Loading...
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drmP.h>
29#include <drm/drm_vma_manager.h>
30#include <drm/i915_drm.h>
31#include "i915_drv.h"
32#include "i915_vgpu.h"
33#include "i915_trace.h"
34#include "intel_drv.h"
35#include <linux/shmem_fs.h>
36#include <linux/slab.h>
37#include <linux/swap.h>
38#include <linux/pci.h>
39#include <linux/dma-buf.h>
40
41#define RQ_BUG_ON(expr)
42
43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45static void
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52{
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54}
55
56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57{
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62}
63
64/* some bookkeeping */
65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67{
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72}
73
74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76{
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81}
82
83static int
84i915_gem_wait_for_error(struct i915_gpu_error *error)
85{
86 int ret;
87
88#define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107#undef EXIT_COND
108
109 return 0;
110}
111
112int i915_mutex_lock_interruptible(struct drm_device *dev)
113{
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127}
128
129int
130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132{
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->gtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153}
154
155static int
156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157{
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 put_page(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204}
205
206static void
207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208{
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 put_page(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254}
255
256static void
257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258{
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260}
261
262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266};
267
268static int
269drop_pages(struct drm_i915_gem_object *obj)
270{
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283}
284
285int
286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288{
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318}
319
320static int
321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324{
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360}
361
362void *i915_gem_object_alloc(struct drm_device *dev)
363{
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366}
367
368void i915_gem_object_free(struct drm_i915_gem_object *obj)
369{
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372}
373
374static int
375i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379{
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401}
402
403int
404i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407{
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413}
414
415/**
416 * Creates a new mm object and returns a handle to it.
417 */
418int
419i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421{
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426}
427
428static inline int
429__copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432{
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452}
453
454static inline int
455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
480/*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487{
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514}
515
516/* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519static int
520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523{
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540}
541
542static void
543shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545{
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562}
563
564/* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566static int
567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570{
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591}
592
593static int
594i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598{
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676}
677
678/**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683int
684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686{
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728out:
729 drm_gem_object_unreference(&obj->base);
730unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733}
734
735/* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739static inline int
740fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744{
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756}
757
758/**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762static int
763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767{
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825out:
826 return ret;
827}
828
829/* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833static int
834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839{
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858}
859
860/* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862static int
863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868{
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892}
893
894static int
895i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899{
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 needs_clflush_after = true;
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014 else
1015 obj->cache_dirty = true;
1016
1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 return ret;
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 struct drm_file *file)
1029{
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_i915_gem_pwrite *args = data;
1032 struct drm_i915_gem_object *obj;
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
1039 to_user_ptr(args->data_ptr),
1040 args->size))
1041 return -EFAULT;
1042
1043 if (likely(!i915.prefault_disable)) {
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
1049
1050 intel_runtime_pm_get(dev_priv);
1051
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto put_rpm;
1055
1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 if (&obj->base == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
1060 }
1061
1062 /* Bounds check destination. */
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
1065 ret = -EINVAL;
1066 goto out;
1067 }
1068
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079 ret = -EFAULT;
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
1093 }
1094
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
1101
1102out:
1103 drm_gem_object_unreference(&obj->base);
1104unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
1109 return ret;
1110}
1111
1112int
1113i915_gem_check_wedge(struct i915_gpu_error *error,
1114 bool interruptible)
1115{
1116 if (i915_reset_in_progress(error)) {
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
1124 return -EIO;
1125
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
1133 }
1134
1135 return 0;
1136}
1137
1138static void fake_irq(unsigned long data)
1139{
1140 wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
1144 struct intel_engine_cs *ring)
1145{
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
1149static unsigned long local_clock_us(unsigned *cpu)
1150{
1151 unsigned long t;
1152
1153 /* Cheaply and approximately convert from nanoseconds to microseconds.
1154 * The result and subsequent calculations are also defined in the same
1155 * approximate microseconds units. The principal source of timing
1156 * error here is from the simple truncation.
1157 *
1158 * Note that local_clock() is only defined wrt to the current CPU;
1159 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 * blocking preemption for the entire busywait, we can detect the CPU
1161 * switch and use that as indicator of system load and a reason to
1162 * stop busywaiting, see busywait_stop().
1163 */
1164 *cpu = get_cpu();
1165 t = local_clock() >> 10;
1166 put_cpu();
1167
1168 return t;
1169}
1170
1171static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172{
1173 unsigned this_cpu;
1174
1175 if (time_after(local_clock_us(&this_cpu), timeout))
1176 return true;
1177
1178 return this_cpu != cpu;
1179}
1180
1181static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182{
1183 unsigned long timeout;
1184 unsigned cpu;
1185
1186 /* When waiting for high frequency requests, e.g. during synchronous
1187 * rendering split between the CPU and GPU, the finite amount of time
1188 * required to set up the irq and wait upon it limits the response
1189 * rate. By busywaiting on the request completion for a short while we
1190 * can service the high frequency waits as quick as possible. However,
1191 * if it is a slow request, we want to sleep as quickly as possible.
1192 * The tradeoff between waiting and sleeping is roughly the time it
1193 * takes to sleep on a request, on the order of a microsecond.
1194 */
1195
1196 if (req->ring->irq_refcount)
1197 return -EBUSY;
1198
1199 /* Only spin if we know the GPU is processing this request */
1200 if (!i915_gem_request_started(req, true))
1201 return -EAGAIN;
1202
1203 timeout = local_clock_us(&cpu) + 5;
1204 while (!need_resched()) {
1205 if (i915_gem_request_completed(req, true))
1206 return 0;
1207
1208 if (signal_pending_state(state, current))
1209 break;
1210
1211 if (busywait_stop(timeout, cpu))
1212 break;
1213
1214 cpu_relax_lowlatency();
1215 }
1216
1217 if (i915_gem_request_completed(req, false))
1218 return 0;
1219
1220 return -EAGAIN;
1221}
1222
1223/**
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
1237 * Returns 0 if the request was found within the alloted time. Else returns the
1238 * errno with remaining time filled in timeout argument.
1239 */
1240int __i915_wait_request(struct drm_i915_gem_request *req,
1241 unsigned reset_counter,
1242 bool interruptible,
1243 s64 *timeout,
1244 struct intel_rps_client *rps)
1245{
1246 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247 struct drm_device *dev = ring->dev;
1248 struct drm_i915_private *dev_priv = dev->dev_private;
1249 const bool irq_test_in_progress =
1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252 DEFINE_WAIT(wait);
1253 unsigned long timeout_expire;
1254 s64 before = 0; /* Only to silence a compiler warning. */
1255 int ret;
1256
1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259 if (list_empty(&req->list))
1260 return 0;
1261
1262 if (i915_gem_request_completed(req, true))
1263 return 0;
1264
1265 timeout_expire = 0;
1266 if (timeout) {
1267 if (WARN_ON(*timeout < 0))
1268 return -EINVAL;
1269
1270 if (*timeout == 0)
1271 return -ETIME;
1272
1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274
1275 /*
1276 * Record current time in case interrupted by signal, or wedged.
1277 */
1278 before = ktime_get_raw_ns();
1279 }
1280
1281 if (INTEL_INFO(dev_priv)->gen >= 6)
1282 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283
1284 trace_i915_gem_request_wait_begin(req);
1285
1286 /* Optimistic spin for the next jiffie before touching IRQs */
1287 ret = __i915_spin_request(req, state);
1288 if (ret == 0)
1289 goto out;
1290
1291 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1292 ret = -ENODEV;
1293 goto out;
1294 }
1295
1296 for (;;) {
1297 struct timer_list timer;
1298
1299 prepare_to_wait(&ring->irq_queue, &wait, state);
1300
1301 /* We need to check whether any gpu reset happened in between
1302 * the caller grabbing the seqno and now ... */
1303 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305 * is truely gone. */
1306 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307 if (ret == 0)
1308 ret = -EAGAIN;
1309 break;
1310 }
1311
1312 if (i915_gem_request_completed(req, false)) {
1313 ret = 0;
1314 break;
1315 }
1316
1317 if (signal_pending_state(state, current)) {
1318 ret = -ERESTARTSYS;
1319 break;
1320 }
1321
1322 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323 ret = -ETIME;
1324 break;
1325 }
1326
1327 timer.function = NULL;
1328 if (timeout || missed_irq(dev_priv, ring)) {
1329 unsigned long expire;
1330
1331 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1333 mod_timer(&timer, expire);
1334 }
1335
1336 io_schedule();
1337
1338 if (timer.function) {
1339 del_singleshot_timer_sync(&timer);
1340 destroy_timer_on_stack(&timer);
1341 }
1342 }
1343 if (!irq_test_in_progress)
1344 ring->irq_put(ring);
1345
1346 finish_wait(&ring->irq_queue, &wait);
1347
1348out:
1349 trace_i915_gem_request_wait_end(req);
1350
1351 if (timeout) {
1352 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353
1354 *timeout = tres < 0 ? 0 : tres;
1355
1356 /*
1357 * Apparently ktime isn't accurate enough and occasionally has a
1358 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359 * things up to make the test happy. We allow up to 1 jiffy.
1360 *
1361 * This is a regrssion from the timespec->ktime conversion.
1362 */
1363 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364 *timeout = 0;
1365 }
1366
1367 return ret;
1368}
1369
1370int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371 struct drm_file *file)
1372{
1373 struct drm_i915_private *dev_private;
1374 struct drm_i915_file_private *file_priv;
1375
1376 WARN_ON(!req || !file || req->file_priv);
1377
1378 if (!req || !file)
1379 return -EINVAL;
1380
1381 if (req->file_priv)
1382 return -EINVAL;
1383
1384 dev_private = req->ring->dev->dev_private;
1385 file_priv = file->driver_priv;
1386
1387 spin_lock(&file_priv->mm.lock);
1388 req->file_priv = file_priv;
1389 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1390 spin_unlock(&file_priv->mm.lock);
1391
1392 req->pid = get_pid(task_pid(current));
1393
1394 return 0;
1395}
1396
1397static inline void
1398i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1399{
1400 struct drm_i915_file_private *file_priv = request->file_priv;
1401
1402 if (!file_priv)
1403 return;
1404
1405 spin_lock(&file_priv->mm.lock);
1406 list_del(&request->client_list);
1407 request->file_priv = NULL;
1408 spin_unlock(&file_priv->mm.lock);
1409
1410 put_pid(request->pid);
1411 request->pid = NULL;
1412}
1413
1414static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1415{
1416 trace_i915_gem_request_retire(request);
1417
1418 /* We know the GPU must have read the request to have
1419 * sent us the seqno + interrupt, so use the position
1420 * of tail of the request to update the last known position
1421 * of the GPU head.
1422 *
1423 * Note this requires that we are always called in request
1424 * completion order.
1425 */
1426 request->ringbuf->last_retired_head = request->postfix;
1427
1428 list_del_init(&request->list);
1429 i915_gem_request_remove_from_client(request);
1430
1431 i915_gem_request_unreference(request);
1432}
1433
1434static void
1435__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1436{
1437 struct intel_engine_cs *engine = req->ring;
1438 struct drm_i915_gem_request *tmp;
1439
1440 lockdep_assert_held(&engine->dev->struct_mutex);
1441
1442 if (list_empty(&req->list))
1443 return;
1444
1445 do {
1446 tmp = list_first_entry(&engine->request_list,
1447 typeof(*tmp), list);
1448
1449 i915_gem_request_retire(tmp);
1450 } while (tmp != req);
1451
1452 WARN_ON(i915_verify_lists(engine->dev));
1453}
1454
1455/**
1456 * Waits for a request to be signaled, and cleans up the
1457 * request and object lists appropriately for that event.
1458 */
1459int
1460i915_wait_request(struct drm_i915_gem_request *req)
1461{
1462 struct drm_device *dev;
1463 struct drm_i915_private *dev_priv;
1464 bool interruptible;
1465 int ret;
1466
1467 BUG_ON(req == NULL);
1468
1469 dev = req->ring->dev;
1470 dev_priv = dev->dev_private;
1471 interruptible = dev_priv->mm.interruptible;
1472
1473 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1474
1475 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1476 if (ret)
1477 return ret;
1478
1479 ret = __i915_wait_request(req,
1480 atomic_read(&dev_priv->gpu_error.reset_counter),
1481 interruptible, NULL, NULL);
1482 if (ret)
1483 return ret;
1484
1485 __i915_gem_request_retire__upto(req);
1486 return 0;
1487}
1488
1489/**
1490 * Ensures that all rendering to the object has completed and the object is
1491 * safe to unbind from the GTT or access from the CPU.
1492 */
1493int
1494i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1495 bool readonly)
1496{
1497 int ret, i;
1498
1499 if (!obj->active)
1500 return 0;
1501
1502 if (readonly) {
1503 if (obj->last_write_req != NULL) {
1504 ret = i915_wait_request(obj->last_write_req);
1505 if (ret)
1506 return ret;
1507
1508 i = obj->last_write_req->ring->id;
1509 if (obj->last_read_req[i] == obj->last_write_req)
1510 i915_gem_object_retire__read(obj, i);
1511 else
1512 i915_gem_object_retire__write(obj);
1513 }
1514 } else {
1515 for (i = 0; i < I915_NUM_RINGS; i++) {
1516 if (obj->last_read_req[i] == NULL)
1517 continue;
1518
1519 ret = i915_wait_request(obj->last_read_req[i]);
1520 if (ret)
1521 return ret;
1522
1523 i915_gem_object_retire__read(obj, i);
1524 }
1525 RQ_BUG_ON(obj->active);
1526 }
1527
1528 return 0;
1529}
1530
1531static void
1532i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1533 struct drm_i915_gem_request *req)
1534{
1535 int ring = req->ring->id;
1536
1537 if (obj->last_read_req[ring] == req)
1538 i915_gem_object_retire__read(obj, ring);
1539 else if (obj->last_write_req == req)
1540 i915_gem_object_retire__write(obj);
1541
1542 __i915_gem_request_retire__upto(req);
1543}
1544
1545/* A nonblocking variant of the above wait. This is a highly dangerous routine
1546 * as the object state may change during this call.
1547 */
1548static __must_check int
1549i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1550 struct intel_rps_client *rps,
1551 bool readonly)
1552{
1553 struct drm_device *dev = obj->base.dev;
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1556 unsigned reset_counter;
1557 int ret, i, n = 0;
1558
1559 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1560 BUG_ON(!dev_priv->mm.interruptible);
1561
1562 if (!obj->active)
1563 return 0;
1564
1565 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1566 if (ret)
1567 return ret;
1568
1569 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1570
1571 if (readonly) {
1572 struct drm_i915_gem_request *req;
1573
1574 req = obj->last_write_req;
1575 if (req == NULL)
1576 return 0;
1577
1578 requests[n++] = i915_gem_request_reference(req);
1579 } else {
1580 for (i = 0; i < I915_NUM_RINGS; i++) {
1581 struct drm_i915_gem_request *req;
1582
1583 req = obj->last_read_req[i];
1584 if (req == NULL)
1585 continue;
1586
1587 requests[n++] = i915_gem_request_reference(req);
1588 }
1589 }
1590
1591 mutex_unlock(&dev->struct_mutex);
1592 for (i = 0; ret == 0 && i < n; i++)
1593 ret = __i915_wait_request(requests[i], reset_counter, true,
1594 NULL, rps);
1595 mutex_lock(&dev->struct_mutex);
1596
1597 for (i = 0; i < n; i++) {
1598 if (ret == 0)
1599 i915_gem_object_retire_request(obj, requests[i]);
1600 i915_gem_request_unreference(requests[i]);
1601 }
1602
1603 return ret;
1604}
1605
1606static struct intel_rps_client *to_rps_client(struct drm_file *file)
1607{
1608 struct drm_i915_file_private *fpriv = file->driver_priv;
1609 return &fpriv->rps;
1610}
1611
1612/**
1613 * Called when user space prepares to use an object with the CPU, either
1614 * through the mmap ioctl's mapping or a GTT mapping.
1615 */
1616int
1617i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1618 struct drm_file *file)
1619{
1620 struct drm_i915_gem_set_domain *args = data;
1621 struct drm_i915_gem_object *obj;
1622 uint32_t read_domains = args->read_domains;
1623 uint32_t write_domain = args->write_domain;
1624 int ret;
1625
1626 /* Only handle setting domains to types used by the CPU. */
1627 if (write_domain & I915_GEM_GPU_DOMAINS)
1628 return -EINVAL;
1629
1630 if (read_domains & I915_GEM_GPU_DOMAINS)
1631 return -EINVAL;
1632
1633 /* Having something in the write domain implies it's in the read
1634 * domain, and only that read domain. Enforce that in the request.
1635 */
1636 if (write_domain != 0 && read_domains != write_domain)
1637 return -EINVAL;
1638
1639 ret = i915_mutex_lock_interruptible(dev);
1640 if (ret)
1641 return ret;
1642
1643 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1644 if (&obj->base == NULL) {
1645 ret = -ENOENT;
1646 goto unlock;
1647 }
1648
1649 /* Try to flush the object off the GPU without holding the lock.
1650 * We will repeat the flush holding the lock in the normal manner
1651 * to catch cases where we are gazumped.
1652 */
1653 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1654 to_rps_client(file),
1655 !write_domain);
1656 if (ret)
1657 goto unref;
1658
1659 if (read_domains & I915_GEM_DOMAIN_GTT)
1660 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1661 else
1662 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1663
1664 if (write_domain != 0)
1665 intel_fb_obj_invalidate(obj,
1666 write_domain == I915_GEM_DOMAIN_GTT ?
1667 ORIGIN_GTT : ORIGIN_CPU);
1668
1669unref:
1670 drm_gem_object_unreference(&obj->base);
1671unlock:
1672 mutex_unlock(&dev->struct_mutex);
1673 return ret;
1674}
1675
1676/**
1677 * Called when user space has done writes to this buffer
1678 */
1679int
1680i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1681 struct drm_file *file)
1682{
1683 struct drm_i915_gem_sw_finish *args = data;
1684 struct drm_i915_gem_object *obj;
1685 int ret = 0;
1686
1687 ret = i915_mutex_lock_interruptible(dev);
1688 if (ret)
1689 return ret;
1690
1691 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1692 if (&obj->base == NULL) {
1693 ret = -ENOENT;
1694 goto unlock;
1695 }
1696
1697 /* Pinned buffers may be scanout, so flush the cache */
1698 if (obj->pin_display)
1699 i915_gem_object_flush_cpu_write_domain(obj);
1700
1701 drm_gem_object_unreference(&obj->base);
1702unlock:
1703 mutex_unlock(&dev->struct_mutex);
1704 return ret;
1705}
1706
1707/**
1708 * Maps the contents of an object, returning the address it is mapped
1709 * into.
1710 *
1711 * While the mapping holds a reference on the contents of the object, it doesn't
1712 * imply a ref on the object itself.
1713 *
1714 * IMPORTANT:
1715 *
1716 * DRM driver writers who look a this function as an example for how to do GEM
1717 * mmap support, please don't implement mmap support like here. The modern way
1718 * to implement DRM mmap support is with an mmap offset ioctl (like
1719 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1720 * That way debug tooling like valgrind will understand what's going on, hiding
1721 * the mmap call in a driver private ioctl will break that. The i915 driver only
1722 * does cpu mmaps this way because we didn't know better.
1723 */
1724int
1725i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1726 struct drm_file *file)
1727{
1728 struct drm_i915_gem_mmap *args = data;
1729 struct drm_gem_object *obj;
1730 unsigned long addr;
1731
1732 if (args->flags & ~(I915_MMAP_WC))
1733 return -EINVAL;
1734
1735 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1736 return -ENODEV;
1737
1738 obj = drm_gem_object_lookup(dev, file, args->handle);
1739 if (obj == NULL)
1740 return -ENOENT;
1741
1742 /* prime objects have no backing filp to GEM mmap
1743 * pages from.
1744 */
1745 if (!obj->filp) {
1746 drm_gem_object_unreference_unlocked(obj);
1747 return -EINVAL;
1748 }
1749
1750 addr = vm_mmap(obj->filp, 0, args->size,
1751 PROT_READ | PROT_WRITE, MAP_SHARED,
1752 args->offset);
1753 if (args->flags & I915_MMAP_WC) {
1754 struct mm_struct *mm = current->mm;
1755 struct vm_area_struct *vma;
1756
1757 down_write(&mm->mmap_sem);
1758 vma = find_vma(mm, addr);
1759 if (vma)
1760 vma->vm_page_prot =
1761 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1762 else
1763 addr = -ENOMEM;
1764 up_write(&mm->mmap_sem);
1765 }
1766 drm_gem_object_unreference_unlocked(obj);
1767 if (IS_ERR((void *)addr))
1768 return addr;
1769
1770 args->addr_ptr = (uint64_t) addr;
1771
1772 return 0;
1773}
1774
1775/**
1776 * i915_gem_fault - fault a page into the GTT
1777 * @vma: VMA in question
1778 * @vmf: fault info
1779 *
1780 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1781 * from userspace. The fault handler takes care of binding the object to
1782 * the GTT (if needed), allocating and programming a fence register (again,
1783 * only if needed based on whether the old reg is still valid or the object
1784 * is tiled) and inserting a new PTE into the faulting process.
1785 *
1786 * Note that the faulting process may involve evicting existing objects
1787 * from the GTT and/or fence registers to make room. So performance may
1788 * suffer if the GTT working set is large or there are few fence registers
1789 * left.
1790 */
1791int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1792{
1793 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1794 struct drm_device *dev = obj->base.dev;
1795 struct drm_i915_private *dev_priv = dev->dev_private;
1796 struct i915_ggtt_view view = i915_ggtt_view_normal;
1797 pgoff_t page_offset;
1798 unsigned long pfn;
1799 int ret = 0;
1800 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801
1802 intel_runtime_pm_get(dev_priv);
1803
1804 /* We don't use vmf->pgoff since that has the fake offset */
1805 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806 PAGE_SHIFT;
1807
1808 ret = i915_mutex_lock_interruptible(dev);
1809 if (ret)
1810 goto out;
1811
1812 trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
1814 /* Try to flush the object off the GPU first without holding the lock.
1815 * Upon reacquiring the lock, we will perform our sanity checks and then
1816 * repeat the flush holding the lock in the normal manner to catch cases
1817 * where we are gazumped.
1818 */
1819 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820 if (ret)
1821 goto unlock;
1822
1823 /* Access to snoopable pages through the GTT is incoherent. */
1824 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825 ret = -EFAULT;
1826 goto unlock;
1827 }
1828
1829 /* Use a partial view if the object is bigger than the aperture. */
1830 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1831 obj->tiling_mode == I915_TILING_NONE) {
1832 static const unsigned int chunk_size = 256; // 1 MiB
1833
1834 memset(&view, 0, sizeof(view));
1835 view.type = I915_GGTT_VIEW_PARTIAL;
1836 view.params.partial.offset = rounddown(page_offset, chunk_size);
1837 view.params.partial.size =
1838 min_t(unsigned int,
1839 chunk_size,
1840 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841 view.params.partial.offset);
1842 }
1843
1844 /* Now pin it into the GTT if needed */
1845 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846 if (ret)
1847 goto unlock;
1848
1849 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850 if (ret)
1851 goto unpin;
1852
1853 ret = i915_gem_object_get_fence(obj);
1854 if (ret)
1855 goto unpin;
1856
1857 /* Finally, remap it using the new GTT offset */
1858 pfn = dev_priv->gtt.mappable_base +
1859 i915_gem_obj_ggtt_offset_view(obj, &view);
1860 pfn >>= PAGE_SHIFT;
1861
1862 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863 /* Overriding existing pages in partial view does not cause
1864 * us any trouble as TLBs are still valid because the fault
1865 * is due to userspace losing part of the mapping or never
1866 * having accessed it before (at this partials' range).
1867 */
1868 unsigned long base = vma->vm_start +
1869 (view.params.partial.offset << PAGE_SHIFT);
1870 unsigned int i;
1871
1872 for (i = 0; i < view.params.partial.size; i++) {
1873 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874 if (ret)
1875 break;
1876 }
1877
1878 obj->fault_mappable = true;
1879 } else {
1880 if (!obj->fault_mappable) {
1881 unsigned long size = min_t(unsigned long,
1882 vma->vm_end - vma->vm_start,
1883 obj->base.size);
1884 int i;
1885
1886 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887 ret = vm_insert_pfn(vma,
1888 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889 pfn + i);
1890 if (ret)
1891 break;
1892 }
1893
1894 obj->fault_mappable = true;
1895 } else
1896 ret = vm_insert_pfn(vma,
1897 (unsigned long)vmf->virtual_address,
1898 pfn + page_offset);
1899 }
1900unpin:
1901 i915_gem_object_ggtt_unpin_view(obj, &view);
1902unlock:
1903 mutex_unlock(&dev->struct_mutex);
1904out:
1905 switch (ret) {
1906 case -EIO:
1907 /*
1908 * We eat errors when the gpu is terminally wedged to avoid
1909 * userspace unduly crashing (gl has no provisions for mmaps to
1910 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911 * and so needs to be reported.
1912 */
1913 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914 ret = VM_FAULT_SIGBUS;
1915 break;
1916 }
1917 case -EAGAIN:
1918 /*
1919 * EAGAIN means the gpu is hung and we'll wait for the error
1920 * handler to reset everything when re-faulting in
1921 * i915_mutex_lock_interruptible.
1922 */
1923 case 0:
1924 case -ERESTARTSYS:
1925 case -EINTR:
1926 case -EBUSY:
1927 /*
1928 * EBUSY is ok: this just means that another thread
1929 * already did the job.
1930 */
1931 ret = VM_FAULT_NOPAGE;
1932 break;
1933 case -ENOMEM:
1934 ret = VM_FAULT_OOM;
1935 break;
1936 case -ENOSPC:
1937 case -EFAULT:
1938 ret = VM_FAULT_SIGBUS;
1939 break;
1940 default:
1941 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942 ret = VM_FAULT_SIGBUS;
1943 break;
1944 }
1945
1946 intel_runtime_pm_put(dev_priv);
1947 return ret;
1948}
1949
1950/**
1951 * i915_gem_release_mmap - remove physical page mappings
1952 * @obj: obj in question
1953 *
1954 * Preserve the reservation of the mmapping with the DRM core code, but
1955 * relinquish ownership of the pages back to the system.
1956 *
1957 * It is vital that we remove the page mapping if we have mapped a tiled
1958 * object through the GTT and then lose the fence register due to
1959 * resource pressure. Similarly if the object has been moved out of the
1960 * aperture, than pages mapped into userspace must be revoked. Removing the
1961 * mapping will then trigger a page fault on the next user access, allowing
1962 * fixup by i915_gem_fault().
1963 */
1964void
1965i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966{
1967 if (!obj->fault_mappable)
1968 return;
1969
1970 drm_vma_node_unmap(&obj->base.vma_node,
1971 obj->base.dev->anon_inode->i_mapping);
1972 obj->fault_mappable = false;
1973}
1974
1975void
1976i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977{
1978 struct drm_i915_gem_object *obj;
1979
1980 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981 i915_gem_release_mmap(obj);
1982}
1983
1984uint32_t
1985i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986{
1987 uint32_t gtt_size;
1988
1989 if (INTEL_INFO(dev)->gen >= 4 ||
1990 tiling_mode == I915_TILING_NONE)
1991 return size;
1992
1993 /* Previous chips need a power-of-two fence region when tiling */
1994 if (INTEL_INFO(dev)->gen == 3)
1995 gtt_size = 1024*1024;
1996 else
1997 gtt_size = 512*1024;
1998
1999 while (gtt_size < size)
2000 gtt_size <<= 1;
2001
2002 return gtt_size;
2003}
2004
2005/**
2006 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007 * @obj: object to check
2008 *
2009 * Return the required GTT alignment for an object, taking into account
2010 * potential fence register mapping.
2011 */
2012uint32_t
2013i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014 int tiling_mode, bool fenced)
2015{
2016 /*
2017 * Minimum alignment is 4k (GTT page size), but might be greater
2018 * if a fence register is needed for the object.
2019 */
2020 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021 tiling_mode == I915_TILING_NONE)
2022 return 4096;
2023
2024 /*
2025 * Previous chips need to be aligned to the size of the smallest
2026 * fence register that can contain the object.
2027 */
2028 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029}
2030
2031static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032{
2033 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034 int ret;
2035
2036 if (drm_vma_node_has_offset(&obj->base.vma_node))
2037 return 0;
2038
2039 dev_priv->mm.shrinker_no_lock_stealing = true;
2040
2041 ret = drm_gem_create_mmap_offset(&obj->base);
2042 if (ret != -ENOSPC)
2043 goto out;
2044
2045 /* Badly fragmented mmap space? The only way we can recover
2046 * space is by destroying unwanted objects. We can't randomly release
2047 * mmap_offsets as userspace expects them to be persistent for the
2048 * lifetime of the objects. The closest we can is to release the
2049 * offsets on purgeable objects by truncating it and marking it purged,
2050 * which prevents userspace from ever using that object again.
2051 */
2052 i915_gem_shrink(dev_priv,
2053 obj->base.size >> PAGE_SHIFT,
2054 I915_SHRINK_BOUND |
2055 I915_SHRINK_UNBOUND |
2056 I915_SHRINK_PURGEABLE);
2057 ret = drm_gem_create_mmap_offset(&obj->base);
2058 if (ret != -ENOSPC)
2059 goto out;
2060
2061 i915_gem_shrink_all(dev_priv);
2062 ret = drm_gem_create_mmap_offset(&obj->base);
2063out:
2064 dev_priv->mm.shrinker_no_lock_stealing = false;
2065
2066 return ret;
2067}
2068
2069static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070{
2071 drm_gem_free_mmap_offset(&obj->base);
2072}
2073
2074int
2075i915_gem_mmap_gtt(struct drm_file *file,
2076 struct drm_device *dev,
2077 uint32_t handle,
2078 uint64_t *offset)
2079{
2080 struct drm_i915_gem_object *obj;
2081 int ret;
2082
2083 ret = i915_mutex_lock_interruptible(dev);
2084 if (ret)
2085 return ret;
2086
2087 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088 if (&obj->base == NULL) {
2089 ret = -ENOENT;
2090 goto unlock;
2091 }
2092
2093 if (obj->madv != I915_MADV_WILLNEED) {
2094 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095 ret = -EFAULT;
2096 goto out;
2097 }
2098
2099 ret = i915_gem_object_create_mmap_offset(obj);
2100 if (ret)
2101 goto out;
2102
2103 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104
2105out:
2106 drm_gem_object_unreference(&obj->base);
2107unlock:
2108 mutex_unlock(&dev->struct_mutex);
2109 return ret;
2110}
2111
2112/**
2113 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114 * @dev: DRM device
2115 * @data: GTT mapping ioctl data
2116 * @file: GEM object info
2117 *
2118 * Simply returns the fake offset to userspace so it can mmap it.
2119 * The mmap call will end up in drm_gem_mmap(), which will set things
2120 * up so we can get faults in the handler above.
2121 *
2122 * The fault handler will take care of binding the object into the GTT
2123 * (since it may have been evicted to make room for something), allocating
2124 * a fence register, and mapping the appropriate aperture address into
2125 * userspace.
2126 */
2127int
2128i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129 struct drm_file *file)
2130{
2131 struct drm_i915_gem_mmap_gtt *args = data;
2132
2133 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134}
2135
2136/* Immediately discard the backing storage */
2137static void
2138i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139{
2140 i915_gem_object_free_mmap_offset(obj);
2141
2142 if (obj->base.filp == NULL)
2143 return;
2144
2145 /* Our goal here is to return as much of the memory as
2146 * is possible back to the system as we are called from OOM.
2147 * To do this we must instruct the shmfs to drop all of its
2148 * backing pages, *now*.
2149 */
2150 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2151 obj->madv = __I915_MADV_PURGED;
2152}
2153
2154/* Try to discard unwanted pages */
2155static void
2156i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2157{
2158 struct address_space *mapping;
2159
2160 switch (obj->madv) {
2161 case I915_MADV_DONTNEED:
2162 i915_gem_object_truncate(obj);
2163 case __I915_MADV_PURGED:
2164 return;
2165 }
2166
2167 if (obj->base.filp == NULL)
2168 return;
2169
2170 mapping = file_inode(obj->base.filp)->i_mapping,
2171 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172}
2173
2174static void
2175i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2176{
2177 struct sg_page_iter sg_iter;
2178 int ret;
2179
2180 BUG_ON(obj->madv == __I915_MADV_PURGED);
2181
2182 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183 if (ret) {
2184 /* In the event of a disaster, abandon all caches and
2185 * hope for the best.
