Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * TI OMAP Real Time Clock interface for Linux
  3 *
  4 * Copyright (C) 2003 MontaVista Software, Inc.
  5 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
  6 *
  7 * Copyright (C) 2006 David Brownell (new RTC framework)
  8 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
  9 *
 10 * This program is free software; you can redistribute it and/or
 11 * modify it under the terms of the GNU General Public License
 12 * as published by the Free Software Foundation; either version
 13 * 2 of the License, or (at your option) any later version.
 14 */
 15
 16#include <linux/kernel.h>
 
 
 
 17#include <linux/init.h>
 18#include <linux/module.h>
 19#include <linux/ioport.h>
 20#include <linux/delay.h>
 21#include <linux/rtc.h>
 22#include <linux/bcd.h>
 23#include <linux/platform_device.h>
 24#include <linux/of.h>
 25#include <linux/of_device.h>
 
 
 
 
 26#include <linux/pm_runtime.h>
 27#include <linux/io.h>
 28#include <linux/clk.h>
 29
 30/*
 31 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
 32 * with century-range alarm matching, driven by the 32kHz clock.
 33 *
 34 * The main user-visible ways it differs from PC RTCs are by omitting
 35 * "don't care" alarm fields and sub-second periodic IRQs, and having
 36 * an autoadjust mechanism to calibrate to the true oscillator rate.
 37 *
 38 * Board-specific wiring options include using split power mode with
 39 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
 40 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
 41 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
 42 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
 43 */
 44
 45/* RTC registers */
 46#define OMAP_RTC_SECONDS_REG		0x00
 47#define OMAP_RTC_MINUTES_REG		0x04
 48#define OMAP_RTC_HOURS_REG		0x08
 49#define OMAP_RTC_DAYS_REG		0x0C
 50#define OMAP_RTC_MONTHS_REG		0x10
 51#define OMAP_RTC_YEARS_REG		0x14
 52#define OMAP_RTC_WEEKS_REG		0x18
 53
 54#define OMAP_RTC_ALARM_SECONDS_REG	0x20
 55#define OMAP_RTC_ALARM_MINUTES_REG	0x24
 56#define OMAP_RTC_ALARM_HOURS_REG	0x28
 57#define OMAP_RTC_ALARM_DAYS_REG		0x2c
 58#define OMAP_RTC_ALARM_MONTHS_REG	0x30
 59#define OMAP_RTC_ALARM_YEARS_REG	0x34
 60
 61#define OMAP_RTC_CTRL_REG		0x40
 62#define OMAP_RTC_STATUS_REG		0x44
 63#define OMAP_RTC_INTERRUPTS_REG		0x48
 64
 65#define OMAP_RTC_COMP_LSB_REG		0x4c
 66#define OMAP_RTC_COMP_MSB_REG		0x50
 67#define OMAP_RTC_OSC_REG		0x54
 68
 69#define OMAP_RTC_KICK0_REG		0x6c
 70#define OMAP_RTC_KICK1_REG		0x70
 71
 72#define OMAP_RTC_IRQWAKEEN		0x7c
 73
 74#define OMAP_RTC_ALARM2_SECONDS_REG	0x80
 75#define OMAP_RTC_ALARM2_MINUTES_REG	0x84
 76#define OMAP_RTC_ALARM2_HOURS_REG	0x88
 77#define OMAP_RTC_ALARM2_DAYS_REG	0x8c
 78#define OMAP_RTC_ALARM2_MONTHS_REG	0x90
 79#define OMAP_RTC_ALARM2_YEARS_REG	0x94
 80
 81#define OMAP_RTC_PMIC_REG		0x98
 82
 83/* OMAP_RTC_CTRL_REG bit fields: */
 84#define OMAP_RTC_CTRL_SPLIT		BIT(7)
 85#define OMAP_RTC_CTRL_DISABLE		BIT(6)
 86#define OMAP_RTC_CTRL_SET_32_COUNTER	BIT(5)
 87#define OMAP_RTC_CTRL_TEST		BIT(4)
 88#define OMAP_RTC_CTRL_MODE_12_24	BIT(3)
 89#define OMAP_RTC_CTRL_AUTO_COMP		BIT(2)
 90#define OMAP_RTC_CTRL_ROUND_30S		BIT(1)
 91#define OMAP_RTC_CTRL_STOP		BIT(0)
 92
 93/* OMAP_RTC_STATUS_REG bit fields: */
 94#define OMAP_RTC_STATUS_POWER_UP	BIT(7)
 95#define OMAP_RTC_STATUS_ALARM2		BIT(7)
 96#define OMAP_RTC_STATUS_ALARM		BIT(6)
 97#define OMAP_RTC_STATUS_1D_EVENT	BIT(5)
 98#define OMAP_RTC_STATUS_1H_EVENT	BIT(4)
 99#define OMAP_RTC_STATUS_1M_EVENT	BIT(3)
100#define OMAP_RTC_STATUS_1S_EVENT	BIT(2)
101#define OMAP_RTC_STATUS_RUN		BIT(1)
102#define OMAP_RTC_STATUS_BUSY		BIT(0)
103
104/* OMAP_RTC_INTERRUPTS_REG bit fields: */
105#define OMAP_RTC_INTERRUPTS_IT_ALARM2	BIT(4)
106#define OMAP_RTC_INTERRUPTS_IT_ALARM	BIT(3)
107#define OMAP_RTC_INTERRUPTS_IT_TIMER	BIT(2)
108
109/* OMAP_RTC_OSC_REG bit fields: */
110#define OMAP_RTC_OSC_32KCLK_EN		BIT(6)
111#define OMAP_RTC_OSC_SEL_32KCLK_SRC	BIT(3)
 
112
113/* OMAP_RTC_IRQWAKEEN bit fields: */
114#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN	BIT(1)
115
116/* OMAP_RTC_PMIC bit fields: */
117#define OMAP_RTC_PMIC_POWER_EN_EN	BIT(16)
 
 
118
119/* OMAP_RTC_KICKER values */
120#define	KICK0_VALUE			0x83e70b13
121#define	KICK1_VALUE			0x95a4f1e0
122
123struct omap_rtc;
124
125struct omap_rtc_device_type {
126	bool has_32kclk_en;
127	bool has_irqwakeen;
128	bool has_pmic_mode;
129	bool has_power_up_reset;
130	void (*lock)(struct omap_rtc *rtc);
131	void (*unlock)(struct omap_rtc *rtc);
132};
133
134struct omap_rtc {
135	struct rtc_device *rtc;
136	void __iomem *base;
137	struct clk *clk;
138	int irq_alarm;
139	int irq_timer;
140	u8 interrupts_reg;
141	bool is_pmic_controller;
142	bool has_ext_clk;
 
143	const struct omap_rtc_device_type *type;
 
