Loading...
1/*
2 * message.c - synchronous message handling
3 */
4
5#include <linux/pci.h> /* for scatterlist macros */
6#include <linux/usb.h>
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/mm.h>
10#include <linux/timer.h>
11#include <linux/ctype.h>
12#include <linux/nls.h>
13#include <linux/device.h>
14#include <linux/scatterlist.h>
15#include <linux/usb/quirks.h>
16#include <linux/usb/hcd.h> /* for usbcore internals */
17#include <asm/byteorder.h>
18
19#include "usb.h"
20
21static void cancel_async_set_config(struct usb_device *udev);
22
23struct api_context {
24 struct completion done;
25 int status;
26};
27
28static void usb_api_blocking_completion(struct urb *urb)
29{
30 struct api_context *ctx = urb->context;
31
32 ctx->status = urb->status;
33 complete(&ctx->done);
34}
35
36
37/*
38 * Starts urb and waits for completion or timeout. Note that this call
39 * is NOT interruptible. Many device driver i/o requests should be
40 * interruptible and therefore these drivers should implement their
41 * own interruptible routines.
42 */
43static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
44{
45 struct api_context ctx;
46 unsigned long expire;
47 int retval;
48
49 init_completion(&ctx.done);
50 urb->context = &ctx;
51 urb->actual_length = 0;
52 retval = usb_submit_urb(urb, GFP_NOIO);
53 if (unlikely(retval))
54 goto out;
55
56 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
57 if (!wait_for_completion_timeout(&ctx.done, expire)) {
58 usb_kill_urb(urb);
59 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
60
61 dev_dbg(&urb->dev->dev,
62 "%s timed out on ep%d%s len=%u/%u\n",
63 current->comm,
64 usb_endpoint_num(&urb->ep->desc),
65 usb_urb_dir_in(urb) ? "in" : "out",
66 urb->actual_length,
67 urb->transfer_buffer_length);
68 } else
69 retval = ctx.status;
70out:
71 if (actual_length)
72 *actual_length = urb->actual_length;
73
74 usb_free_urb(urb);
75 return retval;
76}
77
78/*-------------------------------------------------------------------*/
79/* returns status (negative) or length (positive) */
80static int usb_internal_control_msg(struct usb_device *usb_dev,
81 unsigned int pipe,
82 struct usb_ctrlrequest *cmd,
83 void *data, int len, int timeout)
84{
85 struct urb *urb;
86 int retv;
87 int length;
88
89 urb = usb_alloc_urb(0, GFP_NOIO);
90 if (!urb)
91 return -ENOMEM;
92
93 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
94 len, usb_api_blocking_completion, NULL);
95
96 retv = usb_start_wait_urb(urb, timeout, &length);
97 if (retv < 0)
98 return retv;
99 else
100 return length;
101}
102
103/**
104 * usb_control_msg - Builds a control urb, sends it off and waits for completion
105 * @dev: pointer to the usb device to send the message to
106 * @pipe: endpoint "pipe" to send the message to
107 * @request: USB message request value
108 * @requesttype: USB message request type value
109 * @value: USB message value
110 * @index: USB message index value
111 * @data: pointer to the data to send
112 * @size: length in bytes of the data to send
113 * @timeout: time in msecs to wait for the message to complete before timing
114 * out (if 0 the wait is forever)
115 *
116 * Context: !in_interrupt ()
117 *
118 * This function sends a simple control message to a specified endpoint and
119 * waits for the message to complete, or timeout.
120 *
121 * Don't use this function from within an interrupt context, like a bottom half
122 * handler. If you need an asynchronous message, or need to send a message
123 * from within interrupt context, use usb_submit_urb().
124 * If a thread in your driver uses this call, make sure your disconnect()
125 * method can wait for it to complete. Since you don't have a handle on the
126 * URB used, you can't cancel the request.
127 *
128 * Return: If successful, the number of bytes transferred. Otherwise, a negative
129 * error number.
130 */
131int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
132 __u8 requesttype, __u16 value, __u16 index, void *data,
133 __u16 size, int timeout)
134{
135 struct usb_ctrlrequest *dr;
136 int ret;
137
138 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 if (!dr)
140 return -ENOMEM;
141
142 dr->bRequestType = requesttype;
143 dr->bRequest = request;
144 dr->wValue = cpu_to_le16(value);
145 dr->wIndex = cpu_to_le16(index);
146 dr->wLength = cpu_to_le16(size);
147
148 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
149
150 kfree(dr);
151
152 return ret;
153}
154EXPORT_SYMBOL_GPL(usb_control_msg);
155
156/**
157 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
158 * @usb_dev: pointer to the usb device to send the message to
159 * @pipe: endpoint "pipe" to send the message to
160 * @data: pointer to the data to send
161 * @len: length in bytes of the data to send
162 * @actual_length: pointer to a location to put the actual length transferred
163 * in bytes
164 * @timeout: time in msecs to wait for the message to complete before
165 * timing out (if 0 the wait is forever)
166 *
167 * Context: !in_interrupt ()
168 *
169 * This function sends a simple interrupt message to a specified endpoint and
170 * waits for the message to complete, or timeout.
171 *
172 * Don't use this function from within an interrupt context, like a bottom half
173 * handler. If you need an asynchronous message, or need to send a message
174 * from within interrupt context, use usb_submit_urb() If a thread in your
175 * driver uses this call, make sure your disconnect() method can wait for it to
176 * complete. Since you don't have a handle on the URB used, you can't cancel
177 * the request.
178 *
179 * Return:
180 * If successful, 0. Otherwise a negative error number. The number of actual
181 * bytes transferred will be stored in the @actual_length parameter.
182 */
183int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
184 void *data, int len, int *actual_length, int timeout)
185{
186 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
187}
188EXPORT_SYMBOL_GPL(usb_interrupt_msg);
189
190/**
191 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
192 * @usb_dev: pointer to the usb device to send the message to
193 * @pipe: endpoint "pipe" to send the message to
194 * @data: pointer to the data to send
195 * @len: length in bytes of the data to send
196 * @actual_length: pointer to a location to put the actual length transferred
197 * in bytes
198 * @timeout: time in msecs to wait for the message to complete before
199 * timing out (if 0 the wait is forever)
200 *
201 * Context: !in_interrupt ()
202 *
203 * This function sends a simple bulk message to a specified endpoint
204 * and waits for the message to complete, or timeout.
205 *
206 * Don't use this function from within an interrupt context, like a bottom half
207 * handler. If you need an asynchronous message, or need to send a message
208 * from within interrupt context, use usb_submit_urb() If a thread in your
209 * driver uses this call, make sure your disconnect() method can wait for it to
210 * complete. Since you don't have a handle on the URB used, you can't cancel
211 * the request.
212 *
213 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
214 * users are forced to abuse this routine by using it to submit URBs for
215 * interrupt endpoints. We will take the liberty of creating an interrupt URB
216 * (with the default interval) if the target is an interrupt endpoint.
217 *
218 * Return:
219 * If successful, 0. Otherwise a negative error number. The number of actual
220 * bytes transferred will be stored in the @actual_length parameter.
221 *
222 */
223int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 void *data, int len, int *actual_length, int timeout)
225{
226 struct urb *urb;
227 struct usb_host_endpoint *ep;
228
229 ep = usb_pipe_endpoint(usb_dev, pipe);
230 if (!ep || len < 0)
231 return -EINVAL;
232
233 urb = usb_alloc_urb(0, GFP_KERNEL);
234 if (!urb)
235 return -ENOMEM;
236
237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 USB_ENDPOINT_XFER_INT) {
239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 usb_api_blocking_completion, NULL,
242 ep->desc.bInterval);
243 } else
244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 usb_api_blocking_completion, NULL);
246
247 return usb_start_wait_urb(urb, timeout, actual_length);
248}
249EXPORT_SYMBOL_GPL(usb_bulk_msg);
250
251/*-------------------------------------------------------------------*/
252
253static void sg_clean(struct usb_sg_request *io)
254{
255 if (io->urbs) {
256 while (io->entries--)
257 usb_free_urb(io->urbs[io->entries]);
258 kfree(io->urbs);
259 io->urbs = NULL;
260 }
261 io->dev = NULL;
262}
263
264static void sg_complete(struct urb *urb)
265{
266 struct usb_sg_request *io = urb->context;
267 int status = urb->status;
268
269 spin_lock(&io->lock);
270
271 /* In 2.5 we require hcds' endpoint queues not to progress after fault
272 * reports, until the completion callback (this!) returns. That lets
273 * device driver code (like this routine) unlink queued urbs first,
274 * if it needs to, since the HC won't work on them at all. So it's
275 * not possible for page N+1 to overwrite page N, and so on.
276 *
277 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278 * complete before the HCD can get requests away from hardware,
279 * though never during cleanup after a hard fault.
280 */
281 if (io->status
282 && (io->status != -ECONNRESET
283 || status != -ECONNRESET)
284 && urb->actual_length) {
285 dev_err(io->dev->bus->controller,
286 "dev %s ep%d%s scatterlist error %d/%d\n",
287 io->dev->devpath,
288 usb_endpoint_num(&urb->ep->desc),
289 usb_urb_dir_in(urb) ? "in" : "out",
290 status, io->status);
291 /* BUG (); */
292 }
293
294 if (io->status == 0 && status && status != -ECONNRESET) {
295 int i, found, retval;
296
297 io->status = status;
298
299 /* the previous urbs, and this one, completed already.
300 * unlink pending urbs so they won't rx/tx bad data.
301 * careful: unlink can sometimes be synchronous...
302 */
303 spin_unlock(&io->lock);
304 for (i = 0, found = 0; i < io->entries; i++) {
305 if (!io->urbs[i] || !io->urbs[i]->dev)
306 continue;
307 if (found) {
308 retval = usb_unlink_urb(io->urbs[i]);
309 if (retval != -EINPROGRESS &&
310 retval != -ENODEV &&
311 retval != -EBUSY &&
312 retval != -EIDRM)
313 dev_err(&io->dev->dev,
314 "%s, unlink --> %d\n",
315 __func__, retval);
316 } else if (urb == io->urbs[i])
317 found = 1;
318 }
319 spin_lock(&io->lock);
320 }
321
322 /* on the last completion, signal usb_sg_wait() */
323 io->bytes += urb->actual_length;
324 io->count--;
325 if (!io->count)
326 complete(&io->complete);
327
328 spin_unlock(&io->lock);
329}
330
331
332/**
333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
334 * @io: request block being initialized. until usb_sg_wait() returns,
335 * treat this as a pointer to an opaque block of memory,
336 * @dev: the usb device that will send or receive the data
337 * @pipe: endpoint "pipe" used to transfer the data
338 * @period: polling rate for interrupt endpoints, in frames or
339 * (for high speed endpoints) microframes; ignored for bulk
340 * @sg: scatterlist entries
341 * @nents: how many entries in the scatterlist
342 * @length: how many bytes to send from the scatterlist, or zero to
343 * send every byte identified in the list.
344 * @mem_flags: SLAB_* flags affecting memory allocations in this call
345 *
346 * This initializes a scatter/gather request, allocating resources such as
347 * I/O mappings and urb memory (except maybe memory used by USB controller
348 * drivers).
349 *
350 * The request must be issued using usb_sg_wait(), which waits for the I/O to
351 * complete (or to be canceled) and then cleans up all resources allocated by
352 * usb_sg_init().
353 *
354 * The request may be canceled with usb_sg_cancel(), either before or after
355 * usb_sg_wait() is called.
356 *
357 * Return: Zero for success, else a negative errno value.
358 */
359int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
360 unsigned pipe, unsigned period, struct scatterlist *sg,
361 int nents, size_t length, gfp_t mem_flags)
362{
363 int i;
364 int urb_flags;
365 int use_sg;
366
367 if (!io || !dev || !sg
368 || usb_pipecontrol(pipe)
369 || usb_pipeisoc(pipe)
370 || nents <= 0)
371 return -EINVAL;
372
373 spin_lock_init(&io->lock);
374 io->dev = dev;
375 io->pipe = pipe;
376
377 if (dev->bus->sg_tablesize > 0) {
378 use_sg = true;
379 io->entries = 1;
380 } else {
381 use_sg = false;
382 io->entries = nents;
383 }
384
385 /* initialize all the urbs we'll use */
386 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
387 if (!io->urbs)
388 goto nomem;
389
390 urb_flags = URB_NO_INTERRUPT;
391 if (usb_pipein(pipe))
392 urb_flags |= URB_SHORT_NOT_OK;
393
394 for_each_sg(sg, sg, io->entries, i) {
395 struct urb *urb;
396 unsigned len;
397
398 urb = usb_alloc_urb(0, mem_flags);
399 if (!urb) {
400 io->entries = i;
401 goto nomem;
402 }
403 io->urbs[i] = urb;
404
405 urb->dev = NULL;
406 urb->pipe = pipe;
407 urb->interval = period;
408 urb->transfer_flags = urb_flags;
409 urb->complete = sg_complete;
410 urb->context = io;
411 urb->sg = sg;
412
413 if (use_sg) {
414 /* There is no single transfer buffer */
415 urb->transfer_buffer = NULL;
416 urb->num_sgs = nents;
417
418 /* A length of zero means transfer the whole sg list */
419 len = length;
420 if (len == 0) {
421 struct scatterlist *sg2;
422 int j;
423
424 for_each_sg(sg, sg2, nents, j)
425 len += sg2->length;
426 }
427 } else {
428 /*
429 * Some systems can't use DMA; they use PIO instead.
430 * For their sakes, transfer_buffer is set whenever
431 * possible.
432 */
433 if (!PageHighMem(sg_page(sg)))
434 urb->transfer_buffer = sg_virt(sg);
435 else
436 urb->transfer_buffer = NULL;
437
438 len = sg->length;
439 if (length) {
440 len = min_t(size_t, len, length);
441 length -= len;
442 if (length == 0)
443 io->entries = i + 1;
444 }
445 }
446 urb->transfer_buffer_length = len;
447 }
448 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
449
450 /* transaction state */
451 io->count = io->entries;
452 io->status = 0;
453 io->bytes = 0;
454 init_completion(&io->complete);
455 return 0;
456
457nomem:
458 sg_clean(io);
459 return -ENOMEM;
460}
461EXPORT_SYMBOL_GPL(usb_sg_init);
462
463/**
464 * usb_sg_wait - synchronously execute scatter/gather request
465 * @io: request block handle, as initialized with usb_sg_init().
466 * some fields become accessible when this call returns.
467 * Context: !in_interrupt ()
468 *
469 * This function blocks until the specified I/O operation completes. It
470 * leverages the grouping of the related I/O requests to get good transfer
471 * rates, by queueing the requests. At higher speeds, such queuing can
472 * significantly improve USB throughput.
473 *
474 * There are three kinds of completion for this function.
475 * (1) success, where io->status is zero. The number of io->bytes
476 * transferred is as requested.
477 * (2) error, where io->status is a negative errno value. The number
478 * of io->bytes transferred before the error is usually less
479 * than requested, and can be nonzero.
480 * (3) cancellation, a type of error with status -ECONNRESET that
481 * is initiated by usb_sg_cancel().
482 *
483 * When this function returns, all memory allocated through usb_sg_init() or
484 * this call will have been freed. The request block parameter may still be
485 * passed to usb_sg_cancel(), or it may be freed. It could also be
486 * reinitialized and then reused.
487 *
488 * Data Transfer Rates:
489 *
490 * Bulk transfers are valid for full or high speed endpoints.
491 * The best full speed data rate is 19 packets of 64 bytes each
492 * per frame, or 1216 bytes per millisecond.
493 * The best high speed data rate is 13 packets of 512 bytes each
494 * per microframe, or 52 KBytes per millisecond.
495 *
496 * The reason to use interrupt transfers through this API would most likely
497 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
498 * could be transferred. That capability is less useful for low or full
499 * speed interrupt endpoints, which allow at most one packet per millisecond,
500 * of at most 8 or 64 bytes (respectively).
501 *
502 * It is not necessary to call this function to reserve bandwidth for devices
503 * under an xHCI host controller, as the bandwidth is reserved when the
504 * configuration or interface alt setting is selected.
505 */
506void usb_sg_wait(struct usb_sg_request *io)
507{
508 int i;
509 int entries = io->entries;
510
511 /* queue the urbs. */
512 spin_lock_irq(&io->lock);
513 i = 0;
514 while (i < entries && !io->status) {
515 int retval;
516
517 io->urbs[i]->dev = io->dev;
518 retval = usb_submit_urb(io->urbs[i], GFP_ATOMIC);
519
520 /* after we submit, let completions or cancellations fire;
521 * we handshake using io->status.
522 */
523 spin_unlock_irq(&io->lock);
524 switch (retval) {
525 /* maybe we retrying will recover */
526 case -ENXIO: /* hc didn't queue this one */
527 case -EAGAIN:
528 case -ENOMEM:
529 retval = 0;
530 yield();
531 break;
532
533 /* no error? continue immediately.
534 *
535 * NOTE: to work better with UHCI (4K I/O buffer may
536 * need 3K of TDs) it may be good to limit how many
537 * URBs are queued at once; N milliseconds?
