Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * TI OMAP Real Time Clock interface for Linux
  3 *
  4 * Copyright (C) 2003 MontaVista Software, Inc.
  5 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
  6 *
  7 * Copyright (C) 2006 David Brownell (new RTC framework)
  8 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
  9 *
 10 * This program is free software; you can redistribute it and/or
 11 * modify it under the terms of the GNU General Public License
 12 * as published by the Free Software Foundation; either version
 13 * 2 of the License, or (at your option) any later version.
 14 */
 15
 16#include <linux/kernel.h>
 
 
 
 17#include <linux/init.h>
 18#include <linux/module.h>
 19#include <linux/ioport.h>
 20#include <linux/delay.h>
 21#include <linux/rtc.h>
 22#include <linux/bcd.h>
 23#include <linux/platform_device.h>
 24#include <linux/of.h>
 25#include <linux/of_device.h>
 
 
 
 
 26#include <linux/pm_runtime.h>
 27#include <linux/io.h>
 28#include <linux/clk.h>
 29
 30/*
 31 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
 32 * with century-range alarm matching, driven by the 32kHz clock.
 33 *
 34 * The main user-visible ways it differs from PC RTCs are by omitting
 35 * "don't care" alarm fields and sub-second periodic IRQs, and having
 36 * an autoadjust mechanism to calibrate to the true oscillator rate.
 37 *
 38 * Board-specific wiring options include using split power mode with
 39 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
 40 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
 41 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
 42 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
 43 */
 44
 45/* RTC registers */
 46#define OMAP_RTC_SECONDS_REG		0x00
 47#define OMAP_RTC_MINUTES_REG		0x04
 48#define OMAP_RTC_HOURS_REG		0x08
 49#define OMAP_RTC_DAYS_REG		0x0C
 50#define OMAP_RTC_MONTHS_REG		0x10
 51#define OMAP_RTC_YEARS_REG		0x14
 52#define OMAP_RTC_WEEKS_REG		0x18
 53
 54#define OMAP_RTC_ALARM_SECONDS_REG	0x20
 55#define OMAP_RTC_ALARM_MINUTES_REG	0x24
 56#define OMAP_RTC_ALARM_HOURS_REG	0x28
 57#define OMAP_RTC_ALARM_DAYS_REG		0x2c
 58#define OMAP_RTC_ALARM_MONTHS_REG	0x30
 59#define OMAP_RTC_ALARM_YEARS_REG	0x34
 60
 61#define OMAP_RTC_CTRL_REG		0x40
 62#define OMAP_RTC_STATUS_REG		0x44
 63#define OMAP_RTC_INTERRUPTS_REG		0x48
 64
 65#define OMAP_RTC_COMP_LSB_REG		0x4c
 66#define OMAP_RTC_COMP_MSB_REG		0x50
 67#define OMAP_RTC_OSC_REG		0x54
 68
 
 
 
 
 69#define OMAP_RTC_KICK0_REG		0x6c
 70#define OMAP_RTC_KICK1_REG		0x70
 71
 72#define OMAP_RTC_IRQWAKEEN		0x7c
 73
 74#define OMAP_RTC_ALARM2_SECONDS_REG	0x80
 75#define OMAP_RTC_ALARM2_MINUTES_REG	0x84
 76#define OMAP_RTC_ALARM2_HOURS_REG	0x88
 77#define OMAP_RTC_ALARM2_DAYS_REG	0x8c
 78#define OMAP_RTC_ALARM2_MONTHS_REG	0x90
 79#define OMAP_RTC_ALARM2_YEARS_REG	0x94
 80
 81#define OMAP_RTC_PMIC_REG		0x98
 82
 83/* OMAP_RTC_CTRL_REG bit fields: */
 84#define OMAP_RTC_CTRL_SPLIT		BIT(7)
 85#define OMAP_RTC_CTRL_DISABLE		BIT(6)
 86#define OMAP_RTC_CTRL_SET_32_COUNTER	BIT(5)
 87#define OMAP_RTC_CTRL_TEST		BIT(4)
 88#define OMAP_RTC_CTRL_MODE_12_24	BIT(3)
 89#define OMAP_RTC_CTRL_AUTO_COMP		BIT(2)
 90#define OMAP_RTC_CTRL_ROUND_30S		BIT(1)
 91#define OMAP_RTC_CTRL_STOP		BIT(0)
 92
 93/* OMAP_RTC_STATUS_REG bit fields: */
 94#define OMAP_RTC_STATUS_POWER_UP	BIT(7)
 95#define OMAP_RTC_STATUS_ALARM2		BIT(7)
 96#define OMAP_RTC_STATUS_ALARM		BIT(6)
 97#define OMAP_RTC_STATUS_1D_EVENT	BIT(5)
 98#define OMAP_RTC_STATUS_1H_EVENT	BIT(4)
 99#define OMAP_RTC_STATUS_1M_EVENT	BIT(3)
100#define OMAP_RTC_STATUS_1S_EVENT	BIT(2)
101#define OMAP_RTC_STATUS_RUN		BIT(1)
102#define OMAP_RTC_STATUS_BUSY		BIT(0)
103
104/* OMAP_RTC_INTERRUPTS_REG bit fields: */
105#define OMAP_RTC_INTERRUPTS_IT_ALARM2	BIT(4)
106#define OMAP_RTC_INTERRUPTS_IT_ALARM	BIT(3)
107#define OMAP_RTC_INTERRUPTS_IT_TIMER	BIT(2)
108
109/* OMAP_RTC_OSC_REG bit fields: */
110#define OMAP_RTC_OSC_32KCLK_EN		BIT(6)
111#define OMAP_RTC_OSC_SEL_32KCLK_SRC	BIT(3)
 
112
113/* OMAP_RTC_IRQWAKEEN bit fields: */
114#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN	BIT(1)
115
116/* OMAP_RTC_PMIC bit fields: */
117#define OMAP_RTC_PMIC_POWER_EN_EN	BIT(16)
 
 
118
119/* OMAP_RTC_KICKER values */
120#define	KICK0_VALUE			0x83e70b13
121#define	KICK1_VALUE			0x95a4f1e0
122
123struct omap_rtc;
124
125struct omap_rtc_device_type {
126	bool has_32kclk_en;
127	bool has_irqwakeen;
128	bool has_pmic_mode;
129	bool has_power_up_reset;
130	void (*lock)(struct omap_rtc *rtc);
131	void (*unlock)(struct omap_rtc *rtc);
132};
133
134struct omap_rtc {
135	struct rtc_device *rtc;
136	void __iomem *base;
137	struct clk *clk;
138	int irq_alarm;
139	int irq_timer;
140	u8 interrupts_reg;
141	bool is_pmic_controller;
142	bool has_ext_clk;
 
143	const struct omap_rtc_device_type *type;
 