144};
145
146static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
147{
148	return readb(rtc->base + reg);
149}
150
151static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
152{
153	return readl(rtc->base + reg);
154}
155
156static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
157{
158	writeb(val, rtc->base + reg);
159}
160
161static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
162{
163	writel(val, rtc->base + reg);
164}
165
166static void am3352_rtc_unlock(struct omap_rtc *rtc)
167{
168	rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
169	rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
170}
171
172static void am3352_rtc_lock(struct omap_rtc *rtc)
173{
174	rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
175	rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
176}
177
178static void default_rtc_unlock(struct omap_rtc *rtc)
179{
180}
181
182static void default_rtc_lock(struct omap_rtc *rtc)
183{
184}
185
186/*
187 * We rely on the rtc framework to handle locking (rtc->ops_lock),
188 * so the only other requirement is that register accesses which
189 * require BUSY to be clear are made with IRQs locally disabled
190 */
191static void rtc_wait_not_busy(struct omap_rtc *rtc)
192{
193	int count;
194	u8 status;
195
196	/* BUSY may stay active for 1/32768 second (~30 usec) */
197	for (count = 0; count < 50; count++) {
198		status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
199		if (!(status & OMAP_RTC_STATUS_BUSY))
200			break;
201		udelay(1);
202	}
203	/* now we have ~15 usec to read/write various registers */
204}
205
206static irqreturn_t rtc_irq(int irq, void *dev_id)
207{
208	struct omap_rtc	*rtc = dev_id;
209	unsigned long events = 0;
210	u8 irq_data;
211
212	irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
213
214	/* alarm irq? */
215	if (irq_data & OMAP_RTC_STATUS_ALARM) {
216		rtc->type->unlock(rtc);
217		rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
218		rtc->type->lock(rtc);
219		events |= RTC_IRQF | RTC_AF;
220	}
221
222	/* 1/sec periodic/update irq? */
223	if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
224		events |= RTC_IRQF | RTC_UF;
225
226	rtc_update_irq(rtc->rtc, 1, events);
227
228	return IRQ_HANDLED;
229}
230
231static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
232{
233	struct omap_rtc *rtc = dev_get_drvdata(dev);
234	u8 reg, irqwake_reg = 0;
235
236	local_irq_disable();
237	rtc_wait_not_busy(rtc);
238	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
239	if (rtc->type->has_irqwakeen)
240		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
241
242	if (enabled) {
243		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
244		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
245	} else {
246		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
247		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
248	}
249	rtc_wait_not_busy(rtc);
250	rtc->type->unlock(rtc);
251	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
252	if (rtc->type->has_irqwakeen)
253		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
254	rtc->type->lock(rtc);
255	local_irq_enable();
256
257	return 0;
258}
259
260/* this hardware doesn't support "don't care" alarm fields */
261static int tm2bcd(struct rtc_time *tm)
262{
263	if (rtc_valid_tm(tm) != 0)
264		return -EINVAL;
265
266	tm->tm_sec = bin2bcd(tm->tm_sec);
267	tm->tm_min = bin2bcd(tm->tm_min);
268	tm->tm_hour = bin2bcd(tm->tm_hour);
269	tm->tm_mday = bin2bcd(tm->tm_mday);
270
271	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
272
273	/* epoch == 1900 */
274	if (tm->tm_year < 100 || tm->tm_year > 199)
275		return -EINVAL;
276	tm->tm_year = bin2bcd(tm->tm_year - 100);
277
278	return 0;
279}
280
281static void bcd2tm(struct rtc_time *tm)
282{
283	tm->tm_sec = bcd2bin(tm->tm_sec);
284	tm->tm_min = bcd2bin(tm->tm_min);
285	tm->tm_hour = bcd2bin(tm->tm_hour);
286	tm->tm_mday = bcd2bin(tm->tm_mday);
287	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
288	/* epoch == 1900 */
289	tm->tm_year = bcd2bin(tm->tm_year) + 100;
290}
291
292static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
293{
294	tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
295	tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
296	tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
297	tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
298	tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
299	tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
300}
301
302static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
303{
304	struct omap_rtc *rtc = dev_get_drvdata(dev);
305
306	/* we don't report wday/yday/isdst ... */
307	local_irq_disable();
308	rtc_wait_not_busy(rtc);
309	omap_rtc_read_time_raw(rtc, tm);
310	local_irq_enable();
311
312	bcd2tm(tm);
313
314	return 0;
315}
316
317static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
318{
319	struct omap_rtc *rtc = dev_get_drvdata(dev);
320
321	if (tm2bcd(tm) < 0)
322		return -EINVAL;
323
324	local_irq_disable();
325	rtc_wait_not_busy(rtc);
326
327	rtc->type->unlock(rtc);
328	rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
329	rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
330	rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
331	rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
332	rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
333	rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
334	rtc->type->lock(rtc);
335
336	local_irq_enable();
337
338	return 0;
339}
340
341static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
342{
343	struct omap_rtc *rtc = dev_get_drvdata(dev);
344	u8 interrupts;
345
346	local_irq_disable();
347	rtc_wait_not_busy(rtc);
348
349	alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
350	alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
351	alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
352	alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
353	alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
354	alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
355
356	local_irq_enable();
357
358	bcd2tm(&alm->time);
359
360	interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
361	alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
362
363	return 0;
364}
365
366static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
367{
368	struct omap_rtc *rtc = dev_get_drvdata(dev);
369	u8 reg, irqwake_reg = 0;
370
371	if (tm2bcd(&alm->time) < 0)
372		return -EINVAL;
373
374	local_irq_disable();
375	rtc_wait_not_busy(rtc);
376
377	rtc->type->unlock(rtc);
378	rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
379	rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
380	rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
381	rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
382	rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
383	rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
384
385	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
386	if (rtc->type->has_irqwakeen)
387		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
388
389	if (alm->enabled) {
390		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
391		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
392	} else {
393		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
394		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
395	}
396	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
397	if (rtc->type->has_irqwakeen)
398		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
399	rtc->type->lock(rtc);
400
401	local_irq_enable();
402
403	return 0;
404}
405
406static struct omap_rtc *omap_rtc_power_off_rtc;
407
408/*
409 * omap_rtc_poweroff: RTC-controlled power off
410 *
411 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
412 * which can be configured to transition to OFF on ALARM2 events.
413 *
414 * Notes:
415 * The two-second alarm offset is the shortest offset possible as the alarm
416 * registers must be set before the next timer update and the offset
417 * calculation is too heavy for everything to be done within a single access
418 * period (~15 us).
419 *
420 * Called with local interrupts disabled.
421 */
422static void omap_rtc_power_off(void)
423{
424	struct omap_rtc *rtc = omap_rtc_power_off_rtc;
425	struct rtc_time tm;
426	unsigned long now;
427	u32 val;
428
429	rtc->type->unlock(rtc);
430	/* enable pmic_power_en control */
431	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
432	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
433
434	/* set alarm two seconds from now */
435	omap_rtc_read_time_raw(rtc, &tm);
436	bcd2tm(&tm);
437	rtc_tm_to_time(&tm, &now);
438	rtc_time_to_tm(now + 2, &tm);
439
440	if (tm2bcd(&tm) < 0) {
441		dev_err(&rtc->rtc->dev, "power off failed\n");
442		return;
443	}
444
445	rtc_wait_not_busy(rtc);
446
447	rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
448	rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
449	rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
450	rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
451	rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
452	rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
453
454	/*
455	 * enable ALARM2 interrupt
456	 *
457	 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
458	 */
459	val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
460	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
461			val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
462	rtc->type->lock(rtc);
463
464	/*
465	 * Wait for alarm to trigger (within two seconds) and external PMIC to
466	 * power off the system. Add a 500 ms margin for external latencies
467	 * (e.g. debounce circuits).
468	 */
469	mdelay(2500);
470}
471
472static struct rtc_class_ops omap_rtc_ops = {
473	.read_time	= omap_rtc_read_time,
474	.set_time	= omap_rtc_set_time,
475	.read_alarm	= omap_rtc_read_alarm,
476	.set_alarm	= omap_rtc_set_alarm,
477	.alarm_irq_enable = omap_rtc_alarm_irq_enable,
478};
479
480static const struct omap_rtc_device_type omap_rtc_default_type = {
481	.has_power_up_reset = true,
482	.lock		= default_rtc_lock,
483	.unlock		= default_rtc_unlock,
484};
485
486static const struct omap_rtc_device_type omap_rtc_am3352_type = {
487	.has_32kclk_en	= true,
488	.has_irqwakeen	= true,
489	.has_pmic_mode	= true,
490	.lock		= am3352_rtc_lock,
491	.unlock		= am3352_rtc_unlock,
492};
493
494static const struct omap_rtc_device_type omap_rtc_da830_type = {
495	.lock		= am3352_rtc_lock,
496	.unlock		= am3352_rtc_unlock,
497};
498
499static const struct platform_device_id omap_rtc_id_table[] = {
500	{
501		.name	= "omap_rtc",
502		.driver_data = (kernel_ulong_t)&omap_rtc_default_type,
503	}, {
504		.name	= "am3352-rtc",
505		.driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
506	}, {
507		.name	= "da830-rtc",
508		.driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
509	}, {
510		/* sentinel */
511	}
512};
513MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
514
515static const struct of_device_id omap_rtc_of_match[] = {
516	{
517		.compatible	= "ti,am3352-rtc",
518		.data		= &omap_rtc_am3352_type,
519	}, {
520		.compatible	= "ti,da830-rtc",
521		.data		= &omap_rtc_da830_type,
522	}, {
523		/* sentinel */
524	}
525};
526MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528static int omap_rtc_probe(struct platform_device *pdev)
529{
530	struct omap_rtc	*rtc;
531	struct resource	*res;
532	u8 reg, mask, new_ctrl;
533	const struct platform_device_id *id_entry;
534	const struct of_device_id *of_id;
535	int ret;
536
537	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
538	if (!rtc)
539		return -ENOMEM;
540
541	of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
542	if (of_id) {
543		rtc->type = of_id->data;
544		rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
545				of_property_read_bool(pdev->dev.of_node,
546						"system-power-controller");
547	} else {
548		id_entry = platform_get_device_id(pdev);
549		rtc->type = (void *)id_entry->driver_data;
550	}
551
552	rtc->irq_timer = platform_get_irq(pdev, 0);
553	if (rtc->irq_timer <= 0)
554		return -ENOENT;
555
556	rtc->irq_alarm = platform_get_irq(pdev, 1);
557	if (rtc->irq_alarm <= 0)
558		return -ENOENT;
559
560	rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
561	if (!IS_ERR(rtc->clk))
562		rtc->has_ext_clk = true;
563	else
564		rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
565
566	if (!IS_ERR(rtc->clk))
567		clk_prepare_enable(rtc->clk);
568
569	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
570	rtc->base = devm_ioremap_resource(&pdev->dev, res);
571	if (IS_ERR(rtc->base))
572		return PTR_ERR(rtc->base);
573
574	platform_set_drvdata(pdev, rtc);
575
576	/* Enable the clock/module so that we can access the registers */
577	pm_runtime_enable(&pdev->dev);
578	pm_runtime_get_sync(&pdev->dev);
579
580	rtc->type->unlock(rtc);
581
582	/*
583	 * disable interrupts
584	 *
585	 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
586	 */
587	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
588
589	/* enable RTC functional clock */
590	if (rtc->type->has_32kclk_en) {
591		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
592		rtc_writel(rtc, OMAP_RTC_OSC_REG,
593				reg | OMAP_RTC_OSC_32KCLK_EN);
594	}
595
596	/* clear old status */
597	reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
598
599	mask = OMAP_RTC_STATUS_ALARM;
600
601	if (rtc->type->has_pmic_mode)
602		mask |= OMAP_RTC_STATUS_ALARM2;
603
604	if (rtc->type->has_power_up_reset) {
605		mask |= OMAP_RTC_STATUS_POWER_UP;
606		if (reg & OMAP_RTC_STATUS_POWER_UP)
607			dev_info(&pdev->dev, "RTC power up reset detected\n");
608	}
609
610	if (reg & mask)
611		rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
612
613	/* On boards with split power, RTC_ON_NOFF won't reset the RTC */
614	reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
615	if (reg & OMAP_RTC_CTRL_STOP)
616		dev_info(&pdev->dev, "already running\n");
617
618	/* force to 24 hour mode */
619	new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
620	new_ctrl |= OMAP_RTC_CTRL_STOP;
621
622	/*
623	 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
624	 *
625	 *  - Device wake-up capability setting should come through chip
626	 *    init logic. OMAP1 boards should initialize the "wakeup capable"
627	 *    flag in the platform device if the board is wired right for
628	 *    being woken up by RTC alarm. For OMAP-L138, this capability
629	 *    is built into the SoC by the "Deep Sleep" capability.
630	 *
631	 *  - Boards wired so RTC_ON_nOFF is used as the reset signal,
632	 *    rather than nPWRON_RESET, should forcibly enable split
633	 *    power mode.  (Some chip errata report that RTC_CTRL_SPLIT
634	 *    is write-only, and always reads as zero...)
635	 */
636
637	if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
638		dev_info(&pdev->dev, "split power mode\n");
639
640	if (reg != new_ctrl)
641		rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
642
643	/*
644	 * If we have the external clock then switch to it so we can keep
645	 * ticking across suspend.
646	 */
647	if (rtc->has_ext_clk) {
648		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
649		rtc_write(rtc, OMAP_RTC_OSC_REG,
650			  reg | OMAP_RTC_OSC_SEL_32KCLK_SRC);
 
