Loading...
1/*
2 * message.c - synchronous message handling
3 */
4
5#include <linux/pci.h> /* for scatterlist macros */
6#include <linux/usb.h>
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/mm.h>
10#include <linux/timer.h>
11#include <linux/ctype.h>
12#include <linux/nls.h>
13#include <linux/device.h>
14#include <linux/scatterlist.h>
15#include <linux/usb/quirks.h>
16#include <linux/usb/hcd.h> /* for usbcore internals */
17#include <asm/byteorder.h>
18
19#include "usb.h"
20
21static void cancel_async_set_config(struct usb_device *udev);
22
23struct api_context {
24 struct completion done;
25 int status;
26};
27
28static void usb_api_blocking_completion(struct urb *urb)
29{
30 struct api_context *ctx = urb->context;
31
32 ctx->status = urb->status;
33 complete(&ctx->done);
34}
35
36
37/*
38 * Starts urb and waits for completion or timeout. Note that this call
39 * is NOT interruptible. Many device driver i/o requests should be
40 * interruptible and therefore these drivers should implement their
41 * own interruptible routines.
42 */
43static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
44{
45 struct api_context ctx;
46 unsigned long expire;
47 int retval;
48
49 init_completion(&ctx.done);
50 urb->context = &ctx;
51 urb->actual_length = 0;
52 retval = usb_submit_urb(urb, GFP_NOIO);
53 if (unlikely(retval))
54 goto out;
55
56 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
57 if (!wait_for_completion_timeout(&ctx.done, expire)) {
58 usb_kill_urb(urb);
59 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
60
61 dev_dbg(&urb->dev->dev,
62 "%s timed out on ep%d%s len=%u/%u\n",
63 current->comm,
64 usb_endpoint_num(&urb->ep->desc),
65 usb_urb_dir_in(urb) ? "in" : "out",
66 urb->actual_length,
67 urb->transfer_buffer_length);
68 } else
69 retval = ctx.status;
70out:
71 if (actual_length)
72 *actual_length = urb->actual_length;
73
74 usb_free_urb(urb);
75 return retval;
76}
77
78/*-------------------------------------------------------------------*/
79/* returns status (negative) or length (positive) */
80static int usb_internal_control_msg(struct usb_device *usb_dev,
81 unsigned int pipe,
82 struct usb_ctrlrequest *cmd,
83 void *data, int len, int timeout)
84{
85 struct urb *urb;
86 int retv;
87 int length;
88
89 urb = usb_alloc_urb(0, GFP_NOIO);
90 if (!urb)
91 return -ENOMEM;
92
93 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
94 len, usb_api_blocking_completion, NULL);
95
96 retv = usb_start_wait_urb(urb, timeout, &length);
97 if (retv < 0)
98 return retv;
99 else
100 return length;
101}
102
103/**
104 * usb_control_msg - Builds a control urb, sends it off and waits for completion
105 * @dev: pointer to the usb device to send the message to
106 * @pipe: endpoint "pipe" to send the message to
107 * @request: USB message request value
108 * @requesttype: USB message request type value
109 * @value: USB message value
110 * @index: USB message index value
111 * @data: pointer to the data to send
112 * @size: length in bytes of the data to send
113 * @timeout: time in msecs to wait for the message to complete before timing
114 * out (if 0 the wait is forever)
115 *
116 * Context: !in_interrupt ()
117 *
118 * This function sends a simple control message to a specified endpoint and
119 * waits for the message to complete, or timeout.
120 *
121 * Don't use this function from within an interrupt context, like a bottom half
122 * handler. If you need an asynchronous message, or need to send a message
123 * from within interrupt context, use usb_submit_urb().
124 * If a thread in your driver uses this call, make sure your disconnect()
125 * method can wait for it to complete. Since you don't have a handle on the
126 * URB used, you can't cancel the request.
127 *
128 * Return: If successful, the number of bytes transferred. Otherwise, a negative
129 * error number.
130 */
131int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
132 __u8 requesttype, __u16 value, __u16 index, void *data,
133 __u16 size, int timeout)
134{
135 struct usb_ctrlrequest *dr;
136 int ret;
137
138 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 if (!dr)
140 return -ENOMEM;
141
142 dr->bRequestType = requesttype;
143 dr->bRequest = request;
144 dr->wValue = cpu_to_le16(value);
145 dr->wIndex = cpu_to_le16(index);
146 dr->wLength = cpu_to_le16(size);
147
148 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
149
150 kfree(dr);
151
152 return ret;
153}
154EXPORT_SYMBOL_GPL(usb_control_msg);
155
156/**
157 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
158 * @usb_dev: pointer to the usb device to send the message to
159 * @pipe: endpoint "pipe" to send the message to
160 * @data: pointer to the data to send
161 * @len: length in bytes of the data to send
162 * @actual_length: pointer to a location to put the actual length transferred
163 * in bytes
164 * @timeout: time in msecs to wait for the message to complete before
165 * timing out (if 0 the wait is forever)
166 *
167 * Context: !in_interrupt ()
168 *
169 * This function sends a simple interrupt message to a specified endpoint and
170 * waits for the message to complete, or timeout.
171 *
172 * Don't use this function from within an interrupt context, like a bottom half
173 * handler. If you need an asynchronous message, or need to send a message
174 * from within interrupt context, use usb_submit_urb() If a thread in your
175 * driver uses this call, make sure your disconnect() method can wait for it to
176 * complete. Since you don't have a handle on the URB used, you can't cancel
177 * the request.
178 *
179 * Return:
180 * If successful, 0. Otherwise a negative error number. The number of actual
181 * bytes transferred will be stored in the @actual_length parameter.
182 */
183int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
184 void *data, int len, int *actual_length, int timeout)
185{
186 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
187}
188EXPORT_SYMBOL_GPL(usb_interrupt_msg);
189
190/**
191 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
192 * @usb_dev: pointer to the usb device to send the message to
193 * @pipe: endpoint "pipe" to send the message to
194 * @data: pointer to the data to send
195 * @len: length in bytes of the data to send
196 * @actual_length: pointer to a location to put the actual length transferred
197 * in bytes
198 * @timeout: time in msecs to wait for the message to complete before
199 * timing out (if 0 the wait is forever)
200 *
201 * Context: !in_interrupt ()
202 *
203 * This function sends a simple bulk message to a specified endpoint
204 * and waits for the message to complete, or timeout.
205 *
206 * Don't use this function from within an interrupt context, like a bottom half
207 * handler. If you need an asynchronous message, or need to send a message
208 * from within interrupt context, use usb_submit_urb() If a thread in your
209 * driver uses this call, make sure your disconnect() method can wait for it to
210 * complete. Since you don't have a handle on the URB used, you can't cancel
211 * the request.
212 *
213 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
214 * users are forced to abuse this routine by using it to submit URBs for
215 * interrupt endpoints. We will take the liberty of creating an interrupt URB
216 * (with the default interval) if the target is an interrupt endpoint.
217 *
218 * Return:
219 * If successful, 0. Otherwise a negative error number. The number of actual
220 * bytes transferred will be stored in the @actual_length parameter.
221 *
222 */
223int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 void *data, int len, int *actual_length, int timeout)
225{
226 struct urb *urb;
227 struct usb_host_endpoint *ep;
228
229 ep = usb_pipe_endpoint(usb_dev, pipe);
230 if (!ep || len < 0)
231 return -EINVAL;
232
233 urb = usb_alloc_urb(0, GFP_KERNEL);
234 if (!urb)
235 return -ENOMEM;
236
237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 USB_ENDPOINT_XFER_INT) {
239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 usb_api_blocking_completion, NULL,
242 ep->desc.bInterval);
243 } else
244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 usb_api_blocking_completion, NULL);
246
247 return usb_start_wait_urb(urb, timeout, actual_length);
248}
249EXPORT_SYMBOL_GPL(usb_bulk_msg);
250
251/*-------------------------------------------------------------------*/
252
253static void sg_clean(struct usb_sg_request *io)
254{
255 if (io->urbs) {
256 while (io->entries--)
257 usb_free_urb(io->urbs[io->entries]);
258 kfree(io->urbs);
259 io->urbs = NULL;
260 }
261 io->dev = NULL;
262}
263
264static void sg_complete(struct urb *urb)
265{
266 struct usb_sg_request *io = urb->context;
267 int status = urb->status;
268
269 spin_lock(&io->lock);
270
271 /* In 2.5 we require hcds' endpoint queues not to progress after fault
272 * reports, until the completion callback (this!) returns. That lets
273 * device driver code (like this routine) unlink queued urbs first,
274 * if it needs to, since the HC won't work on them at all. So it's
275 * not possible for page N+1 to overwrite page N, and so on.
276 *
277 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278 * complete before the HCD can get requests away from hardware,
279 * though never during cleanup after a hard fault.
280 */
281 if (io->status
282 && (io->status != -ECONNRESET
283 || status != -ECONNRESET)
284 && urb->actual_length) {
285 dev_err(io->dev->bus->controller,
286 "dev %s ep%d%s scatterlist error %d/%d\n",
287 io->dev->devpath,
288 usb_endpoint_num(&urb->ep->desc),
289 usb_urb_dir_in(urb) ? "in" : "out",
290 status, io->status);
291 /* BUG (); */
292 }
293
294 if (io->status == 0 && status && status != -ECONNRESET) {
295 int i, found, retval;
296
297 io->status = status;
298
299 /* the previous urbs, and this one, completed already.
300 * unlink pending urbs so they won't rx/tx bad data.
301 * careful: unlink can sometimes be synchronous...
302 */
303 spin_unlock(&io->lock);
304 for (i = 0, found = 0; i < io->entries; i++) {
305 if (!io->urbs[i] || !io->urbs[i]->dev)
306 continue;
307 if (found) {
308 retval = usb_unlink_urb(io->urbs[i]);
309 if (retval != -EINPROGRESS &&
310 retval != -ENODEV &&
311 retval != -EBUSY &&
312 retval != -EIDRM)
313 dev_err(&io->dev->dev,
314 "%s, unlink --> %d\n",
315 __func__, retval);
316 } else if (urb == io->urbs[i])
317 found = 1;
318 }
319 spin_lock(&io->lock);
320 }
321
322 /* on the last completion, signal usb_sg_wait() */
323 io->bytes += urb->actual_length;
324 io->count--;
325 if (!io->count)
326 complete(&io->complete);
327
328 spin_unlock(&io->lock);
329}
330
331
332/**
333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
334 * @io: request block being initialized. until usb_sg_wait() returns,
335 * treat this as a pointer to an opaque block of memory,
336 * @dev: the usb device that will send or receive the data
337 * @pipe: endpoint "pipe" used to transfer the data
338 * @period: polling rate for interrupt endpoints, in frames or
339 * (for high speed endpoints) microframes; ignored for bulk
340 * @sg: scatterlist entries
341 * @nents: how many entries in the scatterlist
342 * @length: how many bytes to send from the scatterlist, or zero to
343 * send every byte identified in the list.
344 * @mem_flags: SLAB_* flags affecting memory allocations in this call
345 *
346 * This initializes a scatter/gather request, allocating resources such as
347 * I/O mappings and urb memory (except maybe memory used by USB controller
348 * drivers).
349 *
350 * The request must be issued using usb_sg_wait(), which waits for the I/O to
351 * complete (or to be canceled) and then cleans up all resources allocated by
352 * usb_sg_init().
353 *
354 * The request may be canceled with usb_sg_cancel(), either before or after
355 * usb_sg_wait() is called.
356 *
357 * Return: Zero for success, else a negative errno value.
358 */
359int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
360 unsigned pipe, unsigned period, struct scatterlist *sg,
361 int nents, size_t length, gfp_t mem_flags)
362{
363 int i;
364 int urb_flags;
365 int use_sg;
366
367 if (!io || !dev || !sg
368 || usb_pipecontrol(pipe)
369 || usb_pipeisoc(pipe)
370 || nents <= 0)
371 return -EINVAL;
372
373 spin_lock_init(&io->lock);
374 io->dev = dev;
375 io->pipe = pipe;
376
377 if (dev->bus->sg_tablesize > 0) {
378 use_sg = true;
379 io->entries = 1;
380 } else {
381 use_sg = false;
382 io->entries = nents;
383 }
384
385 /* initialize all the urbs we'll use */
386 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
387 if (!io->urbs)
388 goto nomem;
389
390 urb_flags = URB_NO_INTERRUPT;
391 if (usb_pipein(pipe))
392 urb_flags |= URB_SHORT_NOT_OK;
393
394 for_each_sg(sg, sg, io->entries, i) {
395 struct urb *urb;
396 unsigned len;
397
398 urb = usb_alloc_urb(0, mem_flags);
399 if (!urb) {
400 io->entries = i;
401 goto nomem;
402 }
403 io->urbs[i] = urb;
404
405 urb->dev = NULL;
406 urb->pipe = pipe;
407 urb->interval = period;
408 urb->transfer_flags = urb_flags;
409 urb->complete = sg_complete;
410 urb->context = io;
411 urb->sg = sg;
412
413 if (use_sg) {
414 /* There is no single transfer buffer */
415 urb->transfer_buffer = NULL;
416 urb->num_sgs = nents;
417
418 /* A length of zero means transfer the whole sg list */
419 len = length;
420 if (len == 0) {
421 struct scatterlist *sg2;
422 int j;
423
424 for_each_sg(sg, sg2, nents, j)
425 len += sg2->length;
426 }
427 } else {
428 /*
429 * Some systems can't use DMA; they use PIO instead.
430 * For their sakes, transfer_buffer is set whenever
431 * possible.
432 */
433 if (!PageHighMem(sg_page(sg)))
434 urb->transfer_buffer = sg_virt(sg);
435 else
436 urb->transfer_buffer = NULL;
437
438 len = sg->length;
439 if (length) {
440 len = min_t(size_t, len, length);
441 length -= len;
442 if (length == 0)
443 io->entries = i + 1;
444 }
445 }
446 urb->transfer_buffer_length = len;
447 }
448 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
449
450 /* transaction state */
451 io->count = io->entries;
452 io->status = 0;
453 io->bytes = 0;
454 init_completion(&io->complete);
455 return 0;
456
457nomem:
458 sg_clean(io);
459 return -ENOMEM;
460}
461EXPORT_SYMBOL_GPL(usb_sg_init);
462
463/**
464 * usb_sg_wait - synchronously execute scatter/gather request
465 * @io: request block handle, as initialized with usb_sg_init().
466 * some fields become accessible when this call returns.
467 * Context: !in_interrupt ()
468 *
469 * This function blocks until the specified I/O operation completes. It
470 * leverages the grouping of the related I/O requests to get good transfer
471 * rates, by queueing the requests. At higher speeds, such queuing can
472 * significantly improve USB throughput.
473 *
474 * There are three kinds of completion for this function.
475 * (1) success, where io->status is zero. The number of io->bytes
476 * transferred is as requested.
477 * (2) error, where io->status is a negative errno value. The number
478 * of io->bytes transferred before the error is usually less
479 * than requested, and can be nonzero.
480 * (3) cancellation, a type of error with status -ECONNRESET that
481 * is initiated by usb_sg_cancel().
482 *
483 * When this function returns, all memory allocated through usb_sg_init() or
484 * this call will have been freed. The request block parameter may still be
485 * passed to usb_sg_cancel(), or it may be freed. It could also be
486 * reinitialized and then reused.
487 *
488 * Data Transfer Rates:
489 *
490 * Bulk transfers are valid for full or high speed endpoints.
491 * The best full speed data rate is 19 packets of 64 bytes each
492 * per frame, or 1216 bytes per millisecond.
493 * The best high speed data rate is 13 packets of 512 bytes each
494 * per microframe, or 52 KBytes per millisecond.
495 *
496 * The reason to use interrupt transfers through this API would most likely
497 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
498 * could be transferred. That capability is less useful for low or full
499 * speed interrupt endpoints, which allow at most one packet per millisecond,
500 * of at most 8 or 64 bytes (respectively).
501 *
502 * It is not necessary to call this function to reserve bandwidth for devices
503 * under an xHCI host controller, as the bandwidth is reserved when the
504 * configuration or interface alt setting is selected.
505 */
506void usb_sg_wait(struct usb_sg_request *io)
507{
508 int i;
509 int entries = io->entries;
510
511 /* queue the urbs. */
512 spin_lock_irq(&io->lock);
513 i = 0;
514 while (i < entries && !io->status) {
515 int retval;
516
517 io->urbs[i]->dev = io->dev;
518 retval = usb_submit_urb(io->urbs[i], GFP_ATOMIC);
519
520 /* after we submit, let completions or cancellations fire;
521 * we handshake using io->status.
522 */
523 spin_unlock_irq(&io->lock);
524 switch (retval) {
525 /* maybe we retrying will recover */
526 case -ENXIO: /* hc didn't queue this one */
527 case -EAGAIN:
528 case -ENOMEM:
529 retval = 0;
530 yield();
531 break;
532
533 /* no error? continue immediately.
534 *
535 * NOTE: to work better with UHCI (4K I/O buffer may
536 * need 3K of TDs) it may be good to limit how many
537 * URBs are queued at once; N milliseconds?
538 */
539 case 0:
540 ++i;
541 cpu_relax();
542 break;
543
544 /* fail any uncompleted urbs */
545 default:
546 io->urbs[i]->status = retval;
547 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
548 __func__, retval);
549 usb_sg_cancel(io);
550 }
551 spin_lock_irq(&io->lock);
552 if (retval && (io->status == 0 || io->status == -ECONNRESET))
553 io->status = retval;
554 }
555 io->count -= entries - i;
556 if (io->count == 0)
557 complete(&io->complete);
558 spin_unlock_irq(&io->lock);
559
560 /* OK, yes, this could be packaged as non-blocking.
