Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
   3 *
   4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
   5 * Copyright (C) 2006 David Brownell (convert to new framework)
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; either version
  10 * 2 of the License, or (at your option) any later version.
  11 */
  12
  13/*
  14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  15 * That defined the register interface now provided by all PCs, some
  16 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
  17 * integrate an MC146818 clone in their southbridge, and boards use
  18 * that instead of discrete clones like the DS12887 or M48T86.  There
  19 * are also clones that connect using the LPC bus.
  20 *
  21 * That register API is also used directly by various other drivers
  22 * (notably for integrated NVRAM), infrastructure (x86 has code to
  23 * bypass the RTC framework, directly reading the RTC during boot
  24 * and updating minutes/seconds for systems using NTP synch) and
  25 * utilities (like userspace 'hwclock', if no /dev node exists).
  26 *
  27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  28 * interrupts disabled, holding the global rtc_lock, to exclude those
  29 * other drivers and utilities on correctly configured systems.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/kernel.h>
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/interrupt.h>
  38#include <linux/spinlock.h>
  39#include <linux/platform_device.h>
  40#include <linux/log2.h>
  41#include <linux/pm.h>
  42#include <linux/of.h>
  43#include <linux/of_platform.h>
  44
  45/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  46#include <asm-generic/rtc.h>
  47
  48struct cmos_rtc {
  49	struct rtc_device	*rtc;
  50	struct device		*dev;
  51	int			irq;
  52	struct resource		*iomem;
  53	time64_t		alarm_expires;
  54
  55	void			(*wake_on)(struct device *);
  56	void			(*wake_off)(struct device *);
  57
  58	u8			enabled_wake;
  59	u8			suspend_ctrl;
  60
  61	/* newer hardware extends the original register set */
  62	u8			day_alrm;
  63	u8			mon_alrm;
  64	u8			century;
 
 
  65};
  66
  67/* both platform and pnp busses use negative numbers for invalid irqs */
  68#define is_valid_irq(n)		((n) > 0)
  69
  70static const char driver_name[] = "rtc_cmos";
  71
  72/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  73 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
  74 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  75 */
  76#define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
  77
  78static inline int is_intr(u8 rtc_intr)
  79{
  80	if (!(rtc_intr & RTC_IRQF))
  81		return 0;
  82	return rtc_intr & RTC_IRQMASK;
  83}
  84
  85/*----------------------------------------------------------------*/
  86
  87/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  88 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  89 * used in a broken "legacy replacement" mode.  The breakage includes
  90 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  91 * other (better) use.
  92 *
  93 * When that broken mode is in use, platform glue provides a partial
  94 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
  95 * want to use HPET for anything except those IRQs though...
  96 */
  97#ifdef CONFIG_HPET_EMULATE_RTC
  98#include <asm/hpet.h>
  99#else
 100
 101static inline int is_hpet_enabled(void)
 102{
 103	return 0;
 104}
 105
 106static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
 107{
 108	return 0;
 109}
 110
 111static inline int hpet_set_rtc_irq_bit(unsigned long mask)
 112{
 113	return 0;
 114}
 115
 116static inline int
 117hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 118{
 119	return 0;
 120}
 121
 122static inline int hpet_set_periodic_freq(unsigned long freq)
 123{
 124	return 0;
 125}
 126
 127static inline int hpet_rtc_dropped_irq(void)
 128{
 129	return 0;
 130}
 131
 132static inline int hpet_rtc_timer_init(void)
 133{
 134	return 0;
 135}
 136
 137extern irq_handler_t hpet_rtc_interrupt;
 138
 139static inline int hpet_register_irq_handler(irq_handler_t handler)
 140{
 141	return 0;
 142}
 143
 144static inline int hpet_unregister_irq_handler(irq_handler_t handler)
 145{
 146	return 0;
 147}
 148
 149#endif
 150
 151/*----------------------------------------------------------------*/
 152
 153#ifdef RTC_PORT
 154
 155/* Most newer x86 systems have two register banks, the first used
 156 * for RTC and NVRAM and the second only for NVRAM.  Caller must
 157 * own rtc_lock ... and we won't worry about access during NMI.
 158 */
 159#define can_bank2	true
 160
 161static inline unsigned char cmos_read_bank2(unsigned char addr)
 162{
 163	outb(addr, RTC_PORT(2));
 164	return inb(RTC_PORT(3));
 165}
 166
 167static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 168{
 169	outb(addr, RTC_PORT(2));
 170	outb(val, RTC_PORT(3));
 171}
 172
 173#else
 174
 175#define can_bank2	false
 176
 177static inline unsigned char cmos_read_bank2(unsigned char addr)
 178{
 179	return 0;
 180}
 181
 182static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 183{
 184}
 185
 186#endif
 187
 188/*----------------------------------------------------------------*/
 189
 190static int cmos_read_time(struct device *dev, struct rtc_time *t)
 191{
 
 
 
 
 
 
 
 192	/* REVISIT:  if the clock has a "century" register, use
 193	 * that instead of the heuristic in get_rtc_time().
 194	 * That'll make Y3K compatility (year > 2070) easy!
 195	 */
 196	get_rtc_time(t);
 197	return 0;
 198}
 199
 200static int cmos_set_time(struct device *dev, struct rtc_time *t)
 201{
 202	/* REVISIT:  set the "century" register if available
 203	 *
 204	 * NOTE: this ignores the issue whereby updating the seconds
 205	 * takes effect exactly 500ms after we write the register.
 206	 * (Also queueing and other delays before we get this far.)
 207	 */
 208	return set_rtc_time(t);
 209}
 210
 211static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
 212{
 213	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 214	unsigned char	rtc_control;
 215
 216	if (!is_valid_irq(cmos->irq))
 217		return -EIO;
 218
 219	/* Basic alarms only support hour, minute, and seconds fields.
 220	 * Some also support day and month, for alarms up to a year in
 221	 * the future.
 222	 */
 223	t->time.tm_mday = -1;
 224	t->time.tm_mon = -1;
 225
 226	spin_lock_irq(&rtc_lock);
 227	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 228	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 229	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 230
 231	if (cmos->day_alrm) {
 232		/* ignore upper bits on readback per ACPI spec */
 233		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
 234		if (!t->time.tm_mday)
 235			t->time.tm_mday = -1;
 236
 237		if (cmos->mon_alrm) {
 238			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
 239			if (!t->time.tm_mon)
 240				t->time.tm_mon = -1;
 241		}
 242	}
 243
 244	rtc_control = CMOS_READ(RTC_CONTROL);
 245	spin_unlock_irq(&rtc_lock);
 246
 247	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 248		if (((unsigned)t->time.tm_sec) < 0x60)
 249			t->time.tm_sec = bcd2bin(t->time.tm_sec);
 250		else
 251			t->time.tm_sec = -1;
 252		if (((unsigned)t->time.tm_min) < 0x60)
 253			t->time.tm_min = bcd2bin(t->time.tm_min);
 254		else
 255			t->time.tm_min = -1;
 256		if (((unsigned)t->time.tm_hour) < 0x24)
 257			t->time.tm_hour = bcd2bin(t->time.tm_hour);
 258		else
 259			t->time.tm_hour = -1;
 260
 261		if (cmos->day_alrm) {
 262			if (((unsigned)t->time.tm_mday) <= 0x31)
 263				t->time.tm_mday = bcd2bin(t->time.tm_mday);
 264			else
 265				t->time.tm_mday = -1;
 266
 267			if (cmos->mon_alrm) {
 268				if (((unsigned)t->time.tm_mon) <= 0x12)
 269					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
 270				else
 271					t->time.tm_mon = -1;
 272			}
 273		}
 274	}
 275	t->time.tm_year = -1;
 276
 277	t->enabled = !!(rtc_control & RTC_AIE);
 278	t->pending = 0;
 279
 280	return 0;
 281}
 282
 283static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
 284{
 285	unsigned char	rtc_intr;
 286
 287	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
 288	 * allegedly some older rtcs need that to handle irqs properly
 289	 */
 290	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 291
 292	if (is_hpet_enabled())
 293		return;
 294
 295	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 296	if (is_intr(rtc_intr))
 297		rtc_update_irq(cmos->rtc, 1, rtc_intr);
 298}
 299
 300static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
 301{
 302	unsigned char	rtc_control;
 303
 304	/* flush any pending IRQ status, notably for update irqs,
 305	 * before we enable new IRQs
 306	 */
 307	rtc_control = CMOS_READ(RTC_CONTROL);
 308	cmos_checkintr(cmos, rtc_control);
 309
 310	rtc_control |= mask;
 311	CMOS_WRITE(rtc_control, RTC_CONTROL);
 312	hpet_set_rtc_irq_bit(mask);
 313
 314	cmos_checkintr(cmos, rtc_control);
 315}
 316
 317static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
 318{
 319	unsigned char	rtc_control;
 320
 321	rtc_control = CMOS_READ(RTC_CONTROL);
 322	rtc_control &= ~mask;
 323	CMOS_WRITE(rtc_control, RTC_CONTROL);
 324	hpet_mask_rtc_irq_bit(mask);
 325
 326	cmos_checkintr(cmos, rtc_control);
 327}
 328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 329static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
 330{
 331	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 332	unsigned char mon, mday, hrs, min, sec, rtc_control;
 
 333
 334	if (!is_valid_irq(cmos->irq))
 335		return -EIO;
 336
 
 
 