651	}
652
653	rtc->type->lock(rtc);
654
655	device_init_wakeup(&pdev->dev, true);
656
657	rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
658			&omap_rtc_ops, THIS_MODULE);
659	if (IS_ERR(rtc->rtc)) {
660		ret = PTR_ERR(rtc->rtc);
661		goto err;
662	}
663
664	/* handle periodic and alarm irqs */
665	ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
666			dev_name(&rtc->rtc->dev), rtc);
667	if (ret)
668		goto err;
669
670	if (rtc->irq_timer != rtc->irq_alarm) {
671		ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
672				dev_name(&rtc->rtc->dev), rtc);
673		if (ret)
674			goto err;
675	}
676
677	if (rtc->is_pmic_controller) {
678		if (!pm_power_off) {
679			omap_rtc_power_off_rtc = rtc;
680			pm_power_off = omap_rtc_power_off;
681		}
682	}
683
 
 
 
 
 
 
 
 
 
684	return 0;
685
686err:
687	device_init_wakeup(&pdev->dev, false);
688	rtc->type->lock(rtc);
689	pm_runtime_put_sync(&pdev->dev);
690	pm_runtime_disable(&pdev->dev);
691
692	return ret;
693}
694
695static int __exit omap_rtc_remove(struct platform_device *pdev)
696{
697	struct omap_rtc *rtc = platform_get_drvdata(pdev);
698	u8 reg;
699
700	if (pm_power_off == omap_rtc_power_off &&
701			omap_rtc_power_off_rtc == rtc) {
702		pm_power_off = NULL;
703		omap_rtc_power_off_rtc = NULL;
704	}
705
706	device_init_wakeup(&pdev->dev, 0);
707
708	if (!IS_ERR(rtc->clk))
709		clk_disable_unprepare(rtc->clk);
710
711	rtc->type->unlock(rtc);
712	/* leave rtc running, but disable irqs */
713	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
714
715	if (rtc->has_ext_clk) {
716		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
717		reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
718		rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
719	}
720
721	rtc->type->lock(rtc);
722
723	/* Disable the clock/module */
724	pm_runtime_put_sync(&pdev->dev);
725	pm_runtime_disable(&pdev->dev);
726
 
 
 
727	return 0;
728}
729
730#ifdef CONFIG_PM_SLEEP
731static int omap_rtc_suspend(struct device *dev)
732{
733	struct omap_rtc *rtc = dev_get_drvdata(dev);
734
735	rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
736
737	rtc->type->unlock(rtc);
738	/*
739	 * FIXME: the RTC alarm is not currently acting as a wakeup event
740	 * source on some platforms, and in fact this enable() call is just
741	 * saving a flag that's never used...
742	 */
743	if (device_may_wakeup(dev))
744		enable_irq_wake(rtc->irq_alarm);
745	else
746		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
747	rtc->type->lock(rtc);
748
749	/* Disable the clock/module */
750	pm_runtime_put_sync(dev);
751
752	return 0;
753}
754
755static int omap_rtc_resume(struct device *dev)
756{
757	struct omap_rtc *rtc = dev_get_drvdata(dev);
758
759	/* Enable the clock/module so that we can access the registers */
760	pm_runtime_get_sync(dev);
761
762	rtc->type->unlock(rtc);
763	if (device_may_wakeup(dev))
764		disable_irq_wake(rtc->irq_alarm);
765	else
766		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
767	rtc->type->lock(rtc);
768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
769	return 0;
770}
771#endif
772
773static SIMPLE_DEV_PM_OPS(omap_rtc_pm_ops, omap_rtc_suspend, omap_rtc_resume);
 
 
 