144};
145
146static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
147{
148	return readb(rtc->base + reg);
149}
150
151static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
152{
153	return readl(rtc->base + reg);
154}
155
156static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
157{
158	writeb(val, rtc->base + reg);
159}
160
161static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
162{
163	writel(val, rtc->base + reg);
164}
165
166static void am3352_rtc_unlock(struct omap_rtc *rtc)
167{
168	rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
169	rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
170}
171
172static void am3352_rtc_lock(struct omap_rtc *rtc)
173{
174	rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
175	rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
176}
177
178static void default_rtc_unlock(struct omap_rtc *rtc)
179{
180}
181
182static void default_rtc_lock(struct omap_rtc *rtc)
183{
184}
185
186/*
187 * We rely on the rtc framework to handle locking (rtc->ops_lock),
188 * so the only other requirement is that register accesses which
189 * require BUSY to be clear are made with IRQs locally disabled
190 */
191static void rtc_wait_not_busy(struct omap_rtc *rtc)
192{
193	int count;
194	u8 status;
195
196	/* BUSY may stay active for 1/32768 second (~30 usec) */
197	for (count = 0; count < 50; count++) {
198		status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
199		if (!(status & OMAP_RTC_STATUS_BUSY))
200			break;
201		udelay(1);
202	}
203	/* now we have ~15 usec to read/write various registers */
204}
205
206static irqreturn_t rtc_irq(int irq, void *dev_id)
207{
208	struct omap_rtc	*rtc = dev_id;
209	unsigned long events = 0;
210	u8 irq_data;
211
212	irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
213
214	/* alarm irq? */
215	if (irq_data & OMAP_RTC_STATUS_ALARM) {
216		rtc->type->unlock(rtc);
217		rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
218		rtc->type->lock(rtc);
219		events |= RTC_IRQF | RTC_AF;
220	}
221
222	/* 1/sec periodic/update irq? */
223	if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
224		events |= RTC_IRQF | RTC_UF;
225
226	rtc_update_irq(rtc->rtc, 1, events);
227
228	return IRQ_HANDLED;
229}
230
231static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
232{
233	struct omap_rtc *rtc = dev_get_drvdata(dev);
234	u8 reg, irqwake_reg = 0;
235
236	local_irq_disable();
237	rtc_wait_not_busy(rtc);
238	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
239	if (rtc->type->has_irqwakeen)
240		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
241
242	if (enabled) {
243		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
244		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
245	} else {
246		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
247		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
248	}
249	rtc_wait_not_busy(rtc);
250	rtc->type->unlock(rtc);
251	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
252	if (rtc->type->has_irqwakeen)
253		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
254	rtc->type->lock(rtc);
255	local_irq_enable();
256
257	return 0;
258}
259
260/* this hardware doesn't support "don't care" alarm fields */
261static int tm2bcd(struct rtc_time *tm)
262{
263	if (rtc_valid_tm(tm) != 0)
264		return -EINVAL;
265
266	tm->tm_sec = bin2bcd(tm->tm_sec);
267	tm->tm_min = bin2bcd(tm->tm_min);
268	tm->tm_hour = bin2bcd(tm->tm_hour);
269	tm->tm_mday = bin2bcd(tm->tm_mday);
270
271	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
272
273	/* epoch == 1900 */
274	if (tm->tm_year < 100 || tm->tm_year > 199)
275		return -EINVAL;
276	tm->tm_year = bin2bcd(tm->tm_year - 100);
277
278	return 0;
279}
280
281static void bcd2tm(struct rtc_time *tm)
282{
283	tm->tm_sec = bcd2bin(tm->tm_sec);
284	tm->tm_min = bcd2bin(tm->tm_min);
285	tm->tm_hour = bcd2bin(tm->tm_hour);
286	tm->tm_mday = bcd2bin(tm->tm_mday);
287	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
288	/* epoch == 1900 */
289	tm->tm_year = bcd2bin(tm->tm_year) + 100;
290}
291
292static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
293{
294	tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
295	tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
296	tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
297	tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
298	tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
299	tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
300}
301
302static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
303{
304	struct omap_rtc *rtc = dev_get_drvdata(dev);
305
306	/* we don't report wday/yday/isdst ... */
307	local_irq_disable();
308	rtc_wait_not_busy(rtc);
309	omap_rtc_read_time_raw(rtc, tm);
310	local_irq_enable();
311
312	bcd2tm(tm);
313
314	return 0;
315}
316
317static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
318{
319	struct omap_rtc *rtc = dev_get_drvdata(dev);
320
321	if (tm2bcd(tm) < 0)
322		return -EINVAL;
323
324	local_irq_disable();
325	rtc_wait_not_busy(rtc);
326
327	rtc->type->unlock(rtc);
328	rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
329	rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
330	rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
331	rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
332	rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
333	rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
334	rtc->type->lock(rtc);
335
336	local_irq_enable();
337
338	return 0;
339}
340
341static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
342{
343	struct omap_rtc *rtc = dev_get_drvdata(dev);
344	u8 interrupts;
345
346	local_irq_disable();
347	rtc_wait_not_busy(rtc);
348
349	alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
350	alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
351	alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
352	alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
353	alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
354	alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
355
356	local_irq_enable();
357
358	bcd2tm(&alm->time);
359
360	interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
361	alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
362
363	return 0;
364}
365
366static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
367{
368	struct omap_rtc *rtc = dev_get_drvdata(dev);
369	u8 reg, irqwake_reg = 0;
370
371	if (tm2bcd(&alm->time) < 0)
372		return -EINVAL;
373
374	local_irq_disable();
375	rtc_wait_not_busy(rtc);
376
377	rtc->type->unlock(rtc);
378	rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
379	rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
380	rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
381	rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
382	rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
383	rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
384
385	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
386	if (rtc->type->has_irqwakeen)
387		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
388
389	if (alm->enabled) {
390		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
391		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
392	} else {
393		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
394		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
395	}
396	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
397	if (rtc->type->has_irqwakeen)
398		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
399	rtc->type->lock(rtc);
400
401	local_irq_enable();
402
403	return 0;
404}
405
406static struct omap_rtc *omap_rtc_power_off_rtc;
407
408/*
409 * omap_rtc_poweroff: RTC-controlled power off
410 *
411 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
412 * which can be configured to transition to OFF on ALARM2 events.
413 *
414 * Notes:
415 * The two-second alarm offset is the shortest offset possible as the alarm
416 * registers must be set before the next timer update and the offset
417 * calculation is too heavy for everything to be done within a single access
418 * period (~15 us).
419 *
420 * Called with local interrupts disabled.
421 */
422static void omap_rtc_power_off(void)
423{
424	struct omap_rtc *rtc = omap_rtc_power_off_rtc;
425	struct rtc_time tm;
426	unsigned long now;
427	u32 val;
428
429	rtc->type->unlock(rtc);
430	/* enable pmic_power_en control */
431	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
432	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
433
434	/* set alarm two seconds from now */
435	omap_rtc_read_time_raw(rtc, &tm);
436	bcd2tm(&tm);
437	rtc_tm_to_time(&tm, &now);
438	rtc_time_to_tm(now + 2, &tm);
439
440	if (tm2bcd(&tm) < 0) {
441		dev_err(&rtc->rtc->dev, "power off failed\n");
442		return;
443	}
444
445	rtc_wait_not_busy(rtc);
446
447	rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
448	rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
449	rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
450	rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
451	rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
452	rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
453
454	/*
455	 * enable ALARM2 interrupt
456	 *
457	 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
458	 */
459	val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
460	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
461			val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
462	rtc->type->lock(rtc);
463
464	/*
465	 * Wait for alarm to trigger (within two seconds) and external PMIC to
466	 * power off the system. Add a 500 ms margin for external latencies
467	 * (e.g. debounce circuits).
468	 */
469	mdelay(2500);
470}
471
472static struct rtc_class_ops omap_rtc_ops = {
473	.read_time	= omap_rtc_read_time,
474	.set_time	= omap_rtc_set_time,
475	.read_alarm	= omap_rtc_read_alarm,
476	.set_alarm	= omap_rtc_set_alarm,
477	.alarm_irq_enable = omap_rtc_alarm_irq_enable,
478};
479
480static const struct omap_rtc_device_type omap_rtc_default_type = {
481	.has_power_up_reset = true,
482	.lock		= default_rtc_lock,
483	.unlock		= default_rtc_unlock,
484};
485
486static const struct omap_rtc_device_type omap_rtc_am3352_type = {
487	.has_32kclk_en	= true,
488	.has_irqwakeen	= true,
489	.has_pmic_mode	= true,
490	.lock		= am3352_rtc_lock,
491	.unlock		= am3352_rtc_unlock,
492};
493
494static const struct omap_rtc_device_type omap_rtc_da830_type = {
495	.lock		= am3352_rtc_lock,
496	.unlock		= am3352_rtc_unlock,
497};
498
499static const struct platform_device_id omap_rtc_id_table[] = {
500	{
501		.name	= "omap_rtc",
502		.driver_data = (kernel_ulong_t)&omap_rtc_default_type,
503	}, {
504		.name	= "am3352-rtc",
505		.driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
506	}, {
507		.name	= "da830-rtc",
508		.driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
509	}, {
510		/* sentinel */
511	}
512};
513MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
514
515static const struct of_device_id omap_rtc_of_match[] = {
516	{
517		.compatible	= "ti,am3352-rtc",
518		.data		= &omap_rtc_am3352_type,
519	}, {
520		.compatible	= "ti,da830-rtc",
521		.data		= &omap_rtc_da830_type,
522	}, {
523		/* sentinel */
524	}
525};
526MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528static int omap_rtc_probe(struct platform_device *pdev)
529{
530	struct omap_rtc	*rtc;
531	struct resource	*res;
532	u8 reg, mask, new_ctrl;
533	const struct platform_device_id *id_entry;
534	const struct of_device_id *of_id;
535	int ret;
536
537	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
538	if (!rtc)
539		return -ENOMEM;
540
541	of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
542	if (of_id) {
543		rtc->type = of_id->data;
544		rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
545				of_property_read_bool(pdev->dev.of_node,
546						"system-power-controller");
547	} else {
548		id_entry = platform_get_device_id(pdev);
549		rtc->type = (void *)id_entry->driver_data;
550	}
551
552	rtc->irq_timer = platform_get_irq(pdev, 0);
553	if (rtc->irq_timer <= 0)
554		return -ENOENT;
555
556	rtc->irq_alarm = platform_get_irq(pdev, 1);
557	if (rtc->irq_alarm <= 0)
558		return -ENOENT;
559
560	rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
561	if (!IS_ERR(rtc->clk))
562		rtc->has_ext_clk = true;
563	else
564		rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
565
566	if (!IS_ERR(rtc->clk))
567		clk_prepare_enable(rtc->clk);
568
569	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
570	rtc->base = devm_ioremap_resource(&pdev->dev, res);
571	if (IS_ERR(rtc->base))
 
