Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v4.6
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/flex_array.h>
  89#include <linux/posix-timers.h>
  90#ifdef CONFIG_HARDWALL
  91#include <asm/hardwall.h>
  92#endif
  93#include <trace/events/oom.h>
  94#include "internal.h"
  95#include "fd.h"
  96
  97/* NOTE:
  98 *	Implementing inode permission operations in /proc is almost
  99 *	certainly an error.  Permission checks need to happen during
 100 *	each system call not at open time.  The reason is that most of
 101 *	what we wish to check for permissions in /proc varies at runtime.
 102 *
 103 *	The classic example of a problem is opening file descriptors
 104 *	in /proc for a task before it execs a suid executable.
 105 */
 106
 
 
 
 107struct pid_entry {
 108	const char *name;
 109	int len;
 110	umode_t mode;
 111	const struct inode_operations *iop;
 112	const struct file_operations *fop;
 113	union proc_op op;
 114};
 115
 116#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 117	.name = (NAME),					\
 118	.len  = sizeof(NAME) - 1,			\
 119	.mode = MODE,					\
 120	.iop  = IOP,					\
 121	.fop  = FOP,					\
 122	.op   = OP,					\
 123}
 124
 125#define DIR(NAME, MODE, iops, fops)	\
 126	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 127#define LNK(NAME, get_link)					\
 128	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 129		&proc_pid_link_inode_operations, NULL,		\
 130		{ .proc_get_link = get_link } )
 131#define REG(NAME, MODE, fops)				\
 132	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 133#define ONE(NAME, MODE, show)				\
 134	NOD(NAME, (S_IFREG|(MODE)), 			\
 135		NULL, &proc_single_file_operations,	\
 136		{ .proc_show = show } )
 137
 138/*
 139 * Count the number of hardlinks for the pid_entry table, excluding the .
 140 * and .. links.
 141 */
 142static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 143	unsigned int n)
 144{
 145	unsigned int i;
 146	unsigned int count;
 147
 148	count = 0;
 149	for (i = 0; i < n; ++i) {
 150		if (S_ISDIR(entries[i].mode))
 151			++count;
 152	}
 153
 154	return count;
 155}
 156
 157static int get_task_root(struct task_struct *task, struct path *root)
 158{
 159	int result = -ENOENT;
 160
 161	task_lock(task);
 162	if (task->fs) {
 163		get_fs_root(task->fs, root);
 164		result = 0;
 165	}
 166	task_unlock(task);
 167	return result;
 168}
 169
 170static int proc_cwd_link(struct dentry *dentry, struct path *path)
 171{
 172	struct task_struct *task = get_proc_task(d_inode(dentry));
 173	int result = -ENOENT;
 174
 175	if (task) {
 176		task_lock(task);
 177		if (task->fs) {
 178			get_fs_pwd(task->fs, path);
 179			result = 0;
 180		}
 181		task_unlock(task);
 182		put_task_struct(task);
 183	}
 184	return result;
 185}
 186
 187static int proc_root_link(struct dentry *dentry, struct path *path)
 188{
 189	struct task_struct *task = get_proc_task(d_inode(dentry));
 190	int result = -ENOENT;
 191
 192	if (task) {
 193		result = get_task_root(task, path);
 194		put_task_struct(task);
 195	}
 196	return result;
 197}
 198
 199static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 200				     size_t _count, loff_t *pos)
 201{
 202	struct task_struct *tsk;
 203	struct mm_struct *mm;
 204	char *page;
 205	unsigned long count = _count;
 206	unsigned long arg_start, arg_end, env_start, env_end;
 207	unsigned long len1, len2, len;
 208	unsigned long p;
 209	char c;
 210	ssize_t rv;
 211
 212	BUG_ON(*pos < 0);
 213
 214	tsk = get_proc_task(file_inode(file));
 215	if (!tsk)
 216		return -ESRCH;
 217	mm = get_task_mm(tsk);
 218	put_task_struct(tsk);
 219	if (!mm)
 220		return 0;
 221	/* Check if process spawned far enough to have cmdline. */
 222	if (!mm->env_end) {
 223		rv = 0;
 224		goto out_mmput;
 225	}
 226
 227	page = (char *)__get_free_page(GFP_TEMPORARY);
 228	if (!page) {
 229		rv = -ENOMEM;
 230		goto out_mmput;
 231	}
 232
 233	down_read(&mm->mmap_sem);
 234	arg_start = mm->arg_start;
 235	arg_end = mm->arg_end;
 236	env_start = mm->env_start;
 237	env_end = mm->env_end;
 238	up_read(&mm->mmap_sem);
 239
 240	BUG_ON(arg_start > arg_end);
 241	BUG_ON(env_start > env_end);
 242
 243	len1 = arg_end - arg_start;
 244	len2 = env_end - env_start;
 245
 246	/* Empty ARGV. */
 247	if (len1 == 0) {
 248		rv = 0;
 249		goto out_free_page;
 250	}
 251	/*
 252	 * Inherently racy -- command line shares address space
 253	 * with code and data.
 254	 */
 255	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 256	if (rv <= 0)
 257		goto out_free_page;
 258
 259	rv = 0;
 260
 261	if (c == '\0') {
 262		/* Command line (set of strings) occupies whole ARGV. */
 263		if (len1 <= *pos)
 264			goto out_free_page;
 265
 266		p = arg_start + *pos;
 267		len = len1 - *pos;
 268		while (count > 0 && len > 0) {
 269			unsigned int _count;
 270			int nr_read;
 271
 272			_count = min3(count, len, PAGE_SIZE);
 273			nr_read = access_remote_vm(mm, p, page, _count, 0);
 274			if (nr_read < 0)
 275				rv = nr_read;
 276			if (nr_read <= 0)
 277				goto out_free_page;
 278
 279			if (copy_to_user(buf, page, nr_read)) {
 280				rv = -EFAULT;
 281				goto out_free_page;
 282			}
 283
 284			p	+= nr_read;
 285			len	-= nr_read;
 286			buf	+= nr_read;
 287			count	-= nr_read;
 288			rv	+= nr_read;
 289		}
 290	} else {
 291		/*
 292		 * Command line (1 string) occupies ARGV and maybe
 293		 * extends into ENVP.
 294		 */
 295		if (len1 + len2 <= *pos)
 296			goto skip_argv_envp;
 297		if (len1 <= *pos)
 298			goto skip_argv;
 299
 300		p = arg_start + *pos;
 301		len = len1 - *pos;
 302		while (count > 0 && len > 0) {
 303			unsigned int _count, l;
 304			int nr_read;
 305			bool final;
 306
 307			_count = min3(count, len, PAGE_SIZE);
 308			nr_read = access_remote_vm(mm, p, page, _count, 0);
 309			if (nr_read < 0)
 310				rv = nr_read;
 311			if (nr_read <= 0)
 312				goto out_free_page;
 313
 314			/*
 315			 * Command line can be shorter than whole ARGV
 316			 * even if last "marker" byte says it is not.
 317			 */
 318			final = false;
 319			l = strnlen(page, nr_read);
 320			if (l < nr_read) {
 321				nr_read = l;
 322				final = true;
 323			}
 324
 325			if (copy_to_user(buf, page, nr_read)) {
 326				rv = -EFAULT;
 327				goto out_free_page;
 328			}
 329
 330			p	+= nr_read;
 331			len	-= nr_read;
 332			buf	+= nr_read;
 333			count	-= nr_read;
 334			rv	+= nr_read;
 335
 336			if (final)
 337				goto out_free_page;
 338		}
 339skip_argv:
 340		/*
 341		 * Command line (1 string) occupies ARGV and
 342		 * extends into ENVP.
 343		 */
 344		if (len1 <= *pos) {
 345			p = env_start + *pos - len1;
 346			len = len1 + len2 - *pos;
 347		} else {
 348			p = env_start;
 349			len = len2;
 350		}
 351		while (count > 0 && len > 0) {
 352			unsigned int _count, l;
 353			int nr_read;
 354			bool final;
 355
 356			_count = min3(count, len, PAGE_SIZE);
 357			nr_read = access_remote_vm(mm, p, page, _count, 0);
 358			if (nr_read < 0)
 359				rv = nr_read;
 360			if (nr_read <= 0)
 361				goto out_free_page;
 362
 363			/* Find EOS. */
 364			final = false;
 365			l = strnlen(page, nr_read);
 366			if (l < nr_read) {
 367				nr_read = l;
 368				final = true;
 369			}
 370
 371			if (copy_to_user(buf, page, nr_read)) {
 372				rv = -EFAULT;
 373				goto out_free_page;
 374			}
 375
 376			p	+= nr_read;
 377			len	-= nr_read;
 378			buf	+= nr_read;
 379			count	-= nr_read;
 380			rv	+= nr_read;
 381
 382			if (final)
 383				goto out_free_page;
 384		}
 385skip_argv_envp:
 386		;
 387	}
 388
 389out_free_page:
 390	free_page((unsigned long)page);
 391out_mmput:
 392	mmput(mm);
 393	if (rv > 0)
 394		*pos += rv;
 395	return rv;
 396}
 397
 398static const struct file_operations proc_pid_cmdline_ops = {
 399	.read	= proc_pid_cmdline_read,
 400	.llseek	= generic_file_llseek,
 401};
 402
 403static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
 404			 struct pid *pid, struct task_struct *task)
 405{
 406	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
 407	if (mm && !IS_ERR(mm)) {
 408		unsigned int nwords = 0;
 409		do {
 410			nwords += 2;
 411		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 412		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
 413		mmput(mm);
 414		return 0;
 415	} else
 416		return PTR_ERR(mm);
 417}
 418
 419
 420#ifdef CONFIG_KALLSYMS
 421/*
 422 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 423 * Returns the resolved symbol.  If that fails, simply return the address.
 424 */
 425static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 426			  struct pid *pid, struct task_struct *task)
 427{
 428	unsigned long wchan;
 429	char symname[KSYM_NAME_LEN];
 430
 431	wchan = get_wchan(task);
 432
 433	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
 434			&& !lookup_symbol_name(wchan, symname))
 435		seq_printf(m, "%s", symname);
 436	else
 437		seq_putc(m, '0');
 438
 439	return 0;
 440}
 441#endif /* CONFIG_KALLSYMS */
 442
 443static int lock_trace(struct task_struct *task)
 444{
 445	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 446	if (err)
 447		return err;
 448	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 449		mutex_unlock(&task->signal->cred_guard_mutex);
 450		return -EPERM;
 451	}
 452	return 0;
 453}
 454
 455static void unlock_trace(struct task_struct *task)
 456{
 457	mutex_unlock(&task->signal->cred_guard_mutex);
 458}
 459
 460#ifdef CONFIG_STACKTRACE
 461
 462#define MAX_STACK_TRACE_DEPTH	64
 463
 464static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 465			  struct pid *pid, struct task_struct *task)
 466{
 467	struct stack_trace trace;
 468	unsigned long *entries;
 469	int err;
 470	int i;
 471
 472	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 473	if (!entries)
 474		return -ENOMEM;
 475
 476	trace.nr_entries	= 0;
 477	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 478	trace.entries		= entries;
 479	trace.skip		= 0;
 480
 481	err = lock_trace(task);
 482	if (!err) {
 483		save_stack_trace_tsk(task, &trace);
 484
 485		for (i = 0; i < trace.nr_entries; i++) {
 486			seq_printf(m, "[<%pK>] %pS\n",
 487				   (void *)entries[i], (void *)entries[i]);
 488		}
 489		unlock_trace(task);
 490	}
 491	kfree(entries);
 492
 493	return err;
 494}
 495#endif
 496
 497#ifdef CONFIG_SCHED_INFO
 498/*
 499 * Provides /proc/PID/schedstat
 500 */
 501static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 502			      struct pid *pid, struct task_struct *task)
 503{
 504	if (unlikely(!sched_info_on()))
 505		seq_printf(m, "0 0 0\n");
 506	else
 507		seq_printf(m, "%llu %llu %lu\n",
 508		   (unsigned long long)task->se.sum_exec_runtime,
 509		   (unsigned long long)task->sched_info.run_delay,
 510		   task->sched_info.pcount);
 511
 512	return 0;
 513}
 514#endif
 515
 516#ifdef CONFIG_LATENCYTOP
 517static int lstats_show_proc(struct seq_file *m, void *v)
 518{
 519	int i;
 520	struct inode *inode = m->private;
 521	struct task_struct *task = get_proc_task(inode);
 522
 523	if (!task)
 524		return -ESRCH;
 525	seq_puts(m, "Latency Top version : v0.1\n");
 526	for (i = 0; i < 32; i++) {
 527		struct latency_record *lr = &task->latency_record[i];
 528		if (lr->backtrace[0]) {
 529			int q;
 530			seq_printf(m, "%i %li %li",
 531				   lr->count, lr->time, lr->max);
 532			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 533				unsigned long bt = lr->backtrace[q];
 534				if (!bt)
 535					break;
 536				if (bt == ULONG_MAX)
 537					break;
 538				seq_printf(m, " %ps", (void *)bt);
 539			}
 540			seq_putc(m, '\n');
 541		}
 542
 543	}
 544	put_task_struct(task);
 545	return 0;
 546}
 547
 548static int lstats_open(struct inode *inode, struct file *file)
 549{
 550	return single_open(file, lstats_show_proc, inode);
 551}
 552
 553static ssize_t lstats_write(struct file *file, const char __user *buf,
 554			    size_t count, loff_t *offs)
 555{
 556	struct task_struct *task = get_proc_task(file_inode(file));
 557
 558	if (!task)
 559		return -ESRCH;
 560	clear_all_latency_tracing(task);
 561	put_task_struct(task);
 562
 563	return count;
 564}
 565
 566static const struct file_operations proc_lstats_operations = {
 567	.open		= lstats_open,
 568	.read		= seq_read,
 569	.write		= lstats_write,
 570	.llseek		= seq_lseek,
 571	.release	= single_release,
 572};
 573
 574#endif
 575
 576static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 577			  struct pid *pid, struct task_struct *task)
 578{
 579	unsigned long totalpages = totalram_pages + total_swap_pages;
 580	unsigned long points = 0;
 581
 582	read_lock(&tasklist_lock);
 583	if (pid_alive(task))
 584		points = oom_badness(task, NULL, NULL, totalpages) *
 585						1000 / totalpages;
 586	read_unlock(&tasklist_lock);
 587	seq_printf(m, "%lu\n", points);
 588
 589	return 0;
 590}
 591
 592struct limit_names {
 593	const char *name;
 594	const char *unit;
 595};
 596
 597static const struct limit_names lnames[RLIM_NLIMITS] = {
 598	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 599	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 600	[RLIMIT_DATA] = {"Max data size", "bytes"},
 601	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 602	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 603	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 604	[RLIMIT_NPROC] = {"Max processes", "processes"},
 605	[RLIMIT_NOFILE] = {"Max open files", "files"},
 606	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 607	[RLIMIT_AS] = {"Max address space", "bytes"},
 608	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 609	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 610	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 611	[RLIMIT_NICE] = {"Max nice priority", NULL},
 612	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 613	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 614};
 615
 616/* Display limits for a process */
 617static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 618			   struct pid *pid, struct task_struct *task)
 619{
 620	unsigned int i;
 621	unsigned long flags;
 622
 623	struct rlimit rlim[RLIM_NLIMITS];
 624
 625	if (!lock_task_sighand(task, &flags))
 626		return 0;
 627	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 628	unlock_task_sighand(task, &flags);
 629
 630	/*
 631	 * print the file header
 632	 */
 633       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 634		  "Limit", "Soft Limit", "Hard Limit", "Units");
 635
 636	for (i = 0; i < RLIM_NLIMITS; i++) {
 637		if (rlim[i].rlim_cur == RLIM_INFINITY)
 638			seq_printf(m, "%-25s %-20s ",
 639				   lnames[i].name, "unlimited");
 640		else
 641			seq_printf(m, "%-25s %-20lu ",
 642				   lnames[i].name, rlim[i].rlim_cur);
 643
 644		if (rlim[i].rlim_max == RLIM_INFINITY)
 645			seq_printf(m, "%-20s ", "unlimited");
 646		else
 647			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 648
 649		if (lnames[i].unit)
 650			seq_printf(m, "%-10s\n", lnames[i].unit);
 651		else
 652			seq_putc(m, '\n');
 653	}
 654
 655	return 0;
 656}
 657
 658#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 659static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 660			    struct pid *pid, struct task_struct *task)
 661{
 662	long nr;
 663	unsigned long args[6], sp, pc;
 664	int res;
 665
 666	res = lock_trace(task);
 667	if (res)
 668		return res;
 669
 670	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 671		seq_puts(m, "running\n");
 672	else if (nr < 0)
 673		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 674	else
 675		seq_printf(m,
 676		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 677		       nr,
 678		       args[0], args[1], args[2], args[3], args[4], args[5],
 679		       sp, pc);
 680	unlock_trace(task);
 681
 682	return 0;
 683}
 684#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 685
 686/************************************************************************/
 687/*                       Here the fs part begins                        */
 688/************************************************************************/
 689
 690/* permission checks */
 691static int proc_fd_access_allowed(struct inode *inode)
 692{
 693	struct task_struct *task;
 694	int allowed = 0;
 695	/* Allow access to a task's file descriptors if it is us or we
 696	 * may use ptrace attach to the process and find out that
 697	 * information.
 698	 */
 699	task = get_proc_task(inode);
 700	if (task) {
 701		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 702		put_task_struct(task);
 703	}
 704	return allowed;
 705}
 706
 707int proc_setattr(struct dentry *dentry, struct iattr *attr)
 708{
 709	int error;
 710	struct inode *inode = d_inode(dentry);
 711
 712	if (attr->ia_valid & ATTR_MODE)
 713		return -EPERM;
 714
 715	error = inode_change_ok(inode, attr);
 716	if (error)
 717		return error;
 718
 719	setattr_copy(inode, attr);
 720	mark_inode_dirty(inode);
 721	return 0;
 722}
 723
 724/*
 725 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 726 * or euid/egid (for hide_pid_min=2)?
 727 */
 728static bool has_pid_permissions(struct pid_namespace *pid,
 729				 struct task_struct *task,
 730				 int hide_pid_min)
 731{
 732	if (pid->hide_pid < hide_pid_min)
 733		return true;
 734	if (in_group_p(pid->pid_gid))
 735		return true;
 736	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 737}
 738
 739
 740static int proc_pid_permission(struct inode *inode, int mask)
 741{
 742	struct pid_namespace *pid = inode->i_sb->s_fs_info;
 743	struct task_struct *task;
 744	bool has_perms;
 745
 746	task = get_proc_task(inode);
 747	if (!task)
 748		return -ESRCH;
 749	has_perms = has_pid_permissions(pid, task, 1);
 750	put_task_struct(task);
 751
 752	if (!has_perms) {
 753		if (pid->hide_pid == 2) {
 754			/*
 755			 * Let's make getdents(), stat(), and open()
 756			 * consistent with each other.  If a process
 757			 * may not stat() a file, it shouldn't be seen
 758			 * in procfs at all.
 759			 */
 760			return -ENOENT;
 761		}
 762
 763		return -EPERM;
 764	}
 765	return generic_permission(inode, mask);
 766}
 767
 768
 769
 770static const struct inode_operations proc_def_inode_operations = {
 771	.setattr	= proc_setattr,
 772};
 773
 774static int proc_single_show(struct seq_file *m, void *v)
 775{
 776	struct inode *inode = m->private;
 777	struct pid_namespace *ns;
 778	struct pid *pid;
 779	struct task_struct *task;
 780	int ret;
 781
 782	ns = inode->i_sb->s_fs_info;
 783	pid = proc_pid(inode);
 784	task = get_pid_task(pid, PIDTYPE_PID);
 785	if (!task)
 786		return -ESRCH;
 787
 788	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 789
 790	put_task_struct(task);
 791	return ret;
 792}
 793
 794static int proc_single_open(struct inode *inode, struct file *filp)
 795{
 796	return single_open(filp, proc_single_show, inode);
 797}
 798
 799static const struct file_operations proc_single_file_operations = {
 800	.open		= proc_single_open,
 801	.read		= seq_read,
 802	.llseek		= seq_lseek,
 803	.release	= single_release,
 804};
 805
 806
 807struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 808{
 809	struct task_struct *task = get_proc_task(inode);
 810	struct mm_struct *mm = ERR_PTR(-ESRCH);
 811
 812	if (task) {
 813		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 814		put_task_struct(task);
 815
 816		if (!IS_ERR_OR_NULL(mm)) {
 817			/* ensure this mm_struct can't be freed */
 818			atomic_inc(&mm->mm_count);
 819			/* but do not pin its memory */
 820			mmput(mm);
 821		}
 822	}
 823
 824	return mm;
 825}
 826
 827static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 828{
 829	struct mm_struct *mm = proc_mem_open(inode, mode);
 830
 831	if (IS_ERR(mm))
 832		return PTR_ERR(mm);
 833
 834	file->private_data = mm;
 835	return 0;
 836}
 837
 838static int mem_open(struct inode *inode, struct file *file)
 839{
 840	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 841
 842	/* OK to pass negative loff_t, we can catch out-of-range */
 843	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 844
 845	return ret;
 846}
 847
 848static ssize_t mem_rw(struct file *file, char __user *buf,
 849			size_t count, loff_t *ppos, int write)
 850{
 851	struct mm_struct *mm = file->private_data;
 852	unsigned long addr = *ppos;
 853	ssize_t copied;
 854	char *page;
 
 855
 856	if (!mm)
 857		return 0;
 858
 859	page = (char *)__get_free_page(GFP_TEMPORARY);
 860	if (!page)
 861		return -ENOMEM;
 862
 863	copied = 0;
 864	if (!atomic_inc_not_zero(&mm->mm_users))
 865		goto free;
 866
 
 
 
 
 
