Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Common SMP CPU bringup/teardown functions
  3 */
  4#include <linux/cpu.h>
  5#include <linux/err.h>
  6#include <linux/smp.h>
  7#include <linux/delay.h>
  8#include <linux/init.h>
  9#include <linux/list.h>
 10#include <linux/slab.h>
 11#include <linux/sched.h>
 
 12#include <linux/export.h>
 13#include <linux/percpu.h>
 14#include <linux/kthread.h>
 15#include <linux/smpboot.h>
 16
 17#include "smpboot.h"
 18
 19#ifdef CONFIG_SMP
 20
 21#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
 22/*
 23 * For the hotplug case we keep the task structs around and reuse
 24 * them.
 25 */
 26static DEFINE_PER_CPU(struct task_struct *, idle_threads);
 27
 28struct task_struct *idle_thread_get(unsigned int cpu)
 29{
 30	struct task_struct *tsk = per_cpu(idle_threads, cpu);
 31
 32	if (!tsk)
 33		return ERR_PTR(-ENOMEM);
 34	init_idle(tsk, cpu);
 35	return tsk;
 36}
 37
 38void __init idle_thread_set_boot_cpu(void)
 39{
 40	per_cpu(idle_threads, smp_processor_id()) = current;
 41}
 42
 43/**
 44 * idle_init - Initialize the idle thread for a cpu
 45 * @cpu:	The cpu for which the idle thread should be initialized
 46 *
 47 * Creates the thread if it does not exist.
 48 */
 49static inline void idle_init(unsigned int cpu)
 50{
 51	struct task_struct *tsk = per_cpu(idle_threads, cpu);
 52
 53	if (!tsk) {
 54		tsk = fork_idle(cpu);
 55		if (IS_ERR(tsk))
 56			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
 57		else
 58			per_cpu(idle_threads, cpu) = tsk;
 59	}
 60}
 61
 62/**
 63 * idle_threads_init - Initialize idle threads for all cpus
 64 */
 65void __init idle_threads_init(void)
 66{
 67	unsigned int cpu, boot_cpu;
 68
 69	boot_cpu = smp_processor_id();
 70
 71	for_each_possible_cpu(cpu) {
 72		if (cpu != boot_cpu)
 73			idle_init(cpu);
 74	}
 75}
 76#endif
 77
 78#endif /* #ifdef CONFIG_SMP */
 79
 80static LIST_HEAD(hotplug_threads);
 81static DEFINE_MUTEX(smpboot_threads_lock);
 82
 83struct smpboot_thread_data {
 84	unsigned int			cpu;
 85	unsigned int			status;
 86	struct smp_hotplug_thread	*ht;
 87};
 88
 89enum {
 90	HP_THREAD_NONE = 0,
 91	HP_THREAD_ACTIVE,
 92	HP_THREAD_PARKED,
 93};
 94
 95/**
 96 * smpboot_thread_fn - percpu hotplug thread loop function
 97 * @data:	thread data pointer
 98 *
 99 * Checks for thread stop and park conditions. Calls the necessary
100 * setup, cleanup, park and unpark functions for the registered
101 * thread.
102 *
103 * Returns 1 when the thread should exit, 0 otherwise.
104 */
105static int smpboot_thread_fn(void *data)
106{
107	struct smpboot_thread_data *td = data;
108	struct smp_hotplug_thread *ht = td->ht;
109
110	while (1) {
111		set_current_state(TASK_INTERRUPTIBLE);
112		preempt_disable();
113		if (kthread_should_stop()) {
114			__set_current_state(TASK_RUNNING);
115			preempt_enable();
116			/* cleanup must mirror setup */
117			if (ht->cleanup && td->status != HP_THREAD_NONE)
118				ht->cleanup(td->cpu, cpu_online(td->cpu));
119			kfree(td);
120			return 0;
121		}
122
123		if (kthread_should_park()) {
124			__set_current_state(TASK_RUNNING);
125			preempt_enable();
126			if (ht->park && td->status == HP_THREAD_ACTIVE) {
127				BUG_ON(td->cpu != smp_processor_id());
128				ht->park(td->cpu);
129				td->status = HP_THREAD_PARKED;
130			}
131			kthread_parkme();
132			/* We might have been woken for stop */
133			continue;
134		}
135
136		BUG_ON(td->cpu != smp_processor_id());
137
138		/* Check for state change setup */
139		switch (td->status) {
140		case HP_THREAD_NONE:
141			__set_current_state(TASK_RUNNING);
142			preempt_enable();
143			if (ht->setup)
144				ht->setup(td->cpu);
145			td->status = HP_THREAD_ACTIVE;
146			continue;
147
148		case HP_THREAD_PARKED:
149			__set_current_state(TASK_RUNNING);
150			preempt_enable();
151			if (ht->unpark)
152				ht->unpark(td->cpu);
153			td->status = HP_THREAD_ACTIVE;
154			continue;
155		}
156
157		if (!ht->thread_should_run(td->cpu)) {
158			preempt_enable_no_resched();
159			schedule();
160		} else {
161			__set_current_state(TASK_RUNNING);
162			preempt_enable();
163			ht->thread_fn(td->cpu);
164		}
165	}
166}
167
168static int
169__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
170{
171	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
172	struct smpboot_thread_data *td;
173
174	if (tsk)
175		return 0;
176
177	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
178	if (!td)
179		return -ENOMEM;
180	td->cpu = cpu;
181	td->ht = ht;
182
183	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
184				    ht->thread_comm);
185	if (IS_ERR(tsk)) {
186		kfree(td);
187		return PTR_ERR(tsk);
188	}
 