 
774
775static void omap_rtc_shutdown(struct platform_device *pdev)
776{
777	struct omap_rtc *rtc = platform_get_drvdata(pdev);
778	u8 mask;
779
780	/*
781	 * Keep the ALARM interrupt enabled to allow the system to power up on
782	 * alarm events.
783	 */
784	rtc->type->unlock(rtc);
785	mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
786	mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
787	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
788	rtc->type->lock(rtc);
789}
790
791static struct platform_driver omap_rtc_driver = {
792	.probe		= omap_rtc_probe,
793	.remove		= __exit_p(omap_rtc_remove),
794	.shutdown	= omap_rtc_shutdown,
795	.driver		= {
796		.name	= "omap_rtc",
797		.pm	= &omap_rtc_pm_ops,
798		.of_match_table = omap_rtc_of_match,
799	},
800	.id_table	= omap_rtc_id_table,
801};
802
803module_platform_driver(omap_rtc_driver);
804
805MODULE_ALIAS("platform:omap_rtc");
806MODULE_AUTHOR("George G. Davis (and others)");
807MODULE_LICENSE("GPL");
v4.10.11
  1/*
  2 * TI OMAP Real Time Clock interface for Linux
  3 *
  4 * Copyright (C) 2003 MontaVista Software, Inc.
  5 * Author: George G. Davis <gdavis@mvista.com> or <source@mvista.com>
  6 *
  7 * Copyright (C) 2006 David Brownell (new RTC framework)
  8 * Copyright (C) 2014 Johan Hovold <johan@kernel.org>
  9 *
 10 * This program is free software; you can redistribute it and/or
 11 * modify it under the terms of the GNU General Public License
 12 * as published by the Free Software Foundation; either version
 13 * 2 of the License, or (at your option) any later version.
 14 */
 15
 16#include <dt-bindings/gpio/gpio.h>
 17#include <linux/bcd.h>
 18#include <linux/clk.h>
 19#include <linux/delay.h>
 20#include <linux/init.h>
 21#include <linux/io.h>
 22#include <linux/ioport.h>
 23#include <linux/kernel.h>
 24#include <linux/module.h>
 
 
 25#include <linux/of.h>
 26#include <linux/of_device.h>
 27#include <linux/pinctrl/pinctrl.h>
 28#include <linux/pinctrl/pinconf.h>
 29#include <linux/pinctrl/pinconf-generic.h>
 30#include <linux/platform_device.h>
 31#include <linux/pm_runtime.h>
 32#include <linux/rtc.h>
 