561 * So could the submit loop above ... but it's easier to
562 * solve neither problem than to solve both!
563 */
564 wait_for_completion(&io->complete);
565
566 sg_clean(io);
567}
568EXPORT_SYMBOL_GPL(usb_sg_wait);
569
570/**
571 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
572 * @io: request block, initialized with usb_sg_init()
573 *
574 * This stops a request after it has been started by usb_sg_wait().
575 * It can also prevents one initialized by usb_sg_init() from starting,
576 * so that call just frees resources allocated to the request.
577 */
578void usb_sg_cancel(struct usb_sg_request *io)
579{
580 unsigned long flags;
581
582 spin_lock_irqsave(&io->lock, flags);
583
584 /* shut everything down, if it didn't already */
585 if (!io->status) {
586 int i;
587
588 io->status = -ECONNRESET;
589 spin_unlock(&io->lock);
590 for (i = 0; i < io->entries; i++) {
591 int retval;
592
593 if (!io->urbs[i]->dev)
594 continue;
595 retval = usb_unlink_urb(io->urbs[i]);
596 if (retval != -EINPROGRESS
597 && retval != -ENODEV
598 && retval != -EBUSY
599 && retval != -EIDRM)
600 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
601 __func__, retval);
602 }
603 spin_lock(&io->lock);
604 }
605 spin_unlock_irqrestore(&io->lock, flags);
606}
607EXPORT_SYMBOL_GPL(usb_sg_cancel);
608
609/*-------------------------------------------------------------------*/
610
611/**
612 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
613 * @dev: the device whose descriptor is being retrieved
614 * @type: the descriptor type (USB_DT_*)
615 * @index: the number of the descriptor
616 * @buf: where to put the descriptor
617 * @size: how big is "buf"?
618 * Context: !in_interrupt ()
619 *
620 * Gets a USB descriptor. Convenience functions exist to simplify
621 * getting some types of descriptors. Use
622 * usb_get_string() or usb_string() for USB_DT_STRING.
623 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
624 * are part of the device structure.
625 * In addition to a number of USB-standard descriptors, some
626 * devices also use class-specific or vendor-specific descriptors.
627 *
628 * This call is synchronous, and may not be used in an interrupt context.
629 *
630 * Return: The number of bytes received on success, or else the status code
631 * returned by the underlying usb_control_msg() call.
632 */
633int usb_get_descriptor(struct usb_device *dev, unsigned char type,
634 unsigned char index, void *buf, int size)
635{
636 int i;
637 int result;
638
639 memset(buf, 0, size); /* Make sure we parse really received data */
640
641 for (i = 0; i < 3; ++i) {
642 /* retry on length 0 or error; some devices are flakey */
643 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
644 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
645 (type << 8) + index, 0, buf, size,
646 USB_CTRL_GET_TIMEOUT);
647 if (result <= 0 && result != -ETIMEDOUT)
648 continue;
649 if (result > 1 && ((u8 *)buf)[1] != type) {
650 result = -ENODATA;
651 continue;
652 }
653 break;
654 }
655 return result;
656}
657EXPORT_SYMBOL_GPL(usb_get_descriptor);
658
659/**
660 * usb_get_string - gets a string descriptor
661 * @dev: the device whose string descriptor is being retrieved
662 * @langid: code for language chosen (from string descriptor zero)
663 * @index: the number of the descriptor
664 * @buf: where to put the string
665 * @size: how big is "buf"?
666 * Context: !in_interrupt ()
667 *
668 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
669 * in little-endian byte order).
670 * The usb_string() function will often be a convenient way to turn
671 * these strings into kernel-printable form.
672 *
673 * Strings may be referenced in device, configuration, interface, or other
674 * descriptors, and could also be used in vendor-specific ways.
675 *
676 * This call is synchronous, and may not be used in an interrupt context.
677 *
678 * Return: The number of bytes received on success, or else the status code
679 * returned by the underlying usb_control_msg() call.
680 */
681static int usb_get_string(struct usb_device *dev, unsigned short langid,
682 unsigned char index, void *buf, int size)
683{
684 int i;
685 int result;
686
687 for (i = 0; i < 3; ++i) {
688 /* retry on length 0 or stall; some devices are flakey */
689 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
690 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
691 (USB_DT_STRING << 8) + index, langid, buf, size,
692 USB_CTRL_GET_TIMEOUT);
693 if (result == 0 || result == -EPIPE)
694 continue;
695 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
696 result = -ENODATA;
697 continue;
698 }
699 break;
700 }
701 return result;
702}
703
704static void usb_try_string_workarounds(unsigned char *buf, int *length)
705{
706 int newlength, oldlength = *length;
707
708 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
709 if (!isprint(buf[newlength]) || buf[newlength + 1])
710 break;
711
712 if (newlength > 2) {
713 buf[0] = newlength;
714 *length = newlength;
715 }
716}
717
718static int usb_string_sub(struct usb_device *dev, unsigned int langid,
719 unsigned int index, unsigned char *buf)
720{
721 int rc;
722
723 /* Try to read the string descriptor by asking for the maximum
724 * possible number of bytes */
725 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
726 rc = -EIO;
727 else
728 rc = usb_get_string(dev, langid, index, buf, 255);
729
730 /* If that failed try to read the descriptor length, then
731 * ask for just that many bytes */
732 if (rc < 2) {
733 rc = usb_get_string(dev, langid, index, buf, 2);
734 if (rc == 2)
735 rc = usb_get_string(dev, langid, index, buf, buf[0]);
736 }
737
738 if (rc >= 2) {
739 if (!buf[0] && !buf[1])
740 usb_try_string_workarounds(buf, &rc);
741
742 /* There might be extra junk at the end of the descriptor */
743 if (buf[0] < rc)
744 rc = buf[0];
745
746 rc = rc - (rc & 1); /* force a multiple of two */
747 }
748
749 if (rc < 2)
750 rc = (rc < 0 ? rc : -EINVAL);
751
752 return rc;
753}
754
755static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
756{
757 int err;
758
759 if (dev->have_langid)
760 return 0;
761
762 if (dev->string_langid < 0)
763 return -EPIPE;
764
765 err = usb_string_sub(dev, 0, 0, tbuf);
766
767 /* If the string was reported but is malformed, default to english
768 * (0x0409) */
769 if (err == -ENODATA || (err > 0 && err < 4)) {
770 dev->string_langid = 0x0409;
771 dev->have_langid = 1;
772 dev_err(&dev->dev,
773 "language id specifier not provided by device, defaulting to English\n");
774 return 0;
775 }
776
777 /* In case of all other errors, we assume the device is not able to
778 * deal with strings at all. Set string_langid to -1 in order to
779 * prevent any string to be retrieved from the device */
780 if (err < 0) {
781 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
782 err);
783 dev->string_langid = -1;
784 return -EPIPE;
785 }
786
787 /* always use the first langid listed */
788 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
789 dev->have_langid = 1;
790 dev_dbg(&dev->dev, "default language 0x%04x\n",
791 dev->string_langid);
792 return 0;
793}
794
795/**
796 * usb_string - returns UTF-8 version of a string descriptor
797 * @dev: the device whose string descriptor is being retrieved
798 * @index: the number of the descriptor
799 * @buf: where to put the string
800 * @size: how big is "buf"?
801 * Context: !in_interrupt ()
802 *
803 * This converts the UTF-16LE encoded strings returned by devices, from
804 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
805 * that are more usable in most kernel contexts. Note that this function
806 * chooses strings in the first language supported by the device.
807 *
808 * This call is synchronous, and may not be used in an interrupt context.
809 *
810 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
811 */
812int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
813{
814 unsigned char *tbuf;
815 int err;
816
817 if (dev->state == USB_STATE_SUSPENDED)
818 return -EHOSTUNREACH;
819 if (size <= 0 || !buf || !index)
820 return -EINVAL;
821 buf[0] = 0;
822 tbuf = kmalloc(256, GFP_NOIO);
823 if (!tbuf)
824 return -ENOMEM;
825
826 err = usb_get_langid(dev, tbuf);
827 if (err < 0)
828 goto errout;
829
830 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
831 if (err < 0)
832 goto errout;
833
834 size--; /* leave room for trailing NULL char in output buffer */
835 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
836 UTF16_LITTLE_ENDIAN, buf, size);
837 buf[err] = 0;
838
839 if (tbuf[1] != USB_DT_STRING)
840 dev_dbg(&dev->dev,
841 "wrong descriptor type %02x for string %d (\"%s\")\n",
842 tbuf[1], index, buf);
843
844 errout:
845 kfree(tbuf);
846 return err;
847}
848EXPORT_SYMBOL_GPL(usb_string);
849
850/* one UTF-8-encoded 16-bit character has at most three bytes */
851#define MAX_USB_STRING_SIZE (127 * 3 + 1)
852
853/**
854 * usb_cache_string - read a string descriptor and cache it for later use
855 * @udev: the device whose string descriptor is being read
856 * @index: the descriptor index
857 *
858 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
859 * or %NULL if the index is 0 or the string could not be read.
860 */
861char *usb_cache_string(struct usb_device *udev, int index)
862{
863 char *buf;
864 char *smallbuf = NULL;
865 int len;
866
867 if (index <= 0)
868 return NULL;
869
870 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
871 if (buf) {
872 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
873 if (len > 0) {
874 smallbuf = kmalloc(++len, GFP_NOIO);
875 if (!smallbuf)
876 return buf;
877 memcpy(smallbuf, buf, len);
878 }
879 kfree(buf);
880 }
881 return smallbuf;
882}
883
884/*
885 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
886 * @dev: the device whose device descriptor is being updated
887 * @size: how much of the descriptor to read
888 * Context: !in_interrupt ()
889 *
890 * Updates the copy of the device descriptor stored in the device structure,
891 * which dedicates space for this purpose.
892 *
893 * Not exported, only for use by the core. If drivers really want to read
894 * the device descriptor directly, they can call usb_get_descriptor() with
895 * type = USB_DT_DEVICE and index = 0.
896 *
897 * This call is synchronous, and may not be used in an interrupt context.
898 *
899 * Return: The number of bytes received on success, or else the status code
900 * returned by the underlying usb_control_msg() call.
901 */
902int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
903{
904 struct usb_device_descriptor *desc;
905 int ret;
906
907 if (size > sizeof(*desc))
908 return -EINVAL;
909 desc = kmalloc(sizeof(*desc), GFP_NOIO);
910 if (!desc)
911 return -ENOMEM;
912
913 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
914 if (ret >= 0)
915 memcpy(&dev->descriptor, desc, size);
916 kfree(desc);
917 return ret;
918}
919
920/**
921 * usb_get_status - issues a GET_STATUS call
922 * @dev: the device whose status is being checked
923 * @type: USB_RECIP_*; for device, interface, or endpoint
924 * @target: zero (for device), else interface or endpoint number
925 * @data: pointer to two bytes of bitmap data
926 * Context: !in_interrupt ()
927 *
928 * Returns device, interface, or endpoint status. Normally only of
929 * interest to see if the device is self powered, or has enabled the
930 * remote wakeup facility; or whether a bulk or interrupt endpoint
931 * is halted ("stalled").
932 *
933 * Bits in these status bitmaps are set using the SET_FEATURE request,
934 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
935 * function should be used to clear halt ("stall") status.
936 *
937 * This call is synchronous, and may not be used in an interrupt context.
938 *
939 * Returns 0 and the status value in *@data (in host byte order) on success,
940 * or else the status code from the underlying usb_control_msg() call.
941 */
942int usb_get_status(struct usb_device *dev, int type, int target, void *data)
943{
944 int ret;
945 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
946
947 if (!status)
948 return -ENOMEM;
949
950 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
951 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
952 sizeof(*status), USB_CTRL_GET_TIMEOUT);
953
954 if (ret == 2) {
955 *(u16 *) data = le16_to_cpu(*status);
956 ret = 0;
957 } else if (ret >= 0) {
958 ret = -EIO;
959 }
960 kfree(status);
961 return ret;
962}
963EXPORT_SYMBOL_GPL(usb_get_status);
964
965/**
966 * usb_clear_halt - tells device to clear endpoint halt/stall condition
967 * @dev: device whose endpoint is halted
968 * @pipe: endpoint "pipe" being cleared
969 * Context: !in_interrupt ()
970 *
971 * This is used to clear halt conditions for bulk and interrupt endpoints,
972 * as reported by URB completion status. Endpoints that are halted are
973 * sometimes referred to as being "stalled". Such endpoints are unable
974 * to transmit or receive data until the halt status is cleared. Any URBs
975 * queued for such an endpoint should normally be unlinked by the driver
976 * before clearing the halt condition, as described in sections 5.7.5
977 * and 5.8.5 of the USB 2.0 spec.
978 *
979 * Note that control and isochronous endpoints don't halt, although control
980 * endpoints report "protocol stall" (for unsupported requests) using the
981 * same status code used to report a true stall.
982 *
983 * This call is synchronous, and may not be used in an interrupt context.
984 *
985 * Return: Zero on success, or else the status code returned by the
986 * underlying usb_control_msg() call.
987 */
988int usb_clear_halt(struct usb_device *dev, int pipe)
989{
990 int result;
991 int endp = usb_pipeendpoint(pipe);
992
993 if (usb_pipein(pipe))
994 endp |= USB_DIR_IN;
995
996 /* we don't care if it wasn't halted first. in fact some devices
997 * (like some ibmcam model 1 units) seem to expect hosts to make
998 * this request for iso endpoints, which can't halt!
999 */
1000 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1001 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1002 USB_ENDPOINT_HALT, endp, NULL, 0,
1003 USB_CTRL_SET_TIMEOUT);
1004
1005 /* don't un-halt or force to DATA0 except on success */
1006 if (result < 0)
1007 return result;
1008
1009 /* NOTE: seems like Microsoft and Apple don't bother verifying
1010 * the clear "took", so some devices could lock up if you check...
1011 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1012 *
1013 * NOTE: make sure the logic here doesn't diverge much from
1014 * the copy in usb-storage, for as long as we need two copies.
1015 */
1016
1017 usb_reset_endpoint(dev, endp);
1018
1019 return 0;
1020}
1021EXPORT_SYMBOL_GPL(usb_clear_halt);
1022
1023static int create_intf_ep_devs(struct usb_interface *intf)
1024{
1025 struct usb_device *udev = interface_to_usbdev(intf);
1026 struct usb_host_interface *alt = intf->cur_altsetting;
1027 int i;
1028
1029 if (intf->ep_devs_created || intf->unregistering)
1030 return 0;
1031
1032 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1033 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1034 intf->ep_devs_created = 1;
1035 return 0;
1036}
1037
1038static void remove_intf_ep_devs(struct usb_interface *intf)
1039{
1040 struct usb_host_interface *alt = intf->cur_altsetting;
1041 int i;
1042
1043 if (!intf->ep_devs_created)
1044 return;
1045
1046 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1047 usb_remove_ep_devs(&alt->endpoint[i]);
1048 intf->ep_devs_created = 0;
1049}
1050
1051/**
1052 * usb_disable_endpoint -- Disable an endpoint by address
1053 * @dev: the device whose endpoint is being disabled
1054 * @epaddr: the endpoint's address. Endpoint number for output,
1055 * endpoint number + USB_DIR_IN for input
1056 * @reset_hardware: flag to erase any endpoint state stored in the
1057 * controller hardware
1058 *
1059 * Disables the endpoint for URB submission and nukes all pending URBs.
1060 * If @reset_hardware is set then also deallocates hcd/hardware state
1061 * for the endpoint.
1062 */
1063void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1064 bool reset_hardware)
1065{
1066 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1067 struct usb_host_endpoint *ep;
1068
1069 if (!dev)
1070 return;
1071
1072 if (usb_endpoint_out(epaddr)) {
1073 ep = dev->ep_out[epnum];
1074 if (reset_hardware)
1075 dev->ep_out[epnum] = NULL;
1076 } else {
1077 ep = dev->ep_in[epnum];
1078 if (reset_hardware)
1079 dev->ep_in[epnum] = NULL;
1080 }
1081 if (ep) {
1082 ep->enabled = 0;
1083 usb_hcd_flush_endpoint(dev, ep);
1084 if (reset_hardware)
1085 usb_hcd_disable_endpoint(dev, ep);
1086 }
1087}
1088
1089/**
1090 * usb_reset_endpoint - Reset an endpoint's state.
1091 * @dev: the device whose endpoint is to be reset
1092 * @epaddr: the endpoint's address. Endpoint number for output,
1093 * endpoint number + USB_DIR_IN for input
1094 *
1095 * Resets any host-side endpoint state such as the toggle bit,
1096 * sequence number or current window.
1097 */
1098void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1099{
1100 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1101 struct usb_host_endpoint *ep;
1102
1103 if (usb_endpoint_out(epaddr))
1104 ep = dev->ep_out[epnum];
1105 else
1106 ep = dev->ep_in[epnum];
1107 if (ep)
1108 usb_hcd_reset_endpoint(dev, ep);
1109}
1110EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1111
1112
1113/**
1114 * usb_disable_interface -- Disable all endpoints for an interface
1115 * @dev: the device whose interface is being disabled
1116 * @intf: pointer to the interface descriptor
1117 * @reset_hardware: flag to erase any endpoint state stored in the
1118 * controller hardware
1119 *
1120 * Disables all the endpoints for the interface's current altsetting.