 
 
 
 
 
189	get_task_struct(tsk);
190	*per_cpu_ptr(ht->store, cpu) = tsk;
191	if (ht->create) {
192		/*
193		 * Make sure that the task has actually scheduled out
194		 * into park position, before calling the create
195		 * callback. At least the migration thread callback
196		 * requires that the task is off the runqueue.
197		 */
198		if (!wait_task_inactive(tsk, TASK_PARKED))
199			WARN_ON(1);
200		else
201			ht->create(cpu);
202	}
203	return 0;
204}
205
206int smpboot_create_threads(unsigned int cpu)
207{
208	struct smp_hotplug_thread *cur;
209	int ret = 0;
210
211	mutex_lock(&smpboot_threads_lock);
212	list_for_each_entry(cur, &hotplug_threads, list) {
213		ret = __smpboot_create_thread(cur, cpu);
214		if (ret)
215			break;
216	}
217	mutex_unlock(&smpboot_threads_lock);
218	return ret;
219}
220
221static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
222{
223	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
224
225	if (!ht->selfparking)
226		kthread_unpark(tsk);
227}
228
229int smpboot_unpark_threads(unsigned int cpu)
230{
231	struct smp_hotplug_thread *cur;
232
233	mutex_lock(&smpboot_threads_lock);
234	list_for_each_entry(cur, &hotplug_threads, list)
235		if (cpumask_test_cpu(cpu, cur->cpumask))
236			smpboot_unpark_thread(cur, cpu);
237	mutex_unlock(&smpboot_threads_lock);
238	return 0;
239}
240
241static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
242{
243	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
244
245	if (tsk && !ht->selfparking)
246		kthread_park(tsk);
247}
248
249int smpboot_park_threads(unsigned int cpu)
250{
251	struct smp_hotplug_thread *cur;
252
253	mutex_lock(&smpboot_threads_lock);
254	list_for_each_entry_reverse(cur, &hotplug_threads, list)
255		smpboot_park_thread(cur, cpu);
256	mutex_unlock(&smpboot_threads_lock);
257	return 0;
258}
259
260static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
261{
262	unsigned int cpu;
263
264	/* We need to destroy also the parked threads of offline cpus */
265	for_each_possible_cpu(cpu) {
266		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
267
268		if (tsk) {
269			kthread_stop(tsk);
270			put_task_struct(tsk);
271			*per_cpu_ptr(ht->store, cpu) = NULL;
272		}
273	}
274}
275
276/**
277 * smpboot_register_percpu_thread_cpumask - Register a per_cpu thread related
278 * 					    to hotplug
279 * @plug_thread:	Hotplug thread descriptor
280 * @cpumask:		The cpumask where threads run
281 *
282 * Creates and starts the threads on all online cpus.
283 */
284int smpboot_register_percpu_thread_cpumask(struct smp_hotplug_thread *plug_thread,
285					   const struct cpumask *cpumask)
286{
287	unsigned int cpu;
288	int ret = 0;
289
290	if (!alloc_cpumask_var(&plug_thread->cpumask, GFP_KERNEL))
291		return -ENOMEM;
292	cpumask_copy(plug_thread->cpumask, cpumask);
293
294	get_online_cpus();
295	mutex_lock(&smpboot_threads_lock);
296	for_each_online_cpu(cpu) {
297		ret = __smpboot_create_thread(plug_thread, cpu);
298		if (ret) {
299			smpboot_destroy_threads(plug_thread);
300			free_cpumask_var(plug_thread->cpumask);
301			goto out;
302		}
303		if (cpumask_test_cpu(cpu, cpumask))
304			smpboot_unpark_thread(plug_thread, cpu);
305	}
306	list_add(&plug_thread->list, &hotplug_threads);
307out:
308	mutex_unlock(&smpboot_threads_lock);
309	put_online_cpus();
310	return ret;
311}
312EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread_cpumask);
313
314/**
315 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
316 * @plug_thread:	Hotplug thread descriptor
317 *
318 * Stops all threads on all possible cpus.
319 */
320void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
321{
322	get_online_cpus();
323	mutex_lock(&smpboot_threads_lock);
324	list_del(&plug_thread->list);
325	smpboot_destroy_threads(plug_thread);
326	mutex_unlock(&smpboot_threads_lock);
327	put_online_cpus();
