Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Common SMP CPU bringup/teardown functions
  3 */
  4#include <linux/cpu.h>
  5#include <linux/err.h>
  6#include <linux/smp.h>
  7#include <linux/delay.h>
  8#include <linux/init.h>
  9#include <linux/list.h>
 10#include <linux/slab.h>
 11#include <linux/sched.h>
 12#include <linux/export.h>
 13#include <linux/percpu.h>
 14#include <linux/kthread.h>
 15#include <linux/smpboot.h>
 16
 17#include "smpboot.h"
 18
 19#ifdef CONFIG_SMP
 20
 21#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
 22/*
 23 * For the hotplug case we keep the task structs around and reuse
 24 * them.
 25 */
 26static DEFINE_PER_CPU(struct task_struct *, idle_threads);
 27
 28struct task_struct *idle_thread_get(unsigned int cpu)
 29{
 30	struct task_struct *tsk = per_cpu(idle_threads, cpu);
 31
 32	if (!tsk)
 33		return ERR_PTR(-ENOMEM);
 34	init_idle(tsk, cpu);
 35	return tsk;
 36}
 37
 38void __init idle_thread_set_boot_cpu(void)
 39{
 40	per_cpu(idle_threads, smp_processor_id()) = current;
 41}
 42
 43/**
 44 * idle_init - Initialize the idle thread for a cpu
 45 * @cpu:	The cpu for which the idle thread should be initialized
 46 *
 47 * Creates the thread if it does not exist.
 48 */
 49static inline void idle_init(unsigned int cpu)
 50{
 51	struct task_struct *tsk = per_cpu(idle_threads, cpu);
 52
 53	if (!tsk) {
 54		tsk = fork_idle(cpu);
 55		if (IS_ERR(tsk))
 56			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
 57		else
 58			per_cpu(idle_threads, cpu) = tsk;
 59	}
 60}
 61
 62/**
 63 * idle_threads_init - Initialize idle threads for all cpus
 64 */
 65void __init idle_threads_init(void)
 66{
 67	unsigned int cpu, boot_cpu;
 68
 69	boot_cpu = smp_processor_id();
 70
 71	for_each_possible_cpu(cpu) {
 72		if (cpu != boot_cpu)
 73			idle_init(cpu);
 74	}
 75}
 76#endif
 77
 78#endif /* #ifdef CONFIG_SMP */
 79
 80static LIST_HEAD(hotplug_threads);
 81static DEFINE_MUTEX(smpboot_threads_lock);
 82
 83struct smpboot_thread_data {
 84	unsigned int			cpu;
 85	unsigned int			status;
 86	struct smp_hotplug_thread	*ht;
 87};
 88
 89enum {
 90	HP_THREAD_NONE = 0,
 91	HP_THREAD_ACTIVE,
 92	HP_THREAD_PARKED,
 93};
 94
 95/**
 96 * smpboot_thread_fn - percpu hotplug thread loop function
 97 * @data:	thread data pointer
 98 *
 99 * Checks for thread stop and park conditions. Calls the necessary
100 * setup, cleanup, park and unpark functions for the registered
101 * thread.
102 *
103 * Returns 1 when the thread should exit, 0 otherwise.