572		return PTR_ERR(rtc->base);
 
573
574	platform_set_drvdata(pdev, rtc);
575
576	/* Enable the clock/module so that we can access the registers */
577	pm_runtime_enable(&pdev->dev);
578	pm_runtime_get_sync(&pdev->dev);
579
580	rtc->type->unlock(rtc);
581
582	/*
583	 * disable interrupts
584	 *
585	 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
586	 */
587	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
588
589	/* enable RTC functional clock */
590	if (rtc->type->has_32kclk_en) {
591		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
592		rtc_writel(rtc, OMAP_RTC_OSC_REG,
593				reg | OMAP_RTC_OSC_32KCLK_EN);
594	}
595
596	/* clear old status */
597	reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
598
599	mask = OMAP_RTC_STATUS_ALARM;
600
601	if (rtc->type->has_pmic_mode)
602		mask |= OMAP_RTC_STATUS_ALARM2;
603
604	if (rtc->type->has_power_up_reset) {
605		mask |= OMAP_RTC_STATUS_POWER_UP;
606		if (reg & OMAP_RTC_STATUS_POWER_UP)
607			dev_info(&pdev->dev, "RTC power up reset detected\n");
608	}
609
610	if (reg & mask)
611		rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
612
613	/* On boards with split power, RTC_ON_NOFF won't reset the RTC */
614	reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
615	if (reg & OMAP_RTC_CTRL_STOP)
616		dev_info(&pdev->dev, "already running\n");
617
618	/* force to 24 hour mode */
619	new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
620	new_ctrl |= OMAP_RTC_CTRL_STOP;
621
622	/*
623	 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
624	 *
625	 *  - Device wake-up capability setting should come through chip
626	 *    init logic. OMAP1 boards should initialize the "wakeup capable"
627	 *    flag in the platform device if the board is wired right for
628	 *    being woken up by RTC alarm. For OMAP-L138, this capability
629	 *    is built into the SoC by the "Deep Sleep" capability.
630	 *
631	 *  - Boards wired so RTC_ON_nOFF is used as the reset signal,
632	 *    rather than nPWRON_RESET, should forcibly enable split
633	 *    power mode.  (Some chip errata report that RTC_CTRL_SPLIT
634	 *    is write-only, and always reads as zero...)
635	 */
636
637	if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
638		dev_info(&pdev->dev, "split power mode\n");
639
640	if (reg != new_ctrl)
641		rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
642
643	/*
644	 * If we have the external clock then switch to it so we can keep
645	 * ticking across suspend.
646	 */
647	if (rtc->has_ext_clk) {
648		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
649		rtc_write(rtc, OMAP_RTC_OSC_REG,
650			  reg | OMAP_RTC_OSC_SEL_32KCLK_SRC);
 
651	}
652
653	rtc->type->lock(rtc);
654
655	device_init_wakeup(&pdev->dev, true);
656
657	rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
658			&omap_rtc_ops, THIS_MODULE);
659	if (IS_ERR(rtc->rtc)) {
660		ret = PTR_ERR(rtc->rtc);
661		goto err;
662	}
663
 
 
 
664	/* handle periodic and alarm irqs */
665	ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
666			dev_name(&rtc->rtc->dev), rtc);
667	if (ret)
668		goto err;
669
670	if (rtc->irq_timer != rtc->irq_alarm) {
671		ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
672				dev_name(&rtc->rtc->dev), rtc);
673		if (ret)
674			goto err;
675	}
676
677	if (rtc->is_pmic_controller) {
678		if (!pm_power_off) {
679			omap_rtc_power_off_rtc = rtc;
680			pm_power_off = omap_rtc_power_off;
681		}
682	}
683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684	return 0;
685
686err:
 
687	device_init_wakeup(&pdev->dev, false);
688	rtc->type->lock(rtc);
689	pm_runtime_put_sync(&pdev->dev);
690	pm_runtime_disable(&pdev->dev);
691
692	return ret;
693}
694
695static int __exit omap_rtc_remove(struct platform_device *pdev)
696{
697	struct omap_rtc *rtc = platform_get_drvdata(pdev);
698	u8 reg;
699
700	if (pm_power_off == omap_rtc_power_off &&
701			omap_rtc_power_off_rtc == rtc) {
702		pm_power_off = NULL;
703		omap_rtc_power_off_rtc = NULL;
704	}
705
706	device_init_wakeup(&pdev->dev, 0);
707
708	if (!IS_ERR(rtc->clk))
709		clk_disable_unprepare(rtc->clk);
710
711	rtc->type->unlock(rtc);
712	/* leave rtc running, but disable irqs */
713	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
714
715	if (rtc->has_ext_clk) {
716		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
717		reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
718		rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
719	}
720
721	rtc->type->lock(rtc);
722
723	/* Disable the clock/module */
724	pm_runtime_put_sync(&pdev->dev);
725	pm_runtime_disable(&pdev->dev);
726
 