1121 */
1122void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1123 bool reset_hardware)
1124{
1125 struct usb_host_interface *alt = intf->cur_altsetting;
1126 int i;
1127
1128 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1129 usb_disable_endpoint(dev,
1130 alt->endpoint[i].desc.bEndpointAddress,
1131 reset_hardware);
1132 }
1133}
1134
1135/**
1136 * usb_disable_device - Disable all the endpoints for a USB device
1137 * @dev: the device whose endpoints are being disabled
1138 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1139 *
1140 * Disables all the device's endpoints, potentially including endpoint 0.
1141 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1142 * pending urbs) and usbcore state for the interfaces, so that usbcore
1143 * must usb_set_configuration() before any interfaces could be used.
1144 */
1145void usb_disable_device(struct usb_device *dev, int skip_ep0)
1146{
1147 int i;
1148 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1149
1150 /* getting rid of interfaces will disconnect
1151 * any drivers bound to them (a key side effect)
1152 */
1153 if (dev->actconfig) {
1154 /*
1155 * FIXME: In order to avoid self-deadlock involving the
1156 * bandwidth_mutex, we have to mark all the interfaces
1157 * before unregistering any of them.
1158 */
1159 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1160 dev->actconfig->interface[i]->unregistering = 1;
1161
1162 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1163 struct usb_interface *interface;
1164
1165 /* remove this interface if it has been registered */
1166 interface = dev->actconfig->interface[i];
1167 if (!device_is_registered(&interface->dev))
1168 continue;
1169 dev_dbg(&dev->dev, "unregistering interface %s\n",
1170 dev_name(&interface->dev));
1171 remove_intf_ep_devs(interface);
1172 device_del(&interface->dev);
1173 }
1174
1175 /* Now that the interfaces are unbound, nobody should
1176 * try to access them.
1177 */
1178 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1179 put_device(&dev->actconfig->interface[i]->dev);
1180 dev->actconfig->interface[i] = NULL;
1181 }
1182
1183 if (dev->usb2_hw_lpm_enabled == 1)
1184 usb_set_usb2_hardware_lpm(dev, 0);
1185 usb_unlocked_disable_lpm(dev);
1186 usb_disable_ltm(dev);
1187
1188 dev->actconfig = NULL;
1189 if (dev->state == USB_STATE_CONFIGURED)
1190 usb_set_device_state(dev, USB_STATE_ADDRESS);
1191 }
1192
1193 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1194 skip_ep0 ? "non-ep0" : "all");
1195 if (hcd->driver->check_bandwidth) {
1196 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1197 for (i = skip_ep0; i < 16; ++i) {
1198 usb_disable_endpoint(dev, i, false);
1199 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1200 }
1201 /* Remove endpoints from the host controller internal state */
1202 mutex_lock(hcd->bandwidth_mutex);
1203 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1204 mutex_unlock(hcd->bandwidth_mutex);
1205 /* Second pass: remove endpoint pointers */
1206 }
1207 for (i = skip_ep0; i < 16; ++i) {
1208 usb_disable_endpoint(dev, i, true);
1209 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1210 }
1211}
1212
1213/**
1214 * usb_enable_endpoint - Enable an endpoint for USB communications
1215 * @dev: the device whose interface is being enabled
1216 * @ep: the endpoint
1217 * @reset_ep: flag to reset the endpoint state
1218 *
1219 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1220 * For control endpoints, both the input and output sides are handled.
1221 */
1222void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1223 bool reset_ep)
1224{
1225 int epnum = usb_endpoint_num(&ep->desc);
1226 int is_out = usb_endpoint_dir_out(&ep->desc);
1227 int is_control = usb_endpoint_xfer_control(&ep->desc);
1228
1229 if (reset_ep)
1230 usb_hcd_reset_endpoint(dev, ep);
1231 if (is_out || is_control)
1232 dev->ep_out[epnum] = ep;
1233 if (!is_out || is_control)
1234 dev->ep_in[epnum] = ep;
1235 ep->enabled = 1;
1236}
1237
1238/**
1239 * usb_enable_interface - Enable all the endpoints for an interface
1240 * @dev: the device whose interface is being enabled
1241 * @intf: pointer to the interface descriptor
1242 * @reset_eps: flag to reset the endpoints' state
1243 *
1244 * Enables all the endpoints for the interface's current altsetting.
1245 */
1246void usb_enable_interface(struct usb_device *dev,
1247 struct usb_interface *intf, bool reset_eps)
1248{
1249 struct usb_host_interface *alt = intf->cur_altsetting;
1250 int i;
1251
1252 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1253 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1254}
1255
1256/**
1257 * usb_set_interface - Makes a particular alternate setting be current
1258 * @dev: the device whose interface is being updated
1259 * @interface: the interface being updated
1260 * @alternate: the setting being chosen.
1261 * Context: !in_interrupt ()
1262 *
1263 * This is used to enable data transfers on interfaces that may not
1264 * be enabled by default. Not all devices support such configurability.
1265 * Only the driver bound to an interface may change its setting.
1266 *
1267 * Within any given configuration, each interface may have several
1268 * alternative settings. These are often used to control levels of
1269 * bandwidth consumption. For example, the default setting for a high
1270 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1271 * while interrupt transfers of up to 3KBytes per microframe are legal.
1272 * Also, isochronous endpoints may never be part of an
1273 * interface's default setting. To access such bandwidth, alternate
1274 * interface settings must be made current.
1275 *
1276 * Note that in the Linux USB subsystem, bandwidth associated with
1277 * an endpoint in a given alternate setting is not reserved until an URB
1278 * is submitted that needs that bandwidth. Some other operating systems
1279 * allocate bandwidth early, when a configuration is chosen.
1280 *
1281 * This call is synchronous, and may not be used in an interrupt context.
1282 * Also, drivers must not change altsettings while urbs are scheduled for
1283 * endpoints in that interface; all such urbs must first be completed
1284 * (perhaps forced by unlinking).
1285 *
1286 * Return: Zero on success, or else the status code returned by the
1287 * underlying usb_control_msg() call.
1288 */
1289int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1290{
1291 struct usb_interface *iface;
1292 struct usb_host_interface *alt;
1293 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1294 int i, ret, manual = 0;
1295 unsigned int epaddr;
1296 unsigned int pipe;
1297
1298 if (dev->state == USB_STATE_SUSPENDED)
1299 return -EHOSTUNREACH;
1300
1301 iface = usb_ifnum_to_if(dev, interface);
1302 if (!iface) {
1303 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1304 interface);
1305 return -EINVAL;
1306 }
1307 if (iface->unregistering)
1308 return -ENODEV;
1309
1310 alt = usb_altnum_to_altsetting(iface, alternate);
1311 if (!alt) {
1312 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1313 alternate);
1314 return -EINVAL;
1315 }
1316
1317 /* Make sure we have enough bandwidth for this alternate interface.
1318 * Remove the current alt setting and add the new alt setting.
1319 */
1320 mutex_lock(hcd->bandwidth_mutex);
1321 /* Disable LPM, and re-enable it once the new alt setting is installed,
1322 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1323 */
1324 if (usb_disable_lpm(dev)) {
1325 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1326 mutex_unlock(hcd->bandwidth_mutex);
1327 return -ENOMEM;
1328 }
1329 /* Changing alt-setting also frees any allocated streams */
1330 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1331 iface->cur_altsetting->endpoint[i].streams = 0;
1332
1333 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1334 if (ret < 0) {
1335 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1336 alternate);
1337 usb_enable_lpm(dev);
1338 mutex_unlock(hcd->bandwidth_mutex);
1339 return ret;
1340 }
1341
1342 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1343 ret = -EPIPE;
1344 else
1345 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1346 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1347 alternate, interface, NULL, 0, 5000);
1348
1349 /* 9.4.10 says devices don't need this and are free to STALL the
1350 * request if the interface only has one alternate setting.
1351 */
1352 if (ret == -EPIPE && iface->num_altsetting == 1) {
1353 dev_dbg(&dev->dev,
1354 "manual set_interface for iface %d, alt %d\n",
1355 interface, alternate);
1356 manual = 1;
1357 } else if (ret < 0) {
1358 /* Re-instate the old alt setting */
1359 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1360 usb_enable_lpm(dev);
1361 mutex_unlock(hcd->bandwidth_mutex);
1362 return ret;
1363 }
1364 mutex_unlock(hcd->bandwidth_mutex);
1365
1366 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1367 * when they implement async or easily-killable versions of this or
1368 * other "should-be-internal" functions (like clear_halt).
1369 * should hcd+usbcore postprocess control requests?
1370 */
1371
1372 /* prevent submissions using previous endpoint settings */
1373 if (iface->cur_altsetting != alt) {
1374 remove_intf_ep_devs(iface);
1375 usb_remove_sysfs_intf_files(iface);
1376 }
1377 usb_disable_interface(dev, iface, true);
1378
1379 iface->cur_altsetting = alt;
1380
1381 /* Now that the interface is installed, re-enable LPM. */
1382 usb_unlocked_enable_lpm(dev);
1383
1384 /* If the interface only has one altsetting and the device didn't
1385 * accept the request, we attempt to carry out the equivalent action
1386 * by manually clearing the HALT feature for each endpoint in the
1387 * new altsetting.
1388 */
1389 if (manual) {
1390 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1391 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1392 pipe = __create_pipe(dev,
1393 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1394 (usb_endpoint_out(epaddr) ?
1395 USB_DIR_OUT : USB_DIR_IN);
1396
1397 usb_clear_halt(dev, pipe);
1398 }
1399 }
1400
1401 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1402 *
1403 * Note:
1404 * Despite EP0 is always present in all interfaces/AS, the list of
1405 * endpoints from the descriptor does not contain EP0. Due to its
1406 * omnipresence one might expect EP0 being considered "affected" by
1407 * any SetInterface request and hence assume toggles need to be reset.
1408 * However, EP0 toggles are re-synced for every individual transfer
1409 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1410 * (Likewise, EP0 never "halts" on well designed devices.)
1411 */
1412 usb_enable_interface(dev, iface, true);
1413 if (device_is_registered(&iface->dev)) {
1414 usb_create_sysfs_intf_files(iface);
1415 create_intf_ep_devs(iface);
1416 }
1417 return 0;
1418}
1419EXPORT_SYMBOL_GPL(usb_set_interface);
1420
1421/**
1422 * usb_reset_configuration - lightweight device reset
1423 * @dev: the device whose configuration is being reset
1424 *
1425 * This issues a standard SET_CONFIGURATION request to the device using
1426 * the current configuration. The effect is to reset most USB-related
1427 * state in the device, including interface altsettings (reset to zero),
1428 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1429 * endpoints). Other usbcore state is unchanged, including bindings of
1430 * usb device drivers to interfaces.
1431 *
1432 * Because this affects multiple interfaces, avoid using this with composite
1433 * (multi-interface) devices. Instead, the driver for each interface may
1434 * use usb_set_interface() on the interfaces it claims. Be careful though;
1435 * some devices don't support the SET_INTERFACE request, and others won't
1436 * reset all the interface state (notably endpoint state). Resetting the whole
1437 * configuration would affect other drivers' interfaces.
1438 *
1439 * The caller must own the device lock.
1440 *
1441 * Return: Zero on success, else a negative error code.
1442 */
1443int usb_reset_configuration(struct usb_device *dev)
1444{
1445 int i, retval;
1446 struct usb_host_config *config;
1447 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1448
1449 if (dev->state == USB_STATE_SUSPENDED)
1450 return -EHOSTUNREACH;
1451
1452 /* caller must have locked the device and must own
1453 * the usb bus readlock (so driver bindings are stable);
1454 * calls during probe() are fine
1455 */
1456
1457 for (i = 1; i < 16; ++i) {
1458 usb_disable_endpoint(dev, i, true);
1459 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1460 }
1461
1462 config = dev->actconfig;
1463 retval = 0;
1464 mutex_lock(hcd->bandwidth_mutex);
1465 /* Disable LPM, and re-enable it once the configuration is reset, so
1466 * that the xHCI driver can recalculate the U1/U2 timeouts.
1467 */
1468 if (usb_disable_lpm(dev)) {
1469 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1470 mutex_unlock(hcd->bandwidth_mutex);
1471 return -ENOMEM;
1472 }
1473 /* Make sure we have enough bandwidth for each alternate setting 0 */
1474 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1475 struct usb_interface *intf = config->interface[i];
1476 struct usb_host_interface *alt;
1477
1478 alt = usb_altnum_to_altsetting(intf, 0);
1479 if (!alt)
1480 alt = &intf->altsetting[0];
1481 if (alt != intf->cur_altsetting)
1482 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1483 intf->cur_altsetting, alt);
1484 if (retval < 0)
1485 break;
1486 }
1487 /* If not, reinstate the old alternate settings */
1488 if (retval < 0) {
1489reset_old_alts:
1490 for (i--; i >= 0; i--) {
1491 struct usb_interface *intf = config->interface[i];
1492 struct usb_host_interface *alt;
1493
1494 alt = usb_altnum_to_altsetting(intf, 0);
1495 if (!alt)
1496 alt = &intf->altsetting[0];
1497 if (alt != intf->cur_altsetting)
1498 usb_hcd_alloc_bandwidth(dev, NULL,
1499 alt, intf->cur_altsetting);
1500 }
1501 usb_enable_lpm(dev);
1502 mutex_unlock(hcd->bandwidth_mutex);
1503 return retval;
1504 }
1505 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1506 USB_REQ_SET_CONFIGURATION, 0,
1507 config->desc.bConfigurationValue, 0,
1508 NULL, 0, USB_CTRL_SET_TIMEOUT);
1509 if (retval < 0)
1510 goto reset_old_alts;
1511 mutex_unlock(hcd->bandwidth_mutex);
1512
1513 /* re-init hc/hcd interface/endpoint state */
1514 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1515 struct usb_interface *intf = config->interface[i];
1516 struct usb_host_interface *alt;
1517
1518 alt = usb_altnum_to_altsetting(intf, 0);
1519
1520 /* No altsetting 0? We'll assume the first altsetting.
1521 * We could use a GetInterface call, but if a device is
1522 * so non-compliant that it doesn't have altsetting 0
1523 * then I wouldn't trust its reply anyway.
1524 */
1525 if (!alt)
1526 alt = &intf->altsetting[0];
1527
1528 if (alt != intf->cur_altsetting) {
1529 remove_intf_ep_devs(intf);
1530 usb_remove_sysfs_intf_files(intf);
1531 }
1532 intf->cur_altsetting = alt;
1533 usb_enable_interface(dev, intf, true);
1534 if (device_is_registered(&intf->dev)) {
1535 usb_create_sysfs_intf_files(intf);
1536 create_intf_ep_devs(intf);
1537 }
1538 }
1539 /* Now that the interfaces are installed, re-enable LPM. */
1540 usb_unlocked_enable_lpm(dev);
1541 return 0;
1542}
1543EXPORT_SYMBOL_GPL(usb_reset_configuration);
1544
1545static void usb_release_interface(struct device *dev)
1546{
1547 struct usb_interface *intf = to_usb_interface(dev);
1548 struct usb_interface_cache *intfc =
1549 altsetting_to_usb_interface_cache(intf->altsetting);
1550
1551 kref_put(&intfc->ref, usb_release_interface_cache);
1552 usb_put_dev(interface_to_usbdev(intf));
1553 kfree(intf);
1554}
1555
1556/*
1557 * usb_deauthorize_interface - deauthorize an USB interface
1558 *
1559 * @intf: USB interface structure
1560 */
1561void usb_deauthorize_interface(struct usb_interface *intf)
1562{
1563 struct device *dev = &intf->dev;
1564
1565 device_lock(dev->parent);
1566
1567 if (intf->authorized) {
1568 device_lock(dev);
1569 intf->authorized = 0;
1570 device_unlock(dev);
1571
1572 usb_forced_unbind_intf(intf);
1573 }
1574
1575 device_unlock(dev->parent);
1576}
1577
1578/*
1579 * usb_authorize_interface - authorize an USB interface
1580 *
1581 * @intf: USB interface structure
1582 */
1583void usb_authorize_interface(struct usb_interface *intf)
1584{
1585 struct device *dev = &intf->dev;
1586
1587 if (!intf->authorized) {
1588 device_lock(dev);
1589 intf->authorized = 1; /* authorize interface */
1590 device_unlock(dev);
1591 }
1592}
1593
1594static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1595{
1596 struct usb_device *usb_dev;
1597 struct usb_interface *intf;
1598 struct usb_host_interface *alt;
1599
1600 intf = to_usb_interface(dev);
1601 usb_dev = interface_to_usbdev(intf);
1602 alt = intf->cur_altsetting;
1603
1604 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1605 alt->desc.bInterfaceClass,
1606 alt->desc.bInterfaceSubClass,
1607 alt->desc.bInterfaceProtocol))
1608 return -ENOMEM;
1609
1610 if (add_uevent_var(env,
1611 "MODALIAS=usb:"
1612 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1613 le16_to_cpu(usb_dev->descriptor.idVendor),
1614 le16_to_cpu(usb_dev->descriptor.idProduct),
1615 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1616 usb_dev->descriptor.bDeviceClass,
1617 usb_dev->descriptor.bDeviceSubClass,
1618 usb_dev->descriptor.bDeviceProtocol,
1619 alt->desc.bInterfaceClass,
1620 alt->desc.bInterfaceSubClass,
1621 alt->desc.bInterfaceProtocol,
1622 alt->desc.bInterfaceNumber))
1623 return -ENOMEM;
1624
1625 return 0;
1626}
1627
1628struct device_type usb_if_device_type = {
1629 .name = "usb_interface",
1630 .release = usb_release_interface,
1631 .uevent = usb_if_uevent,
1632};
1633
1634static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1635 struct usb_host_config *config,
1636 u8 inum)
1637{
1638 struct usb_interface_assoc_descriptor *retval = NULL;
1639 struct usb_interface_assoc_descriptor *intf_assoc;
1640 int first_intf;
1641 int last_intf;
1642 int i;
1643
1644 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1645 intf_assoc = config->intf_assoc[i];
1646 if (intf_assoc->bInterfaceCount == 0)
1647 continue;
1648
1649 first_intf = intf_assoc->bFirstInterface;
1650 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1651 if (inum >= first_intf && inum <= last_intf) {
1652 if (!retval)
1653 retval = intf_assoc;
1654 else
1655 dev_err(&dev->dev, "Interface #%d referenced"
1656 " by multiple IADs\n", inum);
1657 }
1658 }
1659
1660 return retval;
1661}
1662
1663
1664/*
1665 * Internal function to queue a device reset
1666 * See usb_queue_reset_device() for more details
1667 */
1668static void __usb_queue_reset_device(struct work_struct *ws)
1669{
1670 int rc;
1671 struct usb_interface *iface =
1672 container_of(ws, struct usb_interface, reset_ws);
1673 struct usb_device *udev = interface_to_usbdev(iface);
1674
1675 rc = usb_lock_device_for_reset(udev, iface);
1676 if (rc >= 0) {
1677 usb_reset_device(udev);
1678 usb_unlock_device(udev);
1679 }
1680 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1681}
1682
1683
1684/*
1685 * usb_set_configuration - Makes a particular device setting be current
1686 * @dev: the device whose configuration is being updated
1687 * @configuration: the configuration being chosen.