538 */
539 case 0:
540 ++i;
541 cpu_relax();
542 break;
543
544 /* fail any uncompleted urbs */
545 default:
546 io->urbs[i]->status = retval;
547 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
548 __func__, retval);
549 usb_sg_cancel(io);
550 }
551 spin_lock_irq(&io->lock);
552 if (retval && (io->status == 0 || io->status == -ECONNRESET))
553 io->status = retval;
554 }
555 io->count -= entries - i;
556 if (io->count == 0)
557 complete(&io->complete);
558 spin_unlock_irq(&io->lock);
559
560 /* OK, yes, this could be packaged as non-blocking.
561 * So could the submit loop above ... but it's easier to
562 * solve neither problem than to solve both!
563 */
564 wait_for_completion(&io->complete);
565
566 sg_clean(io);
567}
568EXPORT_SYMBOL_GPL(usb_sg_wait);
569
570/**
571 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
572 * @io: request block, initialized with usb_sg_init()
573 *
574 * This stops a request after it has been started by usb_sg_wait().
575 * It can also prevents one initialized by usb_sg_init() from starting,
576 * so that call just frees resources allocated to the request.
577 */
578void usb_sg_cancel(struct usb_sg_request *io)
579{
580 unsigned long flags;
581
582 spin_lock_irqsave(&io->lock, flags);
583
584 /* shut everything down, if it didn't already */
585 if (!io->status) {
586 int i;
587
588 io->status = -ECONNRESET;
589 spin_unlock(&io->lock);
590 for (i = 0; i < io->entries; i++) {
591 int retval;
592
593 if (!io->urbs[i]->dev)
594 continue;
595 retval = usb_unlink_urb(io->urbs[i]);
596 if (retval != -EINPROGRESS
597 && retval != -ENODEV
598 && retval != -EBUSY
599 && retval != -EIDRM)
600 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
601 __func__, retval);
602 }
603 spin_lock(&io->lock);
604 }
605 spin_unlock_irqrestore(&io->lock, flags);
606}
607EXPORT_SYMBOL_GPL(usb_sg_cancel);
608
609/*-------------------------------------------------------------------*/
610
611/**
612 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
613 * @dev: the device whose descriptor is being retrieved
614 * @type: the descriptor type (USB_DT_*)
615 * @index: the number of the descriptor
616 * @buf: where to put the descriptor
617 * @size: how big is "buf"?
618 * Context: !in_interrupt ()
619 *
620 * Gets a USB descriptor. Convenience functions exist to simplify
621 * getting some types of descriptors. Use
622 * usb_get_string() or usb_string() for USB_DT_STRING.
623 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
624 * are part of the device structure.
625 * In addition to a number of USB-standard descriptors, some
626 * devices also use class-specific or vendor-specific descriptors.
627 *
628 * This call is synchronous, and may not be used in an interrupt context.
629 *
630 * Return: The number of bytes received on success, or else the status code
631 * returned by the underlying usb_control_msg() call.
632 */
633int usb_get_descriptor(struct usb_device *dev, unsigned char type,
634 unsigned char index, void *buf, int size)
635{
636 int i;
637 int result;
638
639 memset(buf, 0, size); /* Make sure we parse really received data */
640
641 for (i = 0; i < 3; ++i) {
642 /* retry on length 0 or error; some devices are flakey */
643 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
644 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
645 (type << 8) + index, 0, buf, size,
646 USB_CTRL_GET_TIMEOUT);
647 if (result <= 0 && result != -ETIMEDOUT)
648 continue;
649 if (result > 1 && ((u8 *)buf)[1] != type) {
650 result = -ENODATA;
651 continue;
652 }
653 break;
654 }
655 return result;
656}
657EXPORT_SYMBOL_GPL(usb_get_descriptor);
658
659/**
660 * usb_get_string - gets a string descriptor
661 * @dev: the device whose string descriptor is being retrieved
662 * @langid: code for language chosen (from string descriptor zero)
663 * @index: the number of the descriptor
664 * @buf: where to put the string
665 * @size: how big is "buf"?
666 * Context: !in_interrupt ()
667 *
668 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
669 * in little-endian byte order).
670 * The usb_string() function will often be a convenient way to turn
671 * these strings into kernel-printable form.
672 *
673 * Strings may be referenced in device, configuration, interface, or other
674 * descriptors, and could also be used in vendor-specific ways.
675 *
676 * This call is synchronous, and may not be used in an interrupt context.
677 *
678 * Return: The number of bytes received on success, or else the status code
679 * returned by the underlying usb_control_msg() call.
680 */
681static int usb_get_string(struct usb_device *dev, unsigned short langid,
682 unsigned char index, void *buf, int size)
683{
684 int i;
685 int result;
686
687 for (i = 0; i < 3; ++i) {
688 /* retry on length 0 or stall; some devices are flakey */
689 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
690 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
691 (USB_DT_STRING << 8) + index, langid, buf, size,
692 USB_CTRL_GET_TIMEOUT);
693 if (result == 0 || result == -EPIPE)
694 continue;
695 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
696 result = -ENODATA;
697 continue;
698 }
699 break;
700 }
701 return result;
702}
703
704static void usb_try_string_workarounds(unsigned char *buf, int *length)
705{
706 int newlength, oldlength = *length;
707
708 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
709 if (!isprint(buf[newlength]) || buf[newlength + 1])
710 break;
711
712 if (newlength > 2) {
713 buf[0] = newlength;
714 *length = newlength;
715 }
716}
717
718static int usb_string_sub(struct usb_device *dev, unsigned int langid,
719 unsigned int index, unsigned char *buf)
720{
721 int rc;
722
723 /* Try to read the string descriptor by asking for the maximum
724 * possible number of bytes */
725 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
726 rc = -EIO;
727 else
728 rc = usb_get_string(dev, langid, index, buf, 255);
729
730 /* If that failed try to read the descriptor length, then
731 * ask for just that many bytes */
732 if (rc < 2) {
733 rc = usb_get_string(dev, langid, index, buf, 2);
734 if (rc == 2)
735 rc = usb_get_string(dev, langid, index, buf, buf[0]);
736 }
737
738 if (rc >= 2) {
739 if (!buf[0] && !buf[1])
740 usb_try_string_workarounds(buf, &rc);
741
742 /* There might be extra junk at the end of the descriptor */
743 if (buf[0] < rc)
744 rc = buf[0];
745
746 rc = rc - (rc & 1); /* force a multiple of two */
747 }
748
749 if (rc < 2)
750 rc = (rc < 0 ? rc : -EINVAL);
751
752 return rc;
753}
754
755static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
756{
757 int err;
758
759 if (dev->have_langid)
760 return 0;
761
762 if (dev->string_langid < 0)
763 return -EPIPE;
764
765 err = usb_string_sub(dev, 0, 0, tbuf);
766
767 /* If the string was reported but is malformed, default to english
768 * (0x0409) */
769 if (err == -ENODATA || (err > 0 && err < 4)) {
770 dev->string_langid = 0x0409;
771 dev->have_langid = 1;
772 dev_err(&dev->dev,
773 "language id specifier not provided by device, defaulting to English\n");
774 return 0;
775 }
776
777 /* In case of all other errors, we assume the device is not able to
778 * deal with strings at all. Set string_langid to -1 in order to
779 * prevent any string to be retrieved from the device */
780 if (err < 0) {
781 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
782 err);
783 dev->string_langid = -1;
784 return -EPIPE;
785 }
786
787 /* always use the first langid listed */
788 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
789 dev->have_langid = 1;
790 dev_dbg(&dev->dev, "default language 0x%04x\n",
791 dev->string_langid);
792 return 0;
793}
794
795/**
796 * usb_string - returns UTF-8 version of a string descriptor
797 * @dev: the device whose string descriptor is being retrieved
798 * @index: the number of the descriptor
799 * @buf: where to put the string
800 * @size: how big is "buf"?
801 * Context: !in_interrupt ()
802 *
803 * This converts the UTF-16LE encoded strings returned by devices, from
804 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
805 * that are more usable in most kernel contexts. Note that this function
806 * chooses strings in the first language supported by the device.
807 *
808 * This call is synchronous, and may not be used in an interrupt context.
809 *
810 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
811 */
812int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
813{
814 unsigned char *tbuf;
815 int err;
816
817 if (dev->state == USB_STATE_SUSPENDED)
818 return -EHOSTUNREACH;
819 if (size <= 0 || !buf || !index)
820 return -EINVAL;
821 buf[0] = 0;
822 tbuf = kmalloc(256, GFP_NOIO);
823 if (!tbuf)
824 return -ENOMEM;
825
826 err = usb_get_langid(dev, tbuf);
827 if (err < 0)
828 goto errout;
829
830 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
831 if (err < 0)
832 goto errout;
833
834 size--; /* leave room for trailing NULL char in output buffer */
835 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
836 UTF16_LITTLE_ENDIAN, buf, size);
837 buf[err] = 0;
838
839 if (tbuf[1] != USB_DT_STRING)
840 dev_dbg(&dev->dev,
841 "wrong descriptor type %02x for string %d (\"%s\")\n",
842 tbuf[1], index, buf);
843
844 errout:
845 kfree(tbuf);
846 return err;
847}
848EXPORT_SYMBOL_GPL(usb_string);
849
850/* one UTF-8-encoded 16-bit character has at most three bytes */
851#define MAX_USB_STRING_SIZE (127 * 3 + 1)
852
853/**
854 * usb_cache_string - read a string descriptor and cache it for later use
855 * @udev: the device whose string descriptor is being read
856 * @index: the descriptor index
857 *
858 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
859 * or %NULL if the index is 0 or the string could not be read.
860 */
861char *usb_cache_string(struct usb_device *udev, int index)
862{
863 char *buf;
864 char *smallbuf = NULL;
865 int len;
866
867 if (index <= 0)
868 return NULL;
869
870 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
871 if (buf) {
872 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
873 if (len > 0) {
874 smallbuf = kmalloc(++len, GFP_NOIO);
875 if (!smallbuf)
876 return buf;
877 memcpy(smallbuf, buf, len);
878 }
879 kfree(buf);
880 }
881 return smallbuf;
882}
883
884/*
885 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
886 * @dev: the device whose device descriptor is being updated
887 * @size: how much of the descriptor to read
888 * Context: !in_interrupt ()
889 *
890 * Updates the copy of the device descriptor stored in the device structure,
891 * which dedicates space for this purpose.
892 *
893 * Not exported, only for use by the core. If drivers really want to read
894 * the device descriptor directly, they can call usb_get_descriptor() with
895 * type = USB_DT_DEVICE and index = 0.
896 *
897 * This call is synchronous, and may not be used in an interrupt context.
898 *
899 * Return: The number of bytes received on success, or else the status code
900 * returned by the underlying usb_control_msg() call.
901 */
902int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
903{
904 struct usb_device_descriptor *desc;
905 int ret;
906
907 if (size > sizeof(*desc))
908 return -EINVAL;
909 desc = kmalloc(sizeof(*desc), GFP_NOIO);
910 if (!desc)
911 return -ENOMEM;
912
913 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
914 if (ret >= 0)
915 memcpy(&dev->descriptor, desc, size);
916 kfree(desc);
917 return ret;
918}
919
920/**
921 * usb_get_status - issues a GET_STATUS call
922 * @dev: the device whose status is being checked
923 * @type: USB_RECIP_*; for device, interface, or endpoint
924 * @target: zero (for device), else interface or endpoint number
925 * @data: pointer to two bytes of bitmap data
926 * Context: !in_interrupt ()
927 *
928 * Returns device, interface, or endpoint status. Normally only of
929 * interest to see if the device is self powered, or has enabled the
930 * remote wakeup facility; or whether a bulk or interrupt endpoint
931 * is halted ("stalled").
932 *
933 * Bits in these status bitmaps are set using the SET_FEATURE request,
934 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
935 * function should be used to clear halt ("stall") status.
936 *
937 * This call is synchronous, and may not be used in an interrupt context.
938 *
939 * Returns 0 and the status value in *@data (in host byte order) on success,
940 * or else the status code from the underlying usb_control_msg() call.
941 */
942int usb_get_status(struct usb_device *dev, int type, int target, void *data)
943{
944 int ret;
945 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
946
947 if (!status)
948 return -ENOMEM;
949
950 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
951 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
952 sizeof(*status), USB_CTRL_GET_TIMEOUT);
953
954 if (ret == 2) {
955 *(u16 *) data = le16_to_cpu(*status);
956 ret = 0;
957 } else if (ret >= 0) {
958 ret = -EIO;
959 }
960 kfree(status);
961 return ret;
962}
963EXPORT_SYMBOL_GPL(usb_get_status);
964
965/**
966 * usb_clear_halt - tells device to clear endpoint halt/stall condition
967 * @dev: device whose endpoint is halted
968 * @pipe: endpoint "pipe" being cleared
969 * Context: !in_interrupt ()
970 *
971 * This is used to clear halt conditions for bulk and interrupt endpoints,
972 * as reported by URB completion status. Endpoints that are halted are
973 * sometimes referred to as being "stalled". Such endpoints are unable
974 * to transmit or receive data until the halt status is cleared. Any URBs
975 * queued for such an endpoint should normally be unlinked by the driver
976 * before clearing the halt condition, as described in sections 5.7.5
977 * and 5.8.5 of the USB 2.0 spec.
978 *
979 * Note that control and isochronous endpoints don't halt, although control
980 * endpoints report "protocol stall" (for unsupported requests) using the
981 * same status code used to report a true stall.
982 *
983 * This call is synchronous, and may not be used in an interrupt context.
984 *
985 * Return: Zero on success, or else the status code returned by the
986 * underlying usb_control_msg() call.
987 */
988int usb_clear_halt(struct usb_device *dev, int pipe)
989{
990 int result;
991 int endp = usb_pipeendpoint(pipe);
992
993 if (usb_pipein(pipe))
994 endp |= USB_DIR_IN;
995
996 /* we don't care if it wasn't halted first. in fact some devices
997 * (like some ibmcam model 1 units) seem to expect hosts to make
998 * this request for iso endpoints, which can't halt!
999 */
1000 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1001 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1002 USB_ENDPOINT_HALT, endp, NULL, 0,
1003 USB_CTRL_SET_TIMEOUT);
1004
1005 /* don't un-halt or force to DATA0 except on success */
1006 if (result < 0)
1007 return result;
1008
1009 /* NOTE: seems like Microsoft and Apple don't bother verifying
1010 * the clear "took", so some devices could lock up if you check...
1011 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1012 *
1013 * NOTE: make sure the logic here doesn't diverge much from
1014 * the copy in usb-storage, for as long as we need two copies.
1015 */
1016
1017 usb_reset_endpoint(dev, endp);
1018
1019 return 0;
1020}
1021EXPORT_SYMBOL_GPL(usb_clear_halt);
1022
1023static int create_intf_ep_devs(struct usb_interface *intf)
1024{
1025 struct usb_device *udev = interface_to_usbdev(intf);
1026 struct usb_host_interface *alt = intf->cur_altsetting;
1027 int i;
1028
1029 if (intf->ep_devs_created || intf->unregistering)
1030 return 0;
1031
1032 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1033 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1034 intf->ep_devs_created = 1;
1035 return 0;
1036}
1037
1038static void remove_intf_ep_devs(struct usb_interface *intf)
1039{
1040 struct usb_host_interface *alt = intf->cur_altsetting;
1041 int i;
1042
1043 if (!intf->ep_devs_created)
1044 return;
1045
1046 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1047 usb_remove_ep_devs(&alt->endpoint[i]);
1048 intf->ep_devs_created = 0;
1049}
1050
1051/**
1052 * usb_disable_endpoint -- Disable an endpoint by address
1053 * @dev: the device whose endpoint is being disabled
1054 * @epaddr: the endpoint's address. Endpoint number for output,
1055 * endpoint number + USB_DIR_IN for input
1056 * @reset_hardware: flag to erase any endpoint state stored in the
1057 * controller hardware
1058 *
1059 * Disables the endpoint for URB submission and nukes all pending URBs.
1060 * If @reset_hardware is set then also deallocates hcd/hardware state
1061 * for the endpoint.
1062 */
1063void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1064 bool reset_hardware)
1065{
1066 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1067 struct usb_host_endpoint *ep;
1068
1069 if (!dev)
1070 return;
1071
1072 if (usb_endpoint_out(epaddr)) {
1073 ep = dev->ep_out[epnum];
1074 if (reset_hardware)
1075 dev->ep_out[epnum] = NULL;
1076 } else {
1077 ep = dev->ep_in[epnum];
1078 if (reset_hardware)
1079 dev->ep_in[epnum] = NULL;
1080 }
1081 if (ep) {
1082 ep->enabled = 0;
1083 usb_hcd_flush_endpoint(dev, ep);
1084 if (reset_hardware)
1085 usb_hcd_disable_endpoint(dev, ep);
1086 }
1087}
1088
1089/**
1090 * usb_reset_endpoint - Reset an endpoint's state.
1091 * @dev: the device whose endpoint is to be reset
1092 * @epaddr: the endpoint's address. Endpoint number for output,
1093 * endpoint number + USB_DIR_IN for input
1094 *
1095 * Resets any host-side endpoint state such as the toggle bit,
1096 * sequence number or current window.
1097 */
1098void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1099{
1100 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1101 struct usb_host_endpoint *ep;
1102
1103 if (usb_endpoint_out(epaddr))
1104 ep = dev->ep_out[epnum];
1105 else
1106 ep = dev->ep_in[epnum];
1107 if (ep)
1108 usb_hcd_reset_endpoint(dev, ep);
1109}
1110EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1111
1112
1113/**
1114 * usb_disable_interface -- Disable all endpoints for an interface
1115 * @dev: the device whose interface is being disabled
1116 * @intf: pointer to the interface descriptor
1117 * @reset_hardware: flag to erase any endpoint state stored in the
1118 * controller hardware
1119 *
1120 * Disables all the endpoints for the interface's current altsetting.