328	free_cpumask_var(plug_thread->cpumask);
329}
330EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
331
332/**
333 * smpboot_update_cpumask_percpu_thread - Adjust which per_cpu hotplug threads stay parked
334 * @plug_thread:	Hotplug thread descriptor
335 * @new:		Revised mask to use
336 *
337 * The cpumask field in the smp_hotplug_thread must not be updated directly
338 * by the client, but only by calling this function.
339 * This function can only be called on a registered smp_hotplug_thread.
340 */
341int smpboot_update_cpumask_percpu_thread(struct smp_hotplug_thread *plug_thread,
342					 const struct cpumask *new)
343{
344	struct cpumask *old = plug_thread->cpumask;
345	cpumask_var_t tmp;
346	unsigned int cpu;
347
348	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
349		return -ENOMEM;
350
351	get_online_cpus();
352	mutex_lock(&smpboot_threads_lock);
353
354	/* Park threads that were exclusively enabled on the old mask. */
355	cpumask_andnot(tmp, old, new);
356	for_each_cpu_and(cpu, tmp, cpu_online_mask)
357		smpboot_park_thread(plug_thread, cpu);
358
359	/* Unpark threads that are exclusively enabled on the new mask. */
360	cpumask_andnot(tmp, new, old);
361	for_each_cpu_and(cpu, tmp, cpu_online_mask)
362		smpboot_unpark_thread(plug_thread, cpu);
363
364	cpumask_copy(old, new);
365
366	mutex_unlock(&smpboot_threads_lock);
367	put_online_cpus();
368
369	free_cpumask_var(tmp);
370
371	return 0;
372}
373EXPORT_SYMBOL_GPL(smpboot_update_cpumask_percpu_thread);
374
375static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
376
377/*
378 * Called to poll specified CPU's state, for example, when waiting for
379 * a CPU to come online.
380 */
381int cpu_report_state(int cpu)
382{
383	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
384}
385
386/*
387 * If CPU has died properly, set its state to CPU_UP_PREPARE and
388 * return success.  Otherwise, return -EBUSY if the CPU died after
389 * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
390 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
391 * to dying.  In the latter two cases, the CPU might not be set up
392 * properly, but it is up to the arch-specific code to decide.
393 * Finally, -EIO indicates an unanticipated problem.
394 *
395 * Note that it is permissible to omit this call entirely, as is
396 * done in architectures that do no CPU-hotplug error checking.
397 */
398int cpu_check_up_prepare(int cpu)
399{
400	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
401		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
402		return 0;
403	}
404
405	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
406
407	case CPU_POST_DEAD:
408
409		/* The CPU died properly, so just start it up again. */
410		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
411		return 0;
412
413	case CPU_DEAD_FROZEN:
414
415		/*
416		 * Timeout during CPU death, so let caller know.
417		 * The outgoing CPU completed its processing, but after
418		 * cpu_wait_death() timed out and reported the error. The
419		 * caller is free to proceed, in which case the state
420		 * will be reset properly by cpu_set_state_online().
421		 * Proceeding despite this -EBUSY return makes sense
422		 * for systems where the outgoing CPUs take themselves
423		 * offline, with no post-death manipulation required from
424		 * a surviving CPU.
425		 */
426		return -EBUSY;
427
428	case CPU_BROKEN:
429
430		/*
431		 * The most likely reason we got here is that there was
432		 * a timeout during CPU death, and the outgoing CPU never
433		 * did complete its processing.  This could happen on
434		 * a virtualized system if the outgoing VCPU gets preempted
435		 * for more than five seconds, and the user attempts to
436		 * immediately online that same CPU.  Trying again later
437		 * might return -EBUSY above, hence -EAGAIN.
438		 */
439		return -EAGAIN;
440
 