 867	while (count > 0) {
 868		int this_len = min_t(int, count, PAGE_SIZE);
 869
 870		if (write && copy_from_user(page, buf, this_len)) {
 871			copied = -EFAULT;
 872			break;
 873		}
 874
 875		this_len = access_remote_vm(mm, addr, page, this_len, write);
 876		if (!this_len) {
 877			if (!copied)
 878				copied = -EIO;
 879			break;
 880		}
 881
 882		if (!write && copy_to_user(buf, page, this_len)) {
 883			copied = -EFAULT;
 884			break;
 885		}
 886
 887		buf += this_len;
 888		addr += this_len;
 889		copied += this_len;
 890		count -= this_len;
 891	}
 892	*ppos = addr;
 893
 894	mmput(mm);
 895free:
 896	free_page((unsigned long) page);
 897	return copied;
 898}
 899
 900static ssize_t mem_read(struct file *file, char __user *buf,
 901			size_t count, loff_t *ppos)
 902{
 903	return mem_rw(file, buf, count, ppos, 0);
 904}
 905
 906static ssize_t mem_write(struct file *file, const char __user *buf,
 907			 size_t count, loff_t *ppos)
 908{
 909	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 910}
 911
 912loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 913{
 914	switch (orig) {
 915	case 0:
 916		file->f_pos = offset;
 917		break;
 918	case 1:
 919		file->f_pos += offset;
 920		break;
 921	default:
 922		return -EINVAL;
 923	}
 924	force_successful_syscall_return();
 925	return file->f_pos;
 926}
 927
 928static int mem_release(struct inode *inode, struct file *file)
 929{
 930	struct mm_struct *mm = file->private_data;
 931	if (mm)
 932		mmdrop(mm);
 933	return 0;
 934}
 935
 936static const struct file_operations proc_mem_operations = {
 937	.llseek		= mem_lseek,
 938	.read		= mem_read,
 939	.write		= mem_write,
 940	.open		= mem_open,
 941	.release	= mem_release,
 942};
 943
 944static int environ_open(struct inode *inode, struct file *file)
 945{
 946	return __mem_open(inode, file, PTRACE_MODE_READ);
 947}
 948
 949static ssize_t environ_read(struct file *file, char __user *buf,
 950			size_t count, loff_t *ppos)
 951{
 952	char *page;
 953	unsigned long src = *ppos;
 954	int ret = 0;
 955	struct mm_struct *mm = file->private_data;
 956	unsigned long env_start, env_end;
 957
 958	/* Ensure the process spawned far enough to have an environment. */
 959	if (!mm || !mm->env_end)
 960		return 0;
 961
 962	page = (char *)__get_free_page(GFP_TEMPORARY);
 963	if (!page)
 964		return -ENOMEM;
 965
 966	ret = 0;
 967	if (!atomic_inc_not_zero(&mm->mm_users))
 968		goto free;
 969
 970	down_read(&mm->mmap_sem);
 971	env_start = mm->env_start;
 972	env_end = mm->env_end;
 973	up_read(&mm->mmap_sem);
 974
 975	while (count > 0) {
 976		size_t this_len, max_len;
 977		int retval;
 978
 979		if (src >= (env_end - env_start))
 980			break;
 981
 982		this_len = env_end - (env_start + src);
 983
 984		max_len = min_t(size_t, PAGE_SIZE, count);
 985		this_len = min(max_len, this_len);
 986
 987		retval = access_remote_vm(mm, (env_start + src),
 988			page, this_len, 0);
 989
 990		if (retval <= 0) {
 991			ret = retval;
 992			break;
 993		}
 994
 995		if (copy_to_user(buf, page, retval)) {
 996			ret = -EFAULT;
 997			break;
 998		}
 999
1000		ret += retval;
1001		src += retval;
1002		buf += retval;
1003		count -= retval;
1004	}
1005	*ppos = src;
1006	mmput(mm);
1007
1008free:
1009	free_page((unsigned long) page);
1010	return ret;
1011}
1012
1013static const struct file_operations proc_environ_operations = {
1014	.open		= environ_open,
1015	.read		= environ_read,
1016	.llseek		= generic_file_llseek,
1017	.release	= mem_release,
1018};
1019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1021			    loff_t *ppos)
1022{
1023	struct task_struct *task = get_proc_task(file_inode(file));
1024	char buffer[PROC_NUMBUF];
1025	int oom_adj = OOM_ADJUST_MIN;
1026	size_t len;
1027	unsigned long flags;
1028
1029	if (!task)
1030		return -ESRCH;
1031	if (lock_task_sighand(task, &flags)) {
1032		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1033			oom_adj = OOM_ADJUST_MAX;
1034		else
1035			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1036				  OOM_SCORE_ADJ_MAX;
1037		unlock_task_sighand(task, &flags);
1038	}
1039	put_task_struct(task);
1040	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1041	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1042}
1043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044/*
1045 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1046 * kernels.  The effective policy is defined by oom_score_adj, which has a
1047 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1048 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1049 * Processes that become oom disabled via oom_adj will still be oom disabled
1050 * with this implementation.
1051 *
1052 * oom_adj cannot be removed since existing userspace binaries use it.
1053 */
1054static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1055			     size_t count, loff_t *ppos)
1056{
1057	struct task_struct *task;
1058	char buffer[PROC_NUMBUF];
1059	int oom_adj;
1060	unsigned long flags;
1061	int err;
1062
1063	memset(buffer, 0, sizeof(buffer));
1064	if (count > sizeof(buffer) - 1)
1065		count = sizeof(buffer) - 1;
1066	if (copy_from_user(buffer, buf, count)) {
1067		err = -EFAULT;
1068		goto out;
1069	}
1070
1071	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1072	if (err)
1073		goto out;
1074	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1075	     oom_adj != OOM_DISABLE) {
1076		err = -EINVAL;
1077		goto out;
1078	}
1079
1080	task = get_proc_task(file_inode(file));
1081	if (!task) {
1082		err = -ESRCH;
1083		goto out;
1084	}
1085
1086	task_lock(task);
1087	if (!task->mm) {
1088		err = -EINVAL;
1089		goto err_task_lock;
1090	}
1091
1092	if (!lock_task_sighand(task, &flags)) {
1093		err = -ESRCH;
1094		goto err_task_lock;
1095	}
1096
1097	/*
1098	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1099	 * value is always attainable.
1100	 */
1101	if (oom_adj == OOM_ADJUST_MAX)
1102		oom_adj = OOM_SCORE_ADJ_MAX;
1103	else
1104		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1105
1106	if (oom_adj < task->signal->oom_score_adj &&
1107	    !capable(CAP_SYS_RESOURCE)) {
1108		err = -EACCES;
1109		goto err_sighand;
1110	}
1111
1112	/*
1113	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1114	 * /proc/pid/oom_score_adj instead.
1115	 */
1116	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1117		  current->comm, task_pid_nr(current), task_pid_nr(task),
1118		  task_pid_nr(task));
1119
1120	task->signal->oom_score_adj = oom_adj;
1121	trace_oom_score_adj_update(task);
1122err_sighand:
1123	unlock_task_sighand(task, &flags);
1124err_task_lock:
1125	task_unlock(task);
1126	put_task_struct(task);
1127out:
1128	return err < 0 ? err : count;
1129}
1130
1131static const struct file_operations proc_oom_adj_operations = {
1132	.read		= oom_adj_read,
1133	.write		= oom_adj_write,
1134	.llseek		= generic_file_llseek,
1135};
1136
1137static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1138					size_t count, loff_t *ppos)
1139{
1140	struct task_struct *task = get_proc_task(file_inode(file));
1141	char buffer[PROC_NUMBUF];
1142	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1143	unsigned long flags;
1144	size_t len;
1145
1146	if (!task)
1147		return -ESRCH;
1148	if (lock_task_sighand(task, &flags)) {
1149		oom_score_adj = task->signal->oom_score_adj;
1150		unlock_task_sighand(task, &flags);
1151	}
1152	put_task_struct(task);
1153	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1154	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1155}
1156
1157static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1158					size_t count, loff_t *ppos)
1159{
1160	struct task_struct *task;
1161	char buffer[PROC_NUMBUF];
1162	unsigned long flags;
1163	int oom_score_adj;
1164	int err;
1165
1166	memset(buffer, 0, sizeof(buffer));
1167	if (count > sizeof(buffer) - 1)
1168		count = sizeof(buffer) - 1;
1169	if (copy_from_user(buffer, buf, count)) {
1170		err = -EFAULT;
1171		goto out;
1172	}
1173
1174	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1175	if (err)
1176		goto out;
1177	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1178			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1179		err = -EINVAL;
1180		goto out;
1181	}
1182
1183	task = get_proc_task(file_inode(file));
1184	if (!task) {
1185		err = -ESRCH;
1186		goto out;
1187	}
1188
1189	task_lock(task);
1190	if (!task->mm) {
1191		err = -EINVAL;
1192		goto err_task_lock;
1193	}
1194
1195	if (!lock_task_sighand(task, &flags)) {
1196		err = -ESRCH;
1197		goto err_task_lock;
1198	}
1199
1200	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1201			!capable(CAP_SYS_RESOURCE)) {
1202		err = -EACCES;
1203		goto err_sighand;
1204	}
1205
1206	task->signal->oom_score_adj = (short)oom_score_adj;
1207	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1208		task->signal->oom_score_adj_min = (short)oom_score_adj;
1209	trace_oom_score_adj_update(task);
1210
1211err_sighand:
1212	unlock_task_sighand(task, &flags);
1213err_task_lock:
1214	task_unlock(task);
1215	put_task_struct(task);
1216out:
1217	return err < 0 ? err : count;
1218}
1219
1220static const struct file_operations proc_oom_score_adj_operations = {
1221	.read		= oom_score_adj_read,
1222	.write		= oom_score_adj_write,
1223	.llseek		= default_llseek,
1224};
1225
1226#ifdef CONFIG_AUDITSYSCALL
1227#define TMPBUFLEN 21
1228static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1229				  size_t count, loff_t *ppos)
1230{
1231	struct inode * inode = file_inode(file);
1232	struct task_struct *task = get_proc_task(inode);
1233	ssize_t length;
1234	char tmpbuf[TMPBUFLEN];
1235
1236	if (!task)
1237		return -ESRCH;
1238	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1239			   from_kuid(file->f_cred->user_ns,
1240				     audit_get_loginuid(task)));
1241	put_task_struct(task);
1242	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1243}
1244
1245static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1246				   size_t count, loff_t *ppos)
1247{
1248	struct inode * inode = file_inode(file);
1249	uid_t loginuid;
1250	kuid_t kloginuid;
1251	int rv;
1252
1253	rcu_read_lock();
1254	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1255		rcu_read_unlock();
1256		return -EPERM;
1257	}
1258	rcu_read_unlock();
1259
1260	if (*ppos != 0) {
1261		/* No partial writes. */
1262		return -EINVAL;
1263	}
1264
1265	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1266	if (rv < 0)
1267		return rv;
1268
1269	/* is userspace tring to explicitly UNSET the loginuid? */
1270	if (loginuid == AUDIT_UID_UNSET) {
1271		kloginuid = INVALID_UID;
1272	} else {
1273		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1274		if (!uid_valid(kloginuid))
1275			return -EINVAL;
1276	}
1277
1278	rv = audit_set_loginuid(kloginuid);
1279	if (rv < 0)
1280		return rv;
1281	return count;
1282}
1283
1284static const struct file_operations proc_loginuid_operations = {
1285	.read		= proc_loginuid_read,
1286	.write		= proc_loginuid_write,
1287	.llseek		= generic_file_llseek,
1288};
1289
1290static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1291				  size_t count, loff_t *ppos)
1292{
1293	struct inode * inode = file_inode(file);
1294	struct task_struct *task = get_proc_task(inode);
1295	ssize_t length;
1296	char tmpbuf[TMPBUFLEN];
1297
1298	if (!task)
1299		return -ESRCH;
1300	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1301				audit_get_sessionid(task));
1302	put_task_struct(task);
1303	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1304}
1305
1306static const struct file_operations proc_sessionid_operations = {
1307	.read		= proc_sessionid_read,
1308	.llseek		= generic_file_llseek,
1309};
1310#endif
1311
1312#ifdef CONFIG_FAULT_INJECTION
1313static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1314				      size_t count, loff_t *ppos)
1315{
1316	struct task_struct *task = get_proc_task(file_inode(file));
1317	char buffer[PROC_NUMBUF];
1318	size_t len;
1319	int make_it_fail;
1320
1321	if (!task)
1322		return -ESRCH;
1323	make_it_fail = task->make_it_fail;
1324	put_task_struct(task);
1325
1326	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1327
1328	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1329}
1330
1331static ssize_t proc_fault_inject_write(struct file * file,
1332			const char __user * buf, size_t count, loff_t *ppos)
1333{
1334	struct task_struct *task;
1335	char buffer[PROC_NUMBUF];
1336	int make_it_fail;
1337	int rv;
1338
1339	if (!capable(CAP_SYS_RESOURCE))
1340		return -EPERM;
1341	memset(buffer, 0, sizeof(buffer));
1342	if (count > sizeof(buffer) - 1)
1343		count = sizeof(buffer) - 1;
1344	if (copy_from_user(buffer, buf, count))
1345		return -EFAULT;
1346	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1347	if (rv < 0)
1348		return rv;
1349	if (make_it_fail < 0 || make_it_fail > 1)
1350		return -EINVAL;
1351
1352	task = get_proc_task(file_inode(file));
1353	if (!task)
1354		return -ESRCH;
1355	task->make_it_fail = make_it_fail;
1356	put_task_struct(task);
1357
1358	return count;
1359}
1360
1361static const struct file_operations proc_fault_inject_operations = {
1362	.read		= proc_fault_inject_read,
1363	.write		= proc_fault_inject_write,
1364	.llseek		= generic_file_llseek,
1365};
1366#endif
1367
1368
1369#ifdef CONFIG_SCHED_DEBUG
1370/*
1371 * Print out various scheduling related per-task fields:
1372 */
1373static int sched_show(struct seq_file *m, void *v)
1374{
1375	struct inode *inode = m->private;
1376	struct task_struct *p;
1377
1378	p = get_proc_task(inode);
1379	if (!p)
1380		return -ESRCH;
1381	proc_sched_show_task(p, m);
1382
1383	put_task_struct(p);
1384
1385	return 0;
1386}
1387
1388static ssize_t
1389sched_write(struct file *file, const char __user *buf,
1390	    size_t count, loff_t *offset)
1391{
1392	struct inode *inode = file_inode(file);
1393	struct task_struct *p;
1394
1395	p = get_proc_task(inode);
1396	if (!p)
1397		return -ESRCH;
1398	proc_sched_set_task(p);
1399
1400	put_task_struct(p);
1401
1402	return count;
1403}
1404
1405static int sched_open(struct inode *inode, struct file *filp)
1406{
1407	return single_open(filp, sched_show, inode);
1408}
1409
1410static const struct file_operations proc_pid_sched_operations = {
1411	.open		= sched_open,
1412	.read		= seq_read,
1413	.write		= sched_write,
1414	.llseek		= seq_lseek,
1415	.release	= single_release,
1416};
1417
1418#endif
1419
1420#ifdef CONFIG_SCHED_AUTOGROUP
1421/*
1422 * Print out autogroup related information:
1423 */
1424static int sched_autogroup_show(struct seq_file *m, void *v)
1425{
1426	struct inode *inode = m->private;
1427	struct task_struct *p;
1428
1429	p = get_proc_task(inode);
1430	if (!p)
1431		return -ESRCH;
1432	proc_sched_autogroup_show_task(p, m);
1433
1434	put_task_struct(p);
1435
1436	return 0;
1437}
1438
1439static ssize_t
1440sched_autogroup_write(struct file *file, const char __user *buf,
1441	    size_t count, loff_t *offset)
1442{
1443	struct inode *inode = file_inode(file);
1444	struct task_struct *p;
1445	char buffer[PROC_NUMBUF];
1446	int nice;
1447	int err;
1448
1449	memset(buffer, 0, sizeof(buffer));
1450	if (count > sizeof(buffer) - 1)
1451		count = sizeof(buffer) - 1;
1452	if (copy_from_user(buffer, buf, count))
1453		return -EFAULT;
1454
1455	err = kstrtoint(strstrip(buffer), 0, &nice);
1456	if (err < 0)
1457		return err;
1458
1459	p = get_proc_task(inode);
1460	if (!p)
1461		return -ESRCH;
1462
1463	err = proc_sched_autogroup_set_nice(p, nice);
1464	if (err)
1465		count = err;
1466
1467	put_task_struct(p);
1468
1469	return count;
1470}
1471
1472static int sched_autogroup_open(struct inode *inode, struct file *filp)
1473{
1474	int ret;
1475
1476	ret = single_open(filp, sched_autogroup_show, NULL);
1477	if (!ret) {
1478		struct seq_file *m = filp->private_data;
1479
1480		m->private = inode;
1481	}
1482	return ret;
1483}
1484
1485static const struct file_operations proc_pid_sched_autogroup_operations = {
1486	.open		= sched_autogroup_open,
1487	.read		= seq_read,
1488	.write		= sched_autogroup_write,
1489	.llseek		= seq_lseek,
1490	.release	= single_release,
1491};
1492
1493#endif /* CONFIG_SCHED_AUTOGROUP */
1494
1495static ssize_t comm_write(struct file *file, const char __user *buf,
1496				size_t count, loff_t *offset)
1497{
1498	struct inode *inode = file_inode(file);
1499	struct task_struct *p;
1500	char buffer[TASK_COMM_LEN];
1501	const size_t maxlen = sizeof(buffer) - 1;
1502
1503	memset(buffer, 0, sizeof(buffer));
1504	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1505		return -EFAULT;
1506
1507	p = get_proc_task(inode);
1508	if (!p)
1509		return -ESRCH;
1510
1511	if (same_thread_group(current, p))
1512		set_task_comm(p, buffer);
1513	else
1514		count = -EINVAL;
1515
1516	put_task_struct(p);
1517
1518	return count;
1519}
1520
1521static int comm_show(struct seq_file *m, void *v)
1522{
1523	struct inode *inode = m->private;
1524	struct task_struct *p;
1525
1526	p = get_proc_task(inode);
1527	if (!p)
1528		return -ESRCH;
1529
1530	task_lock(p);
1531	seq_printf(m, "%s\n", p->comm);
1532	task_unlock(p);
1533
1534	put_task_struct(p);
1535
1536	return 0;
1537}
1538
1539static int comm_open(struct inode *inode, struct file *filp)
1540{
1541	return single_open(filp, comm_show, inode);
1542}
1543
1544static const struct file_operations proc_pid_set_comm_operations = {
1545	.open		= comm_open,
1546	.read		= seq_read,
1547	.write		= comm_write,
1548	.llseek		= seq_lseek,
1549	.release	= single_release,
1550};
1551
1552static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1553{
1554	struct task_struct *task;
1555	struct mm_struct *mm;
1556	struct file *exe_file;
1557
1558	task = get_proc_task(d_inode(dentry));
1559	if (!task)
1560		return -ENOENT;
1561	mm = get_task_mm(task);
1562	put_task_struct(task);
1563	if (!mm)
1564		return -ENOENT;
1565	exe_file = get_mm_exe_file(mm);
1566	mmput(mm);
1567	if (exe_file) {
1568		*exe_path = exe_file->f_path;
1569		path_get(&exe_file->f_path);
1570		fput(exe_file);
1571		return 0;
1572	} else
1573		return -ENOENT;
1574}
1575
1576static const char *proc_pid_get_link(struct dentry *dentry,
1577				     struct inode *inode,
1578				     struct delayed_call *done)
1579{
1580	struct path path;
1581	int error = -EACCES;
1582
1583	if (!dentry)
1584		return ERR_PTR(-ECHILD);
1585
1586	/* Are we allowed to snoop on the tasks file descriptors? */
1587	if (!proc_fd_access_allowed(inode))
1588		goto out;
1589
1590	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1591	if (error)
1592		goto out;
1593
1594	nd_jump_link(&path);
1595	return NULL;
1596out:
1597	return ERR_PTR(error);
1598}
1599
1600static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1601{
1602	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1603	char *pathname;
1604	int len;
1605
1606	if (!tmp)
1607		return -ENOMEM;
1608
1609	pathname = d_path(path, tmp, PAGE_SIZE);
1610	len = PTR_ERR(pathname);
1611	if (IS_ERR(pathname))
1612		goto out;
1613	len = tmp + PAGE_SIZE - 1 - pathname;
1614
1615	if (len > buflen)
1616		len = buflen;
1617	if (copy_to_user(buffer, pathname, len))
1618		len = -EFAULT;
1619 out:
1620	free_page((unsigned long)tmp);
1621	return len;
1622}
1623
1624static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1625{
1626	int error = -EACCES;
1627	struct inode *inode = d_inode(dentry);
1628	struct path path;
1629
1630	/* Are we allowed to snoop on the tasks file descriptors? */
1631	if (!proc_fd_access_allowed(inode))
1632		goto out;
1633
1634	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1635	if (error)
1636		goto out;
1637
1638	error = do_proc_readlink(&path, buffer, buflen);
1639	path_put(&path);
1640out:
1641	return error;
1642}
1643
1644const struct inode_operations proc_pid_link_inode_operations = {
1645	.readlink	= proc_pid_readlink,
1646	.get_link	= proc_pid_get_link,
1647	.setattr	= proc_setattr,
1648};
1649
1650
1651/* building an inode */
1652
1653struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
 
1654{
1655	struct inode * inode;
1656	struct proc_inode *ei;
1657	const struct cred *cred;
1658
1659	/* We need a new inode */
1660
1661	inode = new_inode(sb);
1662	if (!inode)
1663		goto out;
1664
1665	/* Common stuff */
1666	ei = PROC_I(inode);
 
1667	inode->i_ino = get_next_ino();
1668	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1669	inode->i_op = &proc_def_inode_operations;
1670
1671	/*
1672	 * grab the reference to task.
1673	 */
1674	ei->pid = get_task_pid(task, PIDTYPE_PID);
1675	if (!ei->pid)
1676		goto out_unlock;
1677
1678	if (task_dumpable(task)) {
1679		rcu_read_lock();
1680		cred = __task_cred(task);
1681		inode->i_uid = cred->euid;
1682		inode->i_gid = cred->egid;
1683		rcu_read_unlock();
1684	}
1685	security_task_to_inode(task, inode);
1686
1687out:
1688	return inode;
1689
1690out_unlock:
1691	iput(inode);
1692	return NULL;
1693}
1694
1695int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1696{
1697	struct inode *inode = d_inode(dentry);
1698	struct task_struct *task;
1699	const struct cred *cred;
1700	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1701
1702	generic_fillattr(inode, stat);
1703
1704	rcu_read_lock();
1705	stat->uid = GLOBAL_ROOT_UID;
1706	stat->gid = GLOBAL_ROOT_GID;
1707	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1708	if (task) {
1709		if (!has_pid_permissions(pid, task, 2)) {
1710			rcu_read_unlock();
1711			/*
1712			 * This doesn't prevent learning whether PID exists,
1713			 * it only makes getattr() consistent with readdir().
1714			 */
1715			return -ENOENT;
1716		}
1717		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1718		    task_dumpable(task)) {
1719			cred = __task_cred(task);
1720			stat->uid = cred->euid;
1721			stat->gid = cred->egid;
1722		}
1723	}
1724	rcu_read_unlock();
1725	return 0;
1726}
1727
1728/* dentry stuff */
1729
1730/*
1731 *	Exceptional case: normally we are not allowed to unhash a busy
1732 * directory. In this case, however, we can do it - no aliasing problems
1733 * due to the way we treat inodes.
1734 *
1735 * Rewrite the inode's ownerships here because the owning task may have
1736 * performed a setuid(), etc.
1737 *
1738 * Before the /proc/pid/status file was created the only way to read
1739 * the effective uid of a /process was to stat /proc/pid.  Reading
1740 * /proc/pid/status is slow enough that procps and other packages
1741 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1742 * made this apply to all per process world readable and executable
1743 * directories.
1744 */
1745int pid_revalidate(struct dentry *dentry, unsigned int flags)
1746{
1747	struct inode *inode;
1748	struct task_struct *task;
1749	const struct cred *cred;
1750
1751	if (flags & LOOKUP_RCU)
1752		return -ECHILD;
1753
1754	inode = d_inode(dentry);
1755	task = get_proc_task(inode);
1756
1757	if (task) {
1758		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1759		    task_dumpable(task)) {
1760			rcu_read_lock();
1761			cred = __task_cred(task);
1762			inode->i_uid = cred->euid;
1763			inode->i_gid = cred->egid;
1764			rcu_read_unlock();
1765		} else {
1766			inode->i_uid = GLOBAL_ROOT_UID;
1767			inode->i_gid = GLOBAL_ROOT_GID;
1768		}
1769		inode->i_mode &= ~(S_ISUID | S_ISGID);
1770		security_task_to_inode(task, inode);
1771		put_task_struct(task);
1772		return 1;
1773	}
1774	return 0;
1775}
1776
1777static inline bool proc_inode_is_dead(struct inode *inode)
1778{
1779	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1780}
1781
1782int pid_delete_dentry(const struct dentry *dentry)
1783{
1784	/* Is the task we represent dead?
1785	 * If so, then don't put the dentry on the lru list,
1786	 * kill it immediately.
1787	 */
1788	return proc_inode_is_dead(d_inode(dentry));
1789}
1790
1791const struct dentry_operations pid_dentry_operations =
1792{
1793	.d_revalidate	= pid_revalidate,
1794	.d_delete	= pid_delete_dentry,
1795};
1796
1797/* Lookups */
1798
1799/*
1800 * Fill a directory entry.
1801 *
1802 * If possible create the dcache entry and derive our inode number and
1803 * file type from dcache entry.
1804 *
1805 * Since all of the proc inode numbers are dynamically generated, the inode
1806 * numbers do not exist until the inode is cache.  This means creating the
1807 * the dcache entry in readdir is necessary to keep the inode numbers
1808 * reported by readdir in sync with the inode numbers reported
1809 * by stat.
1810 */
1811bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1812	const char *name, int len,
1813	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1814{
1815	struct dentry *child, *dir = file->f_path.dentry;
1816	struct qstr qname = QSTR_INIT(name, len);
1817	struct inode *inode;
1818	unsigned type;
1819	ino_t ino;
1820
1821	child = d_hash_and_lookup(dir, &qname);
1822	if (!child) {
1823		child = d_alloc(dir, &qname);
1824		if (!child)
1825			goto end_instantiate;
1826		if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1827			dput(child);
1828			goto end_instantiate;
 
 
 
 
 
 
 