 
 337	mon = t->time.tm_mon + 1;
 338	mday = t->time.tm_mday;
 339	hrs = t->time.tm_hour;
 340	min = t->time.tm_min;
 341	sec = t->time.tm_sec;
 342
 343	rtc_control = CMOS_READ(RTC_CONTROL);
 344	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 345		/* Writing 0xff means "don't care" or "match all".  */
 346		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
 347		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
 348		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
 349		min = (min < 60) ? bin2bcd(min) : 0xff;
 350		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
 351	}
 352
 353	spin_lock_irq(&rtc_lock);
 354
 355	/* next rtc irq must not be from previous alarm setting */
 356	cmos_irq_disable(cmos, RTC_AIE);
 357
 358	/* update alarm */
 359	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 360	CMOS_WRITE(min, RTC_MINUTES_ALARM);
 361	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 362
 363	/* the system may support an "enhanced" alarm */
 364	if (cmos->day_alrm) {
 365		CMOS_WRITE(mday, cmos->day_alrm);
 366		if (cmos->mon_alrm)
 367			CMOS_WRITE(mon, cmos->mon_alrm);
 368	}
 369
 370	/* FIXME the HPET alarm glue currently ignores day_alrm
 371	 * and mon_alrm ...
 372	 */
 373	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
 374
 375	if (t->enabled)
 376		cmos_irq_enable(cmos, RTC_AIE);
 377
 378	spin_unlock_irq(&rtc_lock);
 379
 380	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
 381
 382	return 0;
 383}
 384
 385static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
 386{
 387	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 388	unsigned long	flags;
 389
 390	if (!is_valid_irq(cmos->irq))
 391		return -EINVAL;
 392
 393	spin_lock_irqsave(&rtc_lock, flags);
 394
 395	if (enabled)
 396		cmos_irq_enable(cmos, RTC_AIE);
 397	else
 398		cmos_irq_disable(cmos, RTC_AIE);
 399
 400	spin_unlock_irqrestore(&rtc_lock, flags);
 401	return 0;
 402}
 403
 404#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
 405
 406static int cmos_procfs(struct device *dev, struct seq_file *seq)
 407{
 408	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 409	unsigned char	rtc_control, valid;
 410
 411	spin_lock_irq(&rtc_lock);
 412	rtc_control = CMOS_READ(RTC_CONTROL);
 413	valid = CMOS_READ(RTC_VALID);
 414	spin_unlock_irq(&rtc_lock);
 415
 416	/* NOTE:  at least ICH6 reports battery status using a different
 417	 * (non-RTC) bit; and SQWE is ignored on many current systems.
 418	 */
 419	seq_printf(seq,
 420		   "periodic_IRQ\t: %s\n"
 421		   "update_IRQ\t: %s\n"
 422		   "HPET_emulated\t: %s\n"
 423		   // "square_wave\t: %s\n"
 424		   "BCD\t\t: %s\n"
 425		   "DST_enable\t: %s\n"
 426		   "periodic_freq\t: %d\n"
 427		   "batt_status\t: %s\n",
 428		   (rtc_control & RTC_PIE) ? "yes" : "no",
 429		   (rtc_control & RTC_UIE) ? "yes" : "no",
 430		   is_hpet_enabled() ? "yes" : "no",
 431		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
 432		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
 433		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
 434		   cmos->rtc->irq_freq,
 435		   (valid & RTC_VRT) ? "okay" : "dead");
 436
 437	return 0;
 438}
 439
 440#else
 441#define	cmos_procfs	NULL
 442#endif
 443
 444static const struct rtc_class_ops cmos_rtc_ops = {
 445	.read_time		= cmos_read_time,
 446	.set_time		= cmos_set_time,
 447	.read_alarm		= cmos_read_alarm,
 448	.set_alarm		= cmos_set_alarm,
 449	.proc			= cmos_procfs,
 450	.alarm_irq_enable	= cmos_alarm_irq_enable,
 451};
 452
 453/*----------------------------------------------------------------*/
 454
 455/*
 456 * All these chips have at least 64 bytes of address space, shared by
 457 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 458 * by boot firmware.  Modern chips have 128 or 256 bytes.
 459 */
 460
 461#define NVRAM_OFFSET	(RTC_REG_D + 1)
 462
 463static ssize_t
 464cmos_nvram_read(struct file *filp, struct kobject *kobj,
 465		struct bin_attribute *attr,
 466		char *buf, loff_t off, size_t count)
 467{
 468	int	retval;
 469
 470	off += NVRAM_OFFSET;
 471	spin_lock_irq(&rtc_lock);
 472	for (retval = 0; count; count--, off++, retval++) {
 473		if (off < 128)
 474			*buf++ = CMOS_READ(off);
 475		else if (can_bank2)
 476			*buf++ = cmos_read_bank2(off);
 477		else
 478			break;
 479	}
 480	spin_unlock_irq(&rtc_lock);
 481
 482	return retval;
 483}
 484
 485static ssize_t
 486cmos_nvram_write(struct file *filp, struct kobject *kobj,
 487		struct bin_attribute *attr,
 488		char *buf, loff_t off, size_t count)
 489{
 490	struct cmos_rtc	*cmos;
 491	int		retval;
 492
 493	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
 494
 495	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
 496	 * checksum on part of the NVRAM data.  That's currently ignored
 497	 * here.  If userspace is smart enough to know what fields of
 498	 * NVRAM to update, updating checksums is also part of its job.
 499	 */
 500	off += NVRAM_OFFSET;
 501	spin_lock_irq(&rtc_lock);
 502	for (retval = 0; count; count--, off++, retval++) {
 503		/* don't trash RTC registers */
 504		if (off == cmos->day_alrm
 505				|| off == cmos->mon_alrm
 506				|| off == cmos->century)
 507			buf++;
 508		else if (off < 128)
 509			CMOS_WRITE(*buf++, off);
 510		else if (can_bank2)
 511			cmos_write_bank2(*buf++, off);
 512		else
 513			break;
 514	}
 515	spin_unlock_irq(&rtc_lock);
 516
 517	return retval;
 518}
 519
 520static struct bin_attribute nvram = {
 521	.attr = {
 522		.name	= "nvram",
 523		.mode	= S_IRUGO | S_IWUSR,
 524	},
 525
 526	.read	= cmos_nvram_read,
 527	.write	= cmos_nvram_write,
 528	/* size gets set up later */
 529};
 530
 531/*----------------------------------------------------------------*/
 532
 533static struct cmos_rtc	cmos_rtc;
 534
 535static irqreturn_t cmos_interrupt(int irq, void *p)
 536{
 537	u8		irqstat;
 538	u8		rtc_control;
 539
 540	spin_lock(&rtc_lock);
 541
 542	/* When the HPET interrupt handler calls us, the interrupt
 543	 * status is passed as arg1 instead of the irq number.  But
 544	 * always clear irq status, even when HPET is in the way.
 545	 *
 546	 * Note that HPET and RTC are almost certainly out of phase,
 547	 * giving different IRQ status ...
 548	 */
 549	irqstat = CMOS_READ(RTC_INTR_FLAGS);
 550	rtc_control = CMOS_READ(RTC_CONTROL);
 551	if (is_hpet_enabled())
 552		irqstat = (unsigned long)irq & 0xF0;
 553
 554	/* If we were suspended, RTC_CONTROL may not be accurate since the
 555	 * bios may have cleared it.
 556	 */
 557	if (!cmos_rtc.suspend_ctrl)
 558		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 559	else
 560		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
 561
 562	/* All Linux RTC alarms should be treated as if they were oneshot.
 563	 * Similar code may be needed in system wakeup paths, in case the
 564	 * alarm woke the system.
 565	 */
 566	if (irqstat & RTC_AIE) {
 567		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 568		rtc_control &= ~RTC_AIE;
 569		CMOS_WRITE(rtc_control, RTC_CONTROL);
 570		hpet_mask_rtc_irq_bit(RTC_AIE);
 571		CMOS_READ(RTC_INTR_FLAGS);
 572	}
 573	spin_unlock(&rtc_lock);
 574
 575	if (is_intr(irqstat)) {
 576		rtc_update_irq(p, 1, irqstat);
 577		return IRQ_HANDLED;
 578	} else
 579		return IRQ_NONE;
 580}
 581
 582#ifdef	CONFIG_PNP
 583#define	INITSECTION
 584
 585#else
 586#define	INITSECTION	__init
 587#endif
 588
 589static int INITSECTION
 590cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
 591{
 592	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
 593	int				retval = 0;
 594	unsigned char			rtc_control;
 595	unsigned			address_space;
 596	u32				flags = 0;
 597
 598	/* there can be only one ... */
 599	if (cmos_rtc.dev)
 600		return -EBUSY;
 601
 602	if (!ports)
 603		return -ENODEV;
 604
 605	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
 606	 *
 607	 * REVISIT non-x86 systems may instead use memory space resources
 608	 * (needing ioremap etc), not i/o space resources like this ...
 609	 */
 610	if (RTC_IOMAPPED)
 611		ports = request_region(ports->start, resource_size(ports),
 612				       driver_name);
 613	else
 614		ports = request_mem_region(ports->start, resource_size(ports),
 615					   driver_name);
 616	if (!ports) {
 617		dev_dbg(dev, "i/o registers already in use\n");
 618		return -EBUSY;
 619	}
 620
 621	cmos_rtc.irq = rtc_irq;
 622	cmos_rtc.iomem = ports;
 623
 624	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
 625	 * driver did, but don't reject unknown configs.   Old hardware
 626	 * won't address 128 bytes.  Newer chips have multiple banks,
 627	 * though they may not be listed in one I/O resource.
 628	 */
 629#if	defined(CONFIG_ATARI)
 630	address_space = 64;
 631#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
 632			|| defined(__sparc__) || defined(__mips__) \
 633			|| defined(__powerpc__)
 634	address_space = 128;
 635#else
 636#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
 637	address_space = 128;
 638#endif
 639	if (can_bank2 && ports->end > (ports->start + 1))
 640		address_space = 256;
 641
 642	/* For ACPI systems extension info comes from the FADT.  On others,
 643	 * board specific setup provides it as appropriate.  Systems where
 644	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
 645	 * some almost-clones) can provide hooks to make that behave.
 646	 *
 647	 * Note that ACPI doesn't preclude putting these registers into
 648	 * "extended" areas of the chip, including some that we won't yet
 649	 * expect CMOS_READ and friends to handle.
 650	 */
 651	if (info) {
 652		if (info->flags)
 653			flags = info->flags;
 654		if (info->address_space)
 655			address_space = info->address_space;
 656
 657		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
 658			cmos_rtc.day_alrm = info->rtc_day_alarm;
 659		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
 660			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
 661		if (info->rtc_century && info->rtc_century < 128)
 662			cmos_rtc.century = info->rtc_century;
 663
 664		if (info->wake_on && info->wake_off) {
 665			cmos_rtc.wake_on = info->wake_on;
 666			cmos_rtc.wake_off = info->wake_off;
 667		}
 668	}
 669
 670	cmos_rtc.dev = dev;
 671	dev_set_drvdata(dev, &cmos_rtc);
 672
 673	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
 674				&cmos_rtc_ops, THIS_MODULE);
 675	if (IS_ERR(cmos_rtc.rtc)) {
 676		retval = PTR_ERR(cmos_rtc.rtc);
 677		goto cleanup0;
 678	}
 679
 680	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
 681
 682	spin_lock_irq(&rtc_lock);
 683
 684	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
 685		/* force periodic irq to CMOS reset default of 1024Hz;
 686		 *
 687		 * REVISIT it's been reported that at least one x86_64 ALI
 688		 * mobo doesn't use 32KHz here ... for portability we might
 689		 * need to do something about other clock frequencies.
 690		 */
 691		cmos_rtc.rtc->irq_freq = 1024;
 692		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
 693		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
 694	}
 695
 696	/* disable irqs */
 697	if (is_valid_irq(rtc_irq))
 698		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
 699
 700	rtc_control = CMOS_READ(RTC_CONTROL);
 701
 702	spin_unlock_irq(&rtc_lock);
 703
 704	/* FIXME:
 705	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
 706	 */
 707	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
 708		dev_warn(dev, "only 24-hr supported\n");
 709		retval = -ENXIO;
 710		goto cleanup1;
 711	}
 712
 