2186 */
2187 WARN_ON(ret != -EIO);
2188 i915_gem_clflush_object(obj, true);
2189 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190 }
2191
2192 i915_gem_gtt_finish_object(obj);
2193
2194 if (i915_gem_object_needs_bit17_swizzle(obj))
2195 i915_gem_object_save_bit_17_swizzle(obj);
2196
2197 if (obj->madv == I915_MADV_DONTNEED)
2198 obj->dirty = 0;
2199
2200 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201 struct page *page = sg_page_iter_page(&sg_iter);
2202
2203 if (obj->dirty)
2204 set_page_dirty(page);
2205
2206 if (obj->madv == I915_MADV_WILLNEED)
2207 mark_page_accessed(page);
2208
2209 put_page(page);
2210 }
2211 obj->dirty = 0;
2212
2213 sg_free_table(obj->pages);
2214 kfree(obj->pages);
2215}
2216
2217int
2218i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219{
2220 const struct drm_i915_gem_object_ops *ops = obj->ops;
2221
2222 if (obj->pages == NULL)
2223 return 0;
2224
2225 if (obj->pages_pin_count)
2226 return -EBUSY;
2227
2228 BUG_ON(i915_gem_obj_bound_any(obj));
2229
2230 /* ->put_pages might need to allocate memory for the bit17 swizzle
2231 * array, hence protect them from being reaped by removing them from gtt
2232 * lists early. */
2233 list_del(&obj->global_list);
2234
2235 ops->put_pages(obj);
2236 obj->pages = NULL;
2237
2238 i915_gem_object_invalidate(obj);
2239
2240 return 0;
2241}
2242
2243static int
2244i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245{
2246 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247 int page_count, i;
2248 struct address_space *mapping;
2249 struct sg_table *st;
2250 struct scatterlist *sg;
2251 struct sg_page_iter sg_iter;
2252 struct page *page;
2253 unsigned long last_pfn = 0; /* suppress gcc warning */
2254 int ret;
2255 gfp_t gfp;
2256
2257 /* Assert that the object is not currently in any GPU domain. As it
2258 * wasn't in the GTT, there shouldn't be any way it could have been in
2259 * a GPU cache
2260 */
2261 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263
2264 st = kmalloc(sizeof(*st), GFP_KERNEL);
2265 if (st == NULL)
2266 return -ENOMEM;
2267
2268 page_count = obj->base.size / PAGE_SIZE;
2269 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2270 kfree(st);
2271 return -ENOMEM;
2272 }
2273
2274 /* Get the list of pages out of our struct file. They'll be pinned
2275 * at this point until we release them.
2276 *
2277 * Fail silently without starting the shrinker
2278 */
2279 mapping = file_inode(obj->base.filp)->i_mapping;
2280 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282 sg = st->sgl;
2283 st->nents = 0;
2284 for (i = 0; i < page_count; i++) {
2285 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286 if (IS_ERR(page)) {
2287 i915_gem_shrink(dev_priv,
2288 page_count,
2289 I915_SHRINK_BOUND |
2290 I915_SHRINK_UNBOUND |
2291 I915_SHRINK_PURGEABLE);
2292 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293 }
2294 if (IS_ERR(page)) {
2295 /* We've tried hard to allocate the memory by reaping
2296 * our own buffer, now let the real VM do its job and
2297 * go down in flames if truly OOM.
2298 */
2299 i915_gem_shrink_all(dev_priv);
2300 page = shmem_read_mapping_page(mapping, i);
2301 if (IS_ERR(page)) {
2302 ret = PTR_ERR(page);
2303 goto err_pages;
2304 }
2305 }
2306#ifdef CONFIG_SWIOTLB
2307 if (swiotlb_nr_tbl()) {
2308 st->nents++;
2309 sg_set_page(sg, page, PAGE_SIZE, 0);
2310 sg = sg_next(sg);
2311 continue;
2312 }
2313#endif
2314 if (!i || page_to_pfn(page) != last_pfn + 1) {
2315 if (i)
2316 sg = sg_next(sg);
2317 st->nents++;
2318 sg_set_page(sg, page, PAGE_SIZE, 0);
2319 } else {
2320 sg->length += PAGE_SIZE;
2321 }
2322 last_pfn = page_to_pfn(page);
2323
2324 /* Check that the i965g/gm workaround works. */
2325 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326 }
2327#ifdef CONFIG_SWIOTLB
2328 if (!swiotlb_nr_tbl())
2329#endif
2330 sg_mark_end(sg);
2331 obj->pages = st;
2332
2333 ret = i915_gem_gtt_prepare_object(obj);
2334 if (ret)
2335 goto err_pages;
2336
2337 if (i915_gem_object_needs_bit17_swizzle(obj))
2338 i915_gem_object_do_bit_17_swizzle(obj);
2339
2340 if (obj->tiling_mode != I915_TILING_NONE &&
2341 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342 i915_gem_object_pin_pages(obj);
2343
2344 return 0;
2345
2346err_pages:
2347 sg_mark_end(sg);
2348 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2349 put_page(sg_page_iter_page(&sg_iter));
2350 sg_free_table(st);
2351 kfree(st);
2352
2353 /* shmemfs first checks if there is enough memory to allocate the page
2354 * and reports ENOSPC should there be insufficient, along with the usual
2355 * ENOMEM for a genuine allocation failure.
2356 *
2357 * We use ENOSPC in our driver to mean that we have run out of aperture
2358 * space and so want to translate the error from shmemfs back to our
2359 * usual understanding of ENOMEM.
2360 */
2361 if (ret == -ENOSPC)
2362 ret = -ENOMEM;
2363
2364 return ret;
2365}
2366
2367/* Ensure that the associated pages are gathered from the backing storage
2368 * and pinned into our object. i915_gem_object_get_pages() may be called
2369 * multiple times before they are released by a single call to
2370 * i915_gem_object_put_pages() - once the pages are no longer referenced
2371 * either as a result of memory pressure (reaping pages under the shrinker)
2372 * or as the object is itself released.
2373 */
2374int
2375i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376{
2377 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378 const struct drm_i915_gem_object_ops *ops = obj->ops;
2379 int ret;
2380
2381 if (obj->pages)
2382 return 0;
2383
2384 if (obj->madv != I915_MADV_WILLNEED) {
2385 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386 return -EFAULT;
2387 }
2388
2389 BUG_ON(obj->pages_pin_count);
2390
2391 ret = ops->get_pages(obj);
2392 if (ret)
2393 return ret;
2394
2395 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396
2397 obj->get_page.sg = obj->pages->sgl;
2398 obj->get_page.last = 0;
2399
2400 return 0;
2401}
2402
2403void i915_vma_move_to_active(struct i915_vma *vma,
2404 struct drm_i915_gem_request *req)
2405{
2406 struct drm_i915_gem_object *obj = vma->obj;
2407 struct intel_engine_cs *ring;
2408
2409 ring = i915_gem_request_get_ring(req);
2410
2411 /* Add a reference if we're newly entering the active list. */
2412 if (obj->active == 0)
2413 drm_gem_object_reference(&obj->base);
2414 obj->active |= intel_ring_flag(ring);
2415
2416 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2417 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2418
2419 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2420}
2421
2422static void
2423i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2424{
2425 RQ_BUG_ON(obj->last_write_req == NULL);
2426 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2427
2428 i915_gem_request_assign(&obj->last_write_req, NULL);
2429 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2430}
2431
2432static void
2433i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2434{
2435 struct i915_vma *vma;
2436
2437 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2438 RQ_BUG_ON(!(obj->active & (1 << ring)));
2439
2440 list_del_init(&obj->ring_list[ring]);
2441 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2442
2443 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2444 i915_gem_object_retire__write(obj);
2445
2446 obj->active &= ~(1 << ring);
2447 if (obj->active)
2448 return;
2449
2450 /* Bump our place on the bound list to keep it roughly in LRU order
2451 * so that we don't steal from recently used but inactive objects
2452 * (unless we are forced to ofc!)
2453 */
2454 list_move_tail(&obj->global_list,
2455 &to_i915(obj->base.dev)->mm.bound_list);
2456
2457 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2458 if (!list_empty(&vma->vm_link))
2459 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2460 }
2461
2462 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2463 drm_gem_object_unreference(&obj->base);
2464}
2465
2466static int
2467i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2468{
2469 struct drm_i915_private *dev_priv = dev->dev_private;
2470 struct intel_engine_cs *ring;
2471 int ret, i, j;
2472
2473 /* Carefully retire all requests without writing to the rings */
2474 for_each_ring(ring, dev_priv, i) {
2475 ret = intel_ring_idle(ring);
2476 if (ret)
2477 return ret;
2478 }
2479 i915_gem_retire_requests(dev);
2480
2481 /* Finally reset hw state */
2482 for_each_ring(ring, dev_priv, i) {
2483 intel_ring_init_seqno(ring, seqno);
2484
2485 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2486 ring->semaphore.sync_seqno[j] = 0;
2487 }
2488
2489 return 0;
2490}
2491
2492int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2493{
2494 struct drm_i915_private *dev_priv = dev->dev_private;
2495 int ret;
2496
2497 if (seqno == 0)
2498 return -EINVAL;
2499
2500 /* HWS page needs to be set less than what we
2501 * will inject to ring
2502 */
2503 ret = i915_gem_init_seqno(dev, seqno - 1);
2504 if (ret)
2505 return ret;
2506
2507 /* Carefully set the last_seqno value so that wrap
2508 * detection still works
2509 */
2510 dev_priv->next_seqno = seqno;
2511 dev_priv->last_seqno = seqno - 1;
2512 if (dev_priv->last_seqno == 0)
2513 dev_priv->last_seqno--;
2514
2515 return 0;
2516}
2517
2518int
2519i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2520{
2521 struct drm_i915_private *dev_priv = dev->dev_private;
2522
2523 /* reserve 0 for non-seqno */
2524 if (dev_priv->next_seqno == 0) {
2525 int ret = i915_gem_init_seqno(dev, 0);
2526 if (ret)
2527 return ret;
2528
2529 dev_priv->next_seqno = 1;
2530 }
2531
2532 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2533 return 0;
2534}
2535
2536/*
2537 * NB: This function is not allowed to fail. Doing so would mean the the
2538 * request is not being tracked for completion but the work itself is
2539 * going to happen on the hardware. This would be a Bad Thing(tm).
2540 */
2541void __i915_add_request(struct drm_i915_gem_request *request,
2542 struct drm_i915_gem_object *obj,
2543 bool flush_caches)
2544{
2545 struct intel_engine_cs *ring;
2546 struct drm_i915_private *dev_priv;
2547 struct intel_ringbuffer *ringbuf;
2548 u32 request_start;
2549 int ret;
2550
2551 if (WARN_ON(request == NULL))
2552 return;
2553
2554 ring = request->ring;
2555 dev_priv = ring->dev->dev_private;
2556 ringbuf = request->ringbuf;
2557
2558 /*
2559 * To ensure that this call will not fail, space for its emissions
2560 * should already have been reserved in the ring buffer. Let the ring
2561 * know that it is time to use that space up.
2562 */
2563 intel_ring_reserved_space_use(ringbuf);
2564
2565 request_start = intel_ring_get_tail(ringbuf);
2566 /*
2567 * Emit any outstanding flushes - execbuf can fail to emit the flush
2568 * after having emitted the batchbuffer command. Hence we need to fix
2569 * things up similar to emitting the lazy request. The difference here
2570 * is that the flush _must_ happen before the next request, no matter
2571 * what.
2572 */
2573 if (flush_caches) {
2574 if (i915.enable_execlists)
2575 ret = logical_ring_flush_all_caches(request);
2576 else
2577 ret = intel_ring_flush_all_caches(request);
2578 /* Not allowed to fail! */
2579 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2580 }
2581
2582 /* Record the position of the start of the request so that
2583 * should we detect the updated seqno part-way through the
2584 * GPU processing the request, we never over-estimate the
2585 * position of the head.
2586 */
2587 request->postfix = intel_ring_get_tail(ringbuf);
2588
2589 if (i915.enable_execlists)
2590 ret = ring->emit_request(request);
2591 else {
2592 ret = ring->add_request(request);
2593
2594 request->tail = intel_ring_get_tail(ringbuf);
2595 }
2596 /* Not allowed to fail! */
2597 WARN(ret, "emit|add_request failed: %d!\n", ret);
2598
2599 request->head = request_start;
2600
2601 /* Whilst this request exists, batch_obj will be on the
2602 * active_list, and so will hold the active reference. Only when this
2603 * request is retired will the the batch_obj be moved onto the
2604 * inactive_list and lose its active reference. Hence we do not need
2605 * to explicitly hold another reference here.
2606 */
2607 request->batch_obj = obj;
2608
2609 request->emitted_jiffies = jiffies;
2610 request->previous_seqno = ring->last_submitted_seqno;
2611 ring->last_submitted_seqno = request->seqno;
2612 list_add_tail(&request->list, &ring->request_list);
2613
2614 trace_i915_gem_request_add(request);
2615
2616 i915_queue_hangcheck(ring->dev);
2617
2618 queue_delayed_work(dev_priv->wq,
2619 &dev_priv->mm.retire_work,
2620 round_jiffies_up_relative(HZ));
2621 intel_mark_busy(dev_priv->dev);
2622
2623 /* Sanity check that the reserved size was large enough. */
2624 intel_ring_reserved_space_end(ringbuf);
2625}
2626
2627static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2628 const struct intel_context *ctx)
2629{
2630 unsigned long elapsed;
2631
2632 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2633
2634 if (ctx->hang_stats.banned)
2635 return true;
2636
2637 if (ctx->hang_stats.ban_period_seconds &&
2638 elapsed <= ctx->hang_stats.ban_period_seconds) {
2639 if (!i915_gem_context_is_default(ctx)) {
2640 DRM_DEBUG("context hanging too fast, banning!\n");
2641 return true;
2642 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2643 if (i915_stop_ring_allow_warn(dev_priv))
2644 DRM_ERROR("gpu hanging too fast, banning!\n");
2645 return true;
2646 }
2647 }
2648
2649 return false;
2650}
2651
2652static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2653 struct intel_context *ctx,
2654 const bool guilty)
2655{
2656 struct i915_ctx_hang_stats *hs;
2657
2658 if (WARN_ON(!ctx))
2659 return;
2660
2661 hs = &ctx->hang_stats;
2662
2663 if (guilty) {
2664 hs->banned = i915_context_is_banned(dev_priv, ctx);
2665 hs->batch_active++;
2666 hs->guilty_ts = get_seconds();
2667 } else {
2668 hs->batch_pending++;
2669 }
2670}
2671
2672void i915_gem_request_free(struct kref *req_ref)
2673{
2674 struct drm_i915_gem_request *req = container_of(req_ref,
2675 typeof(*req), ref);
2676 struct intel_context *ctx = req->ctx;
2677
2678 if (req->file_priv)
2679 i915_gem_request_remove_from_client(req);
2680
2681 if (ctx) {
2682 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2683 intel_lr_context_unpin(ctx, req->ring);
2684
2685 i915_gem_context_unreference(ctx);
2686 }
2687
2688 kmem_cache_free(req->i915->requests, req);
2689}
2690
2691static inline int
2692__i915_gem_request_alloc(struct intel_engine_cs *ring,
2693 struct intel_context *ctx,
2694 struct drm_i915_gem_request **req_out)
2695{
2696 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2697 struct drm_i915_gem_request *req;
2698 int ret;
2699
2700 if (!req_out)
2701 return -EINVAL;
2702
2703 *req_out = NULL;
2704
2705 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2706 if (req == NULL)
2707 return -ENOMEM;
2708
2709 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2710 if (ret)
2711 goto err;
2712
2713 kref_init(&req->ref);
2714 req->i915 = dev_priv;
2715 req->ring = ring;
2716 req->ctx = ctx;
2717 i915_gem_context_reference(req->ctx);
2718
2719 if (i915.enable_execlists)
2720 ret = intel_logical_ring_alloc_request_extras(req);
2721 else
2722 ret = intel_ring_alloc_request_extras(req);
2723 if (ret) {
2724 i915_gem_context_unreference(req->ctx);
2725 goto err;
2726 }
2727
2728 /*
2729 * Reserve space in the ring buffer for all the commands required to
2730 * eventually emit this request. This is to guarantee that the
2731 * i915_add_request() call can't fail. Note that the reserve may need
2732 * to be redone if the request is not actually submitted straight
2733 * away, e.g. because a GPU scheduler has deferred it.
2734 */
2735 if (i915.enable_execlists)
2736 ret = intel_logical_ring_reserve_space(req);
2737 else
2738 ret = intel_ring_reserve_space(req);
2739 if (ret) {
2740 /*
2741 * At this point, the request is fully allocated even if not
2742 * fully prepared. Thus it can be cleaned up using the proper
2743 * free code.
2744 */
2745 i915_gem_request_cancel(req);
2746 return ret;
2747 }
2748
2749 *req_out = req;
2750 return 0;
2751
2752err:
2753 kmem_cache_free(dev_priv->requests, req);
2754 return ret;
2755}
2756
2757/**
2758 * i915_gem_request_alloc - allocate a request structure
2759 *
2760 * @engine: engine that we wish to issue the request on.
2761 * @ctx: context that the request will be associated with.
2762 * This can be NULL if the request is not directly related to
2763 * any specific user context, in which case this function will
2764 * choose an appropriate context to use.
2765 *
2766 * Returns a pointer to the allocated request if successful,
2767 * or an error code if not.
2768 */
2769struct drm_i915_gem_request *
2770i915_gem_request_alloc(struct intel_engine_cs *engine,
2771 struct intel_context *ctx)
2772{
2773 struct drm_i915_gem_request *req;
2774 int err;
2775
2776 if (ctx == NULL)
2777 ctx = to_i915(engine->dev)->kernel_context;
2778 err = __i915_gem_request_alloc(engine, ctx, &req);
2779 return err ? ERR_PTR(err) : req;
2780}
2781
2782void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2783{
2784 intel_ring_reserved_space_cancel(req->ringbuf);
2785
2786 i915_gem_request_unreference(req);
2787}
2788
2789struct drm_i915_gem_request *
2790i915_gem_find_active_request(struct intel_engine_cs *ring)
2791{
2792 struct drm_i915_gem_request *request;
2793
2794 list_for_each_entry(request, &ring->request_list, list) {
2795 if (i915_gem_request_completed(request, false))
2796 continue;
2797
2798 return request;
2799 }
2800
2801 return NULL;
2802}
2803
2804static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2805 struct intel_engine_cs *ring)
2806{
2807 struct drm_i915_gem_request *request;
2808 bool ring_hung;
2809
2810 request = i915_gem_find_active_request(ring);
2811
2812 if (request == NULL)
2813 return;
2814
2815 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2816
2817 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2818
2819 list_for_each_entry_continue(request, &ring->request_list, list)
2820 i915_set_reset_status(dev_priv, request->ctx, false);
2821}
2822
2823static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2824 struct intel_engine_cs *ring)
2825{
2826 struct intel_ringbuffer *buffer;
2827
2828 while (!list_empty(&ring->active_list)) {
2829 struct drm_i915_gem_object *obj;
2830
2831 obj = list_first_entry(&ring->active_list,
2832 struct drm_i915_gem_object,
2833 ring_list[ring->id]);
2834
2835 i915_gem_object_retire__read(obj, ring->id);
2836 }
2837
2838 /*
2839 * Clear the execlists queue up before freeing the requests, as those
2840 * are the ones that keep the context and ringbuffer backing objects
2841 * pinned in place.
2842 */
2843
2844 if (i915.enable_execlists) {
2845 spin_lock_irq(&ring->execlist_lock);
2846
2847 /* list_splice_tail_init checks for empty lists */
2848 list_splice_tail_init(&ring->execlist_queue,
2849 &ring->execlist_retired_req_list);
2850
2851 spin_unlock_irq(&ring->execlist_lock);
2852 intel_execlists_retire_requests(ring);
2853 }
2854
2855 /*
2856 * We must free the requests after all the corresponding objects have
2857 * been moved off active lists. Which is the same order as the normal
2858 * retire_requests function does. This is important if object hold
2859 * implicit references on things like e.g. ppgtt address spaces through
2860 * the request.
2861 */
2862 while (!list_empty(&ring->request_list)) {
2863 struct drm_i915_gem_request *request;
2864
2865 request = list_first_entry(&ring->request_list,
2866 struct drm_i915_gem_request,
2867 list);
2868
2869 i915_gem_request_retire(request);
2870 }
2871
2872 /* Having flushed all requests from all queues, we know that all
2873 * ringbuffers must now be empty. However, since we do not reclaim
2874 * all space when retiring the request (to prevent HEADs colliding
2875 * with rapid ringbuffer wraparound) the amount of available space
2876 * upon reset is less than when we start. Do one more pass over
2877 * all the ringbuffers to reset last_retired_head.
2878 */
2879 list_for_each_entry(buffer, &ring->buffers, link) {
2880 buffer->last_retired_head = buffer->tail;
2881 intel_ring_update_space(buffer);
2882 }
2883}
2884
2885void i915_gem_reset(struct drm_device *dev)
2886{
2887 struct drm_i915_private *dev_priv = dev->dev_private;
2888 struct intel_engine_cs *ring;
2889 int i;
2890
2891 /*
2892 * Before we free the objects from the requests, we need to inspect
2893 * them for finding the guilty party. As the requests only borrow
2894 * their reference to the objects, the inspection must be done first.
2895 */
2896 for_each_ring(ring, dev_priv, i)
2897 i915_gem_reset_ring_status(dev_priv, ring);
2898
2899 for_each_ring(ring, dev_priv, i)
2900 i915_gem_reset_ring_cleanup(dev_priv, ring);
2901
2902 i915_gem_context_reset(dev);
2903
2904 i915_gem_restore_fences(dev);
2905
2906 WARN_ON(i915_verify_lists(dev));
2907}
2908
2909/**
2910 * This function clears the request list as sequence numbers are passed.
2911 */
2912void
2913i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2914{
2915 WARN_ON(i915_verify_lists(ring->dev));
2916
2917 /* Retire requests first as we use it above for the early return.
2918 * If we retire requests last, we may use a later seqno and so clear
2919 * the requests lists without clearing the active list, leading to
2920 * confusion.
2921 */
2922 while (!list_empty(&ring->request_list)) {
2923 struct drm_i915_gem_request *request;
2924
2925 request = list_first_entry(&ring->request_list,
2926 struct drm_i915_gem_request,
2927 list);
2928
2929 if (!i915_gem_request_completed(request, true))
2930 break;
2931
2932 i915_gem_request_retire(request);
2933 }
2934
2935 /* Move any buffers on the active list that are no longer referenced
2936 * by the ringbuffer to the flushing/inactive lists as appropriate,
2937 * before we free the context associated with the requests.
2938 */
2939 while (!list_empty(&ring->active_list)) {
2940 struct drm_i915_gem_object *obj;
2941
2942 obj = list_first_entry(&ring->active_list,
2943 struct drm_i915_gem_object,
2944 ring_list[ring->id]);
2945
2946 if (!list_empty(&obj->last_read_req[ring->id]->list))
2947 break;
2948
2949 i915_gem_object_retire__read(obj, ring->id);
2950 }
2951
2952 if (unlikely(ring->trace_irq_req &&
2953 i915_gem_request_completed(ring->trace_irq_req, true))) {
2954 ring->irq_put(ring);
2955 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2956 }
2957
2958 WARN_ON(i915_verify_lists(ring->dev));
2959}
2960
2961bool
2962i915_gem_retire_requests(struct drm_device *dev)
2963{
2964 struct drm_i915_private *dev_priv = dev->dev_private;
2965 struct intel_engine_cs *ring;
2966 bool idle = true;
2967 int i;
2968
2969 for_each_ring(ring, dev_priv, i) {
2970 i915_gem_retire_requests_ring(ring);
2971 idle &= list_empty(&ring->request_list);
2972 if (i915.enable_execlists) {
2973 spin_lock_irq(&ring->execlist_lock);
2974 idle &= list_empty(&ring->execlist_queue);
2975 spin_unlock_irq(&ring->execlist_lock);
2976
2977 intel_execlists_retire_requests(ring);
2978 }
2979 }
2980
2981 if (idle)
2982 mod_delayed_work(dev_priv->wq,
2983 &dev_priv->mm.idle_work,
2984 msecs_to_jiffies(100));
2985
2986 return idle;
2987}
2988
2989static void
2990i915_gem_retire_work_handler(struct work_struct *work)
2991{
2992 struct drm_i915_private *dev_priv =
2993 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2994 struct drm_device *dev = dev_priv->dev;
2995 bool idle;
2996
2997 /* Come back later if the device is busy... */
2998 idle = false;
2999 if (mutex_trylock(&dev->struct_mutex)) {
3000 idle = i915_gem_retire_requests(dev);
3001 mutex_unlock(&dev->struct_mutex);
3002 }
3003 if (!idle)
3004 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3005 round_jiffies_up_relative(HZ));
3006}
3007
3008static void
3009i915_gem_idle_work_handler(struct work_struct *work)
3010{
3011 struct drm_i915_private *dev_priv =
3012 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3013 struct drm_device *dev = dev_priv->dev;
3014 struct intel_engine_cs *ring;
3015 int i;
3016
3017 for_each_ring(ring, dev_priv, i)
3018 if (!list_empty(&ring->request_list))
3019 return;
3020
3021 /* we probably should sync with hangcheck here, using cancel_work_sync.
3022 * Also locking seems to be fubar here, ring->request_list is protected
3023 * by dev->struct_mutex. */
3024
3025 intel_mark_idle(dev);
3026
3027 if (mutex_trylock(&dev->struct_mutex)) {
3028 struct intel_engine_cs *ring;
3029 int i;
3030
3031 for_each_ring(ring, dev_priv, i)
3032 i915_gem_batch_pool_fini(&ring->batch_pool);
3033
3034 mutex_unlock(&dev->struct_mutex);
3035 }
3036}
3037
3038/**
3039 * Ensures that an object will eventually get non-busy by flushing any required
3040 * write domains, emitting any outstanding lazy request and retiring and
3041 * completed requests.
3042 */
3043static int
3044i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3045{
3046 int i;
3047
3048 if (!obj->active)
3049 return 0;
3050
3051 for (i = 0; i < I915_NUM_RINGS; i++) {
3052 struct drm_i915_gem_request *req;
3053
3054 req = obj->last_read_req[i];
3055 if (req == NULL)
3056 continue;
3057
3058 if (list_empty(&req->list))
3059 goto retire;
3060
3061 if (i915_gem_request_completed(req, true)) {
3062 __i915_gem_request_retire__upto(req);
3063retire:
3064 i915_gem_object_retire__read(obj, i);
3065 }
3066 }
3067
3068 return 0;
3069}
3070
3071/**
3072 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3073 * @DRM_IOCTL_ARGS: standard ioctl arguments
3074 *
3075 * Returns 0 if successful, else an error is returned with the remaining time in
3076 * the timeout parameter.
3077 * -ETIME: object is still busy after timeout
3078 * -ERESTARTSYS: signal interrupted the wait
3079 * -ENONENT: object doesn't exist
3080 * Also possible, but rare:
3081 * -EAGAIN: GPU wedged
3082 * -ENOMEM: damn
3083 * -ENODEV: Internal IRQ fail
3084 * -E?: The add request failed
3085 *
3086 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3087 * non-zero timeout parameter the wait ioctl will wait for the given number of
3088 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3089 * without holding struct_mutex the object may become re-busied before this
3090 * function completes. A similar but shorter * race condition exists in the busy
3091 * ioctl
3092 */
3093int
3094i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3095{
3096 struct drm_i915_private *dev_priv = dev->dev_private;
3097 struct drm_i915_gem_wait *args = data;
3098 struct drm_i915_gem_object *obj;
3099 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3100 unsigned reset_counter;
3101 int i, n = 0;
3102 int ret;
3103
3104 if (args->flags != 0)
3105 return -EINVAL;
3106
3107 ret = i915_mutex_lock_interruptible(dev);
3108 if (ret)
3109 return ret;
3110
3111 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3112 if (&obj->base == NULL) {
3113 mutex_unlock(&dev->struct_mutex);
3114 return -ENOENT;
3115 }
3116
3117 /* Need to make sure the object gets inactive eventually. */
3118 ret = i915_gem_object_flush_active(obj);
3119 if (ret)
3120 goto out;
3121
3122 if (!obj->active)
3123 goto out;
3124
3125 /* Do this after OLR check to make sure we make forward progress polling
3126 * on this IOCTL with a timeout == 0 (like busy ioctl)
3127 */
3128 if (args->timeout_ns == 0) {
3129 ret = -ETIME;
3130 goto out;
3131 }
3132
3133 drm_gem_object_unreference(&obj->base);
3134 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3135
3136 for (i = 0; i < I915_NUM_RINGS; i++) {
3137 if (obj->last_read_req[i] == NULL)
3138 continue;
3139
3140 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3141 }
3142
3143 mutex_unlock(&dev->struct_mutex);
3144
3145 for (i = 0; i < n; i++) {
3146 if (ret == 0)
3147 ret = __i915_wait_request(req[i], reset_counter, true,
3148 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3149 to_rps_client(file));
3150 i915_gem_request_unreference__unlocked(req[i]);
3151 }
3152 return ret;
3153
3154out:
3155 drm_gem_object_unreference(&obj->base);
3156 mutex_unlock(&dev->struct_mutex);
3157 return ret;
3158}
3159
3160static int
3161__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3162 struct intel_engine_cs *to,
3163 struct drm_i915_gem_request *from_req,
3164 struct drm_i915_gem_request **to_req)
3165{
3166 struct intel_engine_cs *from;
3167 int ret;
3168
3169 from = i915_gem_request_get_ring(from_req);
3170 if (to == from)
3171 return 0;
3172
3173 if (i915_gem_request_completed(from_req, true))
3174 return 0;
3175
3176 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3177 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3178 ret = __i915_wait_request(from_req,
3179 atomic_read(&i915->gpu_error.reset_counter),
3180 i915->mm.interruptible,
3181 NULL,
3182 &i915->rps.semaphores);
3183 if (ret)
3184 return ret;
3185
3186 i915_gem_object_retire_request(obj, from_req);
3187 } else {
3188 int idx = intel_ring_sync_index(from, to);
3189 u32 seqno = i915_gem_request_get_seqno(from_req);
3190
3191 WARN_ON(!to_req);
3192
3193 if (seqno <= from->semaphore.sync_seqno[idx])
3194 return 0;
3195
3196 if (*to_req == NULL) {
3197 struct drm_i915_gem_request *req;
3198
3199 req = i915_gem_request_alloc(to, NULL);
3200 if (IS_ERR(req))
3201 return PTR_ERR(req);
3202
3203 *to_req = req;
3204 }
3205
3206 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3207 ret = to->semaphore.sync_to(*to_req, from, seqno);
3208 if (ret)
3209 return ret;
3210
3211 /* We use last_read_req because sync_to()
3212 * might have just caused seqno wrap under
3213 * the radar.
3214 */
3215 from->semaphore.sync_seqno[idx] =
3216 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3217 }
3218
3219 return 0;
3220}
3221
3222/**
3223 * i915_gem_object_sync - sync an object to a ring.
3224 *
3225 * @obj: object which may be in use on another ring.
3226 * @to: ring we wish to use the object on. May be NULL.
3227 * @to_req: request we wish to use the object for. See below.
3228 * This will be allocated and returned if a request is
3229 * required but not passed in.
3230 *
3231 * This code is meant to abstract object synchronization with the GPU.
3232 * Calling with NULL implies synchronizing the object with the CPU
3233 * rather than a particular GPU ring. Conceptually we serialise writes
3234 * between engines inside the GPU. We only allow one engine to write
3235 * into a buffer at any time, but multiple readers. To ensure each has
3236 * a coherent view of memory, we must:
3237 *
3238 * - If there is an outstanding write request to the object, the new
3239 * request must wait for it to complete (either CPU or in hw, requests
3240 * on the same ring will be naturally ordered).
3241 *
3242 * - If we are a write request (pending_write_domain is set), the new
3243 * request must wait for outstanding read requests to complete.
3244 *
3245 * For CPU synchronisation (NULL to) no request is required. For syncing with
3246 * rings to_req must be non-NULL. However, a request does not have to be
3247 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3248 * request will be allocated automatically and returned through *to_req. Note
3249 * that it is not guaranteed that commands will be emitted (because the system
3250 * might already be idle). Hence there is no need to create a request that
3251 * might never have any work submitted. Note further that if a request is
3252 * returned in *to_req, it is the responsibility of the caller to submit
3253 * that request (after potentially adding more work to it).
3254 *
3255 * Returns 0 if successful, else propagates up the lower layer error.
3256 */
3257int
3258i915_gem_object_sync(struct drm_i915_gem_object *obj,
3259 struct intel_engine_cs *to,
3260 struct drm_i915_gem_request **to_req)
3261{
3262 const bool readonly = obj->base.pending_write_domain == 0;
3263 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3264 int ret, i, n;
3265
3266 if (!obj->active)
3267 return 0;
3268
3269 if (to == NULL)
3270 return i915_gem_object_wait_rendering(obj, readonly);
3271
3272 n = 0;
3273 if (readonly) {
3274 if (obj->last_write_req)
3275 req[n++] = obj->last_write_req;
3276 } else {
3277 for (i = 0; i < I915_NUM_RINGS; i++)
3278 if (obj->last_read_req[i])
3279 req[n++] = obj->last_read_req[i];
3280 }
3281 for (i = 0; i < n; i++) {
3282 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3283 if (ret)
3284 return ret;
3285 }
3286
3287 return 0;
3288}
3289
3290static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3291{
3292 u32 old_write_domain, old_read_domains;
3293
3294 /* Force a pagefault for domain tracking on next user access */
3295 i915_gem_release_mmap(obj);
3296
3297 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3298 return;
3299
3300 /* Wait for any direct GTT access to complete */
3301 mb();
3302
3303 old_read_domains = obj->base.read_domains;
3304 old_write_domain = obj->base.write_domain;
3305
3306 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3307 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3308
3309 trace_i915_gem_object_change_domain(obj,
3310 old_read_domains,
3311 old_write_domain);
3312}
3313
3314static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3315{
3316 struct drm_i915_gem_object *obj = vma->obj;
3317 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3318 int ret;
3319
3320 if (list_empty(&vma->obj_link))
3321 return 0;
3322
3323 if (!drm_mm_node_allocated(&vma->node)) {
3324 i915_gem_vma_destroy(vma);
3325 return 0;
3326 }
3327
3328 if (vma->pin_count)
3329 return -EBUSY;
3330
3331 BUG_ON(obj->pages == NULL);
3332
3333 if (wait) {
3334 ret = i915_gem_object_wait_rendering(obj, false);
3335 if (ret)
3336 return ret;
3337 }
3338
3339 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3340 i915_gem_object_finish_gtt(obj);
3341
3342 /* release the fence reg _after_ flushing */
3343 ret = i915_gem_object_put_fence(obj);
3344 if (ret)
3345 return ret;
3346 }
3347
3348 trace_i915_vma_unbind(vma);
3349
3350 vma->vm->unbind_vma(vma);
3351 vma->bound = 0;
3352
3353 list_del_init(&vma->vm_link);
3354 if (vma->is_ggtt) {
3355 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3356 obj->map_and_fenceable = false;
3357 } else if (vma->ggtt_view.pages) {
3358 sg_free_table(vma->ggtt_view.pages);
3359 kfree(vma->ggtt_view.pages);
3360 }
3361 vma->ggtt_view.pages = NULL;
3362 }
3363
3364 drm_mm_remove_node(&vma->node);
3365 i915_gem_vma_destroy(vma);
3366
3367 /* Since the unbound list is global, only move to that list if
3368 * no more VMAs exist. */
3369 if (list_empty(&obj->vma_list))
3370 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3371
3372 /* And finally now the object is completely decoupled from this vma,
3373 * we can drop its hold on the backing storage and allow it to be
3374 * reaped by the shrinker.