104 */
105static int smpboot_thread_fn(void *data)
106{
107	struct smpboot_thread_data *td = data;
108	struct smp_hotplug_thread *ht = td->ht;
109
110	while (1) {
111		set_current_state(TASK_INTERRUPTIBLE);
112		preempt_disable();
113		if (kthread_should_stop()) {
114			__set_current_state(TASK_RUNNING);
115			preempt_enable();
116			/* cleanup must mirror setup */
117			if (ht->cleanup && td->status != HP_THREAD_NONE)
118				ht->cleanup(td->cpu, cpu_online(td->cpu));
119			kfree(td);
120			return 0;
121		}
122
123		if (kthread_should_park()) {
124			__set_current_state(TASK_RUNNING);
125			preempt_enable();
126			if (ht->park && td->status == HP_THREAD_ACTIVE) {
127				BUG_ON(td->cpu != smp_processor_id());
128				ht->park(td->cpu);
129				td->status = HP_THREAD_PARKED;
130			}
131			kthread_parkme();
132			/* We might have been woken for stop */
133			continue;
134		}
135
136		BUG_ON(td->cpu != smp_processor_id());
137
138		/* Check for state change setup */
139		switch (td->status) {
140		case HP_THREAD_NONE:
141			__set_current_state(TASK_RUNNING);
142			preempt_enable();
143			if (ht->setup)
144				ht->setup(td->cpu);
145			td->status = HP_THREAD_ACTIVE;
146			continue;
147
148		case HP_THREAD_PARKED:
149			__set_current_state(TASK_RUNNING);
150			preempt_enable();
151			if (ht->unpark)
152				ht->unpark(td->cpu);
153			td->status = HP_THREAD_ACTIVE;
154			continue;
155		}
156
157		if (!ht->thread_should_run(td->cpu)) {
158			preempt_enable_no_resched();
159			schedule();
160		} else {
161			__set_current_state(TASK_RUNNING);
162			preempt_enable();
163			ht->thread_fn(td->cpu);
164		}
165	}
166}
167
168static int
169__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
170{
171	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
172	struct smpboot_thread_data *td;
173
174	if (tsk)
175		return 0;
176
177	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
178	if (!td)
179		return -ENOMEM;
180	td->cpu = cpu;
181	td->ht = ht;
182
183	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
184				    ht->thread_comm);
185	if (IS_ERR(tsk)) {
186		kfree(td);
187		return PTR_ERR(tsk);
188	}
 
 
 
 
 
189	get_task_struct(tsk);
190	*per_cpu_ptr(ht->store, cpu) = tsk;
191	if (ht->create) {
192		/*
193		 * Make sure that the task has actually scheduled out
194		 * into park position, before calling the create
195		 * callback. At least the migration thread callback
196		 * requires that the task is off the runqueue.
197		 */
198		if (!wait_task_inactive(tsk, TASK_PARKED))
199			WARN_ON(1);
200		else
201			ht->create(cpu);
202	}
203	return 0;
204}
205
206int smpboot_create_threads(unsigned int cpu)
207{
208	struct smp_hotplug_thread *cur;
209	int ret = 0;
210
211	mutex_lock(&smpboot_threads_lock);
212	list_for_each_entry(cur, &hotplug_threads, list) {
213		ret = __smpboot_create_thread(cur, cpu);
214		if (ret)
215			break;
216	}
217	mutex_unlock(&smpboot_threads_lock);
218	return ret;
219}
220
221static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
222{
223	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
224
225	if (!ht->selfparking)
226		kthread_unpark(tsk);
227}
228
229int smpboot_unpark_threads(unsigned int cpu)
230{
231	struct smp_hotplug_thread *cur;
232
233	mutex_lock(&smpboot_threads_lock);
234	list_for_each_entry(cur, &hotplug_threads, list)
235		if (cpumask_test_cpu(cpu, cur->cpumask))
236			smpboot_unpark_thread(cur, cpu);
237	mutex_unlock(&smpboot_threads_lock);
238	return 0;
239}
240
241static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
242{
243	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
244
245	if (tsk && !ht->selfparking)
246		kthread_park(tsk);
247}
248
249int smpboot_park_threads(unsigned int cpu)
250{
251	struct smp_hotplug_thread *cur;
252
253	mutex_lock(&smpboot_threads_lock);
254	list_for_each_entry_reverse(cur, &hotplug_threads, list)
255		smpboot_park_thread(cur, cpu);
256	mutex_unlock(&smpboot_threads_lock);
257	return 0;
258}
259
260static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
261{
262	unsigned int cpu;
263
264	/* We need to destroy also the parked threads of offline cpus */
265	for_each_possible_cpu(cpu) {
266		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
267
268		if (tsk) {
269			kthread_stop(tsk);
270			put_task_struct(tsk);
271			*per_cpu_ptr(ht->store, cpu) = NULL;
272		}
273	}
274}
275
276/**
277 * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
278 * 					    to hotplug
279 * @plug_thread:	Hotplug thread descriptor
280 * @cpumask:		The cpumask where threads run
281 *
282 * Creates and starts the threads on all online cpus.