 
 
 
 
 
 
441	default:
442
443		/* Should not happen.  Famous last words. */
444		return -EIO;
445	}
446}
447
448/*
449 * Mark the specified CPU online.
450 *
451 * Note that it is permissible to omit this call entirely, as is
452 * done in architectures that do no CPU-hotplug error checking.
453 */
454void cpu_set_state_online(int cpu)
455{
456	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
457}
458
459#ifdef CONFIG_HOTPLUG_CPU
460
461/*
462 * Wait for the specified CPU to exit the idle loop and die.
463 */
464bool cpu_wait_death(unsigned int cpu, int seconds)
465{
466	int jf_left = seconds * HZ;
467	int oldstate;
468	bool ret = true;
469	int sleep_jf = 1;
470
471	might_sleep();
472
473	/* The outgoing CPU will normally get done quite quickly. */
474	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
475		goto update_state;
476	udelay(5);
477
478	/* But if the outgoing CPU dawdles, wait increasingly long times. */
479	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
480		schedule_timeout_uninterruptible(sleep_jf);
481		jf_left -= sleep_jf;
482		if (jf_left <= 0)
483			break;
484		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
485	}
486update_state:
487	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
 
488	if (oldstate == CPU_DEAD) {
489		/* Outgoing CPU died normally, update state. */
490		smp_mb(); /* atomic_read() before update. */
491		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
492	} else {
493		/* Outgoing CPU still hasn't died, set state accordingly. */
494		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
495				   oldstate, CPU_BROKEN) != oldstate)
496			goto update_state;
497		ret = false;
498	}
499	return ret;
500}
501
502/*
503 * Called by the outgoing CPU to report its successful death.  Return
504 * false if this report follows the surviving CPU's timing out.
505 *
506 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
507 * timed out.  This approach allows architectures to omit calls to
508 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
509 * the next cpu_wait_death()'s polling loop.
510 */
511bool cpu_report_death(void)
512{
513	int oldstate;
514	int newstate;
515	int cpu = smp_processor_id();
516
 
517	do {
518		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
519		if (oldstate != CPU_BROKEN)
520			newstate = CPU_DEAD;
521		else
522			newstate = CPU_DEAD_FROZEN;
523	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
524				oldstate, newstate) != oldstate);
525	return newstate == CPU_DEAD;
526}
527
528#endif /* #ifdef CONFIG_HOTPLUG_CPU */
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Common SMP CPU bringup/teardown functions
  4 */
  5#include <linux/cpu.h>
  6#include <linux/err.h>
  7#include <linux/smp.h>
  8#include <linux/delay.h>
  9#include <linux/init.h>
 10#include <linux/list.h>
 11#include <linux/slab.h>
 12#include <linux/sched.h>
 13#include <linux/sched/task.h>
 14#include <linux/export.h>
 15#include <linux/percpu.h>
 16#include <linux/kthread.h>
 17#include <linux/smpboot.h>
 18
 19#include "smpboot.h"
 20
 21#ifdef CONFIG_SMP
 22
 23#ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
 24/*
 25 * For the hotplug case we keep the task structs around and reuse
 26 * them.
 27 */
 28static DEFINE_PER_CPU(struct task_struct *, idle_threads);
 29
 30struct task_struct *idle_thread_get(unsigned int cpu)
 31{
 32	struct task_struct *tsk = per_cpu(idle_threads, cpu);
 33
 34	if (!tsk)
 35		return ERR_PTR(-ENOMEM);
 