3375 */
3376 i915_gem_object_unpin_pages(obj);
3377
3378 return 0;
3379}
3380
3381int i915_vma_unbind(struct i915_vma *vma)
3382{
3383 return __i915_vma_unbind(vma, true);
3384}
3385
3386int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3387{
3388 return __i915_vma_unbind(vma, false);
3389}
3390
3391int i915_gpu_idle(struct drm_device *dev)
3392{
3393 struct drm_i915_private *dev_priv = dev->dev_private;
3394 struct intel_engine_cs *ring;
3395 int ret, i;
3396
3397 /* Flush everything onto the inactive list. */
3398 for_each_ring(ring, dev_priv, i) {
3399 if (!i915.enable_execlists) {
3400 struct drm_i915_gem_request *req;
3401
3402 req = i915_gem_request_alloc(ring, NULL);
3403 if (IS_ERR(req))
3404 return PTR_ERR(req);
3405
3406 ret = i915_switch_context(req);
3407 if (ret) {
3408 i915_gem_request_cancel(req);
3409 return ret;
3410 }
3411
3412 i915_add_request_no_flush(req);
3413 }
3414
3415 ret = intel_ring_idle(ring);
3416 if (ret)
3417 return ret;
3418 }
3419
3420 WARN_ON(i915_verify_lists(dev));
3421 return 0;
3422}
3423
3424static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3425 unsigned long cache_level)
3426{
3427 struct drm_mm_node *gtt_space = &vma->node;
3428 struct drm_mm_node *other;
3429
3430 /*
3431 * On some machines we have to be careful when putting differing types
3432 * of snoopable memory together to avoid the prefetcher crossing memory
3433 * domains and dying. During vm initialisation, we decide whether or not
3434 * these constraints apply and set the drm_mm.color_adjust
3435 * appropriately.
3436 */
3437 if (vma->vm->mm.color_adjust == NULL)
3438 return true;
3439
3440 if (!drm_mm_node_allocated(gtt_space))
3441 return true;
3442
3443 if (list_empty(>t_space->node_list))
3444 return true;
3445
3446 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3447 if (other->allocated && !other->hole_follows && other->color != cache_level)
3448 return false;
3449
3450 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3451 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3452 return false;
3453
3454 return true;
3455}
3456
3457/**
3458 * Finds free space in the GTT aperture and binds the object or a view of it
3459 * there.
3460 */
3461static struct i915_vma *
3462i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3463 struct i915_address_space *vm,
3464 const struct i915_ggtt_view *ggtt_view,
3465 unsigned alignment,
3466 uint64_t flags)
3467{
3468 struct drm_device *dev = obj->base.dev;
3469 struct drm_i915_private *dev_priv = dev->dev_private;
3470 u32 fence_alignment, unfenced_alignment;
3471 u32 search_flag, alloc_flag;
3472 u64 start, end;
3473 u64 size, fence_size;
3474 struct i915_vma *vma;
3475 int ret;
3476
3477 if (i915_is_ggtt(vm)) {
3478 u32 view_size;
3479
3480 if (WARN_ON(!ggtt_view))
3481 return ERR_PTR(-EINVAL);
3482
3483 view_size = i915_ggtt_view_size(obj, ggtt_view);
3484
3485 fence_size = i915_gem_get_gtt_size(dev,
3486 view_size,
3487 obj->tiling_mode);
3488 fence_alignment = i915_gem_get_gtt_alignment(dev,
3489 view_size,
3490 obj->tiling_mode,
3491 true);
3492 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3493 view_size,
3494 obj->tiling_mode,
3495 false);
3496 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3497 } else {
3498 fence_size = i915_gem_get_gtt_size(dev,
3499 obj->base.size,
3500 obj->tiling_mode);
3501 fence_alignment = i915_gem_get_gtt_alignment(dev,
3502 obj->base.size,
3503 obj->tiling_mode,
3504 true);
3505 unfenced_alignment =
3506 i915_gem_get_gtt_alignment(dev,
3507 obj->base.size,
3508 obj->tiling_mode,
3509 false);
3510 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3511 }
3512
3513 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3514 end = vm->total;
3515 if (flags & PIN_MAPPABLE)
3516 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3517 if (flags & PIN_ZONE_4G)
3518 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3519
3520 if (alignment == 0)
3521 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3522 unfenced_alignment;
3523 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3524 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3525 ggtt_view ? ggtt_view->type : 0,
3526 alignment);
3527 return ERR_PTR(-EINVAL);
3528 }
3529
3530 /* If binding the object/GGTT view requires more space than the entire
3531 * aperture has, reject it early before evicting everything in a vain
3532 * attempt to find space.
3533 */
3534 if (size > end) {
3535 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3536 ggtt_view ? ggtt_view->type : 0,
3537 size,
3538 flags & PIN_MAPPABLE ? "mappable" : "total",
3539 end);
3540 return ERR_PTR(-E2BIG);
3541 }
3542
3543 ret = i915_gem_object_get_pages(obj);
3544 if (ret)
3545 return ERR_PTR(ret);
3546
3547 i915_gem_object_pin_pages(obj);
3548
3549 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3550 i915_gem_obj_lookup_or_create_vma(obj, vm);
3551
3552 if (IS_ERR(vma))
3553 goto err_unpin;
3554
3555 if (flags & PIN_OFFSET_FIXED) {
3556 uint64_t offset = flags & PIN_OFFSET_MASK;
3557
3558 if (offset & (alignment - 1) || offset + size > end) {
3559 ret = -EINVAL;
3560 goto err_free_vma;
3561 }
3562 vma->node.start = offset;
3563 vma->node.size = size;
3564 vma->node.color = obj->cache_level;
3565 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3566 if (ret) {
3567 ret = i915_gem_evict_for_vma(vma);
3568 if (ret == 0)
3569 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3570 }
3571 if (ret)
3572 goto err_free_vma;
3573 } else {
3574 if (flags & PIN_HIGH) {
3575 search_flag = DRM_MM_SEARCH_BELOW;
3576 alloc_flag = DRM_MM_CREATE_TOP;
3577 } else {
3578 search_flag = DRM_MM_SEARCH_DEFAULT;
3579 alloc_flag = DRM_MM_CREATE_DEFAULT;
3580 }
3581
3582search_free:
3583 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3584 size, alignment,
3585 obj->cache_level,
3586 start, end,
3587 search_flag,
3588 alloc_flag);
3589 if (ret) {
3590 ret = i915_gem_evict_something(dev, vm, size, alignment,
3591 obj->cache_level,
3592 start, end,
3593 flags);
3594 if (ret == 0)
3595 goto search_free;
3596
3597 goto err_free_vma;
3598 }
3599 }
3600 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3601 ret = -EINVAL;
3602 goto err_remove_node;
3603 }
3604
3605 trace_i915_vma_bind(vma, flags);
3606 ret = i915_vma_bind(vma, obj->cache_level, flags);
3607 if (ret)
3608 goto err_remove_node;
3609
3610 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3611 list_add_tail(&vma->vm_link, &vm->inactive_list);
3612
3613 return vma;
3614
3615err_remove_node:
3616 drm_mm_remove_node(&vma->node);
3617err_free_vma:
3618 i915_gem_vma_destroy(vma);
3619 vma = ERR_PTR(ret);
3620err_unpin:
3621 i915_gem_object_unpin_pages(obj);
3622 return vma;
3623}
3624
3625bool
3626i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3627 bool force)
3628{
3629 /* If we don't have a page list set up, then we're not pinned
3630 * to GPU, and we can ignore the cache flush because it'll happen
3631 * again at bind time.
3632 */
3633 if (obj->pages == NULL)
3634 return false;
3635
3636 /*
3637 * Stolen memory is always coherent with the GPU as it is explicitly
3638 * marked as wc by the system, or the system is cache-coherent.
3639 */
3640 if (obj->stolen || obj->phys_handle)
3641 return false;
3642
3643 /* If the GPU is snooping the contents of the CPU cache,
3644 * we do not need to manually clear the CPU cache lines. However,
3645 * the caches are only snooped when the render cache is
3646 * flushed/invalidated. As we always have to emit invalidations
3647 * and flushes when moving into and out of the RENDER domain, correct
3648 * snooping behaviour occurs naturally as the result of our domain
3649 * tracking.
3650 */
3651 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3652 obj->cache_dirty = true;
3653 return false;
3654 }
3655
3656 trace_i915_gem_object_clflush(obj);
3657 drm_clflush_sg(obj->pages);
3658 obj->cache_dirty = false;
3659
3660 return true;
3661}
3662
3663/** Flushes the GTT write domain for the object if it's dirty. */
3664static void
3665i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3666{
3667 uint32_t old_write_domain;
3668
3669 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3670 return;
3671
3672 /* No actual flushing is required for the GTT write domain. Writes
3673 * to it immediately go to main memory as far as we know, so there's
3674 * no chipset flush. It also doesn't land in render cache.
3675 *
3676 * However, we do have to enforce the order so that all writes through
3677 * the GTT land before any writes to the device, such as updates to
3678 * the GATT itself.
3679 */
3680 wmb();
3681
3682 old_write_domain = obj->base.write_domain;
3683 obj->base.write_domain = 0;
3684
3685 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3686
3687 trace_i915_gem_object_change_domain(obj,
3688 obj->base.read_domains,
3689 old_write_domain);
3690}
3691
3692/** Flushes the CPU write domain for the object if it's dirty. */
3693static void
3694i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3695{
3696 uint32_t old_write_domain;
3697
3698 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3699 return;
3700
3701 if (i915_gem_clflush_object(obj, obj->pin_display))
3702 i915_gem_chipset_flush(obj->base.dev);
3703
3704 old_write_domain = obj->base.write_domain;
3705 obj->base.write_domain = 0;
3706
3707 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3708
3709 trace_i915_gem_object_change_domain(obj,
3710 obj->base.read_domains,
3711 old_write_domain);
3712}
3713
3714/**
3715 * Moves a single object to the GTT read, and possibly write domain.
3716 *
3717 * This function returns when the move is complete, including waiting on
3718 * flushes to occur.
3719 */
3720int
3721i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3722{
3723 uint32_t old_write_domain, old_read_domains;
3724 struct i915_vma *vma;
3725 int ret;
3726
3727 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3728 return 0;
3729
3730 ret = i915_gem_object_wait_rendering(obj, !write);
3731 if (ret)
3732 return ret;
3733
3734 /* Flush and acquire obj->pages so that we are coherent through
3735 * direct access in memory with previous cached writes through
3736 * shmemfs and that our cache domain tracking remains valid.
3737 * For example, if the obj->filp was moved to swap without us
3738 * being notified and releasing the pages, we would mistakenly
3739 * continue to assume that the obj remained out of the CPU cached
3740 * domain.
3741 */
3742 ret = i915_gem_object_get_pages(obj);
3743 if (ret)
3744 return ret;
3745
3746 i915_gem_object_flush_cpu_write_domain(obj);
3747
3748 /* Serialise direct access to this object with the barriers for
3749 * coherent writes from the GPU, by effectively invalidating the
3750 * GTT domain upon first access.
3751 */
3752 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3753 mb();
3754
3755 old_write_domain = obj->base.write_domain;
3756 old_read_domains = obj->base.read_domains;
3757
3758 /* It should now be out of any other write domains, and we can update
3759 * the domain values for our changes.
3760 */
3761 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3762 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3763 if (write) {
3764 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3765 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3766 obj->dirty = 1;
3767 }
3768
3769 trace_i915_gem_object_change_domain(obj,
3770 old_read_domains,
3771 old_write_domain);
3772
3773 /* And bump the LRU for this access */
3774 vma = i915_gem_obj_to_ggtt(obj);
3775 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3776 list_move_tail(&vma->vm_link,
3777 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3778
3779 return 0;
3780}
3781
3782/**
3783 * Changes the cache-level of an object across all VMA.
3784 *
3785 * After this function returns, the object will be in the new cache-level
3786 * across all GTT and the contents of the backing storage will be coherent,
3787 * with respect to the new cache-level. In order to keep the backing storage
3788 * coherent for all users, we only allow a single cache level to be set
3789 * globally on the object and prevent it from being changed whilst the
3790 * hardware is reading from the object. That is if the object is currently
3791 * on the scanout it will be set to uncached (or equivalent display
3792 * cache coherency) and all non-MOCS GPU access will also be uncached so
3793 * that all direct access to the scanout remains coherent.
3794 */
3795int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3796 enum i915_cache_level cache_level)
3797{
3798 struct drm_device *dev = obj->base.dev;
3799 struct i915_vma *vma, *next;
3800 bool bound = false;
3801 int ret = 0;
3802
3803 if (obj->cache_level == cache_level)
3804 goto out;
3805
3806 /* Inspect the list of currently bound VMA and unbind any that would
3807 * be invalid given the new cache-level. This is principally to
3808 * catch the issue of the CS prefetch crossing page boundaries and
3809 * reading an invalid PTE on older architectures.
3810 */
3811 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3812 if (!drm_mm_node_allocated(&vma->node))
3813 continue;
3814
3815 if (vma->pin_count) {
3816 DRM_DEBUG("can not change the cache level of pinned objects\n");
3817 return -EBUSY;
3818 }
3819
3820 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3821 ret = i915_vma_unbind(vma);
3822 if (ret)
3823 return ret;
3824 } else
3825 bound = true;
3826 }
3827
3828 /* We can reuse the existing drm_mm nodes but need to change the
3829 * cache-level on the PTE. We could simply unbind them all and
3830 * rebind with the correct cache-level on next use. However since
3831 * we already have a valid slot, dma mapping, pages etc, we may as
3832 * rewrite the PTE in the belief that doing so tramples upon less
3833 * state and so involves less work.
3834 */
3835 if (bound) {
3836 /* Before we change the PTE, the GPU must not be accessing it.
3837 * If we wait upon the object, we know that all the bound
3838 * VMA are no longer active.
3839 */
3840 ret = i915_gem_object_wait_rendering(obj, false);
3841 if (ret)
3842 return ret;
3843
3844 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3845 /* Access to snoopable pages through the GTT is
3846 * incoherent and on some machines causes a hard
3847 * lockup. Relinquish the CPU mmaping to force
3848 * userspace to refault in the pages and we can
3849 * then double check if the GTT mapping is still
3850 * valid for that pointer access.
3851 */
3852 i915_gem_release_mmap(obj);
3853
3854 /* As we no longer need a fence for GTT access,
3855 * we can relinquish it now (and so prevent having
3856 * to steal a fence from someone else on the next
3857 * fence request). Note GPU activity would have
3858 * dropped the fence as all snoopable access is
3859 * supposed to be linear.
3860 */
3861 ret = i915_gem_object_put_fence(obj);
3862 if (ret)
3863 return ret;
3864 } else {
3865 /* We either have incoherent backing store and
3866 * so no GTT access or the architecture is fully
3867 * coherent. In such cases, existing GTT mmaps
3868 * ignore the cache bit in the PTE and we can
3869 * rewrite it without confusing the GPU or having
3870 * to force userspace to fault back in its mmaps.
3871 */
3872 }
3873
3874 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3875 if (!drm_mm_node_allocated(&vma->node))
3876 continue;
3877
3878 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3879 if (ret)
3880 return ret;
3881 }
3882 }
3883
3884 list_for_each_entry(vma, &obj->vma_list, obj_link)
3885 vma->node.color = cache_level;
3886 obj->cache_level = cache_level;
3887
3888out:
3889 /* Flush the dirty CPU caches to the backing storage so that the
3890 * object is now coherent at its new cache level (with respect
3891 * to the access domain).
3892 */
3893 if (obj->cache_dirty &&
3894 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3895 cpu_write_needs_clflush(obj)) {
3896 if (i915_gem_clflush_object(obj, true))
3897 i915_gem_chipset_flush(obj->base.dev);
3898 }
3899
3900 return 0;
3901}
3902
3903int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3904 struct drm_file *file)
3905{
3906 struct drm_i915_gem_caching *args = data;
3907 struct drm_i915_gem_object *obj;
3908
3909 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3910 if (&obj->base == NULL)
3911 return -ENOENT;
3912
3913 switch (obj->cache_level) {
3914 case I915_CACHE_LLC:
3915 case I915_CACHE_L3_LLC:
3916 args->caching = I915_CACHING_CACHED;
3917 break;
3918
3919 case I915_CACHE_WT:
3920 args->caching = I915_CACHING_DISPLAY;
3921 break;
3922
3923 default:
3924 args->caching = I915_CACHING_NONE;
3925 break;
3926 }
3927
3928 drm_gem_object_unreference_unlocked(&obj->base);
3929 return 0;
3930}
3931
3932int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3933 struct drm_file *file)
3934{
3935 struct drm_i915_private *dev_priv = dev->dev_private;
3936 struct drm_i915_gem_caching *args = data;
3937 struct drm_i915_gem_object *obj;
3938 enum i915_cache_level level;
3939 int ret;
3940
3941 switch (args->caching) {
3942 case I915_CACHING_NONE:
3943 level = I915_CACHE_NONE;
3944 break;
3945 case I915_CACHING_CACHED:
3946 /*
3947 * Due to a HW issue on BXT A stepping, GPU stores via a
3948 * snooped mapping may leave stale data in a corresponding CPU
3949 * cacheline, whereas normally such cachelines would get
3950 * invalidated.
3951 */
3952 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3953 return -ENODEV;
3954
3955 level = I915_CACHE_LLC;
3956 break;
3957 case I915_CACHING_DISPLAY:
3958 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3959 break;
3960 default:
3961 return -EINVAL;
3962 }
3963
3964 intel_runtime_pm_get(dev_priv);
3965
3966 ret = i915_mutex_lock_interruptible(dev);
3967 if (ret)
3968 goto rpm_put;
3969
3970 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3971 if (&obj->base == NULL) {
3972 ret = -ENOENT;
3973 goto unlock;
3974 }
3975
3976 ret = i915_gem_object_set_cache_level(obj, level);
3977
3978 drm_gem_object_unreference(&obj->base);
3979unlock:
3980 mutex_unlock(&dev->struct_mutex);
3981rpm_put:
3982 intel_runtime_pm_put(dev_priv);
3983
3984 return ret;
3985}
3986
3987/*
3988 * Prepare buffer for display plane (scanout, cursors, etc).
3989 * Can be called from an uninterruptible phase (modesetting) and allows
3990 * any flushes to be pipelined (for pageflips).
3991 */
3992int
3993i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3994 u32 alignment,
3995 const struct i915_ggtt_view *view)
3996{
3997 u32 old_read_domains, old_write_domain;
3998 int ret;
3999
4000 /* Mark the pin_display early so that we account for the
4001 * display coherency whilst setting up the cache domains.
4002 */
4003 obj->pin_display++;
4004
4005 /* The display engine is not coherent with the LLC cache on gen6. As
4006 * a result, we make sure that the pinning that is about to occur is
4007 * done with uncached PTEs. This is lowest common denominator for all
4008 * chipsets.
4009 *
4010 * However for gen6+, we could do better by using the GFDT bit instead
4011 * of uncaching, which would allow us to flush all the LLC-cached data
4012 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4013 */
4014 ret = i915_gem_object_set_cache_level(obj,
4015 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4016 if (ret)
4017 goto err_unpin_display;
4018
4019 /* As the user may map the buffer once pinned in the display plane
4020 * (e.g. libkms for the bootup splash), we have to ensure that we
4021 * always use map_and_fenceable for all scanout buffers.
4022 */
4023 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4024 view->type == I915_GGTT_VIEW_NORMAL ?
4025 PIN_MAPPABLE : 0);
4026 if (ret)
4027 goto err_unpin_display;
4028
4029 i915_gem_object_flush_cpu_write_domain(obj);
4030
4031 old_write_domain = obj->base.write_domain;
4032 old_read_domains = obj->base.read_domains;
4033
4034 /* It should now be out of any other write domains, and we can update
4035 * the domain values for our changes.
4036 */
4037 obj->base.write_domain = 0;
4038 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4039
4040 trace_i915_gem_object_change_domain(obj,
4041 old_read_domains,
4042 old_write_domain);
4043
4044 return 0;
4045
4046err_unpin_display:
4047 obj->pin_display--;
4048 return ret;
4049}
4050
4051void
4052i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4053 const struct i915_ggtt_view *view)
4054{
4055 if (WARN_ON(obj->pin_display == 0))
4056 return;
4057
4058 i915_gem_object_ggtt_unpin_view(obj, view);
4059
4060 obj->pin_display--;
4061}
4062
4063/**
4064 * Moves a single object to the CPU read, and possibly write domain.
4065 *
4066 * This function returns when the move is complete, including waiting on
4067 * flushes to occur.
4068 */
4069int
4070i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4071{
4072 uint32_t old_write_domain, old_read_domains;
4073 int ret;
4074
4075 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4076 return 0;
4077
4078 ret = i915_gem_object_wait_rendering(obj, !write);
4079 if (ret)
4080 return ret;
4081
4082 i915_gem_object_flush_gtt_write_domain(obj);
4083
4084 old_write_domain = obj->base.write_domain;
4085 old_read_domains = obj->base.read_domains;
4086
4087 /* Flush the CPU cache if it's still invalid. */
4088 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4089 i915_gem_clflush_object(obj, false);
4090
4091 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4092 }
4093
4094 /* It should now be out of any other write domains, and we can update
4095 * the domain values for our changes.
4096 */
4097 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4098
4099 /* If we're writing through the CPU, then the GPU read domains will
4100 * need to be invalidated at next use.
4101 */
4102 if (write) {
4103 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4104 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4105 }
4106
4107 trace_i915_gem_object_change_domain(obj,
4108 old_read_domains,
4109 old_write_domain);
4110
4111 return 0;
4112}
4113
4114/* Throttle our rendering by waiting until the ring has completed our requests
4115 * emitted over 20 msec ago.
4116 *
4117 * Note that if we were to use the current jiffies each time around the loop,
4118 * we wouldn't escape the function with any frames outstanding if the time to
4119 * render a frame was over 20ms.
4120 *
4121 * This should get us reasonable parallelism between CPU and GPU but also
4122 * relatively low latency when blocking on a particular request to finish.
4123 */
4124static int
4125i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4126{
4127 struct drm_i915_private *dev_priv = dev->dev_private;
4128 struct drm_i915_file_private *file_priv = file->driver_priv;
4129 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4130 struct drm_i915_gem_request *request, *target = NULL;
4131 unsigned reset_counter;
4132 int ret;
4133
4134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4135 if (ret)
4136 return ret;
4137
4138 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4139 if (ret)
4140 return ret;
4141
4142 spin_lock(&file_priv->mm.lock);
4143 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4144 if (time_after_eq(request->emitted_jiffies, recent_enough))
4145 break;
4146
4147 /*
4148 * Note that the request might not have been submitted yet.
4149 * In which case emitted_jiffies will be zero.
4150 */
4151 if (!request->emitted_jiffies)
4152 continue;
4153
4154 target = request;
4155 }
4156 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4157 if (target)
4158 i915_gem_request_reference(target);
4159 spin_unlock(&file_priv->mm.lock);
4160
4161 if (target == NULL)
4162 return 0;
4163
4164 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4165 if (ret == 0)
4166 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4167
4168 i915_gem_request_unreference__unlocked(target);
4169
4170 return ret;
4171}
4172
4173static bool
4174i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4175{
4176 struct drm_i915_gem_object *obj = vma->obj;
4177
4178 if (alignment &&
4179 vma->node.start & (alignment - 1))
4180 return true;
4181
4182 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4183 return true;
4184
4185 if (flags & PIN_OFFSET_BIAS &&
4186 vma->node.start < (flags & PIN_OFFSET_MASK))
4187 return true;
4188
4189 if (flags & PIN_OFFSET_FIXED &&
4190 vma->node.start != (flags & PIN_OFFSET_MASK))
4191 return true;
4192
4193 return false;
4194}
4195
4196void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4197{
4198 struct drm_i915_gem_object *obj = vma->obj;
4199 bool mappable, fenceable;
4200 u32 fence_size, fence_alignment;
4201
4202 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4203 obj->base.size,
4204 obj->tiling_mode);
4205 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4206 obj->base.size,
4207 obj->tiling_mode,
4208 true);
4209
4210 fenceable = (vma->node.size == fence_size &&
4211 (vma->node.start & (fence_alignment - 1)) == 0);
4212
4213 mappable = (vma->node.start + fence_size <=
4214 to_i915(obj->base.dev)->gtt.mappable_end);
4215
4216 obj->map_and_fenceable = mappable && fenceable;
4217}
4218
4219static int
4220i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4221 struct i915_address_space *vm,
4222 const struct i915_ggtt_view *ggtt_view,
4223 uint32_t alignment,
4224 uint64_t flags)
4225{
4226 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4227 struct i915_vma *vma;
4228 unsigned bound;
4229 int ret;
4230
4231 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4232 return -ENODEV;
4233
4234 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4235 return -EINVAL;
4236
4237 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4238 return -EINVAL;
4239
4240 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4241 return -EINVAL;
4242
4243 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4244 i915_gem_obj_to_vma(obj, vm);
4245
4246 if (IS_ERR(vma))
4247 return PTR_ERR(vma);
4248
4249 if (vma) {
4250 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4251 return -EBUSY;
4252
4253 if (i915_vma_misplaced(vma, alignment, flags)) {
4254 WARN(vma->pin_count,
4255 "bo is already pinned in %s with incorrect alignment:"
4256 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4257 " obj->map_and_fenceable=%d\n",
4258 ggtt_view ? "ggtt" : "ppgtt",
4259 upper_32_bits(vma->node.start),
4260 lower_32_bits(vma->node.start),
4261 alignment,
4262 !!(flags & PIN_MAPPABLE),
4263 obj->map_and_fenceable);
4264 ret = i915_vma_unbind(vma);
4265 if (ret)
4266 return ret;
4267
4268 vma = NULL;
4269 }
4270 }
4271
4272 bound = vma ? vma->bound : 0;
4273 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4274 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4275 flags);
4276 if (IS_ERR(vma))
4277 return PTR_ERR(vma);
4278 } else {
4279 ret = i915_vma_bind(vma, obj->cache_level, flags);
4280 if (ret)
4281 return ret;
4282 }
4283
4284 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4285 (bound ^ vma->bound) & GLOBAL_BIND) {
4286 __i915_vma_set_map_and_fenceable(vma);
4287 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4288 }
4289
4290 vma->pin_count++;
4291 return 0;
4292}
4293
4294int
4295i915_gem_object_pin(struct drm_i915_gem_object *obj,
4296 struct i915_address_space *vm,
4297 uint32_t alignment,
4298 uint64_t flags)
4299{
4300 return i915_gem_object_do_pin(obj, vm,
4301 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4302 alignment, flags);
4303}
4304
4305int
4306i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4307 const struct i915_ggtt_view *view,
4308 uint32_t alignment,
4309 uint64_t flags)
4310{
4311 if (WARN_ONCE(!view, "no view specified"))
4312 return -EINVAL;
4313
4314 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4315 alignment, flags | PIN_GLOBAL);
4316}
4317
4318void
4319i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4320 const struct i915_ggtt_view *view)
4321{
4322 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4323
4324 BUG_ON(!vma);
4325 WARN_ON(vma->pin_count == 0);
4326 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4327
4328 --vma->pin_count;
4329}
4330
4331int
4332i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4333 struct drm_file *file)
4334{
4335 struct drm_i915_gem_busy *args = data;
4336 struct drm_i915_gem_object *obj;
4337 int ret;
4338
4339 ret = i915_mutex_lock_interruptible(dev);
4340 if (ret)
4341 return ret;
4342
4343 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4344 if (&obj->base == NULL) {
4345 ret = -ENOENT;
4346 goto unlock;
4347 }
4348
4349 /* Count all active objects as busy, even if they are currently not used
4350 * by the gpu. Users of this interface expect objects to eventually
4351 * become non-busy without any further actions, therefore emit any
4352 * necessary flushes here.
4353 */
4354 ret = i915_gem_object_flush_active(obj);
4355 if (ret)
4356 goto unref;
4357
4358 args->busy = 0;
4359 if (obj->active) {
4360 int i;
4361
4362 for (i = 0; i < I915_NUM_RINGS; i++) {
4363 struct drm_i915_gem_request *req;
4364
4365 req = obj->last_read_req[i];
4366 if (req)
4367 args->busy |= 1 << (16 + req->ring->exec_id);
4368 }
4369 if (obj->last_write_req)
4370 args->busy |= obj->last_write_req->ring->exec_id;
4371 }
4372
4373unref:
4374 drm_gem_object_unreference(&obj->base);
4375unlock:
4376 mutex_unlock(&dev->struct_mutex);
4377 return ret;
4378}
4379
4380int
4381i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4382 struct drm_file *file_priv)
4383{
4384 return i915_gem_ring_throttle(dev, file_priv);
4385}
4386
4387int
4388i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4389 struct drm_file *file_priv)
4390{
4391 struct drm_i915_private *dev_priv = dev->dev_private;
4392 struct drm_i915_gem_madvise *args = data;
4393 struct drm_i915_gem_object *obj;
4394 int ret;
4395
4396 switch (args->madv) {
4397 case I915_MADV_DONTNEED:
4398 case I915_MADV_WILLNEED:
4399 break;
4400 default:
4401 return -EINVAL;
4402 }
4403
4404 ret = i915_mutex_lock_interruptible(dev);
4405 if (ret)
4406 return ret;
4407
4408 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4409 if (&obj->base == NULL) {
4410 ret = -ENOENT;
4411 goto unlock;
4412 }
4413
4414 if (i915_gem_obj_is_pinned(obj)) {
4415 ret = -EINVAL;
4416 goto out;
4417 }
4418
4419 if (obj->pages &&
4420 obj->tiling_mode != I915_TILING_NONE &&
4421 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4422 if (obj->madv == I915_MADV_WILLNEED)
4423 i915_gem_object_unpin_pages(obj);
4424 if (args->madv == I915_MADV_WILLNEED)
4425 i915_gem_object_pin_pages(obj);
4426 }
4427
4428 if (obj->madv != __I915_MADV_PURGED)
4429 obj->madv = args->madv;
4430
4431 /* if the object is no longer attached, discard its backing storage */
4432 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4433 i915_gem_object_truncate(obj);
4434
4435 args->retained = obj->madv != __I915_MADV_PURGED;
4436
4437out:
4438 drm_gem_object_unreference(&obj->base);
4439unlock:
4440 mutex_unlock(&dev->struct_mutex);
4441 return ret;
4442}
4443
4444void i915_gem_object_init(struct drm_i915_gem_object *obj,
4445 const struct drm_i915_gem_object_ops *ops)
4446{
4447 int i;
4448
4449 INIT_LIST_HEAD(&obj->global_list);
4450 for (i = 0; i < I915_NUM_RINGS; i++)
4451 INIT_LIST_HEAD(&obj->ring_list[i]);
4452 INIT_LIST_HEAD(&obj->obj_exec_link);
4453 INIT_LIST_HEAD(&obj->vma_list);
4454 INIT_LIST_HEAD(&obj->batch_pool_link);
4455
4456 obj->ops = ops;
4457
4458 obj->fence_reg = I915_FENCE_REG_NONE;
4459 obj->madv = I915_MADV_WILLNEED;
4460
4461 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4462}
4463
4464static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4465 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4466 .get_pages = i915_gem_object_get_pages_gtt,
4467 .put_pages = i915_gem_object_put_pages_gtt,
4468};
4469
4470struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4471 size_t size)
4472{
4473 struct drm_i915_gem_object *obj;
4474 struct address_space *mapping;
4475 gfp_t mask;
4476
4477 obj = i915_gem_object_alloc(dev);
4478 if (obj == NULL)
4479 return NULL;
4480
4481 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4482 i915_gem_object_free(obj);
4483 return NULL;
4484 }
4485
4486 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4487 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4488 /* 965gm cannot relocate objects above 4GiB. */
4489 mask &= ~__GFP_HIGHMEM;
4490 mask |= __GFP_DMA32;
4491 }
4492
4493 mapping = file_inode(obj->base.filp)->i_mapping;
4494 mapping_set_gfp_mask(mapping, mask);
4495
4496 i915_gem_object_init(obj, &i915_gem_object_ops);
4497
4498 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4499 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4500
4501 if (HAS_LLC(dev)) {
4502 /* On some devices, we can have the GPU use the LLC (the CPU
4503 * cache) for about a 10% performance improvement
4504 * compared to uncached. Graphics requests other than
4505 * display scanout are coherent with the CPU in
4506 * accessing this cache. This means in this mode we
4507 * don't need to clflush on the CPU side, and on the
4508 * GPU side we only need to flush internal caches to
4509 * get data visible to the CPU.
