Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
 
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
 
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/flex_array.h>
 
 
 
 
  89#include <linux/posix-timers.h>
  90#ifdef CONFIG_HARDWALL
  91#include <asm/hardwall.h>
  92#endif
 
 
  93#include <trace/events/oom.h>
  94#include "internal.h"
  95#include "fd.h"
  96
 
 
  97/* NOTE:
  98 *	Implementing inode permission operations in /proc is almost
  99 *	certainly an error.  Permission checks need to happen during
 100 *	each system call not at open time.  The reason is that most of
 101 *	what we wish to check for permissions in /proc varies at runtime.
 102 *
 103 *	The classic example of a problem is opening file descriptors
 104 *	in /proc for a task before it execs a suid executable.
 105 */
 106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107struct pid_entry {
 108	const char *name;
 109	int len;
 110	umode_t mode;
 111	const struct inode_operations *iop;
 112	const struct file_operations *fop;
 113	union proc_op op;
 114};
 115
 116#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 117	.name = (NAME),					\
 118	.len  = sizeof(NAME) - 1,			\
 119	.mode = MODE,					\
 120	.iop  = IOP,					\
 121	.fop  = FOP,					\
 122	.op   = OP,					\
 123}
 124
 125#define DIR(NAME, MODE, iops, fops)	\
 126	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 127#define LNK(NAME, get_link)					\
 128	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 129		&proc_pid_link_inode_operations, NULL,		\
 130		{ .proc_get_link = get_link } )
 131#define REG(NAME, MODE, fops)				\
 132	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 133#define ONE(NAME, MODE, show)				\
 134	NOD(NAME, (S_IFREG|(MODE)), 			\
 135		NULL, &proc_single_file_operations,	\
 136		{ .proc_show = show } )
 
 
 
 
 137
 138/*
 139 * Count the number of hardlinks for the pid_entry table, excluding the .
 140 * and .. links.
 141 */
 142static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 143	unsigned int n)
 144{
 145	unsigned int i;
 146	unsigned int count;
 147
 148	count = 0;
 149	for (i = 0; i < n; ++i) {
 150		if (S_ISDIR(entries[i].mode))
 151			++count;
 152	}
 153
 154	return count;
 155}
 156
 157static int get_task_root(struct task_struct *task, struct path *root)
 158{
 159	int result = -ENOENT;
 160
 161	task_lock(task);
 162	if (task->fs) {
 163		get_fs_root(task->fs, root);
 164		result = 0;
 165	}
 166	task_unlock(task);
 167	return result;
 168}
 169
 170static int proc_cwd_link(struct dentry *dentry, struct path *path)
 171{
 172	struct task_struct *task = get_proc_task(d_inode(dentry));
 173	int result = -ENOENT;
 174
 175	if (task) {
 176		task_lock(task);
 177		if (task->fs) {
 178			get_fs_pwd(task->fs, path);
 179			result = 0;
 180		}
 181		task_unlock(task);
 182		put_task_struct(task);
 183	}
 184	return result;
 185}
 186
 187static int proc_root_link(struct dentry *dentry, struct path *path)
 188{
 189	struct task_struct *task = get_proc_task(d_inode(dentry));
 190	int result = -ENOENT;
 191
 192	if (task) {
 193		result = get_task_root(task, path);
 194		put_task_struct(task);
 195	}
 196	return result;
 197}
 198
 199static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 200				     size_t _count, loff_t *pos)
 
 
 
 
 
 201{
 202	struct task_struct *tsk;
 203	struct mm_struct *mm;
 204	char *page;
 205	unsigned long count = _count;
 206	unsigned long arg_start, arg_end, env_start, env_end;
 207	unsigned long len1, len2, len;
 208	unsigned long p;
 209	char c;
 210	ssize_t rv;
 211
 212	BUG_ON(*pos < 0);
 213
 214	tsk = get_proc_task(file_inode(file));
 215	if (!tsk)
 216		return -ESRCH;
 217	mm = get_task_mm(tsk);
 218	put_task_struct(tsk);
 219	if (!mm)
 220		return 0;
 221	/* Check if process spawned far enough to have cmdline. */
 222	if (!mm->env_end) {
 223		rv = 0;
 224		goto out_mmput;
 225	}
 226
 227	page = (char *)__get_free_page(GFP_TEMPORARY);
 228	if (!page) {
 229		rv = -ENOMEM;
 230		goto out_mmput;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231	}
 
 
 
 232
 233	down_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 234	arg_start = mm->arg_start;
 235	arg_end = mm->arg_end;
 236	env_start = mm->env_start;
 237	env_end = mm->env_end;
 238	up_read(&mm->mmap_sem);
 239
 240	BUG_ON(arg_start > arg_end);
 241	BUG_ON(env_start > env_end);
 242
 243	len1 = arg_end - arg_start;
 244	len2 = env_end - env_start;
 245
 246	/* Empty ARGV. */
 247	if (len1 == 0) {
 248		rv = 0;
 249		goto out_free_page;
 250	}
 251	/*
 252	 * Inherently racy -- command line shares address space
 253	 * with code and data.
 
 254	 */
 255	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 256	if (rv <= 0)
 257		goto out_free_page;
 258
 259	rv = 0;
 260
 261	if (c == '\0') {
 262		/* Command line (set of strings) occupies whole ARGV. */
 263		if (len1 <= *pos)
 264			goto out_free_page;
 265
 266		p = arg_start + *pos;
 267		len = len1 - *pos;
 268		while (count > 0 && len > 0) {
 269			unsigned int _count;
 270			int nr_read;
 271
 272			_count = min3(count, len, PAGE_SIZE);
 273			nr_read = access_remote_vm(mm, p, page, _count, 0);
 274			if (nr_read < 0)
 275				rv = nr_read;
 276			if (nr_read <= 0)
 277				goto out_free_page;
 278
 279			if (copy_to_user(buf, page, nr_read)) {
 280				rv = -EFAULT;
 281				goto out_free_page;
 282			}
 283
 284			p	+= nr_read;
 285			len	-= nr_read;
 286			buf	+= nr_read;
 287			count	-= nr_read;
 288			rv	+= nr_read;
 289		}
 290	} else {
 291		/*
 292		 * Command line (1 string) occupies ARGV and maybe
 293		 * extends into ENVP.
 294		 */
 295		if (len1 + len2 <= *pos)
 296			goto skip_argv_envp;
 297		if (len1 <= *pos)
 298			goto skip_argv;
 299
 300		p = arg_start + *pos;
 301		len = len1 - *pos;
 302		while (count > 0 && len > 0) {
 303			unsigned int _count, l;
 304			int nr_read;
 305			bool final;
 306
 307			_count = min3(count, len, PAGE_SIZE);
 308			nr_read = access_remote_vm(mm, p, page, _count, 0);
 309			if (nr_read < 0)
 310				rv = nr_read;
 311			if (nr_read <= 0)
 312				goto out_free_page;
 313
 314			/*
 315			 * Command line can be shorter than whole ARGV
 316			 * even if last "marker" byte says it is not.
 317			 */
 318			final = false;
 319			l = strnlen(page, nr_read);
 320			if (l < nr_read) {
 321				nr_read = l;
 322				final = true;
 323			}
 324
 325			if (copy_to_user(buf, page, nr_read)) {
 326				rv = -EFAULT;
 327				goto out_free_page;
 328			}
 329
 330			p	+= nr_read;
 331			len	-= nr_read;
 332			buf	+= nr_read;
 333			count	-= nr_read;
 334			rv	+= nr_read;
 335
 336			if (final)
 337				goto out_free_page;
 338		}
 339skip_argv:
 340		/*
 341		 * Command line (1 string) occupies ARGV and
 342		 * extends into ENVP.
 343		 */
 344		if (len1 <= *pos) {
 345			p = env_start + *pos - len1;
 346			len = len1 + len2 - *pos;
 347		} else {
 348			p = env_start;
 349			len = len2;
 350		}
 351		while (count > 0 && len > 0) {
 352			unsigned int _count, l;
 353			int nr_read;
 354			bool final;
 355
 356			_count = min3(count, len, PAGE_SIZE);
 357			nr_read = access_remote_vm(mm, p, page, _count, 0);
 358			if (nr_read < 0)
 359				rv = nr_read;
 360			if (nr_read <= 0)
 361				goto out_free_page;
 362
 363			/* Find EOS. */
 364			final = false;
 365			l = strnlen(page, nr_read);
 366			if (l < nr_read) {
 367				nr_read = l;
 368				final = true;
 369			}
 370
 371			if (copy_to_user(buf, page, nr_read)) {
 372				rv = -EFAULT;
 373				goto out_free_page;
 374			}
 375
 376			p	+= nr_read;
 377			len	-= nr_read;
 378			buf	+= nr_read;
 379			count	-= nr_read;
 380			rv	+= nr_read;
 381
 382			if (final)
 383				goto out_free_page;
 384		}
 385skip_argv_envp:
 386		;
 387	}
 388
 389out_free_page:
 390	free_page((unsigned long)page);
 391out_mmput:
 392	mmput(mm);
 393	if (rv > 0)
 394		*pos += rv;
 395	return rv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 396}
 397
 398static const struct file_operations proc_pid_cmdline_ops = {
 399	.read	= proc_pid_cmdline_read,
 400	.llseek	= generic_file_llseek,
 401};
 402
 403static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
 404			 struct pid *pid, struct task_struct *task)
 405{
 406	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
 407	if (mm && !IS_ERR(mm)) {
 408		unsigned int nwords = 0;
 409		do {
 410			nwords += 2;
 411		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 412		seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
 413		mmput(mm);
 414		return 0;
 415	} else
 416		return PTR_ERR(mm);
 417}
 418
 419
 420#ifdef CONFIG_KALLSYMS
 421/*
 422 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 423 * Returns the resolved symbol.  If that fails, simply return the address.
 424 */
 425static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 426			  struct pid *pid, struct task_struct *task)
 427{
 428	unsigned long wchan;
 429	char symname[KSYM_NAME_LEN];
 430
 431	wchan = get_wchan(task);
 
 432
 433	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
 434			&& !lookup_symbol_name(wchan, symname))
 435		seq_printf(m, "%s", symname);
 436	else
 437		seq_putc(m, '0');
 438
 
 
 439	return 0;
 440}
 441#endif /* CONFIG_KALLSYMS */
 442
 443static int lock_trace(struct task_struct *task)
 444{
 445	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 446	if (err)
 447		return err;
 448	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 449		mutex_unlock(&task->signal->cred_guard_mutex);
 450		return -EPERM;
 451	}
 452	return 0;
 453}
 454
 455static void unlock_trace(struct task_struct *task)
 456{
 457	mutex_unlock(&task->signal->cred_guard_mutex);
 458}
 459
 460#ifdef CONFIG_STACKTRACE
 461
 462#define MAX_STACK_TRACE_DEPTH	64
 463
 464static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 465			  struct pid *pid, struct task_struct *task)
 466{
 467	struct stack_trace trace;
 468	unsigned long *entries;
 469	int err;
 470	int i;
 471
 472	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473	if (!entries)
 474		return -ENOMEM;
 475
 476	trace.nr_entries	= 0;
 477	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 478	trace.entries		= entries;
 479	trace.skip		= 0;
 480
 481	err = lock_trace(task);
 482	if (!err) {
 483		save_stack_trace_tsk(task, &trace);
 
 
 
 484
 485		for (i = 0; i < trace.nr_entries; i++) {
 486			seq_printf(m, "[<%pK>] %pS\n",
 487				   (void *)entries[i], (void *)entries[i]);
 488		}
 
 489		unlock_trace(task);
 490	}
 491	kfree(entries);
 492
 493	return err;
 494}
 495#endif
 496
 497#ifdef CONFIG_SCHED_INFO
 498/*
 499 * Provides /proc/PID/schedstat
 500 */
 501static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 502			      struct pid *pid, struct task_struct *task)
 503{
 504	if (unlikely(!sched_info_on()))
 505		seq_printf(m, "0 0 0\n");
 506	else
 507		seq_printf(m, "%llu %llu %lu\n",
 508		   (unsigned long long)task->se.sum_exec_runtime,
 509		   (unsigned long long)task->sched_info.run_delay,
 510		   task->sched_info.pcount);
 511
 512	return 0;
 513}
 514#endif
 515
 516#ifdef CONFIG_LATENCYTOP
 517static int lstats_show_proc(struct seq_file *m, void *v)
 518{
 519	int i;
 520	struct inode *inode = m->private;
 521	struct task_struct *task = get_proc_task(inode);
 522
 523	if (!task)
 524		return -ESRCH;
 525	seq_puts(m, "Latency Top version : v0.1\n");
 526	for (i = 0; i < 32; i++) {
 527		struct latency_record *lr = &task->latency_record[i];
 528		if (lr->backtrace[0]) {
 529			int q;
 530			seq_printf(m, "%i %li %li",
 531				   lr->count, lr->time, lr->max);
 532			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 533				unsigned long bt = lr->backtrace[q];
 
 534				if (!bt)
 535					break;
 536				if (bt == ULONG_MAX)
 537					break;
 538				seq_printf(m, " %ps", (void *)bt);
 539			}
 540			seq_putc(m, '\n');
 541		}
 542
 543	}
 544	put_task_struct(task);
 545	return 0;
 546}
 547
 548static int lstats_open(struct inode *inode, struct file *file)
 549{
 550	return single_open(file, lstats_show_proc, inode);
 551}
 552
 553static ssize_t lstats_write(struct file *file, const char __user *buf,
 554			    size_t count, loff_t *offs)
 555{
 556	struct task_struct *task = get_proc_task(file_inode(file));
 557
 558	if (!task)
 559		return -ESRCH;
 560	clear_all_latency_tracing(task);
 561	put_task_struct(task);
 562
 563	return count;
 564}
 565
 566static const struct file_operations proc_lstats_operations = {
 567	.open		= lstats_open,
 568	.read		= seq_read,
 569	.write		= lstats_write,
 570	.llseek		= seq_lseek,
 571	.release	= single_release,
 572};
 573
 574#endif
 575
 576static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 577			  struct pid *pid, struct task_struct *task)
 578{
 579	unsigned long totalpages = totalram_pages + total_swap_pages;
 580	unsigned long points = 0;
 
 
 
 
 
 
 
 
 
 
 581
 582	read_lock(&tasklist_lock);
 583	if (pid_alive(task))
 584		points = oom_badness(task, NULL, NULL, totalpages) *
 585						1000 / totalpages;
 586	read_unlock(&tasklist_lock);
 587	seq_printf(m, "%lu\n", points);
 588
 589	return 0;
 590}
 591
 592struct limit_names {
 593	const char *name;
 594	const char *unit;
 595};
 596
 597static const struct limit_names lnames[RLIM_NLIMITS] = {
 598	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 599	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 600	[RLIMIT_DATA] = {"Max data size", "bytes"},
 601	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 602	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 603	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 604	[RLIMIT_NPROC] = {"Max processes", "processes"},
 605	[RLIMIT_NOFILE] = {"Max open files", "files"},
 606	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 607	[RLIMIT_AS] = {"Max address space", "bytes"},
 608	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 609	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 610	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 611	[RLIMIT_NICE] = {"Max nice priority", NULL},
 612	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 613	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 614};
 615
 616/* Display limits for a process */
 617static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 618			   struct pid *pid, struct task_struct *task)
 619{
 620	unsigned int i;
 621	unsigned long flags;
 622
 623	struct rlimit rlim[RLIM_NLIMITS];
 624
 625	if (!lock_task_sighand(task, &flags))
 626		return 0;
 627	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 628	unlock_task_sighand(task, &flags);
 629
 630	/*
 631	 * print the file header
 632	 */
 633       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 634		  "Limit", "Soft Limit", "Hard Limit", "Units");
 
 
 635
 636	for (i = 0; i < RLIM_NLIMITS; i++) {
 637		if (rlim[i].rlim_cur == RLIM_INFINITY)
 638			seq_printf(m, "%-25s %-20s ",
 639				   lnames[i].name, "unlimited");
 640		else
 641			seq_printf(m, "%-25s %-20lu ",
 642				   lnames[i].name, rlim[i].rlim_cur);
 643
 644		if (rlim[i].rlim_max == RLIM_INFINITY)
 645			seq_printf(m, "%-20s ", "unlimited");
 646		else
 647			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 648
 649		if (lnames[i].unit)
 650			seq_printf(m, "%-10s\n", lnames[i].unit);
 651		else
 652			seq_putc(m, '\n');
 653	}
 654
 655	return 0;
 656}
 657
 658#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 659static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 660			    struct pid *pid, struct task_struct *task)
 661{
 662	long nr;
 663	unsigned long args[6], sp, pc;
 664	int res;
 665
 666	res = lock_trace(task);
 667	if (res)
 668		return res;
 669
 670	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 671		seq_puts(m, "running\n");
 672	else if (nr < 0)
 673		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 
 674	else
 675		seq_printf(m,
 676		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 677		       nr,
 678		       args[0], args[1], args[2], args[3], args[4], args[5],
 679		       sp, pc);
 680	unlock_trace(task);
 681
 682	return 0;
 683}
 684#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 685
 686/************************************************************************/
 687/*                       Here the fs part begins                        */
 688/************************************************************************/
 689
 690/* permission checks */
 691static int proc_fd_access_allowed(struct inode *inode)
 692{
 693	struct task_struct *task;
 694	int allowed = 0;
 695	/* Allow access to a task's file descriptors if it is us or we
 696	 * may use ptrace attach to the process and find out that
 697	 * information.
 698	 */
 699	task = get_proc_task(inode);
 700	if (task) {
 701		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 702		put_task_struct(task);
 703	}
 704	return allowed;
 705}
 706
 707int proc_setattr(struct dentry *dentry, struct iattr *attr)
 
 708{
 709	int error;
 710	struct inode *inode = d_inode(dentry);
 711
 712	if (attr->ia_valid & ATTR_MODE)
 713		return -EPERM;
 714
 715	error = inode_change_ok(inode, attr);
 716	if (error)
 717		return error;
 718
 719	setattr_copy(inode, attr);
 720	mark_inode_dirty(inode);
 721	return 0;
 722}
 723
 724/*
 725 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 726 * or euid/egid (for hide_pid_min=2)?
 727 */
 728static bool has_pid_permissions(struct pid_namespace *pid,
 729				 struct task_struct *task,
 730				 int hide_pid_min)
 731{
 732	if (pid->hide_pid < hide_pid_min)
 
 
 
 
 
 
 
 
 733		return true;
 734	if (in_group_p(pid->pid_gid))
 735		return true;
 736	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 737}
 738
 739
 740static int proc_pid_permission(struct inode *inode, int mask)
 
 741{
 742	struct pid_namespace *pid = inode->i_sb->s_fs_info;
 743	struct task_struct *task;
 744	bool has_perms;
 745
 746	task = get_proc_task(inode);
 747	if (!task)
 748		return -ESRCH;
 749	has_perms = has_pid_permissions(pid, task, 1);
 750	put_task_struct(task);
 751
 752	if (!has_perms) {
 753		if (pid->hide_pid == 2) {
 754			/*
 755			 * Let's make getdents(), stat(), and open()
 756			 * consistent with each other.  If a process
 757			 * may not stat() a file, it shouldn't be seen
 758			 * in procfs at all.
 759			 */
 760			return -ENOENT;
 761		}
 762
 763		return -EPERM;
 764	}
 765	return generic_permission(inode, mask);
 766}
 767
 768
 769
 770static const struct inode_operations proc_def_inode_operations = {
 771	.setattr	= proc_setattr,
 772};
 773
 774static int proc_single_show(struct seq_file *m, void *v)
 775{
 776	struct inode *inode = m->private;
 777	struct pid_namespace *ns;
 778	struct pid *pid;
 779	struct task_struct *task;
 780	int ret;
 781
 782	ns = inode->i_sb->s_fs_info;
 783	pid = proc_pid(inode);
 784	task = get_pid_task(pid, PIDTYPE_PID);
 785	if (!task)
 786		return -ESRCH;
 787
 788	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 789
 790	put_task_struct(task);
 791	return ret;
 792}
 793
 794static int proc_single_open(struct inode *inode, struct file *filp)
 795{
 796	return single_open(filp, proc_single_show, inode);
 797}
 798
 799static const struct file_operations proc_single_file_operations = {
 800	.open		= proc_single_open,
 801	.read		= seq_read,
 802	.llseek		= seq_lseek,
 803	.release	= single_release,
 804};
 805
 806
 807struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 808{
 809	struct task_struct *task = get_proc_task(inode);
 810	struct mm_struct *mm = ERR_PTR(-ESRCH);
 811
 812	if (task) {
 813		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 814		put_task_struct(task);
 815
 816		if (!IS_ERR_OR_NULL(mm)) {
 817			/* ensure this mm_struct can't be freed */
 818			atomic_inc(&mm->mm_count);
 819			/* but do not pin its memory */
 820			mmput(mm);
 821		}
 822	}
 
 
 
 823
 824	return mm;
 825}
 826
 827static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 828{
 829	struct mm_struct *mm = proc_mem_open(inode, mode);
 830
 831	if (IS_ERR(mm))
 832		return PTR_ERR(mm);
 833
 834	file->private_data = mm;
 835	return 0;
 836}
 837
 838static int mem_open(struct inode *inode, struct file *file)
 839{
 840	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 
 
 
 841
 842	/* OK to pass negative loff_t, we can catch out-of-range */
 843	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 
 
 844
 845	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846}
 847
 848static ssize_t mem_rw(struct file *file, char __user *buf,
 849			size_t count, loff_t *ppos, int write)
 850{
 851	struct mm_struct *mm = file->private_data;
 852	unsigned long addr = *ppos;
 853	ssize_t copied;
 854	char *page;
 
 855
 856	if (!mm)
 857		return 0;
 858
 859	page = (char *)__get_free_page(GFP_TEMPORARY);
 860	if (!page)
 861		return -ENOMEM;
 862
 863	copied = 0;
 864	if (!atomic_inc_not_zero(&mm->mm_users))
 865		goto free;
 866
 
 
 
 
 867	while (count > 0) {
 868		int this_len = min_t(int, count, PAGE_SIZE);
 869
 870		if (write && copy_from_user(page, buf, this_len)) {
 871			copied = -EFAULT;
 872			break;
 873		}
 874
 875		this_len = access_remote_vm(mm, addr, page, this_len, write);
 876		if (!this_len) {
 877			if (!copied)
 878				copied = -EIO;
 879			break;
 880		}
 881
 882		if (!write && copy_to_user(buf, page, this_len)) {
 883			copied = -EFAULT;
 884			break;
 885		}
 886
 887		buf += this_len;
 888		addr += this_len;
 889		copied += this_len;
 890		count -= this_len;
 891	}
 892	*ppos = addr;
 893
 894	mmput(mm);
 895free:
 896	free_page((unsigned long) page);
 897	return copied;
 898}
 899
 900static ssize_t mem_read(struct file *file, char __user *buf,
 901			size_t count, loff_t *ppos)
 902{
 903	return mem_rw(file, buf, count, ppos, 0);
 904}
 905
 906static ssize_t mem_write(struct file *file, const char __user *buf,
 907			 size_t count, loff_t *ppos)
 908{
 909	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 910}
 911
 912loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 913{
 914	switch (orig) {
 915	case 0:
 916		file->f_pos = offset;
 917		break;
 918	case 1:
 919		file->f_pos += offset;
 920		break;
 921	default:
 922		return -EINVAL;
 923	}
 924	force_successful_syscall_return();
 925	return file->f_pos;
 926}
 927
 928static int mem_release(struct inode *inode, struct file *file)
 929{
 930	struct mm_struct *mm = file->private_data;
 931	if (mm)
 932		mmdrop(mm);
 933	return 0;
 934}
 935
 936static const struct file_operations proc_mem_operations = {
 937	.llseek		= mem_lseek,
 938	.read		= mem_read,
 939	.write		= mem_write,
 940	.open		= mem_open,
 941	.release	= mem_release,
 
 942};
 943
 944static int environ_open(struct inode *inode, struct file *file)
 945{
 946	return __mem_open(inode, file, PTRACE_MODE_READ);
 947}
 948
 949static ssize_t environ_read(struct file *file, char __user *buf,
 950			size_t count, loff_t *ppos)
 951{
 952	char *page;
 953	unsigned long src = *ppos;
 954	int ret = 0;
 955	struct mm_struct *mm = file->private_data;
 956	unsigned long env_start, env_end;
 957
 958	/* Ensure the process spawned far enough to have an environment. */
 959	if (!mm || !mm->env_end)
 960		return 0;
 961
 962	page = (char *)__get_free_page(GFP_TEMPORARY);
 963	if (!page)
 964		return -ENOMEM;
 965
 966	ret = 0;
 967	if (!atomic_inc_not_zero(&mm->mm_users))
 968		goto free;
 969
 970	down_read(&mm->mmap_sem);
 971	env_start = mm->env_start;
 972	env_end = mm->env_end;
 973	up_read(&mm->mmap_sem);
 974
 975	while (count > 0) {
 976		size_t this_len, max_len;
 977		int retval;
 978
 979		if (src >= (env_end - env_start))
 980			break;
 981
 982		this_len = env_end - (env_start + src);
 983
 984		max_len = min_t(size_t, PAGE_SIZE, count);
 985		this_len = min(max_len, this_len);
 986
 987		retval = access_remote_vm(mm, (env_start + src),
 988			page, this_len, 0);
 989
 990		if (retval <= 0) {
 991			ret = retval;
 992			break;
 993		}
 994
 995		if (copy_to_user(buf, page, retval)) {
 996			ret = -EFAULT;
 997			break;
 998		}
 999
1000		ret += retval;
1001		src += retval;
1002		buf += retval;
1003		count -= retval;
1004	}
1005	*ppos = src;
1006	mmput(mm);
1007
1008free:
1009	free_page((unsigned long) page);
1010	return ret;
1011}
1012
1013static const struct file_operations proc_environ_operations = {
1014	.open		= environ_open,
1015	.read		= environ_read,
1016	.llseek		= generic_file_llseek,
1017	.release	= mem_release,
1018};
1019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1021			    loff_t *ppos)
1022{
1023	struct task_struct *task = get_proc_task(file_inode(file));
1024	char buffer[PROC_NUMBUF];
1025	int oom_adj = OOM_ADJUST_MIN;
1026	size_t len;
1027	unsigned long flags;
1028
1029	if (!task)
1030		return -ESRCH;
1031	if (lock_task_sighand(task, &flags)) {
1032		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1033			oom_adj = OOM_ADJUST_MAX;
1034		else
1035			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1036				  OOM_SCORE_ADJ_MAX;
1037		unlock_task_sighand(task, &flags);
1038	}
1039	put_task_struct(task);
 