 
 713	if (is_valid_irq(rtc_irq)) {
 714		irq_handler_t rtc_cmos_int_handler;
 715
 716		if (is_hpet_enabled()) {
 717			rtc_cmos_int_handler = hpet_rtc_interrupt;
 718			retval = hpet_register_irq_handler(cmos_interrupt);
 719			if (retval) {
 
 720				dev_warn(dev, "hpet_register_irq_handler "
 721						" failed in rtc_init().");
 722				goto cleanup1;
 723			}
 724		} else
 725			rtc_cmos_int_handler = cmos_interrupt;
 726
 727		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
 728				IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
 729				cmos_rtc.rtc);
 730		if (retval < 0) {
 731			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
 732			goto cleanup1;
 733		}
 734	}
 735	hpet_rtc_timer_init();
 736
 737	/* export at least the first block of NVRAM */
 738	nvram.size = address_space - NVRAM_OFFSET;
 739	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
 740	if (retval < 0) {
 741		dev_dbg(dev, "can't create nvram file? %d\n", retval);
 742		goto cleanup2;
 743	}
 744
 745	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
 746		!is_valid_irq(rtc_irq) ? "no alarms" :
 747			cmos_rtc.mon_alrm ? "alarms up to one year" :
 748			cmos_rtc.day_alrm ? "alarms up to one month" :
 749			"alarms up to one day",
 750		cmos_rtc.century ? ", y3k" : "",
 751		nvram.size,
 752		is_hpet_enabled() ? ", hpet irqs" : "");
 753
 754	return 0;
 755
 756cleanup2:
 757	if (is_valid_irq(rtc_irq))
 758		free_irq(rtc_irq, cmos_rtc.rtc);
 759cleanup1:
 760	cmos_rtc.dev = NULL;
 761	rtc_device_unregister(cmos_rtc.rtc);
 762cleanup0:
 763	if (RTC_IOMAPPED)
 764		release_region(ports->start, resource_size(ports));
 765	else
 766		release_mem_region(ports->start, resource_size(ports));
 767	return retval;
 768}
 769
 770static void cmos_do_shutdown(int rtc_irq)
 771{
 772	spin_lock_irq(&rtc_lock);
 773	if (is_valid_irq(rtc_irq))
 774		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
 775	spin_unlock_irq(&rtc_lock);
 776}
 777
 778static void __exit cmos_do_remove(struct device *dev)
 779{
 780	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 781	struct resource *ports;
 782
 783	cmos_do_shutdown(cmos->irq);
 784
 785	sysfs_remove_bin_file(&dev->kobj, &nvram);
 786
 787	if (is_valid_irq(cmos->irq)) {
 788		free_irq(cmos->irq, cmos->rtc);
 789		hpet_unregister_irq_handler(cmos_interrupt);
 790	}
 791
 792	rtc_device_unregister(cmos->rtc);
 793	cmos->rtc = NULL;
 794
 795	ports = cmos->iomem;
 796	if (RTC_IOMAPPED)
 797		release_region(ports->start, resource_size(ports));
 798	else
 799		release_mem_region(ports->start, resource_size(ports));
 800	cmos->iomem = NULL;
 801
 802	cmos->dev = NULL;
 803}
 804
 805static int cmos_aie_poweroff(struct device *dev)
 806{
 807	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 808	struct rtc_time now;
 809	time64_t t_now;
 810	int retval = 0;
 811	unsigned char rtc_control;
 812
 813	if (!cmos->alarm_expires)
 814		return -EINVAL;
 815
 816	spin_lock_irq(&rtc_lock);
 817	rtc_control = CMOS_READ(RTC_CONTROL);
 818	spin_unlock_irq(&rtc_lock);
 819
 820	/* We only care about the situation where AIE is disabled. */
 821	if (rtc_control & RTC_AIE)
 822		return -EBUSY;
 823
 824	cmos_read_time(dev, &now);
 825	t_now = rtc_tm_to_time64(&now);
 826
 827	/*
 828	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
 829	 * automatically right after shutdown on some buggy boxes.
 830	 * This automatic rebooting issue won't happen when the alarm
 831	 * time is larger than now+1 seconds.
 832	 *
 833	 * If the alarm time is equal to now+1 seconds, the issue can be
 834	 * prevented by cancelling the alarm.
 835	 */
 836	if (cmos->alarm_expires == t_now + 1) {
 837		struct rtc_wkalrm alarm;
 838
 839		/* Cancel the AIE timer by configuring the past time. */
 840		rtc_time64_to_tm(t_now - 1, &alarm.time);
 841		alarm.enabled = 0;
 842		retval = cmos_set_alarm(dev, &alarm);
 843	} else if (cmos->alarm_expires > t_now + 1) {
 844		retval = -EBUSY;
 845	}
 846
 847	return retval;
 848}
 849
 850#ifdef CONFIG_PM
 851
 852static int cmos_suspend(struct device *dev)
 853{
 854	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 855	unsigned char	tmp;
 856
 857	/* only the alarm might be a wakeup event source */
 858	spin_lock_irq(&rtc_lock);
 859	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
 860	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
 861		unsigned char	mask;
 862
 863		if (device_may_wakeup(dev))
 864			mask = RTC_IRQMASK & ~RTC_AIE;
 865		else
 866			mask = RTC_IRQMASK;
 867		tmp &= ~mask;
 868		CMOS_WRITE(tmp, RTC_CONTROL);
 869		hpet_mask_rtc_irq_bit(mask);
 870
 871		cmos_checkintr(cmos, tmp);
 872	}
 873	spin_unlock_irq(&rtc_lock);
 874
 875	if (tmp & RTC_AIE) {
 876		cmos->enabled_wake = 1;
 877		if (cmos->wake_on)
 878			cmos->wake_on(dev);
 879		else
 880			enable_irq_wake(cmos->irq);
 881	}
 882
 
 
 883	dev_dbg(dev, "suspend%s, ctrl %02x\n",
 884			(tmp & RTC_AIE) ? ", alarm may wake" : "",
 885			tmp);
 886
 887	return 0;
 888}
 889
 890/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
 891 * after a detour through G3 "mechanical off", although the ACPI spec
 892 * says wakeup should only work from G1/S4 "hibernate".  To most users,
 893 * distinctions between S4 and S5 are pointless.  So when the hardware
 894 * allows, don't draw that distinction.
 895 */
 896static inline int cmos_poweroff(struct device *dev)
 897{
 
 
 
 898	return cmos_suspend(dev);
 899}
 900
 901#ifdef	CONFIG_PM_SLEEP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902
 903static int cmos_resume(struct device *dev)
 904{
 905	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 906	unsigned char tmp;
 907
 908	if (cmos->enabled_wake) {
 909		if (cmos->wake_off)
 910			cmos->wake_off(dev);
 911		else
 912			disable_irq_wake(cmos->irq);
 913		cmos->enabled_wake = 0;
 914	}
 915
 
 
 
 916	spin_lock_irq(&rtc_lock);
 917	tmp = cmos->suspend_ctrl;
 918	cmos->suspend_ctrl = 0;
 919	/* re-enable any irqs previously active */
 920	if (tmp & RTC_IRQMASK) {
 921		unsigned char	mask;
 922
 923		if (device_may_wakeup(dev))
 924			hpet_rtc_timer_init();
 925
 926		do {
 927			CMOS_WRITE(tmp, RTC_CONTROL);
 928			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
 929
 930			mask = CMOS_READ(RTC_INTR_FLAGS);
 931			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
 932			if (!is_hpet_enabled() || !is_intr(mask))
 933				break;
 934
 935			/* force one-shot behavior if HPET blocked
 936			 * the wake alarm's irq
 937			 */
 938			rtc_update_irq(cmos->rtc, 1, mask);
 939			tmp &= ~RTC_AIE;
 940			hpet_mask_rtc_irq_bit(RTC_AIE);
 941		} while (mask & RTC_AIE);
 
 
 