 
 
727	return 0;
728}
729
730#ifdef CONFIG_PM_SLEEP
731static int omap_rtc_suspend(struct device *dev)
732{
733	struct omap_rtc *rtc = dev_get_drvdata(dev);
734
735	rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
736
737	rtc->type->unlock(rtc);
738	/*
739	 * FIXME: the RTC alarm is not currently acting as a wakeup event
740	 * source on some platforms, and in fact this enable() call is just
741	 * saving a flag that's never used...
742	 */
743	if (device_may_wakeup(dev))
744		enable_irq_wake(rtc->irq_alarm);
745	else
746		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
747	rtc->type->lock(rtc);
748
749	/* Disable the clock/module */
750	pm_runtime_put_sync(dev);
751
752	return 0;
753}
754
755static int omap_rtc_resume(struct device *dev)
756{
757	struct omap_rtc *rtc = dev_get_drvdata(dev);
758
759	/* Enable the clock/module so that we can access the registers */
760	pm_runtime_get_sync(dev);
761
762	rtc->type->unlock(rtc);
763	if (device_may_wakeup(dev))
764		disable_irq_wake(rtc->irq_alarm);
765	else
766		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
767	rtc->type->lock(rtc);
768
 
 
769	return 0;
770}
771#endif
772
773static SIMPLE_DEV_PM_OPS(omap_rtc_pm_ops, omap_rtc_suspend, omap_rtc_resume);
 
 
 
 
 
 
 
 
 
 
 
 
 
774
775static void omap_rtc_shutdown(struct platform_device *pdev)
776{
777	struct omap_rtc *rtc = platform_get_drvdata(pdev);
778	u8 mask;
779
780	/*
781	 * Keep the ALARM interrupt enabled to allow the system to power up on
782	 * alarm events.
783	 */
784	rtc->type->unlock(rtc);
785	mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
786	mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
787	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
788	rtc->type->lock(rtc);
789}
790
791static struct platform_driver omap_rtc_driver = {
792	.probe		= omap_rtc_probe,
793	.remove		= __exit_p(omap_rtc_remove),
794	.shutdown	= omap_rtc_shutdown,
795	.driver		= {
796		.name	= "omap_rtc",
797		.pm	= &omap_rtc_pm_ops,
798		.of_match_table = omap_rtc_of_match,
799	},
800	.id_table	= omap_rtc_id_table,
801};
802
803module_platform_driver(omap_rtc_driver);
804
805MODULE_ALIAS("platform:omap_rtc");
806MODULE_AUTHOR("George G. Davis (and others)");
807MODULE_LICENSE("GPL");
v4.17
   1/*
   2 * TI OMAP Real Time Clock interface for Linux
   3 *
   4 * Copyright (C) 2003 MontaVista Software, Inc.
   5 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
   6 *
   7 * Copyright (C) 2006 David Brownell (new RTC framework)
   8 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 */
  15
  16#include <dt-bindings/gpio/gpio.h>
  17#include <linux/bcd.h>
  18#include <linux/clk.h>
  19#include <linux/delay.h>
  20#include <linux/init.h>
  21#include <linux/io.h>
  22#include <linux/ioport.h>
  23#include <linux/kernel.h>
  24#include <linux/module.h>
 
 
  25#include <linux/of.h>
  26#include <linux/of_device.h>
  27#include <linux/pinctrl/pinctrl.h>
  28#include <linux/pinctrl/pinconf.h>
  29#include <linux/pinctrl/pinconf-generic.h>
  30#include <linux/platform_device.h>
  31#include <linux/pm_runtime.h>
  32#include <linux/rtc.h>
 