1688 * Context: !in_interrupt(), caller owns the device lock
1689 *
1690 * This is used to enable non-default device modes. Not all devices
1691 * use this kind of configurability; many devices only have one
1692 * configuration.
1693 *
1694 * @configuration is the value of the configuration to be installed.
1695 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1696 * must be non-zero; a value of zero indicates that the device in
1697 * unconfigured. However some devices erroneously use 0 as one of their
1698 * configuration values. To help manage such devices, this routine will
1699 * accept @configuration = -1 as indicating the device should be put in
1700 * an unconfigured state.
1701 *
1702 * USB device configurations may affect Linux interoperability,
1703 * power consumption and the functionality available. For example,
1704 * the default configuration is limited to using 100mA of bus power,
1705 * so that when certain device functionality requires more power,
1706 * and the device is bus powered, that functionality should be in some
1707 * non-default device configuration. Other device modes may also be
1708 * reflected as configuration options, such as whether two ISDN
1709 * channels are available independently; and choosing between open
1710 * standard device protocols (like CDC) or proprietary ones.
1711 *
1712 * Note that a non-authorized device (dev->authorized == 0) will only
1713 * be put in unconfigured mode.
1714 *
1715 * Note that USB has an additional level of device configurability,
1716 * associated with interfaces. That configurability is accessed using
1717 * usb_set_interface().
1718 *
1719 * This call is synchronous. The calling context must be able to sleep,
1720 * must own the device lock, and must not hold the driver model's USB
1721 * bus mutex; usb interface driver probe() methods cannot use this routine.
1722 *
1723 * Returns zero on success, or else the status code returned by the
1724 * underlying call that failed. On successful completion, each interface
1725 * in the original device configuration has been destroyed, and each one
1726 * in the new configuration has been probed by all relevant usb device
1727 * drivers currently known to the kernel.
1728 */
1729int usb_set_configuration(struct usb_device *dev, int configuration)
1730{
1731 int i, ret;
1732 struct usb_host_config *cp = NULL;
1733 struct usb_interface **new_interfaces = NULL;
1734 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1735 int n, nintf;
1736
1737 if (dev->authorized == 0 || configuration == -1)
1738 configuration = 0;
1739 else {
1740 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1741 if (dev->config[i].desc.bConfigurationValue ==
1742 configuration) {
1743 cp = &dev->config[i];
1744 break;
1745 }
1746 }
1747 }
1748 if ((!cp && configuration != 0))
1749 return -EINVAL;
1750
1751 /* The USB spec says configuration 0 means unconfigured.
1752 * But if a device includes a configuration numbered 0,
1753 * we will accept it as a correctly configured state.
1754 * Use -1 if you really want to unconfigure the device.
1755 */
1756 if (cp && configuration == 0)
1757 dev_warn(&dev->dev, "config 0 descriptor??\n");
1758
1759 /* Allocate memory for new interfaces before doing anything else,
1760 * so that if we run out then nothing will have changed. */
1761 n = nintf = 0;
1762 if (cp) {
1763 nintf = cp->desc.bNumInterfaces;
1764 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1765 GFP_NOIO);
1766 if (!new_interfaces) {
1767 dev_err(&dev->dev, "Out of memory\n");
1768 return -ENOMEM;
1769 }
1770
1771 for (; n < nintf; ++n) {
1772 new_interfaces[n] = kzalloc(
1773 sizeof(struct usb_interface),
1774 GFP_NOIO);
1775 if (!new_interfaces[n]) {
1776 dev_err(&dev->dev, "Out of memory\n");
1777 ret = -ENOMEM;
1778free_interfaces:
1779 while (--n >= 0)
1780 kfree(new_interfaces[n]);
1781 kfree(new_interfaces);
1782 return ret;
1783 }
1784 }
1785
1786 i = dev->bus_mA - usb_get_max_power(dev, cp);
1787 if (i < 0)
1788 dev_warn(&dev->dev, "new config #%d exceeds power "
1789 "limit by %dmA\n",
1790 configuration, -i);
1791 }
1792
1793 /* Wake up the device so we can send it the Set-Config request */
1794 ret = usb_autoresume_device(dev);
1795 if (ret)
1796 goto free_interfaces;
1797
1798 /* if it's already configured, clear out old state first.
1799 * getting rid of old interfaces means unbinding their drivers.
1800 */
1801 if (dev->state != USB_STATE_ADDRESS)
1802 usb_disable_device(dev, 1); /* Skip ep0 */
1803
1804 /* Get rid of pending async Set-Config requests for this device */
1805 cancel_async_set_config(dev);
1806
1807 /* Make sure we have bandwidth (and available HCD resources) for this
1808 * configuration. Remove endpoints from the schedule if we're dropping
1809 * this configuration to set configuration 0. After this point, the
1810 * host controller will not allow submissions to dropped endpoints. If
1811 * this call fails, the device state is unchanged.
1812 */
1813 mutex_lock(hcd->bandwidth_mutex);
1814 /* Disable LPM, and re-enable it once the new configuration is
1815 * installed, so that the xHCI driver can recalculate the U1/U2
1816 * timeouts.
1817 */
1818 if (dev->actconfig && usb_disable_lpm(dev)) {
1819 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1820 mutex_unlock(hcd->bandwidth_mutex);
1821 ret = -ENOMEM;
1822 goto free_interfaces;
1823 }
1824 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1825 if (ret < 0) {
1826 if (dev->actconfig)
1827 usb_enable_lpm(dev);
1828 mutex_unlock(hcd->bandwidth_mutex);
1829 usb_autosuspend_device(dev);
1830 goto free_interfaces;
1831 }
1832
1833 /*
1834 * Initialize the new interface structures and the
1835 * hc/hcd/usbcore interface/endpoint state.
1836 */
1837 for (i = 0; i < nintf; ++i) {
1838 struct usb_interface_cache *intfc;
1839 struct usb_interface *intf;
1840 struct usb_host_interface *alt;
1841
1842 cp->interface[i] = intf = new_interfaces[i];
1843 intfc = cp->intf_cache[i];
1844 intf->altsetting = intfc->altsetting;
1845 intf->num_altsetting = intfc->num_altsetting;
1846 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1847 kref_get(&intfc->ref);
1848
1849 alt = usb_altnum_to_altsetting(intf, 0);
1850
1851 /* No altsetting 0? We'll assume the first altsetting.
1852 * We could use a GetInterface call, but if a device is
1853 * so non-compliant that it doesn't have altsetting 0
1854 * then I wouldn't trust its reply anyway.
1855 */
1856 if (!alt)
1857 alt = &intf->altsetting[0];
1858
1859 intf->intf_assoc =
1860 find_iad(dev, cp, alt->desc.bInterfaceNumber);
1861 intf->cur_altsetting = alt;
1862 usb_enable_interface(dev, intf, true);
1863 intf->dev.parent = &dev->dev;
1864 intf->dev.driver = NULL;
1865 intf->dev.bus = &usb_bus_type;
1866 intf->dev.type = &usb_if_device_type;
1867 intf->dev.groups = usb_interface_groups;
1868 intf->dev.dma_mask = dev->dev.dma_mask;
1869 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1870 intf->minor = -1;
1871 device_initialize(&intf->dev);
1872 pm_runtime_no_callbacks(&intf->dev);
1873 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1874 dev->bus->busnum, dev->devpath,
1875 configuration, alt->desc.bInterfaceNumber);
1876 usb_get_dev(dev);
1877 }
1878 kfree(new_interfaces);
1879
1880 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1881 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1882 NULL, 0, USB_CTRL_SET_TIMEOUT);
1883 if (ret < 0 && cp) {
1884 /*
1885 * All the old state is gone, so what else can we do?
1886 * The device is probably useless now anyway.
1887 */
1888 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1889 for (i = 0; i < nintf; ++i) {
1890 usb_disable_interface(dev, cp->interface[i], true);
1891 put_device(&cp->interface[i]->dev);
1892 cp->interface[i] = NULL;
1893 }
1894 cp = NULL;
1895 }
1896
1897 dev->actconfig = cp;
1898 mutex_unlock(hcd->bandwidth_mutex);
1899
1900 if (!cp) {
1901 usb_set_device_state(dev, USB_STATE_ADDRESS);
1902
1903 /* Leave LPM disabled while the device is unconfigured. */
1904 usb_autosuspend_device(dev);
1905 return ret;
1906 }
1907 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1908
1909 if (cp->string == NULL &&
1910 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1911 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1912
1913 /* Now that the interfaces are installed, re-enable LPM. */
1914 usb_unlocked_enable_lpm(dev);
1915 /* Enable LTM if it was turned off by usb_disable_device. */
1916 usb_enable_ltm(dev);
1917
1918 /* Now that all the interfaces are set up, register them
1919 * to trigger binding of drivers to interfaces. probe()
1920 * routines may install different altsettings and may
1921 * claim() any interfaces not yet bound. Many class drivers
1922 * need that: CDC, audio, video, etc.
1923 */
1924 for (i = 0; i < nintf; ++i) {
1925 struct usb_interface *intf = cp->interface[i];
1926
1927 dev_dbg(&dev->dev,
1928 "adding %s (config #%d, interface %d)\n",
1929 dev_name(&intf->dev), configuration,
1930 intf->cur_altsetting->desc.bInterfaceNumber);
1931 device_enable_async_suspend(&intf->dev);
1932 ret = device_add(&intf->dev);
1933 if (ret != 0) {
1934 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1935 dev_name(&intf->dev), ret);
1936 continue;
1937 }
1938 create_intf_ep_devs(intf);
1939 }
1940
1941 usb_autosuspend_device(dev);
1942 return 0;
1943}
1944EXPORT_SYMBOL_GPL(usb_set_configuration);
1945
1946static LIST_HEAD(set_config_list);
1947static DEFINE_SPINLOCK(set_config_lock);
1948
1949struct set_config_request {
1950 struct usb_device *udev;
1951 int config;
1952 struct work_struct work;
1953 struct list_head node;
1954};
1955
1956/* Worker routine for usb_driver_set_configuration() */
1957static void driver_set_config_work(struct work_struct *work)
1958{
1959 struct set_config_request *req =
1960 container_of(work, struct set_config_request, work);
1961 struct usb_device *udev = req->udev;
1962
1963 usb_lock_device(udev);
1964 spin_lock(&set_config_lock);
1965 list_del(&req->node);
1966 spin_unlock(&set_config_lock);
1967
1968 if (req->config >= -1) /* Is req still valid? */
1969 usb_set_configuration(udev, req->config);
1970 usb_unlock_device(udev);
1971 usb_put_dev(udev);
1972 kfree(req);
1973}
1974
1975/* Cancel pending Set-Config requests for a device whose configuration
1976 * was just changed
1977 */
1978static void cancel_async_set_config(struct usb_device *udev)
1979{
1980 struct set_config_request *req;
1981
1982 spin_lock(&set_config_lock);
1983 list_for_each_entry(req, &set_config_list, node) {
1984 if (req->udev == udev)
1985 req->config = -999; /* Mark as cancelled */
1986 }
1987 spin_unlock(&set_config_lock);
1988}
1989
1990/**
1991 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1992 * @udev: the device whose configuration is being updated
1993 * @config: the configuration being chosen.
1994 * Context: In process context, must be able to sleep
1995 *
1996 * Device interface drivers are not allowed to change device configurations.
1997 * This is because changing configurations will destroy the interface the
1998 * driver is bound to and create new ones; it would be like a floppy-disk
1999 * driver telling the computer to replace the floppy-disk drive with a
2000 * tape drive!
2001 *
2002 * Still, in certain specialized circumstances the need may arise. This
2003 * routine gets around the normal restrictions by using a work thread to
2004 * submit the change-config request.
2005 *
2006 * Return: 0 if the request was successfully queued, error code otherwise.
2007 * The caller has no way to know whether the queued request will eventually
2008 * succeed.
2009 */
2010int usb_driver_set_configuration(struct usb_device *udev, int config)
2011{
2012 struct set_config_request *req;
2013
2014 req = kmalloc(sizeof(*req), GFP_KERNEL);
2015 if (!req)
2016 return -ENOMEM;
2017 req->udev = udev;
2018 req->config = config;
2019 INIT_WORK(&req->work, driver_set_config_work);
2020
2021 spin_lock(&set_config_lock);
2022 list_add(&req->node, &set_config_list);
2023 spin_unlock(&set_config_lock);
2024
2025 usb_get_dev(udev);
2026 schedule_work(&req->work);
2027 return 0;
2028}
2029EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * message.c - synchronous message handling
4 *
5 * Released under the GPLv2 only.
6 */
7
8#include <linux/pci.h> /* for scatterlist macros */
9#include <linux/usb.h>
10#include <linux/module.h>
11#include <linux/slab.h>
12#include <linux/mm.h>
13#include <linux/timer.h>
14#include <linux/ctype.h>
15#include <linux/nls.h>
16#include <linux/device.h>
17#include <linux/scatterlist.h>
18#include <linux/usb/cdc.h>
19#include <linux/usb/quirks.h>
20#include <linux/usb/hcd.h> /* for usbcore internals */
21#include <linux/usb/of.h>
22#include <asm/byteorder.h>
23
24#include "usb.h"
25
26static void cancel_async_set_config(struct usb_device *udev);
27
28struct api_context {
29 struct completion done;
30 int status;
31};
32
33static void usb_api_blocking_completion(struct urb *urb)
34{
35 struct api_context *ctx = urb->context;
36
37 ctx->status = urb->status;
38 complete(&ctx->done);
39}
40
41
42/*
43 * Starts urb and waits for completion or timeout. Note that this call
44 * is NOT interruptible. Many device driver i/o requests should be
45 * interruptible and therefore these drivers should implement their
46 * own interruptible routines.
47 */
48static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
49{
50 struct api_context ctx;
51 unsigned long expire;
52 int retval;
53
54 init_completion(&ctx.done);
55 urb->context = &ctx;
56 urb->actual_length = 0;
57 retval = usb_submit_urb(urb, GFP_NOIO);
58 if (unlikely(retval))
59 goto out;
60
61 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
62 if (!wait_for_completion_timeout(&ctx.done, expire)) {
63 usb_kill_urb(urb);
64 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
65
66 dev_dbg(&urb->dev->dev,
67 "%s timed out on ep%d%s len=%u/%u\n",
68 current->comm,
69 usb_endpoint_num(&urb->ep->desc),
70 usb_urb_dir_in(urb) ? "in" : "out",
71 urb->actual_length,
72 urb->transfer_buffer_length);
73 } else
74 retval = ctx.status;
75out:
76 if (actual_length)
77 *actual_length = urb->actual_length;
78
79 usb_free_urb(urb);
80 return retval;
81}
82
83/*-------------------------------------------------------------------*/
84/* returns status (negative) or length (positive) */
85static int usb_internal_control_msg(struct usb_device *usb_dev,
86 unsigned int pipe,
87 struct usb_ctrlrequest *cmd,
88 void *data, int len, int timeout)
89{
90 struct urb *urb;
91 int retv;
92 int length;
93
94 urb = usb_alloc_urb(0, GFP_NOIO);
95 if (!urb)
96 return -ENOMEM;
97
98 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
99 len, usb_api_blocking_completion, NULL);
100
101 retv = usb_start_wait_urb(urb, timeout, &length);
102 if (retv < 0)
103 return retv;
104 else
105 return length;
106}
107
108/**
109 * usb_control_msg - Builds a control urb, sends it off and waits for completion
110 * @dev: pointer to the usb device to send the message to
111 * @pipe: endpoint "pipe" to send the message to
112 * @request: USB message request value
113 * @requesttype: USB message request type value
114 * @value: USB message value
115 * @index: USB message index value
116 * @data: pointer to the data to send
117 * @size: length in bytes of the data to send
118 * @timeout: time in msecs to wait for the message to complete before timing
119 * out (if 0 the wait is forever)
120 *
121 * Context: !in_interrupt ()
122 *
123 * This function sends a simple control message to a specified endpoint and
124 * waits for the message to complete, or timeout.
125 *
126 * Don't use this function from within an interrupt context. If you need
127 * an asynchronous message, or need to send a message from within interrupt
128 * context, use usb_submit_urb(). If a thread in your driver uses this call,
129 * make sure your disconnect() method can wait for it to complete. Since you
130 * don't have a handle on the URB used, you can't cancel the request.