4510 *
4511 * However, we maintain the display planes as UC, and so
4512 * need to rebind when first used as such.
4513 */
4514 obj->cache_level = I915_CACHE_LLC;
4515 } else
4516 obj->cache_level = I915_CACHE_NONE;
4517
4518 trace_i915_gem_object_create(obj);
4519
4520 return obj;
4521}
4522
4523static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4524{
4525 /* If we are the last user of the backing storage (be it shmemfs
4526 * pages or stolen etc), we know that the pages are going to be
4527 * immediately released. In this case, we can then skip copying
4528 * back the contents from the GPU.
4529 */
4530
4531 if (obj->madv != I915_MADV_WILLNEED)
4532 return false;
4533
4534 if (obj->base.filp == NULL)
4535 return true;
4536
4537 /* At first glance, this looks racy, but then again so would be
4538 * userspace racing mmap against close. However, the first external
4539 * reference to the filp can only be obtained through the
4540 * i915_gem_mmap_ioctl() which safeguards us against the user
4541 * acquiring such a reference whilst we are in the middle of
4542 * freeing the object.
4543 */
4544 return atomic_long_read(&obj->base.filp->f_count) == 1;
4545}
4546
4547void i915_gem_free_object(struct drm_gem_object *gem_obj)
4548{
4549 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4550 struct drm_device *dev = obj->base.dev;
4551 struct drm_i915_private *dev_priv = dev->dev_private;
4552 struct i915_vma *vma, *next;
4553
4554 intel_runtime_pm_get(dev_priv);
4555
4556 trace_i915_gem_object_destroy(obj);
4557
4558 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4559 int ret;
4560
4561 vma->pin_count = 0;
4562 ret = i915_vma_unbind(vma);
4563 if (WARN_ON(ret == -ERESTARTSYS)) {
4564 bool was_interruptible;
4565
4566 was_interruptible = dev_priv->mm.interruptible;
4567 dev_priv->mm.interruptible = false;
4568
4569 WARN_ON(i915_vma_unbind(vma));
4570
4571 dev_priv->mm.interruptible = was_interruptible;
4572 }
4573 }
4574
4575 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4576 * before progressing. */
4577 if (obj->stolen)
4578 i915_gem_object_unpin_pages(obj);
4579
4580 WARN_ON(obj->frontbuffer_bits);
4581
4582 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4583 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4584 obj->tiling_mode != I915_TILING_NONE)
4585 i915_gem_object_unpin_pages(obj);
4586
4587 if (WARN_ON(obj->pages_pin_count))
4588 obj->pages_pin_count = 0;
4589 if (discard_backing_storage(obj))
4590 obj->madv = I915_MADV_DONTNEED;
4591 i915_gem_object_put_pages(obj);
4592 i915_gem_object_free_mmap_offset(obj);
4593
4594 BUG_ON(obj->pages);
4595
4596 if (obj->base.import_attach)
4597 drm_prime_gem_destroy(&obj->base, NULL);
4598
4599 if (obj->ops->release)
4600 obj->ops->release(obj);
4601
4602 drm_gem_object_release(&obj->base);
4603 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4604
4605 kfree(obj->bit_17);
4606 i915_gem_object_free(obj);
4607
4608 intel_runtime_pm_put(dev_priv);
4609}
4610
4611struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4612 struct i915_address_space *vm)
4613{
4614 struct i915_vma *vma;
4615 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4616 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4617 vma->vm == vm)
4618 return vma;
4619 }
4620 return NULL;
4621}
4622
4623struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4624 const struct i915_ggtt_view *view)
4625{
4626 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4627 struct i915_vma *vma;
4628
4629 if (WARN_ONCE(!view, "no view specified"))
4630 return ERR_PTR(-EINVAL);
4631
4632 list_for_each_entry(vma, &obj->vma_list, obj_link)
4633 if (vma->vm == ggtt &&
4634 i915_ggtt_view_equal(&vma->ggtt_view, view))
4635 return vma;
4636 return NULL;
4637}
4638
4639void i915_gem_vma_destroy(struct i915_vma *vma)
4640{
4641 WARN_ON(vma->node.allocated);
4642
4643 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4644 if (!list_empty(&vma->exec_list))
4645 return;
4646
4647 if (!vma->is_ggtt)
4648 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4649
4650 list_del(&vma->obj_link);
4651
4652 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4653}
4654
4655static void
4656i915_gem_stop_ringbuffers(struct drm_device *dev)
4657{
4658 struct drm_i915_private *dev_priv = dev->dev_private;
4659 struct intel_engine_cs *ring;
4660 int i;
4661
4662 for_each_ring(ring, dev_priv, i)
4663 dev_priv->gt.stop_ring(ring);
4664}
4665
4666int
4667i915_gem_suspend(struct drm_device *dev)
4668{
4669 struct drm_i915_private *dev_priv = dev->dev_private;
4670 int ret = 0;
4671
4672 mutex_lock(&dev->struct_mutex);
4673 ret = i915_gpu_idle(dev);
4674 if (ret)
4675 goto err;
4676
4677 i915_gem_retire_requests(dev);
4678
4679 i915_gem_stop_ringbuffers(dev);
4680 mutex_unlock(&dev->struct_mutex);
4681
4682 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4683 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4684 flush_delayed_work(&dev_priv->mm.idle_work);
4685
4686 /* Assert that we sucessfully flushed all the work and
4687 * reset the GPU back to its idle, low power state.
4688 */
4689 WARN_ON(dev_priv->mm.busy);
4690
4691 return 0;
4692
4693err:
4694 mutex_unlock(&dev->struct_mutex);
4695 return ret;
4696}
4697
4698int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4699{
4700 struct intel_engine_cs *ring = req->ring;
4701 struct drm_device *dev = ring->dev;
4702 struct drm_i915_private *dev_priv = dev->dev_private;
4703 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4704 int i, ret;
4705
4706 if (!HAS_L3_DPF(dev) || !remap_info)
4707 return 0;
4708
4709 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4710 if (ret)
4711 return ret;
4712
4713 /*
4714 * Note: We do not worry about the concurrent register cacheline hang
4715 * here because no other code should access these registers other than
4716 * at initialization time.
4717 */
4718 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4719 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4720 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4721 intel_ring_emit(ring, remap_info[i]);
4722 }
4723
4724 intel_ring_advance(ring);
4725
4726 return ret;
4727}
4728
4729void i915_gem_init_swizzling(struct drm_device *dev)
4730{
4731 struct drm_i915_private *dev_priv = dev->dev_private;
4732
4733 if (INTEL_INFO(dev)->gen < 5 ||
4734 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4735 return;
4736
4737 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4738 DISP_TILE_SURFACE_SWIZZLING);
4739
4740 if (IS_GEN5(dev))
4741 return;
4742
4743 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4744 if (IS_GEN6(dev))
4745 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4746 else if (IS_GEN7(dev))
4747 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4748 else if (IS_GEN8(dev))
4749 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4750 else
4751 BUG();
4752}
4753
4754static void init_unused_ring(struct drm_device *dev, u32 base)
4755{
4756 struct drm_i915_private *dev_priv = dev->dev_private;
4757
4758 I915_WRITE(RING_CTL(base), 0);
4759 I915_WRITE(RING_HEAD(base), 0);
4760 I915_WRITE(RING_TAIL(base), 0);
4761 I915_WRITE(RING_START(base), 0);
4762}
4763
4764static void init_unused_rings(struct drm_device *dev)
4765{
4766 if (IS_I830(dev)) {
4767 init_unused_ring(dev, PRB1_BASE);
4768 init_unused_ring(dev, SRB0_BASE);
4769 init_unused_ring(dev, SRB1_BASE);
4770 init_unused_ring(dev, SRB2_BASE);
4771 init_unused_ring(dev, SRB3_BASE);
4772 } else if (IS_GEN2(dev)) {
4773 init_unused_ring(dev, SRB0_BASE);
4774 init_unused_ring(dev, SRB1_BASE);
4775 } else if (IS_GEN3(dev)) {
4776 init_unused_ring(dev, PRB1_BASE);
4777 init_unused_ring(dev, PRB2_BASE);
4778 }
4779}
4780
4781int i915_gem_init_rings(struct drm_device *dev)
4782{
4783 struct drm_i915_private *dev_priv = dev->dev_private;
4784 int ret;
4785
4786 ret = intel_init_render_ring_buffer(dev);
4787 if (ret)
4788 return ret;
4789
4790 if (HAS_BSD(dev)) {
4791 ret = intel_init_bsd_ring_buffer(dev);
4792 if (ret)
4793 goto cleanup_render_ring;
4794 }
4795
4796 if (HAS_BLT(dev)) {
4797 ret = intel_init_blt_ring_buffer(dev);
4798 if (ret)
4799 goto cleanup_bsd_ring;
4800 }
4801
4802 if (HAS_VEBOX(dev)) {
4803 ret = intel_init_vebox_ring_buffer(dev);
4804 if (ret)
4805 goto cleanup_blt_ring;
4806 }
4807
4808 if (HAS_BSD2(dev)) {
4809 ret = intel_init_bsd2_ring_buffer(dev);
4810 if (ret)
4811 goto cleanup_vebox_ring;
4812 }
4813
4814 return 0;
4815
4816cleanup_vebox_ring:
4817 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4818cleanup_blt_ring:
4819 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4820cleanup_bsd_ring:
4821 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4822cleanup_render_ring:
4823 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4824
4825 return ret;
4826}
4827
4828int
4829i915_gem_init_hw(struct drm_device *dev)
4830{
4831 struct drm_i915_private *dev_priv = dev->dev_private;
4832 struct intel_engine_cs *ring;
4833 int ret, i, j;
4834
4835 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4836 return -EIO;
4837
4838 /* Double layer security blanket, see i915_gem_init() */
4839 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4840
4841 if (dev_priv->ellc_size)
4842 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4843
4844 if (IS_HASWELL(dev))
4845 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4846 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4847
4848 if (HAS_PCH_NOP(dev)) {
4849 if (IS_IVYBRIDGE(dev)) {
4850 u32 temp = I915_READ(GEN7_MSG_CTL);
4851 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4852 I915_WRITE(GEN7_MSG_CTL, temp);
4853 } else if (INTEL_INFO(dev)->gen >= 7) {
4854 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4855 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4856 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4857 }
4858 }
4859
4860 i915_gem_init_swizzling(dev);
4861
4862 /*
4863 * At least 830 can leave some of the unused rings
4864 * "active" (ie. head != tail) after resume which
4865 * will prevent c3 entry. Makes sure all unused rings
4866 * are totally idle.
4867 */
4868 init_unused_rings(dev);
4869
4870 BUG_ON(!dev_priv->kernel_context);
4871
4872 ret = i915_ppgtt_init_hw(dev);
4873 if (ret) {
4874 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4875 goto out;
4876 }
4877
4878 /* Need to do basic initialisation of all rings first: */
4879 for_each_ring(ring, dev_priv, i) {
4880 ret = ring->init_hw(ring);
4881 if (ret)
4882 goto out;
4883 }
4884
4885 /* We can't enable contexts until all firmware is loaded */
4886 if (HAS_GUC_UCODE(dev)) {
4887 ret = intel_guc_ucode_load(dev);
4888 if (ret) {
4889 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4890 ret = -EIO;
4891 goto out;
4892 }
4893 }
4894
4895 /*
4896 * Increment the next seqno by 0x100 so we have a visible break
4897 * on re-initialisation
4898 */
4899 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4900 if (ret)
4901 goto out;
4902
4903 /* Now it is safe to go back round and do everything else: */
4904 for_each_ring(ring, dev_priv, i) {
4905 struct drm_i915_gem_request *req;
4906
4907 req = i915_gem_request_alloc(ring, NULL);
4908 if (IS_ERR(req)) {
4909 ret = PTR_ERR(req);
4910 i915_gem_cleanup_ringbuffer(dev);
4911 goto out;
4912 }
4913
4914 if (ring->id == RCS) {
4915 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4916 i915_gem_l3_remap(req, j);
4917 }
4918
4919 ret = i915_ppgtt_init_ring(req);
4920 if (ret && ret != -EIO) {
4921 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4922 i915_gem_request_cancel(req);
4923 i915_gem_cleanup_ringbuffer(dev);
4924 goto out;
4925 }
4926
4927 ret = i915_gem_context_enable(req);
4928 if (ret && ret != -EIO) {
4929 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4930 i915_gem_request_cancel(req);
4931 i915_gem_cleanup_ringbuffer(dev);
4932 goto out;
4933 }
4934
4935 i915_add_request_no_flush(req);
4936 }
4937
4938out:
4939 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4940 return ret;
4941}
4942
4943int i915_gem_init(struct drm_device *dev)
4944{
4945 struct drm_i915_private *dev_priv = dev->dev_private;
4946 int ret;
4947
4948 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4949 i915.enable_execlists);
4950
4951 mutex_lock(&dev->struct_mutex);
4952
4953 if (!i915.enable_execlists) {
4954 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4955 dev_priv->gt.init_rings = i915_gem_init_rings;
4956 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4957 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4958 } else {
4959 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4960 dev_priv->gt.init_rings = intel_logical_rings_init;
4961 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4962 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4963 }
4964
4965 /* This is just a security blanket to placate dragons.
4966 * On some systems, we very sporadically observe that the first TLBs
4967 * used by the CS may be stale, despite us poking the TLB reset. If
4968 * we hold the forcewake during initialisation these problems
4969 * just magically go away.
4970 */
4971 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4972
4973 ret = i915_gem_init_userptr(dev);
4974 if (ret)
4975 goto out_unlock;
4976
4977 i915_gem_init_global_gtt(dev);
4978
4979 ret = i915_gem_context_init(dev);
4980 if (ret)
4981 goto out_unlock;
4982
4983 ret = dev_priv->gt.init_rings(dev);
4984 if (ret)
4985 goto out_unlock;
4986
4987 ret = i915_gem_init_hw(dev);
4988 if (ret == -EIO) {
4989 /* Allow ring initialisation to fail by marking the GPU as
4990 * wedged. But we only want to do this where the GPU is angry,
4991 * for all other failure, such as an allocation failure, bail.
4992 */
4993 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4994 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4995 ret = 0;
4996 }
4997
4998out_unlock:
4999 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5000 mutex_unlock(&dev->struct_mutex);
5001
5002 return ret;
5003}
5004
5005void
5006i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5007{
5008 struct drm_i915_private *dev_priv = dev->dev_private;
5009 struct intel_engine_cs *ring;
5010 int i;
5011
5012 for_each_ring(ring, dev_priv, i)
5013 dev_priv->gt.cleanup_ring(ring);
5014
5015 if (i915.enable_execlists)
5016 /*
5017 * Neither the BIOS, ourselves or any other kernel
5018 * expects the system to be in execlists mode on startup,
5019 * so we need to reset the GPU back to legacy mode.
5020 */
5021 intel_gpu_reset(dev);
5022}
5023
5024static void
5025init_ring_lists(struct intel_engine_cs *ring)
5026{
5027 INIT_LIST_HEAD(&ring->active_list);
5028 INIT_LIST_HEAD(&ring->request_list);
5029}
5030
5031void
5032i915_gem_load_init(struct drm_device *dev)
5033{
5034 struct drm_i915_private *dev_priv = dev->dev_private;
5035 int i;
5036
5037 dev_priv->objects =
5038 kmem_cache_create("i915_gem_object",
5039 sizeof(struct drm_i915_gem_object), 0,
5040 SLAB_HWCACHE_ALIGN,
5041 NULL);
5042 dev_priv->vmas =
5043 kmem_cache_create("i915_gem_vma",
5044 sizeof(struct i915_vma), 0,
5045 SLAB_HWCACHE_ALIGN,
5046 NULL);
5047 dev_priv->requests =
5048 kmem_cache_create("i915_gem_request",
5049 sizeof(struct drm_i915_gem_request), 0,
5050 SLAB_HWCACHE_ALIGN,
5051 NULL);
5052
5053 INIT_LIST_HEAD(&dev_priv->vm_list);
5054 INIT_LIST_HEAD(&dev_priv->context_list);
5055 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5056 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5057 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5058 for (i = 0; i < I915_NUM_RINGS; i++)
5059 init_ring_lists(&dev_priv->ring[i]);
5060 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5061 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5062 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5063 i915_gem_retire_work_handler);
5064 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5065 i915_gem_idle_work_handler);
5066 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5067
5068 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5069
5070 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5071 dev_priv->num_fence_regs = 32;
5072 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5073 dev_priv->num_fence_regs = 16;
5074 else
5075 dev_priv->num_fence_regs = 8;
5076
5077 if (intel_vgpu_active(dev))
5078 dev_priv->num_fence_regs =
5079 I915_READ(vgtif_reg(avail_rs.fence_num));
5080
5081 /*
5082 * Set initial sequence number for requests.
5083 * Using this number allows the wraparound to happen early,
5084 * catching any obvious problems.
5085 */
5086 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5087 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5088
5089 /* Initialize fence registers to zero */
5090 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5091 i915_gem_restore_fences(dev);
5092
5093 i915_gem_detect_bit_6_swizzle(dev);
5094 init_waitqueue_head(&dev_priv->pending_flip_queue);
5095
5096 dev_priv->mm.interruptible = true;
5097
5098 mutex_init(&dev_priv->fb_tracking.lock);
5099}
5100
5101void i915_gem_load_cleanup(struct drm_device *dev)
5102{
5103 struct drm_i915_private *dev_priv = to_i915(dev);
5104
5105 kmem_cache_destroy(dev_priv->requests);
5106 kmem_cache_destroy(dev_priv->vmas);
5107 kmem_cache_destroy(dev_priv->objects);
5108}
5109
5110void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5111{
5112 struct drm_i915_file_private *file_priv = file->driver_priv;
5113
5114 /* Clean up our request list when the client is going away, so that
5115 * later retire_requests won't dereference our soon-to-be-gone
5116 * file_priv.
5117 */
5118 spin_lock(&file_priv->mm.lock);
5119 while (!list_empty(&file_priv->mm.request_list)) {
5120 struct drm_i915_gem_request *request;
5121
5122 request = list_first_entry(&file_priv->mm.request_list,
5123 struct drm_i915_gem_request,
5124 client_list);
5125 list_del(&request->client_list);
5126 request->file_priv = NULL;
5127 }
5128 spin_unlock(&file_priv->mm.lock);
5129
5130 if (!list_empty(&file_priv->rps.link)) {
5131 spin_lock(&to_i915(dev)->rps.client_lock);
5132 list_del(&file_priv->rps.link);
5133 spin_unlock(&to_i915(dev)->rps.client_lock);
5134 }
5135}
5136
5137int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5138{
5139 struct drm_i915_file_private *file_priv;
5140 int ret;
5141
5142 DRM_DEBUG_DRIVER("\n");
5143
5144 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5145 if (!file_priv)
5146 return -ENOMEM;
5147
5148 file->driver_priv = file_priv;
5149 file_priv->dev_priv = dev->dev_private;
5150 file_priv->file = file;
5151 INIT_LIST_HEAD(&file_priv->rps.link);
5152
5153 spin_lock_init(&file_priv->mm.lock);
5154 INIT_LIST_HEAD(&file_priv->mm.request_list);
5155
5156 file_priv->bsd_ring = -1;
5157
5158 ret = i915_gem_context_open(dev, file);
5159 if (ret)
5160 kfree(file_priv);
5161
5162 return ret;
5163}
5164
5165/**
5166 * i915_gem_track_fb - update frontbuffer tracking
5167 * @old: current GEM buffer for the frontbuffer slots
5168 * @new: new GEM buffer for the frontbuffer slots
5169 * @frontbuffer_bits: bitmask of frontbuffer slots
5170 *
5171 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5172 * from @old and setting them in @new. Both @old and @new can be NULL.
5173 */
5174void i915_gem_track_fb(struct drm_i915_gem_object *old,
5175 struct drm_i915_gem_object *new,
5176 unsigned frontbuffer_bits)
5177{
5178 if (old) {
5179 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5180 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5181 old->frontbuffer_bits &= ~frontbuffer_bits;
5182 }
5183
5184 if (new) {
5185 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5186 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5187 new->frontbuffer_bits |= frontbuffer_bits;
5188 }
5189}
5190
5191/* All the new VM stuff */
5192u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5193 struct i915_address_space *vm)
5194{
5195 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5196 struct i915_vma *vma;
5197
5198 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5199
5200 list_for_each_entry(vma, &o->vma_list, obj_link) {
5201 if (vma->is_ggtt &&
5202 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5203 continue;
5204 if (vma->vm == vm)
5205 return vma->node.start;
5206 }
5207
5208 WARN(1, "%s vma for this object not found.\n",
5209 i915_is_ggtt(vm) ? "global" : "ppgtt");
5210 return -1;
5211}
5212
5213u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5214 const struct i915_ggtt_view *view)
5215{
5216 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5217 struct i915_vma *vma;
5218
5219 list_for_each_entry(vma, &o->vma_list, obj_link)
5220 if (vma->vm == ggtt &&
5221 i915_ggtt_view_equal(&vma->ggtt_view, view))
5222 return vma->node.start;
5223
5224 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5225 return -1;
5226}
5227
5228bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5229 struct i915_address_space *vm)
5230{
5231 struct i915_vma *vma;
5232
5233 list_for_each_entry(vma, &o->vma_list, obj_link) {
5234 if (vma->is_ggtt &&
5235 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5236 continue;
5237 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5238 return true;
5239 }
5240
5241 return false;
5242}
5243
5244bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5245 const struct i915_ggtt_view *view)
5246{
5247 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5248 struct i915_vma *vma;
5249
5250 list_for_each_entry(vma, &o->vma_list, obj_link)
5251 if (vma->vm == ggtt &&
5252 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5253 drm_mm_node_allocated(&vma->node))
5254 return true;
5255
5256 return false;
5257}
5258
5259bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5260{
5261 struct i915_vma *vma;
5262
5263 list_for_each_entry(vma, &o->vma_list, obj_link)
5264 if (drm_mm_node_allocated(&vma->node))
5265 return true;
5266
5267 return false;
5268}
5269
5270unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5271 struct i915_address_space *vm)
5272{
5273 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5274 struct i915_vma *vma;
5275
5276 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5277
5278 BUG_ON(list_empty(&o->vma_list));
5279
5280 list_for_each_entry(vma, &o->vma_list, obj_link) {
5281 if (vma->is_ggtt &&
5282 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5283 continue;
5284 if (vma->vm == vm)
5285 return vma->node.size;
5286 }
5287 return 0;
5288}
5289
5290bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5291{
5292 struct i915_vma *vma;
5293 list_for_each_entry(vma, &obj->vma_list, obj_link)
5294 if (vma->pin_count > 0)
5295 return true;
5296
5297 return false;
5298}
5299
5300/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5301struct page *
5302i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5303{
5304 struct page *page;
5305
5306 /* Only default objects have per-page dirty tracking */
5307 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5308 return NULL;
5309
5310 page = i915_gem_object_get_page(obj, n);
5311 set_page_dirty(page);
5312 return page;
5313}
5314
5315/* Allocate a new GEM object and fill it with the supplied data */
5316struct drm_i915_gem_object *
5317i915_gem_object_create_from_data(struct drm_device *dev,
5318 const void *data, size_t size)
5319{
5320 struct drm_i915_gem_object *obj;
5321 struct sg_table *sg;
5322 size_t bytes;
5323 int ret;
5324
5325 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5326 if (IS_ERR_OR_NULL(obj))
5327 return obj;
5328
5329 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5330 if (ret)
5331 goto fail;
5332
5333 ret = i915_gem_object_get_pages(obj);
5334 if (ret)
5335 goto fail;
5336
5337 i915_gem_object_pin_pages(obj);
5338 sg = obj->pages;
5339 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5340 obj->dirty = 1; /* Backing store is now out of date */
5341 i915_gem_object_unpin_pages(obj);
5342
5343 if (WARN_ON(bytes != size)) {
5344 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5345 ret = -EFAULT;
5346 goto fail;
5347 }
5348
5349 return obj;
5350
5351fail:
5352 drm_gem_object_unreference(&obj->base);
5353 return ERR_PTR(ret);
5354}
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drmP.h>
29#include <drm/drm_vma_manager.h>
30#include <drm/i915_drm.h>
31#include "i915_drv.h"
32#include "i915_vgpu.h"
33#include "i915_trace.h"
34#include "intel_drv.h"
35#include "intel_frontbuffer.h"
36#include "intel_mocs.h"
37#include <linux/dma-fence-array.h>
38#include <linux/reservation.h>
39#include <linux/shmem_fs.h>
40#include <linux/slab.h>
41#include <linux/swap.h>
42#include <linux/pci.h>
43#include <linux/dma-buf.h>
44
45static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
46static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
47static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
48
49static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51{
52 return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
53}
54
55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56{
57 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 return false;
59
60 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 return true;
62
63 return obj->pin_display;
64}
65
66static int
67insert_mappable_node(struct i915_ggtt *ggtt,
68 struct drm_mm_node *node, u32 size)
69{
70 memset(node, 0, sizeof(*node));
71 return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
72 size, 0, -1,
73 0, ggtt->mappable_end,
74 DRM_MM_SEARCH_DEFAULT,
75 DRM_MM_CREATE_DEFAULT);
76}
77
78static void
79remove_mappable_node(struct drm_mm_node *node)
80{
81 drm_mm_remove_node(node);
82}
83
84/* some bookkeeping */
85static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 u64 size)
87{
88 spin_lock(&dev_priv->mm.object_stat_lock);
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
91 spin_unlock(&dev_priv->mm.object_stat_lock);
92}
93
94static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 u64 size)
96{
97 spin_lock(&dev_priv->mm.object_stat_lock);
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
100 spin_unlock(&dev_priv->mm.object_stat_lock);
101}
102
103static int
104i915_gem_wait_for_error(struct i915_gpu_error *error)
105{
106 int ret;
107
108 might_sleep();
109
110 if (!i915_reset_in_progress(error))
111 return 0;
112
113 /*
114 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115 * userspace. If it takes that long something really bad is going on and
116 * we should simply try to bail out and fail as gracefully as possible.
117 */
118 ret = wait_event_interruptible_timeout(error->reset_queue,
119 !i915_reset_in_progress(error),
120 I915_RESET_TIMEOUT);
121 if (ret == 0) {
122 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123 return -EIO;
124 } else if (ret < 0) {
125 return ret;
126 } else {
127 return 0;
128 }
129}
130
131int i915_mutex_lock_interruptible(struct drm_device *dev)
132{
133 struct drm_i915_private *dev_priv = to_i915(dev);
134 int ret;
135
136 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 if (ret)
138 return ret;
139
140 ret = mutex_lock_interruptible(&dev->struct_mutex);
141 if (ret)
142 return ret;
143
144 return 0;
145}
146
147int
148i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149 struct drm_file *file)
150{
151 struct drm_i915_private *dev_priv = to_i915(dev);
152 struct i915_ggtt *ggtt = &dev_priv->ggtt;
153 struct drm_i915_gem_get_aperture *args = data;
154 struct i915_vma *vma;
155 size_t pinned;
156
157 pinned = 0;
158 mutex_lock(&dev->struct_mutex);
159 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160 if (i915_vma_is_pinned(vma))
161 pinned += vma->node.size;
162 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163 if (i915_vma_is_pinned(vma))
164 pinned += vma->node.size;
165 mutex_unlock(&dev->struct_mutex);
166
167 args->aper_size = ggtt->base.total;
168 args->aper_available_size = args->aper_size - pinned;
169
170 return 0;
171}
172
173static struct sg_table *
174i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175{
176 struct address_space *mapping = obj->base.filp->f_mapping;
177 drm_dma_handle_t *phys;
178 struct sg_table *st;
179 struct scatterlist *sg;
180 char *vaddr;
181 int i;
182
183 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184 return ERR_PTR(-EINVAL);
185
186 /* Always aligning to the object size, allows a single allocation
187 * to handle all possible callers, and given typical object sizes,
188 * the alignment of the buddy allocation will naturally match.
189 */
190 phys = drm_pci_alloc(obj->base.dev,
191 obj->base.size,
192 roundup_pow_of_two(obj->base.size));
193 if (!phys)
194 return ERR_PTR(-ENOMEM);
195
196 vaddr = phys->vaddr;
197 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
198 struct page *page;
199 char *src;
200
201 page = shmem_read_mapping_page(mapping, i);
202 if (IS_ERR(page)) {
203 st = ERR_CAST(page);
204 goto err_phys;
205 }
206
207 src = kmap_atomic(page);
208 memcpy(vaddr, src, PAGE_SIZE);
209 drm_clflush_virt_range(vaddr, PAGE_SIZE);
210 kunmap_atomic(src);
211
212 put_page(page);
213 vaddr += PAGE_SIZE;
214 }
215
216 i915_gem_chipset_flush(to_i915(obj->base.dev));
217
218 st = kmalloc(sizeof(*st), GFP_KERNEL);
219 if (!st) {
220 st = ERR_PTR(-ENOMEM);
221 goto err_phys;
222 }
223
224 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
225 kfree(st);
226 st = ERR_PTR(-ENOMEM);
227 goto err_phys;
228 }
229
230 sg = st->sgl;
231 sg->offset = 0;
232 sg->length = obj->base.size;
233
234 sg_dma_address(sg) = phys->busaddr;
235 sg_dma_len(sg) = obj->base.size;
236
237 obj->phys_handle = phys;
238 return st;
239
240err_phys:
241 drm_pci_free(obj->base.dev, phys);
242 return st;
243}
244
245static void
246__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247 struct sg_table *pages,
248 bool needs_clflush)
249{
250 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251
252 if (obj->mm.madv == I915_MADV_DONTNEED)
253 obj->mm.dirty = false;
254
255 if (needs_clflush &&
256 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257 !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258 drm_clflush_sg(pages);
259
260 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
261 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
262}
263
264static void
265i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
266 struct sg_table *pages)
267{
268 __i915_gem_object_release_shmem(obj, pages, false);
269
270 if (obj->mm.dirty) {
271 struct address_space *mapping = obj->base.filp->f_mapping;
272 char *vaddr = obj->phys_handle->vaddr;
273 int i;
274
275 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276 struct page *page;
277 char *dst;
278
279 page = shmem_read_mapping_page(mapping, i);
280 if (IS_ERR(page))
281 continue;
282
283 dst = kmap_atomic(page);
284 drm_clflush_virt_range(vaddr, PAGE_SIZE);
285 memcpy(dst, vaddr, PAGE_SIZE);
286 kunmap_atomic(dst);
287
288 set_page_dirty(page);
289 if (obj->mm.madv == I915_MADV_WILLNEED)
290 mark_page_accessed(page);
291 put_page(page);
292 vaddr += PAGE_SIZE;
293 }
294 obj->mm.dirty = false;
295 }
296
297 sg_free_table(pages);
298 kfree(pages);
299
300 drm_pci_free(obj->base.dev, obj->phys_handle);
301}
302
303static void
304i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
305{
306 i915_gem_object_unpin_pages(obj);
307}
308
309static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
310 .get_pages = i915_gem_object_get_pages_phys,
311 .put_pages = i915_gem_object_put_pages_phys,
312 .release = i915_gem_object_release_phys,
313};
314
315int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316{
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
327 */
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
330 I915_WAIT_LOCKED |
331 I915_WAIT_ALL,
332 MAX_SCHEDULE_TIMEOUT,
333 NULL);
334 if (ret)
335 return ret;
336
337 i915_gem_retire_requests(to_i915(obj->base.dev));
338
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 struct i915_vma,
341 obj_link))) {
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
344 if (ret)
345 break;
346 }
347 list_splice(&still_in_list, &obj->vma_list);
348
349 return ret;
350}
351
352static long
353i915_gem_object_wait_fence(struct dma_fence *fence,
354 unsigned int flags,
355 long timeout,
356 struct intel_rps_client *rps)
357{
358 struct drm_i915_gem_request *rq;
359
360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 return timeout;
364
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
368 timeout);
369
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
372 goto out;
373
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
388 */
389 if (rps) {
390 if (INTEL_GEN(rq->i915) >= 6)
391 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392 else
393 rps = NULL;
394 }
395
396 timeout = i915_wait_request(rq, flags, timeout);
397
398out:
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
401
402 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403 /* The GPU is now idle and this client has stalled.
404 * Since no other client has submitted a request in the
405 * meantime, assume that this client is the only one
406 * supplying work to the GPU but is unable to keep that
407 * work supplied because it is waiting. Since the GPU is
408 * then never kept fully busy, RPS autoclocking will
409 * keep the clocks relatively low, causing further delays.
410 * Compensate by giving the synchronous client credit for
411 * a waitboost next time.
