Linux Audio

Check our new training course

Loading...
   1/*
   2 * SPI init/core code
   3 *
   4 * Copyright (C) 2005 David Brownell
   5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 */
  17
  18#include <linux/kernel.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/cache.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/dmaengine.h>
  24#include <linux/mutex.h>
  25#include <linux/of_device.h>
  26#include <linux/of_irq.h>
  27#include <linux/clk/clk-conf.h>
  28#include <linux/slab.h>
  29#include <linux/mod_devicetable.h>
  30#include <linux/spi/spi.h>
  31#include <linux/of_gpio.h>
  32#include <linux/pm_runtime.h>
  33#include <linux/pm_domain.h>
  34#include <linux/export.h>
  35#include <linux/sched/rt.h>
  36#include <linux/delay.h>
  37#include <linux/kthread.h>
  38#include <linux/ioport.h>
  39#include <linux/acpi.h>
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/spi.h>
  43
  44static void spidev_release(struct device *dev)
  45{
  46	struct spi_device	*spi = to_spi_device(dev);
  47
  48	/* spi masters may cleanup for released devices */
  49	if (spi->master->cleanup)
  50		spi->master->cleanup(spi);
  51
  52	spi_master_put(spi->master);
  53	kfree(spi);
  54}
  55
  56static ssize_t
  57modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  58{
  59	const struct spi_device	*spi = to_spi_device(dev);
  60	int len;
  61
  62	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  63	if (len != -ENODEV)
  64		return len;
  65
  66	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  67}
  68static DEVICE_ATTR_RO(modalias);
  69
  70#define SPI_STATISTICS_ATTRS(field, file)				\
  71static ssize_t spi_master_##field##_show(struct device *dev,		\
  72					 struct device_attribute *attr,	\
  73					 char *buf)			\
  74{									\
  75	struct spi_master *master = container_of(dev,			\
  76						 struct spi_master, dev); \
  77	return spi_statistics_##field##_show(&master->statistics, buf);	\
  78}									\
  79static struct device_attribute dev_attr_spi_master_##field = {		\
  80	.attr = { .name = file, .mode = S_IRUGO },			\
  81	.show = spi_master_##field##_show,				\
  82};									\
  83static ssize_t spi_device_##field##_show(struct device *dev,		\
  84					 struct device_attribute *attr,	\
  85					char *buf)			\
  86{									\
  87	struct spi_device *spi = to_spi_device(dev);			\
  88	return spi_statistics_##field##_show(&spi->statistics, buf);	\
  89}									\
  90static struct device_attribute dev_attr_spi_device_##field = {		\
  91	.attr = { .name = file, .mode = S_IRUGO },			\
  92	.show = spi_device_##field##_show,				\
  93}
  94
  95#define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
  96static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
  97					    char *buf)			\
  98{									\
  99	unsigned long flags;						\
 100	ssize_t len;							\
 101	spin_lock_irqsave(&stat->lock, flags);				\
 102	len = sprintf(buf, format_string, stat->field);			\
 103	spin_unlock_irqrestore(&stat->lock, flags);			\
 104	return len;							\
 105}									\
 106SPI_STATISTICS_ATTRS(name, file)
 107
 108#define SPI_STATISTICS_SHOW(field, format_string)			\
 109	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 110				 field, format_string)
 111
 112SPI_STATISTICS_SHOW(messages, "%lu");
 113SPI_STATISTICS_SHOW(transfers, "%lu");
 114SPI_STATISTICS_SHOW(errors, "%lu");
 115SPI_STATISTICS_SHOW(timedout, "%lu");
 116
 117SPI_STATISTICS_SHOW(spi_sync, "%lu");
 118SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
 119SPI_STATISTICS_SHOW(spi_async, "%lu");
 120
 121SPI_STATISTICS_SHOW(bytes, "%llu");
 122SPI_STATISTICS_SHOW(bytes_rx, "%llu");
 123SPI_STATISTICS_SHOW(bytes_tx, "%llu");
 124
 125#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 126	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 127				 "transfer_bytes_histo_" number,	\
 128				 transfer_bytes_histo[index],  "%lu")
 129SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 130SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 131SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 132SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 133SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 134SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 135SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 136SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 137SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 138SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 139SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 140SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 141SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 142SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 143SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 144SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 145SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 146
 147SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
 148
 149static struct attribute *spi_dev_attrs[] = {
 150	&dev_attr_modalias.attr,
 151	NULL,
 152};
 153
 154static const struct attribute_group spi_dev_group = {
 155	.attrs  = spi_dev_attrs,
 156};
 157
 158static struct attribute *spi_device_statistics_attrs[] = {
 159	&dev_attr_spi_device_messages.attr,
 160	&dev_attr_spi_device_transfers.attr,
 161	&dev_attr_spi_device_errors.attr,
 162	&dev_attr_spi_device_timedout.attr,
 163	&dev_attr_spi_device_spi_sync.attr,
 164	&dev_attr_spi_device_spi_sync_immediate.attr,
 165	&dev_attr_spi_device_spi_async.attr,
 166	&dev_attr_spi_device_bytes.attr,
 167	&dev_attr_spi_device_bytes_rx.attr,
 168	&dev_attr_spi_device_bytes_tx.attr,
 169	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 170	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 171	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 172	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 173	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 174	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 175	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 176	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 177	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 178	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 179	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 180	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 181	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 182	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 183	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 184	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 185	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 186	&dev_attr_spi_device_transfers_split_maxsize.attr,
 187	NULL,
 188};
 189
 190static const struct attribute_group spi_device_statistics_group = {
 191	.name  = "statistics",
 192	.attrs  = spi_device_statistics_attrs,
 193};
 194
 195static const struct attribute_group *spi_dev_groups[] = {
 196	&spi_dev_group,
 197	&spi_device_statistics_group,
 198	NULL,
 199};
 200
 201static struct attribute *spi_master_statistics_attrs[] = {
 202	&dev_attr_spi_master_messages.attr,
 203	&dev_attr_spi_master_transfers.attr,
 204	&dev_attr_spi_master_errors.attr,
 205	&dev_attr_spi_master_timedout.attr,
 206	&dev_attr_spi_master_spi_sync.attr,
 207	&dev_attr_spi_master_spi_sync_immediate.attr,
 208	&dev_attr_spi_master_spi_async.attr,
 209	&dev_attr_spi_master_bytes.attr,
 210	&dev_attr_spi_master_bytes_rx.attr,
 211	&dev_attr_spi_master_bytes_tx.attr,
 212	&dev_attr_spi_master_transfer_bytes_histo0.attr,
 213	&dev_attr_spi_master_transfer_bytes_histo1.attr,
 214	&dev_attr_spi_master_transfer_bytes_histo2.attr,
 215	&dev_attr_spi_master_transfer_bytes_histo3.attr,
 216	&dev_attr_spi_master_transfer_bytes_histo4.attr,
 217	&dev_attr_spi_master_transfer_bytes_histo5.attr,
 218	&dev_attr_spi_master_transfer_bytes_histo6.attr,
 219	&dev_attr_spi_master_transfer_bytes_histo7.attr,
 220	&dev_attr_spi_master_transfer_bytes_histo8.attr,
 221	&dev_attr_spi_master_transfer_bytes_histo9.attr,
 222	&dev_attr_spi_master_transfer_bytes_histo10.attr,
 223	&dev_attr_spi_master_transfer_bytes_histo11.attr,
 224	&dev_attr_spi_master_transfer_bytes_histo12.attr,
 225	&dev_attr_spi_master_transfer_bytes_histo13.attr,
 226	&dev_attr_spi_master_transfer_bytes_histo14.attr,
 227	&dev_attr_spi_master_transfer_bytes_histo15.attr,
 228	&dev_attr_spi_master_transfer_bytes_histo16.attr,
 229	&dev_attr_spi_master_transfers_split_maxsize.attr,
 230	NULL,
 231};
 232
 233static const struct attribute_group spi_master_statistics_group = {
 234	.name  = "statistics",
 235	.attrs  = spi_master_statistics_attrs,
 236};
 237
 238static const struct attribute_group *spi_master_groups[] = {
 239	&spi_master_statistics_group,
 240	NULL,
 241};
 242
 243void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
 244				       struct spi_transfer *xfer,
 245				       struct spi_master *master)
 246{
 247	unsigned long flags;
 248	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 249
 250	if (l2len < 0)
 251		l2len = 0;
 252
 253	spin_lock_irqsave(&stats->lock, flags);
 254
 255	stats->transfers++;
 256	stats->transfer_bytes_histo[l2len]++;
 257
 258	stats->bytes += xfer->len;
 259	if ((xfer->tx_buf) &&
 260	    (xfer->tx_buf != master->dummy_tx))
 261		stats->bytes_tx += xfer->len;
 262	if ((xfer->rx_buf) &&
 263	    (xfer->rx_buf != master->dummy_rx))
 264		stats->bytes_rx += xfer->len;
 265
 266	spin_unlock_irqrestore(&stats->lock, flags);
 267}
 268EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
 269
 270/* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 271 * and the sysfs version makes coldplug work too.
 272 */
 273
 274static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
 275						const struct spi_device *sdev)
 276{
 277	while (id->name[0]) {
 278		if (!strcmp(sdev->modalias, id->name))
 279			return id;
 280		id++;
 281	}
 282	return NULL;
 283}
 284
 285const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 286{
 287	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 288
 289	return spi_match_id(sdrv->id_table, sdev);
 290}
 291EXPORT_SYMBOL_GPL(spi_get_device_id);
 292
 293static int spi_match_device(struct device *dev, struct device_driver *drv)
 294{
 295	const struct spi_device	*spi = to_spi_device(dev);
 296	const struct spi_driver	*sdrv = to_spi_driver(drv);
 297
 298	/* Attempt an OF style match */
 299	if (of_driver_match_device(dev, drv))
 300		return 1;
 301
 302	/* Then try ACPI */
 303	if (acpi_driver_match_device(dev, drv))
 304		return 1;
 305
 306	if (sdrv->id_table)
 307		return !!spi_match_id(sdrv->id_table, spi);
 308
 309	return strcmp(spi->modalias, drv->name) == 0;
 310}
 311
 312static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
 313{
 314	const struct spi_device		*spi = to_spi_device(dev);
 315	int rc;
 316
 317	rc = acpi_device_uevent_modalias(dev, env);
 318	if (rc != -ENODEV)
 319		return rc;
 320
 321	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 322	return 0;
 323}
 324
 325struct bus_type spi_bus_type = {
 326	.name		= "spi",
 327	.dev_groups	= spi_dev_groups,
 328	.match		= spi_match_device,
 329	.uevent		= spi_uevent,
 330};
 331EXPORT_SYMBOL_GPL(spi_bus_type);
 332
 333
 334static int spi_drv_probe(struct device *dev)
 335{
 336	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 337	struct spi_device		*spi = to_spi_device(dev);
 338	int ret;
 339
 340	ret = of_clk_set_defaults(dev->of_node, false);
 341	if (ret)
 342		return ret;
 343
 344	if (dev->of_node) {
 345		spi->irq = of_irq_get(dev->of_node, 0);
 346		if (spi->irq == -EPROBE_DEFER)
 347			return -EPROBE_DEFER;
 348		if (spi->irq < 0)
 349			spi->irq = 0;
 350	}
 351
 352	ret = dev_pm_domain_attach(dev, true);
 353	if (ret != -EPROBE_DEFER) {
 354		ret = sdrv->probe(spi);
 355		if (ret)
 356			dev_pm_domain_detach(dev, true);
 357	}
 358
 359	return ret;
 360}
 361
 362static int spi_drv_remove(struct device *dev)
 363{
 364	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 365	int ret;
 366
 367	ret = sdrv->remove(to_spi_device(dev));
 368	dev_pm_domain_detach(dev, true);
 369
 370	return ret;
 371}
 372
 373static void spi_drv_shutdown(struct device *dev)
 374{
 375	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 376
 377	sdrv->shutdown(to_spi_device(dev));
 378}
 379
 380/**
 381 * __spi_register_driver - register a SPI driver
 382 * @owner: owner module of the driver to register
 383 * @sdrv: the driver to register
 384 * Context: can sleep
 385 *
 386 * Return: zero on success, else a negative error code.
 387 */
 388int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 389{
 390	sdrv->driver.owner = owner;
 391	sdrv->driver.bus = &spi_bus_type;
 392	if (sdrv->probe)
 393		sdrv->driver.probe = spi_drv_probe;
 394	if (sdrv->remove)
 395		sdrv->driver.remove = spi_drv_remove;
 396	if (sdrv->shutdown)
 397		sdrv->driver.shutdown = spi_drv_shutdown;
 398	return driver_register(&sdrv->driver);
 399}
 400EXPORT_SYMBOL_GPL(__spi_register_driver);
 401
 402/*-------------------------------------------------------------------------*/
 403
 404/* SPI devices should normally not be created by SPI device drivers; that
 405 * would make them board-specific.  Similarly with SPI master drivers.
 406 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 407 * with other readonly (flashable) information about mainboard devices.
 408 */
 409
 410struct boardinfo {
 411	struct list_head	list;
 412	struct spi_board_info	board_info;
 413};
 414
 415static LIST_HEAD(board_list);
 416static LIST_HEAD(spi_master_list);
 417
 418/*
 419 * Used to protect add/del opertion for board_info list and
 420 * spi_master list, and their matching process
 421 */
 422static DEFINE_MUTEX(board_lock);
 423
 424/**
 425 * spi_alloc_device - Allocate a new SPI device
 426 * @master: Controller to which device is connected
 427 * Context: can sleep
 428 *
 429 * Allows a driver to allocate and initialize a spi_device without
 430 * registering it immediately.  This allows a driver to directly
 431 * fill the spi_device with device parameters before calling
 432 * spi_add_device() on it.
 433 *
 434 * Caller is responsible to call spi_add_device() on the returned
 435 * spi_device structure to add it to the SPI master.  If the caller
 436 * needs to discard the spi_device without adding it, then it should
 437 * call spi_dev_put() on it.
 438 *
 439 * Return: a pointer to the new device, or NULL.
 440 */
 441struct spi_device *spi_alloc_device(struct spi_master *master)
 442{
 443	struct spi_device	*spi;
 444
 445	if (!spi_master_get(master))
 446		return NULL;
 447
 448	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 449	if (!spi) {
 450		spi_master_put(master);
 451		return NULL;
 452	}
 453
 454	spi->master = master;
 455	spi->dev.parent = &master->dev;
 456	spi->dev.bus = &spi_bus_type;
 457	spi->dev.release = spidev_release;
 458	spi->cs_gpio = -ENOENT;
 459
 460	spin_lock_init(&spi->statistics.lock);
 461
 462	device_initialize(&spi->dev);
 463	return spi;
 464}
 465EXPORT_SYMBOL_GPL(spi_alloc_device);
 466
 467static void spi_dev_set_name(struct spi_device *spi)
 468{
 469	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 470
 471	if (adev) {
 472		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 473		return;
 474	}
 475
 476	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
 477		     spi->chip_select);
 478}
 479
 480static int spi_dev_check(struct device *dev, void *data)
 481{
 482	struct spi_device *spi = to_spi_device(dev);
 483	struct spi_device *new_spi = data;
 484
 485	if (spi->master == new_spi->master &&
 486	    spi->chip_select == new_spi->chip_select)
 487		return -EBUSY;
 488	return 0;
 489}
 490
 491/**
 492 * spi_add_device - Add spi_device allocated with spi_alloc_device
 493 * @spi: spi_device to register
 494 *
 495 * Companion function to spi_alloc_device.  Devices allocated with
 496 * spi_alloc_device can be added onto the spi bus with this function.
 497 *
 498 * Return: 0 on success; negative errno on failure
 499 */
 500int spi_add_device(struct spi_device *spi)
 501{
 502	static DEFINE_MUTEX(spi_add_lock);
 503	struct spi_master *master = spi->master;
 504	struct device *dev = master->dev.parent;
 505	int status;
 506
 507	/* Chipselects are numbered 0..max; validate. */
 508	if (spi->chip_select >= master->num_chipselect) {
 509		dev_err(dev, "cs%d >= max %d\n",
 510			spi->chip_select,
 511			master->num_chipselect);
 512		return -EINVAL;
 513	}
 514
 515	/* Set the bus ID string */
 516	spi_dev_set_name(spi);
 517
 518	/* We need to make sure there's no other device with this
 519	 * chipselect **BEFORE** we call setup(), else we'll trash
 520	 * its configuration.  Lock against concurrent add() calls.
 521	 */
 522	mutex_lock(&spi_add_lock);
 523
 524	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 525	if (status) {
 526		dev_err(dev, "chipselect %d already in use\n",
 527				spi->chip_select);
 528		goto done;
 529	}
 530
 531	if (master->cs_gpios)
 532		spi->cs_gpio = master->cs_gpios[spi->chip_select];
 533
 534	/* Drivers may modify this initial i/o setup, but will
 535	 * normally rely on the device being setup.  Devices
 536	 * using SPI_CS_HIGH can't coexist well otherwise...
 537	 */
 538	status = spi_setup(spi);
 539	if (status < 0) {
 540		dev_err(dev, "can't setup %s, status %d\n",
 541				dev_name(&spi->dev), status);
 542		goto done;
 543	}
 544
 545	/* Device may be bound to an active driver when this returns */
 546	status = device_add(&spi->dev);
 547	if (status < 0)
 548		dev_err(dev, "can't add %s, status %d\n",
 549				dev_name(&spi->dev), status);
 550	else
 551		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 552
 553done:
 554	mutex_unlock(&spi_add_lock);
 555	return status;
 556}
 557EXPORT_SYMBOL_GPL(spi_add_device);
 558
 559/**
 560 * spi_new_device - instantiate one new SPI device
 561 * @master: Controller to which device is connected
 562 * @chip: Describes the SPI device
 563 * Context: can sleep
 564 *
 565 * On typical mainboards, this is purely internal; and it's not needed
 566 * after board init creates the hard-wired devices.  Some development
 567 * platforms may not be able to use spi_register_board_info though, and
 568 * this is exported so that for example a USB or parport based adapter
 569 * driver could add devices (which it would learn about out-of-band).
 570 *
 571 * Return: the new device, or NULL.
 572 */
 573struct spi_device *spi_new_device(struct spi_master *master,
 574				  struct spi_board_info *chip)
 575{
 576	struct spi_device	*proxy;
 577	int			status;
 578
 579	/* NOTE:  caller did any chip->bus_num checks necessary.
 580	 *
 581	 * Also, unless we change the return value convention to use
 582	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 583	 * suggests syslogged diagnostics are best here (ugh).
 584	 */
 585
 586	proxy = spi_alloc_device(master);
 587	if (!proxy)
 588		return NULL;
 589
 590	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 591
 592	proxy->chip_select = chip->chip_select;
 593	proxy->max_speed_hz = chip->max_speed_hz;
 594	proxy->mode = chip->mode;
 595	proxy->irq = chip->irq;
 596	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 597	proxy->dev.platform_data = (void *) chip->platform_data;
 598	proxy->controller_data = chip->controller_data;
 599	proxy->controller_state = NULL;
 600
 601	status = spi_add_device(proxy);
 602	if (status < 0) {
 603		spi_dev_put(proxy);
 604		return NULL;
 605	}
 606
 607	return proxy;
 608}
 609EXPORT_SYMBOL_GPL(spi_new_device);
 610
 611/**
 612 * spi_unregister_device - unregister a single SPI device
 613 * @spi: spi_device to unregister
 614 *
 615 * Start making the passed SPI device vanish. Normally this would be handled
 616 * by spi_unregister_master().
 617 */
 618void spi_unregister_device(struct spi_device *spi)
 619{
 620	if (!spi)
 621		return;
 622
 623	if (spi->dev.of_node)
 624		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 625	device_unregister(&spi->dev);
 626}
 627EXPORT_SYMBOL_GPL(spi_unregister_device);
 628
 629static void spi_match_master_to_boardinfo(struct spi_master *master,
 630				struct spi_board_info *bi)
 631{
 632	struct spi_device *dev;
 633
 634	if (master->bus_num != bi->bus_num)
 635		return;
 636
 637	dev = spi_new_device(master, bi);
 638	if (!dev)
 639		dev_err(master->dev.parent, "can't create new device for %s\n",
 640			bi->modalias);
 641}
 642
 643/**
 644 * spi_register_board_info - register SPI devices for a given board
 645 * @info: array of chip descriptors
 646 * @n: how many descriptors are provided
 647 * Context: can sleep
 648 *
 649 * Board-specific early init code calls this (probably during arch_initcall)
 650 * with segments of the SPI device table.  Any device nodes are created later,
 651 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 652 * this table of devices forever, so that reloading a controller driver will
 653 * not make Linux forget about these hard-wired devices.
 654 *
 655 * Other code can also call this, e.g. a particular add-on board might provide
 656 * SPI devices through its expansion connector, so code initializing that board
 657 * would naturally declare its SPI devices.
 658 *
 659 * The board info passed can safely be __initdata ... but be careful of
 660 * any embedded pointers (platform_data, etc), they're copied as-is.
 661 *
 662 * Return: zero on success, else a negative error code.
 663 */
 664int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 665{
 666	struct boardinfo *bi;
 667	int i;
 668
 669	if (!n)
 670		return -EINVAL;
 671
 672	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
 673	if (!bi)
 674		return -ENOMEM;
 675
 676	for (i = 0; i < n; i++, bi++, info++) {
 677		struct spi_master *master;
 678
 679		memcpy(&bi->board_info, info, sizeof(*info));
 680		mutex_lock(&board_lock);
 681		list_add_tail(&bi->list, &board_list);
 682		list_for_each_entry(master, &spi_master_list, list)
 683			spi_match_master_to_boardinfo(master, &bi->board_info);
 684		mutex_unlock(&board_lock);
 685	}
 686
 687	return 0;
 688}
 689
 690/*-------------------------------------------------------------------------*/
 691
 692static void spi_set_cs(struct spi_device *spi, bool enable)
 693{
 694	if (spi->mode & SPI_CS_HIGH)
 695		enable = !enable;
 696
 697	if (gpio_is_valid(spi->cs_gpio))
 698		gpio_set_value(spi->cs_gpio, !enable);
 699	else if (spi->master->set_cs)
 700		spi->master->set_cs(spi, !enable);
 701}
 702
 703#ifdef CONFIG_HAS_DMA
 704static int spi_map_buf(struct spi_master *master, struct device *dev,
 705		       struct sg_table *sgt, void *buf, size_t len,
 706		       enum dma_data_direction dir)
 707{
 708	const bool vmalloced_buf = is_vmalloc_addr(buf);
 709	unsigned int max_seg_size = dma_get_max_seg_size(dev);
 710	int desc_len;
 711	int sgs;
 712	struct page *vm_page;
 713	void *sg_buf;
 714	size_t min;
 715	int i, ret;
 716
 717	if (vmalloced_buf) {
 718		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
 719		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
 720	} else {
 721		desc_len = min_t(int, max_seg_size, master->max_dma_len);
 722		sgs = DIV_ROUND_UP(len, desc_len);
 723	}
 724
 725	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
 726	if (ret != 0)
 727		return ret;
 728
 729	for (i = 0; i < sgs; i++) {
 730
 731		if (vmalloced_buf) {
 732			min = min_t(size_t,
 733				    len, desc_len - offset_in_page(buf));
 734			vm_page = vmalloc_to_page(buf);
 735			if (!vm_page) {
 736				sg_free_table(sgt);
 737				return -ENOMEM;
 738			}
 739			sg_set_page(&sgt->sgl[i], vm_page,
 740				    min, offset_in_page(buf));
 741		} else {
 742			min = min_t(size_t, len, desc_len);
 743			sg_buf = buf;
 744			sg_set_buf(&sgt->sgl[i], sg_buf, min);
 745		}
 746
 747		buf += min;
 748		len -= min;
 749	}
 750
 751	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
 752	if (!ret)
 753		ret = -ENOMEM;
 754	if (ret < 0) {
 755		sg_free_table(sgt);
 756		return ret;
 757	}
 758
 759	sgt->nents = ret;
 760
 761	return 0;
 762}
 763
 764static void spi_unmap_buf(struct spi_master *master, struct device *dev,
 765			  struct sg_table *sgt, enum dma_data_direction dir)
 766{
 767	if (sgt->orig_nents) {
 768		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
 769		sg_free_table(sgt);
 770	}
 771}
 772
 773static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
 774{
 775	struct device *tx_dev, *rx_dev;
 776	struct spi_transfer *xfer;
 777	int ret;
 778
 779	if (!master->can_dma)
 780		return 0;
 781
 782	if (master->dma_tx)
 783		tx_dev = master->dma_tx->device->dev;
 784	else
 785		tx_dev = &master->dev;
 786
 787	if (master->dma_rx)
 788		rx_dev = master->dma_rx->device->dev;
 789	else
 790		rx_dev = &master->dev;
 791
 792	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 793		if (!master->can_dma(master, msg->spi, xfer))
 794			continue;
 795
 796		if (xfer->tx_buf != NULL) {
 797			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
 798					  (void *)xfer->tx_buf, xfer->len,
 799					  DMA_TO_DEVICE);
 800			if (ret != 0)
 801				return ret;
 802		}
 803
 804		if (xfer->rx_buf != NULL) {
 805			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
 806					  xfer->rx_buf, xfer->len,
 807					  DMA_FROM_DEVICE);
 808			if (ret != 0) {
 809				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
 810					      DMA_TO_DEVICE);
 811				return ret;
 812			}
 813		}
 814	}
 815
 816	master->cur_msg_mapped = true;
 817
 818	return 0;
 819}
 820
 821static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
 822{
 823	struct spi_transfer *xfer;
 824	struct device *tx_dev, *rx_dev;
 825
 826	if (!master->cur_msg_mapped || !master->can_dma)
 827		return 0;
 828
 829	if (master->dma_tx)
 830		tx_dev = master->dma_tx->device->dev;
 831	else
 832		tx_dev = &master->dev;
 833
 834	if (master->dma_rx)
 835		rx_dev = master->dma_rx->device->dev;
 836	else
 837		rx_dev = &master->dev;
 838
 839	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 840		if (!master->can_dma(master, msg->spi, xfer))
 841			continue;
 842
 843		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
 844		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
 845	}
 846
 847	return 0;
 848}
 849#else /* !CONFIG_HAS_DMA */
 850static inline int __spi_map_msg(struct spi_master *master,
 851				struct spi_message *msg)
 852{
 853	return 0;
 854}
 855
 856static inline int __spi_unmap_msg(struct spi_master *master,
 857				  struct spi_message *msg)
 858{
 859	return 0;
 860}
 861#endif /* !CONFIG_HAS_DMA */
 862
 863static inline int spi_unmap_msg(struct spi_master *master,
 864				struct spi_message *msg)
 865{
 866	struct spi_transfer *xfer;
 867
 868	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 869		/*
 870		 * Restore the original value of tx_buf or rx_buf if they are
 871		 * NULL.
 872		 */
 873		if (xfer->tx_buf == master->dummy_tx)
 874			xfer->tx_buf = NULL;
 875		if (xfer->rx_buf == master->dummy_rx)
 876			xfer->rx_buf = NULL;
 877	}
 878
 879	return __spi_unmap_msg(master, msg);
 880}
 881
 882static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
 883{
 884	struct spi_transfer *xfer;
 885	void *tmp;
 886	unsigned int max_tx, max_rx;
 887
 888	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
 889		max_tx = 0;
 890		max_rx = 0;
 891
 892		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 893			if ((master->flags & SPI_MASTER_MUST_TX) &&
 894			    !xfer->tx_buf)
 895				max_tx = max(xfer->len, max_tx);
 896			if ((master->flags & SPI_MASTER_MUST_RX) &&
 897			    !xfer->rx_buf)
 898				max_rx = max(xfer->len, max_rx);
 899		}
 900
 901		if (max_tx) {
 902			tmp = krealloc(master->dummy_tx, max_tx,
 903				       GFP_KERNEL | GFP_DMA);
 904			if (!tmp)
 905				return -ENOMEM;
 906			master->dummy_tx = tmp;
 907			memset(tmp, 0, max_tx);
 908		}
 909
 910		if (max_rx) {
 911			tmp = krealloc(master->dummy_rx, max_rx,
 912				       GFP_KERNEL | GFP_DMA);
 913			if (!tmp)
 914				return -ENOMEM;
 915			master->dummy_rx = tmp;
 916		}
 917
 918		if (max_tx || max_rx) {
 919			list_for_each_entry(xfer, &msg->transfers,
 920					    transfer_list) {
 921				if (!xfer->tx_buf)
 922					xfer->tx_buf = master->dummy_tx;
 923				if (!xfer->rx_buf)
 924					xfer->rx_buf = master->dummy_rx;
 925			}
 926		}
 927	}
 928
 929	return __spi_map_msg(master, msg);
 930}
 931
 932/*
 933 * spi_transfer_one_message - Default implementation of transfer_one_message()
 934 *
 935 * This is a standard implementation of transfer_one_message() for
 936 * drivers which impelment a transfer_one() operation.  It provides
 937 * standard handling of delays and chip select management.