131 *
132 * Return: If successful, the number of bytes transferred. Otherwise, a negative
133 * error number.
134 */
135int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
136 __u8 requesttype, __u16 value, __u16 index, void *data,
137 __u16 size, int timeout)
138{
139 struct usb_ctrlrequest *dr;
140 int ret;
141
142 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
143 if (!dr)
144 return -ENOMEM;
145
146 dr->bRequestType = requesttype;
147 dr->bRequest = request;
148 dr->wValue = cpu_to_le16(value);
149 dr->wIndex = cpu_to_le16(index);
150 dr->wLength = cpu_to_le16(size);
151
152 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153
154 /* Linger a bit, prior to the next control message. */
155 if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
156 msleep(200);
157
158 kfree(dr);
159
160 return ret;
161}
162EXPORT_SYMBOL_GPL(usb_control_msg);
163
164/**
165 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
166 * @usb_dev: pointer to the usb device to send the message to
167 * @pipe: endpoint "pipe" to send the message to
168 * @data: pointer to the data to send
169 * @len: length in bytes of the data to send
170 * @actual_length: pointer to a location to put the actual length transferred
171 * in bytes
172 * @timeout: time in msecs to wait for the message to complete before
173 * timing out (if 0 the wait is forever)
174 *
175 * Context: !in_interrupt ()
176 *
177 * This function sends a simple interrupt message to a specified endpoint and
178 * waits for the message to complete, or timeout.
179 *
180 * Don't use this function from within an interrupt context. If you need
181 * an asynchronous message, or need to send a message from within interrupt
182 * context, use usb_submit_urb() If a thread in your driver uses this call,
183 * make sure your disconnect() method can wait for it to complete. Since you
184 * don't have a handle on the URB used, you can't cancel the request.
185 *
186 * Return:
187 * If successful, 0. Otherwise a negative error number. The number of actual
188 * bytes transferred will be stored in the @actual_length parameter.
189 */
190int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
191 void *data, int len, int *actual_length, int timeout)
192{
193 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
194}
195EXPORT_SYMBOL_GPL(usb_interrupt_msg);
196
197/**
198 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
199 * @usb_dev: pointer to the usb device to send the message to
200 * @pipe: endpoint "pipe" to send the message to
201 * @data: pointer to the data to send
202 * @len: length in bytes of the data to send
203 * @actual_length: pointer to a location to put the actual length transferred
204 * in bytes
205 * @timeout: time in msecs to wait for the message to complete before
206 * timing out (if 0 the wait is forever)
207 *
208 * Context: !in_interrupt ()
209 *
210 * This function sends a simple bulk message to a specified endpoint
211 * and waits for the message to complete, or timeout.
212 *
213 * Don't use this function from within an interrupt context. If you need
214 * an asynchronous message, or need to send a message from within interrupt
215 * context, use usb_submit_urb() If a thread in your driver uses this call,
216 * make sure your disconnect() method can wait for it to complete. Since you
217 * don't have a handle on the URB used, you can't cancel the request.
218 *
219 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
220 * users are forced to abuse this routine by using it to submit URBs for
221 * interrupt endpoints. We will take the liberty of creating an interrupt URB
222 * (with the default interval) if the target is an interrupt endpoint.
223 *
224 * Return:
225 * If successful, 0. Otherwise a negative error number. The number of actual
226 * bytes transferred will be stored in the @actual_length parameter.
227 *
228 */
229int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
230 void *data, int len, int *actual_length, int timeout)
231{
232 struct urb *urb;
233 struct usb_host_endpoint *ep;
234
235 ep = usb_pipe_endpoint(usb_dev, pipe);
236 if (!ep || len < 0)
237 return -EINVAL;
238
239 urb = usb_alloc_urb(0, GFP_KERNEL);
240 if (!urb)
241 return -ENOMEM;
242
243 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
244 USB_ENDPOINT_XFER_INT) {
245 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
246 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
247 usb_api_blocking_completion, NULL,
248 ep->desc.bInterval);
249 } else
250 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
251 usb_api_blocking_completion, NULL);
252
253 return usb_start_wait_urb(urb, timeout, actual_length);
254}
255EXPORT_SYMBOL_GPL(usb_bulk_msg);
256
257/*-------------------------------------------------------------------*/
258
259static void sg_clean(struct usb_sg_request *io)
260{
261 if (io->urbs) {
262 while (io->entries--)
263 usb_free_urb(io->urbs[io->entries]);
264 kfree(io->urbs);
265 io->urbs = NULL;
266 }
267 io->dev = NULL;
268}
269
270static void sg_complete(struct urb *urb)
271{
272 struct usb_sg_request *io = urb->context;
273 int status = urb->status;
274
275 spin_lock(&io->lock);
276
277 /* In 2.5 we require hcds' endpoint queues not to progress after fault
278 * reports, until the completion callback (this!) returns. That lets
279 * device driver code (like this routine) unlink queued urbs first,
280 * if it needs to, since the HC won't work on them at all. So it's
281 * not possible for page N+1 to overwrite page N, and so on.
282 *
283 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
284 * complete before the HCD can get requests away from hardware,
285 * though never during cleanup after a hard fault.
286 */
287 if (io->status
288 && (io->status != -ECONNRESET
289 || status != -ECONNRESET)
290 && urb->actual_length) {
291 dev_err(io->dev->bus->controller,
292 "dev %s ep%d%s scatterlist error %d/%d\n",
293 io->dev->devpath,
294 usb_endpoint_num(&urb->ep->desc),
295 usb_urb_dir_in(urb) ? "in" : "out",
296 status, io->status);
297 /* BUG (); */
298 }
299
300 if (io->status == 0 && status && status != -ECONNRESET) {
301 int i, found, retval;
302
303 io->status = status;
304
305 /* the previous urbs, and this one, completed already.
306 * unlink pending urbs so they won't rx/tx bad data.
307 * careful: unlink can sometimes be synchronous...
308 */
309 spin_unlock(&io->lock);
310 for (i = 0, found = 0; i < io->entries; i++) {
311 if (!io->urbs[i])
312 continue;
313 if (found) {
314 usb_block_urb(io->urbs[i]);
315 retval = usb_unlink_urb(io->urbs[i]);
316 if (retval != -EINPROGRESS &&
317 retval != -ENODEV &&
318 retval != -EBUSY &&
319 retval != -EIDRM)
320 dev_err(&io->dev->dev,
321 "%s, unlink --> %d\n",
322 __func__, retval);
323 } else if (urb == io->urbs[i])
324 found = 1;
325 }
326 spin_lock(&io->lock);
327 }
328
329 /* on the last completion, signal usb_sg_wait() */
330 io->bytes += urb->actual_length;
331 io->count--;
332 if (!io->count)
333 complete(&io->complete);
334
335 spin_unlock(&io->lock);
336}
337
338
339/**
340 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
341 * @io: request block being initialized. until usb_sg_wait() returns,
342 * treat this as a pointer to an opaque block of memory,
343 * @dev: the usb device that will send or receive the data
344 * @pipe: endpoint "pipe" used to transfer the data
345 * @period: polling rate for interrupt endpoints, in frames or
346 * (for high speed endpoints) microframes; ignored for bulk
347 * @sg: scatterlist entries
348 * @nents: how many entries in the scatterlist
349 * @length: how many bytes to send from the scatterlist, or zero to
350 * send every byte identified in the list.
351 * @mem_flags: SLAB_* flags affecting memory allocations in this call
352 *
353 * This initializes a scatter/gather request, allocating resources such as
354 * I/O mappings and urb memory (except maybe memory used by USB controller
355 * drivers).
356 *
357 * The request must be issued using usb_sg_wait(), which waits for the I/O to
358 * complete (or to be canceled) and then cleans up all resources allocated by
359 * usb_sg_init().
360 *
361 * The request may be canceled with usb_sg_cancel(), either before or after
362 * usb_sg_wait() is called.
363 *
364 * Return: Zero for success, else a negative errno value.
365 */
366int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
367 unsigned pipe, unsigned period, struct scatterlist *sg,
368 int nents, size_t length, gfp_t mem_flags)
369{
370 int i;
371 int urb_flags;
372 int use_sg;
373
374 if (!io || !dev || !sg
375 || usb_pipecontrol(pipe)
376 || usb_pipeisoc(pipe)
377 || nents <= 0)
378 return -EINVAL;
379
380 spin_lock_init(&io->lock);
381 io->dev = dev;
382 io->pipe = pipe;
383
384 if (dev->bus->sg_tablesize > 0) {
385 use_sg = true;
386 io->entries = 1;
387 } else {
388 use_sg = false;
389 io->entries = nents;
390 }
391
392 /* initialize all the urbs we'll use */
393 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
394 if (!io->urbs)
395 goto nomem;
396
397 urb_flags = URB_NO_INTERRUPT;
398 if (usb_pipein(pipe))
399 urb_flags |= URB_SHORT_NOT_OK;
400
401 for_each_sg(sg, sg, io->entries, i) {
402 struct urb *urb;
403 unsigned len;
404
405 urb = usb_alloc_urb(0, mem_flags);
406 if (!urb) {
407 io->entries = i;
408 goto nomem;
409 }
410 io->urbs[i] = urb;
411
412 urb->dev = NULL;
413 urb->pipe = pipe;
414 urb->interval = period;
415 urb->transfer_flags = urb_flags;
416 urb->complete = sg_complete;
417 urb->context = io;
418 urb->sg = sg;
419
420 if (use_sg) {
421 /* There is no single transfer buffer */
422 urb->transfer_buffer = NULL;
423 urb->num_sgs = nents;
424
425 /* A length of zero means transfer the whole sg list */
426 len = length;
427 if (len == 0) {
428 struct scatterlist *sg2;
429 int j;
430
431 for_each_sg(sg, sg2, nents, j)
432 len += sg2->length;
433 }
434 } else {
435 /*
436 * Some systems can't use DMA; they use PIO instead.
437 * For their sakes, transfer_buffer is set whenever
438 * possible.
439 */
440 if (!PageHighMem(sg_page(sg)))
441 urb->transfer_buffer = sg_virt(sg);
442 else
443 urb->transfer_buffer = NULL;
444
445 len = sg->length;
446 if (length) {
447 len = min_t(size_t, len, length);
448 length -= len;
449 if (length == 0)
450 io->entries = i + 1;
451 }
452 }
453 urb->transfer_buffer_length = len;
454 }
455 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
456
457 /* transaction state */
458 io->count = io->entries;
459 io->status = 0;
460 io->bytes = 0;
461 init_completion(&io->complete);
462 return 0;
463
464nomem:
465 sg_clean(io);
466 return -ENOMEM;
467}
468EXPORT_SYMBOL_GPL(usb_sg_init);
469
470/**
471 * usb_sg_wait - synchronously execute scatter/gather request
472 * @io: request block handle, as initialized with usb_sg_init().
473 * some fields become accessible when this call returns.
474 * Context: !in_interrupt ()
475 *
476 * This function blocks until the specified I/O operation completes. It
477 * leverages the grouping of the related I/O requests to get good transfer
478 * rates, by queueing the requests. At higher speeds, such queuing can
479 * significantly improve USB throughput.
480 *
481 * There are three kinds of completion for this function.
482 *
483 * (1) success, where io->status is zero. The number of io->bytes
484 * transferred is as requested.
485 * (2) error, where io->status is a negative errno value. The number
486 * of io->bytes transferred before the error is usually less
487 * than requested, and can be nonzero.
488 * (3) cancellation, a type of error with status -ECONNRESET that
489 * is initiated by usb_sg_cancel().
490 *
491 * When this function returns, all memory allocated through usb_sg_init() or
492 * this call will have been freed. The request block parameter may still be
493 * passed to usb_sg_cancel(), or it may be freed. It could also be
494 * reinitialized and then reused.
495 *
496 * Data Transfer Rates:
497 *
498 * Bulk transfers are valid for full or high speed endpoints.
499 * The best full speed data rate is 19 packets of 64 bytes each
500 * per frame, or 1216 bytes per millisecond.
501 * The best high speed data rate is 13 packets of 512 bytes each
502 * per microframe, or 52 KBytes per millisecond.
503 *
504 * The reason to use interrupt transfers through this API would most likely
505 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
506 * could be transferred. That capability is less useful for low or full
507 * speed interrupt endpoints, which allow at most one packet per millisecond,
508 * of at most 8 or 64 bytes (respectively).
509 *
510 * It is not necessary to call this function to reserve bandwidth for devices
511 * under an xHCI host controller, as the bandwidth is reserved when the
512 * configuration or interface alt setting is selected.
513 */
514void usb_sg_wait(struct usb_sg_request *io)
515{
516 int i;
517 int entries = io->entries;
518
519 /* queue the urbs. */
520 spin_lock_irq(&io->lock);
521 i = 0;
522 while (i < entries && !io->status) {
523 int retval;
524
525 io->urbs[i]->dev = io->dev;
526 spin_unlock_irq(&io->lock);
527
528 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
529
530 switch (retval) {
531 /* maybe we retrying will recover */
532 case -ENXIO: /* hc didn't queue this one */
533 case -EAGAIN:
534 case -ENOMEM:
535 retval = 0;
536 yield();
537 break;
538
539 /* no error? continue immediately.
540 *
541 * NOTE: to work better with UHCI (4K I/O buffer may
542 * need 3K of TDs) it may be good to limit how many
543 * URBs are queued at once; N milliseconds?
544 */
545 case 0:
546 ++i;
547 cpu_relax();
548 break;
549
550 /* fail any uncompleted urbs */
551 default:
552 io->urbs[i]->status = retval;
553 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
554 __func__, retval);
555 usb_sg_cancel(io);
556 }
557 spin_lock_irq(&io->lock);
558 if (retval && (io->status == 0 || io->status == -ECONNRESET))
559 io->status = retval;
560 }
561 io->count -= entries - i;
562 if (io->count == 0)
563 complete(&io->complete);
564 spin_unlock_irq(&io->lock);
565
566 /* OK, yes, this could be packaged as non-blocking.
567 * So could the submit loop above ... but it's easier to
568 * solve neither problem than to solve both!
569 */
570 wait_for_completion(&io->complete);
571
572 sg_clean(io);
573}
574EXPORT_SYMBOL_GPL(usb_sg_wait);
575
576/**
577 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
578 * @io: request block, initialized with usb_sg_init()
579 *
580 * This stops a request after it has been started by usb_sg_wait().
581 * It can also prevents one initialized by usb_sg_init() from starting,
582 * so that call just frees resources allocated to the request.
583 */
584void usb_sg_cancel(struct usb_sg_request *io)
585{
586 unsigned long flags;
587 int i, retval;
588
589 spin_lock_irqsave(&io->lock, flags);
590 if (io->status) {
591 spin_unlock_irqrestore(&io->lock, flags);
592 return;
593 }
594 /* shut everything down */
595 io->status = -ECONNRESET;
596 spin_unlock_irqrestore(&io->lock, flags);
597
598 for (i = io->entries - 1; i >= 0; --i) {
599 usb_block_urb(io->urbs[i]);
600
601 retval = usb_unlink_urb(io->urbs[i]);
602 if (retval != -EINPROGRESS
603 && retval != -ENODEV
604 && retval != -EBUSY
605 && retval != -EIDRM)
606 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
607 __func__, retval);
608 }
609}
610EXPORT_SYMBOL_GPL(usb_sg_cancel);
611
612/*-------------------------------------------------------------------*/
613
614/**
615 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
616 * @dev: the device whose descriptor is being retrieved
617 * @type: the descriptor type (USB_DT_*)
618 * @index: the number of the descriptor
619 * @buf: where to put the descriptor
620 * @size: how big is "buf"?
621 * Context: !in_interrupt ()
622 *
623 * Gets a USB descriptor. Convenience functions exist to simplify
624 * getting some types of descriptors. Use
625 * usb_get_string() or usb_string() for USB_DT_STRING.
626 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
627 * are part of the device structure.
628 * In addition to a number of USB-standard descriptors, some
629 * devices also use class-specific or vendor-specific descriptors.
630 *
631 * This call is synchronous, and may not be used in an interrupt context.
632 *
633 * Return: The number of bytes received on success, or else the status code
634 * returned by the underlying usb_control_msg() call.
635 */
636int usb_get_descriptor(struct usb_device *dev, unsigned char type,
637 unsigned char index, void *buf, int size)
638{
639 int i;
640 int result;
641
642 memset(buf, 0, size); /* Make sure we parse really received data */
643
644 for (i = 0; i < 3; ++i) {
645 /* retry on length 0 or error; some devices are flakey */
646 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
647 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
648 (type << 8) + index, 0, buf, size,
649 USB_CTRL_GET_TIMEOUT);
650 if (result <= 0 && result != -ETIMEDOUT)
651 continue;
652 if (result > 1 && ((u8 *)buf)[1] != type) {
653 result = -ENODATA;
654 continue;
655 }
656 break;
657 }
658 return result;
659}
660EXPORT_SYMBOL_GPL(usb_get_descriptor);
661
662/**
663 * usb_get_string - gets a string descriptor
664 * @dev: the device whose string descriptor is being retrieved
665 * @langid: code for language chosen (from string descriptor zero)
666 * @index: the number of the descriptor
667 * @buf: where to put the string
668 * @size: how big is "buf"?
669 * Context: !in_interrupt ()
670 *
671 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
672 * in little-endian byte order).
673 * The usb_string() function will often be a convenient way to turn
674 * these strings into kernel-printable form.
675 *
676 * Strings may be referenced in device, configuration, interface, or other
677 * descriptors, and could also be used in vendor-specific ways.