1829		}
1830	}
1831	inode = d_inode(child);
1832	ino = inode->i_ino;
1833	type = inode->i_mode >> 12;
1834	dput(child);
1835	return dir_emit(ctx, name, len, ino, type);
1836
1837end_instantiate:
1838	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1839}
1840
1841/*
1842 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1843 * which represent vma start and end addresses.
1844 */
1845static int dname_to_vma_addr(struct dentry *dentry,
1846			     unsigned long *start, unsigned long *end)
1847{
1848	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1849		return -EINVAL;
1850
1851	return 0;
1852}
1853
1854static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1855{
1856	unsigned long vm_start, vm_end;
1857	bool exact_vma_exists = false;
1858	struct mm_struct *mm = NULL;
1859	struct task_struct *task;
1860	const struct cred *cred;
1861	struct inode *inode;
1862	int status = 0;
1863
1864	if (flags & LOOKUP_RCU)
1865		return -ECHILD;
1866
1867	inode = d_inode(dentry);
1868	task = get_proc_task(inode);
1869	if (!task)
1870		goto out_notask;
1871
1872	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1873	if (IS_ERR_OR_NULL(mm))
1874		goto out;
1875
1876	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1877		down_read(&mm->mmap_sem);
1878		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1879		up_read(&mm->mmap_sem);
1880	}
1881
1882	mmput(mm);
1883
1884	if (exact_vma_exists) {
1885		if (task_dumpable(task)) {
1886			rcu_read_lock();
1887			cred = __task_cred(task);
1888			inode->i_uid = cred->euid;
1889			inode->i_gid = cred->egid;
1890			rcu_read_unlock();
1891		} else {
1892			inode->i_uid = GLOBAL_ROOT_UID;
1893			inode->i_gid = GLOBAL_ROOT_GID;
1894		}
1895		security_task_to_inode(task, inode);
1896		status = 1;
1897	}
1898
1899out:
1900	put_task_struct(task);
1901
1902out_notask:
1903	return status;
1904}
1905
1906static const struct dentry_operations tid_map_files_dentry_operations = {
1907	.d_revalidate	= map_files_d_revalidate,
1908	.d_delete	= pid_delete_dentry,
1909};
1910
1911static int map_files_get_link(struct dentry *dentry, struct path *path)
1912{
1913	unsigned long vm_start, vm_end;
1914	struct vm_area_struct *vma;
1915	struct task_struct *task;
1916	struct mm_struct *mm;
1917	int rc;
1918
1919	rc = -ENOENT;
1920	task = get_proc_task(d_inode(dentry));
1921	if (!task)
1922		goto out;
1923
1924	mm = get_task_mm(task);
1925	put_task_struct(task);
1926	if (!mm)
1927		goto out;
1928
1929	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1930	if (rc)
1931		goto out_mmput;
1932
1933	rc = -ENOENT;
1934	down_read(&mm->mmap_sem);
1935	vma = find_exact_vma(mm, vm_start, vm_end);
1936	if (vma && vma->vm_file) {
1937		*path = vma->vm_file->f_path;
1938		path_get(path);
1939		rc = 0;
1940	}
1941	up_read(&mm->mmap_sem);
1942
1943out_mmput:
1944	mmput(mm);
1945out:
1946	return rc;
1947}
1948
1949struct map_files_info {
1950	fmode_t		mode;
1951	unsigned long	len;
1952	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1953};
1954
1955/*
1956 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1957 * symlinks may be used to bypass permissions on ancestor directories in the
1958 * path to the file in question.
1959 */
1960static const char *
1961proc_map_files_get_link(struct dentry *dentry,
1962			struct inode *inode,
1963		        struct delayed_call *done)
1964{
1965	if (!capable(CAP_SYS_ADMIN))
1966		return ERR_PTR(-EPERM);
1967
1968	return proc_pid_get_link(dentry, inode, done);
1969}
1970
1971/*
1972 * Identical to proc_pid_link_inode_operations except for get_link()
1973 */
1974static const struct inode_operations proc_map_files_link_inode_operations = {
1975	.readlink	= proc_pid_readlink,
1976	.get_link	= proc_map_files_get_link,
1977	.setattr	= proc_setattr,
1978};
1979
1980static int
1981proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1982			   struct task_struct *task, const void *ptr)
1983{
1984	fmode_t mode = (fmode_t)(unsigned long)ptr;
1985	struct proc_inode *ei;
1986	struct inode *inode;
1987
1988	inode = proc_pid_make_inode(dir->i_sb, task);
 
 
1989	if (!inode)
1990		return -ENOENT;
1991
1992	ei = PROC_I(inode);
1993	ei->op.proc_get_link = map_files_get_link;
1994
1995	inode->i_op = &proc_map_files_link_inode_operations;
1996	inode->i_size = 64;
1997	inode->i_mode = S_IFLNK;
1998
1999	if (mode & FMODE_READ)
2000		inode->i_mode |= S_IRUSR;
2001	if (mode & FMODE_WRITE)
2002		inode->i_mode |= S_IWUSR;
2003
2004	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2005	d_add(dentry, inode);
2006
2007	return 0;
2008}
2009
2010static struct dentry *proc_map_files_lookup(struct inode *dir,
2011		struct dentry *dentry, unsigned int flags)
2012{
2013	unsigned long vm_start, vm_end;
2014	struct vm_area_struct *vma;
2015	struct task_struct *task;
2016	int result;
2017	struct mm_struct *mm;
2018
2019	result = -ENOENT;
2020	task = get_proc_task(dir);
2021	if (!task)
2022		goto out;
2023
2024	result = -EACCES;
2025	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2026		goto out_put_task;
2027
2028	result = -ENOENT;
2029	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2030		goto out_put_task;
2031
2032	mm = get_task_mm(task);
2033	if (!mm)
2034		goto out_put_task;
2035
2036	down_read(&mm->mmap_sem);
2037	vma = find_exact_vma(mm, vm_start, vm_end);
2038	if (!vma)
2039		goto out_no_vma;
2040
2041	if (vma->vm_file)
2042		result = proc_map_files_instantiate(dir, dentry, task,
2043				(void *)(unsigned long)vma->vm_file->f_mode);
2044
2045out_no_vma:
2046	up_read(&mm->mmap_sem);
2047	mmput(mm);
2048out_put_task:
2049	put_task_struct(task);
2050out:
2051	return ERR_PTR(result);
2052}
2053
2054static const struct inode_operations proc_map_files_inode_operations = {
2055	.lookup		= proc_map_files_lookup,
2056	.permission	= proc_fd_permission,
2057	.setattr	= proc_setattr,
2058};
2059
2060static int
2061proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2062{
2063	struct vm_area_struct *vma;
2064	struct task_struct *task;
2065	struct mm_struct *mm;
2066	unsigned long nr_files, pos, i;
2067	struct flex_array *fa = NULL;
2068	struct map_files_info info;
2069	struct map_files_info *p;
2070	int ret;
2071
2072	ret = -ENOENT;
2073	task = get_proc_task(file_inode(file));
2074	if (!task)
2075		goto out;
2076
2077	ret = -EACCES;
2078	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2079		goto out_put_task;
2080
2081	ret = 0;
2082	if (!dir_emit_dots(file, ctx))
2083		goto out_put_task;
2084
2085	mm = get_task_mm(task);
2086	if (!mm)
2087		goto out_put_task;
2088	down_read(&mm->mmap_sem);
2089
2090	nr_files = 0;
2091
2092	/*
2093	 * We need two passes here:
2094	 *
2095	 *  1) Collect vmas of mapped files with mmap_sem taken
2096	 *  2) Release mmap_sem and instantiate entries
2097	 *
2098	 * otherwise we get lockdep complained, since filldir()
2099	 * routine might require mmap_sem taken in might_fault().
2100	 */
2101
2102	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2103		if (vma->vm_file && ++pos > ctx->pos)
2104			nr_files++;
2105	}
2106
2107	if (nr_files) {
2108		fa = flex_array_alloc(sizeof(info), nr_files,
2109					GFP_KERNEL);
2110		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2111						GFP_KERNEL)) {
2112			ret = -ENOMEM;
2113			if (fa)
2114				flex_array_free(fa);
2115			up_read(&mm->mmap_sem);
2116			mmput(mm);
2117			goto out_put_task;
2118		}
2119		for (i = 0, vma = mm->mmap, pos = 2; vma;
2120				vma = vma->vm_next) {
2121			if (!vma->vm_file)
2122				continue;
2123			if (++pos <= ctx->pos)
2124				continue;
2125
2126			info.mode = vma->vm_file->f_mode;
2127			info.len = snprintf(info.name,
2128					sizeof(info.name), "%lx-%lx",
2129					vma->vm_start, vma->vm_end);
2130			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2131				BUG();
2132		}
2133	}
2134	up_read(&mm->mmap_sem);
2135
2136	for (i = 0; i < nr_files; i++) {
2137		p = flex_array_get(fa, i);
2138		if (!proc_fill_cache(file, ctx,
2139				      p->name, p->len,
2140				      proc_map_files_instantiate,
2141				      task,
2142				      (void *)(unsigned long)p->mode))
2143			break;
2144		ctx->pos++;
2145	}
2146	if (fa)
2147		flex_array_free(fa);
2148	mmput(mm);
2149
2150out_put_task:
2151	put_task_struct(task);
2152out:
2153	return ret;
2154}
2155
2156static const struct file_operations proc_map_files_operations = {
2157	.read		= generic_read_dir,
2158	.iterate	= proc_map_files_readdir,
2159	.llseek		= default_llseek,
2160};
2161
2162#ifdef CONFIG_CHECKPOINT_RESTORE
2163struct timers_private {
2164	struct pid *pid;
2165	struct task_struct *task;
2166	struct sighand_struct *sighand;
2167	struct pid_namespace *ns;
2168	unsigned long flags;
2169};
2170
2171static void *timers_start(struct seq_file *m, loff_t *pos)
2172{
2173	struct timers_private *tp = m->private;
2174
2175	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2176	if (!tp->task)
2177		return ERR_PTR(-ESRCH);
2178
2179	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2180	if (!tp->sighand)
2181		return ERR_PTR(-ESRCH);
2182
2183	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2184}
2185
2186static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2187{
2188	struct timers_private *tp = m->private;
2189	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2190}
2191
2192static void timers_stop(struct seq_file *m, void *v)
2193{
2194	struct timers_private *tp = m->private;
2195
2196	if (tp->sighand) {
2197		unlock_task_sighand(tp->task, &tp->flags);
2198		tp->sighand = NULL;
2199	}
2200
2201	if (tp->task) {
2202		put_task_struct(tp->task);
2203		tp->task = NULL;
2204	}
2205}
2206
2207static int show_timer(struct seq_file *m, void *v)
2208{
2209	struct k_itimer *timer;
2210	struct timers_private *tp = m->private;
2211	int notify;
2212	static const char * const nstr[] = {
2213		[SIGEV_SIGNAL] = "signal",
2214		[SIGEV_NONE] = "none",
2215		[SIGEV_THREAD] = "thread",
2216	};
2217
2218	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2219	notify = timer->it_sigev_notify;
2220
2221	seq_printf(m, "ID: %d\n", timer->it_id);
2222	seq_printf(m, "signal: %d/%p\n",
2223		   timer->sigq->info.si_signo,
2224		   timer->sigq->info.si_value.sival_ptr);
2225	seq_printf(m, "notify: %s/%s.%d\n",
2226		   nstr[notify & ~SIGEV_THREAD_ID],
2227		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2228		   pid_nr_ns(timer->it_pid, tp->ns));
2229	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2230
2231	return 0;
2232}
2233
2234static const struct seq_operations proc_timers_seq_ops = {
2235	.start	= timers_start,
2236	.next	= timers_next,
2237	.stop	= timers_stop,
2238	.show	= show_timer,
2239};
2240
2241static int proc_timers_open(struct inode *inode, struct file *file)
2242{
2243	struct timers_private *tp;
2244
2245	tp = __seq_open_private(file, &proc_timers_seq_ops,
2246			sizeof(struct timers_private));
2247	if (!tp)
2248		return -ENOMEM;
2249
2250	tp->pid = proc_pid(inode);
2251	tp->ns = inode->i_sb->s_fs_info;
2252	return 0;
2253}
2254
2255static const struct file_operations proc_timers_operations = {
2256	.open		= proc_timers_open,
2257	.read		= seq_read,
2258	.llseek		= seq_lseek,
2259	.release	= seq_release_private,
2260};
2261#endif
2262
2263static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2264					size_t count, loff_t *offset)
2265{
2266	struct inode *inode = file_inode(file);
2267	struct task_struct *p;
2268	u64 slack_ns;
2269	int err;
2270
2271	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2272	if (err < 0)
2273		return err;
2274
2275	p = get_proc_task(inode);
2276	if (!p)
2277		return -ESRCH;
2278
2279	if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2280		task_lock(p);
2281		if (slack_ns == 0)
2282			p->timer_slack_ns = p->default_timer_slack_ns;
2283		else
2284			p->timer_slack_ns = slack_ns;
2285		task_unlock(p);
2286	} else
2287		count = -EPERM;
 
 
 
2288
 
 
 
 
 
 
 
 
2289	put_task_struct(p);
2290
2291	return count;
2292}
2293
2294static int timerslack_ns_show(struct seq_file *m, void *v)
2295{
2296	struct inode *inode = m->private;
2297	struct task_struct *p;
2298	int err =  0;
2299
2300	p = get_proc_task(inode);
2301	if (!p)
2302		return -ESRCH;
2303
2304	if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2305		task_lock(p);
2306		seq_printf(m, "%llu\n", p->timer_slack_ns);
2307		task_unlock(p);
2308	} else
2309		err = -EPERM;
 
 
 
 
 
 
 