 
1040	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1041	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1042}
1043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1044/*
1045 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1046 * kernels.  The effective policy is defined by oom_score_adj, which has a
1047 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1048 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1049 * Processes that become oom disabled via oom_adj will still be oom disabled
1050 * with this implementation.
1051 *
1052 * oom_adj cannot be removed since existing userspace binaries use it.
1053 */
1054static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1055			     size_t count, loff_t *ppos)
1056{
1057	struct task_struct *task;
1058	char buffer[PROC_NUMBUF];
1059	int oom_adj;
1060	unsigned long flags;
1061	int err;
1062
1063	memset(buffer, 0, sizeof(buffer));
1064	if (count > sizeof(buffer) - 1)
1065		count = sizeof(buffer) - 1;
1066	if (copy_from_user(buffer, buf, count)) {
1067		err = -EFAULT;
1068		goto out;
1069	}
1070
1071	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1072	if (err)
1073		goto out;
1074	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1075	     oom_adj != OOM_DISABLE) {
1076		err = -EINVAL;
1077		goto out;
1078	}
1079
1080	task = get_proc_task(file_inode(file));
1081	if (!task) {
1082		err = -ESRCH;
1083		goto out;
1084	}
1085
1086	task_lock(task);
1087	if (!task->mm) {
1088		err = -EINVAL;
1089		goto err_task_lock;
1090	}
1091
1092	if (!lock_task_sighand(task, &flags)) {
1093		err = -ESRCH;
1094		goto err_task_lock;
1095	}
1096
1097	/*
1098	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1099	 * value is always attainable.
1100	 */
1101	if (oom_adj == OOM_ADJUST_MAX)
1102		oom_adj = OOM_SCORE_ADJ_MAX;
1103	else
1104		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1105
1106	if (oom_adj < task->signal->oom_score_adj &&
1107	    !capable(CAP_SYS_RESOURCE)) {
1108		err = -EACCES;
1109		goto err_sighand;
1110	}
1111
1112	/*
1113	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1114	 * /proc/pid/oom_score_adj instead.
1115	 */
1116	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1117		  current->comm, task_pid_nr(current), task_pid_nr(task),
1118		  task_pid_nr(task));
1119
1120	task->signal->oom_score_adj = oom_adj;
1121	trace_oom_score_adj_update(task);
1122err_sighand:
1123	unlock_task_sighand(task, &flags);
1124err_task_lock:
1125	task_unlock(task);
1126	put_task_struct(task);
1127out:
1128	return err < 0 ? err : count;
1129}
1130
1131static const struct file_operations proc_oom_adj_operations = {
1132	.read		= oom_adj_read,
1133	.write		= oom_adj_write,
1134	.llseek		= generic_file_llseek,
1135};
1136
1137static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1138					size_t count, loff_t *ppos)
1139{
1140	struct task_struct *task = get_proc_task(file_inode(file));
1141	char buffer[PROC_NUMBUF];
1142	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1143	unsigned long flags;
1144	size_t len;
1145
1146	if (!task)
1147		return -ESRCH;
1148	if (lock_task_sighand(task, &flags)) {
1149		oom_score_adj = task->signal->oom_score_adj;
1150		unlock_task_sighand(task, &flags);
1151	}
1152	put_task_struct(task);
1153	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1154	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1155}
1156
1157static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1158					size_t count, loff_t *ppos)
1159{
1160	struct task_struct *task;
1161	char buffer[PROC_NUMBUF];
1162	unsigned long flags;
1163	int oom_score_adj;
1164	int err;
1165
1166	memset(buffer, 0, sizeof(buffer));
1167	if (count > sizeof(buffer) - 1)
1168		count = sizeof(buffer) - 1;
1169	if (copy_from_user(buffer, buf, count)) {
1170		err = -EFAULT;
1171		goto out;
1172	}
1173
1174	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1175	if (err)
1176		goto out;
1177	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1178			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1179		err = -EINVAL;
1180		goto out;
1181	}
1182
1183	task = get_proc_task(file_inode(file));
1184	if (!task) {
1185		err = -ESRCH;
1186		goto out;
1187	}
1188
1189	task_lock(task);
1190	if (!task->mm) {
1191		err = -EINVAL;
1192		goto err_task_lock;
1193	}
1194
1195	if (!lock_task_sighand(task, &flags)) {
1196		err = -ESRCH;
1197		goto err_task_lock;
1198	}
1199
1200	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1201			!capable(CAP_SYS_RESOURCE)) {
1202		err = -EACCES;
1203		goto err_sighand;
1204	}
1205
1206	task->signal->oom_score_adj = (short)oom_score_adj;
1207	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1208		task->signal->oom_score_adj_min = (short)oom_score_adj;
1209	trace_oom_score_adj_update(task);
1210
1211err_sighand:
1212	unlock_task_sighand(task, &flags);
1213err_task_lock:
1214	task_unlock(task);
1215	put_task_struct(task);
1216out:
1217	return err < 0 ? err : count;
1218}
1219
1220static const struct file_operations proc_oom_score_adj_operations = {
1221	.read		= oom_score_adj_read,
1222	.write		= oom_score_adj_write,
1223	.llseek		= default_llseek,
1224};
1225
1226#ifdef CONFIG_AUDITSYSCALL
1227#define TMPBUFLEN 21
1228static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1229				  size_t count, loff_t *ppos)
1230{
1231	struct inode * inode = file_inode(file);
1232	struct task_struct *task = get_proc_task(inode);
1233	ssize_t length;
1234	char tmpbuf[TMPBUFLEN];
1235
1236	if (!task)
1237		return -ESRCH;
1238	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1239			   from_kuid(file->f_cred->user_ns,
1240				     audit_get_loginuid(task)));
1241	put_task_struct(task);
1242	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1243}
1244
1245static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1246				   size_t count, loff_t *ppos)
1247{
1248	struct inode * inode = file_inode(file);
1249	uid_t loginuid;
1250	kuid_t kloginuid;
1251	int rv;
1252
 
 
 
 
1253	rcu_read_lock();
1254	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1255		rcu_read_unlock();
1256		return -EPERM;
1257	}
1258	rcu_read_unlock();
1259
1260	if (*ppos != 0) {
1261		/* No partial writes. */
1262		return -EINVAL;
1263	}
1264
1265	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1266	if (rv < 0)
1267		return rv;
1268
1269	/* is userspace tring to explicitly UNSET the loginuid? */
1270	if (loginuid == AUDIT_UID_UNSET) {
1271		kloginuid = INVALID_UID;
1272	} else {
1273		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1274		if (!uid_valid(kloginuid))
1275			return -EINVAL;
1276	}
1277
1278	rv = audit_set_loginuid(kloginuid);
1279	if (rv < 0)
1280		return rv;
1281	return count;
1282}
1283
1284static const struct file_operations proc_loginuid_operations = {
1285	.read		= proc_loginuid_read,
1286	.write		= proc_loginuid_write,
1287	.llseek		= generic_file_llseek,
1288};
1289
1290static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1291				  size_t count, loff_t *ppos)
1292{
1293	struct inode * inode = file_inode(file);
1294	struct task_struct *task = get_proc_task(inode);
1295	ssize_t length;
1296	char tmpbuf[TMPBUFLEN];
1297
1298	if (!task)
1299		return -ESRCH;
1300	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1301				audit_get_sessionid(task));
1302	put_task_struct(task);
1303	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1304}
1305
1306static const struct file_operations proc_sessionid_operations = {
1307	.read		= proc_sessionid_read,
1308	.llseek		= generic_file_llseek,
1309};
1310#endif
1311
1312#ifdef CONFIG_FAULT_INJECTION
1313static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1314				      size_t count, loff_t *ppos)
1315{
1316	struct task_struct *task = get_proc_task(file_inode(file));
1317	char buffer[PROC_NUMBUF];
1318	size_t len;
1319	int make_it_fail;
1320
1321	if (!task)
1322		return -ESRCH;
1323	make_it_fail = task->make_it_fail;
1324	put_task_struct(task);
1325
1326	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1327
1328	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1329}
1330
1331static ssize_t proc_fault_inject_write(struct file * file,
1332			const char __user * buf, size_t count, loff_t *ppos)
1333{
1334	struct task_struct *task;
1335	char buffer[PROC_NUMBUF];
1336	int make_it_fail;
1337	int rv;
1338
1339	if (!capable(CAP_SYS_RESOURCE))
1340		return -EPERM;
1341	memset(buffer, 0, sizeof(buffer));
1342	if (count > sizeof(buffer) - 1)
1343		count = sizeof(buffer) - 1;
1344	if (copy_from_user(buffer, buf, count))
1345		return -EFAULT;
1346	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1347	if (rv < 0)
1348		return rv;
1349	if (make_it_fail < 0 || make_it_fail > 1)
1350		return -EINVAL;
1351
1352	task = get_proc_task(file_inode(file));
1353	if (!task)
1354		return -ESRCH;
1355	task->make_it_fail = make_it_fail;
1356	put_task_struct(task);
1357
1358	return count;
1359}
1360
1361static const struct file_operations proc_fault_inject_operations = {
1362	.read		= proc_fault_inject_read,
1363	.write		= proc_fault_inject_write,
1364	.llseek		= generic_file_llseek,
1365};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366#endif
1367
1368
1369#ifdef CONFIG_SCHED_DEBUG
1370/*
1371 * Print out various scheduling related per-task fields:
1372 */
1373static int sched_show(struct seq_file *m, void *v)
1374{
1375	struct inode *inode = m->private;
 
1376	struct task_struct *p;
1377
1378	p = get_proc_task(inode);
1379	if (!p)
1380		return -ESRCH;
1381	proc_sched_show_task(p, m);
1382
1383	put_task_struct(p);
1384
1385	return 0;
1386}
1387
1388static ssize_t
1389sched_write(struct file *file, const char __user *buf,
1390	    size_t count, loff_t *offset)
1391{
1392	struct inode *inode = file_inode(file);
1393	struct task_struct *p;
1394
1395	p = get_proc_task(inode);
1396	if (!p)
1397		return -ESRCH;
1398	proc_sched_set_task(p);
1399
1400	put_task_struct(p);
1401
1402	return count;
1403}
1404
1405static int sched_open(struct inode *inode, struct file *filp)
1406{
1407	return single_open(filp, sched_show, inode);
1408}
1409
1410static const struct file_operations proc_pid_sched_operations = {
1411	.open		= sched_open,
1412	.read		= seq_read,
1413	.write		= sched_write,
1414	.llseek		= seq_lseek,
1415	.release	= single_release,
1416};
1417
1418#endif
1419
1420#ifdef CONFIG_SCHED_AUTOGROUP
1421/*
1422 * Print out autogroup related information:
1423 */
1424static int sched_autogroup_show(struct seq_file *m, void *v)
1425{
1426	struct inode *inode = m->private;
1427	struct task_struct *p;
1428
1429	p = get_proc_task(inode);
1430	if (!p)
1431		return -ESRCH;
1432	proc_sched_autogroup_show_task(p, m);
1433
1434	put_task_struct(p);
1435
1436	return 0;
1437}
1438
1439static ssize_t
1440sched_autogroup_write(struct file *file, const char __user *buf,
1441	    size_t count, loff_t *offset)
1442{
1443	struct inode *inode = file_inode(file);
1444	struct task_struct *p;
1445	char buffer[PROC_NUMBUF];
1446	int nice;
1447	int err;
1448
1449	memset(buffer, 0, sizeof(buffer));
1450	if (count > sizeof(buffer) - 1)
1451		count = sizeof(buffer) - 1;
1452	if (copy_from_user(buffer, buf, count))
1453		return -EFAULT;
1454
1455	err = kstrtoint(strstrip(buffer), 0, &nice);
1456	if (err < 0)
1457		return err;
1458
1459	p = get_proc_task(inode);
1460	if (!p)
1461		return -ESRCH;
1462
1463	err = proc_sched_autogroup_set_nice(p, nice);
1464	if (err)
1465		count = err;
1466
1467	put_task_struct(p);
1468
1469	return count;
1470}
1471
1472static int sched_autogroup_open(struct inode *inode, struct file *filp)
1473{
1474	int ret;
1475
1476	ret = single_open(filp, sched_autogroup_show, NULL);
1477	if (!ret) {
1478		struct seq_file *m = filp->private_data;
1479
1480		m->private = inode;
1481	}
1482	return ret;
1483}
1484
1485static const struct file_operations proc_pid_sched_autogroup_operations = {
1486	.open		= sched_autogroup_open,
1487	.read		= seq_read,
1488	.write		= sched_autogroup_write,
1489	.llseek		= seq_lseek,
1490	.release	= single_release,
1491};
1492
1493#endif /* CONFIG_SCHED_AUTOGROUP */
1494
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1495static ssize_t comm_write(struct file *file, const char __user *buf,
1496				size_t count, loff_t *offset)
1497{
1498	struct inode *inode = file_inode(file);
1499	struct task_struct *p;
1500	char buffer[TASK_COMM_LEN];
1501	const size_t maxlen = sizeof(buffer) - 1;
1502
1503	memset(buffer, 0, sizeof(buffer));
1504	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1505		return -EFAULT;
1506
1507	p = get_proc_task(inode);
1508	if (!p)
1509		return -ESRCH;
1510
1511	if (same_thread_group(current, p))
1512		set_task_comm(p, buffer);
 
 
1513	else
1514		count = -EINVAL;
1515
1516	put_task_struct(p);
1517
1518	return count;
1519}
1520
1521static int comm_show(struct seq_file *m, void *v)
1522{
1523	struct inode *inode = m->private;
1524	struct task_struct *p;
1525
1526	p = get_proc_task(inode);
1527	if (!p)
1528		return -ESRCH;
1529
1530	task_lock(p);
1531	seq_printf(m, "%s\n", p->comm);
1532	task_unlock(p);
1533
1534	put_task_struct(p);
1535
1536	return 0;
1537}
1538
1539static int comm_open(struct inode *inode, struct file *filp)
1540{
1541	return single_open(filp, comm_show, inode);
1542}
1543
1544static const struct file_operations proc_pid_set_comm_operations = {
1545	.open		= comm_open,
1546	.read		= seq_read,
1547	.write		= comm_write,
1548	.llseek		= seq_lseek,
1549	.release	= single_release,
1550};
1551
1552static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1553{
1554	struct task_struct *task;
1555	struct mm_struct *mm;
1556	struct file *exe_file;
1557
1558	task = get_proc_task(d_inode(dentry));
1559	if (!task)
1560		return -ENOENT;
1561	mm = get_task_mm(task);
1562	put_task_struct(task);
1563	if (!mm)
1564		return -ENOENT;
1565	exe_file = get_mm_exe_file(mm);
1566	mmput(mm);
1567	if (exe_file) {
1568		*exe_path = exe_file->f_path;
1569		path_get(&exe_file->f_path);
1570		fput(exe_file);
1571		return 0;
1572	} else
1573		return -ENOENT;
1574}
1575
1576static const char *proc_pid_get_link(struct dentry *dentry,
1577				     struct inode *inode,
1578				     struct delayed_call *done)
1579{
1580	struct path path;
1581	int error = -EACCES;
1582
1583	if (!dentry)
1584		return ERR_PTR(-ECHILD);
1585
1586	/* Are we allowed to snoop on the tasks file descriptors? */
1587	if (!proc_fd_access_allowed(inode))
1588		goto out;
1589
1590	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1591	if (error)
1592		goto out;
1593
1594	nd_jump_link(&path);
1595	return NULL;
1596out:
1597	return ERR_PTR(error);
1598}
1599
1600static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1601{
1602	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1603	char *pathname;
1604	int len;
1605
1606	if (!tmp)
1607		return -ENOMEM;
1608
1609	pathname = d_path(path, tmp, PAGE_SIZE);
1610	len = PTR_ERR(pathname);
1611	if (IS_ERR(pathname))
1612		goto out;
1613	len = tmp + PAGE_SIZE - 1 - pathname;
1614
1615	if (len > buflen)
1616		len = buflen;
1617	if (copy_to_user(buffer, pathname, len))
1618		len = -EFAULT;
1619 out:
1620	free_page((unsigned long)tmp);
1621	return len;
1622}
1623
1624static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1625{
1626	int error = -EACCES;
1627	struct inode *inode = d_inode(dentry);
1628	struct path path;
1629
1630	/* Are we allowed to snoop on the tasks file descriptors? */
1631	if (!proc_fd_access_allowed(inode))
1632		goto out;
1633
1634	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1635	if (error)
1636		goto out;
1637
1638	error = do_proc_readlink(&path, buffer, buflen);
1639	path_put(&path);
1640out:
1641	return error;
1642}
1643
1644const struct inode_operations proc_pid_link_inode_operations = {
1645	.readlink	= proc_pid_readlink,
1646	.get_link	= proc_pid_get_link,
1647	.setattr	= proc_setattr,
1648};
1649
1650
1651/* building an inode */
1652
1653struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654{
1655	struct inode * inode;
1656	struct proc_inode *ei;
1657	const struct cred *cred;
1658
1659	/* We need a new inode */
1660
1661	inode = new_inode(sb);
1662	if (!inode)
1663		goto out;
1664
1665	/* Common stuff */
1666	ei = PROC_I(inode);
 
1667	inode->i_ino = get_next_ino();
1668	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1669	inode->i_op = &proc_def_inode_operations;
1670
1671	/*
1672	 * grab the reference to task.
1673	 */
1674	ei->pid = get_task_pid(task, PIDTYPE_PID);
1675	if (!ei->pid)
1676		goto out_unlock;
1677
1678	if (task_dumpable(task)) {
1679		rcu_read_lock();
1680		cred = __task_cred(task);
1681		inode->i_uid = cred->euid;
1682		inode->i_gid = cred->egid;
1683		rcu_read_unlock();
1684	}
1685	security_task_to_inode(task, inode);
1686
1687out:
1688	return inode;
1689
1690out_unlock:
1691	iput(inode);
1692	return NULL;
1693}
1694
1695int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
 
 
 
 
 
 
 
 
 
 
 
 
 
1696{
1697	struct inode *inode = d_inode(dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1698	struct task_struct *task;
1699	const struct cred *cred;
1700	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1701
1702	generic_fillattr(inode, stat);
1703
1704	rcu_read_lock();
1705	stat->uid = GLOBAL_ROOT_UID;
1706	stat->gid = GLOBAL_ROOT_GID;
 
1707	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1708	if (task) {
1709		if (!has_pid_permissions(pid, task, 2)) {
1710			rcu_read_unlock();
1711			/*
1712			 * This doesn't prevent learning whether PID exists,
1713			 * it only makes getattr() consistent with readdir().
1714			 */
1715			return -ENOENT;
1716		}
1717		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1718		    task_dumpable(task)) {
1719			cred = __task_cred(task);
1720			stat->uid = cred->euid;
1721			stat->gid = cred->egid;
1722		}
1723	}
1724	rcu_read_unlock();
1725	return 0;
1726}
1727
1728/* dentry stuff */
1729
1730/*
1731 *	Exceptional case: normally we are not allowed to unhash a busy
1732 * directory. In this case, however, we can do it - no aliasing problems
1733 * due to the way we treat inodes.
1734 *
 
 
 
 
 
 
 
1735 * Rewrite the inode's ownerships here because the owning task may have
1736 * performed a setuid(), etc.
1737 *
1738 * Before the /proc/pid/status file was created the only way to read
1739 * the effective uid of a /process was to stat /proc/pid.  Reading
1740 * /proc/pid/status is slow enough that procps and other packages
1741 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1742 * made this apply to all per process world readable and executable
1743 * directories.
1744 */
1745int pid_revalidate(struct dentry *dentry, unsigned int flags)
1746{
1747	struct inode *inode;
1748	struct task_struct *task;
1749	const struct cred *cred;
1750
1751	if (flags & LOOKUP_RCU)
1752		return -ECHILD;
1753
1754	inode = d_inode(dentry);
1755	task = get_proc_task(inode);
 
 
 
1756
1757	if (task) {
1758		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1759		    task_dumpable(task)) {
1760			rcu_read_lock();
1761			cred = __task_cred(task);
1762			inode->i_uid = cred->euid;
1763			inode->i_gid = cred->egid;
1764			rcu_read_unlock();
1765		} else {
1766			inode->i_uid = GLOBAL_ROOT_UID;
1767			inode->i_gid = GLOBAL_ROOT_GID;
1768		}
1769		inode->i_mode &= ~(S_ISUID | S_ISGID);
1770		security_task_to_inode(task, inode);
1771		put_task_struct(task);
1772		return 1;
1773	}
1774	return 0;
 
 
1775}
1776
1777static inline bool proc_inode_is_dead(struct inode *inode)
1778{
1779	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1780}
1781
1782int pid_delete_dentry(const struct dentry *dentry)
1783{
1784	/* Is the task we represent dead?
1785	 * If so, then don't put the dentry on the lru list,
1786	 * kill it immediately.
1787	 */
1788	return proc_inode_is_dead(d_inode(dentry));
1789}
1790
1791const struct dentry_operations pid_dentry_operations =
1792{
1793	.d_revalidate	= pid_revalidate,
1794	.d_delete	= pid_delete_dentry,
1795};
1796
1797/* Lookups */
1798
1799/*
1800 * Fill a directory entry.
1801 *
1802 * If possible create the dcache entry and derive our inode number and
1803 * file type from dcache entry.
1804 *
1805 * Since all of the proc inode numbers are dynamically generated, the inode
1806 * numbers do not exist until the inode is cache.  This means creating the
1807 * the dcache entry in readdir is necessary to keep the inode numbers
1808 * reported by readdir in sync with the inode numbers reported
1809 * by stat.
1810 */
1811bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1812	const char *name, int len,
1813	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1814{
1815	struct dentry *child, *dir = file->f_path.dentry;
1816	struct qstr qname = QSTR_INIT(name, len);
1817	struct inode *inode;
1818	unsigned type;
1819	ino_t ino;
1820
1821	child = d_hash_and_lookup(dir, &qname);
1822	if (!child) {
1823		child = d_alloc(dir, &qname);
1824		if (!child)
1825			goto end_instantiate;
1826		if (instantiate(d_inode(dir), child, task, ptr) < 0) {
1827			dput(child);
1828			goto end_instantiate;
 
 
 
 
 
 
 
 
 
 
1829		}
1830	}
1831	inode = d_inode(child);
1832	ino = inode->i_ino;
1833	type = inode->i_mode >> 12;
1834	dput(child);
1835	return dir_emit(ctx, name, len, ino, type);
1836
1837end_instantiate:
1838	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1839}
1840
1841/*
1842 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1843 * which represent vma start and end addresses.
1844 */
1845static int dname_to_vma_addr(struct dentry *dentry,
1846			     unsigned long *start, unsigned long *end)
1847{
1848	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
 
 
 
 
 
 
 
 
 
1849		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850
1851	return 0;
1852}
1853
1854static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1855{
1856	unsigned long vm_start, vm_end;
1857	bool exact_vma_exists = false;
1858	struct mm_struct *mm = NULL;
1859	struct task_struct *task;
1860	const struct cred *cred;
1861	struct inode *inode;
1862	int status = 0;
1863
1864	if (flags & LOOKUP_RCU)
1865		return -ECHILD;
1866
1867	inode = d_inode(dentry);
1868	task = get_proc_task(inode);
1869	if (!task)
1870		goto out_notask;
1871
1872	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1873	if (IS_ERR_OR_NULL(mm))
1874		goto out;
1875
1876	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1877		down_read(&mm->mmap_sem);
1878		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1879		up_read(&mm->mmap_sem);
 
 
 
1880	}
1881
1882	mmput(mm);
1883
1884	if (exact_vma_exists) {
1885		if (task_dumpable(task)) {
1886			rcu_read_lock();
1887			cred = __task_cred(task);
1888			inode->i_uid = cred->euid;
1889			inode->i_gid = cred->egid;
1890			rcu_read_unlock();
1891		} else {
1892			inode->i_uid = GLOBAL_ROOT_UID;
1893			inode->i_gid = GLOBAL_ROOT_GID;
1894		}
1895		security_task_to_inode(task, inode);
1896		status = 1;
1897	}
1898
1899out:
1900	put_task_struct(task);
1901
1902out_notask:
1903	return status;
1904}
1905
1906static const struct dentry_operations tid_map_files_dentry_operations = {
1907	.d_revalidate	= map_files_d_revalidate,
1908	.d_delete	= pid_delete_dentry,
1909};
1910
1911static int map_files_get_link(struct dentry *dentry, struct path *path)
1912{
1913	unsigned long vm_start, vm_end;
1914	struct vm_area_struct *vma;
1915	struct task_struct *task;
1916	struct mm_struct *mm;
1917	int rc;
1918
1919	rc = -ENOENT;
1920	task = get_proc_task(d_inode(dentry));
1921	if (!task)
1922		goto out;
1923
1924	mm = get_task_mm(task);
1925	put_task_struct(task);
1926	if (!mm)
1927		goto out;
1928
1929	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1930	if (rc)
1931		goto out_mmput;
1932
 
 
 
 
1933	rc = -ENOENT;
1934	down_read(&mm->mmap_sem);
1935	vma = find_exact_vma(mm, vm_start, vm_end);
1936	if (vma && vma->vm_file) {
1937		*path = vma->vm_file->f_path;
1938		path_get(path);
1939		rc = 0;
1940	}
1941	up_read(&mm->mmap_sem);
1942
1943out_mmput:
1944	mmput(mm);
1945out:
1946	return rc;
1947}
1948
1949struct map_files_info {
 
 
1950	fmode_t		mode;
1951	unsigned long	len;
1952	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1953};
1954
1955/*
1956 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1957 * symlinks may be used to bypass permissions on ancestor directories in the
1958 * path to the file in question.
1959 */
1960static const char *
1961proc_map_files_get_link(struct dentry *dentry,
1962			struct inode *inode,
1963		        struct delayed_call *done)
1964{
1965	if (!capable(CAP_SYS_ADMIN))
1966		return ERR_PTR(-EPERM);
1967
1968	return proc_pid_get_link(dentry, inode, done);
1969}
1970
1971/*
1972 * Identical to proc_pid_link_inode_operations except for get_link()
1973 */
1974static const struct inode_operations proc_map_files_link_inode_operations = {
1975	.readlink	= proc_pid_readlink,
1976	.get_link	= proc_map_files_get_link,
1977	.setattr	= proc_setattr,
1978};
1979
1980static int
1981proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1982			   struct task_struct *task, const void *ptr)
1983{
1984	fmode_t mode = (fmode_t)(unsigned long)ptr;
1985	struct proc_inode *ei;
1986	struct inode *inode;
1987
1988	inode = proc_pid_make_inode(dir->i_sb, task);
 