 942	}
 943	spin_unlock_irq(&rtc_lock);
 944
 945	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
 946
 947	return 0;
 948}
 949
 950#endif
 951#else
 952
 953static inline int cmos_poweroff(struct device *dev)
 954{
 955	return -ENOSYS;
 956}
 957
 958#endif
 959
 960static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
 961
 962/*----------------------------------------------------------------*/
 963
 964/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
 965 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
 966 * probably list them in similar PNPBIOS tables; so PNP is more common.
 967 *
 968 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
 969 * predate even PNPBIOS should set up platform_bus devices.
 970 */
 971
 972#ifdef	CONFIG_ACPI
 973
 974#include <linux/acpi.h>
 975
 976static u32 rtc_handler(void *context)
 977{
 978	struct device *dev = context;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979
 980	pm_wakeup_event(dev, 0);
 981	acpi_clear_event(ACPI_EVENT_RTC);
 982	acpi_disable_event(ACPI_EVENT_RTC, 0);
 983	return ACPI_INTERRUPT_HANDLED;
 984}
 985
 986static inline void rtc_wake_setup(struct device *dev)
 987{
 988	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
 989	/*
 990	 * After the RTC handler is installed, the Fixed_RTC event should
 991	 * be disabled. Only when the RTC alarm is set will it be enabled.
 992	 */
 993	acpi_clear_event(ACPI_EVENT_RTC);
 994	acpi_disable_event(ACPI_EVENT_RTC, 0);
 995}
 996
 997static void rtc_wake_on(struct device *dev)
 998{
 999	acpi_clear_event(ACPI_EVENT_RTC);
1000	acpi_enable_event(ACPI_EVENT_RTC, 0);
1001}
1002
1003static void rtc_wake_off(struct device *dev)
1004{
1005	acpi_disable_event(ACPI_EVENT_RTC, 0);
1006}
1007
1008/* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1009 * its device node and pass extra config data.  This helps its driver use
1010 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1011 * that this board's RTC is wakeup-capable (per ACPI spec).
1012 */
1013static struct cmos_rtc_board_info acpi_rtc_info;
1014
1015static void cmos_wake_setup(struct device *dev)
1016{
1017	if (acpi_disabled)
1018		return;
1019
1020	rtc_wake_setup(dev);
1021	acpi_rtc_info.wake_on = rtc_wake_on;
1022	acpi_rtc_info.wake_off = rtc_wake_off;
1023
1024	/* workaround bug in some ACPI tables */
1025	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1026		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1027			acpi_gbl_FADT.month_alarm);
1028		acpi_gbl_FADT.month_alarm = 0;
1029	}
1030
1031	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1032	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1033	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1034
1035	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1036	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1037		dev_info(dev, "RTC can wake from S4\n");
1038
1039	dev->platform_data = &acpi_rtc_info;
1040
1041	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1042	device_init_wakeup(dev, 1);
1043}
1044
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045#else
1046
1047static void cmos_wake_setup(struct device *dev)
1048{
1049}
1050
 
 
 
 
 
1051#endif
1052
1053#ifdef	CONFIG_PNP
1054
1055#include <linux/pnp.h>
1056
1057static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1058{
1059	cmos_wake_setup(&pnp->dev);
1060
1061	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1062		/* Some machines contain a PNP entry for the RTC, but
1063		 * don't define the IRQ. It should always be safe to
1064		 * hardcode it in these cases
1065		 */
1066		return cmos_do_probe(&pnp->dev,
1067				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1068	else
1069		return cmos_do_probe(&pnp->dev,
1070				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1071				pnp_irq(pnp, 0));
1072}
1073
1074static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1075{
1076	cmos_do_remove(&pnp->dev);
1077}
1078
1079static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1080{
1081	struct device *dev = &pnp->dev;
1082	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1083
1084	if (system_state == SYSTEM_POWER_OFF) {
1085		int retval = cmos_poweroff(dev);
1086
1087		if (cmos_aie_poweroff(dev) < 0 && !retval)
1088			return;
1089	}
1090
1091	cmos_do_shutdown(cmos->irq);
1092}
1093
1094static const struct pnp_device_id rtc_ids[] = {
1095	{ .id = "PNP0b00", },
1096	{ .id = "PNP0b01", },
1097	{ .id = "PNP0b02", },
1098	{ },
1099};
1100MODULE_DEVICE_TABLE(pnp, rtc_ids);
1101
1102static struct pnp_driver cmos_pnp_driver = {
1103	.name		= (char *) driver_name,
1104	.id_table	= rtc_ids,
1105	.probe		= cmos_pnp_probe,
1106	.remove		= __exit_p(cmos_pnp_remove),
1107	.shutdown	= cmos_pnp_shutdown,
1108
1109	/* flag ensures resume() gets called, and stops syslog spam */
1110	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1111	.driver		= {
1112			.pm = &cmos_pm_ops,
1113	},
1114};
1115
1116#endif	/* CONFIG_PNP */
1117
1118#ifdef CONFIG_OF
1119static const struct of_device_id of_cmos_match[] = {
1120	{
1121		.compatible = "motorola,mc146818",
1122	},
1123	{ },
1124};
1125MODULE_DEVICE_TABLE(of, of_cmos_match);
1126
1127static __init void cmos_of_init(struct platform_device *pdev)
1128{
1129	struct device_node *node = pdev->dev.of_node;
1130	struct rtc_time time;
1131	int ret;
1132	const __be32 *val;
1133
1134	if (!node)
1135		return;
1136
1137	val = of_get_property(node, "ctrl-reg", NULL);
1138	if (val)
1139		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1140
1141	val = of_get_property(node, "freq-reg", NULL);
1142	if (val)
1143		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1144
1145	get_rtc_time(&time);
1146	ret = rtc_valid_tm(&time);
1147	if (ret) {
1148		struct rtc_time def_time = {
1149			.tm_year = 1,
1150			.tm_mday = 1,
1151		};
1152		set_rtc_time(&def_time);
1153	}
1154}
1155#else
1156static inline void cmos_of_init(struct platform_device *pdev) {}
1157#endif
1158/*----------------------------------------------------------------*/
1159
1160/* Platform setup should have set up an RTC device, when PNP is
1161 * unavailable ... this could happen even on (older) PCs.
1162 */
1163
1164static int __init cmos_platform_probe(struct platform_device *pdev)
1165{
1166	struct resource *resource;
1167	int irq;
1168
1169	cmos_of_init(pdev);
1170	cmos_wake_setup(&pdev->dev);
1171
1172	if (RTC_IOMAPPED)
1173		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1174	else
1175		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1176	irq = platform_get_irq(pdev, 0);
1177	if (irq < 0)
1178		irq = -1;
1179
1180	return cmos_do_probe(&pdev->dev, resource, irq);
1181}
1182
1183static int __exit cmos_platform_remove(struct platform_device *pdev)
1184{
1185	cmos_do_remove(&pdev->dev);
1186	return 0;
1187}
1188
1189static void cmos_platform_shutdown(struct platform_device *pdev)
1190{
1191	struct device *dev = &pdev->dev;
1192	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1193
1194	if (system_state == SYSTEM_POWER_OFF) {
1195		int retval = cmos_poweroff(dev);
1196
1197		if (cmos_aie_poweroff(dev) < 0 && !retval)
1198			return;
1199	}
1200
1201	cmos_do_shutdown(cmos->irq);
1202}
1203
1204/* work with hotplug and coldplug */
1205MODULE_ALIAS("platform:rtc_cmos");
1206
1207static struct platform_driver cmos_platform_driver = {
1208	.remove		= __exit_p(cmos_platform_remove),
1209	.shutdown	= cmos_platform_shutdown,
1210	.driver = {
1211		.name		= driver_name,
1212#ifdef CONFIG_PM
1213		.pm		= &cmos_pm_ops,
1214#endif
1215		.of_match_table = of_match_ptr(of_cmos_match),
1216	}
1217};
1218
1219#ifdef CONFIG_PNP
1220static bool pnp_driver_registered;
1221#endif
1222static bool platform_driver_registered;
1223
1224static int __init cmos_init(void)
1225{
1226	int retval = 0;
1227
1228#ifdef	CONFIG_PNP
1229	retval = pnp_register_driver(&cmos_pnp_driver);
1230	if (retval == 0)
1231		pnp_driver_registered = true;
1232#endif
1233
1234	if (!cmos_rtc.dev) {
1235		retval = platform_driver_probe(&cmos_platform_driver,
1236					       cmos_platform_probe);
1237		if (retval == 0)
1238			platform_driver_registered = true;
1239	}
1240
1241	if (retval == 0)
1242		return 0;
1243
1244#ifdef	CONFIG_PNP
1245	if (pnp_driver_registered)
1246		pnp_unregister_driver(&cmos_pnp_driver);
1247#endif
1248	return retval;
1249}
1250module_init(cmos_init);
1251
1252static void __exit cmos_exit(void)
1253{
1254#ifdef	CONFIG_PNP
1255	if (pnp_driver_registered)
1256		pnp_unregister_driver(&cmos_pnp_driver);
1257#endif
1258	if (platform_driver_registered)
1259		platform_driver_unregister(&cmos_platform_driver);
1260}
1261module_exit(cmos_exit);
1262
1263
1264MODULE_AUTHOR("David Brownell");
1265MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1266MODULE_LICENSE("GPL");
v4.10.11
   1/*
   2 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
   3 *
   4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
   5 * Copyright (C) 2006 David Brownell (convert to new framework)
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; either version
  10 * 2 of the License, or (at your option) any later version.
  11 */
  12
  13/*
  14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  15 * That defined the register interface now provided by all PCs, some
  16 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
  17 * integrate an MC146818 clone in their southbridge, and boards use
  18 * that instead of discrete clones like the DS12887 or M48T86.  There
  19 * are also clones that connect using the LPC bus.
  20 *
  21 * That register API is also used directly by various other drivers
  22 * (notably for integrated NVRAM), infrastructure (x86 has code to
  23 * bypass the RTC framework, directly reading the RTC during boot
  24 * and updating minutes/seconds for systems using NTP synch) and
  25 * utilities (like userspace 'hwclock', if no /dev node exists).
  26 *
  27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  28 * interrupts disabled, holding the global rtc_lock, to exclude those
  29 * other drivers and utilities on correctly configured systems.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/kernel.h>
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/interrupt.h>
  38#include <linux/spinlock.h>
  39#include <linux/platform_device.h>
  40#include <linux/log2.h>
  41#include <linux/pm.h>
  42#include <linux/of.h>
  43#include <linux/of_platform.h>
  44
  45/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  46#include <linux/mc146818rtc.h>
  47
  48struct cmos_rtc {
  49	struct rtc_device	*rtc;
  50	struct device		*dev;
  51	int			irq;
  52	struct resource		*iomem;
  53	time64_t		alarm_expires;
  54
  55	void			(*wake_on)(struct device *);
  56	void			(*wake_off)(struct device *);
  57
  58	u8			enabled_wake;
  59	u8			suspend_ctrl;
  60
  61	/* newer hardware extends the original register set */
  62	u8			day_alrm;
  63	u8			mon_alrm;
  64	u8			century;
  65
  66	struct rtc_wkalrm	saved_wkalrm;
  67};
  68
  69/* both platform and pnp busses use negative numbers for invalid irqs */
  70#define is_valid_irq(n)		((n) > 0)
  71
  72static const char driver_name[] = "rtc_cmos";
  73
  74/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  75 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
  76 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  77 */
  78#define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
  79
  80static inline int is_intr(u8 rtc_intr)
  81{
  82	if (!(rtc_intr & RTC_IRQF))
  83		return 0;
  84	return rtc_intr & RTC_IRQMASK;
  85}
  86
  87/*----------------------------------------------------------------*/
  88
  89/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  90 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  91 * used in a broken "legacy replacement" mode.  The breakage includes
  92 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  93 * other (better) use.
  94 *
  95 * When that broken mode is in use, platform glue provides a partial
  96 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
  97 * want to use HPET for anything except those IRQs though...
  98 */
  99#ifdef CONFIG_HPET_EMULATE_RTC
 100#include <asm/hpet.h>
 101#else
 102
 103static inline int is_hpet_enabled(void)
 104{
 105	return 0;
 106}
 107
 108static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
 109{
 110	return 0;
 111}
 112
 113static inline int hpet_set_rtc_irq_bit(unsigned long mask)
 114{
 115	return 0;
 116}
 117
 118static inline int
 119hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 120{
 121	return 0;
 122}
 123
 124static inline int hpet_set_periodic_freq(unsigned long freq)
 125{
 126	return 0;
 127}
 128
 129static inline int hpet_rtc_dropped_irq(void)
 130{
 131	return 0;
 132}
 133
 134static inline int hpet_rtc_timer_init(void)
 135{
 136	return 0;
 137}
 138
 139extern irq_handler_t hpet_rtc_interrupt;
 140
 141static inline int hpet_register_irq_handler(irq_handler_t handler)
 142{
 143	return 0;
 144}
 145
 146static inline int hpet_unregister_irq_handler(irq_handler_t handler)
 147{
 148	return 0;
 149}
 150
 151#endif
 152
 153/*----------------------------------------------------------------*/
 154
 155#ifdef RTC_PORT
 156
 157/* Most newer x86 systems have two register banks, the first used
 158 * for RTC and NVRAM and the second only for NVRAM.  Caller must
 159 * own rtc_lock ... and we won't worry about access during NMI.
 160 */
 161#define can_bank2	true
 162
 163static inline unsigned char cmos_read_bank2(unsigned char addr)
 164{
 165	outb(addr, RTC_PORT(2));
 166	return inb(RTC_PORT(3));
 167}
 168
 169static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 170{
 171	outb(addr, RTC_PORT(2));
 172	outb(val, RTC_PORT(3));
 173}
 174
 175#else
 176
 177#define can_bank2	false
 178
 179static inline unsigned char cmos_read_bank2(unsigned char addr)
 180{
 181	return 0;
 182}
 183
 184static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 185{
 186}
 187
 188#endif
 189
 190/*----------------------------------------------------------------*/
 191
 192static int cmos_read_time(struct device *dev, struct rtc_time *t)
 193{
 194	/*
 195	 * If pm_trace abused the RTC for storage, set the timespec to 0,
 196	 * which tells the caller that this RTC value is unusable.
 197	 */
 198	if (!pm_trace_rtc_valid())
 199		return -EIO;
 200
 201	/* REVISIT:  if the clock has a "century" register, use
 202	 * that instead of the heuristic in mc146818_get_time().
 203	 * That'll make Y3K compatility (year > 2070) easy!
 204	 */
 205	mc146818_get_time(t);
 206	return 0;
 207}
 208
 209static int cmos_set_time(struct device *dev, struct rtc_time *t)
 210{
 211	/* REVISIT:  set the "century" register if available
 212	 *
 213	 * NOTE: this ignores the issue whereby updating the seconds
 214	 * takes effect exactly 500ms after we write the register.
 215	 * (Also queueing and other delays before we get this far.)
 216	 */
 217	return mc146818_set_time(t);
 218}
 219
 220static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
 221{
 222	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 223	unsigned char	rtc_control;
 224
 225	if (!is_valid_irq(cmos->irq))
 226		return -EIO;
 227
 228	/* Basic alarms only support hour, minute, and seconds fields.
 229	 * Some also support day and month, for alarms up to a year in
 230	 * the future.
 231	 */
 