412 */
413 spin_lock(&rq->i915->rps.client_lock);
414 list_del_init(&rps->link);
415 spin_unlock(&rq->i915->rps.client_lock);
416 }
417
418 return timeout;
419}
420
421static long
422i915_gem_object_wait_reservation(struct reservation_object *resv,
423 unsigned int flags,
424 long timeout,
425 struct intel_rps_client *rps)
426{
427 struct dma_fence *excl;
428
429 if (flags & I915_WAIT_ALL) {
430 struct dma_fence **shared;
431 unsigned int count, i;
432 int ret;
433
434 ret = reservation_object_get_fences_rcu(resv,
435 &excl, &count, &shared);
436 if (ret)
437 return ret;
438
439 for (i = 0; i < count; i++) {
440 timeout = i915_gem_object_wait_fence(shared[i],
441 flags, timeout,
442 rps);
443 if (timeout < 0)
444 break;
445
446 dma_fence_put(shared[i]);
447 }
448
449 for (; i < count; i++)
450 dma_fence_put(shared[i]);
451 kfree(shared);
452 } else {
453 excl = reservation_object_get_excl_rcu(resv);
454 }
455
456 if (excl && timeout >= 0)
457 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
458
459 dma_fence_put(excl);
460
461 return timeout;
462}
463
464static void __fence_set_priority(struct dma_fence *fence, int prio)
465{
466 struct drm_i915_gem_request *rq;
467 struct intel_engine_cs *engine;
468
469 if (!dma_fence_is_i915(fence))
470 return;
471
472 rq = to_request(fence);
473 engine = rq->engine;
474 if (!engine->schedule)
475 return;
476
477 engine->schedule(rq, prio);
478}
479
480static void fence_set_priority(struct dma_fence *fence, int prio)
481{
482 /* Recurse once into a fence-array */
483 if (dma_fence_is_array(fence)) {
484 struct dma_fence_array *array = to_dma_fence_array(fence);
485 int i;
486
487 for (i = 0; i < array->num_fences; i++)
488 __fence_set_priority(array->fences[i], prio);
489 } else {
490 __fence_set_priority(fence, prio);
491 }
492}
493
494int
495i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
496 unsigned int flags,
497 int prio)
498{
499 struct dma_fence *excl;
500
501 if (flags & I915_WAIT_ALL) {
502 struct dma_fence **shared;
503 unsigned int count, i;
504 int ret;
505
506 ret = reservation_object_get_fences_rcu(obj->resv,
507 &excl, &count, &shared);
508 if (ret)
509 return ret;
510
511 for (i = 0; i < count; i++) {
512 fence_set_priority(shared[i], prio);
513 dma_fence_put(shared[i]);
514 }
515
516 kfree(shared);
517 } else {
518 excl = reservation_object_get_excl_rcu(obj->resv);
519 }
520
521 if (excl) {
522 fence_set_priority(excl, prio);
523 dma_fence_put(excl);
524 }
525 return 0;
526}
527
528/**
529 * Waits for rendering to the object to be completed
530 * @obj: i915 gem object
531 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
532 * @timeout: how long to wait
533 * @rps: client (user process) to charge for any waitboosting
534 */
535int
536i915_gem_object_wait(struct drm_i915_gem_object *obj,
537 unsigned int flags,
538 long timeout,
539 struct intel_rps_client *rps)
540{
541 might_sleep();
542#if IS_ENABLED(CONFIG_LOCKDEP)
543 GEM_BUG_ON(debug_locks &&
544 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
545 !!(flags & I915_WAIT_LOCKED));
546#endif
547 GEM_BUG_ON(timeout < 0);
548
549 timeout = i915_gem_object_wait_reservation(obj->resv,
550 flags, timeout,
551 rps);
552 return timeout < 0 ? timeout : 0;
553}
554
555static struct intel_rps_client *to_rps_client(struct drm_file *file)
556{
557 struct drm_i915_file_private *fpriv = file->driver_priv;
558
559 return &fpriv->rps;
560}
561
562int
563i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
564 int align)
565{
566 int ret;
567
568 if (align > obj->base.size)
569 return -EINVAL;
570
571 if (obj->ops == &i915_gem_phys_ops)
572 return 0;
573
574 if (obj->mm.madv != I915_MADV_WILLNEED)
575 return -EFAULT;
576
577 if (obj->base.filp == NULL)
578 return -EINVAL;
579
580 ret = i915_gem_object_unbind(obj);
581 if (ret)
582 return ret;
583
584 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585 if (obj->mm.pages)
586 return -EBUSY;
587
588 obj->ops = &i915_gem_phys_ops;
589
590 return i915_gem_object_pin_pages(obj);
591}
592
593static int
594i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
595 struct drm_i915_gem_pwrite *args,
596 struct drm_file *file)
597{
598 void *vaddr = obj->phys_handle->vaddr + args->offset;
599 char __user *user_data = u64_to_user_ptr(args->data_ptr);
600
601 /* We manually control the domain here and pretend that it
602 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
603 */
604 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
605 if (copy_from_user(vaddr, user_data, args->size))
606 return -EFAULT;
607
608 drm_clflush_virt_range(vaddr, args->size);
609 i915_gem_chipset_flush(to_i915(obj->base.dev));
610
611 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
612 return 0;
613}
614
615void *i915_gem_object_alloc(struct drm_device *dev)
616{
617 struct drm_i915_private *dev_priv = to_i915(dev);
618 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
619}
620
621void i915_gem_object_free(struct drm_i915_gem_object *obj)
622{
623 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
624 kmem_cache_free(dev_priv->objects, obj);
625}
626
627static int
628i915_gem_create(struct drm_file *file,
629 struct drm_device *dev,
630 uint64_t size,
631 uint32_t *handle_p)
632{
633 struct drm_i915_gem_object *obj;
634 int ret;
635 u32 handle;
636
637 size = roundup(size, PAGE_SIZE);
638 if (size == 0)
639 return -EINVAL;
640
641 /* Allocate the new object */
642 obj = i915_gem_object_create(dev, size);
643 if (IS_ERR(obj))
644 return PTR_ERR(obj);
645
646 ret = drm_gem_handle_create(file, &obj->base, &handle);
647 /* drop reference from allocate - handle holds it now */
648 i915_gem_object_put(obj);
649 if (ret)
650 return ret;
651
652 *handle_p = handle;
653 return 0;
654}
655
656int
657i915_gem_dumb_create(struct drm_file *file,
658 struct drm_device *dev,
659 struct drm_mode_create_dumb *args)
660{
661 /* have to work out size/pitch and return them */
662 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
663 args->size = args->pitch * args->height;
664 return i915_gem_create(file, dev,
665 args->size, &args->handle);
666}
667
668/**
669 * Creates a new mm object and returns a handle to it.
670 * @dev: drm device pointer
671 * @data: ioctl data blob
672 * @file: drm file pointer
673 */
674int
675i915_gem_create_ioctl(struct drm_device *dev, void *data,
676 struct drm_file *file)
677{
678 struct drm_i915_gem_create *args = data;
679
680 i915_gem_flush_free_objects(to_i915(dev));
681
682 return i915_gem_create(file, dev,
683 args->size, &args->handle);
684}
685
686static inline int
687__copy_to_user_swizzled(char __user *cpu_vaddr,
688 const char *gpu_vaddr, int gpu_offset,
689 int length)
690{
691 int ret, cpu_offset = 0;
692
693 while (length > 0) {
694 int cacheline_end = ALIGN(gpu_offset + 1, 64);
695 int this_length = min(cacheline_end - gpu_offset, length);
696 int swizzled_gpu_offset = gpu_offset ^ 64;
697
698 ret = __copy_to_user(cpu_vaddr + cpu_offset,
699 gpu_vaddr + swizzled_gpu_offset,
700 this_length);
701 if (ret)
702 return ret + length;
703
704 cpu_offset += this_length;
705 gpu_offset += this_length;
706 length -= this_length;
707 }
708
709 return 0;
710}
711
712static inline int
713__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
714 const char __user *cpu_vaddr,
715 int length)
716{
717 int ret, cpu_offset = 0;
718
719 while (length > 0) {
720 int cacheline_end = ALIGN(gpu_offset + 1, 64);
721 int this_length = min(cacheline_end - gpu_offset, length);
722 int swizzled_gpu_offset = gpu_offset ^ 64;
723
724 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
725 cpu_vaddr + cpu_offset,
726 this_length);
727 if (ret)
728 return ret + length;
729
730 cpu_offset += this_length;
731 gpu_offset += this_length;
732 length -= this_length;
733 }
734
735 return 0;
736}
737
738/*
739 * Pins the specified object's pages and synchronizes the object with
740 * GPU accesses. Sets needs_clflush to non-zero if the caller should
741 * flush the object from the CPU cache.
742 */
743int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
744 unsigned int *needs_clflush)
745{
746 int ret;
747
748 lockdep_assert_held(&obj->base.dev->struct_mutex);
749
750 *needs_clflush = 0;
751 if (!i915_gem_object_has_struct_page(obj))
752 return -ENODEV;
753
754 ret = i915_gem_object_wait(obj,
755 I915_WAIT_INTERRUPTIBLE |
756 I915_WAIT_LOCKED,
757 MAX_SCHEDULE_TIMEOUT,
758 NULL);
759 if (ret)
760 return ret;
761
762 ret = i915_gem_object_pin_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_flush_gtt_write_domain(obj);
767
768 /* If we're not in the cpu read domain, set ourself into the gtt
769 * read domain and manually flush cachelines (if required). This
770 * optimizes for the case when the gpu will dirty the data
771 * anyway again before the next pread happens.
772 */
773 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
774 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
775 obj->cache_level);
776
777 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
778 ret = i915_gem_object_set_to_cpu_domain(obj, false);
779 if (ret)
780 goto err_unpin;
781
782 *needs_clflush = 0;
783 }
784
785 /* return with the pages pinned */
786 return 0;
787
788err_unpin:
789 i915_gem_object_unpin_pages(obj);
790 return ret;
791}
792
793int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
794 unsigned int *needs_clflush)
795{
796 int ret;
797
798 lockdep_assert_held(&obj->base.dev->struct_mutex);
799
800 *needs_clflush = 0;
801 if (!i915_gem_object_has_struct_page(obj))
802 return -ENODEV;
803
804 ret = i915_gem_object_wait(obj,
805 I915_WAIT_INTERRUPTIBLE |
806 I915_WAIT_LOCKED |
807 I915_WAIT_ALL,
808 MAX_SCHEDULE_TIMEOUT,
809 NULL);
810 if (ret)
811 return ret;
812
813 ret = i915_gem_object_pin_pages(obj);
814 if (ret)
815 return ret;
816
817 i915_gem_object_flush_gtt_write_domain(obj);
818
819 /* If we're not in the cpu write domain, set ourself into the
820 * gtt write domain and manually flush cachelines (as required).
821 * This optimizes for the case when the gpu will use the data
822 * right away and we therefore have to clflush anyway.
823 */
824 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
825 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
826
827 /* Same trick applies to invalidate partially written cachelines read
828 * before writing.
829 */
830 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
831 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
832 obj->cache_level);
833
834 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
835 ret = i915_gem_object_set_to_cpu_domain(obj, true);
836 if (ret)
837 goto err_unpin;
838
839 *needs_clflush = 0;
840 }
841
842 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
843 obj->cache_dirty = true;
844
845 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
846 obj->mm.dirty = true;
847 /* return with the pages pinned */
848 return 0;
849
850err_unpin:
851 i915_gem_object_unpin_pages(obj);
852 return ret;
853}
854
855static void
856shmem_clflush_swizzled_range(char *addr, unsigned long length,
857 bool swizzled)
858{
859 if (unlikely(swizzled)) {
860 unsigned long start = (unsigned long) addr;
861 unsigned long end = (unsigned long) addr + length;
862
863 /* For swizzling simply ensure that we always flush both
864 * channels. Lame, but simple and it works. Swizzled
865 * pwrite/pread is far from a hotpath - current userspace
866 * doesn't use it at all. */
867 start = round_down(start, 128);
868 end = round_up(end, 128);
869
870 drm_clflush_virt_range((void *)start, end - start);
871 } else {
872 drm_clflush_virt_range(addr, length);
873 }
874
875}
876
877/* Only difference to the fast-path function is that this can handle bit17
878 * and uses non-atomic copy and kmap functions. */
879static int
880shmem_pread_slow(struct page *page, int offset, int length,
881 char __user *user_data,
882 bool page_do_bit17_swizzling, bool needs_clflush)
883{
884 char *vaddr;
885 int ret;
886
887 vaddr = kmap(page);
888 if (needs_clflush)
889 shmem_clflush_swizzled_range(vaddr + offset, length,
890 page_do_bit17_swizzling);
891
892 if (page_do_bit17_swizzling)
893 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
894 else
895 ret = __copy_to_user(user_data, vaddr + offset, length);
896 kunmap(page);
897
898 return ret ? - EFAULT : 0;
899}
900
901static int
902shmem_pread(struct page *page, int offset, int length, char __user *user_data,
903 bool page_do_bit17_swizzling, bool needs_clflush)
904{
905 int ret;
906
907 ret = -ENODEV;
908 if (!page_do_bit17_swizzling) {
909 char *vaddr = kmap_atomic(page);
910
911 if (needs_clflush)
912 drm_clflush_virt_range(vaddr + offset, length);
913 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
914 kunmap_atomic(vaddr);
915 }
916 if (ret == 0)
917 return 0;
918
919 return shmem_pread_slow(page, offset, length, user_data,
920 page_do_bit17_swizzling, needs_clflush);
921}
922
923static int
924i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
925 struct drm_i915_gem_pread *args)
926{
927 char __user *user_data;
928 u64 remain;
929 unsigned int obj_do_bit17_swizzling;
930 unsigned int needs_clflush;
931 unsigned int idx, offset;
932 int ret;
933
934 obj_do_bit17_swizzling = 0;
935 if (i915_gem_object_needs_bit17_swizzle(obj))
936 obj_do_bit17_swizzling = BIT(17);
937
938 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
939 if (ret)
940 return ret;
941
942 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
943 mutex_unlock(&obj->base.dev->struct_mutex);
944 if (ret)
945 return ret;
946
947 remain = args->size;
948 user_data = u64_to_user_ptr(args->data_ptr);
949 offset = offset_in_page(args->offset);
950 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
951 struct page *page = i915_gem_object_get_page(obj, idx);
952 int length;
953
954 length = remain;
955 if (offset + length > PAGE_SIZE)
956 length = PAGE_SIZE - offset;
957
958 ret = shmem_pread(page, offset, length, user_data,
959 page_to_phys(page) & obj_do_bit17_swizzling,
960 needs_clflush);
961 if (ret)
962 break;
963
964 remain -= length;
965 user_data += length;
966 offset = 0;
967 }
968
969 i915_gem_obj_finish_shmem_access(obj);
970 return ret;
971}
972
973static inline bool
974gtt_user_read(struct io_mapping *mapping,
975 loff_t base, int offset,
976 char __user *user_data, int length)
977{
978 void *vaddr;
979 unsigned long unwritten;
980
981 /* We can use the cpu mem copy function because this is X86. */
982 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
983 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
984 io_mapping_unmap_atomic(vaddr);
985 if (unwritten) {
986 vaddr = (void __force *)
987 io_mapping_map_wc(mapping, base, PAGE_SIZE);
988 unwritten = copy_to_user(user_data, vaddr + offset, length);
989 io_mapping_unmap(vaddr);
990 }
991 return unwritten;
992}
993
994static int
995i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
996 const struct drm_i915_gem_pread *args)
997{
998 struct drm_i915_private *i915 = to_i915(obj->base.dev);
999 struct i915_ggtt *ggtt = &i915->ggtt;
1000 struct drm_mm_node node;
1001 struct i915_vma *vma;
1002 void __user *user_data;
1003 u64 remain, offset;
1004 int ret;
1005
1006 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1007 if (ret)
1008 return ret;
1009
1010 intel_runtime_pm_get(i915);
1011 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1012 PIN_MAPPABLE | PIN_NONBLOCK);
1013 if (!IS_ERR(vma)) {
1014 node.start = i915_ggtt_offset(vma);
1015 node.allocated = false;
1016 ret = i915_vma_put_fence(vma);
1017 if (ret) {
1018 i915_vma_unpin(vma);
1019 vma = ERR_PTR(ret);
1020 }
1021 }
1022 if (IS_ERR(vma)) {
1023 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1024 if (ret)
1025 goto out_unlock;
1026 GEM_BUG_ON(!node.allocated);
1027 }
1028
1029 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030 if (ret)
1031 goto out_unpin;
1032
1033 mutex_unlock(&i915->drm.struct_mutex);
1034
1035 user_data = u64_to_user_ptr(args->data_ptr);
1036 remain = args->size;
1037 offset = args->offset;
1038
1039 while (remain > 0) {
1040 /* Operation in this page
1041 *
1042 * page_base = page offset within aperture
1043 * page_offset = offset within page
1044 * page_length = bytes to copy for this page
1045 */
1046 u32 page_base = node.start;
1047 unsigned page_offset = offset_in_page(offset);
1048 unsigned page_length = PAGE_SIZE - page_offset;
1049 page_length = remain < page_length ? remain : page_length;
1050 if (node.allocated) {
1051 wmb();
1052 ggtt->base.insert_page(&ggtt->base,
1053 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1054 node.start, I915_CACHE_NONE, 0);
1055 wmb();
1056 } else {
1057 page_base += offset & PAGE_MASK;
1058 }
1059
1060 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1061 user_data, page_length)) {
1062 ret = -EFAULT;
1063 break;
1064 }
1065
1066 remain -= page_length;
1067 user_data += page_length;
1068 offset += page_length;
1069 }
1070
1071 mutex_lock(&i915->drm.struct_mutex);
1072out_unpin:
1073 if (node.allocated) {
1074 wmb();
1075 ggtt->base.clear_range(&ggtt->base,
1076 node.start, node.size);
1077 remove_mappable_node(&node);
1078 } else {
1079 i915_vma_unpin(vma);
1080 }
1081out_unlock:
1082 intel_runtime_pm_put(i915);
1083 mutex_unlock(&i915->drm.struct_mutex);
1084
1085 return ret;
1086}
1087
1088/**
1089 * Reads data from the object referenced by handle.
1090 * @dev: drm device pointer
1091 * @data: ioctl data blob
1092 * @file: drm file pointer
1093 *
1094 * On error, the contents of *data are undefined.
1095 */
1096int
1097i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1098 struct drm_file *file)
1099{
1100 struct drm_i915_gem_pread *args = data;
1101 struct drm_i915_gem_object *obj;
1102 int ret;
1103
1104 if (args->size == 0)
1105 return 0;
1106
1107 if (!access_ok(VERIFY_WRITE,
1108 u64_to_user_ptr(args->data_ptr),
1109 args->size))
1110 return -EFAULT;
1111
1112 obj = i915_gem_object_lookup(file, args->handle);
1113 if (!obj)
1114 return -ENOENT;
1115
1116 /* Bounds check source. */
1117 if (args->offset > obj->base.size ||
1118 args->size > obj->base.size - args->offset) {
1119 ret = -EINVAL;
1120 goto out;
1121 }
1122
1123 trace_i915_gem_object_pread(obj, args->offset, args->size);
1124
1125 ret = i915_gem_object_wait(obj,
1126 I915_WAIT_INTERRUPTIBLE,
1127 MAX_SCHEDULE_TIMEOUT,
1128 to_rps_client(file));
1129 if (ret)
1130 goto out;
1131
1132 ret = i915_gem_object_pin_pages(obj);
1133 if (ret)
1134 goto out;
1135
1136 ret = i915_gem_shmem_pread(obj, args);
1137 if (ret == -EFAULT || ret == -ENODEV)
1138 ret = i915_gem_gtt_pread(obj, args);
1139
1140 i915_gem_object_unpin_pages(obj);
1141out:
1142 i915_gem_object_put(obj);
1143 return ret;
1144}
1145
1146/* This is the fast write path which cannot handle
1147 * page faults in the source data
1148 */
1149
1150static inline bool
1151ggtt_write(struct io_mapping *mapping,
1152 loff_t base, int offset,
1153 char __user *user_data, int length)
1154{
1155 void *vaddr;
1156 unsigned long unwritten;
1157
1158 /* We can use the cpu mem copy function because this is X86. */
1159 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1160 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1161 user_data, length);
1162 io_mapping_unmap_atomic(vaddr);
1163 if (unwritten) {
1164 vaddr = (void __force *)
1165 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1166 unwritten = copy_from_user(vaddr + offset, user_data, length);
1167 io_mapping_unmap(vaddr);
1168 }
1169
1170 return unwritten;
1171}
1172
1173/**
1174 * This is the fast pwrite path, where we copy the data directly from the
1175 * user into the GTT, uncached.
1176 * @obj: i915 GEM object
1177 * @args: pwrite arguments structure
1178 */
1179static int
1180i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1181 const struct drm_i915_gem_pwrite *args)
1182{
1183 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1184 struct i915_ggtt *ggtt = &i915->ggtt;
1185 struct drm_mm_node node;
1186 struct i915_vma *vma;
1187 u64 remain, offset;
1188 void __user *user_data;
1189 int ret;
1190
1191 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1192 if (ret)
1193 return ret;
1194
1195 intel_runtime_pm_get(i915);
1196 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1197 PIN_MAPPABLE | PIN_NONBLOCK);
1198 if (!IS_ERR(vma)) {
1199 node.start = i915_ggtt_offset(vma);
1200 node.allocated = false;
1201 ret = i915_vma_put_fence(vma);
1202 if (ret) {
1203 i915_vma_unpin(vma);
1204 vma = ERR_PTR(ret);
1205 }
1206 }
1207 if (IS_ERR(vma)) {
1208 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1209 if (ret)
1210 goto out_unlock;
1211 GEM_BUG_ON(!node.allocated);
1212 }
1213
1214 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1215 if (ret)
1216 goto out_unpin;
1217
1218 mutex_unlock(&i915->drm.struct_mutex);
1219
1220 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1221
1222 user_data = u64_to_user_ptr(args->data_ptr);
1223 offset = args->offset;
1224 remain = args->size;
1225 while (remain) {
1226 /* Operation in this page
1227 *
1228 * page_base = page offset within aperture
1229 * page_offset = offset within page
1230 * page_length = bytes to copy for this page
1231 */
1232 u32 page_base = node.start;
1233 unsigned int page_offset = offset_in_page(offset);
1234 unsigned int page_length = PAGE_SIZE - page_offset;
1235 page_length = remain < page_length ? remain : page_length;
1236 if (node.allocated) {
1237 wmb(); /* flush the write before we modify the GGTT */
1238 ggtt->base.insert_page(&ggtt->base,
1239 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1240 node.start, I915_CACHE_NONE, 0);
1241 wmb(); /* flush modifications to the GGTT (insert_page) */
1242 } else {
1243 page_base += offset & PAGE_MASK;
1244 }
1245 /* If we get a fault while copying data, then (presumably) our
1246 * source page isn't available. Return the error and we'll
1247 * retry in the slow path.
1248 * If the object is non-shmem backed, we retry again with the
1249 * path that handles page fault.
1250 */
1251 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1252 user_data, page_length)) {
1253 ret = -EFAULT;
1254 break;
1255 }
1256
1257 remain -= page_length;
1258 user_data += page_length;
1259 offset += page_length;
1260 }
1261 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1262
1263 mutex_lock(&i915->drm.struct_mutex);
1264out_unpin:
1265 if (node.allocated) {
1266 wmb();
1267 ggtt->base.clear_range(&ggtt->base,
1268 node.start, node.size);
1269 remove_mappable_node(&node);
1270 } else {
1271 i915_vma_unpin(vma);
1272 }
1273out_unlock:
1274 intel_runtime_pm_put(i915);
1275 mutex_unlock(&i915->drm.struct_mutex);
1276 return ret;
1277}
1278
1279static int
1280shmem_pwrite_slow(struct page *page, int offset, int length,
1281 char __user *user_data,
1282 bool page_do_bit17_swizzling,
1283 bool needs_clflush_before,
1284 bool needs_clflush_after)
1285{
1286 char *vaddr;
1287 int ret;
1288
1289 vaddr = kmap(page);
1290 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1291 shmem_clflush_swizzled_range(vaddr + offset, length,
1292 page_do_bit17_swizzling);
1293 if (page_do_bit17_swizzling)
1294 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1295 length);
1296 else
1297 ret = __copy_from_user(vaddr + offset, user_data, length);
1298 if (needs_clflush_after)
1299 shmem_clflush_swizzled_range(vaddr + offset, length,
1300 page_do_bit17_swizzling);
1301 kunmap(page);
1302
1303 return ret ? -EFAULT : 0;
1304}
1305
1306/* Per-page copy function for the shmem pwrite fastpath.
1307 * Flushes invalid cachelines before writing to the target if
1308 * needs_clflush_before is set and flushes out any written cachelines after
1309 * writing if needs_clflush is set.
1310 */
1311static int
1312shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1313 bool page_do_bit17_swizzling,
1314 bool needs_clflush_before,
1315 bool needs_clflush_after)
1316{
1317 int ret;
1318
1319 ret = -ENODEV;
1320 if (!page_do_bit17_swizzling) {
1321 char *vaddr = kmap_atomic(page);
1322
1323 if (needs_clflush_before)
1324 drm_clflush_virt_range(vaddr + offset, len);
1325 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1326 if (needs_clflush_after)
1327 drm_clflush_virt_range(vaddr + offset, len);
1328
1329 kunmap_atomic(vaddr);
1330 }
1331 if (ret == 0)
1332 return ret;
1333
1334 return shmem_pwrite_slow(page, offset, len, user_data,
1335 page_do_bit17_swizzling,
1336 needs_clflush_before,
1337 needs_clflush_after);
1338}
1339
1340static int
1341i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1342 const struct drm_i915_gem_pwrite *args)
1343{
1344 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1345 void __user *user_data;
1346 u64 remain;
1347 unsigned int obj_do_bit17_swizzling;
1348 unsigned int partial_cacheline_write;
1349 unsigned int needs_clflush;
1350 unsigned int offset, idx;
1351 int ret;
1352
1353 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1354 if (ret)
1355 return ret;
1356
1357 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1358 mutex_unlock(&i915->drm.struct_mutex);
1359 if (ret)
1360 return ret;
1361
1362 obj_do_bit17_swizzling = 0;
1363 if (i915_gem_object_needs_bit17_swizzle(obj))
1364 obj_do_bit17_swizzling = BIT(17);
1365
1366 /* If we don't overwrite a cacheline completely we need to be
1367 * careful to have up-to-date data by first clflushing. Don't
1368 * overcomplicate things and flush the entire patch.
1369 */
1370 partial_cacheline_write = 0;
1371 if (needs_clflush & CLFLUSH_BEFORE)
1372 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1373
1374 user_data = u64_to_user_ptr(args->data_ptr);
1375 remain = args->size;
1376 offset = offset_in_page(args->offset);
1377 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1378 struct page *page = i915_gem_object_get_page(obj, idx);
1379 int length;
1380
1381 length = remain;
1382 if (offset + length > PAGE_SIZE)
1383 length = PAGE_SIZE - offset;
1384
1385 ret = shmem_pwrite(page, offset, length, user_data,
1386 page_to_phys(page) & obj_do_bit17_swizzling,
1387 (offset | length) & partial_cacheline_write,
1388 needs_clflush & CLFLUSH_AFTER);
1389 if (ret)
1390 break;
1391
1392 remain -= length;
1393 user_data += length;
1394 offset = 0;
1395 }
1396
1397 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1398 i915_gem_obj_finish_shmem_access(obj);
1399 return ret;
1400}
1401
1402/**
1403 * Writes data to the object referenced by handle.
1404 * @dev: drm device
1405 * @data: ioctl data blob
1406 * @file: drm file
1407 *
1408 * On error, the contents of the buffer that were to be modified are undefined.
1409 */
1410int
1411i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1412 struct drm_file *file)
1413{
1414 struct drm_i915_gem_pwrite *args = data;
1415 struct drm_i915_gem_object *obj;
1416 int ret;
1417
1418 if (args->size == 0)
1419 return 0;
1420
1421 if (!access_ok(VERIFY_READ,
1422 u64_to_user_ptr(args->data_ptr),
1423 args->size))
1424 return -EFAULT;
1425
1426 obj = i915_gem_object_lookup(file, args->handle);
1427 if (!obj)
1428 return -ENOENT;
1429
1430 /* Bounds check destination. */
1431 if (args->offset > obj->base.size ||
1432 args->size > obj->base.size - args->offset) {
1433 ret = -EINVAL;
1434 goto err;
1435 }
1436
1437 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1438
1439 ret = i915_gem_object_wait(obj,
1440 I915_WAIT_INTERRUPTIBLE |
1441 I915_WAIT_ALL,
1442 MAX_SCHEDULE_TIMEOUT,
1443 to_rps_client(file));
1444 if (ret)
1445 goto err;
1446
1447 ret = i915_gem_object_pin_pages(obj);
1448 if (ret)
1449 goto err;
1450
1451 ret = -EFAULT;
1452 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1453 * it would end up going through the fenced access, and we'll get
1454 * different detiling behavior between reading and writing.
1455 * pread/pwrite currently are reading and writing from the CPU
1456 * perspective, requiring manual detiling by the client.
1457 */
1458 if (!i915_gem_object_has_struct_page(obj) ||
1459 cpu_write_needs_clflush(obj))
1460 /* Note that the gtt paths might fail with non-page-backed user
1461 * pointers (e.g. gtt mappings when moving data between
1462 * textures). Fallback to the shmem path in that case.
1463 */
1464 ret = i915_gem_gtt_pwrite_fast(obj, args);
1465
1466 if (ret == -EFAULT || ret == -ENOSPC) {
1467 if (obj->phys_handle)
1468 ret = i915_gem_phys_pwrite(obj, args, file);
1469 else
1470 ret = i915_gem_shmem_pwrite(obj, args);
1471 }
1472
1473 i915_gem_object_unpin_pages(obj);
1474err:
1475 i915_gem_object_put(obj);
1476 return ret;
1477}
1478
1479static inline enum fb_op_origin
1480write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1481{
1482 return (domain == I915_GEM_DOMAIN_GTT ?
1483 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1484}
1485
1486static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1487{
1488 struct drm_i915_private *i915;
1489 struct list_head *list;
1490 struct i915_vma *vma;
1491
1492 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1493 if (!i915_vma_is_ggtt(vma))
1494 continue;
1495
1496 if (i915_vma_is_active(vma))
1497 continue;
1498
1499 if (!drm_mm_node_allocated(&vma->node))
1500 continue;
1501
1502 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1503 }
1504
1505 i915 = to_i915(obj->base.dev);
1506 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1507 list_move_tail(&obj->global_link, list);
1508}
1509
1510/**
1511 * Called when user space prepares to use an object with the CPU, either
1512 * through the mmap ioctl's mapping or a GTT mapping.
1513 * @dev: drm device
1514 * @data: ioctl data blob
1515 * @file: drm file
1516 */
1517int
1518i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1519 struct drm_file *file)
1520{
1521 struct drm_i915_gem_set_domain *args = data;
1522 struct drm_i915_gem_object *obj;
1523 uint32_t read_domains = args->read_domains;
1524 uint32_t write_domain = args->write_domain;
1525 int err;
1526
1527 /* Only handle setting domains to types used by the CPU. */
1528 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1529 return -EINVAL;
1530
1531 /* Having something in the write domain implies it's in the read
1532 * domain, and only that read domain. Enforce that in the request.
1533 */
1534 if (write_domain != 0 && read_domains != write_domain)
1535 return -EINVAL;
1536
1537 obj = i915_gem_object_lookup(file, args->handle);
1538 if (!obj)
1539 return -ENOENT;
1540
1541 /* Try to flush the object off the GPU without holding the lock.
1542 * We will repeat the flush holding the lock in the normal manner
1543 * to catch cases where we are gazumped.
1544 */
1545 err = i915_gem_object_wait(obj,
1546 I915_WAIT_INTERRUPTIBLE |
1547 (write_domain ? I915_WAIT_ALL : 0),
1548 MAX_SCHEDULE_TIMEOUT,
1549 to_rps_client(file));
1550 if (err)
1551 goto out;
1552
1553 /* Flush and acquire obj->pages so that we are coherent through
1554 * direct access in memory with previous cached writes through
1555 * shmemfs and that our cache domain tracking remains valid.
1556 * For example, if the obj->filp was moved to swap without us
1557 * being notified and releasing the pages, we would mistakenly
1558 * continue to assume that the obj remained out of the CPU cached
1559 * domain.
1560 */
1561 err = i915_gem_object_pin_pages(obj);
1562 if (err)
1563 goto out;
1564
1565 err = i915_mutex_lock_interruptible(dev);
1566 if (err)
1567 goto out_unpin;
1568
1569 if (read_domains & I915_GEM_DOMAIN_GTT)
1570 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1571 else
1572 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1573
1574 /* And bump the LRU for this access */
1575 i915_gem_object_bump_inactive_ggtt(obj);
1576
1577 mutex_unlock(&dev->struct_mutex);
1578
1579 if (write_domain != 0)
1580 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1581
1582out_unpin:
1583 i915_gem_object_unpin_pages(obj);
1584out:
1585 i915_gem_object_put(obj);
1586 return err;
1587}
1588
1589/**
1590 * Called when user space has done writes to this buffer
1591 * @dev: drm device
1592 * @data: ioctl data blob
1593 * @file: drm file
1594 */
1595int
1596i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1597 struct drm_file *file)
1598{
1599 struct drm_i915_gem_sw_finish *args = data;
1600 struct drm_i915_gem_object *obj;
1601 int err = 0;
1602
1603 obj = i915_gem_object_lookup(file, args->handle);
1604 if (!obj)
1605 return -ENOENT;
1606
1607 /* Pinned buffers may be scanout, so flush the cache */
1608 if (READ_ONCE(obj->pin_display)) {
1609 err = i915_mutex_lock_interruptible(dev);
1610 if (!err) {
1611 i915_gem_object_flush_cpu_write_domain(obj);
1612 mutex_unlock(&dev->struct_mutex);
1613 }
1614 }
1615
1616 i915_gem_object_put(obj);
1617 return err;
1618}
1619
1620/**
1621 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1622 * it is mapped to.
1623 * @dev: drm device
1624 * @data: ioctl data blob
1625 * @file: drm file
1626 *
1627 * While the mapping holds a reference on the contents of the object, it doesn't
1628 * imply a ref on the object itself.