283 */
284int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
285					   const struct cpumask *cpumask)
286{
287	unsigned int cpu;
288	int ret = 0;
289
290	if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
291		return -ENOMEM;
292	cpumask_copy(plug_thread->cpumask, cpumask);
293
294	get_online_cpus();
295	mutex_lock(&smpboot_threads_lock);
296	for_each_online_cpu(cpu) {
297		ret = __smpboot_create_thread(plug_thread, cpu);
298		if (ret) {
299			smpboot_destroy_threads(plug_thread);
300			free_cpumask_var(plug_thread->cpumask);
301			goto out;
302		}
303		if (cpumask_test_cpu(cpu, cpumask))
304			smpboot_unpark_thread(plug_thread, cpu);
305	}
306	list_add(&plug_thread->list, &hotplug_threads);
307out:
308	mutex_unlock(&smpboot_threads_lock);
309	put_online_cpus();
310	return ret;
311}
312EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
313
314/**
315 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
316 * @plug_thread:	Hotplug thread descriptor
317 *
318 * Stops all threads on all possible cpus.
319 */
320void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
321{
322	get_online_cpus();
323	mutex_lock(&smpboot_threads_lock);
324	list_del(&plug_thread->list);
325	smpboot_destroy_threads(plug_thread);
326	mutex_unlock(&smpboot_threads_lock);
327	put_online_cpus();
328	free_cpumask_var(plug_thread->cpumask);
329}
330EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
331
332/**
333 * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
334 * @plug_thread:	Hotplug thread descriptor
335 * @new:		Revised mask to use
336 *
337 * The cpumask field in the smp_hotplug_thread must not be updated directly
338 * by the client, but only by calling this function.
339 * This function can only be called on a registered smp_hotplug_thread.
340 */
341int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
342					 const struct cpumask *new)
343{
344	struct cpumask *old = plug_thread->cpumask;
345	cpumask_var_t tmp;
346	unsigned int cpu;
347
348	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
349		return -ENOMEM;
350
351	get_online_cpus();
352	mutex_lock(&smpboot_threads_lock);
353
354	/* Park threads that were exclusively enabled on the old mask. */
355	cpumask_andnot(tmp, old, new);
356	for_each_cpu_and(cpu, tmp, cpu_online_mask)
357		smpboot_park_thread(plug_thread, cpu);
358
359	/* Unpark threads that are exclusively enabled on the new mask. */
360	cpumask_andnot(tmp, new, old);
361	for_each_cpu_and(cpu, tmp, cpu_online_mask)
362		smpboot_unpark_thread(plug_thread, cpu);
363
364	cpumask_copy(old, new);
365
366	mutex_unlock(&smpboot_threads_lock);
367	put_online_cpus();
368
369	free_cpumask_var(tmp);
370
371	return 0;
372}
373EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
374
375static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
376
377/*
378 * Called to poll specified CPU's state, for example, when waiting for
379 * a CPU to come online.
380 */
381int cpu_report_state(int cpu)
382{
383	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
384}
385
386/*
387 * If CPU has died properly, set its state to CPU_UP_PREPARE and
388 * return success.  Otherwise, return -EBUSY if the CPU died after
389 * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
390 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
391 * to dying.  In the latter two cases, the CPU might not be set up
392 * properly, but it is up to the arch-specific code to decide.
393 * Finally, -EIO indicates an unanticipated problem.
