Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/cache.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/mutex.h>
  25#include <linux/of_device.h>
  26#include <linux/of_irq.h>
  27#include <linux/clk/clk-conf.h>
  28#include <linux/slab.h>
  29#include <linux/mod_devicetable.h>
  30#include <linux/spi/spi.h>
  31#include <linux/of_gpio.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/pm_domain.h>
  34#include <linux/export.h>
  35#include <linux/sched/rt.h>
  36#include <linux/delay.h>
  37#include <linux/kthread.h>
  38#include <linux/ioport.h>
  39#include <linux/acpi.h>
 
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/spi.h>
  43
  44static void spidev_release(struct device *dev)
  45{
  46	struct spi_device	*spi = to_spi_device(dev);
  47
  48	/* spi masters may cleanup for released devices */
  49	if (spi->master->cleanup)
  50		spi->master->cleanup(spi);
  51
  52	spi_master_put(spi->master);
  53	kfree(spi);
  54}
  55
  56static ssize_t
  57modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  58{
  59	const struct spi_device	*spi = to_spi_device(dev);
  60	int len;
  61
  62	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  63	if (len != -ENODEV)
  64		return len;
  65
  66	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  67}
  68static DEVICE_ATTR_RO(modalias);
  69
  70#define SPI_STATISTICS_ATTRS(field, file)				\
  71static ssize_t spi_master_##field##_show(struct device *dev,		\
  72					 struct device_attribute *attr,	\
  73					 char *buf)			\
  74{									\
  75	struct spi_master *master = container_of(dev,			\
  76						 struct spi_master, dev); \
  77	return spi_statistics_##field##_show(&master->statistics, buf);	\
  78}									\
  79static struct device_attribute dev_attr_spi_master_##field = {		\
  80	.attr = { .name = file, .mode = S_IRUGO },			\
  81	.show = spi_master_##field##_show,				\
  82};									\
  83static ssize_t spi_device_##field##_show(struct device *dev,		\
  84					 struct device_attribute *attr,	\
  85					char *buf)			\
  86{									\
  87	struct spi_device *spi = to_spi_device(dev);			\
  88	return spi_statistics_##field##_show(&spi->statistics, buf);	\
  89}									\
  90static struct device_attribute dev_attr_spi_device_##field = {		\
  91	.attr = { .name = file, .mode = S_IRUGO },			\
  92	.show = spi_device_##field##_show,				\
  93}
  94
  95#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
  96static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
  97					    char *buf)			\
  98{									\
  99	unsigned long flags;						\
 100	ssize_t len;							\
 101	spin_lock_irqsave(&stat->lock, flags);				\
 102	len = sprintf(buf, format_string, stat->field);			\
 103	spin_unlock_irqrestore(&stat->lock, flags);			\
 104	return len;							\
 105}									\
 106SPI_STATISTICS_ATTRS(name, file)
 107
 108#define SPI_STATISTICS_SHOW(field, format_string)			\
 109	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 110				 field, format_string)
 111
 112SPI_STATISTICS_SHOW(messages, "%lu");
 113SPI_STATISTICS_SHOW(transfers, "%lu");
 114SPI_STATISTICS_SHOW(errors, "%lu");
 115SPI_STATISTICS_SHOW(timedout, "%lu");
 116
 117SPI_STATISTICS_SHOW(spi_sync, "%lu");
 118SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 119SPI_STATISTICS_SHOW(spi_async, "%lu");
 120
 121SPI_STATISTICS_SHOW(bytes, "%llu");
 122SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 123SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 124
 125#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 126	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 127				 "transfer_bytes_histo_" number,	\
 128				 transfer_bytes_histo[index],  "%lu")
 129SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 130SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 131SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 132SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 133SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 134SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 135SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 136SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 137SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 138SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 139SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 140SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 141SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 142SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 143SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 144SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 145SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 146
 147SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 148
 149static struct attribute *spi_dev_attrs[] = {
 150	&dev_attr_modalias.attr,
 151	NULL,
 152};
 153
 154static const struct attribute_group spi_dev_group = {
 155	.attrs  = spi_dev_attrs,
 156};
 157
 158static struct attribute *spi_device_statistics_attrs[] = {
 159	&dev_attr_spi_device_messages.attr,
 160	&dev_attr_spi_device_transfers.attr,
 161	&dev_attr_spi_device_errors.attr,
 162	&dev_attr_spi_device_timedout.attr,
 163	&dev_attr_spi_device_spi_sync.attr,
 164	&dev_attr_spi_device_spi_sync_immediate.attr,
 165	&dev_attr_spi_device_spi_async.attr,
 166	&dev_attr_spi_device_bytes.attr,
 167	&dev_attr_spi_device_bytes_rx.attr,
 168	&dev_attr_spi_device_bytes_tx.attr,
 169	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 170	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 171	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 172	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 173	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 174	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 175	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 176	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 177	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 178	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 179	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 180	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 181	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 182	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 183	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 184	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 185	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 186	&dev_attr_spi_device_transfers_split_maxsize.attr,
 187	NULL,
 188};
 189
 190static const struct attribute_group spi_device_statistics_group = {
 191	.name  = "statistics",
 192	.attrs  = spi_device_statistics_attrs,
 193};
 194
 195static const struct attribute_group *spi_dev_groups[] = {
 196	&spi_dev_group,
 197	&spi_device_statistics_group,
 198	NULL,
 199};
 200
 201static struct attribute *spi_master_statistics_attrs[] = {
 202	&dev_attr_spi_master_messages.attr,
 203	&dev_attr_spi_master_transfers.attr,
 204	&dev_attr_spi_master_errors.attr,
 205	&dev_attr_spi_master_timedout.attr,
 206	&dev_attr_spi_master_spi_sync.attr,
 207	&dev_attr_spi_master_spi_sync_immediate.attr,
 208	&dev_attr_spi_master_spi_async.attr,
 209	&dev_attr_spi_master_bytes.attr,
 210	&dev_attr_spi_master_bytes_rx.attr,
 211	&dev_attr_spi_master_bytes_tx.attr,
 212	&dev_attr_spi_master_transfer_bytes_histo0.attr,
 213	&dev_attr_spi_master_transfer_bytes_histo1.attr,
 214	&dev_attr_spi_master_transfer_bytes_histo2.attr,
 215	&dev_attr_spi_master_transfer_bytes_histo3.attr,
 216	&dev_attr_spi_master_transfer_bytes_histo4.attr,
 217	&dev_attr_spi_master_transfer_bytes_histo5.attr,
 218	&dev_attr_spi_master_transfer_bytes_histo6.attr,
 219	&dev_attr_spi_master_transfer_bytes_histo7.attr,
 220	&dev_attr_spi_master_transfer_bytes_histo8.attr,
 221	&dev_attr_spi_master_transfer_bytes_histo9.attr,
 222	&dev_attr_spi_master_transfer_bytes_histo10.attr,
 223	&dev_attr_spi_master_transfer_bytes_histo11.attr,
 224	&dev_attr_spi_master_transfer_bytes_histo12.attr,
 225	&dev_attr_spi_master_transfer_bytes_histo13.attr,
 226	&dev_attr_spi_master_transfer_bytes_histo14.attr,
 227	&dev_attr_spi_master_transfer_bytes_histo15.attr,
 228	&dev_attr_spi_master_transfer_bytes_histo16.attr,
 229	&dev_attr_spi_master_transfers_split_maxsize.attr,
 230	NULL,
 231};
 232
 233static const struct attribute_group spi_master_statistics_group = {
 234	.name  = "statistics",
 235	.attrs  = spi_master_statistics_attrs,
 236};
 237
 238static const struct attribute_group *spi_master_groups[] = {
 239	&spi_master_statistics_group,
 240	NULL,
 241};
 242
 243void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 244				       struct spi_transfer *xfer,
 245				       struct spi_master *master)
 246{
 247	unsigned long flags;
 248	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 249
 250	if (l2len < 0)
 251		l2len = 0;
 252
 253	spin_lock_irqsave(&stats->lock, flags);
 254
 255	stats->transfers++;
 256	stats->transfer_bytes_histo[l2len]++;
 257
 258	stats->bytes += xfer->len;
 259	if ((xfer->tx_buf) &&
 260	    (xfer->tx_buf != master->dummy_tx))
 261		stats->bytes_tx += xfer->len;
 262	if ((xfer->rx_buf) &&
 263	    (xfer->rx_buf != master->dummy_rx))
 264		stats->bytes_rx += xfer->len;
 265
 266	spin_unlock_irqrestore(&stats->lock, flags);
 267}
 268EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 269
 270/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 271 * and the sysfs version makes coldplug work too.
 272 */
 273
 274static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 275						const struct spi_device *sdev)
 276{
 277	while (id->name[0]) {
 278		if (!strcmp(sdev->modalias, id->name))
 279			return id;
 280		id++;
 281	}
 282	return NULL;
 283}
 284
 285const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 286{
 287	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 288
 289	return spi_match_id(sdrv->id_table, sdev);
 290}
 291EXPORT_SYMBOL_GPL(spi_get_device_id);
 292
 293static int spi_match_device(struct device *dev, struct device_driver *drv)
 294{
 295	const struct spi_device	*spi = to_spi_device(dev);
 296	const struct spi_driver	*sdrv = to_spi_driver(drv);
 297
 298	/* Attempt an OF style match */
 299	if (of_driver_match_device(dev, drv))
 300		return 1;
 301
 302	/* Then try ACPI */
 303	if (acpi_driver_match_device(dev, drv))
 304		return 1;
 305
 306	if (sdrv->id_table)
 307		return !!spi_match_id(sdrv->id_table, spi);
 308
 309	return strcmp(spi->modalias, drv->name) == 0;
 310}
 311
 312static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 313{
 314	const struct spi_device		*spi = to_spi_device(dev);
 315	int rc;
 316
 317	rc = acpi_device_uevent_modalias(dev, env);
 318	if (rc != -ENODEV)
 319		return rc;
 320
 321	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 322	return 0;
 323}
 324
 325struct bus_type spi_bus_type = {
 326	.name		= "spi",
 327	.dev_groups	= spi_dev_groups,
 328	.match		= spi_match_device,
 329	.uevent		= spi_uevent,
 330};
 331EXPORT_SYMBOL_GPL(spi_bus_type);
 332
 333
 334static int spi_drv_probe(struct device *dev)
 335{
 336	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 337	struct spi_device		*spi = to_spi_device(dev);
 338	int ret;
 339
 340	ret = of_clk_set_defaults(dev->of_node, false);
 341	if (ret)
 342		return ret;
 343
 344	if (dev->of_node) {
 345		spi->irq = of_irq_get(dev->of_node, 0);
 346		if (spi->irq == -EPROBE_DEFER)
 347			return -EPROBE_DEFER;
 348		if (spi->irq < 0)
 349			spi->irq = 0;
 350	}
 351
 352	ret = dev_pm_domain_attach(dev, true);
 353	if (ret != -EPROBE_DEFER) {
 354		ret = sdrv->probe(spi);
 355		if (ret)
 356			dev_pm_domain_detach(dev, true);
 357	}
 358
 359	return ret;
 360}
 361
 362static int spi_drv_remove(struct device *dev)
 363{
 364	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 365	int ret;
 366
 367	ret = sdrv->remove(to_spi_device(dev));
 368	dev_pm_domain_detach(dev, true);
 369
 370	return ret;
 371}
 372
 373static void spi_drv_shutdown(struct device *dev)
 374{
 375	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 376
 377	sdrv->shutdown(to_spi_device(dev));
 378}
 379
 380/**
 381 * __spi_register_driver - register a SPI driver
 382 * @owner: owner module of the driver to register
 383 * @sdrv: the driver to register
 384 * Context: can sleep
 385 *
 386 * Return: zero on success, else a negative error code.
 387 */
 388int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 389{
 390	sdrv->driver.owner = owner;
 391	sdrv->driver.bus = &spi_bus_type;
 392	if (sdrv->probe)
 393		sdrv->driver.probe = spi_drv_probe;
 394	if (sdrv->remove)
 395		sdrv->driver.remove = spi_drv_remove;
 396	if (sdrv->shutdown)
 397		sdrv->driver.shutdown = spi_drv_shutdown;
 398	return driver_register(&sdrv->driver);
 399}
 400EXPORT_SYMBOL_GPL(__spi_register_driver);
 401
 402/*-------------------------------------------------------------------------*/
 403
 404/* SPI devices should normally not be created by SPI device drivers; that
 405 * would make them board-specific.  Similarly with SPI master drivers.
 406 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 407 * with other readonly (flashable) information about mainboard devices.
 408 */
 409
 410struct boardinfo {
 411	struct list_head	list;
 412	struct spi_board_info	board_info;
 413};
 414
 415static LIST_HEAD(board_list);
 416static LIST_HEAD(spi_master_list);
 417
 418/*
 419 * Used to protect add/del opertion for board_info list and
 420 * spi_master list, and their matching process
 421 */
 422static DEFINE_MUTEX(board_lock);
 423
 424/**
 425 * spi_alloc_device - Allocate a new SPI device
 426 * @master: Controller to which device is connected
 427 * Context: can sleep
 428 *
 429 * Allows a driver to allocate and initialize a spi_device without
 430 * registering it immediately.  This allows a driver to directly
 431 * fill the spi_device with device parameters before calling
 432 * spi_add_device() on it.
 433 *
 434 * Caller is responsible to call spi_add_device() on the returned
 435 * spi_device structure to add it to the SPI master.  If the caller
 436 * needs to discard the spi_device without adding it, then it should
 437 * call spi_dev_put() on it.
 438 *
 439 * Return: a pointer to the new device, or NULL.
 440 */
 441struct spi_device *spi_alloc_device(struct spi_master *master)
 442{
 443	struct spi_device	*spi;
 444
 445	if (!spi_master_get(master))
 446		return NULL;
 447
 448	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 449	if (!spi) {
 450		spi_master_put(master);
 451		return NULL;
 452	}
 453
 454	spi->master = master;
 455	spi->dev.parent = &master->dev;
 456	spi->dev.bus = &spi_bus_type;
 457	spi->dev.release = spidev_release;
 458	spi->cs_gpio = -ENOENT;
 459
 460	spin_lock_init(&spi->statistics.lock);
 461
 462	device_initialize(&spi->dev);
 463	return spi;
 464}
 465EXPORT_SYMBOL_GPL(spi_alloc_device);
 466
 467static void spi_dev_set_name(struct spi_device *spi)
 468{
 469	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 470
 471	if (adev) {
 472		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 473		return;
 474	}
 475
 476	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 477		     spi->chip_select);
 478}
 479
 480static int spi_dev_check(struct device *dev, void *data)
 481{
 482	struct spi_device *spi = to_spi_device(dev);
 483	struct spi_device *new_spi = data;
 484
 485	if (spi->master == new_spi->master &&
 486	    spi->chip_select == new_spi->chip_select)
 487		return -EBUSY;
 488	return 0;
 489}
 490
 491/**
 492 * spi_add_device - Add spi_device allocated with spi_alloc_device
 493 * @spi: spi_device to register
 494 *
 495 * Companion function to spi_alloc_device.  Devices allocated with
 496 * spi_alloc_device can be added onto the spi bus with this function.
 497 *
 498 * Return: 0 on success; negative errno on failure
 499 */
 500int spi_add_device(struct spi_device *spi)
 501{
 502	static DEFINE_MUTEX(spi_add_lock);
 503	struct spi_master *master = spi->master;
 504	struct device *dev = master->dev.parent;
 505	int status;
 506
 507	/* Chipselects are numbered 0..max; validate. */
 508	if (spi->chip_select >= master->num_chipselect) {
 509		dev_err(dev, "cs%d >= max %d\n",
 510			spi->chip_select,
 511			master->num_chipselect);
 512		return -EINVAL;
 513	}
 514
 515	/* Set the bus ID string */
 516	spi_dev_set_name(spi);
 517
 518	/* We need to make sure there's no other device with this
 519	 * chipselect **BEFORE** we call setup(), else we'll trash
 520	 * its configuration.  Lock against concurrent add() calls.
 521	 */
 522	mutex_lock(&spi_add_lock);
 523
 524	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 525	if (status) {
 526		dev_err(dev, "chipselect %d already in use\n",
 527				spi->chip_select);
 528		goto done;
 529	}
 530
 531	if (master->cs_gpios)
 532		spi->cs_gpio = master->cs_gpios[spi->chip_select];
 533
 534	/* Drivers may modify this initial i/o setup, but will
 535	 * normally rely on the device being setup.  Devices
 536	 * using SPI_CS_HIGH can't coexist well otherwise...
 537	 */
 538	status = spi_setup(spi);
 539	if (status < 0) {
 540		dev_err(dev, "can't setup %s, status %d\n",
 541				dev_name(&spi->dev), status);
 542		goto done;
 543	}
 544
 545	/* Device may be bound to an active driver when this returns */
 546	status = device_add(&spi->dev);
 547	if (status < 0)
 548		dev_err(dev, "can't add %s, status %d\n",
 549				dev_name(&spi->dev), status);
 550	else
 551		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 552
 553done:
 554	mutex_unlock(&spi_add_lock);
 555	return status;
 556}
 557EXPORT_SYMBOL_GPL(spi_add_device);
 558
 559/**
 560 * spi_new_device - instantiate one new SPI device
 561 * @master: Controller to which device is connected
 562 * @chip: Describes the SPI device
 563 * Context: can sleep
 564 *
 565 * On typical mainboards, this is purely internal; and it's not needed
 566 * after board init creates the hard-wired devices.  Some development
 567 * platforms may not be able to use spi_register_board_info though, and
 568 * this is exported so that for example a USB or parport based adapter
 569 * driver could add devices (which it would learn about out-of-band).
 570 *
 571 * Return: the new device, or NULL.
 572 */
 573struct spi_device *spi_new_device(struct spi_master *master,
 574				  struct spi_board_info *chip)
 575{
 576	struct spi_device	*proxy;
 577	int			status;
 578
 579	/* NOTE:  caller did any chip->bus_num checks necessary.
 580	 *
 581	 * Also, unless we change the return value convention to use
 582	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 583	 * suggests syslogged diagnostics are best here (ugh).
 584	 */
 585
 586	proxy = spi_alloc_device(master);
 587	if (!proxy)
 588		return NULL;
 589
 590	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 591
 592	proxy->chip_select = chip->chip_select;
 593	proxy->max_speed_hz = chip->max_speed_hz;
 594	proxy->mode = chip->mode;
 595	proxy->irq = chip->irq;
 596	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 597	proxy->dev.platform_data = (void *) chip->platform_data;
 598	proxy->controller_data = chip->controller_data;
 599	proxy->controller_state = NULL;
 600
 601	status = spi_add_device(proxy);
 602	if (status < 0) {
 603		spi_dev_put(proxy);
 604		return NULL;
 605	}
 606
 607	return proxy;
 608}
 609EXPORT_SYMBOL_GPL(spi_new_device);
 610
 611/**
 612 * spi_unregister_device - unregister a single SPI device
 613 * @spi: spi_device to unregister
 614 *
 615 * Start making the passed SPI device vanish. Normally this would be handled
 616 * by spi_unregister_master().
 617 */
 618void spi_unregister_device(struct spi_device *spi)
 619{
 620	if (!spi)
 621		return;
 622
 623	if (spi->dev.of_node)
 624		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 
 
 625	device_unregister(&spi->dev);
 626}
 627EXPORT_SYMBOL_GPL(spi_unregister_device);
 628
 629static void spi_match_master_to_boardinfo(struct spi_master *master,
 630				struct spi_board_info *bi)
 631{
 632	struct spi_device *dev;
 633
 634	if (master->bus_num != bi->bus_num)
 635		return;
 636
 637	dev = spi_new_device(master, bi);
 638	if (!dev)
 639		dev_err(master->dev.parent, "can't create new device for %s\n",
 640			bi->modalias);
 641}
 642
 643/**
 644 * spi_register_board_info - register SPI devices for a given board
 645 * @info: array of chip descriptors
 646 * @n: how many descriptors are provided
 647 * Context: can sleep
 648 *
 649 * Board-specific early init code calls this (probably during arch_initcall)
 650 * with segments of the SPI device table.  Any device nodes are created later,
 651 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 652 * this table of devices forever, so that reloading a controller driver will
 653 * not make Linux forget about these hard-wired devices.
 654 *
 655 * Other code can also call this, e.g. a particular add-on board might provide
 656 * SPI devices through its expansion connector, so code initializing that board
 657 * would naturally declare its SPI devices.
 658 *
 659 * The board info passed can safely be __initdata ... but be careful of
 660 * any embedded pointers (platform_data, etc), they're copied as-is.
 661 *
 662 * Return: zero on success, else a negative error code.
 663 */
 664int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 665{
 666	struct boardinfo *bi;
 667	int i;
 668
 669	if (!n)
 670		return -EINVAL;
 671
 672	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 673	if (!bi)
 674		return -ENOMEM;
 675
 676	for (i = 0; i < n; i++, bi++, info++) {
 677		struct spi_master *master;
 678
 679		memcpy(&bi->board_info, info, sizeof(*info));
 680		mutex_lock(&board_lock);
 681		list_add_tail(&bi->list, &board_list);
 682		list_for_each_entry(master, &spi_master_list, list)
 683			spi_match_master_to_boardinfo(master, &bi->board_info);
 684		mutex_unlock(&board_lock);
 685	}
 686
 687	return 0;
 688}
 689
 690/*-------------------------------------------------------------------------*/
 691
 692static void spi_set_cs(struct spi_device *spi, bool enable)
 693{
 694	if (spi->mode & SPI_CS_HIGH)
 695		enable = !enable;
 696
 697	if (gpio_is_valid(spi->cs_gpio))
 698		gpio_set_value(spi->cs_gpio, !enable);
 699	else if (spi->master->set_cs)
 
 
 
 
 700		spi->master->set_cs(spi, !enable);
 
 701}
 702
 703#ifdef CONFIG_HAS_DMA
 704static int spi_map_buf(struct spi_master *master, struct device *dev,
 705		       struct sg_table *sgt, void *buf, size_t len,
 706		       enum dma_data_direction dir)
 707{
 708	const bool vmalloced_buf = is_vmalloc_addr(buf);
 709	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 
 
 
 
 
 
 
 710	int desc_len;
 711	int sgs;
 712	struct page *vm_page;
 
 713	void *sg_buf;
 714	size_t min;
 715	int i, ret;
 716
 717	if (vmalloced_buf) {
 718		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 719		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 720	} else {
 721		desc_len = min_t(int, max_seg_size, master->max_dma_len);
 722		sgs = DIV_ROUND_UP(len, desc_len);
 
 
 723	}
 724
 725	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 726	if (ret != 0)
 727		return ret;
 728
 
 729	for (i = 0; i < sgs; i++) {
 730
 731		if (vmalloced_buf) {
 732			min = min_t(size_t,
 733				    len, desc_len - offset_in_page(buf));
 734			vm_page = vmalloc_to_page(buf);
 
 
 
 735			if (!vm_page) {
 736				sg_free_table(sgt);
 737				return -ENOMEM;
 738			}
 739			sg_set_page(&sgt->sgl[i], vm_page,
 740				    min, offset_in_page(buf));
 741		} else {
 742			min = min_t(size_t, len, desc_len);
 743			sg_buf = buf;
 744			sg_set_buf(&sgt->sgl[i], sg_buf, min);
 745		}
 746
 747		buf += min;
 748		len -= min;
 