 938 */
 939static int spi_transfer_one_message(struct spi_master *master,
 940				    struct spi_message *msg)
 941{
 942	struct spi_transfer *xfer;
 943	bool keep_cs = false;
 944	int ret = 0;
 945	unsigned long ms = 1;
 946	struct spi_statistics *statm = &master->statistics;
 947	struct spi_statistics *stats = &msg->spi->statistics;
 948
 949	spi_set_cs(msg->spi, true);
 950
 951	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
 952	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
 953
 954	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 955		trace_spi_transfer_start(msg, xfer);
 956
 957		spi_statistics_add_transfer_stats(statm, xfer, master);
 958		spi_statistics_add_transfer_stats(stats, xfer, master);
 959
 960		if (xfer->tx_buf || xfer->rx_buf) {
 961			reinit_completion(&master->xfer_completion);
 962
 963			ret = master->transfer_one(master, msg->spi, xfer);
 964			if (ret < 0) {
 965				SPI_STATISTICS_INCREMENT_FIELD(statm,
 966							       errors);
 967				SPI_STATISTICS_INCREMENT_FIELD(stats,
 968							       errors);
 969				dev_err(&msg->spi->dev,
 970					"SPI transfer failed: %d\n", ret);
 971				goto out;
 972			}
 973
 974			if (ret > 0) {
 975				ret = 0;
 976				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
 977				ms += ms + 100; /* some tolerance */
 978
 979				ms = wait_for_completion_timeout(&master->xfer_completion,
 980								 msecs_to_jiffies(ms));
 981			}
 982
 983			if (ms == 0) {
 984				SPI_STATISTICS_INCREMENT_FIELD(statm,
 985							       timedout);
 986				SPI_STATISTICS_INCREMENT_FIELD(stats,
 987							       timedout);
 988				dev_err(&msg->spi->dev,
 989					"SPI transfer timed out\n");
 990				msg->status = -ETIMEDOUT;
 991			}
 992		} else {
 993			if (xfer->len)
 994				dev_err(&msg->spi->dev,
 995					"Bufferless transfer has length %u\n",
 996					xfer->len);
 997		}
 998
 999		trace_spi_transfer_stop(msg, xfer);
1000
1001		if (msg->status != -EINPROGRESS)
1002			goto out;
1003
1004		if (xfer->delay_usecs)
1005			udelay(xfer->delay_usecs);
1006
1007		if (xfer->cs_change) {
1008			if (list_is_last(&xfer->transfer_list,
1009					 &msg->transfers)) {
1010				keep_cs = true;
1011			} else {
1012				spi_set_cs(msg->spi, false);
1013				udelay(10);
1014				spi_set_cs(msg->spi, true);
1015			}
1016		}
1017
1018		msg->actual_length += xfer->len;
1019	}
1020
1021out:
1022	if (ret != 0 || !keep_cs)
1023		spi_set_cs(msg->spi, false);
1024
1025	if (msg->status == -EINPROGRESS)
1026		msg->status = ret;
1027
1028	if (msg->status && master->handle_err)
1029		master->handle_err(master, msg);
1030
1031	spi_res_release(master, msg);
1032
1033	spi_finalize_current_message(master);
1034
1035	return ret;
1036}
1037
1038/**
1039 * spi_finalize_current_transfer - report completion of a transfer
1040 * @master: the master reporting completion
1041 *
1042 * Called by SPI drivers using the core transfer_one_message()
1043 * implementation to notify it that the current interrupt driven
1044 * transfer has finished and the next one may be scheduled.
1045 */
1046void spi_finalize_current_transfer(struct spi_master *master)
1047{
1048	complete(&master->xfer_completion);
1049}
1050EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1051
1052/**
1053 * __spi_pump_messages - function which processes spi message queue
1054 * @master: master to process queue for
1055 * @in_kthread: true if we are in the context of the message pump thread
1056 * @bus_locked: true if the bus mutex is held when calling this function
1057 *
1058 * This function checks if there is any spi message in the queue that
1059 * needs processing and if so call out to the driver to initialize hardware
1060 * and transfer each message.
1061 *
1062 * Note that it is called both from the kthread itself and also from
1063 * inside spi_sync(); the queue extraction handling at the top of the
1064 * function should deal with this safely.
1065 */
1066static void __spi_pump_messages(struct spi_master *master, bool in_kthread,
1067				bool bus_locked)
1068{
1069	unsigned long flags;
1070	bool was_busy = false;
1071	int ret;
1072
1073	/* Lock queue */
1074	spin_lock_irqsave(&master->queue_lock, flags);
1075
1076	/* Make sure we are not already running a message */
1077	if (master->cur_msg) {
1078		spin_unlock_irqrestore(&master->queue_lock, flags);
1079		return;
1080	}
1081
1082	/* If another context is idling the device then defer */
1083	if (master->idling) {
1084		queue_kthread_work(&master->kworker, &master->pump_messages);
1085		spin_unlock_irqrestore(&master->queue_lock, flags);
1086		return;
1087	}
1088
1089	/* Check if the queue is idle */
1090	if (list_empty(&master->queue) || !master->running) {
1091		if (!master->busy) {
1092			spin_unlock_irqrestore(&master->queue_lock, flags);
1093			return;
1094		}
1095
1096		/* Only do teardown in the thread */
1097		if (!in_kthread) {
1098			queue_kthread_work(&master->kworker,
1099					   &master->pump_messages);
1100			spin_unlock_irqrestore(&master->queue_lock, flags);
1101			return;
1102		}
1103
1104		master->busy = false;
1105		master->idling = true;
1106		spin_unlock_irqrestore(&master->queue_lock, flags);
1107
1108		kfree(master->dummy_rx);
1109		master->dummy_rx = NULL;
1110		kfree(master->dummy_tx);
1111		master->dummy_tx = NULL;
1112		if (master->unprepare_transfer_hardware &&
1113		    master->unprepare_transfer_hardware(master))
1114			dev_err(&master->dev,
1115				"failed to unprepare transfer hardware\n");
1116		if (master->auto_runtime_pm) {
1117			pm_runtime_mark_last_busy(master->dev.parent);
1118			pm_runtime_put_autosuspend(master->dev.parent);
1119		}
1120		trace_spi_master_idle(master);
1121
1122		spin_lock_irqsave(&master->queue_lock, flags);
1123		master->idling = false;
1124		spin_unlock_irqrestore(&master->queue_lock, flags);
1125		return;
1126	}
1127
1128	/* Extract head of queue */
1129	master->cur_msg =
1130		list_first_entry(&master->queue, struct spi_message, queue);
1131
1132	list_del_init(&master->cur_msg->queue);
1133	if (master->busy)
1134		was_busy = true;
1135	else
1136		master->busy = true;
1137	spin_unlock_irqrestore(&master->queue_lock, flags);
1138
1139	if (!was_busy && master->auto_runtime_pm) {
1140		ret = pm_runtime_get_sync(master->dev.parent);
1141		if (ret < 0) {
1142			dev_err(&master->dev, "Failed to power device: %d\n",
1143				ret);
1144			return;
1145		}
1146	}
1147
1148	if (!was_busy)
1149		trace_spi_master_busy(master);
1150
1151	if (!was_busy && master->prepare_transfer_hardware) {
1152		ret = master->prepare_transfer_hardware(master);
1153		if (ret) {
1154			dev_err(&master->dev,
1155				"failed to prepare transfer hardware\n");
1156
1157			if (master->auto_runtime_pm)
1158				pm_runtime_put(master->dev.parent);
1159			return;
1160		}
1161	}
1162
1163	if (!bus_locked)
1164		mutex_lock(&master->bus_lock_mutex);
1165
1166	trace_spi_message_start(master->cur_msg);
1167
1168	if (master->prepare_message) {
1169		ret = master->prepare_message(master, master->cur_msg);
1170		if (ret) {
1171			dev_err(&master->dev,
1172				"failed to prepare message: %d\n", ret);
1173			master->cur_msg->status = ret;
1174			spi_finalize_current_message(master);
1175			goto out;
1176		}
1177		master->cur_msg_prepared = true;
1178	}
1179
1180	ret = spi_map_msg(master, master->cur_msg);
1181	if (ret) {
1182		master->cur_msg->status = ret;
1183		spi_finalize_current_message(master);
1184		goto out;
1185	}
1186
1187	ret = master->transfer_one_message(master, master->cur_msg);
1188	if (ret) {
1189		dev_err(&master->dev,
1190			"failed to transfer one message from queue\n");
1191		goto out;
1192	}
1193
1194out:
1195	if (!bus_locked)
1196		mutex_unlock(&master->bus_lock_mutex);
1197
1198	/* Prod the scheduler in case transfer_one() was busy waiting */
1199	if (!ret)
1200		cond_resched();
1201}
1202
1203/**
1204 * spi_pump_messages - kthread work function which processes spi message queue
1205 * @work: pointer to kthread work struct contained in the master struct
1206 */
1207static void spi_pump_messages(struct kthread_work *work)
1208{
1209	struct spi_master *master =
1210		container_of(work, struct spi_master, pump_messages);
1211
1212	__spi_pump_messages(master, true, master->bus_lock_flag);
1213}
1214
1215static int spi_init_queue(struct spi_master *master)
1216{
1217	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1218
1219	master->running = false;
1220	master->busy = false;
1221
1222	init_kthread_worker(&master->kworker);
1223	master->kworker_task = kthread_run(kthread_worker_fn,
1224					   &master->kworker, "%s",
1225					   dev_name(&master->dev));
1226	if (IS_ERR(master->kworker_task)) {
1227		dev_err(&master->dev, "failed to create message pump task\n");
1228		return PTR_ERR(master->kworker_task);
1229	}
1230	init_kthread_work(&master->pump_messages, spi_pump_messages);
1231
1232	/*
1233	 * Master config will indicate if this controller should run the
1234	 * message pump with high (realtime) priority to reduce the transfer
1235	 * latency on the bus by minimising the delay between a transfer
1236	 * request and the scheduling of the message pump thread. Without this
1237	 * setting the message pump thread will remain at default priority.
1238	 */
1239	if (master->rt) {
1240		dev_info(&master->dev,
1241			"will run message pump with realtime priority\n");
1242		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1243	}
1244
1245	return 0;
1246}
1247
1248/**
1249 * spi_get_next_queued_message() - called by driver to check for queued
1250 * messages
1251 * @master: the master to check for queued messages
1252 *
1253 * If there are more messages in the queue, the next message is returned from
1254 * this call.
1255 *
1256 * Return: the next message in the queue, else NULL if the queue is empty.
1257 */
1258struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1259{
1260	struct spi_message *next;
1261	unsigned long flags;
1262
1263	/* get a pointer to the next message, if any */
1264	spin_lock_irqsave(&master->queue_lock, flags);
1265	next = list_first_entry_or_null(&master->queue, struct spi_message,
1266					queue);
1267	spin_unlock_irqrestore(&master->queue_lock, flags);
1268
1269	return next;
1270}
1271EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1272
1273/**
1274 * spi_finalize_current_message() - the current message is complete
1275 * @master: the master to return the message to
1276 *
1277 * Called by the driver to notify the core that the message in the front of the
1278 * queue is complete and can be removed from the queue.
1279 */
1280void spi_finalize_current_message(struct spi_master *master)
1281{
1282	struct spi_message *mesg;
1283	unsigned long flags;
1284	int ret;
1285
1286	spin_lock_irqsave(&master->queue_lock, flags);
1287	mesg = master->cur_msg;
1288	spin_unlock_irqrestore(&master->queue_lock, flags);
1289
1290	spi_unmap_msg(master, mesg);
1291
1292	if (master->cur_msg_prepared && master->unprepare_message) {
1293		ret = master->unprepare_message(master, mesg);
1294		if (ret) {
1295			dev_err(&master->dev,
1296				"failed to unprepare message: %d\n", ret);
1297		}
1298	}
1299
1300	spin_lock_irqsave(&master->queue_lock, flags);
1301	master->cur_msg = NULL;
1302	master->cur_msg_prepared = false;
1303	queue_kthread_work(&master->kworker, &master->pump_messages);
1304	spin_unlock_irqrestore(&master->queue_lock, flags);
1305
1306	trace_spi_message_done(mesg);
1307
1308	mesg->state = NULL;
1309	if (mesg->complete)
1310		mesg->complete(mesg->context);
1311}
1312EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1313
1314static int spi_start_queue(struct spi_master *master)
1315{
1316	unsigned long flags;
1317
1318	spin_lock_irqsave(&master->queue_lock, flags);
1319
1320	if (master->running || master->busy) {
1321		spin_unlock_irqrestore(&master->queue_lock, flags);
1322		return -EBUSY;
1323	}
1324
1325	master->running = true;
1326	master->cur_msg = NULL;
1327	spin_unlock_irqrestore(&master->queue_lock, flags);
1328
1329	queue_kthread_work(&master->kworker, &master->pump_messages);
1330
1331	return 0;
1332}
1333
1334static int spi_stop_queue(struct spi_master *master)
1335{
1336	unsigned long flags;
1337	unsigned limit = 500;
1338	int ret = 0;
1339
1340	spin_lock_irqsave(&master->queue_lock, flags);
1341
1342	/*
1343	 * This is a bit lame, but is optimized for the common execution path.
1344	 * A wait_queue on the master->busy could be used, but then the common
1345	 * execution path (pump_messages) would be required to call wake_up or
1346	 * friends on every SPI message. Do this instead.
1347	 */
1348	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1349		spin_unlock_irqrestore(&master->queue_lock, flags);
1350		usleep_range(10000, 11000);
1351		spin_lock_irqsave(&master->queue_lock, flags);
1352	}
1353
1354	if (!list_empty(&master->queue) || master->busy)
1355		ret = -EBUSY;
1356	else
1357		master->running = false;
1358
1359	spin_unlock_irqrestore(&master->queue_lock, flags);
1360
1361	if (ret) {
1362		dev_warn(&master->dev,
1363			 "could not stop message queue\n");
1364		return ret;
1365	}
1366	return ret;
1367}
1368
1369static int spi_destroy_queue(struct spi_master *master)
1370{
1371	int ret;
1372
1373	ret = spi_stop_queue(master);
1374
1375	/*
1376	 * flush_kthread_worker will block until all work is done.
1377	 * If the reason that stop_queue timed out is that the work will never
1378	 * finish, then it does no good to call flush/stop thread, so
1379	 * return anyway.
1380	 */
1381	if (ret) {
1382		dev_err(&master->dev, "problem destroying queue\n");
1383		return ret;
1384	}
1385
1386	flush_kthread_worker(&master->kworker);
1387	kthread_stop(master->kworker_task);
1388
1389	return 0;
1390}
1391
1392static int __spi_queued_transfer(struct spi_device *spi,
1393				 struct spi_message *msg,
1394				 bool need_pump)
1395{
1396	struct spi_master *master = spi->master;
1397	unsigned long flags;
1398
1399	spin_lock_irqsave(&master->queue_lock, flags);
1400
1401	if (!master->running) {
1402		spin_unlock_irqrestore(&master->queue_lock, flags);
1403		return -ESHUTDOWN;
1404	}
1405	msg->actual_length = 0;
1406	msg->status = -EINPROGRESS;
1407
1408	list_add_tail(&msg->queue, &master->queue);
1409	if (!master->busy && need_pump)
1410		queue_kthread_work(&master->kworker, &master->pump_messages);
1411
1412	spin_unlock_irqrestore(&master->queue_lock, flags);
1413	return 0;
1414}
1415
1416/**
1417 * spi_queued_transfer - transfer function for queued transfers
1418 * @spi: spi device which is requesting transfer
1419 * @msg: spi message which is to handled is queued to driver queue
1420 *
1421 * Return: zero on success, else a negative error code.
1422 */
1423static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1424{
1425	return __spi_queued_transfer(spi, msg, true);
1426}
1427
1428static int spi_master_initialize_queue(struct spi_master *master)
1429{
1430	int ret;
1431
1432	master->transfer = spi_queued_transfer;
1433	if (!master->transfer_one_message)
1434		master->transfer_one_message = spi_transfer_one_message;
1435
1436	/* Initialize and start queue */
1437	ret = spi_init_queue(master);
1438	if (ret) {
1439		dev_err(&master->dev, "problem initializing queue\n");
1440		goto err_init_queue;
1441	}
1442	master->queued = true;
1443	ret = spi_start_queue(master);
1444	if (ret) {
1445		dev_err(&master->dev, "problem starting queue\n");
1446		goto err_start_queue;
1447	}
1448
1449	return 0;
1450
1451err_start_queue:
1452	spi_destroy_queue(master);
1453err_init_queue:
1454	return ret;
1455}
1456
1457/*-------------------------------------------------------------------------*/
1458
1459#if defined(CONFIG_OF)
1460static struct spi_device *
1461of_register_spi_device(struct spi_master *master, struct device_node *nc)
1462{
1463	struct spi_device *spi;
1464	int rc;
1465	u32 value;
1466
1467	/* Alloc an spi_device */
1468	spi = spi_alloc_device(master);
1469	if (!spi) {
1470		dev_err(&master->dev, "spi_device alloc error for %s\n",
1471			nc->full_name);
1472		rc = -ENOMEM;
1473		goto err_out;
1474	}
1475
1476	/* Select device driver */
1477	rc = of_modalias_node(nc, spi->modalias,
1478				sizeof(spi->modalias));
1479	if (rc < 0) {
1480		dev_err(&master->dev, "cannot find modalias for %s\n",
1481			nc->full_name);
1482		goto err_out;
1483	}
1484
1485	/* Device address */
1486	rc = of_property_read_u32(nc, "reg", &value);
1487	if (rc) {
1488		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1489			nc->full_name, rc);
1490		goto err_out;
1491	}
1492	spi->chip_select = value;
1493
1494	/* Mode (clock phase/polarity/etc.) */
1495	if (of_find_property(nc, "spi-cpha", NULL))
1496		spi->mode |= SPI_CPHA;
1497	if (of_find_property(nc, "spi-cpol", NULL))
1498		spi->mode |= SPI_CPOL;
1499	if (of_find_property(nc, "spi-cs-high", NULL))
1500		spi->mode |= SPI_CS_HIGH;
1501	if (of_find_property(nc, "spi-3wire", NULL))
1502		spi->mode |= SPI_3WIRE;
1503	if (of_find_property(nc, "spi-lsb-first", NULL))
1504		spi->mode |= SPI_LSB_FIRST;
1505
1506	/* Device DUAL/QUAD mode */
1507	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1508		switch (value) {
1509		case 1:
1510			break;
1511		case 2:
1512			spi->mode |= SPI_TX_DUAL;
1513			break;
1514		case 4:
1515			spi->mode |= SPI_TX_QUAD;
1516			break;
1517		default:
1518			dev_warn(&master->dev,
1519				"spi-tx-bus-width %d not supported\n",
1520				value);
1521			break;
1522		}
1523	}
1524
1525	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1526		switch (value) {
1527		case 1:
1528			break;
1529		case 2:
1530			spi->mode |= SPI_RX_DUAL;
1531			break;
1532		case 4:
1533			spi->mode |= SPI_RX_QUAD;
1534			break;
1535		default:
1536			dev_warn(&master->dev,
1537				"spi-rx-bus-width %d not supported\n",
1538				value);
1539			break;
1540		}
1541	}
1542
1543	/* Device speed */
1544	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1545	if (rc) {
1546		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1547			nc->full_name, rc);
1548		goto err_out;
1549	}
1550	spi->max_speed_hz = value;
1551
1552	/* Store a pointer to the node in the device structure */
1553	of_node_get(nc);
1554	spi->dev.of_node = nc;
1555
1556	/* Register the new device */
1557	rc = spi_add_device(spi);
1558	if (rc) {
1559		dev_err(&master->dev, "spi_device register error %s\n",
1560			nc->full_name);
1561		goto err_out;
1562	}
1563
1564	return spi;
1565
1566err_out:
1567	spi_dev_put(spi);
1568	return ERR_PTR(rc);
1569}
1570
1571/**
1572 * of_register_spi_devices() - Register child devices onto the SPI bus
1573 * @master:	Pointer to spi_master device
1574 *
1575 * Registers an spi_device for each child node of master node which has a 'reg'
1576 * property.
1577 */
1578static void of_register_spi_devices(struct spi_master *master)
1579{
1580	struct spi_device *spi;
1581	struct device_node *nc;
1582
1583	if (!master->dev.of_node)
1584		return;
1585
1586	for_each_available_child_of_node(master->dev.of_node, nc) {
1587		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1588			continue;
1589		spi = of_register_spi_device(master, nc);
1590		if (IS_ERR(spi))
1591			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1592				nc->full_name);
1593	}
1594}
1595#else
1596static void of_register_spi_devices(struct spi_master *master) { }
1597#endif
1598
1599#ifdef CONFIG_ACPI
1600static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1601{
1602	struct spi_device *spi = data;
1603	struct spi_master *master = spi->master;
1604
1605	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1606		struct acpi_resource_spi_serialbus *sb;
1607
1608		sb = &ares->data.spi_serial_bus;
1609		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1610			/*
1611			 * ACPI DeviceSelection numbering is handled by the
1612			 * host controller driver in Windows and can vary
1613			 * from driver to driver. In Linux we always expect
1614			 * 0 .. max - 1 so we need to ask the driver to
1615			 * translate between the two schemes.
1616			 */
1617			if (master->fw_translate_cs) {
1618				int cs = master->fw_translate_cs(master,
1619						sb->device_selection);
1620				if (cs < 0)
1621					return cs;
1622				spi->chip_select = cs;
1623			} else {
1624				spi->chip_select = sb->device_selection;
1625			}
1626
1627			spi->max_speed_hz = sb->connection_speed;
1628
1629			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1630				spi->mode |= SPI_CPHA;
1631			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1632				spi->mode |= SPI_CPOL;
1633			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1634				spi->mode |= SPI_CS_HIGH;
1635		}
1636	} else if (spi->irq < 0) {
1637		struct resource r;
1638
1639		if (acpi_dev_resource_interrupt(ares, 0, &r))
1640			spi->irq = r.start;
1641	}
1642
1643	/* Always tell the ACPI core to skip this resource */
1644	return 1;
1645}
1646
1647static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1648				       void *data, void **return_value)
1649{
1650	struct spi_master *master = data;
1651	struct list_head resource_list;
1652	struct acpi_device *adev;
1653	struct spi_device *spi;
1654	int ret;
1655
1656	if (acpi_bus_get_device(handle, &adev))
1657		return AE_OK;
1658	if (acpi_bus_get_status(adev) || !adev->status.present)
1659		return AE_OK;
1660
1661	spi = spi_alloc_device(master);
1662	if (!spi) {
1663		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1664			dev_name(&adev->dev));
1665		return AE_NO_MEMORY;
1666	}
1667
1668	ACPI_COMPANION_SET(&spi->dev, adev);
1669	spi->irq = -1;
1670
1671	INIT_LIST_HEAD(&resource_list);
1672	ret = acpi_dev_get_resources(adev, &resource_list,
1673				     acpi_spi_add_resource, spi);
1674	acpi_dev_free_resource_list(&resource_list);
1675
1676	if (ret < 0 || !spi->max_speed_hz) {
1677		spi_dev_put(spi);
1678		return AE_OK;
1679	}
1680
1681	if (spi->irq < 0)
1682		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1683
1684	adev->power.flags.ignore_parent = true;
1685	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1686	if (spi_add_device(spi)) {
1687		adev->power.flags.ignore_parent = false;
1688		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1689			dev_name(&adev->dev));
1690		spi_dev_put(spi);
1691	}
1692
1693	return AE_OK;
1694}
1695
1696static void acpi_register_spi_devices(struct spi_master *master)
1697{
1698	acpi_status status;
1699	acpi_handle handle;
1700
1701	handle = ACPI_HANDLE(master->dev.parent);
1702	if (!handle)
1703		return;
1704
1705	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1706				     acpi_spi_add_device, NULL,
1707				     master, NULL);
1708	if (ACPI_FAILURE(status))
1709		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1710}
1711#else
1712static inline void acpi_register_spi_devices(struct spi_master *master) {}
1713#endif /* CONFIG_ACPI */
1714
1715static void spi_master_release(struct device *dev)
1716{
1717	struct spi_master *master;
1718
1719	master = container_of(dev, struct spi_master, dev);
1720	kfree(master);
1721}
1722
1723static struct class spi_master_class = {
1724	.name		= "spi_master",
1725	.owner		= THIS_MODULE,
1726	.dev_release	= spi_master_release,
1727	.dev_groups	= spi_master_groups,
1728};
1729
1730
1731/**
1732 * spi_alloc_master - allocate SPI master controller
1733 * @dev: the controller, possibly using the platform_bus
1734 * @size: how much zeroed driver-private data to allocate; the pointer to this
1735 *	memory is in the driver_data field of the returned device,
1736 *	accessible with spi_master_get_devdata().
1737 * Context: can sleep
1738 *
1739 * This call is used only by SPI master controller drivers, which are the
1740 * only ones directly touching chip registers.  It's how they allocate
1741 * an spi_master structure, prior to calling spi_register_master().
1742 *
1743 * This must be called from context that can sleep.
1744 *
1745 * The caller is responsible for assigning the bus number and initializing
1746 * the master's methods before calling spi_register_master(); and (after errors
1747 * adding the device) calling spi_master_put() to prevent a memory leak.
1748 *
1749 * Return: the SPI master structure on success, else NULL.
1750 */
1751struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1752{
1753	struct spi_master	*master;
1754
1755	if (!dev)
1756		return NULL;
1757
1758	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1759	if (!master)
1760		return NULL;
1761
1762	device_initialize(&master->dev);
1763	master->bus_num = -1;
1764	master->num_chipselect = 1;
1765	master->dev.class = &spi_master_class;
1766	master->dev.parent = dev;
1767	spi_master_set_devdata(master, &master[1]);
1768
1769	return master;
1770}
1771EXPORT_SYMBOL_GPL(spi_alloc_master);
1772
1773#ifdef CONFIG_OF
1774static int of_spi_register_master(struct spi_master *master)
1775{
1776	int nb, i, *cs;
1777	struct device_node *np = master->dev.of_node;
1778
1779	if (!np)
1780		return 0;
1781
1782	nb = of_gpio_named_count(np, "cs-gpios");
1783	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1784
1785	/* Return error only for an incorrectly formed cs-gpios property */
1786	if (nb == 0 || nb == -ENOENT)
1787		return 0;
1788	else if (nb < 0)
1789		return nb;
1790
1791	cs = devm_kzalloc(&master->dev,
1792			  sizeof(int) * master->num_chipselect,
1793			  GFP_KERNEL);
1794	master->cs_gpios = cs;
1795
1796	if (!master->cs_gpios)
1797		return -ENOMEM;
1798
1799	for (i = 0; i < master->num_chipselect; i++)
1800		cs[i] = -ENOENT;
1801
1802	for (i = 0; i < nb; i++)
1803		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1804
1805	return 0;
1806}
1807#else
1808static int of_spi_register_master(struct spi_master *master)
1809{
1810	return 0;
1811}
1812#endif
1813
1814/**
1815 * spi_register_master - register SPI master controller
1816 * @master: initialized master, originally from spi_alloc_master()
1817 * Context: can sleep
1818 *
1819 * SPI master controllers connect to their drivers using some non-SPI bus,
1820 * such as the platform bus.  The final stage of probe() in that code
1821 * includes calling spi_register_master() to hook up to this SPI bus glue.
1822 *
1823 * SPI controllers use board specific (often SOC specific) bus numbers,
1824 * and board-specific addressing for SPI devices combines those numbers
1825 * with chip select numbers.  Since SPI does not directly support dynamic
1826 * device identification, boards need configuration tables telling which
1827 * chip is at which address.
1828 *
1829 * This must be called from context that can sleep.  It returns zero on
1830 * success, else a negative error code (dropping the master's refcount).
1831 * After a successful return, the caller is responsible for calling
1832 * spi_unregister_master().
1833 *
1834 * Return: zero on success, else a negative error code.
1835 */
1836int spi_register_master(struct spi_master *master)
1837{
1838	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1839	struct device		*dev = master->dev.parent;
1840	struct boardinfo	*bi;
1841	int			status = -ENODEV;
1842	int			dynamic = 0;
1843
1844	if (!dev)
1845		return -ENODEV;
1846
1847	status = of_spi_register_master(master);
1848	if (status)
1849		return status;
1850
1851	/* even if it's just one always-selected device, there must
1852	 * be at least one chipselect
1853	 */
1854	if (master->num_chipselect == 0)
1855		return -EINVAL;
1856
1857	if ((master->bus_num < 0) && master->dev.of_node)
1858		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1859
1860	/* convention:  dynamically assigned bus IDs count down from the max */
1861	if (master->bus_num < 0) {
1862		/* FIXME switch to an IDR based scheme, something like
1863		 * I2C now uses, so we can't run out of "dynamic" IDs
1864		 */
1865		master->bus_num = atomic_dec_return(&dyn_bus_id);
1866		dynamic = 1;
1867	}
1868
1869	INIT_LIST_HEAD(&master->queue);
1870	spin_lock_init(&master->queue_lock);
1871	spin_lock_init(&master->bus_lock_spinlock);
1872	mutex_init(&master->bus_lock_mutex);
1873	master->bus_lock_flag = 0;
1874	init_completion(&master->xfer_completion);
1875	if (!master->max_dma_len)
1876		master->max_dma_len = INT_MAX;
1877
1878	/* register the device, then userspace will see it.
1879	 * registration fails if the bus ID is in use.
1880	 */
1881	dev_set_name(&master->dev, "spi%u", master->bus_num);
1882	status = device_add(&master->dev);
1883	if (status < 0)
1884		goto done;
1885	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1886			dynamic ? " (dynamic)" : "");
1887
1888	/* If we're using a queued driver, start the queue */
1889	if (master->transfer)
1890		dev_info(dev, "master is unqueued, this is deprecated\n");
1891	else {
1892		status = spi_master_initialize_queue(master);
1893		if (status) {
1894			device_del(&master->dev);
1895			goto done;
1896		}
1897	}
1898	/* add statistics */
1899	spin_lock_init(&master->statistics.lock);
1900
1901	mutex_lock(&board_lock);
1902	list_add_tail(&master->list, &spi_master_list);
1903	list_for_each_entry(bi, &board_list, list)
1904		spi_match_master_to_boardinfo(master, &bi->board_info);
1905	mutex_unlock(&board_lock);
1906
1907	/* Register devices from the device tree and ACPI */
1908	of_register_spi_devices(master);
1909	acpi_register_spi_devices(master);
1910done:
1911	return status;
1912}
1913EXPORT_SYMBOL_GPL(spi_register_master);
1914
1915static void devm_spi_unregister(struct device *dev, void *res)
1916{
1917	spi_unregister_master(*(struct spi_master **)res);
1918}
1919
1920/**
1921 * dev_spi_register_master - register managed SPI master controller
1922 * @dev:    device managing SPI master
1923 * @master: initialized master, originally from spi_alloc_master()
1924 * Context: can sleep
1925 *
1926 * Register a SPI device as with spi_register_master() which will
1927 * automatically be unregister
1928 *
1929 * Return: zero on success, else a negative error code.
1930 */
1931int devm_spi_register_master(struct device *dev, struct spi_master *master)
1932{
1933	struct spi_master **ptr;
1934	int ret;
1935
1936	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1937	if (!ptr)
1938		return -ENOMEM;
1939
1940	ret = spi_register_master(master);
1941	if (!ret) {
1942		*ptr = master;
1943		devres_add(dev, ptr);
1944	} else {
1945		devres_free(ptr);
1946	}
1947
1948	return ret;
1949}
1950EXPORT_SYMBOL_GPL(devm_spi_register_master);
1951
1952static int __unregister(struct device *dev, void *null)
1953{
1954	spi_unregister_device(to_spi_device(dev));
1955	return 0;
1956}
1957
1958/**
1959 * spi_unregister_master - unregister SPI master controller
1960 * @master: the master being unregistered
1961 * Context: can sleep
1962 *
1963 * This call is used only by SPI master controller drivers, which are the
1964 * only ones directly touching chip registers.
1965 *
1966 * This must be called from context that can sleep.
