.
210	 */
211	while (pool->curr_nr < pool->min_nr) {
212		void *element;
213
214		element = pool->alloc(gfp_mask, pool->pool_data);
215		if (unlikely(!element)) {
216			mempool_destroy(pool);
217			return NULL;
218		}
219		add_element(pool, element);
220	}
221	return pool;
222}
223EXPORT_SYMBOL(mempool_create_node);
224
225/**
226 * mempool_resize - resize an existing memory pool
227 * @pool:       pointer to the memory pool which was allocated via
228 *              mempool_create().
229 * @new_min_nr: the new minimum number of elements guaranteed to be
230 *              allocated for this pool.
 
231 *
232 * This function shrinks/grows the pool. In the case of growing,
233 * it cannot be guaranteed that the pool will be grown to the new
234 * size immediately, but new mempool_free() calls will refill it.
235 * This function may sleep.
236 *
237 * Note, the caller must guarantee that no mempool_destroy is called
238 * while this function is running. mempool_alloc() & mempool_free()
239 * might be called (eg. from IRQ contexts) while this function executes.
240 */
241int mempool_resize(mempool_t *pool, int new_min_nr)
242{
243	void *element;
244	void **new_elements;
245	unsigned long flags;
246
247	BUG_ON(new_min_nr <= 0);
248	might_sleep();
249
250	spin_lock_irqsave(&pool->lock, flags);
251	if (new_min_nr <= pool->min_nr) {
252		while (new_min_nr < pool->curr_nr) {
253			element = remove_element(pool, GFP_KERNEL);
254			spin_unlock_irqrestore(&pool->lock, flags);
255			pool->free(element, pool->pool_data);
256			spin_lock_irqsave(&pool->lock, flags);
257		}
258		pool->min_nr = new_min_nr;
259		goto out_unlock;
260	}
261	spin_unlock_irqrestore(&pool->lock, flags);
262
263	/* Grow the pool */
264	new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
265				     GFP_KERNEL);
266	if (!new_elements)
267		return -ENOMEM;
268
269	spin_lock_irqsave(&pool->lock, flags);
270	if (unlikely(new_min_nr <= pool->min_nr)) {
271		/* Raced, other resize will do our work */
272		spin_unlock_irqrestore(&pool->lock, flags);
273		kfree(new_elements);
274		goto out;
275	}
276	memcpy(new_elements, pool->elements,
277			pool->curr_nr * sizeof(*new_elements));
278	kfree(pool->elements);
279	pool->elements = new_elements;
280	pool->min_nr = new_min_nr;
281
282	while (pool->curr_nr < pool->min_nr) {
283		spin_unlock_irqrestore(&pool->lock, flags);
284		element = pool->alloc(GFP_KERNEL, pool->pool_data);
285		if (!element)
286			goto out;
287		spin_lock_irqsave(&pool->lock, flags);
288		if (pool->curr_nr < pool->min_nr) {
289			add_element(pool, element);
290		} else {
291			spin_unlock_irqrestore(&pool->lock, flags);
292			pool->free(element, pool->pool_data);	/* Raced */
293			goto out;
294		}
295	}
296out_unlock:
297	spin_unlock_irqrestore(&pool->lock, flags);
298out:
299	return 0;
300}
301EXPORT_SYMBOL(mempool_resize);
302
303/**
304 * mempool_alloc - allocate an element from a specific memory pool
305 * @pool:      pointer to the memory pool which was allocated via
306 *             mempool_create().
307 * @gfp_mask:  the usual allocation bitmask.
308 *
309 * this function only sleeps if the alloc_fn() function sleeps or
310 * returns NULL. Note that due to preallocation, this function
311 * *never* fails when called from process contexts. (it might
312 * fail if called from an IRQ context.)
313 * Note: neither __GFP_NOMEMALLOC nor __GFP_ZERO are supported.
314 */
315void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
316{
317	void *element;
318	unsigned long flags;
319	wait_queue_t wait;
320	gfp_t gfp_temp;
321
322	/* If oom killed, memory reserves are essential to prevent livelock */
323	VM_WARN_ON_ONCE(gfp_mask & __GFP_NOMEMALLOC);
324	/* No element size to zero on allocation */
325	VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
326
327	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
328
 