 749	}
 750
 751	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 752	if (!ret)
 753		ret = -ENOMEM;
 754	if (ret < 0) {
 755		sg_free_table(sgt);
 756		return ret;
 757	}
 758
 759	sgt->nents = ret;
 760
 761	return 0;
 762}
 763
 764static void spi_unmap_buf(struct spi_master *master, struct device *dev,
 765			  struct sg_table *sgt, enum dma_data_direction dir)
 766{
 767	if (sgt->orig_nents) {
 768		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 769		sg_free_table(sgt);
 770	}
 771}
 772
 773static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
 774{
 775	struct device *tx_dev, *rx_dev;
 776	struct spi_transfer *xfer;
 777	int ret;
 778
 779	if (!master->can_dma)
 780		return 0;
 781
 782	if (master->dma_tx)
 783		tx_dev = master->dma_tx->device->dev;
 784	else
 785		tx_dev = &master->dev;
 786
 787	if (master->dma_rx)
 788		rx_dev = master->dma_rx->device->dev;
 789	else
 790		rx_dev = &master->dev;
 791
 792	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 793		if (!master->can_dma(master, msg->spi, xfer))
 794			continue;
 795
 796		if (xfer->tx_buf != NULL) {
 797			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
 798					  (void *)xfer->tx_buf, xfer->len,
 799					  DMA_TO_DEVICE);
 800			if (ret != 0)
 801				return ret;
 802		}
 803
 804		if (xfer->rx_buf != NULL) {
 805			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
 806					  xfer->rx_buf, xfer->len,
 807					  DMA_FROM_DEVICE);
 808			if (ret != 0) {
 809				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
 810					      DMA_TO_DEVICE);
 811				return ret;
 812			}
 813		}
 814	}
 815
 816	master->cur_msg_mapped = true;
 817
 818	return 0;
 819}
 820
 821static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
 822{
 823	struct spi_transfer *xfer;
 824	struct device *tx_dev, *rx_dev;
 825
 826	if (!master->cur_msg_mapped || !master->can_dma)
 827		return 0;
 828
 829	if (master->dma_tx)
 830		tx_dev = master->dma_tx->device->dev;
 831	else
 832		tx_dev = &master->dev;
 833
 834	if (master->dma_rx)
 835		rx_dev = master->dma_rx->device->dev;
 836	else
 837		rx_dev = &master->dev;
 838
 839	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 840		if (!master->can_dma(master, msg->spi, xfer))
 841			continue;
 842
 843		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 844		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 845	}
 846
 847	return 0;
 848}
 849#else /* !CONFIG_HAS_DMA */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850static inline int __spi_map_msg(struct spi_master *master,
 851				struct spi_message *msg)
 852{
 853	return 0;
 854}
 855
 856static inline int __spi_unmap_msg(struct spi_master *master,
 857				  struct spi_message *msg)
 858{
 859	return 0;
 860}
 861#endif /* !CONFIG_HAS_DMA */
 862
 863static inline int spi_unmap_msg(struct spi_master *master,
 864				struct spi_message *msg)
 865{
 866	struct spi_transfer *xfer;
 867
 868	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 869		/*
 870		 * Restore the original value of tx_buf or rx_buf if they are
 871		 * NULL.
 872		 */
 873		if (xfer->tx_buf == master->dummy_tx)
 874			xfer->tx_buf = NULL;
 875		if (xfer->rx_buf == master->dummy_rx)
 876			xfer->rx_buf = NULL;
 877	}
 878
 879	return __spi_unmap_msg(master, msg);
 880}
 881
 882static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
 883{
 884	struct spi_transfer *xfer;
 885	void *tmp;
 886	unsigned int max_tx, max_rx;
 887
 888	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
 889		max_tx = 0;
 890		max_rx = 0;
 891
 892		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 893			if ((master->flags & SPI_MASTER_MUST_TX) &&
 894			    !xfer->tx_buf)
 895				max_tx = max(xfer->len, max_tx);
 896			if ((master->flags & SPI_MASTER_MUST_RX) &&
 897			    !xfer->rx_buf)
 898				max_rx = max(xfer->len, max_rx);
 899		}
 900
 901		if (max_tx) {
 902			tmp = krealloc(master->dummy_tx, max_tx,
 903				       GFP_KERNEL | GFP_DMA);
 904			if (!tmp)
 905				return -ENOMEM;
 906			master->dummy_tx = tmp;
 907			memset(tmp, 0, max_tx);
 908		}
 909
 910		if (max_rx) {
 911			tmp = krealloc(master->dummy_rx, max_rx,
 912				       GFP_KERNEL | GFP_DMA);
 913			if (!tmp)
 914				return -ENOMEM;
 915			master->dummy_rx = tmp;
 916		}
 917
 918		if (max_tx || max_rx) {
 919			list_for_each_entry(xfer, &msg->transfers,
 920					    transfer_list) {
 921				if (!xfer->tx_buf)
 922					xfer->tx_buf = master->dummy_tx;
 923				if (!xfer->rx_buf)
 924					xfer->rx_buf = master->dummy_rx;
 925			}
 926		}
 927	}
 928
 929	return __spi_map_msg(master, msg);
 930}
 931
 932/*
 933 * spi_transfer_one_message - Default implementation of transfer_one_message()
 934 *
 935 * This is a standard implementation of transfer_one_message() for
 936 * drivers which impelment a transfer_one() operation.  It provides
 937 * standard handling of delays and chip select management.
 938 */
 939static int spi_transfer_one_message(struct spi_master *master,
 940				    struct spi_message *msg)
 941{
 942	struct spi_transfer *xfer;
 943	bool keep_cs = false;
 944	int ret = 0;
 945	unsigned long ms = 1;
 946	struct spi_statistics *statm = &master->statistics;
 947	struct spi_statistics *stats = &msg->spi->statistics;
 948
 949	spi_set_cs(msg->spi, true);
 950
 951	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
 952	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
 953
 954	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 955		trace_spi_transfer_start(msg, xfer);
 956
 957		spi_statistics_add_transfer_stats(statm, xfer, master);
 958		spi_statistics_add_transfer_stats(stats, xfer, master);
 959
 960		if (xfer->tx_buf || xfer->rx_buf) {
 961			reinit_completion(&master->xfer_completion);
 962
 963			ret = master->transfer_one(master, msg->spi, xfer);
 964			if (ret < 0) {
 965				SPI_STATISTICS_INCREMENT_FIELD(statm,
 966							       errors);
 967				SPI_STATISTICS_INCREMENT_FIELD(stats,
 968							       errors);
 969				dev_err(&msg->spi->dev,
 970					"SPI transfer failed: %d\n", ret);
 971				goto out;
 972			}
 973
 974			if (ret > 0) {
 975				ret = 0;
 976				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
 
 977				ms += ms + 100; /* some tolerance */
 978
 
 
 
 979				ms = wait_for_completion_timeout(&master->xfer_completion,
 980								 msecs_to_jiffies(ms));
 981			}
 982
 983			if (ms == 0) {
 984				SPI_STATISTICS_INCREMENT_FIELD(statm,
 985							       timedout);
 986				SPI_STATISTICS_INCREMENT_FIELD(stats,
 987							       timedout);
 988				dev_err(&msg->spi->dev,
 989					"SPI transfer timed out\n");
 990				msg->status = -ETIMEDOUT;
 991			}
 992		} else {
 993			if (xfer->len)
 994				dev_err(&msg->spi->dev,
 995					"Bufferless transfer has length %u\n",
 996					xfer->len);
 997		}
 998
 999		trace_spi_transfer_stop(msg, xfer);
1000
1001		if (msg->status != -EINPROGRESS)
1002			goto out;
1003
1004		if (xfer->delay_usecs)
1005			udelay(xfer->delay_usecs);
 
 
 
 
 
 
1006
1007		if (xfer->cs_change) {
1008			if (list_is_last(&xfer->transfer_list,
1009					 &msg->transfers)) {
1010				keep_cs = true;
1011			} else {
1012				spi_set_cs(msg->spi, false);
1013				udelay(10);
1014				spi_set_cs(msg->spi, true);
1015			}
1016		}
1017
1018		msg->actual_length += xfer->len;
1019	}
1020
1021out:
1022	if (ret != 0 || !keep_cs)
1023		spi_set_cs(msg->spi, false);
1024
1025	if (msg->status == -EINPROGRESS)
1026		msg->status = ret;
1027
1028	if (msg->status && master->handle_err)
1029		master->handle_err(master, msg);
1030
1031	spi_res_release(master, msg);
1032
1033	spi_finalize_current_message(master);
1034
1035	return ret;
1036}
1037
1038/**
1039 * spi_finalize_current_transfer - report completion of a transfer
1040 * @master: the master reporting completion
1041 *
1042 * Called by SPI drivers using the core transfer_one_message()
1043 * implementation to notify it that the current interrupt driven
1044 * transfer has finished and the next one may be scheduled.
1045 */
1046void spi_finalize_current_transfer(struct spi_master *master)
1047{
1048	complete(&master->xfer_completion);
1049}
1050EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1051
1052/**
1053 * __spi_pump_messages - function which processes spi message queue
1054 * @master: master to process queue for
1055 * @in_kthread: true if we are in the context of the message pump thread
1056 * @bus_locked: true if the bus mutex is held when calling this function
1057 *
1058 * This function checks if there is any spi message in the queue that
1059 * needs processing and if so call out to the driver to initialize hardware
1060 * and transfer each message.
1061 *
1062 * Note that it is called both from the kthread itself and also from
1063 * inside spi_sync(); the queue extraction handling at the top of the
1064 * function should deal with this safely.
1065 */
1066static void __spi_pump_messages(struct spi_master *master, bool in_kthread,
1067				bool bus_locked)
1068{
1069	unsigned long flags;
1070	bool was_busy = false;
1071	int ret;
1072
1073	/* Lock queue */
1074	spin_lock_irqsave(&master->queue_lock, flags);
1075
1076	/* Make sure we are not already running a message */
1077	if (master->cur_msg) {
1078		spin_unlock_irqrestore(&master->queue_lock, flags);
1079		return;
1080	}
1081
1082	/* If another context is idling the device then defer */
1083	if (master->idling) {
1084		queue_kthread_work(&master->kworker, &master->pump_messages);
1085		spin_unlock_irqrestore(&master->queue_lock, flags);
1086		return;
1087	}
1088
1089	/* Check if the queue is idle */
1090	if (list_empty(&master->queue) || !master->running) {
1091		if (!master->busy) {
1092			spin_unlock_irqrestore(&master->queue_lock, flags);
1093			return;
1094		}
1095
1096		/* Only do teardown in the thread */
1097		if (!in_kthread) {
1098			queue_kthread_work(&master->kworker,
1099					   &master->pump_messages);
1100			spin_unlock_irqrestore(&master->queue_lock, flags);
1101			return;
1102		}
1103
1104		master->busy = false;
1105		master->idling = true;
1106		spin_unlock_irqrestore(&master->queue_lock, flags);
1107
1108		kfree(master->dummy_rx);
1109		master->dummy_rx = NULL;
1110		kfree(master->dummy_tx);
1111		master->dummy_tx = NULL;
1112		if (master->unprepare_transfer_hardware &&
1113		    master->unprepare_transfer_hardware(master))
1114			dev_err(&master->dev,
1115				"failed to unprepare transfer hardware\n");
1116		if (master->auto_runtime_pm) {
1117			pm_runtime_mark_last_busy(master->dev.parent);
1118			pm_runtime_put_autosuspend(master->dev.parent);
1119		}
1120		trace_spi_master_idle(master);
1121
1122		spin_lock_irqsave(&master->queue_lock, flags);
1123		master->idling = false;
1124		spin_unlock_irqrestore(&master->queue_lock, flags);
1125		return;
1126	}
1127
1128	/* Extract head of queue */
1129	master->cur_msg =
1130		list_first_entry(&master->queue, struct spi_message, queue);
1131
1132	list_del_init(&master->cur_msg->queue);
1133	if (master->busy)
1134		was_busy = true;
1135	else
1136		master->busy = true;
1137	spin_unlock_irqrestore(&master->queue_lock, flags);
1138
 
 
1139	if (!was_busy && master->auto_runtime_pm) {
1140		ret = pm_runtime_get_sync(master->dev.parent);
1141		if (ret < 0) {
1142			dev_err(&master->dev, "Failed to power device: %d\n",
1143				ret);
 
1144			return;
1145		}
1146	}
1147
1148	if (!was_busy)
1149		trace_spi_master_busy(master);
1150
1151	if (!was_busy && master->prepare_transfer_hardware) {
1152		ret = master->prepare_transfer_hardware(master);
1153		if (ret) {
1154			dev_err(&master->dev,
1155				"failed to prepare transfer hardware\n");
1156
1157			if (master->auto_runtime_pm)
1158				pm_runtime_put(master->dev.parent);
 
1159			return;
1160		}
1161	}
1162
1163	if (!bus_locked)
1164		mutex_lock(&master->bus_lock_mutex);
1165
1166	trace_spi_message_start(master->cur_msg);
1167
1168	if (master->prepare_message) {
1169		ret = master->prepare_message(master, master->cur_msg);
1170		if (ret) {
1171			dev_err(&master->dev,
1172				"failed to prepare message: %d\n", ret);
1173			master->cur_msg->status = ret;
1174			spi_finalize_current_message(master);
1175			goto out;
1176		}
1177		master->cur_msg_prepared = true;
1178	}
1179
1180	ret = spi_map_msg(master, master->cur_msg);
1181	if (ret) {
1182		master->cur_msg->status = ret;
1183		spi_finalize_current_message(master);
1184		goto out;
1185	}
1186
1187	ret = master->transfer_one_message(master, master->cur_msg);
1188	if (ret) {
1189		dev_err(&master->dev,
1190			"failed to transfer one message from queue\n");
1191		goto out;
1192	}
1193
1194out:
1195	if (!bus_locked)
1196		mutex_unlock(&master->bus_lock_mutex);
1197
1198	/* Prod the scheduler in case transfer_one() was busy waiting */
1199	if (!ret)
1200		cond_resched();
1201}
1202
1203/**
1204 * spi_pump_messages - kthread work function which processes spi message queue
1205 * @work: pointer to kthread work struct contained in the master struct
1206 */
1207static void spi_pump_messages(struct kthread_work *work)
1208{
1209	struct spi_master *master =
1210		container_of(work, struct spi_master, pump_messages);
1211
1212	__spi_pump_messages(master, true, master->bus_lock_flag);
1213}
1214
1215static int spi_init_queue(struct spi_master *master)
1216{
1217	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1218
1219	master->running = false;
1220	master->busy = false;
1221
1222	init_kthread_worker(&master->kworker);
1223	master->kworker_task = kthread_run(kthread_worker_fn,
1224					   &master->kworker, "%s",
1225					   dev_name(&master->dev));
1226	if (IS_ERR(master->kworker_task)) {
1227		dev_err(&master->dev, "failed to create message pump task\n");
1228		return PTR_ERR(master->kworker_task);
1229	}
1230	init_kthread_work(&master->pump_messages, spi_pump_messages);
1231
1232	/*
1233	 * Master config will indicate if this controller should run the
1234	 * message pump with high (realtime) priority to reduce the transfer
1235	 * latency on the bus by minimising the delay between a transfer
1236	 * request and the scheduling of the message pump thread. Without this
1237	 * setting the message pump thread will remain at default priority.
1238	 */
1239	if (master->rt) {
1240		dev_info(&master->dev,
1241			"will run message pump with realtime priority\n");
1242		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1243	}
1244
1245	return 0;
1246}
1247
1248/**
1249 * spi_get_next_queued_message() - called by driver to check for queued
1250 * messages
1251 * @master: the master to check for queued messages
1252 *
1253 * If there are more messages in the queue, the next message is returned from
1254 * this call.
1255 *
1256 * Return: the next message in the queue, else NULL if the queue is empty.
1257 */
1258struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1259{
1260	struct spi_message *next;
1261	unsigned long flags;
1262
1263	/* get a pointer to the next message, if any */
1264	spin_lock_irqsave(&master->queue_lock, flags);
1265	next = list_first_entry_or_null(&master->queue, struct spi_message,
1266					queue);
1267	spin_unlock_irqrestore(&master->queue_lock, flags);
1268
1269	return next;
1270}
1271EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1272
1273/**
1274 * spi_finalize_current_message() - the current message is complete
1275 * @master: the master to return the message to
1276 *
1277 * Called by the driver to notify the core that the message in the front of the
1278 * queue is complete and can be removed from the queue.
1279 */
1280void spi_finalize_current_message(struct spi_master *master)
1281{
1282	struct spi_message *mesg;
1283	unsigned long flags;
1284	int ret;
1285
1286	spin_lock_irqsave(&master->queue_lock, flags);
1287	mesg = master->cur_msg;
1288	spin_unlock_irqrestore(&master->queue_lock, flags);
1289
1290	spi_unmap_msg(master, mesg);
1291
1292	if (master->cur_msg_prepared && master->unprepare_message) {
1293		ret = master->unprepare_message(master, mesg);
1294		if (ret) {
1295			dev_err(&master->dev,
1296				"failed to unprepare message: %d\n", ret);
1297		}
1298	}
1299
1300	spin_lock_irqsave(&master->queue_lock, flags);
1301	master->cur_msg = NULL;
1302	master->cur_msg_prepared = false;
1303	queue_kthread_work(&master->kworker, &master->pump_messages);
1304	spin_unlock_irqrestore(&master->queue_lock, flags);
1305
1306	trace_spi_message_done(mesg);
1307
1308	mesg->state = NULL;
1309	if (mesg->complete)
1310		mesg->complete(mesg->context);
1311}
1312EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1313
1314static int spi_start_queue(struct spi_master *master)
1315{
1316	unsigned long flags;
1317
1318	spin_lock_irqsave(&master->queue_lock, flags);
1319
1320	if (master->running || master->busy) {
1321		spin_unlock_irqrestore(&master->queue_lock, flags);
1322		return -EBUSY;
1323	}
1324
1325	master->running = true;
1326	master->cur_msg = NULL;
1327	spin_unlock_irqrestore(&master->queue_lock, flags);
1328
1329	queue_kthread_work(&master->kworker, &master->pump_messages);
1330
1331	return 0;
1332}
1333
1334static int spi_stop_queue(struct spi_master *master)
1335{
1336	unsigned long flags;
1337	unsigned limit = 500;
1338	int ret = 0;
1339
1340	spin_lock_irqsave(&master->queue_lock, flags);
1341
1342	/*
1343	 * This is a bit lame, but is optimized for the common execution path.
1344	 * A wait_queue on the master->busy could be used, but then the common
1345	 * execution path (pump_messages) would be required to call wake_up or
1346	 * friends on every SPI message. Do this instead.
1347	 */
1348	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1349		spin_unlock_irqrestore(&master->queue_lock, flags);
1350		usleep_range(10000, 11000);
1351		spin_lock_irqsave(&master->queue_lock, flags);
1352	}
1353
1354	if (!list_empty(&master->queue) || master->busy)
1355		ret = -EBUSY;
1356	else
1357		master->running = false;
1358
1359	spin_unlock_irqrestore(&master->queue_lock, flags);
1360
1361	if (ret) {
1362		dev_warn(&master->dev,
1363			 "could not stop message queue\n");
1364		return ret;
1365	}
1366	return ret;
1367}
1368
1369static int spi_destroy_queue(struct spi_master *master)
1370{
1371	int ret;
1372
1373	ret = spi_stop_queue(master);
1374
1375	/*
1376	 * flush_kthread_worker will block until all work is done.
1377	 * If the reason that stop_queue timed out is that the work will never
1378	 * finish, then it does no good to call flush/stop thread, so
1379	 * return anyway.
1380	 */
1381	if (ret) {
1382		dev_err(&master->dev, "problem destroying queue\n");
1383		return ret;
1384	}
1385
1386	flush_kthread_worker(&master->kworker);
1387	kthread_stop(master->kworker_task);
1388
1389	return 0;
1390}
1391
1392static int __spi_queued_transfer(struct spi_device *spi,
1393				 struct spi_message *msg,
1394				 bool need_pump)
1395{
1396	struct spi_master *master = spi->master;
1397	unsigned long flags;
1398
1399	spin_lock_irqsave(&master->queue_lock, flags);
1400
1401	if (!master->running) {
1402		spin_unlock_irqrestore(&master->queue_lock, flags);
1403		return -ESHUTDOWN;
1404	}
1405	msg->actual_length = 0;
1406	msg->status = -EINPROGRESS;
1407
1408	list_add_tail(&msg->queue, &master->queue);
1409	if (!master->busy && need_pump)
1410		queue_kthread_work(&master->kworker, &master->pump_messages);
1411
1412	spin_unlock_irqrestore(&master->queue_lock, flags);
1413	return 0;
1414}
1415
1416/**
1417 * spi_queued_transfer - transfer function for queued transfers
1418 * @spi: spi device which is requesting transfer
1419 * @msg: spi message which is to handled is queued to driver queue
1420 *
1421 * Return: zero on success, else a negative error code.
1422 */
1423static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1424{
1425	return __spi_queued_transfer(spi, msg, true);
1426}
1427
1428static int spi_master_initialize_queue(struct spi_master *master)
1429{
1430	int ret;
1431
1432	master->transfer = spi_queued_transfer;
1433	if (!master->transfer_one_message)
1434		master->transfer_one_message = spi_transfer_one_message;
1435
1436	/* Initialize and start queue */
1437	ret = spi_init_queue(master);
1438	if (ret) {
1439		dev_err(&master->dev, "problem initializing queue\n");
1440		goto err_init_queue;
1441	}
1442	master->queued = true;
1443	ret = spi_start_queue(master);
1444	if (ret) {
1445		dev_err(&master->dev, "problem starting queue\n");
1446		goto err_start_queue;
1447	}
1448
1449	return 0;
1450
1451err_start_queue:
1452	spi_destroy_queue(master);
1453err_init_queue:
1454	return ret;
1455}
1456
1457/*-------------------------------------------------------------------------*/
1458
1459#if defined(CONFIG_OF)
1460static struct spi_device *
1461of_register_spi_device(struct spi_master *master, struct device_node *nc)
1462{
1463	struct spi_device *spi;
1464	int rc;
1465	u32 value;
1466
1467	/* Alloc an spi_device */
1468	spi = spi_alloc_device(master);
1469	if (!spi) {
1470		dev_err(&master->dev, "spi_device alloc error for %s\n",
1471			nc->full_name);
1472		rc = -ENOMEM;
1473		goto err_out;
1474	}
1475
1476	/* Select device driver */
1477	rc = of_modalias_node(nc, spi->modalias,
1478				sizeof(spi->modalias));
1479	if (rc < 0) {
1480		dev_err(&master->dev, "cannot find modalias for %s\n",
1481			nc->full_name);
1482		goto err_out;
1483	}
1484
1485	/* Device address */
1486	rc = of_property_read_u32(nc, "reg", &value);
1487	if (rc) {
1488		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1489			nc->full_name, rc);
1490		goto err_out;
1491	}
1492	spi->chip_select = value;
1493
1494	/* Mode (clock phase/polarity/etc.) */
1495	if (of_find_property(nc, "spi-cpha", NULL))
1496		spi->mode |= SPI_CPHA;
1497	if (of_find_property(nc, "spi-cpol", NULL))
1498		spi->mode |= SPI_CPOL;
1499	if (of_find_property(nc, "spi-cs-high", NULL))
1500		spi->mode |= SPI_CS_HIGH;
1501	if (of_find_property(nc, "spi-3wire", NULL))
1502		spi->mode |= SPI_3WIRE;
1503	if (of_find_property(nc, "spi-lsb-first", NULL))
1504		spi->mode |= SPI_LSB_FIRST;
1505
1506	/* Device DUAL/QUAD mode */
1507	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1508		switch (value) {
1509		case 1:
1510			break;
1511		case 2:
1512			spi->mode |= SPI_TX_DUAL;
1513			break;
1514		case 4:
1515			spi->mode |= SPI_TX_QUAD;
1516			break;
1517		default:
1518			dev_warn(&master->dev,
1519				"spi-tx-bus-width %d not supported\n",
1520				value);
1521			break;
1522		}
1523	}
1524
1525	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1526		switch (value) {
1527		case 1:
1528			break;
1529		case 2:
1530			spi->mode |= SPI_RX_DUAL;
1531			break;
1532		case 4:
1533			spi->mode |= SPI_RX_QUAD;
1534			break;
1535		default:
1536			dev_warn(&master->dev,
1537				"spi-rx-bus-width %d not supported\n",
1538				value);
1539			break;
1540		}
1541	}
1542
1543	/* Device speed */
1544	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1545	if (rc) {
1546		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1547			nc->full_name, rc);
1548		goto err_out;
1549	}
1550	spi->max_speed_hz = value;
1551
1552	/* Store a pointer to the node in the device structure */
1553	of_node_get(nc);
1554	spi->dev.of_node = nc;
1555
1556	/* Register the new device */
1557	rc = spi_add_device(spi);
1558	if (rc) {
1559		dev_err(&master->dev, "spi_device register error %s\n",
1560			nc->full_name);
1561		goto err_out;
1562	}
1563
1564	return spi;
1565
1566err_out:
1567	spi_dev_put(spi);
1568	return ERR_PTR(rc);
1569}
1570
1571/**
1572 * of_register_spi_devices() - Register child devices onto the SPI bus
1573 * @master:	Pointer to spi_master device
1574 *
1575 * Registers an spi_device for each child node of master node which has a 'reg'
1576 * property.
1577 */
1578static void of_register_spi_devices(struct spi_master *master)
1579{
1580	struct spi_device *spi;
1581	struct device_node *nc;
1582
1583	if (!master->dev.of_node)
1584		return;
1585
1586	for_each_available_child_of_node(master->dev.of_node, nc) {
1587		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1588			continue;
1589		spi = of_register_spi_device(master, nc);
1590		if (IS_ERR(spi))
1591			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1592				nc->full_name);
 