1121 */
1122void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1123 bool reset_hardware)
1124{
1125 struct usb_host_interface *alt = intf->cur_altsetting;
1126 int i;
1127
1128 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1129 usb_disable_endpoint(dev,
1130 alt->endpoint[i].desc.bEndpointAddress,
1131 reset_hardware);
1132 }
1133}
1134
1135/**
1136 * usb_disable_device - Disable all the endpoints for a USB device
1137 * @dev: the device whose endpoints are being disabled
1138 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1139 *
1140 * Disables all the device's endpoints, potentially including endpoint 0.
1141 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1142 * pending urbs) and usbcore state for the interfaces, so that usbcore
1143 * must usb_set_configuration() before any interfaces could be used.
1144 */
1145void usb_disable_device(struct usb_device *dev, int skip_ep0)
1146{
1147 int i;
1148 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1149
1150 /* getting rid of interfaces will disconnect
1151 * any drivers bound to them (a key side effect)
1152 */
1153 if (dev->actconfig) {
1154 /*
1155 * FIXME: In order to avoid self-deadlock involving the
1156 * bandwidth_mutex, we have to mark all the interfaces
1157 * before unregistering any of them.
1158 */
1159 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1160 dev->actconfig->interface[i]->unregistering = 1;
1161
1162 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1163 struct usb_interface *interface;
1164
1165 /* remove this interface if it has been registered */
1166 interface = dev->actconfig->interface[i];
1167 if (!device_is_registered(&interface->dev))
1168 continue;
1169 dev_dbg(&dev->dev, "unregistering interface %s\n",
1170 dev_name(&interface->dev));
1171 remove_intf_ep_devs(interface);
1172 device_del(&interface->dev);
1173 }
1174
1175 /* Now that the interfaces are unbound, nobody should
1176 * try to access them.
1177 */
1178 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1179 put_device(&dev->actconfig->interface[i]->dev);
1180 dev->actconfig->interface[i] = NULL;
1181 }
1182
1183 if (dev->usb2_hw_lpm_enabled == 1)
1184 usb_set_usb2_hardware_lpm(dev, 0);
1185 usb_unlocked_disable_lpm(dev);
1186 usb_disable_ltm(dev);
1187
1188 dev->actconfig = NULL;
1189 if (dev->state == USB_STATE_CONFIGURED)
1190 usb_set_device_state(dev, USB_STATE_ADDRESS);
1191 }
1192
1193 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1194 skip_ep0 ? "non-ep0" : "all");
1195 if (hcd->driver->check_bandwidth) {
1196 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1197 for (i = skip_ep0; i < 16; ++i) {
1198 usb_disable_endpoint(dev, i, false);
1199 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1200 }
1201 /* Remove endpoints from the host controller internal state */
1202 mutex_lock(hcd->bandwidth_mutex);
1203 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1204 mutex_unlock(hcd->bandwidth_mutex);
1205 /* Second pass: remove endpoint pointers */
1206 }
1207 for (i = skip_ep0; i < 16; ++i) {
1208 usb_disable_endpoint(dev, i, true);
1209 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1210 }
1211}
1212
1213/**
1214 * usb_enable_endpoint - Enable an endpoint for USB communications
1215 * @dev: the device whose interface is being enabled
1216 * @ep: the endpoint
1217 * @reset_ep: flag to reset the endpoint state
1218 *
1219 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1220 * For control endpoints, both the input and output sides are handled.
1221 */
1222void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1223 bool reset_ep)
1224{
1225 int epnum = usb_endpoint_num(&ep->desc);
1226 int is_out = usb_endpoint_dir_out(&ep->desc);
1227 int is_control = usb_endpoint_xfer_control(&ep->desc);
1228
1229 if (reset_ep)
1230 usb_hcd_reset_endpoint(dev, ep);
1231 if (is_out || is_control)
1232 dev->ep_out[epnum] = ep;
1233 if (!is_out || is_control)
1234 dev->ep_in[epnum] = ep;
1235 ep->enabled = 1;
1236}
1237
1238/**
1239 * usb_enable_interface - Enable all the endpoints for an interface
1240 * @dev: the device whose interface is being enabled
1241 * @intf: pointer to the interface descriptor
1242 * @reset_eps: flag to reset the endpoints' state
1243 *
1244 * Enables all the endpoints for the interface's current altsetting.
1245 */
1246void usb_enable_interface(struct usb_device *dev,
1247 struct usb_interface *intf, bool reset_eps)
1248{
1249 struct usb_host_interface *alt = intf->cur_altsetting;
1250 int i;
1251
1252 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1253 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1254}
1255
1256/**
1257 * usb_set_interface - Makes a particular alternate setting be current
1258 * @dev: the device whose interface is being updated
1259 * @interface: the interface being updated
1260 * @alternate: the setting being chosen.
1261 * Context: !in_interrupt ()
1262 *
1263 * This is used to enable data transfers on interfaces that may not
1264 * be enabled by default. Not all devices support such configurability.
1265 * Only the driver bound to an interface may change its setting.
1266 *
1267 * Within any given configuration, each interface may have several
1268 * alternative settings. These are often used to control levels of
1269 * bandwidth consumption. For example, the default setting for a high
1270 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1271 * while interrupt transfers of up to 3KBytes per microframe are legal.
1272 * Also, isochronous endpoints may never be part of an
1273 * interface's default setting. To access such bandwidth, alternate
1274 * interface settings must be made current.
1275 *
1276 * Note that in the Linux USB subsystem, bandwidth associated with
1277 * an endpoint in a given alternate setting is not reserved until an URB
1278 * is submitted that needs that bandwidth. Some other operating systems
1279 * allocate bandwidth early, when a configuration is chosen.
1280 *
1281 * This call is synchronous, and may not be used in an interrupt context.
1282 * Also, drivers must not change altsettings while urbs are scheduled for
1283 * endpoints in that interface; all such urbs must first be completed
1284 * (perhaps forced by unlinking).
1285 *
1286 * Return: Zero on success, or else the status code returned by the
1287 * underlying usb_control_msg() call.
1288 */
1289int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1290{
1291 struct usb_interface *iface;
1292 struct usb_host_interface *alt;
1293 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1294 int i, ret, manual = 0;
1295 unsigned int epaddr;
1296 unsigned int pipe;
1297
1298 if (dev->state == USB_STATE_SUSPENDED)
1299 return -EHOSTUNREACH;
1300
1301 iface = usb_ifnum_to_if(dev, interface);
1302 if (!iface) {
1303 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1304 interface);
1305 return -EINVAL;
1306 }
1307 if (iface->unregistering)
1308 return -ENODEV;
1309
1310 alt = usb_altnum_to_altsetting(iface, alternate);
1311 if (!alt) {
1312 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1313 alternate);
1314 return -EINVAL;
1315 }
1316
1317 /* Make sure we have enough bandwidth for this alternate interface.
1318 * Remove the current alt setting and add the new alt setting.
1319 */
1320 mutex_lock(hcd->bandwidth_mutex);
1321 /* Disable LPM, and re-enable it once the new alt setting is installed,
1322 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1323 */
1324 if (usb_disable_lpm(dev)) {
1325 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1326 mutex_unlock(hcd->bandwidth_mutex);
1327 return -ENOMEM;
1328 }
1329 /* Changing alt-setting also frees any allocated streams */
1330 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1331 iface->cur_altsetting->endpoint[i].streams = 0;
1332
1333 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1334 if (ret < 0) {
1335 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1336 alternate);
1337 usb_enable_lpm(dev);
1338 mutex_unlock(hcd->bandwidth_mutex);
1339 return ret;
1340 }
1341
1342 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1343 ret = -EPIPE;
1344 else
1345 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1346 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1347 alternate, interface, NULL, 0, 5000);
1348
1349 /* 9.4.10 says devices don't need this and are free to STALL the
1350 * request if the interface only has one alternate setting.
1351 */
1352 if (ret == -EPIPE && iface->num_altsetting == 1) {
1353 dev_dbg(&dev->dev,
1354 "manual set_interface for iface %d, alt %d\n",
1355 interface, alternate);
1356 manual = 1;
1357 } else if (ret < 0) {
1358 /* Re-instate the old alt setting */
1359 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1360 usb_enable_lpm(dev);
1361 mutex_unlock(hcd->bandwidth_mutex);
1362 return ret;
1363 }
1364 mutex_unlock(hcd->bandwidth_mutex);
1365
1366 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1367 * when they implement async or easily-killable versions of this or
1368 * other "should-be-internal" functions (like clear_halt).
1369 * should hcd+usbcore postprocess control requests?
1370 */
1371
1372 /* prevent submissions using previous endpoint settings */
1373 if (iface->cur_altsetting != alt) {
1374 remove_intf_ep_devs(iface);
1375 usb_remove_sysfs_intf_files(iface);
1376 }
1377 usb_disable_interface(dev, iface, true);
1378
1379 iface->cur_altsetting = alt;
1380
1381 /* Now that the interface is installed, re-enable LPM. */
1382 usb_unlocked_enable_lpm(dev);
1383
1384 /* If the interface only has one altsetting and the device didn't
1385 * accept the request, we attempt to carry out the equivalent action
1386 * by manually clearing the HALT feature for each endpoint in the
1387 * new altsetting.
1388 */
1389 if (manual) {
1390 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1391 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1392 pipe = __create_pipe(dev,
1393 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1394 (usb_endpoint_out(epaddr) ?
1395 USB_DIR_OUT : USB_DIR_IN);
1396
1397 usb_clear_halt(dev, pipe);
1398 }
1399 }
1400
1401 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1402 *
1403 * Note:
1404 * Despite EP0 is always present in all interfaces/AS, the list of
1405 * endpoints from the descriptor does not contain EP0. Due to its
1406 * omnipresence one might expect EP0 being considered "affected" by
1407 * any SetInterface request and hence assume toggles need to be reset.
1408 * However, EP0 toggles are re-synced for every individual transfer
1409 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1410 * (Likewise, EP0 never "halts" on well designed devices.)
1411 */
1412 usb_enable_interface(dev, iface, true);
1413 if (device_is_registered(&iface->dev)) {
1414 usb_create_sysfs_intf_files(iface);
1415 create_intf_ep_devs(iface);
1416 }
1417 return 0;
1418}
1419EXPORT_SYMBOL_GPL(usb_set_interface);
1420
1421/**
1422 * usb_reset_configuration - lightweight device reset
1423 * @dev: the device whose configuration is being reset
1424 *
1425 * This issues a standard SET_CONFIGURATION request to the device using
1426 * the current configuration. The effect is to reset most USB-related
1427 * state in the device, including interface altsettings (reset to zero),
1428 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1429 * endpoints). Other usbcore state is unchanged, including bindings of
1430 * usb device drivers to interfaces.
1431 *
1432 * Because this affects multiple interfaces, avoid using this with composite
1433 * (multi-interface) devices. Instead, the driver for each interface may
1434 * use usb_set_interface() on the interfaces it claims. Be careful though;
1435 * some devices don't support the SET_INTERFACE request, and others won't
1436 * reset all the interface state (notably endpoint state). Resetting the whole
1437 * configuration would affect other drivers' interfaces.
1438 *
1439 * The caller must own the device lock.
1440 *
1441 * Return: Zero on success, else a negative error code.
1442 */
1443int usb_reset_configuration(struct usb_device *dev)
1444{
1445 int i, retval;
1446 struct usb_host_config *config;
1447 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1448
1449 if (dev->state == USB_STATE_SUSPENDED)
1450 return -EHOSTUNREACH;
1451
1452 /* caller must have locked the device and must own
1453 * the usb bus readlock (so driver bindings are stable);
1454 * calls during probe() are fine
1455 */
1456
1457 for (i = 1; i < 16; ++i) {
1458 usb_disable_endpoint(dev, i, true);
1459 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1460 }
1461
1462 config = dev->actconfig;
1463 retval = 0;
1464 mutex_lock(hcd->bandwidth_mutex);
1465 /* Disable LPM, and re-enable it once the configuration is reset, so
1466 * that the xHCI driver can recalculate the U1/U2 timeouts.
1467 */
1468 if (usb_disable_lpm(dev)) {
1469 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1470 mutex_unlock(hcd->bandwidth_mutex);
1471 return -ENOMEM;
1472 }
1473 /* Make sure we have enough bandwidth for each alternate setting 0 */
1474 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1475 struct usb_interface *intf = config->interface[i];
1476 struct usb_host_interface *alt;
1477
1478 alt = usb_altnum_to_altsetting(intf, 0);
1479 if (!alt)
1480 alt = &intf->altsetting[0];
1481 if (alt != intf->cur_altsetting)
1482 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1483 intf->cur_altsetting, alt);
1484 if (retval < 0)
1485 break;
1486 }
1487 /* If not, reinstate the old alternate settings */
1488 if (retval < 0) {
1489reset_old_alts:
1490 for (i--; i >= 0; i--) {
1491 struct usb_interface *intf = config->interface[i];
1492 struct usb_host_interface *alt;
1493
1494 alt = usb_altnum_to_altsetting(intf, 0);
1495 if (!alt)
1496 alt = &intf->altsetting[0];
1497 if (alt != intf->cur_altsetting)
1498 usb_hcd_alloc_bandwidth(dev, NULL,
1499 alt, intf->cur_altsetting);
1500 }
1501 usb_enable_lpm(dev);
1502 mutex_unlock(hcd->bandwidth_mutex);
1503 return retval;
1504 }
1505 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1506 USB_REQ_SET_CONFIGURATION, 0,
1507 config->desc.bConfigurationValue, 0,
1508 NULL, 0, USB_CTRL_SET_TIMEOUT);
1509 if (retval < 0)
1510 goto reset_old_alts;
1511 mutex_unlock(hcd->bandwidth_mutex);
1512
1513 /* re-init hc/hcd interface/endpoint state */
1514 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1515 struct usb_interface *intf = config->interface[i];
1516 struct usb_host_interface *alt;
1517
1518 alt = usb_altnum_to_altsetting(intf, 0);
1519
1520 /* No altsetting 0? We'll assume the first altsetting.
1521 * We could use a GetInterface call, but if a device is
1522 * so non-compliant that it doesn't have altsetting 0
1523 * then I wouldn't trust its reply anyway.
1524 */
1525 if (!alt)
1526 alt = &intf->altsetting[0];
1527
1528 if (alt != intf->cur_altsetting) {
1529 remove_intf_ep_devs(intf);
1530 usb_remove_sysfs_intf_files(intf);
1531 }
1532 intf->cur_altsetting = alt;
1533 usb_enable_interface(dev, intf, true);
1534 if (device_is_registered(&intf->dev)) {
1535 usb_create_sysfs_intf_files(intf);
1536 create_intf_ep_devs(intf);
1537 }
1538 }
1539 /* Now that the interfaces are installed, re-enable LPM. */
1540 usb_unlocked_enable_lpm(dev);
1541 return 0;
1542}
1543EXPORT_SYMBOL_GPL(usb_reset_configuration);
1544
1545static void usb_release_interface(struct device *dev)
1546{
1547 struct usb_interface *intf = to_usb_interface(dev);
1548 struct usb_interface_cache *intfc =
1549 altsetting_to_usb_interface_cache(intf->altsetting);
1550
1551 kref_put(&intfc->ref, usb_release_interface_cache);
1552 usb_put_dev(interface_to_usbdev(intf));
1553 kfree(intf);
1554}
1555
1556/*
1557 * usb_deauthorize_interface - deauthorize an USB interface
1558 *
1559 * @intf: USB interface structure
1560 */
1561void usb_deauthorize_interface(struct usb_interface *intf)
1562{
1563 struct device *dev = &intf->dev;
1564
1565 device_lock(dev->parent);
1566
1567 if (intf->authorized) {
1568 device_lock(dev);
1569 intf->authorized = 0;
1570 device_unlock(dev);
1571
1572 usb_forced_unbind_intf(intf);
1573 }
1574
1575 device_unlock(dev->parent);
1576}
1577
1578/*
1579 * usb_authorize_interface - authorize an USB interface
1580 *
1581 * @intf: USB interface structure
1582 */
1583void usb_authorize_interface(struct usb_interface *intf)
1584{
1585 struct device *dev = &intf->dev;
1586
1587 if (!intf->authorized) {
1588 device_lock(dev);
1589 intf->authorized = 1; /* authorize interface */
1590 device_unlock(dev);
1591 }
1592}
1593
1594static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1595{
1596 struct usb_device *usb_dev;
1597 struct usb_interface *intf;
1598 struct usb_host_interface *alt;
1599
1600 intf = to_usb_interface(dev);
1601 usb_dev = interface_to_usbdev(intf);
1602 alt = intf->cur_altsetting;
1603
1604 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1605 alt->desc.bInterfaceClass,
1606 alt->desc.bInterfaceSubClass,
1607 alt->desc.bInterfaceProtocol))
1608 return -ENOMEM;
1609
1610 if (add_uevent_var(env,
1611 "MODALIAS=usb:"
1612 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1613 le16_to_cpu(usb_dev->descriptor.idVendor),
1614 le16_to_cpu(usb_dev->descriptor.idProduct),
1615 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1616 usb_dev->descriptor.bDeviceClass,
1617 usb_dev->descriptor.bDeviceSubClass,
1618 usb_dev->descriptor.bDeviceProtocol,
1619 alt->desc.bInterfaceClass,
1620 alt->desc.bInterfaceSubClass,
1621 alt->desc.bInterfaceProtocol,
1622 alt->desc.bInterfaceNumber))
1623 return -ENOMEM;
1624
1625 return 0;
1626}
1627
1628struct device_type usb_if_device_type = {
1629 .name = "usb_interface",
1630 .release = usb_release_interface,
1631 .uevent = usb_if_uevent,
1632};
1633
1634static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1635 struct usb_host_config *config,
1636 u8 inum)
1637{
1638 struct usb_interface_assoc_descriptor *retval = NULL;
1639 struct usb_interface_assoc_descriptor *intf_assoc;
1640 int first_intf;
1641 int last_intf;
1642 int i;
1643
1644 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1645 intf_assoc = config->intf_assoc[i];
1646 if (intf_assoc->bInterfaceCount == 0)
1647 continue;
1648
1649 first_intf = intf_assoc->bFirstInterface;
1650 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1651 if (inum >= first_intf && inum <= last_intf) {
1652 if (!retval)
1653 retval = intf_assoc;
1654 else
1655 dev_err(&dev->dev, "Interface #%d referenced"
1656 " by multiple IADs\n", inum);
1657 }
1658 }
1659
1660 return retval;
1661}
1662
1663
1664/*
1665 * Internal function to queue a device reset
1666 * See usb_queue_reset_device() for more details
1667 */
1668static void __usb_queue_reset_device(struct work_struct *ws)
1669{
1670 int rc;
1671 struct usb_interface *iface =
1672 container_of(ws, struct usb_interface, reset_ws);
1673 struct usb_device *udev = interface_to_usbdev(iface);
1674
1675 rc = usb_lock_device_for_reset(udev, iface);
1676 if (rc >= 0) {
1677 usb_reset_device(udev);
1678 usb_unlock_device(udev);
1679 }
1680 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1681}
1682
1683
1684/*
1685 * usb_set_configuration - Makes a particular device setting be current
1686 * @dev: the device whose configuration is being updated
1687 * @configuration: the configuration being chosen.