329	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
330	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
331
332	gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
333
334repeat_alloc:
335	if (likely(pool->curr_nr)) {
336		/*
337		 * Don't allocate from emergency reserves if there are
338		 * elements available.  This check is racy, but it will
339		 * be rechecked each loop.
340		 */
341		gfp_temp |= __GFP_NOMEMALLOC;
342	}
343
344	element = pool->alloc(gfp_temp, pool->pool_data);
345	if (likely(element != NULL))
346		return element;
347
348	spin_lock_irqsave(&pool->lock, flags);
349	if (likely(pool->curr_nr)) {
350		element = remove_element(pool, gfp_temp);
351		spin_unlock_irqrestore(&pool->lock, flags);
352		/* paired with rmb in mempool_free(), read comment there */
353		smp_wmb();
354		/*
355		 * Update the allocation stack trace as this is more useful
356		 * for debugging.
357		 */
358		kmemleak_update_trace(element);
359		return element;
360	}
361
362	/*
363	 * We use gfp mask w/o direct reclaim or IO for the first round.  If
364	 * alloc failed with that and @pool was empty, retry immediately.
365	 */
366	if ((gfp_temp & ~__GFP_NOMEMALLOC) != gfp_mask) {
367		spin_unlock_irqrestore(&pool->lock, flags);
368		gfp_temp = gfp_mask;
369		goto repeat_alloc;
370	}
371	gfp_temp = gfp_mask;
372
373	/* We must not sleep if !__GFP_DIRECT_RECLAIM */
374	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
375		spin_unlock_irqrestore(&pool->lock, flags);
376		return NULL;
377	}
378
379	/* Let's wait for someone else to return an element to @pool */
380	init_wait(&wait);
381	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
382
383	spin_unlock_irqrestore(&pool->lock, flags);
384
385	/*
386	 * FIXME: this should be io_schedule().  The timeout is there as a
387	 * workaround for some DM problems in 2.6.18.
388	 */
389	io_schedule_timeout(5*HZ);
390
391	finish_wait(&pool->wait, &wait);
392	goto repeat_alloc;
393}
394EXPORT_SYMBOL(mempool_alloc);
395
396/**
397 * mempool_free - return an element to the pool.
398 * @element:   pool element pointer.
399 * @pool:      pointer to the memory pool which was allocated via
400 *             mempool_create().
401 *
402 * this function only sleeps if the free_fn() function sleeps.
403 */
404void mempool_free(void *element, mempool_t *pool)
405{
406	unsigned long flags;
407
408	if (unlikely(element == NULL))
409		return;
410
411	/*
412	 * Paired with the wmb in mempool_alloc().  The preceding read is
413	 * for @element and the following @pool->curr_nr.  This ensures
414	 * that the visible value of @pool->curr_nr is from after the
415	 * allocation of @element.  This is necessary for fringe cases
416	 * where @element was passed to this task without going through
417	 * barriers.
418	 *
419	 * For example, assume @p is %NULL at the beginning and one task
420	 * performs "p = mempool_alloc(...);" while another task is doing
421	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