394 *
395 * Note that it is permissible to omit this call entirely, as is
396 * done in architectures that do no CPU-hotplug error checking.
397 */
398int cpu_check_up_prepare(int cpu)
399{
400	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
401		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
402		return 0;
403	}
404
405	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
406
407	case CPU_POST_DEAD:
408
409		/* The CPU died properly, so just start it up again. */
410		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
411		return 0;
412
413	case CPU_DEAD_FROZEN:
414
415		/*
416		 * Timeout during CPU death, so let caller know.
417		 * The outgoing CPU completed its processing, but after
418		 * cpu_wait_death() timed out and reported the error. The
419		 * caller is free to proceed, in which case the state
420		 * will be reset properly by cpu_set_state_online().
421		 * Proceeding despite this -EBUSY return makes sense
422		 * for systems where the outgoing CPUs take themselves
423		 * offline, with no post-death manipulation required from
424		 * a surviving CPU.
425		 */
426		return -EBUSY;
427
428	case CPU_BROKEN:
429
430		/*
431		 * The most likely reason we got here is that there was
432		 * a timeout during CPU death, and the outgoing CPU never
433		 * did complete its processing.  This could happen on
434		 * a virtualized system if the outgoing VCPU gets preempted
435		 * for more than five seconds, and the user attempts to
436		 * immediately online that same CPU.  Trying again later
437		 * might return -EBUSY above, hence -EAGAIN.
438		 */
439		return -EAGAIN;
440
441	default:
442
443		/* Should not happen.  Famous last words. */
444		return -EIO;
445	}
446}
447
448/*
449 * Mark the specified CPU online.
450 *
451 * Note that it is permissible to omit this call entirely, as is
452 * done in architectures that do no CPU-hotplug error checking.
453 */
454void cpu_set_state_online(int cpu)
455{
456	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
457}
458
459#ifdef CONFIG_HOTPLUG_CPU
460
461/*
462 * Wait for the specified CPU to exit the idle loop and die.
463 */
464bool cpu_wait_death(unsigned int cpu, int seconds)
465{
466	int jf_left = seconds * HZ;
467	int oldstate;
468	bool ret = true;
469	int sleep_jf = 1;
470
471	might_sleep();
472
473	/* The outgoing CPU will normally get done quite quickly. */
474	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
475		goto update_state;
476	udelay(5);
477
478	/* But if the outgoing CPU dawdles, wait increasingly long times. */
479	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
480		schedule_timeout_uninterruptible(sleep_jf);
481		jf_left -= sleep_jf;
482		if (jf_left <= 0)
483			break;
484		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
485	}
486update_state:
487	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
488	if (oldstate == CPU_DEAD) {
489		/* Outgoing CPU died normally, update state. */
490		smp_mb(); /* atomic_read() before update. */
491		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
492	} else {
493		/* Outgoing CPU still hasn't died, set state accordingly. */
494		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
495				   oldstate, CPU_BROKEN) != oldstate)
496			goto update_state;
497		ret = false;
498	}
499	return ret;
500}
501
502/*
503 * Called by the outgoing CPU to report its successful death.  Return
504 * false if this report follows the surviving CPU's timing out.
505 *
506 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
507 * timed out.  This approach allows architectures to omit calls to
508 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
509 * the next cpu_wait_death()'s polling loop.