  33
  34/*
  35 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
  36 * with century-range alarm matching, driven by the 32kHz clock.
  37 *
  38 * The main user-visible ways it differs from PC RTCs are by omitting
  39 * "don't care" alarm fields and sub-second periodic IRQs, and having
  40 * an autoadjust mechanism to calibrate to the true oscillator rate.
  41 *
  42 * Board-specific wiring options include using split power mode with
  43 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
  44 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
  45 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
  46 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
  47 */
  48
  49/* RTC registers */
  50#define OMAP_RTC_SECONDS_REG		0x00
  51#define OMAP_RTC_MINUTES_REG		0x04
  52#define OMAP_RTC_HOURS_REG		0x08
  53#define OMAP_RTC_DAYS_REG		0x0C
  54#define OMAP_RTC_MONTHS_REG		0x10
  55#define OMAP_RTC_YEARS_REG		0x14
  56#define OMAP_RTC_WEEKS_REG		0x18
  57
  58#define OMAP_RTC_ALARM_SECONDS_REG	0x20
  59#define OMAP_RTC_ALARM_MINUTES_REG	0x24
  60#define OMAP_RTC_ALARM_HOURS_REG	0x28
  61#define OMAP_RTC_ALARM_DAYS_REG		0x2c
  62#define OMAP_RTC_ALARM_MONTHS_REG	0x30
  63#define OMAP_RTC_ALARM_YEARS_REG	0x34
  64
  65#define OMAP_RTC_CTRL_REG		0x40
  66#define OMAP_RTC_STATUS_REG		0x44
  67#define OMAP_RTC_INTERRUPTS_REG		0x48
  68
  69#define OMAP_RTC_COMP_LSB_REG		0x4c
  70#define OMAP_RTC_COMP_MSB_REG		0x50
  71#define OMAP_RTC_OSC_REG		0x54
  72
  73#define OMAP_RTC_SCRATCH0_REG		0x60
  74#define OMAP_RTC_SCRATCH1_REG		0x64
  75#define OMAP_RTC_SCRATCH2_REG		0x68
  76
  77#define OMAP_RTC_KICK0_REG		0x6c
  78#define OMAP_RTC_KICK1_REG		0x70
  79
  80#define OMAP_RTC_IRQWAKEEN		0x7c
  81
  82#define OMAP_RTC_ALARM2_SECONDS_REG	0x80
  83#define OMAP_RTC_ALARM2_MINUTES_REG	0x84
  84#define OMAP_RTC_ALARM2_HOURS_REG	0x88
  85#define OMAP_RTC_ALARM2_DAYS_REG	0x8c
  86#define OMAP_RTC_ALARM2_MONTHS_REG	0x90
  87#define OMAP_RTC_ALARM2_YEARS_REG	0x94
  88
  89#define OMAP_RTC_PMIC_REG		0x98
  90
  91/* OMAP_RTC_CTRL_REG bit fields: */
  92#define OMAP_RTC_CTRL_SPLIT		BIT(7)
  93#define OMAP_RTC_CTRL_DISABLE		BIT(6)
  94#define OMAP_RTC_CTRL_SET_32_COUNTER	BIT(5)
  95#define OMAP_RTC_CTRL_TEST		BIT(4)
  96#define OMAP_RTC_CTRL_MODE_12_24	BIT(3)
  97#define OMAP_RTC_CTRL_AUTO_COMP		BIT(2)
  98#define OMAP_RTC_CTRL_ROUND_30S		BIT(1)
  99#define OMAP_RTC_CTRL_STOP		BIT(0)
 100
 101/* OMAP_RTC_STATUS_REG bit fields: */
 102#define OMAP_RTC_STATUS_POWER_UP	BIT(7)
 103#define OMAP_RTC_STATUS_ALARM2		BIT(7)
 104#define OMAP_RTC_STATUS_ALARM		BIT(6)
 105#define OMAP_RTC_STATUS_1D_EVENT	BIT(5)
 106#define OMAP_RTC_STATUS_1H_EVENT	BIT(4)
 107#define OMAP_RTC_STATUS_1M_EVENT	BIT(3)
 108#define OMAP_RTC_STATUS_1S_EVENT	BIT(2)
 109#define OMAP_RTC_STATUS_RUN		BIT(1)
 110#define OMAP_RTC_STATUS_BUSY		BIT(0)
 111
 112/* OMAP_RTC_INTERRUPTS_REG bit fields: */
 113#define OMAP_RTC_INTERRUPTS_IT_ALARM2	BIT(4)
 114#define OMAP_RTC_INTERRUPTS_IT_ALARM	BIT(3)
 115#define OMAP_RTC_INTERRUPTS_IT_TIMER	BIT(2)
 116
 117/* OMAP_RTC_OSC_REG bit fields: */
 118#define OMAP_RTC_OSC_32KCLK_EN		BIT(6)
 119#define OMAP_RTC_OSC_SEL_32KCLK_SRC	BIT(3)
 120#define OMAP_RTC_OSC_OSC32K_GZ_DISABLE	BIT(4)
 121
 122/* OMAP_RTC_IRQWAKEEN bit fields: */
 123#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN	BIT(1)
 124
 125/* OMAP_RTC_PMIC bit fields: */
 126#define OMAP_RTC_PMIC_POWER_EN_EN	BIT(16)
 127#define OMAP_RTC_PMIC_EXT_WKUP_EN(x)	BIT(x)
 128#define OMAP_RTC_PMIC_EXT_WKUP_POL(x)	BIT(4 + x)
 129
 130/* OMAP_RTC_KICKER values */
 131#define	KICK0_VALUE			0x83e70b13
 132#define	KICK1_VALUE			0x95a4f1e0
 133
 134struct omap_rtc;
 135
 136struct omap_rtc_device_type {
 137	bool has_32kclk_en;
 138	bool has_irqwakeen;
 139	bool has_pmic_mode;
 140	bool has_power_up_reset;
 141	void (*lock)(struct omap_rtc *rtc);
 142	void (*unlock)(struct omap_rtc *rtc);
 143};
 144
 145struct omap_rtc {
 146	struct rtc_device *rtc;
 147	void __iomem *base;
 148	struct clk *clk;
 149	int irq_alarm;
 150	int irq_timer;
 151	u8 interrupts_reg;
 152	bool is_pmic_controller;
 153	bool has_ext_clk;
 154	bool is_suspending;
 155	const struct omap_rtc_device_type *type;
 156	struct pinctrl_dev *pctldev;
 157};
 158
 159static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
 160{
 161	return readb(rtc->base + reg);
 162}
 163
 164static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
 165{
 166	return readl(rtc->base + reg);
 167}
 168
 169static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
 170{
 171	writeb(val, rtc->base + reg);
 172}
 173
 174static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
 175{
 176	writel(val, rtc->base + reg);
 177}
 178
 179static void am3352_rtc_unlock(struct omap_rtc *rtc)
 180{
 181	rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
 182	rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
 183}
 184
 185static void am3352_rtc_lock(struct omap_rtc *rtc)
 186{
 187	rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
 188	rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
 189}
 190
 191static void default_rtc_unlock(struct omap_rtc *rtc)
 192{
 193}
 194
 195static void default_rtc_lock(struct omap_rtc *rtc)
 196{
 197}
 198
 199/*
 200 * We rely on the rtc framework to handle locking (rtc->ops_lock),
 201 * so the only other requirement is that register accesses which
 202 * require BUSY to be clear are made with IRQs locally disabled
 203 */
 204static void rtc_wait_not_busy(struct omap_rtc *rtc)
 205{
 206	int count;
 207	u8 status;
 208
 209	/* BUSY may stay active for 1/32768 second (~30 usec) */
 210	for (count = 0; count < 50; count++) {
 211		status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
 212		if (!(status & OMAP_RTC_STATUS_BUSY))
 213			break;
 214		udelay(1);
 215	}
 216	/* now we have ~15 usec to read/write various registers */
 217}
 218
 219static irqreturn_t rtc_irq(int irq, void *dev_id)
 220{
 221	struct omap_rtc	*rtc = dev_id;
 222	unsigned long events = 0;
 223	u8 irq_data;
 224
 225	irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
 226
 227	/* alarm irq? */
 228	if (irq_data & OMAP_RTC_STATUS_ALARM) {
 229		rtc->type->unlock(rtc);
 230		rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
 231		rtc->type->lock(rtc);
 232		events |= RTC_IRQF | RTC_AF;
 233	}
 234
 235	/* 1/sec periodic/update irq? */
 236	if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
 237		events |= RTC_IRQF | RTC_UF;
 238
 239	rtc_update_irq(rtc->rtc, 1, events);
 240
 241	return IRQ_HANDLED;
 242}
 243
 244static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
 245{
 246	struct omap_rtc *rtc = dev_get_drvdata(dev);
 247	u8 reg, irqwake_reg = 0;
 248
 249	local_irq_disable();
 250	rtc_wait_not_busy(rtc);
 251	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 252	if (rtc->type->has_irqwakeen)
 253		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
 254
 255	if (enabled) {
 256		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
 257		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
 258	} else {
 259		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
 260		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
 261	}
 262	rtc_wait_not_busy(rtc);
 263	rtc->type->unlock(rtc);
 264	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
 265	if (rtc->type->has_irqwakeen)
 266		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
 267	rtc->type->lock(rtc);
 268	local_irq_enable();
 269
 270	return 0;
 271}
 272
 273/* this hardware doesn't support "don't care" alarm fields */
 274static int tm2bcd(struct rtc_time *tm)
 275{
 
 
 