422	 * may end up using curr_nr value which is from before allocation
423	 * of @p without the following rmb.
424	 */
425	smp_rmb();
426
427	/*
428	 * For correctness, we need a test which is guaranteed to trigger
429	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
430	 * without locking achieves that and refilling as soon as possible
431	 * is desirable.
432	 *
433	 * Because curr_nr visible here is always a value after the
434	 * allocation of @element, any task which decremented curr_nr below
435	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
436	 * incremented to min_nr afterwards.  If curr_nr gets incremented
437	 * to min_nr after the allocation of @element, the elements
438	 * allocated after that are subject to the same guarantee.
439	 *
440	 * Waiters happen iff curr_nr is 0 and the above guarantee also
441	 * ensures that there will be frees which return elements to the
442	 * pool waking up the waiters.
443	 */
444	if (unlikely(pool->curr_nr < pool->min_nr)) {
445		spin_lock_irqsave(&pool->lock, flags);
446		if (likely(pool->curr_nr < pool->min_nr)) {
447			add_element(pool, element);
448			spin_unlock_irqrestore(&pool->lock, flags);
449			wake_up(&pool->wait);
450			return;
451		}
452		spin_unlock_irqrestore(&pool->lock, flags);
453	}
454	pool->free(element, pool->pool_data);
455}
456EXPORT_SYMBOL(mempool_free);
457
458/*
459 * A commonly used alloc and free fn.
460 */
461void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
462{
463	struct kmem_cache *mem = pool_data;
464	VM_BUG_ON(mem->ctor);
465	return kmem_cache_alloc(mem, gfp_mask);
466}
467EXPORT_SYMBOL(mempool_alloc_slab);
468
469void mempool_free_slab(void *element, void *pool_data)
470{
471	struct kmem_cache *mem = pool_data;
472	kmem_cache_free(mem, element);
473}
474EXPORT_SYMBOL(mempool_free_slab);
475
476/*
477 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
478 * specified by pool_data
479 */
480void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
481{
482	size_t size = (size_t)pool_data;
483	return kmalloc(size, gfp_mask);
484}
485EXPORT_SYMBOL(mempool_kmalloc);
486
487void mempool_kfree(void *element, void *pool_data)
488{
489	kfree(element);
490}
491EXPORT_SYMBOL(mempool_kfree);
492
493/*
494 * A simple mempool-backed page allocator that allocates pages
495 * of the order specified by pool_data.
496 */
497void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
498{
499	int order = (int)(long)pool_data;
500	return alloc_pages(gfp_mask, order);
501}
502EXPORT_SYMBOL(mempool_alloc_pages);
503
504void mempool_free_pages(void *element, void *pool_data)
505{
506	int order = (int)(long)pool_data;
507	__free_pages(element, order);
508}
509EXPORT_SYMBOL(mempool_free_pages);
v3.5.6
  1/*
  2 *  linux/mm/mempool.c
  3 *
  4 *  memory buffer pool support. Such pools are mostly used
  5 *  for guaranteed, deadlock-free memory allocations during
  6 *  extreme VM load.
  7 *
  8 *  started by Ingo Molnar, Copyright (C) 2001
 