510 */
511bool cpu_report_death(void)
512{
513	int oldstate;
514	int newstate;
515	int cpu = smp_processor_id();
516
517	do {
518		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
519		if (oldstate != CPU_BROKEN)
520			newstate = CPU_DEAD;
521		else
522			newstate = CPU_DEAD_FROZEN;
523	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
524				oldstate, newstate) != oldstate);
525	return newstate == CPU_DEAD;
526}
527
528#endif /* #ifdef CONFIG_HOTPLUG_CPU */
v4.10.11
  1/*
  2 * Common SMP CPU bringup/teardown functions
  3 */
  4#include <linux/cpu.h>
  5#include <linux/err.h>
  6#include <linux/smp.h>
  7#include <linux/delay.h>
  8#include <linux/init.h>
  9#include <linux/list.h>
 10#include <linux/slab.h>
 11#include <linux/sched.h>
 12#include <linux/export.h>
 13#include <linux/percpu.h>
 14#include <linux/kthread.h>
 15#include <linux/smpboot.h>
 16
 17#include "smpboot.h"
 18
 19#ifdef CONFIG_SMP
 20
 21#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
 22/*
 23 * For the hotplug case we keep the task structs around and reuse
 24 * them.
 25 */
 26static DEFINE_PER_CPU(struct task_struct *, idle_threads);
 27
 28struct task_struct *idle_thread_get(unsigned int cpu)
 29{
 30	struct task_struct *tsk = per_cpu(idle_threads, cpu);
 31
 32	if (!tsk)
 33		return ERR_PTR(-ENOMEM);
 34	init_idle(tsk, cpu);
 35	return tsk;
 36}
 37
 38void __init idle_thread_set_boot_cpu(void)
 39{
 40	per_cpu(idle_threads, smp_processor_id()) = current;
 41}
 42
 43/**
 44 * idle_init - Initialize the idle thread for a cpu
 45 * @cpu:	The cpu for which the idle thread should be initialized
 46 *
 47 * Creates the thread if it does not exist.
 48 */
 49static inline void idle_init(unsigned int cpu)
 50{
 51	struct task_struct *tsk = per_cpu(idle_threads, cpu);
 52
 53	if (!tsk) {
 54		tsk = fork_idle(cpu);
 55		if (IS_ERR(tsk))
 56			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
 57		else
 58			per_cpu(idle_threads, cpu) = tsk;
 59	}
 60}
 61
 62/**
 63 * idle_threads_init - Initialize idle threads for all cpus
 64 */
 65void __init idle_threads_init(void)
 66{
 67	unsigned int cpu, boot_cpu;
 68
 69	boot_cpu = smp_processor_id();
 70
 71	for_each_possible_cpu(cpu) {
 72		if (cpu != boot_cpu)
 73			idle_init(cpu);
 74	}
 75}
 76#endif
 77
 78#endif /* #ifdef CONFIG_SMP */
 79
 80static LIST_HEAD(hotplug_threads);
 81static DEFINE_MUTEX(smpboot_threads_lock);
 82
 83struct smpboot_thread_data {
 84	unsigned int			cpu;
 85	unsigned int			status;
 86	struct smp_hotplug_thread	*ht;
 87};
 88
 89enum {
 90	HP_THREAD_NONE = 0,
 91	HP_THREAD_ACTIVE,
 92	HP_THREAD_PARKED,
 93};
 94
 95/**
 96 * smpboot_thread_fn - percpu hotplug thread loop function
 97 * @data:	thread data pointer
 98 *
 99 * Checks for thread stop and park conditions. Calls the necessary
100 * setup, cleanup, park and unpark functions for the registered
101 * thread.
102 *
103 * Returns 1 when the thread should exit, 0 otherwise.