1967 */
1968void spi_unregister_master(struct spi_master *master)
1969{
1970	int dummy;
1971
1972	if (master->queued) {
1973		if (spi_destroy_queue(master))
1974			dev_err(&master->dev, "queue remove failed\n");
1975	}
1976
1977	mutex_lock(&board_lock);
1978	list_del(&master->list);
1979	mutex_unlock(&board_lock);
1980
1981	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1982	device_unregister(&master->dev);
1983}
1984EXPORT_SYMBOL_GPL(spi_unregister_master);
1985
1986int spi_master_suspend(struct spi_master *master)
1987{
1988	int ret;
1989
1990	/* Basically no-ops for non-queued masters */
1991	if (!master->queued)
1992		return 0;
1993
1994	ret = spi_stop_queue(master);
1995	if (ret)
1996		dev_err(&master->dev, "queue stop failed\n");
1997
1998	return ret;
1999}
2000EXPORT_SYMBOL_GPL(spi_master_suspend);
2001
2002int spi_master_resume(struct spi_master *master)
2003{
2004	int ret;
2005
2006	if (!master->queued)
2007		return 0;
2008
2009	ret = spi_start_queue(master);
2010	if (ret)
2011		dev_err(&master->dev, "queue restart failed\n");
2012
2013	return ret;
2014}
2015EXPORT_SYMBOL_GPL(spi_master_resume);
2016
2017static int __spi_master_match(struct device *dev, const void *data)
2018{
2019	struct spi_master *m;
2020	const u16 *bus_num = data;
2021
2022	m = container_of(dev, struct spi_master, dev);
2023	return m->bus_num == *bus_num;
2024}
2025
2026/**
2027 * spi_busnum_to_master - look up master associated with bus_num
2028 * @bus_num: the master's bus number
2029 * Context: can sleep
2030 *
2031 * This call may be used with devices that are registered after
2032 * arch init time.  It returns a refcounted pointer to the relevant
2033 * spi_master (which the caller must release), or NULL if there is
2034 * no such master registered.
2035 *
2036 * Return: the SPI master structure on success, else NULL.
2037 */
2038struct spi_master *spi_busnum_to_master(u16 bus_num)
2039{
2040	struct device		*dev;
2041	struct spi_master	*master = NULL;
2042
2043	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2044				__spi_master_match);
2045	if (dev)
2046		master = container_of(dev, struct spi_master, dev);
2047	/* reference got in class_find_device */
2048	return master;
2049}
2050EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2051
2052/*-------------------------------------------------------------------------*/
2053
2054/* Core methods for SPI resource management */
2055
2056/**
2057 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2058 *                 during the processing of a spi_message while using
2059 *                 spi_transfer_one
2060 * @spi:     the spi device for which we allocate memory
2061 * @release: the release code to execute for this resource
2062 * @size:    size to alloc and return
2063 * @gfp:     GFP allocation flags
2064 *
2065 * Return: the pointer to the allocated data
2066 *
2067 * This may get enhanced in the future to allocate from a memory pool
2068 * of the @spi_device or @spi_master to avoid repeated allocations.
2069 */
2070void *spi_res_alloc(struct spi_device *spi,
2071		    spi_res_release_t release,
2072		    size_t size, gfp_t gfp)
2073{
2074	struct spi_res *sres;
2075
2076	sres = kzalloc(sizeof(*sres) + size, gfp);
2077	if (!sres)
2078		return NULL;
2079
2080	INIT_LIST_HEAD(&sres->entry);
2081	sres->release = release;
2082
2083	return sres->data;
2084}
2085EXPORT_SYMBOL_GPL(spi_res_alloc);
2086
2087/**
2088 * spi_res_free - free an spi resource
2089 * @res: pointer to the custom data of a resource
2090 *
2091 */
2092void spi_res_free(void *res)
2093{
2094	struct spi_res *sres = container_of(res, struct spi_res, data);
2095
2096	if (!res)
2097		return;
2098
2099	WARN_ON(!list_empty(&sres->entry));
2100	kfree(sres);
2101}
2102EXPORT_SYMBOL_GPL(spi_res_free);
2103
2104/**
2105 * spi_res_add - add a spi_res to the spi_message
2106 * @message: the spi message
2107 * @res:     the spi_resource
2108 */
2109void spi_res_add(struct spi_message *message, void *res)
2110{
2111	struct spi_res *sres = container_of(res, struct spi_res, data);
2112
2113	WARN_ON(!list_empty(&sres->entry));
2114	list_add_tail(&sres->entry, &message->resources);
2115}
2116EXPORT_SYMBOL_GPL(spi_res_add);
2117
2118/**
2119 * spi_res_release - release all spi resources for this message
2120 * @master:  the @spi_master
2121 * @message: the @spi_message
2122 */
2123void spi_res_release(struct spi_master *master,
2124		     struct spi_message *message)
2125{
2126	struct spi_res *res;
2127
2128	while (!list_empty(&message->resources)) {
2129		res = list_last_entry(&message->resources,
2130				      struct spi_res, entry);
2131
2132		if (res->release)
2133			res->release(master, message, res->data);
2134
2135		list_del(&res->entry);
2136
2137		kfree(res);
2138	}
2139}
2140EXPORT_SYMBOL_GPL(spi_res_release);
2141
2142/*-------------------------------------------------------------------------*/
2143
2144/* Core methods for spi_message alterations */
2145
2146static void __spi_replace_transfers_release(struct spi_master *master,
2147					    struct spi_message *msg,
2148					    void *res)
2149{
2150	struct spi_replaced_transfers *rxfer = res;
2151	size_t i;
2152
2153	/* call extra callback if requested */
2154	if (rxfer->release)
2155		rxfer->release(master, msg, res);
2156
2157	/* insert replaced transfers back into the message */
2158	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2159
2160	/* remove the formerly inserted entries */
2161	for (i = 0; i < rxfer->inserted; i++)
2162		list_del(&rxfer->inserted_transfers[i].transfer_list);
2163}
2164
2165/**
2166 * spi_replace_transfers - replace transfers with several transfers
2167 *                         and register change with spi_message.resources
2168 * @msg:           the spi_message we work upon
2169 * @xfer_first:    the first spi_transfer we want to replace
2170 * @remove:        number of transfers to remove
2171 * @insert:        the number of transfers we want to insert instead
2172 * @release:       extra release code necessary in some circumstances
2173 * @extradatasize: extra data to allocate (with alignment guarantees
2174 *                 of struct @spi_transfer)
2175 * @gfp:           gfp flags
2176 *
2177 * Returns: pointer to @spi_replaced_transfers,
2178 *          PTR_ERR(...) in case of errors.
2179 */
2180struct spi_replaced_transfers *spi_replace_transfers(
2181	struct spi_message *msg,
2182	struct spi_transfer *xfer_first,
2183	size_t remove,
2184	size_t insert,
2185	spi_replaced_release_t release,
2186	size_t extradatasize,
2187	gfp_t gfp)
2188{
2189	struct spi_replaced_transfers *rxfer;
2190	struct spi_transfer *xfer;
2191	size_t i;
2192
2193	/* allocate the structure using spi_res */
2194	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2195			      insert * sizeof(struct spi_transfer)
2196			      + sizeof(struct spi_replaced_transfers)
2197			      + extradatasize,
2198			      gfp);
2199	if (!rxfer)
2200		return ERR_PTR(-ENOMEM);
2201
2202	/* the release code to invoke before running the generic release */
2203	rxfer->release = release;
2204
2205	/* assign extradata */
2206	if (extradatasize)
2207		rxfer->extradata =
2208			&rxfer->inserted_transfers[insert];
2209
2210	/* init the replaced_transfers list */
2211	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2212
2213	/* assign the list_entry after which we should reinsert
2214	 * the @replaced_transfers - it may be spi_message.messages!
2215	 */
2216	rxfer->replaced_after = xfer_first->transfer_list.prev;
2217
2218	/* remove the requested number of transfers */
2219	for (i = 0; i < remove; i++) {
2220		/* if the entry after replaced_after it is msg->transfers
2221		 * then we have been requested to remove more transfers
2222		 * than are in the list
2223		 */
2224		if (rxfer->replaced_after->next == &msg->transfers) {
2225			dev_err(&msg->spi->dev,
2226				"requested to remove more spi_transfers than are available\n");
2227			/* insert replaced transfers back into the message */
2228			list_splice(&rxfer->replaced_transfers,
2229				    rxfer->replaced_after);
2230
2231			/* free the spi_replace_transfer structure */
2232			spi_res_free(rxfer);
2233
2234			/* and return with an error */
2235			return ERR_PTR(-EINVAL);
2236		}
2237
2238		/* remove the entry after replaced_after from list of
2239		 * transfers and add it to list of replaced_transfers
2240		 */
2241		list_move_tail(rxfer->replaced_after->next,
2242			       &rxfer->replaced_transfers);
2243	}
2244
2245	/* create copy of the given xfer with identical settings
2246	 * based on the first transfer to get removed
2247	 */
2248	for (i = 0; i < insert; i++) {
2249		/* we need to run in reverse order */
2250		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2251
2252		/* copy all spi_transfer data */
2253		memcpy(xfer, xfer_first, sizeof(*xfer));
2254
2255		/* add to list */
2256		list_add(&xfer->transfer_list, rxfer->replaced_after);
2257
2258		/* clear cs_change and delay_usecs for all but the last */
2259		if (i) {
2260			xfer->cs_change = false;
2261			xfer->delay_usecs = 0;
2262		}
2263	}
2264
2265	/* set up inserted */
2266	rxfer->inserted = insert;
2267
2268	/* and register it with spi_res/spi_message */
2269	spi_res_add(msg, rxfer);
2270
2271	return rxfer;
2272}
2273EXPORT_SYMBOL_GPL(spi_replace_transfers);
2274
2275static int __spi_split_transfer_maxsize(struct spi_master *master,
2276					struct spi_message *msg,
2277					struct spi_transfer **xferp,
2278					size_t maxsize,
2279					gfp_t gfp)
2280{
2281	struct spi_transfer *xfer = *xferp, *xfers;
2282	struct spi_replaced_transfers *srt;
2283	size_t offset;
2284	size_t count, i;
2285
2286	/* warn once about this fact that we are splitting a transfer */
2287	dev_warn_once(&msg->spi->dev,
2288		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2289		      xfer->len, maxsize);
2290
2291	/* calculate how many we have to replace */
2292	count = DIV_ROUND_UP(xfer->len, maxsize);
2293
2294	/* create replacement */
2295	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2296	if (IS_ERR(srt))
2297		return PTR_ERR(srt);
2298	xfers = srt->inserted_transfers;
2299
2300	/* now handle each of those newly inserted spi_transfers
2301	 * note that the replacements spi_transfers all are preset
2302	 * to the same values as *xferp, so tx_buf, rx_buf and len
2303	 * are all identical (as well as most others)
2304	 * so we just have to fix up len and the pointers.
2305	 *
2306	 * this also includes support for the depreciated
2307	 * spi_message.is_dma_mapped interface
2308	 */
2309
2310	/* the first transfer just needs the length modified, so we
2311	 * run it outside the loop
2312	 */
2313	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2314
2315	/* all the others need rx_buf/tx_buf also set */
2316	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2317		/* update rx_buf, tx_buf and dma */
2318		if (xfers[i].rx_buf)
2319			xfers[i].rx_buf += offset;
2320		if (xfers[i].rx_dma)
2321			xfers[i].rx_dma += offset;
2322		if (xfers[i].tx_buf)
2323			xfers[i].tx_buf += offset;
2324		if (xfers[i].tx_dma)
2325			xfers[i].tx_dma += offset;
2326
2327		/* update length */
2328		xfers[i].len = min(maxsize, xfers[i].len - offset);
2329	}
2330
2331	/* we set up xferp to the last entry we have inserted,
2332	 * so that we skip those already split transfers
2333	 */
2334	*xferp = &xfers[count - 1];
2335
2336	/* increment statistics counters */
2337	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2338				       transfers_split_maxsize);
2339	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2340				       transfers_split_maxsize);
2341
2342	return 0;
2343}
2344
2345/**
2346 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2347 *                              when an individual transfer exceeds a
2348 *                              certain size
2349 * @master:    the @spi_master for this transfer
2350 * @msg:   the @spi_message to transform
2351 * @maxsize:  the maximum when to apply this
2352 * @gfp: GFP allocation flags
2353 *
2354 * Return: status of transformation
2355 */
2356int spi_split_transfers_maxsize(struct spi_master *master,
2357				struct spi_message *msg,
2358				size_t maxsize,
2359				gfp_t gfp)
2360{
2361	struct spi_transfer *xfer;
2362	int ret;
2363
2364	/* iterate over the transfer_list,
2365	 * but note that xfer is advanced to the last transfer inserted
2366	 * to avoid checking sizes again unnecessarily (also xfer does
2367	 * potentiall belong to a different list by the time the
2368	 * replacement has happened
2369	 */
2370	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2371		if (xfer->len > maxsize) {
2372			ret = __spi_split_transfer_maxsize(
2373				master, msg, &xfer, maxsize, gfp);
2374			if (ret)
2375				return ret;
2376		}
2377	}
2378
2379	return 0;
2380}
2381EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2382
2383/*-------------------------------------------------------------------------*/
2384
2385/* Core methods for SPI master protocol drivers.  Some of the
2386 * other core methods are currently defined as inline functions.
2387 */
2388
2389static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2390{
2391	if (master->bits_per_word_mask) {
2392		/* Only 32 bits fit in the mask */
2393		if (bits_per_word > 32)
2394			return -EINVAL;
2395		if (!(master->bits_per_word_mask &
2396				SPI_BPW_MASK(bits_per_word)))
2397			return -EINVAL;
2398	}
2399
2400	return 0;
2401}
2402
2403/**
2404 * spi_setup - setup SPI mode and clock rate
2405 * @spi: the device whose settings are being modified
2406 * Context: can sleep, and no requests are queued to the device
2407 *
2408 * SPI protocol drivers may need to update the transfer mode if the
2409 * device doesn't work with its default.  They may likewise need
2410 * to update clock rates or word sizes from initial values.  This function
2411 * changes those settings, and must be called from a context that can sleep.
2412 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2413 * effect the next time the device is selected and data is transferred to
2414 * or from it.  When this function returns, the spi device is deselected.
2415 *
2416 * Note that this call will fail if the protocol driver specifies an option
2417 * that the underlying controller or its driver does not support.  For
2418 * example, not all hardware supports wire transfers using nine bit words,
2419 * LSB-first wire encoding, or active-high chipselects.
2420 *
2421 * Return: zero on success, else a negative error code.
2422 */
2423int spi_setup(struct spi_device *spi)
2424{
2425	unsigned	bad_bits, ugly_bits;
2426	int		status;
2427
2428	/* check mode to prevent that DUAL and QUAD set at the same time
2429	 */
2430	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2431		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2432		dev_err(&spi->dev,
2433		"setup: can not select dual and quad at the same time\n");
2434		return -EINVAL;
2435	}
2436	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2437	 */
2438	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2439		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2440		return -EINVAL;
2441	/* help drivers fail *cleanly* when they need options
2442	 * that aren't supported with their current master
2443	 */
2444	bad_bits = spi->mode & ~spi->master->mode_bits;
2445	ugly_bits = bad_bits &
2446		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2447	if (ugly_bits) {
2448		dev_warn(&spi->dev,
2449			 "setup: ignoring unsupported mode bits %x\n",
2450			 ugly_bits);
2451		spi->mode &= ~ugly_bits;
2452		bad_bits &= ~ugly_bits;
2453	}
2454	if (bad_bits) {
2455		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2456			bad_bits);
2457		return -EINVAL;
2458	}
2459
2460	if (!spi->bits_per_word)
2461		spi->bits_per_word = 8;
2462
2463	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2464	if (status)
2465		return status;
2466
2467	if (!spi->max_speed_hz)
2468		spi->max_speed_hz = spi->master->max_speed_hz;
2469
2470	if (spi->master->setup)
2471		status = spi->master->setup(spi);
2472
2473	spi_set_cs(spi, false);
2474
2475	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2476			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2477			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2478			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2479			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2480			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2481			spi->bits_per_word, spi->max_speed_hz,
2482			status);
2483
2484	return status;
2485}
2486EXPORT_SYMBOL_GPL(spi_setup);
2487
2488static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2489{
2490	struct spi_master *master = spi->master;
2491	struct spi_transfer *xfer;
2492	int w_size;
2493
2494	if (list_empty(&message->transfers))
2495		return -EINVAL;
2496
2497	/* Half-duplex links include original MicroWire, and ones with
2498	 * only one data pin like SPI_3WIRE (switches direction) or where
2499	 * either MOSI or MISO is missing.  They can also be caused by
2500	 * software limitations.
2501	 */
2502	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2503			|| (spi->mode & SPI_3WIRE)) {
2504		unsigned flags = master->flags;
2505
2506		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2507			if (xfer->rx_buf && xfer->tx_buf)
2508				return -EINVAL;
2509			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2510				return -EINVAL;
2511			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2512				return -EINVAL;
2513		}
2514	}
2515
2516	/**
2517	 * Set transfer bits_per_word and max speed as spi device default if
2518	 * it is not set for this transfer.
2519	 * Set transfer tx_nbits and rx_nbits as single transfer default
2520	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2521	 */
2522	message->frame_length = 0;
2523	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2524		message->frame_length += xfer->len;
2525		if (!xfer->bits_per_word)
2526			xfer->bits_per_word = spi->bits_per_word;
2527
2528		if (!xfer->speed_hz)
2529			xfer->speed_hz = spi->max_speed_hz;
2530		if (!xfer->speed_hz)
2531			xfer->speed_hz = master->max_speed_hz;
2532
2533		if (master->max_speed_hz &&
2534		    xfer->speed_hz > master->max_speed_hz)
2535			xfer->speed_hz = master->max_speed_hz;
2536
2537		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2538			return -EINVAL;
2539
2540		/*
2541		 * SPI transfer length should be multiple of SPI word size
2542		 * where SPI word size should be power-of-two multiple
2543		 */
2544		if (xfer->bits_per_word <= 8)
2545			w_size = 1;
2546		else if (xfer->bits_per_word <= 16)
2547			w_size = 2;
2548		else
2549			w_size = 4;
2550
2551		/* No partial transfers accepted */
2552		if (xfer->len % w_size)
2553			return -EINVAL;
2554
2555		if (xfer->speed_hz && master->min_speed_hz &&
2556		    xfer->speed_hz < master->min_speed_hz)
2557			return -EINVAL;
2558
2559		if (xfer->tx_buf && !xfer->tx_nbits)
2560			xfer->tx_nbits = SPI_NBITS_SINGLE;
2561		if (xfer->rx_buf && !xfer->rx_nbits)
2562			xfer->rx_nbits = SPI_NBITS_SINGLE;
2563		/* check transfer tx/rx_nbits:
2564		 * 1. check the value matches one of single, dual and quad
2565		 * 2. check tx/rx_nbits match the mode in spi_device
2566		 */
2567		if (xfer->tx_buf) {
2568			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2569				xfer->tx_nbits != SPI_NBITS_DUAL &&
2570				xfer->tx_nbits != SPI_NBITS_QUAD)
2571				return -EINVAL;
2572			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2573				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2574				return -EINVAL;
2575			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2576				!(spi->mode & SPI_TX_QUAD))
2577				return -EINVAL;
2578		}
2579		/* check transfer rx_nbits */
2580		if (xfer->rx_buf) {
2581			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2582				xfer->rx_nbits != SPI_NBITS_DUAL &&
2583				xfer->rx_nbits != SPI_NBITS_QUAD)
2584				return -EINVAL;
2585			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2586				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2587				return -EINVAL;
2588			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2589				!(spi->mode & SPI_RX_QUAD))
2590				return -EINVAL;
2591		}
2592	}
2593
2594	message->status = -EINPROGRESS;
2595
2596	return 0;
2597}
2598
2599static int __spi_async(struct spi_device *spi, struct spi_message *message)
2600{
2601	struct spi_master *master = spi->master;
2602
2603	message->spi = spi;
2604
2605	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2606	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2607
2608	trace_spi_message_submit(message);
2609
2610	return master->transfer(spi, message);
2611}
2612
2613/**
2614 * spi_async - asynchronous SPI transfer
2615 * @spi: device with which data will be exchanged
2616 * @message: describes the data transfers, including completion callback
2617 * Context: any (irqs may be blocked, etc)
2618 *
2619 * This call may be used in_irq and other contexts which can't sleep,
2620 * as well as from task contexts which can sleep.
2621 *
2622 * The completion callback is invoked in a context which can't sleep.
2623 * Before that invocation, the value of message->status is undefined.
2624 * When the callback is issued, message->status holds either zero (to
2625 * indicate complete success) or a negative error code.  After that
2626 * callback returns, the driver which issued the transfer request may
2627 * deallocate the associated memory; it's no longer in use by any SPI
2628 * core or controller driver code.
2629 *
2630 * Note that although all messages to a spi_device are handled in
2631 * FIFO order, messages may go to different devices in other orders.
2632 * Some device might be higher priority, or have various "hard" access
2633 * time requirements, for example.
2634 *
2635 * On detection of any fault during the transfer, processing of
2636 * the entire message is aborted, and the device is deselected.
2637 * Until returning from the associated message completion callback,
2638 * no other spi_message queued to that device will be processed.
2639 * (This rule applies equally to all the synchronous transfer calls,
2640 * which are wrappers around this core asynchronous primitive.)
2641 *
2642 * Return: zero on success, else a negative error code.
2643 */
2644int spi_async(struct spi_device *spi, struct spi_message *message)
2645{
2646	struct spi_master *master = spi->master;
2647	int ret;
2648	unsigned long flags;
2649
2650	ret = __spi_validate(spi, message);
2651	if (ret != 0)
2652		return ret;
2653
2654	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2655
2656	if (master->bus_lock_flag)
2657		ret = -EBUSY;
2658	else
2659		ret = __spi_async(spi, message);
2660
2661	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2662
2663	return ret;
2664}
2665EXPORT_SYMBOL_GPL(spi_async);
2666
2667/**
2668 * spi_async_locked - version of spi_async with exclusive bus usage
2669 * @spi: device with which data will be exchanged
2670 * @message: describes the data transfers, including completion callback
2671 * Context: any (irqs may be blocked, etc)
2672 *
2673 * This call may be used in_irq and other contexts which can't sleep,
2674 * as well as from task contexts which can sleep.
2675 *
2676 * The completion callback is invoked in a context which can't sleep.
2677 * Before that invocation, the value of message->status is undefined.
2678 * When the callback is issued, message->status holds either zero (to
2679 * indicate complete success) or a negative error code.  After that
2680 * callback returns, the driver which issued the transfer request may
2681 * deallocate the associated memory; it's no longer in use by any SPI
2682 * core or controller driver code.
2683 *
2684 * Note that although all messages to a spi_device are handled in
2685 * FIFO order, messages may go to different devices in other orders.
2686 * Some device might be higher priority, or have various "hard" access
2687 * time requirements, for example.
2688 *
2689 * On detection of any fault during the transfer, processing of
2690 * the entire message is aborted, and the device is deselected.
2691 * Until returning from the associated message completion callback,
2692 * no other spi_message queued to that device will be processed.
2693 * (This rule applies equally to all the synchronous transfer calls,
2694 * which are wrappers around this core asynchronous primitive.)
2695 *
2696 * Return: zero on success, else a negative error code.
2697 */
2698int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2699{
2700	struct spi_master *master = spi->master;
2701	int ret;
2702	unsigned long flags;
2703
2704	ret = __spi_validate(spi, message);
2705	if (ret != 0)
2706		return ret;
2707
2708	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2709
2710	ret = __spi_async(spi, message);
2711
2712	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2713
2714	return ret;
2715
2716}
2717EXPORT_SYMBOL_GPL(spi_async_locked);
2718
2719
2720int spi_flash_read(struct spi_device *spi,
2721		   struct spi_flash_read_message *msg)
2722
2723{
2724	struct spi_master *master = spi->master;
2725	int ret;
2726
2727	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2728	     msg->addr_nbits == SPI_NBITS_DUAL) &&
2729	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2730		return -EINVAL;
2731	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2732	     msg->addr_nbits == SPI_NBITS_QUAD) &&
2733	    !(spi->mode & SPI_TX_QUAD))
2734		return -EINVAL;
2735	if (msg->data_nbits == SPI_NBITS_DUAL &&
2736	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2737		return -EINVAL;
2738	if (msg->data_nbits == SPI_NBITS_QUAD &&
2739	    !(spi->mode &  SPI_RX_QUAD))
2740		return -EINVAL;
2741
2742	if (master->auto_runtime_pm) {
2743		ret = pm_runtime_get_sync(master->dev.parent);
2744		if (ret < 0) {
2745			dev_err(&master->dev, "Failed to power device: %d\n",
2746				ret);
2747			return ret;
2748		}
2749	}
2750	mutex_lock(&master->bus_lock_mutex);
2751	ret = master->spi_flash_read(spi, msg);
2752	mutex_unlock(&master->bus_lock_mutex);
2753	if (master->auto_runtime_pm)
2754		pm_runtime_put(master->dev.parent);
2755
2756	return ret;
2757}
2758EXPORT_SYMBOL_GPL(spi_flash_read);
2759
2760/*-------------------------------------------------------------------------*/
2761
2762/* Utility methods for SPI master protocol drivers, layered on
2763 * top of the core.  Some other utility methods are defined as
2764 * inline functions.
2765 */
2766
2767static void spi_complete(void *arg)
2768{
2769	complete(arg);
2770}
2771
2772static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2773		      int bus_locked)
2774{
2775	DECLARE_COMPLETION_ONSTACK(done);
2776	int status;
2777	struct spi_master *master = spi->master;
2778	unsigned long flags;
2779
2780	status = __spi_validate(spi, message);
2781	if (status != 0)
2782		return status;
2783
2784	message->complete = spi_complete;
2785	message->context = &done;
2786	message->spi = spi;
2787
2788	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2789	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2790
2791	if (!bus_locked)
2792		mutex_lock(&master->bus_lock_mutex);
2793
2794	/* If we're not using the legacy transfer method then we will
2795	 * try to transfer in the calling context so special case.
2796	 * This code would be less tricky if we could remove the
2797	 * support for driver implemented message queues.
2798	 */
2799	if (master->transfer == spi_queued_transfer) {
2800		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2801
2802		trace_spi_message_submit(message);
2803
2804		status = __spi_queued_transfer(spi, message, false);
2805
2806		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2807	} else {
2808		status = spi_async_locked(spi, message);
2809	}
2810
2811	if (!bus_locked)
2812		mutex_unlock(&master->bus_lock_mutex);
2813
2814	if (status == 0) {
2815		/* Push out the messages in the calling context if we
2816		 * can.
2817		 */
2818		if (master->transfer == spi_queued_transfer) {
2819			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2820						       spi_sync_immediate);
2821			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2822						       spi_sync_immediate);
2823			__spi_pump_messages(master, false, bus_locked);
2824		}
2825
2826		wait_for_completion(&done);
2827		status = message->status;
2828	}
2829	message->context = NULL;
2830	return status;
2831}
2832
2833/**
2834 * spi_sync - blocking/synchronous SPI data transfers
2835 * @spi: device with which data will be exchanged
2836 * @message: describes the data transfers
2837 * Context: can sleep
2838 *
2839 * This call may only be used from a context that may sleep.  The sleep
2840 * is non-interruptible, and has no timeout.  Low-overhead controller
2841 * drivers may DMA directly into and out of the message buffers.
2842 *
2843 * Note that the SPI device's chip select is active during the message,
2844 * and then is normally disabled between messages.  Drivers for some
2845 * frequently-used devices may want to minimize costs of selecting a chip,
2846 * by leaving it selected in anticipation that the next message will go
2847 * to the same chip.  (That may increase power usage.)
2848 *
2849 * Also, the caller is guaranteeing that the memory associated with the
2850 * message will not be freed before this call returns.
2851 *
2852 * Return: zero on success, else a negative error code.
2853 */
2854int spi_sync(struct spi_device *spi, struct spi_message *message)
2855{
2856	return __spi_sync(spi, message, spi->master->bus_lock_flag);
2857}
2858EXPORT_SYMBOL_GPL(spi_sync);
2859
2860/**
2861 * spi_sync_locked - version of spi_sync with exclusive bus usage
2862 * @spi: device with which data will be exchanged
2863 * @message: describes the data transfers
2864 * Context: can sleep
2865 *
2866 * This call may only be used from a context that may sleep.  The sleep
2867 * is non-interruptible, and has no timeout.  Low-overhead controller
2868 * drivers may DMA directly into and out of the message buffers.
2869 *
2870 * This call should be used by drivers that require exclusive access to the
2871 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2872 * be released by a spi_bus_unlock call when the exclusive access is over.
2873 *
2874 * Return: zero on success, else a negative error code.
2875 */
2876int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2877{
2878	return __spi_sync(spi, message, 1);
2879}
2880EXPORT_SYMBOL_GPL(spi_sync_locked);
2881
2882/**
2883 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2884 * @master: SPI bus master that should be locked for exclusive bus access
2885 * Context: can sleep
2886 *
2887 * This call may only be used from a context that may sleep.  The sleep
2888 * is non-interruptible, and has no timeout.
2889 *
2890 * This call should be used by drivers that require exclusive access to the
2891 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2892 * exclusive access is over. Data transfer must be done by spi_sync_locked
2893 * and spi_async_locked calls when the SPI bus lock is held.
2894 *
2895 * Return: always zero.
2896 */
2897int spi_bus_lock(struct spi_master *master)
2898{
2899	unsigned long flags;
2900
2901	mutex_lock(&master->bus_lock_mutex);
2902
2903	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2904	master->bus_lock_flag = 1;
2905	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2906
2907	/* mutex remains locked until spi_bus_unlock is called */
2908
2909	return 0;
2910}
2911EXPORT_SYMBOL_GPL(spi_bus_lock);
2912
2913/**
2914 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2915 * @master: SPI bus master that was locked for exclusive bus access
2916 * Context: can sleep
2917 *
2918 * This call may only be used from a context that may sleep.  The sleep
2919 * is non-interruptible, and has no timeout.
2920 *
2921 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2922 * call.
2923 *
2924 * Return: always zero.
2925 */
2926int spi_bus_unlock(struct spi_master *master)
2927{
2928	master->bus_lock_flag = 0;
2929
2930	mutex_unlock(&master->bus_lock_mutex);
2931
2932	return 0;
2933}
2934EXPORT_SYMBOL_GPL(spi_bus_unlock);
2935
2936/* portable code must never pass more than 32 bytes */
2937#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2938
2939static u8	*buf;
2940
2941/**
2942 * spi_write_then_read - SPI synchronous write followed by read
2943 * @spi: device with which data will be exchanged
2944 * @txbuf: data to be written (need not be dma-safe)
2945 * @n_tx: size of txbuf, in bytes
2946 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2947 * @n_rx: size of rxbuf, in bytes
2948 * Context: can sleep
2949 *
2950 * This performs a half duplex MicroWire style transaction with the
2951 * device, sending txbuf and then reading rxbuf.  The return value
2952 * is zero for success, else a negative errno status code.