1629 *
1630 * IMPORTANT:
1631 *
1632 * DRM driver writers who look a this function as an example for how to do GEM
1633 * mmap support, please don't implement mmap support like here. The modern way
1634 * to implement DRM mmap support is with an mmap offset ioctl (like
1635 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1636 * That way debug tooling like valgrind will understand what's going on, hiding
1637 * the mmap call in a driver private ioctl will break that. The i915 driver only
1638 * does cpu mmaps this way because we didn't know better.
1639 */
1640int
1641i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1642 struct drm_file *file)
1643{
1644 struct drm_i915_gem_mmap *args = data;
1645 struct drm_i915_gem_object *obj;
1646 unsigned long addr;
1647
1648 if (args->flags & ~(I915_MMAP_WC))
1649 return -EINVAL;
1650
1651 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1652 return -ENODEV;
1653
1654 obj = i915_gem_object_lookup(file, args->handle);
1655 if (!obj)
1656 return -ENOENT;
1657
1658 /* prime objects have no backing filp to GEM mmap
1659 * pages from.
1660 */
1661 if (!obj->base.filp) {
1662 i915_gem_object_put(obj);
1663 return -EINVAL;
1664 }
1665
1666 addr = vm_mmap(obj->base.filp, 0, args->size,
1667 PROT_READ | PROT_WRITE, MAP_SHARED,
1668 args->offset);
1669 if (args->flags & I915_MMAP_WC) {
1670 struct mm_struct *mm = current->mm;
1671 struct vm_area_struct *vma;
1672
1673 if (down_write_killable(&mm->mmap_sem)) {
1674 i915_gem_object_put(obj);
1675 return -EINTR;
1676 }
1677 vma = find_vma(mm, addr);
1678 if (vma)
1679 vma->vm_page_prot =
1680 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1681 else
1682 addr = -ENOMEM;
1683 up_write(&mm->mmap_sem);
1684
1685 /* This may race, but that's ok, it only gets set */
1686 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1687 }
1688 i915_gem_object_put(obj);
1689 if (IS_ERR((void *)addr))
1690 return addr;
1691
1692 args->addr_ptr = (uint64_t) addr;
1693
1694 return 0;
1695}
1696
1697static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1698{
1699 u64 size;
1700
1701 size = i915_gem_object_get_stride(obj);
1702 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1703
1704 return size >> PAGE_SHIFT;
1705}
1706
1707/**
1708 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1709 *
1710 * A history of the GTT mmap interface:
1711 *
1712 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1713 * aligned and suitable for fencing, and still fit into the available
1714 * mappable space left by the pinned display objects. A classic problem
1715 * we called the page-fault-of-doom where we would ping-pong between
1716 * two objects that could not fit inside the GTT and so the memcpy
1717 * would page one object in at the expense of the other between every
1718 * single byte.
1719 *
1720 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1721 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1722 * object is too large for the available space (or simply too large
1723 * for the mappable aperture!), a view is created instead and faulted
1724 * into userspace. (This view is aligned and sized appropriately for
1725 * fenced access.)
1726 *
1727 * Restrictions:
1728 *
1729 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1730 * hangs on some architectures, corruption on others. An attempt to service
1731 * a GTT page fault from a snoopable object will generate a SIGBUS.
1732 *
1733 * * the object must be able to fit into RAM (physical memory, though no
1734 * limited to the mappable aperture).
1735 *
1736 *
1737 * Caveats:
1738 *
1739 * * a new GTT page fault will synchronize rendering from the GPU and flush
1740 * all data to system memory. Subsequent access will not be synchronized.
1741 *
1742 * * all mappings are revoked on runtime device suspend.
1743 *
1744 * * there are only 8, 16 or 32 fence registers to share between all users
1745 * (older machines require fence register for display and blitter access
1746 * as well). Contention of the fence registers will cause the previous users
1747 * to be unmapped and any new access will generate new page faults.
1748 *
1749 * * running out of memory while servicing a fault may generate a SIGBUS,
1750 * rather than the expected SIGSEGV.
1751 */
1752int i915_gem_mmap_gtt_version(void)
1753{
1754 return 1;
1755}
1756
1757/**
1758 * i915_gem_fault - fault a page into the GTT
1759 * @area: CPU VMA in question
1760 * @vmf: fault info
1761 *
1762 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1763 * from userspace. The fault handler takes care of binding the object to
1764 * the GTT (if needed), allocating and programming a fence register (again,
1765 * only if needed based on whether the old reg is still valid or the object
1766 * is tiled) and inserting a new PTE into the faulting process.
1767 *
1768 * Note that the faulting process may involve evicting existing objects
1769 * from the GTT and/or fence registers to make room. So performance may
1770 * suffer if the GTT working set is large or there are few fence registers
1771 * left.
1772 *
1773 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1774 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1775 */
1776int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1777{
1778#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1779 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1780 struct drm_device *dev = obj->base.dev;
1781 struct drm_i915_private *dev_priv = to_i915(dev);
1782 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1783 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1784 struct i915_vma *vma;
1785 pgoff_t page_offset;
1786 unsigned int flags;
1787 int ret;
1788
1789 /* We don't use vmf->pgoff since that has the fake offset */
1790 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1791
1792 trace_i915_gem_object_fault(obj, page_offset, true, write);
1793
1794 /* Try to flush the object off the GPU first without holding the lock.
1795 * Upon acquiring the lock, we will perform our sanity checks and then
1796 * repeat the flush holding the lock in the normal manner to catch cases
1797 * where we are gazumped.
1798 */
1799 ret = i915_gem_object_wait(obj,
1800 I915_WAIT_INTERRUPTIBLE,
1801 MAX_SCHEDULE_TIMEOUT,
1802 NULL);
1803 if (ret)
1804 goto err;
1805
1806 ret = i915_gem_object_pin_pages(obj);
1807 if (ret)
1808 goto err;
1809
1810 intel_runtime_pm_get(dev_priv);
1811
1812 ret = i915_mutex_lock_interruptible(dev);
1813 if (ret)
1814 goto err_rpm;
1815
1816 /* Access to snoopable pages through the GTT is incoherent. */
1817 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1818 ret = -EFAULT;
1819 goto err_unlock;
1820 }
1821
1822 /* If the object is smaller than a couple of partial vma, it is
1823 * not worth only creating a single partial vma - we may as well
1824 * clear enough space for the full object.
1825 */
1826 flags = PIN_MAPPABLE;
1827 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1828 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1829
1830 /* Now pin it into the GTT as needed */
1831 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1832 if (IS_ERR(vma)) {
1833 struct i915_ggtt_view view;
1834 unsigned int chunk_size;
1835
1836 /* Use a partial view if it is bigger than available space */
1837 chunk_size = MIN_CHUNK_PAGES;
1838 if (i915_gem_object_is_tiled(obj))
1839 chunk_size = roundup(chunk_size, tile_row_pages(obj));
1840
1841 memset(&view, 0, sizeof(view));
1842 view.type = I915_GGTT_VIEW_PARTIAL;
1843 view.params.partial.offset = rounddown(page_offset, chunk_size);
1844 view.params.partial.size =
1845 min_t(unsigned int, chunk_size,
1846 vma_pages(area) - view.params.partial.offset);
1847
1848 /* If the partial covers the entire object, just create a
1849 * normal VMA.
1850 */
1851 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1852 view.type = I915_GGTT_VIEW_NORMAL;
1853
1854 /* Userspace is now writing through an untracked VMA, abandon
1855 * all hope that the hardware is able to track future writes.
1856 */
1857 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1858
1859 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1860 }
1861 if (IS_ERR(vma)) {
1862 ret = PTR_ERR(vma);
1863 goto err_unlock;
1864 }
1865
1866 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1867 if (ret)
1868 goto err_unpin;
1869
1870 ret = i915_vma_get_fence(vma);
1871 if (ret)
1872 goto err_unpin;
1873
1874 /* Mark as being mmapped into userspace for later revocation */
1875 assert_rpm_wakelock_held(dev_priv);
1876 if (list_empty(&obj->userfault_link))
1877 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1878
1879 /* Finally, remap it using the new GTT offset */
1880 ret = remap_io_mapping(area,
1881 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1882 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1883 min_t(u64, vma->size, area->vm_end - area->vm_start),
1884 &ggtt->mappable);
1885
1886err_unpin:
1887 __i915_vma_unpin(vma);
1888err_unlock:
1889 mutex_unlock(&dev->struct_mutex);
1890err_rpm:
1891 intel_runtime_pm_put(dev_priv);
1892 i915_gem_object_unpin_pages(obj);
1893err:
1894 switch (ret) {
1895 case -EIO:
1896 /*
1897 * We eat errors when the gpu is terminally wedged to avoid
1898 * userspace unduly crashing (gl has no provisions for mmaps to
1899 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1900 * and so needs to be reported.
1901 */
1902 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1903 ret = VM_FAULT_SIGBUS;
1904 break;
1905 }
1906 case -EAGAIN:
1907 /*
1908 * EAGAIN means the gpu is hung and we'll wait for the error
1909 * handler to reset everything when re-faulting in
1910 * i915_mutex_lock_interruptible.
1911 */
1912 case 0:
1913 case -ERESTARTSYS:
1914 case -EINTR:
1915 case -EBUSY:
1916 /*
1917 * EBUSY is ok: this just means that another thread
1918 * already did the job.
1919 */
1920 ret = VM_FAULT_NOPAGE;
1921 break;
1922 case -ENOMEM:
1923 ret = VM_FAULT_OOM;
1924 break;
1925 case -ENOSPC:
1926 case -EFAULT:
1927 ret = VM_FAULT_SIGBUS;
1928 break;
1929 default:
1930 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1931 ret = VM_FAULT_SIGBUS;
1932 break;
1933 }
1934 return ret;
1935}
1936
1937/**
1938 * i915_gem_release_mmap - remove physical page mappings
1939 * @obj: obj in question
1940 *
1941 * Preserve the reservation of the mmapping with the DRM core code, but
1942 * relinquish ownership of the pages back to the system.
1943 *
1944 * It is vital that we remove the page mapping if we have mapped a tiled
1945 * object through the GTT and then lose the fence register due to
1946 * resource pressure. Similarly if the object has been moved out of the
1947 * aperture, than pages mapped into userspace must be revoked. Removing the
1948 * mapping will then trigger a page fault on the next user access, allowing
1949 * fixup by i915_gem_fault().
1950 */
1951void
1952i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1953{
1954 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1955
1956 /* Serialisation between user GTT access and our code depends upon
1957 * revoking the CPU's PTE whilst the mutex is held. The next user
1958 * pagefault then has to wait until we release the mutex.
1959 *
1960 * Note that RPM complicates somewhat by adding an additional
1961 * requirement that operations to the GGTT be made holding the RPM
1962 * wakeref.
1963 */
1964 lockdep_assert_held(&i915->drm.struct_mutex);
1965 intel_runtime_pm_get(i915);
1966
1967 if (list_empty(&obj->userfault_link))
1968 goto out;
1969
1970 list_del_init(&obj->userfault_link);
1971 drm_vma_node_unmap(&obj->base.vma_node,
1972 obj->base.dev->anon_inode->i_mapping);
1973
1974 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1975 * memory transactions from userspace before we return. The TLB
1976 * flushing implied above by changing the PTE above *should* be
1977 * sufficient, an extra barrier here just provides us with a bit
1978 * of paranoid documentation about our requirement to serialise
1979 * memory writes before touching registers / GSM.
1980 */
1981 wmb();
1982
1983out:
1984 intel_runtime_pm_put(i915);
1985}
1986
1987void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1988{
1989 struct drm_i915_gem_object *obj, *on;
1990 int i;
1991
1992 /*
1993 * Only called during RPM suspend. All users of the userfault_list
1994 * must be holding an RPM wakeref to ensure that this can not
1995 * run concurrently with themselves (and use the struct_mutex for
1996 * protection between themselves).
1997 */
1998
1999 list_for_each_entry_safe(obj, on,
2000 &dev_priv->mm.userfault_list, userfault_link) {
2001 list_del_init(&obj->userfault_link);
2002 drm_vma_node_unmap(&obj->base.vma_node,
2003 obj->base.dev->anon_inode->i_mapping);
2004 }
2005
2006 /* The fence will be lost when the device powers down. If any were
2007 * in use by hardware (i.e. they are pinned), we should not be powering
2008 * down! All other fences will be reacquired by the user upon waking.
2009 */
2010 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2011 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2012
2013 /* Ideally we want to assert that the fence register is not
2014 * live at this point (i.e. that no piece of code will be
2015 * trying to write through fence + GTT, as that both violates
2016 * our tracking of activity and associated locking/barriers,
2017 * but also is illegal given that the hw is powered down).
2018 *
2019 * Previously we used reg->pin_count as a "liveness" indicator.
2020 * That is not sufficient, and we need a more fine-grained
2021 * tool if we want to have a sanity check here.
2022 */
2023
2024 if (!reg->vma)
2025 continue;
2026
2027 GEM_BUG_ON(!list_empty(®->vma->obj->userfault_link));
2028 reg->dirty = true;
2029 }
2030}
2031
2032/**
2033 * i915_gem_get_ggtt_size - return required global GTT size for an object
2034 * @dev_priv: i915 device
2035 * @size: object size
2036 * @tiling_mode: tiling mode
2037 *
2038 * Return the required global GTT size for an object, taking into account
2039 * potential fence register mapping.
2040 */
2041u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2042 u64 size, int tiling_mode)
2043{
2044 u64 ggtt_size;
2045
2046 GEM_BUG_ON(size == 0);
2047
2048 if (INTEL_GEN(dev_priv) >= 4 ||
2049 tiling_mode == I915_TILING_NONE)
2050 return size;
2051
2052 /* Previous chips need a power-of-two fence region when tiling */
2053 if (IS_GEN3(dev_priv))
2054 ggtt_size = 1024*1024;
2055 else
2056 ggtt_size = 512*1024;
2057
2058 while (ggtt_size < size)
2059 ggtt_size <<= 1;
2060
2061 return ggtt_size;
2062}
2063
2064/**
2065 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2066 * @dev_priv: i915 device
2067 * @size: object size
2068 * @tiling_mode: tiling mode
2069 * @fenced: is fenced alignment required or not
2070 *
2071 * Return the required global GTT alignment for an object, taking into account
2072 * potential fence register mapping.
2073 */
2074u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2075 int tiling_mode, bool fenced)
2076{
2077 GEM_BUG_ON(size == 0);
2078
2079 /*
2080 * Minimum alignment is 4k (GTT page size), but might be greater
2081 * if a fence register is needed for the object.
2082 */
2083 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2084 tiling_mode == I915_TILING_NONE)
2085 return 4096;
2086
2087 /*
2088 * Previous chips need to be aligned to the size of the smallest
2089 * fence register that can contain the object.
2090 */
2091 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2092}
2093
2094static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2095{
2096 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2097 int err;
2098
2099 err = drm_gem_create_mmap_offset(&obj->base);
2100 if (!err)
2101 return 0;
2102
2103 /* We can idle the GPU locklessly to flush stale objects, but in order
2104 * to claim that space for ourselves, we need to take the big
2105 * struct_mutex to free the requests+objects and allocate our slot.
2106 */
2107 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2108 if (err)
2109 return err;
2110
2111 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2112 if (!err) {
2113 i915_gem_retire_requests(dev_priv);
2114 err = drm_gem_create_mmap_offset(&obj->base);
2115 mutex_unlock(&dev_priv->drm.struct_mutex);
2116 }
2117
2118 return err;
2119}
2120
2121static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2122{
2123 drm_gem_free_mmap_offset(&obj->base);
2124}
2125
2126int
2127i915_gem_mmap_gtt(struct drm_file *file,
2128 struct drm_device *dev,
2129 uint32_t handle,
2130 uint64_t *offset)
2131{
2132 struct drm_i915_gem_object *obj;
2133 int ret;
2134
2135 obj = i915_gem_object_lookup(file, handle);
2136 if (!obj)
2137 return -ENOENT;
2138
2139 ret = i915_gem_object_create_mmap_offset(obj);
2140 if (ret == 0)
2141 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2142
2143 i915_gem_object_put(obj);
2144 return ret;
2145}
2146
2147/**
2148 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2149 * @dev: DRM device
2150 * @data: GTT mapping ioctl data
2151 * @file: GEM object info
2152 *
2153 * Simply returns the fake offset to userspace so it can mmap it.
2154 * The mmap call will end up in drm_gem_mmap(), which will set things
2155 * up so we can get faults in the handler above.
2156 *
2157 * The fault handler will take care of binding the object into the GTT
2158 * (since it may have been evicted to make room for something), allocating
2159 * a fence register, and mapping the appropriate aperture address into
2160 * userspace.
2161 */
2162int
2163i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2164 struct drm_file *file)
2165{
2166 struct drm_i915_gem_mmap_gtt *args = data;
2167
2168 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2169}
2170
2171/* Immediately discard the backing storage */
2172static void
2173i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2174{
2175 i915_gem_object_free_mmap_offset(obj);
2176
2177 if (obj->base.filp == NULL)
2178 return;
2179
2180 /* Our goal here is to return as much of the memory as
2181 * is possible back to the system as we are called from OOM.
2182 * To do this we must instruct the shmfs to drop all of its
2183 * backing pages, *now*.
2184 */
2185 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2186 obj->mm.madv = __I915_MADV_PURGED;
2187 obj->mm.pages = ERR_PTR(-EFAULT);
2188}
2189
2190/* Try to discard unwanted pages */
2191void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2192{
2193 struct address_space *mapping;
2194
2195 lockdep_assert_held(&obj->mm.lock);
2196 GEM_BUG_ON(obj->mm.pages);
2197
2198 switch (obj->mm.madv) {
2199 case I915_MADV_DONTNEED:
2200 i915_gem_object_truncate(obj);
2201 case __I915_MADV_PURGED:
2202 return;
2203 }
2204
2205 if (obj->base.filp == NULL)
2206 return;
2207
2208 mapping = obj->base.filp->f_mapping,
2209 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2210}
2211
2212static void
2213i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2214 struct sg_table *pages)
2215{
2216 struct sgt_iter sgt_iter;
2217 struct page *page;
2218
2219 __i915_gem_object_release_shmem(obj, pages, true);
2220
2221 i915_gem_gtt_finish_pages(obj, pages);
2222
2223 if (i915_gem_object_needs_bit17_swizzle(obj))
2224 i915_gem_object_save_bit_17_swizzle(obj, pages);
2225
2226 for_each_sgt_page(page, sgt_iter, pages) {
2227 if (obj->mm.dirty)
2228 set_page_dirty(page);
2229
2230 if (obj->mm.madv == I915_MADV_WILLNEED)
2231 mark_page_accessed(page);
2232
2233 put_page(page);
2234 }
2235 obj->mm.dirty = false;
2236
2237 sg_free_table(pages);
2238 kfree(pages);
2239}
2240
2241static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2242{
2243 struct radix_tree_iter iter;
2244 void **slot;
2245
2246 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2247 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2248}
2249
2250void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2251 enum i915_mm_subclass subclass)
2252{
2253 struct sg_table *pages;
2254
2255 if (i915_gem_object_has_pinned_pages(obj))
2256 return;
2257
2258 GEM_BUG_ON(obj->bind_count);
2259 if (!READ_ONCE(obj->mm.pages))
2260 return;
2261
2262 /* May be called by shrinker from within get_pages() (on another bo) */
2263 mutex_lock_nested(&obj->mm.lock, subclass);
2264 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2265 goto unlock;
2266
2267 /* ->put_pages might need to allocate memory for the bit17 swizzle
2268 * array, hence protect them from being reaped by removing them from gtt
2269 * lists early. */
2270 pages = fetch_and_zero(&obj->mm.pages);
2271 GEM_BUG_ON(!pages);
2272
2273 if (obj->mm.mapping) {
2274 void *ptr;
2275
2276 ptr = ptr_mask_bits(obj->mm.mapping);
2277 if (is_vmalloc_addr(ptr))
2278 vunmap(ptr);
2279 else
2280 kunmap(kmap_to_page(ptr));
2281
2282 obj->mm.mapping = NULL;
2283 }
2284
2285 __i915_gem_object_reset_page_iter(obj);
2286
2287 if (!IS_ERR(pages))
2288 obj->ops->put_pages(obj, pages);
2289
2290unlock:
2291 mutex_unlock(&obj->mm.lock);
2292}
2293
2294static void i915_sg_trim(struct sg_table *orig_st)
2295{
2296 struct sg_table new_st;
2297 struct scatterlist *sg, *new_sg;
2298 unsigned int i;
2299
2300 if (orig_st->nents == orig_st->orig_nents)
2301 return;
2302
2303 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2304 return;
2305
2306 new_sg = new_st.sgl;
2307 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2308 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2309 /* called before being DMA mapped, no need to copy sg->dma_* */
2310 new_sg = sg_next(new_sg);
2311 }
2312
2313 sg_free_table(orig_st);
2314
2315 *orig_st = new_st;
2316}
2317
2318static struct sg_table *
2319i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2320{
2321 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2322 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2323 unsigned long i;
2324 struct address_space *mapping;
2325 struct sg_table *st;
2326 struct scatterlist *sg;
2327 struct sgt_iter sgt_iter;
2328 struct page *page;
2329 unsigned long last_pfn = 0; /* suppress gcc warning */
2330 unsigned int max_segment;
2331 int ret;
2332 gfp_t gfp;
2333
2334 /* Assert that the object is not currently in any GPU domain. As it
2335 * wasn't in the GTT, there shouldn't be any way it could have been in
2336 * a GPU cache
2337 */
2338 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2339 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2340
2341 max_segment = swiotlb_max_segment();
2342 if (!max_segment)
2343 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2344
2345 st = kmalloc(sizeof(*st), GFP_KERNEL);
2346 if (st == NULL)
2347 return ERR_PTR(-ENOMEM);
2348
2349rebuild_st:
2350 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2351 kfree(st);
2352 return ERR_PTR(-ENOMEM);
2353 }
2354
2355 /* Get the list of pages out of our struct file. They'll be pinned
2356 * at this point until we release them.
2357 *
2358 * Fail silently without starting the shrinker
2359 */
2360 mapping = obj->base.filp->f_mapping;
2361 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2362 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2363 sg = st->sgl;
2364 st->nents = 0;
2365 for (i = 0; i < page_count; i++) {
2366 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2367 if (IS_ERR(page)) {
2368 i915_gem_shrink(dev_priv,
2369 page_count,
2370 I915_SHRINK_BOUND |
2371 I915_SHRINK_UNBOUND |
2372 I915_SHRINK_PURGEABLE);
2373 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2374 }
2375 if (IS_ERR(page)) {
2376 /* We've tried hard to allocate the memory by reaping
2377 * our own buffer, now let the real VM do its job and
2378 * go down in flames if truly OOM.
2379 */
2380 page = shmem_read_mapping_page(mapping, i);
2381 if (IS_ERR(page)) {
2382 ret = PTR_ERR(page);
2383 goto err_sg;
2384 }
2385 }
2386 if (!i ||
2387 sg->length >= max_segment ||
2388 page_to_pfn(page) != last_pfn + 1) {
2389 if (i)
2390 sg = sg_next(sg);
2391 st->nents++;
2392 sg_set_page(sg, page, PAGE_SIZE, 0);
2393 } else {
2394 sg->length += PAGE_SIZE;
2395 }
2396 last_pfn = page_to_pfn(page);
2397
2398 /* Check that the i965g/gm workaround works. */
2399 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2400 }
2401 if (sg) /* loop terminated early; short sg table */
2402 sg_mark_end(sg);
2403
2404 /* Trim unused sg entries to avoid wasting memory. */
2405 i915_sg_trim(st);
2406
2407 ret = i915_gem_gtt_prepare_pages(obj, st);
2408 if (ret) {
2409 /* DMA remapping failed? One possible cause is that
2410 * it could not reserve enough large entries, asking
2411 * for PAGE_SIZE chunks instead may be helpful.
2412 */
2413 if (max_segment > PAGE_SIZE) {
2414 for_each_sgt_page(page, sgt_iter, st)
2415 put_page(page);
2416 sg_free_table(st);
2417
2418 max_segment = PAGE_SIZE;
2419 goto rebuild_st;
2420 } else {
2421 dev_warn(&dev_priv->drm.pdev->dev,
2422 "Failed to DMA remap %lu pages\n",
2423 page_count);
2424 goto err_pages;
2425 }
2426 }
2427
2428 if (i915_gem_object_needs_bit17_swizzle(obj))
2429 i915_gem_object_do_bit_17_swizzle(obj, st);
2430
2431 return st;
2432
2433err_sg:
2434 sg_mark_end(sg);
2435err_pages:
2436 for_each_sgt_page(page, sgt_iter, st)
2437 put_page(page);
2438 sg_free_table(st);
2439 kfree(st);
2440
2441 /* shmemfs first checks if there is enough memory to allocate the page
2442 * and reports ENOSPC should there be insufficient, along with the usual
2443 * ENOMEM for a genuine allocation failure.
2444 *
2445 * We use ENOSPC in our driver to mean that we have run out of aperture
2446 * space and so want to translate the error from shmemfs back to our
2447 * usual understanding of ENOMEM.
2448 */
2449 if (ret == -ENOSPC)
2450 ret = -ENOMEM;
2451
2452 return ERR_PTR(ret);
2453}
2454
2455void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2456 struct sg_table *pages)
2457{
2458 lockdep_assert_held(&obj->mm.lock);
2459
2460 obj->mm.get_page.sg_pos = pages->sgl;
2461 obj->mm.get_page.sg_idx = 0;
2462
2463 obj->mm.pages = pages;
2464
2465 if (i915_gem_object_is_tiled(obj) &&
2466 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2467 GEM_BUG_ON(obj->mm.quirked);
2468 __i915_gem_object_pin_pages(obj);
2469 obj->mm.quirked = true;
2470 }
2471}
2472
2473static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2474{
2475 struct sg_table *pages;
2476
2477 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2478
2479 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2480 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2481 return -EFAULT;
2482 }
2483
2484 pages = obj->ops->get_pages(obj);
2485 if (unlikely(IS_ERR(pages)))
2486 return PTR_ERR(pages);
2487
2488 __i915_gem_object_set_pages(obj, pages);
2489 return 0;
2490}
2491
2492/* Ensure that the associated pages are gathered from the backing storage
2493 * and pinned into our object. i915_gem_object_pin_pages() may be called
2494 * multiple times before they are released by a single call to
2495 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2496 * either as a result of memory pressure (reaping pages under the shrinker)
2497 * or as the object is itself released.
2498 */
2499int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2500{
2501 int err;
2502
2503 err = mutex_lock_interruptible(&obj->mm.lock);
2504 if (err)
2505 return err;
2506
2507 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2508 err = ____i915_gem_object_get_pages(obj);
2509 if (err)
2510 goto unlock;
2511
2512 smp_mb__before_atomic();
2513 }
2514 atomic_inc(&obj->mm.pages_pin_count);
2515
2516unlock:
2517 mutex_unlock(&obj->mm.lock);
2518 return err;
2519}
2520
2521/* The 'mapping' part of i915_gem_object_pin_map() below */
2522static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2523 enum i915_map_type type)
2524{
2525 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2526 struct sg_table *sgt = obj->mm.pages;
2527 struct sgt_iter sgt_iter;
2528 struct page *page;
2529 struct page *stack_pages[32];
2530 struct page **pages = stack_pages;
2531 unsigned long i = 0;
2532 pgprot_t pgprot;
2533 void *addr;
2534
2535 /* A single page can always be kmapped */
2536 if (n_pages == 1 && type == I915_MAP_WB)
2537 return kmap(sg_page(sgt->sgl));
2538
2539 if (n_pages > ARRAY_SIZE(stack_pages)) {
2540 /* Too big for stack -- allocate temporary array instead */
2541 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2542 if (!pages)
2543 return NULL;
2544 }
2545
2546 for_each_sgt_page(page, sgt_iter, sgt)
2547 pages[i++] = page;
2548
2549 /* Check that we have the expected number of pages */
2550 GEM_BUG_ON(i != n_pages);
2551
2552 switch (type) {
2553 case I915_MAP_WB:
2554 pgprot = PAGE_KERNEL;
2555 break;
2556 case I915_MAP_WC:
2557 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2558 break;
2559 }
2560 addr = vmap(pages, n_pages, 0, pgprot);
2561
2562 if (pages != stack_pages)
2563 drm_free_large(pages);
2564
2565 return addr;
2566}
2567
2568/* get, pin, and map the pages of the object into kernel space */
2569void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2570 enum i915_map_type type)
2571{
2572 enum i915_map_type has_type;
2573 bool pinned;
2574 void *ptr;
2575 int ret;
2576
2577 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2578
2579 ret = mutex_lock_interruptible(&obj->mm.lock);
2580 if (ret)
2581 return ERR_PTR(ret);
2582
2583 pinned = true;
2584 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2585 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2586 ret = ____i915_gem_object_get_pages(obj);
2587 if (ret)
2588 goto err_unlock;
2589
2590 smp_mb__before_atomic();
2591 }
2592 atomic_inc(&obj->mm.pages_pin_count);
2593 pinned = false;
2594 }
2595 GEM_BUG_ON(!obj->mm.pages);
2596
2597 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2598 if (ptr && has_type != type) {
2599 if (pinned) {
2600 ret = -EBUSY;
2601 goto err_unpin;
2602 }
2603
2604 if (is_vmalloc_addr(ptr))
2605 vunmap(ptr);
2606 else
2607 kunmap(kmap_to_page(ptr));
2608
2609 ptr = obj->mm.mapping = NULL;
2610 }
2611
2612 if (!ptr) {
2613 ptr = i915_gem_object_map(obj, type);
2614 if (!ptr) {
2615 ret = -ENOMEM;
2616 goto err_unpin;
2617 }
2618
2619 obj->mm.mapping = ptr_pack_bits(ptr, type);
2620 }
2621
2622out_unlock:
2623 mutex_unlock(&obj->mm.lock);
2624 return ptr;
2625
2626err_unpin:
2627 atomic_dec(&obj->mm.pages_pin_count);
2628err_unlock:
2629 ptr = ERR_PTR(ret);
2630 goto out_unlock;
2631}
2632
2633static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2634{
2635 unsigned long elapsed;
2636
2637 if (ctx->hang_stats.banned)
2638 return true;
2639
2640 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2641 if (ctx->hang_stats.ban_period_seconds &&
2642 elapsed <= ctx->hang_stats.ban_period_seconds) {
2643 DRM_DEBUG("context hanging too fast, banning!\n");
2644 return true;
2645 }
2646
2647 return false;
2648}
2649
2650static void i915_set_reset_status(struct i915_gem_context *ctx,
2651 const bool guilty)
2652{
2653 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2654
2655 if (guilty) {
2656 hs->banned = i915_context_is_banned(ctx);
2657 hs->batch_active++;
2658 hs->guilty_ts = get_seconds();
2659 } else {
2660 hs->batch_pending++;
2661 }
2662}
2663
2664struct drm_i915_gem_request *
2665i915_gem_find_active_request(struct intel_engine_cs *engine)
2666{
2667 struct drm_i915_gem_request *request;
2668
2669 /* We are called by the error capture and reset at a random
2670 * point in time. In particular, note that neither is crucially
2671 * ordered with an interrupt. After a hang, the GPU is dead and we
2672 * assume that no more writes can happen (we waited long enough for
2673 * all writes that were in transaction to be flushed) - adding an
2674 * extra delay for a recent interrupt is pointless. Hence, we do
2675 * not need an engine->irq_seqno_barrier() before the seqno reads.
2676 */
2677 list_for_each_entry(request, &engine->timeline->requests, link) {
2678 if (__i915_gem_request_completed(request))
2679 continue;
2680
2681 return request;
2682 }
2683
2684 return NULL;
2685}
2686
2687static void reset_request(struct drm_i915_gem_request *request)
2688{
2689 void *vaddr = request->ring->vaddr;
2690 u32 head;
2691
2692 /* As this request likely depends on state from the lost
2693 * context, clear out all the user operations leaving the
2694 * breadcrumb at the end (so we get the fence notifications).
2695 */
2696 head = request->head;
2697 if (request->postfix < head) {
2698 memset(vaddr + head, 0, request->ring->size - head);
2699 head = 0;
2700 }
2701 memset(vaddr + head, 0, request->postfix - head);
2702}
2703
2704static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2705{
2706 struct drm_i915_gem_request *request;
2707 struct i915_gem_context *incomplete_ctx;
2708 struct intel_timeline *timeline;
2709 unsigned long flags;
2710 bool ring_hung;
2711
2712 if (engine->irq_seqno_barrier)
2713 engine->irq_seqno_barrier(engine);
2714
2715 request = i915_gem_find_active_request(engine);
2716 if (!request)
2717 return;
2718
2719 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2720 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2721 ring_hung = false;
2722
2723 i915_set_reset_status(request->ctx, ring_hung);
2724 if (!ring_hung)
2725 return;
2726
2727 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2728 engine->name, request->global_seqno);
2729
2730 /* Setup the CS to resume from the breadcrumb of the hung request */
2731 engine->reset_hw(engine, request);
2732
2733 /* Users of the default context do not rely on logical state
2734 * preserved between batches. They have to emit full state on
2735 * every batch and so it is safe to execute queued requests following
2736 * the hang.
2737 *
2738 * Other contexts preserve state, now corrupt. We want to skip all
2739 * queued requests that reference the corrupt context.