 
1593	}
1594}
1595#else
1596static void of_register_spi_devices(struct spi_master *master) { }
1597#endif
1598
1599#ifdef CONFIG_ACPI
1600static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1601{
1602	struct spi_device *spi = data;
1603	struct spi_master *master = spi->master;
1604
1605	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1606		struct acpi_resource_spi_serialbus *sb;
1607
1608		sb = &ares->data.spi_serial_bus;
1609		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1610			/*
1611			 * ACPI DeviceSelection numbering is handled by the
1612			 * host controller driver in Windows and can vary
1613			 * from driver to driver. In Linux we always expect
1614			 * 0 .. max - 1 so we need to ask the driver to
1615			 * translate between the two schemes.
1616			 */
1617			if (master->fw_translate_cs) {
1618				int cs = master->fw_translate_cs(master,
1619						sb->device_selection);
1620				if (cs < 0)
1621					return cs;
1622				spi->chip_select = cs;
1623			} else {
1624				spi->chip_select = sb->device_selection;
1625			}
1626
1627			spi->max_speed_hz = sb->connection_speed;
1628
1629			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1630				spi->mode |= SPI_CPHA;
1631			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1632				spi->mode |= SPI_CPOL;
1633			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1634				spi->mode |= SPI_CS_HIGH;
1635		}
1636	} else if (spi->irq < 0) {
1637		struct resource r;
1638
1639		if (acpi_dev_resource_interrupt(ares, 0, &r))
1640			spi->irq = r.start;
1641	}
1642
1643	/* Always tell the ACPI core to skip this resource */
1644	return 1;
1645}
1646
1647static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1648				       void *data, void **return_value)
1649{
1650	struct spi_master *master = data;
1651	struct list_head resource_list;
1652	struct acpi_device *adev;
1653	struct spi_device *spi;
1654	int ret;
1655
1656	if (acpi_bus_get_device(handle, &adev))
1657		return AE_OK;
1658	if (acpi_bus_get_status(adev) || !adev->status.present)
1659		return AE_OK;
1660
1661	spi = spi_alloc_device(master);
1662	if (!spi) {
1663		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1664			dev_name(&adev->dev));
1665		return AE_NO_MEMORY;
1666	}
1667
1668	ACPI_COMPANION_SET(&spi->dev, adev);
1669	spi->irq = -1;
1670
1671	INIT_LIST_HEAD(&resource_list);
1672	ret = acpi_dev_get_resources(adev, &resource_list,
1673				     acpi_spi_add_resource, spi);
1674	acpi_dev_free_resource_list(&resource_list);
1675
1676	if (ret < 0 || !spi->max_speed_hz) {
1677		spi_dev_put(spi);
1678		return AE_OK;
1679	}
1680
1681	if (spi->irq < 0)
1682		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1683
 
 
1684	adev->power.flags.ignore_parent = true;
1685	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1686	if (spi_add_device(spi)) {
1687		adev->power.flags.ignore_parent = false;
1688		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1689			dev_name(&adev->dev));
1690		spi_dev_put(spi);
1691	}
1692
1693	return AE_OK;
1694}
1695
 
 
 
 
 
 
 
 
 
 
 
 
1696static void acpi_register_spi_devices(struct spi_master *master)
1697{
1698	acpi_status status;
1699	acpi_handle handle;
1700
1701	handle = ACPI_HANDLE(master->dev.parent);
1702	if (!handle)
1703		return;
1704
1705	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1706				     acpi_spi_add_device, NULL,
1707				     master, NULL);
1708	if (ACPI_FAILURE(status))
1709		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1710}
1711#else
1712static inline void acpi_register_spi_devices(struct spi_master *master) {}
1713#endif /* CONFIG_ACPI */
1714
1715static void spi_master_release(struct device *dev)
1716{
1717	struct spi_master *master;
1718
1719	master = container_of(dev, struct spi_master, dev);
1720	kfree(master);
1721}
1722
1723static struct class spi_master_class = {
1724	.name		= "spi_master",
1725	.owner		= THIS_MODULE,
1726	.dev_release	= spi_master_release,
1727	.dev_groups	= spi_master_groups,
1728};
1729
1730
1731/**
1732 * spi_alloc_master - allocate SPI master controller
1733 * @dev: the controller, possibly using the platform_bus
1734 * @size: how much zeroed driver-private data to allocate; the pointer to this
1735 *	memory is in the driver_data field of the returned device,
1736 *	accessible with spi_master_get_devdata().
1737 * Context: can sleep
1738 *
1739 * This call is used only by SPI master controller drivers, which are the
1740 * only ones directly touching chip registers.  It's how they allocate
1741 * an spi_master structure, prior to calling spi_register_master().
1742 *
1743 * This must be called from context that can sleep.
1744 *
1745 * The caller is responsible for assigning the bus number and initializing
1746 * the master's methods before calling spi_register_master(); and (after errors
1747 * adding the device) calling spi_master_put() to prevent a memory leak.
1748 *
1749 * Return: the SPI master structure on success, else NULL.
1750 */
1751struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1752{
1753	struct spi_master	*master;
1754
1755	if (!dev)
1756		return NULL;
1757
1758	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1759	if (!master)
1760		return NULL;
1761
1762	device_initialize(&master->dev);
1763	master->bus_num = -1;
1764	master->num_chipselect = 1;
1765	master->dev.class = &spi_master_class;
1766	master->dev.parent = dev;
 
1767	spi_master_set_devdata(master, &master[1]);
1768
1769	return master;
1770}
1771EXPORT_SYMBOL_GPL(spi_alloc_master);
1772
1773#ifdef CONFIG_OF
1774static int of_spi_register_master(struct spi_master *master)
1775{
1776	int nb, i, *cs;
1777	struct device_node *np = master->dev.of_node;
1778
1779	if (!np)
1780		return 0;
1781
1782	nb = of_gpio_named_count(np, "cs-gpios");
1783	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1784
1785	/* Return error only for an incorrectly formed cs-gpios property */
1786	if (nb == 0 || nb == -ENOENT)
1787		return 0;
1788	else if (nb < 0)
1789		return nb;
1790
1791	cs = devm_kzalloc(&master->dev,
1792			  sizeof(int) * master->num_chipselect,
1793			  GFP_KERNEL);
1794	master->cs_gpios = cs;
1795
1796	if (!master->cs_gpios)
1797		return -ENOMEM;
1798
1799	for (i = 0; i < master->num_chipselect; i++)
1800		cs[i] = -ENOENT;
1801
1802	for (i = 0; i < nb; i++)
1803		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1804
1805	return 0;
1806}
1807#else
1808static int of_spi_register_master(struct spi_master *master)
1809{
1810	return 0;
1811}
1812#endif
1813
1814/**
1815 * spi_register_master - register SPI master controller
1816 * @master: initialized master, originally from spi_alloc_master()
1817 * Context: can sleep
1818 *
1819 * SPI master controllers connect to their drivers using some non-SPI bus,
1820 * such as the platform bus.  The final stage of probe() in that code
1821 * includes calling spi_register_master() to hook up to this SPI bus glue.
1822 *
1823 * SPI controllers use board specific (often SOC specific) bus numbers,
1824 * and board-specific addressing for SPI devices combines those numbers
1825 * with chip select numbers.  Since SPI does not directly support dynamic
1826 * device identification, boards need configuration tables telling which
1827 * chip is at which address.
1828 *
1829 * This must be called from context that can sleep.  It returns zero on
1830 * success, else a negative error code (dropping the master's refcount).
1831 * After a successful return, the caller is responsible for calling
1832 * spi_unregister_master().
1833 *
1834 * Return: zero on success, else a negative error code.
1835 */
1836int spi_register_master(struct spi_master *master)
1837{
1838	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1839	struct device		*dev = master->dev.parent;
1840	struct boardinfo	*bi;
1841	int			status = -ENODEV;
1842	int			dynamic = 0;
1843
1844	if (!dev)
1845		return -ENODEV;
1846
1847	status = of_spi_register_master(master);
1848	if (status)
1849		return status;
1850
1851	/* even if it's just one always-selected device, there must
1852	 * be at least one chipselect
1853	 */
1854	if (master->num_chipselect == 0)
1855		return -EINVAL;
1856
1857	if ((master->bus_num < 0) && master->dev.of_node)
1858		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1859
1860	/* convention:  dynamically assigned bus IDs count down from the max */
1861	if (master->bus_num < 0) {
1862		/* FIXME switch to an IDR based scheme, something like
1863		 * I2C now uses, so we can't run out of "dynamic" IDs
1864		 */
1865		master->bus_num = atomic_dec_return(&dyn_bus_id);
1866		dynamic = 1;
1867	}
1868
1869	INIT_LIST_HEAD(&master->queue);
1870	spin_lock_init(&master->queue_lock);
1871	spin_lock_init(&master->bus_lock_spinlock);
1872	mutex_init(&master->bus_lock_mutex);
 
1873	master->bus_lock_flag = 0;
1874	init_completion(&master->xfer_completion);
1875	if (!master->max_dma_len)
1876		master->max_dma_len = INT_MAX;
1877
1878	/* register the device, then userspace will see it.
1879	 * registration fails if the bus ID is in use.
1880	 */
1881	dev_set_name(&master->dev, "spi%u", master->bus_num);
1882	status = device_add(&master->dev);
1883	if (status < 0)
1884		goto done;
1885	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1886			dynamic ? " (dynamic)" : "");
1887
1888	/* If we're using a queued driver, start the queue */
1889	if (master->transfer)
1890		dev_info(dev, "master is unqueued, this is deprecated\n");
1891	else {
1892		status = spi_master_initialize_queue(master);
1893		if (status) {
1894			device_del(&master->dev);
1895			goto done;
1896		}
1897	}
1898	/* add statistics */
1899	spin_lock_init(&master->statistics.lock);
1900
1901	mutex_lock(&board_lock);
1902	list_add_tail(&master->list, &spi_master_list);
1903	list_for_each_entry(bi, &board_list, list)
1904		spi_match_master_to_boardinfo(master, &bi->board_info);
1905	mutex_unlock(&board_lock);
1906
1907	/* Register devices from the device tree and ACPI */
1908	of_register_spi_devices(master);
1909	acpi_register_spi_devices(master);
1910done:
1911	return status;
1912}
1913EXPORT_SYMBOL_GPL(spi_register_master);
1914
1915static void devm_spi_unregister(struct device *dev, void *res)
1916{
1917	spi_unregister_master(*(struct spi_master **)res);
1918}
1919
1920/**
1921 * dev_spi_register_master - register managed SPI master controller
1922 * @dev:    device managing SPI master
1923 * @master: initialized master, originally from spi_alloc_master()
1924 * Context: can sleep
1925 *
1926 * Register a SPI device as with spi_register_master() which will
1927 * automatically be unregister
1928 *
1929 * Return: zero on success, else a negative error code.
1930 */
1931int devm_spi_register_master(struct device *dev, struct spi_master *master)
1932{
1933	struct spi_master **ptr;
1934	int ret;
1935
1936	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1937	if (!ptr)
1938		return -ENOMEM;
1939
1940	ret = spi_register_master(master);
1941	if (!ret) {
1942		*ptr = master;
1943		devres_add(dev, ptr);
1944	} else {
1945		devres_free(ptr);
1946	}
1947
1948	return ret;
1949}
1950EXPORT_SYMBOL_GPL(devm_spi_register_master);
1951
1952static int __unregister(struct device *dev, void *null)
1953{
1954	spi_unregister_device(to_spi_device(dev));
1955	return 0;
1956}
1957
1958/**
1959 * spi_unregister_master - unregister SPI master controller
1960 * @master: the master being unregistered
1961 * Context: can sleep
1962 *
1963 * This call is used only by SPI master controller drivers, which are the
1964 * only ones directly touching chip registers.
1965 *
1966 * This must be called from context that can sleep.
1967 */
1968void spi_unregister_master(struct spi_master *master)
1969{
1970	int dummy;
1971
1972	if (master->queued) {
1973		if (spi_destroy_queue(master))
1974			dev_err(&master->dev, "queue remove failed\n");
1975	}
1976
1977	mutex_lock(&board_lock);
1978	list_del(&master->list);
1979	mutex_unlock(&board_lock);
1980
1981	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1982	device_unregister(&master->dev);
1983}
1984EXPORT_SYMBOL_GPL(spi_unregister_master);
1985
1986int spi_master_suspend(struct spi_master *master)
1987{
1988	int ret;
1989
1990	/* Basically no-ops for non-queued masters */
1991	if (!master->queued)
1992		return 0;
1993
1994	ret = spi_stop_queue(master);
1995	if (ret)
1996		dev_err(&master->dev, "queue stop failed\n");
1997
1998	return ret;
1999}
2000EXPORT_SYMBOL_GPL(spi_master_suspend);
2001
2002int spi_master_resume(struct spi_master *master)
2003{
2004	int ret;
2005
2006	if (!master->queued)
2007		return 0;
2008
2009	ret = spi_start_queue(master);
2010	if (ret)
2011		dev_err(&master->dev, "queue restart failed\n");
2012
2013	return ret;
2014}
2015EXPORT_SYMBOL_GPL(spi_master_resume);
2016
2017static int __spi_master_match(struct device *dev, const void *data)
2018{
2019	struct spi_master *m;
2020	const u16 *bus_num = data;
2021
2022	m = container_of(dev, struct spi_master, dev);
2023	return m->bus_num == *bus_num;
2024}
2025
2026/**
2027 * spi_busnum_to_master - look up master associated with bus_num
2028 * @bus_num: the master's bus number
2029 * Context: can sleep
2030 *
2031 * This call may be used with devices that are registered after
2032 * arch init time.  It returns a refcounted pointer to the relevant
2033 * spi_master (which the caller must release), or NULL if there is
2034 * no such master registered.
2035 *
2036 * Return: the SPI master structure on success, else NULL.
2037 */
2038struct spi_master *spi_busnum_to_master(u16 bus_num)
2039{
2040	struct device		*dev;
2041	struct spi_master	*master = NULL;
2042
2043	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2044				__spi_master_match);
2045	if (dev)
2046		master = container_of(dev, struct spi_master, dev);
2047	/* reference got in class_find_device */
2048	return master;
2049}
2050EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2051
2052/*-------------------------------------------------------------------------*/
2053
2054/* Core methods for SPI resource management */
2055
2056/**
2057 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2058 *                 during the processing of a spi_message while using
2059 *                 spi_transfer_one
2060 * @spi:     the spi device for which we allocate memory
2061 * @release: the release code to execute for this resource
2062 * @size:    size to alloc and return
2063 * @gfp:     GFP allocation flags
2064 *
2065 * Return: the pointer to the allocated data
2066 *
2067 * This may get enhanced in the future to allocate from a memory pool
2068 * of the @spi_device or @spi_master to avoid repeated allocations.
2069 */
2070void *spi_res_alloc(struct spi_device *spi,
2071		    spi_res_release_t release,
2072		    size_t size, gfp_t gfp)
2073{
2074	struct spi_res *sres;
2075
2076	sres = kzalloc(sizeof(*sres) + size, gfp);
2077	if (!sres)
2078		return NULL;
2079
2080	INIT_LIST_HEAD(&sres->entry);
2081	sres->release = release;
2082
2083	return sres->data;
2084}
2085EXPORT_SYMBOL_GPL(spi_res_alloc);
2086
2087/**
2088 * spi_res_free - free an spi resource
2089 * @res: pointer to the custom data of a resource
2090 *
2091 */
2092void spi_res_free(void *res)
2093{
2094	struct spi_res *sres = container_of(res, struct spi_res, data);
2095
2096	if (!res)
2097		return;
2098
2099	WARN_ON(!list_empty(&sres->entry));
2100	kfree(sres);
2101}
2102EXPORT_SYMBOL_GPL(spi_res_free);
2103
2104/**
2105 * spi_res_add - add a spi_res to the spi_message
2106 * @message: the spi message
2107 * @res:     the spi_resource
2108 */
2109void spi_res_add(struct spi_message *message, void *res)
2110{
2111	struct spi_res *sres = container_of(res, struct spi_res, data);
2112
2113	WARN_ON(!list_empty(&sres->entry));
2114	list_add_tail(&sres->entry, &message->resources);
2115}
2116EXPORT_SYMBOL_GPL(spi_res_add);
2117
2118/**
2119 * spi_res_release - release all spi resources for this message
2120 * @master:  the @spi_master
2121 * @message: the @spi_message
2122 */
2123void spi_res_release(struct spi_master *master,
2124		     struct spi_message *message)
2125{
2126	struct spi_res *res;
2127
2128	while (!list_empty(&message->resources)) {
2129		res = list_last_entry(&message->resources,
2130				      struct spi_res, entry);
2131
2132		if (res->release)
2133			res->release(master, message, res->data);
2134
2135		list_del(&res->entry);
2136
2137		kfree(res);
2138	}
2139}
2140EXPORT_SYMBOL_GPL(spi_res_release);
2141
2142/*-------------------------------------------------------------------------*/
2143
2144/* Core methods for spi_message alterations */
2145
2146static void __spi_replace_transfers_release(struct spi_master *master,
2147					    struct spi_message *msg,
2148					    void *res)
2149{
2150	struct spi_replaced_transfers *rxfer = res;
2151	size_t i;
2152
2153	/* call extra callback if requested */
2154	if (rxfer->release)
2155		rxfer->release(master, msg, res);
2156
2157	/* insert replaced transfers back into the message */
2158	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2159
2160	/* remove the formerly inserted entries */
2161	for (i = 0; i < rxfer->inserted; i++)
2162		list_del(&rxfer->inserted_transfers[i].transfer_list);
2163}
2164
2165/**
2166 * spi_replace_transfers - replace transfers with several transfers
2167 *                         and register change with spi_message.resources
2168 * @msg:           the spi_message we work upon
2169 * @xfer_first:    the first spi_transfer we want to replace
2170 * @remove:        number of transfers to remove
2171 * @insert:        the number of transfers we want to insert instead
2172 * @release:       extra release code necessary in some circumstances
2173 * @extradatasize: extra data to allocate (with alignment guarantees
2174 *                 of struct @spi_transfer)
2175 * @gfp:           gfp flags
2176 *
2177 * Returns: pointer to @spi_replaced_transfers,
2178 *          PTR_ERR(...) in case of errors.
2179 */
2180struct spi_replaced_transfers *spi_replace_transfers(
2181	struct spi_message *msg,
2182	struct spi_transfer *xfer_first,
2183	size_t remove,
2184	size_t insert,
2185	spi_replaced_release_t release,
2186	size_t extradatasize,
2187	gfp_t gfp)
2188{
2189	struct spi_replaced_transfers *rxfer;
2190	struct spi_transfer *xfer;
2191	size_t i;
2192
2193	/* allocate the structure using spi_res */
2194	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2195			      insert * sizeof(struct spi_transfer)
2196			      + sizeof(struct spi_replaced_transfers)
2197			      + extradatasize,
2198			      gfp);
2199	if (!rxfer)
2200		return ERR_PTR(-ENOMEM);
2201
2202	/* the release code to invoke before running the generic release */
2203	rxfer->release = release;
2204
2205	/* assign extradata */
2206	if (extradatasize)
2207		rxfer->extradata =
2208			&rxfer->inserted_transfers[insert];
2209
2210	/* init the replaced_transfers list */
2211	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2212
2213	/* assign the list_entry after which we should reinsert
2214	 * the @replaced_transfers - it may be spi_message.messages!
2215	 */
2216	rxfer->replaced_after = xfer_first->transfer_list.prev;
2217
2218	/* remove the requested number of transfers */
2219	for (i = 0; i < remove; i++) {
2220		/* if the entry after replaced_after it is msg->transfers
2221		 * then we have been requested to remove more transfers
2222		 * than are in the list
2223		 */
2224		if (rxfer->replaced_after->next == &msg->transfers) {
2225			dev_err(&msg->spi->dev,
2226				"requested to remove more spi_transfers than are available\n");
2227			/* insert replaced transfers back into the message */
2228			list_splice(&rxfer->replaced_transfers,
2229				    rxfer->replaced_after);
2230
2231			/* free the spi_replace_transfer structure */
2232			spi_res_free(rxfer);
2233
2234			/* and return with an error */
2235			return ERR_PTR(-EINVAL);
2236		}
2237
2238		/* remove the entry after replaced_after from list of
2239		 * transfers and add it to list of replaced_transfers
2240		 */
2241		list_move_tail(rxfer->replaced_after->next,
2242			       &rxfer->replaced_transfers);
2243	}
2244
2245	/* create copy of the given xfer with identical settings
2246	 * based on the first transfer to get removed
2247	 */
2248	for (i = 0; i < insert; i++) {
2249		/* we need to run in reverse order */
2250		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2251
2252		/* copy all spi_transfer data */
2253		memcpy(xfer, xfer_first, sizeof(*xfer));
2254
2255		/* add to list */
2256		list_add(&xfer->transfer_list, rxfer->replaced_after);
2257
2258		/* clear cs_change and delay_usecs for all but the last */
2259		if (i) {
2260			xfer->cs_change = false;
2261			xfer->delay_usecs = 0;
2262		}
2263	}
2264
2265	/* set up inserted */
2266	rxfer->inserted = insert;
2267
2268	/* and register it with spi_res/spi_message */
2269	spi_res_add(msg, rxfer);
2270
2271	return rxfer;
2272}
2273EXPORT_SYMBOL_GPL(spi_replace_transfers);
2274
2275static int __spi_split_transfer_maxsize(struct spi_master *master,
2276					struct spi_message *msg,
2277					struct spi_transfer **xferp,
2278					size_t maxsize,
2279					gfp_t gfp)
2280{
2281	struct spi_transfer *xfer = *xferp, *xfers;
2282	struct spi_replaced_transfers *srt;
2283	size_t offset;
2284	size_t count, i;
2285
2286	/* warn once about this fact that we are splitting a transfer */
2287	dev_warn_once(&msg->spi->dev,
2288		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2289		      xfer->len, maxsize);
2290
2291	/* calculate how many we have to replace */
2292	count = DIV_ROUND_UP(xfer->len, maxsize);
2293
2294	/* create replacement */
2295	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2296	if (IS_ERR(srt))
2297		return PTR_ERR(srt);
2298	xfers = srt->inserted_transfers;
2299
2300	/* now handle each of those newly inserted spi_transfers
2301	 * note that the replacements spi_transfers all are preset
2302	 * to the same values as *xferp, so tx_buf, rx_buf and len
2303	 * are all identical (as well as most others)
2304	 * so we just have to fix up len and the pointers.
2305	 *
2306	 * this also includes support for the depreciated
2307	 * spi_message.is_dma_mapped interface
2308	 */
2309
2310	/* the first transfer just needs the length modified, so we
2311	 * run it outside the loop
2312	 */
2313	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2314
2315	/* all the others need rx_buf/tx_buf also set */
2316	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2317		/* update rx_buf, tx_buf and dma */
2318		if (xfers[i].rx_buf)
2319			xfers[i].rx_buf += offset;
2320		if (xfers[i].rx_dma)
2321			xfers[i].rx_dma += offset;
2322		if (xfers[i].tx_buf)
2323			xfers[i].tx_buf += offset;
2324		if (xfers[i].tx_dma)
2325			xfers[i].tx_dma += offset;
2326
2327		/* update length */
2328		xfers[i].len = min(maxsize, xfers[i].len - offset);
2329	}
2330
2331	/* we set up xferp to the last entry we have inserted,
2332	 * so that we skip those already split transfers
2333	 */
2334	*xferp = &xfers[count - 1];
2335
2336	/* increment statistics counters */
2337	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2338				       transfers_split_maxsize);
2339	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2340				       transfers_split_maxsize);
2341
2342	return 0;
2343}
2344
2345/**
2346 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2347 *                              when an individual transfer exceeds a
2348 *                              certain size
2349 * @master:    the @spi_master for this transfer
2350 * @msg:   the @spi_message to transform
2351 * @maxsize:  the maximum when to apply this
2352 * @gfp: GFP allocation flags
2353 *
2354 * Return: status of transformation
2355 */
2356int spi_split_transfers_maxsize(struct spi_master *master,
2357				struct spi_message *msg,
2358				size_t maxsize,
2359				gfp_t gfp)
2360{
2361	struct spi_transfer *xfer;
2362	int ret;
2363
2364	/* iterate over the transfer_list,
2365	 * but note that xfer is advanced to the last transfer inserted
2366	 * to avoid checking sizes again unnecessarily (also xfer does
2367	 * potentiall belong to a different list by the time the
2368	 * replacement has happened
2369	 */
2370	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2371		if (xfer->len > maxsize) {
2372			ret = __spi_split_transfer_maxsize(
2373				master, msg, &xfer, maxsize, gfp);
2374			if (ret)
2375				return ret;
2376		}
2377	}
2378
2379	return 0;
2380}
2381EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2382
2383/*-------------------------------------------------------------------------*/
2384
2385/* Core methods for SPI master protocol drivers.  Some of the
2386 * other core methods are currently defined as inline functions.
2387 */
2388
2389static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2390{
2391	if (master->bits_per_word_mask) {
2392		/* Only 32 bits fit in the mask */
2393		if (bits_per_word > 32)
2394			return -EINVAL;
2395		if (!(master->bits_per_word_mask &
2396				SPI_BPW_MASK(bits_per_word)))
2397			return -EINVAL;
2398	}
2399
2400	return 0;
2401}
2402
2403/**
2404 * spi_setup - setup SPI mode and clock rate
2405 * @spi: the device whose settings are being modified
2406 * Context: can sleep, and no requests are queued to the device
2407 *
2408 * SPI protocol drivers may need to update the transfer mode if the
2409 * device doesn't work with its default.  They may likewise need
2410 * to update clock rates or word sizes from initial values.  This function
2411 * changes those settings, and must be called from a context that can sleep.
2412 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2413 * effect the next time the device is selected and data is transferred to
2414 * or from it.  When this function returns, the spi device is deselected.
2415 *
2416 * Note that this call will fail if the protocol driver specifies an option
2417 * that the underlying controller or its driver does not support.  For
2418 * example, not all hardware supports wire transfers using nine bit words,
2419 * LSB-first wire encoding, or active-high chipselects.
2420 *
2421 * Return: zero on success, else a negative error code.
2422 */
2423int spi_setup(struct spi_device *spi)
2424{
2425	unsigned	bad_bits, ugly_bits;
2426	int		status;
2427
2428	/* check mode to prevent that DUAL and QUAD set at the same time
2429	 */
2430	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2431		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2432		dev_err(&spi->dev,
2433		"setup: can not select dual and quad at the same time\n");
2434		return -EINVAL;
2435	}
2436	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2437	 */
2438	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2439		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2440		return -EINVAL;
2441	/* help drivers fail *cleanly* when they need options
2442	 * that aren't supported with their current master
2443	 */
2444	bad_bits = spi->mode & ~spi->master->mode_bits;
2445	ugly_bits = bad_bits &
2446		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2447	if (ugly_bits) {
2448		dev_warn(&spi->dev,
2449			 "setup: ignoring unsupported mode bits %x\n",
2450			 ugly_bits);
2451		spi->mode &= ~ugly_bits;
2452		bad_bits &= ~ugly_bits;
2453	}
2454	if (bad_bits) {
2455		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2456			bad_bits);
2457		return -EINVAL;
2458	}
2459
2460	if (!spi->bits_per_word)
2461		spi->bits_per_word = 8;
2462
2463	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2464	if (status)
2465		return status;
2466
2467	if (!spi->max_speed_hz)
2468		spi->max_speed_hz = spi->master->max_speed_hz;
2469
2470	if (spi->master->setup)
2471		status = spi->master->setup(spi);
2472
2473	spi_set_cs(spi, false);
2474
2475	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2476			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2477			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2478			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2479			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2480			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2481			spi->bits_per_word, spi->max_speed_hz,
2482			status);
2483
2484	return status;
2485}
2486EXPORT_SYMBOL_GPL(spi_setup);
2487
2488static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2489{
2490	struct spi_master *master = spi->master;
2491	struct spi_transfer *xfer;
2492	int w_size;
2493
2494	if (list_empty(&message->transfers))
2495		return -EINVAL;
2496
2497	/* Half-duplex links include original MicroWire, and ones with
2498	 * only one data pin like SPI_3WIRE (switches direction) or where
2499	 * either MOSI or MISO is missing.  They can also be caused by
2500	 * software limitations.
2501	 */
2502	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2503			|| (spi->mode & SPI_3WIRE)) {
2504		unsigned flags = master->flags;
2505
2506		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2507			if (xfer->rx_buf && xfer->tx_buf)
2508				return -EINVAL;
2509			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2510				return -EINVAL;
2511			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2512				return -EINVAL;
2513		}
2514	}
2515
2516	/**
2517	 * Set transfer bits_per_word and max speed as spi device default if
2518	 * it is not set for this transfer.
2519	 * Set transfer tx_nbits and rx_nbits as single transfer default
2520	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2521	 */
2522	message->frame_length = 0;
2523	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2524		message->frame_length += xfer->len;
2525		if (!xfer->bits_per_word)
2526			xfer->bits_per_word = spi->bits_per_word;
2527
2528		if (!xfer->speed_hz)
2529			xfer->speed_hz = spi->max_speed_hz;
2530		if (!xfer->speed_hz)
2531			xfer->speed_hz = master->max_speed_hz;
2532
2533		if (master->max_speed_hz &&
2534		    xfer->speed_hz > master->max_speed_hz)
2535			xfer->speed_hz = master->max_speed_hz;
2536
2537		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2538			return -EINVAL;
2539
2540		/*
2541		 * SPI transfer length should be multiple of SPI word size
2542		 * where SPI word size should be power-of-two multiple
2543		 */
2544		if (xfer->bits_per_word <= 8)
2545			w_size = 1;
2546		else if (xfer->bits_per_word <= 16)
2547			w_size = 2;
2548		else
2549			w_size = 4;
2550
2551		/* No partial transfers accepted */
2552		if (xfer->len % w_size)
2553			return -EINVAL;
2554
2555		if (xfer->speed_hz && master->min_speed_hz &&
2556		    xfer->speed_hz < master->min_speed_hz)
2557			return -EINVAL;
2558
2559		if (xfer->tx_buf && !xfer->tx_nbits)
2560			xfer->tx_nbits = SPI_NBITS_SINGLE;
2561		if (xfer->rx_buf && !xfer->rx_nbits)
2562			xfer->rx_nbits = SPI_NBITS_SINGLE;
2563		/* check transfer tx/rx_nbits:
2564		 * 1. check the value matches one of single, dual and quad
2565		 * 2. check tx/rx_nbits match the mode in spi_device
2566		 */
2567		if (xfer->tx_buf) {
2568			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2569				xfer->tx_nbits != SPI_NBITS_DUAL &&
2570				xfer->tx_nbits != SPI_NBITS_QUAD)
2571				return -EINVAL;
2572			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2573				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2574				return -EINVAL;
2575			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2576				!(spi->mode & SPI_TX_QUAD))
2577				return -EINVAL;
2578		}
2579		/* check transfer rx_nbits */
2580		if (xfer->rx_buf) {
2581			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2582				xfer->rx_nbits != SPI_NBITS_DUAL &&
2583				xfer->rx_nbits != SPI_NBITS_QUAD)
2584				return -EINVAL;
2585			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2586				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2587				return -EINVAL;
2588			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2589				!(spi->mode & SPI_RX_QUAD))
2590				return -EINVAL;
2591		}
2592	}
2593
2594	message->status = -EINPROGRESS;
2595
2596	return 0;
2597}
2598
2599static int __spi_async(struct spi_device *spi, struct spi_message *message)
2600{
2601	struct spi_master *master = spi->master;
2602
2603	message->spi = spi;
2604
2605	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2606	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2607
2608	trace_spi_message_submit(message);
2609
2610	return master->transfer(spi, message);
2611}
2612
2613/**
2614 * spi_async - asynchronous SPI transfer
2615 * @spi: device with which data will be exchanged
2616 * @message: describes the data transfers, including completion callback
2617 * Context: any (irqs may be blocked, etc)
2618 *
2619 * This call may be used in_irq and other contexts which can't sleep,
2620 * as well as from task contexts which can sleep.
2621 *
2622 * The completion callback is invoked in a context which can't sleep.
2623 * Before that invocation, the value of message->status is undefined.
2624 * When the callback is issued, message->status holds either zero (to
2625 * indicate complete success) or a negative error code.  After that
2626 * callback returns, the driver which issued the transfer request may
2627 * deallocate the associated memory; it's no longer in use by any SPI
2628 * core or controller driver code.
2629 *
2630 * Note that although all messages to a spi_device are handled in
2631 * FIFO order, messages may go to different devices in other orders.
2632 * Some device might be higher priority, or have various "hard" access
2633 * time requirements, for example.
2634 *
2635 * On detection of any fault during the transfer, processing of
2636 * the entire message is aborted, and the device is deselected.
2637 * Until returning from the associated message completion callback,
2638 * no other spi_message queued to that device will be processed.
2639 * (This rule applies equally to all the synchronous transfer calls,
2640 * which are wrappers around this core asynchronous primitive.)
2641 *
2642 * Return: zero on success, else a negative error code.
2643 */
2644int spi_async(struct spi_device *spi, struct spi_message *message)
2645{
2646	struct spi_master *master = spi->master;
2647	int ret;
2648	unsigned long flags;
2649
2650	ret = __spi_validate(spi, message);
2651	if (ret != 0)
2652		return ret;
2653
2654	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2655
2656	if (master->bus_lock_flag)
2657		ret = -EBUSY;
2658	else
2659		ret = __spi_async(spi, message);
2660
2661	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2662
2663	return ret;
2664}
2665EXPORT_SYMBOL_GPL(spi_async);
2666
2667/**
2668 * spi_async_locked - version of spi_async with exclusive bus usage
2669 * @spi: device with which data will be exchanged
2670 * @message: describes the data transfers, including completion callback
2671 * Context: any (irqs may be blocked, etc)
2672 *
2673 * This call may be used in_irq and other contexts which can't sleep,
2674 * as well as from task contexts which can sleep.
2675 *
2676 * The completion callback is invoked in a context which can't sleep.
2677 * Before that invocation, the value of message->status is undefined.
2678 * When the callback is issued, message->status holds either zero (to
2679 * indicate complete success) or a negative error code.  After that
2680 * callback returns, the driver which issued the transfer request may
2681 * deallocate the associated memory; it's no longer in use by any SPI
2682 * core or controller driver code.
2683 *
2684 * Note that although all messages to a spi_device are handled in
2685 * FIFO order, messages may go to different devices in other orders.
2686 * Some device might be higher priority, or have various "hard" access
2687 * time requirements, for example.
2688 *
2689 * On detection of any fault during the transfer, processing of
2690 * the entire message is aborted, and the device is deselected.
2691 * Until returning from the associated message completion callback,
2692 * no other spi_message queued to that device will be processed.
2693 * (This rule applies equally to all the synchronous transfer calls,
2694 * which are wrappers around this core asynchronous primitive.)
2695 *
2696 * Return: zero on success, else a negative error code.
2697 */
2698int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2699{
2700	struct spi_master *master = spi->master;
2701	int ret;
2702	unsigned long flags;
2703
2704	ret = __spi_validate(spi, message);
2705	if (ret != 0)
2706		return ret;
2707
2708	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2709
2710	ret = __spi_async(spi, message);
2711
2712	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2713
2714	return ret;
2715
2716}
2717EXPORT_SYMBOL_GPL(spi_async_locked);
2718
2719
2720int spi_flash_read(struct spi_device *spi,
2721		   struct spi_flash_read_message *msg)
2722
2723{
2724	struct spi_master *master = spi->master;
 