 
2310
 
2311	put_task_struct(p);
2312
2313	return err;
2314}
2315
2316static int timerslack_ns_open(struct inode *inode, struct file *filp)
2317{
2318	return single_open(filp, timerslack_ns_show, inode);
2319}
2320
2321static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2322	.open		= timerslack_ns_open,
2323	.read		= seq_read,
2324	.write		= timerslack_ns_write,
2325	.llseek		= seq_lseek,
2326	.release	= single_release,
2327};
2328
2329static int proc_pident_instantiate(struct inode *dir,
2330	struct dentry *dentry, struct task_struct *task, const void *ptr)
2331{
2332	const struct pid_entry *p = ptr;
2333	struct inode *inode;
2334	struct proc_inode *ei;
2335
2336	inode = proc_pid_make_inode(dir->i_sb, task);
2337	if (!inode)
2338		goto out;
2339
2340	ei = PROC_I(inode);
2341	inode->i_mode = p->mode;
2342	if (S_ISDIR(inode->i_mode))
2343		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2344	if (p->iop)
2345		inode->i_op = p->iop;
2346	if (p->fop)
2347		inode->i_fop = p->fop;
2348	ei->op = p->op;
2349	d_set_d_op(dentry, &pid_dentry_operations);
2350	d_add(dentry, inode);
2351	/* Close the race of the process dying before we return the dentry */
2352	if (pid_revalidate(dentry, 0))
2353		return 0;
2354out:
2355	return -ENOENT;
2356}
2357
2358static struct dentry *proc_pident_lookup(struct inode *dir, 
2359					 struct dentry *dentry,
2360					 const struct pid_entry *ents,
2361					 unsigned int nents)
2362{
2363	int error;
2364	struct task_struct *task = get_proc_task(dir);
2365	const struct pid_entry *p, *last;
2366
2367	error = -ENOENT;
2368
2369	if (!task)
2370		goto out_no_task;
2371
2372	/*
2373	 * Yes, it does not scale. And it should not. Don't add
2374	 * new entries into /proc/<tgid>/ without very good reasons.
2375	 */
2376	last = &ents[nents - 1];
2377	for (p = ents; p <= last; p++) {
2378		if (p->len != dentry->d_name.len)
2379			continue;
2380		if (!memcmp(dentry->d_name.name, p->name, p->len))
2381			break;
2382	}
2383	if (p > last)
2384		goto out;
2385
2386	error = proc_pident_instantiate(dir, dentry, task, p);
2387out:
2388	put_task_struct(task);
2389out_no_task:
2390	return ERR_PTR(error);
2391}
2392
2393static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2394		const struct pid_entry *ents, unsigned int nents)
2395{
2396	struct task_struct *task = get_proc_task(file_inode(file));
2397	const struct pid_entry *p;
2398
2399	if (!task)
2400		return -ENOENT;
2401
2402	if (!dir_emit_dots(file, ctx))
2403		goto out;
2404
2405	if (ctx->pos >= nents + 2)
2406		goto out;
2407
2408	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2409		if (!proc_fill_cache(file, ctx, p->name, p->len,
2410				proc_pident_instantiate, task, p))
2411			break;
2412		ctx->pos++;
2413	}
2414out:
2415	put_task_struct(task);
2416	return 0;
2417}
2418
2419#ifdef CONFIG_SECURITY
2420static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2421				  size_t count, loff_t *ppos)
2422{
2423	struct inode * inode = file_inode(file);
2424	char *p = NULL;
2425	ssize_t length;
2426	struct task_struct *task = get_proc_task(inode);
2427
2428	if (!task)
2429		return -ESRCH;
2430
2431	length = security_getprocattr(task,
2432				      (char*)file->f_path.dentry->d_name.name,
2433				      &p);
2434	put_task_struct(task);
2435	if (length > 0)
2436		length = simple_read_from_buffer(buf, count, ppos, p, length);
2437	kfree(p);
2438	return length;
2439}
2440
2441static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2442				   size_t count, loff_t *ppos)
2443{
2444	struct inode * inode = file_inode(file);
2445	void *page;
2446	ssize_t length;
2447	struct task_struct *task = get_proc_task(inode);
2448
2449	length = -ESRCH;
2450	if (!task)
2451		goto out_no_task;
2452	if (count > PAGE_SIZE)
2453		count = PAGE_SIZE;
2454
2455	/* No partial writes. */
2456	length = -EINVAL;
2457	if (*ppos != 0)
2458		goto out;
2459
2460	page = memdup_user(buf, count);
2461	if (IS_ERR(page)) {
2462		length = PTR_ERR(page);
2463		goto out;
2464	}
2465
2466	/* Guard against adverse ptrace interaction */
2467	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2468	if (length < 0)
2469		goto out_free;
2470
2471	length = security_setprocattr(task,
2472				      (char*)file->f_path.dentry->d_name.name,
2473				      page, count);
2474	mutex_unlock(&task->signal->cred_guard_mutex);
2475out_free:
2476	kfree(page);
2477out:
2478	put_task_struct(task);
2479out_no_task:
2480	return length;
2481}
2482
2483static const struct file_operations proc_pid_attr_operations = {
2484	.read		= proc_pid_attr_read,
2485	.write		= proc_pid_attr_write,
2486	.llseek		= generic_file_llseek,
2487};
2488
2489static const struct pid_entry attr_dir_stuff[] = {
2490	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2491	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2492	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2493	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2494	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2495	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2496};
2497
2498static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2499{
2500	return proc_pident_readdir(file, ctx, 
2501				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2502}
2503
2504static const struct file_operations proc_attr_dir_operations = {
2505	.read		= generic_read_dir,
2506	.iterate	= proc_attr_dir_readdir,
2507	.llseek		= default_llseek,
2508};
2509
2510static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2511				struct dentry *dentry, unsigned int flags)
2512{
2513	return proc_pident_lookup(dir, dentry,
2514				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2515}
2516
2517static const struct inode_operations proc_attr_dir_inode_operations = {
2518	.lookup		= proc_attr_dir_lookup,
2519	.getattr	= pid_getattr,
2520	.setattr	= proc_setattr,
2521};
2522
2523#endif
2524
2525#ifdef CONFIG_ELF_CORE
2526static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2527					 size_t count, loff_t *ppos)
2528{
2529	struct task_struct *task = get_proc_task(file_inode(file));
2530	struct mm_struct *mm;
2531	char buffer[PROC_NUMBUF];
2532	size_t len;
2533	int ret;
2534
2535	if (!task)
2536		return -ESRCH;
2537
2538	ret = 0;
2539	mm = get_task_mm(task);
2540	if (mm) {
2541		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2542			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2543				MMF_DUMP_FILTER_SHIFT));
2544		mmput(mm);
2545		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2546	}
2547
2548	put_task_struct(task);
2549
2550	return ret;
2551}
2552
2553static ssize_t proc_coredump_filter_write(struct file *file,
2554					  const char __user *buf,
2555					  size_t count,
2556					  loff_t *ppos)
2557{
2558	struct task_struct *task;
2559	struct mm_struct *mm;
2560	unsigned int val;
2561	int ret;
2562	int i;
2563	unsigned long mask;
2564
2565	ret = kstrtouint_from_user(buf, count, 0, &val);
2566	if (ret < 0)
2567		return ret;
2568
2569	ret = -ESRCH;
2570	task = get_proc_task(file_inode(file));
2571	if (!task)
2572		goto out_no_task;
2573
2574	mm = get_task_mm(task);
2575	if (!mm)
2576		goto out_no_mm;
2577	ret = 0;
2578
2579	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2580		if (val & mask)
2581			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2582		else
2583			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2584	}
2585
2586	mmput(mm);
2587 out_no_mm:
2588	put_task_struct(task);
2589 out_no_task:
2590	if (ret < 0)
2591		return ret;
2592	return count;
2593}
2594
2595static const struct file_operations proc_coredump_filter_operations = {
2596	.read		= proc_coredump_filter_read,
2597	.write		= proc_coredump_filter_write,
2598	.llseek		= generic_file_llseek,
2599};
2600#endif
2601
2602#ifdef CONFIG_TASK_IO_ACCOUNTING
2603static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2604{
2605	struct task_io_accounting acct = task->ioac;
2606	unsigned long flags;
2607	int result;
2608
2609	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2610	if (result)
2611		return result;
2612
2613	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2614		result = -EACCES;
2615		goto out_unlock;
2616	}
2617
2618	if (whole && lock_task_sighand(task, &flags)) {
2619		struct task_struct *t = task;
2620
2621		task_io_accounting_add(&acct, &task->signal->ioac);
2622		while_each_thread(task, t)
2623			task_io_accounting_add(&acct, &t->ioac);
2624
2625		unlock_task_sighand(task, &flags);
2626	}
2627	seq_printf(m,
2628		   "rchar: %llu\n"
2629		   "wchar: %llu\n"
2630		   "syscr: %llu\n"
2631		   "syscw: %llu\n"
2632		   "read_bytes: %llu\n"
2633		   "write_bytes: %llu\n"
2634		   "cancelled_write_bytes: %llu\n",
2635		   (unsigned long long)acct.rchar,
2636		   (unsigned long long)acct.wchar,
2637		   (unsigned long long)acct.syscr,
2638		   (unsigned long long)acct.syscw,
2639		   (unsigned long long)acct.read_bytes,
2640		   (unsigned long long)acct.write_bytes,
2641		   (unsigned long long)acct.cancelled_write_bytes);
2642	result = 0;
2643
2644out_unlock:
2645	mutex_unlock(&task->signal->cred_guard_mutex);
2646	return result;
2647}
2648
2649static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2650				  struct pid *pid, struct task_struct *task)
2651{
2652	return do_io_accounting(task, m, 0);
2653}
2654
2655static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2656				   struct pid *pid, struct task_struct *task)
2657{
2658	return do_io_accounting(task, m, 1);
2659}
2660#endif /* CONFIG_TASK_IO_ACCOUNTING */
2661
2662#ifdef CONFIG_USER_NS
2663static int proc_id_map_open(struct inode *inode, struct file *file,
2664	const struct seq_operations *seq_ops)
2665{
2666	struct user_namespace *ns = NULL;
2667	struct task_struct *task;
2668	struct seq_file *seq;
2669	int ret = -EINVAL;
2670
2671	task = get_proc_task(inode);
2672	if (task) {
2673		rcu_read_lock();
2674		ns = get_user_ns(task_cred_xxx(task, user_ns));
2675		rcu_read_unlock();
2676		put_task_struct(task);
2677	}
2678	if (!ns)
2679		goto err;
2680
2681	ret = seq_open(file, seq_ops);
2682	if (ret)
2683		goto err_put_ns;
2684
2685	seq = file->private_data;
2686	seq->private = ns;
2687
2688	return 0;
2689err_put_ns:
2690	put_user_ns(ns);
2691err:
2692	return ret;
2693}
2694
2695static int proc_id_map_release(struct inode *inode, struct file *file)
2696{
2697	struct seq_file *seq = file->private_data;
2698	struct user_namespace *ns = seq->private;
2699	put_user_ns(ns);
2700	return seq_release(inode, file);
2701}
2702
2703static int proc_uid_map_open(struct inode *inode, struct file *file)
2704{
2705	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2706}
2707
2708static int proc_gid_map_open(struct inode *inode, struct file *file)
2709{
2710	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2711}
2712
2713static int proc_projid_map_open(struct inode *inode, struct file *file)
2714{
2715	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2716}
2717
2718static const struct file_operations proc_uid_map_operations = {
2719	.open		= proc_uid_map_open,
2720	.write		= proc_uid_map_write,
2721	.read		= seq_read,
2722	.llseek		= seq_lseek,
2723	.release	= proc_id_map_release,
2724};
2725
2726static const struct file_operations proc_gid_map_operations = {
2727	.open		= proc_gid_map_open,
2728	.write		= proc_gid_map_write,
2729	.read		= seq_read,
2730	.llseek		= seq_lseek,
2731	.release	= proc_id_map_release,
2732};
2733
2734static const struct file_operations proc_projid_map_operations = {
2735	.open		= proc_projid_map_open,
2736	.write		= proc_projid_map_write,
2737	.read		= seq_read,
2738	.llseek		= seq_lseek,
2739	.release	= proc_id_map_release,
2740};
2741
2742static int proc_setgroups_open(struct inode *inode, struct file *file)
2743{
2744	struct user_namespace *ns = NULL;
2745	struct task_struct *task;
2746	int ret;
2747
2748	ret = -ESRCH;
2749	task = get_proc_task(inode);
2750	if (task) {
2751		rcu_read_lock();
2752		ns = get_user_ns(task_cred_xxx(task, user_ns));
2753		rcu_read_unlock();
2754		put_task_struct(task);
2755	}
2756	if (!ns)
2757		goto err;
2758
2759	if (file->f_mode & FMODE_WRITE) {
2760		ret = -EACCES;
2761		if (!ns_capable(ns, CAP_SYS_ADMIN))
2762			goto err_put_ns;
2763	}
2764
2765	ret = single_open(file, &proc_setgroups_show, ns);
2766	if (ret)
2767		goto err_put_ns;
2768
2769	return 0;
2770err_put_ns:
2771	put_user_ns(ns);
2772err:
2773	return ret;
2774}
2775
2776static int proc_setgroups_release(struct inode *inode, struct file *file)
2777{
2778	struct seq_file *seq = file->private_data;
2779	struct user_namespace *ns = seq->private;
2780	int ret = single_release(inode, file);
2781	put_user_ns(ns);
2782	return ret;
2783}
2784
2785static const struct file_operations proc_setgroups_operations = {
2786	.open		= proc_setgroups_open,
2787	.write		= proc_setgroups_write,
2788	.read		= seq_read,
2789	.llseek		= seq_lseek,
2790	.release	= proc_setgroups_release,
2791};
2792#endif /* CONFIG_USER_NS */
2793
2794static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2795				struct pid *pid, struct task_struct *task)
2796{
2797	int err = lock_trace(task);
2798	if (!err) {
2799		seq_printf(m, "%08x\n", task->personality);
2800		unlock_trace(task);
2801	}
2802	return err;
2803}
2804
2805/*
2806 * Thread groups
2807 */
2808static const struct file_operations proc_task_operations;
2809static const struct inode_operations proc_task_inode_operations;
2810
2811static const struct pid_entry tgid_base_stuff[] = {
2812	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2813	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2814	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2815	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2816	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2817#ifdef CONFIG_NET
2818	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2819#endif
2820	REG("environ",    S_IRUSR, proc_environ_operations),
2821	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2822	ONE("status",     S_IRUGO, proc_pid_status),
2823	ONE("personality", S_IRUSR, proc_pid_personality),
2824	ONE("limits",	  S_IRUGO, proc_pid_limits),
2825#ifdef CONFIG_SCHED_DEBUG
2826	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2827#endif
2828#ifdef CONFIG_SCHED_AUTOGROUP
2829	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2830#endif
2831	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2832#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2833	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2834#endif
2835	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2836	ONE("stat",       S_IRUGO, proc_tgid_stat),
2837	ONE("statm",      S_IRUGO, proc_pid_statm),
2838	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2839#ifdef CONFIG_NUMA
2840	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2841#endif
2842	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2843	LNK("cwd",        proc_cwd_link),
2844	LNK("root",       proc_root_link),
2845	LNK("exe",        proc_exe_link),
2846	REG("mounts",     S_IRUGO, proc_mounts_operations),
2847	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2848	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2849#ifdef CONFIG_PROC_PAGE_MONITOR
2850	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2851	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2852	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2853#endif
2854#ifdef CONFIG_SECURITY
2855	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2856#endif
2857#ifdef CONFIG_KALLSYMS
2858	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2859#endif
2860#ifdef CONFIG_STACKTRACE
2861	ONE("stack",      S_IRUSR, proc_pid_stack),
2862#endif
2863#ifdef CONFIG_SCHED_INFO
2864	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2865#endif
2866#ifdef CONFIG_LATENCYTOP
2867	REG("latency",  S_IRUGO, proc_lstats_operations),
2868#endif
2869#ifdef CONFIG_PROC_PID_CPUSET
2870	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2871#endif
2872#ifdef CONFIG_CGROUPS
2873	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2874#endif
2875	ONE("oom_score",  S_IRUGO, proc_oom_score),
2876	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2877	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2878#ifdef CONFIG_AUDITSYSCALL
2879	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2880	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2881#endif
2882#ifdef CONFIG_FAULT_INJECTION
2883	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2884#endif
2885#ifdef CONFIG_ELF_CORE
2886	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2887#endif
2888#ifdef CONFIG_TASK_IO_ACCOUNTING
2889	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2890#endif
2891#ifdef CONFIG_HARDWALL
2892	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2893#endif
2894#ifdef CONFIG_USER_NS
2895	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2896	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2897	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2898	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2899#endif
2900#ifdef CONFIG_CHECKPOINT_RESTORE
2901	REG("timers",	  S_IRUGO, proc_timers_operations),
2902#endif
2903	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2904};
2905
2906static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2907{
2908	return proc_pident_readdir(file, ctx,
2909				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2910}
2911
2912static const struct file_operations proc_tgid_base_operations = {
2913	.read		= generic_read_dir,
2914	.iterate	= proc_tgid_base_readdir,
2915	.llseek		= default_llseek,
2916};
2917
2918static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2919{
2920	return proc_pident_lookup(dir, dentry,
2921				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2922}
2923
2924static const struct inode_operations proc_tgid_base_inode_operations = {
2925	.lookup		= proc_tgid_base_lookup,
2926	.getattr	= pid_getattr,
2927	.setattr	= proc_setattr,
2928	.permission	= proc_pid_permission,
2929};
2930
2931static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2932{
2933	struct dentry *dentry, *leader, *dir;
2934	char buf[PROC_NUMBUF];
2935	struct qstr name;
2936
2937	name.name = buf;
2938	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2939	/* no ->d_hash() rejects on procfs */
2940	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2941	if (dentry) {
2942		d_invalidate(dentry);
2943		dput(dentry);
2944	}
2945
2946	if (pid == tgid)
2947		return;
2948
2949	name.name = buf;
2950	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2951	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2952	if (!leader)
2953		goto out;
2954
2955	name.name = "task";
2956	name.len = strlen(name.name);
2957	dir = d_hash_and_lookup(leader, &name);
2958	if (!dir)
2959		goto out_put_leader;
2960
2961	name.name = buf;
2962	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2963	dentry = d_hash_and_lookup(dir, &name);
2964	if (dentry) {
2965		d_invalidate(dentry);
2966		dput(dentry);
2967	}
2968
2969	dput(dir);
2970out_put_leader:
2971	dput(leader);
2972out:
2973	return;
2974}
2975
2976/**
2977 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2978 * @task: task that should be flushed.
2979 *
2980 * When flushing dentries from proc, one needs to flush them from global
2981 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2982 * in. This call is supposed to do all of this job.
2983 *
2984 * Looks in the dcache for
2985 * /proc/@pid
2986 * /proc/@tgid/task/@pid
2987 * if either directory is present flushes it and all of it'ts children
2988 * from the dcache.
2989 *
2990 * It is safe and reasonable to cache /proc entries for a task until
2991 * that task exits.  After that they just clog up the dcache with
2992 * useless entries, possibly causing useful dcache entries to be
2993 * flushed instead.  This routine is proved to flush those useless
2994 * dcache entries at process exit time.
2995 *
2996 * NOTE: This routine is just an optimization so it does not guarantee
2997 *       that no dcache entries will exist at process exit time it
2998 *       just makes it very unlikely that any will persist.
2999 */
3000
3001void proc_flush_task(struct task_struct *task)
3002{
3003	int i;
3004	struct pid *pid, *tgid;
3005	struct upid *upid;
3006
3007	pid = task_pid(task);
3008	tgid = task_tgid(task);
3009
3010	for (i = 0; i <= pid->level; i++) {
3011		upid = &pid->numbers[i];
3012		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3013					tgid->numbers[i].nr);
3014	}
3015}
3016
3017static int proc_pid_instantiate(struct inode *dir,
3018				   struct dentry * dentry,
3019				   struct task_struct *task, const void *ptr)
3020{
3021	struct inode *inode;
3022
3023	inode = proc_pid_make_inode(dir->i_sb, task);
3024	if (!inode)
3025		goto out;
3026
3027	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3028	inode->i_op = &proc_tgid_base_inode_operations;
3029	inode->i_fop = &proc_tgid_base_operations;
3030	inode->i_flags|=S_IMMUTABLE;
3031
3032	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3033						  ARRAY_SIZE(tgid_base_stuff)));
3034
3035	d_set_d_op(dentry, &pid_dentry_operations);
3036
3037	d_add(dentry, inode);
3038	/* Close the race of the process dying before we return the dentry */
3039	if (pid_revalidate(dentry, 0))
3040		return 0;
3041out:
3042	return -ENOENT;
3043}
3044
3045struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3046{
3047	int result = -ENOENT;
3048	struct task_struct *task;
3049	unsigned tgid;
3050	struct pid_namespace *ns;
3051
3052	tgid = name_to_int(&dentry->d_name);
3053	if (tgid == ~0U)
3054		goto out;
3055
3056	ns = dentry->d_sb->s_fs_info;
3057	rcu_read_lock();
3058	task = find_task_by_pid_ns(tgid, ns);
3059	if (task)
3060		get_task_struct(task);
3061	rcu_read_unlock();
3062	if (!task)
3063		goto out;
3064
3065	result = proc_pid_instantiate(dir, dentry, task, NULL);
3066	put_task_struct(task);
3067out:
3068	return ERR_PTR(result);
3069}
3070
3071/*
3072 * Find the first task with tgid >= tgid
3073 *
3074 */
3075struct tgid_iter {
3076	unsigned int tgid;
3077	struct task_struct *task;
3078};
3079static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3080{
3081	struct pid *pid;
3082
3083	if (iter.task)
3084		put_task_struct(iter.task);
3085	rcu_read_lock();
3086retry:
3087	iter.task = NULL;
3088	pid = find_ge_pid(iter.tgid, ns);
3089	if (pid) {
3090		iter.tgid = pid_nr_ns(pid, ns);
3091		iter.task = pid_task(pid, PIDTYPE_PID);
3092		/* What we to know is if the pid we have find is the
3093		 * pid of a thread_group_leader.  Testing for task
3094		 * being a thread_group_leader is the obvious thing
3095		 * todo but there is a window when it fails, due to
3096		 * the pid transfer logic in de_thread.
3097		 *
3098		 * So we perform the straight forward test of seeing
3099		 * if the pid we have found is the pid of a thread
3100		 * group leader, and don't worry if the task we have
3101		 * found doesn't happen to be a thread group leader.
3102		 * As we don't care in the case of readdir.
3103		 */
3104		if (!iter.task || !has_group_leader_pid(iter.task)) {
3105			iter.tgid += 1;
3106			goto retry;
3107		}
3108		get_task_struct(iter.task);
3109	}
3110	rcu_read_unlock();
3111	return iter;
3112}
3113
3114#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3115
3116/* for the /proc/ directory itself, after non-process stuff has been done */
3117int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3118{
3119	struct tgid_iter iter;
3120	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3121	loff_t pos = ctx->pos;
3122
3123	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3124		return 0;
3125
3126	if (pos == TGID_OFFSET - 2) {
3127		struct inode *inode = d_inode(ns->proc_self);
3128		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3129			return 0;
3130		ctx->pos = pos = pos + 1;
3131	}
3132	if (pos == TGID_OFFSET - 1) {
3133		struct inode *inode = d_inode(ns->proc_thread_self);
3134		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3135			return 0;
3136		ctx->pos = pos = pos + 1;
3137	}
3138	iter.tgid = pos - TGID_OFFSET;
3139	iter.task = NULL;
3140	for (iter = next_tgid(ns, iter);
3141	     iter.task;
3142	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3143		char name[PROC_NUMBUF];
3144		int len;
 
 
3145		if (!has_pid_permissions(ns, iter.task, 2))
3146			continue;
3147
3148		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3149		ctx->pos = iter.tgid + TGID_OFFSET;
3150		if (!proc_fill_cache(file, ctx, name, len,
3151				     proc_pid_instantiate, iter.task, NULL)) {
3152			put_task_struct(iter.task);
3153			return 0;
3154		}
3155	}
3156	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3157	return 0;
3158}
3159
3160/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3161 * Tasks
3162 */
3163static const struct pid_entry tid_base_stuff[] = {
3164	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3165	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3166	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3167#ifdef CONFIG_NET
3168	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3169#endif
3170	REG("environ",   S_IRUSR, proc_environ_operations),
3171	ONE("auxv",      S_IRUSR, proc_pid_auxv),
3172	ONE("status",    S_IRUGO, proc_pid_status),
3173	ONE("personality", S_IRUSR, proc_pid_personality),
3174	ONE("limits",	 S_IRUGO, proc_pid_limits),
3175#ifdef CONFIG_SCHED_DEBUG
3176	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3177#endif
3178	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
 