2740 */
2741 incomplete_ctx = request->ctx;
2742 if (i915_gem_context_is_default(incomplete_ctx))
2743 return;
2744
2745 timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2746
2747 spin_lock_irqsave(&engine->timeline->lock, flags);
2748 spin_lock(&timeline->lock);
2749
2750 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2751 if (request->ctx == incomplete_ctx)
2752 reset_request(request);
2753
2754 list_for_each_entry(request, &timeline->requests, link)
2755 reset_request(request);
2756
2757 spin_unlock(&timeline->lock);
2758 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2759}
2760
2761void i915_gem_reset(struct drm_i915_private *dev_priv)
2762{
2763 struct intel_engine_cs *engine;
2764 enum intel_engine_id id;
2765
2766 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2767
2768 i915_gem_retire_requests(dev_priv);
2769
2770 for_each_engine(engine, dev_priv, id)
2771 i915_gem_reset_engine(engine);
2772
2773 i915_gem_restore_fences(dev_priv);
2774
2775 if (dev_priv->gt.awake) {
2776 intel_sanitize_gt_powersave(dev_priv);
2777 intel_enable_gt_powersave(dev_priv);
2778 if (INTEL_GEN(dev_priv) >= 6)
2779 gen6_rps_busy(dev_priv);
2780 }
2781}
2782
2783static void nop_submit_request(struct drm_i915_gem_request *request)
2784{
2785 i915_gem_request_submit(request);
2786 intel_engine_init_global_seqno(request->engine, request->global_seqno);
2787}
2788
2789static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2790{
2791 engine->submit_request = nop_submit_request;
2792
2793 /* Mark all pending requests as complete so that any concurrent
2794 * (lockless) lookup doesn't try and wait upon the request as we
2795 * reset it.
2796 */
2797 intel_engine_init_global_seqno(engine,
2798 intel_engine_last_submit(engine));
2799
2800 /*
2801 * Clear the execlists queue up before freeing the requests, as those
2802 * are the ones that keep the context and ringbuffer backing objects
2803 * pinned in place.
2804 */
2805
2806 if (i915.enable_execlists) {
2807 unsigned long flags;
2808
2809 spin_lock_irqsave(&engine->timeline->lock, flags);
2810
2811 i915_gem_request_put(engine->execlist_port[0].request);
2812 i915_gem_request_put(engine->execlist_port[1].request);
2813 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2814 engine->execlist_queue = RB_ROOT;
2815 engine->execlist_first = NULL;
2816
2817 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2818 }
2819}
2820
2821void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2822{
2823 struct intel_engine_cs *engine;
2824 enum intel_engine_id id;
2825
2826 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2827 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2828
2829 i915_gem_context_lost(dev_priv);
2830 for_each_engine(engine, dev_priv, id)
2831 i915_gem_cleanup_engine(engine);
2832 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2833
2834 i915_gem_retire_requests(dev_priv);
2835}
2836
2837static void
2838i915_gem_retire_work_handler(struct work_struct *work)
2839{
2840 struct drm_i915_private *dev_priv =
2841 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2842 struct drm_device *dev = &dev_priv->drm;
2843
2844 /* Come back later if the device is busy... */
2845 if (mutex_trylock(&dev->struct_mutex)) {
2846 i915_gem_retire_requests(dev_priv);
2847 mutex_unlock(&dev->struct_mutex);
2848 }
2849
2850 /* Keep the retire handler running until we are finally idle.
2851 * We do not need to do this test under locking as in the worst-case
2852 * we queue the retire worker once too often.
2853 */
2854 if (READ_ONCE(dev_priv->gt.awake)) {
2855 i915_queue_hangcheck(dev_priv);
2856 queue_delayed_work(dev_priv->wq,
2857 &dev_priv->gt.retire_work,
2858 round_jiffies_up_relative(HZ));
2859 }
2860}
2861
2862static void
2863i915_gem_idle_work_handler(struct work_struct *work)
2864{
2865 struct drm_i915_private *dev_priv =
2866 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2867 struct drm_device *dev = &dev_priv->drm;
2868 struct intel_engine_cs *engine;
2869 enum intel_engine_id id;
2870 bool rearm_hangcheck;
2871
2872 if (!READ_ONCE(dev_priv->gt.awake))
2873 return;
2874
2875 /*
2876 * Wait for last execlists context complete, but bail out in case a
2877 * new request is submitted.
2878 */
2879 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2880 intel_execlists_idle(dev_priv), 10);
2881
2882 if (READ_ONCE(dev_priv->gt.active_requests))
2883 return;
2884
2885 rearm_hangcheck =
2886 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2887
2888 if (!mutex_trylock(&dev->struct_mutex)) {
2889 /* Currently busy, come back later */
2890 mod_delayed_work(dev_priv->wq,
2891 &dev_priv->gt.idle_work,
2892 msecs_to_jiffies(50));
2893 goto out_rearm;
2894 }
2895
2896 /*
2897 * New request retired after this work handler started, extend active
2898 * period until next instance of the work.
2899 */
2900 if (work_pending(work))
2901 goto out_unlock;
2902
2903 if (dev_priv->gt.active_requests)
2904 goto out_unlock;
2905
2906 if (wait_for(intel_execlists_idle(dev_priv), 10))
2907 DRM_ERROR("Timeout waiting for engines to idle\n");
2908
2909 for_each_engine(engine, dev_priv, id)
2910 i915_gem_batch_pool_fini(&engine->batch_pool);
2911
2912 GEM_BUG_ON(!dev_priv->gt.awake);
2913 dev_priv->gt.awake = false;
2914 rearm_hangcheck = false;
2915
2916 if (INTEL_GEN(dev_priv) >= 6)
2917 gen6_rps_idle(dev_priv);
2918 intel_runtime_pm_put(dev_priv);
2919out_unlock:
2920 mutex_unlock(&dev->struct_mutex);
2921
2922out_rearm:
2923 if (rearm_hangcheck) {
2924 GEM_BUG_ON(!dev_priv->gt.awake);
2925 i915_queue_hangcheck(dev_priv);
2926 }
2927}
2928
2929void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2930{
2931 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2932 struct drm_i915_file_private *fpriv = file->driver_priv;
2933 struct i915_vma *vma, *vn;
2934
2935 mutex_lock(&obj->base.dev->struct_mutex);
2936 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2937 if (vma->vm->file == fpriv)
2938 i915_vma_close(vma);
2939
2940 if (i915_gem_object_is_active(obj) &&
2941 !i915_gem_object_has_active_reference(obj)) {
2942 i915_gem_object_set_active_reference(obj);
2943 i915_gem_object_get(obj);
2944 }
2945 mutex_unlock(&obj->base.dev->struct_mutex);
2946}
2947
2948static unsigned long to_wait_timeout(s64 timeout_ns)
2949{
2950 if (timeout_ns < 0)
2951 return MAX_SCHEDULE_TIMEOUT;
2952
2953 if (timeout_ns == 0)
2954 return 0;
2955
2956 return nsecs_to_jiffies_timeout(timeout_ns);
2957}
2958
2959/**
2960 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2961 * @dev: drm device pointer
2962 * @data: ioctl data blob
2963 * @file: drm file pointer
2964 *
2965 * Returns 0 if successful, else an error is returned with the remaining time in
2966 * the timeout parameter.
2967 * -ETIME: object is still busy after timeout
2968 * -ERESTARTSYS: signal interrupted the wait
2969 * -ENONENT: object doesn't exist
2970 * Also possible, but rare:
2971 * -EAGAIN: GPU wedged
2972 * -ENOMEM: damn
2973 * -ENODEV: Internal IRQ fail
2974 * -E?: The add request failed
2975 *
2976 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2977 * non-zero timeout parameter the wait ioctl will wait for the given number of
2978 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2979 * without holding struct_mutex the object may become re-busied before this
2980 * function completes. A similar but shorter * race condition exists in the busy
2981 * ioctl
2982 */
2983int
2984i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2985{
2986 struct drm_i915_gem_wait *args = data;
2987 struct drm_i915_gem_object *obj;
2988 ktime_t start;
2989 long ret;
2990
2991 if (args->flags != 0)
2992 return -EINVAL;
2993
2994 obj = i915_gem_object_lookup(file, args->bo_handle);
2995 if (!obj)
2996 return -ENOENT;
2997
2998 start = ktime_get();
2999
3000 ret = i915_gem_object_wait(obj,
3001 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3002 to_wait_timeout(args->timeout_ns),
3003 to_rps_client(file));
3004
3005 if (args->timeout_ns > 0) {
3006 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3007 if (args->timeout_ns < 0)
3008 args->timeout_ns = 0;
3009
3010 /*
3011 * Apparently ktime isn't accurate enough and occasionally has a
3012 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3013 * things up to make the test happy. We allow up to 1 jiffy.
3014 *
3015 * This is a regression from the timespec->ktime conversion.
3016 */
3017 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3018 args->timeout_ns = 0;
3019 }
3020
3021 i915_gem_object_put(obj);
3022 return ret;
3023}
3024
3025static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3026{
3027 int ret, i;
3028
3029 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3030 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3031 if (ret)
3032 return ret;
3033 }
3034
3035 return 0;
3036}
3037
3038int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3039{
3040 int ret;
3041
3042 if (flags & I915_WAIT_LOCKED) {
3043 struct i915_gem_timeline *tl;
3044
3045 lockdep_assert_held(&i915->drm.struct_mutex);
3046
3047 list_for_each_entry(tl, &i915->gt.timelines, link) {
3048 ret = wait_for_timeline(tl, flags);
3049 if (ret)
3050 return ret;
3051 }
3052 } else {
3053 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3054 if (ret)
3055 return ret;
3056 }
3057
3058 return 0;
3059}
3060
3061void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3062 bool force)
3063{
3064 /* If we don't have a page list set up, then we're not pinned
3065 * to GPU, and we can ignore the cache flush because it'll happen
3066 * again at bind time.
3067 */
3068 if (!obj->mm.pages)
3069 return;
3070
3071 /*
3072 * Stolen memory is always coherent with the GPU as it is explicitly
3073 * marked as wc by the system, or the system is cache-coherent.
3074 */
3075 if (obj->stolen || obj->phys_handle)
3076 return;
3077
3078 /* If the GPU is snooping the contents of the CPU cache,
3079 * we do not need to manually clear the CPU cache lines. However,
3080 * the caches are only snooped when the render cache is
3081 * flushed/invalidated. As we always have to emit invalidations
3082 * and flushes when moving into and out of the RENDER domain, correct
3083 * snooping behaviour occurs naturally as the result of our domain
3084 * tracking.
3085 */
3086 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3087 obj->cache_dirty = true;
3088 return;
3089 }
3090
3091 trace_i915_gem_object_clflush(obj);
3092 drm_clflush_sg(obj->mm.pages);
3093 obj->cache_dirty = false;
3094}
3095
3096/** Flushes the GTT write domain for the object if it's dirty. */
3097static void
3098i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3099{
3100 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3101
3102 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3103 return;
3104
3105 /* No actual flushing is required for the GTT write domain. Writes
3106 * to it "immediately" go to main memory as far as we know, so there's
3107 * no chipset flush. It also doesn't land in render cache.
3108 *
3109 * However, we do have to enforce the order so that all writes through
3110 * the GTT land before any writes to the device, such as updates to
3111 * the GATT itself.
3112 *
3113 * We also have to wait a bit for the writes to land from the GTT.
3114 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3115 * timing. This issue has only been observed when switching quickly
3116 * between GTT writes and CPU reads from inside the kernel on recent hw,
3117 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3118 * system agents we cannot reproduce this behaviour).
3119 */
3120 wmb();
3121 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3122 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3123
3124 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3125
3126 obj->base.write_domain = 0;
3127 trace_i915_gem_object_change_domain(obj,
3128 obj->base.read_domains,
3129 I915_GEM_DOMAIN_GTT);
3130}
3131
3132/** Flushes the CPU write domain for the object if it's dirty. */
3133static void
3134i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3135{
3136 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3137 return;
3138
3139 i915_gem_clflush_object(obj, obj->pin_display);
3140 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3141
3142 obj->base.write_domain = 0;
3143 trace_i915_gem_object_change_domain(obj,
3144 obj->base.read_domains,
3145 I915_GEM_DOMAIN_CPU);
3146}
3147
3148/**
3149 * Moves a single object to the GTT read, and possibly write domain.
3150 * @obj: object to act on
3151 * @write: ask for write access or read only
3152 *
3153 * This function returns when the move is complete, including waiting on
3154 * flushes to occur.
3155 */
3156int
3157i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3158{
3159 uint32_t old_write_domain, old_read_domains;
3160 int ret;
3161
3162 lockdep_assert_held(&obj->base.dev->struct_mutex);
3163
3164 ret = i915_gem_object_wait(obj,
3165 I915_WAIT_INTERRUPTIBLE |
3166 I915_WAIT_LOCKED |
3167 (write ? I915_WAIT_ALL : 0),
3168 MAX_SCHEDULE_TIMEOUT,
3169 NULL);
3170 if (ret)
3171 return ret;
3172
3173 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3174 return 0;
3175
3176 /* Flush and acquire obj->pages so that we are coherent through
3177 * direct access in memory with previous cached writes through
3178 * shmemfs and that our cache domain tracking remains valid.
3179 * For example, if the obj->filp was moved to swap without us
3180 * being notified and releasing the pages, we would mistakenly
3181 * continue to assume that the obj remained out of the CPU cached
3182 * domain.
3183 */
3184 ret = i915_gem_object_pin_pages(obj);
3185 if (ret)
3186 return ret;
3187
3188 i915_gem_object_flush_cpu_write_domain(obj);
3189
3190 /* Serialise direct access to this object with the barriers for
3191 * coherent writes from the GPU, by effectively invalidating the
3192 * GTT domain upon first access.
3193 */
3194 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3195 mb();
3196
3197 old_write_domain = obj->base.write_domain;
3198 old_read_domains = obj->base.read_domains;
3199
3200 /* It should now be out of any other write domains, and we can update
3201 * the domain values for our changes.
3202 */
3203 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3204 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3205 if (write) {
3206 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3207 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3208 obj->mm.dirty = true;
3209 }
3210
3211 trace_i915_gem_object_change_domain(obj,
3212 old_read_domains,
3213 old_write_domain);
3214
3215 i915_gem_object_unpin_pages(obj);
3216 return 0;
3217}
3218
3219/**
3220 * Changes the cache-level of an object across all VMA.
3221 * @obj: object to act on
3222 * @cache_level: new cache level to set for the object
3223 *
3224 * After this function returns, the object will be in the new cache-level
3225 * across all GTT and the contents of the backing storage will be coherent,
3226 * with respect to the new cache-level. In order to keep the backing storage
3227 * coherent for all users, we only allow a single cache level to be set
3228 * globally on the object and prevent it from being changed whilst the
3229 * hardware is reading from the object. That is if the object is currently
3230 * on the scanout it will be set to uncached (or equivalent display
3231 * cache coherency) and all non-MOCS GPU access will also be uncached so
3232 * that all direct access to the scanout remains coherent.
3233 */
3234int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3235 enum i915_cache_level cache_level)
3236{
3237 struct i915_vma *vma;
3238 int ret;
3239
3240 lockdep_assert_held(&obj->base.dev->struct_mutex);
3241
3242 if (obj->cache_level == cache_level)
3243 return 0;
3244
3245 /* Inspect the list of currently bound VMA and unbind any that would
3246 * be invalid given the new cache-level. This is principally to
3247 * catch the issue of the CS prefetch crossing page boundaries and
3248 * reading an invalid PTE on older architectures.
3249 */
3250restart:
3251 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3252 if (!drm_mm_node_allocated(&vma->node))
3253 continue;
3254
3255 if (i915_vma_is_pinned(vma)) {
3256 DRM_DEBUG("can not change the cache level of pinned objects\n");
3257 return -EBUSY;
3258 }
3259
3260 if (i915_gem_valid_gtt_space(vma, cache_level))
3261 continue;
3262
3263 ret = i915_vma_unbind(vma);
3264 if (ret)
3265 return ret;
3266
3267 /* As unbinding may affect other elements in the
3268 * obj->vma_list (due to side-effects from retiring
3269 * an active vma), play safe and restart the iterator.
3270 */
3271 goto restart;
3272 }
3273
3274 /* We can reuse the existing drm_mm nodes but need to change the
3275 * cache-level on the PTE. We could simply unbind them all and
3276 * rebind with the correct cache-level on next use. However since
3277 * we already have a valid slot, dma mapping, pages etc, we may as
3278 * rewrite the PTE in the belief that doing so tramples upon less
3279 * state and so involves less work.
3280 */
3281 if (obj->bind_count) {
3282 /* Before we change the PTE, the GPU must not be accessing it.
3283 * If we wait upon the object, we know that all the bound
3284 * VMA are no longer active.
3285 */
3286 ret = i915_gem_object_wait(obj,
3287 I915_WAIT_INTERRUPTIBLE |
3288 I915_WAIT_LOCKED |
3289 I915_WAIT_ALL,
3290 MAX_SCHEDULE_TIMEOUT,
3291 NULL);
3292 if (ret)
3293 return ret;
3294
3295 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3296 cache_level != I915_CACHE_NONE) {
3297 /* Access to snoopable pages through the GTT is
3298 * incoherent and on some machines causes a hard
3299 * lockup. Relinquish the CPU mmaping to force
3300 * userspace to refault in the pages and we can
3301 * then double check if the GTT mapping is still
3302 * valid for that pointer access.
3303 */
3304 i915_gem_release_mmap(obj);
3305
3306 /* As we no longer need a fence for GTT access,
3307 * we can relinquish it now (and so prevent having
3308 * to steal a fence from someone else on the next
3309 * fence request). Note GPU activity would have
3310 * dropped the fence as all snoopable access is
3311 * supposed to be linear.
3312 */
3313 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3314 ret = i915_vma_put_fence(vma);
3315 if (ret)
3316 return ret;
3317 }
3318 } else {
3319 /* We either have incoherent backing store and
3320 * so no GTT access or the architecture is fully
3321 * coherent. In such cases, existing GTT mmaps
3322 * ignore the cache bit in the PTE and we can
3323 * rewrite it without confusing the GPU or having
3324 * to force userspace to fault back in its mmaps.
3325 */
3326 }
3327
3328 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3329 if (!drm_mm_node_allocated(&vma->node))
3330 continue;
3331
3332 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3333 if (ret)
3334 return ret;
3335 }
3336 }
3337
3338 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3339 cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3340 obj->cache_dirty = true;
3341
3342 list_for_each_entry(vma, &obj->vma_list, obj_link)
3343 vma->node.color = cache_level;
3344 obj->cache_level = cache_level;
3345
3346 return 0;
3347}
3348
3349int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3350 struct drm_file *file)
3351{
3352 struct drm_i915_gem_caching *args = data;
3353 struct drm_i915_gem_object *obj;
3354 int err = 0;
3355
3356 rcu_read_lock();
3357 obj = i915_gem_object_lookup_rcu(file, args->handle);
3358 if (!obj) {
3359 err = -ENOENT;
3360 goto out;
3361 }
3362
3363 switch (obj->cache_level) {
3364 case I915_CACHE_LLC:
3365 case I915_CACHE_L3_LLC:
3366 args->caching = I915_CACHING_CACHED;
3367 break;
3368
3369 case I915_CACHE_WT:
3370 args->caching = I915_CACHING_DISPLAY;
3371 break;
3372
3373 default:
3374 args->caching = I915_CACHING_NONE;
3375 break;
3376 }
3377out:
3378 rcu_read_unlock();
3379 return err;
3380}
3381
3382int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3383 struct drm_file *file)
3384{
3385 struct drm_i915_private *i915 = to_i915(dev);
3386 struct drm_i915_gem_caching *args = data;
3387 struct drm_i915_gem_object *obj;
3388 enum i915_cache_level level;
3389 int ret;
3390
3391 switch (args->caching) {
3392 case I915_CACHING_NONE:
3393 level = I915_CACHE_NONE;
3394 break;
3395 case I915_CACHING_CACHED:
3396 /*
3397 * Due to a HW issue on BXT A stepping, GPU stores via a
3398 * snooped mapping may leave stale data in a corresponding CPU
3399 * cacheline, whereas normally such cachelines would get
3400 * invalidated.
3401 */
3402 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3403 return -ENODEV;
3404
3405 level = I915_CACHE_LLC;
3406 break;
3407 case I915_CACHING_DISPLAY:
3408 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3409 break;
3410 default:
3411 return -EINVAL;
3412 }
3413
3414 ret = i915_mutex_lock_interruptible(dev);
3415 if (ret)
3416 return ret;
3417
3418 obj = i915_gem_object_lookup(file, args->handle);
3419 if (!obj) {
3420 ret = -ENOENT;
3421 goto unlock;
3422 }
3423
3424 ret = i915_gem_object_set_cache_level(obj, level);
3425 i915_gem_object_put(obj);
3426unlock:
3427 mutex_unlock(&dev->struct_mutex);
3428 return ret;
3429}
3430
3431/*
3432 * Prepare buffer for display plane (scanout, cursors, etc).
3433 * Can be called from an uninterruptible phase (modesetting) and allows
3434 * any flushes to be pipelined (for pageflips).
3435 */
3436struct i915_vma *
3437i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3438 u32 alignment,
3439 const struct i915_ggtt_view *view)
3440{
3441 struct i915_vma *vma;
3442 u32 old_read_domains, old_write_domain;
3443 int ret;
3444
3445 lockdep_assert_held(&obj->base.dev->struct_mutex);
3446
3447 /* Mark the pin_display early so that we account for the
3448 * display coherency whilst setting up the cache domains.
3449 */
3450 obj->pin_display++;
3451
3452 /* The display engine is not coherent with the LLC cache on gen6. As
3453 * a result, we make sure that the pinning that is about to occur is
3454 * done with uncached PTEs. This is lowest common denominator for all
3455 * chipsets.
3456 *
3457 * However for gen6+, we could do better by using the GFDT bit instead
3458 * of uncaching, which would allow us to flush all the LLC-cached data
3459 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3460 */
3461 ret = i915_gem_object_set_cache_level(obj,
3462 HAS_WT(to_i915(obj->base.dev)) ?
3463 I915_CACHE_WT : I915_CACHE_NONE);
3464 if (ret) {
3465 vma = ERR_PTR(ret);
3466 goto err_unpin_display;
3467 }
3468
3469 /* As the user may map the buffer once pinned in the display plane
3470 * (e.g. libkms for the bootup splash), we have to ensure that we
3471 * always use map_and_fenceable for all scanout buffers. However,
3472 * it may simply be too big to fit into mappable, in which case
3473 * put it anyway and hope that userspace can cope (but always first
3474 * try to preserve the existing ABI).
3475 */
3476 vma = ERR_PTR(-ENOSPC);
3477 if (view->type == I915_GGTT_VIEW_NORMAL)
3478 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3479 PIN_MAPPABLE | PIN_NONBLOCK);
3480 if (IS_ERR(vma)) {
3481 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3482 unsigned int flags;
3483
3484 /* Valleyview is definitely limited to scanning out the first
3485 * 512MiB. Lets presume this behaviour was inherited from the
3486 * g4x display engine and that all earlier gen are similarly
3487 * limited. Testing suggests that it is a little more
3488 * complicated than this. For example, Cherryview appears quite
3489 * happy to scanout from anywhere within its global aperture.
3490 */
3491 flags = 0;
3492 if (HAS_GMCH_DISPLAY(i915))
3493 flags = PIN_MAPPABLE;
3494 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3495 }
3496 if (IS_ERR(vma))
3497 goto err_unpin_display;
3498
3499 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3500
3501 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3502 if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3503 i915_gem_clflush_object(obj, true);
3504 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3505 }
3506
3507 old_write_domain = obj->base.write_domain;
3508 old_read_domains = obj->base.read_domains;
3509
3510 /* It should now be out of any other write domains, and we can update
3511 * the domain values for our changes.
3512 */
3513 obj->base.write_domain = 0;
3514 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3515
3516 trace_i915_gem_object_change_domain(obj,
3517 old_read_domains,
3518 old_write_domain);
3519
3520 return vma;
3521
3522err_unpin_display:
3523 obj->pin_display--;
3524 return vma;
3525}
3526
3527void
3528i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3529{
3530 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3531
3532 if (WARN_ON(vma->obj->pin_display == 0))
3533 return;
3534
3535 if (--vma->obj->pin_display == 0)
3536 vma->display_alignment = 0;
3537
3538 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3539 if (!i915_vma_is_active(vma))
3540 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3541
3542 i915_vma_unpin(vma);
3543}
3544
3545/**
3546 * Moves a single object to the CPU read, and possibly write domain.
3547 * @obj: object to act on
3548 * @write: requesting write or read-only access
3549 *
3550 * This function returns when the move is complete, including waiting on
3551 * flushes to occur.
3552 */
3553int
3554i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3555{
3556 uint32_t old_write_domain, old_read_domains;
3557 int ret;
3558
3559 lockdep_assert_held(&obj->base.dev->struct_mutex);
3560
3561 ret = i915_gem_object_wait(obj,
3562 I915_WAIT_INTERRUPTIBLE |
3563 I915_WAIT_LOCKED |
3564 (write ? I915_WAIT_ALL : 0),
3565 MAX_SCHEDULE_TIMEOUT,
3566 NULL);
3567 if (ret)
3568 return ret;
3569
3570 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3571 return 0;
3572
3573 i915_gem_object_flush_gtt_write_domain(obj);
3574
3575 old_write_domain = obj->base.write_domain;
3576 old_read_domains = obj->base.read_domains;
3577
3578 /* Flush the CPU cache if it's still invalid. */
3579 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3580 i915_gem_clflush_object(obj, false);
3581
3582 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3583 }
3584
3585 /* It should now be out of any other write domains, and we can update
3586 * the domain values for our changes.
3587 */
3588 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3589
3590 /* If we're writing through the CPU, then the GPU read domains will
3591 * need to be invalidated at next use.
3592 */
3593 if (write) {
3594 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3595 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3596 }
3597
3598 trace_i915_gem_object_change_domain(obj,
3599 old_read_domains,
3600 old_write_domain);
3601
3602 return 0;
3603}
3604
3605/* Throttle our rendering by waiting until the ring has completed our requests
3606 * emitted over 20 msec ago.
3607 *
3608 * Note that if we were to use the current jiffies each time around the loop,
3609 * we wouldn't escape the function with any frames outstanding if the time to
3610 * render a frame was over 20ms.
3611 *
3612 * This should get us reasonable parallelism between CPU and GPU but also
3613 * relatively low latency when blocking on a particular request to finish.
3614 */
3615static int
3616i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3617{
3618 struct drm_i915_private *dev_priv = to_i915(dev);
3619 struct drm_i915_file_private *file_priv = file->driver_priv;
3620 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3621 struct drm_i915_gem_request *request, *target = NULL;
3622 long ret;
3623
3624 /* ABI: return -EIO if already wedged */
3625 if (i915_terminally_wedged(&dev_priv->gpu_error))
3626 return -EIO;
3627
3628 spin_lock(&file_priv->mm.lock);
3629 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3630 if (time_after_eq(request->emitted_jiffies, recent_enough))
3631 break;
3632
3633 /*
3634 * Note that the request might not have been submitted yet.
3635 * In which case emitted_jiffies will be zero.
3636 */
3637 if (!request->emitted_jiffies)
3638 continue;
3639
3640 target = request;
3641 }
3642 if (target)
3643 i915_gem_request_get(target);
3644 spin_unlock(&file_priv->mm.lock);
3645
3646 if (target == NULL)
3647 return 0;
3648
3649 ret = i915_wait_request(target,
3650 I915_WAIT_INTERRUPTIBLE,
3651 MAX_SCHEDULE_TIMEOUT);
3652 i915_gem_request_put(target);
3653
3654 return ret < 0 ? ret : 0;
3655}
3656
3657struct i915_vma *
3658i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3659 const struct i915_ggtt_view *view,
3660 u64 size,
3661 u64 alignment,
3662 u64 flags)
3663{
3664 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3665 struct i915_address_space *vm = &dev_priv->ggtt.base;
3666 struct i915_vma *vma;
3667 int ret;
3668
3669 lockdep_assert_held(&obj->base.dev->struct_mutex);
3670
3671 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3672 if (IS_ERR(vma))
3673 return vma;
3674
3675 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3676 if (flags & PIN_NONBLOCK &&
3677 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3678 return ERR_PTR(-ENOSPC);
3679
3680 if (flags & PIN_MAPPABLE) {
3681 u32 fence_size;
3682
3683 fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3684 i915_gem_object_get_tiling(obj));
3685 /* If the required space is larger than the available
3686 * aperture, we will not able to find a slot for the
3687 * object and unbinding the object now will be in
3688 * vain. Worse, doing so may cause us to ping-pong
3689 * the object in and out of the Global GTT and
3690 * waste a lot of cycles under the mutex.
3691 */
3692 if (fence_size > dev_priv->ggtt.mappable_end)
3693 return ERR_PTR(-E2BIG);
3694
3695 /* If NONBLOCK is set the caller is optimistically
3696 * trying to cache the full object within the mappable
3697 * aperture, and *must* have a fallback in place for
3698 * situations where we cannot bind the object. We
3699 * can be a little more lax here and use the fallback
3700 * more often to avoid costly migrations of ourselves
3701 * and other objects within the aperture.
3702 *
3703 * Half-the-aperture is used as a simple heuristic.
3704 * More interesting would to do search for a free
3705 * block prior to making the commitment to unbind.
3706 * That caters for the self-harm case, and with a
3707 * little more heuristics (e.g. NOFAULT, NOEVICT)
3708 * we could try to minimise harm to others.
3709 */
3710 if (flags & PIN_NONBLOCK &&
3711 fence_size > dev_priv->ggtt.mappable_end / 2)
3712 return ERR_PTR(-ENOSPC);
3713 }
3714
3715 WARN(i915_vma_is_pinned(vma),
3716 "bo is already pinned in ggtt with incorrect alignment:"
3717 " offset=%08x, req.alignment=%llx,"
3718 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3719 i915_ggtt_offset(vma), alignment,
3720 !!(flags & PIN_MAPPABLE),
3721 i915_vma_is_map_and_fenceable(vma));
3722 ret = i915_vma_unbind(vma);
3723 if (ret)
3724 return ERR_PTR(ret);
3725 }
3726
3727 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3728 if (ret)
3729 return ERR_PTR(ret);
3730
3731 return vma;
3732}
3733
3734static __always_inline unsigned int __busy_read_flag(unsigned int id)
3735{
3736 /* Note that we could alias engines in the execbuf API, but
3737 * that would be very unwise as it prevents userspace from
3738 * fine control over engine selection. Ahem.
3739 *
3740 * This should be something like EXEC_MAX_ENGINE instead of
3741 * I915_NUM_ENGINES.
3742 */
3743 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3744 return 0x10000 << id;
3745}
3746
3747static __always_inline unsigned int __busy_write_id(unsigned int id)
3748{
3749 /* The uABI guarantees an active writer is also amongst the read
3750 * engines. This would be true if we accessed the activity tracking
3751 * under the lock, but as we perform the lookup of the object and
3752 * its activity locklessly we can not guarantee that the last_write
3753 * being active implies that we have set the same engine flag from
3754 * last_read - hence we always set both read and write busy for
3755 * last_write.
3756 */
3757 return id | __busy_read_flag(id);
3758}
3759
3760static __always_inline unsigned int
3761__busy_set_if_active(const struct dma_fence *fence,
3762 unsigned int (*flag)(unsigned int id))
3763{
3764 struct drm_i915_gem_request *rq;
3765
3766 /* We have to check the current hw status of the fence as the uABI
3767 * guarantees forward progress. We could rely on the idle worker
3768 * to eventually flush us, but to minimise latency just ask the
3769 * hardware.
3770 *
3771 * Note we only report on the status of native fences.
3772 */
3773 if (!dma_fence_is_i915(fence))
3774 return 0;
3775
3776 /* opencode to_request() in order to avoid const warnings */
3777 rq = container_of(fence, struct drm_i915_gem_request, fence);
3778 if (i915_gem_request_completed(rq))
3779 return 0;
3780
3781 return flag(rq->engine->exec_id);
3782}
3783
3784static __always_inline unsigned int
3785busy_check_reader(const struct dma_fence *fence)
3786{
3787 return __busy_set_if_active(fence, __busy_read_flag);
3788}
3789
3790static __always_inline unsigned int
3791busy_check_writer(const struct dma_fence *fence)
3792{
3793 if (!fence)
3794 return 0;
3795
3796 return __busy_set_if_active(fence, __busy_write_id);
3797}
3798
3799int
3800i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3801 struct drm_file *file)
3802{
3803 struct drm_i915_gem_busy *args = data;
3804 struct drm_i915_gem_object *obj;
3805 struct reservation_object_list *list;
3806 unsigned int seq;
3807 int err;
3808
3809 err = -ENOENT;
3810 rcu_read_lock();
3811 obj = i915_gem_object_lookup_rcu(file, args->handle);
3812 if (!obj)
3813 goto out;
3814
3815 /* A discrepancy here is that we do not report the status of
3816 * non-i915 fences, i.e. even though we may report the object as idle,
3817 * a call to set-domain may still stall waiting for foreign rendering.
3818 * This also means that wait-ioctl may report an object as busy,
3819 * where busy-ioctl considers it idle.
3820 *
3821 * We trade the ability to warn of foreign fences to report on which
3822 * i915 engines are active for the object.
3823 *
3824 * Alternatively, we can trade that extra information on read/write
3825 * activity with
3826 * args->busy =
3827 * !reservation_object_test_signaled_rcu(obj->resv, true);
3828 * to report the overall busyness. This is what the wait-ioctl does.