 33
 34/*
 35 * The OMAP RTC is a year/month/day/hours/minutes/seconds BCD clock
 36 * with century-range alarm matching, driven by the 32kHz clock.
 37 *
 38 * The main user-visible ways it differs from PC RTCs are by omitting
 39 * "don't care" alarm fields and sub-second periodic IRQs, and having
 40 * an autoadjust mechanism to calibrate to the true oscillator rate.
 41 *
 42 * Board-specific wiring options include using split power mode with
 43 * RTC_OFF_NOFF used as the reset signal (so the RTC won't be reset),
 44 * and wiring RTC_WAKE_INT (so the RTC alarm can wake the system from
 45 * low power modes) for OMAP1 boards (OMAP-L138 has this built into
 46 * the SoC). See the BOARD-SPECIFIC CUSTOMIZATION comment.
 47 */
 48
 49/* RTC registers */
 50#define OMAP_RTC_SECONDS_REG		0x00
 51#define OMAP_RTC_MINUTES_REG		0x04
 52#define OMAP_RTC_HOURS_REG		0x08
 53#define OMAP_RTC_DAYS_REG		0x0C
 54#define OMAP_RTC_MONTHS_REG		0x10
 55#define OMAP_RTC_YEARS_REG		0x14
 56#define OMAP_RTC_WEEKS_REG		0x18
 57
 58#define OMAP_RTC_ALARM_SECONDS_REG	0x20
 59#define OMAP_RTC_ALARM_MINUTES_REG	0x24
 60#define OMAP_RTC_ALARM_HOURS_REG	0x28
 61#define OMAP_RTC_ALARM_DAYS_REG		0x2c
 62#define OMAP_RTC_ALARM_MONTHS_REG	0x30
 63#define OMAP_RTC_ALARM_YEARS_REG	0x34
 64
 65#define OMAP_RTC_CTRL_REG		0x40
 66#define OMAP_RTC_STATUS_REG		0x44
 67#define OMAP_RTC_INTERRUPTS_REG		0x48
 68
 69#define OMAP_RTC_COMP_LSB_REG		0x4c
 70#define OMAP_RTC_COMP_MSB_REG		0x50
 71#define OMAP_RTC_OSC_REG		0x54
 72
 73#define OMAP_RTC_KICK0_REG		0x6c
 74#define OMAP_RTC_KICK1_REG		0x70
 75
 76#define OMAP_RTC_IRQWAKEEN		0x7c
 77
 78#define OMAP_RTC_ALARM2_SECONDS_REG	0x80
 79#define OMAP_RTC_ALARM2_MINUTES_REG	0x84
 80#define OMAP_RTC_ALARM2_HOURS_REG	0x88
 81#define OMAP_RTC_ALARM2_DAYS_REG	0x8c
 82#define OMAP_RTC_ALARM2_MONTHS_REG	0x90
 83#define OMAP_RTC_ALARM2_YEARS_REG	0x94
 84
 85#define OMAP_RTC_PMIC_REG		0x98
 86
 87/* OMAP_RTC_CTRL_REG bit fields: */
 88#define OMAP_RTC_CTRL_SPLIT		BIT(7)
 89#define OMAP_RTC_CTRL_DISABLE		BIT(6)
 90#define OMAP_RTC_CTRL_SET_32_COUNTER	BIT(5)
 91#define OMAP_RTC_CTRL_TEST		BIT(4)
 92#define OMAP_RTC_CTRL_MODE_12_24	BIT(3)
 93#define OMAP_RTC_CTRL_AUTO_COMP		BIT(2)
 94#define OMAP_RTC_CTRL_ROUND_30S		BIT(1)
 95#define OMAP_RTC_CTRL_STOP		BIT(0)
 96
 97/* OMAP_RTC_STATUS_REG bit fields: */
 98#define OMAP_RTC_STATUS_POWER_UP	BIT(7)
 99#define OMAP_RTC_STATUS_ALARM2		BIT(7)
100#define OMAP_RTC_STATUS_ALARM		BIT(6)
101#define OMAP_RTC_STATUS_1D_EVENT	BIT(5)
102#define OMAP_RTC_STATUS_1H_EVENT	BIT(4)
103#define OMAP_RTC_STATUS_1M_EVENT	BIT(3)
104#define OMAP_RTC_STATUS_1S_EVENT	BIT(2)
105#define OMAP_RTC_STATUS_RUN		BIT(1)
106#define OMAP_RTC_STATUS_BUSY		BIT(0)
107
108/* OMAP_RTC_INTERRUPTS_REG bit fields: */
109#define OMAP_RTC_INTERRUPTS_IT_ALARM2	BIT(4)
110#define OMAP_RTC_INTERRUPTS_IT_ALARM	BIT(3)
111#define OMAP_RTC_INTERRUPTS_IT_TIMER	BIT(2)
112
113/* OMAP_RTC_OSC_REG bit fields: */
114#define OMAP_RTC_OSC_32KCLK_EN		BIT(6)
115#define OMAP_RTC_OSC_SEL_32KCLK_SRC	BIT(3)
116#define OMAP_RTC_OSC_OSC32K_GZ_DISABLE	BIT(4)
117
118/* OMAP_RTC_IRQWAKEEN bit fields: */
119#define OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN	BIT(1)
120
121/* OMAP_RTC_PMIC bit fields: */
122#define OMAP_RTC_PMIC_POWER_EN_EN	BIT(16)
123#define OMAP_RTC_PMIC_EXT_WKUP_EN(x)	BIT(x)
124#define OMAP_RTC_PMIC_EXT_WKUP_POL(x)	BIT(4 + x)
125
126/* OMAP_RTC_KICKER values */
127#define	KICK0_VALUE			0x83e70b13
128#define	KICK1_VALUE			0x95a4f1e0
129
130struct omap_rtc;
131
132struct omap_rtc_device_type {
133	bool has_32kclk_en;
134	bool has_irqwakeen;
135	bool has_pmic_mode;
136	bool has_power_up_reset;
137	void (*lock)(struct omap_rtc *rtc);
138	void (*unlock)(struct omap_rtc *rtc);
139};
140
141struct omap_rtc {
142	struct rtc_device *rtc;
143	void __iomem *base;
144	struct clk *clk;
145	int irq_alarm;
146	int irq_timer;
147	u8 interrupts_reg;
148	bool is_pmic_controller;
149	bool has_ext_clk;
150	bool is_suspending;
151	const struct omap_rtc_device_type *type;
152	struct pinctrl_dev *pctldev;
153};
154
155static inline u8 rtc_read(struct omap_rtc *rtc, unsigned int reg)
156{
157	return readb(rtc->base + reg);
158}
159
160static inline u32 rtc_readl(struct omap_rtc *rtc, unsigned int reg)
161{
162	return readl(rtc->base + reg);
163}
164
165static inline void rtc_write(struct omap_rtc *rtc, unsigned int reg, u8 val)
166{
167	writeb(val, rtc->base + reg);
168}
169
170static inline void rtc_writel(struct omap_rtc *rtc, unsigned int reg, u32 val)
171{
172	writel(val, rtc->base + reg);
173}
174
175static void am3352_rtc_unlock(struct omap_rtc *rtc)
176{
177	rtc_writel(rtc, OMAP_RTC_KICK0_REG, KICK0_VALUE);
178	rtc_writel(rtc, OMAP_RTC_KICK1_REG, KICK1_VALUE);
179}
180
181static void am3352_rtc_lock(struct omap_rtc *rtc)
182{
183	rtc_writel(rtc, OMAP_RTC_KICK0_REG, 0);
184	rtc_writel(rtc, OMAP_RTC_KICK1_REG, 0);
185}
186
187static void default_rtc_unlock(struct omap_rtc *rtc)
188{
189}
190
191static void default_rtc_lock(struct omap_rtc *rtc)
192{
193}
194
195/*
196 * We rely on the rtc framework to handle locking (rtc->ops_lock),
197 * so the only other requirement is that register accesses which
198 * require BUSY to be clear are made with IRQs locally disabled
199 */
200static void rtc_wait_not_busy(struct omap_rtc *rtc)
201{
202	int count;
203	u8 status;
204
205	/* BUSY may stay active for 1/32768 second (~30 usec) */
206	for (count = 0; count < 50; count++) {
207		status = rtc_read(rtc, OMAP_RTC_STATUS_REG);
208		if (!(status & OMAP_RTC_STATUS_BUSY))
209			break;
210		udelay(1);
211	}
212	/* now we have ~15 usec to read/write various registers */
213}
214
215static irqreturn_t rtc_irq(int irq, void *dev_id)
216{
217	struct omap_rtc	*rtc = dev_id;
218	unsigned long events = 0;
219	u8 irq_data;
220
221	irq_data = rtc_read(rtc, OMAP_RTC_STATUS_REG);
222
223	/* alarm irq? */
224	if (irq_data & OMAP_RTC_STATUS_ALARM) {
225		rtc->type->unlock(rtc);
226		rtc_write(rtc, OMAP_RTC_STATUS_REG, OMAP_RTC_STATUS_ALARM);
227		rtc->type->lock(rtc);
228		events |= RTC_IRQF | RTC_AF;
229	}
230
231	/* 1/sec periodic/update irq? */
232	if (irq_data & OMAP_RTC_STATUS_1S_EVENT)
233		events |= RTC_IRQF | RTC_UF;
234
235	rtc_update_irq(rtc->rtc, 1, events);
236
237	return IRQ_HANDLED;
238}
239
240static int omap_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
241{
242	struct omap_rtc *rtc = dev_get_drvdata(dev);
243	u8 reg, irqwake_reg = 0;
244
245	local_irq_disable();
246	rtc_wait_not_busy(rtc);
247	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
248	if (rtc->type->has_irqwakeen)
249		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
250
251	if (enabled) {
252		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
253		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
254	} else {
255		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
256		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
257	}
258	rtc_wait_not_busy(rtc);
259	rtc->type->unlock(rtc);
260	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
261	if (rtc->type->has_irqwakeen)
262		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
263	rtc->type->lock(rtc);
264	local_irq_enable();
265
266	return 0;
267}
268
269/* this hardware doesn't support "don't care" alarm fields */
270static int tm2bcd(struct rtc_time *tm)
271{
272	if (rtc_valid_tm(tm) != 0)
273		return -EINVAL;
274
275	tm->tm_sec = bin2bcd(tm->tm_sec);
276	tm->tm_min = bin2bcd(tm->tm_min);
277	tm->tm_hour = bin2bcd(tm->tm_hour);
278	tm->tm_mday = bin2bcd(tm->tm_mday);
279
280	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
281
282	/* epoch == 1900 */
283	if (tm->tm_year < 100 || tm->tm_year > 199)
284		return -EINVAL;
285	tm->tm_year = bin2bcd(tm->tm_year - 100);
286
287	return 0;
288}
289
290static void bcd2tm(struct rtc_time *tm)
291{
292	tm->tm_sec = bcd2bin(tm->tm_sec);
293	tm->tm_min = bcd2bin(tm->tm_min);
294	tm->tm_hour = bcd2bin(tm->tm_hour);
295	tm->tm_mday = bcd2bin(tm->tm_mday);
296	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
297	/* epoch == 1900 */
298	tm->tm_year = bcd2bin(tm->tm_year) + 100;
299}
300
301static void omap_rtc_read_time_raw(struct omap_rtc *rtc, struct rtc_time *tm)
302{
303	tm->tm_sec = rtc_read(rtc, OMAP_RTC_SECONDS_REG);
304	tm->tm_min = rtc_read(rtc, OMAP_RTC_MINUTES_REG);
305	tm->tm_hour = rtc_read(rtc, OMAP_RTC_HOURS_REG);
306	tm->tm_mday = rtc_read(rtc, OMAP_RTC_DAYS_REG);
307	tm->tm_mon = rtc_read(rtc, OMAP_RTC_MONTHS_REG);
308	tm->tm_year = rtc_read(rtc, OMAP_RTC_YEARS_REG);
309}
310
311static int omap_rtc_read_time(struct device *dev, struct rtc_time *tm)
312{
313	struct omap_rtc *rtc = dev_get_drvdata(dev);
314