2953 * This call may only be used from a context that may sleep.
2954 *
2955 * Parameters to this routine are always copied using a small buffer;
2956 * portable code should never use this for more than 32 bytes.
2957 * Performance-sensitive or bulk transfer code should instead use
2958 * spi_{async,sync}() calls with dma-safe buffers.
2959 *
2960 * Return: zero on success, else a negative error code.
2961 */
2962int spi_write_then_read(struct spi_device *spi,
2963		const void *txbuf, unsigned n_tx,
2964		void *rxbuf, unsigned n_rx)
2965{
2966	static DEFINE_MUTEX(lock);
2967
2968	int			status;
2969	struct spi_message	message;
2970	struct spi_transfer	x[2];
2971	u8			*local_buf;
2972
2973	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2974	 * copying here, (as a pure convenience thing), but we can
2975	 * keep heap costs out of the hot path unless someone else is
2976	 * using the pre-allocated buffer or the transfer is too large.
2977	 */
2978	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2979		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2980				    GFP_KERNEL | GFP_DMA);
2981		if (!local_buf)
2982			return -ENOMEM;
2983	} else {
2984		local_buf = buf;
2985	}
2986
2987	spi_message_init(&message);
2988	memset(x, 0, sizeof(x));
2989	if (n_tx) {
2990		x[0].len = n_tx;
2991		spi_message_add_tail(&x[0], &message);
2992	}
2993	if (n_rx) {
2994		x[1].len = n_rx;
2995		spi_message_add_tail(&x[1], &message);
2996	}
2997
2998	memcpy(local_buf, txbuf, n_tx);
2999	x[0].tx_buf = local_buf;
3000	x[1].rx_buf = local_buf + n_tx;
3001
3002	/* do the i/o */
3003	status = spi_sync(spi, &message);
3004	if (status == 0)
3005		memcpy(rxbuf, x[1].rx_buf, n_rx);
3006
3007	if (x[0].tx_buf == buf)
3008		mutex_unlock(&lock);
3009	else
3010		kfree(local_buf);
3011
3012	return status;
3013}
3014EXPORT_SYMBOL_GPL(spi_write_then_read);
3015
3016/*-------------------------------------------------------------------------*/
3017
3018#if IS_ENABLED(CONFIG_OF_DYNAMIC)
3019static int __spi_of_device_match(struct device *dev, void *data)
3020{
3021	return dev->of_node == data;
3022}
3023
3024/* must call put_device() when done with returned spi_device device */
3025static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3026{
3027	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3028						__spi_of_device_match);
3029	return dev ? to_spi_device(dev) : NULL;
3030}
3031
3032static int __spi_of_master_match(struct device *dev, const void *data)
3033{
3034	return dev->of_node == data;
3035}
3036
3037/* the spi masters are not using spi_bus, so we find it with another way */
3038static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3039{
3040	struct device *dev;
3041
3042	dev = class_find_device(&spi_master_class, NULL, node,
3043				__spi_of_master_match);
3044	if (!dev)
3045		return NULL;
3046
3047	/* reference got in class_find_device */
3048	return container_of(dev, struct spi_master, dev);
3049}
3050
3051static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3052			 void *arg)
3053{
3054	struct of_reconfig_data *rd = arg;
3055	struct spi_master *master;
3056	struct spi_device *spi;
3057
3058	switch (of_reconfig_get_state_change(action, arg)) {
3059	case OF_RECONFIG_CHANGE_ADD:
3060		master = of_find_spi_master_by_node(rd->dn->parent);
3061		if (master == NULL)
3062			return NOTIFY_OK;	/* not for us */
3063
3064		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3065			put_device(&master->dev);
3066			return NOTIFY_OK;
3067		}
3068
3069		spi = of_register_spi_device(master, rd->dn);
3070		put_device(&master->dev);
3071
3072		if (IS_ERR(spi)) {
3073			pr_err("%s: failed to create for '%s'\n",
3074					__func__, rd->dn->full_name);
3075			return notifier_from_errno(PTR_ERR(spi));
3076		}
3077		break;
3078
3079	case OF_RECONFIG_CHANGE_REMOVE:
3080		/* already depopulated? */
3081		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3082			return NOTIFY_OK;
3083
3084		/* find our device by node */
3085		spi = of_find_spi_device_by_node(rd->dn);
3086		if (spi == NULL)
3087			return NOTIFY_OK;	/* no? not meant for us */
3088
3089		/* unregister takes one ref away */
3090		spi_unregister_device(spi);
3091
3092		/* and put the reference of the find */
3093		put_device(&spi->dev);
3094		break;
3095	}
3096
3097	return NOTIFY_OK;
3098}
3099
3100static struct notifier_block spi_of_notifier = {
3101	.notifier_call = of_spi_notify,
3102};
3103#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3104extern struct notifier_block spi_of_notifier;
3105#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3106
3107static int __init spi_init(void)
3108{
3109	int	status;
3110
3111	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3112	if (!buf) {
3113		status = -ENOMEM;
3114		goto err0;
3115	}
3116
3117	status = bus_register(&spi_bus_type);
3118	if (status < 0)
3119		goto err1;
3120
3121	status = class_register(&spi_master_class);
3122	if (status < 0)
3123		goto err2;
3124
3125	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3126		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3127
3128	return 0;
3129
3130err2:
3131	bus_unregister(&spi_bus_type);
3132err1:
3133	kfree(buf);
3134	buf = NULL;
3135err0:
3136	return status;
3137}
3138
3139/* board_info is normally registered in arch_initcall(),
3140 * but even essential drivers wait till later
3141 *
3142 * REVISIT only boardinfo really needs static linking. the rest (device and
3143 * driver registration) _could_ be dynamically linked (modular) ... costs
3144 * include needing to have boardinfo data structures be much more public.
3145 */
3146postcore_initcall(spi_init);
3147
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2// SPI init/core code
   3//
   4// Copyright (C) 2005 David Brownell
   5// Copyright (C) 2008 Secret Lab Technologies Ltd.
   6
   7#include <linux/acpi.h>
   8#include <linux/cache.h>
   9#include <linux/clk/clk-conf.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/export.h>
  15#include <linux/gpio/consumer.h>
  16#include <linux/highmem.h>
  17#include <linux/idr.h>
  18#include <linux/init.h>
  19#include <linux/ioport.h>
  20#include <linux/kernel.h>
  21#include <linux/kthread.h>
  22#include <linux/mod_devicetable.h>
  23#include <linux/mutex.h>
  24#include <linux/of_device.h>
  25#include <linux/of_irq.h>
  26#include <linux/percpu.h>
  27#include <linux/platform_data/x86/apple.h>
  28#include <linux/pm_domain.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/property.h>
  31#include <linux/ptp_clock_kernel.h>
  32#include <linux/sched/rt.h>
  33#include <linux/slab.h>
  34#include <linux/spi/spi.h>
  35#include <linux/spi/spi-mem.h>
  36#include <uapi/linux/sched/types.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/spi.h>
  40EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
  41EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
  42
  43#include "internals.h"
  44
  45static DEFINE_IDR(spi_master_idr);
  46
  47static void spidev_release(struct device *dev)
  48{
  49	struct spi_device	*spi = to_spi_device(dev);
  50
  51	spi_controller_put(spi->controller);
  52	kfree(spi->driver_override);
  53	free_percpu(spi->pcpu_statistics);
  54	kfree(spi);
  55}
  56
  57static ssize_t
  58modalias_show(struct device *dev, struct device_attribute *a, char *buf)
  59{
  60	const struct spi_device	*spi = to_spi_device(dev);
  61	int len;
  62
  63	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
  64	if (len != -ENODEV)
  65		return len;
  66
  67	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
  68}
  69static DEVICE_ATTR_RO(modalias);
  70
  71static ssize_t driver_override_store(struct device *dev,
  72				     struct device_attribute *a,
  73				     const char *buf, size_t count)
  74{
  75	struct spi_device *spi = to_spi_device(dev);
  76	int ret;
  77
  78	ret = driver_set_override(dev, &spi->driver_override, buf, count);
  79	if (ret)
  80		return ret;
  81
  82	return count;
  83}
  84
  85static ssize_t driver_override_show(struct device *dev,
  86				    struct device_attribute *a, char *buf)
  87{
  88	const struct spi_device *spi = to_spi_device(dev);
  89	ssize_t len;
  90
  91	device_lock(dev);
  92	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
  93	device_unlock(dev);
  94	return len;
  95}
  96static DEVICE_ATTR_RW(driver_override);
  97
  98static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
  99{
 100	struct spi_statistics __percpu *pcpu_stats;
 101
 102	if (dev)
 103		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
 104	else
 105		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
 106
 107	if (pcpu_stats) {
 108		int cpu;
 109
 110		for_each_possible_cpu(cpu) {
 111			struct spi_statistics *stat;
 112
 113			stat = per_cpu_ptr(pcpu_stats, cpu);
 114			u64_stats_init(&stat->syncp);
 115		}
 116	}
 117	return pcpu_stats;
 118}
 119
 120static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
 121				   char *buf, size_t offset)
 122{
 123	u64 val = 0;
 124	int i;
 125
 126	for_each_possible_cpu(i) {
 127		const struct spi_statistics *pcpu_stats;
 128		u64_stats_t *field;
 129		unsigned int start;
 130		u64 inc;
 131
 132		pcpu_stats = per_cpu_ptr(stat, i);
 133		field = (void *)pcpu_stats + offset;
 134		do {
 135			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
 136			inc = u64_stats_read(field);
 137		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
 138		val += inc;
 139	}
 140	return sysfs_emit(buf, "%llu\n", val);
 141}
 142
 143#define SPI_STATISTICS_ATTRS(field, file)				\
 144static ssize_t spi_controller_##field##_show(struct device *dev,	\
 145					     struct device_attribute *attr, \
 146					     char *buf)			\
 147{									\
 148	struct spi_controller *ctlr = container_of(dev,			\
 149					 struct spi_controller, dev);	\
 150	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
 151}									\
 152static struct device_attribute dev_attr_spi_controller_##field = {	\
 153	.attr = { .name = file, .mode = 0444 },				\
 154	.show = spi_controller_##field##_show,				\
 155};									\
 156static ssize_t spi_device_##field##_show(struct device *dev,		\
 157					 struct device_attribute *attr,	\
 158					char *buf)			\
 159{									\
 160	struct spi_device *spi = to_spi_device(dev);			\
 161	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
 162}									\
 163static struct device_attribute dev_attr_spi_device_##field = {		\
 164	.attr = { .name = file, .mode = 0444 },				\
 165	.show = spi_device_##field##_show,				\
 166}
 167
 168#define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
 169static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
 170					    char *buf)			\
 171{									\
 172	return spi_emit_pcpu_stats(stat, buf,				\
 173			offsetof(struct spi_statistics, field));	\
 174}									\
 175SPI_STATISTICS_ATTRS(name, file)
 176
 177#define SPI_STATISTICS_SHOW(field)					\
 178	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
 179				 field)
 180
 181SPI_STATISTICS_SHOW(messages);
 182SPI_STATISTICS_SHOW(transfers);
 183SPI_STATISTICS_SHOW(errors);
 184SPI_STATISTICS_SHOW(timedout);
 185
 186SPI_STATISTICS_SHOW(spi_sync);
 187SPI_STATISTICS_SHOW(spi_sync_immediate);
 188SPI_STATISTICS_SHOW(spi_async);
 189
 190SPI_STATISTICS_SHOW(bytes);
 191SPI_STATISTICS_SHOW(bytes_rx);
 192SPI_STATISTICS_SHOW(bytes_tx);
 193
 194#define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
 195	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
 196				 "transfer_bytes_histo_" number,	\
 197				 transfer_bytes_histo[index])
 198SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
 199SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
 200SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
 201SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
 202SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
 203SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
 204SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
 205SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
 206SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
 207SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
 208SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
 209SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
 210SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
 211SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
 212SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
 213SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
 214SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
 215
 216SPI_STATISTICS_SHOW(transfers_split_maxsize);
 217
 218static struct attribute *spi_dev_attrs[] = {
 219	&dev_attr_modalias.attr,
 220	&dev_attr_driver_override.attr,
 221	NULL,
 222};
 223
 224static const struct attribute_group spi_dev_group = {
 225	.attrs  = spi_dev_attrs,
 226};
 227
 228static struct attribute *spi_device_statistics_attrs[] = {
 229	&dev_attr_spi_device_messages.attr,
 230	&dev_attr_spi_device_transfers.attr,
 231	&dev_attr_spi_device_errors.attr,
 232	&dev_attr_spi_device_timedout.attr,
 233	&dev_attr_spi_device_spi_sync.attr,
 234	&dev_attr_spi_device_spi_sync_immediate.attr,
 235	&dev_attr_spi_device_spi_async.attr,
 236	&dev_attr_spi_device_bytes.attr,
 237	&dev_attr_spi_device_bytes_rx.attr,
 238	&dev_attr_spi_device_bytes_tx.attr,
 239	&dev_attr_spi_device_transfer_bytes_histo0.attr,
 240	&dev_attr_spi_device_transfer_bytes_histo1.attr,
 241	&dev_attr_spi_device_transfer_bytes_histo2.attr,
 242	&dev_attr_spi_device_transfer_bytes_histo3.attr,
 243	&dev_attr_spi_device_transfer_bytes_histo4.attr,
 244	&dev_attr_spi_device_transfer_bytes_histo5.attr,
 245	&dev_attr_spi_device_transfer_bytes_histo6.attr,
 246	&dev_attr_spi_device_transfer_bytes_histo7.attr,
 247	&dev_attr_spi_device_transfer_bytes_histo8.attr,
 248	&dev_attr_spi_device_transfer_bytes_histo9.attr,
 249	&dev_attr_spi_device_transfer_bytes_histo10.attr,
 250	&dev_attr_spi_device_transfer_bytes_histo11.attr,
 251	&dev_attr_spi_device_transfer_bytes_histo12.attr,
 252	&dev_attr_spi_device_transfer_bytes_histo13.attr,
 253	&dev_attr_spi_device_transfer_bytes_histo14.attr,
 254	&dev_attr_spi_device_transfer_bytes_histo15.attr,
 255	&dev_attr_spi_device_transfer_bytes_histo16.attr,
 256	&dev_attr_spi_device_transfers_split_maxsize.attr,
 257	NULL,
 258};
 259
 260static const struct attribute_group spi_device_statistics_group = {
 261	.name  = "statistics",
 262	.attrs  = spi_device_statistics_attrs,
 263};
 264
 265static const struct attribute_group *spi_dev_groups[] = {
 266	&spi_dev_group,
 267	&spi_device_statistics_group,
 268	NULL,
 269};
 270
 271static struct attribute *spi_controller_statistics_attrs[] = {
 272	&dev_attr_spi_controller_messages.attr,
 273	&dev_attr_spi_controller_transfers.attr,
 274	&dev_attr_spi_controller_errors.attr,
 275	&dev_attr_spi_controller_timedout.attr,
 276	&dev_attr_spi_controller_spi_sync.attr,
 277	&dev_attr_spi_controller_spi_sync_immediate.attr,
 278	&dev_attr_spi_controller_spi_async.attr,
 279	&dev_attr_spi_controller_bytes.attr,
 280	&dev_attr_spi_controller_bytes_rx.attr,
 281	&dev_attr_spi_controller_bytes_tx.attr,
 282	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
 283	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
 284	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
 285	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
 286	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
 287	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
 288	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
 289	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
 290	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
 291	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
 292	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
 293	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
 294	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
 295	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
 296	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
 297	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
 298	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
 299	&dev_attr_spi_controller_transfers_split_maxsize.attr,
 300	NULL,
 301};
 302
 303static const struct attribute_group spi_controller_statistics_group = {
 304	.name  = "statistics",
 305	.attrs  = spi_controller_statistics_attrs,
 306};
 307
 308static const struct attribute_group *spi_master_groups[] = {
 309	&spi_controller_statistics_group,
 310	NULL,
 311};
 312
 313static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
 314					      struct spi_transfer *xfer,
 315					      struct spi_controller *ctlr)
 316{
 317	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
 318	struct spi_statistics *stats;
 319
 320	if (l2len < 0)
 321		l2len = 0;
 322
 323	get_cpu();
 324	stats = this_cpu_ptr(pcpu_stats);
 325	u64_stats_update_begin(&stats->syncp);
 326
 327	u64_stats_inc(&stats->transfers);
 328	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
 329
 330	u64_stats_add(&stats->bytes, xfer->len);
 331	if ((xfer->tx_buf) &&
 332	    (xfer->tx_buf != ctlr->dummy_tx))
 333		u64_stats_add(&stats->bytes_tx, xfer->len);
 334	if ((xfer->rx_buf) &&
 335	    (xfer->rx_buf != ctlr->dummy_rx))
 336		u64_stats_add(&stats->bytes_rx, xfer->len);
 337
 338	u64_stats_update_end(&stats->syncp);
 339	put_cpu();
 340}
 341
 342/*
 343 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
 344 * and the sysfs version makes coldplug work too.
 345 */
 346static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
 347{
 348	while (id->name[0]) {
 349		if (!strcmp(name, id->name))
 350			return id;
 351		id++;
 352	}
 353	return NULL;
 354}
 355
 356const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
 357{
 358	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
 359
 360	return spi_match_id(sdrv->id_table, sdev->modalias);
 361}
 362EXPORT_SYMBOL_GPL(spi_get_device_id);
 363
 364const void *spi_get_device_match_data(const struct spi_device *sdev)
 365{
 366	const void *match;
 367
 368	match = device_get_match_data(&sdev->dev);
 369	if (match)
 370		return match;
 371
 372	return (const void *)spi_get_device_id(sdev)->driver_data;
 373}
 374EXPORT_SYMBOL_GPL(spi_get_device_match_data);
 375
 376static int spi_match_device(struct device *dev, struct device_driver *drv)
 377{
 378	const struct spi_device	*spi = to_spi_device(dev);
 379	const struct spi_driver	*sdrv = to_spi_driver(drv);
 380
 381	/* Check override first, and if set, only use the named driver */
 382	if (spi->driver_override)
 383		return strcmp(spi->driver_override, drv->name) == 0;
 384
 385	/* Attempt an OF style match */
 386	if (of_driver_match_device(dev, drv))
 387		return 1;
 388
 389	/* Then try ACPI */
 390	if (acpi_driver_match_device(dev, drv))
 391		return 1;
 392
 393	if (sdrv->id_table)
 394		return !!spi_match_id(sdrv->id_table, spi->modalias);
 395
 396	return strcmp(spi->modalias, drv->name) == 0;
 397}
 398
 399static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
 400{
 401	const struct spi_device		*spi = to_spi_device(dev);
 402	int rc;
 403
 404	rc = acpi_device_uevent_modalias(dev, env);
 405	if (rc != -ENODEV)
 406		return rc;
 407
 408	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
 409}
 410
 411static int spi_probe(struct device *dev)
 412{
 413	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 414	struct spi_device		*spi = to_spi_device(dev);
 415	int ret;
 416
 417	ret = of_clk_set_defaults(dev->of_node, false);
 418	if (ret)
 419		return ret;
 420
 421	if (dev->of_node) {
 422		spi->irq = of_irq_get(dev->of_node, 0);
 423		if (spi->irq == -EPROBE_DEFER)
 424			return -EPROBE_DEFER;
 425		if (spi->irq < 0)
 426			spi->irq = 0;
 427	}
 428
 429	ret = dev_pm_domain_attach(dev, true);
 430	if (ret)
 431		return ret;
 432
 433	if (sdrv->probe) {
 434		ret = sdrv->probe(spi);
 435		if (ret)
 436			dev_pm_domain_detach(dev, true);
 437	}
 438
 439	return ret;
 440}
 441
 442static void spi_remove(struct device *dev)
 443{
 444	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
 445
 446	if (sdrv->remove)
 447		sdrv->remove(to_spi_device(dev));
 448
 449	dev_pm_domain_detach(dev, true);
 450}
 451
 452static void spi_shutdown(struct device *dev)
 453{
 454	if (dev->driver) {
 455		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
 456
 457		if (sdrv->shutdown)
 458			sdrv->shutdown(to_spi_device(dev));
 459	}
 460}
 461
 462const struct bus_type spi_bus_type = {
 463	.name		= "spi",
 464	.dev_groups	= spi_dev_groups,
 465	.match		= spi_match_device,
 466	.uevent		= spi_uevent,
 467	.probe		= spi_probe,
 468	.remove		= spi_remove,
 469	.shutdown	= spi_shutdown,
 470};
 471EXPORT_SYMBOL_GPL(spi_bus_type);
 472
 473/**
 474 * __spi_register_driver - register a SPI driver
 475 * @owner: owner module of the driver to register
 476 * @sdrv: the driver to register
 477 * Context: can sleep
 478 *
 479 * Return: zero on success, else a negative error code.
 480 */
 481int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
 482{
 483	sdrv->driver.owner = owner;
 484	sdrv->driver.bus = &spi_bus_type;
 485
 486	/*
 487	 * For Really Good Reasons we use spi: modaliases not of:
 488	 * modaliases for DT so module autoloading won't work if we
 489	 * don't have a spi_device_id as well as a compatible string.
 490	 */
 491	if (sdrv->driver.of_match_table) {
 492		const struct of_device_id *of_id;
 493
 494		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
 495		     of_id++) {
 496			const char *of_name;
 497
 498			/* Strip off any vendor prefix */
 499			of_name = strnchr(of_id->compatible,
 500					  sizeof(of_id->compatible), ',');
 501			if (of_name)
 502				of_name++;
 503			else
 504				of_name = of_id->compatible;
 505
 506			if (sdrv->id_table) {
 507				const struct spi_device_id *spi_id;
 508
 509				spi_id = spi_match_id(sdrv->id_table, of_name);
 510				if (spi_id)
 511					continue;
 512			} else {
 513				if (strcmp(sdrv->driver.name, of_name) == 0)
 514					continue;
 515			}
 516
 517			pr_warn("SPI driver %s has no spi_device_id for %s\n",
 518				sdrv->driver.name, of_id->compatible);
 519		}
 520	}
 521
 522	return driver_register(&sdrv->driver);
 523}
 524EXPORT_SYMBOL_GPL(__spi_register_driver);
 525
 526/*-------------------------------------------------------------------------*/
 527
 528/*
 529 * SPI devices should normally not be created by SPI device drivers; that
 530 * would make them board-specific.  Similarly with SPI controller drivers.
 531 * Device registration normally goes into like arch/.../mach.../board-YYY.c
 532 * with other readonly (flashable) information about mainboard devices.
 533 */
 534
 535struct boardinfo {
 536	struct list_head	list;
 537	struct spi_board_info	board_info;
 538};
 539
 540static LIST_HEAD(board_list);
 541static LIST_HEAD(spi_controller_list);
 542
 543/*
 544 * Used to protect add/del operation for board_info list and
 545 * spi_controller list, and their matching process also used
 546 * to protect object of type struct idr.
 547 */
 548static DEFINE_MUTEX(board_lock);
 549
 550/**
 551 * spi_alloc_device - Allocate a new SPI device
 552 * @ctlr: Controller to which device is connected
 553 * Context: can sleep
 554 *
 555 * Allows a driver to allocate and initialize a spi_device without
 556 * registering it immediately.  This allows a driver to directly
 557 * fill the spi_device with device parameters before calling
 558 * spi_add_device() on it.
 559 *
 560 * Caller is responsible to call spi_add_device() on the returned
 561 * spi_device structure to add it to the SPI controller.  If the caller
 562 * needs to discard the spi_device without adding it, then it should
 563 * call spi_dev_put() on it.
 564 *
 565 * Return: a pointer to the new device, or NULL.
 566 */
 567struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
 568{
 569	struct spi_device	*spi;
 570
 571	if (!spi_controller_get(ctlr))
 572		return NULL;
 573
 574	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
 575	if (!spi) {
 576		spi_controller_put(ctlr);
 577		return NULL;
 578	}
 579
 580	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
 581	if (!spi->pcpu_statistics) {
 582		kfree(spi);
 583		spi_controller_put(ctlr);
 584		return NULL;
 585	}
 586
 587	spi->controller = ctlr;
 588	spi->dev.parent = &ctlr->dev;
 589	spi->dev.bus = &spi_bus_type;
 590	spi->dev.release = spidev_release;
 591	spi->mode = ctlr->buswidth_override_bits;
 592
 593	device_initialize(&spi->dev);
 594	return spi;
 595}
 596EXPORT_SYMBOL_GPL(spi_alloc_device);
 597
 598static void spi_dev_set_name(struct spi_device *spi)
 599{
 600	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
 601
 602	if (adev) {
 603		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
 604		return;
 605	}
 606
 607	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
 608		     spi_get_chipselect(spi, 0));
 609}
 610
 611/*
 612 * Zero(0) is a valid physical CS value and can be located at any
 613 * logical CS in the spi->chip_select[]. If all the physical CS
 614 * are initialized to 0 then It would be difficult to differentiate
 615 * between a valid physical CS 0 & an unused logical CS whose physical
 616 * CS can be 0. As a solution to this issue initialize all the CS to -1.
 617 * Now all the unused logical CS will have -1 physical CS value & can be
 618 * ignored while performing physical CS validity checks.
 619 */
 620#define SPI_INVALID_CS		((s8)-1)
 621
 622static inline bool is_valid_cs(s8 chip_select)
 623{
 624	return chip_select != SPI_INVALID_CS;
 625}
 626
 627static inline int spi_dev_check_cs(struct device *dev,
 628				   struct spi_device *spi, u8 idx,
 629				   struct spi_device *new_spi, u8 new_idx)
 630{
 631	u8 cs, cs_new;
 632	u8 idx_new;
 633
 634	cs = spi_get_chipselect(spi, idx);
 635	for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
 636		cs_new = spi_get_chipselect(new_spi, idx_new);
 637		if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
 638			dev_err(dev, "chipselect %u already in use\n", cs_new);
 639			return -EBUSY;
 640		}
 641	}
 642	return 0;
 643}
 644
 645static int spi_dev_check(struct device *dev, void *data)
 646{
 647	struct spi_device *spi = to_spi_device(dev);
 648	struct spi_device *new_spi = data;
 649	int status, idx;
 650
 651	if (spi->controller == new_spi->controller) {
 652		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 653			status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
 654			if (status)
 655				return status;
 656		}
 657	}
 658	return 0;
 659}
 660
 661static void spi_cleanup(struct spi_device *spi)
 662{
 663	if (spi->controller->cleanup)
 664		spi->controller->cleanup(spi);
 665}
 666
 667static int __spi_add_device(struct spi_device *spi)
 668{
 669	struct spi_controller *ctlr = spi->controller;
 670	struct device *dev = ctlr->dev.parent;
 671	int status, idx;
 672	u8 cs;
 673
 674	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 675		/* Chipselects are numbered 0..max; validate. */
 676		cs = spi_get_chipselect(spi, idx);
 677		if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
 678			dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
 679				ctlr->num_chipselect);
 680			return -EINVAL;
 681		}
 682	}
 683
 684	/*
 685	 * Make sure that multiple logical CS doesn't map to the same physical CS.
 686	 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
 687	 */
 688	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 689		status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
 690		if (status)
 691			return status;
 692	}
 693
 694	/* Set the bus ID string */
 695	spi_dev_set_name(spi);
 696
 697	/*
 698	 * We need to make sure there's no other device with this
 699	 * chipselect **BEFORE** we call setup(), else we'll trash
 700	 * its configuration.
 701	 */
 702	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
 703	if (status)
 704		return status;
 705
 706	/* Controller may unregister concurrently */
 707	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
 708	    !device_is_registered(&ctlr->dev)) {
 709		return -ENODEV;
 710	}
 711
 712	if (ctlr->cs_gpiods) {
 713		u8 cs;
 714
 715		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
 716			cs = spi_get_chipselect(spi, idx);
 717			if (is_valid_cs(cs))
 718				spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
 719		}
 720	}
 721
 722	/*
 723	 * Drivers may modify this initial i/o setup, but will
 724	 * normally rely on the device being setup.  Devices
 725	 * using SPI_CS_HIGH can't coexist well otherwise...
 726	 */
 727	status = spi_setup(spi);
 728	if (status < 0) {
 729		dev_err(dev, "can't setup %s, status %d\n",
 730				dev_name(&spi->dev), status);
 731		return status;
 732	}
 733
 734	/* Device may be bound to an active driver when this returns */
 735	status = device_add(&spi->dev);
 736	if (status < 0) {
 737		dev_err(dev, "can't add %s, status %d\n",
 738				dev_name(&spi->dev), status);
 739		spi_cleanup(spi);
 740	} else {
 741		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
 742	}
 743
 744	return status;
 745}
 746
 747/**
 748 * spi_add_device - Add spi_device allocated with spi_alloc_device
 749 * @spi: spi_device to register
 750 *
 751 * Companion function to spi_alloc_device.  Devices allocated with
 752 * spi_alloc_device can be added onto the SPI bus with this function.
 753 *
 754 * Return: 0 on success; negative errno on failure
 755 */
 756int spi_add_device(struct spi_device *spi)
 757{
 758	struct spi_controller *ctlr = spi->controller;
 759	int status;
 760
 761	/* Set the bus ID string */
 762	spi_dev_set_name(spi);
 763
 764	mutex_lock(&ctlr->add_lock);
 765	status = __spi_add_device(spi);
 766	mutex_unlock(&ctlr->add_lock);
 767	return status;
 768}
 769EXPORT_SYMBOL_GPL(spi_add_device);
 770
 771static void spi_set_all_cs_unused(struct spi_device *spi)
 772{
 773	u8 idx;
 774
 775	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
 776		spi_set_chipselect(spi, idx, SPI_INVALID_CS);
 777}
 778
 779/**
 780 * spi_new_device - instantiate one new SPI device
 781 * @ctlr: Controller to which device is connected
 782 * @chip: Describes the SPI device
 783 * Context: can sleep
 784 *
 785 * On typical mainboards, this is purely internal; and it's not needed
 786 * after board init creates the hard-wired devices.  Some development
 787 * platforms may not be able to use spi_register_board_info though, and
 788 * this is exported so that for example a USB or parport based adapter
 789 * driver could add devices (which it would learn about out-of-band).
 790 *
 791 * Return: the new device, or NULL.
 792 */
 793struct spi_device *spi_new_device(struct spi_controller *ctlr,
 794				  struct spi_board_info *chip)
 795{
 796	struct spi_device	*proxy;
 797	int			status;
 798
 799	/*
 800	 * NOTE:  caller did any chip->bus_num checks necessary.
 801	 *
 802	 * Also, unless we change the return value convention to use
 803	 * error-or-pointer (not NULL-or-pointer), troubleshootability
 804	 * suggests syslogged diagnostics are best here (ugh).