 
 232
 233	spin_lock_irq(&rtc_lock);
 234	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 235	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 236	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 237
 238	if (cmos->day_alrm) {
 239		/* ignore upper bits on readback per ACPI spec */
 240		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
 241		if (!t->time.tm_mday)
 242			t->time.tm_mday = -1;
 243
 244		if (cmos->mon_alrm) {
 245			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
 246			if (!t->time.tm_mon)
 247				t->time.tm_mon = -1;
 248		}
 249	}
 250
 251	rtc_control = CMOS_READ(RTC_CONTROL);
 252	spin_unlock_irq(&rtc_lock);
 253
 254	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 255		if (((unsigned)t->time.tm_sec) < 0x60)
 256			t->time.tm_sec = bcd2bin(t->time.tm_sec);
 257		else
 258			t->time.tm_sec = -1;
 259		if (((unsigned)t->time.tm_min) < 0x60)
 260			t->time.tm_min = bcd2bin(t->time.tm_min);
 261		else
 262			t->time.tm_min = -1;
 263		if (((unsigned)t->time.tm_hour) < 0x24)
 264			t->time.tm_hour = bcd2bin(t->time.tm_hour);
 265		else
 266			t->time.tm_hour = -1;
 267
 268		if (cmos->day_alrm) {
 269			if (((unsigned)t->time.tm_mday) <= 0x31)
 270				t->time.tm_mday = bcd2bin(t->time.tm_mday);
 271			else
 272				t->time.tm_mday = -1;
 273
 274			if (cmos->mon_alrm) {
 275				if (((unsigned)t->time.tm_mon) <= 0x12)
 276					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
 277				else
 278					t->time.tm_mon = -1;
 279			}
 280		}
 281	}
 