 
1989	if (!inode)
1990		return -ENOENT;
1991
1992	ei = PROC_I(inode);
1993	ei->op.proc_get_link = map_files_get_link;
1994
1995	inode->i_op = &proc_map_files_link_inode_operations;
1996	inode->i_size = 64;
1997	inode->i_mode = S_IFLNK;
1998
1999	if (mode & FMODE_READ)
2000		inode->i_mode |= S_IRUSR;
2001	if (mode & FMODE_WRITE)
2002		inode->i_mode |= S_IWUSR;
2003
2004	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2005	d_add(dentry, inode);
2006
2007	return 0;
2008}
2009
2010static struct dentry *proc_map_files_lookup(struct inode *dir,
2011		struct dentry *dentry, unsigned int flags)
2012{
2013	unsigned long vm_start, vm_end;
2014	struct vm_area_struct *vma;
2015	struct task_struct *task;
2016	int result;
2017	struct mm_struct *mm;
2018
2019	result = -ENOENT;
2020	task = get_proc_task(dir);
2021	if (!task)
2022		goto out;
2023
2024	result = -EACCES;
2025	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2026		goto out_put_task;
2027
2028	result = -ENOENT;
2029	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2030		goto out_put_task;
2031
2032	mm = get_task_mm(task);
2033	if (!mm)
2034		goto out_put_task;
2035
2036	down_read(&mm->mmap_sem);
 
 
 
 
2037	vma = find_exact_vma(mm, vm_start, vm_end);
2038	if (!vma)
2039		goto out_no_vma;
2040
2041	if (vma->vm_file)
2042		result = proc_map_files_instantiate(dir, dentry, task,
2043				(void *)(unsigned long)vma->vm_file->f_mode);
2044
2045out_no_vma:
2046	up_read(&mm->mmap_sem);
 
2047	mmput(mm);
2048out_put_task:
2049	put_task_struct(task);
2050out:
2051	return ERR_PTR(result);
2052}
2053
2054static const struct inode_operations proc_map_files_inode_operations = {
2055	.lookup		= proc_map_files_lookup,
2056	.permission	= proc_fd_permission,
2057	.setattr	= proc_setattr,
2058};
2059
2060static int
2061proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2062{
2063	struct vm_area_struct *vma;
2064	struct task_struct *task;
2065	struct mm_struct *mm;
2066	unsigned long nr_files, pos, i;
2067	struct flex_array *fa = NULL;
2068	struct map_files_info info;
2069	struct map_files_info *p;
2070	int ret;
 
 
 
2071
2072	ret = -ENOENT;
2073	task = get_proc_task(file_inode(file));
2074	if (!task)
2075		goto out;
2076
2077	ret = -EACCES;
2078	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2079		goto out_put_task;
2080
2081	ret = 0;
2082	if (!dir_emit_dots(file, ctx))
2083		goto out_put_task;
2084
2085	mm = get_task_mm(task);
2086	if (!mm)
2087		goto out_put_task;
2088	down_read(&mm->mmap_sem);
 
 
 
 
 
2089
2090	nr_files = 0;
2091
2092	/*
2093	 * We need two passes here:
2094	 *
2095	 *  1) Collect vmas of mapped files with mmap_sem taken
2096	 *  2) Release mmap_sem and instantiate entries
2097	 *
2098	 * otherwise we get lockdep complained, since filldir()
2099	 * routine might require mmap_sem taken in might_fault().
2100	 */
2101
2102	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2103		if (vma->vm_file && ++pos > ctx->pos)
2104			nr_files++;
2105	}
 
 
 
2106
2107	if (nr_files) {
2108		fa = flex_array_alloc(sizeof(info), nr_files,
2109					GFP_KERNEL);
2110		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2111						GFP_KERNEL)) {
2112			ret = -ENOMEM;
2113			if (fa)
2114				flex_array_free(fa);
2115			up_read(&mm->mmap_sem);
2116			mmput(mm);
2117			goto out_put_task;
2118		}
2119		for (i = 0, vma = mm->mmap, pos = 2; vma;
2120				vma = vma->vm_next) {
2121			if (!vma->vm_file)
2122				continue;
2123			if (++pos <= ctx->pos)
2124				continue;
2125
2126			info.mode = vma->vm_file->f_mode;
2127			info.len = snprintf(info.name,
2128					sizeof(info.name), "%lx-%lx",
2129					vma->vm_start, vma->vm_end);
2130			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2131				BUG();
2132		}
2133	}
2134	up_read(&mm->mmap_sem);
 
2135
2136	for (i = 0; i < nr_files; i++) {
2137		p = flex_array_get(fa, i);
 
 
 
 
2138		if (!proc_fill_cache(file, ctx,
2139				      p->name, p->len,
2140				      proc_map_files_instantiate,
2141				      task,
2142				      (void *)(unsigned long)p->mode))
2143			break;
2144		ctx->pos++;
2145	}
2146	if (fa)
2147		flex_array_free(fa);
2148	mmput(mm);
2149
2150out_put_task:
2151	put_task_struct(task);
2152out:
 
2153	return ret;
2154}
2155
2156static const struct file_operations proc_map_files_operations = {
2157	.read		= generic_read_dir,
2158	.iterate	= proc_map_files_readdir,
2159	.llseek		= default_llseek,
2160};
2161
2162#ifdef CONFIG_CHECKPOINT_RESTORE
2163struct timers_private {
2164	struct pid *pid;
2165	struct task_struct *task;
2166	struct sighand_struct *sighand;
2167	struct pid_namespace *ns;
2168	unsigned long flags;
2169};
2170
2171static void *timers_start(struct seq_file *m, loff_t *pos)
2172{
2173	struct timers_private *tp = m->private;
2174
2175	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2176	if (!tp->task)
2177		return ERR_PTR(-ESRCH);
2178
2179	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2180	if (!tp->sighand)
2181		return ERR_PTR(-ESRCH);
2182
2183	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2184}
2185
2186static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2187{
2188	struct timers_private *tp = m->private;
2189	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2190}
2191
2192static void timers_stop(struct seq_file *m, void *v)
2193{
2194	struct timers_private *tp = m->private;
2195
2196	if (tp->sighand) {
2197		unlock_task_sighand(tp->task, &tp->flags);
2198		tp->sighand = NULL;
2199	}
2200
2201	if (tp->task) {
2202		put_task_struct(tp->task);
2203		tp->task = NULL;
2204	}
2205}
2206
2207static int show_timer(struct seq_file *m, void *v)
2208{
2209	struct k_itimer *timer;
2210	struct timers_private *tp = m->private;
2211	int notify;
2212	static const char * const nstr[] = {
2213		[SIGEV_SIGNAL] = "signal",
2214		[SIGEV_NONE] = "none",
2215		[SIGEV_THREAD] = "thread",
2216	};
2217
2218	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2219	notify = timer->it_sigev_notify;
2220
2221	seq_printf(m, "ID: %d\n", timer->it_id);
2222	seq_printf(m, "signal: %d/%p\n",
2223		   timer->sigq->info.si_signo,
2224		   timer->sigq->info.si_value.sival_ptr);
2225	seq_printf(m, "notify: %s/%s.%d\n",
2226		   nstr[notify & ~SIGEV_THREAD_ID],
2227		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2228		   pid_nr_ns(timer->it_pid, tp->ns));
2229	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2230
2231	return 0;
2232}
2233
2234static const struct seq_operations proc_timers_seq_ops = {
2235	.start	= timers_start,
2236	.next	= timers_next,
2237	.stop	= timers_stop,
2238	.show	= show_timer,
2239};
2240
2241static int proc_timers_open(struct inode *inode, struct file *file)
2242{
2243	struct timers_private *tp;
2244
2245	tp = __seq_open_private(file, &proc_timers_seq_ops,
2246			sizeof(struct timers_private));
2247	if (!tp)
2248		return -ENOMEM;
2249
2250	tp->pid = proc_pid(inode);
2251	tp->ns = inode->i_sb->s_fs_info;
2252	return 0;
2253}
2254
2255static const struct file_operations proc_timers_operations = {
2256	.open		= proc_timers_open,
2257	.read		= seq_read,
2258	.llseek		= seq_lseek,
2259	.release	= seq_release_private,
2260};
2261#endif
2262
2263static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2264					size_t count, loff_t *offset)
2265{
2266	struct inode *inode = file_inode(file);
2267	struct task_struct *p;
2268	u64 slack_ns;
2269	int err;
2270
2271	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2272	if (err < 0)
2273		return err;
2274
2275	p = get_proc_task(inode);
2276	if (!p)
2277		return -ESRCH;
2278
2279	if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2280		task_lock(p);
2281		if (slack_ns == 0)
2282			p->timer_slack_ns = p->default_timer_slack_ns;
2283		else
2284			p->timer_slack_ns = slack_ns;
2285		task_unlock(p);
2286	} else
2287		count = -EPERM;
2288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2289	put_task_struct(p);
2290
2291	return count;
2292}
2293
2294static int timerslack_ns_show(struct seq_file *m, void *v)
2295{
2296	struct inode *inode = m->private;
2297	struct task_struct *p;
2298	int err =  0;
2299
2300	p = get_proc_task(inode);
2301	if (!p)
2302		return -ESRCH;
2303
2304	if (ptrace_may_access(p, PTRACE_MODE_ATTACH_FSCREDS)) {
2305		task_lock(p);
2306		seq_printf(m, "%llu\n", p->timer_slack_ns);
2307		task_unlock(p);
2308	} else
2309		err = -EPERM;
 
 
 
 
 
 
 
2310
 
 
 
 
 
2311	put_task_struct(p);
2312
2313	return err;
2314}
2315
2316static int timerslack_ns_open(struct inode *inode, struct file *filp)
2317{
2318	return single_open(filp, timerslack_ns_show, inode);
2319}
2320
2321static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2322	.open		= timerslack_ns_open,
2323	.read		= seq_read,
2324	.write		= timerslack_ns_write,
2325	.llseek		= seq_lseek,
2326	.release	= single_release,
2327};
2328
2329static int proc_pident_instantiate(struct inode *dir,
2330	struct dentry *dentry, struct task_struct *task, const void *ptr)
2331{
2332	const struct pid_entry *p = ptr;
2333	struct inode *inode;
2334	struct proc_inode *ei;
2335
2336	inode = proc_pid_make_inode(dir->i_sb, task);
2337	if (!inode)
2338		goto out;
2339
2340	ei = PROC_I(inode);
2341	inode->i_mode = p->mode;
2342	if (S_ISDIR(inode->i_mode))
2343		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2344	if (p->iop)
2345		inode->i_op = p->iop;
2346	if (p->fop)
2347		inode->i_fop = p->fop;
2348	ei->op = p->op;
 
2349	d_set_d_op(dentry, &pid_dentry_operations);
2350	d_add(dentry, inode);
2351	/* Close the race of the process dying before we return the dentry */
2352	if (pid_revalidate(dentry, 0))
2353		return 0;
2354out:
2355	return -ENOENT;
2356}
2357
2358static struct dentry *proc_pident_lookup(struct inode *dir, 
2359					 struct dentry *dentry,
2360					 const struct pid_entry *ents,
2361					 unsigned int nents)
2362{
2363	int error;
2364	struct task_struct *task = get_proc_task(dir);
2365	const struct pid_entry *p, *last;
2366
2367	error = -ENOENT;
2368
2369	if (!task)
2370		goto out_no_task;
2371
2372	/*
2373	 * Yes, it does not scale. And it should not. Don't add
2374	 * new entries into /proc/<tgid>/ without very good reasons.
2375	 */
2376	last = &ents[nents - 1];
2377	for (p = ents; p <= last; p++) {
2378		if (p->len != dentry->d_name.len)
2379			continue;
2380		if (!memcmp(dentry->d_name.name, p->name, p->len))
 
2381			break;
 
2382	}
2383	if (p > last)
2384		goto out;
2385
2386	error = proc_pident_instantiate(dir, dentry, task, p);
2387out:
2388	put_task_struct(task);
2389out_no_task:
2390	return ERR_PTR(error);
2391}
2392
2393static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2394		const struct pid_entry *ents, unsigned int nents)
2395{
2396	struct task_struct *task = get_proc_task(file_inode(file));
2397	const struct pid_entry *p;
2398
2399	if (!task)
2400		return -ENOENT;
2401
2402	if (!dir_emit_dots(file, ctx))
2403		goto out;
2404
2405	if (ctx->pos >= nents + 2)
2406		goto out;
2407
2408	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2409		if (!proc_fill_cache(file, ctx, p->name, p->len,
2410				proc_pident_instantiate, task, p))
2411			break;
2412		ctx->pos++;
2413	}
2414out:
2415	put_task_struct(task);
2416	return 0;
2417}
2418
2419#ifdef CONFIG_SECURITY
 
 
 
 
 
 
 
2420static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2421				  size_t count, loff_t *ppos)
2422{
2423	struct inode * inode = file_inode(file);
2424	char *p = NULL;
2425	ssize_t length;
2426	struct task_struct *task = get_proc_task(inode);
2427
2428	if (!task)
2429		return -ESRCH;
2430
2431	length = security_getprocattr(task,
2432				      (char*)file->f_path.dentry->d_name.name,
2433				      &p);
2434	put_task_struct(task);
2435	if (length > 0)
2436		length = simple_read_from_buffer(buf, count, ppos, p, length);
2437	kfree(p);
2438	return length;
2439}
2440
2441static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2442				   size_t count, loff_t *ppos)
2443{
2444	struct inode * inode = file_inode(file);
 
2445	void *page;
2446	ssize_t length;
2447	struct task_struct *task = get_proc_task(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2448
2449	length = -ESRCH;
2450	if (!task)
2451		goto out_no_task;
2452	if (count > PAGE_SIZE)
2453		count = PAGE_SIZE;
2454
2455	/* No partial writes. */
2456	length = -EINVAL;
2457	if (*ppos != 0)
2458		goto out;
2459
2460	page = memdup_user(buf, count);
2461	if (IS_ERR(page)) {
2462		length = PTR_ERR(page);
2463		goto out;
2464	}
2465
2466	/* Guard against adverse ptrace interaction */
2467	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2468	if (length < 0)
2469		goto out_free;
2470
2471	length = security_setprocattr(task,
2472				      (char*)file->f_path.dentry->d_name.name,
2473				      page, count);
2474	mutex_unlock(&task->signal->cred_guard_mutex);
2475out_free:
2476	kfree(page);
2477out:
2478	put_task_struct(task);
2479out_no_task:
2480	return length;
2481}
2482
2483static const struct file_operations proc_pid_attr_operations = {
 
2484	.read		= proc_pid_attr_read,
2485	.write		= proc_pid_attr_write,
2486	.llseek		= generic_file_llseek,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487};
 
 
2488
2489static const struct pid_entry attr_dir_stuff[] = {
2490	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2491	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2492	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2493	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2494	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2495	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
 
 
 
 
 
 
 
 
2496};
2497
2498static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2499{
2500	return proc_pident_readdir(file, ctx, 
2501				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2502}
2503
2504static const struct file_operations proc_attr_dir_operations = {
2505	.read		= generic_read_dir,
2506	.iterate	= proc_attr_dir_readdir,
2507	.llseek		= default_llseek,
2508};
2509
2510static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2511				struct dentry *dentry, unsigned int flags)
2512{
2513	return proc_pident_lookup(dir, dentry,
2514				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
 
2515}
2516
2517static const struct inode_operations proc_attr_dir_inode_operations = {
2518	.lookup		= proc_attr_dir_lookup,
2519	.getattr	= pid_getattr,
2520	.setattr	= proc_setattr,
2521};
2522
2523#endif
2524
2525#ifdef CONFIG_ELF_CORE
2526static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2527					 size_t count, loff_t *ppos)
2528{
2529	struct task_struct *task = get_proc_task(file_inode(file));
2530	struct mm_struct *mm;
2531	char buffer[PROC_NUMBUF];
2532	size_t len;
2533	int ret;
2534
2535	if (!task)
2536		return -ESRCH;
2537
2538	ret = 0;
2539	mm = get_task_mm(task);
2540	if (mm) {
2541		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2542			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2543				MMF_DUMP_FILTER_SHIFT));
2544		mmput(mm);
2545		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2546	}
2547
2548	put_task_struct(task);
2549
2550	return ret;
2551}
2552
2553static ssize_t proc_coredump_filter_write(struct file *file,
2554					  const char __user *buf,
2555					  size_t count,
2556					  loff_t *ppos)
2557{
2558	struct task_struct *task;
2559	struct mm_struct *mm;
2560	unsigned int val;
2561	int ret;
2562	int i;
2563	unsigned long mask;
2564
2565	ret = kstrtouint_from_user(buf, count, 0, &val);
2566	if (ret < 0)
2567		return ret;
2568
2569	ret = -ESRCH;
2570	task = get_proc_task(file_inode(file));
2571	if (!task)
2572		goto out_no_task;
2573
2574	mm = get_task_mm(task);
2575	if (!mm)
2576		goto out_no_mm;
2577	ret = 0;
2578
2579	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2580		if (val & mask)
2581			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2582		else
2583			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2584	}
2585
2586	mmput(mm);
2587 out_no_mm:
2588	put_task_struct(task);
2589 out_no_task:
2590	if (ret < 0)
2591		return ret;
2592	return count;
2593}
2594
2595static const struct file_operations proc_coredump_filter_operations = {
2596	.read		= proc_coredump_filter_read,
2597	.write		= proc_coredump_filter_write,
2598	.llseek		= generic_file_llseek,
2599};
2600#endif
2601
2602#ifdef CONFIG_TASK_IO_ACCOUNTING
2603static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2604{
2605	struct task_io_accounting acct = task->ioac;
2606	unsigned long flags;
2607	int result;
2608
2609	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2610	if (result)
2611		return result;
2612
2613	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2614		result = -EACCES;
2615		goto out_unlock;
2616	}
2617
2618	if (whole && lock_task_sighand(task, &flags)) {
2619		struct task_struct *t = task;
 
 
 
 
 
 
 
 
2620
2621		task_io_accounting_add(&acct, &task->signal->ioac);
2622		while_each_thread(task, t)
2623			task_io_accounting_add(&acct, &t->ioac);
2624
2625		unlock_task_sighand(task, &flags);
 
 
 
 
2626	}
 
2627	seq_printf(m,
2628		   "rchar: %llu\n"
2629		   "wchar: %llu\n"
2630		   "syscr: %llu\n"
2631		   "syscw: %llu\n"
2632		   "read_bytes: %llu\n"
2633		   "write_bytes: %llu\n"
2634		   "cancelled_write_bytes: %llu\n",
2635		   (unsigned long long)acct.rchar,
2636		   (unsigned long long)acct.wchar,
2637		   (unsigned long long)acct.syscr,
2638		   (unsigned long long)acct.syscw,
2639		   (unsigned long long)acct.read_bytes,
2640		   (unsigned long long)acct.write_bytes,
2641		   (unsigned long long)acct.cancelled_write_bytes);
2642	result = 0;
2643
2644out_unlock:
2645	mutex_unlock(&task->signal->cred_guard_mutex);
2646	return result;
2647}
2648
2649static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2650				  struct pid *pid, struct task_struct *task)
2651{
2652	return do_io_accounting(task, m, 0);
2653}
2654
2655static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2656				   struct pid *pid, struct task_struct *task)
2657{
2658	return do_io_accounting(task, m, 1);
2659}
2660#endif /* CONFIG_TASK_IO_ACCOUNTING */
2661
2662#ifdef CONFIG_USER_NS
2663static int proc_id_map_open(struct inode *inode, struct file *file,
2664	const struct seq_operations *seq_ops)
2665{
2666	struct user_namespace *ns = NULL;
2667	struct task_struct *task;
2668	struct seq_file *seq;
2669	int ret = -EINVAL;
2670
2671	task = get_proc_task(inode);
2672	if (task) {
2673		rcu_read_lock();
2674		ns = get_user_ns(task_cred_xxx(task, user_ns));
2675		rcu_read_unlock();
2676		put_task_struct(task);
2677	}
2678	if (!ns)
2679		goto err;
2680
2681	ret = seq_open(file, seq_ops);
2682	if (ret)
2683		goto err_put_ns;
2684
2685	seq = file->private_data;
2686	seq->private = ns;
2687
2688	return 0;
2689err_put_ns:
2690	put_user_ns(ns);
2691err:
2692	return ret;
2693}
2694
2695static int proc_id_map_release(struct inode *inode, struct file *file)
2696{
2697	struct seq_file *seq = file->private_data;
2698	struct user_namespace *ns = seq->private;
2699	put_user_ns(ns);
2700	return seq_release(inode, file);
2701}
2702
2703static int proc_uid_map_open(struct inode *inode, struct file *file)
2704{
2705	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2706}
2707
2708static int proc_gid_map_open(struct inode *inode, struct file *file)
2709{
2710	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2711}
2712
2713static int proc_projid_map_open(struct inode *inode, struct file *file)
2714{
2715	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2716}
2717
2718static const struct file_operations proc_uid_map_operations = {
2719	.open		= proc_uid_map_open,
2720	.write		= proc_uid_map_write,
2721	.read		= seq_read,
2722	.llseek		= seq_lseek,
2723	.release	= proc_id_map_release,
2724};
2725
2726static const struct file_operations proc_gid_map_operations = {
2727	.open		= proc_gid_map_open,
2728	.write		= proc_gid_map_write,
2729	.read		= seq_read,
2730	.llseek		= seq_lseek,
2731	.release	= proc_id_map_release,
2732};
2733
2734static const struct file_operations proc_projid_map_operations = {
2735	.open		= proc_projid_map_open,
2736	.write		= proc_projid_map_write,
2737	.read		= seq_read,
2738	.llseek		= seq_lseek,
2739	.release	= proc_id_map_release,
2740};
2741
2742static int proc_setgroups_open(struct inode *inode, struct file *file)
2743{
2744	struct user_namespace *ns = NULL;
2745	struct task_struct *task;
2746	int ret;
2747
2748	ret = -ESRCH;
2749	task = get_proc_task(inode);
2750	if (task) {
2751		rcu_read_lock();
2752		ns = get_user_ns(task_cred_xxx(task, user_ns));
2753		rcu_read_unlock();
2754		put_task_struct(task);
2755	}
2756	if (!ns)
2757		goto err;
2758
2759	if (file->f_mode & FMODE_WRITE) {
2760		ret = -EACCES;
2761		if (!ns_capable(ns, CAP_SYS_ADMIN))
2762			goto err_put_ns;
2763	}
2764
2765	ret = single_open(file, &proc_setgroups_show, ns);
2766	if (ret)
2767		goto err_put_ns;
2768
2769	return 0;
2770err_put_ns:
2771	put_user_ns(ns);
2772err:
2773	return ret;
2774}
2775
2776static int proc_setgroups_release(struct inode *inode, struct file *file)
2777{
2778	struct seq_file *seq = file->private_data;
2779	struct user_namespace *ns = seq->private;
2780	int ret = single_release(inode, file);
2781	put_user_ns(ns);
2782	return ret;
2783}
2784
2785static const struct file_operations proc_setgroups_operations = {
2786	.open		= proc_setgroups_open,
2787	.write		= proc_setgroups_write,
2788	.read		= seq_read,
2789	.llseek		= seq_lseek,
2790	.release	= proc_setgroups_release,
2791};
2792#endif /* CONFIG_USER_NS */
2793
2794static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2795				struct pid *pid, struct task_struct *task)
2796{
2797	int err = lock_trace(task);
2798	if (!err) {
2799		seq_printf(m, "%08x\n", task->personality);
2800		unlock_trace(task);
2801	}
2802	return err;
2803}
2804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2805/*
2806 * Thread groups
2807 */
2808static const struct file_operations proc_task_operations;
2809static const struct inode_operations proc_task_inode_operations;
2810
2811static const struct pid_entry tgid_base_stuff[] = {
2812	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2813	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2814	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2815	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2816	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2817#ifdef CONFIG_NET
2818	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2819#endif
2820	REG("environ",    S_IRUSR, proc_environ_operations),
2821	ONE("auxv",       S_IRUSR, proc_pid_auxv),
2822	ONE("status",     S_IRUGO, proc_pid_status),
2823	ONE("personality", S_IRUSR, proc_pid_personality),
2824	ONE("limits",	  S_IRUGO, proc_pid_limits),
2825#ifdef CONFIG_SCHED_DEBUG
2826	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2827#endif
2828#ifdef CONFIG_SCHED_AUTOGROUP
2829	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2830#endif
 
 
 
2831	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2832#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2833	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2834#endif
2835	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2836	ONE("stat",       S_IRUGO, proc_tgid_stat),
2837	ONE("statm",      S_IRUGO, proc_pid_statm),
2838	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2839#ifdef CONFIG_NUMA
2840	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2841#endif
2842	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2843	LNK("cwd",        proc_cwd_link),
2844	LNK("root",       proc_root_link),
2845	LNK("exe",        proc_exe_link),
2846	REG("mounts",     S_IRUGO, proc_mounts_operations),
2847	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2848	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2849#ifdef CONFIG_PROC_PAGE_MONITOR
2850	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2851	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
 
2852	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2853#endif
2854#ifdef CONFIG_SECURITY
2855	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2856#endif
2857#ifdef CONFIG_KALLSYMS
2858	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2859#endif
2860#ifdef CONFIG_STACKTRACE
2861	ONE("stack",      S_IRUSR, proc_pid_stack),
2862#endif
2863#ifdef CONFIG_SCHED_INFO
2864	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2865#endif
2866#ifdef CONFIG_LATENCYTOP
2867	REG("latency",  S_IRUGO, proc_lstats_operations),
2868#endif
2869#ifdef CONFIG_PROC_PID_CPUSET
2870	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2871#endif
2872#ifdef CONFIG_CGROUPS
2873	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2874#endif
 
 
 
2875	ONE("oom_score",  S_IRUGO, proc_oom_score),
2876	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2877	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2878#ifdef CONFIG_AUDITSYSCALL
2879	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2880	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2881#endif
2882#ifdef CONFIG_FAULT_INJECTION
2883	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
 