 805	 */
 806
 807	proxy = spi_alloc_device(ctlr);
 808	if (!proxy)
 809		return NULL;
 810
 811	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
 812
 813	/* Use provided chip-select for proxy device */
 814	spi_set_all_cs_unused(proxy);
 815	spi_set_chipselect(proxy, 0, chip->chip_select);
 816
 817	proxy->max_speed_hz = chip->max_speed_hz;
 818	proxy->mode = chip->mode;
 819	proxy->irq = chip->irq;
 820	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
 821	proxy->dev.platform_data = (void *) chip->platform_data;
 822	proxy->controller_data = chip->controller_data;
 823	proxy->controller_state = NULL;
 824	/*
 825	 * spi->chip_select[i] gives the corresponding physical CS for logical CS i
 826	 * logical CS number is represented by setting the ith bit in spi->cs_index_mask
 827	 * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
 828	 * spi->chip_select[0] will give the physical CS.
 829	 * By default spi->chip_select[0] will hold the physical CS number so, set
 830	 * spi->cs_index_mask as 0x01.
 831	 */
 832	proxy->cs_index_mask = 0x01;
 833
 834	if (chip->swnode) {
 835		status = device_add_software_node(&proxy->dev, chip->swnode);
 836		if (status) {
 837			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
 838				chip->modalias, status);
 839			goto err_dev_put;
 840		}
 841	}
 842
 843	status = spi_add_device(proxy);
 844	if (status < 0)
 845		goto err_dev_put;
 846
 847	return proxy;
 848
 849err_dev_put:
 850	device_remove_software_node(&proxy->dev);
 851	spi_dev_put(proxy);
 852	return NULL;
 853}
 854EXPORT_SYMBOL_GPL(spi_new_device);
 855
 856/**
 857 * spi_unregister_device - unregister a single SPI device
 858 * @spi: spi_device to unregister
 859 *
 860 * Start making the passed SPI device vanish. Normally this would be handled
 861 * by spi_unregister_controller().
 862 */
 863void spi_unregister_device(struct spi_device *spi)
 864{
 865	if (!spi)
 866		return;
 867
 868	if (spi->dev.of_node) {
 869		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
 870		of_node_put(spi->dev.of_node);
 871	}
 872	if (ACPI_COMPANION(&spi->dev))
 873		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
 874	device_remove_software_node(&spi->dev);
 875	device_del(&spi->dev);
 876	spi_cleanup(spi);
 877	put_device(&spi->dev);
 878}
 879EXPORT_SYMBOL_GPL(spi_unregister_device);
 880
 881static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
 882					      struct spi_board_info *bi)
 883{
 884	struct spi_device *dev;
 885
 886	if (ctlr->bus_num != bi->bus_num)
 887		return;
 888
 889	dev = spi_new_device(ctlr, bi);
 890	if (!dev)
 891		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
 892			bi->modalias);
 893}
 894
 895/**
 896 * spi_register_board_info - register SPI devices for a given board
 897 * @info: array of chip descriptors
 898 * @n: how many descriptors are provided
 899 * Context: can sleep
 900 *
 901 * Board-specific early init code calls this (probably during arch_initcall)
 902 * with segments of the SPI device table.  Any device nodes are created later,
 903 * after the relevant parent SPI controller (bus_num) is defined.  We keep
 904 * this table of devices forever, so that reloading a controller driver will
 905 * not make Linux forget about these hard-wired devices.
 906 *
 907 * Other code can also call this, e.g. a particular add-on board might provide
 908 * SPI devices through its expansion connector, so code initializing that board
 909 * would naturally declare its SPI devices.
 910 *
 911 * The board info passed can safely be __initdata ... but be careful of
 912 * any embedded pointers (platform_data, etc), they're copied as-is.
 913 *
 914 * Return: zero on success, else a negative error code.
 915 */
 916int spi_register_board_info(struct spi_board_info const *info, unsigned n)
 917{
 918	struct boardinfo *bi;
 919	int i;
 920
 921	if (!n)
 922		return 0;
 923
 924	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
 925	if (!bi)
 926		return -ENOMEM;
 927
 928	for (i = 0; i < n; i++, bi++, info++) {
 929		struct spi_controller *ctlr;
 930
 931		memcpy(&bi->board_info, info, sizeof(*info));
 932
 933		mutex_lock(&board_lock);
 934		list_add_tail(&bi->list, &board_list);
 935		list_for_each_entry(ctlr, &spi_controller_list, list)
 936			spi_match_controller_to_boardinfo(ctlr,
 937							  &bi->board_info);
 938		mutex_unlock(&board_lock);
 939	}
 940
 941	return 0;
 942}
 943
 944/*-------------------------------------------------------------------------*/
 945
 946/* Core methods for SPI resource management */
 947
 948/**
 949 * spi_res_alloc - allocate a spi resource that is life-cycle managed
 950 *                 during the processing of a spi_message while using
 951 *                 spi_transfer_one
 952 * @spi:     the SPI device for which we allocate memory
 953 * @release: the release code to execute for this resource
 954 * @size:    size to alloc and return
 955 * @gfp:     GFP allocation flags
 956 *
 957 * Return: the pointer to the allocated data
 958 *
 959 * This may get enhanced in the future to allocate from a memory pool
 960 * of the @spi_device or @spi_controller to avoid repeated allocations.
 961 */
 962static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
 963			   size_t size, gfp_t gfp)
 964{
 965	struct spi_res *sres;
 966
 967	sres = kzalloc(sizeof(*sres) + size, gfp);
 968	if (!sres)
 969		return NULL;
 970
 971	INIT_LIST_HEAD(&sres->entry);
 972	sres->release = release;
 973
 974	return sres->data;
 975}
 976
 977/**
 978 * spi_res_free - free an SPI resource
 979 * @res: pointer to the custom data of a resource
 980 */
 981static void spi_res_free(void *res)
 982{
 983	struct spi_res *sres = container_of(res, struct spi_res, data);
 984
 985	if (!res)
 986		return;
 987
 988	WARN_ON(!list_empty(&sres->entry));
 989	kfree(sres);
 990}
 991
 992/**
 993 * spi_res_add - add a spi_res to the spi_message
 994 * @message: the SPI message
 995 * @res:     the spi_resource
 996 */
 997static void spi_res_add(struct spi_message *message, void *res)
 998{
 999	struct spi_res *sres = container_of(res, struct spi_res, data);
1000
1001	WARN_ON(!list_empty(&sres->entry));
1002	list_add_tail(&sres->entry, &message->resources);
1003}
1004
1005/**
1006 * spi_res_release - release all SPI resources for this message
1007 * @ctlr:  the @spi_controller
1008 * @message: the @spi_message
1009 */
1010static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1011{
1012	struct spi_res *res, *tmp;
1013
1014	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1015		if (res->release)
1016			res->release(ctlr, message, res->data);
1017
1018		list_del(&res->entry);
1019
1020		kfree(res);
1021	}
1022}
1023
1024/*-------------------------------------------------------------------------*/
1025static inline bool spi_is_last_cs(struct spi_device *spi)
1026{
1027	u8 idx;
1028	bool last = false;
1029
1030	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1031		if (spi->cs_index_mask & BIT(idx)) {
1032			if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1033				last = true;
1034		}
1035	}
1036	return last;
1037}
1038
1039
1040static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1041{
1042	bool activate = enable;
1043	u8 idx;
1044
1045	/*
1046	 * Avoid calling into the driver (or doing delays) if the chip select
1047	 * isn't actually changing from the last time this was called.
1048	 */
1049	if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1050			spi_is_last_cs(spi)) ||
1051		       (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1052			!spi_is_last_cs(spi))) &&
1053	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1054		return;
1055
1056	trace_spi_set_cs(spi, activate);
1057
1058	spi->controller->last_cs_index_mask = spi->cs_index_mask;
1059	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1060		spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1061	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1062
1063	if (spi->mode & SPI_CS_HIGH)
1064		enable = !enable;
1065
1066	/*
1067	 * Handle chip select delays for GPIO based CS or controllers without
1068	 * programmable chip select timing.
1069	 */
1070	if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1071		spi_delay_exec(&spi->cs_hold, NULL);
1072
1073	if (spi_is_csgpiod(spi)) {
1074		if (!(spi->mode & SPI_NO_CS)) {
1075			/*
1076			 * Historically ACPI has no means of the GPIO polarity and
1077			 * thus the SPISerialBus() resource defines it on the per-chip
1078			 * basis. In order to avoid a chain of negations, the GPIO
1079			 * polarity is considered being Active High. Even for the cases
1080			 * when _DSD() is involved (in the updated versions of ACPI)
1081			 * the GPIO CS polarity must be defined Active High to avoid
1082			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1083			 * into account.
1084			 */
1085			for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1086				if ((spi->cs_index_mask & BIT(idx)) && spi_get_csgpiod(spi, idx)) {
1087					if (has_acpi_companion(&spi->dev))
1088						gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1089									 !enable);
1090					else
1091						/* Polarity handled by GPIO library */
1092						gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1093									 activate);
1094
1095					if (activate)
1096						spi_delay_exec(&spi->cs_setup, NULL);
1097					else
1098						spi_delay_exec(&spi->cs_inactive, NULL);
1099				}
1100			}
1101		}
1102		/* Some SPI masters need both GPIO CS & slave_select */
1103		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1104		    spi->controller->set_cs)
1105			spi->controller->set_cs(spi, !enable);
1106	} else if (spi->controller->set_cs) {
1107		spi->controller->set_cs(spi, !enable);
1108	}
1109
1110	if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1111		if (activate)
1112			spi_delay_exec(&spi->cs_setup, NULL);
1113		else
1114			spi_delay_exec(&spi->cs_inactive, NULL);
1115	}
1116}
1117
1118#ifdef CONFIG_HAS_DMA
1119static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1120			     struct sg_table *sgt, void *buf, size_t len,
1121			     enum dma_data_direction dir, unsigned long attrs)
1122{
1123	const bool vmalloced_buf = is_vmalloc_addr(buf);
1124	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1125#ifdef CONFIG_HIGHMEM
1126	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1127				(unsigned long)buf < (PKMAP_BASE +
1128					(LAST_PKMAP * PAGE_SIZE)));
1129#else
1130	const bool kmap_buf = false;
1131#endif
1132	int desc_len;
1133	int sgs;
1134	struct page *vm_page;
1135	struct scatterlist *sg;
1136	void *sg_buf;
1137	size_t min;
1138	int i, ret;
1139
1140	if (vmalloced_buf || kmap_buf) {
1141		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1142		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1143	} else if (virt_addr_valid(buf)) {
1144		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1145		sgs = DIV_ROUND_UP(len, desc_len);
1146	} else {
1147		return -EINVAL;
1148	}
1149
1150	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1151	if (ret != 0)
1152		return ret;
1153
1154	sg = &sgt->sgl[0];
1155	for (i = 0; i < sgs; i++) {
1156
1157		if (vmalloced_buf || kmap_buf) {
1158			/*
1159			 * Next scatterlist entry size is the minimum between
1160			 * the desc_len and the remaining buffer length that
1161			 * fits in a page.
1162			 */
1163			min = min_t(size_t, desc_len,
1164				    min_t(size_t, len,
1165					  PAGE_SIZE - offset_in_page(buf)));
1166			if (vmalloced_buf)
1167				vm_page = vmalloc_to_page(buf);
1168			else
1169				vm_page = kmap_to_page(buf);
1170			if (!vm_page) {
1171				sg_free_table(sgt);
1172				return -ENOMEM;
1173			}
1174			sg_set_page(sg, vm_page,
1175				    min, offset_in_page(buf));
1176		} else {
1177			min = min_t(size_t, len, desc_len);
1178			sg_buf = buf;
1179			sg_set_buf(sg, sg_buf, min);
1180		}
1181
1182		buf += min;
1183		len -= min;
1184		sg = sg_next(sg);
1185	}
1186
1187	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1188	if (ret < 0) {
1189		sg_free_table(sgt);
1190		return ret;
1191	}
1192
1193	return 0;
1194}
1195
1196int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1197		struct sg_table *sgt, void *buf, size_t len,
1198		enum dma_data_direction dir)
1199{
1200	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1201}
1202
1203static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1204				struct device *dev, struct sg_table *sgt,
1205				enum dma_data_direction dir,
1206				unsigned long attrs)
1207{
1208	if (sgt->orig_nents) {
1209		dma_unmap_sgtable(dev, sgt, dir, attrs);
1210		sg_free_table(sgt);
1211		sgt->orig_nents = 0;
1212		sgt->nents = 0;
1213	}
1214}
1215
1216void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1217		   struct sg_table *sgt, enum dma_data_direction dir)
1218{
1219	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1220}
1221
1222static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1223{
1224	struct device *tx_dev, *rx_dev;
1225	struct spi_transfer *xfer;
1226	int ret;
1227
1228	if (!ctlr->can_dma)
1229		return 0;
1230
1231	if (ctlr->dma_tx)
1232		tx_dev = ctlr->dma_tx->device->dev;
1233	else if (ctlr->dma_map_dev)
1234		tx_dev = ctlr->dma_map_dev;
1235	else
1236		tx_dev = ctlr->dev.parent;
1237
1238	if (ctlr->dma_rx)
1239		rx_dev = ctlr->dma_rx->device->dev;
1240	else if (ctlr->dma_map_dev)
1241		rx_dev = ctlr->dma_map_dev;
1242	else
1243		rx_dev = ctlr->dev.parent;
1244
1245	ret = -ENOMSG;
1246	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1247		/* The sync is done before each transfer. */
1248		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1249
1250		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1251			continue;
1252
1253		if (xfer->tx_buf != NULL) {
1254			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1255						(void *)xfer->tx_buf,
1256						xfer->len, DMA_TO_DEVICE,
1257						attrs);
1258			if (ret != 0)
1259				return ret;
1260		}
1261
1262		if (xfer->rx_buf != NULL) {
1263			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1264						xfer->rx_buf, xfer->len,
1265						DMA_FROM_DEVICE, attrs);
1266			if (ret != 0) {
1267				spi_unmap_buf_attrs(ctlr, tx_dev,
1268						&xfer->tx_sg, DMA_TO_DEVICE,
1269						attrs);
1270
1271				return ret;
1272			}
1273		}
1274	}
1275	/* No transfer has been mapped, bail out with success */
1276	if (ret)
1277		return 0;
1278
1279	ctlr->cur_rx_dma_dev = rx_dev;
1280	ctlr->cur_tx_dma_dev = tx_dev;
1281	ctlr->cur_msg_mapped = true;
1282
1283	return 0;
1284}
1285
1286static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1287{
1288	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1289	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1290	struct spi_transfer *xfer;
1291
1292	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1293		return 0;
1294
1295	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1296		/* The sync has already been done after each transfer. */
1297		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1298
1299		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1300			continue;
1301
1302		spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1303				    DMA_FROM_DEVICE, attrs);
1304		spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1305				    DMA_TO_DEVICE, attrs);
1306	}
1307
1308	ctlr->cur_msg_mapped = false;
1309
1310	return 0;
1311}
1312
1313static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1314				    struct spi_transfer *xfer)
1315{
1316	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1317	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1318
1319	if (!ctlr->cur_msg_mapped)
1320		return;
1321
1322	if (xfer->tx_sg.orig_nents)
1323		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1324	if (xfer->rx_sg.orig_nents)
1325		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1326}
1327
1328static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1329				 struct spi_transfer *xfer)
1330{
1331	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1332	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1333
1334	if (!ctlr->cur_msg_mapped)
1335		return;
1336
1337	if (xfer->rx_sg.orig_nents)
1338		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1339	if (xfer->tx_sg.orig_nents)
1340		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1341}
1342#else /* !CONFIG_HAS_DMA */
1343static inline int __spi_map_msg(struct spi_controller *ctlr,
1344				struct spi_message *msg)
1345{
1346	return 0;
1347}
1348
1349static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1350				  struct spi_message *msg)
1351{
1352	return 0;
1353}
1354
1355static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1356				    struct spi_transfer *xfer)
1357{
1358}
1359
1360static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1361				 struct spi_transfer *xfer)
1362{
1363}
1364#endif /* !CONFIG_HAS_DMA */
1365
1366static inline int spi_unmap_msg(struct spi_controller *ctlr,
1367				struct spi_message *msg)
1368{
1369	struct spi_transfer *xfer;
1370
1371	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1372		/*
1373		 * Restore the original value of tx_buf or rx_buf if they are
1374		 * NULL.
1375		 */
1376		if (xfer->tx_buf == ctlr->dummy_tx)
1377			xfer->tx_buf = NULL;
1378		if (xfer->rx_buf == ctlr->dummy_rx)
1379			xfer->rx_buf = NULL;
1380	}
1381
1382	return __spi_unmap_msg(ctlr, msg);
1383}
1384
1385static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1386{
1387	struct spi_transfer *xfer;
1388	void *tmp;
1389	unsigned int max_tx, max_rx;
1390
1391	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1392		&& !(msg->spi->mode & SPI_3WIRE)) {
1393		max_tx = 0;
1394		max_rx = 0;
1395
1396		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1397			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1398			    !xfer->tx_buf)
1399				max_tx = max(xfer->len, max_tx);
1400			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1401			    !xfer->rx_buf)
1402				max_rx = max(xfer->len, max_rx);
1403		}
1404
1405		if (max_tx) {
1406			tmp = krealloc(ctlr->dummy_tx, max_tx,
1407				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1408			if (!tmp)
1409				return -ENOMEM;
1410			ctlr->dummy_tx = tmp;
1411		}
1412
1413		if (max_rx) {
1414			tmp = krealloc(ctlr->dummy_rx, max_rx,
1415				       GFP_KERNEL | GFP_DMA);
1416			if (!tmp)
1417				return -ENOMEM;
1418			ctlr->dummy_rx = tmp;
1419		}
1420
1421		if (max_tx || max_rx) {
1422			list_for_each_entry(xfer, &msg->transfers,
1423					    transfer_list) {
1424				if (!xfer->len)
1425					continue;
1426				if (!xfer->tx_buf)
1427					xfer->tx_buf = ctlr->dummy_tx;
1428				if (!xfer->rx_buf)
1429					xfer->rx_buf = ctlr->dummy_rx;
1430			}
1431		}
1432	}
1433
1434	return __spi_map_msg(ctlr, msg);
1435}
1436
1437static int spi_transfer_wait(struct spi_controller *ctlr,
1438			     struct spi_message *msg,
1439			     struct spi_transfer *xfer)
1440{
1441	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1442	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1443	u32 speed_hz = xfer->speed_hz;
1444	unsigned long long ms;
1445
1446	if (spi_controller_is_slave(ctlr)) {
1447		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1448			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1449			return -EINTR;
1450		}
1451	} else {
1452		if (!speed_hz)
1453			speed_hz = 100000;
1454
1455		/*
1456		 * For each byte we wait for 8 cycles of the SPI clock.
1457		 * Since speed is defined in Hz and we want milliseconds,
1458		 * use respective multiplier, but before the division,
1459		 * otherwise we may get 0 for short transfers.
1460		 */
1461		ms = 8LL * MSEC_PER_SEC * xfer->len;
1462		do_div(ms, speed_hz);
1463
1464		/*
1465		 * Increase it twice and add 200 ms tolerance, use
1466		 * predefined maximum in case of overflow.
1467		 */
1468		ms += ms + 200;
1469		if (ms > UINT_MAX)
1470			ms = UINT_MAX;
1471
1472		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1473						 msecs_to_jiffies(ms));
1474
1475		if (ms == 0) {
1476			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1477			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1478			dev_err(&msg->spi->dev,
1479				"SPI transfer timed out\n");
1480			return -ETIMEDOUT;
1481		}
1482
1483		if (xfer->error & SPI_TRANS_FAIL_IO)
1484			return -EIO;
1485	}
1486
1487	return 0;
1488}
1489
1490static void _spi_transfer_delay_ns(u32 ns)
1491{
1492	if (!ns)
1493		return;
1494	if (ns <= NSEC_PER_USEC) {
1495		ndelay(ns);
1496	} else {
1497		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1498
1499		if (us <= 10)
1500			udelay(us);
1501		else
1502			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1503	}
1504}
1505
1506int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1507{
1508	u32 delay = _delay->value;
1509	u32 unit = _delay->unit;
1510	u32 hz;
1511
1512	if (!delay)
1513		return 0;
1514
1515	switch (unit) {
1516	case SPI_DELAY_UNIT_USECS:
1517		delay *= NSEC_PER_USEC;
1518		break;
1519	case SPI_DELAY_UNIT_NSECS:
1520		/* Nothing to do here */
1521		break;
1522	case SPI_DELAY_UNIT_SCK:
1523		/* Clock cycles need to be obtained from spi_transfer */
1524		if (!xfer)
1525			return -EINVAL;
1526		/*
1527		 * If there is unknown effective speed, approximate it
1528		 * by underestimating with half of the requested Hz.
1529		 */
1530		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1531		if (!hz)
1532			return -EINVAL;
1533
1534		/* Convert delay to nanoseconds */
1535		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1536		break;
1537	default:
1538		return -EINVAL;
1539	}
1540
1541	return delay;
1542}
1543EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1544
1545int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1546{
1547	int delay;
1548
1549	might_sleep();
1550
1551	if (!_delay)
1552		return -EINVAL;
1553
1554	delay = spi_delay_to_ns(_delay, xfer);
1555	if (delay < 0)
1556		return delay;
1557
1558	_spi_transfer_delay_ns(delay);
1559
1560	return 0;
1561}
1562EXPORT_SYMBOL_GPL(spi_delay_exec);
1563
1564static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1565					  struct spi_transfer *xfer)
1566{
1567	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1568	u32 delay = xfer->cs_change_delay.value;
1569	u32 unit = xfer->cs_change_delay.unit;
1570	int ret;
1571
1572	/* Return early on "fast" mode - for everything but USECS */
1573	if (!delay) {
1574		if (unit == SPI_DELAY_UNIT_USECS)
1575			_spi_transfer_delay_ns(default_delay_ns);
1576		return;
1577	}
1578
1579	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1580	if (ret) {
1581		dev_err_once(&msg->spi->dev,
1582			     "Use of unsupported delay unit %i, using default of %luus\n",
1583			     unit, default_delay_ns / NSEC_PER_USEC);
1584		_spi_transfer_delay_ns(default_delay_ns);
1585	}
1586}
1587
1588void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1589						  struct spi_transfer *xfer)
1590{
1591	_spi_transfer_cs_change_delay(msg, xfer);
1592}
1593EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1594
1595/*
1596 * spi_transfer_one_message - Default implementation of transfer_one_message()
1597 *
1598 * This is a standard implementation of transfer_one_message() for
1599 * drivers which implement a transfer_one() operation.  It provides
1600 * standard handling of delays and chip select management.
1601 */
1602static int spi_transfer_one_message(struct spi_controller *ctlr,
1603				    struct spi_message *msg)
1604{
1605	struct spi_transfer *xfer;
1606	bool keep_cs = false;
1607	int ret = 0;
1608	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1609	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1610
1611	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1612	spi_set_cs(msg->spi, !xfer->cs_off, false);
1613
1614	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1615	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1616
1617	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1618		trace_spi_transfer_start(msg, xfer);
1619
1620		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1621		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1622
1623		if (!ctlr->ptp_sts_supported) {
1624			xfer->ptp_sts_word_pre = 0;
1625			ptp_read_system_prets(xfer->ptp_sts);
1626		}
1627
1628		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1629			reinit_completion(&ctlr->xfer_completion);
1630
1631fallback_pio:
1632			spi_dma_sync_for_device(ctlr, xfer);
1633			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1634			if (ret < 0) {
1635				spi_dma_sync_for_cpu(ctlr, xfer);
1636
1637				if (ctlr->cur_msg_mapped &&
1638				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1639					__spi_unmap_msg(ctlr, msg);
1640					ctlr->fallback = true;
1641					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1642					goto fallback_pio;
1643				}
1644
1645				SPI_STATISTICS_INCREMENT_FIELD(statm,
1646							       errors);
1647				SPI_STATISTICS_INCREMENT_FIELD(stats,
1648							       errors);
1649				dev_err(&msg->spi->dev,
1650					"SPI transfer failed: %d\n", ret);
1651				goto out;
1652			}
1653
1654			if (ret > 0) {
1655				ret = spi_transfer_wait(ctlr, msg, xfer);
1656				if (ret < 0)
1657					msg->status = ret;
1658			}
1659
1660			spi_dma_sync_for_cpu(ctlr, xfer);
1661		} else {
1662			if (xfer->len)
1663				dev_err(&msg->spi->dev,
1664					"Bufferless transfer has length %u\n",
1665					xfer->len);
1666		}
1667
1668		if (!ctlr->ptp_sts_supported) {
1669			ptp_read_system_postts(xfer->ptp_sts);
1670			xfer->ptp_sts_word_post = xfer->len;
1671		}
1672
1673		trace_spi_transfer_stop(msg, xfer);
1674
1675		if (msg->status != -EINPROGRESS)
1676			goto out;
1677
1678		spi_transfer_delay_exec(xfer);
1679
1680		if (xfer->cs_change) {
1681			if (list_is_last(&xfer->transfer_list,
1682					 &msg->transfers)) {
1683				keep_cs = true;
1684			} else {
1685				if (!xfer->cs_off)
1686					spi_set_cs(msg->spi, false, false);
1687				_spi_transfer_cs_change_delay(msg, xfer);
1688				if (!list_next_entry(xfer, transfer_list)->cs_off)
1689					spi_set_cs(msg->spi, true, false);
1690			}
1691		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1692			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1693			spi_set_cs(msg->spi, xfer->cs_off, false);
1694		}
1695
1696		msg->actual_length += xfer->len;
1697	}
1698
1699out:
1700	if (ret != 0 || !keep_cs)
1701		spi_set_cs(msg->spi, false, false);
1702
1703	if (msg->status == -EINPROGRESS)
1704		msg->status = ret;
1705
1706	if (msg->status && ctlr->handle_err)
1707		ctlr->handle_err(ctlr, msg);
1708
1709	spi_finalize_current_message(ctlr);
1710
1711	return ret;
1712}
1713
1714/**
1715 * spi_finalize_current_transfer - report completion of a transfer
1716 * @ctlr: the controller reporting completion
1717 *
1718 * Called by SPI drivers using the core transfer_one_message()
1719 * implementation to notify it that the current interrupt driven
1720 * transfer has finished and the next one may be scheduled.
1721 */
1722void spi_finalize_current_transfer(struct spi_controller *ctlr)
1723{
1724	complete(&ctlr->xfer_completion);
1725}
1726EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1727
1728static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1729{
1730	if (ctlr->auto_runtime_pm) {
1731		pm_runtime_mark_last_busy(ctlr->dev.parent);
1732		pm_runtime_put_autosuspend(ctlr->dev.parent);
1733	}
1734}
1735
1736static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1737		struct spi_message *msg, bool was_busy)
1738{
1739	struct spi_transfer *xfer;
1740	int ret;
1741
1742	if (!was_busy && ctlr->auto_runtime_pm) {
1743		ret = pm_runtime_get_sync(ctlr->dev.parent);
1744		if (ret < 0) {
1745			pm_runtime_put_noidle(ctlr->dev.parent);
1746			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1747				ret);
1748
1749			msg->status = ret;
1750			spi_finalize_current_message(ctlr);
1751
1752			return ret;
1753		}
1754	}
1755
1756	if (!was_busy)
1757		trace_spi_controller_busy(ctlr);
1758
1759	if (!was_busy && ctlr->prepare_transfer_hardware) {
1760		ret = ctlr->prepare_transfer_hardware(ctlr);
1761		if (ret) {
1762			dev_err(&ctlr->dev,
1763				"failed to prepare transfer hardware: %d\n",
1764				ret);
1765
1766			if (ctlr->auto_runtime_pm)
1767				pm_runtime_put(ctlr->dev.parent);
1768
1769			msg->status = ret;
1770			spi_finalize_current_message(ctlr);
1771
1772			return ret;
1773		}
1774	}
1775
1776	trace_spi_message_start(msg);
1777
1778	if (ctlr->prepare_message) {
1779		ret = ctlr->prepare_message(ctlr, msg);
1780		if (ret) {
1781			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1782				ret);
1783			msg->status = ret;
1784			spi_finalize_current_message(ctlr);
1785			return ret;
1786		}
1787		msg->prepared = true;
1788	}
1789
1790	ret = spi_map_msg(ctlr, msg);
1791	if (ret) {
1792		msg->status = ret;
1793		spi_finalize_current_message(ctlr);
1794		return ret;
1795	}
1796
1797	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1798		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1799			xfer->ptp_sts_word_pre = 0;
1800			ptp_read_system_prets(xfer->ptp_sts);
1801		}
1802	}
1803
1804	/*
1805	 * Drivers implementation of transfer_one_message() must arrange for
1806	 * spi_finalize_current_message() to get called. Most drivers will do
1807	 * this in the calling context, but some don't. For those cases, a
1808	 * completion is used to guarantee that this function does not return
1809	 * until spi_finalize_current_message() is done accessing
1810	 * ctlr->cur_msg.
1811	 * Use of the following two flags enable to opportunistically skip the
1812	 * use of the completion since its use involves expensive spin locks.
1813	 * In case of a race with the context that calls
1814	 * spi_finalize_current_message() the completion will always be used,
1815	 * due to strict ordering of these flags using barriers.
1816	 */
1817	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1818	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1819	reinit_completion(&ctlr->cur_msg_completion);
1820	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1821
1822	ret = ctlr->transfer_one_message(ctlr, msg);
1823	if (ret) {
1824		dev_err(&ctlr->dev,
1825			"failed to transfer one message from queue\n");
1826		return ret;
1827	}
1828
1829	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1830	smp_mb(); /* See spi_finalize_current_message()... */
1831	if (READ_ONCE(ctlr->cur_msg_incomplete))
1832		wait_for_completion(&ctlr->cur_msg_completion);
1833
1834	return 0;
1835}
1836
1837/**
1838 * __spi_pump_messages - function which processes SPI message queue
1839 * @ctlr: controller to process queue for
1840 * @in_kthread: true if we are in the context of the message pump thread
1841 *
1842 * This function checks if there is any SPI message in the queue that
1843 * needs processing and if so call out to the driver to initialize hardware
1844 * and transfer each message.
1845 *
1846 * Note that it is called both from the kthread itself and also from
1847 * inside spi_sync(); the queue extraction handling at the top of the
1848 * function should deal with this safely.