1688 * Context: !in_interrupt(), caller owns the device lock
1689 *
1690 * This is used to enable non-default device modes. Not all devices
1691 * use this kind of configurability; many devices only have one
1692 * configuration.
1693 *
1694 * @configuration is the value of the configuration to be installed.
1695 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1696 * must be non-zero; a value of zero indicates that the device in
1697 * unconfigured. However some devices erroneously use 0 as one of their
1698 * configuration values. To help manage such devices, this routine will
1699 * accept @configuration = -1 as indicating the device should be put in
1700 * an unconfigured state.
1701 *
1702 * USB device configurations may affect Linux interoperability,
1703 * power consumption and the functionality available. For example,
1704 * the default configuration is limited to using 100mA of bus power,
1705 * so that when certain device functionality requires more power,
1706 * and the device is bus powered, that functionality should be in some
1707 * non-default device configuration. Other device modes may also be
1708 * reflected as configuration options, such as whether two ISDN
1709 * channels are available independently; and choosing between open
1710 * standard device protocols (like CDC) or proprietary ones.
1711 *
1712 * Note that a non-authorized device (dev->authorized == 0) will only
1713 * be put in unconfigured mode.
1714 *
1715 * Note that USB has an additional level of device configurability,
1716 * associated with interfaces. That configurability is accessed using
1717 * usb_set_interface().
1718 *
1719 * This call is synchronous. The calling context must be able to sleep,
1720 * must own the device lock, and must not hold the driver model's USB
1721 * bus mutex; usb interface driver probe() methods cannot use this routine.
1722 *
1723 * Returns zero on success, or else the status code returned by the
1724 * underlying call that failed. On successful completion, each interface
1725 * in the original device configuration has been destroyed, and each one
1726 * in the new configuration has been probed by all relevant usb device
1727 * drivers currently known to the kernel.
1728 */
1729int usb_set_configuration(struct usb_device *dev, int configuration)
1730{
1731 int i, ret;
1732 struct usb_host_config *cp = NULL;
1733 struct usb_interface **new_interfaces = NULL;
1734 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1735 int n, nintf;
1736
1737 if (dev->authorized == 0 || configuration == -1)
1738 configuration = 0;
1739 else {
1740 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1741 if (dev->config[i].desc.bConfigurationValue ==
1742 configuration) {
1743 cp = &dev->config[i];
1744 break;
1745 }
1746 }
1747 }
1748 if ((!cp && configuration != 0))
1749 return -EINVAL;
1750
1751 /* The USB spec says configuration 0 means unconfigured.
1752 * But if a device includes a configuration numbered 0,
1753 * we will accept it as a correctly configured state.
1754 * Use -1 if you really want to unconfigure the device.
1755 */
1756 if (cp && configuration == 0)
1757 dev_warn(&dev->dev, "config 0 descriptor??\n");
1758
1759 /* Allocate memory for new interfaces before doing anything else,
1760 * so that if we run out then nothing will have changed. */
1761 n = nintf = 0;
1762 if (cp) {
1763 nintf = cp->desc.bNumInterfaces;
1764 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1765 GFP_NOIO);
1766 if (!new_interfaces) {
1767 dev_err(&dev->dev, "Out of memory\n");
1768 return -ENOMEM;
1769 }
1770
1771 for (; n < nintf; ++n) {
1772 new_interfaces[n] = kzalloc(
1773 sizeof(struct usb_interface),
1774 GFP_NOIO);
1775 if (!new_interfaces[n]) {
1776 dev_err(&dev->dev, "Out of memory\n");
1777 ret = -ENOMEM;
1778free_interfaces:
1779 while (--n >= 0)
1780 kfree(new_interfaces[n]);
1781 kfree(new_interfaces);
1782 return ret;
1783 }
1784 }
1785
1786 i = dev->bus_mA - usb_get_max_power(dev, cp);
1787 if (i < 0)
1788 dev_warn(&dev->dev, "new config #%d exceeds power "
1789 "limit by %dmA\n",
1790 configuration, -i);
1791 }
1792
1793 /* Wake up the device so we can send it the Set-Config request */
1794 ret = usb_autoresume_device(dev);
1795 if (ret)
1796 goto free_interfaces;
1797
1798 /* if it's already configured, clear out old state first.
1799 * getting rid of old interfaces means unbinding their drivers.
1800 */
1801 if (dev->state != USB_STATE_ADDRESS)
1802 usb_disable_device(dev, 1); /* Skip ep0 */
1803
1804 /* Get rid of pending async Set-Config requests for this device */
1805 cancel_async_set_config(dev);
1806
1807 /* Make sure we have bandwidth (and available HCD resources) for this
1808 * configuration. Remove endpoints from the schedule if we're dropping
1809 * this configuration to set configuration 0. After this point, the
1810 * host controller will not allow submissions to dropped endpoints. If
1811 * this call fails, the device state is unchanged.
1812 */
1813 mutex_lock(hcd->bandwidth_mutex);
1814 /* Disable LPM, and re-enable it once the new configuration is
1815 * installed, so that the xHCI driver can recalculate the U1/U2
1816 * timeouts.
1817 */
1818 if (dev->actconfig && usb_disable_lpm(dev)) {
1819 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1820 mutex_unlock(hcd->bandwidth_mutex);
1821 ret = -ENOMEM;
1822 goto free_interfaces;
1823 }
1824 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1825 if (ret < 0) {
1826 if (dev->actconfig)
1827 usb_enable_lpm(dev);
1828 mutex_unlock(hcd->bandwidth_mutex);
1829 usb_autosuspend_device(dev);
1830 goto free_interfaces;
1831 }
1832
1833 /*
1834 * Initialize the new interface structures and the
1835 * hc/hcd/usbcore interface/endpoint state.
1836 */
1837 for (i = 0; i < nintf; ++i) {
1838 struct usb_interface_cache *intfc;
1839 struct usb_interface *intf;
1840 struct usb_host_interface *alt;
1841
1842 cp->interface[i] = intf = new_interfaces[i];
1843 intfc = cp->intf_cache[i];
1844 intf->altsetting = intfc->altsetting;
1845 intf->num_altsetting = intfc->num_altsetting;
1846 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1847 kref_get(&intfc->ref);
1848
1849 alt = usb_altnum_to_altsetting(intf, 0);
1850
1851 /* No altsetting 0? We'll assume the first altsetting.
1852 * We could use a GetInterface call, but if a device is
1853 * so non-compliant that it doesn't have altsetting 0
1854 * then I wouldn't trust its reply anyway.
1855 */
1856 if (!alt)
1857 alt = &intf->altsetting[0];
1858
1859 intf->intf_assoc =
1860 find_iad(dev, cp, alt->desc.bInterfaceNumber);
1861 intf->cur_altsetting = alt;
1862 usb_enable_interface(dev, intf, true);
1863 intf->dev.parent = &dev->dev;
1864 intf->dev.driver = NULL;
1865 intf->dev.bus = &usb_bus_type;
1866 intf->dev.type = &usb_if_device_type;
1867 intf->dev.groups = usb_interface_groups;
1868 intf->dev.dma_mask = dev->dev.dma_mask;
1869 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1870 intf->minor = -1;
1871 device_initialize(&intf->dev);
1872 pm_runtime_no_callbacks(&intf->dev);
1873 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1874 dev->bus->busnum, dev->devpath,
1875 configuration, alt->desc.bInterfaceNumber);
1876 usb_get_dev(dev);
1877 }
1878 kfree(new_interfaces);
1879
1880 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1881 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1882 NULL, 0, USB_CTRL_SET_TIMEOUT);
1883 if (ret < 0 && cp) {
1884 /*
1885 * All the old state is gone, so what else can we do?
1886 * The device is probably useless now anyway.
1887 */
1888 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1889 for (i = 0; i < nintf; ++i) {
1890 usb_disable_interface(dev, cp->interface[i], true);
1891 put_device(&cp->interface[i]->dev);
1892 cp->interface[i] = NULL;
1893 }
1894 cp = NULL;
1895 }
1896
1897 dev->actconfig = cp;
1898 mutex_unlock(hcd->bandwidth_mutex);
1899
1900 if (!cp) {
1901 usb_set_device_state(dev, USB_STATE_ADDRESS);
1902
1903 /* Leave LPM disabled while the device is unconfigured. */
1904 usb_autosuspend_device(dev);
1905 return ret;
1906 }
1907 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1908
1909 if (cp->string == NULL &&
1910 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1911 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1912
1913 /* Now that the interfaces are installed, re-enable LPM. */
1914 usb_unlocked_enable_lpm(dev);
1915 /* Enable LTM if it was turned off by usb_disable_device. */
1916 usb_enable_ltm(dev);
1917
1918 /* Now that all the interfaces are set up, register them
1919 * to trigger binding of drivers to interfaces. probe()
1920 * routines may install different altsettings and may
1921 * claim() any interfaces not yet bound. Many class drivers
1922 * need that: CDC, audio, video, etc.
1923 */
1924 for (i = 0; i < nintf; ++i) {
1925 struct usb_interface *intf = cp->interface[i];
1926
1927 dev_dbg(&dev->dev,
1928 "adding %s (config #%d, interface %d)\n",
1929 dev_name(&intf->dev), configuration,
1930 intf->cur_altsetting->desc.bInterfaceNumber);
1931 device_enable_async_suspend(&intf->dev);
1932 ret = device_add(&intf->dev);
1933 if (ret != 0) {
1934 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1935 dev_name(&intf->dev), ret);
1936 continue;
1937 }
1938 create_intf_ep_devs(intf);
1939 }
1940
1941 usb_autosuspend_device(dev);
1942 return 0;
1943}
1944EXPORT_SYMBOL_GPL(usb_set_configuration);
1945
1946static LIST_HEAD(set_config_list);
1947static DEFINE_SPINLOCK(set_config_lock);
1948
1949struct set_config_request {
1950 struct usb_device *udev;
1951 int config;
1952 struct work_struct work;
1953 struct list_head node;
1954};
1955
1956/* Worker routine for usb_driver_set_configuration() */
1957static void driver_set_config_work(struct work_struct *work)
1958{
1959 struct set_config_request *req =
1960 container_of(work, struct set_config_request, work);
1961 struct usb_device *udev = req->udev;
1962
1963 usb_lock_device(udev);
1964 spin_lock(&set_config_lock);
1965 list_del(&req->node);
1966 spin_unlock(&set_config_lock);
1967
1968 if (req->config >= -1) /* Is req still valid? */
1969 usb_set_configuration(udev, req->config);
1970 usb_unlock_device(udev);
1971 usb_put_dev(udev);
1972 kfree(req);
1973}
1974
1975/* Cancel pending Set-Config requests for a device whose configuration
1976 * was just changed
1977 */
1978static void cancel_async_set_config(struct usb_device *udev)
1979{
1980 struct set_config_request *req;
1981
1982 spin_lock(&set_config_lock);
1983 list_for_each_entry(req, &set_config_list, node) {
1984 if (req->udev == udev)
1985 req->config = -999; /* Mark as cancelled */
1986 }
1987 spin_unlock(&set_config_lock);
1988}
1989
1990/**
1991 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1992 * @udev: the device whose configuration is being updated
1993 * @config: the configuration being chosen.
1994 * Context: In process context, must be able to sleep
1995 *
1996 * Device interface drivers are not allowed to change device configurations.
1997 * This is because changing configurations will destroy the interface the
1998 * driver is bound to and create new ones; it would be like a floppy-disk
1999 * driver telling the computer to replace the floppy-disk drive with a
2000 * tape drive!
2001 *
2002 * Still, in certain specialized circumstances the need may arise. This
2003 * routine gets around the normal restrictions by using a work thread to
2004 * submit the change-config request.
2005 *
2006 * Return: 0 if the request was successfully queued, error code otherwise.
2007 * The caller has no way to know whether the queued request will eventually
2008 * succeed.
2009 */
2010int usb_driver_set_configuration(struct usb_device *udev, int config)
2011{
2012 struct set_config_request *req;
2013
2014 req = kmalloc(sizeof(*req), GFP_KERNEL);
2015 if (!req)
2016 return -ENOMEM;
2017 req->udev = udev;
2018 req->config = config;
2019 INIT_WORK(&req->work, driver_set_config_work);
2020
2021 spin_lock(&set_config_lock);
2022 list_add(&req->node, &set_config_list);
2023 spin_unlock(&set_config_lock);
2024
2025 usb_get_dev(udev);
2026 schedule_work(&req->work);
2027 return 0;
2028}
2029EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1/*
2 * message.c - synchronous message handling
3 *
4 * Released under the GPLv2 only.
5 * SPDX-License-Identifier: GPL-2.0
6 */
7
8#include <linux/pci.h> /* for scatterlist macros */
9#include <linux/usb.h>
10#include <linux/module.h>
11#include <linux/slab.h>
12#include <linux/mm.h>
13#include <linux/timer.h>
14#include <linux/ctype.h>
15#include <linux/nls.h>
16#include <linux/device.h>
17#include <linux/scatterlist.h>
18#include <linux/usb/cdc.h>
19#include <linux/usb/quirks.h>
20#include <linux/usb/hcd.h> /* for usbcore internals */
21#include <asm/byteorder.h>
22
23#include "usb.h"
24
25static void cancel_async_set_config(struct usb_device *udev);
26
27struct api_context {
28 struct completion done;
29 int status;
30};
31
32static void usb_api_blocking_completion(struct urb *urb)
33{
34 struct api_context *ctx = urb->context;
35
36 ctx->status = urb->status;
37 complete(&ctx->done);
38}
39
40
41/*
42 * Starts urb and waits for completion or timeout. Note that this call
43 * is NOT interruptible. Many device driver i/o requests should be
44 * interruptible and therefore these drivers should implement their
45 * own interruptible routines.
46 */
47static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
48{
49 struct api_context ctx;
50 unsigned long expire;
51 int retval;
52
53 init_completion(&ctx.done);
54 urb->context = &ctx;
55 urb->actual_length = 0;
56 retval = usb_submit_urb(urb, GFP_NOIO);
57 if (unlikely(retval))
58 goto out;
59
60 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
61 if (!wait_for_completion_timeout(&ctx.done, expire)) {
62 usb_kill_urb(urb);
63 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
64
65 dev_dbg(&urb->dev->dev,
66 "%s timed out on ep%d%s len=%u/%u\n",
67 current->comm,
68 usb_endpoint_num(&urb->ep->desc),
69 usb_urb_dir_in(urb) ? "in" : "out",
70 urb->actual_length,
71 urb->transfer_buffer_length);
72 } else
73 retval = ctx.status;
74out:
75 if (actual_length)
76 *actual_length = urb->actual_length;
77
78 usb_free_urb(urb);
79 return retval;
80}
81
82/*-------------------------------------------------------------------*/
83/* returns status (negative) or length (positive) */
84static int usb_internal_control_msg(struct usb_device *usb_dev,
85 unsigned int pipe,
86 struct usb_ctrlrequest *cmd,
87 void *data, int len, int timeout)
88{
89 struct urb *urb;
90 int retv;
91 int length;
92
93 urb = usb_alloc_urb(0, GFP_NOIO);
94 if (!urb)
95 return -ENOMEM;
96
97 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
98 len, usb_api_blocking_completion, NULL);
99
100 retv = usb_start_wait_urb(urb, timeout, &length);
101 if (retv < 0)
102 return retv;
103 else
104 return length;
105}
106
107/**
108 * usb_control_msg - Builds a control urb, sends it off and waits for completion
109 * @dev: pointer to the usb device to send the message to
110 * @pipe: endpoint "pipe" to send the message to
111 * @request: USB message request value
112 * @requesttype: USB message request type value
113 * @value: USB message value
114 * @index: USB message index value
115 * @data: pointer to the data to send
116 * @size: length in bytes of the data to send
117 * @timeout: time in msecs to wait for the message to complete before timing
118 * out (if 0 the wait is forever)
119 *
120 * Context: !in_interrupt ()
121 *
122 * This function sends a simple control message to a specified endpoint and
123 * waits for the message to complete, or timeout.