315	/* we don't report wday/yday/isdst ... */
316	local_irq_disable();
317	rtc_wait_not_busy(rtc);
318	omap_rtc_read_time_raw(rtc, tm);
319	local_irq_enable();
320
321	bcd2tm(tm);
322
323	return 0;
324}
325
326static int omap_rtc_set_time(struct device *dev, struct rtc_time *tm)
327{
328	struct omap_rtc *rtc = dev_get_drvdata(dev);
329
330	if (tm2bcd(tm) < 0)
331		return -EINVAL;
332
333	local_irq_disable();
334	rtc_wait_not_busy(rtc);
335
336	rtc->type->unlock(rtc);
337	rtc_write(rtc, OMAP_RTC_YEARS_REG, tm->tm_year);
338	rtc_write(rtc, OMAP_RTC_MONTHS_REG, tm->tm_mon);
339	rtc_write(rtc, OMAP_RTC_DAYS_REG, tm->tm_mday);
340	rtc_write(rtc, OMAP_RTC_HOURS_REG, tm->tm_hour);
341	rtc_write(rtc, OMAP_RTC_MINUTES_REG, tm->tm_min);
342	rtc_write(rtc, OMAP_RTC_SECONDS_REG, tm->tm_sec);
343	rtc->type->lock(rtc);
344
345	local_irq_enable();
346
347	return 0;
348}
349
350static int omap_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
351{
352	struct omap_rtc *rtc = dev_get_drvdata(dev);
353	u8 interrupts;
354
355	local_irq_disable();
356	rtc_wait_not_busy(rtc);
357
358	alm->time.tm_sec = rtc_read(rtc, OMAP_RTC_ALARM_SECONDS_REG);
359	alm->time.tm_min = rtc_read(rtc, OMAP_RTC_ALARM_MINUTES_REG);
360	alm->time.tm_hour = rtc_read(rtc, OMAP_RTC_ALARM_HOURS_REG);
361	alm->time.tm_mday = rtc_read(rtc, OMAP_RTC_ALARM_DAYS_REG);
362	alm->time.tm_mon = rtc_read(rtc, OMAP_RTC_ALARM_MONTHS_REG);
363	alm->time.tm_year = rtc_read(rtc, OMAP_RTC_ALARM_YEARS_REG);
364
365	local_irq_enable();
366
367	bcd2tm(&alm->time);
368
369	interrupts = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
370	alm->enabled = !!(interrupts & OMAP_RTC_INTERRUPTS_IT_ALARM);
371
372	return 0;
373}
374
375static int omap_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
376{
377	struct omap_rtc *rtc = dev_get_drvdata(dev);
378	u8 reg, irqwake_reg = 0;
379
380	if (tm2bcd(&alm->time) < 0)
381		return -EINVAL;
382
383	local_irq_disable();
384	rtc_wait_not_busy(rtc);
385
386	rtc->type->unlock(rtc);
387	rtc_write(rtc, OMAP_RTC_ALARM_YEARS_REG, alm->time.tm_year);
388	rtc_write(rtc, OMAP_RTC_ALARM_MONTHS_REG, alm->time.tm_mon);
389	rtc_write(rtc, OMAP_RTC_ALARM_DAYS_REG, alm->time.tm_mday);
390	rtc_write(rtc, OMAP_RTC_ALARM_HOURS_REG, alm->time.tm_hour);
391	rtc_write(rtc, OMAP_RTC_ALARM_MINUTES_REG, alm->time.tm_min);
392	rtc_write(rtc, OMAP_RTC_ALARM_SECONDS_REG, alm->time.tm_sec);
393
394	reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
395	if (rtc->type->has_irqwakeen)
396		irqwake_reg = rtc_read(rtc, OMAP_RTC_IRQWAKEEN);
397
398	if (alm->enabled) {
399		reg |= OMAP_RTC_INTERRUPTS_IT_ALARM;
400		irqwake_reg |= OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
401	} else {
402		reg &= ~OMAP_RTC_INTERRUPTS_IT_ALARM;
403		irqwake_reg &= ~OMAP_RTC_IRQWAKEEN_ALARM_WAKEEN;
404	}
405	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, reg);
406	if (rtc->type->has_irqwakeen)
407		rtc_write(rtc, OMAP_RTC_IRQWAKEEN, irqwake_reg);
408	rtc->type->lock(rtc);
409
410	local_irq_enable();
411
412	return 0;
413}
414
415static struct omap_rtc *omap_rtc_power_off_rtc;
416
417/*
418 * omap_rtc_poweroff: RTC-controlled power off
419 *
420 * The RTC can be used to control an external PMIC via the pmic_power_en pin,
421 * which can be configured to transition to OFF on ALARM2 events.
422 *
423 * Notes:
424 * The two-second alarm offset is the shortest offset possible as the alarm
425 * registers must be set before the next timer update and the offset
426 * calculation is too heavy for everything to be done within a single access
427 * period (~15 us).
428 *
429 * Called with local interrupts disabled.
430 */
431static void omap_rtc_power_off(void)
432{
433	struct omap_rtc *rtc = omap_rtc_power_off_rtc;
434	struct rtc_time tm;
435	unsigned long now;
436	u32 val;
437
438	rtc->type->unlock(rtc);
439	/* enable pmic_power_en control */
440	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
441	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val | OMAP_RTC_PMIC_POWER_EN_EN);
442
443	/* set alarm two seconds from now */
444	omap_rtc_read_time_raw(rtc, &tm);
445	bcd2tm(&tm);
446	rtc_tm_to_time(&tm, &now);
447	rtc_time_to_tm(now + 2, &tm);
448
449	if (tm2bcd(&tm) < 0) {
450		dev_err(&rtc->rtc->dev, "power off failed\n");
451		return;
452	}
453
454	rtc_wait_not_busy(rtc);
455
456	rtc_write(rtc, OMAP_RTC_ALARM2_SECONDS_REG, tm.tm_sec);
457	rtc_write(rtc, OMAP_RTC_ALARM2_MINUTES_REG, tm.tm_min);
458	rtc_write(rtc, OMAP_RTC_ALARM2_HOURS_REG, tm.tm_hour);
459	rtc_write(rtc, OMAP_RTC_ALARM2_DAYS_REG, tm.tm_mday);
460	rtc_write(rtc, OMAP_RTC_ALARM2_MONTHS_REG, tm.tm_mon);
461	rtc_write(rtc, OMAP_RTC_ALARM2_YEARS_REG, tm.tm_year);
462
463	/*
464	 * enable ALARM2 interrupt
465	 *
466	 * NOTE: this fails on AM3352 if rtc_write (writeb) is used
467	 */
468	val = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
469	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG,
470			val | OMAP_RTC_INTERRUPTS_IT_ALARM2);
471	rtc->type->lock(rtc);
472
473	/*
474	 * Wait for alarm to trigger (within two seconds) and external PMIC to
475	 * power off the system. Add a 500 ms margin for external latencies
476	 * (e.g. debounce circuits).
477	 */
478	mdelay(2500);
479}
480
481static const struct rtc_class_ops omap_rtc_ops = {
482	.read_time	= omap_rtc_read_time,
483	.set_time	= omap_rtc_set_time,
484	.read_alarm	= omap_rtc_read_alarm,
485	.set_alarm	= omap_rtc_set_alarm,
486	.alarm_irq_enable = omap_rtc_alarm_irq_enable,
487};
488
489static const struct omap_rtc_device_type omap_rtc_default_type = {
490	.has_power_up_reset = true,
491	.lock		= default_rtc_lock,
492	.unlock		= default_rtc_unlock,
493};
494
495static const struct omap_rtc_device_type omap_rtc_am3352_type = {
496	.has_32kclk_en	= true,
497	.has_irqwakeen	= true,
498	.has_pmic_mode	= true,
499	.lock		= am3352_rtc_lock,
500	.unlock		= am3352_rtc_unlock,
501};
502
503static const struct omap_rtc_device_type omap_rtc_da830_type = {
504	.lock		= am3352_rtc_lock,
505	.unlock		= am3352_rtc_unlock,
506};
507
508static const struct platform_device_id omap_rtc_id_table[] = {
509	{
510		.name	= "omap_rtc",
511		.driver_data = (kernel_ulong_t)&omap_rtc_default_type,
512	}, {
513		.name	= "am3352-rtc",
514		.driver_data = (kernel_ulong_t)&omap_rtc_am3352_type,
515	}, {
516		.name	= "da830-rtc",
517		.driver_data = (kernel_ulong_t)&omap_rtc_da830_type,
518	}, {
519		/* sentinel */
520	}
521};
522MODULE_DEVICE_TABLE(platform, omap_rtc_id_table);
523
524static const struct of_device_id omap_rtc_of_match[] = {
525	{
526		.compatible	= "ti,am3352-rtc",
527		.data		= &omap_rtc_am3352_type,
528	}, {
529		.compatible	= "ti,da830-rtc",
530		.data		= &omap_rtc_da830_type,
531	}, {
532		/* sentinel */
533	}
534};
535MODULE_DEVICE_TABLE(of, omap_rtc_of_match);
536
537static const struct pinctrl_pin_desc rtc_pins_desc[] = {
538	PINCTRL_PIN(0, "ext_wakeup0"),
539	PINCTRL_PIN(1, "ext_wakeup1"),
540	PINCTRL_PIN(2, "ext_wakeup2"),
541	PINCTRL_PIN(3, "ext_wakeup3"),
542};
543
544static int rtc_pinctrl_get_groups_count(struct pinctrl_dev *pctldev)
545{
546	return 0;
547}
548
549static const char *rtc_pinctrl_get_group_name(struct pinctrl_dev *pctldev,
550					unsigned int group)
551{
552	return NULL;
553}
554
555static const struct pinctrl_ops rtc_pinctrl_ops = {
556	.get_groups_count = rtc_pinctrl_get_groups_count,
557	.get_group_name = rtc_pinctrl_get_group_name,
558	.dt_node_to_map = pinconf_generic_dt_node_to_map_pin,
559	.dt_free_map = pinconf_generic_dt_free_map,
560};
561
562enum rtc_pin_config_param {
563	PIN_CONFIG_ACTIVE_HIGH = PIN_CONFIG_END + 1,
564};
565
566static const struct pinconf_generic_params rtc_params[] = {
567	{"ti,active-high", PIN_CONFIG_ACTIVE_HIGH, 0},
568};
569
570#ifdef CONFIG_DEBUG_FS
571static const struct pin_config_item rtc_conf_items[ARRAY_SIZE(rtc_params)] = {
572	PCONFDUMP(PIN_CONFIG_ACTIVE_HIGH, "input active high", NULL, false),
573};
574#endif
575
576static int rtc_pinconf_get(struct pinctrl_dev *pctldev,
577			unsigned int pin, unsigned long *config)
578{
579	struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
580	unsigned int param = pinconf_to_config_param(*config);
581	u32 val;
582	u16 arg = 0;
583
584	rtc->type->unlock(rtc);
585	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
586	rtc->type->lock(rtc);
587
588	switch (param) {
589	case PIN_CONFIG_INPUT_ENABLE:
590		if (!(val & OMAP_RTC_PMIC_EXT_WKUP_EN(pin)))
591			return -EINVAL;
592		break;
593	case PIN_CONFIG_ACTIVE_HIGH:
594		if (val & OMAP_RTC_PMIC_EXT_WKUP_POL(pin))
595			return -EINVAL;
596		break;
597	default:
598		return -ENOTSUPP;
599	};
600
601	*config = pinconf_to_config_packed(param, arg);
602