 
3179#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3180	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3181#endif
3182	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3183	ONE("stat",      S_IRUGO, proc_tid_stat),
3184	ONE("statm",     S_IRUGO, proc_pid_statm),
3185	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3186#ifdef CONFIG_PROC_CHILDREN
3187	REG("children",  S_IRUGO, proc_tid_children_operations),
3188#endif
3189#ifdef CONFIG_NUMA
3190	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3191#endif
3192	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3193	LNK("cwd",       proc_cwd_link),
3194	LNK("root",      proc_root_link),
3195	LNK("exe",       proc_exe_link),
3196	REG("mounts",    S_IRUGO, proc_mounts_operations),
3197	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3198#ifdef CONFIG_PROC_PAGE_MONITOR
3199	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3200	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3201	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3202#endif
3203#ifdef CONFIG_SECURITY
3204	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3205#endif
3206#ifdef CONFIG_KALLSYMS
3207	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3208#endif
3209#ifdef CONFIG_STACKTRACE
3210	ONE("stack",      S_IRUSR, proc_pid_stack),
3211#endif
3212#ifdef CONFIG_SCHED_INFO
3213	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3214#endif
3215#ifdef CONFIG_LATENCYTOP
3216	REG("latency",  S_IRUGO, proc_lstats_operations),
3217#endif
3218#ifdef CONFIG_PROC_PID_CPUSET
3219	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3220#endif
3221#ifdef CONFIG_CGROUPS
3222	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3223#endif
3224	ONE("oom_score", S_IRUGO, proc_oom_score),
3225	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3226	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3227#ifdef CONFIG_AUDITSYSCALL
3228	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3229	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3230#endif
3231#ifdef CONFIG_FAULT_INJECTION
3232	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3233#endif
3234#ifdef CONFIG_TASK_IO_ACCOUNTING
3235	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3236#endif
3237#ifdef CONFIG_HARDWALL
3238	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3239#endif
3240#ifdef CONFIG_USER_NS
3241	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3242	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3243	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3244	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3245#endif
3246};
3247
3248static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3249{
3250	return proc_pident_readdir(file, ctx,
3251				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3252}
3253
3254static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3255{
3256	return proc_pident_lookup(dir, dentry,
3257				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3258}
3259
3260static const struct file_operations proc_tid_base_operations = {
3261	.read		= generic_read_dir,
3262	.iterate	= proc_tid_base_readdir,
3263	.llseek		= default_llseek,
3264};
3265
3266static const struct inode_operations proc_tid_base_inode_operations = {
3267	.lookup		= proc_tid_base_lookup,
3268	.getattr	= pid_getattr,
3269	.setattr	= proc_setattr,
3270};
3271
3272static int proc_task_instantiate(struct inode *dir,
3273	struct dentry *dentry, struct task_struct *task, const void *ptr)
3274{
3275	struct inode *inode;
3276	inode = proc_pid_make_inode(dir->i_sb, task);
3277
3278	if (!inode)
3279		goto out;
3280	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3281	inode->i_op = &proc_tid_base_inode_operations;
3282	inode->i_fop = &proc_tid_base_operations;
3283	inode->i_flags|=S_IMMUTABLE;
3284
3285	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3286						  ARRAY_SIZE(tid_base_stuff)));
3287
3288	d_set_d_op(dentry, &pid_dentry_operations);
3289
3290	d_add(dentry, inode);
3291	/* Close the race of the process dying before we return the dentry */
3292	if (pid_revalidate(dentry, 0))
3293		return 0;
3294out:
3295	return -ENOENT;
3296}
3297
3298static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3299{
3300	int result = -ENOENT;
3301	struct task_struct *task;
3302	struct task_struct *leader = get_proc_task(dir);
3303	unsigned tid;
3304	struct pid_namespace *ns;
3305
3306	if (!leader)
3307		goto out_no_task;
3308
3309	tid = name_to_int(&dentry->d_name);
3310	if (tid == ~0U)
3311		goto out;
3312
3313	ns = dentry->d_sb->s_fs_info;
3314	rcu_read_lock();
3315	task = find_task_by_pid_ns(tid, ns);
3316	if (task)
3317		get_task_struct(task);
3318	rcu_read_unlock();
3319	if (!task)
3320		goto out;
3321	if (!same_thread_group(leader, task))
3322		goto out_drop_task;
3323
3324	result = proc_task_instantiate(dir, dentry, task, NULL);
3325out_drop_task:
3326	put_task_struct(task);
3327out:
3328	put_task_struct(leader);
3329out_no_task:
3330	return ERR_PTR(result);
3331}
3332
3333/*
3334 * Find the first tid of a thread group to return to user space.
3335 *
3336 * Usually this is just the thread group leader, but if the users
3337 * buffer was too small or there was a seek into the middle of the
3338 * directory we have more work todo.
3339 *
3340 * In the case of a short read we start with find_task_by_pid.
3341 *
3342 * In the case of a seek we start with the leader and walk nr
3343 * threads past it.
3344 */
3345static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3346					struct pid_namespace *ns)
3347{
3348	struct task_struct *pos, *task;
3349	unsigned long nr = f_pos;
3350
3351	if (nr != f_pos)	/* 32bit overflow? */
3352		return NULL;
3353
3354	rcu_read_lock();
3355	task = pid_task(pid, PIDTYPE_PID);
3356	if (!task)
3357		goto fail;
3358
3359	/* Attempt to start with the tid of a thread */
3360	if (tid && nr) {
3361		pos = find_task_by_pid_ns(tid, ns);
3362		if (pos && same_thread_group(pos, task))
3363			goto found;
3364	}
3365
3366	/* If nr exceeds the number of threads there is nothing todo */
3367	if (nr >= get_nr_threads(task))
3368		goto fail;
3369
3370	/* If we haven't found our starting place yet start
3371	 * with the leader and walk nr threads forward.
3372	 */
3373	pos = task = task->group_leader;
3374	do {
3375		if (!nr--)
3376			goto found;
3377	} while_each_thread(task, pos);
3378fail:
3379	pos = NULL;
3380	goto out;
3381found:
3382	get_task_struct(pos);
3383out:
3384	rcu_read_unlock();
3385	return pos;
3386}
3387
3388/*
3389 * Find the next thread in the thread list.
3390 * Return NULL if there is an error or no next thread.
3391 *
3392 * The reference to the input task_struct is released.
3393 */
3394static struct task_struct *next_tid(struct task_struct *start)
3395{
3396	struct task_struct *pos = NULL;
3397	rcu_read_lock();
3398	if (pid_alive(start)) {
3399		pos = next_thread(start);
3400		if (thread_group_leader(pos))
3401			pos = NULL;
3402		else
3403			get_task_struct(pos);
3404	}
3405	rcu_read_unlock();
3406	put_task_struct(start);
3407	return pos;
3408}
3409
3410/* for the /proc/TGID/task/ directories */
3411static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3412{
3413	struct inode *inode = file_inode(file);
3414	struct task_struct *task;
3415	struct pid_namespace *ns;
3416	int tid;
3417
3418	if (proc_inode_is_dead(inode))
3419		return -ENOENT;
3420
3421	if (!dir_emit_dots(file, ctx))
3422		return 0;
3423
3424	/* f_version caches the tgid value that the last readdir call couldn't
3425	 * return. lseek aka telldir automagically resets f_version to 0.
3426	 */
3427	ns = inode->i_sb->s_fs_info;
3428	tid = (int)file->f_version;
3429	file->f_version = 0;
3430	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3431	     task;
3432	     task = next_tid(task), ctx->pos++) {
3433		char name[PROC_NUMBUF];
3434		int len;
3435		tid = task_pid_nr_ns(task, ns);
3436		len = snprintf(name, sizeof(name), "%d", tid);
3437		if (!proc_fill_cache(file, ctx, name, len,
3438				proc_task_instantiate, task, NULL)) {
3439			/* returning this tgid failed, save it as the first
3440			 * pid for the next readir call */
3441			file->f_version = (u64)tid;
3442			put_task_struct(task);
3443			break;
3444		}
3445	}
3446
3447	return 0;
3448}
3449
3450static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3451{
3452	struct inode *inode = d_inode(dentry);
3453	struct task_struct *p = get_proc_task(inode);
3454	generic_fillattr(inode, stat);
3455
3456	if (p) {
3457		stat->nlink += get_nr_threads(p);
3458		put_task_struct(p);
3459	}
3460
3461	return 0;
3462}
3463
3464static const struct inode_operations proc_task_inode_operations = {
3465	.lookup		= proc_task_lookup,
3466	.getattr	= proc_task_getattr,
3467	.setattr	= proc_setattr,
3468	.permission	= proc_pid_permission,
3469};
3470
3471static const struct file_operations proc_task_operations = {
3472	.read		= generic_read_dir,
3473	.iterate	= proc_task_readdir,
3474	.llseek		= default_llseek,
3475};
v4.10.11
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <linux/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/flex_array.h>
  89#include <linux/posix-timers.h>
  90#ifdef CONFIG_HARDWALL
  91#include <asm/hardwall.h>
  92#endif
  93#include <trace/events/oom.h>
  94#include "internal.h"
  95#include "fd.h"
  96
  97/* NOTE:
  98 *	Implementing inode permission operations in /proc is almost
  99 *	certainly an error.  Permission checks need to happen during
 100 *	each system call not at open time.  The reason is that most of
 101 *	what we wish to check for permissions in /proc varies at runtime.
 102 *
 103 *	The classic example of a problem is opening file descriptors
 104 *	in /proc for a task before it execs a suid executable.
 105 */
 106
 107static u8 nlink_tid;
 108static u8 nlink_tgid;
 109
 110struct pid_entry {
 111	const char *name;
 112	unsigned int len;
 113	umode_t mode;
 114	const struct inode_operations *iop;
 115	const struct file_operations *fop;
 116	union proc_op op;
 117};
 118
 119#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 120	.name = (NAME),					\
 121	.len  = sizeof(NAME) - 1,			\
 122	.mode = MODE,					\
 123	.iop  = IOP,					\
 124	.fop  = FOP,					\
 125	.op   = OP,					\
 126}
 127
 128#define DIR(NAME, MODE, iops, fops)	\
 129	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 130#define LNK(NAME, get_link)					\
 131	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 132		&proc_pid_link_inode_operations, NULL,		\
 133		{ .proc_get_link = get_link } )
 134#define REG(NAME, MODE, fops)				\
 135	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 136#define ONE(NAME, MODE, show)				\
 137	NOD(NAME, (S_IFREG|(MODE)), 			\
 138		NULL, &proc_single_file_operations,	\
 139		{ .proc_show = show } )
 140
 141/*
 142 * Count the number of hardlinks for the pid_entry table, excluding the .
 143 * and .. links.
 144 */
 145static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 146	unsigned int n)
 147{
 148	unsigned int i;
 149	unsigned int count;
 150
 151	count = 2;
 152	for (i = 0; i < n; ++i) {
 153		if (S_ISDIR(entries[i].mode))
 154			++count;
 155	}
 156
 157	return count;
 158}
 159
 160static int get_task_root(struct task_struct *task, struct path *root)
 161{
 162	int result = -ENOENT;
 163
 164	task_lock(task);
 165	if (task->fs) {
 166		get_fs_root(task->fs, root);
 167		result = 0;
 168	}
 169	task_unlock(task);
 170	return result;
 171}
 172
 173static int proc_cwd_link(struct dentry *dentry, struct path *path)
 174{
 175	struct task_struct *task = get_proc_task(d_inode(dentry));
 176	int result = -ENOENT;
 177
 178	if (task) {
 179		task_lock(task);
 180		if (task->fs) {
 181			get_fs_pwd(task->fs, path);
 182			result = 0;
 183		}
 184		task_unlock(task);
 185		put_task_struct(task);
 186	}
 187	return result;
 188}
 189
 190static int proc_root_link(struct dentry *dentry, struct path *path)
 191{
 192	struct task_struct *task = get_proc_task(d_inode(dentry));
 193	int result = -ENOENT;
 194
 195	if (task) {
 196		result = get_task_root(task, path);
 197		put_task_struct(task);
 198	}
 199	return result;
 200}
 201
 202static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 203				     size_t _count, loff_t *pos)
 204{
 205	struct task_struct *tsk;
 206	struct mm_struct *mm;
 207	char *page;
 208	unsigned long count = _count;
 209	unsigned long arg_start, arg_end, env_start, env_end;
 210	unsigned long len1, len2, len;
 211	unsigned long p;
 212	char c;
 213	ssize_t rv;
 214
 215	BUG_ON(*pos < 0);
 216
 217	tsk = get_proc_task(file_inode(file));
 218	if (!tsk)
 219		return -ESRCH;
 220	mm = get_task_mm(tsk);
 221	put_task_struct(tsk);
 222	if (!mm)
 223		return 0;
 224	/* Check if process spawned far enough to have cmdline. */
 225	if (!mm->env_end) {
 226		rv = 0;
 227		goto out_mmput;
 228	}
 229
 230	page = (char *)__get_free_page(GFP_TEMPORARY);
 231	if (!page) {
 232		rv = -ENOMEM;
 233		goto out_mmput;
 234	}
 235
 236	down_read(&mm->mmap_sem);
 237	arg_start = mm->arg_start;
 238	arg_end = mm->arg_end;
 239	env_start = mm->env_start;
 240	env_end = mm->env_end;
 241	up_read(&mm->mmap_sem);
 242
 243	BUG_ON(arg_start > arg_end);
 244	BUG_ON(env_start > env_end);
 245
 246	len1 = arg_end - arg_start;
 247	len2 = env_end - env_start;
 248
 249	/* Empty ARGV. */
 250	if (len1 == 0) {
 251		rv = 0;
 252		goto out_free_page;
 253	}
 254	/*
 255	 * Inherently racy -- command line shares address space
 256	 * with code and data.
 257	 */
 258	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 259	if (rv <= 0)
 260		goto out_free_page;
 261
 262	rv = 0;
 263
 264	if (c == '\0') {
 265		/* Command line (set of strings) occupies whole ARGV. */
 266		if (len1 <= *pos)
 267			goto out_free_page;
 268
 269		p = arg_start + *pos;
 270		len = len1 - *pos;
 271		while (count > 0 && len > 0) {
 272			unsigned int _count;
 273			int nr_read;
 274
 275			_count = min3(count, len, PAGE_SIZE);
 276			nr_read = access_remote_vm(mm, p, page, _count, 0);
 277			if (nr_read < 0)
 278				rv = nr_read;
 279			if (nr_read <= 0)
 280				goto out_free_page;
 281
 282			if (copy_to_user(buf, page, nr_read)) {
 283				rv = -EFAULT;
 284				goto out_free_page;
 285			}
 286
 287			p	+= nr_read;
 288			len	-= nr_read;
 289			buf	+= nr_read;
 290			count	-= nr_read;
 291			rv	+= nr_read;
 292		}
 293	} else {
 294		/*
 295		 * Command line (1 string) occupies ARGV and maybe
 296		 * extends into ENVP.
 297		 */
 298		if (len1 + len2 <= *pos)
 299			goto skip_argv_envp;
 300		if (len1 <= *pos)
 301			goto skip_argv;
 302
 303		p = arg_start + *pos;
 304		len = len1 - *pos;
 305		while (count > 0 && len > 0) {
 306			unsigned int _count, l;
 307			int nr_read;
 308			bool final;
 309
 310			_count = min3(count, len, PAGE_SIZE);
 311			nr_read = access_remote_vm(mm, p, page, _count, 0);
 312			if (nr_read < 0)
 313				rv = nr_read;
 314			if (nr_read <= 0)
 315				goto out_free_page;
 316
 317			/*
 318			 * Command line can be shorter than whole ARGV
 319			 * even if last "marker" byte says it is not.
 320			 */
 321			final = false;
 322			l = strnlen(page, nr_read);
 323			if (l < nr_read) {
 324				nr_read = l;
 325				final = true;
 326			}
 327
 328			if (copy_to_user(buf, page, nr_read)) {
 329				rv = -EFAULT;
 330				goto out_free_page;
 331			}
 332
 333			p	+= nr_read;
 334			len	-= nr_read;
 335			buf	+= nr_read;
 336			count	-= nr_read;
 337			rv	+= nr_read;
 338
 339			if (final)
 340				goto out_free_page;
 341		}
 342skip_argv:
 343		/*
 344		 * Command line (1 string) occupies ARGV and
 345		 * extends into ENVP.
 346		 */
 347		if (len1 <= *pos) {
 348			p = env_start + *pos - len1;
 349			len = len1 + len2 - *pos;
 350		} else {
 351			p = env_start;
 352			len = len2;
 353		}
 354		while (count > 0 && len > 0) {
 355			unsigned int _count, l;
 356			int nr_read;
 357			bool final;
 358
 359			_count = min3(count, len, PAGE_SIZE);
 360			nr_read = access_remote_vm(mm, p, page, _count, 0);
 361			if (nr_read < 0)
 362				rv = nr_read;
 363			if (nr_read <= 0)
 364				goto out_free_page;
 365
 366			/* Find EOS. */
 367			final = false;
 368			l = strnlen(page, nr_read);
 369			if (l < nr_read) {
 370				nr_read = l;
 371				final = true;
 372			}
 373
 374			if (copy_to_user(buf, page, nr_read)) {
 375				rv = -EFAULT;
 376				goto out_free_page;
 377			}
 378
 379			p	+= nr_read;
 380			len	-= nr_read;
 381			buf	+= nr_read;
 382			count	-= nr_read;
 383			rv	+= nr_read;
 384
 385			if (final)
 386				goto out_free_page;
 387		}
 388skip_argv_envp:
 389		;
 390	}
 391
 392out_free_page:
 393	free_page((unsigned long)page);
 394out_mmput:
 395	mmput(mm);
 396	if (rv > 0)
 397		*pos += rv;
 398	return rv;
 399}
 400
 401static const struct file_operations proc_pid_cmdline_ops = {
 402	.read	= proc_pid_cmdline_read,
 403	.llseek	= generic_file_llseek,
 404};
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406#ifdef CONFIG_KALLSYMS
 407/*
 408 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 409 * Returns the resolved symbol.  If that fails, simply return the address.
 410 */
 411static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 412			  struct pid *pid, struct task_struct *task)
 413{
 414	unsigned long wchan;
 415	char symname[KSYM_NAME_LEN];
 416
 417	wchan = get_wchan(task);
 418
 419	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
 420			&& !lookup_symbol_name(wchan, symname))
 421		seq_printf(m, "%s", symname);
 422	else
 423		seq_putc(m, '0');
 424
 425	return 0;
 426}
 427#endif /* CONFIG_KALLSYMS */
 428
 429static int lock_trace(struct task_struct *task)
 430{
 431	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 432	if (err)
 433		return err;
 434	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 435		mutex_unlock(&task->signal->cred_guard_mutex);
 436		return -EPERM;
 437	}
 438	return 0;
 439}
 440
 441static void unlock_trace(struct task_struct *task)
 442{
 443	mutex_unlock(&task->signal->cred_guard_mutex);
 444}
 445
 446#ifdef CONFIG_STACKTRACE
 447
 448#define MAX_STACK_TRACE_DEPTH	64
 449
 450static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 451			  struct pid *pid, struct task_struct *task)
 452{
 453	struct stack_trace trace;
 454	unsigned long *entries;
 455	int err;
 456	int i;
 457
 458	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 459	if (!entries)
 460		return -ENOMEM;
 461
 462	trace.nr_entries	= 0;
 463	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 464	trace.entries		= entries;
 465	trace.skip		= 0;
 466
 467	err = lock_trace(task);
 468	if (!err) {
 469		save_stack_trace_tsk(task, &trace);
 470
 471		for (i = 0; i < trace.nr_entries; i++) {
 472			seq_printf(m, "[<%pK>] %pB\n",
 473				   (void *)entries[i], (void *)entries[i]);
 474		}
 475		unlock_trace(task);
 476	}
 477	kfree(entries);
 478
 479	return err;
 480}
 481#endif
 482
 483#ifdef CONFIG_SCHED_INFO
 484/*
 485 * Provides /proc/PID/schedstat
 486 */
 487static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 488			      struct pid *pid, struct task_struct *task)
 489{
 490	if (unlikely(!sched_info_on()))
 491		seq_printf(m, "0 0 0\n");
 492	else
 493		seq_printf(m, "%llu %llu %lu\n",
 494		   (unsigned long long)task->se.sum_exec_runtime,
 495		   (unsigned long long)task->sched_info.run_delay,
 496		   task->sched_info.pcount);
 497
 498	return 0;
 499}
 500#endif
 501
 502#ifdef CONFIG_LATENCYTOP
 503static int lstats_show_proc(struct seq_file *m, void *v)
 504{
 505	int i;
 506	struct inode *inode = m->private;
 507	struct task_struct *task = get_proc_task(inode);
 508
 509	if (!task)
 510		return -ESRCH;
 511	seq_puts(m, "Latency Top version : v0.1\n");
 512	for (i = 0; i < 32; i++) {
 513		struct latency_record *lr = &task->latency_record[i];
 514		if (lr->backtrace[0]) {
 515			int q;
 516			seq_printf(m, "%i %li %li",
 517				   lr->count, lr->time, lr->max);
 518			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 519				unsigned long bt = lr->backtrace[q];
 520				if (!bt)
 521					break;
 522				if (bt == ULONG_MAX)
 523					break;
 524				seq_printf(m, " %ps", (void *)bt);
 525			}
 526			seq_putc(m, '\n');
 527		}
 528
 529	}
 530	put_task_struct(task);
 531	return 0;
 532}
 533
 534static int lstats_open(struct inode *inode, struct file *file)
 535{
 536	return single_open(file, lstats_show_proc, inode);
 537}
 538
 539static ssize_t lstats_write(struct file *file, const char __user *buf,
 540			    size_t count, loff_t *offs)
 541{
 542	struct task_struct *task = get_proc_task(file_inode(file));
 543
 544	if (!task)
 545		return -ESRCH;
 546	clear_all_latency_tracing(task);
 547	put_task_struct(task);
 548
 549	return count;
 550}
 551
 552static const struct file_operations proc_lstats_operations = {
 553	.open		= lstats_open,
 554	.read		= seq_read,
 555	.write		= lstats_write,
 556	.llseek		= seq_lseek,
 557	.release	= single_release,
 558};
 559
 560#endif
 561
 562static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 563			  struct pid *pid, struct task_struct *task)
 564{
 565	unsigned long totalpages = totalram_pages + total_swap_pages;
 566	unsigned long points = 0;
 567
 568	points = oom_badness(task, NULL, NULL, totalpages) *
 569					1000 / totalpages;
 
 
 
 570	seq_printf(m, "%lu\n", points);
 571
 572	return 0;
 573}
 574
 575struct limit_names {
 576	const char *name;
 577	const char *unit;
 578};
 579
 580static const struct limit_names lnames[RLIM_NLIMITS] = {
 581	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 582	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 583	[RLIMIT_DATA] = {"Max data size", "bytes"},
 584	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 585	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 586	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 587	[RLIMIT_NPROC] = {"Max processes", "processes"},
 588	[RLIMIT_NOFILE] = {"Max open files", "files"},
 589	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 590	[RLIMIT_AS] = {"Max address space", "bytes"},
 591	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 592	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 593	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 594	[RLIMIT_NICE] = {"Max nice priority", NULL},
 595	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 596	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 597};
 598
 599/* Display limits for a process */
 600static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 601			   struct pid *pid, struct task_struct *task)
 602{
 603	unsigned int i;
 604	unsigned long flags;
 605
 606	struct rlimit rlim[RLIM_NLIMITS];
 607
 608	if (!lock_task_sighand(task, &flags))
 609		return 0;
 610	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 611	unlock_task_sighand(task, &flags);
 612
 613	/*
 614	 * print the file header
 615	 */
 616       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 617		  "Limit", "Soft Limit", "Hard Limit", "Units");
 618
 619	for (i = 0; i < RLIM_NLIMITS; i++) {
 620		if (rlim[i].rlim_cur == RLIM_INFINITY)
 621			seq_printf(m, "%-25s %-20s ",
 622				   lnames[i].name, "unlimited");
 623		else
 624			seq_printf(m, "%-25s %-20lu ",
 625				   lnames[i].name, rlim[i].rlim_cur);
 626
 627		if (rlim[i].rlim_max == RLIM_INFINITY)
 628			seq_printf(m, "%-20s ", "unlimited");
 629		else
 630			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 631
 632		if (lnames[i].unit)
 633			seq_printf(m, "%-10s\n", lnames[i].unit);
 634		else
 635			seq_putc(m, '\n');
 636	}
 637
 638	return 0;
 639}
 640
 641#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 642static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 643			    struct pid *pid, struct task_struct *task)
 644{
 645	long nr;
 646	unsigned long args[6], sp, pc;
 647	int res;
 648
 649	res = lock_trace(task);
 650	if (res)
 651		return res;
 652
 653	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 654		seq_puts(m, "running\n");
 655	else if (nr < 0)
 656		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 657	else
 658		seq_printf(m,
 659		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 660		       nr,
 661		       args[0], args[1], args[2], args[3], args[4], args[5],
 662		       sp, pc);
 663	unlock_trace(task);
 664
 665	return 0;
 666}
 667#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 668
 669/************************************************************************/
 670/*                       Here the fs part begins                        */
 671/************************************************************************/
 672
 673/* permission checks */
 674static int proc_fd_access_allowed(struct inode *inode)
 675{
 676	struct task_struct *task;
 677	int allowed = 0;
 678	/* Allow access to a task's file descriptors if it is us or we
 679	 * may use ptrace attach to the process and find out that
 680	 * information.
 681	 */
 682	task = get_proc_task(inode);
 683	if (task) {
 684		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 685		put_task_struct(task);
 686	}
 687	return allowed;
 688}
 689
 690int proc_setattr(struct dentry *dentry, struct iattr *attr)
 691{
 692	int error;
 693	struct inode *inode = d_inode(dentry);
 694
 695	if (attr->ia_valid & ATTR_MODE)
 696		return -EPERM;
 697
 698	error = setattr_prepare(dentry, attr);
 699	if (error)
 700		return error;
 701
 702	setattr_copy(inode, attr);
 703	mark_inode_dirty(inode);
 704	return 0;
 705}
 706
 707/*
 708 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 709 * or euid/egid (for hide_pid_min=2)?
 710 */
 711static bool has_pid_permissions(struct pid_namespace *pid,
 712				 struct task_struct *task,
 713				 int hide_pid_min)
 714{
 715	if (pid->hide_pid < hide_pid_min)
 716		return true;
 717	if (in_group_p(pid->pid_gid))
 718		return true;
 719	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 720}
 721
 722
 723static int proc_pid_permission(struct inode *inode, int mask)
 724{
 725	struct pid_namespace *pid = inode->i_sb->s_fs_info;
 726	struct task_struct *task;
 727	bool has_perms;
 728
 729	task = get_proc_task(inode);
 730	if (!task)
 731		return -ESRCH;
 732	has_perms = has_pid_permissions(pid, task, 1);
 733	put_task_struct(task);
 734
 735	if (!has_perms) {
 736		if (pid->hide_pid == 2) {
 737			/*
 738			 * Let's make getdents(), stat(), and open()
 739			 * consistent with each other.  If a process
 740			 * may not stat() a file, it shouldn't be seen
 741			 * in procfs at all.
 742			 */
 743			return -ENOENT;
 744		}
 745
 746		return -EPERM;
 747	}
 748	return generic_permission(inode, mask);
 749}
 750
 751
 752
 753static const struct inode_operations proc_def_inode_operations = {
 754	.setattr	= proc_setattr,
 755};
 756
 757static int proc_single_show(struct seq_file *m, void *v)
 758{
 759	struct inode *inode = m->private;
 760	struct pid_namespace *ns;
 761	struct pid *pid;
 762	struct task_struct *task;
 763	int ret;
 764
 765	ns = inode->i_sb->s_fs_info;
 766	pid = proc_pid(inode);
 767	task = get_pid_task(pid, PIDTYPE_PID);
 768	if (!task)
 769		return -ESRCH;
 770
 771	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 772
 773	put_task_struct(task);
 774	return ret;
 775}
 776
 777static int proc_single_open(struct inode *inode, struct file *filp)
 778{
 779	return single_open(filp, proc_single_show, inode);
 780}
 781
 782static const struct file_operations proc_single_file_operations = {
 783	.open		= proc_single_open,
 784	.read		= seq_read,
 785	.llseek		= seq_lseek,
 786	.release	= single_release,
 787};
 788
 789
 790struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 791{
 792	struct task_struct *task = get_proc_task(inode);
 793	struct mm_struct *mm = ERR_PTR(-ESRCH);
 794
 795	if (task) {
 796		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 797		put_task_struct(task);
 798
 799		if (!IS_ERR_OR_NULL(mm)) {
 800			/* ensure this mm_struct can't be freed */
 801			atomic_inc(&mm->mm_count);
 802			/* but do not pin its memory */
 803			mmput(mm);
 804		}
 805	}
 806
 807	return mm;
 808}
 809
 810static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 811{
 812	struct mm_struct *mm = proc_mem_open(inode, mode);
 813
 814	if (IS_ERR(mm))
 815		return PTR_ERR(mm);
 816
 817	file->private_data = mm;
 818	return 0;
 819}
 820
 821static int mem_open(struct inode *inode, struct file *file)
 822{
 823	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 824
 825	/* OK to pass negative loff_t, we can catch out-of-range */
 826	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 827
 828	return ret;
 829}
 830
 831static ssize_t mem_rw(struct file *file, char __user *buf,
 832			size_t count, loff_t *ppos, int write)
 833{
 834	struct mm_struct *mm = file->private_data;
 835	unsigned long addr = *ppos;
 836	ssize_t copied;
 837	char *page;
 838	unsigned int flags;
 839
 840	if (!mm)
 841		return 0;
 842
 843	page = (char *)__get_free_page(GFP_TEMPORARY);
 844	if (!page)
 845		return -ENOMEM;
 846
 847	copied = 0;
 848	if (!atomic_inc_not_zero(&mm->mm_users))
 849		goto free;
 850
 851	/* Maybe we should limit FOLL_FORCE to actual ptrace users? */
 852	flags = FOLL_FORCE;
 853	if (write)
 854		flags |= FOLL_WRITE;
 855
 856	while (count > 0) {
 857		int this_len = min_t(int, count, PAGE_SIZE);
 858
 859		if (write && copy_from_user(page, buf, this_len)) {
 860			copied = -EFAULT;
 861			break;
 862		}
 863
 864		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 865		if (!this_len) {
 866			if (!copied)
 867				copied = -EIO;
 868			break;
 869		}
 870
 871		if (!write && copy_to_user(buf, page, this_len)) {
 872			copied = -EFAULT;
 873			break;
 874		}
 875
 876		buf += this_len;
 877		addr += this_len;
 878		copied += this_len;
 879		count -= this_len;
 880	}
 881	*ppos = addr;
 882
 883	mmput(mm);
 884free:
 885	free_page((unsigned long) page);
 886	return copied;
 887}
 888
 889static ssize_t mem_read(struct file *file, char __user *buf,
 890			size_t count, loff_t *ppos)
 891{
 892	return mem_rw(file, buf, count, ppos, 0);
 893}
 894
 895static ssize_t mem_write(struct file *file, const char __user *buf,
 896			 size_t count, loff_t *ppos)
 897{
 898	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 899}
 900
 901loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 902{
 903	switch (orig) {
 904	case 0:
 905		file->f_pos = offset;
 906		break;
 907	case 1:
 908		file->f_pos += offset;
 909		break;
 910	default:
 911		return -EINVAL;
 912	}
 913	force_successful_syscall_return();
 914	return file->f_pos;
 915}
 916
 917static int mem_release(struct inode *inode, struct file *file)
 918{
 919	struct mm_struct *mm = file->private_data;
 920	if (mm)
 921		mmdrop(mm);
 922	return 0;
 923}
 924
 925static const struct file_operations proc_mem_operations = {
 926	.llseek		= mem_lseek,
 927	.read		= mem_read,
 928	.write		= mem_write,
 929	.open		= mem_open,
 930	.release	= mem_release,
 931};
 932
 933static int environ_open(struct inode *inode, struct file *file)
 934{
 935	return __mem_open(inode, file, PTRACE_MODE_READ);
 936}
 937
 938static ssize_t environ_read(struct file *file, char __user *buf,
 939			size_t count, loff_t *ppos)
 940{
 941	char *page;
 942	unsigned long src = *ppos;
 943	int ret = 0;
 944	struct mm_struct *mm = file->private_data;
 945	unsigned long env_start, env_end;
 946
 947	/* Ensure the process spawned far enough to have an environment. */
 948	if (!mm || !mm->env_end)
 949		return 0;
 950
 951	page = (char *)__get_free_page(GFP_TEMPORARY);
 952	if (!page)
 953		return -ENOMEM;
 954
 955	ret = 0;
 956	if (!atomic_inc_not_zero(&mm->mm_users))
 957		goto free;
 958
 959	down_read(&mm->mmap_sem);
 960	env_start = mm->env_start;
 961	env_end = mm->env_end;
 962	up_read(&mm->mmap_sem);
 963
 964	while (count > 0) {
 965		size_t this_len, max_len;
 966		int retval;
 967
 968		if (src >= (env_end - env_start))
 969			break;
 970
 971		this_len = env_end - (env_start + src);
 972
 973		max_len = min_t(size_t, PAGE_SIZE, count);
 974		this_len = min(max_len, this_len);
 975
 976		retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
 