678 *
679 * This call is synchronous, and may not be used in an interrupt context.
680 *
681 * Return: The number of bytes received on success, or else the status code
682 * returned by the underlying usb_control_msg() call.
683 */
684static int usb_get_string(struct usb_device *dev, unsigned short langid,
685 unsigned char index, void *buf, int size)
686{
687 int i;
688 int result;
689
690 for (i = 0; i < 3; ++i) {
691 /* retry on length 0 or stall; some devices are flakey */
692 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
693 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
694 (USB_DT_STRING << 8) + index, langid, buf, size,
695 USB_CTRL_GET_TIMEOUT);
696 if (result == 0 || result == -EPIPE)
697 continue;
698 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
699 result = -ENODATA;
700 continue;
701 }
702 break;
703 }
704 return result;
705}
706
707static void usb_try_string_workarounds(unsigned char *buf, int *length)
708{
709 int newlength, oldlength = *length;
710
711 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
712 if (!isprint(buf[newlength]) || buf[newlength + 1])
713 break;
714
715 if (newlength > 2) {
716 buf[0] = newlength;
717 *length = newlength;
718 }
719}
720
721static int usb_string_sub(struct usb_device *dev, unsigned int langid,
722 unsigned int index, unsigned char *buf)
723{
724 int rc;
725
726 /* Try to read the string descriptor by asking for the maximum
727 * possible number of bytes */
728 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
729 rc = -EIO;
730 else
731 rc = usb_get_string(dev, langid, index, buf, 255);
732
733 /* If that failed try to read the descriptor length, then
734 * ask for just that many bytes */
735 if (rc < 2) {
736 rc = usb_get_string(dev, langid, index, buf, 2);
737 if (rc == 2)
738 rc = usb_get_string(dev, langid, index, buf, buf[0]);
739 }
740
741 if (rc >= 2) {
742 if (!buf[0] && !buf[1])
743 usb_try_string_workarounds(buf, &rc);
744
745 /* There might be extra junk at the end of the descriptor */
746 if (buf[0] < rc)
747 rc = buf[0];
748
749 rc = rc - (rc & 1); /* force a multiple of two */
750 }
751
752 if (rc < 2)
753 rc = (rc < 0 ? rc : -EINVAL);
754
755 return rc;
756}
757
758static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
759{
760 int err;
761
762 if (dev->have_langid)
763 return 0;
764
765 if (dev->string_langid < 0)
766 return -EPIPE;
767
768 err = usb_string_sub(dev, 0, 0, tbuf);
769
770 /* If the string was reported but is malformed, default to english
771 * (0x0409) */
772 if (err == -ENODATA || (err > 0 && err < 4)) {
773 dev->string_langid = 0x0409;
774 dev->have_langid = 1;
775 dev_err(&dev->dev,
776 "language id specifier not provided by device, defaulting to English\n");
777 return 0;
778 }
779
780 /* In case of all other errors, we assume the device is not able to
781 * deal with strings at all. Set string_langid to -1 in order to
782 * prevent any string to be retrieved from the device */
783 if (err < 0) {
784 dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
785 err);
786 dev->string_langid = -1;
787 return -EPIPE;
788 }
789
790 /* always use the first langid listed */
791 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
792 dev->have_langid = 1;
793 dev_dbg(&dev->dev, "default language 0x%04x\n",
794 dev->string_langid);
795 return 0;
796}
797
798/**
799 * usb_string - returns UTF-8 version of a string descriptor
800 * @dev: the device whose string descriptor is being retrieved
801 * @index: the number of the descriptor
802 * @buf: where to put the string
803 * @size: how big is "buf"?
804 * Context: !in_interrupt ()
805 *
806 * This converts the UTF-16LE encoded strings returned by devices, from
807 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
808 * that are more usable in most kernel contexts. Note that this function
809 * chooses strings in the first language supported by the device.
810 *
811 * This call is synchronous, and may not be used in an interrupt context.
812 *
813 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
814 */
815int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
816{
817 unsigned char *tbuf;
818 int err;
819
820 if (dev->state == USB_STATE_SUSPENDED)
821 return -EHOSTUNREACH;
822 if (size <= 0 || !buf || !index)
823 return -EINVAL;
824 buf[0] = 0;
825 tbuf = kmalloc(256, GFP_NOIO);
826 if (!tbuf)
827 return -ENOMEM;
828
829 err = usb_get_langid(dev, tbuf);
830 if (err < 0)
831 goto errout;
832
833 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
834 if (err < 0)
835 goto errout;
836
837 size--; /* leave room for trailing NULL char in output buffer */
838 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
839 UTF16_LITTLE_ENDIAN, buf, size);
840 buf[err] = 0;
841
842 if (tbuf[1] != USB_DT_STRING)
843 dev_dbg(&dev->dev,
844 "wrong descriptor type %02x for string %d (\"%s\")\n",
845 tbuf[1], index, buf);
846
847 errout:
848 kfree(tbuf);
849 return err;
850}
851EXPORT_SYMBOL_GPL(usb_string);
852
853/* one UTF-8-encoded 16-bit character has at most three bytes */
854#define MAX_USB_STRING_SIZE (127 * 3 + 1)
855
856/**
857 * usb_cache_string - read a string descriptor and cache it for later use
858 * @udev: the device whose string descriptor is being read
859 * @index: the descriptor index
860 *
861 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
862 * or %NULL if the index is 0 or the string could not be read.
863 */
864char *usb_cache_string(struct usb_device *udev, int index)
865{
866 char *buf;
867 char *smallbuf = NULL;
868 int len;
869
870 if (index <= 0)
871 return NULL;
872
873 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
874 if (buf) {
875 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
876 if (len > 0) {
877 smallbuf = kmalloc(++len, GFP_NOIO);
878 if (!smallbuf)
879 return buf;
880 memcpy(smallbuf, buf, len);
881 }
882 kfree(buf);
883 }
884 return smallbuf;
885}
886
887/*
888 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
889 * @dev: the device whose device descriptor is being updated
890 * @size: how much of the descriptor to read
891 * Context: !in_interrupt ()
892 *
893 * Updates the copy of the device descriptor stored in the device structure,
894 * which dedicates space for this purpose.
895 *
896 * Not exported, only for use by the core. If drivers really want to read
897 * the device descriptor directly, they can call usb_get_descriptor() with
898 * type = USB_DT_DEVICE and index = 0.
899 *
900 * This call is synchronous, and may not be used in an interrupt context.
901 *
902 * Return: The number of bytes received on success, or else the status code
903 * returned by the underlying usb_control_msg() call.
904 */
905int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
906{
907 struct usb_device_descriptor *desc;
908 int ret;
909
910 if (size > sizeof(*desc))
911 return -EINVAL;
912 desc = kmalloc(sizeof(*desc), GFP_NOIO);
913 if (!desc)
914 return -ENOMEM;
915
916 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
917 if (ret >= 0)
918 memcpy(&dev->descriptor, desc, size);
919 kfree(desc);
920 return ret;
921}
922
923/*
924 * usb_set_isoch_delay - informs the device of the packet transmit delay
925 * @dev: the device whose delay is to be informed
926 * Context: !in_interrupt()
927 *
928 * Since this is an optional request, we don't bother if it fails.
929 */
930int usb_set_isoch_delay(struct usb_device *dev)
931{
932 /* skip hub devices */
933 if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
934 return 0;
935
936 /* skip non-SS/non-SSP devices */
937 if (dev->speed < USB_SPEED_SUPER)
938 return 0;
939
940 return usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
941 USB_REQ_SET_ISOCH_DELAY,
942 USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
943 cpu_to_le16(dev->hub_delay), 0, NULL, 0,
944 USB_CTRL_SET_TIMEOUT);
945}
946
947/**
948 * usb_get_status - issues a GET_STATUS call
949 * @dev: the device whose status is being checked
950 * @recip: USB_RECIP_*; for device, interface, or endpoint
951 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
952 * @target: zero (for device), else interface or endpoint number
953 * @data: pointer to two bytes of bitmap data
954 * Context: !in_interrupt ()
955 *
956 * Returns device, interface, or endpoint status. Normally only of
957 * interest to see if the device is self powered, or has enabled the
958 * remote wakeup facility; or whether a bulk or interrupt endpoint
959 * is halted ("stalled").
960 *
961 * Bits in these status bitmaps are set using the SET_FEATURE request,
962 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
963 * function should be used to clear halt ("stall") status.
964 *
965 * This call is synchronous, and may not be used in an interrupt context.
966 *
967 * Returns 0 and the status value in *@data (in host byte order) on success,
968 * or else the status code from the underlying usb_control_msg() call.
969 */
970int usb_get_status(struct usb_device *dev, int recip, int type, int target,
971 void *data)
972{
973 int ret;
974 void *status;
975 int length;
976
977 switch (type) {
978 case USB_STATUS_TYPE_STANDARD:
979 length = 2;
980 break;
981 case USB_STATUS_TYPE_PTM:
982 if (recip != USB_RECIP_DEVICE)
983 return -EINVAL;
984
985 length = 4;
986 break;
987 default:
988 return -EINVAL;
989 }
990
991 status = kmalloc(length, GFP_KERNEL);
992 if (!status)
993 return -ENOMEM;
994
995 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
996 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
997 target, status, length, USB_CTRL_GET_TIMEOUT);
998
999 switch (ret) {
1000 case 4:
1001 if (type != USB_STATUS_TYPE_PTM) {
1002 ret = -EIO;
1003 break;
1004 }
1005
1006 *(u32 *) data = le32_to_cpu(*(__le32 *) status);
1007 ret = 0;
1008 break;
1009 case 2:
1010 if (type != USB_STATUS_TYPE_STANDARD) {
1011 ret = -EIO;
1012 break;
1013 }
1014
1015 *(u16 *) data = le16_to_cpu(*(__le16 *) status);
1016 ret = 0;
1017 break;
1018 default:
1019 ret = -EIO;
1020 }
1021
1022 kfree(status);
1023 return ret;
1024}
1025EXPORT_SYMBOL_GPL(usb_get_status);
1026
1027/**
1028 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1029 * @dev: device whose endpoint is halted
1030 * @pipe: endpoint "pipe" being cleared
1031 * Context: !in_interrupt ()
1032 *
1033 * This is used to clear halt conditions for bulk and interrupt endpoints,
1034 * as reported by URB completion status. Endpoints that are halted are
1035 * sometimes referred to as being "stalled". Such endpoints are unable
1036 * to transmit or receive data until the halt status is cleared. Any URBs
1037 * queued for such an endpoint should normally be unlinked by the driver
1038 * before clearing the halt condition, as described in sections 5.7.5
1039 * and 5.8.5 of the USB 2.0 spec.
1040 *
1041 * Note that control and isochronous endpoints don't halt, although control
1042 * endpoints report "protocol stall" (for unsupported requests) using the
1043 * same status code used to report a true stall.
1044 *
1045 * This call is synchronous, and may not be used in an interrupt context.
1046 *
1047 * Return: Zero on success, or else the status code returned by the
1048 * underlying usb_control_msg() call.
1049 */
1050int usb_clear_halt(struct usb_device *dev, int pipe)
1051{
1052 int result;
1053 int endp = usb_pipeendpoint(pipe);
1054
1055 if (usb_pipein(pipe))
1056 endp |= USB_DIR_IN;
1057
1058 /* we don't care if it wasn't halted first. in fact some devices
1059 * (like some ibmcam model 1 units) seem to expect hosts to make
1060 * this request for iso endpoints, which can't halt!
1061 */
1062 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1063 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1064 USB_ENDPOINT_HALT, endp, NULL, 0,
1065 USB_CTRL_SET_TIMEOUT);
1066
1067 /* don't un-halt or force to DATA0 except on success */
1068 if (result < 0)
1069 return result;
1070
1071 /* NOTE: seems like Microsoft and Apple don't bother verifying
1072 * the clear "took", so some devices could lock up if you check...
1073 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1074 *
1075 * NOTE: make sure the logic here doesn't diverge much from
1076 * the copy in usb-storage, for as long as we need two copies.
1077 */
1078
1079 usb_reset_endpoint(dev, endp);
1080
1081 return 0;
1082}
1083EXPORT_SYMBOL_GPL(usb_clear_halt);
1084
1085static int create_intf_ep_devs(struct usb_interface *intf)
1086{
1087 struct usb_device *udev = interface_to_usbdev(intf);
1088 struct usb_host_interface *alt = intf->cur_altsetting;
1089 int i;
1090
1091 if (intf->ep_devs_created || intf->unregistering)
1092 return 0;
1093
1094 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1095 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1096 intf->ep_devs_created = 1;
1097 return 0;
1098}
1099
1100static void remove_intf_ep_devs(struct usb_interface *intf)
1101{
1102 struct usb_host_interface *alt = intf->cur_altsetting;
1103 int i;
1104
1105 if (!intf->ep_devs_created)
1106 return;
1107
1108 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1109 usb_remove_ep_devs(&alt->endpoint[i]);
1110 intf->ep_devs_created = 0;
1111}
1112
1113/**
1114 * usb_disable_endpoint -- Disable an endpoint by address
1115 * @dev: the device whose endpoint is being disabled
1116 * @epaddr: the endpoint's address. Endpoint number for output,
1117 * endpoint number + USB_DIR_IN for input
1118 * @reset_hardware: flag to erase any endpoint state stored in the
1119 * controller hardware
1120 *
1121 * Disables the endpoint for URB submission and nukes all pending URBs.
1122 * If @reset_hardware is set then also deallocates hcd/hardware state
1123 * for the endpoint.
1124 */
1125void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1126 bool reset_hardware)
1127{
1128 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1129 struct usb_host_endpoint *ep;
1130
1131 if (!dev)
1132 return;
1133
1134 if (usb_endpoint_out(epaddr)) {
1135 ep = dev->ep_out[epnum];
1136 if (reset_hardware)
1137 dev->ep_out[epnum] = NULL;
1138 } else {
1139 ep = dev->ep_in[epnum];
1140 if (reset_hardware)
1141 dev->ep_in[epnum] = NULL;
1142 }
1143 if (ep) {
1144 ep->enabled = 0;
1145 usb_hcd_flush_endpoint(dev, ep);
1146 if (reset_hardware)
1147 usb_hcd_disable_endpoint(dev, ep);
1148 }
1149}
1150
1151/**
1152 * usb_reset_endpoint - Reset an endpoint's state.
1153 * @dev: the device whose endpoint is to be reset
1154 * @epaddr: the endpoint's address. Endpoint number for output,
1155 * endpoint number + USB_DIR_IN for input
1156 *
1157 * Resets any host-side endpoint state such as the toggle bit,
1158 * sequence number or current window.
1159 */
1160void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1161{
1162 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1163 struct usb_host_endpoint *ep;
1164
1165 if (usb_endpoint_out(epaddr))
1166 ep = dev->ep_out[epnum];
1167 else
1168 ep = dev->ep_in[epnum];
1169 if (ep)
1170 usb_hcd_reset_endpoint(dev, ep);
1171}
1172EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1173
1174
1175/**
1176 * usb_disable_interface -- Disable all endpoints for an interface
1177 * @dev: the device whose interface is being disabled
1178 * @intf: pointer to the interface descriptor
1179 * @reset_hardware: flag to erase any endpoint state stored in the
1180 * controller hardware
1181 *
1182 * Disables all the endpoints for the interface's current altsetting.
1183 */
1184void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1185 bool reset_hardware)
1186{
1187 struct usb_host_interface *alt = intf->cur_altsetting;
1188 int i;
1189
1190 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1191 usb_disable_endpoint(dev,
1192 alt->endpoint[i].desc.bEndpointAddress,
1193 reset_hardware);
1194 }
1195}
1196
1197/**
1198 * usb_disable_device - Disable all the endpoints for a USB device
1199 * @dev: the device whose endpoints are being disabled
1200 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1201 *
1202 * Disables all the device's endpoints, potentially including endpoint 0.
1203 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1204 * pending urbs) and usbcore state for the interfaces, so that usbcore
1205 * must usb_set_configuration() before any interfaces could be used.
1206 */
1207void usb_disable_device(struct usb_device *dev, int skip_ep0)
1208{
1209 int i;
1210 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1211
1212 /* getting rid of interfaces will disconnect
1213 * any drivers bound to them (a key side effect)
1214 */
1215 if (dev->actconfig) {
1216 /*
1217 * FIXME: In order to avoid self-deadlock involving the
1218 * bandwidth_mutex, we have to mark all the interfaces
1219 * before unregistering any of them.
1220 */
1221 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1222 dev->actconfig->interface[i]->unregistering = 1;
1223
1224 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1225 struct usb_interface *interface;
1226
1227 /* remove this interface if it has been registered */
1228 interface = dev->actconfig->interface[i];
1229 if (!device_is_registered(&interface->dev))
1230 continue;
1231 dev_dbg(&dev->dev, "unregistering interface %s\n",
1232 dev_name(&interface->dev));
1233 remove_intf_ep_devs(interface);
1234 device_del(&interface->dev);
1235 }
1236
1237 /* Now that the interfaces are unbound, nobody should
1238 * try to access them.