1849 */
1850static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1851{
1852	struct spi_message *msg;
1853	bool was_busy = false;
1854	unsigned long flags;
1855	int ret;
1856
1857	/* Take the I/O mutex */
1858	mutex_lock(&ctlr->io_mutex);
1859
1860	/* Lock queue */
1861	spin_lock_irqsave(&ctlr->queue_lock, flags);
1862
1863	/* Make sure we are not already running a message */
1864	if (ctlr->cur_msg)
1865		goto out_unlock;
1866
1867	/* Check if the queue is idle */
1868	if (list_empty(&ctlr->queue) || !ctlr->running) {
1869		if (!ctlr->busy)
1870			goto out_unlock;
1871
1872		/* Defer any non-atomic teardown to the thread */
1873		if (!in_kthread) {
1874			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1875			    !ctlr->unprepare_transfer_hardware) {
1876				spi_idle_runtime_pm(ctlr);
1877				ctlr->busy = false;
1878				ctlr->queue_empty = true;
1879				trace_spi_controller_idle(ctlr);
1880			} else {
1881				kthread_queue_work(ctlr->kworker,
1882						   &ctlr->pump_messages);
1883			}
1884			goto out_unlock;
1885		}
1886
1887		ctlr->busy = false;
1888		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1889
1890		kfree(ctlr->dummy_rx);
1891		ctlr->dummy_rx = NULL;
1892		kfree(ctlr->dummy_tx);
1893		ctlr->dummy_tx = NULL;
1894		if (ctlr->unprepare_transfer_hardware &&
1895		    ctlr->unprepare_transfer_hardware(ctlr))
1896			dev_err(&ctlr->dev,
1897				"failed to unprepare transfer hardware\n");
1898		spi_idle_runtime_pm(ctlr);
1899		trace_spi_controller_idle(ctlr);
1900
1901		spin_lock_irqsave(&ctlr->queue_lock, flags);
1902		ctlr->queue_empty = true;
1903		goto out_unlock;
1904	}
1905
1906	/* Extract head of queue */
1907	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1908	ctlr->cur_msg = msg;
1909
1910	list_del_init(&msg->queue);
1911	if (ctlr->busy)
1912		was_busy = true;
1913	else
1914		ctlr->busy = true;
1915	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1916
1917	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1918	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1919
1920	ctlr->cur_msg = NULL;
1921	ctlr->fallback = false;
1922
1923	mutex_unlock(&ctlr->io_mutex);
1924
1925	/* Prod the scheduler in case transfer_one() was busy waiting */
1926	if (!ret)
1927		cond_resched();
1928	return;
1929
1930out_unlock:
1931	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1932	mutex_unlock(&ctlr->io_mutex);
1933}
1934
1935/**
1936 * spi_pump_messages - kthread work function which processes spi message queue
1937 * @work: pointer to kthread work struct contained in the controller struct
1938 */
1939static void spi_pump_messages(struct kthread_work *work)
1940{
1941	struct spi_controller *ctlr =
1942		container_of(work, struct spi_controller, pump_messages);
1943
1944	__spi_pump_messages(ctlr, true);
1945}
1946
1947/**
1948 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1949 * @ctlr: Pointer to the spi_controller structure of the driver
1950 * @xfer: Pointer to the transfer being timestamped
1951 * @progress: How many words (not bytes) have been transferred so far
1952 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1953 *	      transfer, for less jitter in time measurement. Only compatible
1954 *	      with PIO drivers. If true, must follow up with
1955 *	      spi_take_timestamp_post or otherwise system will crash.
1956 *	      WARNING: for fully predictable results, the CPU frequency must
1957 *	      also be under control (governor).
1958 *
1959 * This is a helper for drivers to collect the beginning of the TX timestamp
1960 * for the requested byte from the SPI transfer. The frequency with which this
1961 * function must be called (once per word, once for the whole transfer, once
1962 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1963 * greater than or equal to the requested byte at the time of the call. The
1964 * timestamp is only taken once, at the first such call. It is assumed that
1965 * the driver advances its @tx buffer pointer monotonically.
1966 */
1967void spi_take_timestamp_pre(struct spi_controller *ctlr,
1968			    struct spi_transfer *xfer,
1969			    size_t progress, bool irqs_off)
1970{
1971	if (!xfer->ptp_sts)
1972		return;
1973
1974	if (xfer->timestamped)
1975		return;
1976
1977	if (progress > xfer->ptp_sts_word_pre)
1978		return;
1979
1980	/* Capture the resolution of the timestamp */
1981	xfer->ptp_sts_word_pre = progress;
1982
1983	if (irqs_off) {
1984		local_irq_save(ctlr->irq_flags);
1985		preempt_disable();
1986	}
1987
1988	ptp_read_system_prets(xfer->ptp_sts);
1989}
1990EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1991
1992/**
1993 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1994 * @ctlr: Pointer to the spi_controller structure of the driver
1995 * @xfer: Pointer to the transfer being timestamped
1996 * @progress: How many words (not bytes) have been transferred so far
1997 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1998 *
1999 * This is a helper for drivers to collect the end of the TX timestamp for
2000 * the requested byte from the SPI transfer. Can be called with an arbitrary
2001 * frequency: only the first call where @tx exceeds or is equal to the
2002 * requested word will be timestamped.
2003 */
2004void spi_take_timestamp_post(struct spi_controller *ctlr,
2005			     struct spi_transfer *xfer,
2006			     size_t progress, bool irqs_off)
2007{
2008	if (!xfer->ptp_sts)
2009		return;
2010
2011	if (xfer->timestamped)
2012		return;
2013
2014	if (progress < xfer->ptp_sts_word_post)
2015		return;
2016
2017	ptp_read_system_postts(xfer->ptp_sts);
2018
2019	if (irqs_off) {
2020		local_irq_restore(ctlr->irq_flags);
2021		preempt_enable();
2022	}
2023
2024	/* Capture the resolution of the timestamp */
2025	xfer->ptp_sts_word_post = progress;
2026
2027	xfer->timestamped = 1;
2028}
2029EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2030
2031/**
2032 * spi_set_thread_rt - set the controller to pump at realtime priority
2033 * @ctlr: controller to boost priority of
2034 *
2035 * This can be called because the controller requested realtime priority
2036 * (by setting the ->rt value before calling spi_register_controller()) or
2037 * because a device on the bus said that its transfers needed realtime
2038 * priority.
2039 *
2040 * NOTE: at the moment if any device on a bus says it needs realtime then
2041 * the thread will be at realtime priority for all transfers on that
2042 * controller.  If this eventually becomes a problem we may see if we can
2043 * find a way to boost the priority only temporarily during relevant
2044 * transfers.
2045 */
2046static void spi_set_thread_rt(struct spi_controller *ctlr)
2047{
2048	dev_info(&ctlr->dev,
2049		"will run message pump with realtime priority\n");
2050	sched_set_fifo(ctlr->kworker->task);
2051}
2052
2053static int spi_init_queue(struct spi_controller *ctlr)
2054{
2055	ctlr->running = false;
2056	ctlr->busy = false;
2057	ctlr->queue_empty = true;
2058
2059	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2060	if (IS_ERR(ctlr->kworker)) {
2061		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2062		return PTR_ERR(ctlr->kworker);
2063	}
2064
2065	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2066
2067	/*
2068	 * Controller config will indicate if this controller should run the
2069	 * message pump with high (realtime) priority to reduce the transfer
2070	 * latency on the bus by minimising the delay between a transfer
2071	 * request and the scheduling of the message pump thread. Without this
2072	 * setting the message pump thread will remain at default priority.
2073	 */
2074	if (ctlr->rt)
2075		spi_set_thread_rt(ctlr);
2076
2077	return 0;
2078}
2079
2080/**
2081 * spi_get_next_queued_message() - called by driver to check for queued
2082 * messages
2083 * @ctlr: the controller to check for queued messages
2084 *
2085 * If there are more messages in the queue, the next message is returned from
2086 * this call.
2087 *
2088 * Return: the next message in the queue, else NULL if the queue is empty.
2089 */
2090struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2091{
2092	struct spi_message *next;
2093	unsigned long flags;
2094
2095	/* Get a pointer to the next message, if any */
2096	spin_lock_irqsave(&ctlr->queue_lock, flags);
2097	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2098					queue);
2099	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2100
2101	return next;
2102}
2103EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2104
2105/*
2106 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2107 *                            and spi_maybe_unoptimize_message()
2108 * @msg: the message to unoptimize
2109 *
2110 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2111 * core should use spi_maybe_unoptimize_message() rather than calling this
2112 * function directly.
2113 *
2114 * It is not valid to call this on a message that is not currently optimized.
2115 */
2116static void __spi_unoptimize_message(struct spi_message *msg)
2117{
2118	struct spi_controller *ctlr = msg->spi->controller;
2119
2120	if (ctlr->unoptimize_message)
2121		ctlr->unoptimize_message(msg);
2122
2123	spi_res_release(ctlr, msg);
2124
2125	msg->optimized = false;
2126	msg->opt_state = NULL;
2127}
2128
2129/*
2130 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2131 * @msg: the message to unoptimize
2132 *
2133 * This function is used to unoptimize a message if and only if it was
2134 * optimized by the core (via spi_maybe_optimize_message()).
2135 */
2136static void spi_maybe_unoptimize_message(struct spi_message *msg)
2137{
2138	if (!msg->pre_optimized && msg->optimized)
2139		__spi_unoptimize_message(msg);
2140}
2141
2142/**
2143 * spi_finalize_current_message() - the current message is complete
2144 * @ctlr: the controller to return the message to
2145 *
2146 * Called by the driver to notify the core that the message in the front of the
2147 * queue is complete and can be removed from the queue.
2148 */
2149void spi_finalize_current_message(struct spi_controller *ctlr)
2150{
2151	struct spi_transfer *xfer;
2152	struct spi_message *mesg;
2153	int ret;
2154
2155	mesg = ctlr->cur_msg;
2156
2157	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2158		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2159			ptp_read_system_postts(xfer->ptp_sts);
2160			xfer->ptp_sts_word_post = xfer->len;
2161		}
2162	}
2163
2164	if (unlikely(ctlr->ptp_sts_supported))
2165		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2166			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2167
2168	spi_unmap_msg(ctlr, mesg);
2169
2170	if (mesg->prepared && ctlr->unprepare_message) {
2171		ret = ctlr->unprepare_message(ctlr, mesg);
2172		if (ret) {
2173			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2174				ret);
2175		}
2176	}
2177
2178	mesg->prepared = false;
2179
2180	spi_maybe_unoptimize_message(mesg);
2181
2182	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2183	smp_mb(); /* See __spi_pump_transfer_message()... */
2184	if (READ_ONCE(ctlr->cur_msg_need_completion))
2185		complete(&ctlr->cur_msg_completion);
2186
2187	trace_spi_message_done(mesg);
2188
2189	mesg->state = NULL;
2190	if (mesg->complete)
2191		mesg->complete(mesg->context);
2192}
2193EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2194
2195static int spi_start_queue(struct spi_controller *ctlr)
2196{
2197	unsigned long flags;
2198
2199	spin_lock_irqsave(&ctlr->queue_lock, flags);
2200
2201	if (ctlr->running || ctlr->busy) {
2202		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2203		return -EBUSY;
2204	}
2205
2206	ctlr->running = true;
2207	ctlr->cur_msg = NULL;
2208	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2209
2210	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2211
2212	return 0;
2213}
2214
2215static int spi_stop_queue(struct spi_controller *ctlr)
2216{
2217	unsigned long flags;
2218	unsigned limit = 500;
2219	int ret = 0;
2220
2221	spin_lock_irqsave(&ctlr->queue_lock, flags);
2222
2223	/*
2224	 * This is a bit lame, but is optimized for the common execution path.
2225	 * A wait_queue on the ctlr->busy could be used, but then the common
2226	 * execution path (pump_messages) would be required to call wake_up or
2227	 * friends on every SPI message. Do this instead.
2228	 */
2229	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2230		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2231		usleep_range(10000, 11000);
2232		spin_lock_irqsave(&ctlr->queue_lock, flags);
2233	}
2234
2235	if (!list_empty(&ctlr->queue) || ctlr->busy)
2236		ret = -EBUSY;
2237	else
2238		ctlr->running = false;
2239
2240	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2241
2242	return ret;
2243}
2244
2245static int spi_destroy_queue(struct spi_controller *ctlr)
2246{
2247	int ret;
2248
2249	ret = spi_stop_queue(ctlr);
2250
2251	/*
2252	 * kthread_flush_worker will block until all work is done.
2253	 * If the reason that stop_queue timed out is that the work will never
2254	 * finish, then it does no good to call flush/stop thread, so
2255	 * return anyway.
2256	 */
2257	if (ret) {
2258		dev_err(&ctlr->dev, "problem destroying queue\n");
2259		return ret;
2260	}
2261
2262	kthread_destroy_worker(ctlr->kworker);
2263
2264	return 0;
2265}
2266
2267static int __spi_queued_transfer(struct spi_device *spi,
2268				 struct spi_message *msg,
2269				 bool need_pump)
2270{
2271	struct spi_controller *ctlr = spi->controller;
2272	unsigned long flags;
2273
2274	spin_lock_irqsave(&ctlr->queue_lock, flags);
2275
2276	if (!ctlr->running) {
2277		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2278		return -ESHUTDOWN;
2279	}
2280	msg->actual_length = 0;
2281	msg->status = -EINPROGRESS;
2282
2283	list_add_tail(&msg->queue, &ctlr->queue);
2284	ctlr->queue_empty = false;
2285	if (!ctlr->busy && need_pump)
2286		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2287
2288	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2289	return 0;
2290}
2291
2292/**
2293 * spi_queued_transfer - transfer function for queued transfers
2294 * @spi: SPI device which is requesting transfer
2295 * @msg: SPI message which is to handled is queued to driver queue
2296 *
2297 * Return: zero on success, else a negative error code.
2298 */
2299static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2300{
2301	return __spi_queued_transfer(spi, msg, true);
2302}
2303
2304static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2305{
2306	int ret;
2307
2308	ctlr->transfer = spi_queued_transfer;
2309	if (!ctlr->transfer_one_message)
2310		ctlr->transfer_one_message = spi_transfer_one_message;
2311
2312	/* Initialize and start queue */
2313	ret = spi_init_queue(ctlr);
2314	if (ret) {
2315		dev_err(&ctlr->dev, "problem initializing queue\n");
2316		goto err_init_queue;
2317	}
2318	ctlr->queued = true;
2319	ret = spi_start_queue(ctlr);
2320	if (ret) {
2321		dev_err(&ctlr->dev, "problem starting queue\n");
2322		goto err_start_queue;
2323	}
2324
2325	return 0;
2326
2327err_start_queue:
2328	spi_destroy_queue(ctlr);
2329err_init_queue:
2330	return ret;
2331}
2332
2333/**
2334 * spi_flush_queue - Send all pending messages in the queue from the callers'
2335 *		     context
2336 * @ctlr: controller to process queue for
2337 *
2338 * This should be used when one wants to ensure all pending messages have been
2339 * sent before doing something. Is used by the spi-mem code to make sure SPI
2340 * memory operations do not preempt regular SPI transfers that have been queued
2341 * before the spi-mem operation.
2342 */
2343void spi_flush_queue(struct spi_controller *ctlr)
2344{
2345	if (ctlr->transfer == spi_queued_transfer)
2346		__spi_pump_messages(ctlr, false);
2347}
2348
2349/*-------------------------------------------------------------------------*/
2350
2351#if defined(CONFIG_OF)
2352static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2353				     struct spi_delay *delay, const char *prop)
2354{
2355	u32 value;
2356
2357	if (!of_property_read_u32(nc, prop, &value)) {
2358		if (value > U16_MAX) {
2359			delay->value = DIV_ROUND_UP(value, 1000);
2360			delay->unit = SPI_DELAY_UNIT_USECS;
2361		} else {
2362			delay->value = value;
2363			delay->unit = SPI_DELAY_UNIT_NSECS;
2364		}
2365	}
2366}
2367
2368static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2369			   struct device_node *nc)
2370{
2371	u32 value, cs[SPI_CS_CNT_MAX];
2372	int rc, idx;
2373
2374	/* Mode (clock phase/polarity/etc.) */
2375	if (of_property_read_bool(nc, "spi-cpha"))
2376		spi->mode |= SPI_CPHA;
2377	if (of_property_read_bool(nc, "spi-cpol"))
2378		spi->mode |= SPI_CPOL;
2379	if (of_property_read_bool(nc, "spi-3wire"))
2380		spi->mode |= SPI_3WIRE;
2381	if (of_property_read_bool(nc, "spi-lsb-first"))
2382		spi->mode |= SPI_LSB_FIRST;
2383	if (of_property_read_bool(nc, "spi-cs-high"))
2384		spi->mode |= SPI_CS_HIGH;
2385
2386	/* Device DUAL/QUAD mode */
2387	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2388		switch (value) {
2389		case 0:
2390			spi->mode |= SPI_NO_TX;
2391			break;
2392		case 1:
2393			break;
2394		case 2:
2395			spi->mode |= SPI_TX_DUAL;
2396			break;
2397		case 4:
2398			spi->mode |= SPI_TX_QUAD;
2399			break;
2400		case 8:
2401			spi->mode |= SPI_TX_OCTAL;
2402			break;
2403		default:
2404			dev_warn(&ctlr->dev,
2405				"spi-tx-bus-width %d not supported\n",
2406				value);
2407			break;
2408		}
2409	}
2410
2411	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2412		switch (value) {
2413		case 0:
2414			spi->mode |= SPI_NO_RX;
2415			break;
2416		case 1:
2417			break;
2418		case 2:
2419			spi->mode |= SPI_RX_DUAL;
2420			break;
2421		case 4:
2422			spi->mode |= SPI_RX_QUAD;
2423			break;
2424		case 8:
2425			spi->mode |= SPI_RX_OCTAL;
2426			break;
2427		default:
2428			dev_warn(&ctlr->dev,
2429				"spi-rx-bus-width %d not supported\n",
2430				value);
2431			break;
2432		}
2433	}
2434
2435	if (spi_controller_is_slave(ctlr)) {
2436		if (!of_node_name_eq(nc, "slave")) {
2437			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2438				nc);
2439			return -EINVAL;
2440		}
2441		return 0;
2442	}
2443
2444	if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2445		dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2446		return -EINVAL;
2447	}
2448
2449	spi_set_all_cs_unused(spi);
2450
2451	/* Device address */
2452	rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2453						 SPI_CS_CNT_MAX);
2454	if (rc < 0) {
2455		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2456			nc, rc);
2457		return rc;
2458	}
2459	if (rc > ctlr->num_chipselect) {
2460		dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2461			nc, rc);
2462		return rc;
2463	}
2464	if ((of_property_read_bool(nc, "parallel-memories")) &&
2465	    (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2466		dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2467		return -EINVAL;
2468	}
2469	for (idx = 0; idx < rc; idx++)
2470		spi_set_chipselect(spi, idx, cs[idx]);
2471
2472	/*
2473	 * By default spi->chip_select[0] will hold the physical CS number,
2474	 * so set bit 0 in spi->cs_index_mask.
2475	 */
2476	spi->cs_index_mask = BIT(0);
2477
2478	/* Device speed */
2479	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2480		spi->max_speed_hz = value;
2481
2482	/* Device CS delays */
2483	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2484	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2485	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2486
2487	return 0;
2488}
2489
2490static struct spi_device *
2491of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2492{
2493	struct spi_device *spi;
2494	int rc;
2495
2496	/* Alloc an spi_device */
2497	spi = spi_alloc_device(ctlr);
2498	if (!spi) {
2499		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2500		rc = -ENOMEM;
2501		goto err_out;
2502	}
2503
2504	/* Select device driver */
2505	rc = of_alias_from_compatible(nc, spi->modalias,
2506				      sizeof(spi->modalias));
2507	if (rc < 0) {
2508		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2509		goto err_out;
2510	}
2511
2512	rc = of_spi_parse_dt(ctlr, spi, nc);
2513	if (rc)
2514		goto err_out;
2515
2516	/* Store a pointer to the node in the device structure */
2517	of_node_get(nc);
2518
2519	device_set_node(&spi->dev, of_fwnode_handle(nc));
2520
2521	/* Register the new device */
2522	rc = spi_add_device(spi);
2523	if (rc) {
2524		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2525		goto err_of_node_put;
2526	}
2527
2528	return spi;
2529
2530err_of_node_put:
2531	of_node_put(nc);
2532err_out:
2533	spi_dev_put(spi);
2534	return ERR_PTR(rc);
2535}
2536
2537/**
2538 * of_register_spi_devices() - Register child devices onto the SPI bus
2539 * @ctlr:	Pointer to spi_controller device
2540 *
2541 * Registers an spi_device for each child node of controller node which
2542 * represents a valid SPI slave.
2543 */
2544static void of_register_spi_devices(struct spi_controller *ctlr)
2545{
2546	struct spi_device *spi;
2547	struct device_node *nc;
2548
2549	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2550		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2551			continue;
2552		spi = of_register_spi_device(ctlr, nc);
2553		if (IS_ERR(spi)) {
2554			dev_warn(&ctlr->dev,
2555				 "Failed to create SPI device for %pOF\n", nc);
2556			of_node_clear_flag(nc, OF_POPULATED);
2557		}
2558	}
2559}
2560#else
2561static void of_register_spi_devices(struct spi_controller *ctlr) { }
2562#endif
2563
2564/**
2565 * spi_new_ancillary_device() - Register ancillary SPI device
2566 * @spi:         Pointer to the main SPI device registering the ancillary device
2567 * @chip_select: Chip Select of the ancillary device
2568 *
2569 * Register an ancillary SPI device; for example some chips have a chip-select
2570 * for normal device usage and another one for setup/firmware upload.
2571 *
2572 * This may only be called from main SPI device's probe routine.
2573 *
2574 * Return: 0 on success; negative errno on failure
2575 */
2576struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2577					     u8 chip_select)
2578{
2579	struct spi_controller *ctlr = spi->controller;
2580	struct spi_device *ancillary;
2581	int rc = 0;
2582
2583	/* Alloc an spi_device */
2584	ancillary = spi_alloc_device(ctlr);
2585	if (!ancillary) {
2586		rc = -ENOMEM;
2587		goto err_out;
2588	}
2589
2590	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2591
2592	/* Use provided chip-select for ancillary device */
2593	spi_set_all_cs_unused(ancillary);
2594	spi_set_chipselect(ancillary, 0, chip_select);
2595
2596	/* Take over SPI mode/speed from SPI main device */
2597	ancillary->max_speed_hz = spi->max_speed_hz;
2598	ancillary->mode = spi->mode;
2599	/*
2600	 * By default spi->chip_select[0] will hold the physical CS number,
2601	 * so set bit 0 in spi->cs_index_mask.
2602	 */
2603	ancillary->cs_index_mask = BIT(0);
2604
2605	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2606
2607	/* Register the new device */
2608	rc = __spi_add_device(ancillary);
2609	if (rc) {
2610		dev_err(&spi->dev, "failed to register ancillary device\n");
2611		goto err_out;
2612	}
2613
2614	return ancillary;
2615
2616err_out:
2617	spi_dev_put(ancillary);
2618	return ERR_PTR(rc);
2619}
2620EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2621
2622#ifdef CONFIG_ACPI
2623struct acpi_spi_lookup {
2624	struct spi_controller 	*ctlr;
2625	u32			max_speed_hz;
2626	u32			mode;
2627	int			irq;
2628	u8			bits_per_word;
2629	u8			chip_select;
2630	int			n;
2631	int			index;
2632};
2633
2634static int acpi_spi_count(struct acpi_resource *ares, void *data)
2635{
2636	struct acpi_resource_spi_serialbus *sb;
2637	int *count = data;
2638
2639	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2640		return 1;
2641
2642	sb = &ares->data.spi_serial_bus;
2643	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2644		return 1;
2645
2646	*count = *count + 1;
2647
2648	return 1;
2649}
2650
2651/**
2652 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2653 * @adev:	ACPI device
2654 *
2655 * Return: the number of SpiSerialBus resources in the ACPI-device's
2656 * resource-list; or a negative error code.
2657 */
2658int acpi_spi_count_resources(struct acpi_device *adev)
2659{
2660	LIST_HEAD(r);
2661	int count = 0;
2662	int ret;
2663
2664	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2665	if (ret < 0)
2666		return ret;
2667
2668	acpi_dev_free_resource_list(&r);
2669
2670	return count;
2671}
2672EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2673
2674static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2675					    struct acpi_spi_lookup *lookup)
2676{
2677	const union acpi_object *obj;
2678
2679	if (!x86_apple_machine)
2680		return;
2681
2682	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2683	    && obj->buffer.length >= 4)
2684		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2685
2686	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2687	    && obj->buffer.length == 8)
2688		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2689
2690	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2691	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2692		lookup->mode |= SPI_LSB_FIRST;
2693
2694	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2695	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2696		lookup->mode |= SPI_CPOL;
2697
2698	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2699	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2700		lookup->mode |= SPI_CPHA;
2701}
2702
2703static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2704{
2705	struct acpi_spi_lookup *lookup = data;
2706	struct spi_controller *ctlr = lookup->ctlr;
2707
2708	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2709		struct acpi_resource_spi_serialbus *sb;
2710		acpi_handle parent_handle;
2711		acpi_status status;
2712
2713		sb = &ares->data.spi_serial_bus;
2714		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2715
2716			if (lookup->index != -1 && lookup->n++ != lookup->index)
2717				return 1;
2718
2719			status = acpi_get_handle(NULL,
2720						 sb->resource_source.string_ptr,
2721						 &parent_handle);
2722
2723			if (ACPI_FAILURE(status))
2724				return -ENODEV;
2725
2726			if (ctlr) {
2727				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2728					return -ENODEV;
2729			} else {
2730				struct acpi_device *adev;
2731
2732				adev = acpi_fetch_acpi_dev(parent_handle);
2733				if (!adev)
2734					return -ENODEV;
2735
2736				ctlr = acpi_spi_find_controller_by_adev(adev);
2737				if (!ctlr)
2738					return -EPROBE_DEFER;
2739
2740				lookup->ctlr = ctlr;
2741			}
2742
2743			/*
2744			 * ACPI DeviceSelection numbering is handled by the
2745			 * host controller driver in Windows and can vary
2746			 * from driver to driver. In Linux we always expect
2747			 * 0 .. max - 1 so we need to ask the driver to
2748			 * translate between the two schemes.
2749			 */
2750			if (ctlr->fw_translate_cs) {
2751				int cs = ctlr->fw_translate_cs(ctlr,
2752						sb->device_selection);
2753				if (cs < 0)
2754					return cs;
2755				lookup->chip_select = cs;
2756			} else {
2757				lookup->chip_select = sb->device_selection;
2758			}
2759
2760			lookup->max_speed_hz = sb->connection_speed;
2761			lookup->bits_per_word = sb->data_bit_length;
2762
2763			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2764				lookup->mode |= SPI_CPHA;
2765			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2766				lookup->mode |= SPI_CPOL;
2767			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2768				lookup->mode |= SPI_CS_HIGH;
2769		}
2770	} else if (lookup->irq < 0) {
2771		struct resource r;
2772
2773		if (acpi_dev_resource_interrupt(ares, 0, &r))
2774			lookup->irq = r.start;
2775	}
2776
2777	/* Always tell the ACPI core to skip this resource */
2778	return 1;
2779}
2780
2781/**
2782 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2783 * @ctlr: controller to which the spi device belongs
2784 * @adev: ACPI Device for the spi device
2785 * @index: Index of the spi resource inside the ACPI Node
2786 *
2787 * This should be used to allocate a new SPI device from and ACPI Device node.
2788 * The caller is responsible for calling spi_add_device to register the SPI device.
2789 *
2790 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2791 * using the resource.
2792 * If index is set to -1, index is not used.
2793 * Note: If index is -1, ctlr must be set.
2794 *
2795 * Return: a pointer to the new device, or ERR_PTR on error.
2796 */
2797struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2798					 struct acpi_device *adev,
2799					 int index)
2800{
2801	acpi_handle parent_handle = NULL;
2802	struct list_head resource_list;
2803	struct acpi_spi_lookup lookup = {};
2804	struct spi_device *spi;
2805	int ret;
2806
2807	if (!ctlr && index == -1)
2808		return ERR_PTR(-EINVAL);
2809
2810	lookup.ctlr		= ctlr;
2811	lookup.irq		= -1;
2812	lookup.index		= index;
2813	lookup.n		= 0;
2814
2815	INIT_LIST_HEAD(&resource_list);
2816	ret = acpi_dev_get_resources(adev, &resource_list,
2817				     acpi_spi_add_resource, &lookup);
2818	acpi_dev_free_resource_list(&resource_list);
2819
2820	if (ret < 0)
2821		/* Found SPI in _CRS but it points to another controller */
2822		return ERR_PTR(ret);
2823
2824	if (!lookup.max_speed_hz &&
2825	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2826	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2827		/* Apple does not use _CRS but nested devices for SPI slaves */
2828		acpi_spi_parse_apple_properties(adev, &lookup);
2829	}
2830
2831	if (!lookup.max_speed_hz)
2832		return ERR_PTR(-ENODEV);
2833
2834	spi = spi_alloc_device(lookup.ctlr);
2835	if (!spi) {
2836		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2837			dev_name(&adev->dev));
2838		return ERR_PTR(-ENOMEM);
2839	}
2840
2841	spi_set_all_cs_unused(spi);
2842	spi_set_chipselect(spi, 0, lookup.chip_select);
2843
2844	ACPI_COMPANION_SET(&spi->dev, adev);
2845	spi->max_speed_hz	= lookup.max_speed_hz;
2846	spi->mode		|= lookup.mode;
2847	spi->irq		= lookup.irq;
2848	spi->bits_per_word	= lookup.bits_per_word;
2849	/*
2850	 * By default spi->chip_select[0] will hold the physical CS number,
2851	 * so set bit 0 in spi->cs_index_mask.