 977
 978		if (retval <= 0) {
 979			ret = retval;
 980			break;
 981		}
 982
 983		if (copy_to_user(buf, page, retval)) {
 984			ret = -EFAULT;
 985			break;
 986		}
 987
 988		ret += retval;
 989		src += retval;
 990		buf += retval;
 991		count -= retval;
 992	}
 993	*ppos = src;
 994	mmput(mm);
 995
 996free:
 997	free_page((unsigned long) page);
 998	return ret;
 999}
1000
1001static const struct file_operations proc_environ_operations = {
1002	.open		= environ_open,
1003	.read		= environ_read,
1004	.llseek		= generic_file_llseek,
1005	.release	= mem_release,
1006};
1007
1008static int auxv_open(struct inode *inode, struct file *file)
1009{
1010	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1011}
1012
1013static ssize_t auxv_read(struct file *file, char __user *buf,
1014			size_t count, loff_t *ppos)
1015{
1016	struct mm_struct *mm = file->private_data;
1017	unsigned int nwords = 0;
1018
1019	if (!mm)
1020		return 0;
1021	do {
1022		nwords += 2;
1023	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1024	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1025				       nwords * sizeof(mm->saved_auxv[0]));
1026}
1027
1028static const struct file_operations proc_auxv_operations = {
1029	.open		= auxv_open,
1030	.read		= auxv_read,
1031	.llseek		= generic_file_llseek,
1032	.release	= mem_release,
1033};
1034
1035static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1036			    loff_t *ppos)
1037{
1038	struct task_struct *task = get_proc_task(file_inode(file));
1039	char buffer[PROC_NUMBUF];
1040	int oom_adj = OOM_ADJUST_MIN;
1041	size_t len;
 
1042
1043	if (!task)
1044		return -ESRCH;
1045	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1046		oom_adj = OOM_ADJUST_MAX;
1047	else
1048		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1049			  OOM_SCORE_ADJ_MAX;
 
 
 
1050	put_task_struct(task);
1051	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1052	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1053}
1054
1055static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1056{
1057	static DEFINE_MUTEX(oom_adj_mutex);
1058	struct mm_struct *mm = NULL;
1059	struct task_struct *task;
1060	int err = 0;
1061
1062	task = get_proc_task(file_inode(file));
1063	if (!task)
1064		return -ESRCH;
1065
1066	mutex_lock(&oom_adj_mutex);
1067	if (legacy) {
1068		if (oom_adj < task->signal->oom_score_adj &&
1069				!capable(CAP_SYS_RESOURCE)) {
1070			err = -EACCES;
1071			goto err_unlock;
1072		}
1073		/*
1074		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1075		 * /proc/pid/oom_score_adj instead.
1076		 */
1077		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1078			  current->comm, task_pid_nr(current), task_pid_nr(task),
1079			  task_pid_nr(task));
1080	} else {
1081		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1082				!capable(CAP_SYS_RESOURCE)) {
1083			err = -EACCES;
1084			goto err_unlock;
1085		}
1086	}
1087
1088	/*
1089	 * Make sure we will check other processes sharing the mm if this is
1090	 * not vfrok which wants its own oom_score_adj.
1091	 * pin the mm so it doesn't go away and get reused after task_unlock
1092	 */
1093	if (!task->vfork_done) {
1094		struct task_struct *p = find_lock_task_mm(task);
1095
1096		if (p) {
1097			if (atomic_read(&p->mm->mm_users) > 1) {
1098				mm = p->mm;
1099				atomic_inc(&mm->mm_count);
1100			}
1101			task_unlock(p);
1102		}
1103	}
1104
1105	task->signal->oom_score_adj = oom_adj;
1106	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1107		task->signal->oom_score_adj_min = (short)oom_adj;
1108	trace_oom_score_adj_update(task);
1109
1110	if (mm) {
1111		struct task_struct *p;
1112
1113		rcu_read_lock();
1114		for_each_process(p) {
1115			if (same_thread_group(task, p))
1116				continue;
1117
1118			/* do not touch kernel threads or the global init */
1119			if (p->flags & PF_KTHREAD || is_global_init(p))
1120				continue;
1121
1122			task_lock(p);
1123			if (!p->vfork_done && process_shares_mm(p, mm)) {
1124				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1125						task_pid_nr(p), p->comm,
1126						p->signal->oom_score_adj, oom_adj,
1127						task_pid_nr(task), task->comm);
1128				p->signal->oom_score_adj = oom_adj;
1129				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1130					p->signal->oom_score_adj_min = (short)oom_adj;
1131			}
1132			task_unlock(p);
1133		}
1134		rcu_read_unlock();
1135		mmdrop(mm);
1136	}
1137err_unlock:
1138	mutex_unlock(&oom_adj_mutex);
1139	put_task_struct(task);
1140	return err;
1141}
1142
1143/*
1144 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1145 * kernels.  The effective policy is defined by oom_score_adj, which has a
1146 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1147 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1148 * Processes that become oom disabled via oom_adj will still be oom disabled
1149 * with this implementation.
1150 *
1151 * oom_adj cannot be removed since existing userspace binaries use it.
1152 */
1153static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1154			     size_t count, loff_t *ppos)
1155{
 
1156	char buffer[PROC_NUMBUF];
1157	int oom_adj;
 
1158	int err;
1159
1160	memset(buffer, 0, sizeof(buffer));
1161	if (count > sizeof(buffer) - 1)
1162		count = sizeof(buffer) - 1;
1163	if (copy_from_user(buffer, buf, count)) {
1164		err = -EFAULT;
1165		goto out;
1166	}
1167
1168	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1169	if (err)
1170		goto out;
1171	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172	     oom_adj != OOM_DISABLE) {
1173		err = -EINVAL;
1174		goto out;
1175	}
1176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1177	/*
1178	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179	 * value is always attainable.
1180	 */
1181	if (oom_adj == OOM_ADJUST_MAX)
1182		oom_adj = OOM_SCORE_ADJ_MAX;
1183	else
1184		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1185
1186	err = __set_oom_adj(file, oom_adj, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187out:
1188	return err < 0 ? err : count;
1189}
1190
1191static const struct file_operations proc_oom_adj_operations = {
1192	.read		= oom_adj_read,
1193	.write		= oom_adj_write,
1194	.llseek		= generic_file_llseek,
1195};
1196
1197static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198					size_t count, loff_t *ppos)
1199{
1200	struct task_struct *task = get_proc_task(file_inode(file));
1201	char buffer[PROC_NUMBUF];
1202	short oom_score_adj = OOM_SCORE_ADJ_MIN;
 
1203	size_t len;
1204
1205	if (!task)
1206		return -ESRCH;
1207	oom_score_adj = task->signal->oom_score_adj;
 
 
 
1208	put_task_struct(task);
1209	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1211}
1212
1213static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214					size_t count, loff_t *ppos)
1215{
 
1216	char buffer[PROC_NUMBUF];
 
1217	int oom_score_adj;
1218	int err;
1219
1220	memset(buffer, 0, sizeof(buffer));
1221	if (count > sizeof(buffer) - 1)
1222		count = sizeof(buffer) - 1;
1223	if (copy_from_user(buffer, buf, count)) {
1224		err = -EFAULT;
1225		goto out;
1226	}
1227
1228	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1229	if (err)
1230		goto out;
1231	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1232			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1233		err = -EINVAL;
1234		goto out;
1235	}
1236
1237	err = __set_oom_adj(file, oom_score_adj, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238out:
1239	return err < 0 ? err : count;
1240}
1241
1242static const struct file_operations proc_oom_score_adj_operations = {
1243	.read		= oom_score_adj_read,
1244	.write		= oom_score_adj_write,
1245	.llseek		= default_llseek,
1246};
1247
1248#ifdef CONFIG_AUDITSYSCALL
1249#define TMPBUFLEN 11
1250static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1251				  size_t count, loff_t *ppos)
1252{
1253	struct inode * inode = file_inode(file);
1254	struct task_struct *task = get_proc_task(inode);
1255	ssize_t length;
1256	char tmpbuf[TMPBUFLEN];
1257
1258	if (!task)
1259		return -ESRCH;
1260	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1261			   from_kuid(file->f_cred->user_ns,
1262				     audit_get_loginuid(task)));
1263	put_task_struct(task);
1264	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1265}
1266
1267static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1268				   size_t count, loff_t *ppos)
1269{
1270	struct inode * inode = file_inode(file);
1271	uid_t loginuid;
1272	kuid_t kloginuid;
1273	int rv;
1274
1275	rcu_read_lock();
1276	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1277		rcu_read_unlock();
1278		return -EPERM;
1279	}
1280	rcu_read_unlock();
1281
1282	if (*ppos != 0) {
1283		/* No partial writes. */
1284		return -EINVAL;
1285	}
1286
1287	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1288	if (rv < 0)
1289		return rv;
1290
1291	/* is userspace tring to explicitly UNSET the loginuid? */
1292	if (loginuid == AUDIT_UID_UNSET) {
1293		kloginuid = INVALID_UID;
1294	} else {
1295		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1296		if (!uid_valid(kloginuid))
1297			return -EINVAL;
1298	}
1299
1300	rv = audit_set_loginuid(kloginuid);
1301	if (rv < 0)
1302		return rv;
1303	return count;
1304}
1305
1306static const struct file_operations proc_loginuid_operations = {
1307	.read		= proc_loginuid_read,
1308	.write		= proc_loginuid_write,
1309	.llseek		= generic_file_llseek,
1310};
1311
1312static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1313				  size_t count, loff_t *ppos)
1314{
1315	struct inode * inode = file_inode(file);
1316	struct task_struct *task = get_proc_task(inode);
1317	ssize_t length;
1318	char tmpbuf[TMPBUFLEN];
1319
1320	if (!task)
1321		return -ESRCH;
1322	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1323				audit_get_sessionid(task));
1324	put_task_struct(task);
1325	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1326}
1327
1328static const struct file_operations proc_sessionid_operations = {
1329	.read		= proc_sessionid_read,
1330	.llseek		= generic_file_llseek,
1331};
1332#endif
1333
1334#ifdef CONFIG_FAULT_INJECTION
1335static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1336				      size_t count, loff_t *ppos)
1337{
1338	struct task_struct *task = get_proc_task(file_inode(file));
1339	char buffer[PROC_NUMBUF];
1340	size_t len;
1341	int make_it_fail;
1342
1343	if (!task)
1344		return -ESRCH;
1345	make_it_fail = task->make_it_fail;
1346	put_task_struct(task);
1347
1348	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1349
1350	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1351}
1352
1353static ssize_t proc_fault_inject_write(struct file * file,
1354			const char __user * buf, size_t count, loff_t *ppos)
1355{
1356	struct task_struct *task;
1357	char buffer[PROC_NUMBUF];
1358	int make_it_fail;
1359	int rv;
1360
1361	if (!capable(CAP_SYS_RESOURCE))
1362		return -EPERM;
1363	memset(buffer, 0, sizeof(buffer));
1364	if (count > sizeof(buffer) - 1)
1365		count = sizeof(buffer) - 1;
1366	if (copy_from_user(buffer, buf, count))
1367		return -EFAULT;
1368	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1369	if (rv < 0)
1370		return rv;
1371	if (make_it_fail < 0 || make_it_fail > 1)
1372		return -EINVAL;
1373
1374	task = get_proc_task(file_inode(file));
1375	if (!task)
1376		return -ESRCH;
1377	task->make_it_fail = make_it_fail;
1378	put_task_struct(task);
1379
1380	return count;
1381}
1382
1383static const struct file_operations proc_fault_inject_operations = {
1384	.read		= proc_fault_inject_read,
1385	.write		= proc_fault_inject_write,
1386	.llseek		= generic_file_llseek,
1387};
1388#endif
1389
1390
1391#ifdef CONFIG_SCHED_DEBUG
1392/*
1393 * Print out various scheduling related per-task fields:
1394 */
1395static int sched_show(struct seq_file *m, void *v)
1396{
1397	struct inode *inode = m->private;
1398	struct task_struct *p;
1399
1400	p = get_proc_task(inode);
1401	if (!p)
1402		return -ESRCH;
1403	proc_sched_show_task(p, m);
1404
1405	put_task_struct(p);
1406
1407	return 0;
1408}
1409
1410static ssize_t
1411sched_write(struct file *file, const char __user *buf,
1412	    size_t count, loff_t *offset)
1413{
1414	struct inode *inode = file_inode(file);
1415	struct task_struct *p;
1416
1417	p = get_proc_task(inode);
1418	if (!p)
1419		return -ESRCH;
1420	proc_sched_set_task(p);
1421
1422	put_task_struct(p);
1423
1424	return count;
1425}
1426
1427static int sched_open(struct inode *inode, struct file *filp)
1428{
1429	return single_open(filp, sched_show, inode);
1430}
1431
1432static const struct file_operations proc_pid_sched_operations = {
1433	.open		= sched_open,
1434	.read		= seq_read,
1435	.write		= sched_write,
1436	.llseek		= seq_lseek,
1437	.release	= single_release,
1438};
1439
1440#endif
1441
1442#ifdef CONFIG_SCHED_AUTOGROUP
1443/*
1444 * Print out autogroup related information:
1445 */
1446static int sched_autogroup_show(struct seq_file *m, void *v)
1447{
1448	struct inode *inode = m->private;
1449	struct task_struct *p;
1450
1451	p = get_proc_task(inode);
1452	if (!p)
1453		return -ESRCH;
1454	proc_sched_autogroup_show_task(p, m);
1455
1456	put_task_struct(p);
1457
1458	return 0;
1459}
1460
1461static ssize_t
1462sched_autogroup_write(struct file *file, const char __user *buf,
1463	    size_t count, loff_t *offset)
1464{
1465	struct inode *inode = file_inode(file);
1466	struct task_struct *p;
1467	char buffer[PROC_NUMBUF];
1468	int nice;
1469	int err;
1470
1471	memset(buffer, 0, sizeof(buffer));
1472	if (count > sizeof(buffer) - 1)
1473		count = sizeof(buffer) - 1;
1474	if (copy_from_user(buffer, buf, count))
1475		return -EFAULT;
1476
1477	err = kstrtoint(strstrip(buffer), 0, &nice);
1478	if (err < 0)
1479		return err;
1480
1481	p = get_proc_task(inode);
1482	if (!p)
1483		return -ESRCH;
1484
1485	err = proc_sched_autogroup_set_nice(p, nice);
1486	if (err)
1487		count = err;
1488
1489	put_task_struct(p);
1490
1491	return count;
1492}
1493
1494static int sched_autogroup_open(struct inode *inode, struct file *filp)
1495{
1496	int ret;
1497
1498	ret = single_open(filp, sched_autogroup_show, NULL);
1499	if (!ret) {
1500		struct seq_file *m = filp->private_data;
1501
1502		m->private = inode;
1503	}
1504	return ret;
1505}
1506
1507static const struct file_operations proc_pid_sched_autogroup_operations = {
1508	.open		= sched_autogroup_open,
1509	.read		= seq_read,
1510	.write		= sched_autogroup_write,
1511	.llseek		= seq_lseek,
1512	.release	= single_release,
1513};
1514
1515#endif /* CONFIG_SCHED_AUTOGROUP */
1516
1517static ssize_t comm_write(struct file *file, const char __user *buf,
1518				size_t count, loff_t *offset)
1519{
1520	struct inode *inode = file_inode(file);
1521	struct task_struct *p;
1522	char buffer[TASK_COMM_LEN];
1523	const size_t maxlen = sizeof(buffer) - 1;
1524
1525	memset(buffer, 0, sizeof(buffer));
1526	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1527		return -EFAULT;
1528
1529	p = get_proc_task(inode);
1530	if (!p)
1531		return -ESRCH;
1532
1533	if (same_thread_group(current, p))
1534		set_task_comm(p, buffer);
1535	else
1536		count = -EINVAL;
1537
1538	put_task_struct(p);
1539
1540	return count;
1541}
1542
1543static int comm_show(struct seq_file *m, void *v)
1544{
1545	struct inode *inode = m->private;
1546	struct task_struct *p;
1547
1548	p = get_proc_task(inode);
1549	if (!p)
1550		return -ESRCH;
1551
1552	task_lock(p);
1553	seq_printf(m, "%s\n", p->comm);
1554	task_unlock(p);
1555
1556	put_task_struct(p);
1557
1558	return 0;
1559}
1560
1561static int comm_open(struct inode *inode, struct file *filp)
1562{
1563	return single_open(filp, comm_show, inode);
1564}
1565
1566static const struct file_operations proc_pid_set_comm_operations = {
1567	.open		= comm_open,
1568	.read		= seq_read,
1569	.write		= comm_write,
1570	.llseek		= seq_lseek,
1571	.release	= single_release,
1572};
1573
1574static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1575{
1576	struct task_struct *task;
 
1577	struct file *exe_file;
1578
1579	task = get_proc_task(d_inode(dentry));
1580	if (!task)
1581		return -ENOENT;
1582	exe_file = get_task_exe_file(task);
1583	put_task_struct(task);
 
 
 
 
1584	if (exe_file) {
1585		*exe_path = exe_file->f_path;
1586		path_get(&exe_file->f_path);
1587		fput(exe_file);
1588		return 0;
1589	} else
1590		return -ENOENT;
1591}
1592
1593static const char *proc_pid_get_link(struct dentry *dentry,
1594				     struct inode *inode,
1595				     struct delayed_call *done)
1596{
1597	struct path path;
1598	int error = -EACCES;
1599
1600	if (!dentry)
1601		return ERR_PTR(-ECHILD);
1602
1603	/* Are we allowed to snoop on the tasks file descriptors? */
1604	if (!proc_fd_access_allowed(inode))
1605		goto out;
1606
1607	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1608	if (error)
1609		goto out;
1610
1611	nd_jump_link(&path);
1612	return NULL;
1613out:
1614	return ERR_PTR(error);
1615}
1616
1617static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1618{
1619	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1620	char *pathname;
1621	int len;
1622
1623	if (!tmp)
1624		return -ENOMEM;
1625
1626	pathname = d_path(path, tmp, PAGE_SIZE);
1627	len = PTR_ERR(pathname);
1628	if (IS_ERR(pathname))
1629		goto out;
1630	len = tmp + PAGE_SIZE - 1 - pathname;
1631
1632	if (len > buflen)
1633		len = buflen;
1634	if (copy_to_user(buffer, pathname, len))
1635		len = -EFAULT;
1636 out:
1637	free_page((unsigned long)tmp);
1638	return len;
1639}
1640
1641static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1642{
1643	int error = -EACCES;
1644	struct inode *inode = d_inode(dentry);
1645	struct path path;
1646
1647	/* Are we allowed to snoop on the tasks file descriptors? */
1648	if (!proc_fd_access_allowed(inode))
1649		goto out;
1650
1651	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1652	if (error)
1653		goto out;
1654
1655	error = do_proc_readlink(&path, buffer, buflen);
1656	path_put(&path);
1657out:
1658	return error;
1659}
1660
1661const struct inode_operations proc_pid_link_inode_operations = {
1662	.readlink	= proc_pid_readlink,
1663	.get_link	= proc_pid_get_link,
1664	.setattr	= proc_setattr,
1665};
1666
1667
1668/* building an inode */
1669
1670struct inode *proc_pid_make_inode(struct super_block * sb,
1671				  struct task_struct *task, umode_t mode)
1672{
1673	struct inode * inode;
1674	struct proc_inode *ei;
1675	const struct cred *cred;
1676
1677	/* We need a new inode */
1678
1679	inode = new_inode(sb);
1680	if (!inode)
1681		goto out;
1682
1683	/* Common stuff */
1684	ei = PROC_I(inode);
1685	inode->i_mode = mode;
1686	inode->i_ino = get_next_ino();
1687	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1688	inode->i_op = &proc_def_inode_operations;
1689
1690	/*
1691	 * grab the reference to task.
1692	 */
1693	ei->pid = get_task_pid(task, PIDTYPE_PID);
1694	if (!ei->pid)
1695		goto out_unlock;
1696
1697	if (task_dumpable(task)) {
1698		rcu_read_lock();
1699		cred = __task_cred(task);
1700		inode->i_uid = cred->euid;
1701		inode->i_gid = cred->egid;
1702		rcu_read_unlock();
1703	}
1704	security_task_to_inode(task, inode);
1705
1706out:
1707	return inode;
1708
1709out_unlock:
1710	iput(inode);
1711	return NULL;
1712}
1713
1714int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1715{
1716	struct inode *inode = d_inode(dentry);
1717	struct task_struct *task;
1718	const struct cred *cred;
1719	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1720
1721	generic_fillattr(inode, stat);
1722
1723	rcu_read_lock();
1724	stat->uid = GLOBAL_ROOT_UID;
1725	stat->gid = GLOBAL_ROOT_GID;
1726	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1727	if (task) {
1728		if (!has_pid_permissions(pid, task, 2)) {
1729			rcu_read_unlock();
1730			/*
1731			 * This doesn't prevent learning whether PID exists,
1732			 * it only makes getattr() consistent with readdir().
1733			 */
1734			return -ENOENT;
1735		}
1736		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1737		    task_dumpable(task)) {
1738			cred = __task_cred(task);
1739			stat->uid = cred->euid;
1740			stat->gid = cred->egid;
1741		}
1742	}
1743	rcu_read_unlock();
1744	return 0;
1745}
1746
1747/* dentry stuff */
1748
1749/*
1750 *	Exceptional case: normally we are not allowed to unhash a busy
1751 * directory. In this case, however, we can do it - no aliasing problems
1752 * due to the way we treat inodes.
1753 *
1754 * Rewrite the inode's ownerships here because the owning task may have
1755 * performed a setuid(), etc.
1756 *
1757 * Before the /proc/pid/status file was created the only way to read
1758 * the effective uid of a /process was to stat /proc/pid.  Reading
1759 * /proc/pid/status is slow enough that procps and other packages
1760 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1761 * made this apply to all per process world readable and executable
1762 * directories.
1763 */
1764int pid_revalidate(struct dentry *dentry, unsigned int flags)
1765{
1766	struct inode *inode;
1767	struct task_struct *task;
1768	const struct cred *cred;
1769
1770	if (flags & LOOKUP_RCU)
1771		return -ECHILD;
1772
1773	inode = d_inode(dentry);
1774	task = get_proc_task(inode);
1775
1776	if (task) {
1777		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1778		    task_dumpable(task)) {
1779			rcu_read_lock();
1780			cred = __task_cred(task);
1781			inode->i_uid = cred->euid;
1782			inode->i_gid = cred->egid;
1783			rcu_read_unlock();
1784		} else {
1785			inode->i_uid = GLOBAL_ROOT_UID;
1786			inode->i_gid = GLOBAL_ROOT_GID;
1787		}
1788		inode->i_mode &= ~(S_ISUID | S_ISGID);
1789		security_task_to_inode(task, inode);
1790		put_task_struct(task);
1791		return 1;
1792	}
1793	return 0;
1794}
1795
1796static inline bool proc_inode_is_dead(struct inode *inode)
1797{
1798	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1799}
1800
1801int pid_delete_dentry(const struct dentry *dentry)
1802{
1803	/* Is the task we represent dead?
1804	 * If so, then don't put the dentry on the lru list,
1805	 * kill it immediately.
1806	 */
1807	return proc_inode_is_dead(d_inode(dentry));
1808}
1809
1810const struct dentry_operations pid_dentry_operations =
1811{
1812	.d_revalidate	= pid_revalidate,
1813	.d_delete	= pid_delete_dentry,
1814};
1815
1816/* Lookups */
1817
1818/*
1819 * Fill a directory entry.
1820 *
1821 * If possible create the dcache entry and derive our inode number and
1822 * file type from dcache entry.
1823 *
1824 * Since all of the proc inode numbers are dynamically generated, the inode
1825 * numbers do not exist until the inode is cache.  This means creating the
1826 * the dcache entry in readdir is necessary to keep the inode numbers
1827 * reported by readdir in sync with the inode numbers reported
1828 * by stat.
1829 */
1830bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1831	const char *name, int len,
1832	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1833{
1834	struct dentry *child, *dir = file->f_path.dentry;
1835	struct qstr qname = QSTR_INIT(name, len);
1836	struct inode *inode;
1837	unsigned type;
1838	ino_t ino;
1839
1840	child = d_hash_and_lookup(dir, &qname);
1841	if (!child) {
1842		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1843		child = d_alloc_parallel(dir, &qname, &wq);
1844		if (IS_ERR(child))
 