 36	return tsk;
 37}
 38
 39void __init idle_thread_set_boot_cpu(void)
 40{
 41	per_cpu(idle_threads, smp_processor_id()) = current;
 42}
 43
 44/**
 45 * idle_init - Initialize the idle thread for a cpu
 46 * @cpu:	The cpu for which the idle thread should be initialized
 47 *
 48 * Creates the thread if it does not exist.
 49 */
 50static __always_inline void idle_init(unsigned int cpu)
 51{
 52	struct task_struct *tsk = per_cpu(idle_threads, cpu);
 53
 54	if (!tsk) {
 55		tsk = fork_idle(cpu);
 56		if (IS_ERR(tsk))
 57			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
 58		else
 59			per_cpu(idle_threads, cpu) = tsk;
 60	}
 61}
 62
 63/**
 64 * idle_threads_init - Initialize idle threads for all cpus
 65 */
 66void __init idle_threads_init(void)
 67{
 68	unsigned int cpu, boot_cpu;
 69
 70	boot_cpu = smp_processor_id();
 71
 72	for_each_possible_cpu(cpu) {
 73		if (cpu != boot_cpu)
 74			idle_init(cpu);
 75	}
 76}
 77#endif
 78
 79#endif /* #ifdef CONFIG_SMP */
 80
 81static LIST_HEAD(hotplug_threads);
 82static DEFINE_MUTEX(smpboot_threads_lock);
 83
 84struct smpboot_thread_data {
 85	unsigned int			cpu;
 86	unsigned int			status;
 87	struct smp_hotplug_thread	*ht;
 88};
 89
 90enum {
 91	HP_THREAD_NONE = 0,
 92	HP_THREAD_ACTIVE,
 93	HP_THREAD_PARKED,
 94};
 95
 96/**
 97 * smpboot_thread_fn - percpu hotplug thread loop function
 98 * @data:	thread data pointer
 99 *
100 * Checks for thread stop and park conditions. Calls the necessary
101 * setup, cleanup, park and unpark functions for the registered
102 * thread.
103 *
104 * Returns 1 when the thread should exit, 0 otherwise.
105 */
106static int smpboot_thread_fn(void *data)
107{
108	struct smpboot_thread_data *td = data;
109	struct smp_hotplug_thread *ht = td->ht;
110
111	while (1) {
112		set_current_state(TASK_INTERRUPTIBLE);
113		preempt_disable();
114		if (kthread_should_stop()) {
115			__set_current_state(TASK_RUNNING);
116			preempt_enable();
117			/* cleanup must mirror setup */
118			if (ht->cleanup && td->status != HP_THREAD_NONE)
119				ht->cleanup(td->cpu, cpu_online(td->cpu));
120			kfree(td);
121			return 0;
122		}
123
124		if (kthread_should_park()) {
125			__set_current_state(TASK_RUNNING);
126			preempt_enable();
127			if (ht->park && td->status == HP_THREAD_ACTIVE) {
128				BUG_ON(td->cpu != smp_processor_id());
129				ht->park(td->cpu);
130				td->status = HP_THREAD_PARKED;
131			}
132			kthread_parkme();
133			/* We might have been woken for stop */
134			continue;
135		}
136
137		BUG_ON(td->cpu != smp_processor_id());
138
139		/* Check for state change setup */
140		switch (td->status) {
141		case HP_THREAD_NONE:
142			__set_current_state(TASK_RUNNING);
143			preempt_enable();
144			if (ht->setup)
145				ht->setup(td->cpu);
146			td->status = HP_THREAD_ACTIVE;
147			continue;
148
149		case HP_THREAD_PARKED:
150			__set_current_state(TASK_RUNNING);
151			preempt_enable();
152			if (ht->unpark)
153				ht->unpark(td->cpu);
154			td->status = HP_THREAD_ACTIVE;
155			continue;
156		}
157
158		if (!ht->thread_should_run(td->cpu)) {
159			preempt_enable_no_resched();
160			schedule();
161		} else {
162			__set_current_state(TASK_RUNNING);
163			preempt_enable();
164			ht->thread_fn(td->cpu);
165		}
166	}
167}
168
169static int
170__smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
171{
172	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
173	struct smpboot_thread_data *td;
174
175	if (tsk)
176		return 0;
177
178	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
179	if (!td)
180		return -ENOMEM;
181	td->cpu = cpu;
182	td->ht = ht;
183
184	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
185				    ht->thread_comm);
186	if (IS_ERR(tsk)) {
187		kfree(td);
188		return PTR_ERR(tsk);
189	}
190	kthread_set_per_cpu(tsk, cpu);
191	/*
192	 * Park the thread so that it could start right on the CPU
193	 * when it is available.
194	 */
195	kthread_park(tsk);
196	get_task_struct(tsk);
197	*per_cpu_ptr(ht->store, cpu) = tsk;
198	if (ht->create) {
199		/*
200		 * Make sure that the task has actually scheduled out
201		 * into park position, before calling the create
202		 * callback. At least the migration thread callback
203		 * requires that the task is off the runqueue.
204		 */
205		if (!wait_task_inactive(tsk, TASK_PARKED))
206			WARN_ON(1);
207		else
208			ht->create(cpu);
209	}
210	return 0;
211}
212
213int smpboot_create_threads(unsigned int cpu)
214{
215	struct smp_hotplug_thread *cur;
216	int ret = 0;
217
218	mutex_lock(&smpboot_threads_lock);
219	list_for_each_entry(cur, &hotplug_threads, list) {
220		ret = __smpboot_create_thread(cur, cpu);
221		if (ret)
222			break;
223	}
224	mutex_unlock(&smpboot_threads_lock);
225	return ret;
226}
227
228static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
229{
230	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
231
232	if (!ht->selfparking)
233		kthread_unpark(tsk);
234}
235
236int smpboot_unpark_threads(unsigned int cpu)
237{
238	struct smp_hotplug_thread *cur;
239
240	mutex_lock(&smpboot_threads_lock);
241	list_for_each_entry(cur, &hotplug_threads, list)
242		smpboot_unpark_thread(cur, cpu);
 