 276	tm->tm_sec = bin2bcd(tm->tm_sec);
 277	tm->tm_min = bin2bcd(tm->tm_min);
 278	tm->tm_hour = bin2bcd(tm->tm_hour);
 279	tm->tm_mday = bin2bcd(tm->tm_mday);
 280
 281	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
 282
 283	/* epoch == 1900 */
 284	if (tm->tm_year < 100 || tm->tm_year > 199)
 285		return -EINVAL;
 286	tm->tm_year = bin2bcd(tm->tm_year - 100);
 287
 288	return 0;
 289}
 290
 291static void bcd2tm(struct rtc_time *tm)
 292{
 293	tm->tm_sec = bcd2bin(tm->tm_sec);
 294	tm->tm_min = bcd2bin(tm->tm_min);
 295	tm->tm_hour = bcd2bin(tm->tm_hour);
 296	tm->tm_mday = bcd2bin(tm->tm_mday);
 297	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
 298	/* epoch == 1900 */
 299	tm->tm_year = bcd2bin(tm->tm_year) + 100;
 300}
 301
 302static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
 303{
 304	tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
 305	tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
 306	tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
 307	tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
 308	tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
 309	tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
 310}
 311
 312static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
 313{
 314	struct omap_rtc *rtc = dev_get_drvdata(dev);
 315
 316	/* we don't report wday/yday/isdst ... */
 317	local_irq_disable();
 318	rtc_wait_not_busy(rtc);
 319	omap_rtc_read_time_raw(rtc, tm);
 320	local_irq_enable();
 321
 322	bcd2tm(tm);
 323
 324	return 0;
 325}
 326
 327static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
 328{
 329	struct omap_rtc *rtc = dev_get_drvdata(dev);
 330
 331	if (tm2bcd(tm) < 0)
 332		return -EINVAL;
 333
 334	local_irq_disable();
 335	rtc_wait_not_busy(rtc);
 336
 337	rtc->type->unlock(rtc);
 338	rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
 339	rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
 340	rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
 341	rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
 342	rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
 343	rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
 344	rtc->type->lock(rtc);
 345
 346	local_irq_enable();
 347
 348	return 0;
 349}
 350
 351static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
 352{
 353	struct omap_rtc *rtc = dev_get_drvdata(dev);
 354	u8 interrupts;
 355
 356	local_irq_disable();
 357	rtc_wait_not_busy(rtc);
 358
 359	alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
 360	alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
 361	alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
 362	alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
 363	alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
 364	alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
 365
 366	local_irq_enable();
 367
 368	bcd2tm(&alm->time);
 369
 370	interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 371	alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
 372
 373	return 0;
 374}
 375
 376static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
 377{
 378	struct omap_rtc *rtc = dev_get_drvdata(dev);
 379	u8 reg, irqwake_reg = 0;
 380
 381	if (tm2bcd(&alm->time) < 0)
 382		return -EINVAL;
 383
 384	local_irq_disable();
 385	rtc_wait_not_busy(rtc);
 386
 387	rtc->type->unlock(rtc);
 388	rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
 389	rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
 390	rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
 391	rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
 392	rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
 393	rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
 394
 395	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 396	if (rtc->type->has_irqwakeen)
 397		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
 398
 399	if (alm->enabled) {
 400		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
 401		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
 402	} else {
 403		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
 404		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
 405	}
 406	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
 407	if (rtc->type->has_irqwakeen)
 408		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
 409	rtc->type->lock(rtc);
 410
 411	local_irq_enable();
 412
 413	return 0;
 414}
 415
 416static struct omap_rtc *omap_rtc_power_off_rtc;
 417
 418/*
 419 * omap_rtc_poweroff: RTC-controlled power off
 420 *
 421 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
 422 * which can be configured to transition to OFF on ALARM2 events.
 423 *
 424 * Notes:
 425 * The two-second alarm offset is the shortest offset possible as the alarm
 426 * registers must be set before the next timer update and the offset
 427 * calculation is too heavy for everything to be done within a single access
 428 * period (~15 us).
 429 *
 430 * Called with local interrupts disabled.
 431 */
 432static void omap_rtc_power_off(void)
 433{
 434	struct omap_rtc *rtc = omap_rtc_power_off_rtc;
 435	struct rtc_time tm;
 436	unsigned long now;
 437	u32 val;
 438
 439	rtc->type->unlock(rtc);
 440	/* enable pmic_power_en control */
 441	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
 442	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
 443
 444	/* set alarm two seconds from now */
 445	omap_rtc_read_time_raw(rtc, &tm);
 446	bcd2tm(&tm);
 447	rtc_tm_to_time(&tm, &now);
 448	rtc_time_to_tm(now + 2, &tm);
 449
 450	if (tm2bcd(&tm) < 0) {
 451		dev_err(&rtc->rtc->dev, "power off failed\n");
 452		return;
 453	}
 454
 455	rtc_wait_not_busy(rtc);
 456
 457	rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
 458	rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
 459	rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
 460	rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
 461	rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
 462	rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
 463
 464	/*
 465	 * enable ALARM2 interrupt
 466	 *
 467	 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
 468	 */
 469	val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 470	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
 471			val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
 472	rtc->type->lock(rtc);
 473
 474	/*
 475	 * Wait for alarm to trigger (within two seconds) and external PMIC to
 476	 * power off the system. Add a 500 ms margin for external latencies
 477	 * (e.g. debounce circuits).
 478	 */
 479	mdelay(2500);
 480}
 481
 482static const struct rtc_class_ops omap_rtc_ops = {
 483	.read_time	= omap_rtc_read_time,
 484	.set_time	= omap_rtc_set_time,
 485	.read_alarm	= omap_rtc_read_alarm,
 486	.set_alarm	= omap_rtc_set_alarm,
 487	.alarm_irq_enable = omap_rtc_alarm_irq_enable,
 488};
 489
 490static const struct omap_rtc_device_type omap_rtc_default_type = {
 491	.has_power_up_reset = true,
 492	.lock		= default_rtc_lock,
 493	.unlock		= default_rtc_unlock,
 494};
 495
 496static const struct omap_rtc_device_type omap_rtc_am3352_type = {
 497	.has_32kclk_en	= true,
 498	.has_irqwakeen	= true,
 499	.has_pmic_mode	= true,
 500	.lock		= am3352_rtc_lock,
 501	.unlock		= am3352_rtc_unlock,
 502};
 503
 504static const struct omap_rtc_device_type omap_rtc_da830_type = {
 505	.lock		= am3352_rtc_lock,
 506	.unlock		= am3352_rtc_unlock,
 507};
 508
 509static const struct platform_device_id omap_rtc_id_table[] = {
 510	{
 511		.name	= "omap_rtc",
 512		.driver_data = (kernel_ulong_t)&omap_rtc_default_type,
 513	}, {
 514		.name	= "am3352-rtc",
 515		.driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
 516	}, {
 517		.name	= "da830-rtc",
 518		.driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
 519	}, {
 520		/* sentinel */
 521	}
 522};
 523MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
 524
 525static const struct of_device_id omap_rtc_of_match[] = {
 526	{
 527		.compatible	= "ti,am3352-rtc",
 528		.data		= &omap_rtc_am3352_type,
 529	}, {
 530		.compatible	= "ti,da830-rtc",
 531		.data		= &omap_rtc_da830_type,
 532	}, {
 533		/* sentinel */
 534	}
 535};
 536MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
 537
 538static const struct pinctrl_pin_desc rtc_pins_desc[] = {
 539	PINCTRL_PIN(0, "ext_wakeup0"),
 540	PINCTRL_PIN(1, "ext_wakeup1"),
 541	PINCTRL_PIN(2, "ext_wakeup2"),
 542	PINCTRL_PIN(3, "ext_wakeup3"),
 543};
 544
 545static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
 546{
 547	return 0;
 548}
 549
 550static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
 551					unsigned int group)
 552{
 553	return NULL;
 554}
 555
 556static const struct pinctrl_ops rtc_pinctrl_ops = {
 557	.get_groups_count = rtc_pinctrl_get_groups_count,
 558	.get_group_name = rtc_pinctrl_get_group_name,
 559	.dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
 560	.dt_free_map = pinconf_generic_dt_free_map,
 561};
 562
 563enum rtc_pin_config_param {
 564	PIN_CONFIG_ACTIVE_HIGH = PIN_CONFIG_END + 1,
 565};
 566
 567static const struct pinconf_generic_params rtc_params[] = {
 568	{"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0},
 569};
 570
 571#ifdef CONFIG_DEBUG_FS
 572static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = {
 573	PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false),
 574};
 575#endif
 576
 577static int rtc_pinconf_get(struct pinctrl_dev *pctldev,
 578			unsigned int pin, unsigned long *config)
 579{
 580	struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
 581	unsigned int param = pinconf_to_config_param(*config);
 582	u32 val;
 583	u16 arg = 0;
 584
 585	rtc->type->unlock(rtc);
 586	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
 587	rtc->type->lock(rtc);
 588
 589	switch (param) {
 590	case PIN_CONFIG_INPUT_ENABLE:
 591		if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin)))
 592			return -EINVAL;
 593		break;
 594	case PIN_CONFIG_ACTIVE_HIGH:
 595		if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin))
 596			return -EINVAL;
 597		break;
 598	default:
 599		return -ENOTSUPP;
 600	};
 601
 602	*config = pinconf_to_config_packed(param, arg);
 603
 604	return 0;
 605}
 606
 607static int rtc_pinconf_set(struct pinctrl_dev *pctldev,
 608			unsigned int pin, unsigned long *configs,
 609			unsigned int num_configs)
 610{
 611	struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
 612	u32 val;
 613	unsigned int param;
 614	u32 param_val;
 615	int i;
 616
 617	rtc->type->unlock(rtc);
 618	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
 619	rtc->type->lock(rtc);
 620
 621	/* active low by default */
 622	val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
 623
 624	for (i = 0; i < num_configs; i++) {
 625		param = pinconf_to_config_param(configs[i]);
 626		param_val = pinconf_to_config_argument(configs[i]);
 627
 628		switch (param) {
 629		case PIN_CONFIG_INPUT_ENABLE:
 630			if (param_val)
 631				val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
 632			else
 633				val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
 634			break;
 635		case PIN_CONFIG_ACTIVE_HIGH:
 636			val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
 637			break;
 638		default:
 639			dev_err(&rtc->rtc->dev, "Property %u not supported\n",
 640				param);
 641			return -ENOTSUPP;
 642		}
 643	}
 644
 645	rtc->type->unlock(rtc);
 646	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val);
 647	rtc->type->lock(rtc);
 648
 649	return 0;
 650}
 651
 652static const struct pinconf_ops rtc_pinconf_ops = {
 653	.is_generic = true,
 654	.pin_config_get = rtc_pinconf_get,
 655	.pin_config_set = rtc_pinconf_set,
 656};
 657
 658static struct pinctrl_desc rtc_pinctrl_desc = {
 659	.pins = rtc_pins_desc,
 660	.npins = ARRAY_SIZE(rtc_pins_desc),
 661	.pctlops = &rtc_pinctrl_ops,
 662	.confops = &rtc_pinconf_ops,
 663	.custom_params = rtc_params,
 664	.num_custom_params = ARRAY_SIZE(rtc_params),
 665#ifdef CONFIG_DEBUG_FS
 666	.custom_conf_items = rtc_conf_items,
 667#endif
 668	.owner = THIS_MODULE,
 669};
 670
 671static int omap_rtc_scratch_read(void *priv, unsigned int offset, void *_val,
 672				 size_t bytes)
 673{
 674	struct omap_rtc	*rtc = priv;
 675	u32 *val = _val;
 676	int i;
 677
 678	for (i = 0; i < bytes / 4; i++)
 679		val[i] = rtc_readl(rtc,
 680				   OMAP_RTC_SCRATCH0_REG + offset + (i * 4));
 681
 682	return 0;
 683}
 684
 685static int omap_rtc_scratch_write(void *priv, unsigned int offset, void *_val,
 686				  size_t bytes)
 687{
 688	struct omap_rtc	*rtc = priv;
 689	u32 *val = _val;
 690	int i;
 691
 692	rtc->type->unlock(rtc);
 693	for (i = 0; i < bytes / 4; i++)
 694		rtc_writel(rtc,
 695			   OMAP_RTC_SCRATCH0_REG + offset + (i * 4), val[i]);
 696	rtc->type->lock(rtc);
 697
 698	return 0;
 699}
 700
 701static struct nvmem_config omap_rtc_nvmem_config = {
 702	.name = "omap_rtc_scratch",
 703	.word_size = 4,
 704	.stride = 4,
 705	.size = OMAP_RTC_KICK0_REG - OMAP_RTC_SCRATCH0_REG,
 706	.reg_read = omap_rtc_scratch_read,
 707	.reg_write = omap_rtc_scratch_write,
 708};
 709
 710static int omap_rtc_probe(struct platform_device *pdev)
 711{
 712	struct omap_rtc	*rtc;
 713	struct resource	*res;
 714	u8 reg, mask, new_ctrl;
 715	const struct platform_device_id *id_entry;
 716	const struct of_device_id *of_id;
 717	int ret;
 718
 719	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
 720	if (!rtc)
 721		return -ENOMEM;
 722
 723	of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
 724	if (of_id) {
 725		rtc->type = of_id->data;
 726		rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
 727				of_property_read_bool(pdev->dev.of_node,
 728						"system-power-controller");
 729	} else {
 730		id_entry = platform_get_device_id(pdev);
 731		rtc->type = (void *)id_entry->driver_data;
 732	}
 733
 734	rtc->irq_timer = platform_get_irq(pdev, 0);
 735	if (rtc->irq_timer <= 0)
 736		return -ENOENT;
 737
 738	rtc->irq_alarm = platform_get_irq(pdev, 1);
 739	if (rtc->irq_alarm <= 0)
 740		return -ENOENT;
 741
 742	rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
 743	if (!IS_ERR(rtc->clk))
 744		rtc->has_ext_clk = true;
 745	else
 746		rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
 747
 748	if (!IS_ERR(rtc->clk))
 749		clk_prepare_enable(rtc->clk);
 750
 751	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 752	rtc->base = devm_ioremap_resource(&pdev->dev, res);
 753	if (IS_ERR(rtc->base)) {
 754		clk_disable_unprepare(rtc->clk);
 755		return PTR_ERR(rtc->base);
 756	}
 757
 758	platform_set_drvdata(pdev, rtc);
 759
 760	/* Enable the clock/module so that we can access the registers */
 761	pm_runtime_enable(&pdev->dev);
 762	pm_runtime_get_sync(&pdev->dev);
 763
 764	rtc->type->unlock(rtc);
 765
 766	/*
 767	 * disable interrupts
 768	 *
 769	 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
 770	 */
 771	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
 772
 773	/* enable RTC functional clock */
 774	if (rtc->type->has_32kclk_en) {
 775		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
 776		rtc_writel(rtc, OMAP_RTC_OSC_REG,
 777				reg | OMAP_RTC_OSC_32KCLK_EN);
 778	}
 779
 780	/* clear old status */
 781	reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
 782
 783	mask = OMAP_RTC_STATUS_ALARM;
 784
 785	if (rtc->type->has_pmic_mode)
 786		mask |= OMAP_RTC_STATUS_ALARM2;
 787
 788	if (rtc->type->has_power_up_reset) {
 789		mask |= OMAP_RTC_STATUS_POWER_UP;
 790		if (reg & OMAP_RTC_STATUS_POWER_UP)
 791			dev_info(&pdev->dev, "RTC power up reset detected\n");
 792	}
 793
 794	if (reg & mask)
 795		rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
 796
 797	/* On boards with split power, RTC_ON_NOFF won't reset the RTC */
 798	reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
 799	if (reg & OMAP_RTC_CTRL_STOP)
 800		dev_info(&pdev->dev, "already running\n");
 801
 802	/* force to 24 hour mode */
 803	new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
 804	new_ctrl |= OMAP_RTC_CTRL_STOP;
 805
 806	/*
 807	 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
 808	 *
 809	 *  - Device wake-up capability setting should come through chip
 810	 *    init logic. OMAP1 boards should initialize the "wakeup capable"
 811	 *    flag in the platform device if the board is wired right for
 812	 *    being woken up by RTC alarm. For OMAP-L138, this capability
 813	 *    is built into the SoC by the "Deep Sleep" capability.
 814	 *
 815	 *  - Boards wired so RTC_ON_nOFF is used as the reset signal,
 816	 *    rather than nPWRON_RESET, should forcibly enable split
 817	 *    power mode.  (Some chip errata report that RTC_CTRL_SPLIT
 818	 *    is write-only, and always reads as zero...)
 819	 */
 820
 821	if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
 822		dev_info(&pdev->dev, "split power mode\n");
 823
 824	if (reg != new_ctrl)
 825		rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
 826
 827	/*
 828	 * If we have the external clock then switch to it so we can keep
 829	 * ticking across suspend.
 830	 */
 831	if (rtc->has_ext_clk) {
 832		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
 833		reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE;
 834		reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC;
 835		rtc_writel(rtc, OMAP_RTC_OSC_REG, reg);
 836	}
 837
 838	rtc->type->lock(rtc);
 839
 840	device_init_wakeup(&pdev->dev, true);
 841
 842	rtc->rtc = devm_rtc_allocate_device(&pdev->dev);
 