124 *
125 * Don't use this function from within an interrupt context, like a bottom half
126 * handler. If you need an asynchronous message, or need to send a message
127 * from within interrupt context, use usb_submit_urb().
128 * If a thread in your driver uses this call, make sure your disconnect()
129 * method can wait for it to complete. Since you don't have a handle on the
130 * URB used, you can't cancel the request.
131 *
132 * Return: If successful, the number of bytes transferred. Otherwise, a negative
133 * error number.
134 */
135int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
136 __u8 requesttype, __u16 value, __u16 index, void *data,
137 __u16 size, int timeout)
138{
139 struct usb_ctrlrequest *dr;
140 int ret;
141
142 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
143 if (!dr)
144 return -ENOMEM;
145
146 dr->bRequestType = requesttype;
147 dr->bRequest = request;
148 dr->wValue = cpu_to_le16(value);
149 dr->wIndex = cpu_to_le16(index);
150 dr->wLength = cpu_to_le16(size);
151
152 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153
154 kfree(dr);
155
156 return ret;
157}
158EXPORT_SYMBOL_GPL(usb_control_msg);
159
160/**
161 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
162 * @usb_dev: pointer to the usb device to send the message to
163 * @pipe: endpoint "pipe" to send the message to
164 * @data: pointer to the data to send
165 * @len: length in bytes of the data to send
166 * @actual_length: pointer to a location to put the actual length transferred
167 * in bytes
168 * @timeout: time in msecs to wait for the message to complete before
169 * timing out (if 0 the wait is forever)
170 *
171 * Context: !in_interrupt ()
172 *
173 * This function sends a simple interrupt message to a specified endpoint and
174 * waits for the message to complete, or timeout.
175 *
176 * Don't use this function from within an interrupt context, like a bottom half
177 * handler. If you need an asynchronous message, or need to send a message
178 * from within interrupt context, use usb_submit_urb() If a thread in your
179 * driver uses this call, make sure your disconnect() method can wait for it to
180 * complete. Since you don't have a handle on the URB used, you can't cancel
181 * the request.
182 *
183 * Return:
184 * If successful, 0. Otherwise a negative error number. The number of actual
185 * bytes transferred will be stored in the @actual_length parameter.
186 */
187int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
188 void *data, int len, int *actual_length, int timeout)
189{
190 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
191}
192EXPORT_SYMBOL_GPL(usb_interrupt_msg);
193
194/**
195 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
196 * @usb_dev: pointer to the usb device to send the message to
197 * @pipe: endpoint "pipe" to send the message to
198 * @data: pointer to the data to send
199 * @len: length in bytes of the data to send
200 * @actual_length: pointer to a location to put the actual length transferred
201 * in bytes
202 * @timeout: time in msecs to wait for the message to complete before
203 * timing out (if 0 the wait is forever)
204 *
205 * Context: !in_interrupt ()
206 *
207 * This function sends a simple bulk message to a specified endpoint
208 * and waits for the message to complete, or timeout.
209 *
210 * Don't use this function from within an interrupt context, like a bottom half
211 * handler. If you need an asynchronous message, or need to send a message
212 * from within interrupt context, use usb_submit_urb() If a thread in your
213 * driver uses this call, make sure your disconnect() method can wait for it to
214 * complete. Since you don't have a handle on the URB used, you can't cancel
215 * the request.
216 *
217 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
218 * users are forced to abuse this routine by using it to submit URBs for
219 * interrupt endpoints. We will take the liberty of creating an interrupt URB
220 * (with the default interval) if the target is an interrupt endpoint.
221 *
222 * Return:
223 * If successful, 0. Otherwise a negative error number. The number of actual
224 * bytes transferred will be stored in the @actual_length parameter.
225 *
226 */
227int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
228 void *data, int len, int *actual_length, int timeout)
229{
230 struct urb *urb;
231 struct usb_host_endpoint *ep;
232
233 ep = usb_pipe_endpoint(usb_dev, pipe);
234 if (!ep || len < 0)
235 return -EINVAL;
236
237 urb = usb_alloc_urb(0, GFP_KERNEL);
238 if (!urb)
239 return -ENOMEM;
240
241 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
242 USB_ENDPOINT_XFER_INT) {
243 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
244 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
245 usb_api_blocking_completion, NULL,
246 ep->desc.bInterval);
247 } else
248 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
249 usb_api_blocking_completion, NULL);
250
251 return usb_start_wait_urb(urb, timeout, actual_length);
252}
253EXPORT_SYMBOL_GPL(usb_bulk_msg);
254
255/*-------------------------------------------------------------------*/
256
257static void sg_clean(struct usb_sg_request *io)
258{
259 if (io->urbs) {
260 while (io->entries--)
261 usb_free_urb(io->urbs[io->entries]);
262 kfree(io->urbs);
263 io->urbs = NULL;
264 }
265 io->dev = NULL;
266}
267
268static void sg_complete(struct urb *urb)
269{
270 struct usb_sg_request *io = urb->context;
271 int status = urb->status;
272
273 spin_lock(&io->lock);
274
275 /* In 2.5 we require hcds' endpoint queues not to progress after fault
276 * reports, until the completion callback (this!) returns. That lets
277 * device driver code (like this routine) unlink queued urbs first,
278 * if it needs to, since the HC won't work on them at all. So it's
279 * not possible for page N+1 to overwrite page N, and so on.
280 *
281 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
282 * complete before the HCD can get requests away from hardware,
283 * though never during cleanup after a hard fault.
284 */
285 if (io->status
286 && (io->status != -ECONNRESET
287 || status != -ECONNRESET)
288 && urb->actual_length) {
289 dev_err(io->dev->bus->controller,
290 "dev %s ep%d%s scatterlist error %d/%d\n",
291 io->dev->devpath,
292 usb_endpoint_num(&urb->ep->desc),
293 usb_urb_dir_in(urb) ? "in" : "out",
294 status, io->status);
295 /* BUG (); */
296 }
297
298 if (io->status == 0 && status && status != -ECONNRESET) {
299 int i, found, retval;
300
301 io->status = status;
302
303 /* the previous urbs, and this one, completed already.
304 * unlink pending urbs so they won't rx/tx bad data.
305 * careful: unlink can sometimes be synchronous...
306 */
307 spin_unlock(&io->lock);
308 for (i = 0, found = 0; i < io->entries; i++) {
309 if (!io->urbs[i])
310 continue;
311 if (found) {
312 usb_block_urb(io->urbs[i]);
313 retval = usb_unlink_urb(io->urbs[i]);
314 if (retval != -EINPROGRESS &&
315 retval != -ENODEV &&
316 retval != -EBUSY &&
317 retval != -EIDRM)
318 dev_err(&io->dev->dev,
319 "%s, unlink --> %d\n",
320 __func__, retval);
321 } else if (urb == io->urbs[i])
322 found = 1;
323 }
324 spin_lock(&io->lock);
325 }
326
327 /* on the last completion, signal usb_sg_wait() */
328 io->bytes += urb->actual_length;
329 io->count--;
330 if (!io->count)
331 complete(&io->complete);
332
333 spin_unlock(&io->lock);
334}
335
336
337/**
338 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
339 * @io: request block being initialized. until usb_sg_wait() returns,
340 * treat this as a pointer to an opaque block of memory,
341 * @dev: the usb device that will send or receive the data
342 * @pipe: endpoint "pipe" used to transfer the data
343 * @period: polling rate for interrupt endpoints, in frames or
344 * (for high speed endpoints) microframes; ignored for bulk
345 * @sg: scatterlist entries
346 * @nents: how many entries in the scatterlist
347 * @length: how many bytes to send from the scatterlist, or zero to
348 * send every byte identified in the list.
349 * @mem_flags: SLAB_* flags affecting memory allocations in this call
350 *
351 * This initializes a scatter/gather request, allocating resources such as
352 * I/O mappings and urb memory (except maybe memory used by USB controller
353 * drivers).
354 *
355 * The request must be issued using usb_sg_wait(), which waits for the I/O to
356 * complete (or to be canceled) and then cleans up all resources allocated by
357 * usb_sg_init().
358 *
359 * The request may be canceled with usb_sg_cancel(), either before or after
360 * usb_sg_wait() is called.
361 *
362 * Return: Zero for success, else a negative errno value.
363 */
364int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
365 unsigned pipe, unsigned period, struct scatterlist *sg,
366 int nents, size_t length, gfp_t mem_flags)
367{
368 int i;
369 int urb_flags;
370 int use_sg;
371
372 if (!io || !dev || !sg
373 || usb_pipecontrol(pipe)
374 || usb_pipeisoc(pipe)
375 || nents <= 0)
376 return -EINVAL;
377
378 spin_lock_init(&io->lock);
379 io->dev = dev;
380 io->pipe = pipe;
381
382 if (dev->bus->sg_tablesize > 0) {
383 use_sg = true;
384 io->entries = 1;
385 } else {
386 use_sg = false;
387 io->entries = nents;
388 }
389
390 /* initialize all the urbs we'll use */
391 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
392 if (!io->urbs)
393 goto nomem;
394
395 urb_flags = URB_NO_INTERRUPT;
396 if (usb_pipein(pipe))
397 urb_flags |= URB_SHORT_NOT_OK;
398
399 for_each_sg(sg, sg, io->entries, i) {
400 struct urb *urb;
401 unsigned len;
402
403 urb = usb_alloc_urb(0, mem_flags);
404 if (!urb) {
405 io->entries = i;
406 goto nomem;
407 }
408 io->urbs[i] = urb;
409
410 urb->dev = NULL;
411 urb->pipe = pipe;
412 urb->interval = period;
413 urb->transfer_flags = urb_flags;
414 urb->complete = sg_complete;
415 urb->context = io;
416 urb->sg = sg;
417
418 if (use_sg) {
419 /* There is no single transfer buffer */
420 urb->transfer_buffer = NULL;
421 urb->num_sgs = nents;
422
423 /* A length of zero means transfer the whole sg list */
424 len = length;
425 if (len == 0) {
426 struct scatterlist *sg2;
427 int j;
428
429 for_each_sg(sg, sg2, nents, j)
430 len += sg2->length;
431 }
432 } else {
433 /*
434 * Some systems can't use DMA; they use PIO instead.
435 * For their sakes, transfer_buffer is set whenever
436 * possible.
437 */
438 if (!PageHighMem(sg_page(sg)))
439 urb->transfer_buffer = sg_virt(sg);
440 else
441 urb->transfer_buffer = NULL;
442
443 len = sg->length;
444 if (length) {
445 len = min_t(size_t, len, length);
446 length -= len;
447 if (length == 0)
448 io->entries = i + 1;
449 }
450 }
451 urb->transfer_buffer_length = len;
452 }
453 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
454
455 /* transaction state */
456 io->count = io->entries;
457 io->status = 0;
458 io->bytes = 0;
459 init_completion(&io->complete);
460 return 0;
461
462nomem:
463 sg_clean(io);
464 return -ENOMEM;
465}
466EXPORT_SYMBOL_GPL(usb_sg_init);
467
468/**
469 * usb_sg_wait - synchronously execute scatter/gather request
470 * @io: request block handle, as initialized with usb_sg_init().
471 * some fields become accessible when this call returns.
472 * Context: !in_interrupt ()
473 *
474 * This function blocks until the specified I/O operation completes. It
475 * leverages the grouping of the related I/O requests to get good transfer
476 * rates, by queueing the requests. At higher speeds, such queuing can
477 * significantly improve USB throughput.
478 *
479 * There are three kinds of completion for this function.
480 * (1) success, where io->status is zero. The number of io->bytes
481 * transferred is as requested.
482 * (2) error, where io->status is a negative errno value. The number
483 * of io->bytes transferred before the error is usually less
484 * than requested, and can be nonzero.
485 * (3) cancellation, a type of error with status -ECONNRESET that
486 * is initiated by usb_sg_cancel().
487 *
488 * When this function returns, all memory allocated through usb_sg_init() or
489 * this call will have been freed. The request block parameter may still be
490 * passed to usb_sg_cancel(), or it may be freed. It could also be
491 * reinitialized and then reused.
492 *
493 * Data Transfer Rates:
494 *
495 * Bulk transfers are valid for full or high speed endpoints.
496 * The best full speed data rate is 19 packets of 64 bytes each
497 * per frame, or 1216 bytes per millisecond.
498 * The best high speed data rate is 13 packets of 512 bytes each
499 * per microframe, or 52 KBytes per millisecond.
500 *
501 * The reason to use interrupt transfers through this API would most likely
502 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
503 * could be transferred. That capability is less useful for low or full
504 * speed interrupt endpoints, which allow at most one packet per millisecond,
505 * of at most 8 or 64 bytes (respectively).
506 *
507 * It is not necessary to call this function to reserve bandwidth for devices
508 * under an xHCI host controller, as the bandwidth is reserved when the
509 * configuration or interface alt setting is selected.
510 */
511void usb_sg_wait(struct usb_sg_request *io)
512{
513 int i;
514 int entries = io->entries;
515
516 /* queue the urbs. */
517 spin_lock_irq(&io->lock);
518 i = 0;
519 while (i < entries && !io->status) {
520 int retval;
521
522 io->urbs[i]->dev = io->dev;
523 spin_unlock_irq(&io->lock);
524
525 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
526
527 switch (retval) {
528 /* maybe we retrying will recover */
529 case -ENXIO: /* hc didn't queue this one */
530 case -EAGAIN:
531 case -ENOMEM:
532 retval = 0;
533 yield();
534 break;
535
536 /* no error? continue immediately.
537 *
538 * NOTE: to work better with UHCI (4K I/O buffer may
539 * need 3K of TDs) it may be good to limit how many
540 * URBs are queued at once; N milliseconds?
541 */
542 case 0:
543 ++i;
544 cpu_relax();
545 break;
546
547 /* fail any uncompleted urbs */
548 default:
549 io->urbs[i]->status = retval;
550 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
551 __func__, retval);
552 usb_sg_cancel(io);
553 }
554 spin_lock_irq(&io->lock);
555 if (retval && (io->status == 0 || io->status == -ECONNRESET))
556 io->status = retval;
557 }
558 io->count -= entries - i;
559 if (io->count == 0)
560 complete(&io->complete);
561 spin_unlock_irq(&io->lock);
562
563 /* OK, yes, this could be packaged as non-blocking.
564 * So could the submit loop above ... but it's easier to
565 * solve neither problem than to solve both!
566 */
567 wait_for_completion(&io->complete);
568
569 sg_clean(io);
570}
571EXPORT_SYMBOL_GPL(usb_sg_wait);
572
573/**
574 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
575 * @io: request block, initialized with usb_sg_init()
576 *
577 * This stops a request after it has been started by usb_sg_wait().
578 * It can also prevents one initialized by usb_sg_init() from starting,
579 * so that call just frees resources allocated to the request.
580 */
581void usb_sg_cancel(struct usb_sg_request *io)
582{
583 unsigned long flags;
584 int i, retval;
585
586 spin_lock_irqsave(&io->lock, flags);
587 if (io->status) {
588 spin_unlock_irqrestore(&io->lock, flags);
589 return;
590 }
591 /* shut everything down */
592 io->status = -ECONNRESET;
593 spin_unlock_irqrestore(&io->lock, flags);
594
595 for (i = io->entries - 1; i >= 0; --i) {
596 usb_block_urb(io->urbs[i]);
597
598 retval = usb_unlink_urb(io->urbs[i]);
599 if (retval != -EINPROGRESS
600 && retval != -ENODEV
601 && retval != -EBUSY
602 && retval != -EIDRM)
603 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
604 __func__, retval);
605 }
606}
607EXPORT_SYMBOL_GPL(usb_sg_cancel);
608
609/*-------------------------------------------------------------------*/
610
611/**
612 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
613 * @dev: the device whose descriptor is being retrieved
614 * @type: the descriptor type (USB_DT_*)
615 * @index: the number of the descriptor
616 * @buf: where to put the descriptor
617 * @size: how big is "buf"?
618 * Context: !in_interrupt ()
619 *
620 * Gets a USB descriptor. Convenience functions exist to simplify
621 * getting some types of descriptors. Use
622 * usb_get_string() or usb_string() for USB_DT_STRING.
623 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
624 * are part of the device structure.
625 * In addition to a number of USB-standard descriptors, some
626 * devices also use class-specific or vendor-specific descriptors.
627 *
628 * This call is synchronous, and may not be used in an interrupt context.
629 *
630 * Return: The number of bytes received on success, or else the status code
631 * returned by the underlying usb_control_msg() call.