243	mutex_unlock(&smpboot_threads_lock);
244	return 0;
245}
246
247static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
248{
249	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
250
251	if (tsk && !ht->selfparking)
252		kthread_park(tsk);
253}
254
255int smpboot_park_threads(unsigned int cpu)
256{
257	struct smp_hotplug_thread *cur;
258
259	mutex_lock(&smpboot_threads_lock);
260	list_for_each_entry_reverse(cur, &hotplug_threads, list)
261		smpboot_park_thread(cur, cpu);
262	mutex_unlock(&smpboot_threads_lock);
263	return 0;
264}
265
266static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
267{
268	unsigned int cpu;
269
270	/* We need to destroy also the parked threads of offline cpus */
271	for_each_possible_cpu(cpu) {
272		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
273
274		if (tsk) {
275			kthread_stop(tsk);
276			put_task_struct(tsk);
277			*per_cpu_ptr(ht->store, cpu) = NULL;
278		}
279	}
280}
281
282/**
283 * smpboot_register_percpu_thread - Register a per_cpu thread related
284 * 					    to hotplug
285 * @plug_thread:	Hotplug thread descriptor
 
286 *
287 * Creates and starts the threads on all online cpus.
288 */
289int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
 
290{
291	unsigned int cpu;
292	int ret = 0;
293
294	cpus_read_lock();
 
 
 
 
295	mutex_lock(&smpboot_threads_lock);
296	for_each_online_cpu(cpu) {
297		ret = __smpboot_create_thread(plug_thread, cpu);
298		if (ret) {
299			smpboot_destroy_threads(plug_thread);
 
300			goto out;
301		}
302		smpboot_unpark_thread(plug_thread, cpu);
 
303	}
304	list_add(&plug_thread->list, &hotplug_threads);
305out:
306	mutex_unlock(&smpboot_threads_lock);
307	cpus_read_unlock();
308	return ret;
309}
310EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
311
312/**
313 * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
314 * @plug_thread:	Hotplug thread descriptor
315 *
316 * Stops all threads on all possible cpus.
317 */
318void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
319{
320	cpus_read_lock();
321	mutex_lock(&smpboot_threads_lock);
322	list_del(&plug_thread->list);
323	smpboot_destroy_threads(plug_thread);
324	mutex_unlock(&smpboot_threads_lock);
325	cpus_read_unlock();
 