 282
 283	t->enabled = !!(rtc_control & RTC_AIE);
 284	t->pending = 0;
 285
 286	return 0;
 287}
 288
 289static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
 290{
 291	unsigned char	rtc_intr;
 292
 293	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
 294	 * allegedly some older rtcs need that to handle irqs properly
 295	 */
 296	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 297
 298	if (is_hpet_enabled())
 299		return;
 300
 301	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 302	if (is_intr(rtc_intr))
 303		rtc_update_irq(cmos->rtc, 1, rtc_intr);
 304}
 305
 306static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
 307{
 308	unsigned char	rtc_control;
 309
 310	/* flush any pending IRQ status, notably for update irqs,
 311	 * before we enable new IRQs
 312	 */
 313	rtc_control = CMOS_READ(RTC_CONTROL);
 314	cmos_checkintr(cmos, rtc_control);
 315
 316	rtc_control |= mask;
 317	CMOS_WRITE(rtc_control, RTC_CONTROL);
 318	hpet_set_rtc_irq_bit(mask);
 319
 320	cmos_checkintr(cmos, rtc_control);
 321}
 322
 323static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
 324{
 325	unsigned char	rtc_control;
 326
 327	rtc_control = CMOS_READ(RTC_CONTROL);
 328	rtc_control &= ~mask;
 329	CMOS_WRITE(rtc_control, RTC_CONTROL);
 330	hpet_mask_rtc_irq_bit(mask);
 331
 332	cmos_checkintr(cmos, rtc_control);
 333}
 334
 335static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
 336{
 337	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 338	struct rtc_time now;
 339
 340	cmos_read_time(dev, &now);
 341
 342	if (!cmos->day_alrm) {
 343		time64_t t_max_date;
 344		time64_t t_alrm;
 345
 346		t_max_date = rtc_tm_to_time64(&now);
 347		t_max_date += 24 * 60 * 60 - 1;
 348		t_alrm = rtc_tm_to_time64(&t->time);
 349		if (t_alrm > t_max_date) {
 350			dev_err(dev,
 351				"Alarms can be up to one day in the future\n");
 352			return -EINVAL;
 353		}
 354	} else if (!cmos->mon_alrm) {
 355		struct rtc_time max_date = now;
 356		time64_t t_max_date;
 357		time64_t t_alrm;
 358		int max_mday;
 359
 360		if (max_date.tm_mon == 11) {
 361			max_date.tm_mon = 0;
 362			max_date.tm_year += 1;
 363		} else {
 364			max_date.tm_mon += 1;
 365		}
 366		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 367		if (max_date.tm_mday > max_mday)
 368			max_date.tm_mday = max_mday;
 369
 370		t_max_date = rtc_tm_to_time64(&max_date);
 371		t_max_date -= 1;
 372		t_alrm = rtc_tm_to_time64(&t->time);
 373		if (t_alrm > t_max_date) {
 374			dev_err(dev,
 375				"Alarms can be up to one month in the future\n");
 376			return -EINVAL;
 377		}
 378	} else {
 379		struct rtc_time max_date = now;
 380		time64_t t_max_date;
 381		time64_t t_alrm;
 382		int max_mday;
 383
 384		max_date.tm_year += 1;
 385		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 386		if (max_date.tm_mday > max_mday)
 387			max_date.tm_mday = max_mday;
 388
 389		t_max_date = rtc_tm_to_time64(&max_date);
 390		t_max_date -= 1;
 391		t_alrm = rtc_tm_to_time64(&t->time);
 392		if (t_alrm > t_max_date) {
 393			dev_err(dev,
 394				"Alarms can be up to one year in the future\n");
 395			return -EINVAL;
 396		}
 397	}
 398
 399	return 0;
 400}
 401
 402static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
 403{
 404	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 405	unsigned char mon, mday, hrs, min, sec, rtc_control;
 406	int ret;
 407
 408	if (!is_valid_irq(cmos->irq))
 409		return -EIO;
 410
 411	ret = cmos_validate_alarm(dev, t);
 412	if (ret < 0)
 413		return ret;
 414
 415	mon = t->time.tm_mon + 1;
 416	mday = t->time.tm_mday;
 417	hrs = t->time.tm_hour;
 418	min = t->time.tm_min;
 419	sec = t->time.tm_sec;
 420
 421	rtc_control = CMOS_READ(RTC_CONTROL);
 422	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 423		/* Writing 0xff means "don't care" or "match all".  */
 424		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
 425		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
 426		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
 427		min = (min < 60) ? bin2bcd(min) : 0xff;
 428		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
 429	}
 430
 431	spin_lock_irq(&rtc_lock);
 432
 433	/* next rtc irq must not be from previous alarm setting */
 434	cmos_irq_disable(cmos, RTC_AIE);
 435
 436	/* update alarm */
 437	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 438	CMOS_WRITE(min, RTC_MINUTES_ALARM);
 439	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 440
 441	/* the system may support an "enhanced" alarm */
 442	if (cmos->day_alrm) {
 443		CMOS_WRITE(mday, cmos->day_alrm);
 444		if (cmos->mon_alrm)
 445			CMOS_WRITE(mon, cmos->mon_alrm);
 446	}
 447
 448	/* FIXME the HPET alarm glue currently ignores day_alrm
 449	 * and mon_alrm ...
 450	 */
 451	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
 452
 453	if (t->enabled)
 454		cmos_irq_enable(cmos, RTC_AIE);
 455
 456	spin_unlock_irq(&rtc_lock);
 457
 458	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
 459
 460	return 0;
 461}
 462
 463static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
 464{
 465	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 466	unsigned long	flags;
 467
 468	if (!is_valid_irq(cmos->irq))
 469		return -EINVAL;
 470
 471	spin_lock_irqsave(&rtc_lock, flags);
 472
 473	if (enabled)
 474		cmos_irq_enable(cmos, RTC_AIE);
 475	else
 476		cmos_irq_disable(cmos, RTC_AIE);
 477
 478	spin_unlock_irqrestore(&rtc_lock, flags);
 479	return 0;
 480}
 481
 482#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
 483
 484static int cmos_procfs(struct device *dev, struct seq_file *seq)
 485{
 486	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 487	unsigned char	rtc_control, valid;
 488
 489	spin_lock_irq(&rtc_lock);
 490	rtc_control = CMOS_READ(RTC_CONTROL);
 491	valid = CMOS_READ(RTC_VALID);
 492	spin_unlock_irq(&rtc_lock);
 493
 494	/* NOTE:  at least ICH6 reports battery status using a different
 495	 * (non-RTC) bit; and SQWE is ignored on many current systems.
 496	 */
 497	seq_printf(seq,
 498		   "periodic_IRQ\t: %s\n"
 499		   "update_IRQ\t: %s\n"
 500		   "HPET_emulated\t: %s\n"
 501		   // "square_wave\t: %s\n"
 502		   "BCD\t\t: %s\n"
 503		   "DST_enable\t: %s\n"
 504		   "periodic_freq\t: %d\n"
 505		   "batt_status\t: %s\n",
 506		   (rtc_control & RTC_PIE) ? "yes" : "no",
 507		   (rtc_control & RTC_UIE) ? "yes" : "no",
 508		   is_hpet_enabled() ? "yes" : "no",
 509		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
 510		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
 511		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
 512		   cmos->rtc->irq_freq,
 513		   (valid & RTC_VRT) ? "okay" : "dead");
 514
 515	return 0;
 516}
 517
 518#else
 519#define	cmos_procfs	NULL
 520#endif
 521
 522static const struct rtc_class_ops cmos_rtc_ops = {
 523	.read_time		= cmos_read_time,
 524	.set_time		= cmos_set_time,
 525	.read_alarm		= cmos_read_alarm,
 526	.set_alarm		= cmos_set_alarm,
 527	.proc			= cmos_procfs,
 528	.alarm_irq_enable	= cmos_alarm_irq_enable,
 529};
 530
 531/*----------------------------------------------------------------*/
 532
 533/*
 534 * All these chips have at least 64 bytes of address space, shared by
 535 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 536 * by boot firmware.  Modern chips have 128 or 256 bytes.
 537 */
 538
 539#define NVRAM_OFFSET	(RTC_REG_D + 1)
 540
 541static ssize_t
 542cmos_nvram_read(struct file *filp, struct kobject *kobj,
 543		struct bin_attribute *attr,
 544		char *buf, loff_t off, size_t count)
 545{
 546	int	retval;
 547
 548	off += NVRAM_OFFSET;
 549	spin_lock_irq(&rtc_lock);
 550	for (retval = 0; count; count--, off++, retval++) {
 551		if (off < 128)
 552			*buf++ = CMOS_READ(off);
 553		else if (can_bank2)
 554			*buf++ = cmos_read_bank2(off);
 555		else
 556			break;
 557	}
 558	spin_unlock_irq(&rtc_lock);
 559
 560	return retval;
 561}
 562
 563static ssize_t
 564cmos_nvram_write(struct file *filp, struct kobject *kobj,
 565		struct bin_attribute *attr,
 566		char *buf, loff_t off, size_t count)
 567{
 568	struct cmos_rtc	*cmos;
 569	int		retval;
 570
 571	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
 572
 573	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
 574	 * checksum on part of the NVRAM data.  That's currently ignored
 575	 * here.  If userspace is smart enough to know what fields of
 576	 * NVRAM to update, updating checksums is also part of its job.
 577	 */
 578	off += NVRAM_OFFSET;
 579	spin_lock_irq(&rtc_lock);
 580	for (retval = 0; count; count--, off++, retval++) {
 581		/* don't trash RTC registers */
 582		if (off == cmos->day_alrm
 583				|| off == cmos->mon_alrm
 584				|| off == cmos->century)
 585			buf++;
 586		else if (off < 128)
 587			CMOS_WRITE(*buf++, off);
 588		else if (can_bank2)
 589			cmos_write_bank2(*buf++, off);
 590		else
 591			break;
 592	}
 593	spin_unlock_irq(&rtc_lock);
 594
 595	return retval;
 596}
 597
 598static struct bin_attribute nvram = {
 599	.attr = {
 600		.name	= "nvram",
 601		.mode	= S_IRUGO | S_IWUSR,
 602	},
 603
 604	.read	= cmos_nvram_read,
 605	.write	= cmos_nvram_write,
 606	/* size gets set up later */
 607};
 608
 609/*----------------------------------------------------------------*/
 610
 611static struct cmos_rtc	cmos_rtc;
 612
 613static irqreturn_t cmos_interrupt(int irq, void *p)
 614{
 615	u8		irqstat;
 616	u8		rtc_control;
 617
 618	spin_lock(&rtc_lock);
 619
 620	/* When the HPET interrupt handler calls us, the interrupt
 621	 * status is passed as arg1 instead of the irq number.  But
 622	 * always clear irq status, even when HPET is in the way.
 623	 *
 624	 * Note that HPET and RTC are almost certainly out of phase,
 625	 * giving different IRQ status ...
 626	 */
 627	irqstat = CMOS_READ(RTC_INTR_FLAGS);
 628	rtc_control = CMOS_READ(RTC_CONTROL);
 629	if (is_hpet_enabled())
 630		irqstat = (unsigned long)irq & 0xF0;
 631
 632	/* If we were suspended, RTC_CONTROL may not be accurate since the
 633	 * bios may have cleared it.
 634	 */
 635	if (!cmos_rtc.suspend_ctrl)
 636		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 637	else
 638		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
 639
 640	/* All Linux RTC alarms should be treated as if they were oneshot.
 641	 * Similar code may be needed in system wakeup paths, in case the
 642	 * alarm woke the system.
 643	 */
 644	if (irqstat & RTC_AIE) {
 645		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 646		rtc_control &= ~RTC_AIE;
 647		CMOS_WRITE(rtc_control, RTC_CONTROL);
 648		hpet_mask_rtc_irq_bit(RTC_AIE);
 649		CMOS_READ(RTC_INTR_FLAGS);
 650	}
 651	spin_unlock(&rtc_lock);
 652
 653	if (is_intr(irqstat)) {
 654		rtc_update_irq(p, 1, irqstat);
 655		return IRQ_HANDLED;
 656	} else
 657		return IRQ_NONE;
 658}
 659
 660#ifdef	CONFIG_PNP
 661#define	INITSECTION
 662
 663#else
 664#define	INITSECTION	__init
 665#endif
 666
 667static int INITSECTION
 668cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
 669{
 670	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
 671	int				retval = 0;
 672	unsigned char			rtc_control;
 673	unsigned			address_space;
 674	u32				flags = 0;
 675
 676	/* there can be only one ... */
 677	if (cmos_rtc.dev)
 678		return -EBUSY;
 679
 680	if (!ports)
 681		return -ENODEV;
 682
 683	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
 684	 *
 685	 * REVISIT non-x86 systems may instead use memory space resources
 686	 * (needing ioremap etc), not i/o space resources like this ...
 687	 */
 688	if (RTC_IOMAPPED)
 689		ports = request_region(ports->start, resource_size(ports),
 690				       driver_name);
 691	else
 692		ports = request_mem_region(ports->start, resource_size(ports),
 693					   driver_name);
 694	if (!ports) {
 695		dev_dbg(dev, "i/o registers already in use\n");
 696		return -EBUSY;
 697	}
 698
 699	cmos_rtc.irq = rtc_irq;
 700	cmos_rtc.iomem = ports;
 701
 702	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
 703	 * driver did, but don't reject unknown configs.   Old hardware
 704	 * won't address 128 bytes.  Newer chips have multiple banks,
 705	 * though they may not be listed in one I/O resource.
 706	 */
 707#if	defined(CONFIG_ATARI)
 708	address_space = 64;
 709#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
 710			|| defined(__sparc__) || defined(__mips__) \
 711			|| defined(__powerpc__) || defined(CONFIG_MN10300)
 712	address_space = 128;
 713#else
 714#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
 715	address_space = 128;
 716#endif
 717	if (can_bank2 && ports->end > (ports->start + 1))
 718		address_space = 256;
 719
 720	/* For ACPI systems extension info comes from the FADT.  On others,
 721	 * board specific setup provides it as appropriate.  Systems where
 722	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
 723	 * some almost-clones) can provide hooks to make that behave.
 724	 *
 725	 * Note that ACPI doesn't preclude putting these registers into
 726	 * "extended" areas of the chip, including some that we won't yet
 727	 * expect CMOS_READ and friends to handle.
 728	 */
 729	if (info) {
 730		if (info->flags)
 731			flags = info->flags;
 732		if (info->address_space)
 733			address_space = info->address_space;
 734
 735		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
 736			cmos_rtc.day_alrm = info->rtc_day_alarm;
 737		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
 738			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
 739		if (info->rtc_century && info->rtc_century < 128)
 740			cmos_rtc.century = info->rtc_century;
 741
 742		if (info->wake_on && info->wake_off) {
 743			cmos_rtc.wake_on = info->wake_on;
 744			cmos_rtc.wake_off = info->wake_off;
 745		}
 746	}
 747
 748	cmos_rtc.dev = dev;
 749	dev_set_drvdata(dev, &cmos_rtc);
 750
 751	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
 752				&cmos_rtc_ops, THIS_MODULE);
 753	if (IS_ERR(cmos_rtc.rtc)) {
 754		retval = PTR_ERR(cmos_rtc.rtc);
 755		goto cleanup0;
 756	}
 757
 758	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
 759
 760	spin_lock_irq(&rtc_lock);
 761
 762	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
 763		/* force periodic irq to CMOS reset default of 1024Hz;
 764		 *
 765		 * REVISIT it's been reported that at least one x86_64 ALI
 766		 * mobo doesn't use 32KHz here ... for portability we might
 767		 * need to do something about other clock frequencies.
 768		 */
 769		cmos_rtc.rtc->irq_freq = 1024;
 770		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
 771		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
 772	}
 773
 774	/* disable irqs */
 775	if (is_valid_irq(rtc_irq))
 776		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
 777
 778	rtc_control = CMOS_READ(RTC_CONTROL);
 779
 780	spin_unlock_irq(&rtc_lock);
 781
 