2725	int ret;
2726
2727	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2728	     msg->addr_nbits == SPI_NBITS_DUAL) &&
2729	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2730		return -EINVAL;
2731	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2732	     msg->addr_nbits == SPI_NBITS_QUAD) &&
2733	    !(spi->mode & SPI_TX_QUAD))
2734		return -EINVAL;
2735	if (msg->data_nbits == SPI_NBITS_DUAL &&
2736	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2737		return -EINVAL;
2738	if (msg->data_nbits == SPI_NBITS_QUAD &&
2739	    !(spi->mode &  SPI_RX_QUAD))
2740		return -EINVAL;
2741
2742	if (master->auto_runtime_pm) {
2743		ret = pm_runtime_get_sync(master->dev.parent);
2744		if (ret < 0) {
2745			dev_err(&master->dev, "Failed to power device: %d\n",
2746				ret);
2747			return ret;
2748		}
2749	}
 
2750	mutex_lock(&master->bus_lock_mutex);
 
 
 
 
 
 
 
 
 
2751	ret = master->spi_flash_read(spi, msg);
 
 
 
 
2752	mutex_unlock(&master->bus_lock_mutex);
 
2753	if (master->auto_runtime_pm)
2754		pm_runtime_put(master->dev.parent);
2755
2756	return ret;
2757}
2758EXPORT_SYMBOL_GPL(spi_flash_read);
2759
2760/*-------------------------------------------------------------------------*/
2761
2762/* Utility methods for SPI master protocol drivers, layered on
2763 * top of the core.  Some other utility methods are defined as
2764 * inline functions.
2765 */
2766
2767static void spi_complete(void *arg)
2768{
2769	complete(arg);
2770}
2771
2772static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2773		      int bus_locked)
2774{
2775	DECLARE_COMPLETION_ONSTACK(done);
2776	int status;
2777	struct spi_master *master = spi->master;
2778	unsigned long flags;
2779
2780	status = __spi_validate(spi, message);
2781	if (status != 0)
2782		return status;
2783
2784	message->complete = spi_complete;
2785	message->context = &done;
2786	message->spi = spi;
2787
2788	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2789	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2790
2791	if (!bus_locked)
2792		mutex_lock(&master->bus_lock_mutex);
2793
2794	/* If we're not using the legacy transfer method then we will
2795	 * try to transfer in the calling context so special case.
2796	 * This code would be less tricky if we could remove the
2797	 * support for driver implemented message queues.
2798	 */
2799	if (master->transfer == spi_queued_transfer) {
2800		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2801
2802		trace_spi_message_submit(message);
2803
2804		status = __spi_queued_transfer(spi, message, false);
2805
2806		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2807	} else {
2808		status = spi_async_locked(spi, message);
2809	}
2810
2811	if (!bus_locked)
2812		mutex_unlock(&master->bus_lock_mutex);
2813
2814	if (status == 0) {
2815		/* Push out the messages in the calling context if we
2816		 * can.
2817		 */
2818		if (master->transfer == spi_queued_transfer) {
2819			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2820						       spi_sync_immediate);
2821			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2822						       spi_sync_immediate);
2823			__spi_pump_messages(master, false, bus_locked);
2824		}
2825
2826		wait_for_completion(&done);
2827		status = message->status;
2828	}
2829	message->context = NULL;
2830	return status;
2831}
2832
2833/**
2834 * spi_sync - blocking/synchronous SPI data transfers
2835 * @spi: device with which data will be exchanged
2836 * @message: describes the data transfers
2837 * Context: can sleep
2838 *
2839 * This call may only be used from a context that may sleep.  The sleep
2840 * is non-interruptible, and has no timeout.  Low-overhead controller
2841 * drivers may DMA directly into and out of the message buffers.
2842 *
2843 * Note that the SPI device's chip select is active during the message,
2844 * and then is normally disabled between messages.  Drivers for some
2845 * frequently-used devices may want to minimize costs of selecting a chip,
2846 * by leaving it selected in anticipation that the next message will go
2847 * to the same chip.  (That may increase power usage.)
2848 *
2849 * Also, the caller is guaranteeing that the memory associated with the
2850 * message will not be freed before this call returns.
2851 *
2852 * Return: zero on success, else a negative error code.
2853 */
2854int spi_sync(struct spi_device *spi, struct spi_message *message)
2855{
2856	return __spi_sync(spi, message, spi->master->bus_lock_flag);
 
 
 
 
 
 
2857}
2858EXPORT_SYMBOL_GPL(spi_sync);
2859
2860/**
2861 * spi_sync_locked - version of spi_sync with exclusive bus usage
2862 * @spi: device with which data will be exchanged
2863 * @message: describes the data transfers
2864 * Context: can sleep
2865 *
2866 * This call may only be used from a context that may sleep.  The sleep
2867 * is non-interruptible, and has no timeout.  Low-overhead controller
2868 * drivers may DMA directly into and out of the message buffers.
2869 *
2870 * This call should be used by drivers that require exclusive access to the
2871 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2872 * be released by a spi_bus_unlock call when the exclusive access is over.
2873 *
2874 * Return: zero on success, else a negative error code.
2875 */
2876int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2877{
2878	return __spi_sync(spi, message, 1);
2879}
2880EXPORT_SYMBOL_GPL(spi_sync_locked);
2881
2882/**
2883 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2884 * @master: SPI bus master that should be locked for exclusive bus access
2885 * Context: can sleep
2886 *
2887 * This call may only be used from a context that may sleep.  The sleep
2888 * is non-interruptible, and has no timeout.
2889 *
2890 * This call should be used by drivers that require exclusive access to the
2891 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2892 * exclusive access is over. Data transfer must be done by spi_sync_locked
2893 * and spi_async_locked calls when the SPI bus lock is held.
2894 *
2895 * Return: always zero.
2896 */
2897int spi_bus_lock(struct spi_master *master)
2898{
2899	unsigned long flags;
2900
2901	mutex_lock(&master->bus_lock_mutex);
2902
2903	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2904	master->bus_lock_flag = 1;
2905	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2906
2907	/* mutex remains locked until spi_bus_unlock is called */
2908
2909	return 0;
2910}
2911EXPORT_SYMBOL_GPL(spi_bus_lock);
2912
2913/**
2914 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2915 * @master: SPI bus master that was locked for exclusive bus access
2916 * Context: can sleep
2917 *
2918 * This call may only be used from a context that may sleep.  The sleep
2919 * is non-interruptible, and has no timeout.
2920 *
2921 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2922 * call.
2923 *
2924 * Return: always zero.
2925 */
2926int spi_bus_unlock(struct spi_master *master)
2927{
2928	master->bus_lock_flag = 0;
2929
2930	mutex_unlock(&master->bus_lock_mutex);
2931
2932	return 0;
2933}
2934EXPORT_SYMBOL_GPL(spi_bus_unlock);
2935
2936/* portable code must never pass more than 32 bytes */
2937#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2938
2939static u8	*buf;
2940
2941/**
2942 * spi_write_then_read - SPI synchronous write followed by read
2943 * @spi: device with which data will be exchanged
2944 * @txbuf: data to be written (need not be dma-safe)
2945 * @n_tx: size of txbuf, in bytes
2946 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2947 * @n_rx: size of rxbuf, in bytes
2948 * Context: can sleep
2949 *
2950 * This performs a half duplex MicroWire style transaction with the
2951 * device, sending txbuf and then reading rxbuf.  The return value
2952 * is zero for success, else a negative errno status code.
2953 * This call may only be used from a context that may sleep.
2954 *
2955 * Parameters to this routine are always copied using a small buffer;
2956 * portable code should never use this for more than 32 bytes.
2957 * Performance-sensitive or bulk transfer code should instead use
2958 * spi_{async,sync}() calls with dma-safe buffers.
2959 *
2960 * Return: zero on success, else a negative error code.
2961 */
2962int spi_write_then_read(struct spi_device *spi,
2963		const void *txbuf, unsigned n_tx,
2964		void *rxbuf, unsigned n_rx)
2965{
2966	static DEFINE_MUTEX(lock);
2967
2968	int			status;
2969	struct spi_message	message;
2970	struct spi_transfer	x[2];
2971	u8			*local_buf;
2972
2973	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2974	 * copying here, (as a pure convenience thing), but we can
2975	 * keep heap costs out of the hot path unless someone else is
2976	 * using the pre-allocated buffer or the transfer is too large.
2977	 */
2978	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2979		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2980				    GFP_KERNEL | GFP_DMA);
2981		if (!local_buf)
2982			return -ENOMEM;
2983	} else {
2984		local_buf = buf;
2985	}
2986
2987	spi_message_init(&message);
2988	memset(x, 0, sizeof(x));
2989	if (n_tx) {
2990		x[0].len = n_tx;
2991		spi_message_add_tail(&x[0], &message);
2992	}
2993	if (n_rx) {
2994		x[1].len = n_rx;
2995		spi_message_add_tail(&x[1], &message);
2996	}
2997
2998	memcpy(local_buf, txbuf, n_tx);
2999	x[0].tx_buf = local_buf;
3000	x[1].rx_buf = local_buf + n_tx;
3001
3002	/* do the i/o */
3003	status = spi_sync(spi, &message);
3004	if (status == 0)
3005		memcpy(rxbuf, x[1].rx_buf, n_rx);
3006
3007	if (x[0].tx_buf == buf)
3008		mutex_unlock(&lock);
3009	else
3010		kfree(local_buf);
3011
3012	return status;
3013}
3014EXPORT_SYMBOL_GPL(spi_write_then_read);
3015
3016/*-------------------------------------------------------------------------*/
3017
3018#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3019static int __spi_of_device_match(struct device *dev, void *data)
3020{
3021	return dev->of_node == data;
3022}
3023
3024/* must call put_device() when done with returned spi_device device */
3025static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3026{
3027	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3028						__spi_of_device_match);
3029	return dev ? to_spi_device(dev) : NULL;
3030}
3031
3032static int __spi_of_master_match(struct device *dev, const void *data)
3033{
3034	return dev->of_node == data;
3035}
3036
3037/* the spi masters are not using spi_bus, so we find it with another way */
3038static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3039{
3040	struct device *dev;
3041
3042	dev = class_find_device(&spi_master_class, NULL, node,
3043				__spi_of_master_match);
3044	if (!dev)
3045		return NULL;
3046
3047	/* reference got in class_find_device */
3048	return container_of(dev, struct spi_master, dev);
3049}
3050
3051static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3052			 void *arg)
3053{
3054	struct of_reconfig_data *rd = arg;
3055	struct spi_master *master;
3056	struct spi_device *spi;
3057
3058	switch (of_reconfig_get_state_change(action, arg)) {
3059	case OF_RECONFIG_CHANGE_ADD:
3060		master = of_find_spi_master_by_node(rd->dn->parent);
3061		if (master == NULL)
3062			return NOTIFY_OK;	/* not for us */
3063
3064		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3065			put_device(&master->dev);
3066			return NOTIFY_OK;
3067		}
3068
3069		spi = of_register_spi_device(master, rd->dn);
3070		put_device(&master->dev);
3071
3072		if (IS_ERR(spi)) {
3073			pr_err("%s: failed to create for '%s'\n",
3074					__func__, rd->dn->full_name);
 
3075			return notifier_from_errno(PTR_ERR(spi));
3076		}
3077		break;
3078
3079	case OF_RECONFIG_CHANGE_REMOVE:
3080		/* already depopulated? */
3081		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3082			return NOTIFY_OK;
3083
3084		/* find our device by node */
3085		spi = of_find_spi_device_by_node(rd->dn);
3086		if (spi == NULL)
3087			return NOTIFY_OK;	/* no? not meant for us */
3088
3089		/* unregister takes one ref away */
3090		spi_unregister_device(spi);
3091
3092		/* and put the reference of the find */
3093		put_device(&spi->dev);
3094		break;
3095	}
3096
3097	return NOTIFY_OK;
3098}
3099
3100static struct notifier_block spi_of_notifier = {
3101	.notifier_call = of_spi_notify,
3102};
3103#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3104extern struct notifier_block spi_of_notifier;
3105#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3107static int __init spi_init(void)
3108{
3109	int	status;
3110
3111	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3112	if (!buf) {
3113		status = -ENOMEM;
3114		goto err0;
3115	}
3116
3117	status = bus_register(&spi_bus_type);
3118	if (status < 0)
3119		goto err1;
3120
3121	status = class_register(&spi_master_class);
3122	if (status < 0)
3123		goto err2;
3124
3125	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3126		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
 