603	return 0;
604}
605
606static int rtc_pinconf_set(struct pinctrl_dev *pctldev,
607			unsigned int pin, unsigned long *configs,
608			unsigned int num_configs)
609{
610	struct omap_rtc *rtc = pinctrl_dev_get_drvdata(pctldev);
611	u32 val;
612	unsigned int param;
613	u16 param_val;
614	int i;
615
616	rtc->type->unlock(rtc);
617	val = rtc_readl(rtc, OMAP_RTC_PMIC_REG);
618	rtc->type->lock(rtc);
619
620	/* active low by default */
621	val |= OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
622
623	for (i = 0; i < num_configs; i++) {
624		param = pinconf_to_config_param(configs[i]);
625		param_val = pinconf_to_config_argument(configs[i]);
626
627		switch (param) {
628		case PIN_CONFIG_INPUT_ENABLE:
629			if (param_val)
630				val |= OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
631			else
632				val &= ~OMAP_RTC_PMIC_EXT_WKUP_EN(pin);
633			break;
634		case PIN_CONFIG_ACTIVE_HIGH:
635			val &= ~OMAP_RTC_PMIC_EXT_WKUP_POL(pin);
636			break;
637		default:
638			dev_err(&rtc->rtc->dev, "Property %u not supported\n",
639				param);
640			return -ENOTSUPP;
641		}
642	}
643
644	rtc->type->unlock(rtc);
645	rtc_writel(rtc, OMAP_RTC_PMIC_REG, val);
646	rtc->type->lock(rtc);
647
648	return 0;
649}
650
651static const struct pinconf_ops rtc_pinconf_ops = {
652	.is_generic = true,
653	.pin_config_get = rtc_pinconf_get,
654	.pin_config_set = rtc_pinconf_set,
655};
656
657static struct pinctrl_desc rtc_pinctrl_desc = {
658	.pins = rtc_pins_desc,
659	.npins = ARRAY_SIZE(rtc_pins_desc),
660	.pctlops = &rtc_pinctrl_ops,
661	.confops = &rtc_pinconf_ops,
662	.custom_params = rtc_params,
663	.num_custom_params = ARRAY_SIZE(rtc_params),
664#ifdef CONFIG_DEBUG_FS
665	.custom_conf_items = rtc_conf_items,
666#endif
667	.owner = THIS_MODULE,
668};
669
670static int omap_rtc_probe(struct platform_device *pdev)
671{
672	struct omap_rtc	*rtc;
673	struct resource	*res;
674	u8 reg, mask, new_ctrl;
675	const struct platform_device_id *id_entry;
676	const struct of_device_id *of_id;
677	int ret;
678
679	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
680	if (!rtc)
681		return -ENOMEM;
682
683	of_id = of_match_device(omap_rtc_of_match, &pdev->dev);
684	if (of_id) {
685		rtc->type = of_id->data;
686		rtc->is_pmic_controller = rtc->type->has_pmic_mode &&
687				of_property_read_bool(pdev->dev.of_node,
688						"system-power-controller");
689	} else {
690		id_entry = platform_get_device_id(pdev);
691		rtc->type = (void *)id_entry->driver_data;
692	}
693
694	rtc->irq_timer = platform_get_irq(pdev, 0);
695	if (rtc->irq_timer <= 0)
696		return -ENOENT;
697
698	rtc->irq_alarm = platform_get_irq(pdev, 1);
699	if (rtc->irq_alarm <= 0)
700		return -ENOENT;
701
702	rtc->clk = devm_clk_get(&pdev->dev, "ext-clk");
703	if (!IS_ERR(rtc->clk))
704		rtc->has_ext_clk = true;
705	else
706		rtc->clk = devm_clk_get(&pdev->dev, "int-clk");
707
708	if (!IS_ERR(rtc->clk))
709		clk_prepare_enable(rtc->clk);
710
711	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
712	rtc->base = devm_ioremap_resource(&pdev->dev, res);
713	if (IS_ERR(rtc->base))
714		return PTR_ERR(rtc->base);
715
716	platform_set_drvdata(pdev, rtc);
717
718	/* Enable the clock/module so that we can access the registers */
719	pm_runtime_enable(&pdev->dev);
720	pm_runtime_get_sync(&pdev->dev);
721
722	rtc->type->unlock(rtc);
723
724	/*
725	 * disable interrupts
726	 *
727	 * NOTE: ALARM2 is not cleared on AM3352 if rtc_write (writeb) is used
728	 */
729	rtc_writel(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
730
731	/* enable RTC functional clock */
732	if (rtc->type->has_32kclk_en) {
733		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
734		rtc_writel(rtc, OMAP_RTC_OSC_REG,
735				reg | OMAP_RTC_OSC_32KCLK_EN);
736	}
737
738	/* clear old status */
739	reg = rtc_read(rtc, OMAP_RTC_STATUS_REG);
740
741	mask = OMAP_RTC_STATUS_ALARM;
742
743	if (rtc->type->has_pmic_mode)
744		mask |= OMAP_RTC_STATUS_ALARM2;
745
746	if (rtc->type->has_power_up_reset) {
747		mask |= OMAP_RTC_STATUS_POWER_UP;
748		if (reg & OMAP_RTC_STATUS_POWER_UP)
749			dev_info(&pdev->dev, "RTC power up reset detected\n");
750	}
751
752	if (reg & mask)
753		rtc_write(rtc, OMAP_RTC_STATUS_REG, reg & mask);
754
755	/* On boards with split power, RTC_ON_NOFF won't reset the RTC */
756	reg = rtc_read(rtc, OMAP_RTC_CTRL_REG);
757	if (reg & OMAP_RTC_CTRL_STOP)
758		dev_info(&pdev->dev, "already running\n");
759
760	/* force to 24 hour mode */
761	new_ctrl = reg & (OMAP_RTC_CTRL_SPLIT | OMAP_RTC_CTRL_AUTO_COMP);
762	new_ctrl |= OMAP_RTC_CTRL_STOP;
763
764	/*
765	 * BOARD-SPECIFIC CUSTOMIZATION CAN GO HERE:
766	 *
767	 *  - Device wake-up capability setting should come through chip
768	 *    init logic. OMAP1 boards should initialize the "wakeup capable"
769	 *    flag in the platform device if the board is wired right for
770	 *    being woken up by RTC alarm. For OMAP-L138, this capability
771	 *    is built into the SoC by the "Deep Sleep" capability.
772	 *
773	 *  - Boards wired so RTC_ON_nOFF is used as the reset signal,
774	 *    rather than nPWRON_RESET, should forcibly enable split
775	 *    power mode.  (Some chip errata report that RTC_CTRL_SPLIT
776	 *    is write-only, and always reads as zero...)
777	 */
778
779	if (new_ctrl & OMAP_RTC_CTRL_SPLIT)
780		dev_info(&pdev->dev, "split power mode\n");
781
782	if (reg != new_ctrl)
783		rtc_write(rtc, OMAP_RTC_CTRL_REG, new_ctrl);
784
785	/*
786	 * If we have the external clock then switch to it so we can keep
787	 * ticking across suspend.
788	 */
789	if (rtc->has_ext_clk) {
790		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
791		reg &= ~OMAP_RTC_OSC_OSC32K_GZ_DISABLE;
792		reg |= OMAP_RTC_OSC_32KCLK_EN | OMAP_RTC_OSC_SEL_32KCLK_SRC;
793		rtc_writel(rtc, OMAP_RTC_OSC_REG, reg);
794	}
795
796	rtc->type->lock(rtc);
797
798	device_init_wakeup(&pdev->dev, true);
799
800	rtc->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
801			&omap_rtc_ops, THIS_MODULE);
802	if (IS_ERR(rtc->rtc)) {
803		ret = PTR_ERR(rtc->rtc);
804		goto err;
805	}
806
807	/* handle periodic and alarm irqs */
808	ret = devm_request_irq(&pdev->dev, rtc->irq_timer, rtc_irq, 0,
809			dev_name(&rtc->rtc->dev), rtc);
810	if (ret)
811		goto err;
812
813	if (rtc->irq_timer != rtc->irq_alarm) {
814		ret = devm_request_irq(&pdev->dev, rtc->irq_alarm, rtc_irq, 0,
815				dev_name(&rtc->rtc->dev), rtc);
816		if (ret)
817			goto err;
818	}
819
820	if (rtc->is_pmic_controller) {
821		if (!pm_power_off) {
822			omap_rtc_power_off_rtc = rtc;
823			pm_power_off = omap_rtc_power_off;
824		}
825	}
826
827	/* Support ext_wakeup pinconf */
828	rtc_pinctrl_desc.name = dev_name(&pdev->dev);
829
830	rtc->pctldev = pinctrl_register(&rtc_pinctrl_desc, &pdev->dev, rtc);
831	if (IS_ERR(rtc->pctldev)) {
832		dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
833		return PTR_ERR(rtc->pctldev);
834	}
835
836	return 0;
837
838err:
839	device_init_wakeup(&pdev->dev, false);
840	rtc->type->lock(rtc);
841	pm_runtime_put_sync(&pdev->dev);
842	pm_runtime_disable(&pdev->dev);
843
844	return ret;
845}
846
847static int __exit omap_rtc_remove(struct platform_device *pdev)
848{
849	struct omap_rtc *rtc = platform_get_drvdata(pdev);
850	u8 reg;
851
852	if (pm_power_off == omap_rtc_power_off &&
853			omap_rtc_power_off_rtc == rtc) {
854		pm_power_off = NULL;
855		omap_rtc_power_off_rtc = NULL;
856	}
857
858	device_init_wakeup(&pdev->dev, 0);
859
860	if (!IS_ERR(rtc->clk))
861		clk_disable_unprepare(rtc->clk);
862
863	rtc->type->unlock(rtc);
864	/* leave rtc running, but disable irqs */
865	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
866
867	if (rtc->has_ext_clk) {
868		reg = rtc_read(rtc, OMAP_RTC_OSC_REG);
869		reg &= ~OMAP_RTC_OSC_SEL_32KCLK_SRC;
870		rtc_write(rtc, OMAP_RTC_OSC_REG, reg);
871	}
872
873	rtc->type->lock(rtc);
874
875	/* Disable the clock/module */
876	pm_runtime_put_sync(&pdev->dev);
877	pm_runtime_disable(&pdev->dev);
878
879	/* Remove ext_wakeup pinconf */
880	pinctrl_unregister(rtc->pctldev);
881
882	return 0;
883}
884
885#ifdef CONFIG_PM_SLEEP
886static int omap_rtc_suspend(struct device *dev)
887{
888	struct omap_rtc *rtc = dev_get_drvdata(dev);
889
890	rtc->interrupts_reg = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
891
892	rtc->type->unlock(rtc);
893	/*
894	 * FIXME: the RTC alarm is not currently acting as a wakeup event
895	 * source on some platforms, and in fact this enable() call is just
896	 * saving a flag that's never used...
897	 */
898	if (device_may_wakeup(dev))
899		enable_irq_wake(rtc->irq_alarm);
900	else
901		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, 0);
902	rtc->type->lock(rtc);
903
904	rtc->is_suspending = true;
 