104 */
105static int smpboot_thread_fn(void *data)
106{
107	struct smpboot_thread_data *td = data;
108	struct smp_hotplug_thread *ht = td->ht;
109
110	while (1) {
111		set_current_state(TASK_INTERRUPTIBLE);
112		preempt_disable();
113		if (kthread_should_stop()) {
114			__set_current_state(TASK_RUNNING);
115			preempt_enable();
116			/* cleanup must mirror setup */
117			if (ht->cleanup && td->status != HP_THREAD_NONE)
118				ht->cleanup(td->cpu, cpu_online(td->cpu));
119			kfree(td);
120			return 0;
121		}
122
123		if (kthread_should_park()) {
124			__set_current_state(TASK_RUNNING);
125			preempt_enable();
126			if (ht->park && td->status == HP_THREAD_ACTIVE) {
127				BUG_ON(td->cpu != smp_processor_id());
128				ht->park(td->cpu);
129				td->status = HP_THREAD_PARKED;
130			}
131			kthread_parkme();
132			/* We might have been woken for stop */
133			continue;
134		}
135
136		BUG_ON(td->cpu != smp_processor_id());
137
138		/* Check for state change setup */
139		switch (td->status) {
140		case HP_THREAD_NONE:
141			__set_current_state(TASK_RUNNING);
142			preempt_enable();
143			if (ht->setup)
144				ht->setup(td->cpu);
145			td->status = HP_THREAD_ACTIVE;
146			continue;
147
148		case HP_THREAD_PARKED:
149			__set_current_state(TASK_RUNNING);
150			preempt_enable();
151			if (ht->unpark)
152				ht->unpark(td->cpu);
153			td->status = HP_THREAD_ACTIVE;
154			continue;
155		}
156
157		if (!ht->thread_should_run(td->cpu)) {
158			preempt_enable_no_resched();
159			schedule();
160		} else {
161			__set_current_state(TASK_RUNNING);
162			preempt_enable();
163			ht->thread_fn(td->cpu);
164		}
165	}
166}
167
168static int
169__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
170{
171	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
172	struct smpboot_thread_data *td;
173
174	if (tsk)
175		return 0;
176
177	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
178	if (!td)
179		return -ENOMEM;
180	td->cpu = cpu;
181	td->ht = ht;
182
183	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
184				    ht->thread_comm);
185	if (IS_ERR(tsk)) {
186		kfree(td);
187		return PTR_ERR(tsk);
188	}
189	/*
190	 * Park the thread so that it could start right on the CPU
191	 * when it is available.
192	 */
193	kthread_park(tsk);
194	get_task_struct(tsk);
195	*per_cpu_ptr(ht->store, cpu) = tsk;
196	if (ht->create) {
197		/*
198		 * Make sure that the task has actually scheduled out
199		 * into park position, before calling the create
200		 * callback. At least the migration thread callback
201		 * requires that the task is off the runqueue.
202		 */
203		if (!wait_task_inactive(tsk, TASK_PARKED))
204			WARN_ON(1);
205		else
206			ht->create(cpu);
207	}
208	return 0;
209}
210
211int smpboot_create_threads(unsigned int cpu)
212{
213	struct smp_hotplug_thread *cur;
214	int ret = 0;
215
216	mutex_lock(&smpboot_threads_lock);
217	list_for_each_entry(cur, &hotplug_threads, list) {
218		ret = __smpboot_create_thread(cur, cpu);
219		if (ret)
220			break;
221	}
222	mutex_unlock(&smpboot_threads_lock);
223	return ret;
224}
225
226static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
227{
228	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
229
230	if (!ht->selfparking)
231		kthread_unpark(tsk);
232}
233
234int smpboot_unpark_threads(unsigned int cpu)
235{
236	struct smp_hotplug_thread *cur;
237
238	mutex_lock(&smpboot_threads_lock);
239	list_for_each_entry(cur, &hotplug_threads, list)
240		if (cpumask_test_cpu(cpu, cur->cpumask))
241			smpboot_unpark_thread(cur, cpu);
242	mutex_unlock(&smpboot_threads_lock);
243	return 0;
244}
245
246static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
247{
248	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
249
250	if (tsk && !ht->selfparking)
251		kthread_park(tsk);
252}
253
254int smpboot_park_threads(unsigned int cpu)
255{
256	struct smp_hotplug_thread *cur;
257
258	mutex_lock(&smpboot_threads_lock);
259	list_for_each_entry_reverse(cur, &hotplug_threads, list)
260		smpboot_park_thread(cur, cpu);
261	mutex_unlock(&smpboot_threads_lock);
262	return 0;
263}
264
265static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
266{
267	unsigned int cpu;
268
269	/* We need to destroy also the parked threads of offline cpus */
270	for_each_possible_cpu(cpu) {
271		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
272
273		if (tsk) {
274			kthread_stop(tsk);
275			put_task_struct(tsk);
276			*per_cpu_ptr(ht->store, cpu) = NULL;
277		}
278	}
279}
280
281/**
282 * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
283 * 					    to hotplug
284 * @plug_thread:	Hotplug thread descriptor
285 * @cpumask:		The cpumask where threads run
286 *
287 * Creates and starts the threads on all online cpus.