 
3127
3128	return 0;
3129
3130err2:
3131	bus_unregister(&spi_bus_type);
3132err1:
3133	kfree(buf);
3134	buf = NULL;
3135err0:
3136	return status;
3137}
3138
3139/* board_info is normally registered in arch_initcall(),
3140 * but even essential drivers wait till later
3141 *
3142 * REVISIT only boardinfo really needs static linking. the rest (device and
3143 * driver registration) _could_ be dynamically linked (modular) ... costs
3144 * include needing to have boardinfo data structures be much more public.
3145 */
3146postcore_initcall(spi_init);
3147
v4.10.11
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/cache.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/mutex.h>
  25#include <linux/of_device.h>
  26#include <linux/of_irq.h>
  27#include <linux/clk/clk-conf.h>
  28#include <linux/slab.h>
  29#include <linux/mod_devicetable.h>
  30#include <linux/spi/spi.h>
  31#include <linux/of_gpio.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/pm_domain.h>
  34#include <linux/export.h>
  35#include <linux/sched/rt.h>
  36#include <linux/delay.h>
  37#include <linux/kthread.h>
  38#include <linux/ioport.h>
  39#include <linux/acpi.h>
  40#include <linux/highmem.h>
  41
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/spi.h>
  44
  45static void spidev_release(struct device *dev)
  46{
  47	struct spi_device	*spi = to_spi_device(dev);
  48
  49	/* spi masters may cleanup for released devices */
  50	if (spi->master->cleanup)
  51		spi->master->cleanup(spi);
  52
  53	spi_master_put(spi->master);
  54	kfree(spi);
  55}
  56
  57static ssize_t
  58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  59{
  60	const struct spi_device	*spi = to_spi_device(dev);
  61	int len;
  62
  63	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  64	if (len != -ENODEV)
  65		return len;
  66
  67	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  68}
  69static DEVICE_ATTR_RO(modalias);
  70
  71#define SPI_STATISTICS_ATTRS(field, file)				\
  72static ssize_t spi_master_##field##_show(struct device *dev,		\
  73					 struct device_attribute *attr,	\
  74					 char *buf)			\
  75{									\
  76	struct spi_master *master = container_of(dev,			\
  77						 struct spi_master, dev); \
  78	return spi_statistics_##field##_show(&master->statistics, buf);	\
  79}									\
  80static struct device_attribute dev_attr_spi_master_##field = {		\
  81	.attr = { .name = file, .mode = S_IRUGO },			\
  82	.show = spi_master_##field##_show,				\
  83};									\
  84static ssize_t spi_device_##field##_show(struct device *dev,		\
  85					 struct device_attribute *attr,	\
  86					char *buf)			\
  87{									\
  88	struct spi_device *spi = to_spi_device(dev);			\
  89	return spi_statistics_##field##_show(&spi->statistics, buf);	\
  90}									\
  91static struct device_attribute dev_attr_spi_device_##field = {		\
  92	.attr = { .name = file, .mode = S_IRUGO },			\
  93	.show = spi_device_##field##_show,				\
  94}
  95
  96#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
  97static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
  98					    char *buf)			\
  99{									\
 100	unsigned long flags;						\
 101	ssize_t len;							\
 102	spin_lock_irqsave(&stat->lock, flags);				\
 103	len = sprintf(buf, format_string, stat->field);			\
 104	spin_unlock_irqrestore(&stat->lock, flags);			\
 105	return len;							\
 106}									\
 107SPI_STATISTICS_ATTRS(name, file)
 108
 109#define SPI_STATISTICS_SHOW(field, format_string)			\
 110	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 111				 field, format_string)
 112
 113SPI_STATISTICS_SHOW(messages, "%lu");
 114SPI_STATISTICS_SHOW(transfers, "%lu");
 115SPI_STATISTICS_SHOW(errors, "%lu");
 116SPI_STATISTICS_SHOW(timedout, "%lu");
 117
 118SPI_STATISTICS_SHOW(spi_sync, "%lu");
 119SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 120SPI_STATISTICS_SHOW(spi_async, "%lu");
 121
 122SPI_STATISTICS_SHOW(bytes, "%llu");
 123SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 124SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 125
 126#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 127	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 128				 "transfer_bytes_histo_" number,	\
 129				 transfer_bytes_histo[index],  "%lu")
 130SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 131SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 132SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 133SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 134SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 135SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 136SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 137SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 138SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 139SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 140SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 141SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 142SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 143SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 144SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 145SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 146SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 147
 148SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 149
 150static struct attribute *spi_dev_attrs[] = {
 151	&dev_attr_modalias.attr,
 152	NULL,
 153};
 154
 155static const struct attribute_group spi_dev_group = {
 156	.attrs  = spi_dev_attrs,
 157};
 158
 159static struct attribute *spi_device_statistics_attrs[] = {
 160	&dev_attr_spi_device_messages.attr,
 161	&dev_attr_spi_device_transfers.attr,
 162	&dev_attr_spi_device_errors.attr,
 163	&dev_attr_spi_device_timedout.attr,
 164	&dev_attr_spi_device_spi_sync.attr,
 165	&dev_attr_spi_device_spi_sync_immediate.attr,
 166	&dev_attr_spi_device_spi_async.attr,
 167	&dev_attr_spi_device_bytes.attr,
 168	&dev_attr_spi_device_bytes_rx.attr,
 169	&dev_attr_spi_device_bytes_tx.attr,
 170	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 171	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 172	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 173	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 174	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 175	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 176	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 177	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 178	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 179	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 180	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 181	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 182	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 183	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 184	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 185	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 186	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 187	&dev_attr_spi_device_transfers_split_maxsize.attr,
 188	NULL,
 189};
 190
 191static const struct attribute_group spi_device_statistics_group = {
 192	.name  = "statistics",
 193	.attrs  = spi_device_statistics_attrs,
 194};
 195
 196static const struct attribute_group *spi_dev_groups[] = {
 197	&spi_dev_group,
 198	&spi_device_statistics_group,
 199	NULL,
 200};
 201
 202static struct attribute *spi_master_statistics_attrs[] = {
 203	&dev_attr_spi_master_messages.attr,
 204	&dev_attr_spi_master_transfers.attr,
 205	&dev_attr_spi_master_errors.attr,
 206	&dev_attr_spi_master_timedout.attr,
 207	&dev_attr_spi_master_spi_sync.attr,
 208	&dev_attr_spi_master_spi_sync_immediate.attr,
 209	&dev_attr_spi_master_spi_async.attr,
 210	&dev_attr_spi_master_bytes.attr,
 211	&dev_attr_spi_master_bytes_rx.attr,
 212	&dev_attr_spi_master_bytes_tx.attr,
 213	&dev_attr_spi_master_transfer_bytes_histo0.attr,
 214	&dev_attr_spi_master_transfer_bytes_histo1.attr,
 215	&dev_attr_spi_master_transfer_bytes_histo2.attr,
 216	&dev_attr_spi_master_transfer_bytes_histo3.attr,
 217	&dev_attr_spi_master_transfer_bytes_histo4.attr,
 218	&dev_attr_spi_master_transfer_bytes_histo5.attr,
 219	&dev_attr_spi_master_transfer_bytes_histo6.attr,
 220	&dev_attr_spi_master_transfer_bytes_histo7.attr,
 221	&dev_attr_spi_master_transfer_bytes_histo8.attr,
 222	&dev_attr_spi_master_transfer_bytes_histo9.attr,
 223	&dev_attr_spi_master_transfer_bytes_histo10.attr,
 224	&dev_attr_spi_master_transfer_bytes_histo11.attr,
 225	&dev_attr_spi_master_transfer_bytes_histo12.attr,
 226	&dev_attr_spi_master_transfer_bytes_histo13.attr,
 227	&dev_attr_spi_master_transfer_bytes_histo14.attr,
 228	&dev_attr_spi_master_transfer_bytes_histo15.attr,
 229	&dev_attr_spi_master_transfer_bytes_histo16.attr,
 230	&dev_attr_spi_master_transfers_split_maxsize.attr,
 231	NULL,
 232};
 233
 234static const struct attribute_group spi_master_statistics_group = {
 235	.name  = "statistics",
 236	.attrs  = spi_master_statistics_attrs,
 237};
 238
 239static const struct attribute_group *spi_master_groups[] = {
 240	&spi_master_statistics_group,
 241	NULL,
 242};
 243
 244void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 245				       struct spi_transfer *xfer,
 246				       struct spi_master *master)
 247{
 248	unsigned long flags;
 249	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 250
 251	if (l2len < 0)
 252		l2len = 0;
 253
 254	spin_lock_irqsave(&stats->lock, flags);
 255
 256	stats->transfers++;
 257	stats->transfer_bytes_histo[l2len]++;
 258
 259	stats->bytes += xfer->len;
 260	if ((xfer->tx_buf) &&
 261	    (xfer->tx_buf != master->dummy_tx))
 262		stats->bytes_tx += xfer->len;
 263	if ((xfer->rx_buf) &&
 264	    (xfer->rx_buf != master->dummy_rx))
 265		stats->bytes_rx += xfer->len;
 266
 267	spin_unlock_irqrestore(&stats->lock, flags);
 268}
 269EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 270
 271/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 272 * and the sysfs version makes coldplug work too.
 273 */
 274
 275static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 276						const struct spi_device *sdev)
 277{
 278	while (id->name[0]) {
 279		if (!strcmp(sdev->modalias, id->name))
 280			return id;
 281		id++;
 282	}
 283	return NULL;
 284}
 285
 286const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 287{
 288	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 289
 290	return spi_match_id(sdrv->id_table, sdev);
 291}
 292EXPORT_SYMBOL_GPL(spi_get_device_id);
 293
 294static int spi_match_device(struct device *dev, struct device_driver *drv)
 295{
 296	const struct spi_device	*spi = to_spi_device(dev);
 297	const struct spi_driver	*sdrv = to_spi_driver(drv);
 298
 299	/* Attempt an OF style match */
 300	if (of_driver_match_device(dev, drv))
 301		return 1;
 302
 303	/* Then try ACPI */
 304	if (acpi_driver_match_device(dev, drv))
 305		return 1;
 306
 307	if (sdrv->id_table)
 308		return !!spi_match_id(sdrv->id_table, spi);
 309
 310	return strcmp(spi->modalias, drv->name) == 0;
 311}
 312
 313static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 314{
 315	const struct spi_device		*spi = to_spi_device(dev);
 316	int rc;
 317
 318	rc = acpi_device_uevent_modalias(dev, env);
 319	if (rc != -ENODEV)
 320		return rc;
 321
 322	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 323	return 0;
 324}
 325
 326struct bus_type spi_bus_type = {
 327	.name		= "spi",
 328	.dev_groups	= spi_dev_groups,
 329	.match		= spi_match_device,
 330	.uevent		= spi_uevent,
 331};
 332EXPORT_SYMBOL_GPL(spi_bus_type);
 333
 334
 335static int spi_drv_probe(struct device *dev)
 336{
 337	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 338	struct spi_device		*spi = to_spi_device(dev);
 339	int ret;
 340
 341	ret = of_clk_set_defaults(dev->of_node, false);
 342	if (ret)
 343		return ret;
 344
 345	if (dev->of_node) {
 346		spi->irq = of_irq_get(dev->of_node, 0);
 347		if (spi->irq == -EPROBE_DEFER)
 348			return -EPROBE_DEFER;
 349		if (spi->irq < 0)
 350			spi->irq = 0;
 351	}
 352
 353	ret = dev_pm_domain_attach(dev, true);
 354	if (ret != -EPROBE_DEFER) {
 355		ret = sdrv->probe(spi);
 356		if (ret)
 357			dev_pm_domain_detach(dev, true);
 358	}
 359
 360	return ret;
 361}
 362
 363static int spi_drv_remove(struct device *dev)
 364{
 365	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 366	int ret;
 367
 368	ret = sdrv->remove(to_spi_device(dev));
 369	dev_pm_domain_detach(dev, true);
 370
 371	return ret;
 372}
 373
 374static void spi_drv_shutdown(struct device *dev)
 375{
 376	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 377
 378	sdrv->shutdown(to_spi_device(dev));
 379}
 380
 381/**
 382 * __spi_register_driver - register a SPI driver
 383 * @owner: owner module of the driver to register
 384 * @sdrv: the driver to register
 385 * Context: can sleep
 386 *
 387 * Return: zero on success, else a negative error code.
 388 */
 389int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 390{
 391	sdrv->driver.owner = owner;
 392	sdrv->driver.bus = &spi_bus_type;
 393	if (sdrv->probe)
 394		sdrv->driver.probe = spi_drv_probe;
 395	if (sdrv->remove)
 396		sdrv->driver.remove = spi_drv_remove;
 397	if (sdrv->shutdown)
 398		sdrv->driver.shutdown = spi_drv_shutdown;
 399	return driver_register(&sdrv->driver);
 400}
 401EXPORT_SYMBOL_GPL(__spi_register_driver);
 402
 403/*-------------------------------------------------------------------------*/
 404
 405/* SPI devices should normally not be created by SPI device drivers; that
 406 * would make them board-specific.  Similarly with SPI master drivers.
 407 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 408 * with other readonly (flashable) information about mainboard devices.
 409 */
 410
 411struct boardinfo {
 412	struct list_head	list;
 413	struct spi_board_info	board_info;
 414};
 415
 416static LIST_HEAD(board_list);
 417static LIST_HEAD(spi_master_list);
 418
 419/*
 420 * Used to protect add/del opertion for board_info list and
 421 * spi_master list, and their matching process
 422 */
 423static DEFINE_MUTEX(board_lock);
 424
 425/**
 426 * spi_alloc_device - Allocate a new SPI device
 427 * @master: Controller to which device is connected
 428 * Context: can sleep
 429 *
 430 * Allows a driver to allocate and initialize a spi_device without
 431 * registering it immediately.  This allows a driver to directly
 432 * fill the spi_device with device parameters before calling
 433 * spi_add_device() on it.
 434 *
 435 * Caller is responsible to call spi_add_device() on the returned
 436 * spi_device structure to add it to the SPI master.  If the caller
 437 * needs to discard the spi_device without adding it, then it should
 438 * call spi_dev_put() on it.
 439 *
 440 * Return: a pointer to the new device, or NULL.
 441 */
 442struct spi_device *spi_alloc_device(struct spi_master *master)
 443{
 444	struct spi_device	*spi;
 445
 446	if (!spi_master_get(master))
 447		return NULL;
 448
 449	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 450	if (!spi) {
 451		spi_master_put(master);
 452		return NULL;
 453	}
 454
 455	spi->master = master;
 456	spi->dev.parent = &master->dev;
 457	spi->dev.bus = &spi_bus_type;
 458	spi->dev.release = spidev_release;
 459	spi->cs_gpio = -ENOENT;
 460
 461	spin_lock_init(&spi->statistics.lock);
 462
 463	device_initialize(&spi->dev);
 464	return spi;
 465}
 466EXPORT_SYMBOL_GPL(spi_alloc_device);
 467
 468static void spi_dev_set_name(struct spi_device *spi)
 469{
 470	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 471
 472	if (adev) {
 473		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 474		return;
 475	}
 476
 477	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 478		     spi->chip_select);
 479}
 480
 481static int spi_dev_check(struct device *dev, void *data)
 482{
 483	struct spi_device *spi = to_spi_device(dev);
 484	struct spi_device *new_spi = data;
 485
 486	if (spi->master == new_spi->master &&
 487	    spi->chip_select == new_spi->chip_select)
 488		return -EBUSY;
 489	return 0;
 490}
 491
 492/**
 493 * spi_add_device - Add spi_device allocated with spi_alloc_device
 494 * @spi: spi_device to register
 495 *
 496 * Companion function to spi_alloc_device.  Devices allocated with
 497 * spi_alloc_device can be added onto the spi bus with this function.
 498 *
 499 * Return: 0 on success; negative errno on failure
 500 */
 501int spi_add_device(struct spi_device *spi)
 502{
 503	static DEFINE_MUTEX(spi_add_lock);
 504	struct spi_master *master = spi->master;
 505	struct device *dev = master->dev.parent;
 506	int status;
 507
 508	/* Chipselects are numbered 0..max; validate. */
 509	if (spi->chip_select >= master->num_chipselect) {
 510		dev_err(dev, "cs%d >= max %d\n",
 511			spi->chip_select,
 512			master->num_chipselect);
 513		return -EINVAL;
 514	}
 515
 516	/* Set the bus ID string */
 517	spi_dev_set_name(spi);
 518
 519	/* We need to make sure there's no other device with this
 520	 * chipselect **BEFORE** we call setup(), else we'll trash
 521	 * its configuration.  Lock against concurrent add() calls.
 522	 */
 523	mutex_lock(&spi_add_lock);
 524
 525	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 526	if (status) {
 527		dev_err(dev, "chipselect %d already in use\n",
 528				spi->chip_select);
 529		goto done;
 530	}
 531
 532	if (master->cs_gpios)
 533		spi->cs_gpio = master->cs_gpios[spi->chip_select];
 534
 535	/* Drivers may modify this initial i/o setup, but will
 536	 * normally rely on the device being setup.  Devices
 537	 * using SPI_CS_HIGH can't coexist well otherwise...
 538	 */
 539	status = spi_setup(spi);
 540	if (status < 0) {
 541		dev_err(dev, "can't setup %s, status %d\n",
 542				dev_name(&spi->dev), status);
 543		goto done;
 544	}
 545
 546	/* Device may be bound to an active driver when this returns */
 547	status = device_add(&spi->dev);
 548	if (status < 0)
 549		dev_err(dev, "can't add %s, status %d\n",
 550				dev_name(&spi->dev), status);
 551	else
 552		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 553
 554done:
 555	mutex_unlock(&spi_add_lock);
 556	return status;
 557}
 558EXPORT_SYMBOL_GPL(spi_add_device);
 559
 560/**
 561 * spi_new_device - instantiate one new SPI device
 562 * @master: Controller to which device is connected
 563 * @chip: Describes the SPI device
 564 * Context: can sleep
 565 *
 566 * On typical mainboards, this is purely internal; and it's not needed
 567 * after board init creates the hard-wired devices.  Some development
 568 * platforms may not be able to use spi_register_board_info though, and
 569 * this is exported so that for example a USB or parport based adapter
 570 * driver could add devices (which it would learn about out-of-band).
 571 *
 572 * Return: the new device, or NULL.
 573 */
 574struct spi_device *spi_new_device(struct spi_master *master,
 575				  struct spi_board_info *chip)
 576{
 577	struct spi_device	*proxy;
 578	int			status;
 579
 580	/* NOTE:  caller did any chip->bus_num checks necessary.
 581	 *
 582	 * Also, unless we change the return value convention to use
 583	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 584	 * suggests syslogged diagnostics are best here (ugh).
 585	 */
 586
 587	proxy = spi_alloc_device(master);
 588	if (!proxy)
 589		return NULL;
 590
 591	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 592
 593	proxy->chip_select = chip->chip_select;
 594	proxy->max_speed_hz = chip->max_speed_hz;
 595	proxy->mode = chip->mode;
 596	proxy->irq = chip->irq;
 597	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 598	proxy->dev.platform_data = (void *) chip->platform_data;
 599	proxy->controller_data = chip->controller_data;
 600	proxy->controller_state = NULL;
 601
 602	status = spi_add_device(proxy);
 603	if (status < 0) {
 604		spi_dev_put(proxy);
 605		return NULL;
 606	}
 607
 608	return proxy;
 609}
 610EXPORT_SYMBOL_GPL(spi_new_device);
 611
 612/**
 613 * spi_unregister_device - unregister a single SPI device
 614 * @spi: spi_device to unregister
 615 *
 616 * Start making the passed SPI device vanish. Normally this would be handled
 617 * by spi_unregister_master().
 618 */
 619void spi_unregister_device(struct spi_device *spi)
 620{
 621	if (!spi)
 622		return;
 623
 624	if (spi->dev.of_node)
 625		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 626	if (ACPI_COMPANION(&spi->dev))
 627		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 628	device_unregister(&spi->dev);
 629}
 630EXPORT_SYMBOL_GPL(spi_unregister_device);
 631
 632static void spi_match_master_to_boardinfo(struct spi_master *master,
 633				struct spi_board_info *bi)
 634{
 635	struct spi_device *dev;
 636
 637	if (master->bus_num != bi->bus_num)
 638		return;
 639
 640	dev = spi_new_device(master, bi);
 641	if (!dev)
 642		dev_err(master->dev.parent, "can't create new device for %s\n",
 643			bi->modalias);
 644}
 645
 646/**
 647 * spi_register_board_info - register SPI devices for a given board
 648 * @info: array of chip descriptors
 649 * @n: how many descriptors are provided
 650 * Context: can sleep
 651 *
 652 * Board-specific early init code calls this (probably during arch_initcall)
 653 * with segments of the SPI device table.  Any device nodes are created later,
 654 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 655 * this table of devices forever, so that reloading a controller driver will
 656 * not make Linux forget about these hard-wired devices.
 657 *
 658 * Other code can also call this, e.g. a particular add-on board might provide
 659 * SPI devices through its expansion connector, so code initializing that board
 660 * would naturally declare its SPI devices.
 661 *
 662 * The board info passed can safely be __initdata ... but be careful of
 663 * any embedded pointers (platform_data, etc), they're copied as-is.
 664 *
 665 * Return: zero on success, else a negative error code.
 666 */
 667int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 668{
 669	struct boardinfo *bi;
 670	int i;
 671
 672	if (!n)
 673		return -EINVAL;
 674
 675	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 676	if (!bi)
 677		return -ENOMEM;
 678
 679	for (i = 0; i < n; i++, bi++, info++) {
 680		struct spi_master *master;
 681
 682		memcpy(&bi->board_info, info, sizeof(*info));
 683		mutex_lock(&board_lock);
 684		list_add_tail(&bi->list, &board_list);
 685		list_for_each_entry(master, &spi_master_list, list)
 686			spi_match_master_to_boardinfo(master, &bi->board_info);
 687		mutex_unlock(&board_lock);
 688	}
 689
 690	return 0;
 691}
 692
 693/*-------------------------------------------------------------------------*/
 694
 695static void spi_set_cs(struct spi_device *spi, bool enable)
 696{
 697	if (spi->mode & SPI_CS_HIGH)
 698		enable = !enable;
 699
 700	if (gpio_is_valid(spi->cs_gpio)) {
 701		gpio_set_value(spi->cs_gpio, !enable);
 702		/* Some SPI masters need both GPIO CS & slave_select */
 703		if ((spi->master->flags & SPI_MASTER_GPIO_SS) &&
 704		    spi->master->set_cs)
 705			spi->master->set_cs(spi, !enable);
 706	} else if (spi->master->set_cs) {
 707		spi->master->set_cs(spi, !enable);
 708	}
 709}
 710
 711#ifdef CONFIG_HAS_DMA
 712static int spi_map_buf(struct spi_master *master, struct device *dev,
 713		       struct sg_table *sgt, void *buf, size_t len,
 714		       enum dma_data_direction dir)
 715{
 716	const bool vmalloced_buf = is_vmalloc_addr(buf);
 717	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 718#ifdef CONFIG_HIGHMEM
 719	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
 720				(unsigned long)buf < (PKMAP_BASE +
 721					(LAST_PKMAP * PAGE_SIZE)));
 722#else
 723	const bool kmap_buf = false;
 724#endif
 725	int desc_len;
 726	int sgs;
 727	struct page *vm_page;
 728	struct scatterlist *sg;
 729	void *sg_buf;
 730	size_t min;
 731	int i, ret;
 732
 733	if (vmalloced_buf || kmap_buf) {
 734		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 735		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 736	} else if (virt_addr_valid(buf)) {
 737		desc_len = min_t(int, max_seg_size, master->max_dma_len);
 738		sgs = DIV_ROUND_UP(len, desc_len);
 739	} else {
 740		return -EINVAL;
 741	}
 742
 743	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 744	if (ret != 0)
 745		return ret;
 746
 747	sg = &sgt->sgl[0];
 748	for (i = 0; i < sgs; i++) {
 749
 750		if (vmalloced_buf || kmap_buf) {
 751			min = min_t(size_t,
 752				    len, desc_len - offset_in_page(buf));
 753			if (vmalloced_buf)
 754				vm_page = vmalloc_to_page(buf);
 755			else
 756				vm_page = kmap_to_page(buf);
 757			if (!vm_page) {
 758				sg_free_table(sgt);
 759				return -ENOMEM;
 760			}
 761			sg_set_page(sg, vm_page,
 762				    min, offset_in_page(buf));
 763		} else {
 764			min = min_t(size_t, len, desc_len);
 765			sg_buf = buf;
 766			sg_set_buf(sg, sg_buf, min);
 767		}
 768
 769		buf += min;
 770		len -= min;
 771		sg = sg_next(sg);
 772	}
 773
 774	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 775	if (!ret)
 776		ret = -ENOMEM;
 777	if (ret < 0) {
 778		sg_free_table(sgt);
 779		return ret;
 780	}
 781
 782	sgt->nents = ret;
 783
 784	return 0;
 785}
 786
 787static void spi_unmap_buf(struct spi_master *master, struct device *dev,
 788			  struct sg_table *sgt, enum dma_data_direction dir)
 789{
 790	if (sgt->orig_nents) {
 791		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 792		sg_free_table(sgt);
 793	}
 794}
 795
 796static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
 797{
 798	struct device *tx_dev, *rx_dev;
 799	struct spi_transfer *xfer;
 800	int ret;
 801
 802	if (!master->can_dma)
 803		return 0;
 804
 805	if (master->dma_tx)
 806		tx_dev = master->dma_tx->device->dev;
 807	else
 808		tx_dev = &master->dev;
 809
 810	if (master->dma_rx)
 811		rx_dev = master->dma_rx->device->dev;
 812	else
 813		rx_dev = &master->dev;
 814
 815	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 816		if (!master->can_dma(master, msg->spi, xfer))
 817			continue;
 818
 819		if (xfer->tx_buf != NULL) {
 820			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
 821					  (void *)xfer->tx_buf, xfer->len,
 822					  DMA_TO_DEVICE);
 823			if (ret != 0)
 824				return ret;
 825		}
 826
 827		if (xfer->rx_buf != NULL) {
 828			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
 829					  xfer->rx_buf, xfer->len,
 830					  DMA_FROM_DEVICE);
 831			if (ret != 0) {
 832				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
 833					      DMA_TO_DEVICE);
 834				return ret;
 835			}
 836		}
 837	}
 838
 839	master->cur_msg_mapped = true;
 840
 841	return 0;
 842}
 843
 844static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
 845{
 846	struct spi_transfer *xfer;
 847	struct device *tx_dev, *rx_dev;
 848
 849	if (!master->cur_msg_mapped || !master->can_dma)
 850		return 0;
 851
 852	if (master->dma_tx)
 853		tx_dev = master->dma_tx->device->dev;
 854	else
 855		tx_dev = &master->dev;
 856
 857	if (master->dma_rx)
 858		rx_dev = master->dma_rx->device->dev;
 859	else
 860		rx_dev = &master->dev;
 861
 862	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 863		if (!master->can_dma(master, msg->spi, xfer))
 864			continue;
 865
 866		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 867		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 868	}
 869
 870	return 0;
 871}
 872#else /* !CONFIG_HAS_DMA */
 873static inline int spi_map_buf(struct spi_master *master,
 874			      struct device *dev, struct sg_table *sgt,
 875			      void *buf, size_t len,
 876			      enum dma_data_direction dir)
 877{
 878	return -EINVAL;
 879}
 880
 881static inline void spi_unmap_buf(struct spi_master *master,
 882				 struct device *dev, struct sg_table *sgt,
 883				 enum dma_data_direction dir)
 884{
 885}
 886
 887static inline int __spi_map_msg(struct spi_master *master,
 888				struct spi_message *msg)
 889{
 890	return 0;
 891}
 892
 893static inline int __spi_unmap_msg(struct spi_master *master,
 894				  struct spi_message *msg)
 895{
 896	return 0;
 897}
 898#endif /* !CONFIG_HAS_DMA */
 899
 900static inline int spi_unmap_msg(struct spi_master *master,
 901				struct spi_message *msg)
 902{
 903	struct spi_transfer *xfer;
 904
 905	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 906		/*
 907		 * Restore the original value of tx_buf or rx_buf if they are
 908		 * NULL.
 909		 */
 910		if (xfer->tx_buf == master->dummy_tx)
 911			xfer->tx_buf = NULL;
 912		if (xfer->rx_buf == master->dummy_rx)
 913			xfer->rx_buf = NULL;
 914	}
 915
 916	return __spi_unmap_msg(master, msg);
 917}
 918
 919static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
 920{
 921	struct spi_transfer *xfer;
 922	void *tmp;
 923	unsigned int max_tx, max_rx;
 924
 925	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
 926		max_tx = 0;
 927		max_rx = 0;
 928
 929		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 930			if ((master->flags & SPI_MASTER_MUST_TX) &&
 931			    !xfer->tx_buf)
 932				max_tx = max(xfer->len, max_tx);
 933			if ((master->flags & SPI_MASTER_MUST_RX) &&
 934			    !xfer->rx_buf)
 935				max_rx = max(xfer->len, max_rx);
 936		}
 937
 938		if (max_tx) {
 939			tmp = krealloc(master->dummy_tx, max_tx,
 940				       GFP_KERNEL | GFP_DMA);
 941			if (!tmp)
 942				return -ENOMEM;
 943			master->dummy_tx = tmp;
 944			memset(tmp, 0, max_tx);
 945		}
 946
 947		if (max_rx) {
 948			tmp = krealloc(master->dummy_rx, max_rx,
 949				       GFP_KERNEL | GFP_DMA);
 950			if (!tmp)
 951				return -ENOMEM;
 952			master->dummy_rx = tmp;
 953		}
 954
 955		if (max_tx || max_rx) {
 956			list_for_each_entry(xfer, &msg->transfers,
 957					    transfer_list) {
 958				if (!xfer->tx_buf)
 959					xfer->tx_buf = master->dummy_tx;
 960				if (!xfer->rx_buf)
 961					xfer->rx_buf = master->dummy_rx;
 962			}
 963		}
 964	}
 965
 966	return __spi_map_msg(master, msg);
 967}
 968
 969/*
 970 * spi_transfer_one_message - Default implementation of transfer_one_message()
 971 *
 972 * This is a standard implementation of transfer_one_message() for
 973 * drivers which implement a transfer_one() operation.  It provides
 974 * standard handling of delays and chip select management.
 975 */
 976static int spi_transfer_one_message(struct spi_master *master,
 977				    struct spi_message *msg)
 978{
 979	struct spi_transfer *xfer;
 980	bool keep_cs = false;
 981	int ret = 0;
 982	unsigned long long ms = 1;
 983	struct spi_statistics *statm = &master->statistics;
 984	struct spi_statistics *stats = &msg->spi->statistics;
 985
 986	spi_set_cs(msg->spi, true);
 987
 988	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
 989	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
 990
 991	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 992		trace_spi_transfer_start(msg, xfer);
 993
 994		spi_statistics_add_transfer_stats(statm, xfer, master);
 995		spi_statistics_add_transfer_stats(stats, xfer, master);
 996
 997		if (xfer->tx_buf || xfer->rx_buf) {
 998			reinit_completion(&master->xfer_completion);
 999
1000			ret = master->transfer_one(master, msg->spi, xfer);
1001			if (ret < 0) {
1002				SPI_STATISTICS_INCREMENT_FIELD(statm,
1003							       errors);
1004				SPI_STATISTICS_INCREMENT_FIELD(stats,
1005							       errors);
1006				dev_err(&msg->spi->dev,
1007					"SPI transfer failed: %d\n", ret);
1008				goto out;
1009			}
1010
1011			if (ret > 0) {
1012				ret = 0;
1013				ms = 8LL * 1000LL * xfer->len;
1014				do_div(ms, xfer->speed_hz);
1015				ms += ms + 100; /* some tolerance */
1016
1017				if (ms > UINT_MAX)
1018					ms = UINT_MAX;
1019
1020				ms = wait_for_completion_timeout(&master->xfer_completion,
1021								 msecs_to_jiffies(ms));
1022			}
1023
1024			if (ms == 0) {
1025				SPI_STATISTICS_INCREMENT_FIELD(statm,
1026							       timedout);
1027				SPI_STATISTICS_INCREMENT_FIELD(stats,
1028							       timedout);
1029				dev_err(&msg->spi->dev,
1030					"SPI transfer timed out\n");
1031				msg->status = -ETIMEDOUT;
1032			}
1033		} else {
1034			if (xfer->len)
1035				dev_err(&msg->spi->dev,
1036					"Bufferless transfer has length %u\n",
1037					xfer->len);
1038		}
1039
1040		trace_spi_transfer_stop(msg, xfer);
1041
1042		if (msg->status != -EINPROGRESS)
1043			goto out;
1044
1045		if (xfer->delay_usecs) {
1046			u16 us = xfer->delay_usecs;
1047
1048			if (us <= 10)
1049				udelay(us);
1050			else
1051				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1052		}
1053
1054		if (xfer->cs_change) {
1055			if (list_is_last(&xfer->transfer_list,
1056					 &msg->transfers)) {
1057				keep_cs = true;
1058			} else {
1059				spi_set_cs(msg->spi, false);
1060				udelay(10);
1061				spi_set_cs(msg->spi, true);
1062			}
1063		}
1064
1065		msg->actual_length += xfer->len;
1066	}
1067
1068out:
1069	if (ret != 0 || !keep_cs)
1070		spi_set_cs(msg->spi, false);
1071
1072	if (msg->status == -EINPROGRESS)
1073		msg->status = ret;
1074
1075	if (msg->status && master->handle_err)
1076		master->handle_err(master, msg);
1077
1078	spi_res_release(master, msg);
1079
1080	spi_finalize_current_message(master);
1081
1082	return ret;
1083}
1084
1085/**
1086 * spi_finalize_current_transfer - report completion of a transfer
1087 * @master: the master reporting completion
1088 *
1089 * Called by SPI drivers using the core transfer_one_message()
1090 * implementation to notify it that the current interrupt driven
1091 * transfer has finished and the next one may be scheduled.
1092 */
1093void spi_finalize_current_transfer(struct spi_master *master)
1094{
1095	complete(&master->xfer_completion);
1096}
1097EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1098
1099/**
1100 * __spi_pump_messages - function which processes spi message queue
1101 * @master: master to process queue for
1102 * @in_kthread: true if we are in the context of the message pump thread
 