1239 */
1240 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1241 put_device(&dev->actconfig->interface[i]->dev);
1242 dev->actconfig->interface[i] = NULL;
1243 }
1244
1245 if (dev->usb2_hw_lpm_enabled == 1)
1246 usb_set_usb2_hardware_lpm(dev, 0);
1247 usb_unlocked_disable_lpm(dev);
1248 usb_disable_ltm(dev);
1249
1250 dev->actconfig = NULL;
1251 if (dev->state == USB_STATE_CONFIGURED)
1252 usb_set_device_state(dev, USB_STATE_ADDRESS);
1253 }
1254
1255 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1256 skip_ep0 ? "non-ep0" : "all");
1257 if (hcd->driver->check_bandwidth) {
1258 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1259 for (i = skip_ep0; i < 16; ++i) {
1260 usb_disable_endpoint(dev, i, false);
1261 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1262 }
1263 /* Remove endpoints from the host controller internal state */
1264 mutex_lock(hcd->bandwidth_mutex);
1265 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1266 mutex_unlock(hcd->bandwidth_mutex);
1267 /* Second pass: remove endpoint pointers */
1268 }
1269 for (i = skip_ep0; i < 16; ++i) {
1270 usb_disable_endpoint(dev, i, true);
1271 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1272 }
1273}
1274
1275/**
1276 * usb_enable_endpoint - Enable an endpoint for USB communications
1277 * @dev: the device whose interface is being enabled
1278 * @ep: the endpoint
1279 * @reset_ep: flag to reset the endpoint state
1280 *
1281 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1282 * For control endpoints, both the input and output sides are handled.
1283 */
1284void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1285 bool reset_ep)
1286{
1287 int epnum = usb_endpoint_num(&ep->desc);
1288 int is_out = usb_endpoint_dir_out(&ep->desc);
1289 int is_control = usb_endpoint_xfer_control(&ep->desc);
1290
1291 if (reset_ep)
1292 usb_hcd_reset_endpoint(dev, ep);
1293 if (is_out || is_control)
1294 dev->ep_out[epnum] = ep;
1295 if (!is_out || is_control)
1296 dev->ep_in[epnum] = ep;
1297 ep->enabled = 1;
1298}
1299
1300/**
1301 * usb_enable_interface - Enable all the endpoints for an interface
1302 * @dev: the device whose interface is being enabled
1303 * @intf: pointer to the interface descriptor
1304 * @reset_eps: flag to reset the endpoints' state
1305 *
1306 * Enables all the endpoints for the interface's current altsetting.
1307 */
1308void usb_enable_interface(struct usb_device *dev,
1309 struct usb_interface *intf, bool reset_eps)
1310{
1311 struct usb_host_interface *alt = intf->cur_altsetting;
1312 int i;
1313
1314 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1315 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1316}
1317
1318/**
1319 * usb_set_interface - Makes a particular alternate setting be current
1320 * @dev: the device whose interface is being updated
1321 * @interface: the interface being updated
1322 * @alternate: the setting being chosen.
1323 * Context: !in_interrupt ()
1324 *
1325 * This is used to enable data transfers on interfaces that may not
1326 * be enabled by default. Not all devices support such configurability.
1327 * Only the driver bound to an interface may change its setting.
1328 *
1329 * Within any given configuration, each interface may have several
1330 * alternative settings. These are often used to control levels of
1331 * bandwidth consumption. For example, the default setting for a high
1332 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1333 * while interrupt transfers of up to 3KBytes per microframe are legal.
1334 * Also, isochronous endpoints may never be part of an
1335 * interface's default setting. To access such bandwidth, alternate
1336 * interface settings must be made current.
1337 *
1338 * Note that in the Linux USB subsystem, bandwidth associated with
1339 * an endpoint in a given alternate setting is not reserved until an URB
1340 * is submitted that needs that bandwidth. Some other operating systems
1341 * allocate bandwidth early, when a configuration is chosen.
1342 *
1343 * This call is synchronous, and may not be used in an interrupt context.
1344 * Also, drivers must not change altsettings while urbs are scheduled for
1345 * endpoints in that interface; all such urbs must first be completed
1346 * (perhaps forced by unlinking).
1347 *
1348 * Return: Zero on success, or else the status code returned by the
1349 * underlying usb_control_msg() call.
1350 */
1351int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1352{
1353 struct usb_interface *iface;
1354 struct usb_host_interface *alt;
1355 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1356 int i, ret, manual = 0;
1357 unsigned int epaddr;
1358 unsigned int pipe;
1359
1360 if (dev->state == USB_STATE_SUSPENDED)
1361 return -EHOSTUNREACH;
1362
1363 iface = usb_ifnum_to_if(dev, interface);
1364 if (!iface) {
1365 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1366 interface);
1367 return -EINVAL;
1368 }
1369 if (iface->unregistering)
1370 return -ENODEV;
1371
1372 alt = usb_altnum_to_altsetting(iface, alternate);
1373 if (!alt) {
1374 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1375 alternate);
1376 return -EINVAL;
1377 }
1378
1379 /* Make sure we have enough bandwidth for this alternate interface.
1380 * Remove the current alt setting and add the new alt setting.
1381 */
1382 mutex_lock(hcd->bandwidth_mutex);
1383 /* Disable LPM, and re-enable it once the new alt setting is installed,
1384 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1385 */
1386 if (usb_disable_lpm(dev)) {
1387 dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1388 mutex_unlock(hcd->bandwidth_mutex);
1389 return -ENOMEM;
1390 }
1391 /* Changing alt-setting also frees any allocated streams */
1392 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1393 iface->cur_altsetting->endpoint[i].streams = 0;
1394
1395 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1396 if (ret < 0) {
1397 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1398 alternate);
1399 usb_enable_lpm(dev);
1400 mutex_unlock(hcd->bandwidth_mutex);
1401 return ret;
1402 }
1403
1404 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1405 ret = -EPIPE;
1406 else
1407 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1408 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1409 alternate, interface, NULL, 0, 5000);
1410
1411 /* 9.4.10 says devices don't need this and are free to STALL the
1412 * request if the interface only has one alternate setting.
1413 */
1414 if (ret == -EPIPE && iface->num_altsetting == 1) {
1415 dev_dbg(&dev->dev,
1416 "manual set_interface for iface %d, alt %d\n",
1417 interface, alternate);
1418 manual = 1;
1419 } else if (ret < 0) {
1420 /* Re-instate the old alt setting */
1421 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1422 usb_enable_lpm(dev);
1423 mutex_unlock(hcd->bandwidth_mutex);
1424 return ret;
1425 }
1426 mutex_unlock(hcd->bandwidth_mutex);
1427
1428 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1429 * when they implement async or easily-killable versions of this or
1430 * other "should-be-internal" functions (like clear_halt).
1431 * should hcd+usbcore postprocess control requests?
1432 */
1433
1434 /* prevent submissions using previous endpoint settings */
1435 if (iface->cur_altsetting != alt) {
1436 remove_intf_ep_devs(iface);
1437 usb_remove_sysfs_intf_files(iface);
1438 }
1439 usb_disable_interface(dev, iface, true);
1440
1441 iface->cur_altsetting = alt;
1442
1443 /* Now that the interface is installed, re-enable LPM. */
1444 usb_unlocked_enable_lpm(dev);
1445
1446 /* If the interface only has one altsetting and the device didn't
1447 * accept the request, we attempt to carry out the equivalent action
1448 * by manually clearing the HALT feature for each endpoint in the
1449 * new altsetting.
1450 */
1451 if (manual) {
1452 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1453 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1454 pipe = __create_pipe(dev,
1455 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1456 (usb_endpoint_out(epaddr) ?
1457 USB_DIR_OUT : USB_DIR_IN);
1458
1459 usb_clear_halt(dev, pipe);
1460 }
1461 }
1462
1463 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1464 *
1465 * Note:
1466 * Despite EP0 is always present in all interfaces/AS, the list of
1467 * endpoints from the descriptor does not contain EP0. Due to its
1468 * omnipresence one might expect EP0 being considered "affected" by
1469 * any SetInterface request and hence assume toggles need to be reset.
1470 * However, EP0 toggles are re-synced for every individual transfer
1471 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1472 * (Likewise, EP0 never "halts" on well designed devices.)
1473 */
1474 usb_enable_interface(dev, iface, true);
1475 if (device_is_registered(&iface->dev)) {
1476 usb_create_sysfs_intf_files(iface);
1477 create_intf_ep_devs(iface);
1478 }
1479 return 0;
1480}
1481EXPORT_SYMBOL_GPL(usb_set_interface);
1482
1483/**
1484 * usb_reset_configuration - lightweight device reset
1485 * @dev: the device whose configuration is being reset
1486 *
1487 * This issues a standard SET_CONFIGURATION request to the device using
1488 * the current configuration. The effect is to reset most USB-related
1489 * state in the device, including interface altsettings (reset to zero),
1490 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1491 * endpoints). Other usbcore state is unchanged, including bindings of
1492 * usb device drivers to interfaces.
1493 *
1494 * Because this affects multiple interfaces, avoid using this with composite
1495 * (multi-interface) devices. Instead, the driver for each interface may
1496 * use usb_set_interface() on the interfaces it claims. Be careful though;
1497 * some devices don't support the SET_INTERFACE request, and others won't
1498 * reset all the interface state (notably endpoint state). Resetting the whole
1499 * configuration would affect other drivers' interfaces.
1500 *
1501 * The caller must own the device lock.
1502 *
1503 * Return: Zero on success, else a negative error code.
1504 */
1505int usb_reset_configuration(struct usb_device *dev)
1506{
1507 int i, retval;
1508 struct usb_host_config *config;
1509 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1510
1511 if (dev->state == USB_STATE_SUSPENDED)
1512 return -EHOSTUNREACH;
1513
1514 /* caller must have locked the device and must own
1515 * the usb bus readlock (so driver bindings are stable);
1516 * calls during probe() are fine
1517 */
1518
1519 for (i = 1; i < 16; ++i) {
1520 usb_disable_endpoint(dev, i, true);
1521 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1522 }
1523
1524 config = dev->actconfig;
1525 retval = 0;
1526 mutex_lock(hcd->bandwidth_mutex);
1527 /* Disable LPM, and re-enable it once the configuration is reset, so
1528 * that the xHCI driver can recalculate the U1/U2 timeouts.
1529 */
1530 if (usb_disable_lpm(dev)) {
1531 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1532 mutex_unlock(hcd->bandwidth_mutex);
1533 return -ENOMEM;
1534 }
1535 /* Make sure we have enough bandwidth for each alternate setting 0 */
1536 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1537 struct usb_interface *intf = config->interface[i];
1538 struct usb_host_interface *alt;
1539
1540 alt = usb_altnum_to_altsetting(intf, 0);
1541 if (!alt)
1542 alt = &intf->altsetting[0];
1543 if (alt != intf->cur_altsetting)
1544 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1545 intf->cur_altsetting, alt);
1546 if (retval < 0)
1547 break;
1548 }
1549 /* If not, reinstate the old alternate settings */
1550 if (retval < 0) {
1551reset_old_alts:
1552 for (i--; i >= 0; i--) {
1553 struct usb_interface *intf = config->interface[i];
1554 struct usb_host_interface *alt;
1555
1556 alt = usb_altnum_to_altsetting(intf, 0);
1557 if (!alt)
1558 alt = &intf->altsetting[0];
1559 if (alt != intf->cur_altsetting)
1560 usb_hcd_alloc_bandwidth(dev, NULL,
1561 alt, intf->cur_altsetting);
1562 }
1563 usb_enable_lpm(dev);
1564 mutex_unlock(hcd->bandwidth_mutex);
1565 return retval;
1566 }
1567 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1568 USB_REQ_SET_CONFIGURATION, 0,
1569 config->desc.bConfigurationValue, 0,
1570 NULL, 0, USB_CTRL_SET_TIMEOUT);
1571 if (retval < 0)
1572 goto reset_old_alts;
1573 mutex_unlock(hcd->bandwidth_mutex);
1574
1575 /* re-init hc/hcd interface/endpoint state */
1576 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1577 struct usb_interface *intf = config->interface[i];
1578 struct usb_host_interface *alt;
1579
1580 alt = usb_altnum_to_altsetting(intf, 0);
1581
1582 /* No altsetting 0? We'll assume the first altsetting.
1583 * We could use a GetInterface call, but if a device is
1584 * so non-compliant that it doesn't have altsetting 0
1585 * then I wouldn't trust its reply anyway.
1586 */
1587 if (!alt)
1588 alt = &intf->altsetting[0];
1589
1590 if (alt != intf->cur_altsetting) {
1591 remove_intf_ep_devs(intf);
1592 usb_remove_sysfs_intf_files(intf);
1593 }
1594 intf->cur_altsetting = alt;
1595 usb_enable_interface(dev, intf, true);
1596 if (device_is_registered(&intf->dev)) {
1597 usb_create_sysfs_intf_files(intf);
1598 create_intf_ep_devs(intf);
1599 }
1600 }
1601 /* Now that the interfaces are installed, re-enable LPM. */
1602 usb_unlocked_enable_lpm(dev);
1603 return 0;
1604}
1605EXPORT_SYMBOL_GPL(usb_reset_configuration);
1606
1607static void usb_release_interface(struct device *dev)
1608{
1609 struct usb_interface *intf = to_usb_interface(dev);
1610 struct usb_interface_cache *intfc =
1611 altsetting_to_usb_interface_cache(intf->altsetting);
1612
1613 kref_put(&intfc->ref, usb_release_interface_cache);
1614 usb_put_dev(interface_to_usbdev(intf));
1615 of_node_put(dev->of_node);
1616 kfree(intf);
1617}
1618
1619/*
1620 * usb_deauthorize_interface - deauthorize an USB interface
1621 *
1622 * @intf: USB interface structure
1623 */
1624void usb_deauthorize_interface(struct usb_interface *intf)
1625{
1626 struct device *dev = &intf->dev;
1627
1628 device_lock(dev->parent);
1629
1630 if (intf->authorized) {
1631 device_lock(dev);
1632 intf->authorized = 0;
1633 device_unlock(dev);
1634
1635 usb_forced_unbind_intf(intf);
1636 }
1637
1638 device_unlock(dev->parent);
1639}
1640
1641/*
1642 * usb_authorize_interface - authorize an USB interface
1643 *
1644 * @intf: USB interface structure
1645 */
1646void usb_authorize_interface(struct usb_interface *intf)
1647{
1648 struct device *dev = &intf->dev;
1649
1650 if (!intf->authorized) {
1651 device_lock(dev);
1652 intf->authorized = 1; /* authorize interface */
1653 device_unlock(dev);
1654 }
1655}
1656
1657static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1658{
1659 struct usb_device *usb_dev;
1660 struct usb_interface *intf;
1661 struct usb_host_interface *alt;
1662
1663 intf = to_usb_interface(dev);
1664 usb_dev = interface_to_usbdev(intf);
1665 alt = intf->cur_altsetting;
1666
1667 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1668 alt->desc.bInterfaceClass,
1669 alt->desc.bInterfaceSubClass,
1670 alt->desc.bInterfaceProtocol))
1671 return -ENOMEM;
1672
1673 if (add_uevent_var(env,
1674 "MODALIAS=usb:"
1675 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1676 le16_to_cpu(usb_dev->descriptor.idVendor),
1677 le16_to_cpu(usb_dev->descriptor.idProduct),
1678 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1679 usb_dev->descriptor.bDeviceClass,
1680 usb_dev->descriptor.bDeviceSubClass,
1681 usb_dev->descriptor.bDeviceProtocol,
1682 alt->desc.bInterfaceClass,
1683 alt->desc.bInterfaceSubClass,
1684 alt->desc.bInterfaceProtocol,
1685 alt->desc.bInterfaceNumber))
1686 return -ENOMEM;
1687
1688 return 0;
1689}
1690
1691struct device_type usb_if_device_type = {
1692 .name = "usb_interface",
1693 .release = usb_release_interface,
1694 .uevent = usb_if_uevent,
1695};
1696
1697static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1698 struct usb_host_config *config,
1699 u8 inum)
1700{
1701 struct usb_interface_assoc_descriptor *retval = NULL;
1702 struct usb_interface_assoc_descriptor *intf_assoc;
1703 int first_intf;
1704 int last_intf;
1705 int i;
1706
1707 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1708 intf_assoc = config->intf_assoc[i];
1709 if (intf_assoc->bInterfaceCount == 0)
1710 continue;
1711
1712 first_intf = intf_assoc->bFirstInterface;
1713 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1714 if (inum >= first_intf && inum <= last_intf) {
1715 if (!retval)
1716 retval = intf_assoc;
1717 else
1718 dev_err(&dev->dev, "Interface #%d referenced"
1719 " by multiple IADs\n", inum);
1720 }
1721 }
1722
1723 return retval;
1724}
1725
1726
1727/*
1728 * Internal function to queue a device reset
1729 * See usb_queue_reset_device() for more details
1730 */
1731static void __usb_queue_reset_device(struct work_struct *ws)
1732{
1733 int rc;
1734 struct usb_interface *iface =
1735 container_of(ws, struct usb_interface, reset_ws);
1736 struct usb_device *udev = interface_to_usbdev(iface);
1737
1738 rc = usb_lock_device_for_reset(udev, iface);
1739 if (rc >= 0) {
1740 usb_reset_device(udev);
1741 usb_unlock_device(udev);
1742 }
1743 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1744}
1745
1746
1747/*
1748 * usb_set_configuration - Makes a particular device setting be current
1749 * @dev: the device whose configuration is being updated
1750 * @configuration: the configuration being chosen.
1751 * Context: !in_interrupt(), caller owns the device lock
1752 *
1753 * This is used to enable non-default device modes. Not all devices
1754 * use this kind of configurability; many devices only have one
1755 * configuration.
1756 *
1757 * @configuration is the value of the configuration to be installed.
1758 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1759 * must be non-zero; a value of zero indicates that the device in
1760 * unconfigured. However some devices erroneously use 0 as one of their
1761 * configuration values. To help manage such devices, this routine will
1762 * accept @configuration = -1 as indicating the device should be put in
1763 * an unconfigured state.