2852	 */
2853	spi->cs_index_mask	= BIT(0);
2854
2855	return spi;
2856}
2857EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2858
2859static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2860					    struct acpi_device *adev)
2861{
2862	struct spi_device *spi;
2863
2864	if (acpi_bus_get_status(adev) || !adev->status.present ||
2865	    acpi_device_enumerated(adev))
2866		return AE_OK;
2867
2868	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2869	if (IS_ERR(spi)) {
2870		if (PTR_ERR(spi) == -ENOMEM)
2871			return AE_NO_MEMORY;
2872		else
2873			return AE_OK;
2874	}
2875
2876	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2877			  sizeof(spi->modalias));
2878
2879	if (spi->irq < 0)
2880		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2881
2882	acpi_device_set_enumerated(adev);
2883
2884	adev->power.flags.ignore_parent = true;
2885	if (spi_add_device(spi)) {
2886		adev->power.flags.ignore_parent = false;
2887		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2888			dev_name(&adev->dev));
2889		spi_dev_put(spi);
2890	}
2891
2892	return AE_OK;
2893}
2894
2895static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2896				       void *data, void **return_value)
2897{
2898	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2899	struct spi_controller *ctlr = data;
2900
2901	if (!adev)
2902		return AE_OK;
2903
2904	return acpi_register_spi_device(ctlr, adev);
2905}
2906
2907#define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2908
2909static void acpi_register_spi_devices(struct spi_controller *ctlr)
2910{
2911	acpi_status status;
2912	acpi_handle handle;
2913
2914	handle = ACPI_HANDLE(ctlr->dev.parent);
2915	if (!handle)
2916		return;
2917
2918	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2919				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2920				     acpi_spi_add_device, NULL, ctlr, NULL);
2921	if (ACPI_FAILURE(status))
2922		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2923}
2924#else
2925static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2926#endif /* CONFIG_ACPI */
2927
2928static void spi_controller_release(struct device *dev)
2929{
2930	struct spi_controller *ctlr;
2931
2932	ctlr = container_of(dev, struct spi_controller, dev);
2933	kfree(ctlr);
2934}
2935
2936static struct class spi_master_class = {
2937	.name		= "spi_master",
2938	.dev_release	= spi_controller_release,
2939	.dev_groups	= spi_master_groups,
2940};
2941
2942#ifdef CONFIG_SPI_SLAVE
2943/**
2944 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2945 *		     controller
2946 * @spi: device used for the current transfer
2947 */
2948int spi_slave_abort(struct spi_device *spi)
2949{
2950	struct spi_controller *ctlr = spi->controller;
2951
2952	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2953		return ctlr->slave_abort(ctlr);
2954
2955	return -ENOTSUPP;
2956}
2957EXPORT_SYMBOL_GPL(spi_slave_abort);
2958
2959int spi_target_abort(struct spi_device *spi)
2960{
2961	struct spi_controller *ctlr = spi->controller;
2962
2963	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2964		return ctlr->target_abort(ctlr);
2965
2966	return -ENOTSUPP;
2967}
2968EXPORT_SYMBOL_GPL(spi_target_abort);
2969
2970static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2971			  char *buf)
2972{
2973	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2974						   dev);
2975	struct device *child;
2976
2977	child = device_find_any_child(&ctlr->dev);
2978	return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2979}
2980
2981static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2982			   const char *buf, size_t count)
2983{
2984	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2985						   dev);
2986	struct spi_device *spi;
2987	struct device *child;
2988	char name[32];
2989	int rc;
2990
2991	rc = sscanf(buf, "%31s", name);
2992	if (rc != 1 || !name[0])
2993		return -EINVAL;
2994
2995	child = device_find_any_child(&ctlr->dev);
2996	if (child) {
2997		/* Remove registered slave */
2998		device_unregister(child);
2999		put_device(child);
3000	}
3001
3002	if (strcmp(name, "(null)")) {
3003		/* Register new slave */
3004		spi = spi_alloc_device(ctlr);
3005		if (!spi)
3006			return -ENOMEM;
3007
3008		strscpy(spi->modalias, name, sizeof(spi->modalias));
3009
3010		rc = spi_add_device(spi);
3011		if (rc) {
3012			spi_dev_put(spi);
3013			return rc;
3014		}
3015	}
3016
3017	return count;
3018}
3019
3020static DEVICE_ATTR_RW(slave);
3021
3022static struct attribute *spi_slave_attrs[] = {
3023	&dev_attr_slave.attr,
3024	NULL,
3025};
3026
3027static const struct attribute_group spi_slave_group = {
3028	.attrs = spi_slave_attrs,
3029};
3030
3031static const struct attribute_group *spi_slave_groups[] = {
3032	&spi_controller_statistics_group,
3033	&spi_slave_group,
3034	NULL,
3035};
3036
3037static struct class spi_slave_class = {
3038	.name		= "spi_slave",
3039	.dev_release	= spi_controller_release,
3040	.dev_groups	= spi_slave_groups,
3041};
3042#else
3043extern struct class spi_slave_class;	/* dummy */
3044#endif
3045
3046/**
3047 * __spi_alloc_controller - allocate an SPI master or slave controller
3048 * @dev: the controller, possibly using the platform_bus
3049 * @size: how much zeroed driver-private data to allocate; the pointer to this
3050 *	memory is in the driver_data field of the returned device, accessible
3051 *	with spi_controller_get_devdata(); the memory is cacheline aligned;
3052 *	drivers granting DMA access to portions of their private data need to
3053 *	round up @size using ALIGN(size, dma_get_cache_alignment()).
3054 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3055 *	slave (true) controller
3056 * Context: can sleep
3057 *
3058 * This call is used only by SPI controller drivers, which are the
3059 * only ones directly touching chip registers.  It's how they allocate
3060 * an spi_controller structure, prior to calling spi_register_controller().
3061 *
3062 * This must be called from context that can sleep.
3063 *
3064 * The caller is responsible for assigning the bus number and initializing the
3065 * controller's methods before calling spi_register_controller(); and (after
3066 * errors adding the device) calling spi_controller_put() to prevent a memory
3067 * leak.
3068 *
3069 * Return: the SPI controller structure on success, else NULL.
3070 */
3071struct spi_controller *__spi_alloc_controller(struct device *dev,
3072					      unsigned int size, bool slave)
3073{
3074	struct spi_controller	*ctlr;
3075	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3076
3077	if (!dev)
3078		return NULL;
3079
3080	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3081	if (!ctlr)
3082		return NULL;
3083
3084	device_initialize(&ctlr->dev);
3085	INIT_LIST_HEAD(&ctlr->queue);
3086	spin_lock_init(&ctlr->queue_lock);
3087	spin_lock_init(&ctlr->bus_lock_spinlock);
3088	mutex_init(&ctlr->bus_lock_mutex);
3089	mutex_init(&ctlr->io_mutex);
3090	mutex_init(&ctlr->add_lock);
3091	ctlr->bus_num = -1;
3092	ctlr->num_chipselect = 1;
3093	ctlr->slave = slave;
3094	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3095		ctlr->dev.class = &spi_slave_class;
3096	else
3097		ctlr->dev.class = &spi_master_class;
3098	ctlr->dev.parent = dev;
3099	pm_suspend_ignore_children(&ctlr->dev, true);
3100	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3101
3102	return ctlr;
3103}
3104EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3105
3106static void devm_spi_release_controller(struct device *dev, void *ctlr)
3107{
3108	spi_controller_put(*(struct spi_controller **)ctlr);
3109}
3110
3111/**
3112 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3113 * @dev: physical device of SPI controller
3114 * @size: how much zeroed driver-private data to allocate
3115 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3116 * Context: can sleep
3117 *
3118 * Allocate an SPI controller and automatically release a reference on it
3119 * when @dev is unbound from its driver.  Drivers are thus relieved from
3120 * having to call spi_controller_put().
3121 *
3122 * The arguments to this function are identical to __spi_alloc_controller().
3123 *
3124 * Return: the SPI controller structure on success, else NULL.
3125 */
3126struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3127						   unsigned int size,
3128						   bool slave)
3129{
3130	struct spi_controller **ptr, *ctlr;
3131
3132	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3133			   GFP_KERNEL);
3134	if (!ptr)
3135		return NULL;
3136
3137	ctlr = __spi_alloc_controller(dev, size, slave);
3138	if (ctlr) {
3139		ctlr->devm_allocated = true;
3140		*ptr = ctlr;
3141		devres_add(dev, ptr);
3142	} else {
3143		devres_free(ptr);
3144	}
3145
3146	return ctlr;
3147}
3148EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3149
3150/**
3151 * spi_get_gpio_descs() - grab chip select GPIOs for the master
3152 * @ctlr: The SPI master to grab GPIO descriptors for
3153 */
3154static int spi_get_gpio_descs(struct spi_controller *ctlr)
3155{
3156	int nb, i;
3157	struct gpio_desc **cs;
3158	struct device *dev = &ctlr->dev;
3159	unsigned long native_cs_mask = 0;
3160	unsigned int num_cs_gpios = 0;
3161
3162	nb = gpiod_count(dev, "cs");
3163	if (nb < 0) {
3164		/* No GPIOs at all is fine, else return the error */
3165		if (nb == -ENOENT)
3166			return 0;
3167		return nb;
3168	}
3169
3170	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3171
3172	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3173			  GFP_KERNEL);
3174	if (!cs)
3175		return -ENOMEM;
3176	ctlr->cs_gpiods = cs;
3177
3178	for (i = 0; i < nb; i++) {
3179		/*
3180		 * Most chipselects are active low, the inverted
3181		 * semantics are handled by special quirks in gpiolib,
3182		 * so initializing them GPIOD_OUT_LOW here means
3183		 * "unasserted", in most cases this will drive the physical
3184		 * line high.
3185		 */
3186		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3187						      GPIOD_OUT_LOW);
3188		if (IS_ERR(cs[i]))
3189			return PTR_ERR(cs[i]);
3190
3191		if (cs[i]) {
3192			/*
3193			 * If we find a CS GPIO, name it after the device and
3194			 * chip select line.
3195			 */
3196			char *gpioname;
3197
3198			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3199						  dev_name(dev), i);
3200			if (!gpioname)
3201				return -ENOMEM;
3202			gpiod_set_consumer_name(cs[i], gpioname);
3203			num_cs_gpios++;
3204			continue;
3205		}
3206
3207		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3208			dev_err(dev, "Invalid native chip select %d\n", i);
3209			return -EINVAL;
3210		}
3211		native_cs_mask |= BIT(i);
3212	}
3213
3214	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3215
3216	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3217	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3218		dev_err(dev, "No unused native chip select available\n");
3219		return -EINVAL;
3220	}
3221
3222	return 0;
3223}
3224
3225static int spi_controller_check_ops(struct spi_controller *ctlr)
3226{
3227	/*
3228	 * The controller may implement only the high-level SPI-memory like
3229	 * operations if it does not support regular SPI transfers, and this is
3230	 * valid use case.
3231	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3232	 * one of the ->transfer_xxx() method be implemented.
3233	 */
3234	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3235		if (!ctlr->transfer && !ctlr->transfer_one &&
3236		   !ctlr->transfer_one_message) {
3237			return -EINVAL;
3238		}
3239	}
3240
3241	return 0;
3242}
3243
3244/* Allocate dynamic bus number using Linux idr */
3245static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3246{
3247	int id;
3248
3249	mutex_lock(&board_lock);
3250	id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3251	mutex_unlock(&board_lock);
3252	if (WARN(id < 0, "couldn't get idr"))
3253		return id == -ENOSPC ? -EBUSY : id;
3254	ctlr->bus_num = id;
3255	return 0;
3256}
3257
3258/**
3259 * spi_register_controller - register SPI master or slave controller
3260 * @ctlr: initialized master, originally from spi_alloc_master() or
3261 *	spi_alloc_slave()
3262 * Context: can sleep
3263 *
3264 * SPI controllers connect to their drivers using some non-SPI bus,
3265 * such as the platform bus.  The final stage of probe() in that code
3266 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3267 *
3268 * SPI controllers use board specific (often SOC specific) bus numbers,
3269 * and board-specific addressing for SPI devices combines those numbers
3270 * with chip select numbers.  Since SPI does not directly support dynamic
3271 * device identification, boards need configuration tables telling which
3272 * chip is at which address.
3273 *
3274 * This must be called from context that can sleep.  It returns zero on
3275 * success, else a negative error code (dropping the controller's refcount).
3276 * After a successful return, the caller is responsible for calling
3277 * spi_unregister_controller().
3278 *
3279 * Return: zero on success, else a negative error code.
3280 */
3281int spi_register_controller(struct spi_controller *ctlr)
3282{
3283	struct device		*dev = ctlr->dev.parent;
3284	struct boardinfo	*bi;
3285	int			first_dynamic;
3286	int			status;
3287	int			idx;
3288
3289	if (!dev)
3290		return -ENODEV;
3291
3292	/*
3293	 * Make sure all necessary hooks are implemented before registering
3294	 * the SPI controller.
3295	 */
3296	status = spi_controller_check_ops(ctlr);
3297	if (status)
3298		return status;
3299
3300	if (ctlr->bus_num < 0)
3301		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3302	if (ctlr->bus_num >= 0) {
3303		/* Devices with a fixed bus num must check-in with the num */
3304		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3305		if (status)
3306			return status;
3307	}
3308	if (ctlr->bus_num < 0) {
3309		first_dynamic = of_alias_get_highest_id("spi");
3310		if (first_dynamic < 0)
3311			first_dynamic = 0;
3312		else
3313			first_dynamic++;
3314
3315		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3316		if (status)
3317			return status;
3318	}
3319	ctlr->bus_lock_flag = 0;
3320	init_completion(&ctlr->xfer_completion);
3321	init_completion(&ctlr->cur_msg_completion);
3322	if (!ctlr->max_dma_len)
3323		ctlr->max_dma_len = INT_MAX;
3324
3325	/*
3326	 * Register the device, then userspace will see it.
3327	 * Registration fails if the bus ID is in use.
3328	 */
3329	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3330
3331	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3332		status = spi_get_gpio_descs(ctlr);
3333		if (status)
3334			goto free_bus_id;
3335		/*
3336		 * A controller using GPIO descriptors always
3337		 * supports SPI_CS_HIGH if need be.
3338		 */
3339		ctlr->mode_bits |= SPI_CS_HIGH;
3340	}
3341
3342	/*
3343	 * Even if it's just one always-selected device, there must
3344	 * be at least one chipselect.
3345	 */
3346	if (!ctlr->num_chipselect) {
3347		status = -EINVAL;
3348		goto free_bus_id;
3349	}
3350
3351	/* Setting last_cs to SPI_INVALID_CS means no chip selected */
3352	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3353		ctlr->last_cs[idx] = SPI_INVALID_CS;
3354
3355	status = device_add(&ctlr->dev);
3356	if (status < 0)
3357		goto free_bus_id;
3358	dev_dbg(dev, "registered %s %s\n",
3359			spi_controller_is_slave(ctlr) ? "slave" : "master",
3360			dev_name(&ctlr->dev));
3361
3362	/*
3363	 * If we're using a queued driver, start the queue. Note that we don't
3364	 * need the queueing logic if the driver is only supporting high-level
3365	 * memory operations.
3366	 */
3367	if (ctlr->transfer) {
3368		dev_info(dev, "controller is unqueued, this is deprecated\n");
3369	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3370		status = spi_controller_initialize_queue(ctlr);
3371		if (status) {
3372			device_del(&ctlr->dev);
3373			goto free_bus_id;
3374		}
3375	}
3376	/* Add statistics */
3377	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3378	if (!ctlr->pcpu_statistics) {
3379		dev_err(dev, "Error allocating per-cpu statistics\n");
3380		status = -ENOMEM;
3381		goto destroy_queue;
3382	}
3383
3384	mutex_lock(&board_lock);
3385	list_add_tail(&ctlr->list, &spi_controller_list);
3386	list_for_each_entry(bi, &board_list, list)
3387		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3388	mutex_unlock(&board_lock);
3389
3390	/* Register devices from the device tree and ACPI */
3391	of_register_spi_devices(ctlr);
3392	acpi_register_spi_devices(ctlr);
3393	return status;
3394
3395destroy_queue:
3396	spi_destroy_queue(ctlr);
3397free_bus_id:
3398	mutex_lock(&board_lock);
3399	idr_remove(&spi_master_idr, ctlr->bus_num);
3400	mutex_unlock(&board_lock);
3401	return status;
3402}
3403EXPORT_SYMBOL_GPL(spi_register_controller);
3404
3405static void devm_spi_unregister(struct device *dev, void *res)
3406{
3407	spi_unregister_controller(*(struct spi_controller **)res);
3408}
3409
3410/**
3411 * devm_spi_register_controller - register managed SPI master or slave
3412 *	controller
3413 * @dev:    device managing SPI controller
3414 * @ctlr: initialized controller, originally from spi_alloc_master() or
3415 *	spi_alloc_slave()
3416 * Context: can sleep
3417 *
3418 * Register a SPI device as with spi_register_controller() which will
3419 * automatically be unregistered and freed.
3420 *
3421 * Return: zero on success, else a negative error code.
3422 */
3423int devm_spi_register_controller(struct device *dev,
3424				 struct spi_controller *ctlr)
3425{
3426	struct spi_controller **ptr;
3427	int ret;
3428
3429	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3430	if (!ptr)
3431		return -ENOMEM;
3432
3433	ret = spi_register_controller(ctlr);
3434	if (!ret) {
3435		*ptr = ctlr;
3436		devres_add(dev, ptr);
3437	} else {
3438		devres_free(ptr);
3439	}
3440
3441	return ret;
3442}
3443EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3444
3445static int __unregister(struct device *dev, void *null)
3446{
3447	spi_unregister_device(to_spi_device(dev));
3448	return 0;
3449}
3450
3451/**
3452 * spi_unregister_controller - unregister SPI master or slave controller
3453 * @ctlr: the controller being unregistered
3454 * Context: can sleep
3455 *
3456 * This call is used only by SPI controller drivers, which are the
3457 * only ones directly touching chip registers.
3458 *
3459 * This must be called from context that can sleep.
3460 *
3461 * Note that this function also drops a reference to the controller.
3462 */
3463void spi_unregister_controller(struct spi_controller *ctlr)
3464{
3465	struct spi_controller *found;
3466	int id = ctlr->bus_num;
3467
3468	/* Prevent addition of new devices, unregister existing ones */
3469	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3470		mutex_lock(&ctlr->add_lock);
3471
3472	device_for_each_child(&ctlr->dev, NULL, __unregister);
3473
3474	/* First make sure that this controller was ever added */
3475	mutex_lock(&board_lock);
3476	found = idr_find(&spi_master_idr, id);
3477	mutex_unlock(&board_lock);
3478	if (ctlr->queued) {
3479		if (spi_destroy_queue(ctlr))
3480			dev_err(&ctlr->dev, "queue remove failed\n");
3481	}
3482	mutex_lock(&board_lock);
3483	list_del(&ctlr->list);
3484	mutex_unlock(&board_lock);
3485
3486	device_del(&ctlr->dev);
3487
3488	/* Free bus id */
3489	mutex_lock(&board_lock);
3490	if (found == ctlr)
3491		idr_remove(&spi_master_idr, id);
3492	mutex_unlock(&board_lock);
3493
3494	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3495		mutex_unlock(&ctlr->add_lock);
3496
3497	/*
3498	 * Release the last reference on the controller if its driver
3499	 * has not yet been converted to devm_spi_alloc_master/slave().
3500	 */
3501	if (!ctlr->devm_allocated)
3502		put_device(&ctlr->dev);
3503}
3504EXPORT_SYMBOL_GPL(spi_unregister_controller);
3505
3506static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3507{
3508	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3509}
3510
3511static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3512{
3513	mutex_lock(&ctlr->bus_lock_mutex);
3514	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3515	mutex_unlock(&ctlr->bus_lock_mutex);
3516}
3517
3518static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3519{
3520	mutex_lock(&ctlr->bus_lock_mutex);
3521	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3522	mutex_unlock(&ctlr->bus_lock_mutex);
3523}
3524
3525int spi_controller_suspend(struct spi_controller *ctlr)
3526{
3527	int ret = 0;
3528
3529	/* Basically no-ops for non-queued controllers */
3530	if (ctlr->queued) {
3531		ret = spi_stop_queue(ctlr);
3532		if (ret)
3533			dev_err(&ctlr->dev, "queue stop failed\n");
3534	}
3535
3536	__spi_mark_suspended(ctlr);
3537	return ret;
3538}
3539EXPORT_SYMBOL_GPL(spi_controller_suspend);
3540
3541int spi_controller_resume(struct spi_controller *ctlr)
3542{
3543	int ret = 0;
3544
3545	__spi_mark_resumed(ctlr);
3546
3547	if (ctlr->queued) {
3548		ret = spi_start_queue(ctlr);
3549		if (ret)
3550			dev_err(&ctlr->dev, "queue restart failed\n");
3551	}
3552	return ret;
3553}
3554EXPORT_SYMBOL_GPL(spi_controller_resume);
3555
3556/*-------------------------------------------------------------------------*/
3557
3558/* Core methods for spi_message alterations */
3559
3560static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3561					    struct spi_message *msg,
3562					    void *res)
3563{
3564	struct spi_replaced_transfers *rxfer = res;
3565	size_t i;
3566
3567	/* Call extra callback if requested */
3568	if (rxfer->release)
3569		rxfer->release(ctlr, msg, res);
3570
3571	/* Insert replaced transfers back into the message */
3572	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3573
3574	/* Remove the formerly inserted entries */
3575	for (i = 0; i < rxfer->inserted; i++)
3576		list_del(&rxfer->inserted_transfers[i].transfer_list);
3577}
3578
3579/**
3580 * spi_replace_transfers - replace transfers with several transfers
3581 *                         and register change with spi_message.resources
3582 * @msg:           the spi_message we work upon
3583 * @xfer_first:    the first spi_transfer we want to replace
3584 * @remove:        number of transfers to remove
3585 * @insert:        the number of transfers we want to insert instead
3586 * @release:       extra release code necessary in some circumstances
3587 * @extradatasize: extra data to allocate (with alignment guarantees
3588 *                 of struct @spi_transfer)
3589 * @gfp:           gfp flags
3590 *
3591 * Returns: pointer to @spi_replaced_transfers,
3592 *          PTR_ERR(...) in case of errors.
3593 */
3594static struct spi_replaced_transfers *spi_replace_transfers(
3595	struct spi_message *msg,
3596	struct spi_transfer *xfer_first,
3597	size_t remove,
3598	size_t insert,
3599	spi_replaced_release_t release,
3600	size_t extradatasize,
3601	gfp_t gfp)
3602{
3603	struct spi_replaced_transfers *rxfer;
3604	struct spi_transfer *xfer;
3605	size_t i;
3606
3607	/* Allocate the structure using spi_res */
3608	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3609			      struct_size(rxfer, inserted_transfers, insert)
3610			      + extradatasize,
3611			      gfp);
3612	if (!rxfer)
3613		return ERR_PTR(-ENOMEM);
3614
3615	/* The release code to invoke before running the generic release */
3616	rxfer->release = release;
3617
3618	/* Assign extradata */
3619	if (extradatasize)
3620		rxfer->extradata =
3621			&rxfer->inserted_transfers[insert];
3622
3623	/* Init the replaced_transfers list */
3624	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3625
3626	/*
3627	 * Assign the list_entry after which we should reinsert
3628	 * the @replaced_transfers - it may be spi_message.messages!
3629	 */
3630	rxfer->replaced_after = xfer_first->transfer_list.prev;
3631
3632	/* Remove the requested number of transfers */
3633	for (i = 0; i < remove; i++) {
3634		/*
3635		 * If the entry after replaced_after it is msg->transfers
3636		 * then we have been requested to remove more transfers
3637		 * than are in the list.
3638		 */
3639		if (rxfer->replaced_after->next == &msg->transfers) {
3640			dev_err(&msg->spi->dev,
3641				"requested to remove more spi_transfers than are available\n");
3642			/* Insert replaced transfers back into the message */
3643			list_splice(&rxfer->replaced_transfers,
3644				    rxfer->replaced_after);
3645
3646			/* Free the spi_replace_transfer structure... */
3647			spi_res_free(rxfer);
3648
3649			/* ...and return with an error */
3650			return ERR_PTR(-EINVAL);
3651		}
3652
3653		/*
3654		 * Remove the entry after replaced_after from list of
3655		 * transfers and add it to list of replaced_transfers.
3656		 */
3657		list_move_tail(rxfer->replaced_after->next,
3658			       &rxfer->replaced_transfers);
3659	}
3660
3661	/*
3662	 * Create copy of the given xfer with identical settings
3663	 * based on the first transfer to get removed.
3664	 */
3665	for (i = 0; i < insert; i++) {
3666		/* We need to run in reverse order */
3667		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3668
3669		/* Copy all spi_transfer data */
3670		memcpy(xfer, xfer_first, sizeof(*xfer));
3671
3672		/* Add to list */
3673		list_add(&xfer->transfer_list, rxfer->replaced_after);
3674
3675		/* Clear cs_change and delay for all but the last */
3676		if (i) {
3677			xfer->cs_change = false;
3678			xfer->delay.value = 0;
3679		}
3680	}
3681
3682	/* Set up inserted... */
3683	rxfer->inserted = insert;
3684
3685	/* ...and register it with spi_res/spi_message */
3686	spi_res_add(msg, rxfer);
3687
3688	return rxfer;
3689}
3690
3691static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3692					struct spi_message *msg,
3693					struct spi_transfer **xferp,
3694					size_t maxsize)
3695{
3696	struct spi_transfer *xfer = *xferp, *xfers;
3697	struct spi_replaced_transfers *srt;
3698	size_t offset;
3699	size_t count, i;
3700
3701	/* Calculate how many we have to replace */
3702	count = DIV_ROUND_UP(xfer->len, maxsize);
3703
3704	/* Create replacement */
3705	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3706	if (IS_ERR(srt))
3707		return PTR_ERR(srt);
3708	xfers = srt->inserted_transfers;
3709
3710	/*
3711	 * Now handle each of those newly inserted spi_transfers.
3712	 * Note that the replacements spi_transfers all are preset
3713	 * to the same values as *xferp, so tx_buf, rx_buf and len
3714	 * are all identical (as well as most others)
3715	 * so we just have to fix up len and the pointers.
3716	 *
3717	 * This also includes support for the depreciated
3718	 * spi_message.is_dma_mapped interface.
3719	 */
3720
3721	/*
3722	 * The first transfer just needs the length modified, so we
3723	 * run it outside the loop.
3724	 */
3725	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3726
3727	/* All the others need rx_buf/tx_buf also set */
3728	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3729		/* Update rx_buf, tx_buf and DMA */
3730		if (xfers[i].rx_buf)
3731			xfers[i].rx_buf += offset;
3732		if (xfers[i].rx_dma)
3733			xfers[i].rx_dma += offset;
3734		if (xfers[i].tx_buf)
3735			xfers[i].tx_buf += offset;
3736		if (xfers[i].tx_dma)
3737			xfers[i].tx_dma += offset;
3738
3739		/* Update length */
3740		xfers[i].len = min(maxsize, xfers[i].len - offset);
3741	}
3742
3743	/*
3744	 * We set up xferp to the last entry we have inserted,
3745	 * so that we skip those already split transfers.
3746	 */
3747	*xferp = &xfers[count - 1];
3748
3749	/* Increment statistics counters */
3750	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3751				       transfers_split_maxsize);
3752	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3753				       transfers_split_maxsize);
3754
3755	return 0;
3756}
3757
3758/**
3759 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3760 *                               when an individual transfer exceeds a
3761 *                               certain size
3762 * @ctlr:    the @spi_controller for this transfer
3763 * @msg:   the @spi_message to transform
3764 * @maxsize:  the maximum when to apply this
3765 *
3766 * This function allocates resources that are automatically freed during the
3767 * spi message unoptimize phase so this function should only be called from
3768 * optimize_message callbacks.
3769 *
3770 * Return: status of transformation
3771 */
3772int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3773				struct spi_message *msg,
3774				size_t maxsize)
3775{
3776	struct spi_transfer *xfer;
3777	int ret;
3778
3779	/*
3780	 * Iterate over the transfer_list,
3781	 * but note that xfer is advanced to the last transfer inserted
3782	 * to avoid checking sizes again unnecessarily (also xfer does
3783	 * potentially belong to a different list by the time the
3784	 * replacement has happened).
3785	 */
3786	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3787		if (xfer->len > maxsize) {
3788			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3789							   maxsize);
3790			if (ret)
3791				return ret;
3792		}
3793	}
3794
3795	return 0;
3796}
3797EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3798
3799
3800/**
3801 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3802 *                                when an individual transfer exceeds a
3803 *                                certain number of SPI words
3804 * @ctlr:     the @spi_controller for this transfer
3805 * @msg:      the @spi_message to transform
3806 * @maxwords: the number of words to limit each transfer to
3807 *
3808 * This function allocates resources that are automatically freed during the
3809 * spi message unoptimize phase so this function should only be called from
3810 * optimize_message callbacks.
3811 *
3812 * Return: status of transformation
3813 */
3814int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3815				 struct spi_message *msg,
3816				 size_t maxwords)
3817{
3818	struct spi_transfer *xfer;
3819
3820	/*
3821	 * Iterate over the transfer_list,
3822	 * but note that xfer is advanced to the last transfer inserted
3823	 * to avoid checking sizes again unnecessarily (also xfer does
3824	 * potentially belong to a different list by the time the
3825	 * replacement has happened).
3826	 */
3827	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3828		size_t maxsize;
3829		int ret;
3830
3831		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3832		if (xfer->len > maxsize) {
3833			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3834							   maxsize);
3835			if (ret)
3836				return ret;
3837		}
3838	}
3839
3840	return 0;
3841}
3842EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3843
3844/*-------------------------------------------------------------------------*/
3845
3846/*
3847 * Core methods for SPI controller protocol drivers. Some of the
3848 * other core methods are currently defined as inline functions.
3849 */
3850
3851static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3852					u8 bits_per_word)
3853{
3854	if (ctlr->bits_per_word_mask) {
3855		/* Only 32 bits fit in the mask */
3856		if (bits_per_word > 32)
3857			return -EINVAL;
3858		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3859			return -EINVAL;
3860	}
3861
3862	return 0;
3863}
3864
3865/**
3866 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3867 * @spi: the device that requires specific CS timing configuration
3868 *
3869 * Return: zero on success, else a negative error code.
3870 */
3871static int spi_set_cs_timing(struct spi_device *spi)
3872{
3873	struct device *parent = spi->controller->dev.parent;
3874	int status = 0;
3875
3876	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3877		if (spi->controller->auto_runtime_pm) {
3878			status = pm_runtime_get_sync(parent);
3879			if (status < 0) {
3880				pm_runtime_put_noidle(parent);
3881				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3882					status);
3883				return status;
3884			}
3885
3886			status = spi->controller->set_cs_timing(spi);
3887			pm_runtime_mark_last_busy(parent);
3888			pm_runtime_put_autosuspend(parent);
3889		} else {
3890			status = spi->controller->set_cs_timing(spi);
3891		}
3892	}
3893	return status;
3894}
3895
3896/**
3897 * spi_setup - setup SPI mode and clock rate
3898 * @spi: the device whose settings are being modified
3899 * Context: can sleep, and no requests are queued to the device
3900 *
3901 * SPI protocol drivers may need to update the transfer mode if the
3902 * device doesn't work with its default.  They may likewise need
3903 * to update clock rates or word sizes from initial values.  This function
3904 * changes those settings, and must be called from a context that can sleep.
3905 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3906 * effect the next time the device is selected and data is transferred to
3907 * or from it.  When this function returns, the SPI device is deselected.