1103 *
1104 * This function checks if there is any spi message in the queue that
1105 * needs processing and if so call out to the driver to initialize hardware
1106 * and transfer each message.
1107 *
1108 * Note that it is called both from the kthread itself and also from
1109 * inside spi_sync(); the queue extraction handling at the top of the
1110 * function should deal with this safely.
1111 */
1112static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
 
1113{
1114	unsigned long flags;
1115	bool was_busy = false;
1116	int ret;
1117
1118	/* Lock queue */
1119	spin_lock_irqsave(&master->queue_lock, flags);
1120
1121	/* Make sure we are not already running a message */
1122	if (master->cur_msg) {
1123		spin_unlock_irqrestore(&master->queue_lock, flags);
1124		return;
1125	}
1126
1127	/* If another context is idling the device then defer */
1128	if (master->idling) {
1129		kthread_queue_work(&master->kworker, &master->pump_messages);
1130		spin_unlock_irqrestore(&master->queue_lock, flags);
1131		return;
1132	}
1133
1134	/* Check if the queue is idle */
1135	if (list_empty(&master->queue) || !master->running) {
1136		if (!master->busy) {
1137			spin_unlock_irqrestore(&master->queue_lock, flags);
1138			return;
1139		}
1140
1141		/* Only do teardown in the thread */
1142		if (!in_kthread) {
1143			kthread_queue_work(&master->kworker,
1144					   &master->pump_messages);
1145			spin_unlock_irqrestore(&master->queue_lock, flags);
1146			return;
1147		}
1148
1149		master->busy = false;
1150		master->idling = true;
1151		spin_unlock_irqrestore(&master->queue_lock, flags);
1152
1153		kfree(master->dummy_rx);
1154		master->dummy_rx = NULL;
1155		kfree(master->dummy_tx);
1156		master->dummy_tx = NULL;
1157		if (master->unprepare_transfer_hardware &&
1158		    master->unprepare_transfer_hardware(master))
1159			dev_err(&master->dev,
1160				"failed to unprepare transfer hardware\n");
1161		if (master->auto_runtime_pm) {
1162			pm_runtime_mark_last_busy(master->dev.parent);
1163			pm_runtime_put_autosuspend(master->dev.parent);
1164		}
1165		trace_spi_master_idle(master);
1166
1167		spin_lock_irqsave(&master->queue_lock, flags);
1168		master->idling = false;
1169		spin_unlock_irqrestore(&master->queue_lock, flags);
1170		return;
1171	}
1172
1173	/* Extract head of queue */
1174	master->cur_msg =
1175		list_first_entry(&master->queue, struct spi_message, queue);
1176
1177	list_del_init(&master->cur_msg->queue);
1178	if (master->busy)
1179		was_busy = true;
1180	else
1181		master->busy = true;
1182	spin_unlock_irqrestore(&master->queue_lock, flags);
1183
1184	mutex_lock(&master->io_mutex);
1185
1186	if (!was_busy && master->auto_runtime_pm) {
1187		ret = pm_runtime_get_sync(master->dev.parent);
1188		if (ret < 0) {
1189			dev_err(&master->dev, "Failed to power device: %d\n",
1190				ret);
1191			mutex_unlock(&master->io_mutex);
1192			return;
1193		}
1194	}
1195
1196	if (!was_busy)
1197		trace_spi_master_busy(master);
1198
1199	if (!was_busy && master->prepare_transfer_hardware) {
1200		ret = master->prepare_transfer_hardware(master);
1201		if (ret) {
1202			dev_err(&master->dev,
1203				"failed to prepare transfer hardware\n");
1204
1205			if (master->auto_runtime_pm)
1206				pm_runtime_put(master->dev.parent);
1207			mutex_unlock(&master->io_mutex);
1208			return;
1209		}
1210	}
1211
 
 
 
1212	trace_spi_message_start(master->cur_msg);
1213
1214	if (master->prepare_message) {
1215		ret = master->prepare_message(master, master->cur_msg);
1216		if (ret) {
1217			dev_err(&master->dev,
1218				"failed to prepare message: %d\n", ret);
1219			master->cur_msg->status = ret;
1220			spi_finalize_current_message(master);
1221			goto out;
1222		}
1223		master->cur_msg_prepared = true;
1224	}
1225
1226	ret = spi_map_msg(master, master->cur_msg);
1227	if (ret) {
1228		master->cur_msg->status = ret;
1229		spi_finalize_current_message(master);
1230		goto out;
1231	}
1232
1233	ret = master->transfer_one_message(master, master->cur_msg);
1234	if (ret) {
1235		dev_err(&master->dev,
1236			"failed to transfer one message from queue\n");
1237		goto out;
1238	}
1239
1240out:
1241	mutex_unlock(&master->io_mutex);
 
1242
1243	/* Prod the scheduler in case transfer_one() was busy waiting */
1244	if (!ret)
1245		cond_resched();
1246}
1247
1248/**
1249 * spi_pump_messages - kthread work function which processes spi message queue
1250 * @work: pointer to kthread work struct contained in the master struct
1251 */
1252static void spi_pump_messages(struct kthread_work *work)
1253{
1254	struct spi_master *master =
1255		container_of(work, struct spi_master, pump_messages);
1256
1257	__spi_pump_messages(master, true);
1258}
1259
1260static int spi_init_queue(struct spi_master *master)
1261{
1262	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1263
1264	master->running = false;
1265	master->busy = false;
1266
1267	kthread_init_worker(&master->kworker);
1268	master->kworker_task = kthread_run(kthread_worker_fn,
1269					   &master->kworker, "%s",
1270					   dev_name(&master->dev));
1271	if (IS_ERR(master->kworker_task)) {
1272		dev_err(&master->dev, "failed to create message pump task\n");
1273		return PTR_ERR(master->kworker_task);
1274	}
1275	kthread_init_work(&master->pump_messages, spi_pump_messages);
1276
1277	/*
1278	 * Master config will indicate if this controller should run the
1279	 * message pump with high (realtime) priority to reduce the transfer
1280	 * latency on the bus by minimising the delay between a transfer
1281	 * request and the scheduling of the message pump thread. Without this
1282	 * setting the message pump thread will remain at default priority.
1283	 */
1284	if (master->rt) {
1285		dev_info(&master->dev,
1286			"will run message pump with realtime priority\n");
1287		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1288	}
1289
1290	return 0;
1291}
1292
1293/**
1294 * spi_get_next_queued_message() - called by driver to check for queued
1295 * messages
1296 * @master: the master to check for queued messages
1297 *
1298 * If there are more messages in the queue, the next message is returned from
1299 * this call.
1300 *
1301 * Return: the next message in the queue, else NULL if the queue is empty.
1302 */
1303struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1304{
1305	struct spi_message *next;
1306	unsigned long flags;
1307
1308	/* get a pointer to the next message, if any */
1309	spin_lock_irqsave(&master->queue_lock, flags);
1310	next = list_first_entry_or_null(&master->queue, struct spi_message,
1311					queue);
1312	spin_unlock_irqrestore(&master->queue_lock, flags);
1313
1314	return next;
1315}
1316EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1317
1318/**
1319 * spi_finalize_current_message() - the current message is complete
1320 * @master: the master to return the message to
1321 *
1322 * Called by the driver to notify the core that the message in the front of the
1323 * queue is complete and can be removed from the queue.
1324 */
1325void spi_finalize_current_message(struct spi_master *master)
1326{
1327	struct spi_message *mesg;
1328	unsigned long flags;
1329	int ret;
1330
1331	spin_lock_irqsave(&master->queue_lock, flags);
1332	mesg = master->cur_msg;
1333	spin_unlock_irqrestore(&master->queue_lock, flags);
1334
1335	spi_unmap_msg(master, mesg);
1336
1337	if (master->cur_msg_prepared && master->unprepare_message) {
1338		ret = master->unprepare_message(master, mesg);
1339		if (ret) {
1340			dev_err(&master->dev,
1341				"failed to unprepare message: %d\n", ret);
1342		}
1343	}
1344
1345	spin_lock_irqsave(&master->queue_lock, flags);
1346	master->cur_msg = NULL;
1347	master->cur_msg_prepared = false;
1348	kthread_queue_work(&master->kworker, &master->pump_messages);
1349	spin_unlock_irqrestore(&master->queue_lock, flags);
1350
1351	trace_spi_message_done(mesg);
1352
1353	mesg->state = NULL;
1354	if (mesg->complete)
1355		mesg->complete(mesg->context);
1356}
1357EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1358
1359static int spi_start_queue(struct spi_master *master)
1360{
1361	unsigned long flags;
1362
1363	spin_lock_irqsave(&master->queue_lock, flags);
1364
1365	if (master->running || master->busy) {
1366		spin_unlock_irqrestore(&master->queue_lock, flags);
1367		return -EBUSY;
1368	}
1369
1370	master->running = true;
1371	master->cur_msg = NULL;
1372	spin_unlock_irqrestore(&master->queue_lock, flags);
1373
1374	kthread_queue_work(&master->kworker, &master->pump_messages);
1375
1376	return 0;
1377}
1378
1379static int spi_stop_queue(struct spi_master *master)
1380{
1381	unsigned long flags;
1382	unsigned limit = 500;
1383	int ret = 0;
1384
1385	spin_lock_irqsave(&master->queue_lock, flags);
1386
1387	/*
1388	 * This is a bit lame, but is optimized for the common execution path.
1389	 * A wait_queue on the master->busy could be used, but then the common
1390	 * execution path (pump_messages) would be required to call wake_up or
1391	 * friends on every SPI message. Do this instead.
1392	 */
1393	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1394		spin_unlock_irqrestore(&master->queue_lock, flags);
1395		usleep_range(10000, 11000);
1396		spin_lock_irqsave(&master->queue_lock, flags);
1397	}
1398
1399	if (!list_empty(&master->queue) || master->busy)
1400		ret = -EBUSY;
1401	else
1402		master->running = false;
1403
1404	spin_unlock_irqrestore(&master->queue_lock, flags);
1405
1406	if (ret) {
1407		dev_warn(&master->dev,
1408			 "could not stop message queue\n");
1409		return ret;
1410	}
1411	return ret;
1412}
1413
1414static int spi_destroy_queue(struct spi_master *master)
1415{
1416	int ret;
1417
1418	ret = spi_stop_queue(master);
1419
1420	/*
1421	 * kthread_flush_worker will block until all work is done.
1422	 * If the reason that stop_queue timed out is that the work will never
1423	 * finish, then it does no good to call flush/stop thread, so
1424	 * return anyway.
1425	 */
1426	if (ret) {
1427		dev_err(&master->dev, "problem destroying queue\n");
1428		return ret;
1429	}
1430
1431	kthread_flush_worker(&master->kworker);
1432	kthread_stop(master->kworker_task);
1433
1434	return 0;
1435}
1436
1437static int __spi_queued_transfer(struct spi_device *spi,
1438				 struct spi_message *msg,
1439				 bool need_pump)
1440{
1441	struct spi_master *master = spi->master;
1442	unsigned long flags;
1443
1444	spin_lock_irqsave(&master->queue_lock, flags);
1445
1446	if (!master->running) {
1447		spin_unlock_irqrestore(&master->queue_lock, flags);
1448		return -ESHUTDOWN;
1449	}
1450	msg->actual_length = 0;
1451	msg->status = -EINPROGRESS;
1452
1453	list_add_tail(&msg->queue, &master->queue);
1454	if (!master->busy && need_pump)
1455		kthread_queue_work(&master->kworker, &master->pump_messages);
1456
1457	spin_unlock_irqrestore(&master->queue_lock, flags);
1458	return 0;
1459}
1460
1461/**
1462 * spi_queued_transfer - transfer function for queued transfers
1463 * @spi: spi device which is requesting transfer
1464 * @msg: spi message which is to handled is queued to driver queue
1465 *
1466 * Return: zero on success, else a negative error code.
1467 */
1468static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1469{
1470	return __spi_queued_transfer(spi, msg, true);
1471}
1472
1473static int spi_master_initialize_queue(struct spi_master *master)
1474{
1475	int ret;
1476
1477	master->transfer = spi_queued_transfer;
1478	if (!master->transfer_one_message)
1479		master->transfer_one_message = spi_transfer_one_message;
1480
1481	/* Initialize and start queue */
1482	ret = spi_init_queue(master);
1483	if (ret) {
1484		dev_err(&master->dev, "problem initializing queue\n");
1485		goto err_init_queue;
1486	}
1487	master->queued = true;
1488	ret = spi_start_queue(master);
1489	if (ret) {
1490		dev_err(&master->dev, "problem starting queue\n");
1491		goto err_start_queue;
1492	}
1493
1494	return 0;
1495
1496err_start_queue:
1497	spi_destroy_queue(master);
1498err_init_queue:
1499	return ret;
1500}
1501
1502/*-------------------------------------------------------------------------*/
1503
1504#if defined(CONFIG_OF)
1505static struct spi_device *
1506of_register_spi_device(struct spi_master *master, struct device_node *nc)
1507{
1508	struct spi_device *spi;
1509	int rc;
1510	u32 value;
1511
1512	/* Alloc an spi_device */
1513	spi = spi_alloc_device(master);
1514	if (!spi) {
1515		dev_err(&master->dev, "spi_device alloc error for %s\n",
1516			nc->full_name);
1517		rc = -ENOMEM;
1518		goto err_out;
1519	}
1520
1521	/* Select device driver */
1522	rc = of_modalias_node(nc, spi->modalias,
1523				sizeof(spi->modalias));
1524	if (rc < 0) {
1525		dev_err(&master->dev, "cannot find modalias for %s\n",
1526			nc->full_name);
1527		goto err_out;
1528	}
1529
1530	/* Device address */
1531	rc = of_property_read_u32(nc, "reg", &value);
1532	if (rc) {
1533		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1534			nc->full_name, rc);
1535		goto err_out;
1536	}
1537	spi->chip_select = value;
1538
1539	/* Mode (clock phase/polarity/etc.) */
1540	if (of_find_property(nc, "spi-cpha", NULL))
1541		spi->mode |= SPI_CPHA;
1542	if (of_find_property(nc, "spi-cpol", NULL))
1543		spi->mode |= SPI_CPOL;
1544	if (of_find_property(nc, "spi-cs-high", NULL))
1545		spi->mode |= SPI_CS_HIGH;
1546	if (of_find_property(nc, "spi-3wire", NULL))
1547		spi->mode |= SPI_3WIRE;
1548	if (of_find_property(nc, "spi-lsb-first", NULL))
1549		spi->mode |= SPI_LSB_FIRST;
1550
1551	/* Device DUAL/QUAD mode */
1552	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1553		switch (value) {
1554		case 1:
1555			break;
1556		case 2:
1557			spi->mode |= SPI_TX_DUAL;
1558			break;
1559		case 4:
1560			spi->mode |= SPI_TX_QUAD;
1561			break;
1562		default:
1563			dev_warn(&master->dev,
1564				"spi-tx-bus-width %d not supported\n",
1565				value);
1566			break;
1567		}
1568	}
1569
1570	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1571		switch (value) {
1572		case 1:
1573			break;
1574		case 2:
1575			spi->mode |= SPI_RX_DUAL;
1576			break;
1577		case 4:
1578			spi->mode |= SPI_RX_QUAD;
1579			break;
1580		default:
1581			dev_warn(&master->dev,
1582				"spi-rx-bus-width %d not supported\n",
1583				value);
1584			break;
1585		}
1586	}
1587
1588	/* Device speed */
1589	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1590	if (rc) {
1591		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1592			nc->full_name, rc);
1593		goto err_out;
1594	}
1595	spi->max_speed_hz = value;
1596
1597	/* Store a pointer to the node in the device structure */
1598	of_node_get(nc);
1599	spi->dev.of_node = nc;
1600
1601	/* Register the new device */
1602	rc = spi_add_device(spi);
1603	if (rc) {
1604		dev_err(&master->dev, "spi_device register error %s\n",
1605			nc->full_name);
1606		goto err_out;
1607	}
1608
1609	return spi;
1610
1611err_out:
1612	spi_dev_put(spi);
1613	return ERR_PTR(rc);
1614}
1615
1616/**
1617 * of_register_spi_devices() - Register child devices onto the SPI bus
1618 * @master:	Pointer to spi_master device
1619 *
1620 * Registers an spi_device for each child node of master node which has a 'reg'
1621 * property.
1622 */
1623static void of_register_spi_devices(struct spi_master *master)
1624{
1625	struct spi_device *spi;
1626	struct device_node *nc;
1627
1628	if (!master->dev.of_node)
1629		return;
1630
1631	for_each_available_child_of_node(master->dev.of_node, nc) {
1632		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1633			continue;
1634		spi = of_register_spi_device(master, nc);
1635		if (IS_ERR(spi)) {
1636			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1637				nc->full_name);
1638			of_node_clear_flag(nc, OF_POPULATED);
1639		}
1640	}
1641}
1642#else
1643static void of_register_spi_devices(struct spi_master *master) { }
1644#endif
1645
1646#ifdef CONFIG_ACPI
1647static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1648{
1649	struct spi_device *spi = data;
1650	struct spi_master *master = spi->master;
1651
1652	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1653		struct acpi_resource_spi_serialbus *sb;
1654
1655		sb = &ares->data.spi_serial_bus;
1656		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1657			/*
1658			 * ACPI DeviceSelection numbering is handled by the
1659			 * host controller driver in Windows and can vary
1660			 * from driver to driver. In Linux we always expect
1661			 * 0 .. max - 1 so we need to ask the driver to
1662			 * translate between the two schemes.
1663			 */
1664			if (master->fw_translate_cs) {
1665				int cs = master->fw_translate_cs(master,
1666						sb->device_selection);
1667				if (cs < 0)
1668					return cs;
1669				spi->chip_select = cs;
1670			} else {
1671				spi->chip_select = sb->device_selection;
1672			}
1673
1674			spi->max_speed_hz = sb->connection_speed;
1675
1676			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1677				spi->mode |= SPI_CPHA;
1678			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1679				spi->mode |= SPI_CPOL;
1680			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1681				spi->mode |= SPI_CS_HIGH;
1682		}
1683	} else if (spi->irq < 0) {
1684		struct resource r;
1685
1686		if (acpi_dev_resource_interrupt(ares, 0, &r))
1687			spi->irq = r.start;
1688	}
1689
1690	/* Always tell the ACPI core to skip this resource */
1691	return 1;
1692}
1693
1694static acpi_status acpi_register_spi_device(struct spi_master *master,
1695					    struct acpi_device *adev)
1696{
 