632 */
633int usb_get_descriptor(struct usb_device *dev, unsigned char type,
634 unsigned char index, void *buf, int size)
635{
636 int i;
637 int result;
638
639 memset(buf, 0, size); /* Make sure we parse really received data */
640
641 for (i = 0; i < 3; ++i) {
642 /* retry on length 0 or error; some devices are flakey */
643 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
644 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
645 (type << 8) + index, 0, buf, size,
646 USB_CTRL_GET_TIMEOUT);
647 if (result <= 0 && result != -ETIMEDOUT)
648 continue;
649 if (result > 1 && ((u8 *)buf)[1] != type) {
650 result = -ENODATA;
651 continue;
652 }
653 break;
654 }
655 return result;
656}
657EXPORT_SYMBOL_GPL(usb_get_descriptor);
658
659/**
660 * usb_get_string - gets a string descriptor
661 * @dev: the device whose string descriptor is being retrieved
662 * @langid: code for language chosen (from string descriptor zero)
663 * @index: the number of the descriptor
664 * @buf: where to put the string
665 * @size: how big is "buf"?
666 * Context: !in_interrupt ()
667 *
668 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
669 * in little-endian byte order).
670 * The usb_string() function will often be a convenient way to turn
671 * these strings into kernel-printable form.
672 *
673 * Strings may be referenced in device, configuration, interface, or other
674 * descriptors, and could also be used in vendor-specific ways.
675 *
676 * This call is synchronous, and may not be used in an interrupt context.
677 *
678 * Return: The number of bytes received on success, or else the status code
679 * returned by the underlying usb_control_msg() call.
680 */
681static int usb_get_string(struct usb_device *dev, unsigned short langid,
682 unsigned char index, void *buf, int size)
683{
684 int i;
685 int result;
686
687 for (i = 0; i < 3; ++i) {
688 /* retry on length 0 or stall; some devices are flakey */
689 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
690 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
691 (USB_DT_STRING << 8) + index, langid, buf, size,
692 USB_CTRL_GET_TIMEOUT);
693 if (result == 0 || result == -EPIPE)
694 continue;
695 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
696 result = -ENODATA;
697 continue;
698 }
699 break;
700 }
701 return result;
702}
703
704static void usb_try_string_workarounds(unsigned char *buf, int *length)
705{
706 int newlength, oldlength = *length;
707
708 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
709 if (!isprint(buf[newlength]) || buf[newlength + 1])
710 break;
711
712 if (newlength > 2) {
713 buf[0] = newlength;
714 *length = newlength;
715 }
716}
717
718static int usb_string_sub(struct usb_device *dev, unsigned int langid,
719 unsigned int index, unsigned char *buf)
720{
721 int rc;
722
723 /* Try to read the string descriptor by asking for the maximum
724 * possible number of bytes */
725 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
726 rc = -EIO;
727 else
728 rc = usb_get_string(dev, langid, index, buf, 255);
729
730 /* If that failed try to read the descriptor length, then
731 * ask for just that many bytes */
732 if (rc < 2) {
733 rc = usb_get_string(dev, langid, index, buf, 2);
734 if (rc == 2)
735 rc = usb_get_string(dev, langid, index, buf, buf[0]);
736 }
737
738 if (rc >= 2) {
739 if (!buf[0] && !buf[1])
740 usb_try_string_workarounds(buf, &rc);
741
742 /* There might be extra junk at the end of the descriptor */
743 if (buf[0] < rc)
744 rc = buf[0];
745
746 rc = rc - (rc & 1); /* force a multiple of two */
747 }
748
749 if (rc < 2)
750 rc = (rc < 0 ? rc : -EINVAL);
751
752 return rc;
753}
754
755static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
756{
757 int err;
758
759 if (dev->have_langid)
760 return 0;
761
762 if (dev->string_langid < 0)
763 return -EPIPE;
764
765 err = usb_string_sub(dev, 0, 0, tbuf);
766
767 /* If the string was reported but is malformed, default to english
768 * (0x0409) */
769 if (err == -ENODATA || (err > 0 && err < 4)) {
770 dev->string_langid = 0x0409;
771 dev->have_langid = 1;
772 dev_err(&dev->dev,
773 "language id specifier not provided by device, defaulting to English\n");
774 return 0;
775 }
776
777 /* In case of all other errors, we assume the device is not able to
778 * deal with strings at all. Set string_langid to -1 in order to
779 * prevent any string to be retrieved from the device */
780 if (err < 0) {
781 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
782 err);
783 dev->string_langid = -1;
784 return -EPIPE;
785 }
786
787 /* always use the first langid listed */
788 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
789 dev->have_langid = 1;
790 dev_dbg(&dev->dev, "default language 0x%04x\n",
791 dev->string_langid);
792 return 0;
793}
794
795/**
796 * usb_string - returns UTF-8 version of a string descriptor
797 * @dev: the device whose string descriptor is being retrieved
798 * @index: the number of the descriptor
799 * @buf: where to put the string
800 * @size: how big is "buf"?
801 * Context: !in_interrupt ()
802 *
803 * This converts the UTF-16LE encoded strings returned by devices, from
804 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
805 * that are more usable in most kernel contexts. Note that this function
806 * chooses strings in the first language supported by the device.
807 *
808 * This call is synchronous, and may not be used in an interrupt context.
809 *
810 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
811 */
812int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
813{
814 unsigned char *tbuf;
815 int err;
816
817 if (dev->state == USB_STATE_SUSPENDED)
818 return -EHOSTUNREACH;
819 if (size <= 0 || !buf || !index)
820 return -EINVAL;
821 buf[0] = 0;
822 tbuf = kmalloc(256, GFP_NOIO);
823 if (!tbuf)
824 return -ENOMEM;
825
826 err = usb_get_langid(dev, tbuf);
827 if (err < 0)
828 goto errout;
829
830 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
831 if (err < 0)
832 goto errout;
833
834 size--; /* leave room for trailing NULL char in output buffer */
835 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
836 UTF16_LITTLE_ENDIAN, buf, size);
837 buf[err] = 0;
838
839 if (tbuf[1] != USB_DT_STRING)
840 dev_dbg(&dev->dev,
841 "wrong descriptor type %02x for string %d (\"%s\")\n",
842 tbuf[1], index, buf);
843
844 errout:
845 kfree(tbuf);
846 return err;
847}
848EXPORT_SYMBOL_GPL(usb_string);
849
850/* one UTF-8-encoded 16-bit character has at most three bytes */
851#define MAX_USB_STRING_SIZE (127 * 3 + 1)
852
853/**
854 * usb_cache_string - read a string descriptor and cache it for later use
855 * @udev: the device whose string descriptor is being read
856 * @index: the descriptor index
857 *
858 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
859 * or %NULL if the index is 0 or the string could not be read.
860 */
861char *usb_cache_string(struct usb_device *udev, int index)
862{
863 char *buf;
864 char *smallbuf = NULL;
865 int len;
866
867 if (index <= 0)
868 return NULL;
869
870 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
871 if (buf) {
872 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
873 if (len > 0) {
874 smallbuf = kmalloc(++len, GFP_NOIO);
875 if (!smallbuf)
876 return buf;
877 memcpy(smallbuf, buf, len);
878 }
879 kfree(buf);
880 }
881 return smallbuf;
882}
883
884/*
885 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
886 * @dev: the device whose device descriptor is being updated
887 * @size: how much of the descriptor to read
888 * Context: !in_interrupt ()
889 *
890 * Updates the copy of the device descriptor stored in the device structure,
891 * which dedicates space for this purpose.
892 *
893 * Not exported, only for use by the core. If drivers really want to read
894 * the device descriptor directly, they can call usb_get_descriptor() with
895 * type = USB_DT_DEVICE and index = 0.
896 *
897 * This call is synchronous, and may not be used in an interrupt context.
898 *
899 * Return: The number of bytes received on success, or else the status code
900 * returned by the underlying usb_control_msg() call.
901 */
902int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
903{
904 struct usb_device_descriptor *desc;
905 int ret;
906
907 if (size > sizeof(*desc))
908 return -EINVAL;
909 desc = kmalloc(sizeof(*desc), GFP_NOIO);
910 if (!desc)
911 return -ENOMEM;
912
913 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
914 if (ret >= 0)
915 memcpy(&dev->descriptor, desc, size);
916 kfree(desc);
917 return ret;
918}
919
920/**
921 * usb_get_status - issues a GET_STATUS call
922 * @dev: the device whose status is being checked
923 * @type: USB_RECIP_*; for device, interface, or endpoint
924 * @target: zero (for device), else interface or endpoint number
925 * @data: pointer to two bytes of bitmap data
926 * Context: !in_interrupt ()
927 *
928 * Returns device, interface, or endpoint status. Normally only of
929 * interest to see if the device is self powered, or has enabled the
930 * remote wakeup facility; or whether a bulk or interrupt endpoint
931 * is halted ("stalled").
932 *
933 * Bits in these status bitmaps are set using the SET_FEATURE request,
934 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
935 * function should be used to clear halt ("stall") status.
936 *
937 * This call is synchronous, and may not be used in an interrupt context.
938 *
939 * Returns 0 and the status value in *@data (in host byte order) on success,
940 * or else the status code from the underlying usb_control_msg() call.
941 */
942int usb_get_status(struct usb_device *dev, int type, int target, void *data)
943{
944 int ret;
945 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
946
947 if (!status)
948 return -ENOMEM;
949
950 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
951 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
952 sizeof(*status), USB_CTRL_GET_TIMEOUT);
953
954 if (ret == 2) {
955 *(u16 *) data = le16_to_cpu(*status);
956 ret = 0;
957 } else if (ret >= 0) {
958 ret = -EIO;
959 }
960 kfree(status);
961 return ret;
962}
963EXPORT_SYMBOL_GPL(usb_get_status);
964
965/**
966 * usb_clear_halt - tells device to clear endpoint halt/stall condition
967 * @dev: device whose endpoint is halted
968 * @pipe: endpoint "pipe" being cleared
969 * Context: !in_interrupt ()
970 *
971 * This is used to clear halt conditions for bulk and interrupt endpoints,
972 * as reported by URB completion status. Endpoints that are halted are
973 * sometimes referred to as being "stalled". Such endpoints are unable
974 * to transmit or receive data until the halt status is cleared. Any URBs
975 * queued for such an endpoint should normally be unlinked by the driver
976 * before clearing the halt condition, as described in sections 5.7.5
977 * and 5.8.5 of the USB 2.0 spec.
978 *
979 * Note that control and isochronous endpoints don't halt, although control
980 * endpoints report "protocol stall" (for unsupported requests) using the
981 * same status code used to report a true stall.
982 *
983 * This call is synchronous, and may not be used in an interrupt context.
984 *
985 * Return: Zero on success, or else the status code returned by the
986 * underlying usb_control_msg() call.
987 */
988int usb_clear_halt(struct usb_device *dev, int pipe)
989{
990 int result;
991 int endp = usb_pipeendpoint(pipe);
992
993 if (usb_pipein(pipe))
994 endp |= USB_DIR_IN;
995
996 /* we don't care if it wasn't halted first. in fact some devices
997 * (like some ibmcam model 1 units) seem to expect hosts to make
998 * this request for iso endpoints, which can't halt!
999 */
1000 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1001 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1002 USB_ENDPOINT_HALT, endp, NULL, 0,
1003 USB_CTRL_SET_TIMEOUT);
1004
1005 /* don't un-halt or force to DATA0 except on success */
1006 if (result < 0)
1007 return result;
1008
1009 /* NOTE: seems like Microsoft and Apple don't bother verifying
1010 * the clear "took", so some devices could lock up if you check...
1011 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1012 *
1013 * NOTE: make sure the logic here doesn't diverge much from
1014 * the copy in usb-storage, for as long as we need two copies.
1015 */
1016
1017 usb_reset_endpoint(dev, endp);
1018
1019 return 0;
1020}
1021EXPORT_SYMBOL_GPL(usb_clear_halt);
1022
1023static int create_intf_ep_devs(struct usb_interface *intf)
1024{
1025 struct usb_device *udev = interface_to_usbdev(intf);
1026 struct usb_host_interface *alt = intf->cur_altsetting;
1027 int i;
1028
1029 if (intf->ep_devs_created || intf->unregistering)
1030 return 0;
1031
1032 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1033 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1034 intf->ep_devs_created = 1;
1035 return 0;
1036}
1037
1038static void remove_intf_ep_devs(struct usb_interface *intf)
1039{
1040 struct usb_host_interface *alt = intf->cur_altsetting;
1041 int i;
1042
1043 if (!intf->ep_devs_created)
1044 return;
1045
1046 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1047 usb_remove_ep_devs(&alt->endpoint[i]);
1048 intf->ep_devs_created = 0;
1049}
1050
1051/**
1052 * usb_disable_endpoint -- Disable an endpoint by address
1053 * @dev: the device whose endpoint is being disabled
1054 * @epaddr: the endpoint's address. Endpoint number for output,
1055 * endpoint number + USB_DIR_IN for input
1056 * @reset_hardware: flag to erase any endpoint state stored in the
1057 * controller hardware
1058 *
1059 * Disables the endpoint for URB submission and nukes all pending URBs.
1060 * If @reset_hardware is set then also deallocates hcd/hardware state
1061 * for the endpoint.
1062 */
1063void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1064 bool reset_hardware)
1065{
1066 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1067 struct usb_host_endpoint *ep;
1068
1069 if (!dev)
1070 return;
1071
1072 if (usb_endpoint_out(epaddr)) {
1073 ep = dev->ep_out[epnum];
1074 if (reset_hardware)
1075 dev->ep_out[epnum] = NULL;
1076 } else {
1077 ep = dev->ep_in[epnum];
1078 if (reset_hardware)
1079 dev->ep_in[epnum] = NULL;
1080 }
1081 if (ep) {
1082 ep->enabled = 0;
1083 usb_hcd_flush_endpoint(dev, ep);
1084 if (reset_hardware)
1085 usb_hcd_disable_endpoint(dev, ep);
1086 }
1087}
1088
1089/**
1090 * usb_reset_endpoint - Reset an endpoint's state.
1091 * @dev: the device whose endpoint is to be reset
1092 * @epaddr: the endpoint's address. Endpoint number for output,
1093 * endpoint number + USB_DIR_IN for input
1094 *
1095 * Resets any host-side endpoint state such as the toggle bit,
1096 * sequence number or current window.
1097 */
1098void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1099{
1100 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1101 struct usb_host_endpoint *ep;
1102
1103 if (usb_endpoint_out(epaddr))
1104 ep = dev->ep_out[epnum];
1105 else
1106 ep = dev->ep_in[epnum];
1107 if (ep)
1108 usb_hcd_reset_endpoint(dev, ep);
1109}
1110EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1111
1112
1113/**
1114 * usb_disable_interface -- Disable all endpoints for an interface
1115 * @dev: the device whose interface is being disabled
1116 * @intf: pointer to the interface descriptor
1117 * @reset_hardware: flag to erase any endpoint state stored in the
1118 * controller hardware
1119 *
1120 * Disables all the endpoints for the interface's current altsetting.
1121 */
1122void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1123 bool reset_hardware)
1124{
1125 struct usb_host_interface *alt = intf->cur_altsetting;
1126 int i;
1127
1128 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1129 usb_disable_endpoint(dev,
1130 alt->endpoint[i].desc.bEndpointAddress,
1131 reset_hardware);
1132 }
1133}
1134
1135/**
1136 * usb_disable_device - Disable all the endpoints for a USB device
1137 * @dev: the device whose endpoints are being disabled
1138 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1139 *
1140 * Disables all the device's endpoints, potentially including endpoint 0.
1141 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1142 * pending urbs) and usbcore state for the interfaces, so that usbcore
1143 * must usb_set_configuration() before any interfaces could be used.
1144 */
1145void usb_disable_device(struct usb_device *dev, int skip_ep0)
1146{
1147 int i;
1148 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1149
1150 /* getting rid of interfaces will disconnect
1151 * any drivers bound to them (a key side effect)
1152 */
1153 if (dev->actconfig) {
1154 /*
1155 * FIXME: In order to avoid self-deadlock involving the
1156 * bandwidth_mutex, we have to mark all the interfaces
1157 * before unregistering any of them.
1158 */
1159 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1160 dev->actconfig->interface[i]->unregistering = 1;
1161
1162 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1163 struct usb_interface *interface;
1164
1165 /* remove this interface if it has been registered */
1166 interface = dev->actconfig->interface[i];
1167 if (!device_is_registered(&interface->dev))
1168 continue;
1169 dev_dbg(&dev->dev, "unregistering interface %s\n",
1170 dev_name(&interface->dev));
1171 remove_intf_ep_devs(interface);
1172 device_del(&interface->dev);
1173 }
1174
1175 /* Now that the interfaces are unbound, nobody should
1176 * try to access them.