 
1845			goto end_instantiate;
1846		if (d_in_lookup(child)) {
1847			int err = instantiate(d_inode(dir), child, task, ptr);
1848			d_lookup_done(child);
1849			if (err < 0) {
1850				dput(child);
1851				goto end_instantiate;
1852			}
1853		}
1854	}
1855	inode = d_inode(child);
1856	ino = inode->i_ino;
1857	type = inode->i_mode >> 12;
1858	dput(child);
1859	return dir_emit(ctx, name, len, ino, type);
1860
1861end_instantiate:
1862	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1863}
1864
1865/*
1866 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1867 * which represent vma start and end addresses.
1868 */
1869static int dname_to_vma_addr(struct dentry *dentry,
1870			     unsigned long *start, unsigned long *end)
1871{
1872	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1873		return -EINVAL;
1874
1875	return 0;
1876}
1877
1878static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1879{
1880	unsigned long vm_start, vm_end;
1881	bool exact_vma_exists = false;
1882	struct mm_struct *mm = NULL;
1883	struct task_struct *task;
1884	const struct cred *cred;
1885	struct inode *inode;
1886	int status = 0;
1887
1888	if (flags & LOOKUP_RCU)
1889		return -ECHILD;
1890
1891	inode = d_inode(dentry);
1892	task = get_proc_task(inode);
1893	if (!task)
1894		goto out_notask;
1895
1896	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1897	if (IS_ERR_OR_NULL(mm))
1898		goto out;
1899
1900	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1901		down_read(&mm->mmap_sem);
1902		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1903		up_read(&mm->mmap_sem);
1904	}
1905
1906	mmput(mm);
1907
1908	if (exact_vma_exists) {
1909		if (task_dumpable(task)) {
1910			rcu_read_lock();
1911			cred = __task_cred(task);
1912			inode->i_uid = cred->euid;
1913			inode->i_gid = cred->egid;
1914			rcu_read_unlock();
1915		} else {
1916			inode->i_uid = GLOBAL_ROOT_UID;
1917			inode->i_gid = GLOBAL_ROOT_GID;
1918		}
1919		security_task_to_inode(task, inode);
1920		status = 1;
1921	}
1922
1923out:
1924	put_task_struct(task);
1925
1926out_notask:
1927	return status;
1928}
1929
1930static const struct dentry_operations tid_map_files_dentry_operations = {
1931	.d_revalidate	= map_files_d_revalidate,
1932	.d_delete	= pid_delete_dentry,
1933};
1934
1935static int map_files_get_link(struct dentry *dentry, struct path *path)
1936{
1937	unsigned long vm_start, vm_end;
1938	struct vm_area_struct *vma;
1939	struct task_struct *task;
1940	struct mm_struct *mm;
1941	int rc;
1942
1943	rc = -ENOENT;
1944	task = get_proc_task(d_inode(dentry));
1945	if (!task)
1946		goto out;
1947
1948	mm = get_task_mm(task);
1949	put_task_struct(task);
1950	if (!mm)
1951		goto out;
1952
1953	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1954	if (rc)
1955		goto out_mmput;
1956
1957	rc = -ENOENT;
1958	down_read(&mm->mmap_sem);
1959	vma = find_exact_vma(mm, vm_start, vm_end);
1960	if (vma && vma->vm_file) {
1961		*path = vma->vm_file->f_path;
1962		path_get(path);
1963		rc = 0;
1964	}
1965	up_read(&mm->mmap_sem);
1966
1967out_mmput:
1968	mmput(mm);
1969out:
1970	return rc;
1971}
1972
1973struct map_files_info {
1974	fmode_t		mode;
1975	unsigned int	len;
1976	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1977};
1978
1979/*
1980 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1981 * symlinks may be used to bypass permissions on ancestor directories in the
1982 * path to the file in question.
1983 */
1984static const char *
1985proc_map_files_get_link(struct dentry *dentry,
1986			struct inode *inode,
1987		        struct delayed_call *done)
1988{
1989	if (!capable(CAP_SYS_ADMIN))
1990		return ERR_PTR(-EPERM);
1991
1992	return proc_pid_get_link(dentry, inode, done);
1993}
1994
1995/*
1996 * Identical to proc_pid_link_inode_operations except for get_link()
1997 */
1998static const struct inode_operations proc_map_files_link_inode_operations = {
1999	.readlink	= proc_pid_readlink,
2000	.get_link	= proc_map_files_get_link,
2001	.setattr	= proc_setattr,
2002};
2003
2004static int
2005proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2006			   struct task_struct *task, const void *ptr)
2007{
2008	fmode_t mode = (fmode_t)(unsigned long)ptr;
2009	struct proc_inode *ei;
2010	struct inode *inode;
2011
2012	inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2013				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2014				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2015	if (!inode)
2016		return -ENOENT;
2017
2018	ei = PROC_I(inode);
2019	ei->op.proc_get_link = map_files_get_link;
2020
2021	inode->i_op = &proc_map_files_link_inode_operations;
2022	inode->i_size = 64;
 
 
 
 
 
 
2023
2024	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2025	d_add(dentry, inode);
2026
2027	return 0;
2028}
2029
2030static struct dentry *proc_map_files_lookup(struct inode *dir,
2031		struct dentry *dentry, unsigned int flags)
2032{
2033	unsigned long vm_start, vm_end;
2034	struct vm_area_struct *vma;
2035	struct task_struct *task;
2036	int result;
2037	struct mm_struct *mm;
2038
2039	result = -ENOENT;
2040	task = get_proc_task(dir);
2041	if (!task)
2042		goto out;
2043
2044	result = -EACCES;
2045	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2046		goto out_put_task;
2047
2048	result = -ENOENT;
2049	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2050		goto out_put_task;
2051
2052	mm = get_task_mm(task);
2053	if (!mm)
2054		goto out_put_task;
2055
2056	down_read(&mm->mmap_sem);
2057	vma = find_exact_vma(mm, vm_start, vm_end);
2058	if (!vma)
2059		goto out_no_vma;
2060
2061	if (vma->vm_file)
2062		result = proc_map_files_instantiate(dir, dentry, task,
2063				(void *)(unsigned long)vma->vm_file->f_mode);
2064
2065out_no_vma:
2066	up_read(&mm->mmap_sem);
2067	mmput(mm);
2068out_put_task:
2069	put_task_struct(task);
2070out:
2071	return ERR_PTR(result);
2072}
2073
2074static const struct inode_operations proc_map_files_inode_operations = {
2075	.lookup		= proc_map_files_lookup,
2076	.permission	= proc_fd_permission,
2077	.setattr	= proc_setattr,
2078};
2079
2080static int
2081proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2082{
2083	struct vm_area_struct *vma;
2084	struct task_struct *task;
2085	struct mm_struct *mm;
2086	unsigned long nr_files, pos, i;
2087	struct flex_array *fa = NULL;
2088	struct map_files_info info;
2089	struct map_files_info *p;
2090	int ret;
2091
2092	ret = -ENOENT;
2093	task = get_proc_task(file_inode(file));
2094	if (!task)
2095		goto out;
2096
2097	ret = -EACCES;
2098	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2099		goto out_put_task;
2100
2101	ret = 0;
2102	if (!dir_emit_dots(file, ctx))
2103		goto out_put_task;
2104
2105	mm = get_task_mm(task);
2106	if (!mm)
2107		goto out_put_task;
2108	down_read(&mm->mmap_sem);
2109
2110	nr_files = 0;
2111
2112	/*
2113	 * We need two passes here:
2114	 *
2115	 *  1) Collect vmas of mapped files with mmap_sem taken
2116	 *  2) Release mmap_sem and instantiate entries
2117	 *
2118	 * otherwise we get lockdep complained, since filldir()
2119	 * routine might require mmap_sem taken in might_fault().
2120	 */
2121
2122	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2123		if (vma->vm_file && ++pos > ctx->pos)
2124			nr_files++;
2125	}
2126
2127	if (nr_files) {
2128		fa = flex_array_alloc(sizeof(info), nr_files,
2129					GFP_KERNEL);
2130		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2131						GFP_KERNEL)) {
2132			ret = -ENOMEM;
2133			if (fa)
2134				flex_array_free(fa);
2135			up_read(&mm->mmap_sem);
2136			mmput(mm);
2137			goto out_put_task;
2138		}
2139		for (i = 0, vma = mm->mmap, pos = 2; vma;
2140				vma = vma->vm_next) {
2141			if (!vma->vm_file)
2142				continue;
2143			if (++pos <= ctx->pos)
2144				continue;
2145
2146			info.mode = vma->vm_file->f_mode;
2147			info.len = snprintf(info.name,
2148					sizeof(info.name), "%lx-%lx",
2149					vma->vm_start, vma->vm_end);
2150			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2151				BUG();
2152		}
2153	}
2154	up_read(&mm->mmap_sem);
2155
2156	for (i = 0; i < nr_files; i++) {
2157		p = flex_array_get(fa, i);
2158		if (!proc_fill_cache(file, ctx,
2159				      p->name, p->len,
2160				      proc_map_files_instantiate,
2161				      task,
2162				      (void *)(unsigned long)p->mode))
2163			break;
2164		ctx->pos++;
2165	}
2166	if (fa)
2167		flex_array_free(fa);
2168	mmput(mm);
2169
2170out_put_task:
2171	put_task_struct(task);
2172out:
2173	return ret;
2174}
2175
2176static const struct file_operations proc_map_files_operations = {
2177	.read		= generic_read_dir,
2178	.iterate_shared	= proc_map_files_readdir,
2179	.llseek		= generic_file_llseek,
2180};
2181
2182#ifdef CONFIG_CHECKPOINT_RESTORE
2183struct timers_private {
2184	struct pid *pid;
2185	struct task_struct *task;
2186	struct sighand_struct *sighand;
2187	struct pid_namespace *ns;
2188	unsigned long flags;
2189};
2190
2191static void *timers_start(struct seq_file *m, loff_t *pos)
2192{
2193	struct timers_private *tp = m->private;
2194
2195	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2196	if (!tp->task)
2197		return ERR_PTR(-ESRCH);
2198
2199	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2200	if (!tp->sighand)
2201		return ERR_PTR(-ESRCH);
2202
2203	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2204}
2205
2206static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2207{
2208	struct timers_private *tp = m->private;
2209	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2210}
2211
2212static void timers_stop(struct seq_file *m, void *v)
2213{
2214	struct timers_private *tp = m->private;
2215
2216	if (tp->sighand) {
2217		unlock_task_sighand(tp->task, &tp->flags);
2218		tp->sighand = NULL;
2219	}
2220
2221	if (tp->task) {
2222		put_task_struct(tp->task);
2223		tp->task = NULL;
2224	}
2225}
2226
2227static int show_timer(struct seq_file *m, void *v)
2228{
2229	struct k_itimer *timer;
2230	struct timers_private *tp = m->private;
2231	int notify;
2232	static const char * const nstr[] = {
2233		[SIGEV_SIGNAL] = "signal",
2234		[SIGEV_NONE] = "none",
2235		[SIGEV_THREAD] = "thread",
2236	};
2237
2238	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2239	notify = timer->it_sigev_notify;
2240
2241	seq_printf(m, "ID: %d\n", timer->it_id);
2242	seq_printf(m, "signal: %d/%p\n",
2243		   timer->sigq->info.si_signo,
2244		   timer->sigq->info.si_value.sival_ptr);
2245	seq_printf(m, "notify: %s/%s.%d\n",
2246		   nstr[notify & ~SIGEV_THREAD_ID],
2247		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2248		   pid_nr_ns(timer->it_pid, tp->ns));
2249	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2250
2251	return 0;
2252}
2253
2254static const struct seq_operations proc_timers_seq_ops = {
2255	.start	= timers_start,
2256	.next	= timers_next,
2257	.stop	= timers_stop,
2258	.show	= show_timer,
2259};
2260
2261static int proc_timers_open(struct inode *inode, struct file *file)
2262{
2263	struct timers_private *tp;
2264
2265	tp = __seq_open_private(file, &proc_timers_seq_ops,
2266			sizeof(struct timers_private));
2267	if (!tp)
2268		return -ENOMEM;
2269
2270	tp->pid = proc_pid(inode);
2271	tp->ns = inode->i_sb->s_fs_info;
2272	return 0;
2273}
2274
2275static const struct file_operations proc_timers_operations = {
2276	.open		= proc_timers_open,
2277	.read		= seq_read,
2278	.llseek		= seq_lseek,
2279	.release	= seq_release_private,
2280};
2281#endif
2282
2283static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2284					size_t count, loff_t *offset)
2285{
2286	struct inode *inode = file_inode(file);
2287	struct task_struct *p;
2288	u64 slack_ns;
2289	int err;
2290
2291	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2292	if (err < 0)
2293		return err;
2294
2295	p = get_proc_task(inode);
2296	if (!p)
2297		return -ESRCH;
2298
2299	if (p != current) {
2300		if (!capable(CAP_SYS_NICE)) {
2301			count = -EPERM;
2302			goto out;
2303		}
2304
2305		err = security_task_setscheduler(p);
2306		if (err) {
2307			count = err;
2308			goto out;
2309		}
2310	}
2311
2312	task_lock(p);
2313	if (slack_ns == 0)
2314		p->timer_slack_ns = p->default_timer_slack_ns;
2315	else
2316		p->timer_slack_ns = slack_ns;
2317	task_unlock(p);
2318
2319out:
2320	put_task_struct(p);
2321
2322	return count;
2323}
2324
2325static int timerslack_ns_show(struct seq_file *m, void *v)
2326{
2327	struct inode *inode = m->private;
2328	struct task_struct *p;
2329	int err = 0;
2330
2331	p = get_proc_task(inode);
2332	if (!p)
2333		return -ESRCH;
2334
2335	if (p != current) {
2336
2337		if (!capable(CAP_SYS_NICE)) {
2338			err = -EPERM;
2339			goto out;
2340		}
2341		err = security_task_getscheduler(p);
2342		if (err)
2343			goto out;
2344	}
2345
2346	task_lock(p);
2347	seq_printf(m, "%llu\n", p->timer_slack_ns);
2348	task_unlock(p);
2349
2350out:
2351	put_task_struct(p);
2352
2353	return err;
2354}
2355
2356static int timerslack_ns_open(struct inode *inode, struct file *filp)
2357{
2358	return single_open(filp, timerslack_ns_show, inode);
2359}
2360
2361static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2362	.open		= timerslack_ns_open,
2363	.read		= seq_read,
2364	.write		= timerslack_ns_write,
2365	.llseek		= seq_lseek,
2366	.release	= single_release,
2367};
2368
2369static int proc_pident_instantiate(struct inode *dir,
2370	struct dentry *dentry, struct task_struct *task, const void *ptr)
2371{
2372	const struct pid_entry *p = ptr;
2373	struct inode *inode;
2374	struct proc_inode *ei;
2375
2376	inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2377	if (!inode)
2378		goto out;
2379
2380	ei = PROC_I(inode);
 
2381	if (S_ISDIR(inode->i_mode))
2382		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2383	if (p->iop)
2384		inode->i_op = p->iop;
2385	if (p->fop)
2386		inode->i_fop = p->fop;
2387	ei->op = p->op;
2388	d_set_d_op(dentry, &pid_dentry_operations);
2389	d_add(dentry, inode);
2390	/* Close the race of the process dying before we return the dentry */
2391	if (pid_revalidate(dentry, 0))
2392		return 0;
2393out:
2394	return -ENOENT;
2395}
2396
2397static struct dentry *proc_pident_lookup(struct inode *dir, 
2398					 struct dentry *dentry,
2399					 const struct pid_entry *ents,
2400					 unsigned int nents)
2401{
2402	int error;
2403	struct task_struct *task = get_proc_task(dir);
2404	const struct pid_entry *p, *last;
2405
2406	error = -ENOENT;
2407
2408	if (!task)
2409		goto out_no_task;
2410
2411	/*
2412	 * Yes, it does not scale. And it should not. Don't add
2413	 * new entries into /proc/<tgid>/ without very good reasons.
2414	 */
2415	last = &ents[nents];
2416	for (p = ents; p < last; p++) {
2417		if (p->len != dentry->d_name.len)
2418			continue;
2419		if (!memcmp(dentry->d_name.name, p->name, p->len))
2420			break;
2421	}
2422	if (p >= last)
2423		goto out;
2424
2425	error = proc_pident_instantiate(dir, dentry, task, p);
2426out:
2427	put_task_struct(task);
2428out_no_task:
2429	return ERR_PTR(error);
2430}
2431
2432static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2433		const struct pid_entry *ents, unsigned int nents)
2434{
2435	struct task_struct *task = get_proc_task(file_inode(file));
2436	const struct pid_entry *p;
2437
2438	if (!task)
2439		return -ENOENT;
2440
2441	if (!dir_emit_dots(file, ctx))
2442		goto out;
2443
2444	if (ctx->pos >= nents + 2)
2445		goto out;
2446
2447	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2448		if (!proc_fill_cache(file, ctx, p->name, p->len,
2449				proc_pident_instantiate, task, p))
2450			break;
2451		ctx->pos++;
2452	}
2453out:
2454	put_task_struct(task);
2455	return 0;
2456}
2457
2458#ifdef CONFIG_SECURITY
2459static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2460				  size_t count, loff_t *ppos)
2461{
2462	struct inode * inode = file_inode(file);
2463	char *p = NULL;
2464	ssize_t length;
2465	struct task_struct *task = get_proc_task(inode);
2466
2467	if (!task)
2468		return -ESRCH;
2469
2470	length = security_getprocattr(task,
2471				      (char*)file->f_path.dentry->d_name.name,
2472				      &p);
2473	put_task_struct(task);
2474	if (length > 0)
2475		length = simple_read_from_buffer(buf, count, ppos, p, length);
2476	kfree(p);
2477	return length;
2478}
2479
2480static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2481				   size_t count, loff_t *ppos)
2482{
2483	struct inode * inode = file_inode(file);
2484	void *page;
2485	ssize_t length;
2486	struct task_struct *task = get_proc_task(inode);
2487
2488	length = -ESRCH;
2489	if (!task)
2490		goto out_no_task;
2491	if (count > PAGE_SIZE)
2492		count = PAGE_SIZE;
2493
2494	/* No partial writes. */
2495	length = -EINVAL;
2496	if (*ppos != 0)
2497		goto out;
2498
2499	page = memdup_user(buf, count);
2500	if (IS_ERR(page)) {
2501		length = PTR_ERR(page);
2502		goto out;
2503	}
2504
2505	/* Guard against adverse ptrace interaction */
2506	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2507	if (length < 0)
2508		goto out_free;
2509
2510	length = security_setprocattr(task,
2511				      (char*)file->f_path.dentry->d_name.name,
2512				      page, count);
2513	mutex_unlock(&task->signal->cred_guard_mutex);
2514out_free:
2515	kfree(page);
2516out:
2517	put_task_struct(task);
2518out_no_task:
2519	return length;
2520}
2521
2522static const struct file_operations proc_pid_attr_operations = {
2523	.read		= proc_pid_attr_read,
2524	.write		= proc_pid_attr_write,
2525	.llseek		= generic_file_llseek,
2526};
2527
2528static const struct pid_entry attr_dir_stuff[] = {
2529	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2530	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2531	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2532	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2533	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2534	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2535};
2536
2537static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2538{
2539	return proc_pident_readdir(file, ctx, 
2540				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2541}
2542
2543static const struct file_operations proc_attr_dir_operations = {
2544	.read		= generic_read_dir,
2545	.iterate_shared	= proc_attr_dir_readdir,
2546	.llseek		= generic_file_llseek,
2547};
2548
2549static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2550				struct dentry *dentry, unsigned int flags)
2551{
2552	return proc_pident_lookup(dir, dentry,
2553				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2554}
2555
2556static const struct inode_operations proc_attr_dir_inode_operations = {
2557	.lookup		= proc_attr_dir_lookup,
2558	.getattr	= pid_getattr,
2559	.setattr	= proc_setattr,
2560};
2561
2562#endif
2563
2564#ifdef CONFIG_ELF_CORE
2565static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2566					 size_t count, loff_t *ppos)
2567{
2568	struct task_struct *task = get_proc_task(file_inode(file));
2569	struct mm_struct *mm;
2570	char buffer[PROC_NUMBUF];
2571	size_t len;
2572	int ret;
2573
2574	if (!task)
2575		return -ESRCH;
2576
2577	ret = 0;
2578	mm = get_task_mm(task);
2579	if (mm) {
2580		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2581			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2582				MMF_DUMP_FILTER_SHIFT));
2583		mmput(mm);
2584		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2585	}
2586
2587	put_task_struct(task);
2588
2589	return ret;
2590}
2591
2592static ssize_t proc_coredump_filter_write(struct file *file,
2593					  const char __user *buf,
2594					  size_t count,
2595					  loff_t *ppos)
2596{
2597	struct task_struct *task;
2598	struct mm_struct *mm;
2599	unsigned int val;
2600	int ret;
2601	int i;
2602	unsigned long mask;
2603
2604	ret = kstrtouint_from_user(buf, count, 0, &val);
2605	if (ret < 0)
2606		return ret;
2607
2608	ret = -ESRCH;
2609	task = get_proc_task(file_inode(file));
2610	if (!task)
2611		goto out_no_task;
2612
2613	mm = get_task_mm(task);
2614	if (!mm)
2615		goto out_no_mm;
2616	ret = 0;
2617
2618	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2619		if (val & mask)
2620			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2621		else
2622			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2623	}
2624
2625	mmput(mm);
2626 out_no_mm:
2627	put_task_struct(task);
2628 out_no_task:
2629	if (ret < 0)
2630		return ret;
2631	return count;
2632}
2633
2634static const struct file_operations proc_coredump_filter_operations = {
2635	.read		= proc_coredump_filter_read,
2636	.write		= proc_coredump_filter_write,
2637	.llseek		= generic_file_llseek,
2638};
2639#endif
2640
2641#ifdef CONFIG_TASK_IO_ACCOUNTING
2642static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2643{
2644	struct task_io_accounting acct = task->ioac;
2645	unsigned long flags;
2646	int result;
2647
2648	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2649	if (result)
2650		return result;
2651
2652	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2653		result = -EACCES;
2654		goto out_unlock;
2655	}
2656
2657	if (whole && lock_task_sighand(task, &flags)) {
2658		struct task_struct *t = task;
2659
2660		task_io_accounting_add(&acct, &task->signal->ioac);
2661		while_each_thread(task, t)
2662			task_io_accounting_add(&acct, &t->ioac);
2663
2664		unlock_task_sighand(task, &flags);
2665	}
2666	seq_printf(m,
2667		   "rchar: %llu\n"
2668		   "wchar: %llu\n"
2669		   "syscr: %llu\n"
2670		   "syscw: %llu\n"
2671		   "read_bytes: %llu\n"
2672		   "write_bytes: %llu\n"
2673		   "cancelled_write_bytes: %llu\n",
2674		   (unsigned long long)acct.rchar,
2675		   (unsigned long long)acct.wchar,
2676		   (unsigned long long)acct.syscr,
2677		   (unsigned long long)acct.syscw,
2678		   (unsigned long long)acct.read_bytes,
2679		   (unsigned long long)acct.write_bytes,
2680		   (unsigned long long)acct.cancelled_write_bytes);
2681	result = 0;
2682
2683out_unlock:
2684	mutex_unlock(&task->signal->cred_guard_mutex);
2685	return result;
2686}
2687
2688static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2689				  struct pid *pid, struct task_struct *task)
2690{
2691	return do_io_accounting(task, m, 0);
2692}
2693
2694static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2695				   struct pid *pid, struct task_struct *task)
2696{
2697	return do_io_accounting(task, m, 1);
2698}
2699#endif /* CONFIG_TASK_IO_ACCOUNTING */
2700
2701#ifdef CONFIG_USER_NS
2702static int proc_id_map_open(struct inode *inode, struct file *file,
2703	const struct seq_operations *seq_ops)
2704{
2705	struct user_namespace *ns = NULL;
2706	struct task_struct *task;
2707	struct seq_file *seq;
2708	int ret = -EINVAL;
2709
2710	task = get_proc_task(inode);
2711	if (task) {
2712		rcu_read_lock();
2713		ns = get_user_ns(task_cred_xxx(task, user_ns));
2714		rcu_read_unlock();
2715		put_task_struct(task);
2716	}
2717	if (!ns)
2718		goto err;
2719
2720	ret = seq_open(file, seq_ops);
2721	if (ret)
2722		goto err_put_ns;
2723
2724	seq = file->private_data;
2725	seq->private = ns;
2726
2727	return 0;
2728err_put_ns:
2729	put_user_ns(ns);
2730err:
2731	return ret;
2732}
2733
2734static int proc_id_map_release(struct inode *inode, struct file *file)
2735{
2736	struct seq_file *seq = file->private_data;
2737	struct user_namespace *ns = seq->private;
2738	put_user_ns(ns);
2739	return seq_release(inode, file);
2740}
2741
2742static int proc_uid_map_open(struct inode *inode, struct file *file)
2743{
2744	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2745}
2746
2747static int proc_gid_map_open(struct inode *inode, struct file *file)
2748{
2749	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2750}
2751
2752static int proc_projid_map_open(struct inode *inode, struct file *file)
2753{
2754	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2755}
2756
2757static const struct file_operations proc_uid_map_operations = {
2758	.open		= proc_uid_map_open,
2759	.write		= proc_uid_map_write,
2760	.read		= seq_read,
2761	.llseek		= seq_lseek,
2762	.release	= proc_id_map_release,
2763};
2764
2765static const struct file_operations proc_gid_map_operations = {
2766	.open		= proc_gid_map_open,
2767	.write		= proc_gid_map_write,
2768	.read		= seq_read,
2769	.llseek		= seq_lseek,
2770	.release	= proc_id_map_release,
2771};
2772
2773static const struct file_operations proc_projid_map_operations = {
2774	.open		= proc_projid_map_open,
2775	.write		= proc_projid_map_write,
2776	.read		= seq_read,
2777	.llseek		= seq_lseek,
2778	.release	= proc_id_map_release,
2779};
2780
2781static int proc_setgroups_open(struct inode *inode, struct file *file)
2782{
2783	struct user_namespace *ns = NULL;
2784	struct task_struct *task;
2785	int ret;
2786
2787	ret = -ESRCH;
2788	task = get_proc_task(inode);
2789	if (task) {
2790		rcu_read_lock();
2791		ns = get_user_ns(task_cred_xxx(task, user_ns));
2792		rcu_read_unlock();
2793		put_task_struct(task);
2794	}
2795	if (!ns)
2796		goto err;
2797
2798	if (file->f_mode & FMODE_WRITE) {
2799		ret = -EACCES;
2800		if (!ns_capable(ns, CAP_SYS_ADMIN))
2801			goto err_put_ns;
2802	}
2803
2804	ret = single_open(file, &proc_setgroups_show, ns);
2805	if (ret)
2806		goto err_put_ns;
2807
2808	return 0;
2809err_put_ns:
2810	put_user_ns(ns);
2811err:
2812	return ret;
2813}
2814
2815static int proc_setgroups_release(struct inode *inode, struct file *file)
2816{
2817	struct seq_file *seq = file->private_data;
2818	struct user_namespace *ns = seq->private;
2819	int ret = single_release(inode, file);
2820	put_user_ns(ns);
2821	return ret;
2822}
2823
2824static const struct file_operations proc_setgroups_operations = {
2825	.open		= proc_setgroups_open,
2826	.write		= proc_setgroups_write,
2827	.read		= seq_read,
2828	.llseek		= seq_lseek,
2829	.release	= proc_setgroups_release,
2830};
2831#endif /* CONFIG_USER_NS */
2832
2833static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2834				struct pid *pid, struct task_struct *task)
2835{
2836	int err = lock_trace(task);
2837	if (!err) {
2838		seq_printf(m, "%08x\n", task->personality);
2839		unlock_trace(task);
2840	}
2841	return err;
2842}
2843
2844/*
2845 * Thread groups
2846 */
2847static const struct file_operations proc_task_operations;
2848static const struct inode_operations proc_task_inode_operations;
2849
2850static const struct pid_entry tgid_base_stuff[] = {
2851	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2852	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2853	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2854	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2855	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2856#ifdef CONFIG_NET
2857	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2858#endif
2859	REG("environ",    S_IRUSR, proc_environ_operations),
2860	REG("auxv",       S_IRUSR, proc_auxv_operations),
2861	ONE("status",     S_IRUGO, proc_pid_status),
2862	ONE("personality", S_IRUSR, proc_pid_personality),
2863	ONE("limits",	  S_IRUGO, proc_pid_limits),
2864#ifdef CONFIG_SCHED_DEBUG
2865	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2866#endif
2867#ifdef CONFIG_SCHED_AUTOGROUP
2868	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2869#endif
2870	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2871#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2872	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2873#endif
2874	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2875	ONE("stat",       S_IRUGO, proc_tgid_stat),
2876	ONE("statm",      S_IRUGO, proc_pid_statm),
2877	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2878#ifdef CONFIG_NUMA
2879	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2880#endif
2881	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2882	LNK("cwd",        proc_cwd_link),
2883	LNK("root",       proc_root_link),
2884	LNK("exe",        proc_exe_link),
2885	REG("mounts",     S_IRUGO, proc_mounts_operations),
2886	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2887	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2888#ifdef CONFIG_PROC_PAGE_MONITOR
2889	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2890	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2891	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2892#endif
2893#ifdef CONFIG_SECURITY
2894	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2895#endif
2896#ifdef CONFIG_KALLSYMS
2897	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2898#endif
2899#ifdef CONFIG_STACKTRACE
2900	ONE("stack",      S_IRUSR, proc_pid_stack),
2901#endif
2902#ifdef CONFIG_SCHED_INFO
2903	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2904#endif
2905#ifdef CONFIG_LATENCYTOP
2906	REG("latency",  S_IRUGO, proc_lstats_operations),
2907#endif
2908#ifdef CONFIG_PROC_PID_CPUSET
2909	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2910#endif
2911#ifdef CONFIG_CGROUPS
2912	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2913#endif
2914	ONE("oom_score",  S_IRUGO, proc_oom_score),
2915	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2916	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2917#ifdef CONFIG_AUDITSYSCALL
2918	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2919	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2920#endif
2921#ifdef CONFIG_FAULT_INJECTION
2922	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2923#endif
2924#ifdef CONFIG_ELF_CORE
2925	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2926#endif
2927#ifdef CONFIG_TASK_IO_ACCOUNTING
2928	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2929#endif
2930#ifdef CONFIG_HARDWALL
2931	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2932#endif
2933#ifdef CONFIG_USER_NS
2934	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2935	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2936	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2937	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2938#endif
2939#ifdef CONFIG_CHECKPOINT_RESTORE
2940	REG("timers",	  S_IRUGO, proc_timers_operations),
2941#endif
2942	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2943};
2944
2945static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2946{
2947	return proc_pident_readdir(file, ctx,
2948				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2949}
2950
2951static const struct file_operations proc_tgid_base_operations = {
2952	.read		= generic_read_dir,
2953	.iterate_shared	= proc_tgid_base_readdir,
2954	.llseek		= generic_file_llseek,
2955};
2956
2957static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2958{
2959	return proc_pident_lookup(dir, dentry,
2960				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2961}
2962
2963static const struct inode_operations proc_tgid_base_inode_operations = {
2964	.lookup		= proc_tgid_base_lookup,
2965	.getattr	= pid_getattr,
2966	.setattr	= proc_setattr,
2967	.permission	= proc_pid_permission,
2968};
2969
2970static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2971{
2972	struct dentry *dentry, *leader, *dir;
2973	char buf[PROC_NUMBUF];
2974	struct qstr name;
2975
2976	name.name = buf;
2977	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2978	/* no ->d_hash() rejects on procfs */
2979	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2980	if (dentry) {
2981		d_invalidate(dentry);
2982		dput(dentry);
2983	}
2984
2985	if (pid == tgid)
2986		return;
2987
2988	name.name = buf;
2989	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2990	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2991	if (!leader)
2992		goto out;
2993
2994	name.name = "task";
2995	name.len = strlen(name.name);
2996	dir = d_hash_and_lookup(leader, &name);
2997	if (!dir)
2998		goto out_put_leader;
2999
3000	name.name = buf;
3001	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3002	dentry = d_hash_and_lookup(dir, &name);
3003	if (dentry) {
3004		d_invalidate(dentry);
3005		dput(dentry);
3006	}
3007
3008	dput(dir);
3009out_put_leader:
3010	dput(leader);
3011out:
3012	return;
3013}
3014
3015/**
3016 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3017 * @task: task that should be flushed.
3018 *
3019 * When flushing dentries from proc, one needs to flush them from global
3020 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3021 * in. This call is supposed to do all of this job.
3022 *
3023 * Looks in the dcache for
3024 * /proc/@pid
3025 * /proc/@tgid/task/@pid
3026 * if either directory is present flushes it and all of it'ts children
3027 * from the dcache.
3028 *
3029 * It is safe and reasonable to cache /proc entries for a task until
3030 * that task exits.  After that they just clog up the dcache with
3031 * useless entries, possibly causing useful dcache entries to be
3032 * flushed instead.  This routine is proved to flush those useless
3033 * dcache entries at process exit time.
3034 *
3035 * NOTE: This routine is just an optimization so it does not guarantee
3036 *       that no dcache entries will exist at process exit time it
3037 *       just makes it very unlikely that any will persist.
3038 */
3039
3040void proc_flush_task(struct task_struct *task)
3041{
3042	int i;
3043	struct pid *pid, *tgid;
3044	struct upid *upid;
3045
3046	pid = task_pid(task);
3047	tgid = task_tgid(task);
3048
3049	for (i = 0; i <= pid->level; i++) {
3050		upid = &pid->numbers[i];
3051		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3052					tgid->numbers[i].nr);
3053	}
3054}
3055
3056static int proc_pid_instantiate(struct inode *dir,
3057				   struct dentry * dentry,
3058				   struct task_struct *task, const void *ptr)
3059{
3060	struct inode *inode;
3061
3062	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3063	if (!inode)
3064		goto out;
3065
 