2884#endif
2885#ifdef CONFIG_ELF_CORE
2886	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2887#endif
2888#ifdef CONFIG_TASK_IO_ACCOUNTING
2889	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2890#endif
2891#ifdef CONFIG_HARDWALL
2892	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2893#endif
2894#ifdef CONFIG_USER_NS
2895	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2896	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2897	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2898	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2899#endif
2900#ifdef CONFIG_CHECKPOINT_RESTORE
2901	REG("timers",	  S_IRUGO, proc_timers_operations),
2902#endif
2903	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2904};
2905
2906static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2907{
2908	return proc_pident_readdir(file, ctx,
2909				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2910}
2911
2912static const struct file_operations proc_tgid_base_operations = {
2913	.read		= generic_read_dir,
2914	.iterate	= proc_tgid_base_readdir,
2915	.llseek		= default_llseek,
2916};
2917
 
 
 
 
 
 
 
 
2918static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2919{
2920	return proc_pident_lookup(dir, dentry,
2921				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
 
2922}
2923
2924static const struct inode_operations proc_tgid_base_inode_operations = {
2925	.lookup		= proc_tgid_base_lookup,
2926	.getattr	= pid_getattr,
2927	.setattr	= proc_setattr,
2928	.permission	= proc_pid_permission,
2929};
2930
2931static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2932{
2933	struct dentry *dentry, *leader, *dir;
2934	char buf[PROC_NUMBUF];
2935	struct qstr name;
2936
2937	name.name = buf;
2938	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2939	/* no ->d_hash() rejects on procfs */
2940	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2941	if (dentry) {
2942		d_invalidate(dentry);
2943		dput(dentry);
2944	}
2945
2946	if (pid == tgid)
2947		return;
2948
2949	name.name = buf;
2950	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2951	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2952	if (!leader)
2953		goto out;
2954
2955	name.name = "task";
2956	name.len = strlen(name.name);
2957	dir = d_hash_and_lookup(leader, &name);
2958	if (!dir)
2959		goto out_put_leader;
2960
2961	name.name = buf;
2962	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2963	dentry = d_hash_and_lookup(dir, &name);
2964	if (dentry) {
2965		d_invalidate(dentry);
2966		dput(dentry);
2967	}
2968
2969	dput(dir);
2970out_put_leader:
2971	dput(leader);
2972out:
2973	return;
2974}
2975
2976/**
2977 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2978 * @task: task that should be flushed.
2979 *
2980 * When flushing dentries from proc, one needs to flush them from global
2981 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2982 * in. This call is supposed to do all of this job.
2983 *
2984 * Looks in the dcache for
2985 * /proc/@pid
2986 * /proc/@tgid/task/@pid
2987 * if either directory is present flushes it and all of it'ts children
2988 * from the dcache.
2989 *
2990 * It is safe and reasonable to cache /proc entries for a task until
2991 * that task exits.  After that they just clog up the dcache with
2992 * useless entries, possibly causing useful dcache entries to be
2993 * flushed instead.  This routine is proved to flush those useless
2994 * dcache entries at process exit time.
2995 *
2996 * NOTE: This routine is just an optimization so it does not guarantee
2997 *       that no dcache entries will exist at process exit time it
2998 *       just makes it very unlikely that any will persist.
2999 */
3000
3001void proc_flush_task(struct task_struct *task)
3002{
3003	int i;
3004	struct pid *pid, *tgid;
3005	struct upid *upid;
3006
3007	pid = task_pid(task);
3008	tgid = task_tgid(task);
3009
3010	for (i = 0; i <= pid->level; i++) {
3011		upid = &pid->numbers[i];
3012		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3013					tgid->numbers[i].nr);
3014	}
3015}
3016
3017static int proc_pid_instantiate(struct inode *dir,
3018				   struct dentry * dentry,
3019				   struct task_struct *task, const void *ptr)
3020{
3021	struct inode *inode;
3022
3023	inode = proc_pid_make_inode(dir->i_sb, task);
 
3024	if (!inode)
3025		goto out;
3026
3027	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3028	inode->i_op = &proc_tgid_base_inode_operations;
3029	inode->i_fop = &proc_tgid_base_operations;
3030	inode->i_flags|=S_IMMUTABLE;
3031
3032	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3033						  ARRAY_SIZE(tgid_base_stuff)));
3034
3035	d_set_d_op(dentry, &pid_dentry_operations);
3036
3037	d_add(dentry, inode);
3038	/* Close the race of the process dying before we return the dentry */
3039	if (pid_revalidate(dentry, 0))
3040		return 0;
3041out:
3042	return -ENOENT;
3043}
3044
3045struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3046{
3047	int result = -ENOENT;
3048	struct task_struct *task;
3049	unsigned tgid;
 
3050	struct pid_namespace *ns;
 
3051
3052	tgid = name_to_int(&dentry->d_name);
3053	if (tgid == ~0U)
3054		goto out;
3055
3056	ns = dentry->d_sb->s_fs_info;
 
3057	rcu_read_lock();
3058	task = find_task_by_pid_ns(tgid, ns);
3059	if (task)
3060		get_task_struct(task);
3061	rcu_read_unlock();
3062	if (!task)
3063		goto out;
3064
3065	result = proc_pid_instantiate(dir, dentry, task, NULL);
 
 
 
 
 
 
 
3066	put_task_struct(task);
3067out:
3068	return ERR_PTR(result);
3069}
3070
3071/*
3072 * Find the first task with tgid >= tgid
3073 *
3074 */
3075struct tgid_iter {
3076	unsigned int tgid;
3077	struct task_struct *task;
3078};
3079static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3080{
3081	struct pid *pid;
3082
3083	if (iter.task)
3084		put_task_struct(iter.task);
3085	rcu_read_lock();
3086retry:
3087	iter.task = NULL;
3088	pid = find_ge_pid(iter.tgid, ns);
3089	if (pid) {
3090		iter.tgid = pid_nr_ns(pid, ns);
3091		iter.task = pid_task(pid, PIDTYPE_PID);
3092		/* What we to know is if the pid we have find is the
3093		 * pid of a thread_group_leader.  Testing for task
3094		 * being a thread_group_leader is the obvious thing
3095		 * todo but there is a window when it fails, due to
3096		 * the pid transfer logic in de_thread.
3097		 *
3098		 * So we perform the straight forward test of seeing
3099		 * if the pid we have found is the pid of a thread
3100		 * group leader, and don't worry if the task we have
3101		 * found doesn't happen to be a thread group leader.
3102		 * As we don't care in the case of readdir.
3103		 */
3104		if (!iter.task || !has_group_leader_pid(iter.task)) {
3105			iter.tgid += 1;
3106			goto retry;
3107		}
3108		get_task_struct(iter.task);
3109	}
3110	rcu_read_unlock();
3111	return iter;
3112}
3113
3114#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3115
3116/* for the /proc/ directory itself, after non-process stuff has been done */
3117int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3118{
3119	struct tgid_iter iter;
3120	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
 
3121	loff_t pos = ctx->pos;
3122
3123	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3124		return 0;
3125
3126	if (pos == TGID_OFFSET - 2) {
3127		struct inode *inode = d_inode(ns->proc_self);
3128		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3129			return 0;
3130		ctx->pos = pos = pos + 1;
3131	}
3132	if (pos == TGID_OFFSET - 1) {
3133		struct inode *inode = d_inode(ns->proc_thread_self);
3134		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3135			return 0;
3136		ctx->pos = pos = pos + 1;
3137	}
3138	iter.tgid = pos - TGID_OFFSET;
3139	iter.task = NULL;
3140	for (iter = next_tgid(ns, iter);
3141	     iter.task;
3142	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3143		char name[PROC_NUMBUF];
3144		int len;
3145		if (!has_pid_permissions(ns, iter.task, 2))
 
 
3146			continue;
3147
3148		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3149		ctx->pos = iter.tgid + TGID_OFFSET;
3150		if (!proc_fill_cache(file, ctx, name, len,
3151				     proc_pid_instantiate, iter.task, NULL)) {
3152			put_task_struct(iter.task);
3153			return 0;
3154		}
3155	}
3156	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3157	return 0;
3158}
3159
3160/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3161 * Tasks
3162 */
3163static const struct pid_entry tid_base_stuff[] = {
3164	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3165	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3166	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3167#ifdef CONFIG_NET
3168	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3169#endif
3170	REG("environ",   S_IRUSR, proc_environ_operations),
3171	ONE("auxv",      S_IRUSR, proc_pid_auxv),
3172	ONE("status",    S_IRUGO, proc_pid_status),
3173	ONE("personality", S_IRUSR, proc_pid_personality),
3174	ONE("limits",	 S_IRUGO, proc_pid_limits),
3175#ifdef CONFIG_SCHED_DEBUG
3176	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3177#endif
3178	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
 
 
3179#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3180	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3181#endif
3182	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3183	ONE("stat",      S_IRUGO, proc_tid_stat),
3184	ONE("statm",     S_IRUGO, proc_pid_statm),
3185	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3186#ifdef CONFIG_PROC_CHILDREN
3187	REG("children",  S_IRUGO, proc_tid_children_operations),
3188#endif
3189#ifdef CONFIG_NUMA
3190	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3191#endif
3192	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3193	LNK("cwd",       proc_cwd_link),
3194	LNK("root",      proc_root_link),
3195	LNK("exe",       proc_exe_link),
3196	REG("mounts",    S_IRUGO, proc_mounts_operations),
3197	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3198#ifdef CONFIG_PROC_PAGE_MONITOR
3199	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3200	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
 
3201	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3202#endif
3203#ifdef CONFIG_SECURITY
3204	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3205#endif
3206#ifdef CONFIG_KALLSYMS
3207	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3208#endif
3209#ifdef CONFIG_STACKTRACE
3210	ONE("stack",      S_IRUSR, proc_pid_stack),
3211#endif
3212#ifdef CONFIG_SCHED_INFO
3213	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3214#endif
3215#ifdef CONFIG_LATENCYTOP
3216	REG("latency",  S_IRUGO, proc_lstats_operations),
3217#endif
3218#ifdef CONFIG_PROC_PID_CPUSET
3219	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3220#endif
3221#ifdef CONFIG_CGROUPS
3222	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3223#endif
 
 
 
3224	ONE("oom_score", S_IRUGO, proc_oom_score),
3225	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3226	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3227#ifdef CONFIG_AUDITSYSCALL
3228	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3229	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3230#endif
3231#ifdef CONFIG_FAULT_INJECTION
3232	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
 
3233#endif
3234#ifdef CONFIG_TASK_IO_ACCOUNTING
3235	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3236#endif
3237#ifdef CONFIG_HARDWALL
3238	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3239#endif
3240#ifdef CONFIG_USER_NS
3241	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3242	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3243	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3244	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3245#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
3246};
3247
3248static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3249{
3250	return proc_pident_readdir(file, ctx,
3251				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3252}
3253
3254static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3255{
3256	return proc_pident_lookup(dir, dentry,
3257				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
 
3258}
3259
3260static const struct file_operations proc_tid_base_operations = {
3261	.read		= generic_read_dir,
3262	.iterate	= proc_tid_base_readdir,
3263	.llseek		= default_llseek,
3264};
3265
3266static const struct inode_operations proc_tid_base_inode_operations = {
3267	.lookup		= proc_tid_base_lookup,
3268	.getattr	= pid_getattr,
3269	.setattr	= proc_setattr,
3270};
3271
3272static int proc_task_instantiate(struct inode *dir,
3273	struct dentry *dentry, struct task_struct *task, const void *ptr)
3274{
3275	struct inode *inode;
3276	inode = proc_pid_make_inode(dir->i_sb, task);
3277
3278	if (!inode)
3279		goto out;
3280	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3281	inode->i_op = &proc_tid_base_inode_operations;
3282	inode->i_fop = &proc_tid_base_operations;
3283	inode->i_flags|=S_IMMUTABLE;
3284
3285	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3286						  ARRAY_SIZE(tid_base_stuff)));
3287
3288	d_set_d_op(dentry, &pid_dentry_operations);
3289
3290	d_add(dentry, inode);
3291	/* Close the race of the process dying before we return the dentry */
3292	if (pid_revalidate(dentry, 0))
3293		return 0;
3294out:
3295	return -ENOENT;
3296}
3297
3298static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3299{
3300	int result = -ENOENT;
3301	struct task_struct *task;
3302	struct task_struct *leader = get_proc_task(dir);
3303	unsigned tid;
 
3304	struct pid_namespace *ns;
 
3305
3306	if (!leader)
3307		goto out_no_task;
3308
3309	tid = name_to_int(&dentry->d_name);
3310	if (tid == ~0U)
3311		goto out;
3312
3313	ns = dentry->d_sb->s_fs_info;
 
3314	rcu_read_lock();
3315	task = find_task_by_pid_ns(tid, ns);
3316	if (task)
3317		get_task_struct(task);
3318	rcu_read_unlock();
3319	if (!task)
3320		goto out;
3321	if (!same_thread_group(leader, task))
3322		goto out_drop_task;
3323
3324	result = proc_task_instantiate(dir, dentry, task, NULL);
3325out_drop_task:
3326	put_task_struct(task);
3327out:
3328	put_task_struct(leader);
3329out_no_task:
3330	return ERR_PTR(result);
3331}
3332
3333/*
3334 * Find the first tid of a thread group to return to user space.
3335 *
3336 * Usually this is just the thread group leader, but if the users
3337 * buffer was too small or there was a seek into the middle of the
3338 * directory we have more work todo.
3339 *
3340 * In the case of a short read we start with find_task_by_pid.
3341 *
3342 * In the case of a seek we start with the leader and walk nr
3343 * threads past it.
3344 */
3345static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3346					struct pid_namespace *ns)
3347{
3348	struct task_struct *pos, *task;
3349	unsigned long nr = f_pos;
3350
3351	if (nr != f_pos)	/* 32bit overflow? */
3352		return NULL;
3353
3354	rcu_read_lock();
3355	task = pid_task(pid, PIDTYPE_PID);
3356	if (!task)
3357		goto fail;
3358
3359	/* Attempt to start with the tid of a thread */
3360	if (tid && nr) {
3361		pos = find_task_by_pid_ns(tid, ns);
3362		if (pos && same_thread_group(pos, task))
3363			goto found;
3364	}
3365
3366	/* If nr exceeds the number of threads there is nothing todo */
3367	if (nr >= get_nr_threads(task))
3368		goto fail;
3369
3370	/* If we haven't found our starting place yet start
3371	 * with the leader and walk nr threads forward.
3372	 */
3373	pos = task = task->group_leader;
3374	do {
3375		if (!nr--)
3376			goto found;
3377	} while_each_thread(task, pos);
3378fail:
3379	pos = NULL;
3380	goto out;
3381found:
3382	get_task_struct(pos);
3383out:
3384	rcu_read_unlock();
3385	return pos;
3386}
3387
3388/*
3389 * Find the next thread in the thread list.
3390 * Return NULL if there is an error or no next thread.
3391 *
3392 * The reference to the input task_struct is released.
3393 */
3394static struct task_struct *next_tid(struct task_struct *start)
3395{
3396	struct task_struct *pos = NULL;
3397	rcu_read_lock();
3398	if (pid_alive(start)) {
3399		pos = next_thread(start);
3400		if (thread_group_leader(pos))
3401			pos = NULL;
3402		else
3403			get_task_struct(pos);
3404	}
3405	rcu_read_unlock();
3406	put_task_struct(start);
3407	return pos;
3408}
3409
3410/* for the /proc/TGID/task/ directories */
3411static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3412{
3413	struct inode *inode = file_inode(file);
3414	struct task_struct *task;
3415	struct pid_namespace *ns;
3416	int tid;
3417
3418	if (proc_inode_is_dead(inode))
3419		return -ENOENT;
3420
3421	if (!dir_emit_dots(file, ctx))
3422		return 0;
3423
3424	/* f_version caches the tgid value that the last readdir call couldn't
3425	 * return. lseek aka telldir automagically resets f_version to 0.
3426	 */
3427	ns = inode->i_sb->s_fs_info;
3428	tid = (int)file->f_version;
3429	file->f_version = 0;
3430	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3431	     task;
3432	     task = next_tid(task), ctx->pos++) {
3433		char name[PROC_NUMBUF];
3434		int len;
 
3435		tid = task_pid_nr_ns(task, ns);
3436		len = snprintf(name, sizeof(name), "%d", tid);
 
 
3437		if (!proc_fill_cache(file, ctx, name, len,
3438				proc_task_instantiate, task, NULL)) {
3439			/* returning this tgid failed, save it as the first
3440			 * pid for the next readir call */
3441			file->f_version = (u64)tid;
3442			put_task_struct(task);
3443			break;
3444		}
3445	}
3446
3447	return 0;
3448}
3449
3450static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
 
 
3451{
3452	struct inode *inode = d_inode(dentry);
3453	struct task_struct *p = get_proc_task(inode);
3454	generic_fillattr(inode, stat);
3455
3456	if (p) {
3457		stat->nlink += get_nr_threads(p);
3458		put_task_struct(p);
3459	}
3460
3461	return 0;
3462}
3463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3464static const struct inode_operations proc_task_inode_operations = {
3465	.lookup		= proc_task_lookup,
3466	.getattr	= proc_task_getattr,
3467	.setattr	= proc_setattr,
3468	.permission	= proc_pid_permission,
3469};
3470
3471static const struct file_operations proc_task_operations = {
3472	.read		= generic_read_dir,
3473	.iterate	= proc_task_readdir,
3474	.llseek		= default_llseek,
3475};
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
  61#include <linux/generic-radix-tree.h>
  62#include <linux/string.h>
  63#include <linux/seq_file.h>
  64#include <linux/namei.h>
  65#include <linux/mnt_namespace.h>
  66#include <linux/mm.h>
  67#include <linux/swap.h>
  68#include <linux/rcupdate.h>
  69#include <linux/kallsyms.h>
  70#include <linux/stacktrace.h>
  71#include <linux/resource.h>
  72#include <linux/module.h>
  73#include <linux/mount.h>
  74#include <linux/security.h>
  75#include <linux/ptrace.h>
 
  76#include <linux/printk.h>
  77#include <linux/cache.h>
  78#include <linux/cgroup.h>
  79#include <linux/cpuset.h>
  80#include <linux/audit.h>
  81#include <linux/poll.h>
  82#include <linux/nsproxy.h>
  83#include <linux/oom.h>
  84#include <linux/elf.h>
  85#include <linux/pid_namespace.h>
  86#include <linux/user_namespace.h>
  87#include <linux/fs_parser.h>
  88#include <linux/fs_struct.h>
  89#include <linux/slab.h>
  90#include <linux/sched/autogroup.h>
  91#include <linux/sched/mm.h>
  92#include <linux/sched/coredump.h>
  93#include <linux/sched/debug.h>
  94#include <linux/sched/stat.h>
  95#include <linux/posix-timers.h>
  96#include <linux/time_namespace.h>
  97#include <linux/resctrl.h>
  98#include <linux/cn_proc.h>
  99#include <linux/ksm.h>
 100#include <uapi/linux/lsm.h>
 101#include <trace/events/oom.h>
 102#include "internal.h"
 103#include "fd.h"
 104
 105#include "../../lib/kstrtox.h"
 106
 107/* NOTE:
 108 *	Implementing inode permission operations in /proc is almost
 109 *	certainly an error.  Permission checks need to happen during
 110 *	each system call not at open time.  The reason is that most of
 111 *	what we wish to check for permissions in /proc varies at runtime.
 112 *
 113 *	The classic example of a problem is opening file descriptors
 114 *	in /proc for a task before it execs a suid executable.
 115 */
 116
 117static u8 nlink_tid __ro_after_init;
 118static u8 nlink_tgid __ro_after_init;
 119
 120enum proc_mem_force {
 121	PROC_MEM_FORCE_ALWAYS,
 122	PROC_MEM_FORCE_PTRACE,
 123	PROC_MEM_FORCE_NEVER
 124};
 125
 126static enum proc_mem_force proc_mem_force_override __ro_after_init =
 127	IS_ENABLED(CONFIG_PROC_MEM_NO_FORCE) ? PROC_MEM_FORCE_NEVER :
 128	IS_ENABLED(CONFIG_PROC_MEM_FORCE_PTRACE) ? PROC_MEM_FORCE_PTRACE :
 129	PROC_MEM_FORCE_ALWAYS;
 130
 131static const struct constant_table proc_mem_force_table[] __initconst = {
 132	{ "always", PROC_MEM_FORCE_ALWAYS },
 133	{ "ptrace", PROC_MEM_FORCE_PTRACE },
 134	{ "never", PROC_MEM_FORCE_NEVER },
 135	{ }
 136};
 137
 138static int __init early_proc_mem_force_override(char *buf)
 139{
 140	if (!buf)
 141		return -EINVAL;
 142
 143	/*
 144	 * lookup_constant() defaults to proc_mem_force_override to preseve
 145	 * the initial Kconfig choice in case an invalid param gets passed.
 146	 */
 147	proc_mem_force_override = lookup_constant(proc_mem_force_table,
 148						  buf, proc_mem_force_override);
 149
 150	return 0;
 151}
 152early_param("proc_mem.force_override", early_proc_mem_force_override);
 153
 154struct pid_entry {
 155	const char *name;
 156	unsigned int len;
 157	umode_t mode;
 158	const struct inode_operations *iop;
 159	const struct file_operations *fop;
 160	union proc_op op;
 161};
 162
 163#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 164	.name = (NAME),					\
 165	.len  = sizeof(NAME) - 1,			\
 166	.mode = MODE,					\
 167	.iop  = IOP,					\
 168	.fop  = FOP,					\
 169	.op   = OP,					\
 170}
 171
 172#define DIR(NAME, MODE, iops, fops)	\
 173	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 174#define LNK(NAME, get_link)					\
 175	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 176		&proc_pid_link_inode_operations, NULL,		\
 177		{ .proc_get_link = get_link } )
 178#define REG(NAME, MODE, fops)				\
 179	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 180#define ONE(NAME, MODE, show)				\
 181	NOD(NAME, (S_IFREG|(MODE)),			\
 182		NULL, &proc_single_file_operations,	\
 183		{ .proc_show = show } )
 184#define ATTR(LSMID, NAME, MODE)				\
 185	NOD(NAME, (S_IFREG|(MODE)),			\
 186		NULL, &proc_pid_attr_operations,	\
 187		{ .lsmid = LSMID })
 188
 189/*
 190 * Count the number of hardlinks for the pid_entry table, excluding the .
 191 * and .. links.
 192 */
 193static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 194	unsigned int n)
 195{
 196	unsigned int i;
 197	unsigned int count;
 198
 199	count = 2;
 200	for (i = 0; i < n; ++i) {
 201		if (S_ISDIR(entries[i].mode))
 202			++count;
 203	}
 204
 205	return count;
 206}
 207
 208static int get_task_root(struct task_struct *task, struct path *root)
 209{
 210	int result = -ENOENT;
 211
 212	task_lock(task);
 213	if (task->fs) {
 214		get_fs_root(task->fs, root);
 215		result = 0;
 216	}
 217	task_unlock(task);
 218	return result;
 219}
 220
 221static int proc_cwd_link(struct dentry *dentry, struct path *path)
 222{
 223	struct task_struct *task = get_proc_task(d_inode(dentry));
 224	int result = -ENOENT;
 225
 226	if (task) {
 227		task_lock(task);
 228		if (task->fs) {
 229			get_fs_pwd(task->fs, path);
 230			result = 0;
 231		}
 232		task_unlock(task);
 233		put_task_struct(task);
 234	}
 235	return result;
 236}
 237
 238static int proc_root_link(struct dentry *dentry, struct path *path)
 239{
 240	struct task_struct *task = get_proc_task(d_inode(dentry));
 241	int result = -ENOENT;
 242
 243	if (task) {
 244		result = get_task_root(task, path);
 245		put_task_struct(task);
 246	}
 247	return result;
 248}
 249
 250/*
 251 * If the user used setproctitle(), we just get the string from
 252 * user space at arg_start, and limit it to a maximum of one page.
 253 */
 254static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
 255				size_t count, unsigned long pos,
 256				unsigned long arg_start)
 257{
 
 
 258	char *page;
 259	int ret, got;
 
 
 
 
 
 
 
 260
 261	if (pos >= PAGE_SIZE)
 
 
 
 
 
 262		return 0;
 
 
 
 
 
 263
 264	page = (char *)__get_free_page(GFP_KERNEL);
 265	if (!page)
 266		return -ENOMEM;
 267
 268	ret = 0;
 269	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
 270	if (got > 0) {
 271		int len = strnlen(page, got);
 272
 273		/* Include the NUL character if it was found */
 274		if (len < got)
 275			len++;
 276
 277		if (len > pos) {
 278			len -= pos;
 279			if (len > count)
 280				len = count;
 281			len -= copy_to_user(buf, page+pos, len);
 282			if (!len)
 283				len = -EFAULT;
 284			ret = len;
 285		}
 286	}
 287	free_page((unsigned long)page);
 288	return ret;
 289}
 290
 291static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
 292			      size_t count, loff_t *ppos)
 293{
 294	unsigned long arg_start, arg_end, env_start, env_end;
 295	unsigned long pos, len;
 296	char *page, c;
 297
 298	/* Check if process spawned far enough to have cmdline. */
 299	if (!mm->env_end)
 300		return 0;
 301
 302	spin_lock(&mm->arg_lock);
 303	arg_start = mm->arg_start;
 304	arg_end = mm->arg_end;
 305	env_start = mm->env_start;
 306	env_end = mm->env_end;
 307	spin_unlock(&mm->arg_lock);
 308
 309	if (arg_start >= arg_end)
 310		return 0;
 
 
 
 311
 
 
 
 
 
 312	/*
 313	 * We allow setproctitle() to overwrite the argument
 314	 * strings, and overflow past the original end. But
 315	 * only when it overflows into the environment area.
 316	 */
 317	if (env_start != arg_end || env_end < env_start)
 318		env_start = env_end = arg_end;
 319	len = env_end - arg_start;
 320
 321	/* We're not going to care if "*ppos" has high bits set */
 322	pos = *ppos;
 323	if (pos >= len)
 324		return 0;
 325	if (count > len - pos)
 326		count = len - pos;
 327	if (!count)
 328		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329
 330	/*
 331	 * Magical special case: if the argv[] end byte is not
 332	 * zero, the user has overwritten it with setproctitle(3).
 333	 *
 334	 * Possible future enhancement: do this only once when
 335	 * pos is 0, and set a flag in the 'struct file'.
 336	 */
 337	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
 338		return get_mm_proctitle(mm, buf, count, pos, arg_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339
 340	/*
 341	 * For the non-setproctitle() case we limit things strictly
 342	 * to the [arg_start, arg_end[ range.
 343	 */
 344	pos += arg_start;
 345	if (pos < arg_start || pos >= arg_end)
 346		return 0;
 347	if (count > arg_end - pos)
 348		count = arg_end - pos;
 