 
 
 782	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
 783		dev_warn(dev, "only 24-hr supported\n");
 784		retval = -ENXIO;
 785		goto cleanup1;
 786	}
 787
 788	hpet_rtc_timer_init();
 789
 790	if (is_valid_irq(rtc_irq)) {
 791		irq_handler_t rtc_cmos_int_handler;
 792
 793		if (is_hpet_enabled()) {
 794			rtc_cmos_int_handler = hpet_rtc_interrupt;
 795			retval = hpet_register_irq_handler(cmos_interrupt);
 796			if (retval) {
 797				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
 798				dev_warn(dev, "hpet_register_irq_handler "
 799						" failed in rtc_init().");
 800				goto cleanup1;
 801			}
 802		} else
 803			rtc_cmos_int_handler = cmos_interrupt;
 804
 805		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
 806				IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
 807				cmos_rtc.rtc);
 808		if (retval < 0) {
 809			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
 810			goto cleanup1;
 811		}
 812	}
 
 813
 814	/* export at least the first block of NVRAM */
 815	nvram.size = address_space - NVRAM_OFFSET;
 816	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
 817	if (retval < 0) {
 818		dev_dbg(dev, "can't create nvram file? %d\n", retval);
 819		goto cleanup2;
 820	}
 821
 822	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
 823		!is_valid_irq(rtc_irq) ? "no alarms" :
 824			cmos_rtc.mon_alrm ? "alarms up to one year" :
 825			cmos_rtc.day_alrm ? "alarms up to one month" :
 826			"alarms up to one day",
 827		cmos_rtc.century ? ", y3k" : "",
 828		nvram.size,
 829		is_hpet_enabled() ? ", hpet irqs" : "");
 830
 831	return 0;
 832
 833cleanup2:
 834	if (is_valid_irq(rtc_irq))
 835		free_irq(rtc_irq, cmos_rtc.rtc);
 836cleanup1:
 837	cmos_rtc.dev = NULL;
 838	rtc_device_unregister(cmos_rtc.rtc);
 839cleanup0:
 840	if (RTC_IOMAPPED)
 841		release_region(ports->start, resource_size(ports));
 842	else
 843		release_mem_region(ports->start, resource_size(ports));
 844	return retval;
 845}
 846
 847static void cmos_do_shutdown(int rtc_irq)
 848{
 849	spin_lock_irq(&rtc_lock);
 850	if (is_valid_irq(rtc_irq))
 851		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
 852	spin_unlock_irq(&rtc_lock);
 853}
 854
 855static void cmos_do_remove(struct device *dev)
 856{
 857	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 858	struct resource *ports;
 859
 860	cmos_do_shutdown(cmos->irq);
 861
 862	sysfs_remove_bin_file(&dev->kobj, &nvram);
 863
 864	if (is_valid_irq(cmos->irq)) {
 865		free_irq(cmos->irq, cmos->rtc);
 866		hpet_unregister_irq_handler(cmos_interrupt);
 867	}
 868
 869	rtc_device_unregister(cmos->rtc);
 870	cmos->rtc = NULL;
 871
 872	ports = cmos->iomem;
 873	if (RTC_IOMAPPED)
 874		release_region(ports->start, resource_size(ports));
 875	else
 876		release_mem_region(ports->start, resource_size(ports));
 877	cmos->iomem = NULL;
 878
 879	cmos->dev = NULL;
 880}
 881
 882static int cmos_aie_poweroff(struct device *dev)
 883{
 884	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 885	struct rtc_time now;
 886	time64_t t_now;
 887	int retval = 0;
 888	unsigned char rtc_control;
 889
 890	if (!cmos->alarm_expires)
 891		return -EINVAL;
 892
 893	spin_lock_irq(&rtc_lock);
 894	rtc_control = CMOS_READ(RTC_CONTROL);
 895	spin_unlock_irq(&rtc_lock);
 896
 897	/* We only care about the situation where AIE is disabled. */
 898	if (rtc_control & RTC_AIE)
 899		return -EBUSY;
 900
 901	cmos_read_time(dev, &now);
 902	t_now = rtc_tm_to_time64(&now);
 903
 904	/*
 905	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
 906	 * automatically right after shutdown on some buggy boxes.
 907	 * This automatic rebooting issue won't happen when the alarm
 908	 * time is larger than now+1 seconds.
 909	 *
 910	 * If the alarm time is equal to now+1 seconds, the issue can be
 911	 * prevented by cancelling the alarm.
 912	 */
 913	if (cmos->alarm_expires == t_now + 1) {
 914		struct rtc_wkalrm alarm;
 915
 916		/* Cancel the AIE timer by configuring the past time. */
 917		rtc_time64_to_tm(t_now - 1, &alarm.time);
 918		alarm.enabled = 0;
 919		retval = cmos_set_alarm(dev, &alarm);
 920	} else if (cmos->alarm_expires > t_now + 1) {
 921		retval = -EBUSY;
 922	}
 923
 924	return retval;
 925}
 926
 
 
 927static int cmos_suspend(struct device *dev)
 928{
 929	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 930	unsigned char	tmp;
 931
 932	/* only the alarm might be a wakeup event source */
 933	spin_lock_irq(&rtc_lock);
 934	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
 935	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
 936		unsigned char	mask;
 937
 938		if (device_may_wakeup(dev))
 939			mask = RTC_IRQMASK & ~RTC_AIE;
 940		else
 941			mask = RTC_IRQMASK;
 942		tmp &= ~mask;
 943		CMOS_WRITE(tmp, RTC_CONTROL);
 944		hpet_mask_rtc_irq_bit(mask);
 945
 946		cmos_checkintr(cmos, tmp);
 947	}
 948	spin_unlock_irq(&rtc_lock);
 949
 950	if (tmp & RTC_AIE) {
 951		cmos->enabled_wake = 1;
 952		if (cmos->wake_on)
 953			cmos->wake_on(dev);
 954		else
 955			enable_irq_wake(cmos->irq);
 956	}
 957
 958	cmos_read_alarm(dev, &cmos->saved_wkalrm);
 959
 960	dev_dbg(dev, "suspend%s, ctrl %02x\n",
 961			(tmp & RTC_AIE) ? ", alarm may wake" : "",
 962			tmp);
 963
 964	return 0;
 965}
 966
 967/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
 968 * after a detour through G3 "mechanical off", although the ACPI spec
 969 * says wakeup should only work from G1/S4 "hibernate".  To most users,
 970 * distinctions between S4 and S5 are pointless.  So when the hardware
 971 * allows, don't draw that distinction.
 972 */
 973static inline int cmos_poweroff(struct device *dev)
 974{
 975	if (!IS_ENABLED(CONFIG_PM))
 976		return -ENOSYS;
 977
 978	return cmos_suspend(dev);
 979}
 980
 981static void cmos_check_wkalrm(struct device *dev)
 982{
 983	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 984	struct rtc_wkalrm current_alarm;
 985	time64_t t_current_expires;
 986	time64_t t_saved_expires;
 987
 988	cmos_read_alarm(dev, &current_alarm);
 989	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
 990	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
 991	if (t_current_expires != t_saved_expires ||
 992	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
 993		cmos_set_alarm(dev, &cmos->saved_wkalrm);
 994	}
 995}
 996
 997static void cmos_check_acpi_rtc_status(struct device *dev,
 998				       unsigned char *rtc_control);
 999
1000static int __maybe_unused cmos_resume(struct device *dev)
1001{
1002	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1003	unsigned char tmp;
1004
1005	if (cmos->enabled_wake) {
1006		if (cmos->wake_off)
1007			cmos->wake_off(dev);
1008		else
1009			disable_irq_wake(cmos->irq);
1010		cmos->enabled_wake = 0;
1011	}
1012
1013	/* The BIOS might have changed the alarm, restore it */
1014	cmos_check_wkalrm(dev);
1015
1016	spin_lock_irq(&rtc_lock);
1017	tmp = cmos->suspend_ctrl;
1018	cmos->suspend_ctrl = 0;
1019	/* re-enable any irqs previously active */
1020	if (tmp & RTC_IRQMASK) {
1021		unsigned char	mask;
1022
1023		if (device_may_wakeup(dev))
1024			hpet_rtc_timer_init();
1025
1026		do {
1027			CMOS_WRITE(tmp, RTC_CONTROL);
1028			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1029
1030			mask = CMOS_READ(RTC_INTR_FLAGS);
1031			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1032			if (!is_hpet_enabled() || !is_intr(mask))
1033				break;
1034
1035			/* force one-shot behavior if HPET blocked
1036			 * the wake alarm's irq
1037			 */
1038			rtc_update_irq(cmos->rtc, 1, mask);
1039			tmp &= ~RTC_AIE;
1040			hpet_mask_rtc_irq_bit(RTC_AIE);
1041		} while (mask & RTC_AIE);
1042
1043		if (tmp & RTC_AIE)
1044			cmos_check_acpi_rtc_status(dev, &tmp);
1045	}
1046	spin_unlock_irq(&rtc_lock);
1047
1048	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1049
1050	return 0;
1051}
1052
 
 
 
 
 
 
 
 
 