1697	struct list_head resource_list;
 
1698	struct spi_device *spi;
1699	int ret;
1700
1701	if (acpi_bus_get_status(adev) || !adev->status.present ||
1702	    acpi_device_enumerated(adev))
 
1703		return AE_OK;
1704
1705	spi = spi_alloc_device(master);
1706	if (!spi) {
1707		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1708			dev_name(&adev->dev));
1709		return AE_NO_MEMORY;
1710	}
1711
1712	ACPI_COMPANION_SET(&spi->dev, adev);
1713	spi->irq = -1;
1714
1715	INIT_LIST_HEAD(&resource_list);
1716	ret = acpi_dev_get_resources(adev, &resource_list,
1717				     acpi_spi_add_resource, spi);
1718	acpi_dev_free_resource_list(&resource_list);
1719
1720	if (ret < 0 || !spi->max_speed_hz) {
1721		spi_dev_put(spi);
1722		return AE_OK;
1723	}
1724
1725	if (spi->irq < 0)
1726		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1727
1728	acpi_device_set_enumerated(adev);
1729
1730	adev->power.flags.ignore_parent = true;
1731	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1732	if (spi_add_device(spi)) {
1733		adev->power.flags.ignore_parent = false;
1734		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1735			dev_name(&adev->dev));
1736		spi_dev_put(spi);
1737	}
1738
1739	return AE_OK;
1740}
1741
1742static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1743				       void *data, void **return_value)
1744{
1745	struct spi_master *master = data;
1746	struct acpi_device *adev;
1747
1748	if (acpi_bus_get_device(handle, &adev))
1749		return AE_OK;
1750
1751	return acpi_register_spi_device(master, adev);
1752}
1753
1754static void acpi_register_spi_devices(struct spi_master *master)
1755{
1756	acpi_status status;
1757	acpi_handle handle;
1758
1759	handle = ACPI_HANDLE(master->dev.parent);
1760	if (!handle)
1761		return;
1762
1763	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1764				     acpi_spi_add_device, NULL,
1765				     master, NULL);
1766	if (ACPI_FAILURE(status))
1767		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1768}
1769#else
1770static inline void acpi_register_spi_devices(struct spi_master *master) {}
1771#endif /* CONFIG_ACPI */
1772
1773static void spi_master_release(struct device *dev)
1774{
1775	struct spi_master *master;
1776
1777	master = container_of(dev, struct spi_master, dev);
1778	kfree(master);
1779}
1780
1781static struct class spi_master_class = {
1782	.name		= "spi_master",
1783	.owner		= THIS_MODULE,
1784	.dev_release	= spi_master_release,
1785	.dev_groups	= spi_master_groups,
1786};
1787
1788
1789/**
1790 * spi_alloc_master - allocate SPI master controller
1791 * @dev: the controller, possibly using the platform_bus
1792 * @size: how much zeroed driver-private data to allocate; the pointer to this
1793 *	memory is in the driver_data field of the returned device,
1794 *	accessible with spi_master_get_devdata().
1795 * Context: can sleep
1796 *
1797 * This call is used only by SPI master controller drivers, which are the
1798 * only ones directly touching chip registers.  It's how they allocate
1799 * an spi_master structure, prior to calling spi_register_master().
1800 *
1801 * This must be called from context that can sleep.
1802 *
1803 * The caller is responsible for assigning the bus number and initializing
1804 * the master's methods before calling spi_register_master(); and (after errors
1805 * adding the device) calling spi_master_put() to prevent a memory leak.
1806 *
1807 * Return: the SPI master structure on success, else NULL.
1808 */
1809struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1810{
1811	struct spi_master	*master;
1812
1813	if (!dev)
1814		return NULL;
1815
1816	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1817	if (!master)
1818		return NULL;
1819
1820	device_initialize(&master->dev);
1821	master->bus_num = -1;
1822	master->num_chipselect = 1;
1823	master->dev.class = &spi_master_class;
1824	master->dev.parent = dev;
1825	pm_suspend_ignore_children(&master->dev, true);
1826	spi_master_set_devdata(master, &master[1]);
1827
1828	return master;
1829}
1830EXPORT_SYMBOL_GPL(spi_alloc_master);
1831
1832#ifdef CONFIG_OF
1833static int of_spi_register_master(struct spi_master *master)
1834{
1835	int nb, i, *cs;
1836	struct device_node *np = master->dev.of_node;
1837
1838	if (!np)
1839		return 0;
1840
1841	nb = of_gpio_named_count(np, "cs-gpios");
1842	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1843
1844	/* Return error only for an incorrectly formed cs-gpios property */
1845	if (nb == 0 || nb == -ENOENT)
1846		return 0;
1847	else if (nb < 0)
1848		return nb;
1849
1850	cs = devm_kzalloc(&master->dev,
1851			  sizeof(int) * master->num_chipselect,
1852			  GFP_KERNEL);
1853	master->cs_gpios = cs;
1854
1855	if (!master->cs_gpios)
1856		return -ENOMEM;
1857
1858	for (i = 0; i < master->num_chipselect; i++)
1859		cs[i] = -ENOENT;
1860
1861	for (i = 0; i < nb; i++)
1862		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1863
1864	return 0;
1865}
1866#else
1867static int of_spi_register_master(struct spi_master *master)
1868{
1869	return 0;
1870}
1871#endif
1872
1873/**
1874 * spi_register_master - register SPI master controller
1875 * @master: initialized master, originally from spi_alloc_master()
1876 * Context: can sleep
1877 *
1878 * SPI master controllers connect to their drivers using some non-SPI bus,
1879 * such as the platform bus.  The final stage of probe() in that code
1880 * includes calling spi_register_master() to hook up to this SPI bus glue.
1881 *
1882 * SPI controllers use board specific (often SOC specific) bus numbers,
1883 * and board-specific addressing for SPI devices combines those numbers
1884 * with chip select numbers.  Since SPI does not directly support dynamic
1885 * device identification, boards need configuration tables telling which
1886 * chip is at which address.
1887 *
1888 * This must be called from context that can sleep.  It returns zero on
1889 * success, else a negative error code (dropping the master's refcount).
1890 * After a successful return, the caller is responsible for calling
1891 * spi_unregister_master().
1892 *
1893 * Return: zero on success, else a negative error code.
1894 */
1895int spi_register_master(struct spi_master *master)
1896{
1897	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1898	struct device		*dev = master->dev.parent;
1899	struct boardinfo	*bi;
1900	int			status = -ENODEV;
1901	int			dynamic = 0;
1902
1903	if (!dev)
1904		return -ENODEV;
1905
1906	status = of_spi_register_master(master);
1907	if (status)
1908		return status;
1909
1910	/* even if it's just one always-selected device, there must
1911	 * be at least one chipselect
1912	 */
1913	if (master->num_chipselect == 0)
1914		return -EINVAL;
1915
1916	if ((master->bus_num < 0) && master->dev.of_node)
1917		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1918
1919	/* convention:  dynamically assigned bus IDs count down from the max */
1920	if (master->bus_num < 0) {
1921		/* FIXME switch to an IDR based scheme, something like
1922		 * I2C now uses, so we can't run out of "dynamic" IDs
1923		 */
1924		master->bus_num = atomic_dec_return(&dyn_bus_id);
1925		dynamic = 1;
1926	}
1927
1928	INIT_LIST_HEAD(&master->queue);
1929	spin_lock_init(&master->queue_lock);
1930	spin_lock_init(&master->bus_lock_spinlock);
1931	mutex_init(&master->bus_lock_mutex);
1932	mutex_init(&master->io_mutex);
1933	master->bus_lock_flag = 0;
1934	init_completion(&master->xfer_completion);
1935	if (!master->max_dma_len)
1936		master->max_dma_len = INT_MAX;
1937
1938	/* register the device, then userspace will see it.
1939	 * registration fails if the bus ID is in use.
1940	 */
1941	dev_set_name(&master->dev, "spi%u", master->bus_num);
1942	status = device_add(&master->dev);
1943	if (status < 0)
1944		goto done;
1945	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1946			dynamic ? " (dynamic)" : "");
1947
1948	/* If we're using a queued driver, start the queue */
1949	if (master->transfer)
1950		dev_info(dev, "master is unqueued, this is deprecated\n");
1951	else {
1952		status = spi_master_initialize_queue(master);
1953		if (status) {
1954			device_del(&master->dev);
1955			goto done;
1956		}
1957	}
1958	/* add statistics */
1959	spin_lock_init(&master->statistics.lock);
1960
1961	mutex_lock(&board_lock);
1962	list_add_tail(&master->list, &spi_master_list);
1963	list_for_each_entry(bi, &board_list, list)
1964		spi_match_master_to_boardinfo(master, &bi->board_info);
1965	mutex_unlock(&board_lock);
1966
1967	/* Register devices from the device tree and ACPI */
1968	of_register_spi_devices(master);
1969	acpi_register_spi_devices(master);
1970done:
1971	return status;
1972}
1973EXPORT_SYMBOL_GPL(spi_register_master);
1974
1975static void devm_spi_unregister(struct device *dev, void *res)
1976{
1977	spi_unregister_master(*(struct spi_master **)res);
1978}
1979
1980/**
1981 * dev_spi_register_master - register managed SPI master controller
1982 * @dev:    device managing SPI master
1983 * @master: initialized master, originally from spi_alloc_master()
1984 * Context: can sleep
1985 *
1986 * Register a SPI device as with spi_register_master() which will
1987 * automatically be unregister
1988 *
1989 * Return: zero on success, else a negative error code.
1990 */
1991int devm_spi_register_master(struct device *dev, struct spi_master *master)
1992{
1993	struct spi_master **ptr;
1994	int ret;
1995
1996	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1997	if (!ptr)
1998		return -ENOMEM;
1999
2000	ret = spi_register_master(master);
2001	if (!ret) {
2002		*ptr = master;
2003		devres_add(dev, ptr);
2004	} else {
2005		devres_free(ptr);
2006	}
2007
2008	return ret;
2009}
2010EXPORT_SYMBOL_GPL(devm_spi_register_master);
2011
2012static int __unregister(struct device *dev, void *null)
2013{
2014	spi_unregister_device(to_spi_device(dev));
2015	return 0;
2016}
2017
2018/**
2019 * spi_unregister_master - unregister SPI master controller
2020 * @master: the master being unregistered
2021 * Context: can sleep
2022 *
2023 * This call is used only by SPI master controller drivers, which are the
2024 * only ones directly touching chip registers.
2025 *
2026 * This must be called from context that can sleep.
2027 */
2028void spi_unregister_master(struct spi_master *master)
2029{
2030	int dummy;
2031
2032	if (master->queued) {
2033		if (spi_destroy_queue(master))
2034			dev_err(&master->dev, "queue remove failed\n");
2035	}
2036
2037	mutex_lock(&board_lock);
2038	list_del(&master->list);
2039	mutex_unlock(&board_lock);
2040
2041	dummy = device_for_each_child(&master->dev, NULL, __unregister);
2042	device_unregister(&master->dev);
2043}
2044EXPORT_SYMBOL_GPL(spi_unregister_master);
2045
2046int spi_master_suspend(struct spi_master *master)
2047{
2048	int ret;
2049
2050	/* Basically no-ops for non-queued masters */
2051	if (!master->queued)
2052		return 0;
2053
2054	ret = spi_stop_queue(master);
2055	if (ret)
2056		dev_err(&master->dev, "queue stop failed\n");
2057
2058	return ret;
2059}
2060EXPORT_SYMBOL_GPL(spi_master_suspend);
2061
2062int spi_master_resume(struct spi_master *master)
2063{
2064	int ret;
2065
2066	if (!master->queued)
2067		return 0;
2068
2069	ret = spi_start_queue(master);
2070	if (ret)
2071		dev_err(&master->dev, "queue restart failed\n");
2072
2073	return ret;
2074}
2075EXPORT_SYMBOL_GPL(spi_master_resume);
2076
2077static int __spi_master_match(struct device *dev, const void *data)
2078{
2079	struct spi_master *m;
2080	const u16 *bus_num = data;
2081
2082	m = container_of(dev, struct spi_master, dev);
2083	return m->bus_num == *bus_num;
2084}
2085
2086/**
2087 * spi_busnum_to_master - look up master associated with bus_num
2088 * @bus_num: the master's bus number
2089 * Context: can sleep
2090 *
2091 * This call may be used with devices that are registered after
2092 * arch init time.  It returns a refcounted pointer to the relevant
2093 * spi_master (which the caller must release), or NULL if there is
2094 * no such master registered.
2095 *
2096 * Return: the SPI master structure on success, else NULL.
2097 */
2098struct spi_master *spi_busnum_to_master(u16 bus_num)
2099{
2100	struct device		*dev;
2101	struct spi_master	*master = NULL;
2102
2103	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2104				__spi_master_match);
2105	if (dev)
2106		master = container_of(dev, struct spi_master, dev);
2107	/* reference got in class_find_device */
2108	return master;
2109}
2110EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2111
2112/*-------------------------------------------------------------------------*/
2113
2114/* Core methods for SPI resource management */
2115
2116/**
2117 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2118 *                 during the processing of a spi_message while using
2119 *                 spi_transfer_one
2120 * @spi:     the spi device for which we allocate memory
2121 * @release: the release code to execute for this resource
2122 * @size:    size to alloc and return
2123 * @gfp:     GFP allocation flags
2124 *
2125 * Return: the pointer to the allocated data
2126 *
2127 * This may get enhanced in the future to allocate from a memory pool
2128 * of the @spi_device or @spi_master to avoid repeated allocations.
2129 */
2130void *spi_res_alloc(struct spi_device *spi,
2131		    spi_res_release_t release,
2132		    size_t size, gfp_t gfp)
2133{
2134	struct spi_res *sres;
2135
2136	sres = kzalloc(sizeof(*sres) + size, gfp);
2137	if (!sres)
2138		return NULL;
2139
2140	INIT_LIST_HEAD(&sres->entry);
2141	sres->release = release;
2142
2143	return sres->data;
2144}
2145EXPORT_SYMBOL_GPL(spi_res_alloc);
2146
2147/**
2148 * spi_res_free - free an spi resource
2149 * @res: pointer to the custom data of a resource
2150 *
2151 */
2152void spi_res_free(void *res)
2153{
2154	struct spi_res *sres = container_of(res, struct spi_res, data);
2155
2156	if (!res)
2157		return;
2158
2159	WARN_ON(!list_empty(&sres->entry));
2160	kfree(sres);
2161}
2162EXPORT_SYMBOL_GPL(spi_res_free);
2163
2164/**
2165 * spi_res_add - add a spi_res to the spi_message
2166 * @message: the spi message
2167 * @res:     the spi_resource
2168 */
2169void spi_res_add(struct spi_message *message, void *res)
2170{
2171	struct spi_res *sres = container_of(res, struct spi_res, data);
2172
2173	WARN_ON(!list_empty(&sres->entry));
2174	list_add_tail(&sres->entry, &message->resources);
2175}
2176EXPORT_SYMBOL_GPL(spi_res_add);
2177
2178/**
2179 * spi_res_release - release all spi resources for this message
2180 * @master:  the @spi_master
2181 * @message: the @spi_message
2182 */
2183void spi_res_release(struct spi_master *master,
2184		     struct spi_message *message)
2185{
2186	struct spi_res *res;
2187
2188	while (!list_empty(&message->resources)) {
2189		res = list_last_entry(&message->resources,
2190				      struct spi_res, entry);
2191
2192		if (res->release)
2193			res->release(master, message, res->data);
2194
2195		list_del(&res->entry);
2196
2197		kfree(res);
2198	}
2199}
2200EXPORT_SYMBOL_GPL(spi_res_release);
2201
2202/*-------------------------------------------------------------------------*/
2203
2204/* Core methods for spi_message alterations */
2205
2206static void __spi_replace_transfers_release(struct spi_master *master,
2207					    struct spi_message *msg,
2208					    void *res)
2209{
2210	struct spi_replaced_transfers *rxfer = res;
2211	size_t i;
2212
2213	/* call extra callback if requested */
2214	if (rxfer->release)
2215		rxfer->release(master, msg, res);
2216
2217	/* insert replaced transfers back into the message */
2218	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2219
2220	/* remove the formerly inserted entries */
2221	for (i = 0; i < rxfer->inserted; i++)
2222		list_del(&rxfer->inserted_transfers[i].transfer_list);
2223}
2224
2225/**
2226 * spi_replace_transfers - replace transfers with several transfers
2227 *                         and register change with spi_message.resources
2228 * @msg:           the spi_message we work upon
2229 * @xfer_first:    the first spi_transfer we want to replace
2230 * @remove:        number of transfers to remove
2231 * @insert:        the number of transfers we want to insert instead
2232 * @release:       extra release code necessary in some circumstances
2233 * @extradatasize: extra data to allocate (with alignment guarantees
2234 *                 of struct @spi_transfer)
2235 * @gfp:           gfp flags
2236 *
2237 * Returns: pointer to @spi_replaced_transfers,
2238 *          PTR_ERR(...) in case of errors.
2239 */
2240struct spi_replaced_transfers *spi_replace_transfers(
2241	struct spi_message *msg,
2242	struct spi_transfer *xfer_first,
2243	size_t remove,
2244	size_t insert,
2245	spi_replaced_release_t release,
2246	size_t extradatasize,
2247	gfp_t gfp)
2248{
2249	struct spi_replaced_transfers *rxfer;
2250	struct spi_transfer *xfer;
2251	size_t i;
2252
2253	/* allocate the structure using spi_res */
2254	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2255			      insert * sizeof(struct spi_transfer)
2256			      + sizeof(struct spi_replaced_transfers)
2257			      + extradatasize,
2258			      gfp);
2259	if (!rxfer)
2260		return ERR_PTR(-ENOMEM);
2261
2262	/* the release code to invoke before running the generic release */
2263	rxfer->release = release;
2264
2265	/* assign extradata */
2266	if (extradatasize)
2267		rxfer->extradata =
2268			&rxfer->inserted_transfers[insert];
2269
2270	/* init the replaced_transfers list */
2271	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2272
2273	/* assign the list_entry after which we should reinsert
2274	 * the @replaced_transfers - it may be spi_message.messages!
2275	 */
2276	rxfer->replaced_after = xfer_first->transfer_list.prev;
2277
2278	/* remove the requested number of transfers */
2279	for (i = 0; i < remove; i++) {
2280		/* if the entry after replaced_after it is msg->transfers
2281		 * then we have been requested to remove more transfers
2282		 * than are in the list
2283		 */
2284		if (rxfer->replaced_after->next == &msg->transfers) {
2285			dev_err(&msg->spi->dev,
2286				"requested to remove more spi_transfers than are available\n");
2287			/* insert replaced transfers back into the message */
2288			list_splice(&rxfer->replaced_transfers,
2289				    rxfer->replaced_after);
2290
2291			/* free the spi_replace_transfer structure */
2292			spi_res_free(rxfer);
2293
2294			/* and return with an error */
2295			return ERR_PTR(-EINVAL);
2296		}
2297
2298		/* remove the entry after replaced_after from list of
2299		 * transfers and add it to list of replaced_transfers
2300		 */
2301		list_move_tail(rxfer->replaced_after->next,
2302			       &rxfer->replaced_transfers);
2303	}
2304
2305	/* create copy of the given xfer with identical settings
2306	 * based on the first transfer to get removed
2307	 */
2308	for (i = 0; i < insert; i++) {
2309		/* we need to run in reverse order */
2310		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2311
2312		/* copy all spi_transfer data */
2313		memcpy(xfer, xfer_first, sizeof(*xfer));
2314
2315		/* add to list */
2316		list_add(&xfer->transfer_list, rxfer->replaced_after);
2317
2318		/* clear cs_change and delay_usecs for all but the last */
2319		if (i) {
2320			xfer->cs_change = false;
2321			xfer->delay_usecs = 0;
2322		}
2323	}
2324
2325	/* set up inserted */
2326	rxfer->inserted = insert;
2327
2328	/* and register it with spi_res/spi_message */
2329	spi_res_add(msg, rxfer);
2330
2331	return rxfer;
2332}
2333EXPORT_SYMBOL_GPL(spi_replace_transfers);
2334
2335static int __spi_split_transfer_maxsize(struct spi_master *master,
2336					struct spi_message *msg,
2337					struct spi_transfer **xferp,
2338					size_t maxsize,
2339					gfp_t gfp)
2340{
2341	struct spi_transfer *xfer = *xferp, *xfers;
2342	struct spi_replaced_transfers *srt;
2343	size_t offset;
2344	size_t count, i;
2345
2346	/* warn once about this fact that we are splitting a transfer */
2347	dev_warn_once(&msg->spi->dev,
2348		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2349		      xfer->len, maxsize);
2350
2351	/* calculate how many we have to replace */
2352	count = DIV_ROUND_UP(xfer->len, maxsize);
2353
2354	/* create replacement */
2355	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2356	if (IS_ERR(srt))
2357		return PTR_ERR(srt);
2358	xfers = srt->inserted_transfers;
2359
2360	/* now handle each of those newly inserted spi_transfers
2361	 * note that the replacements spi_transfers all are preset
2362	 * to the same values as *xferp, so tx_buf, rx_buf and len
2363	 * are all identical (as well as most others)
2364	 * so we just have to fix up len and the pointers.
2365	 *
2366	 * this also includes support for the depreciated
2367	 * spi_message.is_dma_mapped interface
2368	 */
2369
2370	/* the first transfer just needs the length modified, so we
2371	 * run it outside the loop
2372	 */
2373	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2374
2375	/* all the others need rx_buf/tx_buf also set */
2376	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2377		/* update rx_buf, tx_buf and dma */
2378		if (xfers[i].rx_buf)
2379			xfers[i].rx_buf += offset;
2380		if (xfers[i].rx_dma)
2381			xfers[i].rx_dma += offset;
2382		if (xfers[i].tx_buf)
2383			xfers[i].tx_buf += offset;
2384		if (xfers[i].tx_dma)
2385			xfers[i].tx_dma += offset;
2386
2387		/* update length */
2388		xfers[i].len = min(maxsize, xfers[i].len - offset);
2389	}
2390
2391	/* we set up xferp to the last entry we have inserted,
2392	 * so that we skip those already split transfers
2393	 */
2394	*xferp = &xfers[count - 1];
2395
2396	/* increment statistics counters */
2397	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2398				       transfers_split_maxsize);
2399	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2400				       transfers_split_maxsize);
2401
2402	return 0;
2403}
2404
2405/**
2406 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2407 *                              when an individual transfer exceeds a
2408 *                              certain size
2409 * @master:    the @spi_master for this transfer
2410 * @msg:   the @spi_message to transform
2411 * @maxsize:  the maximum when to apply this
2412 * @gfp: GFP allocation flags
2413 *
2414 * Return: status of transformation
2415 */
2416int spi_split_transfers_maxsize(struct spi_master *master,
2417				struct spi_message *msg,
2418				size_t maxsize,
2419				gfp_t gfp)
2420{
2421	struct spi_transfer *xfer;
2422	int ret;
2423
2424	/* iterate over the transfer_list,
2425	 * but note that xfer is advanced to the last transfer inserted
2426	 * to avoid checking sizes again unnecessarily (also xfer does
2427	 * potentiall belong to a different list by the time the
2428	 * replacement has happened
2429	 */
2430	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2431		if (xfer->len > maxsize) {
2432			ret = __spi_split_transfer_maxsize(
2433				master, msg, &xfer, maxsize, gfp);
2434			if (ret)
2435				return ret;
2436		}
2437	}
2438
2439	return 0;
2440}
2441EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2442
2443/*-------------------------------------------------------------------------*/
2444
2445/* Core methods for SPI master protocol drivers.  Some of the
2446 * other core methods are currently defined as inline functions.
2447 */
2448
2449static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2450{
2451	if (master->bits_per_word_mask) {
2452		/* Only 32 bits fit in the mask */
2453		if (bits_per_word > 32)
2454			return -EINVAL;
2455		if (!(master->bits_per_word_mask &
2456				SPI_BPW_MASK(bits_per_word)))
2457			return -EINVAL;
2458	}
2459
2460	return 0;
2461}
2462
2463/**
2464 * spi_setup - setup SPI mode and clock rate
2465 * @spi: the device whose settings are being modified
2466 * Context: can sleep, and no requests are queued to the device
2467 *
2468 * SPI protocol drivers may need to update the transfer mode if the
2469 * device doesn't work with its default.  They may likewise need
2470 * to update clock rates or word sizes from initial values.  This function
2471 * changes those settings, and must be called from a context that can sleep.
2472 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2473 * effect the next time the device is selected and data is transferred to
2474 * or from it.  When this function returns, the spi device is deselected.
2475 *
2476 * Note that this call will fail if the protocol driver specifies an option
2477 * that the underlying controller or its driver does not support.  For
2478 * example, not all hardware supports wire transfers using nine bit words,
2479 * LSB-first wire encoding, or active-high chipselects.
2480 *
2481 * Return: zero on success, else a negative error code.
2482 */
2483int spi_setup(struct spi_device *spi)
2484{
2485	unsigned	bad_bits, ugly_bits;
2486	int		status;
2487
2488	/* check mode to prevent that DUAL and QUAD set at the same time
2489	 */
2490	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2491		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2492		dev_err(&spi->dev,
2493		"setup: can not select dual and quad at the same time\n");
2494		return -EINVAL;
2495	}
2496	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2497	 */
2498	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2499		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2500		return -EINVAL;
2501	/* help drivers fail *cleanly* when they need options
2502	 * that aren't supported with their current master
2503	 */
2504	bad_bits = spi->mode & ~spi->master->mode_bits;
2505	ugly_bits = bad_bits &
2506		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2507	if (ugly_bits) {
2508		dev_warn(&spi->dev,
2509			 "setup: ignoring unsupported mode bits %x\n",
2510			 ugly_bits);
2511		spi->mode &= ~ugly_bits;
2512		bad_bits &= ~ugly_bits;
2513	}
2514	if (bad_bits) {
2515		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2516			bad_bits);
2517		return -EINVAL;
2518	}
2519
2520	if (!spi->bits_per_word)
2521		spi->bits_per_word = 8;
2522
2523	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2524	if (status)
2525		return status;
2526
2527	if (!spi->max_speed_hz)
2528		spi->max_speed_hz = spi->master->max_speed_hz;
2529
2530	if (spi->master->setup)
2531		status = spi->master->setup(spi);
2532
2533	spi_set_cs(spi, false);
2534
2535	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2536			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2537			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2538			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2539			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2540			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2541			spi->bits_per_word, spi->max_speed_hz,
2542			status);
2543
2544	return status;
2545}
2546EXPORT_SYMBOL_GPL(spi_setup);
2547
2548static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2549{
2550	struct spi_master *master = spi->master;
2551	struct spi_transfer *xfer;
2552	int w_size;
2553
2554	if (list_empty(&message->transfers))
2555		return -EINVAL;
2556
2557	/* Half-duplex links include original MicroWire, and ones with
2558	 * only one data pin like SPI_3WIRE (switches direction) or where
2559	 * either MOSI or MISO is missing.  They can also be caused by
2560	 * software limitations.
2561	 */
2562	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2563			|| (spi->mode & SPI_3WIRE)) {
2564		unsigned flags = master->flags;
2565
2566		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2567			if (xfer->rx_buf && xfer->tx_buf)
2568				return -EINVAL;
2569			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2570				return -EINVAL;
2571			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2572				return -EINVAL;
2573		}
2574	}
2575
2576	/**
2577	 * Set transfer bits_per_word and max speed as spi device default if
2578	 * it is not set for this transfer.
2579	 * Set transfer tx_nbits and rx_nbits as single transfer default
2580	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2581	 */
2582	message->frame_length = 0;
2583	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2584		message->frame_length += xfer->len;
2585		if (!xfer->bits_per_word)
2586			xfer->bits_per_word = spi->bits_per_word;
2587
2588		if (!xfer->speed_hz)
2589			xfer->speed_hz = spi->max_speed_hz;
2590		if (!xfer->speed_hz)
2591			xfer->speed_hz = master->max_speed_hz;
2592
2593		if (master->max_speed_hz &&
2594		    xfer->speed_hz > master->max_speed_hz)
2595			xfer->speed_hz = master->max_speed_hz;
2596
2597		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2598			return -EINVAL;
2599
2600		/*
2601		 * SPI transfer length should be multiple of SPI word size
2602		 * where SPI word size should be power-of-two multiple
2603		 */
2604		if (xfer->bits_per_word <= 8)
2605			w_size = 1;
2606		else if (xfer->bits_per_word <= 16)
2607			w_size = 2;
2608		else
2609			w_size = 4;
2610
2611		/* No partial transfers accepted */
2612		if (xfer->len % w_size)
2613			return -EINVAL;
2614
2615		if (xfer->speed_hz && master->min_speed_hz &&
2616		    xfer->speed_hz < master->min_speed_hz)
2617			return -EINVAL;
2618
2619		if (xfer->tx_buf && !xfer->tx_nbits)
2620			xfer->tx_nbits = SPI_NBITS_SINGLE;
2621		if (xfer->rx_buf && !xfer->rx_nbits)
2622			xfer->rx_nbits = SPI_NBITS_SINGLE;
2623		/* check transfer tx/rx_nbits:
2624		 * 1. check the value matches one of single, dual and quad
2625		 * 2. check tx/rx_nbits match the mode in spi_device
2626		 */
2627		if (xfer->tx_buf) {
2628			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2629				xfer->tx_nbits != SPI_NBITS_DUAL &&
2630				xfer->tx_nbits != SPI_NBITS_QUAD)
2631				return -EINVAL;
2632			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2633				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2634				return -EINVAL;
2635			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2636				!(spi->mode & SPI_TX_QUAD))
2637				return -EINVAL;
2638		}
2639		/* check transfer rx_nbits */
2640		if (xfer->rx_buf) {
2641			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2642				xfer->rx_nbits != SPI_NBITS_DUAL &&
2643				xfer->rx_nbits != SPI_NBITS_QUAD)
2644				return -EINVAL;
2645			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2646				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2647				return -EINVAL;
2648			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2649				!(spi->mode & SPI_RX_QUAD))
2650				return -EINVAL;
2651		}
2652	}
2653
2654	message->status = -EINPROGRESS;
2655
2656	return 0;
2657}
2658
2659static int __spi_async(struct spi_device *spi, struct spi_message *message)
2660{
2661	struct spi_master *master = spi->master;
2662
2663	message->spi = spi;
2664
2665	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2666	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2667
2668	trace_spi_message_submit(message);
2669
2670	return master->transfer(spi, message);
2671}
2672
2673/**
2674 * spi_async - asynchronous SPI transfer
2675 * @spi: device with which data will be exchanged
2676 * @message: describes the data transfers, including completion callback
2677 * Context: any (irqs may be blocked, etc)
2678 *
2679 * This call may be used in_irq and other contexts which can't sleep,
2680 * as well as from task contexts which can sleep.
2681 *
2682 * The completion callback is invoked in a context which can't sleep.
2683 * Before that invocation, the value of message->status is undefined.
2684 * When the callback is issued, message->status holds either zero (to
2685 * indicate complete success) or a negative error code.  After that
2686 * callback returns, the driver which issued the transfer request may
2687 * deallocate the associated memory; it's no longer in use by any SPI
2688 * core or controller driver code.
2689 *
2690 * Note that although all messages to a spi_device are handled in
2691 * FIFO order, messages may go to different devices in other orders.
2692 * Some device might be higher priority, or have various "hard" access
2693 * time requirements, for example.
2694 *
2695 * On detection of any fault during the transfer, processing of
2696 * the entire message is aborted, and the device is deselected.
2697 * Until returning from the associated message completion callback,
2698 * no other spi_message queued to that device will be processed.
2699 * (This rule applies equally to all the synchronous transfer calls,
2700 * which are wrappers around this core asynchronous primitive.)
2701 *
2702 * Return: zero on success, else a negative error code.
2703 */
2704int spi_async(struct spi_device *spi, struct spi_message *message)
2705{
2706	struct spi_master *master = spi->master;
2707	int ret;
2708	unsigned long flags;
2709
2710	ret = __spi_validate(spi, message);
2711	if (ret != 0)
2712		return ret;
2713
2714	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2715
2716	if (master->bus_lock_flag)
2717		ret = -EBUSY;
2718	else
2719		ret = __spi_async(spi, message);
2720
2721	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2722
2723	return ret;
2724}
2725EXPORT_SYMBOL_GPL(spi_async);
2726
2727/**
2728 * spi_async_locked - version of spi_async with exclusive bus usage
2729 * @spi: device with which data will be exchanged
2730 * @message: describes the data transfers, including completion callback
2731 * Context: any (irqs may be blocked, etc)
2732 *
2733 * This call may be used in_irq and other contexts which can't sleep,
2734 * as well as from task contexts which can sleep.
2735 *
2736 * The completion callback is invoked in a context which can't sleep.
2737 * Before that invocation, the value of message->status is undefined.
2738 * When the callback is issued, message->status holds either zero (to
2739 * indicate complete success) or a negative error code.  After that
2740 * callback returns, the driver which issued the transfer request may
2741 * deallocate the associated memory; it's no longer in use by any SPI
2742 * core or controller driver code.
2743 *
2744 * Note that although all messages to a spi_device are handled in
2745 * FIFO order, messages may go to different devices in other orders.
2746 * Some device might be higher priority, or have various "hard" access
2747 * time requirements, for example.
2748 *
2749 * On detection of any fault during the transfer, processing of
2750 * the entire message is aborted, and the device is deselected.
2751 * Until returning from the associated message completion callback,
2752 * no other spi_message queued to that device will be processed.
2753 * (This rule applies equally to all the synchronous transfer calls,
2754 * which are wrappers around this core asynchronous primitive.)
2755 *
2756 * Return: zero on success, else a negative error code.
2757 */
2758int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2759{
2760	struct spi_master *master = spi->master;
2761	int ret;
2762	unsigned long flags;
2763
2764	ret = __spi_validate(spi, message);
2765	if (ret != 0)
2766		return ret;
2767
2768	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2769
2770	ret = __spi_async(spi, message);
2771
2772	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2773
2774	return ret;
2775
2776}
2777EXPORT_SYMBOL_GPL(spi_async_locked);
2778
2779
2780int spi_flash_read(struct spi_device *spi,
2781		   struct spi_flash_read_message *msg)
2782
2783{
2784	struct spi_master *master = spi->master;
2785	struct device *rx_dev = NULL;
2786	int ret;
2787
2788	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2789	     msg->addr_nbits == SPI_NBITS_DUAL) &&
2790	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2791		return -EINVAL;
2792	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2793	     msg->addr_nbits == SPI_NBITS_QUAD) &&
2794	    !(spi->mode & SPI_TX_QUAD))
2795		return -EINVAL;
2796	if (msg->data_nbits == SPI_NBITS_DUAL &&
2797	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2798		return -EINVAL;
2799	if (msg->data_nbits == SPI_NBITS_QUAD &&
2800	    !(spi->mode &  SPI_RX_QUAD))
2801		return -EINVAL;
2802
2803	if (master->auto_runtime_pm) {
2804		ret = pm_runtime_get_sync(master->dev.parent);
2805		if (ret < 0) {
2806			dev_err(&master->dev, "Failed to power device: %d\n",
2807				ret);
2808			return ret;
2809		}
2810	}
2811
2812	mutex_lock(&master->bus_lock_mutex);
2813	mutex_lock(&master->io_mutex);
2814	if (master->dma_rx) {
2815		rx_dev = master->dma_rx->device->dev;
2816		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2817				  msg->buf, msg->len,
2818				  DMA_FROM_DEVICE);
2819		if (!ret)
2820			msg->cur_msg_mapped = true;
2821	}
2822	ret = master->spi_flash_read(spi, msg);
2823	if (msg->cur_msg_mapped)
2824		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2825			      DMA_FROM_DEVICE);
2826	mutex_unlock(&master->io_mutex);
2827	mutex_unlock(&master->bus_lock_mutex);
2828
2829	if (master->auto_runtime_pm)
2830		pm_runtime_put(master->dev.parent);
2831
2832	return ret;
2833}
2834EXPORT_SYMBOL_GPL(spi_flash_read);
2835
2836/*-------------------------------------------------------------------------*/
2837
2838/* Utility methods for SPI master protocol drivers, layered on
2839 * top of the core.  Some other utility methods are defined as
2840 * inline functions.
2841 */
2842
2843static void spi_complete(void *arg)
2844{
2845	complete(arg);
2846}
2847
2848static int __spi_sync(struct spi_device *spi, struct spi_message *message)
 