 349
 350	page = (char *)__get_free_page(GFP_KERNEL);
 351	if (!page)
 352		return -ENOMEM;
 
 353
 354	len = 0;
 355	while (count) {
 356		int got;
 357		size_t size = min_t(size_t, PAGE_SIZE, count);
 
 358
 359		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
 360		if (got <= 0)
 361			break;
 362		got -= copy_to_user(buf, page, got);
 363		if (unlikely(!got)) {
 364			if (!len)
 365				len = -EFAULT;
 366			break;
 
 
 
 
 
 
 367		}
 368		pos += got;
 369		buf += got;
 370		len += got;
 371		count -= got;
 372	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373
 374	free_page((unsigned long)page);
 375	return len;
 376}
 
 377
 378static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
 379				size_t count, loff_t *pos)
 380{
 381	struct mm_struct *mm;
 382	ssize_t ret;
 383
 384	mm = get_task_mm(tsk);
 385	if (!mm)
 386		return 0;
 
 
 
 387
 388	ret = get_mm_cmdline(mm, buf, count, pos);
 
 
 389	mmput(mm);
 390	return ret;
 391}
 392
 393static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 394				     size_t count, loff_t *pos)
 395{
 396	struct task_struct *tsk;
 397	ssize_t ret;
 398
 399	BUG_ON(*pos < 0);
 400
 401	tsk = get_proc_task(file_inode(file));
 402	if (!tsk)
 403		return -ESRCH;
 404	ret = get_task_cmdline(tsk, buf, count, pos);
 405	put_task_struct(tsk);
 406	if (ret > 0)
 407		*pos += ret;
 408	return ret;
 409}
 410
 411static const struct file_operations proc_pid_cmdline_ops = {
 412	.read	= proc_pid_cmdline_read,
 413	.llseek	= generic_file_llseek,
 414};
 415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416#ifdef CONFIG_KALLSYMS
 417/*
 418 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 419 * Returns the resolved symbol.  If that fails, simply return the address.
 420 */
 421static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 422			  struct pid *pid, struct task_struct *task)
 423{
 424	unsigned long wchan;
 425	char symname[KSYM_NAME_LEN];
 426
 427	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 428		goto print0;
 429
 430	wchan = get_wchan(task);
 431	if (wchan && !lookup_symbol_name(wchan, symname)) {
 432		seq_puts(m, symname);
 433		return 0;
 434	}
 435
 436print0:
 437	seq_putc(m, '0');
 438	return 0;
 439}
 440#endif /* CONFIG_KALLSYMS */
 441
 442static int lock_trace(struct task_struct *task)
 443{
 444	int err = down_read_killable(&task->signal->exec_update_lock);
 445	if (err)
 446		return err;
 447	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 448		up_read(&task->signal->exec_update_lock);
 449		return -EPERM;
 450	}
 451	return 0;
 452}
 453
 454static void unlock_trace(struct task_struct *task)
 455{
 456	up_read(&task->signal->exec_update_lock);
 457}
 458
 459#ifdef CONFIG_STACKTRACE
 460
 461#define MAX_STACK_TRACE_DEPTH	64
 462
 463static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 464			  struct pid *pid, struct task_struct *task)
 465{
 
 466	unsigned long *entries;
 467	int err;
 
 468
 469	/*
 470	 * The ability to racily run the kernel stack unwinder on a running task
 471	 * and then observe the unwinder output is scary; while it is useful for
 472	 * debugging kernel issues, it can also allow an attacker to leak kernel
 473	 * stack contents.
 474	 * Doing this in a manner that is at least safe from races would require
 475	 * some work to ensure that the remote task can not be scheduled; and
 476	 * even then, this would still expose the unwinder as local attack
 477	 * surface.
 478	 * Therefore, this interface is restricted to root.
 479	 */
 480	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
 481		return -EACCES;
 482
 483	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
 484				GFP_KERNEL);
 485	if (!entries)
 486		return -ENOMEM;
 487
 
 
 
 
 
 488	err = lock_trace(task);
 489	if (!err) {
 490		unsigned int i, nr_entries;
 491
 492		nr_entries = stack_trace_save_tsk(task, entries,
 493						  MAX_STACK_TRACE_DEPTH, 0);
 494
 495		for (i = 0; i < nr_entries; i++) {
 496			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 
 497		}
 498
 499		unlock_trace(task);
 500	}
 501	kfree(entries);
 502
 503	return err;
 504}
 505#endif
 506
 507#ifdef CONFIG_SCHED_INFO
 508/*
 509 * Provides /proc/PID/schedstat
 510 */
 511static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 512			      struct pid *pid, struct task_struct *task)
 513{
 514	if (unlikely(!sched_info_on()))
 515		seq_puts(m, "0 0 0\n");
 516	else
 517		seq_printf(m, "%llu %llu %lu\n",
 518		   (unsigned long long)task->se.sum_exec_runtime,
 519		   (unsigned long long)task->sched_info.run_delay,
 520		   task->sched_info.pcount);
 521
 522	return 0;
 523}
 524#endif
 525
 526#ifdef CONFIG_LATENCYTOP
 527static int lstats_show_proc(struct seq_file *m, void *v)
 528{
 529	int i;
 530	struct inode *inode = m->private;
 531	struct task_struct *task = get_proc_task(inode);
 532
 533	if (!task)
 534		return -ESRCH;
 535	seq_puts(m, "Latency Top version : v0.1\n");
 536	for (i = 0; i < LT_SAVECOUNT; i++) {
 537		struct latency_record *lr = &task->latency_record[i];
 538		if (lr->backtrace[0]) {
 539			int q;
 540			seq_printf(m, "%i %li %li",
 541				   lr->count, lr->time, lr->max);
 542			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 543				unsigned long bt = lr->backtrace[q];
 544
 545				if (!bt)
 546					break;
 
 
 547				seq_printf(m, " %ps", (void *)bt);
 548			}
 549			seq_putc(m, '\n');
 550		}
 551
 552	}
 553	put_task_struct(task);
 554	return 0;
 555}
 556
 557static int lstats_open(struct inode *inode, struct file *file)
 558{
 559	return single_open(file, lstats_show_proc, inode);
 560}
 561
 562static ssize_t lstats_write(struct file *file, const char __user *buf,
 563			    size_t count, loff_t *offs)
 564{
 565	struct task_struct *task = get_proc_task(file_inode(file));
 566
 567	if (!task)
 568		return -ESRCH;
 569	clear_tsk_latency_tracing(task);
 570	put_task_struct(task);
 571
 572	return count;
 573}
 574
 575static const struct file_operations proc_lstats_operations = {
 576	.open		= lstats_open,
 577	.read		= seq_read,
 578	.write		= lstats_write,
 579	.llseek		= seq_lseek,
 580	.release	= single_release,
 581};
 582
 583#endif
 584
 585static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 586			  struct pid *pid, struct task_struct *task)
 587{
 588	unsigned long totalpages = totalram_pages() + total_swap_pages;
 589	unsigned long points = 0;
 590	long badness;
 591
 592	badness = oom_badness(task, totalpages);
 593	/*
 594	 * Special case OOM_SCORE_ADJ_MIN for all others scale the
 595	 * badness value into [0, 2000] range which we have been
 596	 * exporting for a long time so userspace might depend on it.
 597	 */
 598	if (badness != LONG_MIN)
 599		points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
 600
 
 
 
 
 
 601	seq_printf(m, "%lu\n", points);
 602
 603	return 0;
 604}
 605
 606struct limit_names {
 607	const char *name;
 608	const char *unit;
 609};
 610
 611static const struct limit_names lnames[RLIM_NLIMITS] = {
 612	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 613	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 614	[RLIMIT_DATA] = {"Max data size", "bytes"},
 615	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 616	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 617	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 618	[RLIMIT_NPROC] = {"Max processes", "processes"},
 619	[RLIMIT_NOFILE] = {"Max open files", "files"},
 620	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 621	[RLIMIT_AS] = {"Max address space", "bytes"},
 622	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 623	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 624	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 625	[RLIMIT_NICE] = {"Max nice priority", NULL},
 626	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 627	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 628};
 629
 630/* Display limits for a process */
 631static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 632			   struct pid *pid, struct task_struct *task)
 633{
 634	unsigned int i;
 635	unsigned long flags;
 636
 637	struct rlimit rlim[RLIM_NLIMITS];
 638
 639	if (!lock_task_sighand(task, &flags))
 640		return 0;
 641	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 642	unlock_task_sighand(task, &flags);
 643
 644	/*
 645	 * print the file header
 646	 */
 647	seq_puts(m, "Limit                     "
 648		"Soft Limit           "
 649		"Hard Limit           "
 650		"Units     \n");
 651
 652	for (i = 0; i < RLIM_NLIMITS; i++) {
 653		if (rlim[i].rlim_cur == RLIM_INFINITY)
 654			seq_printf(m, "%-25s %-20s ",
 655				   lnames[i].name, "unlimited");
 656		else
 657			seq_printf(m, "%-25s %-20lu ",
 658				   lnames[i].name, rlim[i].rlim_cur);
 659
 660		if (rlim[i].rlim_max == RLIM_INFINITY)
 661			seq_printf(m, "%-20s ", "unlimited");
 662		else
 663			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 664
 665		if (lnames[i].unit)
 666			seq_printf(m, "%-10s\n", lnames[i].unit);
 667		else
 668			seq_putc(m, '\n');
 669	}
 670
 671	return 0;
 672}
 673
 674#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 675static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 676			    struct pid *pid, struct task_struct *task)
 677{
 678	struct syscall_info info;
 679	u64 *args = &info.data.args[0];
 680	int res;
 681
 682	res = lock_trace(task);
 683	if (res)
 684		return res;
 685
 686	if (task_current_syscall(task, &info))
 687		seq_puts(m, "running\n");
 688	else if (info.data.nr < 0)
 689		seq_printf(m, "%d 0x%llx 0x%llx\n",
 690			   info.data.nr, info.sp, info.data.instruction_pointer);
 691	else
 692		seq_printf(m,
 693		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
 694		       info.data.nr,
 695		       args[0], args[1], args[2], args[3], args[4], args[5],
 696		       info.sp, info.data.instruction_pointer);
 697	unlock_trace(task);
 698
 699	return 0;
 700}
 701#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 702
 703/************************************************************************/
 704/*                       Here the fs part begins                        */
 705/************************************************************************/
 706
 707/* permission checks */
 708static bool proc_fd_access_allowed(struct inode *inode)
 709{
 710	struct task_struct *task;
 711	bool allowed = false;
 712	/* Allow access to a task's file descriptors if it is us or we
 713	 * may use ptrace attach to the process and find out that
 714	 * information.
 715	 */
 716	task = get_proc_task(inode);
 717	if (task) {
 718		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 719		put_task_struct(task);
 720	}
 721	return allowed;
 722}
 723
 724int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
 725		 struct iattr *attr)
 726{
 727	int error;
 728	struct inode *inode = d_inode(dentry);
 729
 730	if (attr->ia_valid & ATTR_MODE)
 731		return -EPERM;
 732
 733	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
 734	if (error)
 735		return error;
 736
 737	setattr_copy(&nop_mnt_idmap, inode, attr);
 
 738	return 0;
 739}
 740
 741/*
 742 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 743 * or euid/egid (for hide_pid_min=2)?
 744 */
 745static bool has_pid_permissions(struct proc_fs_info *fs_info,
 746				 struct task_struct *task,
 747				 enum proc_hidepid hide_pid_min)
 748{
 749	/*
 750	 * If 'hidpid' mount option is set force a ptrace check,
 751	 * we indicate that we are using a filesystem syscall
 752	 * by passing PTRACE_MODE_READ_FSCREDS
 753	 */
 754	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
 755		return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 756
 757	if (fs_info->hide_pid < hide_pid_min)
 758		return true;
 759	if (in_group_p(fs_info->pid_gid))
 760		return true;
 761	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 762}
 763
 764
 765static int proc_pid_permission(struct mnt_idmap *idmap,
 766			       struct inode *inode, int mask)
 767{
 768	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
 769	struct task_struct *task;
 770	bool has_perms;
 771
 772	task = get_proc_task(inode);
 773	if (!task)
 774		return -ESRCH;
 775	has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
 776	put_task_struct(task);
 777
 778	if (!has_perms) {
 779		if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
 780			/*
 781			 * Let's make getdents(), stat(), and open()
 782			 * consistent with each other.  If a process
 783			 * may not stat() a file, it shouldn't be seen
 784			 * in procfs at all.
 785			 */
 786			return -ENOENT;
 787		}
 788
 789		return -EPERM;
 790	}
 791	return generic_permission(&nop_mnt_idmap, inode, mask);
 792}
 793
 794
 795
 796static const struct inode_operations proc_def_inode_operations = {
 797	.setattr	= proc_setattr,
 798};
 799
 800static int proc_single_show(struct seq_file *m, void *v)
 801{
 802	struct inode *inode = m->private;
 803	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
 804	struct pid *pid = proc_pid(inode);
 805	struct task_struct *task;
 806	int ret;
 807
 
 
 808	task = get_pid_task(pid, PIDTYPE_PID);
 809	if (!task)
 810		return -ESRCH;
 811
 812	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 813
 814	put_task_struct(task);
 815	return ret;
 816}
 817
 818static int proc_single_open(struct inode *inode, struct file *filp)
 819{
 820	return single_open(filp, proc_single_show, inode);
 821}
 822
 823static const struct file_operations proc_single_file_operations = {
 824	.open		= proc_single_open,
 825	.read		= seq_read,
 826	.llseek		= seq_lseek,
 827	.release	= single_release,
 828};
 829
 830
 831struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 832{
 833	struct task_struct *task = get_proc_task(inode);
 834	struct mm_struct *mm;
 835
 836	if (!task)
 837		return ERR_PTR(-ESRCH);
 
 838
 839	mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 840	put_task_struct(task);
 841
 842	if (IS_ERR(mm))
 843		return mm == ERR_PTR(-ESRCH) ? NULL : mm;
 844
 845	/* ensure this mm_struct can't be freed */
 846	mmgrab(mm);
 847	/* but do not pin its memory */
 848	mmput(mm);
 849
 850	return mm;
 851}
 852
 853static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 854{
 855	struct mm_struct *mm = proc_mem_open(inode, mode);
 856
 857	if (IS_ERR(mm))
 858		return PTR_ERR(mm);
 859
 860	file->private_data = mm;
 861	return 0;
 862}
 863
 864static int mem_open(struct inode *inode, struct file *file)
 865{
 866	if (WARN_ON_ONCE(!(file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)))
 867		return -EINVAL;
 868	return __mem_open(inode, file, PTRACE_MODE_ATTACH);
 869}
 870
 871static bool proc_mem_foll_force(struct file *file, struct mm_struct *mm)
 872{
 873	struct task_struct *task;
 874	bool ptrace_active = false;
 875
 876	switch (proc_mem_force_override) {
 877	case PROC_MEM_FORCE_NEVER:
 878		return false;
 879	case PROC_MEM_FORCE_PTRACE:
 880		task = get_proc_task(file_inode(file));
 881		if (task) {
 882			ptrace_active =	READ_ONCE(task->ptrace) &&
 883					READ_ONCE(task->mm) == mm &&
 884					READ_ONCE(task->parent) == current;
 885			put_task_struct(task);
 886		}
 887		return ptrace_active;
 888	default:
 889		return true;
 890	}
 891}
 892
 893static ssize_t mem_rw(struct file *file, char __user *buf,
 894			size_t count, loff_t *ppos, int write)
 895{
 896	struct mm_struct *mm = file->private_data;
 897	unsigned long addr = *ppos;
 898	ssize_t copied;
 899	char *page;
 900	unsigned int flags;
 901
 902	if (!mm)
 903		return 0;
 904
 905	page = (char *)__get_free_page(GFP_KERNEL);
 906	if (!page)
 907		return -ENOMEM;
 908
 909	copied = 0;
 910	if (!mmget_not_zero(mm))
 911		goto free;
 912
 913	flags = write ? FOLL_WRITE : 0;
 914	if (proc_mem_foll_force(file, mm))
 915		flags |= FOLL_FORCE;
 916
 917	while (count > 0) {
 918		size_t this_len = min_t(size_t, count, PAGE_SIZE);
 919
 920		if (write && copy_from_user(page, buf, this_len)) {
 921			copied = -EFAULT;
 922			break;
 923		}
 924
 925		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 926		if (!this_len) {
 927			if (!copied)
 928				copied = -EIO;
 929			break;
 930		}
 931
 932		if (!write && copy_to_user(buf, page, this_len)) {
 933			copied = -EFAULT;
 934			break;
 935		}
 936
 937		buf += this_len;
 938		addr += this_len;
 939		copied += this_len;
 940		count -= this_len;
 941	}
 942	*ppos = addr;
 943
 944	mmput(mm);
 945free:
 946	free_page((unsigned long) page);
 947	return copied;
 948}
 949
 950static ssize_t mem_read(struct file *file, char __user *buf,
 951			size_t count, loff_t *ppos)
 952{
 953	return mem_rw(file, buf, count, ppos, 0);
 954}
 955
 956static ssize_t mem_write(struct file *file, const char __user *buf,
 957			 size_t count, loff_t *ppos)
 958{
 959	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 960}
 961
 962loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 963{
 964	switch (orig) {
 965	case 0:
 966		file->f_pos = offset;
 967		break;
 968	case 1:
 969		file->f_pos += offset;
 970		break;
 971	default:
 972		return -EINVAL;
 973	}
 974	force_successful_syscall_return();
 975	return file->f_pos;
 976}
 977
 978static int mem_release(struct inode *inode, struct file *file)
 979{
 980	struct mm_struct *mm = file->private_data;
 981	if (mm)
 982		mmdrop(mm);
 983	return 0;
 984}
 985
 986static const struct file_operations proc_mem_operations = {
 987	.llseek		= mem_lseek,
 988	.read		= mem_read,
 989	.write		= mem_write,
 990	.open		= mem_open,
 991	.release	= mem_release,
 992	.fop_flags	= FOP_UNSIGNED_OFFSET,
 993};
 994
 995static int environ_open(struct inode *inode, struct file *file)
 996{
 997	return __mem_open(inode, file, PTRACE_MODE_READ);
 998}
 999
1000static ssize_t environ_read(struct file *file, char __user *buf,
1001			size_t count, loff_t *ppos)
1002{
1003	char *page;
1004	unsigned long src = *ppos;
1005	int ret = 0;
1006	struct mm_struct *mm = file->private_data;
1007	unsigned long env_start, env_end;
1008
1009	/* Ensure the process spawned far enough to have an environment. */
1010	if (!mm || !mm->env_end)
1011		return 0;
1012
1013	page = (char *)__get_free_page(GFP_KERNEL);
1014	if (!page)
1015		return -ENOMEM;
1016
1017	ret = 0;
1018	if (!mmget_not_zero(mm))
1019		goto free;
1020
1021	spin_lock(&mm->arg_lock);
1022	env_start = mm->env_start;
1023	env_end = mm->env_end;
1024	spin_unlock(&mm->arg_lock);
1025
1026	while (count > 0) {
1027		size_t this_len, max_len;
1028		int retval;
1029
1030		if (src >= (env_end - env_start))
1031			break;
1032
1033		this_len = env_end - (env_start + src);
1034
1035		max_len = min_t(size_t, PAGE_SIZE, count);
1036		this_len = min(max_len, this_len);
1037
1038		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
 
1039
1040		if (retval <= 0) {
1041			ret = retval;
1042			break;
1043		}
1044
1045		if (copy_to_user(buf, page, retval)) {
1046			ret = -EFAULT;
1047			break;
1048		}
1049
1050		ret += retval;
1051		src += retval;
1052		buf += retval;
1053		count -= retval;
1054	}
1055	*ppos = src;
1056	mmput(mm);
1057
1058free:
1059	free_page((unsigned long) page);
1060	return ret;
1061}
1062
1063static const struct file_operations proc_environ_operations = {
1064	.open		= environ_open,
1065	.read		= environ_read,
1066	.llseek		= generic_file_llseek,
1067	.release	= mem_release,
1068};
1069
1070static int auxv_open(struct inode *inode, struct file *file)
1071{
1072	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1073}
1074
1075static ssize_t auxv_read(struct file *file, char __user *buf,
1076			size_t count, loff_t *ppos)
1077{
1078	struct mm_struct *mm = file->private_data;
1079	unsigned int nwords = 0;
1080
1081	if (!mm)
1082		return 0;
1083	do {
1084		nwords += 2;
1085	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1086	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1087				       nwords * sizeof(mm->saved_auxv[0]));
1088}
1089
1090static const struct file_operations proc_auxv_operations = {
1091	.open		= auxv_open,
1092	.read		= auxv_read,
1093	.llseek		= generic_file_llseek,
1094	.release	= mem_release,
1095};
1096
1097static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1098			    loff_t *ppos)
1099{
1100	struct task_struct *task = get_proc_task(file_inode(file));
1101	char buffer[PROC_NUMBUF];
1102	int oom_adj = OOM_ADJUST_MIN;
1103	size_t len;
 
1104
1105	if (!task)
1106		return -ESRCH;
1107	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1108		oom_adj = OOM_ADJUST_MAX;
1109	else
1110		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1111			  OOM_SCORE_ADJ_MAX;
 
 
 
1112	put_task_struct(task);
1113	if (oom_adj > OOM_ADJUST_MAX)
1114		oom_adj = OOM_ADJUST_MAX;
1115	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1116	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1117}
1118
1119static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1120{
1121	struct mm_struct *mm = NULL;
1122	struct task_struct *task;
1123	int err = 0;
1124
1125	task = get_proc_task(file_inode(file));
1126	if (!task)
1127		return -ESRCH;
1128
1129	mutex_lock(&oom_adj_mutex);
1130	if (legacy) {
1131		if (oom_adj < task->signal->oom_score_adj &&
1132				!capable(CAP_SYS_RESOURCE)) {
1133			err = -EACCES;
1134			goto err_unlock;
1135		}
1136		/*
1137		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1138		 * /proc/pid/oom_score_adj instead.
1139		 */
1140		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1141			  current->comm, task_pid_nr(current), task_pid_nr(task),
1142			  task_pid_nr(task));
1143	} else {
1144		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1145				!capable(CAP_SYS_RESOURCE)) {
1146			err = -EACCES;
1147			goto err_unlock;
1148		}
1149	}
1150
1151	/*
1152	 * Make sure we will check other processes sharing the mm if this is
1153	 * not vfrok which wants its own oom_score_adj.
1154	 * pin the mm so it doesn't go away and get reused after task_unlock
1155	 */
1156	if (!task->vfork_done) {
1157		struct task_struct *p = find_lock_task_mm(task);
1158
1159		if (p) {
1160			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1161				mm = p->mm;
1162				mmgrab(mm);
1163			}
1164			task_unlock(p);
1165		}
1166	}
1167
1168	task->signal->oom_score_adj = oom_adj;
1169	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1170		task->signal->oom_score_adj_min = (short)oom_adj;
1171	trace_oom_score_adj_update(task);
1172
1173	if (mm) {
1174		struct task_struct *p;
1175
1176		rcu_read_lock();
1177		for_each_process(p) {
1178			if (same_thread_group(task, p))
1179				continue;
1180
1181			/* do not touch kernel threads or the global init */
1182			if (p->flags & PF_KTHREAD || is_global_init(p))
1183				continue;
1184
1185			task_lock(p);
1186			if (!p->vfork_done && process_shares_mm(p, mm)) {
1187				p->signal->oom_score_adj = oom_adj;
1188				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1189					p->signal->oom_score_adj_min = (short)oom_adj;
1190			}
1191			task_unlock(p);
1192		}
1193		rcu_read_unlock();
1194		mmdrop(mm);
1195	}
1196err_unlock:
1197	mutex_unlock(&oom_adj_mutex);
1198	put_task_struct(task);
1199	return err;
1200}
1201
1202/*
1203 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1204 * kernels.  The effective policy is defined by oom_score_adj, which has a
1205 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1206 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1207 * Processes that become oom disabled via oom_adj will still be oom disabled
1208 * with this implementation.
1209 *
1210 * oom_adj cannot be removed since existing userspace binaries use it.
1211 */
1212static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1213			     size_t count, loff_t *ppos)
1214{
1215	char buffer[PROC_NUMBUF] = {};
 
1216	int oom_adj;
 
1217	int err;
1218
 
1219	if (count > sizeof(buffer) - 1)
1220		count = sizeof(buffer) - 1;
1221	if (copy_from_user(buffer, buf, count)) {
1222		err = -EFAULT;
1223		goto out;
1224	}
1225
1226	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1227	if (err)
1228		goto out;
1229	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1230	     oom_adj != OOM_DISABLE) {
1231		err = -EINVAL;
1232		goto out;
1233	}
1234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1235	/*
1236	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1237	 * value is always attainable.
1238	 */
1239	if (oom_adj == OOM_ADJUST_MAX)
1240		oom_adj = OOM_SCORE_ADJ_MAX;
1241	else
1242		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1243
1244	err = __set_oom_adj(file, oom_adj, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1245out:
1246	return err < 0 ? err : count;
1247}
1248
1249static const struct file_operations proc_oom_adj_operations = {
1250	.read		= oom_adj_read,
1251	.write		= oom_adj_write,
1252	.llseek		= generic_file_llseek,
1253};
1254
1255static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1256					size_t count, loff_t *ppos)
1257{
1258	struct task_struct *task = get_proc_task(file_inode(file));
1259	char buffer[PROC_NUMBUF];
1260	short oom_score_adj = OOM_SCORE_ADJ_MIN;
 
1261	size_t len;
1262
1263	if (!task)
1264		return -ESRCH;
1265	oom_score_adj = task->signal->oom_score_adj;
 
 
 
1266	put_task_struct(task);
1267	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1268	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1269}
1270
1271static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1272					size_t count, loff_t *ppos)
1273{
1274	char buffer[PROC_NUMBUF] = {};
 