 843	if (IS_ERR(rtc->rtc)) {
 844		ret = PTR_ERR(rtc->rtc);
 845		goto err;
 846	}
 847
 848	rtc->rtc->ops = &omap_rtc_ops;
 849	omap_rtc_nvmem_config.priv = rtc;
 850
 851	/* handle periodic and alarm irqs */
 852	ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
 853			dev_name(&rtc->rtc->dev), rtc);
 854	if (ret)
 855		goto err;
 856
 857	if (rtc->irq_timer != rtc->irq_alarm) {
 858		ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
 859				dev_name(&rtc->rtc->dev), rtc);
 860		if (ret)
 861			goto err;
 862	}
 863
 864	if (rtc->is_pmic_controller) {
 865		if (!pm_power_off) {
 866			omap_rtc_power_off_rtc = rtc;
 867			pm_power_off = omap_rtc_power_off;
 868		}
 869	}
 870
 871	/* Support ext_wakeup pinconf */
 872	rtc_pinctrl_desc.name = dev_name(&pdev->dev);
 873
 874	rtc->pctldev = pinctrl_register(&rtc_pinctrl_desc, &pdev->dev, rtc);
 875	if (IS_ERR(rtc->pctldev)) {
 876		dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
 877		ret = PTR_ERR(rtc->pctldev);
 878		goto err;
 879	}
 880
 881	ret = rtc_register_device(rtc->rtc);
 882	if (ret)
 883		goto err;
 884
 885	rtc_nvmem_register(rtc->rtc, &omap_rtc_nvmem_config);
 886
 887	return 0;
 888
 889err:
 890	clk_disable_unprepare(rtc->clk);
 891	device_init_wakeup(&pdev->dev, false);
 892	rtc->type->lock(rtc);
 893	pm_runtime_put_sync(&pdev->dev);
 894	pm_runtime_disable(&pdev->dev);
 895
 896	return ret;
 897}
 898
 899static int omap_rtc_remove(struct platform_device *pdev)
 900{
 901	struct omap_rtc *rtc = platform_get_drvdata(pdev);
 902	u8 reg;
 903
 904	if (pm_power_off == omap_rtc_power_off &&
 905			omap_rtc_power_off_rtc == rtc) {
 906		pm_power_off = NULL;
 907		omap_rtc_power_off_rtc = NULL;
 908	}
 909
 910	device_init_wakeup(&pdev->dev, 0);
 911
 912	if (!IS_ERR(rtc->clk))
 913		clk_disable_unprepare(rtc->clk);
 914
 915	rtc->type->unlock(rtc);
 916	/* leave rtc running, but disable irqs */
 917	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
 918
 919	if (rtc->has_ext_clk) {
 920		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
 921		reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
 922		rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
 923	}
 924
 925	rtc->type->lock(rtc);
 926
 927	/* Disable the clock/module */
 928	pm_runtime_put_sync(&pdev->dev);
 929	pm_runtime_disable(&pdev->dev);
 930
 931	/* Remove ext_wakeup pinconf */
 932	pinctrl_unregister(rtc->pctldev);
 933
 934	return 0;
 935}
 936
 937static int __maybe_unused omap_rtc_suspend(struct device *dev)
 