288 */
289int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
290					   const struct cpumask *cpumask)
291{
292	unsigned int cpu;
293	int ret = 0;
294
295	if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
296		return -ENOMEM;
297	cpumask_copy(plug_thread->cpumask, cpumask);
298
299	get_online_cpus();
300	mutex_lock(&smpboot_threads_lock);
301	for_each_online_cpu(cpu) {
302		ret = __smpboot_create_thread(plug_thread, cpu);
303		if (ret) {
304			smpboot_destroy_threads(plug_thread);
305			free_cpumask_var(plug_thread->cpumask);
306			goto out;
307		}
308		if (cpumask_test_cpu(cpu, cpumask))
309			smpboot_unpark_thread(plug_thread, cpu);
310	}
311	list_add(&plug_thread->list, &hotplug_threads);
312out:
313	mutex_unlock(&smpboot_threads_lock);
314	put_online_cpus();
315	return ret;
316}
317EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
318
319/**
320 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
321 * @plug_thread:	Hotplug thread descriptor
322 *
323 * Stops all threads on all possible cpus.
324 */
325void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
326{
327	get_online_cpus();
328	mutex_lock(&smpboot_threads_lock);
329	list_del(&plug_thread->list);
330	smpboot_destroy_threads(plug_thread);
331	mutex_unlock(&smpboot_threads_lock);
332	put_online_cpus();
333	free_cpumask_var(plug_thread->cpumask);
334}
335EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
336
337/**
338 * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
339 * @plug_thread:	Hotplug thread descriptor
340 * @new:		Revised mask to use
341 *
342 * The cpumask field in the smp_hotplug_thread must not be updated directly
343 * by the client, but only by calling this function.
344 * This function can only be called on a registered smp_hotplug_thread.
345 */
346int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
347					 const struct cpumask *new)
348{
349	struct cpumask *old = plug_thread->cpumask;
350	cpumask_var_t tmp;
351	unsigned int cpu;
352
353	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
354		return -ENOMEM;
355
356	get_online_cpus();
357	mutex_lock(&smpboot_threads_lock);
358
359	/* Park threads that were exclusively enabled on the old mask. */
360	cpumask_andnot(tmp, old, new);
361	for_each_cpu_and(cpu, tmp, cpu_online_mask)
362		smpboot_park_thread(plug_thread, cpu);
363
364	/* Unpark threads that are exclusively enabled on the new mask. */
365	cpumask_andnot(tmp, new, old);
366	for_each_cpu_and(cpu, tmp, cpu_online_mask)
367		smpboot_unpark_thread(plug_thread, cpu);
368
369	cpumask_copy(old, new);
370
371	mutex_unlock(&smpboot_threads_lock);
372	put_online_cpus();
373
374	free_cpumask_var(tmp);
375
376	return 0;
377}
378EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
379
380static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
381
382/*
383 * Called to poll specified CPU's state, for example, when waiting for
384 * a CPU to come online.
385 */
386int cpu_report_state(int cpu)
387{
388	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
389}
390
391/*
392 * If CPU has died properly, set its state to CPU_UP_PREPARE and
393 * return success.  Otherwise, return -EBUSY if the CPU died after
394 * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
395 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
396 * to dying.  In the latter two cases, the CPU might not be set up
397 * properly, but it is up to the arch-specific code to decide.