 
1053static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1054
1055/*----------------------------------------------------------------*/
1056
1057/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1058 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1059 * probably list them in similar PNPBIOS tables; so PNP is more common.
1060 *
1061 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1062 * predate even PNPBIOS should set up platform_bus devices.
1063 */
1064
1065#ifdef	CONFIG_ACPI
1066
1067#include <linux/acpi.h>
1068
1069static u32 rtc_handler(void *context)
1070{
1071	struct device *dev = context;
1072	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1073	unsigned char rtc_control = 0;
1074	unsigned char rtc_intr;
1075	unsigned long flags;
1076
1077	spin_lock_irqsave(&rtc_lock, flags);
1078	if (cmos_rtc.suspend_ctrl)
1079		rtc_control = CMOS_READ(RTC_CONTROL);
1080	if (rtc_control & RTC_AIE) {
1081		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1082		CMOS_WRITE(rtc_control, RTC_CONTROL);
1083		rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1084		rtc_update_irq(cmos->rtc, 1, rtc_intr);
1085	}
1086	spin_unlock_irqrestore(&rtc_lock, flags);
1087
1088	pm_wakeup_event(dev, 0);
1089	acpi_clear_event(ACPI_EVENT_RTC);
1090	acpi_disable_event(ACPI_EVENT_RTC, 0);
1091	return ACPI_INTERRUPT_HANDLED;
1092}
1093
1094static inline void rtc_wake_setup(struct device *dev)
1095{
1096	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1097	/*
1098	 * After the RTC handler is installed, the Fixed_RTC event should
1099	 * be disabled. Only when the RTC alarm is set will it be enabled.
1100	 */
1101	acpi_clear_event(ACPI_EVENT_RTC);
1102	acpi_disable_event(ACPI_EVENT_RTC, 0);
1103}
1104
1105static void rtc_wake_on(struct device *dev)
1106{
1107	acpi_clear_event(ACPI_EVENT_RTC);
1108	acpi_enable_event(ACPI_EVENT_RTC, 0);
1109}
1110
1111static void rtc_wake_off(struct device *dev)
1112{
1113	acpi_disable_event(ACPI_EVENT_RTC, 0);
1114}
1115
1116/* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1117 * its device node and pass extra config data.  This helps its driver use
1118 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1119 * that this board's RTC is wakeup-capable (per ACPI spec).
1120 */
1121static struct cmos_rtc_board_info acpi_rtc_info;
1122
1123static void cmos_wake_setup(struct device *dev)
1124{
1125	if (acpi_disabled)
1126		return;
1127
1128	rtc_wake_setup(dev);
1129	acpi_rtc_info.wake_on = rtc_wake_on;
1130	acpi_rtc_info.wake_off = rtc_wake_off;
1131
1132	/* workaround bug in some ACPI tables */
1133	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1134		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1135			acpi_gbl_FADT.month_alarm);
1136		acpi_gbl_FADT.month_alarm = 0;
1137	}
1138
1139	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1140	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1141	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1142
1143	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1144	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1145		dev_info(dev, "RTC can wake from S4\n");
1146
1147	dev->platform_data = &acpi_rtc_info;
1148
1149	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1150	device_init_wakeup(dev, 1);
1151}
1152
1153static void cmos_check_acpi_rtc_status(struct device *dev,
1154				       unsigned char *rtc_control)
1155{
1156	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1157	acpi_event_status rtc_status;
1158	acpi_status status;
1159
1160	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1161		return;
1162
1163	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1164	if (ACPI_FAILURE(status)) {
1165		dev_err(dev, "Could not get RTC status\n");
1166	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1167		unsigned char mask;
1168		*rtc_control &= ~RTC_AIE;
1169		CMOS_WRITE(*rtc_control, RTC_CONTROL);
1170		mask = CMOS_READ(RTC_INTR_FLAGS);
1171		rtc_update_irq(cmos->rtc, 1, mask);
1172	}
1173}
1174
1175#else
1176
1177static void cmos_wake_setup(struct device *dev)
1178{
1179}
1180
1181static void cmos_check_acpi_rtc_status(struct device *dev,
1182				       unsigned char *rtc_control)
1183{
1184}
1185
1186#endif
1187
1188#ifdef	CONFIG_PNP
1189
1190#include <linux/pnp.h>
1191
1192static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1193{
1194	cmos_wake_setup(&pnp->dev);
1195
1196	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1197		/* Some machines contain a PNP entry for the RTC, but
1198		 * don't define the IRQ. It should always be safe to
1199		 * hardcode it in these cases
1200		 */
1201		return cmos_do_probe(&pnp->dev,
1202				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1203	else
1204		return cmos_do_probe(&pnp->dev,
1205				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1206				pnp_irq(pnp, 0));
1207}
1208
1209static void cmos_pnp_remove(struct pnp_dev *pnp)
1210{
1211	cmos_do_remove(&pnp->dev);
1212}
1213
1214static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1215{
1216	struct device *dev = &pnp->dev;
1217	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1218
1219	if (system_state == SYSTEM_POWER_OFF) {
1220		int retval = cmos_poweroff(dev);
1221
1222		if (cmos_aie_poweroff(dev) < 0 && !retval)
1223			return;
1224	}
1225
1226	cmos_do_shutdown(cmos->irq);
1227}
1228
1229static const struct pnp_device_id rtc_ids[] = {
1230	{ .id = "PNP0b00", },
1231	{ .id = "PNP0b01", },
1232	{ .id = "PNP0b02", },
1233	{ },
1234};
1235MODULE_DEVICE_TABLE(pnp, rtc_ids);
1236
1237static struct pnp_driver cmos_pnp_driver = {
1238	.name		= (char *) driver_name,
1239	.id_table	= rtc_ids,
1240	.probe		= cmos_pnp_probe,
1241	.remove		= cmos_pnp_remove,
1242	.shutdown	= cmos_pnp_shutdown,
1243
1244	/* flag ensures resume() gets called, and stops syslog spam */
1245	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1246	.driver		= {
1247			.pm = &cmos_pm_ops,
1248	},
1249};
1250
1251#endif	/* CONFIG_PNP */
1252
1253#ifdef CONFIG_OF
1254static const struct of_device_id of_cmos_match[] = {
1255	{
1256		.compatible = "motorola,mc146818",
1257	},
1258	{ },
1259};
1260MODULE_DEVICE_TABLE(of, of_cmos_match);
1261
1262static __init void cmos_of_init(struct platform_device *pdev)
1263{
1264	struct device_node *node = pdev->dev.of_node;
1265	struct rtc_time time;
1266	int ret;
1267	const __be32 *val;
1268
1269	if (!node)
1270		return;
1271
1272	val = of_get_property(node, "ctrl-reg", NULL);
1273	if (val)
1274		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1275
1276	val = of_get_property(node, "freq-reg", NULL);
1277	if (val)
1278		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1279
1280	cmos_read_time(&pdev->dev, &time);
1281	ret = rtc_valid_tm(&time);
1282	if (ret) {
1283		struct rtc_time def_time = {
1284			.tm_year = 1,
1285			.tm_mday = 1,
1286		};
1287		cmos_set_time(&pdev->dev, &def_time);
1288	}
1289}
1290#else
1291static inline void cmos_of_init(struct platform_device *pdev) {}
1292#endif
1293/*----------------------------------------------------------------*/
1294
1295/* Platform setup should have set up an RTC device, when PNP is
1296 * unavailable ... this could happen even on (older) PCs.
1297 */
1298
1299static int __init cmos_platform_probe(struct platform_device *pdev)
1300{
1301	struct resource *resource;
1302	int irq;
1303
1304	cmos_of_init(pdev);
1305	cmos_wake_setup(&pdev->dev);
1306
1307	if (RTC_IOMAPPED)
1308		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1309	else
1310		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1311	irq = platform_get_irq(pdev, 0);
1312	if (irq < 0)
1313		irq = -1;
1314
1315	return cmos_do_probe(&pdev->dev, resource, irq);
1316}
1317
1318static int cmos_platform_remove(struct platform_device *pdev)
1319{
1320	cmos_do_remove(&pdev->dev);
1321	return 0;
1322}
1323
1324static void cmos_platform_shutdown(struct platform_device *pdev)
1325{
1326	struct device *dev = &pdev->dev;
1327	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1328
1329	if (system_state == SYSTEM_POWER_OFF) {
1330		int retval = cmos_poweroff(dev);
1331
1332		if (cmos_aie_poweroff(dev) < 0 && !retval)
1333			return;
1334	}
1335
1336	cmos_do_shutdown(cmos->irq);
1337}
1338
1339/* work with hotplug and coldplug */
1340MODULE_ALIAS("platform:rtc_cmos");
1341
1342static struct platform_driver cmos_platform_driver = {
1343	.remove		= cmos_platform_remove,
1344	.shutdown	= cmos_platform_shutdown,
1345	.driver = {
1346		.name		= driver_name,
 
1347		.pm		= &cmos_pm_ops,
 
1348		.of_match_table = of_match_ptr(of_cmos_match),
1349	}
1350};
1351
1352#ifdef CONFIG_PNP
1353static bool pnp_driver_registered;
1354#endif
1355static bool platform_driver_registered;
1356
1357static int __init cmos_init(void)
1358{
1359	int retval = 0;
1360
1361#ifdef	CONFIG_PNP
1362	retval = pnp_register_driver(&cmos_pnp_driver);
1363	if (retval == 0)
1364		pnp_driver_registered = true;
1365#endif
1366
1367	if (!cmos_rtc.dev) {
1368		retval = platform_driver_probe(&cmos_platform_driver,
1369					       cmos_platform_probe);
1370		if (retval == 0)
1371			platform_driver_registered = true;
1372	}
1373
1374	if (retval == 0)
1375		return 0;
1376
1377#ifdef	CONFIG_PNP
1378	if (pnp_driver_registered)
1379		pnp_unregister_driver(&cmos_pnp_driver);
1380#endif
1381	return retval;
1382}
1383module_init(cmos_init);
1384
1385static void __exit cmos_exit(void)
1386{
1387#ifdef	CONFIG_PNP
1388	if (pnp_driver_registered)
1389		pnp_unregister_driver(&cmos_pnp_driver);
1390#endif
1391	if (platform_driver_registered)
1392		platform_driver_unregister(&cmos_platform_driver);
1393}
1394module_exit(cmos_exit);
1395
1396
1397MODULE_AUTHOR("David Brownell");
1398MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1399MODULE_LICENSE("GPL");