 
1275	int oom_score_adj;
1276	int err;
1277
 
1278	if (count > sizeof(buffer) - 1)
1279		count = sizeof(buffer) - 1;
1280	if (copy_from_user(buffer, buf, count)) {
1281		err = -EFAULT;
1282		goto out;
1283	}
1284
1285	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1286	if (err)
1287		goto out;
1288	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1289			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1290		err = -EINVAL;
1291		goto out;
1292	}
1293
1294	err = __set_oom_adj(file, oom_score_adj, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295out:
1296	return err < 0 ? err : count;
1297}
1298
1299static const struct file_operations proc_oom_score_adj_operations = {
1300	.read		= oom_score_adj_read,
1301	.write		= oom_score_adj_write,
1302	.llseek		= default_llseek,
1303};
1304
1305#ifdef CONFIG_AUDIT
1306#define TMPBUFLEN 11
1307static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1308				  size_t count, loff_t *ppos)
1309{
1310	struct inode * inode = file_inode(file);
1311	struct task_struct *task = get_proc_task(inode);
1312	ssize_t length;
1313	char tmpbuf[TMPBUFLEN];
1314
1315	if (!task)
1316		return -ESRCH;
1317	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1318			   from_kuid(file->f_cred->user_ns,
1319				     audit_get_loginuid(task)));
1320	put_task_struct(task);
1321	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1322}
1323
1324static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1325				   size_t count, loff_t *ppos)
1326{
1327	struct inode * inode = file_inode(file);
1328	uid_t loginuid;
1329	kuid_t kloginuid;
1330	int rv;
1331
1332	/* Don't let kthreads write their own loginuid */
1333	if (current->flags & PF_KTHREAD)
1334		return -EPERM;
1335
1336	rcu_read_lock();
1337	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1338		rcu_read_unlock();
1339		return -EPERM;
1340	}
1341	rcu_read_unlock();
1342
1343	if (*ppos != 0) {
1344		/* No partial writes. */
1345		return -EINVAL;
1346	}
1347
1348	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1349	if (rv < 0)
1350		return rv;
1351
1352	/* is userspace tring to explicitly UNSET the loginuid? */
1353	if (loginuid == AUDIT_UID_UNSET) {
1354		kloginuid = INVALID_UID;
1355	} else {
1356		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1357		if (!uid_valid(kloginuid))
1358			return -EINVAL;
1359	}
1360
1361	rv = audit_set_loginuid(kloginuid);
1362	if (rv < 0)
1363		return rv;
1364	return count;
1365}
1366
1367static const struct file_operations proc_loginuid_operations = {
1368	.read		= proc_loginuid_read,
1369	.write		= proc_loginuid_write,
1370	.llseek		= generic_file_llseek,
1371};
1372
1373static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1374				  size_t count, loff_t *ppos)
1375{
1376	struct inode * inode = file_inode(file);
1377	struct task_struct *task = get_proc_task(inode);
1378	ssize_t length;
1379	char tmpbuf[TMPBUFLEN];
1380
1381	if (!task)
1382		return -ESRCH;
1383	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1384				audit_get_sessionid(task));
1385	put_task_struct(task);
1386	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1387}
1388
1389static const struct file_operations proc_sessionid_operations = {
1390	.read		= proc_sessionid_read,
1391	.llseek		= generic_file_llseek,
1392};
1393#endif
1394
1395#ifdef CONFIG_FAULT_INJECTION
1396static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1397				      size_t count, loff_t *ppos)
1398{
1399	struct task_struct *task = get_proc_task(file_inode(file));
1400	char buffer[PROC_NUMBUF];
1401	size_t len;
1402	int make_it_fail;
1403
1404	if (!task)
1405		return -ESRCH;
1406	make_it_fail = task->make_it_fail;
1407	put_task_struct(task);
1408
1409	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1410
1411	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1412}
1413
1414static ssize_t proc_fault_inject_write(struct file * file,
1415			const char __user * buf, size_t count, loff_t *ppos)
1416{
1417	struct task_struct *task;
1418	char buffer[PROC_NUMBUF] = {};
1419	int make_it_fail;
1420	int rv;
1421
1422	if (!capable(CAP_SYS_RESOURCE))
1423		return -EPERM;
1424
1425	if (count > sizeof(buffer) - 1)
1426		count = sizeof(buffer) - 1;
1427	if (copy_from_user(buffer, buf, count))
1428		return -EFAULT;
1429	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1430	if (rv < 0)
1431		return rv;
1432	if (make_it_fail < 0 || make_it_fail > 1)
1433		return -EINVAL;
1434
1435	task = get_proc_task(file_inode(file));
1436	if (!task)
1437		return -ESRCH;
1438	task->make_it_fail = make_it_fail;
1439	put_task_struct(task);
1440
1441	return count;
1442}
1443
1444static const struct file_operations proc_fault_inject_operations = {
1445	.read		= proc_fault_inject_read,
1446	.write		= proc_fault_inject_write,
1447	.llseek		= generic_file_llseek,
1448};
1449
1450static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1451				   size_t count, loff_t *ppos)
1452{
1453	struct task_struct *task;
1454	int err;
1455	unsigned int n;
1456
1457	err = kstrtouint_from_user(buf, count, 0, &n);
1458	if (err)
1459		return err;
1460
1461	task = get_proc_task(file_inode(file));
1462	if (!task)
1463		return -ESRCH;
1464	task->fail_nth = n;
1465	put_task_struct(task);
1466
1467	return count;
1468}
1469
1470static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1471				  size_t count, loff_t *ppos)
1472{
1473	struct task_struct *task;
1474	char numbuf[PROC_NUMBUF];
1475	ssize_t len;
1476
1477	task = get_proc_task(file_inode(file));
1478	if (!task)
1479		return -ESRCH;
1480	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1481	put_task_struct(task);
1482	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1483}
1484
1485static const struct file_operations proc_fail_nth_operations = {
1486	.read		= proc_fail_nth_read,
1487	.write		= proc_fail_nth_write,
1488};
1489#endif
1490
1491
1492#ifdef CONFIG_SCHED_DEBUG
1493/*
1494 * Print out various scheduling related per-task fields:
1495 */
1496static int sched_show(struct seq_file *m, void *v)
1497{
1498	struct inode *inode = m->private;
1499	struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1500	struct task_struct *p;
1501
1502	p = get_proc_task(inode);
1503	if (!p)
1504		return -ESRCH;
1505	proc_sched_show_task(p, ns, m);
1506
1507	put_task_struct(p);
1508
1509	return 0;
1510}
1511
1512static ssize_t
1513sched_write(struct file *file, const char __user *buf,
1514	    size_t count, loff_t *offset)
1515{
1516	struct inode *inode = file_inode(file);
1517	struct task_struct *p;
1518
1519	p = get_proc_task(inode);
1520	if (!p)
1521		return -ESRCH;
1522	proc_sched_set_task(p);
1523
1524	put_task_struct(p);
1525
1526	return count;
1527}
1528
1529static int sched_open(struct inode *inode, struct file *filp)
1530{
1531	return single_open(filp, sched_show, inode);
1532}
1533
1534static const struct file_operations proc_pid_sched_operations = {
1535	.open		= sched_open,
1536	.read		= seq_read,
1537	.write		= sched_write,
1538	.llseek		= seq_lseek,
1539	.release	= single_release,
1540};
1541
1542#endif
1543
1544#ifdef CONFIG_SCHED_AUTOGROUP
1545/*
1546 * Print out autogroup related information:
1547 */
1548static int sched_autogroup_show(struct seq_file *m, void *v)
1549{
1550	struct inode *inode = m->private;
1551	struct task_struct *p;
1552
1553	p = get_proc_task(inode);
1554	if (!p)
1555		return -ESRCH;
1556	proc_sched_autogroup_show_task(p, m);
1557
1558	put_task_struct(p);
1559
1560	return 0;
1561}
1562
1563static ssize_t
1564sched_autogroup_write(struct file *file, const char __user *buf,
1565	    size_t count, loff_t *offset)
1566{
1567	struct inode *inode = file_inode(file);
1568	struct task_struct *p;
1569	char buffer[PROC_NUMBUF] = {};
1570	int nice;
1571	int err;
1572
 
1573	if (count > sizeof(buffer) - 1)
1574		count = sizeof(buffer) - 1;
1575	if (copy_from_user(buffer, buf, count))
1576		return -EFAULT;
1577
1578	err = kstrtoint(strstrip(buffer), 0, &nice);
1579	if (err < 0)
1580		return err;
1581
1582	p = get_proc_task(inode);
1583	if (!p)
1584		return -ESRCH;
1585
1586	err = proc_sched_autogroup_set_nice(p, nice);
1587	if (err)
1588		count = err;
1589
1590	put_task_struct(p);
1591
1592	return count;
1593}
1594
1595static int sched_autogroup_open(struct inode *inode, struct file *filp)
1596{
1597	int ret;
1598
1599	ret = single_open(filp, sched_autogroup_show, NULL);
1600	if (!ret) {
1601		struct seq_file *m = filp->private_data;
1602
1603		m->private = inode;
1604	}
1605	return ret;
1606}
1607
1608static const struct file_operations proc_pid_sched_autogroup_operations = {
1609	.open		= sched_autogroup_open,
1610	.read		= seq_read,
1611	.write		= sched_autogroup_write,
1612	.llseek		= seq_lseek,
1613	.release	= single_release,
1614};
1615
1616#endif /* CONFIG_SCHED_AUTOGROUP */
1617
1618#ifdef CONFIG_TIME_NS
1619static int timens_offsets_show(struct seq_file *m, void *v)
1620{
1621	struct task_struct *p;
1622
1623	p = get_proc_task(file_inode(m->file));
1624	if (!p)
1625		return -ESRCH;
1626	proc_timens_show_offsets(p, m);
1627
1628	put_task_struct(p);
1629
1630	return 0;
1631}
1632
1633static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1634				    size_t count, loff_t *ppos)
1635{
1636	struct inode *inode = file_inode(file);
1637	struct proc_timens_offset offsets[2];
1638	char *kbuf = NULL, *pos, *next_line;
1639	struct task_struct *p;
1640	int ret, noffsets;
1641
1642	/* Only allow < page size writes at the beginning of the file */
1643	if ((*ppos != 0) || (count >= PAGE_SIZE))
1644		return -EINVAL;
1645
1646	/* Slurp in the user data */
1647	kbuf = memdup_user_nul(buf, count);
1648	if (IS_ERR(kbuf))
1649		return PTR_ERR(kbuf);
1650
1651	/* Parse the user data */
1652	ret = -EINVAL;
1653	noffsets = 0;
1654	for (pos = kbuf; pos; pos = next_line) {
1655		struct proc_timens_offset *off = &offsets[noffsets];
1656		char clock[10];
1657		int err;
1658
1659		/* Find the end of line and ensure we don't look past it */
1660		next_line = strchr(pos, '\n');
1661		if (next_line) {
1662			*next_line = '\0';
1663			next_line++;
1664			if (*next_line == '\0')
1665				next_line = NULL;
1666		}
1667
1668		err = sscanf(pos, "%9s %lld %lu", clock,
1669				&off->val.tv_sec, &off->val.tv_nsec);
1670		if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1671			goto out;
1672
1673		clock[sizeof(clock) - 1] = 0;
1674		if (strcmp(clock, "monotonic") == 0 ||
1675		    strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1676			off->clockid = CLOCK_MONOTONIC;
1677		else if (strcmp(clock, "boottime") == 0 ||
1678			 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1679			off->clockid = CLOCK_BOOTTIME;
1680		else
1681			goto out;
1682
1683		noffsets++;
1684		if (noffsets == ARRAY_SIZE(offsets)) {
1685			if (next_line)
1686				count = next_line - kbuf;
1687			break;
1688		}
1689	}
1690
1691	ret = -ESRCH;
1692	p = get_proc_task(inode);
1693	if (!p)
1694		goto out;
1695	ret = proc_timens_set_offset(file, p, offsets, noffsets);
1696	put_task_struct(p);
1697	if (ret)
1698		goto out;
1699
1700	ret = count;
1701out:
1702	kfree(kbuf);
1703	return ret;
1704}
1705
1706static int timens_offsets_open(struct inode *inode, struct file *filp)
1707{
1708	return single_open(filp, timens_offsets_show, inode);
1709}
1710
1711static const struct file_operations proc_timens_offsets_operations = {
1712	.open		= timens_offsets_open,
1713	.read		= seq_read,
1714	.write		= timens_offsets_write,
1715	.llseek		= seq_lseek,
1716	.release	= single_release,
1717};
1718#endif /* CONFIG_TIME_NS */
1719
1720static ssize_t comm_write(struct file *file, const char __user *buf,
1721				size_t count, loff_t *offset)
1722{
1723	struct inode *inode = file_inode(file);
1724	struct task_struct *p;
1725	char buffer[TASK_COMM_LEN] = {};
1726	const size_t maxlen = sizeof(buffer) - 1;
1727
 
1728	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1729		return -EFAULT;
1730
1731	p = get_proc_task(inode);
1732	if (!p)
1733		return -ESRCH;
1734
1735	if (same_thread_group(current, p)) {
1736		set_task_comm(p, buffer);
1737		proc_comm_connector(p);
1738	}
1739	else
1740		count = -EINVAL;
1741
1742	put_task_struct(p);
1743
1744	return count;
1745}
1746
1747static int comm_show(struct seq_file *m, void *v)
1748{
1749	struct inode *inode = m->private;
1750	struct task_struct *p;
1751
1752	p = get_proc_task(inode);
1753	if (!p)
1754		return -ESRCH;
1755
1756	proc_task_name(m, p, false);
1757	seq_putc(m, '\n');
 
1758
1759	put_task_struct(p);
1760
1761	return 0;
1762}
1763
1764static int comm_open(struct inode *inode, struct file *filp)
1765{
1766	return single_open(filp, comm_show, inode);
1767}
1768
1769static const struct file_operations proc_pid_set_comm_operations = {
1770	.open		= comm_open,
1771	.read		= seq_read,
1772	.write		= comm_write,
1773	.llseek		= seq_lseek,
1774	.release	= single_release,
1775};
1776
1777static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1778{
1779	struct task_struct *task;
 
1780	struct file *exe_file;
1781
1782	task = get_proc_task(d_inode(dentry));
1783	if (!task)
1784		return -ENOENT;
1785	exe_file = get_task_exe_file(task);
1786	put_task_struct(task);
 
 
 
 
1787	if (exe_file) {
1788		*exe_path = exe_file->f_path;
1789		path_get(&exe_file->f_path);
1790		fput(exe_file);
1791		return 0;
1792	} else
1793		return -ENOENT;
1794}
1795
1796static const char *proc_pid_get_link(struct dentry *dentry,
1797				     struct inode *inode,
1798				     struct delayed_call *done)
1799{
1800	struct path path;
1801	int error = -EACCES;
1802
1803	if (!dentry)
1804		return ERR_PTR(-ECHILD);
1805
1806	/* Are we allowed to snoop on the tasks file descriptors? */
1807	if (!proc_fd_access_allowed(inode))
1808		goto out;
1809
1810	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1811	if (error)
1812		goto out;
1813
1814	error = nd_jump_link(&path);
 
1815out:
1816	return ERR_PTR(error);
1817}
1818
1819static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1820{
1821	char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1822	char *pathname;
1823	int len;
1824
1825	if (!tmp)
1826		return -ENOMEM;
1827
1828	pathname = d_path(path, tmp, PATH_MAX);
1829	len = PTR_ERR(pathname);
1830	if (IS_ERR(pathname))
1831		goto out;
1832	len = tmp + PATH_MAX - 1 - pathname;
1833
1834	if (len > buflen)
1835		len = buflen;
1836	if (copy_to_user(buffer, pathname, len))
1837		len = -EFAULT;
1838 out:
1839	kfree(tmp);
1840	return len;
1841}
1842
1843static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1844{
1845	int error = -EACCES;
1846	struct inode *inode = d_inode(dentry);
1847	struct path path;
1848
1849	/* Are we allowed to snoop on the tasks file descriptors? */
1850	if (!proc_fd_access_allowed(inode))
1851		goto out;
1852
1853	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1854	if (error)
1855		goto out;
1856
1857	error = do_proc_readlink(&path, buffer, buflen);
1858	path_put(&path);
1859out:
1860	return error;
1861}
1862
1863const struct inode_operations proc_pid_link_inode_operations = {
1864	.readlink	= proc_pid_readlink,
1865	.get_link	= proc_pid_get_link,
1866	.setattr	= proc_setattr,
1867};
1868
1869
1870/* building an inode */
1871
1872void task_dump_owner(struct task_struct *task, umode_t mode,
1873		     kuid_t *ruid, kgid_t *rgid)
1874{
1875	/* Depending on the state of dumpable compute who should own a
1876	 * proc file for a task.
1877	 */
1878	const struct cred *cred;
1879	kuid_t uid;
1880	kgid_t gid;
1881
1882	if (unlikely(task->flags & PF_KTHREAD)) {
1883		*ruid = GLOBAL_ROOT_UID;
1884		*rgid = GLOBAL_ROOT_GID;
1885		return;
1886	}
1887
1888	/* Default to the tasks effective ownership */
1889	rcu_read_lock();
1890	cred = __task_cred(task);
1891	uid = cred->euid;
1892	gid = cred->egid;
1893	rcu_read_unlock();
1894
1895	/*
1896	 * Before the /proc/pid/status file was created the only way to read
1897	 * the effective uid of a /process was to stat /proc/pid.  Reading
1898	 * /proc/pid/status is slow enough that procps and other packages
1899	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1900	 * made this apply to all per process world readable and executable
1901	 * directories.
1902	 */
1903	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1904		struct mm_struct *mm;
1905		task_lock(task);
1906		mm = task->mm;
1907		/* Make non-dumpable tasks owned by some root */
1908		if (mm) {
1909			if (get_dumpable(mm) != SUID_DUMP_USER) {
1910				struct user_namespace *user_ns = mm->user_ns;
1911
1912				uid = make_kuid(user_ns, 0);
1913				if (!uid_valid(uid))
1914					uid = GLOBAL_ROOT_UID;
1915
1916				gid = make_kgid(user_ns, 0);
1917				if (!gid_valid(gid))
1918					gid = GLOBAL_ROOT_GID;
1919			}
1920		} else {
1921			uid = GLOBAL_ROOT_UID;
1922			gid = GLOBAL_ROOT_GID;
1923		}
1924		task_unlock(task);
1925	}
1926	*ruid = uid;
1927	*rgid = gid;
1928}
1929
1930void proc_pid_evict_inode(struct proc_inode *ei)
1931{
1932	struct pid *pid = ei->pid;
1933
1934	if (S_ISDIR(ei->vfs_inode.i_mode)) {
1935		spin_lock(&pid->lock);
1936		hlist_del_init_rcu(&ei->sibling_inodes);
1937		spin_unlock(&pid->lock);
1938	}
1939}
1940
1941struct inode *proc_pid_make_inode(struct super_block *sb,
1942				  struct task_struct *task, umode_t mode)
1943{
1944	struct inode * inode;
1945	struct proc_inode *ei;
1946	struct pid *pid;
1947
1948	/* We need a new inode */
1949
1950	inode = new_inode(sb);
1951	if (!inode)
1952		goto out;
1953
1954	/* Common stuff */
1955	ei = PROC_I(inode);
1956	inode->i_mode = mode;
1957	inode->i_ino = get_next_ino();
1958	simple_inode_init_ts(inode);
1959	inode->i_op = &proc_def_inode_operations;
1960
1961	/*
1962	 * grab the reference to task.
1963	 */
1964	pid = get_task_pid(task, PIDTYPE_PID);
1965	if (!pid)
1966		goto out_unlock;
1967
1968	/* Let the pid remember us for quick removal */
1969	ei->pid = pid;
1970
1971	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
 
 
 
1972	security_task_to_inode(task, inode);
1973
1974out:
1975	return inode;
1976
1977out_unlock:
1978	iput(inode);
1979	return NULL;
1980}
1981
1982/*
1983 * Generating an inode and adding it into @pid->inodes, so that task will
1984 * invalidate inode's dentry before being released.
1985 *
1986 * This helper is used for creating dir-type entries under '/proc' and
1987 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1988 * can be released by invalidating '/proc/<tgid>' dentry.
1989 * In theory, dentries under '/proc/<tgid>/task' can also be released by
1990 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1991 * thread exiting situation: Any one of threads should invalidate its
1992 * '/proc/<tgid>/task/<pid>' dentry before released.
1993 */
1994static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1995				struct task_struct *task, umode_t mode)
1996{
1997	struct inode *inode;
1998	struct proc_inode *ei;
1999	struct pid *pid;
2000
2001	inode = proc_pid_make_inode(sb, task, mode);
2002	if (!inode)
2003		return NULL;
2004
2005	/* Let proc_flush_pid find this directory inode */
2006	ei = PROC_I(inode);
2007	pid = ei->pid;
2008	spin_lock(&pid->lock);
2009	hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
2010	spin_unlock(&pid->lock);
2011
2012	return inode;
2013}
2014
2015int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
2016		struct kstat *stat, u32 request_mask, unsigned int query_flags)
2017{
2018	struct inode *inode = d_inode(path->dentry);
2019	struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
2020	struct task_struct *task;
 
 
2021
2022	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
2023
 
2024	stat->uid = GLOBAL_ROOT_UID;
2025	stat->gid = GLOBAL_ROOT_GID;
2026	rcu_read_lock();
2027	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2028	if (task) {
2029		if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
2030			rcu_read_unlock();
2031			/*
2032			 * This doesn't prevent learning whether PID exists,
2033			 * it only makes getattr() consistent with readdir().
2034			 */
2035			return -ENOENT;
2036		}
2037		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
 
 
 
 
 
2038	}
2039	rcu_read_unlock();
2040	return 0;
2041}
2042
2043/* dentry stuff */
2044
2045/*
2046 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
2047 */
2048void pid_update_inode(struct task_struct *task, struct inode *inode)
2049{
2050	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
2051
2052	inode->i_mode &= ~(S_ISUID | S_ISGID);
2053	security_task_to_inode(task, inode);
2054}
2055
2056/*
2057 * Rewrite the inode's ownerships here because the owning task may have
2058 * performed a setuid(), etc.
2059 *
 
 
 
 
 
 
2060 */
2061static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2062{
2063	struct inode *inode;
2064	struct task_struct *task;
2065	int ret = 0;
 
 
 
2066
2067	rcu_read_lock();
2068	inode = d_inode_rcu(dentry);
2069	if (!inode)
2070		goto out;
2071	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2072
2073	if (task) {
2074		pid_update_inode(task, inode);
2075		ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
2076	}
2077out:
2078	rcu_read_unlock();
2079	return ret;
2080}
2081
2082static inline bool proc_inode_is_dead(struct inode *inode)
2083{
2084	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2085}
2086
2087int pid_delete_dentry(const struct dentry *dentry)
2088{
2089	/* Is the task we represent dead?
2090	 * If so, then don't put the dentry on the lru list,
2091	 * kill it immediately.
2092	 */
2093	return proc_inode_is_dead(d_inode(dentry));
2094}
2095
2096const struct dentry_operations pid_dentry_operations =
2097{
2098	.d_revalidate	= pid_revalidate,
2099	.d_delete	= pid_delete_dentry,
2100};
2101
2102/* Lookups */
2103
2104/*
2105 * Fill a directory entry.
2106 *
2107 * If possible create the dcache entry and derive our inode number and
2108 * file type from dcache entry.
2109 *
2110 * Since all of the proc inode numbers are dynamically generated, the inode
2111 * numbers do not exist until the inode is cache.  This means creating
2112 * the dcache entry in readdir is necessary to keep the inode numbers
2113 * reported by readdir in sync with the inode numbers reported
2114 * by stat.
2115 */
2116bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2117	const char *name, unsigned int len,
2118	instantiate_t instantiate, struct task_struct *task, const void *ptr)
2119{
2120	struct dentry *child, *dir = file->f_path.dentry;
2121	struct qstr qname = QSTR_INIT(name, len);
2122	struct inode *inode;
2123	unsigned type = DT_UNKNOWN;
2124	ino_t ino = 1;
2125
2126	child = d_hash_and_lookup(dir, &qname);
2127	if (!child) {
2128		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2129		child = d_alloc_parallel(dir, &qname, &wq);
2130		if (IS_ERR(child))
 
 
2131			goto end_instantiate;
2132		if (d_in_lookup(child)) {
2133			struct dentry *res;
2134			res = instantiate(child, task, ptr);
2135			d_lookup_done(child);
2136			if (unlikely(res)) {
2137				dput(child);
2138				child = res;
2139				if (IS_ERR(child))
2140					goto end_instantiate;
2141			}
2142		}
2143	}
2144	inode = d_inode(child);
2145	ino = inode->i_ino;
2146	type = inode->i_mode >> 12;
2147	dput(child);
 
 
2148end_instantiate:
2149	return dir_emit(ctx, name, len, ino, type);
2150}
2151
2152/*
2153 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2154 * which represent vma start and end addresses.
2155 */
2156static int dname_to_vma_addr(struct dentry *dentry,
2157			     unsigned long *start, unsigned long *end)
2158{
2159	const char *str = dentry->d_name.name;
2160	unsigned long long sval, eval;
2161	unsigned int len;
2162
2163	if (str[0] == '0' && str[1] != '-')
2164		return -EINVAL;
2165	len = _parse_integer(str, 16, &sval);
2166	if (len & KSTRTOX_OVERFLOW)
2167		return -EINVAL;
2168	if (sval != (unsigned long)sval)
2169		return -EINVAL;
2170	str += len;
2171
2172	if (*str != '-')
2173		return -EINVAL;
2174	str++;
2175
2176	if (str[0] == '0' && str[1])
2177		return -EINVAL;
2178	len = _parse_integer(str, 16, &eval);
2179	if (len & KSTRTOX_OVERFLOW)
2180		return -EINVAL;
2181	if (eval != (unsigned long)eval)
2182		return -EINVAL;
2183	str += len;
2184
2185	if (*str != '\0')
2186		return -EINVAL;
2187
2188	*start = sval;
2189	*end = eval;
2190
2191	return 0;
2192}
2193
2194static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2195{
2196	unsigned long vm_start, vm_end;
2197	bool exact_vma_exists = false;
2198	struct mm_struct *mm = NULL;
2199	struct task_struct *task;
 
2200	struct inode *inode;
2201	int status = 0;
2202
2203	if (flags & LOOKUP_RCU)
2204		return -ECHILD;
2205
2206	inode = d_inode(dentry);
2207	task = get_proc_task(inode);
2208	if (!task)
2209		goto out_notask;
2210
2211	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2212	if (IS_ERR(mm))
2213		goto out;
2214
2215	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2216		status = mmap_read_lock_killable(mm);
2217		if (!status) {
2218			exact_vma_exists = !!find_exact_vma(mm, vm_start,
2219							    vm_end);
2220			mmap_read_unlock(mm);
2221		}
2222	}
2223
2224	mmput(mm);
2225
2226	if (exact_vma_exists) {
2227		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2228
 
 
 
 
 
 
 