1177 */
1178 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1179 put_device(&dev->actconfig->interface[i]->dev);
1180 dev->actconfig->interface[i] = NULL;
1181 }
1182
1183 if (dev->usb2_hw_lpm_enabled == 1)
1184 usb_set_usb2_hardware_lpm(dev, 0);
1185 usb_unlocked_disable_lpm(dev);
1186 usb_disable_ltm(dev);
1187
1188 dev->actconfig = NULL;
1189 if (dev->state == USB_STATE_CONFIGURED)
1190 usb_set_device_state(dev, USB_STATE_ADDRESS);
1191 }
1192
1193 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1194 skip_ep0 ? "non-ep0" : "all");
1195 if (hcd->driver->check_bandwidth) {
1196 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1197 for (i = skip_ep0; i < 16; ++i) {
1198 usb_disable_endpoint(dev, i, false);
1199 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1200 }
1201 /* Remove endpoints from the host controller internal state */
1202 mutex_lock(hcd->bandwidth_mutex);
1203 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1204 mutex_unlock(hcd->bandwidth_mutex);
1205 /* Second pass: remove endpoint pointers */
1206 }
1207 for (i = skip_ep0; i < 16; ++i) {
1208 usb_disable_endpoint(dev, i, true);
1209 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1210 }
1211}
1212
1213/**
1214 * usb_enable_endpoint - Enable an endpoint for USB communications
1215 * @dev: the device whose interface is being enabled
1216 * @ep: the endpoint
1217 * @reset_ep: flag to reset the endpoint state
1218 *
1219 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1220 * For control endpoints, both the input and output sides are handled.
1221 */
1222void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1223 bool reset_ep)
1224{
1225 int epnum = usb_endpoint_num(&ep->desc);
1226 int is_out = usb_endpoint_dir_out(&ep->desc);
1227 int is_control = usb_endpoint_xfer_control(&ep->desc);
1228
1229 if (reset_ep)
1230 usb_hcd_reset_endpoint(dev, ep);
1231 if (is_out || is_control)
1232 dev->ep_out[epnum] = ep;
1233 if (!is_out || is_control)
1234 dev->ep_in[epnum] = ep;
1235 ep->enabled = 1;
1236}
1237
1238/**
1239 * usb_enable_interface - Enable all the endpoints for an interface
1240 * @dev: the device whose interface is being enabled
1241 * @intf: pointer to the interface descriptor
1242 * @reset_eps: flag to reset the endpoints' state
1243 *
1244 * Enables all the endpoints for the interface's current altsetting.
1245 */
1246void usb_enable_interface(struct usb_device *dev,
1247 struct usb_interface *intf, bool reset_eps)
1248{
1249 struct usb_host_interface *alt = intf->cur_altsetting;
1250 int i;
1251
1252 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1253 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1254}
1255
1256/**
1257 * usb_set_interface - Makes a particular alternate setting be current
1258 * @dev: the device whose interface is being updated
1259 * @interface: the interface being updated
1260 * @alternate: the setting being chosen.
1261 * Context: !in_interrupt ()
1262 *
1263 * This is used to enable data transfers on interfaces that may not
1264 * be enabled by default. Not all devices support such configurability.
1265 * Only the driver bound to an interface may change its setting.
1266 *
1267 * Within any given configuration, each interface may have several
1268 * alternative settings. These are often used to control levels of
1269 * bandwidth consumption. For example, the default setting for a high
1270 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1271 * while interrupt transfers of up to 3KBytes per microframe are legal.
1272 * Also, isochronous endpoints may never be part of an
1273 * interface's default setting. To access such bandwidth, alternate
1274 * interface settings must be made current.
1275 *
1276 * Note that in the Linux USB subsystem, bandwidth associated with
1277 * an endpoint in a given alternate setting is not reserved until an URB
1278 * is submitted that needs that bandwidth. Some other operating systems
1279 * allocate bandwidth early, when a configuration is chosen.
1280 *
1281 * This call is synchronous, and may not be used in an interrupt context.
1282 * Also, drivers must not change altsettings while urbs are scheduled for
1283 * endpoints in that interface; all such urbs must first be completed
1284 * (perhaps forced by unlinking).
1285 *
1286 * Return: Zero on success, or else the status code returned by the
1287 * underlying usb_control_msg() call.
1288 */
1289int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1290{
1291 struct usb_interface *iface;
1292 struct usb_host_interface *alt;
1293 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1294 int i, ret, manual = 0;
1295 unsigned int epaddr;
1296 unsigned int pipe;
1297
1298 if (dev->state == USB_STATE_SUSPENDED)
1299 return -EHOSTUNREACH;
1300
1301 iface = usb_ifnum_to_if(dev, interface);
1302 if (!iface) {
1303 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1304 interface);
1305 return -EINVAL;
1306 }
1307 if (iface->unregistering)
1308 return -ENODEV;
1309
1310 alt = usb_altnum_to_altsetting(iface, alternate);
1311 if (!alt) {
1312 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1313 alternate);
1314 return -EINVAL;
1315 }
1316
1317 /* Make sure we have enough bandwidth for this alternate interface.
1318 * Remove the current alt setting and add the new alt setting.
1319 */
1320 mutex_lock(hcd->bandwidth_mutex);
1321 /* Disable LPM, and re-enable it once the new alt setting is installed,
1322 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1323 */
1324 if (usb_disable_lpm(dev)) {
1325 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1326 mutex_unlock(hcd->bandwidth_mutex);
1327 return -ENOMEM;
1328 }
1329 /* Changing alt-setting also frees any allocated streams */
1330 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1331 iface->cur_altsetting->endpoint[i].streams = 0;
1332
1333 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1334 if (ret < 0) {
1335 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1336 alternate);
1337 usb_enable_lpm(dev);
1338 mutex_unlock(hcd->bandwidth_mutex);
1339 return ret;
1340 }
1341
1342 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1343 ret = -EPIPE;
1344 else
1345 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1346 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1347 alternate, interface, NULL, 0, 5000);
1348
1349 /* 9.4.10 says devices don't need this and are free to STALL the
1350 * request if the interface only has one alternate setting.
1351 */
1352 if (ret == -EPIPE && iface->num_altsetting == 1) {
1353 dev_dbg(&dev->dev,
1354 "manual set_interface for iface %d, alt %d\n",
1355 interface, alternate);
1356 manual = 1;
1357 } else if (ret < 0) {
1358 /* Re-instate the old alt setting */
1359 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1360 usb_enable_lpm(dev);
1361 mutex_unlock(hcd->bandwidth_mutex);
1362 return ret;
1363 }
1364 mutex_unlock(hcd->bandwidth_mutex);
1365
1366 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1367 * when they implement async or easily-killable versions of this or
1368 * other "should-be-internal" functions (like clear_halt).
1369 * should hcd+usbcore postprocess control requests?
1370 */
1371
1372 /* prevent submissions using previous endpoint settings */
1373 if (iface->cur_altsetting != alt) {
1374 remove_intf_ep_devs(iface);
1375 usb_remove_sysfs_intf_files(iface);
1376 }
1377 usb_disable_interface(dev, iface, true);
1378
1379 iface->cur_altsetting = alt;
1380
1381 /* Now that the interface is installed, re-enable LPM. */
1382 usb_unlocked_enable_lpm(dev);
1383
1384 /* If the interface only has one altsetting and the device didn't
1385 * accept the request, we attempt to carry out the equivalent action
1386 * by manually clearing the HALT feature for each endpoint in the
1387 * new altsetting.
1388 */
1389 if (manual) {
1390 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1391 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1392 pipe = __create_pipe(dev,
1393 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1394 (usb_endpoint_out(epaddr) ?
1395 USB_DIR_OUT : USB_DIR_IN);
1396
1397 usb_clear_halt(dev, pipe);
1398 }
1399 }
1400
1401 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1402 *
1403 * Note:
1404 * Despite EP0 is always present in all interfaces/AS, the list of
1405 * endpoints from the descriptor does not contain EP0. Due to its
1406 * omnipresence one might expect EP0 being considered "affected" by
1407 * any SetInterface request and hence assume toggles need to be reset.
1408 * However, EP0 toggles are re-synced for every individual transfer
1409 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1410 * (Likewise, EP0 never "halts" on well designed devices.)
1411 */
1412 usb_enable_interface(dev, iface, true);
1413 if (device_is_registered(&iface->dev)) {
1414 usb_create_sysfs_intf_files(iface);
1415 create_intf_ep_devs(iface);
1416 }
1417 return 0;
1418}
1419EXPORT_SYMBOL_GPL(usb_set_interface);
1420
1421/**
1422 * usb_reset_configuration - lightweight device reset
1423 * @dev: the device whose configuration is being reset
1424 *
1425 * This issues a standard SET_CONFIGURATION request to the device using
1426 * the current configuration. The effect is to reset most USB-related
1427 * state in the device, including interface altsettings (reset to zero),
1428 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1429 * endpoints). Other usbcore state is unchanged, including bindings of
1430 * usb device drivers to interfaces.
1431 *
1432 * Because this affects multiple interfaces, avoid using this with composite
1433 * (multi-interface) devices. Instead, the driver for each interface may
1434 * use usb_set_interface() on the interfaces it claims. Be careful though;
1435 * some devices don't support the SET_INTERFACE request, and others won't
1436 * reset all the interface state (notably endpoint state). Resetting the whole
1437 * configuration would affect other drivers' interfaces.
1438 *
1439 * The caller must own the device lock.
1440 *
1441 * Return: Zero on success, else a negative error code.
1442 */
1443int usb_reset_configuration(struct usb_device *dev)
1444{
1445 int i, retval;
1446 struct usb_host_config *config;
1447 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1448
1449 if (dev->state == USB_STATE_SUSPENDED)
1450 return -EHOSTUNREACH;
1451
1452 /* caller must have locked the device and must own
1453 * the usb bus readlock (so driver bindings are stable);
1454 * calls during probe() are fine
1455 */
1456
1457 for (i = 1; i < 16; ++i) {
1458 usb_disable_endpoint(dev, i, true);
1459 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1460 }
1461
1462 config = dev->actconfig;
1463 retval = 0;
1464 mutex_lock(hcd->bandwidth_mutex);
1465 /* Disable LPM, and re-enable it once the configuration is reset, so
1466 * that the xHCI driver can recalculate the U1/U2 timeouts.
1467 */
1468 if (usb_disable_lpm(dev)) {
1469 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1470 mutex_unlock(hcd->bandwidth_mutex);
1471 return -ENOMEM;
1472 }
1473 /* Make sure we have enough bandwidth for each alternate setting 0 */
1474 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1475 struct usb_interface *intf = config->interface[i];
1476 struct usb_host_interface *alt;
1477
1478 alt = usb_altnum_to_altsetting(intf, 0);
1479 if (!alt)
1480 alt = &intf->altsetting[0];
1481 if (alt != intf->cur_altsetting)
1482 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1483 intf->cur_altsetting, alt);
1484 if (retval < 0)
1485 break;
1486 }
1487 /* If not, reinstate the old alternate settings */
1488 if (retval < 0) {
1489reset_old_alts:
1490 for (i--; i >= 0; i--) {
1491 struct usb_interface *intf = config->interface[i];
1492 struct usb_host_interface *alt;
1493
1494 alt = usb_altnum_to_altsetting(intf, 0);
1495 if (!alt)
1496 alt = &intf->altsetting[0];
1497 if (alt != intf->cur_altsetting)
1498 usb_hcd_alloc_bandwidth(dev, NULL,
1499 alt, intf->cur_altsetting);
1500 }
1501 usb_enable_lpm(dev);
1502 mutex_unlock(hcd->bandwidth_mutex);
1503 return retval;
1504 }
1505 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1506 USB_REQ_SET_CONFIGURATION, 0,
1507 config->desc.bConfigurationValue, 0,
1508 NULL, 0, USB_CTRL_SET_TIMEOUT);
1509 if (retval < 0)
1510 goto reset_old_alts;
1511 mutex_unlock(hcd->bandwidth_mutex);
1512
1513 /* re-init hc/hcd interface/endpoint state */
1514 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1515 struct usb_interface *intf = config->interface[i];
1516 struct usb_host_interface *alt;
1517
1518 alt = usb_altnum_to_altsetting(intf, 0);
1519
1520 /* No altsetting 0? We'll assume the first altsetting.
1521 * We could use a GetInterface call, but if a device is
1522 * so non-compliant that it doesn't have altsetting 0
1523 * then I wouldn't trust its reply anyway.
1524 */
1525 if (!alt)
1526 alt = &intf->altsetting[0];
1527
1528 if (alt != intf->cur_altsetting) {
1529 remove_intf_ep_devs(intf);
1530 usb_remove_sysfs_intf_files(intf);
1531 }
1532 intf->cur_altsetting = alt;
1533 usb_enable_interface(dev, intf, true);
1534 if (device_is_registered(&intf->dev)) {
1535 usb_create_sysfs_intf_files(intf);
1536 create_intf_ep_devs(intf);
1537 }
1538 }
1539 /* Now that the interfaces are installed, re-enable LPM. */
1540 usb_unlocked_enable_lpm(dev);
1541 return 0;
1542}
1543EXPORT_SYMBOL_GPL(usb_reset_configuration);
1544
1545static void usb_release_interface(struct device *dev)
1546{
1547 struct usb_interface *intf = to_usb_interface(dev);
1548 struct usb_interface_cache *intfc =
1549 altsetting_to_usb_interface_cache(intf->altsetting);
1550
1551 kref_put(&intfc->ref, usb_release_interface_cache);
1552 usb_put_dev(interface_to_usbdev(intf));
1553 kfree(intf);
1554}
1555
1556/*
1557 * usb_deauthorize_interface - deauthorize an USB interface
1558 *
1559 * @intf: USB interface structure
1560 */
1561void usb_deauthorize_interface(struct usb_interface *intf)
1562{
1563 struct device *dev = &intf->dev;
1564
1565 device_lock(dev->parent);
1566
1567 if (intf->authorized) {
1568 device_lock(dev);
1569 intf->authorized = 0;
1570 device_unlock(dev);
1571
1572 usb_forced_unbind_intf(intf);
1573 }
1574
1575 device_unlock(dev->parent);
1576}
1577
1578/*
1579 * usb_authorize_interface - authorize an USB interface
1580 *
1581 * @intf: USB interface structure
1582 */
1583void usb_authorize_interface(struct usb_interface *intf)
1584{
1585 struct device *dev = &intf->dev;
1586
1587 if (!intf->authorized) {
1588 device_lock(dev);
1589 intf->authorized = 1; /* authorize interface */
1590 device_unlock(dev);
1591 }
1592}
1593
1594static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1595{
1596 struct usb_device *usb_dev;
1597 struct usb_interface *intf;
1598 struct usb_host_interface *alt;
1599
1600 intf = to_usb_interface(dev);
1601 usb_dev = interface_to_usbdev(intf);
1602 alt = intf->cur_altsetting;
1603
1604 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1605 alt->desc.bInterfaceClass,
1606 alt->desc.bInterfaceSubClass,
1607 alt->desc.bInterfaceProtocol))
1608 return -ENOMEM;
1609
1610 if (add_uevent_var(env,
1611 "MODALIAS=usb:"
1612 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1613 le16_to_cpu(usb_dev->descriptor.idVendor),
1614 le16_to_cpu(usb_dev->descriptor.idProduct),
1615 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1616 usb_dev->descriptor.bDeviceClass,
1617 usb_dev->descriptor.bDeviceSubClass,
1618 usb_dev->descriptor.bDeviceProtocol,
1619 alt->desc.bInterfaceClass,
1620 alt->desc.bInterfaceSubClass,
1621 alt->desc.bInterfaceProtocol,
1622 alt->desc.bInterfaceNumber))
1623 return -ENOMEM;
1624
1625 return 0;
1626}
1627
1628struct device_type usb_if_device_type = {
1629 .name = "usb_interface",
1630 .release = usb_release_interface,
1631 .uevent = usb_if_uevent,
1632};
1633
1634static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1635 struct usb_host_config *config,
1636 u8 inum)
1637{
1638 struct usb_interface_assoc_descriptor *retval = NULL;
1639 struct usb_interface_assoc_descriptor *intf_assoc;
1640 int first_intf;
1641 int last_intf;
1642 int i;
1643
1644 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1645 intf_assoc = config->intf_assoc[i];
1646 if (intf_assoc->bInterfaceCount == 0)
1647 continue;
1648
1649 first_intf = intf_assoc->bFirstInterface;
1650 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1651 if (inum >= first_intf && inum <= last_intf) {
1652 if (!retval)
1653 retval = intf_assoc;
1654 else
1655 dev_err(&dev->dev, "Interface #%d referenced"
1656 " by multiple IADs\n", inum);
1657 }
1658 }
1659
1660 return retval;
1661}
1662
1663
1664/*
1665 * Internal function to queue a device reset
1666 * See usb_queue_reset_device() for more details
1667 */
1668static void __usb_queue_reset_device(struct work_struct *ws)
1669{
1670 int rc;
1671 struct usb_interface *iface =
1672 container_of(ws, struct usb_interface, reset_ws);
1673 struct usb_device *udev = interface_to_usbdev(iface);
1674
1675 rc = usb_lock_device_for_reset(udev, iface);
1676 if (rc >= 0) {
1677 usb_reset_device(udev);
1678 usb_unlock_device(udev);
1679 }
1680 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1681}
1682
1683
1684/*
1685 * usb_set_configuration - Makes a particular device setting be current
1686 * @dev: the device whose configuration is being updated
1687 * @configuration: the configuration being chosen.
1688 * Context: !in_interrupt(), caller owns the device lock
1689 *
1690 * This is used to enable non-default device modes. Not all devices
1691 * use this kind of configurability; many devices only have one
1692 * configuration.
1693 *
1694 * @configuration is the value of the configuration to be installed.