326}
327EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
330
331/*
332 * Called to poll specified CPU's state, for example, when waiting for
333 * a CPU to come online.
334 */
335int cpu_report_state(int cpu)
336{
337	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
338}
339
340/*
341 * If CPU has died properly, set its state to CPU_UP_PREPARE and
342 * return success.  Otherwise, return -EBUSY if the CPU died after
343 * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
344 * if cpu_wait_death() timed out and the CPU still hasn't gotten around
345 * to dying.  In the latter two cases, the CPU might not be set up
346 * properly, but it is up to the arch-specific code to decide.
347 * Finally, -EIO indicates an unanticipated problem.
348 *
349 * Note that it is permissible to omit this call entirely, as is
350 * done in architectures that do no CPU-hotplug error checking.
351 */
352int cpu_check_up_prepare(int cpu)
353{
354	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
355		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
356		return 0;
357	}
358
359	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
360
361	case CPU_POST_DEAD:
362
363		/* The CPU died properly, so just start it up again. */
364		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
365		return 0;
366
367	case CPU_DEAD_FROZEN:
368
369		/*
370		 * Timeout during CPU death, so let caller know.
371		 * The outgoing CPU completed its processing, but after
372		 * cpu_wait_death() timed out and reported the error. The
373		 * caller is free to proceed, in which case the state
374		 * will be reset properly by cpu_set_state_online().
375		 * Proceeding despite this -EBUSY return makes sense
376		 * for systems where the outgoing CPUs take themselves
377		 * offline, with no post-death manipulation required from
378		 * a surviving CPU.
379		 */
380		return -EBUSY;
381
382	case CPU_BROKEN:
383
384		/*
385		 * The most likely reason we got here is that there was
386		 * a timeout during CPU death, and the outgoing CPU never
387		 * did complete its processing.  This could happen on
388		 * a virtualized system if the outgoing VCPU gets preempted
389		 * for more than five seconds, and the user attempts to
390		 * immediately online that same CPU.  Trying again later
391		 * might return -EBUSY above, hence -EAGAIN.
392		 */
393		return -EAGAIN;
394
395	case CPU_UP_PREPARE:
396		/*
397		 * Timeout while waiting for the CPU to show up. Allow to try
398		 * again later.
399		 */
400		return 0;
401
402	default:
403
404		/* Should not happen.  Famous last words. */
405		return -EIO;
406	}
407}
408
409/*
410 * Mark the specified CPU online.
411 *
412 * Note that it is permissible to omit this call entirely, as is
413 * done in architectures that do no CPU-hotplug error checking.
414 */
415void cpu_set_state_online(int cpu)
416{
417	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
418}
419
420#ifdef CONFIG_HOTPLUG_CPU
421
422/*
423 * Wait for the specified CPU to exit the idle loop and die.
424 */
425bool cpu_wait_death(unsigned int cpu, int seconds)
426{
427	int jf_left = seconds * HZ;
428	int oldstate;
429	bool ret = true;
430	int sleep_jf = 1;
431
432	might_sleep();
433
434	/* The outgoing CPU will normally get done quite quickly. */
435	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
436		goto update_state_early;
437	udelay(5);
438
439	/* But if the outgoing CPU dawdles, wait increasingly long times. */
440	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
441		schedule_timeout_uninterruptible(sleep_jf);
442		jf_left -= sleep_jf;
443		if (jf_left <= 0)
444			break;
445		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
446	}
447update_state_early:
448	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
449update_state:
450	if (oldstate == CPU_DEAD) {
451		/* Outgoing CPU died normally, update state. */
452		smp_mb(); /* atomic_read() before update. */
453		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
454	} else {
455		/* Outgoing CPU still hasn't died, set state accordingly. */
456		if (!atomic_try_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
457					&oldstate, CPU_BROKEN))
458			goto update_state;
459		ret = false;
460	}
461	return ret;
462}
463
464/*
465 * Called by the outgoing CPU to report its successful death.  Return
466 * false if this report follows the surviving CPU's timing out.
467 *
468 * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
469 * timed out.  This approach allows architectures to omit calls to
470 * cpu_check_up_prepare() and cpu_set_state_online() without defeating
471 * the next cpu_wait_death()'s polling loop.
472 */
473bool cpu_report_death(void)
474{
475	int oldstate;
476	int newstate;
477	int cpu = smp_processor_id();
478
479	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
480	do {
 
481		if (oldstate != CPU_BROKEN)
482			newstate = CPU_DEAD;
483		else
484			newstate = CPU_DEAD_FROZEN;
485	} while (!atomic_try_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
486				     &oldstate, newstate));
487	return newstate == CPU_DEAD;
488}
489
490#endif /* #ifdef CONFIG_HOTPLUG_CPU */