3908 *
3909 * Note that this call will fail if the protocol driver specifies an option
3910 * that the underlying controller or its driver does not support.  For
3911 * example, not all hardware supports wire transfers using nine bit words,
3912 * LSB-first wire encoding, or active-high chipselects.
3913 *
3914 * Return: zero on success, else a negative error code.
3915 */
3916int spi_setup(struct spi_device *spi)
3917{
3918	unsigned	bad_bits, ugly_bits;
3919	int		status = 0;
3920
3921	/*
3922	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3923	 * are set at the same time.
3924	 */
3925	if ((hweight_long(spi->mode &
3926		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3927	    (hweight_long(spi->mode &
3928		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3929		dev_err(&spi->dev,
3930		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3931		return -EINVAL;
3932	}
3933	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3934	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3935		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3936		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3937		return -EINVAL;
3938	/*
3939	 * Help drivers fail *cleanly* when they need options
3940	 * that aren't supported with their current controller.
3941	 * SPI_CS_WORD has a fallback software implementation,
3942	 * so it is ignored here.
3943	 */
3944	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3945				 SPI_NO_TX | SPI_NO_RX);
3946	ugly_bits = bad_bits &
3947		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3948		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3949	if (ugly_bits) {
3950		dev_warn(&spi->dev,
3951			 "setup: ignoring unsupported mode bits %x\n",
3952			 ugly_bits);
3953		spi->mode &= ~ugly_bits;
3954		bad_bits &= ~ugly_bits;
3955	}
3956	if (bad_bits) {
3957		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3958			bad_bits);
3959		return -EINVAL;
3960	}
3961
3962	if (!spi->bits_per_word) {
3963		spi->bits_per_word = 8;
3964	} else {
3965		/*
3966		 * Some controllers may not support the default 8 bits-per-word
3967		 * so only perform the check when this is explicitly provided.
3968		 */
3969		status = __spi_validate_bits_per_word(spi->controller,
3970						      spi->bits_per_word);
3971		if (status)
3972			return status;
3973	}
3974
3975	if (spi->controller->max_speed_hz &&
3976	    (!spi->max_speed_hz ||
3977	     spi->max_speed_hz > spi->controller->max_speed_hz))
3978		spi->max_speed_hz = spi->controller->max_speed_hz;
3979
3980	mutex_lock(&spi->controller->io_mutex);
3981
3982	if (spi->controller->setup) {
3983		status = spi->controller->setup(spi);
3984		if (status) {
3985			mutex_unlock(&spi->controller->io_mutex);
3986			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3987				status);
3988			return status;
3989		}
3990	}
3991
3992	status = spi_set_cs_timing(spi);
3993	if (status) {
3994		mutex_unlock(&spi->controller->io_mutex);
3995		return status;
3996	}
3997
3998	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3999		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
4000		if (status < 0) {
4001			mutex_unlock(&spi->controller->io_mutex);
4002			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
4003				status);
4004			return status;
4005		}
4006
4007		/*
4008		 * We do not want to return positive value from pm_runtime_get,
4009		 * there are many instances of devices calling spi_setup() and
4010		 * checking for a non-zero return value instead of a negative
4011		 * return value.
4012		 */
4013		status = 0;
4014
4015		spi_set_cs(spi, false, true);
4016		pm_runtime_mark_last_busy(spi->controller->dev.parent);
4017		pm_runtime_put_autosuspend(spi->controller->dev.parent);
4018	} else {
4019		spi_set_cs(spi, false, true);
4020	}
4021
4022	mutex_unlock(&spi->controller->io_mutex);
4023
4024	if (spi->rt && !spi->controller->rt) {
4025		spi->controller->rt = true;
4026		spi_set_thread_rt(spi->controller);
4027	}
4028
4029	trace_spi_setup(spi, status);
4030
4031	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4032			spi->mode & SPI_MODE_X_MASK,
4033			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4034			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4035			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
4036			(spi->mode & SPI_LOOP) ? "loopback, " : "",
4037			spi->bits_per_word, spi->max_speed_hz,
4038			status);
4039
4040	return status;
4041}
4042EXPORT_SYMBOL_GPL(spi_setup);
4043
4044static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4045				       struct spi_device *spi)
4046{
4047	int delay1, delay2;
4048
4049	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4050	if (delay1 < 0)
4051		return delay1;
4052
4053	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4054	if (delay2 < 0)
4055		return delay2;
4056
4057	if (delay1 < delay2)
4058		memcpy(&xfer->word_delay, &spi->word_delay,
4059		       sizeof(xfer->word_delay));
4060
4061	return 0;
4062}
4063
4064static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4065{
4066	struct spi_controller *ctlr = spi->controller;
4067	struct spi_transfer *xfer;
4068	int w_size;
4069
4070	if (list_empty(&message->transfers))
4071		return -EINVAL;
4072
4073	message->spi = spi;
4074
4075	/*
4076	 * Half-duplex links include original MicroWire, and ones with
4077	 * only one data pin like SPI_3WIRE (switches direction) or where
4078	 * either MOSI or MISO is missing.  They can also be caused by
4079	 * software limitations.
4080	 */
4081	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4082	    (spi->mode & SPI_3WIRE)) {
4083		unsigned flags = ctlr->flags;
4084
4085		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4086			if (xfer->rx_buf && xfer->tx_buf)
4087				return -EINVAL;
4088			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4089				return -EINVAL;
4090			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4091				return -EINVAL;
4092		}
4093	}
4094
4095	/*
4096	 * Set transfer bits_per_word and max speed as spi device default if
4097	 * it is not set for this transfer.
4098	 * Set transfer tx_nbits and rx_nbits as single transfer default
4099	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4100	 * Ensure transfer word_delay is at least as long as that required by
4101	 * device itself.
4102	 */
4103	message->frame_length = 0;
4104	list_for_each_entry(xfer, &message->transfers, transfer_list) {
4105		xfer->effective_speed_hz = 0;
4106		message->frame_length += xfer->len;
4107		if (!xfer->bits_per_word)
4108			xfer->bits_per_word = spi->bits_per_word;
4109
4110		if (!xfer->speed_hz)
4111			xfer->speed_hz = spi->max_speed_hz;
4112
4113		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4114			xfer->speed_hz = ctlr->max_speed_hz;
4115
4116		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4117			return -EINVAL;
4118
4119		/*
4120		 * SPI transfer length should be multiple of SPI word size
4121		 * where SPI word size should be power-of-two multiple.
4122		 */
4123		if (xfer->bits_per_word <= 8)
4124			w_size = 1;
4125		else if (xfer->bits_per_word <= 16)
4126			w_size = 2;
4127		else
4128			w_size = 4;
4129
4130		/* No partial transfers accepted */
4131		if (xfer->len % w_size)
4132			return -EINVAL;
4133
4134		if (xfer->speed_hz && ctlr->min_speed_hz &&
4135		    xfer->speed_hz < ctlr->min_speed_hz)
4136			return -EINVAL;
4137
4138		if (xfer->tx_buf && !xfer->tx_nbits)
4139			xfer->tx_nbits = SPI_NBITS_SINGLE;
4140		if (xfer->rx_buf && !xfer->rx_nbits)
4141			xfer->rx_nbits = SPI_NBITS_SINGLE;
4142		/*
4143		 * Check transfer tx/rx_nbits:
4144		 * 1. check the value matches one of single, dual and quad
4145		 * 2. check tx/rx_nbits match the mode in spi_device
4146		 */
4147		if (xfer->tx_buf) {
4148			if (spi->mode & SPI_NO_TX)
4149				return -EINVAL;
4150			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4151				xfer->tx_nbits != SPI_NBITS_DUAL &&
4152				xfer->tx_nbits != SPI_NBITS_QUAD)
4153				return -EINVAL;
4154			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4155				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4156				return -EINVAL;
4157			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4158				!(spi->mode & SPI_TX_QUAD))
4159				return -EINVAL;
4160		}
4161		/* Check transfer rx_nbits */
4162		if (xfer->rx_buf) {
4163			if (spi->mode & SPI_NO_RX)
4164				return -EINVAL;
4165			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4166				xfer->rx_nbits != SPI_NBITS_DUAL &&
4167				xfer->rx_nbits != SPI_NBITS_QUAD)
4168				return -EINVAL;
4169			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4170				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4171				return -EINVAL;
4172			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4173				!(spi->mode & SPI_RX_QUAD))
4174				return -EINVAL;
4175		}
4176
4177		if (_spi_xfer_word_delay_update(xfer, spi))
4178			return -EINVAL;
4179	}
4180
4181	message->status = -EINPROGRESS;
4182
4183	return 0;
4184}
4185
4186/*
4187 * spi_split_transfers - generic handling of transfer splitting
4188 * @msg: the message to split
4189 *
4190 * Under certain conditions, a SPI controller may not support arbitrary
4191 * transfer sizes or other features required by a peripheral. This function
4192 * will split the transfers in the message into smaller transfers that are
4193 * supported by the controller.
4194 *
4195 * Controllers with special requirements not covered here can also split
4196 * transfers in the optimize_message() callback.
4197 *
4198 * Context: can sleep
4199 * Return: zero on success, else a negative error code
4200 */
4201static int spi_split_transfers(struct spi_message *msg)
4202{
4203	struct spi_controller *ctlr = msg->spi->controller;
4204	struct spi_transfer *xfer;
4205	int ret;
4206
4207	/*
4208	 * If an SPI controller does not support toggling the CS line on each
4209	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4210	 * for the CS line, we can emulate the CS-per-word hardware function by
4211	 * splitting transfers into one-word transfers and ensuring that
4212	 * cs_change is set for each transfer.
4213	 */
4214	if ((msg->spi->mode & SPI_CS_WORD) &&
4215	    (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4216		ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4217		if (ret)
4218			return ret;
4219
4220		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4221			/* Don't change cs_change on the last entry in the list */
4222			if (list_is_last(&xfer->transfer_list, &msg->transfers))
4223				break;
4224
4225			xfer->cs_change = 1;
4226		}
4227	} else {
4228		ret = spi_split_transfers_maxsize(ctlr, msg,
4229						  spi_max_transfer_size(msg->spi));
4230		if (ret)
4231			return ret;
4232	}
4233
4234	return 0;
4235}
4236
4237/*
4238 * __spi_optimize_message - shared implementation for spi_optimize_message()
4239 *                          and spi_maybe_optimize_message()
4240 * @spi: the device that will be used for the message
4241 * @msg: the message to optimize
4242 *
4243 * Peripheral drivers will call spi_optimize_message() and the spi core will
4244 * call spi_maybe_optimize_message() instead of calling this directly.
4245 *
4246 * It is not valid to call this on a message that has already been optimized.
4247 *
4248 * Return: zero on success, else a negative error code
4249 */
4250static int __spi_optimize_message(struct spi_device *spi,
4251				  struct spi_message *msg)
4252{
4253	struct spi_controller *ctlr = spi->controller;
4254	int ret;
4255
4256	ret = __spi_validate(spi, msg);
4257	if (ret)
4258		return ret;
4259
4260	ret = spi_split_transfers(msg);
4261	if (ret)
4262		return ret;
4263
4264	if (ctlr->optimize_message) {
4265		ret = ctlr->optimize_message(msg);
4266		if (ret) {
4267			spi_res_release(ctlr, msg);
4268			return ret;
4269		}
4270	}
4271
4272	msg->optimized = true;
4273
4274	return 0;
4275}
4276
4277/*
4278 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4279 * @spi: the device that will be used for the message
4280 * @msg: the message to optimize
4281 * Return: zero on success, else a negative error code
4282 */
4283static int spi_maybe_optimize_message(struct spi_device *spi,
4284				      struct spi_message *msg)
4285{
4286	if (msg->pre_optimized)
4287		return 0;
4288
4289	return __spi_optimize_message(spi, msg);
4290}
4291
4292/**
4293 * spi_optimize_message - do any one-time validation and setup for a SPI message
4294 * @spi: the device that will be used for the message
4295 * @msg: the message to optimize
4296 *
4297 * Peripheral drivers that reuse the same message repeatedly may call this to
4298 * perform as much message prep as possible once, rather than repeating it each
4299 * time a message transfer is performed to improve throughput and reduce CPU
4300 * usage.
4301 *
4302 * Once a message has been optimized, it cannot be modified with the exception
4303 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4304 * only the data in the memory it points to).
4305 *
4306 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4307 * to avoid leaking resources.
4308 *
4309 * Context: can sleep
4310 * Return: zero on success, else a negative error code
4311 */
4312int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4313{
4314	int ret;
4315
4316	ret = __spi_optimize_message(spi, msg);
4317	if (ret)
4318		return ret;
4319
4320	/*
4321	 * This flag indicates that the peripheral driver called spi_optimize_message()
4322	 * and therefore we shouldn't unoptimize message automatically when finalizing
4323	 * the message but rather wait until spi_unoptimize_message() is called
4324	 * by the peripheral driver.
4325	 */
4326	msg->pre_optimized = true;
4327
4328	return 0;
4329}
4330EXPORT_SYMBOL_GPL(spi_optimize_message);
4331
4332/**
4333 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4334 * @msg: the message to unoptimize
4335 *
4336 * Calls to this function must be balanced with calls to spi_optimize_message().
4337 *
4338 * Context: can sleep
4339 */
4340void spi_unoptimize_message(struct spi_message *msg)
4341{
4342	__spi_unoptimize_message(msg);
4343	msg->pre_optimized = false;
4344}
4345EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4346
4347static int __spi_async(struct spi_device *spi, struct spi_message *message)
4348{
4349	struct spi_controller *ctlr = spi->controller;
4350	struct spi_transfer *xfer;
4351
4352	/*
4353	 * Some controllers do not support doing regular SPI transfers. Return
4354	 * ENOTSUPP when this is the case.
4355	 */
4356	if (!ctlr->transfer)
4357		return -ENOTSUPP;
4358
4359	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4360	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4361
4362	trace_spi_message_submit(message);
4363
4364	if (!ctlr->ptp_sts_supported) {
4365		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4366			xfer->ptp_sts_word_pre = 0;
4367			ptp_read_system_prets(xfer->ptp_sts);
4368		}
4369	}
4370
4371	return ctlr->transfer(spi, message);
4372}
4373
4374/**
4375 * spi_async - asynchronous SPI transfer
4376 * @spi: device with which data will be exchanged
4377 * @message: describes the data transfers, including completion callback
4378 * Context: any (IRQs may be blocked, etc)
4379 *
4380 * This call may be used in_irq and other contexts which can't sleep,
4381 * as well as from task contexts which can sleep.
4382 *
4383 * The completion callback is invoked in a context which can't sleep.
4384 * Before that invocation, the value of message->status is undefined.
4385 * When the callback is issued, message->status holds either zero (to
4386 * indicate complete success) or a negative error code.  After that
4387 * callback returns, the driver which issued the transfer request may
4388 * deallocate the associated memory; it's no longer in use by any SPI
4389 * core or controller driver code.
4390 *
4391 * Note that although all messages to a spi_device are handled in
4392 * FIFO order, messages may go to different devices in other orders.
4393 * Some device might be higher priority, or have various "hard" access
4394 * time requirements, for example.
4395 *
4396 * On detection of any fault during the transfer, processing of
4397 * the entire message is aborted, and the device is deselected.
4398 * Until returning from the associated message completion callback,
4399 * no other spi_message queued to that device will be processed.
4400 * (This rule applies equally to all the synchronous transfer calls,
4401 * which are wrappers around this core asynchronous primitive.)
4402 *
4403 * Return: zero on success, else a negative error code.
4404 */
4405int spi_async(struct spi_device *spi, struct spi_message *message)
4406{
4407	struct spi_controller *ctlr = spi->controller;
4408	int ret;
4409	unsigned long flags;
4410
4411	ret = spi_maybe_optimize_message(spi, message);
4412	if (ret)
4413		return ret;
4414
4415	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4416
4417	if (ctlr->bus_lock_flag)
4418		ret = -EBUSY;
4419	else
4420		ret = __spi_async(spi, message);
4421
4422	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4423
4424	spi_maybe_unoptimize_message(message);
4425
4426	return ret;
4427}
4428EXPORT_SYMBOL_GPL(spi_async);
4429
4430static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4431{
4432	bool was_busy;
4433	int ret;
4434
4435	mutex_lock(&ctlr->io_mutex);
4436
4437	was_busy = ctlr->busy;
4438
4439	ctlr->cur_msg = msg;
4440	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4441	if (ret)
4442		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4443	ctlr->cur_msg = NULL;
4444	ctlr->fallback = false;
4445
4446	if (!was_busy) {
4447		kfree(ctlr->dummy_rx);
4448		ctlr->dummy_rx = NULL;
4449		kfree(ctlr->dummy_tx);
4450		ctlr->dummy_tx = NULL;
4451		if (ctlr->unprepare_transfer_hardware &&
4452		    ctlr->unprepare_transfer_hardware(ctlr))
4453			dev_err(&ctlr->dev,
4454				"failed to unprepare transfer hardware\n");
4455		spi_idle_runtime_pm(ctlr);
4456	}
4457
4458	mutex_unlock(&ctlr->io_mutex);
4459}
4460
4461/*-------------------------------------------------------------------------*/
4462
4463/*
4464 * Utility methods for SPI protocol drivers, layered on
4465 * top of the core.  Some other utility methods are defined as
4466 * inline functions.
4467 */
4468
4469static void spi_complete(void *arg)
4470{
4471	complete(arg);
4472}
4473
4474static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4475{
4476	DECLARE_COMPLETION_ONSTACK(done);
4477	unsigned long flags;
4478	int status;
4479	struct spi_controller *ctlr = spi->controller;
4480
4481	if (__spi_check_suspended(ctlr)) {
4482		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4483		return -ESHUTDOWN;
4484	}
4485
4486	status = spi_maybe_optimize_message(spi, message);
4487	if (status)
4488		return status;
4489
4490	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4491	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4492
4493	/*
4494	 * Checking queue_empty here only guarantees async/sync message
4495	 * ordering when coming from the same context. It does not need to
4496	 * guard against reentrancy from a different context. The io_mutex
4497	 * will catch those cases.
4498	 */
4499	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4500		message->actual_length = 0;
4501		message->status = -EINPROGRESS;
4502
4503		trace_spi_message_submit(message);
4504
4505		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4506		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4507
4508		__spi_transfer_message_noqueue(ctlr, message);
4509
4510		return message->status;
4511	}
4512
4513	/*
4514	 * There are messages in the async queue that could have originated
4515	 * from the same context, so we need to preserve ordering.
4516	 * Therefor we send the message to the async queue and wait until they
4517	 * are completed.
4518	 */
4519	message->complete = spi_complete;
4520	message->context = &done;
4521
4522	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4523	status = __spi_async(spi, message);
4524	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4525
4526	if (status == 0) {
4527		wait_for_completion(&done);
4528		status = message->status;
4529	}
4530	message->complete = NULL;
4531	message->context = NULL;
4532
4533	return status;
4534}
4535
4536/**
4537 * spi_sync - blocking/synchronous SPI data transfers
4538 * @spi: device with which data will be exchanged
4539 * @message: describes the data transfers
4540 * Context: can sleep
4541 *
4542 * This call may only be used from a context that may sleep.  The sleep
4543 * is non-interruptible, and has no timeout.  Low-overhead controller
4544 * drivers may DMA directly into and out of the message buffers.
4545 *
4546 * Note that the SPI device's chip select is active during the message,
4547 * and then is normally disabled between messages.  Drivers for some
4548 * frequently-used devices may want to minimize costs of selecting a chip,
4549 * by leaving it selected in anticipation that the next message will go
4550 * to the same chip.  (That may increase power usage.)
4551 *
4552 * Also, the caller is guaranteeing that the memory associated with the
4553 * message will not be freed before this call returns.
4554 *
4555 * Return: zero on success, else a negative error code.
4556 */
4557int spi_sync(struct spi_device *spi, struct spi_message *message)
4558{
4559	int ret;
4560
4561	mutex_lock(&spi->controller->bus_lock_mutex);
4562	ret = __spi_sync(spi, message);
4563	mutex_unlock(&spi->controller->bus_lock_mutex);
4564
4565	return ret;
4566}
4567EXPORT_SYMBOL_GPL(spi_sync);
4568
4569/**
4570 * spi_sync_locked - version of spi_sync with exclusive bus usage
4571 * @spi: device with which data will be exchanged
4572 * @message: describes the data transfers
4573 * Context: can sleep
4574 *
4575 * This call may only be used from a context that may sleep.  The sleep
4576 * is non-interruptible, and has no timeout.  Low-overhead controller
4577 * drivers may DMA directly into and out of the message buffers.
4578 *
4579 * This call should be used by drivers that require exclusive access to the
4580 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4581 * be released by a spi_bus_unlock call when the exclusive access is over.
4582 *
4583 * Return: zero on success, else a negative error code.
4584 */
4585int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4586{
4587	return __spi_sync(spi, message);
4588}
4589EXPORT_SYMBOL_GPL(spi_sync_locked);
4590
4591/**
4592 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4593 * @ctlr: SPI bus master that should be locked for exclusive bus access
4594 * Context: can sleep
4595 *
4596 * This call may only be used from a context that may sleep.  The sleep
4597 * is non-interruptible, and has no timeout.
4598 *
4599 * This call should be used by drivers that require exclusive access to the
4600 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4601 * exclusive access is over. Data transfer must be done by spi_sync_locked
4602 * and spi_async_locked calls when the SPI bus lock is held.
4603 *
4604 * Return: always zero.
4605 */
4606int spi_bus_lock(struct spi_controller *ctlr)
4607{
4608	unsigned long flags;
4609
4610	mutex_lock(&ctlr->bus_lock_mutex);
4611
4612	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4613	ctlr->bus_lock_flag = 1;
4614	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4615
4616	/* Mutex remains locked until spi_bus_unlock() is called */
4617
4618	return 0;
4619}
4620EXPORT_SYMBOL_GPL(spi_bus_lock);
4621
4622/**
4623 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4624 * @ctlr: SPI bus master that was locked for exclusive bus access
4625 * Context: can sleep
4626 *
4627 * This call may only be used from a context that may sleep.  The sleep
4628 * is non-interruptible, and has no timeout.
4629 *
4630 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4631 * call.
4632 *
4633 * Return: always zero.
4634 */
4635int spi_bus_unlock(struct spi_controller *ctlr)
4636{
4637	ctlr->bus_lock_flag = 0;
4638
4639	mutex_unlock(&ctlr->bus_lock_mutex);
4640
4641	return 0;
4642}
4643EXPORT_SYMBOL_GPL(spi_bus_unlock);
4644
4645/* Portable code must never pass more than 32 bytes */
4646#define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4647
4648static u8	*buf;
4649
4650/**
4651 * spi_write_then_read - SPI synchronous write followed by read
4652 * @spi: device with which data will be exchanged
4653 * @txbuf: data to be written (need not be DMA-safe)
4654 * @n_tx: size of txbuf, in bytes
4655 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4656 * @n_rx: size of rxbuf, in bytes
4657 * Context: can sleep
4658 *
4659 * This performs a half duplex MicroWire style transaction with the
4660 * device, sending txbuf and then reading rxbuf.  The return value
4661 * is zero for success, else a negative errno status code.
4662 * This call may only be used from a context that may sleep.
4663 *
4664 * Parameters to this routine are always copied using a small buffer.
4665 * Performance-sensitive or bulk transfer code should instead use
4666 * spi_{async,sync}() calls with DMA-safe buffers.
4667 *
4668 * Return: zero on success, else a negative error code.
4669 */
4670int spi_write_then_read(struct spi_device *spi,
4671		const void *txbuf, unsigned n_tx,
4672		void *rxbuf, unsigned n_rx)
4673{
4674	static DEFINE_MUTEX(lock);
4675
4676	int			status;
4677	struct spi_message	message;
4678	struct spi_transfer	x[2];
4679	u8			*local_buf;
4680
4681	/*
4682	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4683	 * copying here, (as a pure convenience thing), but we can
4684	 * keep heap costs out of the hot path unless someone else is
4685	 * using the pre-allocated buffer or the transfer is too large.
4686	 */
4687	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4688		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4689				    GFP_KERNEL | GFP_DMA);
4690		if (!local_buf)
4691			return -ENOMEM;
4692	} else {
4693		local_buf = buf;
4694	}
4695
4696	spi_message_init(&message);
4697	memset(x, 0, sizeof(x));
4698	if (n_tx) {
4699		x[0].len = n_tx;
4700		spi_message_add_tail(&x[0], &message);
4701	}
4702	if (n_rx) {
4703		x[1].len = n_rx;
4704		spi_message_add_tail(&x[1], &message);
4705	}
4706
4707	memcpy(local_buf, txbuf, n_tx);
4708	x[0].tx_buf = local_buf;
4709	x[1].rx_buf = local_buf + n_tx;
4710
4711	/* Do the I/O */
4712	status = spi_sync(spi, &message);
4713	if (status == 0)
4714		memcpy(rxbuf, x[1].rx_buf, n_rx);
4715
4716	if (x[0].tx_buf == buf)
4717		mutex_unlock(&lock);
4718	else
4719		kfree(local_buf);
4720
4721	return status;
4722}
4723EXPORT_SYMBOL_GPL(spi_write_then_read);
4724
4725/*-------------------------------------------------------------------------*/
4726
4727#if IS_ENABLED(CONFIG_OF_DYNAMIC)
4728/* Must call put_device() when done with returned spi_device device */
4729static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4730{
4731	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4732
4733	return dev ? to_spi_device(dev) : NULL;
4734}
4735
4736/* The spi controllers are not using spi_bus, so we find it with another way */
4737static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4738{
4739	struct device *dev;
4740
4741	dev = class_find_device_by_of_node(&spi_master_class, node);
4742	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4743		dev = class_find_device_by_of_node(&spi_slave_class, node);
4744	if (!dev)
4745		return NULL;
4746
4747	/* Reference got in class_find_device */
4748	return container_of(dev, struct spi_controller, dev);
4749}
4750
4751static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4752			 void *arg)
4753{
4754	struct of_reconfig_data *rd = arg;
4755	struct spi_controller *ctlr;
4756	struct spi_device *spi;
4757
4758	switch (of_reconfig_get_state_change(action, arg)) {
4759	case OF_RECONFIG_CHANGE_ADD:
4760		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4761		if (ctlr == NULL)
4762			return NOTIFY_OK;	/* Not for us */
4763
4764		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4765			put_device(&ctlr->dev);
4766			return NOTIFY_OK;
4767		}
4768
4769		/*
4770		 * Clear the flag before adding the device so that fw_devlink
4771		 * doesn't skip adding consumers to this device.
4772		 */
4773		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4774		spi = of_register_spi_device(ctlr, rd->dn);
4775		put_device(&ctlr->dev);
4776
4777		if (IS_ERR(spi)) {
4778			pr_err("%s: failed to create for '%pOF'\n",
4779					__func__, rd->dn);
4780			of_node_clear_flag(rd->dn, OF_POPULATED);
4781			return notifier_from_errno(PTR_ERR(spi));
4782		}
4783		break;
4784
4785	case OF_RECONFIG_CHANGE_REMOVE:
4786		/* Already depopulated? */
4787		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4788			return NOTIFY_OK;
4789
4790		/* Find our device by node */
4791		spi = of_find_spi_device_by_node(rd->dn);
4792		if (spi == NULL)
4793			return NOTIFY_OK;	/* No? not meant for us */
4794
4795		/* Unregister takes one ref away */
4796		spi_unregister_device(spi);
4797
4798		/* And put the reference of the find */
4799		put_device(&spi->dev);
4800		break;
4801	}
4802
4803	return NOTIFY_OK;
4804}
4805
4806static struct notifier_block spi_of_notifier = {
4807	.notifier_call = of_spi_notify,
4808};
4809#else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4810extern struct notifier_block spi_of_notifier;
4811#endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4812
4813#if IS_ENABLED(CONFIG_ACPI)
4814static int spi_acpi_controller_match(struct device *dev, const void *data)
4815{
4816	return ACPI_COMPANION(dev->parent) == data;
4817}
4818
4819struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4820{
4821	struct device *dev;
4822
4823	dev = class_find_device(&spi_master_class, NULL, adev,
4824				spi_acpi_controller_match);
4825	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4826		dev = class_find_device(&spi_slave_class, NULL, adev,
4827					spi_acpi_controller_match);
4828	if (!dev)
4829		return NULL;
4830
4831	return container_of(dev, struct spi_controller, dev);
4832}
4833EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4834
4835static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4836{
4837	struct device *dev;
4838
4839	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4840	return to_spi_device(dev);
4841}
4842
4843static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4844			   void *arg)
4845{
4846	struct acpi_device *adev = arg;
4847	struct spi_controller *ctlr;
4848	struct spi_device *spi;
4849
4850	switch (value) {
4851	case ACPI_RECONFIG_DEVICE_ADD:
4852		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4853		if (!ctlr)
4854			break;
4855
4856		acpi_register_spi_device(ctlr, adev);
4857		put_device(&ctlr->dev);
4858		break;
4859	case ACPI_RECONFIG_DEVICE_REMOVE:
4860		if (!acpi_device_enumerated(adev))
4861			break;
4862
4863		spi = acpi_spi_find_device_by_adev(adev);
4864		if (!spi)
4865			break;
4866
4867		spi_unregister_device(spi);
4868		put_device(&spi->dev);
4869		break;
4870	}
4871
4872	return NOTIFY_OK;
4873}
4874
4875static struct notifier_block spi_acpi_notifier = {
4876	.notifier_call = acpi_spi_notify,
4877};
4878#else
4879extern struct notifier_block spi_acpi_notifier;
4880#endif
4881
4882static int __init spi_init(void)
4883{
4884	int	status;
4885
4886	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4887	if (!buf) {
4888		status = -ENOMEM;
4889		goto err0;
4890	}
4891
4892	status = bus_register(&spi_bus_type);
4893	if (status < 0)
4894		goto err1;
4895
4896	status = class_register(&spi_master_class);
4897	if (status < 0)
4898		goto err2;
4899
4900	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4901		status = class_register(&spi_slave_class);
4902		if (status < 0)
4903			goto err3;
4904	}
4905
4906	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4907		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4908	if (IS_ENABLED(CONFIG_ACPI))
4909		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4910
4911	return 0;
4912
4913err3:
4914	class_unregister(&spi_master_class);
4915err2:
4916	bus_unregister(&spi_bus_type);
4917err1:
4918	kfree(buf);
4919	buf = NULL;
4920err0:
4921	return status;
4922}
4923
4924/*
4925 * A board_info is normally registered in arch_initcall(),
4926 * but even essential drivers wait till later.
4927 *
4928 * REVISIT only boardinfo really needs static linking. The rest (device and
4929 * driver registration) _could_ be dynamically linked (modular) ... Costs
4930 * include needing to have boardinfo data structures be much more public.
4931 */
4932postcore_initcall(spi_init);