905
906	return 0;
907}
908
909static int omap_rtc_resume(struct device *dev)
910{
911	struct omap_rtc *rtc = dev_get_drvdata(dev);
912
 
 
 
913	rtc->type->unlock(rtc);
914	if (device_may_wakeup(dev))
915		disable_irq_wake(rtc->irq_alarm);
916	else
917		rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, rtc->interrupts_reg);
918	rtc->type->lock(rtc);
919
920	rtc->is_suspending = false;
921
922	return 0;
923}
924#endif
925
926#ifdef CONFIG_PM
927static int omap_rtc_runtime_suspend(struct device *dev)
928{
929	struct omap_rtc *rtc = dev_get_drvdata(dev);
930
931	if (rtc->is_suspending && !rtc->has_ext_clk)
932		return -EBUSY;
933
934	return 0;
935}
936
937static int omap_rtc_runtime_resume(struct device *dev)
938{
939	return 0;
940}
941#endif
942
943static const struct dev_pm_ops omap_rtc_pm_ops = {
944	SET_SYSTEM_SLEEP_PM_OPS(omap_rtc_suspend, omap_rtc_resume)
945	SET_RUNTIME_PM_OPS(omap_rtc_runtime_suspend,
946			   omap_rtc_runtime_resume, NULL)
947};
948
949static void omap_rtc_shutdown(struct platform_device *pdev)
950{
951	struct omap_rtc *rtc = platform_get_drvdata(pdev);
952	u8 mask;
953
954	/*
955	 * Keep the ALARM interrupt enabled to allow the system to power up on
956	 * alarm events.
957	 */
958	rtc->type->unlock(rtc);
959	mask = rtc_read(rtc, OMAP_RTC_INTERRUPTS_REG);
960	mask &= OMAP_RTC_INTERRUPTS_IT_ALARM;
961	rtc_write(rtc, OMAP_RTC_INTERRUPTS_REG, mask);
962	rtc->type->lock(rtc);
963}
964
965static struct platform_driver omap_rtc_driver = {
966	.probe		= omap_rtc_probe,
967	.remove		= __exit_p(omap_rtc_remove),
968	.shutdown	= omap_rtc_shutdown,
969	.driver		= {
970		.name	= "omap_rtc",
971		.pm	= &omap_rtc_pm_ops,
972		.of_match_table = omap_rtc_of_match,
973	},
974	.id_table	= omap_rtc_id_table,
975};
976
977module_platform_driver(omap_rtc_driver);
978
979MODULE_ALIAS("platform:omap_rtc");
980MODULE_AUTHOR("George G. Davis (and others)");
981MODULE_LICENSE("GPL");