  9 */
 10
 11#include <linux/mm.h>
 12#include <linux/slab.h>
 
 
 
 13#include <linux/export.h>
 14#include <linux/mempool.h>
 15#include <linux/blkdev.h>
 16#include <linux/writeback.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 17
 18static void add_element(mempool_t *pool, void *element)
 19{
 20	BUG_ON(pool->curr_nr >= pool->min_nr);
 
 
 21	pool->elements[pool->curr_nr++] = element;
 22}
 23
 24static void *remove_element(mempool_t *pool)
 25{
 26	BUG_ON(pool->curr_nr <= 0);
 27	return pool->elements[--pool->curr_nr];
 
 
 
 
 28}
 29
 30/**
 31 * mempool_destroy - deallocate a memory pool
 32 * @pool:      pointer to the memory pool which was allocated via
 33 *             mempool_create().
 34 *
 35 * Free all reserved elements in @pool and @pool itself.  This function
 36 * only sleeps if the free_fn() function sleeps.
 37 */
 38void mempool_destroy(mempool_t *pool)
 39{
 
 
 
 40	while (pool->curr_nr) {
 41		void *element = remove_element(pool);
 42		pool->free(element, pool->pool_data);
 43	}
 44	kfree(pool->elements);
 45	kfree(pool);
 46}
 47EXPORT_SYMBOL(mempool_destroy);
 48
 49/**
 50 * mempool_create - create a memory pool
 51 * @min_nr:    the minimum number of elements guaranteed to be
 52 *             allocated for this pool.
 53 * @alloc_fn:  user-defined element-allocation function.
 54 * @free_fn:   user-defined element-freeing function.
 55 * @pool_data: optional private data available to the user-defined functions.
 56 *
 57 * this function creates and allocates a guaranteed size, preallocated
 58 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
 59 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
 60 * functions might sleep - as long as the mempool_alloc() function is not called
 61 * from IRQ contexts.
 62 */
 63mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
 64				mempool_free_t *free_fn, void *pool_data)
 65{
 66	return  mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,-1);
 
 67}
 68EXPORT_SYMBOL(mempool_create);
 69
 70mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
 71			mempool_free_t *free_fn, void *pool_data, int node_id)
 
 72{
 73	mempool_t *pool;
 74	pool = kmalloc_node(sizeof(*pool), GFP_KERNEL | __GFP_ZERO, node_id);
 75	if (!pool)
 76		return NULL;
 77	pool->elements = kmalloc_node(min_nr * sizeof(void *),
 78					GFP_KERNEL, node_id);
 79	if (!pool->elements) {
 80		kfree(pool);
 81		return NULL;
 82	}
 83	spin_lock_init(&pool->lock);
 84	pool->min_nr = min_nr;
 85	pool->pool_data = pool_data;
 86	init_waitqueue_head(&pool->wait);
 87	pool->alloc = alloc_fn;
 88	pool->free = free_fn;
 89
 90	/*
 91	 * First pre-allocate the guaranteed number of buffers.
 92	 */
 93	while (pool->curr_nr < pool->min_nr) {
 94		void *element;
 95
 96		element = pool->alloc(GFP_KERNEL, pool->pool_data);
 97		if (unlikely(!element)) {
 98			mempool_destroy(pool);
 99			return NULL;
100		}
101		add_element(pool, element);
102	}
103	return pool;
104}
105EXPORT_SYMBOL(mempool_create_node);
106
107/**
108 * mempool_resize - resize an existing memory pool
109 * @pool:       pointer to the memory pool which was allocated via
110 *              mempool_create().
111 * @new_min_nr: the new minimum number of elements guaranteed to be
112 *              allocated for this pool.
113 * @gfp_mask:   the usual allocation bitmask.
114 *
115 * This function shrinks/grows the pool. In the case of growing,
116 * it cannot be guaranteed that the pool will be grown to the new
117 * size immediately, but new mempool_free() calls will refill it.
 
118 *
119 * Note, the caller must guarantee that no mempool_destroy is called
120 * while this function is running. mempool_alloc() & mempool_free()
121 * might be called (eg. from IRQ contexts) while this function executes.
122 */
123int mempool_resize(mempool_t *pool, int new_min_nr, gfp_t gfp_mask)
124{
125	void *element;
126	void **new_elements;
127	unsigned long flags;
128
129	BUG_ON(new_min_nr <= 0);
 
130
131	spin_lock_irqsave(&pool->lock, flags);
132	if (new_min_nr <= pool->min_nr) {
133		while (new_min_nr < pool->curr_nr) {
134			element = remove_element(pool);
135			spin_unlock_irqrestore(&pool->lock, flags);
136			pool->free(element, pool->pool_data);
137			spin_lock_irqsave(&pool->lock, flags);
138		}
139		pool->min_nr = new_min_nr;
140		goto out_unlock;
141	}
142	spin_unlock_irqrestore(&pool->lock, flags);
143
144	/* Grow the pool */
145	new_elements = kmalloc(new_min_nr * sizeof(*new_elements), gfp_mask);
 