 
2229		security_task_to_inode(task, inode);
2230		status = 1;
2231	}
2232
2233out:
2234	put_task_struct(task);
2235
2236out_notask:
2237	return status;
2238}
2239
2240static const struct dentry_operations tid_map_files_dentry_operations = {
2241	.d_revalidate	= map_files_d_revalidate,
2242	.d_delete	= pid_delete_dentry,
2243};
2244
2245static int map_files_get_link(struct dentry *dentry, struct path *path)
2246{
2247	unsigned long vm_start, vm_end;
2248	struct vm_area_struct *vma;
2249	struct task_struct *task;
2250	struct mm_struct *mm;
2251	int rc;
2252
2253	rc = -ENOENT;
2254	task = get_proc_task(d_inode(dentry));
2255	if (!task)
2256		goto out;
2257
2258	mm = get_task_mm(task);
2259	put_task_struct(task);
2260	if (!mm)
2261		goto out;
2262
2263	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2264	if (rc)
2265		goto out_mmput;
2266
2267	rc = mmap_read_lock_killable(mm);
2268	if (rc)
2269		goto out_mmput;
2270
2271	rc = -ENOENT;
 
2272	vma = find_exact_vma(mm, vm_start, vm_end);
2273	if (vma && vma->vm_file) {
2274		*path = *file_user_path(vma->vm_file);
2275		path_get(path);
2276		rc = 0;
2277	}
2278	mmap_read_unlock(mm);
2279
2280out_mmput:
2281	mmput(mm);
2282out:
2283	return rc;
2284}
2285
2286struct map_files_info {
2287	unsigned long	start;
2288	unsigned long	end;
2289	fmode_t		mode;
 
 
2290};
2291
2292/*
2293 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2294 * to concerns about how the symlinks may be used to bypass permissions on
2295 * ancestor directories in the path to the file in question.
2296 */
2297static const char *
2298proc_map_files_get_link(struct dentry *dentry,
2299			struct inode *inode,
2300		        struct delayed_call *done)
2301{
2302	if (!checkpoint_restore_ns_capable(&init_user_ns))
2303		return ERR_PTR(-EPERM);
2304
2305	return proc_pid_get_link(dentry, inode, done);
2306}
2307
2308/*
2309 * Identical to proc_pid_link_inode_operations except for get_link()
2310 */
2311static const struct inode_operations proc_map_files_link_inode_operations = {
2312	.readlink	= proc_pid_readlink,
2313	.get_link	= proc_map_files_get_link,
2314	.setattr	= proc_setattr,
2315};
2316
2317static struct dentry *
2318proc_map_files_instantiate(struct dentry *dentry,
2319			   struct task_struct *task, const void *ptr)
2320{
2321	fmode_t mode = (fmode_t)(unsigned long)ptr;
2322	struct proc_inode *ei;
2323	struct inode *inode;
2324
2325	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2326				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2327				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2328	if (!inode)
2329		return ERR_PTR(-ENOENT);
2330
2331	ei = PROC_I(inode);
2332	ei->op.proc_get_link = map_files_get_link;
2333
2334	inode->i_op = &proc_map_files_link_inode_operations;
2335	inode->i_size = 64;
 
 
 
 
 
 
2336
2337	return proc_splice_unmountable(inode, dentry,
2338				       &tid_map_files_dentry_operations);
 
 
2339}
2340
2341static struct dentry *proc_map_files_lookup(struct inode *dir,
2342		struct dentry *dentry, unsigned int flags)
2343{
2344	unsigned long vm_start, vm_end;
2345	struct vm_area_struct *vma;
2346	struct task_struct *task;
2347	struct dentry *result;
2348	struct mm_struct *mm;
2349
2350	result = ERR_PTR(-ENOENT);
2351	task = get_proc_task(dir);
2352	if (!task)
2353		goto out;
2354
2355	result = ERR_PTR(-EACCES);
2356	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2357		goto out_put_task;
2358
2359	result = ERR_PTR(-ENOENT);
2360	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2361		goto out_put_task;
2362
2363	mm = get_task_mm(task);
2364	if (!mm)
2365		goto out_put_task;
2366
2367	result = ERR_PTR(-EINTR);
2368	if (mmap_read_lock_killable(mm))
2369		goto out_put_mm;
2370
2371	result = ERR_PTR(-ENOENT);
2372	vma = find_exact_vma(mm, vm_start, vm_end);
2373	if (!vma)
2374		goto out_no_vma;
2375
2376	if (vma->vm_file)
2377		result = proc_map_files_instantiate(dentry, task,
2378				(void *)(unsigned long)vma->vm_file->f_mode);
2379
2380out_no_vma:
2381	mmap_read_unlock(mm);
2382out_put_mm:
2383	mmput(mm);
2384out_put_task:
2385	put_task_struct(task);
2386out:
2387	return result;
2388}
2389
2390static const struct inode_operations proc_map_files_inode_operations = {
2391	.lookup		= proc_map_files_lookup,
2392	.permission	= proc_fd_permission,
2393	.setattr	= proc_setattr,
2394};
2395
2396static int
2397proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2398{
2399	struct vm_area_struct *vma;
2400	struct task_struct *task;
2401	struct mm_struct *mm;
2402	unsigned long nr_files, pos, i;
2403	GENRADIX(struct map_files_info) fa;
 
2404	struct map_files_info *p;
2405	int ret;
2406	struct vma_iterator vmi;
2407
2408	genradix_init(&fa);
2409
2410	ret = -ENOENT;
2411	task = get_proc_task(file_inode(file));
2412	if (!task)
2413		goto out;
2414
2415	ret = -EACCES;
2416	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2417		goto out_put_task;
2418
2419	ret = 0;
2420	if (!dir_emit_dots(file, ctx))
2421		goto out_put_task;
2422
2423	mm = get_task_mm(task);
2424	if (!mm)
2425		goto out_put_task;
2426
2427	ret = mmap_read_lock_killable(mm);
2428	if (ret) {
2429		mmput(mm);
2430		goto out_put_task;
2431	}
2432
2433	nr_files = 0;
2434
2435	/*
2436	 * We need two passes here:
2437	 *
2438	 *  1) Collect vmas of mapped files with mmap_lock taken
2439	 *  2) Release mmap_lock and instantiate entries
2440	 *
2441	 * otherwise we get lockdep complained, since filldir()
2442	 * routine might require mmap_lock taken in might_fault().
2443	 */
2444
2445	pos = 2;
2446	vma_iter_init(&vmi, mm, 0);
2447	for_each_vma(vmi, vma) {
2448		if (!vma->vm_file)
2449			continue;
2450		if (++pos <= ctx->pos)
2451			continue;
2452
2453		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2454		if (!p) {
 
 
 
2455			ret = -ENOMEM;
2456			mmap_read_unlock(mm);
 
 
2457			mmput(mm);
2458			goto out_put_task;
2459		}
 
 
 
 
 
 
2460
2461		p->start = vma->vm_start;
2462		p->end = vma->vm_end;
2463		p->mode = vma->vm_file->f_mode;
 
 
 
 
2464	}
2465	mmap_read_unlock(mm);
2466	mmput(mm);
2467
2468	for (i = 0; i < nr_files; i++) {
2469		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2470		unsigned int len;
2471
2472		p = genradix_ptr(&fa, i);
2473		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2474		if (!proc_fill_cache(file, ctx,
2475				      buf, len,
2476				      proc_map_files_instantiate,
2477				      task,
2478				      (void *)(unsigned long)p->mode))
2479			break;
2480		ctx->pos++;
2481	}
 
 
 
2482
2483out_put_task:
2484	put_task_struct(task);
2485out:
2486	genradix_free(&fa);
2487	return ret;
2488}
2489
2490static const struct file_operations proc_map_files_operations = {
2491	.read		= generic_read_dir,
2492	.iterate_shared	= proc_map_files_readdir,
2493	.llseek		= generic_file_llseek,
2494};
2495
2496#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2497struct timers_private {
2498	struct pid *pid;
2499	struct task_struct *task;
2500	struct sighand_struct *sighand;
2501	struct pid_namespace *ns;
2502	unsigned long flags;
2503};
2504
2505static void *timers_start(struct seq_file *m, loff_t *pos)
2506{
2507	struct timers_private *tp = m->private;
2508
2509	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2510	if (!tp->task)
2511		return ERR_PTR(-ESRCH);
2512
2513	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2514	if (!tp->sighand)
2515		return ERR_PTR(-ESRCH);
2516
2517	return seq_hlist_start(&tp->task->signal->posix_timers, *pos);
2518}
2519
2520static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2521{
2522	struct timers_private *tp = m->private;
2523	return seq_hlist_next(v, &tp->task->signal->posix_timers, pos);
2524}
2525
2526static void timers_stop(struct seq_file *m, void *v)
2527{
2528	struct timers_private *tp = m->private;
2529
2530	if (tp->sighand) {
2531		unlock_task_sighand(tp->task, &tp->flags);
2532		tp->sighand = NULL;
2533	}
2534
2535	if (tp->task) {
2536		put_task_struct(tp->task);
2537		tp->task = NULL;
2538	}
2539}
2540
2541static int show_timer(struct seq_file *m, void *v)
2542{
2543	struct k_itimer *timer;
2544	struct timers_private *tp = m->private;
2545	int notify;
2546	static const char * const nstr[] = {
2547		[SIGEV_SIGNAL] = "signal",
2548		[SIGEV_NONE] = "none",
2549		[SIGEV_THREAD] = "thread",
2550	};
2551
2552	timer = hlist_entry((struct hlist_node *)v, struct k_itimer, list);
2553	notify = timer->it_sigev_notify;
2554
2555	seq_printf(m, "ID: %d\n", timer->it_id);
2556	seq_printf(m, "signal: %d/%px\n",
2557		   timer->sigq.info.si_signo,
2558		   timer->sigq.info.si_value.sival_ptr);
2559	seq_printf(m, "notify: %s/%s.%d\n",
2560		   nstr[notify & ~SIGEV_THREAD_ID],
2561		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2562		   pid_nr_ns(timer->it_pid, tp->ns));
2563	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2564
2565	return 0;
2566}
2567
2568static const struct seq_operations proc_timers_seq_ops = {
2569	.start	= timers_start,
2570	.next	= timers_next,
2571	.stop	= timers_stop,
2572	.show	= show_timer,
2573};
2574
2575static int proc_timers_open(struct inode *inode, struct file *file)
2576{
2577	struct timers_private *tp;
2578
2579	tp = __seq_open_private(file, &proc_timers_seq_ops,
2580			sizeof(struct timers_private));
2581	if (!tp)
2582		return -ENOMEM;
2583
2584	tp->pid = proc_pid(inode);
2585	tp->ns = proc_pid_ns(inode->i_sb);
2586	return 0;
2587}
2588
2589static const struct file_operations proc_timers_operations = {
2590	.open		= proc_timers_open,
2591	.read		= seq_read,
2592	.llseek		= seq_lseek,
2593	.release	= seq_release_private,
2594};
2595#endif
2596
2597static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2598					size_t count, loff_t *offset)
2599{
2600	struct inode *inode = file_inode(file);
2601	struct task_struct *p;
2602	u64 slack_ns;
2603	int err;
2604
2605	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2606	if (err < 0)
2607		return err;
2608
2609	p = get_proc_task(inode);
2610	if (!p)
2611		return -ESRCH;
2612
2613	if (p != current) {
2614		rcu_read_lock();
2615		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2616			rcu_read_unlock();
2617			count = -EPERM;
2618			goto out;
2619		}
2620		rcu_read_unlock();
 
2621
2622		err = security_task_setscheduler(p);
2623		if (err) {
2624			count = err;
2625			goto out;
2626		}
2627	}
2628
2629	task_lock(p);
2630	if (rt_or_dl_task_policy(p))
2631		slack_ns = 0;
2632	else if (slack_ns == 0)
2633		slack_ns = p->default_timer_slack_ns;
2634	p->timer_slack_ns = slack_ns;
2635	task_unlock(p);
2636
2637out:
2638	put_task_struct(p);
2639
2640	return count;
2641}
2642
2643static int timerslack_ns_show(struct seq_file *m, void *v)
2644{
2645	struct inode *inode = m->private;
2646	struct task_struct *p;
2647	int err = 0;
2648
2649	p = get_proc_task(inode);
2650	if (!p)
2651		return -ESRCH;
2652
2653	if (p != current) {
2654		rcu_read_lock();
2655		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2656			rcu_read_unlock();
2657			err = -EPERM;
2658			goto out;
2659		}
2660		rcu_read_unlock();
2661
2662		err = security_task_getscheduler(p);
2663		if (err)
2664			goto out;
2665	}
2666
2667	task_lock(p);
2668	seq_printf(m, "%llu\n", p->timer_slack_ns);
2669	task_unlock(p);
2670
2671out:
2672	put_task_struct(p);
2673
2674	return err;
2675}
2676
2677static int timerslack_ns_open(struct inode *inode, struct file *filp)
2678{
2679	return single_open(filp, timerslack_ns_show, inode);
2680}
2681
2682static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2683	.open		= timerslack_ns_open,
2684	.read		= seq_read,
2685	.write		= timerslack_ns_write,
2686	.llseek		= seq_lseek,
2687	.release	= single_release,
2688};
2689
2690static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2691	struct task_struct *task, const void *ptr)
2692{
2693	const struct pid_entry *p = ptr;
2694	struct inode *inode;
2695	struct proc_inode *ei;
2696
2697	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2698	if (!inode)
2699		return ERR_PTR(-ENOENT);
2700
2701	ei = PROC_I(inode);
 
2702	if (S_ISDIR(inode->i_mode))
2703		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2704	if (p->iop)
2705		inode->i_op = p->iop;
2706	if (p->fop)
2707		inode->i_fop = p->fop;
2708	ei->op = p->op;
2709	pid_update_inode(task, inode);
2710	d_set_d_op(dentry, &pid_dentry_operations);
2711	return d_splice_alias(inode, dentry);
 
 
 
 
 
2712}
2713
2714static struct dentry *proc_pident_lookup(struct inode *dir, 
2715					 struct dentry *dentry,
2716					 const struct pid_entry *p,
2717					 const struct pid_entry *end)
2718{
 
2719	struct task_struct *task = get_proc_task(dir);
2720	struct dentry *res = ERR_PTR(-ENOENT);
 
 
2721
2722	if (!task)
2723		goto out_no_task;
2724
2725	/*
2726	 * Yes, it does not scale. And it should not. Don't add
2727	 * new entries into /proc/<tgid>/ without very good reasons.
2728	 */
2729	for (; p < end; p++) {
 
2730		if (p->len != dentry->d_name.len)
2731			continue;
2732		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2733			res = proc_pident_instantiate(dentry, task, p);
2734			break;
2735		}
2736	}
 
 
 
 
 
2737	put_task_struct(task);
2738out_no_task:
2739	return res;
2740}
2741
2742static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2743		const struct pid_entry *ents, unsigned int nents)
2744{
2745	struct task_struct *task = get_proc_task(file_inode(file));
2746	const struct pid_entry *p;
2747
2748	if (!task)
2749		return -ENOENT;
2750
2751	if (!dir_emit_dots(file, ctx))
2752		goto out;
2753
2754	if (ctx->pos >= nents + 2)
2755		goto out;
2756
2757	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2758		if (!proc_fill_cache(file, ctx, p->name, p->len,
2759				proc_pident_instantiate, task, p))
2760			break;
2761		ctx->pos++;
2762	}
2763out:
2764	put_task_struct(task);
2765	return 0;
2766}
2767
2768#ifdef CONFIG_SECURITY
2769static int proc_pid_attr_open(struct inode *inode, struct file *file)
2770{
2771	file->private_data = NULL;
2772	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2773	return 0;
2774}
2775
2776static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2777				  size_t count, loff_t *ppos)
2778{
2779	struct inode * inode = file_inode(file);
2780	char *p = NULL;
2781	ssize_t length;
2782	struct task_struct *task = get_proc_task(inode);
2783
2784	if (!task)
2785		return -ESRCH;
2786
2787	length = security_getprocattr(task, PROC_I(inode)->op.lsmid,
2788				      file->f_path.dentry->d_name.name,
2789				      &p);
2790	put_task_struct(task);
2791	if (length > 0)
2792		length = simple_read_from_buffer(buf, count, ppos, p, length);
2793	kfree(p);
2794	return length;
2795}
2796
2797static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2798				   size_t count, loff_t *ppos)
2799{
2800	struct inode * inode = file_inode(file);
2801	struct task_struct *task;
2802	void *page;
2803	int rv;
2804
2805	/* A task may only write when it was the opener. */
2806	if (file->private_data != current->mm)
2807		return -EPERM;
2808
2809	rcu_read_lock();
2810	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2811	if (!task) {
2812		rcu_read_unlock();
2813		return -ESRCH;
2814	}
2815	/* A task may only write its own attributes. */
2816	if (current != task) {
2817		rcu_read_unlock();
2818		return -EACCES;
2819	}
2820	/* Prevent changes to overridden credentials. */
2821	if (current_cred() != current_real_cred()) {
2822		rcu_read_unlock();
2823		return -EBUSY;
2824	}
2825	rcu_read_unlock();
2826
 
 
 
2827	if (count > PAGE_SIZE)
2828		count = PAGE_SIZE;
2829
2830	/* No partial writes. */
 
2831	if (*ppos != 0)
2832		return -EINVAL;
2833
2834	page = memdup_user(buf, count);
2835	if (IS_ERR(page)) {
2836		rv = PTR_ERR(page);
2837		goto out;
2838	}
2839
2840	/* Guard against adverse ptrace interaction */
2841	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2842	if (rv < 0)
2843		goto out_free;
2844
2845	rv = security_setprocattr(PROC_I(inode)->op.lsmid,
2846				  file->f_path.dentry->d_name.name, page,
2847				  count);
2848	mutex_unlock(&current->signal->cred_guard_mutex);
2849out_free:
2850	kfree(page);
2851out:
2852	return rv;
 
 
2853}
2854
2855static const struct file_operations proc_pid_attr_operations = {
2856	.open		= proc_pid_attr_open,
2857	.read		= proc_pid_attr_read,
2858	.write		= proc_pid_attr_write,
2859	.llseek		= generic_file_llseek,
2860	.release	= mem_release,
2861};
2862
2863#define LSM_DIR_OPS(LSM) \
2864static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2865			     struct dir_context *ctx) \
2866{ \
2867	return proc_pident_readdir(filp, ctx, \
2868				   LSM##_attr_dir_stuff, \
2869				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2870} \
2871\
2872static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2873	.read		= generic_read_dir, \
2874	.iterate_shared	= proc_##LSM##_attr_dir_iterate, \
2875	.llseek		= default_llseek, \
2876}; \
2877\
2878static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2879				struct dentry *dentry, unsigned int flags) \
2880{ \
2881	return proc_pident_lookup(dir, dentry, \
2882				  LSM##_attr_dir_stuff, \
2883				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2884} \
2885\
2886static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2887	.lookup		= proc_##LSM##_attr_dir_lookup, \
2888	.getattr	= pid_getattr, \
2889	.setattr	= proc_setattr, \
2890}
2891
2892#ifdef CONFIG_SECURITY_SMACK
2893static const struct pid_entry smack_attr_dir_stuff[] = {
2894	ATTR(LSM_ID_SMACK, "current",	0666),
2895};
2896LSM_DIR_OPS(smack);
2897#endif
2898
2899#ifdef CONFIG_SECURITY_APPARMOR
2900static const struct pid_entry apparmor_attr_dir_stuff[] = {
2901	ATTR(LSM_ID_APPARMOR, "current",	0666),
2902	ATTR(LSM_ID_APPARMOR, "prev",		0444),
2903	ATTR(LSM_ID_APPARMOR, "exec",		0666),
2904};
2905LSM_DIR_OPS(apparmor);
2906#endif
2907
2908static const struct pid_entry attr_dir_stuff[] = {
2909	ATTR(LSM_ID_UNDEF, "current",	0666),
2910	ATTR(LSM_ID_UNDEF, "prev",		0444),
2911	ATTR(LSM_ID_UNDEF, "exec",		0666),
2912	ATTR(LSM_ID_UNDEF, "fscreate",	0666),
2913	ATTR(LSM_ID_UNDEF, "keycreate",	0666),
2914	ATTR(LSM_ID_UNDEF, "sockcreate",	0666),
2915#ifdef CONFIG_SECURITY_SMACK
2916	DIR("smack",			0555,
2917	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2918#endif
2919#ifdef CONFIG_SECURITY_APPARMOR
2920	DIR("apparmor",			0555,
2921	    proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2922#endif
2923};
2924
2925static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2926{
2927	return proc_pident_readdir(file, ctx, 
2928				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2929}
2930
2931static const struct file_operations proc_attr_dir_operations = {
2932	.read		= generic_read_dir,
2933	.iterate_shared	= proc_attr_dir_readdir,
2934	.llseek		= generic_file_llseek,
2935};
2936
2937static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2938				struct dentry *dentry, unsigned int flags)
2939{
2940	return proc_pident_lookup(dir, dentry,
2941				  attr_dir_stuff,
2942				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2943}
2944
2945static const struct inode_operations proc_attr_dir_inode_operations = {
2946	.lookup		= proc_attr_dir_lookup,
2947	.getattr	= pid_getattr,
2948	.setattr	= proc_setattr,
2949};
2950
2951#endif
2952
2953#ifdef CONFIG_ELF_CORE
2954static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2955					 size_t count, loff_t *ppos)
2956{
2957	struct task_struct *task = get_proc_task(file_inode(file));
2958	struct mm_struct *mm;
2959	char buffer[PROC_NUMBUF];
2960	size_t len;
2961	int ret;
2962
2963	if (!task)
2964		return -ESRCH;
2965
2966	ret = 0;
2967	mm = get_task_mm(task);
2968	if (mm) {
2969		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2970			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2971				MMF_DUMP_FILTER_SHIFT));
2972		mmput(mm);
2973		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2974	}
2975
2976	put_task_struct(task);
2977
2978	return ret;
2979}
2980
2981static ssize_t proc_coredump_filter_write(struct file *file,
2982					  const char __user *buf,
2983					  size_t count,
2984					  loff_t *ppos)
2985{
2986	struct task_struct *task;
2987	struct mm_struct *mm;
2988	unsigned int val;
2989	int ret;
2990	int i;
2991	unsigned long mask;
2992
2993	ret = kstrtouint_from_user(buf, count, 0, &val);
2994	if (ret < 0)
2995		return ret;
2996
2997	ret = -ESRCH;
2998	task = get_proc_task(file_inode(file));
2999	if (!task)
3000		goto out_no_task;
3001
3002	mm = get_task_mm(task);
3003	if (!mm)
3004		goto out_no_mm;
3005	ret = 0;
3006
3007	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
3008		if (val & mask)
3009			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3010		else
3011			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
3012	}
3013
3014	mmput(mm);
3015 out_no_mm:
3016	put_task_struct(task);
3017 out_no_task:
3018	if (ret < 0)
3019		return ret;
3020	return count;
3021}
3022
3023static const struct file_operations proc_coredump_filter_operations = {
3024	.read		= proc_coredump_filter_read,
3025	.write		= proc_coredump_filter_write,
3026	.llseek		= generic_file_llseek,
3027};
3028#endif
3029
3030#ifdef CONFIG_TASK_IO_ACCOUNTING
3031static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
3032{
3033	struct task_io_accounting acct;
 