398 * Finally, -EIO indicates an unanticipated problem.
399 *
400 * Note that it is permissible to omit this call entirely, as is
401 * done in architectures that do no CPU-hotplug error checking.
402 */
403int cpu_check_up_prepare(int cpu)
404{
405	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
406		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
407		return 0;
408	}
409
410	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
411
412	case CPU_POST_DEAD:
413
414		/* The CPU died properly, so just start it up again. */
415		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
416		return 0;
417
418	case CPU_DEAD_FROZEN:
419
420		/*
421		 * Timeout during CPU death, so let caller know.
422		 * The outgoing CPU completed its processing, but after
423		 * cpu_wait_death() timed out and reported the error. The
424		 * caller is free to proceed, in which case the state
425		 * will be reset properly by cpu_set_state_online().
426		 * Proceeding despite this -EBUSY return makes sense
427		 * for systems where the outgoing CPUs take themselves
428		 * offline, with no post-death manipulation required from
429		 * a surviving CPU.
430		 */
431		return -EBUSY;
432
433	case CPU_BROKEN:
434
435		/*
436		 * The most likely reason we got here is that there was
437		 * a timeout during CPU death, and the outgoing CPU never
438		 * did complete its processing.  This could happen on
439		 * a virtualized system if the outgoing VCPU gets preempted
440		 * for more than five seconds, and the user attempts to
441		 * immediately online that same CPU.  Trying again later
442		 * might return -EBUSY above, hence -EAGAIN.
443		 */
444		return -EAGAIN;
445
446	default:
447
448		/* Should not happen.  Famous last words. */
449		return -EIO;
450	}
451}
452
453/*
454 * Mark the specified CPU online.
455 *
456 * Note that it is permissible to omit this call entirely, as is
457 * done in architectures that do no CPU-hotplug error checking.
458 */
459void cpu_set_state_online(int cpu)
460{
461	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
462}
463
464#ifdef CONFIG_HOTPLUG_CPU
465
466/*
467 * Wait for the specified CPU to exit the idle loop and die.
468 */
469bool cpu_wait_death(unsigned int cpu, int seconds)
470{
471	int jf_left = seconds * HZ;
472	int oldstate;
473	bool ret = true;
474	int sleep_jf = 1;
475
476	might_sleep();
477
478	/* The outgoing CPU will normally get done quite quickly. */
479	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
480		goto update_state;
481	udelay(5);
482
483	/* But if the outgoing CPU dawdles, wait increasingly long times. */
484	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
485		schedule_timeout_uninterruptible(sleep_jf);
486		jf_left -= sleep_jf;
487		if (jf_left <= 0)
488			break;
489		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
490	}
491update_state:
492	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
493	if (oldstate == CPU_DEAD) {
494		/* Outgoing CPU died normally, update state. */
495		smp_mb(); /* atomic_read() before update. */
496		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
497	} else {
498		/* Outgoing CPU still hasn't died, set state accordingly. */
499		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
500				   oldstate, CPU_BROKEN) != oldstate)
501			goto update_state;
502		ret = false;
503	}
504	return ret;
505}
506
507/*
508 * Called by the outgoing CPU to report its successful death.  Return
509 * false if this report follows the surviving CPU's timing out.
510 *
511 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
512 * timed out.  This approach allows architectures to omit calls to
513 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
514 * the next cpu_wait_death()'s polling loop.
515 */
516bool cpu_report_death(void)
517{
518	int oldstate;
519	int newstate;
520	int cpu = smp_processor_id();
521
522	do {
523		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
524		if (oldstate != CPU_BROKEN)
525			newstate = CPU_DEAD;
526		else
527			newstate = CPU_DEAD_FROZEN;
528	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
529				oldstate, newstate) != oldstate);
530	return newstate == CPU_DEAD;
531}
532
533#endif /* #ifdef CONFIG_HOTPLUG_CPU */