146	if (!new_elements)
147		return -ENOMEM;
148
149	spin_lock_irqsave(&pool->lock, flags);
150	if (unlikely(new_min_nr <= pool->min_nr)) {
151		/* Raced, other resize will do our work */
152		spin_unlock_irqrestore(&pool->lock, flags);
153		kfree(new_elements);
154		goto out;
155	}
156	memcpy(new_elements, pool->elements,
157			pool->curr_nr * sizeof(*new_elements));
158	kfree(pool->elements);
159	pool->elements = new_elements;
160	pool->min_nr = new_min_nr;
161
162	while (pool->curr_nr < pool->min_nr) {
163		spin_unlock_irqrestore(&pool->lock, flags);
164		element = pool->alloc(gfp_mask, pool->pool_data);
165		if (!element)
166			goto out;
167		spin_lock_irqsave(&pool->lock, flags);
168		if (pool->curr_nr < pool->min_nr) {
169			add_element(pool, element);
170		} else {
171			spin_unlock_irqrestore(&pool->lock, flags);
172			pool->free(element, pool->pool_data);	/* Raced */
173			goto out;
174		}
175	}
176out_unlock:
177	spin_unlock_irqrestore(&pool->lock, flags);
178out:
179	return 0;
180}
181EXPORT_SYMBOL(mempool_resize);
182
183/**
184 * mempool_alloc - allocate an element from a specific memory pool
185 * @pool:      pointer to the memory pool which was allocated via
186 *             mempool_create().
187 * @gfp_mask:  the usual allocation bitmask.
188 *
189 * this function only sleeps if the alloc_fn() function sleeps or
190 * returns NULL. Note that due to preallocation, this function
191 * *never* fails when called from process contexts. (it might
192 * fail if called from an IRQ context.)
 
193 */
194void * mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
195{
196	void *element;
197	unsigned long flags;
198	wait_queue_t wait;
199	gfp_t gfp_temp;
200
201	might_sleep_if(gfp_mask & __GFP_WAIT);
 
 
 
 
 
202
203	gfp_mask |= __GFP_NOMEMALLOC;	/* don't allocate emergency reserves */
204	gfp_mask |= __GFP_NORETRY;	/* don't loop in __alloc_pages */
205	gfp_mask |= __GFP_NOWARN;	/* failures are OK */
206
207	gfp_temp = gfp_mask & ~(__GFP_WAIT|__GFP_IO);
208
209repeat_alloc:
 
 
 
 
 
 
 
 
210
211	element = pool->alloc(gfp_temp, pool->pool_data);
212	if (likely(element != NULL))
213		return element;
214
215	spin_lock_irqsave(&pool->lock, flags);
216	if (likely(pool->curr_nr)) {
217		element = remove_element(pool);
218		spin_unlock_irqrestore(&pool->lock, flags);
219		/* paired with rmb in mempool_free(), read comment there */
220		smp_wmb();
 
 
 
 
 
221		return element;
222	}
223
224	/*
225	 * We use gfp mask w/o __GFP_WAIT or IO for the first round.  If
226	 * alloc failed with that and @pool was empty, retry immediately.
227	 */
228	if (gfp_temp != gfp_mask) {
229		spin_unlock_irqrestore(&pool->lock, flags);
230		gfp_temp = gfp_mask;
231		goto repeat_alloc;
232	}
 