1695 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1696 * must be non-zero; a value of zero indicates that the device in
1697 * unconfigured. However some devices erroneously use 0 as one of their
1698 * configuration values. To help manage such devices, this routine will
1699 * accept @configuration = -1 as indicating the device should be put in
1700 * an unconfigured state.
1701 *
1702 * USB device configurations may affect Linux interoperability,
1703 * power consumption and the functionality available. For example,
1704 * the default configuration is limited to using 100mA of bus power,
1705 * so that when certain device functionality requires more power,
1706 * and the device is bus powered, that functionality should be in some
1707 * non-default device configuration. Other device modes may also be
1708 * reflected as configuration options, such as whether two ISDN
1709 * channels are available independently; and choosing between open
1710 * standard device protocols (like CDC) or proprietary ones.
1711 *
1712 * Note that a non-authorized device (dev->authorized == 0) will only
1713 * be put in unconfigured mode.
1714 *
1715 * Note that USB has an additional level of device configurability,
1716 * associated with interfaces. That configurability is accessed using
1717 * usb_set_interface().
1718 *
1719 * This call is synchronous. The calling context must be able to sleep,
1720 * must own the device lock, and must not hold the driver model's USB
1721 * bus mutex; usb interface driver probe() methods cannot use this routine.
1722 *
1723 * Returns zero on success, or else the status code returned by the
1724 * underlying call that failed. On successful completion, each interface
1725 * in the original device configuration has been destroyed, and each one
1726 * in the new configuration has been probed by all relevant usb device
1727 * drivers currently known to the kernel.
1728 */
1729int usb_set_configuration(struct usb_device *dev, int configuration)
1730{
1731 int i, ret;
1732 struct usb_host_config *cp = NULL;
1733 struct usb_interface **new_interfaces = NULL;
1734 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1735 int n, nintf;
1736
1737 if (dev->authorized == 0 || configuration == -1)
1738 configuration = 0;
1739 else {
1740 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1741 if (dev->config[i].desc.bConfigurationValue ==
1742 configuration) {
1743 cp = &dev->config[i];
1744 break;
1745 }
1746 }
1747 }
1748 if ((!cp && configuration != 0))
1749 return -EINVAL;
1750
1751 /* The USB spec says configuration 0 means unconfigured.
1752 * But if a device includes a configuration numbered 0,
1753 * we will accept it as a correctly configured state.
1754 * Use -1 if you really want to unconfigure the device.
1755 */
1756 if (cp && configuration == 0)
1757 dev_warn(&dev->dev, "config 0 descriptor??\n");
1758
1759 /* Allocate memory for new interfaces before doing anything else,
1760 * so that if we run out then nothing will have changed. */
1761 n = nintf = 0;
1762 if (cp) {
1763 nintf = cp->desc.bNumInterfaces;
1764 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1765 GFP_NOIO);
1766 if (!new_interfaces)
1767 return -ENOMEM;
1768
1769 for (; n < nintf; ++n) {
1770 new_interfaces[n] = kzalloc(
1771 sizeof(struct usb_interface),
1772 GFP_NOIO);
1773 if (!new_interfaces[n]) {
1774 ret = -ENOMEM;
1775free_interfaces:
1776 while (--n >= 0)
1777 kfree(new_interfaces[n]);
1778 kfree(new_interfaces);
1779 return ret;
1780 }
1781 }
1782
1783 i = dev->bus_mA - usb_get_max_power(dev, cp);
1784 if (i < 0)
1785 dev_warn(&dev->dev, "new config #%d exceeds power "
1786 "limit by %dmA\n",
1787 configuration, -i);
1788 }
1789
1790 /* Wake up the device so we can send it the Set-Config request */
1791 ret = usb_autoresume_device(dev);
1792 if (ret)
1793 goto free_interfaces;
1794
1795 /* if it's already configured, clear out old state first.
1796 * getting rid of old interfaces means unbinding their drivers.
1797 */
1798 if (dev->state != USB_STATE_ADDRESS)
1799 usb_disable_device(dev, 1); /* Skip ep0 */
1800
1801 /* Get rid of pending async Set-Config requests for this device */
1802 cancel_async_set_config(dev);
1803
1804 /* Make sure we have bandwidth (and available HCD resources) for this
1805 * configuration. Remove endpoints from the schedule if we're dropping
1806 * this configuration to set configuration 0. After this point, the
1807 * host controller will not allow submissions to dropped endpoints. If
1808 * this call fails, the device state is unchanged.
1809 */
1810 mutex_lock(hcd->bandwidth_mutex);
1811 /* Disable LPM, and re-enable it once the new configuration is
1812 * installed, so that the xHCI driver can recalculate the U1/U2
1813 * timeouts.
1814 */
1815 if (dev->actconfig && usb_disable_lpm(dev)) {
1816 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1817 mutex_unlock(hcd->bandwidth_mutex);
1818 ret = -ENOMEM;
1819 goto free_interfaces;
1820 }
1821 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1822 if (ret < 0) {
1823 if (dev->actconfig)
1824 usb_enable_lpm(dev);
1825 mutex_unlock(hcd->bandwidth_mutex);
1826 usb_autosuspend_device(dev);
1827 goto free_interfaces;
1828 }
1829
1830 /*
1831 * Initialize the new interface structures and the
1832 * hc/hcd/usbcore interface/endpoint state.
1833 */
1834 for (i = 0; i < nintf; ++i) {
1835 struct usb_interface_cache *intfc;
1836 struct usb_interface *intf;
1837 struct usb_host_interface *alt;
1838
1839 cp->interface[i] = intf = new_interfaces[i];
1840 intfc = cp->intf_cache[i];
1841 intf->altsetting = intfc->altsetting;
1842 intf->num_altsetting = intfc->num_altsetting;
1843 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1844 kref_get(&intfc->ref);
1845
1846 alt = usb_altnum_to_altsetting(intf, 0);
1847
1848 /* No altsetting 0? We'll assume the first altsetting.
1849 * We could use a GetInterface call, but if a device is
1850 * so non-compliant that it doesn't have altsetting 0
1851 * then I wouldn't trust its reply anyway.
1852 */
1853 if (!alt)
1854 alt = &intf->altsetting[0];
1855
1856 intf->intf_assoc =
1857 find_iad(dev, cp, alt->desc.bInterfaceNumber);
1858 intf->cur_altsetting = alt;
1859 usb_enable_interface(dev, intf, true);
1860 intf->dev.parent = &dev->dev;
1861 intf->dev.driver = NULL;
1862 intf->dev.bus = &usb_bus_type;
1863 intf->dev.type = &usb_if_device_type;
1864 intf->dev.groups = usb_interface_groups;
1865 /*
1866 * Please refer to usb_alloc_dev() to see why we set
1867 * dma_mask and dma_pfn_offset.
1868 */
1869 intf->dev.dma_mask = dev->dev.dma_mask;
1870 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1871 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1872 intf->minor = -1;
1873 device_initialize(&intf->dev);
1874 pm_runtime_no_callbacks(&intf->dev);
1875 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1876 dev->bus->busnum, dev->devpath,
1877 configuration, alt->desc.bInterfaceNumber);
1878 usb_get_dev(dev);
1879 }
1880 kfree(new_interfaces);
1881
1882 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1883 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1884 NULL, 0, USB_CTRL_SET_TIMEOUT);
1885 if (ret < 0 && cp) {
1886 /*
1887 * All the old state is gone, so what else can we do?
1888 * The device is probably useless now anyway.
1889 */
1890 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1891 for (i = 0; i < nintf; ++i) {
1892 usb_disable_interface(dev, cp->interface[i], true);
1893 put_device(&cp->interface[i]->dev);
1894 cp->interface[i] = NULL;
1895 }
1896 cp = NULL;
1897 }
1898
1899 dev->actconfig = cp;
1900 mutex_unlock(hcd->bandwidth_mutex);
1901
1902 if (!cp) {
1903 usb_set_device_state(dev, USB_STATE_ADDRESS);
1904
1905 /* Leave LPM disabled while the device is unconfigured. */
1906 usb_autosuspend_device(dev);
1907 return ret;
1908 }
1909 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1910
1911 if (cp->string == NULL &&
1912 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1913 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1914
1915 /* Now that the interfaces are installed, re-enable LPM. */
1916 usb_unlocked_enable_lpm(dev);
1917 /* Enable LTM if it was turned off by usb_disable_device. */
1918 usb_enable_ltm(dev);
1919
1920 /* Now that all the interfaces are set up, register them
1921 * to trigger binding of drivers to interfaces. probe()
1922 * routines may install different altsettings and may
1923 * claim() any interfaces not yet bound. Many class drivers
1924 * need that: CDC, audio, video, etc.
1925 */
1926 for (i = 0; i < nintf; ++i) {
1927 struct usb_interface *intf = cp->interface[i];
1928
1929 dev_dbg(&dev->dev,
1930 "adding %s (config #%d, interface %d)\n",
1931 dev_name(&intf->dev), configuration,
1932 intf->cur_altsetting->desc.bInterfaceNumber);
1933 device_enable_async_suspend(&intf->dev);
1934 ret = device_add(&intf->dev);
1935 if (ret != 0) {
1936 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1937 dev_name(&intf->dev), ret);
1938 continue;
1939 }
1940 create_intf_ep_devs(intf);
1941 }
1942
1943 usb_autosuspend_device(dev);
1944 return 0;
1945}
1946EXPORT_SYMBOL_GPL(usb_set_configuration);
1947
1948static LIST_HEAD(set_config_list);
1949static DEFINE_SPINLOCK(set_config_lock);
1950
1951struct set_config_request {
1952 struct usb_device *udev;
1953 int config;
1954 struct work_struct work;
1955 struct list_head node;
1956};
1957
1958/* Worker routine for usb_driver_set_configuration() */
1959static void driver_set_config_work(struct work_struct *work)
1960{
1961 struct set_config_request *req =
1962 container_of(work, struct set_config_request, work);
1963 struct usb_device *udev = req->udev;
1964
1965 usb_lock_device(udev);
1966 spin_lock(&set_config_lock);
1967 list_del(&req->node);
1968 spin_unlock(&set_config_lock);
1969
1970 if (req->config >= -1) /* Is req still valid? */
1971 usb_set_configuration(udev, req->config);
1972 usb_unlock_device(udev);
1973 usb_put_dev(udev);
1974 kfree(req);
1975}
1976
1977/* Cancel pending Set-Config requests for a device whose configuration
1978 * was just changed
1979 */
1980static void cancel_async_set_config(struct usb_device *udev)
1981{
1982 struct set_config_request *req;
1983
1984 spin_lock(&set_config_lock);
1985 list_for_each_entry(req, &set_config_list, node) {
1986 if (req->udev == udev)
1987 req->config = -999; /* Mark as cancelled */
1988 }
1989 spin_unlock(&set_config_lock);
1990}
1991
1992/**
1993 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1994 * @udev: the device whose configuration is being updated
1995 * @config: the configuration being chosen.
1996 * Context: In process context, must be able to sleep
1997 *
1998 * Device interface drivers are not allowed to change device configurations.
1999 * This is because changing configurations will destroy the interface the
2000 * driver is bound to and create new ones; it would be like a floppy-disk
2001 * driver telling the computer to replace the floppy-disk drive with a
2002 * tape drive!
2003 *
2004 * Still, in certain specialized circumstances the need may arise. This
2005 * routine gets around the normal restrictions by using a work thread to
2006 * submit the change-config request.
2007 *
2008 * Return: 0 if the request was successfully queued, error code otherwise.
2009 * The caller has no way to know whether the queued request will eventually
2010 * succeed.
2011 */
2012int usb_driver_set_configuration(struct usb_device *udev, int config)
2013{
2014 struct set_config_request *req;
2015
2016 req = kmalloc(sizeof(*req), GFP_KERNEL);
2017 if (!req)
2018 return -ENOMEM;
2019 req->udev = udev;
2020 req->config = config;
2021 INIT_WORK(&req->work, driver_set_config_work);
2022
2023 spin_lock(&set_config_lock);
2024 list_add(&req->node, &set_config_list);
2025 spin_unlock(&set_config_lock);
2026
2027 usb_get_dev(udev);
2028 schedule_work(&req->work);
2029 return 0;
2030}
2031EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2032
2033/**
2034 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2035 * @hdr: the place to put the results of the parsing
2036 * @intf: the interface for which parsing is requested
2037 * @buffer: pointer to the extra headers to be parsed
2038 * @buflen: length of the extra headers
2039 *
2040 * This evaluates the extra headers present in CDC devices which
2041 * bind the interfaces for data and control and provide details
2042 * about the capabilities of the device.
2043 *
2044 * Return: number of descriptors parsed or -EINVAL
2045 * if the header is contradictory beyond salvage
2046 */
2047
2048int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2049 struct usb_interface *intf,
2050 u8 *buffer,
2051 int buflen)
2052{
2053 /* duplicates are ignored */
2054 struct usb_cdc_union_desc *union_header = NULL;
2055
2056 /* duplicates are not tolerated */
2057 struct usb_cdc_header_desc *header = NULL;
2058 struct usb_cdc_ether_desc *ether = NULL;
2059 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2060 struct usb_cdc_mdlm_desc *desc = NULL;
2061
2062 unsigned int elength;
2063 int cnt = 0;
2064
2065 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2066 hdr->phonet_magic_present = false;
2067 while (buflen > 0) {
2068 elength = buffer[0];
2069 if (!elength) {
2070 dev_err(&intf->dev, "skipping garbage byte\n");
2071 elength = 1;
2072 goto next_desc;
2073 }
2074 if (buffer[1] != USB_DT_CS_INTERFACE) {
2075 dev_err(&intf->dev, "skipping garbage\n");
2076 goto next_desc;
2077 }
2078
2079 switch (buffer[2]) {
2080 case USB_CDC_UNION_TYPE: /* we've found it */
2081 if (elength < sizeof(struct usb_cdc_union_desc))
2082 goto next_desc;
2083 if (union_header) {
2084 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2085 goto next_desc;
2086 }
2087 union_header = (struct usb_cdc_union_desc *)buffer;
2088 break;
2089 case USB_CDC_COUNTRY_TYPE:
2090 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2091 goto next_desc;
2092 hdr->usb_cdc_country_functional_desc =
2093 (struct usb_cdc_country_functional_desc *)buffer;
2094 break;
2095 case USB_CDC_HEADER_TYPE:
2096 if (elength != sizeof(struct usb_cdc_header_desc))
2097 goto next_desc;
2098 if (header)
2099 return -EINVAL;
2100 header = (struct usb_cdc_header_desc *)buffer;
2101 break;
2102 case USB_CDC_ACM_TYPE:
2103 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2104 goto next_desc;
2105 hdr->usb_cdc_acm_descriptor =
2106 (struct usb_cdc_acm_descriptor *)buffer;
2107 break;
2108 case USB_CDC_ETHERNET_TYPE:
2109 if (elength != sizeof(struct usb_cdc_ether_desc))
2110 goto next_desc;
2111 if (ether)
2112 return -EINVAL;
2113 ether = (struct usb_cdc_ether_desc *)buffer;
2114 break;
2115 case USB_CDC_CALL_MANAGEMENT_TYPE:
2116 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2117 goto next_desc;
2118 hdr->usb_cdc_call_mgmt_descriptor =
2119 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2120 break;
2121 case USB_CDC_DMM_TYPE:
2122 if (elength < sizeof(struct usb_cdc_dmm_desc))
2123 goto next_desc;
2124 hdr->usb_cdc_dmm_desc =
2125 (struct usb_cdc_dmm_desc *)buffer;
2126 break;
2127 case USB_CDC_MDLM_TYPE:
2128 if (elength < sizeof(struct usb_cdc_mdlm_desc *))
2129 goto next_desc;
2130 if (desc)
2131 return -EINVAL;
2132 desc = (struct usb_cdc_mdlm_desc *)buffer;
2133 break;
2134 case USB_CDC_MDLM_DETAIL_TYPE:
2135 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *))
2136 goto next_desc;
2137 if (detail)
2138 return -EINVAL;
2139 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2140 break;
2141 case USB_CDC_NCM_TYPE:
2142 if (elength < sizeof(struct usb_cdc_ncm_desc))
2143 goto next_desc;
2144 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2145 break;
2146 case USB_CDC_MBIM_TYPE:
2147 if (elength < sizeof(struct usb_cdc_mbim_desc))
2148 goto next_desc;
2149
2150 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2151 break;
2152 case USB_CDC_MBIM_EXTENDED_TYPE:
2153 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2154 break;
2155 hdr->usb_cdc_mbim_extended_desc =
2156 (struct usb_cdc_mbim_extended_desc *)buffer;
2157 break;
2158 case CDC_PHONET_MAGIC_NUMBER:
2159 hdr->phonet_magic_present = true;
2160 break;
2161 default:
2162 /*
2163 * there are LOTS more CDC descriptors that
2164 * could legitimately be found here.
2165 */
2166 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2167 buffer[2], elength);
2168 goto next_desc;
2169 }
2170 cnt++;
2171next_desc:
2172 buflen -= elength;
2173 buffer += elength;
2174 }
2175 hdr->usb_cdc_union_desc = union_header;
2176 hdr->usb_cdc_header_desc = header;
2177 hdr->usb_cdc_mdlm_detail_desc = detail;
2178 hdr->usb_cdc_mdlm_desc = desc;
2179 hdr->usb_cdc_ether_desc = ether;
2180 return cnt;
2181}
2182
2183EXPORT_SYMBOL(cdc_parse_cdc_header);