2849{
2850	DECLARE_COMPLETION_ONSTACK(done);
2851	int status;
2852	struct spi_master *master = spi->master;
2853	unsigned long flags;
2854
2855	status = __spi_validate(spi, message);
2856	if (status != 0)
2857		return status;
2858
2859	message->complete = spi_complete;
2860	message->context = &done;
2861	message->spi = spi;
2862
2863	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2864	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2865
 
 
 
2866	/* If we're not using the legacy transfer method then we will
2867	 * try to transfer in the calling context so special case.
2868	 * This code would be less tricky if we could remove the
2869	 * support for driver implemented message queues.
2870	 */
2871	if (master->transfer == spi_queued_transfer) {
2872		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2873
2874		trace_spi_message_submit(message);
2875
2876		status = __spi_queued_transfer(spi, message, false);
2877
2878		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2879	} else {
2880		status = spi_async_locked(spi, message);
2881	}
2882
 
 
 
2883	if (status == 0) {
2884		/* Push out the messages in the calling context if we
2885		 * can.
2886		 */
2887		if (master->transfer == spi_queued_transfer) {
2888			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2889						       spi_sync_immediate);
2890			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2891						       spi_sync_immediate);
2892			__spi_pump_messages(master, false);
2893		}
2894
2895		wait_for_completion(&done);
2896		status = message->status;
2897	}
2898	message->context = NULL;
2899	return status;
2900}
2901
2902/**
2903 * spi_sync - blocking/synchronous SPI data transfers
2904 * @spi: device with which data will be exchanged
2905 * @message: describes the data transfers
2906 * Context: can sleep
2907 *
2908 * This call may only be used from a context that may sleep.  The sleep
2909 * is non-interruptible, and has no timeout.  Low-overhead controller
2910 * drivers may DMA directly into and out of the message buffers.
2911 *
2912 * Note that the SPI device's chip select is active during the message,
2913 * and then is normally disabled between messages.  Drivers for some
2914 * frequently-used devices may want to minimize costs of selecting a chip,
2915 * by leaving it selected in anticipation that the next message will go
2916 * to the same chip.  (That may increase power usage.)
2917 *
2918 * Also, the caller is guaranteeing that the memory associated with the
2919 * message will not be freed before this call returns.
2920 *
2921 * Return: zero on success, else a negative error code.
2922 */
2923int spi_sync(struct spi_device *spi, struct spi_message *message)
2924{
2925	int ret;
2926
2927	mutex_lock(&spi->master->bus_lock_mutex);
2928	ret = __spi_sync(spi, message);
2929	mutex_unlock(&spi->master->bus_lock_mutex);
2930
2931	return ret;
2932}
2933EXPORT_SYMBOL_GPL(spi_sync);
2934
2935/**
2936 * spi_sync_locked - version of spi_sync with exclusive bus usage
2937 * @spi: device with which data will be exchanged
2938 * @message: describes the data transfers
2939 * Context: can sleep
2940 *
2941 * This call may only be used from a context that may sleep.  The sleep
2942 * is non-interruptible, and has no timeout.  Low-overhead controller
2943 * drivers may DMA directly into and out of the message buffers.
2944 *
2945 * This call should be used by drivers that require exclusive access to the
2946 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2947 * be released by a spi_bus_unlock call when the exclusive access is over.
2948 *
2949 * Return: zero on success, else a negative error code.
2950 */
2951int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2952{
2953	return __spi_sync(spi, message);
2954}
2955EXPORT_SYMBOL_GPL(spi_sync_locked);
2956
2957/**
2958 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2959 * @master: SPI bus master that should be locked for exclusive bus access
2960 * Context: can sleep
2961 *
2962 * This call may only be used from a context that may sleep.  The sleep
2963 * is non-interruptible, and has no timeout.
2964 *
2965 * This call should be used by drivers that require exclusive access to the
2966 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2967 * exclusive access is over. Data transfer must be done by spi_sync_locked
2968 * and spi_async_locked calls when the SPI bus lock is held.
2969 *
2970 * Return: always zero.
2971 */
2972int spi_bus_lock(struct spi_master *master)
2973{
2974	unsigned long flags;
2975
2976	mutex_lock(&master->bus_lock_mutex);
2977
2978	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2979	master->bus_lock_flag = 1;
2980	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2981
2982	/* mutex remains locked until spi_bus_unlock is called */
2983
2984	return 0;
2985}
2986EXPORT_SYMBOL_GPL(spi_bus_lock);
2987
2988/**
2989 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2990 * @master: SPI bus master that was locked for exclusive bus access
2991 * Context: can sleep
2992 *
2993 * This call may only be used from a context that may sleep.  The sleep
2994 * is non-interruptible, and has no timeout.
2995 *
2996 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2997 * call.
2998 *
2999 * Return: always zero.
3000 */
3001int spi_bus_unlock(struct spi_master *master)
3002{
3003	master->bus_lock_flag = 0;
3004
3005	mutex_unlock(&master->bus_lock_mutex);
3006
3007	return 0;
3008}
3009EXPORT_SYMBOL_GPL(spi_bus_unlock);
3010
3011/* portable code must never pass more than 32 bytes */
3012#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3013
3014static u8	*buf;
3015
3016/**
3017 * spi_write_then_read - SPI synchronous write followed by read
3018 * @spi: device with which data will be exchanged
3019 * @txbuf: data to be written (need not be dma-safe)
3020 * @n_tx: size of txbuf, in bytes
3021 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3022 * @n_rx: size of rxbuf, in bytes
3023 * Context: can sleep
3024 *
3025 * This performs a half duplex MicroWire style transaction with the
3026 * device, sending txbuf and then reading rxbuf.  The return value
3027 * is zero for success, else a negative errno status code.
3028 * This call may only be used from a context that may sleep.
3029 *
3030 * Parameters to this routine are always copied using a small buffer;
3031 * portable code should never use this for more than 32 bytes.
3032 * Performance-sensitive or bulk transfer code should instead use
3033 * spi_{async,sync}() calls with dma-safe buffers.
3034 *
3035 * Return: zero on success, else a negative error code.
3036 */
3037int spi_write_then_read(struct spi_device *spi,
3038		const void *txbuf, unsigned n_tx,
3039		void *rxbuf, unsigned n_rx)
3040{
3041	static DEFINE_MUTEX(lock);
3042
3043	int			status;
3044	struct spi_message	message;
3045	struct spi_transfer	x[2];
3046	u8			*local_buf;
3047
3048	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3049	 * copying here, (as a pure convenience thing), but we can
3050	 * keep heap costs out of the hot path unless someone else is
3051	 * using the pre-allocated buffer or the transfer is too large.
3052	 */
3053	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3054		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3055				    GFP_KERNEL | GFP_DMA);
3056		if (!local_buf)
3057			return -ENOMEM;
3058	} else {
3059		local_buf = buf;
3060	}
3061
3062	spi_message_init(&message);
3063	memset(x, 0, sizeof(x));
3064	if (n_tx) {
3065		x[0].len = n_tx;
3066		spi_message_add_tail(&x[0], &message);
3067	}
3068	if (n_rx) {
3069		x[1].len = n_rx;
3070		spi_message_add_tail(&x[1], &message);
3071	}
3072
3073	memcpy(local_buf, txbuf, n_tx);
3074	x[0].tx_buf = local_buf;
3075	x[1].rx_buf = local_buf + n_tx;
3076
3077	/* do the i/o */
3078	status = spi_sync(spi, &message);
3079	if (status == 0)
3080		memcpy(rxbuf, x[1].rx_buf, n_rx);
3081
3082	if (x[0].tx_buf == buf)
3083		mutex_unlock(&lock);
3084	else
3085		kfree(local_buf);
3086
3087	return status;
3088}
3089EXPORT_SYMBOL_GPL(spi_write_then_read);
3090
3091/*-------------------------------------------------------------------------*/
3092
3093#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3094static int __spi_of_device_match(struct device *dev, void *data)
3095{
3096	return dev->of_node == data;
3097}
3098
3099/* must call put_device() when done with returned spi_device device */
3100static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3101{
3102	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3103						__spi_of_device_match);
3104	return dev ? to_spi_device(dev) : NULL;
3105}
3106
3107static int __spi_of_master_match(struct device *dev, const void *data)
3108{
3109	return dev->of_node == data;
3110}
3111
3112/* the spi masters are not using spi_bus, so we find it with another way */
3113static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3114{
3115	struct device *dev;
3116
3117	dev = class_find_device(&spi_master_class, NULL, node,
3118				__spi_of_master_match);
3119	if (!dev)
3120		return NULL;
3121
3122	/* reference got in class_find_device */
3123	return container_of(dev, struct spi_master, dev);
3124}
3125
3126static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3127			 void *arg)
3128{
3129	struct of_reconfig_data *rd = arg;
3130	struct spi_master *master;
3131	struct spi_device *spi;
3132
3133	switch (of_reconfig_get_state_change(action, arg)) {
3134	case OF_RECONFIG_CHANGE_ADD:
3135		master = of_find_spi_master_by_node(rd->dn->parent);
3136		if (master == NULL)
3137			return NOTIFY_OK;	/* not for us */
3138
3139		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3140			put_device(&master->dev);
3141			return NOTIFY_OK;
3142		}
3143
3144		spi = of_register_spi_device(master, rd->dn);
3145		put_device(&master->dev);
3146
3147		if (IS_ERR(spi)) {
3148			pr_err("%s: failed to create for '%s'\n",
3149					__func__, rd->dn->full_name);
3150			of_node_clear_flag(rd->dn, OF_POPULATED);
3151			return notifier_from_errno(PTR_ERR(spi));
3152		}
3153		break;
3154
3155	case OF_RECONFIG_CHANGE_REMOVE:
3156		/* already depopulated? */
3157		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3158			return NOTIFY_OK;
3159
3160		/* find our device by node */
3161		spi = of_find_spi_device_by_node(rd->dn);
3162		if (spi == NULL)
3163			return NOTIFY_OK;	/* no? not meant for us */
3164
3165		/* unregister takes one ref away */
3166		spi_unregister_device(spi);
3167
3168		/* and put the reference of the find */
3169		put_device(&spi->dev);
3170		break;
3171	}
3172
3173	return NOTIFY_OK;
3174}
3175
3176static struct notifier_block spi_of_notifier = {
3177	.notifier_call = of_spi_notify,
3178};
3179#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3180extern struct notifier_block spi_of_notifier;
3181#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3182
3183#if IS_ENABLED(CONFIG_ACPI)
3184static int spi_acpi_master_match(struct device *dev, const void *data)
3185{
3186	return ACPI_COMPANION(dev->parent) == data;
3187}
3188
3189static int spi_acpi_device_match(struct device *dev, void *data)
3190{
3191	return ACPI_COMPANION(dev) == data;
3192}
3193
3194static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3195{
3196	struct device *dev;
3197
3198	dev = class_find_device(&spi_master_class, NULL, adev,
3199				spi_acpi_master_match);
3200	if (!dev)
3201		return NULL;
3202
3203	return container_of(dev, struct spi_master, dev);
3204}
3205
3206static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3207{
3208	struct device *dev;
3209
3210	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3211
3212	return dev ? to_spi_device(dev) : NULL;
3213}
3214
3215static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3216			   void *arg)
3217{
3218	struct acpi_device *adev = arg;
3219	struct spi_master *master;
3220	struct spi_device *spi;
3221
3222	switch (value) {
3223	case ACPI_RECONFIG_DEVICE_ADD:
3224		master = acpi_spi_find_master_by_adev(adev->parent);
3225		if (!master)
3226			break;
3227
3228		acpi_register_spi_device(master, adev);
3229		put_device(&master->dev);
3230		break;
3231	case ACPI_RECONFIG_DEVICE_REMOVE:
3232		if (!acpi_device_enumerated(adev))
3233			break;
3234
3235		spi = acpi_spi_find_device_by_adev(adev);
3236		if (!spi)
3237			break;
3238
3239		spi_unregister_device(spi);
3240		put_device(&spi->dev);
3241		break;
3242	}
3243
3244	return NOTIFY_OK;
3245}
3246
3247static struct notifier_block spi_acpi_notifier = {
3248	.notifier_call = acpi_spi_notify,
3249};
3250#else
3251extern struct notifier_block spi_acpi_notifier;
3252#endif
3253
3254static int __init spi_init(void)
3255{
3256	int	status;
3257
3258	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3259	if (!buf) {
3260		status = -ENOMEM;
3261		goto err0;
3262	}
3263
3264	status = bus_register(&spi_bus_type);
3265	if (status < 0)
3266		goto err1;
3267
3268	status = class_register(&spi_master_class);
3269	if (status < 0)
3270		goto err2;
3271
3272	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3273		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3274	if (IS_ENABLED(CONFIG_ACPI))
3275		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3276
3277	return 0;
3278
3279err2:
3280	bus_unregister(&spi_bus_type);
3281err1:
3282	kfree(buf);
3283	buf = NULL;
3284err0:
3285	return status;
3286}
3287
3288/* board_info is normally registered in arch_initcall(),
3289 * but even essential drivers wait till later
3290 *
3291 * REVISIT only boardinfo really needs static linking. the rest (device and
3292 * driver registration) _could_ be dynamically linked (modular) ... costs
3293 * include needing to have boardinfo data structures be much more public.
3294 */
3295postcore_initcall(spi_init);
3296