233
234	/* We must not sleep if !__GFP_WAIT */
235	if (!(gfp_mask & __GFP_WAIT)) {
236		spin_unlock_irqrestore(&pool->lock, flags);
237		return NULL;
238	}
239
240	/* Let's wait for someone else to return an element to @pool */
241	init_wait(&wait);
242	prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
243
244	spin_unlock_irqrestore(&pool->lock, flags);
245
246	/*
247	 * FIXME: this should be io_schedule().  The timeout is there as a
248	 * workaround for some DM problems in 2.6.18.
249	 */
250	io_schedule_timeout(5*HZ);
251
252	finish_wait(&pool->wait, &wait);
253	goto repeat_alloc;
254}
255EXPORT_SYMBOL(mempool_alloc);
256
257/**
258 * mempool_free - return an element to the pool.
259 * @element:   pool element pointer.
260 * @pool:      pointer to the memory pool which was allocated via
261 *             mempool_create().
262 *
263 * this function only sleeps if the free_fn() function sleeps.
264 */
265void mempool_free(void *element, mempool_t *pool)
266{
267	unsigned long flags;
268
269	if (unlikely(element == NULL))
270		return;
271
272	/*
273	 * Paired with the wmb in mempool_alloc().  The preceding read is
274	 * for @element and the following @pool->curr_nr.  This ensures
275	 * that the visible value of @pool->curr_nr is from after the
276	 * allocation of @element.  This is necessary for fringe cases
277	 * where @element was passed to this task without going through
278	 * barriers.
279	 *
280	 * For example, assume @p is %NULL at the beginning and one task
281	 * performs "p = mempool_alloc(...);" while another task is doing
282	 * "while (!p) cpu_relax(); mempool_free(p, ...);".  This function
283	 * may end up using curr_nr value which is from before allocation
284	 * of @p without the following rmb.
285	 */
286	smp_rmb();
287
288	/*
289	 * For correctness, we need a test which is guaranteed to trigger
290	 * if curr_nr + #allocated == min_nr.  Testing curr_nr < min_nr
291	 * without locking achieves that and refilling as soon as possible
292	 * is desirable.
293	 *
294	 * Because curr_nr visible here is always a value after the
295	 * allocation of @element, any task which decremented curr_nr below
296	 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
297	 * incremented to min_nr afterwards.  If curr_nr gets incremented
298	 * to min_nr after the allocation of @element, the elements
299	 * allocated after that are subject to the same guarantee.
300	 *
301	 * Waiters happen iff curr_nr is 0 and the above guarantee also
302	 * ensures that there will be frees which return elements to the
303	 * pool waking up the waiters.
304	 */
305	if (pool->curr_nr < pool->min_nr) {
306		spin_lock_irqsave(&pool->lock, flags);
307		if (pool->curr_nr < pool->min_nr) {
308			add_element(pool, element);
309			spin_unlock_irqrestore(&pool->lock, flags);
310			wake_up(&pool->wait);
311			return;
312		}
313		spin_unlock_irqrestore(&pool->lock, flags);
314	}
315	pool->free(element, pool->pool_data);
316}
317EXPORT_SYMBOL(mempool_free);
318
319/*
320 * A commonly used alloc and free fn.
321 */
322void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
323{
324	struct kmem_cache *mem = pool_data;
 
325	return kmem_cache_alloc(mem, gfp_mask);
326}
327EXPORT_SYMBOL(mempool_alloc_slab);
328
329void mempool_free_slab(void *element, void *pool_data)
330{
331	struct kmem_cache *mem = pool_data;
332	kmem_cache_free(mem, element);
333}
334EXPORT_SYMBOL(mempool_free_slab);
335
336/*
337 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
338 * specified by pool_data
339 */
340void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
341{
342	size_t size = (size_t)pool_data;
343	return kmalloc(size, gfp_mask);
344}
345EXPORT_SYMBOL(mempool_kmalloc);
346
347void mempool_kfree(void *element, void *pool_data)
348{
349	kfree(element);
350}
351EXPORT_SYMBOL(mempool_kfree);
352
353/*
354 * A simple mempool-backed page allocator that allocates pages
355 * of the order specified by pool_data.
356 */
357void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
358{
359	int order = (int)(long)pool_data;
360	return alloc_pages(gfp_mask, order);
361}
362EXPORT_SYMBOL(mempool_alloc_pages);
363
364void mempool_free_pages(void *element, void *pool_data)
365{
366	int order = (int)(long)pool_data;
367	__free_pages(element, order);
368}
369EXPORT_SYMBOL(mempool_free_pages);