1764 *
1765 * USB device configurations may affect Linux interoperability,
1766 * power consumption and the functionality available. For example,
1767 * the default configuration is limited to using 100mA of bus power,
1768 * so that when certain device functionality requires more power,
1769 * and the device is bus powered, that functionality should be in some
1770 * non-default device configuration. Other device modes may also be
1771 * reflected as configuration options, such as whether two ISDN
1772 * channels are available independently; and choosing between open
1773 * standard device protocols (like CDC) or proprietary ones.
1774 *
1775 * Note that a non-authorized device (dev->authorized == 0) will only
1776 * be put in unconfigured mode.
1777 *
1778 * Note that USB has an additional level of device configurability,
1779 * associated with interfaces. That configurability is accessed using
1780 * usb_set_interface().
1781 *
1782 * This call is synchronous. The calling context must be able to sleep,
1783 * must own the device lock, and must not hold the driver model's USB
1784 * bus mutex; usb interface driver probe() methods cannot use this routine.
1785 *
1786 * Returns zero on success, or else the status code returned by the
1787 * underlying call that failed. On successful completion, each interface
1788 * in the original device configuration has been destroyed, and each one
1789 * in the new configuration has been probed by all relevant usb device
1790 * drivers currently known to the kernel.
1791 */
1792int usb_set_configuration(struct usb_device *dev, int configuration)
1793{
1794 int i, ret;
1795 struct usb_host_config *cp = NULL;
1796 struct usb_interface **new_interfaces = NULL;
1797 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1798 int n, nintf;
1799
1800 if (dev->authorized == 0 || configuration == -1)
1801 configuration = 0;
1802 else {
1803 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1804 if (dev->config[i].desc.bConfigurationValue ==
1805 configuration) {
1806 cp = &dev->config[i];
1807 break;
1808 }
1809 }
1810 }
1811 if ((!cp && configuration != 0))
1812 return -EINVAL;
1813
1814 /* The USB spec says configuration 0 means unconfigured.
1815 * But if a device includes a configuration numbered 0,
1816 * we will accept it as a correctly configured state.
1817 * Use -1 if you really want to unconfigure the device.
1818 */
1819 if (cp && configuration == 0)
1820 dev_warn(&dev->dev, "config 0 descriptor??\n");
1821
1822 /* Allocate memory for new interfaces before doing anything else,
1823 * so that if we run out then nothing will have changed. */
1824 n = nintf = 0;
1825 if (cp) {
1826 nintf = cp->desc.bNumInterfaces;
1827 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1828 GFP_NOIO);
1829 if (!new_interfaces)
1830 return -ENOMEM;
1831
1832 for (; n < nintf; ++n) {
1833 new_interfaces[n] = kzalloc(
1834 sizeof(struct usb_interface),
1835 GFP_NOIO);
1836 if (!new_interfaces[n]) {
1837 ret = -ENOMEM;
1838free_interfaces:
1839 while (--n >= 0)
1840 kfree(new_interfaces[n]);
1841 kfree(new_interfaces);
1842 return ret;
1843 }
1844 }
1845
1846 i = dev->bus_mA - usb_get_max_power(dev, cp);
1847 if (i < 0)
1848 dev_warn(&dev->dev, "new config #%d exceeds power "
1849 "limit by %dmA\n",
1850 configuration, -i);
1851 }
1852
1853 /* Wake up the device so we can send it the Set-Config request */
1854 ret = usb_autoresume_device(dev);
1855 if (ret)
1856 goto free_interfaces;
1857
1858 /* if it's already configured, clear out old state first.
1859 * getting rid of old interfaces means unbinding their drivers.
1860 */
1861 if (dev->state != USB_STATE_ADDRESS)
1862 usb_disable_device(dev, 1); /* Skip ep0 */
1863
1864 /* Get rid of pending async Set-Config requests for this device */
1865 cancel_async_set_config(dev);
1866
1867 /* Make sure we have bandwidth (and available HCD resources) for this
1868 * configuration. Remove endpoints from the schedule if we're dropping
1869 * this configuration to set configuration 0. After this point, the
1870 * host controller will not allow submissions to dropped endpoints. If
1871 * this call fails, the device state is unchanged.
1872 */
1873 mutex_lock(hcd->bandwidth_mutex);
1874 /* Disable LPM, and re-enable it once the new configuration is
1875 * installed, so that the xHCI driver can recalculate the U1/U2
1876 * timeouts.
1877 */
1878 if (dev->actconfig && usb_disable_lpm(dev)) {
1879 dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1880 mutex_unlock(hcd->bandwidth_mutex);
1881 ret = -ENOMEM;
1882 goto free_interfaces;
1883 }
1884 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1885 if (ret < 0) {
1886 if (dev->actconfig)
1887 usb_enable_lpm(dev);
1888 mutex_unlock(hcd->bandwidth_mutex);
1889 usb_autosuspend_device(dev);
1890 goto free_interfaces;
1891 }
1892
1893 /*
1894 * Initialize the new interface structures and the
1895 * hc/hcd/usbcore interface/endpoint state.
1896 */
1897 for (i = 0; i < nintf; ++i) {
1898 struct usb_interface_cache *intfc;
1899 struct usb_interface *intf;
1900 struct usb_host_interface *alt;
1901 u8 ifnum;
1902
1903 cp->interface[i] = intf = new_interfaces[i];
1904 intfc = cp->intf_cache[i];
1905 intf->altsetting = intfc->altsetting;
1906 intf->num_altsetting = intfc->num_altsetting;
1907 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1908 kref_get(&intfc->ref);
1909
1910 alt = usb_altnum_to_altsetting(intf, 0);
1911
1912 /* No altsetting 0? We'll assume the first altsetting.
1913 * We could use a GetInterface call, but if a device is
1914 * so non-compliant that it doesn't have altsetting 0
1915 * then I wouldn't trust its reply anyway.
1916 */
1917 if (!alt)
1918 alt = &intf->altsetting[0];
1919
1920 ifnum = alt->desc.bInterfaceNumber;
1921 intf->intf_assoc = find_iad(dev, cp, ifnum);
1922 intf->cur_altsetting = alt;
1923 usb_enable_interface(dev, intf, true);
1924 intf->dev.parent = &dev->dev;
1925 if (usb_of_has_combined_node(dev)) {
1926 device_set_of_node_from_dev(&intf->dev, &dev->dev);
1927 } else {
1928 intf->dev.of_node = usb_of_get_interface_node(dev,
1929 configuration, ifnum);
1930 }
1931 intf->dev.driver = NULL;
1932 intf->dev.bus = &usb_bus_type;
1933 intf->dev.type = &usb_if_device_type;
1934 intf->dev.groups = usb_interface_groups;
1935 /*
1936 * Please refer to usb_alloc_dev() to see why we set
1937 * dma_mask and dma_pfn_offset.
1938 */
1939 intf->dev.dma_mask = dev->dev.dma_mask;
1940 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1941 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1942 intf->minor = -1;
1943 device_initialize(&intf->dev);
1944 pm_runtime_no_callbacks(&intf->dev);
1945 dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
1946 dev->devpath, configuration, ifnum);
1947 usb_get_dev(dev);
1948 }
1949 kfree(new_interfaces);
1950
1951 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1952 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1953 NULL, 0, USB_CTRL_SET_TIMEOUT);
1954 if (ret < 0 && cp) {
1955 /*
1956 * All the old state is gone, so what else can we do?
1957 * The device is probably useless now anyway.
1958 */
1959 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1960 for (i = 0; i < nintf; ++i) {
1961 usb_disable_interface(dev, cp->interface[i], true);
1962 put_device(&cp->interface[i]->dev);
1963 cp->interface[i] = NULL;
1964 }
1965 cp = NULL;
1966 }
1967
1968 dev->actconfig = cp;
1969 mutex_unlock(hcd->bandwidth_mutex);
1970
1971 if (!cp) {
1972 usb_set_device_state(dev, USB_STATE_ADDRESS);
1973
1974 /* Leave LPM disabled while the device is unconfigured. */
1975 usb_autosuspend_device(dev);
1976 return ret;
1977 }
1978 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1979
1980 if (cp->string == NULL &&
1981 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1982 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1983
1984 /* Now that the interfaces are installed, re-enable LPM. */
1985 usb_unlocked_enable_lpm(dev);
1986 /* Enable LTM if it was turned off by usb_disable_device. */
1987 usb_enable_ltm(dev);
1988
1989 /* Now that all the interfaces are set up, register them
1990 * to trigger binding of drivers to interfaces. probe()
1991 * routines may install different altsettings and may
1992 * claim() any interfaces not yet bound. Many class drivers
1993 * need that: CDC, audio, video, etc.
1994 */
1995 for (i = 0; i < nintf; ++i) {
1996 struct usb_interface *intf = cp->interface[i];
1997
1998 dev_dbg(&dev->dev,
1999 "adding %s (config #%d, interface %d)\n",
2000 dev_name(&intf->dev), configuration,
2001 intf->cur_altsetting->desc.bInterfaceNumber);
2002 device_enable_async_suspend(&intf->dev);
2003 ret = device_add(&intf->dev);
2004 if (ret != 0) {
2005 dev_err(&dev->dev, "device_add(%s) --> %d\n",
2006 dev_name(&intf->dev), ret);
2007 continue;
2008 }
2009 create_intf_ep_devs(intf);
2010 }
2011
2012 usb_autosuspend_device(dev);
2013 return 0;
2014}
2015EXPORT_SYMBOL_GPL(usb_set_configuration);
2016
2017static LIST_HEAD(set_config_list);
2018static DEFINE_SPINLOCK(set_config_lock);
2019
2020struct set_config_request {
2021 struct usb_device *udev;
2022 int config;
2023 struct work_struct work;
2024 struct list_head node;
2025};
2026
2027/* Worker routine for usb_driver_set_configuration() */
2028static void driver_set_config_work(struct work_struct *work)
2029{
2030 struct set_config_request *req =
2031 container_of(work, struct set_config_request, work);
2032 struct usb_device *udev = req->udev;
2033
2034 usb_lock_device(udev);
2035 spin_lock(&set_config_lock);
2036 list_del(&req->node);
2037 spin_unlock(&set_config_lock);
2038
2039 if (req->config >= -1) /* Is req still valid? */
2040 usb_set_configuration(udev, req->config);
2041 usb_unlock_device(udev);
2042 usb_put_dev(udev);
2043 kfree(req);
2044}
2045
2046/* Cancel pending Set-Config requests for a device whose configuration
2047 * was just changed
2048 */
2049static void cancel_async_set_config(struct usb_device *udev)
2050{
2051 struct set_config_request *req;
2052
2053 spin_lock(&set_config_lock);
2054 list_for_each_entry(req, &set_config_list, node) {
2055 if (req->udev == udev)
2056 req->config = -999; /* Mark as cancelled */
2057 }
2058 spin_unlock(&set_config_lock);
2059}
2060
2061/**
2062 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2063 * @udev: the device whose configuration is being updated
2064 * @config: the configuration being chosen.
2065 * Context: In process context, must be able to sleep
2066 *
2067 * Device interface drivers are not allowed to change device configurations.
2068 * This is because changing configurations will destroy the interface the
2069 * driver is bound to and create new ones; it would be like a floppy-disk
2070 * driver telling the computer to replace the floppy-disk drive with a
2071 * tape drive!
2072 *
2073 * Still, in certain specialized circumstances the need may arise. This
2074 * routine gets around the normal restrictions by using a work thread to
2075 * submit the change-config request.
2076 *
2077 * Return: 0 if the request was successfully queued, error code otherwise.
2078 * The caller has no way to know whether the queued request will eventually
2079 * succeed.
2080 */
2081int usb_driver_set_configuration(struct usb_device *udev, int config)
2082{
2083 struct set_config_request *req;
2084
2085 req = kmalloc(sizeof(*req), GFP_KERNEL);
2086 if (!req)
2087 return -ENOMEM;
2088 req->udev = udev;
2089 req->config = config;
2090 INIT_WORK(&req->work, driver_set_config_work);
2091
2092 spin_lock(&set_config_lock);
2093 list_add(&req->node, &set_config_list);
2094 spin_unlock(&set_config_lock);
2095
2096 usb_get_dev(udev);
2097 schedule_work(&req->work);
2098 return 0;
2099}
2100EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2101
2102/**
2103 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2104 * @hdr: the place to put the results of the parsing
2105 * @intf: the interface for which parsing is requested
2106 * @buffer: pointer to the extra headers to be parsed
2107 * @buflen: length of the extra headers
2108 *
2109 * This evaluates the extra headers present in CDC devices which
2110 * bind the interfaces for data and control and provide details
2111 * about the capabilities of the device.
2112 *
2113 * Return: number of descriptors parsed or -EINVAL
2114 * if the header is contradictory beyond salvage
2115 */
2116
2117int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2118 struct usb_interface *intf,
2119 u8 *buffer,
2120 int buflen)
2121{
2122 /* duplicates are ignored */
2123 struct usb_cdc_union_desc *union_header = NULL;
2124
2125 /* duplicates are not tolerated */
2126 struct usb_cdc_header_desc *header = NULL;
2127 struct usb_cdc_ether_desc *ether = NULL;
2128 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2129 struct usb_cdc_mdlm_desc *desc = NULL;
2130
2131 unsigned int elength;
2132 int cnt = 0;
2133
2134 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2135 hdr->phonet_magic_present = false;
2136 while (buflen > 0) {
2137 elength = buffer[0];
2138 if (!elength) {
2139 dev_err(&intf->dev, "skipping garbage byte\n");
2140 elength = 1;
2141 goto next_desc;
2142 }
2143 if ((buflen < elength) || (elength < 3)) {
2144 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2145 break;
2146 }
2147 if (buffer[1] != USB_DT_CS_INTERFACE) {
2148 dev_err(&intf->dev, "skipping garbage\n");
2149 goto next_desc;
2150 }
2151
2152 switch (buffer[2]) {
2153 case USB_CDC_UNION_TYPE: /* we've found it */
2154 if (elength < sizeof(struct usb_cdc_union_desc))
2155 goto next_desc;
2156 if (union_header) {
2157 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2158 goto next_desc;
2159 }
2160 union_header = (struct usb_cdc_union_desc *)buffer;
2161 break;
2162 case USB_CDC_COUNTRY_TYPE:
2163 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2164 goto next_desc;
2165 hdr->usb_cdc_country_functional_desc =
2166 (struct usb_cdc_country_functional_desc *)buffer;
2167 break;
2168 case USB_CDC_HEADER_TYPE:
2169 if (elength != sizeof(struct usb_cdc_header_desc))
2170 goto next_desc;
2171 if (header)
2172 return -EINVAL;
2173 header = (struct usb_cdc_header_desc *)buffer;
2174 break;
2175 case USB_CDC_ACM_TYPE:
2176 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2177 goto next_desc;
2178 hdr->usb_cdc_acm_descriptor =
2179 (struct usb_cdc_acm_descriptor *)buffer;
2180 break;
2181 case USB_CDC_ETHERNET_TYPE:
2182 if (elength != sizeof(struct usb_cdc_ether_desc))
2183 goto next_desc;
2184 if (ether)
2185 return -EINVAL;
2186 ether = (struct usb_cdc_ether_desc *)buffer;
2187 break;
2188 case USB_CDC_CALL_MANAGEMENT_TYPE:
2189 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2190 goto next_desc;
2191 hdr->usb_cdc_call_mgmt_descriptor =
2192 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2193 break;
2194 case USB_CDC_DMM_TYPE:
2195 if (elength < sizeof(struct usb_cdc_dmm_desc))
2196 goto next_desc;
2197 hdr->usb_cdc_dmm_desc =
2198 (struct usb_cdc_dmm_desc *)buffer;
2199 break;
2200 case USB_CDC_MDLM_TYPE:
2201 if (elength < sizeof(struct usb_cdc_mdlm_desc *))
2202 goto next_desc;
2203 if (desc)
2204 return -EINVAL;
2205 desc = (struct usb_cdc_mdlm_desc *)buffer;
2206 break;
2207 case USB_CDC_MDLM_DETAIL_TYPE:
2208 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *))
2209 goto next_desc;
2210 if (detail)
2211 return -EINVAL;
2212 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2213 break;
2214 case USB_CDC_NCM_TYPE:
2215 if (elength < sizeof(struct usb_cdc_ncm_desc))
2216 goto next_desc;
2217 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2218 break;
2219 case USB_CDC_MBIM_TYPE:
2220 if (elength < sizeof(struct usb_cdc_mbim_desc))
2221 goto next_desc;
2222
2223 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2224 break;
2225 case USB_CDC_MBIM_EXTENDED_TYPE:
2226 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2227 break;
2228 hdr->usb_cdc_mbim_extended_desc =
2229 (struct usb_cdc_mbim_extended_desc *)buffer;
2230 break;
2231 case CDC_PHONET_MAGIC_NUMBER:
2232 hdr->phonet_magic_present = true;
2233 break;
2234 default:
2235 /*
2236 * there are LOTS more CDC descriptors that
2237 * could legitimately be found here.
2238 */
2239 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2240 buffer[2], elength);
2241 goto next_desc;
2242 }
2243 cnt++;
2244next_desc:
2245 buflen -= elength;
2246 buffer += elength;
2247 }
2248 hdr->usb_cdc_union_desc = union_header;
2249 hdr->usb_cdc_header_desc = header;
2250 hdr->usb_cdc_mdlm_detail_desc = detail;
2251 hdr->usb_cdc_mdlm_desc = desc;
2252 hdr->usb_cdc_ether_desc = ether;
2253 return cnt;
2254}
2255
2256EXPORT_SYMBOL(cdc_parse_cdc_header);