3829 *
3830 */
3831retry:
3832 seq = raw_read_seqcount(&obj->resv->seq);
3833
3834 /* Translate the exclusive fence to the READ *and* WRITE engine */
3835 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3836
3837 /* Translate shared fences to READ set of engines */
3838 list = rcu_dereference(obj->resv->fence);
3839 if (list) {
3840 unsigned int shared_count = list->shared_count, i;
3841
3842 for (i = 0; i < shared_count; ++i) {
3843 struct dma_fence *fence =
3844 rcu_dereference(list->shared[i]);
3845
3846 args->busy |= busy_check_reader(fence);
3847 }
3848 }
3849
3850 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3851 goto retry;
3852
3853 err = 0;
3854out:
3855 rcu_read_unlock();
3856 return err;
3857}
3858
3859int
3860i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3861 struct drm_file *file_priv)
3862{
3863 return i915_gem_ring_throttle(dev, file_priv);
3864}
3865
3866int
3867i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3868 struct drm_file *file_priv)
3869{
3870 struct drm_i915_private *dev_priv = to_i915(dev);
3871 struct drm_i915_gem_madvise *args = data;
3872 struct drm_i915_gem_object *obj;
3873 int err;
3874
3875 switch (args->madv) {
3876 case I915_MADV_DONTNEED:
3877 case I915_MADV_WILLNEED:
3878 break;
3879 default:
3880 return -EINVAL;
3881 }
3882
3883 obj = i915_gem_object_lookup(file_priv, args->handle);
3884 if (!obj)
3885 return -ENOENT;
3886
3887 err = mutex_lock_interruptible(&obj->mm.lock);
3888 if (err)
3889 goto out;
3890
3891 if (obj->mm.pages &&
3892 i915_gem_object_is_tiled(obj) &&
3893 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3894 if (obj->mm.madv == I915_MADV_WILLNEED) {
3895 GEM_BUG_ON(!obj->mm.quirked);
3896 __i915_gem_object_unpin_pages(obj);
3897 obj->mm.quirked = false;
3898 }
3899 if (args->madv == I915_MADV_WILLNEED) {
3900 GEM_BUG_ON(obj->mm.quirked);
3901 __i915_gem_object_pin_pages(obj);
3902 obj->mm.quirked = true;
3903 }
3904 }
3905
3906 if (obj->mm.madv != __I915_MADV_PURGED)
3907 obj->mm.madv = args->madv;
3908
3909 /* if the object is no longer attached, discard its backing storage */
3910 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3911 i915_gem_object_truncate(obj);
3912
3913 args->retained = obj->mm.madv != __I915_MADV_PURGED;
3914 mutex_unlock(&obj->mm.lock);
3915
3916out:
3917 i915_gem_object_put(obj);
3918 return err;
3919}
3920
3921static void
3922frontbuffer_retire(struct i915_gem_active *active,
3923 struct drm_i915_gem_request *request)
3924{
3925 struct drm_i915_gem_object *obj =
3926 container_of(active, typeof(*obj), frontbuffer_write);
3927
3928 intel_fb_obj_flush(obj, true, ORIGIN_CS);
3929}
3930
3931void i915_gem_object_init(struct drm_i915_gem_object *obj,
3932 const struct drm_i915_gem_object_ops *ops)
3933{
3934 mutex_init(&obj->mm.lock);
3935
3936 INIT_LIST_HEAD(&obj->global_link);
3937 INIT_LIST_HEAD(&obj->userfault_link);
3938 INIT_LIST_HEAD(&obj->obj_exec_link);
3939 INIT_LIST_HEAD(&obj->vma_list);
3940 INIT_LIST_HEAD(&obj->batch_pool_link);
3941
3942 obj->ops = ops;
3943
3944 reservation_object_init(&obj->__builtin_resv);
3945 obj->resv = &obj->__builtin_resv;
3946
3947 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3948 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3949
3950 obj->mm.madv = I915_MADV_WILLNEED;
3951 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3952 mutex_init(&obj->mm.get_page.lock);
3953
3954 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3955}
3956
3957static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3958 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3959 I915_GEM_OBJECT_IS_SHRINKABLE,
3960 .get_pages = i915_gem_object_get_pages_gtt,
3961 .put_pages = i915_gem_object_put_pages_gtt,
3962};
3963
3964/* Note we don't consider signbits :| */
3965#define overflows_type(x, T) \
3966 (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3967
3968struct drm_i915_gem_object *
3969i915_gem_object_create(struct drm_device *dev, u64 size)
3970{
3971 struct drm_i915_private *dev_priv = to_i915(dev);
3972 struct drm_i915_gem_object *obj;
3973 struct address_space *mapping;
3974 gfp_t mask;
3975 int ret;
3976
3977 /* There is a prevalence of the assumption that we fit the object's
3978 * page count inside a 32bit _signed_ variable. Let's document this and
3979 * catch if we ever need to fix it. In the meantime, if you do spot
3980 * such a local variable, please consider fixing!
3981 */
3982 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3983 return ERR_PTR(-E2BIG);
3984
3985 if (overflows_type(size, obj->base.size))
3986 return ERR_PTR(-E2BIG);
3987
3988 obj = i915_gem_object_alloc(dev);
3989 if (obj == NULL)
3990 return ERR_PTR(-ENOMEM);
3991
3992 ret = drm_gem_object_init(dev, &obj->base, size);
3993 if (ret)
3994 goto fail;
3995
3996 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3997 if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
3998 /* 965gm cannot relocate objects above 4GiB. */
3999 mask &= ~__GFP_HIGHMEM;
4000 mask |= __GFP_DMA32;
4001 }
4002
4003 mapping = obj->base.filp->f_mapping;
4004 mapping_set_gfp_mask(mapping, mask);
4005
4006 i915_gem_object_init(obj, &i915_gem_object_ops);
4007
4008 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4009 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4010
4011 if (HAS_LLC(dev_priv)) {
4012 /* On some devices, we can have the GPU use the LLC (the CPU
4013 * cache) for about a 10% performance improvement
4014 * compared to uncached. Graphics requests other than
4015 * display scanout are coherent with the CPU in
4016 * accessing this cache. This means in this mode we
4017 * don't need to clflush on the CPU side, and on the
4018 * GPU side we only need to flush internal caches to
4019 * get data visible to the CPU.
4020 *
4021 * However, we maintain the display planes as UC, and so
4022 * need to rebind when first used as such.
4023 */
4024 obj->cache_level = I915_CACHE_LLC;
4025 } else
4026 obj->cache_level = I915_CACHE_NONE;
4027
4028 trace_i915_gem_object_create(obj);
4029
4030 return obj;
4031
4032fail:
4033 i915_gem_object_free(obj);
4034 return ERR_PTR(ret);
4035}
4036
4037static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4038{
4039 /* If we are the last user of the backing storage (be it shmemfs
4040 * pages or stolen etc), we know that the pages are going to be
4041 * immediately released. In this case, we can then skip copying
4042 * back the contents from the GPU.
4043 */
4044
4045 if (obj->mm.madv != I915_MADV_WILLNEED)
4046 return false;
4047
4048 if (obj->base.filp == NULL)
4049 return true;
4050
4051 /* At first glance, this looks racy, but then again so would be
4052 * userspace racing mmap against close. However, the first external
4053 * reference to the filp can only be obtained through the
4054 * i915_gem_mmap_ioctl() which safeguards us against the user
4055 * acquiring such a reference whilst we are in the middle of
4056 * freeing the object.
4057 */
4058 return atomic_long_read(&obj->base.filp->f_count) == 1;
4059}
4060
4061static void __i915_gem_free_objects(struct drm_i915_private *i915,
4062 struct llist_node *freed)
4063{
4064 struct drm_i915_gem_object *obj, *on;
4065
4066 mutex_lock(&i915->drm.struct_mutex);
4067 intel_runtime_pm_get(i915);
4068 llist_for_each_entry(obj, freed, freed) {
4069 struct i915_vma *vma, *vn;
4070
4071 trace_i915_gem_object_destroy(obj);
4072
4073 GEM_BUG_ON(i915_gem_object_is_active(obj));
4074 list_for_each_entry_safe(vma, vn,
4075 &obj->vma_list, obj_link) {
4076 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4077 GEM_BUG_ON(i915_vma_is_active(vma));
4078 vma->flags &= ~I915_VMA_PIN_MASK;
4079 i915_vma_close(vma);
4080 }
4081 GEM_BUG_ON(!list_empty(&obj->vma_list));
4082 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4083
4084 list_del(&obj->global_link);
4085 }
4086 intel_runtime_pm_put(i915);
4087 mutex_unlock(&i915->drm.struct_mutex);
4088
4089 llist_for_each_entry_safe(obj, on, freed, freed) {
4090 GEM_BUG_ON(obj->bind_count);
4091 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4092
4093 if (obj->ops->release)
4094 obj->ops->release(obj);
4095
4096 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4097 atomic_set(&obj->mm.pages_pin_count, 0);
4098 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4099 GEM_BUG_ON(obj->mm.pages);
4100
4101 if (obj->base.import_attach)
4102 drm_prime_gem_destroy(&obj->base, NULL);
4103
4104 reservation_object_fini(&obj->__builtin_resv);
4105 drm_gem_object_release(&obj->base);
4106 i915_gem_info_remove_obj(i915, obj->base.size);
4107
4108 kfree(obj->bit_17);
4109 i915_gem_object_free(obj);
4110 }
4111}
4112
4113static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4114{
4115 struct llist_node *freed;
4116
4117 freed = llist_del_all(&i915->mm.free_list);
4118 if (unlikely(freed))
4119 __i915_gem_free_objects(i915, freed);
4120}
4121
4122static void __i915_gem_free_work(struct work_struct *work)
4123{
4124 struct drm_i915_private *i915 =
4125 container_of(work, struct drm_i915_private, mm.free_work);
4126 struct llist_node *freed;
4127
4128 /* All file-owned VMA should have been released by this point through
4129 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4130 * However, the object may also be bound into the global GTT (e.g.
4131 * older GPUs without per-process support, or for direct access through
4132 * the GTT either for the user or for scanout). Those VMA still need to
4133 * unbound now.
4134 */
4135
4136 while ((freed = llist_del_all(&i915->mm.free_list)))
4137 __i915_gem_free_objects(i915, freed);
4138}
4139
4140static void __i915_gem_free_object_rcu(struct rcu_head *head)
4141{
4142 struct drm_i915_gem_object *obj =
4143 container_of(head, typeof(*obj), rcu);
4144 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4145
4146 /* We can't simply use call_rcu() from i915_gem_free_object()
4147 * as we need to block whilst unbinding, and the call_rcu
4148 * task may be called from softirq context. So we take a
4149 * detour through a worker.
4150 */
4151 if (llist_add(&obj->freed, &i915->mm.free_list))
4152 schedule_work(&i915->mm.free_work);
4153}
4154
4155void i915_gem_free_object(struct drm_gem_object *gem_obj)
4156{
4157 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4158
4159 if (obj->mm.quirked)
4160 __i915_gem_object_unpin_pages(obj);
4161
4162 if (discard_backing_storage(obj))
4163 obj->mm.madv = I915_MADV_DONTNEED;
4164
4165 /* Before we free the object, make sure any pure RCU-only
4166 * read-side critical sections are complete, e.g.
4167 * i915_gem_busy_ioctl(). For the corresponding synchronized
4168 * lookup see i915_gem_object_lookup_rcu().
4169 */
4170 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4171}
4172
4173void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4174{
4175 lockdep_assert_held(&obj->base.dev->struct_mutex);
4176
4177 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4178 if (i915_gem_object_is_active(obj))
4179 i915_gem_object_set_active_reference(obj);
4180 else
4181 i915_gem_object_put(obj);
4182}
4183
4184static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4185{
4186 struct intel_engine_cs *engine;
4187 enum intel_engine_id id;
4188
4189 for_each_engine(engine, dev_priv, id)
4190 GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4191}
4192
4193int i915_gem_suspend(struct drm_device *dev)
4194{
4195 struct drm_i915_private *dev_priv = to_i915(dev);
4196 int ret;
4197
4198 intel_suspend_gt_powersave(dev_priv);
4199
4200 mutex_lock(&dev->struct_mutex);
4201
4202 /* We have to flush all the executing contexts to main memory so
4203 * that they can saved in the hibernation image. To ensure the last
4204 * context image is coherent, we have to switch away from it. That
4205 * leaves the dev_priv->kernel_context still active when
4206 * we actually suspend, and its image in memory may not match the GPU
4207 * state. Fortunately, the kernel_context is disposable and we do
4208 * not rely on its state.
4209 */
4210 ret = i915_gem_switch_to_kernel_context(dev_priv);
4211 if (ret)
4212 goto err;
4213
4214 ret = i915_gem_wait_for_idle(dev_priv,
4215 I915_WAIT_INTERRUPTIBLE |
4216 I915_WAIT_LOCKED);
4217 if (ret)
4218 goto err;
4219
4220 i915_gem_retire_requests(dev_priv);
4221 GEM_BUG_ON(dev_priv->gt.active_requests);
4222
4223 assert_kernel_context_is_current(dev_priv);
4224 i915_gem_context_lost(dev_priv);
4225 mutex_unlock(&dev->struct_mutex);
4226
4227 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4228 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4229 flush_delayed_work(&dev_priv->gt.idle_work);
4230 flush_work(&dev_priv->mm.free_work);
4231
4232 /* Assert that we sucessfully flushed all the work and
4233 * reset the GPU back to its idle, low power state.
4234 */
4235 WARN_ON(dev_priv->gt.awake);
4236 WARN_ON(!intel_execlists_idle(dev_priv));
4237
4238 /*
4239 * Neither the BIOS, ourselves or any other kernel
4240 * expects the system to be in execlists mode on startup,
4241 * so we need to reset the GPU back to legacy mode. And the only
4242 * known way to disable logical contexts is through a GPU reset.
4243 *
4244 * So in order to leave the system in a known default configuration,
4245 * always reset the GPU upon unload and suspend. Afterwards we then
4246 * clean up the GEM state tracking, flushing off the requests and
4247 * leaving the system in a known idle state.
4248 *
4249 * Note that is of the upmost importance that the GPU is idle and
4250 * all stray writes are flushed *before* we dismantle the backing
4251 * storage for the pinned objects.
4252 *
4253 * However, since we are uncertain that resetting the GPU on older
4254 * machines is a good idea, we don't - just in case it leaves the
4255 * machine in an unusable condition.
4256 */
4257 if (HAS_HW_CONTEXTS(dev_priv)) {
4258 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4259 WARN_ON(reset && reset != -ENODEV);
4260 }
4261
4262 return 0;
4263
4264err:
4265 mutex_unlock(&dev->struct_mutex);
4266 return ret;
4267}
4268
4269void i915_gem_resume(struct drm_device *dev)
4270{
4271 struct drm_i915_private *dev_priv = to_i915(dev);
4272
4273 WARN_ON(dev_priv->gt.awake);
4274
4275 mutex_lock(&dev->struct_mutex);
4276 i915_gem_restore_gtt_mappings(dev_priv);
4277
4278 /* As we didn't flush the kernel context before suspend, we cannot
4279 * guarantee that the context image is complete. So let's just reset
4280 * it and start again.
4281 */
4282 dev_priv->gt.resume(dev_priv);
4283
4284 mutex_unlock(&dev->struct_mutex);
4285}
4286
4287void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4288{
4289 if (INTEL_GEN(dev_priv) < 5 ||
4290 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4291 return;
4292
4293 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4294 DISP_TILE_SURFACE_SWIZZLING);
4295
4296 if (IS_GEN5(dev_priv))
4297 return;
4298
4299 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4300 if (IS_GEN6(dev_priv))
4301 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4302 else if (IS_GEN7(dev_priv))
4303 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4304 else if (IS_GEN8(dev_priv))
4305 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4306 else
4307 BUG();
4308}
4309
4310static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4311{
4312 I915_WRITE(RING_CTL(base), 0);
4313 I915_WRITE(RING_HEAD(base), 0);
4314 I915_WRITE(RING_TAIL(base), 0);
4315 I915_WRITE(RING_START(base), 0);
4316}
4317
4318static void init_unused_rings(struct drm_i915_private *dev_priv)
4319{
4320 if (IS_I830(dev_priv)) {
4321 init_unused_ring(dev_priv, PRB1_BASE);
4322 init_unused_ring(dev_priv, SRB0_BASE);
4323 init_unused_ring(dev_priv, SRB1_BASE);
4324 init_unused_ring(dev_priv, SRB2_BASE);
4325 init_unused_ring(dev_priv, SRB3_BASE);
4326 } else if (IS_GEN2(dev_priv)) {
4327 init_unused_ring(dev_priv, SRB0_BASE);
4328 init_unused_ring(dev_priv, SRB1_BASE);
4329 } else if (IS_GEN3(dev_priv)) {
4330 init_unused_ring(dev_priv, PRB1_BASE);
4331 init_unused_ring(dev_priv, PRB2_BASE);
4332 }
4333}
4334
4335int
4336i915_gem_init_hw(struct drm_device *dev)
4337{
4338 struct drm_i915_private *dev_priv = to_i915(dev);
4339 struct intel_engine_cs *engine;
4340 enum intel_engine_id id;
4341 int ret;
4342
4343 dev_priv->gt.last_init_time = ktime_get();
4344
4345 /* Double layer security blanket, see i915_gem_init() */
4346 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4347
4348 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4349 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4350
4351 if (IS_HASWELL(dev_priv))
4352 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4353 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4354
4355 if (HAS_PCH_NOP(dev_priv)) {
4356 if (IS_IVYBRIDGE(dev_priv)) {
4357 u32 temp = I915_READ(GEN7_MSG_CTL);
4358 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4359 I915_WRITE(GEN7_MSG_CTL, temp);
4360 } else if (INTEL_GEN(dev_priv) >= 7) {
4361 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4362 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4363 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4364 }
4365 }
4366
4367 i915_gem_init_swizzling(dev_priv);
4368
4369 /*
4370 * At least 830 can leave some of the unused rings
4371 * "active" (ie. head != tail) after resume which
4372 * will prevent c3 entry. Makes sure all unused rings
4373 * are totally idle.
4374 */
4375 init_unused_rings(dev_priv);
4376
4377 BUG_ON(!dev_priv->kernel_context);
4378
4379 ret = i915_ppgtt_init_hw(dev_priv);
4380 if (ret) {
4381 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4382 goto out;
4383 }
4384
4385 /* Need to do basic initialisation of all rings first: */
4386 for_each_engine(engine, dev_priv, id) {
4387 ret = engine->init_hw(engine);
4388 if (ret)
4389 goto out;
4390 }
4391
4392 intel_mocs_init_l3cc_table(dev);
4393
4394 /* We can't enable contexts until all firmware is loaded */
4395 ret = intel_guc_setup(dev);
4396 if (ret)
4397 goto out;
4398
4399out:
4400 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4401 return ret;
4402}
4403
4404bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4405{
4406 if (INTEL_INFO(dev_priv)->gen < 6)
4407 return false;
4408
4409 /* TODO: make semaphores and Execlists play nicely together */
4410 if (i915.enable_execlists)
4411 return false;
4412
4413 if (value >= 0)
4414 return value;
4415
4416#ifdef CONFIG_INTEL_IOMMU
4417 /* Enable semaphores on SNB when IO remapping is off */
4418 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4419 return false;
4420#endif
4421
4422 return true;
4423}
4424
4425int i915_gem_init(struct drm_device *dev)
4426{
4427 struct drm_i915_private *dev_priv = to_i915(dev);
4428 int ret;
4429
4430 mutex_lock(&dev->struct_mutex);
4431
4432 if (!i915.enable_execlists) {
4433 dev_priv->gt.resume = intel_legacy_submission_resume;
4434 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4435 } else {
4436 dev_priv->gt.resume = intel_lr_context_resume;
4437 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4438 }
4439
4440 /* This is just a security blanket to placate dragons.
4441 * On some systems, we very sporadically observe that the first TLBs
4442 * used by the CS may be stale, despite us poking the TLB reset. If
4443 * we hold the forcewake during initialisation these problems
4444 * just magically go away.
4445 */
4446 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4447
4448 i915_gem_init_userptr(dev_priv);
4449
4450 ret = i915_gem_init_ggtt(dev_priv);
4451 if (ret)
4452 goto out_unlock;
4453
4454 ret = i915_gem_context_init(dev);
4455 if (ret)
4456 goto out_unlock;
4457
4458 ret = intel_engines_init(dev);
4459 if (ret)
4460 goto out_unlock;
4461
4462 ret = i915_gem_init_hw(dev);
4463 if (ret == -EIO) {
4464 /* Allow engine initialisation to fail by marking the GPU as
4465 * wedged. But we only want to do this where the GPU is angry,
4466 * for all other failure, such as an allocation failure, bail.
4467 */
4468 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4469 i915_gem_set_wedged(dev_priv);
4470 ret = 0;
4471 }
4472
4473out_unlock:
4474 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4475 mutex_unlock(&dev->struct_mutex);
4476
4477 return ret;
4478}
4479
4480void
4481i915_gem_cleanup_engines(struct drm_device *dev)
4482{
4483 struct drm_i915_private *dev_priv = to_i915(dev);
4484 struct intel_engine_cs *engine;
4485 enum intel_engine_id id;
4486
4487 for_each_engine(engine, dev_priv, id)
4488 dev_priv->gt.cleanup_engine(engine);
4489}
4490
4491void
4492i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4493{
4494 int i;
4495
4496 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4497 !IS_CHERRYVIEW(dev_priv))
4498 dev_priv->num_fence_regs = 32;
4499 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4500 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4501 dev_priv->num_fence_regs = 16;
4502 else
4503 dev_priv->num_fence_regs = 8;
4504
4505 if (intel_vgpu_active(dev_priv))
4506 dev_priv->num_fence_regs =
4507 I915_READ(vgtif_reg(avail_rs.fence_num));
4508
4509 /* Initialize fence registers to zero */
4510 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4511 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4512
4513 fence->i915 = dev_priv;
4514 fence->id = i;
4515 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4516 }
4517 i915_gem_restore_fences(dev_priv);
4518
4519 i915_gem_detect_bit_6_swizzle(dev_priv);
4520}
4521
4522int
4523i915_gem_load_init(struct drm_device *dev)
4524{
4525 struct drm_i915_private *dev_priv = to_i915(dev);
4526 int err = -ENOMEM;
4527
4528 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4529 if (!dev_priv->objects)
4530 goto err_out;
4531
4532 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4533 if (!dev_priv->vmas)
4534 goto err_objects;
4535
4536 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4537 SLAB_HWCACHE_ALIGN |
4538 SLAB_RECLAIM_ACCOUNT |
4539 SLAB_DESTROY_BY_RCU);
4540 if (!dev_priv->requests)
4541 goto err_vmas;
4542
4543 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4544 SLAB_HWCACHE_ALIGN |
4545 SLAB_RECLAIM_ACCOUNT);
4546 if (!dev_priv->dependencies)
4547 goto err_requests;
4548
4549 mutex_lock(&dev_priv->drm.struct_mutex);
4550 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4551 err = i915_gem_timeline_init__global(dev_priv);
4552 mutex_unlock(&dev_priv->drm.struct_mutex);
4553 if (err)
4554 goto err_dependencies;
4555
4556 INIT_LIST_HEAD(&dev_priv->context_list);
4557 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4558 init_llist_head(&dev_priv->mm.free_list);
4559 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4560 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4561 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4562 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4563 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4564 i915_gem_retire_work_handler);
4565 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4566 i915_gem_idle_work_handler);
4567 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4568 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4569
4570 init_waitqueue_head(&dev_priv->pending_flip_queue);
4571
4572 dev_priv->mm.interruptible = true;
4573
4574 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4575
4576 spin_lock_init(&dev_priv->fb_tracking.lock);
4577
4578 return 0;
4579
4580err_dependencies:
4581 kmem_cache_destroy(dev_priv->dependencies);
4582err_requests:
4583 kmem_cache_destroy(dev_priv->requests);
4584err_vmas:
4585 kmem_cache_destroy(dev_priv->vmas);
4586err_objects:
4587 kmem_cache_destroy(dev_priv->objects);
4588err_out:
4589 return err;
4590}
4591
4592void i915_gem_load_cleanup(struct drm_device *dev)
4593{
4594 struct drm_i915_private *dev_priv = to_i915(dev);
4595
4596 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4597
4598 mutex_lock(&dev_priv->drm.struct_mutex);
4599 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4600 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4601 mutex_unlock(&dev_priv->drm.struct_mutex);
4602
4603 kmem_cache_destroy(dev_priv->dependencies);
4604 kmem_cache_destroy(dev_priv->requests);
4605 kmem_cache_destroy(dev_priv->vmas);
4606 kmem_cache_destroy(dev_priv->objects);
4607
4608 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4609 rcu_barrier();
4610}
4611
4612int i915_gem_freeze(struct drm_i915_private *dev_priv)
4613{
4614 intel_runtime_pm_get(dev_priv);
4615
4616 mutex_lock(&dev_priv->drm.struct_mutex);
4617 i915_gem_shrink_all(dev_priv);
4618 mutex_unlock(&dev_priv->drm.struct_mutex);
4619
4620 intel_runtime_pm_put(dev_priv);
4621
4622 return 0;
4623}
4624
4625int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4626{
4627 struct drm_i915_gem_object *obj;
4628 struct list_head *phases[] = {
4629 &dev_priv->mm.unbound_list,
4630 &dev_priv->mm.bound_list,
4631 NULL
4632 }, **p;
4633
4634 /* Called just before we write the hibernation image.
4635 *
4636 * We need to update the domain tracking to reflect that the CPU
4637 * will be accessing all the pages to create and restore from the
4638 * hibernation, and so upon restoration those pages will be in the
4639 * CPU domain.
4640 *
4641 * To make sure the hibernation image contains the latest state,
4642 * we update that state just before writing out the image.
4643 *
4644 * To try and reduce the hibernation image, we manually shrink
4645 * the objects as well.
4646 */
4647
4648 mutex_lock(&dev_priv->drm.struct_mutex);
4649 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4650
4651 for (p = phases; *p; p++) {
4652 list_for_each_entry(obj, *p, global_link) {
4653 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4654 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4655 }
4656 }
4657 mutex_unlock(&dev_priv->drm.struct_mutex);
4658
4659 return 0;
4660}
4661
4662void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4663{
4664 struct drm_i915_file_private *file_priv = file->driver_priv;
4665 struct drm_i915_gem_request *request;
4666
4667 /* Clean up our request list when the client is going away, so that
4668 * later retire_requests won't dereference our soon-to-be-gone
4669 * file_priv.
4670 */
4671 spin_lock(&file_priv->mm.lock);
4672 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4673 request->file_priv = NULL;
4674 spin_unlock(&file_priv->mm.lock);
4675
4676 if (!list_empty(&file_priv->rps.link)) {
4677 spin_lock(&to_i915(dev)->rps.client_lock);
4678 list_del(&file_priv->rps.link);
4679 spin_unlock(&to_i915(dev)->rps.client_lock);
4680 }
4681}
4682
4683int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4684{
4685 struct drm_i915_file_private *file_priv;
4686 int ret;
4687
4688 DRM_DEBUG("\n");
4689
4690 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4691 if (!file_priv)
4692 return -ENOMEM;
4693
4694 file->driver_priv = file_priv;
4695 file_priv->dev_priv = to_i915(dev);
4696 file_priv->file = file;
4697 INIT_LIST_HEAD(&file_priv->rps.link);
4698
4699 spin_lock_init(&file_priv->mm.lock);
4700 INIT_LIST_HEAD(&file_priv->mm.request_list);
4701
4702 file_priv->bsd_engine = -1;
4703
4704 ret = i915_gem_context_open(dev, file);
4705 if (ret)
4706 kfree(file_priv);
4707
4708 return ret;
4709}
4710
4711/**
4712 * i915_gem_track_fb - update frontbuffer tracking
4713 * @old: current GEM buffer for the frontbuffer slots
4714 * @new: new GEM buffer for the frontbuffer slots
4715 * @frontbuffer_bits: bitmask of frontbuffer slots
4716 *
4717 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4718 * from @old and setting them in @new. Both @old and @new can be NULL.
4719 */
4720void i915_gem_track_fb(struct drm_i915_gem_object *old,
4721 struct drm_i915_gem_object *new,
4722 unsigned frontbuffer_bits)
4723{
4724 /* Control of individual bits within the mask are guarded by
4725 * the owning plane->mutex, i.e. we can never see concurrent
4726 * manipulation of individual bits. But since the bitfield as a whole
4727 * is updated using RMW, we need to use atomics in order to update
4728 * the bits.
4729 */
4730 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4731 sizeof(atomic_t) * BITS_PER_BYTE);
4732
4733 if (old) {
4734 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4735 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4736 }
4737
4738 if (new) {
4739 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4740 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4741 }
4742}
4743
4744/* Allocate a new GEM object and fill it with the supplied data */
4745struct drm_i915_gem_object *
4746i915_gem_object_create_from_data(struct drm_device *dev,
4747 const void *data, size_t size)
4748{
4749 struct drm_i915_gem_object *obj;
4750 struct sg_table *sg;
4751 size_t bytes;
4752 int ret;
4753
4754 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4755 if (IS_ERR(obj))
4756 return obj;
4757
4758 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4759 if (ret)
4760 goto fail;
4761
4762 ret = i915_gem_object_pin_pages(obj);
4763 if (ret)
4764 goto fail;
4765
4766 sg = obj->mm.pages;
4767 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4768 obj->mm.dirty = true; /* Backing store is now out of date */
4769 i915_gem_object_unpin_pages(obj);
4770
4771 if (WARN_ON(bytes != size)) {
4772 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4773 ret = -EFAULT;
4774 goto fail;
4775 }
4776
4777 return obj;
4778
4779fail:
4780 i915_gem_object_put(obj);
4781 return ERR_PTR(ret);
4782}
4783
4784struct scatterlist *
4785i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4786 unsigned int n,
4787 unsigned int *offset)
4788{
4789 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4790 struct scatterlist *sg;
4791 unsigned int idx, count;
4792
4793 might_sleep();
4794 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4795 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4796
4797 /* As we iterate forward through the sg, we record each entry in a
4798 * radixtree for quick repeated (backwards) lookups. If we have seen
4799 * this index previously, we will have an entry for it.
4800 *
4801 * Initial lookup is O(N), but this is amortized to O(1) for
4802 * sequential page access (where each new request is consecutive
4803 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4804 * i.e. O(1) with a large constant!
4805 */
4806 if (n < READ_ONCE(iter->sg_idx))
4807 goto lookup;
4808
4809 mutex_lock(&iter->lock);
4810
4811 /* We prefer to reuse the last sg so that repeated lookup of this
4812 * (or the subsequent) sg are fast - comparing against the last
4813 * sg is faster than going through the radixtree.
4814 */
4815
4816 sg = iter->sg_pos;
4817 idx = iter->sg_idx;
4818 count = __sg_page_count(sg);
4819
4820 while (idx + count <= n) {
4821 unsigned long exception, i;
4822 int ret;
4823
4824 /* If we cannot allocate and insert this entry, or the
4825 * individual pages from this range, cancel updating the
4826 * sg_idx so that on this lookup we are forced to linearly
4827 * scan onwards, but on future lookups we will try the
4828 * insertion again (in which case we need to be careful of
4829 * the error return reporting that we have already inserted
4830 * this index).
4831 */
4832 ret = radix_tree_insert(&iter->radix, idx, sg);
4833 if (ret && ret != -EEXIST)
4834 goto scan;
4835
4836 exception =
4837 RADIX_TREE_EXCEPTIONAL_ENTRY |
4838 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4839 for (i = 1; i < count; i++) {
4840 ret = radix_tree_insert(&iter->radix, idx + i,
4841 (void *)exception);
4842 if (ret && ret != -EEXIST)
4843 goto scan;
4844 }
4845
4846 idx += count;
4847 sg = ____sg_next(sg);
4848 count = __sg_page_count(sg);
4849 }
4850
4851scan:
4852 iter->sg_pos = sg;
4853 iter->sg_idx = idx;
4854
4855 mutex_unlock(&iter->lock);
4856
4857 if (unlikely(n < idx)) /* insertion completed by another thread */
4858 goto lookup;
4859
4860 /* In case we failed to insert the entry into the radixtree, we need
4861 * to look beyond the current sg.
4862 */
4863 while (idx + count <= n) {
4864 idx += count;
4865 sg = ____sg_next(sg);
4866 count = __sg_page_count(sg);
4867 }
4868
4869 *offset = n - idx;
4870 return sg;
4871
4872lookup:
4873 rcu_read_lock();
4874
4875 sg = radix_tree_lookup(&iter->radix, n);
4876 GEM_BUG_ON(!sg);
4877
4878 /* If this index is in the middle of multi-page sg entry,
4879 * the radixtree will contain an exceptional entry that points
4880 * to the start of that range. We will return the pointer to
4881 * the base page and the offset of this page within the
4882 * sg entry's range.
4883 */
4884 *offset = 0;
4885 if (unlikely(radix_tree_exception(sg))) {
4886 unsigned long base =
4887 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4888
4889 sg = radix_tree_lookup(&iter->radix, base);
4890 GEM_BUG_ON(!sg);
4891
4892 *offset = n - base;
4893 }
4894
4895 rcu_read_unlock();
4896
4897 return sg;
4898}
4899
4900struct page *
4901i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4902{
4903 struct scatterlist *sg;
4904 unsigned int offset;
4905
4906 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4907
4908 sg = i915_gem_object_get_sg(obj, n, &offset);
4909 return nth_page(sg_page(sg), offset);
4910}
4911
4912/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4913struct page *
4914i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4915 unsigned int n)
4916{
4917 struct page *page;
4918
4919 page = i915_gem_object_get_page(obj, n);
4920 if (!obj->mm.dirty)
4921 set_page_dirty(page);
4922
4923 return page;
4924}
4925
4926dma_addr_t
4927i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4928 unsigned long n)
4929{
4930 struct scatterlist *sg;
4931 unsigned int offset;
4932
4933 sg = i915_gem_object_get_sg(obj, n, &offset);
4934 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4935}