3066	inode->i_op = &proc_tgid_base_inode_operations;
3067	inode->i_fop = &proc_tgid_base_operations;
3068	inode->i_flags|=S_IMMUTABLE;
3069
3070	set_nlink(inode, nlink_tgid);
 
3071
3072	d_set_d_op(dentry, &pid_dentry_operations);
3073
3074	d_add(dentry, inode);
3075	/* Close the race of the process dying before we return the dentry */
3076	if (pid_revalidate(dentry, 0))
3077		return 0;
3078out:
3079	return -ENOENT;
3080}
3081
3082struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3083{
3084	int result = -ENOENT;
3085	struct task_struct *task;
3086	unsigned tgid;
3087	struct pid_namespace *ns;
3088
3089	tgid = name_to_int(&dentry->d_name);
3090	if (tgid == ~0U)
3091		goto out;
3092
3093	ns = dentry->d_sb->s_fs_info;
3094	rcu_read_lock();
3095	task = find_task_by_pid_ns(tgid, ns);
3096	if (task)
3097		get_task_struct(task);
3098	rcu_read_unlock();
3099	if (!task)
3100		goto out;
3101
3102	result = proc_pid_instantiate(dir, dentry, task, NULL);
3103	put_task_struct(task);
3104out:
3105	return ERR_PTR(result);
3106}
3107
3108/*
3109 * Find the first task with tgid >= tgid
3110 *
3111 */
3112struct tgid_iter {
3113	unsigned int tgid;
3114	struct task_struct *task;
3115};
3116static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3117{
3118	struct pid *pid;
3119
3120	if (iter.task)
3121		put_task_struct(iter.task);
3122	rcu_read_lock();
3123retry:
3124	iter.task = NULL;
3125	pid = find_ge_pid(iter.tgid, ns);
3126	if (pid) {
3127		iter.tgid = pid_nr_ns(pid, ns);
3128		iter.task = pid_task(pid, PIDTYPE_PID);
3129		/* What we to know is if the pid we have find is the
3130		 * pid of a thread_group_leader.  Testing for task
3131		 * being a thread_group_leader is the obvious thing
3132		 * todo but there is a window when it fails, due to
3133		 * the pid transfer logic in de_thread.
3134		 *
3135		 * So we perform the straight forward test of seeing
3136		 * if the pid we have found is the pid of a thread
3137		 * group leader, and don't worry if the task we have
3138		 * found doesn't happen to be a thread group leader.
3139		 * As we don't care in the case of readdir.
3140		 */
3141		if (!iter.task || !has_group_leader_pid(iter.task)) {
3142			iter.tgid += 1;
3143			goto retry;
3144		}
3145		get_task_struct(iter.task);
3146	}
3147	rcu_read_unlock();
3148	return iter;
3149}
3150
3151#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3152
3153/* for the /proc/ directory itself, after non-process stuff has been done */
3154int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3155{
3156	struct tgid_iter iter;
3157	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3158	loff_t pos = ctx->pos;
3159
3160	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3161		return 0;
3162
3163	if (pos == TGID_OFFSET - 2) {
3164		struct inode *inode = d_inode(ns->proc_self);
3165		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3166			return 0;
3167		ctx->pos = pos = pos + 1;
3168	}
3169	if (pos == TGID_OFFSET - 1) {
3170		struct inode *inode = d_inode(ns->proc_thread_self);
3171		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3172			return 0;
3173		ctx->pos = pos = pos + 1;
3174	}
3175	iter.tgid = pos - TGID_OFFSET;
3176	iter.task = NULL;
3177	for (iter = next_tgid(ns, iter);
3178	     iter.task;
3179	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3180		char name[PROC_NUMBUF];
3181		int len;
3182
3183		cond_resched();
3184		if (!has_pid_permissions(ns, iter.task, 2))
3185			continue;
3186
3187		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3188		ctx->pos = iter.tgid + TGID_OFFSET;
3189		if (!proc_fill_cache(file, ctx, name, len,
3190				     proc_pid_instantiate, iter.task, NULL)) {
3191			put_task_struct(iter.task);
3192			return 0;
3193		}
3194	}
3195	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3196	return 0;
3197}
3198
3199/*
3200 * proc_tid_comm_permission is a special permission function exclusively
3201 * used for the node /proc/<pid>/task/<tid>/comm.
3202 * It bypasses generic permission checks in the case where a task of the same
3203 * task group attempts to access the node.
3204 * The rationale behind this is that glibc and bionic access this node for
3205 * cross thread naming (pthread_set/getname_np(!self)). However, if
3206 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3207 * which locks out the cross thread naming implementation.
3208 * This function makes sure that the node is always accessible for members of
3209 * same thread group.
3210 */
3211static int proc_tid_comm_permission(struct inode *inode, int mask)
3212{
3213	bool is_same_tgroup;
3214	struct task_struct *task;
3215
3216	task = get_proc_task(inode);
3217	if (!task)
3218		return -ESRCH;
3219	is_same_tgroup = same_thread_group(current, task);
3220	put_task_struct(task);
3221
3222	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3223		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3224		 * read or written by the members of the corresponding
3225		 * thread group.
3226		 */
3227		return 0;
3228	}
3229
3230	return generic_permission(inode, mask);
3231}
3232
3233static const struct inode_operations proc_tid_comm_inode_operations = {
3234		.permission = proc_tid_comm_permission,
3235};
3236
3237/*
3238 * Tasks
3239 */
3240static const struct pid_entry tid_base_stuff[] = {
3241	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3242	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3243	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3244#ifdef CONFIG_NET
3245	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3246#endif
3247	REG("environ",   S_IRUSR, proc_environ_operations),
3248	REG("auxv",      S_IRUSR, proc_auxv_operations),
3249	ONE("status",    S_IRUGO, proc_pid_status),
3250	ONE("personality", S_IRUSR, proc_pid_personality),
3251	ONE("limits",	 S_IRUGO, proc_pid_limits),
3252#ifdef CONFIG_SCHED_DEBUG
3253	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3254#endif
3255	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3256			 &proc_tid_comm_inode_operations,
3257			 &proc_pid_set_comm_operations, {}),
3258#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3259	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3260#endif
3261	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3262	ONE("stat",      S_IRUGO, proc_tid_stat),
3263	ONE("statm",     S_IRUGO, proc_pid_statm),
3264	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3265#ifdef CONFIG_PROC_CHILDREN
3266	REG("children",  S_IRUGO, proc_tid_children_operations),
3267#endif
3268#ifdef CONFIG_NUMA
3269	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3270#endif
3271	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3272	LNK("cwd",       proc_cwd_link),
3273	LNK("root",      proc_root_link),
3274	LNK("exe",       proc_exe_link),
3275	REG("mounts",    S_IRUGO, proc_mounts_operations),
3276	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3277#ifdef CONFIG_PROC_PAGE_MONITOR
3278	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3279	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3280	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3281#endif
3282#ifdef CONFIG_SECURITY
3283	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3284#endif
3285#ifdef CONFIG_KALLSYMS
3286	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3287#endif
3288#ifdef CONFIG_STACKTRACE
3289	ONE("stack",      S_IRUSR, proc_pid_stack),
3290#endif
3291#ifdef CONFIG_SCHED_INFO
3292	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3293#endif
3294#ifdef CONFIG_LATENCYTOP
3295	REG("latency",  S_IRUGO, proc_lstats_operations),
3296#endif
3297#ifdef CONFIG_PROC_PID_CPUSET
3298	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3299#endif
3300#ifdef CONFIG_CGROUPS
3301	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3302#endif
3303	ONE("oom_score", S_IRUGO, proc_oom_score),
3304	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3305	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3306#ifdef CONFIG_AUDITSYSCALL
3307	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3308	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3309#endif
3310#ifdef CONFIG_FAULT_INJECTION
3311	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3312#endif
3313#ifdef CONFIG_TASK_IO_ACCOUNTING
3314	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3315#endif
3316#ifdef CONFIG_HARDWALL
3317	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3318#endif
3319#ifdef CONFIG_USER_NS
3320	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3321	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3322	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3323	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3324#endif
3325};
3326
3327static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3328{
3329	return proc_pident_readdir(file, ctx,
3330				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3331}
3332
3333static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3334{
3335	return proc_pident_lookup(dir, dentry,
3336				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3337}
3338
3339static const struct file_operations proc_tid_base_operations = {
3340	.read		= generic_read_dir,
3341	.iterate_shared	= proc_tid_base_readdir,
3342	.llseek		= generic_file_llseek,
3343};
3344
3345static const struct inode_operations proc_tid_base_inode_operations = {
3346	.lookup		= proc_tid_base_lookup,
3347	.getattr	= pid_getattr,
3348	.setattr	= proc_setattr,
3349};
3350
3351static int proc_task_instantiate(struct inode *dir,
3352	struct dentry *dentry, struct task_struct *task, const void *ptr)
3353{
3354	struct inode *inode;
3355	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3356
3357	if (!inode)
3358		goto out;
 
3359	inode->i_op = &proc_tid_base_inode_operations;
3360	inode->i_fop = &proc_tid_base_operations;
3361	inode->i_flags|=S_IMMUTABLE;
3362
3363	set_nlink(inode, nlink_tid);
 
3364
3365	d_set_d_op(dentry, &pid_dentry_operations);
3366
3367	d_add(dentry, inode);
3368	/* Close the race of the process dying before we return the dentry */
3369	if (pid_revalidate(dentry, 0))
3370		return 0;
3371out:
3372	return -ENOENT;
3373}
3374
3375static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3376{
3377	int result = -ENOENT;
3378	struct task_struct *task;
3379	struct task_struct *leader = get_proc_task(dir);
3380	unsigned tid;
3381	struct pid_namespace *ns;
3382
3383	if (!leader)
3384		goto out_no_task;
3385
3386	tid = name_to_int(&dentry->d_name);
3387	if (tid == ~0U)
3388		goto out;
3389
3390	ns = dentry->d_sb->s_fs_info;
3391	rcu_read_lock();
3392	task = find_task_by_pid_ns(tid, ns);
3393	if (task)
3394		get_task_struct(task);
3395	rcu_read_unlock();
3396	if (!task)
3397		goto out;
3398	if (!same_thread_group(leader, task))
3399		goto out_drop_task;
3400
3401	result = proc_task_instantiate(dir, dentry, task, NULL);
3402out_drop_task:
3403	put_task_struct(task);
3404out:
3405	put_task_struct(leader);
3406out_no_task:
3407	return ERR_PTR(result);
3408}
3409
3410/*
3411 * Find the first tid of a thread group to return to user space.
3412 *
3413 * Usually this is just the thread group leader, but if the users
3414 * buffer was too small or there was a seek into the middle of the
3415 * directory we have more work todo.
3416 *
3417 * In the case of a short read we start with find_task_by_pid.
3418 *
3419 * In the case of a seek we start with the leader and walk nr
3420 * threads past it.
3421 */
3422static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3423					struct pid_namespace *ns)
3424{
3425	struct task_struct *pos, *task;
3426	unsigned long nr = f_pos;
3427
3428	if (nr != f_pos)	/* 32bit overflow? */
3429		return NULL;
3430
3431	rcu_read_lock();
3432	task = pid_task(pid, PIDTYPE_PID);
3433	if (!task)
3434		goto fail;
3435
3436	/* Attempt to start with the tid of a thread */
3437	if (tid && nr) {
3438		pos = find_task_by_pid_ns(tid, ns);
3439		if (pos && same_thread_group(pos, task))
3440			goto found;
3441	}
3442
3443	/* If nr exceeds the number of threads there is nothing todo */
3444	if (nr >= get_nr_threads(task))
3445		goto fail;
3446
3447	/* If we haven't found our starting place yet start
3448	 * with the leader and walk nr threads forward.
3449	 */
3450	pos = task = task->group_leader;
3451	do {
3452		if (!nr--)
3453			goto found;
3454	} while_each_thread(task, pos);
3455fail:
3456	pos = NULL;
3457	goto out;
3458found:
3459	get_task_struct(pos);
3460out:
3461	rcu_read_unlock();
3462	return pos;
3463}
3464
3465/*
3466 * Find the next thread in the thread list.
3467 * Return NULL if there is an error or no next thread.
3468 *
3469 * The reference to the input task_struct is released.
3470 */
3471static struct task_struct *next_tid(struct task_struct *start)
3472{
3473	struct task_struct *pos = NULL;
3474	rcu_read_lock();
3475	if (pid_alive(start)) {
3476		pos = next_thread(start);
3477		if (thread_group_leader(pos))
3478			pos = NULL;
3479		else
3480			get_task_struct(pos);
3481	}
3482	rcu_read_unlock();
3483	put_task_struct(start);
3484	return pos;
3485}
3486
3487/* for the /proc/TGID/task/ directories */
3488static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3489{
3490	struct inode *inode = file_inode(file);
3491	struct task_struct *task;
3492	struct pid_namespace *ns;
3493	int tid;
3494
3495	if (proc_inode_is_dead(inode))
3496		return -ENOENT;
3497
3498	if (!dir_emit_dots(file, ctx))
3499		return 0;
3500
3501	/* f_version caches the tgid value that the last readdir call couldn't
3502	 * return. lseek aka telldir automagically resets f_version to 0.
3503	 */
3504	ns = inode->i_sb->s_fs_info;
3505	tid = (int)file->f_version;
3506	file->f_version = 0;
3507	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3508	     task;
3509	     task = next_tid(task), ctx->pos++) {
3510		char name[PROC_NUMBUF];
3511		int len;
3512		tid = task_pid_nr_ns(task, ns);
3513		len = snprintf(name, sizeof(name), "%d", tid);
3514		if (!proc_fill_cache(file, ctx, name, len,
3515				proc_task_instantiate, task, NULL)) {
3516			/* returning this tgid failed, save it as the first
3517			 * pid for the next readir call */
3518			file->f_version = (u64)tid;
3519			put_task_struct(task);
3520			break;
3521		}
3522	}
3523
3524	return 0;
3525}
3526
3527static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3528{
3529	struct inode *inode = d_inode(dentry);
3530	struct task_struct *p = get_proc_task(inode);
3531	generic_fillattr(inode, stat);
3532
3533	if (p) {
3534		stat->nlink += get_nr_threads(p);
3535		put_task_struct(p);
3536	}
3537
3538	return 0;
3539}
3540
3541static const struct inode_operations proc_task_inode_operations = {
3542	.lookup		= proc_task_lookup,
3543	.getattr	= proc_task_getattr,
3544	.setattr	= proc_setattr,
3545	.permission	= proc_pid_permission,
3546};
3547
3548static const struct file_operations proc_task_operations = {
3549	.read		= generic_read_dir,
3550	.iterate_shared	= proc_task_readdir,
3551	.llseek		= generic_file_llseek,
3552};
3553
3554void __init set_proc_pid_nlink(void)
3555{
3556	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3557	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3558}