3034	int result;
3035
3036	result = down_read_killable(&task->signal->exec_update_lock);
3037	if (result)
3038		return result;
3039
3040	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
3041		result = -EACCES;
3042		goto out_unlock;
3043	}
3044
3045	if (whole) {
3046		struct signal_struct *sig = task->signal;
3047		struct task_struct *t;
3048		unsigned int seq = 1;
3049		unsigned long flags;
3050
3051		rcu_read_lock();
3052		do {
3053			seq++; /* 2 on the 1st/lockless path, otherwise odd */
3054			flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
3055
3056			acct = sig->ioac;
3057			__for_each_thread(sig, t)
3058				task_io_accounting_add(&acct, &t->ioac);
3059
3060		} while (need_seqretry(&sig->stats_lock, seq));
3061		done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
3062		rcu_read_unlock();
3063	} else {
3064		acct = task->ioac;
3065	}
3066
3067	seq_printf(m,
3068		   "rchar: %llu\n"
3069		   "wchar: %llu\n"
3070		   "syscr: %llu\n"
3071		   "syscw: %llu\n"
3072		   "read_bytes: %llu\n"
3073		   "write_bytes: %llu\n"
3074		   "cancelled_write_bytes: %llu\n",
3075		   (unsigned long long)acct.rchar,
3076		   (unsigned long long)acct.wchar,
3077		   (unsigned long long)acct.syscr,
3078		   (unsigned long long)acct.syscw,
3079		   (unsigned long long)acct.read_bytes,
3080		   (unsigned long long)acct.write_bytes,
3081		   (unsigned long long)acct.cancelled_write_bytes);
3082	result = 0;
3083
3084out_unlock:
3085	up_read(&task->signal->exec_update_lock);
3086	return result;
3087}
3088
3089static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3090				  struct pid *pid, struct task_struct *task)
3091{
3092	return do_io_accounting(task, m, 0);
3093}
3094
3095static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3096				   struct pid *pid, struct task_struct *task)
3097{
3098	return do_io_accounting(task, m, 1);
3099}
3100#endif /* CONFIG_TASK_IO_ACCOUNTING */
3101
3102#ifdef CONFIG_USER_NS
3103static int proc_id_map_open(struct inode *inode, struct file *file,
3104	const struct seq_operations *seq_ops)
3105{
3106	struct user_namespace *ns = NULL;
3107	struct task_struct *task;
3108	struct seq_file *seq;
3109	int ret = -EINVAL;
3110
3111	task = get_proc_task(inode);
3112	if (task) {
3113		rcu_read_lock();
3114		ns = get_user_ns(task_cred_xxx(task, user_ns));
3115		rcu_read_unlock();
3116		put_task_struct(task);
3117	}
3118	if (!ns)
3119		goto err;
3120
3121	ret = seq_open(file, seq_ops);
3122	if (ret)
3123		goto err_put_ns;
3124
3125	seq = file->private_data;
3126	seq->private = ns;
3127
3128	return 0;
3129err_put_ns:
3130	put_user_ns(ns);
3131err:
3132	return ret;
3133}
3134
3135static int proc_id_map_release(struct inode *inode, struct file *file)
3136{
3137	struct seq_file *seq = file->private_data;
3138	struct user_namespace *ns = seq->private;
3139	put_user_ns(ns);
3140	return seq_release(inode, file);
3141}
3142
3143static int proc_uid_map_open(struct inode *inode, struct file *file)
3144{
3145	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3146}
3147
3148static int proc_gid_map_open(struct inode *inode, struct file *file)
3149{
3150	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3151}
3152
3153static int proc_projid_map_open(struct inode *inode, struct file *file)
3154{
3155	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3156}
3157
3158static const struct file_operations proc_uid_map_operations = {
3159	.open		= proc_uid_map_open,
3160	.write		= proc_uid_map_write,
3161	.read		= seq_read,
3162	.llseek		= seq_lseek,
3163	.release	= proc_id_map_release,
3164};
3165
3166static const struct file_operations proc_gid_map_operations = {
3167	.open		= proc_gid_map_open,
3168	.write		= proc_gid_map_write,
3169	.read		= seq_read,
3170	.llseek		= seq_lseek,
3171	.release	= proc_id_map_release,
3172};
3173
3174static const struct file_operations proc_projid_map_operations = {
3175	.open		= proc_projid_map_open,
3176	.write		= proc_projid_map_write,
3177	.read		= seq_read,
3178	.llseek		= seq_lseek,
3179	.release	= proc_id_map_release,
3180};
3181
3182static int proc_setgroups_open(struct inode *inode, struct file *file)
3183{
3184	struct user_namespace *ns = NULL;
3185	struct task_struct *task;
3186	int ret;
3187
3188	ret = -ESRCH;
3189	task = get_proc_task(inode);
3190	if (task) {
3191		rcu_read_lock();
3192		ns = get_user_ns(task_cred_xxx(task, user_ns));
3193		rcu_read_unlock();
3194		put_task_struct(task);
3195	}
3196	if (!ns)
3197		goto err;
3198
3199	if (file->f_mode & FMODE_WRITE) {
3200		ret = -EACCES;
3201		if (!ns_capable(ns, CAP_SYS_ADMIN))
3202			goto err_put_ns;
3203	}
3204
3205	ret = single_open(file, &proc_setgroups_show, ns);
3206	if (ret)
3207		goto err_put_ns;
3208
3209	return 0;
3210err_put_ns:
3211	put_user_ns(ns);
3212err:
3213	return ret;
3214}
3215
3216static int proc_setgroups_release(struct inode *inode, struct file *file)
3217{
3218	struct seq_file *seq = file->private_data;
3219	struct user_namespace *ns = seq->private;
3220	int ret = single_release(inode, file);
3221	put_user_ns(ns);
3222	return ret;
3223}
3224
3225static const struct file_operations proc_setgroups_operations = {
3226	.open		= proc_setgroups_open,
3227	.write		= proc_setgroups_write,
3228	.read		= seq_read,
3229	.llseek		= seq_lseek,
3230	.release	= proc_setgroups_release,
3231};
3232#endif /* CONFIG_USER_NS */
3233
3234static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3235				struct pid *pid, struct task_struct *task)
3236{
3237	int err = lock_trace(task);
3238	if (!err) {
3239		seq_printf(m, "%08x\n", task->personality);
3240		unlock_trace(task);
3241	}
3242	return err;
3243}
3244
3245#ifdef CONFIG_LIVEPATCH
3246static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3247				struct pid *pid, struct task_struct *task)
3248{
3249	seq_printf(m, "%d\n", task->patch_state);
3250	return 0;
3251}
3252#endif /* CONFIG_LIVEPATCH */
3253
3254#ifdef CONFIG_KSM
3255static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3256				struct pid *pid, struct task_struct *task)
3257{
3258	struct mm_struct *mm;
3259
3260	mm = get_task_mm(task);
3261	if (mm) {
3262		seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3263		mmput(mm);
3264	}
3265
3266	return 0;
3267}
3268static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3269				struct pid *pid, struct task_struct *task)
3270{
3271	struct mm_struct *mm;
3272
3273	mm = get_task_mm(task);
3274	if (mm) {
3275		seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3276		seq_printf(m, "ksm_zero_pages %ld\n", mm_ksm_zero_pages(mm));
3277		seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3278		seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3279		mmput(mm);
3280	}
3281
3282	return 0;
3283}
3284#endif /* CONFIG_KSM */
3285
3286#ifdef CONFIG_STACKLEAK_METRICS
3287static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3288				struct pid *pid, struct task_struct *task)
3289{
3290	unsigned long prev_depth = THREAD_SIZE -
3291				(task->prev_lowest_stack & (THREAD_SIZE - 1));
3292	unsigned long depth = THREAD_SIZE -
3293				(task->lowest_stack & (THREAD_SIZE - 1));
3294
3295	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3296							prev_depth, depth);
3297	return 0;
3298}
3299#endif /* CONFIG_STACKLEAK_METRICS */
3300
3301/*
3302 * Thread groups
3303 */
3304static const struct file_operations proc_task_operations;
3305static const struct inode_operations proc_task_inode_operations;
3306
3307static const struct pid_entry tgid_base_stuff[] = {
3308	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3309	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3310	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3311	DIR("fdinfo",     S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3312	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3313#ifdef CONFIG_NET
3314	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3315#endif
3316	REG("environ",    S_IRUSR, proc_environ_operations),
3317	REG("auxv",       S_IRUSR, proc_auxv_operations),
3318	ONE("status",     S_IRUGO, proc_pid_status),
3319	ONE("personality", S_IRUSR, proc_pid_personality),
3320	ONE("limits",	  S_IRUGO, proc_pid_limits),
3321#ifdef CONFIG_SCHED_DEBUG
3322	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3323#endif
3324#ifdef CONFIG_SCHED_AUTOGROUP
3325	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3326#endif
3327#ifdef CONFIG_TIME_NS
3328	REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3329#endif
3330	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3331#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3332	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3333#endif
3334	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3335	ONE("stat",       S_IRUGO, proc_tgid_stat),
3336	ONE("statm",      S_IRUGO, proc_pid_statm),
3337	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3338#ifdef CONFIG_NUMA
3339	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3340#endif
3341	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3342	LNK("cwd",        proc_cwd_link),
3343	LNK("root",       proc_root_link),
3344	LNK("exe",        proc_exe_link),
3345	REG("mounts",     S_IRUGO, proc_mounts_operations),
3346	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3347	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3348#ifdef CONFIG_PROC_PAGE_MONITOR
3349	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3350	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3351	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3352	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3353#endif
3354#ifdef CONFIG_SECURITY
3355	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3356#endif
3357#ifdef CONFIG_KALLSYMS
3358	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3359#endif
3360#ifdef CONFIG_STACKTRACE
3361	ONE("stack",      S_IRUSR, proc_pid_stack),
3362#endif
3363#ifdef CONFIG_SCHED_INFO
3364	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3365#endif
3366#ifdef CONFIG_LATENCYTOP
3367	REG("latency",  S_IRUGO, proc_lstats_operations),
3368#endif
3369#ifdef CONFIG_PROC_PID_CPUSET
3370	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3371#endif
3372#ifdef CONFIG_CGROUPS
3373	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3374#endif
3375#ifdef CONFIG_PROC_CPU_RESCTRL
3376	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3377#endif
3378	ONE("oom_score",  S_IRUGO, proc_oom_score),
3379	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3380	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3381#ifdef CONFIG_AUDIT
3382	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3383	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3384#endif
3385#ifdef CONFIG_FAULT_INJECTION
3386	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3387	REG("fail-nth", 0644, proc_fail_nth_operations),
3388#endif
3389#ifdef CONFIG_ELF_CORE
3390	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3391#endif
3392#ifdef CONFIG_TASK_IO_ACCOUNTING
3393	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3394#endif
 
 
 
3395#ifdef CONFIG_USER_NS
3396	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3397	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3398	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3399	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3400#endif
3401#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3402	REG("timers",	  S_IRUGO, proc_timers_operations),
3403#endif
3404	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3405#ifdef CONFIG_LIVEPATCH
3406	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3407#endif
3408#ifdef CONFIG_STACKLEAK_METRICS
3409	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3410#endif
3411#ifdef CONFIG_PROC_PID_ARCH_STATUS
3412	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3413#endif
3414#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3415	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3416#endif
3417#ifdef CONFIG_KSM
3418	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3419	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3420#endif
3421};
3422
3423static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3424{
3425	return proc_pident_readdir(file, ctx,
3426				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3427}
3428
3429static const struct file_operations proc_tgid_base_operations = {
3430	.read		= generic_read_dir,
3431	.iterate_shared	= proc_tgid_base_readdir,
3432	.llseek		= generic_file_llseek,
3433};
3434
3435struct pid *tgid_pidfd_to_pid(const struct file *file)
3436{
3437	if (file->f_op != &proc_tgid_base_operations)
3438		return ERR_PTR(-EBADF);
3439
3440	return proc_pid(file_inode(file));
3441}
3442
3443static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3444{
3445	return proc_pident_lookup(dir, dentry,
3446				  tgid_base_stuff,
3447				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3448}
3449
3450static const struct inode_operations proc_tgid_base_inode_operations = {
3451	.lookup		= proc_tgid_base_lookup,
3452	.getattr	= pid_getattr,
3453	.setattr	= proc_setattr,
3454	.permission	= proc_pid_permission,
3455};
3456
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3457/**
3458 * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3459 * @pid: pid that should be flushed.
3460 *
3461 * This function walks a list of inodes (that belong to any proc
3462 * filesystem) that are attached to the pid and flushes them from
3463 * the dentry cache.
 
 
 
 
 
 
3464 *
3465 * It is safe and reasonable to cache /proc entries for a task until
3466 * that task exits.  After that they just clog up the dcache with
3467 * useless entries, possibly causing useful dcache entries to be
3468 * flushed instead.  This routine is provided to flush those useless
3469 * dcache entries when a process is reaped.
3470 *
3471 * NOTE: This routine is just an optimization so it does not guarantee
3472 *       that no dcache entries will exist after a process is reaped
3473 *       it just makes it very unlikely that any will persist.
3474 */
3475
3476void proc_flush_pid(struct pid *pid)
3477{
3478	proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
 
 
 
 
 
 
 
 
 
 
 
3479}
3480
3481static struct dentry *proc_pid_instantiate(struct dentry * dentry,
 
3482				   struct task_struct *task, const void *ptr)
3483{
3484	struct inode *inode;
3485
3486	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3487					 S_IFDIR | S_IRUGO | S_IXUGO);
3488	if (!inode)
3489		return ERR_PTR(-ENOENT);
3490
 
3491	inode->i_op = &proc_tgid_base_inode_operations;
3492	inode->i_fop = &proc_tgid_base_operations;
3493	inode->i_flags|=S_IMMUTABLE;
3494
3495	set_nlink(inode, nlink_tgid);
3496	pid_update_inode(task, inode);
3497
3498	d_set_d_op(dentry, &pid_dentry_operations);
3499	return d_splice_alias(inode, dentry);
 
 
 
 
 
 
3500}
3501
3502struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3503{
 
3504	struct task_struct *task;
3505	unsigned tgid;
3506	struct proc_fs_info *fs_info;
3507	struct pid_namespace *ns;
3508	struct dentry *result = ERR_PTR(-ENOENT);
3509
3510	tgid = name_to_int(&dentry->d_name);
3511	if (tgid == ~0U)
3512		goto out;
3513
3514	fs_info = proc_sb_info(dentry->d_sb);
3515	ns = fs_info->pid_ns;
3516	rcu_read_lock();
3517	task = find_task_by_pid_ns(tgid, ns);
3518	if (task)
3519		get_task_struct(task);
3520	rcu_read_unlock();
3521	if (!task)
3522		goto out;
3523
3524	/* Limit procfs to only ptraceable tasks */
3525	if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3526		if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3527			goto out_put_task;
3528	}
3529
3530	result = proc_pid_instantiate(dentry, task, NULL);
3531out_put_task:
3532	put_task_struct(task);
3533out:
3534	return result;
3535}
3536
3537/*
3538 * Find the first task with tgid >= tgid
3539 *
3540 */
3541struct tgid_iter {
3542	unsigned int tgid;
3543	struct task_struct *task;
3544};
3545static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3546{
3547	struct pid *pid;
3548
3549	if (iter.task)
3550		put_task_struct(iter.task);
3551	rcu_read_lock();
3552retry:
3553	iter.task = NULL;
3554	pid = find_ge_pid(iter.tgid, ns);
3555	if (pid) {
3556		iter.tgid = pid_nr_ns(pid, ns);
3557		iter.task = pid_task(pid, PIDTYPE_TGID);
3558		if (!iter.task) {
 
 
 
 
 
 
 
 
 
 
 
 
3559			iter.tgid += 1;
3560			goto retry;
3561		}
3562		get_task_struct(iter.task);
3563	}
3564	rcu_read_unlock();
3565	return iter;
3566}
3567
3568#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3569
3570/* for the /proc/ directory itself, after non-process stuff has been done */
3571int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3572{
3573	struct tgid_iter iter;
3574	struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3575	struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3576	loff_t pos = ctx->pos;
3577
3578	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3579		return 0;
3580
3581	if (pos == TGID_OFFSET - 2) {
3582		struct inode *inode = d_inode(fs_info->proc_self);
3583		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3584			return 0;
3585		ctx->pos = pos = pos + 1;
3586	}
3587	if (pos == TGID_OFFSET - 1) {
3588		struct inode *inode = d_inode(fs_info->proc_thread_self);
3589		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3590			return 0;
3591		ctx->pos = pos = pos + 1;
3592	}
3593	iter.tgid = pos - TGID_OFFSET;
3594	iter.task = NULL;
3595	for (iter = next_tgid(ns, iter);
3596	     iter.task;
3597	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3598		char name[10 + 1];
3599		unsigned int len;
3600
3601		cond_resched();
3602		if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3603			continue;
3604
3605		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3606		ctx->pos = iter.tgid + TGID_OFFSET;
3607		if (!proc_fill_cache(file, ctx, name, len,
3608				     proc_pid_instantiate, iter.task, NULL)) {
3609			put_task_struct(iter.task);
3610			return 0;
3611		}
3612	}
3613	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3614	return 0;
3615}
3616
3617/*
3618 * proc_tid_comm_permission is a special permission function exclusively
3619 * used for the node /proc/<pid>/task/<tid>/comm.
3620 * It bypasses generic permission checks in the case where a task of the same
3621 * task group attempts to access the node.
3622 * The rationale behind this is that glibc and bionic access this node for
3623 * cross thread naming (pthread_set/getname_np(!self)). However, if
3624 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3625 * which locks out the cross thread naming implementation.
3626 * This function makes sure that the node is always accessible for members of
3627 * same thread group.
3628 */
3629static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3630				    struct inode *inode, int mask)
3631{
3632	bool is_same_tgroup;
3633	struct task_struct *task;
3634
3635	task = get_proc_task(inode);
3636	if (!task)
3637		return -ESRCH;
3638	is_same_tgroup = same_thread_group(current, task);
3639	put_task_struct(task);
3640
3641	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3642		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3643		 * read or written by the members of the corresponding
3644		 * thread group.
3645		 */
3646		return 0;
3647	}
3648
3649	return generic_permission(&nop_mnt_idmap, inode, mask);
3650}
3651
3652static const struct inode_operations proc_tid_comm_inode_operations = {
3653		.setattr	= proc_setattr,
3654		.permission	= proc_tid_comm_permission,
3655};
3656
3657/*
3658 * Tasks
3659 */
3660static const struct pid_entry tid_base_stuff[] = {
3661	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3662	DIR("fdinfo",    S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3663	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3664#ifdef CONFIG_NET
3665	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3666#endif
3667	REG("environ",   S_IRUSR, proc_environ_operations),
3668	REG("auxv",      S_IRUSR, proc_auxv_operations),
3669	ONE("status",    S_IRUGO, proc_pid_status),
3670	ONE("personality", S_IRUSR, proc_pid_personality),
3671	ONE("limits",	 S_IRUGO, proc_pid_limits),
3672#ifdef CONFIG_SCHED_DEBUG
3673	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3674#endif
3675	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3676			 &proc_tid_comm_inode_operations,
3677			 &proc_pid_set_comm_operations, {}),
3678#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3679	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3680#endif
3681	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3682	ONE("stat",      S_IRUGO, proc_tid_stat),
3683	ONE("statm",     S_IRUGO, proc_pid_statm),
3684	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3685#ifdef CONFIG_PROC_CHILDREN
3686	REG("children",  S_IRUGO, proc_tid_children_operations),
3687#endif
3688#ifdef CONFIG_NUMA
3689	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3690#endif
3691	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3692	LNK("cwd",       proc_cwd_link),
3693	LNK("root",      proc_root_link),
3694	LNK("exe",       proc_exe_link),
3695	REG("mounts",    S_IRUGO, proc_mounts_operations),
3696	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3697#ifdef CONFIG_PROC_PAGE_MONITOR
3698	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3699	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3700	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3701	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3702#endif
3703#ifdef CONFIG_SECURITY
3704	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3705#endif
3706#ifdef CONFIG_KALLSYMS
3707	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3708#endif
3709#ifdef CONFIG_STACKTRACE
3710	ONE("stack",      S_IRUSR, proc_pid_stack),
3711#endif
3712#ifdef CONFIG_SCHED_INFO
3713	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3714#endif
3715#ifdef CONFIG_LATENCYTOP
3716	REG("latency",  S_IRUGO, proc_lstats_operations),
3717#endif
3718#ifdef CONFIG_PROC_PID_CPUSET
3719	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3720#endif
3721#ifdef CONFIG_CGROUPS
3722	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3723#endif
3724#ifdef CONFIG_PROC_CPU_RESCTRL
3725	ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3726#endif
3727	ONE("oom_score", S_IRUGO, proc_oom_score),
3728	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3729	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3730#ifdef CONFIG_AUDIT
3731	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3732	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3733#endif
3734#ifdef CONFIG_FAULT_INJECTION
3735	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3736	REG("fail-nth", 0644, proc_fail_nth_operations),
3737#endif
3738#ifdef CONFIG_TASK_IO_ACCOUNTING
3739	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3740#endif
 
 
 
3741#ifdef CONFIG_USER_NS
3742	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3743	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3744	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3745	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3746#endif
3747#ifdef CONFIG_LIVEPATCH
3748	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3749#endif
3750#ifdef CONFIG_PROC_PID_ARCH_STATUS
3751	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3752#endif
3753#ifdef CONFIG_SECCOMP_CACHE_DEBUG
3754	ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3755#endif
3756#ifdef CONFIG_KSM
3757	ONE("ksm_merging_pages",  S_IRUSR, proc_pid_ksm_merging_pages),
3758	ONE("ksm_stat",  S_IRUSR, proc_pid_ksm_stat),
3759#endif
3760};
3761
3762static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3763{
3764	return proc_pident_readdir(file, ctx,
3765				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3766}
3767
3768static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3769{
3770	return proc_pident_lookup(dir, dentry,
3771				  tid_base_stuff,
3772				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3773}
3774
3775static const struct file_operations proc_tid_base_operations = {
3776	.read		= generic_read_dir,
3777	.iterate_shared	= proc_tid_base_readdir,
3778	.llseek		= generic_file_llseek,
3779};
3780
3781static const struct inode_operations proc_tid_base_inode_operations = {
3782	.lookup		= proc_tid_base_lookup,
3783	.getattr	= pid_getattr,
3784	.setattr	= proc_setattr,
3785};
3786
3787static struct dentry *proc_task_instantiate(struct dentry *dentry,
3788	struct task_struct *task, const void *ptr)
3789{
3790	struct inode *inode;
3791	inode = proc_pid_make_base_inode(dentry->d_sb, task,
3792					 S_IFDIR | S_IRUGO | S_IXUGO);
3793	if (!inode)
3794		return ERR_PTR(-ENOENT);
3795
3796	inode->i_op = &proc_tid_base_inode_operations;
3797	inode->i_fop = &proc_tid_base_operations;
3798	inode->i_flags |= S_IMMUTABLE;
3799
3800	set_nlink(inode, nlink_tid);
3801	pid_update_inode(task, inode);
3802
3803	d_set_d_op(dentry, &pid_dentry_operations);
3804	return d_splice_alias(inode, dentry);
 
 
 
 
 
 
3805}
3806
3807static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3808{
 
3809	struct task_struct *task;
3810	struct task_struct *leader = get_proc_task(dir);
3811	unsigned tid;
3812	struct proc_fs_info *fs_info;
3813	struct pid_namespace *ns;
3814	struct dentry *result = ERR_PTR(-ENOENT);
3815
3816	if (!leader)
3817		goto out_no_task;
3818
3819	tid = name_to_int(&dentry->d_name);
3820	if (tid == ~0U)
3821		goto out;
3822
3823	fs_info = proc_sb_info(dentry->d_sb);
3824	ns = fs_info->pid_ns;
3825	rcu_read_lock();
3826	task = find_task_by_pid_ns(tid, ns);
3827	if (task)
3828		get_task_struct(task);
3829	rcu_read_unlock();
3830	if (!task)
3831		goto out;
3832	if (!same_thread_group(leader, task))
3833		goto out_drop_task;
3834
3835	result = proc_task_instantiate(dentry, task, NULL);
3836out_drop_task:
3837	put_task_struct(task);
3838out:
3839	put_task_struct(leader);
3840out_no_task:
3841	return result;
3842}
3843
3844/*
3845 * Find the first tid of a thread group to return to user space.
3846 *
3847 * Usually this is just the thread group leader, but if the users
3848 * buffer was too small or there was a seek into the middle of the
3849 * directory we have more work todo.
3850 *
3851 * In the case of a short read we start with find_task_by_pid.
3852 *
3853 * In the case of a seek we start with the leader and walk nr
3854 * threads past it.
3855 */
3856static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3857					struct pid_namespace *ns)
3858{
3859	struct task_struct *pos, *task;
3860	unsigned long nr = f_pos;
3861
3862	if (nr != f_pos)	/* 32bit overflow? */
3863		return NULL;
3864
3865	rcu_read_lock();
3866	task = pid_task(pid, PIDTYPE_PID);
3867	if (!task)
3868		goto fail;
3869
3870	/* Attempt to start with the tid of a thread */
3871	if (tid && nr) {
3872		pos = find_task_by_pid_ns(tid, ns);
3873		if (pos && same_thread_group(pos, task))
3874			goto found;
3875	}
3876
3877	/* If nr exceeds the number of threads there is nothing todo */
3878	if (nr >= get_nr_threads(task))
3879		goto fail;
3880
3881	/* If we haven't found our starting place yet start
3882	 * with the leader and walk nr threads forward.
3883	 */
3884	for_each_thread(task, pos) {
 
3885		if (!nr--)
3886			goto found;
3887	}
3888fail:
3889	pos = NULL;
3890	goto out;
3891found:
3892	get_task_struct(pos);
3893out:
3894	rcu_read_unlock();
3895	return pos;
3896}
3897
3898/*
3899 * Find the next thread in the thread list.
3900 * Return NULL if there is an error or no next thread.
3901 *
3902 * The reference to the input task_struct is released.
3903 */
3904static struct task_struct *next_tid(struct task_struct *start)
3905{
3906	struct task_struct *pos = NULL;
3907	rcu_read_lock();
3908	if (pid_alive(start)) {
3909		pos = __next_thread(start);
3910		if (pos)
 
 
3911			get_task_struct(pos);
3912	}
3913	rcu_read_unlock();
3914	put_task_struct(start);
3915	return pos;
3916}
3917
3918/* for the /proc/TGID/task/ directories */
3919static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3920{
3921	struct inode *inode = file_inode(file);
3922	struct task_struct *task;
3923	struct pid_namespace *ns;
3924	int tid;
3925
3926	if (proc_inode_is_dead(inode))
3927		return -ENOENT;
3928
3929	if (!dir_emit_dots(file, ctx))
3930		return 0;
3931
3932	/* We cache the tgid value that the last readdir call couldn't
3933	 * return and lseek resets it to 0.
3934	 */
3935	ns = proc_pid_ns(inode->i_sb);
3936	tid = (int)(intptr_t)file->private_data;
3937	file->private_data = NULL;
3938	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3939	     task;
3940	     task = next_tid(task), ctx->pos++) {
3941		char name[10 + 1];
3942		unsigned int len;
3943
3944		tid = task_pid_nr_ns(task, ns);
3945		if (!tid)
3946			continue;	/* The task has just exited. */
3947		len = snprintf(name, sizeof(name), "%u", tid);
3948		if (!proc_fill_cache(file, ctx, name, len,
3949				proc_task_instantiate, task, NULL)) {
3950			/* returning this tgid failed, save it as the first
3951			 * pid for the next readir call */
3952			file->private_data = (void *)(intptr_t)tid;
3953			put_task_struct(task);
3954			break;
3955		}
3956	}
3957
3958	return 0;
3959}
3960
3961static int proc_task_getattr(struct mnt_idmap *idmap,
3962			     const struct path *path, struct kstat *stat,
3963			     u32 request_mask, unsigned int query_flags)
3964{
3965	struct inode *inode = d_inode(path->dentry);
3966	struct task_struct *p = get_proc_task(inode);
3967	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
3968
3969	if (p) {
3970		stat->nlink += get_nr_threads(p);
3971		put_task_struct(p);
3972	}
3973
3974	return 0;
3975}
3976
3977/*
3978 * proc_task_readdir() set @file->private_data to a positive integer
3979 * value, so casting that to u64 is safe. generic_llseek_cookie() will
3980 * set @cookie to 0, so casting to an int is safe. The WARN_ON_ONCE() is
3981 * here to catch any unexpected change in behavior either in
3982 * proc_task_readdir() or generic_llseek_cookie().
3983 */
3984static loff_t proc_dir_llseek(struct file *file, loff_t offset, int whence)
3985{
3986	u64 cookie = (u64)(intptr_t)file->private_data;
3987	loff_t off;
3988
3989	off = generic_llseek_cookie(file, offset, whence, &cookie);
3990	WARN_ON_ONCE(cookie > INT_MAX);
3991	file->private_data = (void *)(intptr_t)cookie; /* serialized by f_pos_lock */
3992	return off;
3993}
3994
3995static const struct inode_operations proc_task_inode_operations = {
3996	.lookup		= proc_task_lookup,
3997	.getattr	= proc_task_getattr,
3998	.setattr	= proc_setattr,
3999	.permission	= proc_pid_permission,
4000};
4001
4002static const struct file_operations proc_task_operations = {
4003	.read		= generic_read_dir,
4004	.iterate_shared	= proc_task_readdir,
4005	.llseek		= proc_dir_llseek,
4006};
4007
4008void __init set_proc_pid_nlink(void)
4009{
4010	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
4011	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
4012}