 938{
 939	struct omap_rtc *rtc = dev_get_drvdata(dev);
 940
 941	rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
 942
 943	rtc->type->unlock(rtc);
 944	/*
 945	 * FIXME: the RTC alarm is not currently acting as a wakeup event
 946	 * source on some platforms, and in fact this enable() call is just
 947	 * saving a flag that's never used...
 948	 */
 949	if (device_may_wakeup(dev))
 950		enable_irq_wake(rtc->irq_alarm);
 951	else
 952		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
 953	rtc->type->lock(rtc);
 954
 955	rtc->is_suspending = true;
 
 956
 957	return 0;
 958}
 959
 960static int __maybe_unused omap_rtc_resume(struct device *dev)
 961{
 962	struct omap_rtc *rtc = dev_get_drvdata(dev);
 963
 
 
 
 964	rtc->type->unlock(rtc);
 965	if (device_may_wakeup(dev))
 966		disable_irq_wake(rtc->irq_alarm);
 967	else
 968		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
 969	rtc->type->lock(rtc);
 970
 971	rtc->is_suspending = false;
 972
 973	return 0;
 974}
 
 975
 976static int __maybe_unused omap_rtc_runtime_suspend(struct device *dev)
 977{
 978	struct omap_rtc *rtc = dev_get_drvdata(dev);
 979
 980	if (rtc->is_suspending && !rtc->has_ext_clk)
 981		return -EBUSY;
 982
 983	return 0;
 984}
 985
 986static const struct dev_pm_ops omap_rtc_pm_ops = {
 987	SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume)
 988	SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend, NULL, NULL)
 989};
 990
 991static void omap_rtc_shutdown(struct platform_device *pdev)
 992{
 993	struct omap_rtc *rtc = platform_get_drvdata(pdev);
 994	u8 mask;
 995
 996	/*
 997	 * Keep the ALARM interrupt enabled to allow the system to power up on
 998	 * alarm events.
 999	 */
1000	rtc->type->unlock(rtc);
1001	mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
1002	mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
1003	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
1004	rtc->type->lock(rtc);
1005}
1006
1007static struct platform_driver omap_rtc_driver = {
1008	.probe		= omap_rtc_probe,
1009	.remove		= omap_rtc_remove,
1010	.shutdown	= omap_rtc_shutdown,
1011	.driver		= {
1012		.name	= "omap_rtc",
1013		.pm	= &omap_rtc_pm_ops,
1014		.of_match_table = omap_rtc_of_match,
1015	},
1016	.id_table	= omap_rtc_id_table,
1017};
1018
1019module_platform_driver(omap_rtc_driver);
1020
1021MODULE_ALIAS("platform:omap_rtc");
1022MODULE_AUTHOR("George G. Davis (and others)");
1023MODULE_LICENSE("GPL");