Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drmP.h>
  29#include <drm/drm_vma_manager.h>
  30#include <drm/i915_drm.h>
  31#include "i915_drv.h"
  32#include "i915_vgpu.h"
  33#include "i915_trace.h"
  34#include "intel_drv.h"
 
 
 
 
  35#include <linux/shmem_fs.h>
  36#include <linux/slab.h>
  37#include <linux/swap.h>
  38#include <linux/pci.h>
  39#include <linux/dma-buf.h>
  40
  41#define RQ_BUG_ON(expr)
  42
  43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  45static void
  46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
  47static void
  48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
  49
  50static bool cpu_cache_is_coherent(struct drm_device *dev,
  51				  enum i915_cache_level level)
  52{
  53	return HAS_LLC(dev) || level != I915_CACHE_NONE;
  54}
  55
  56static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  57{
 
 
 
  58	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  59		return true;
  60
  61	return obj->pin_display;
  62}
  63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64/* some bookkeeping */
  65static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  66				  size_t size)
  67{
  68	spin_lock(&dev_priv->mm.object_stat_lock);
  69	dev_priv->mm.object_count++;
  70	dev_priv->mm.object_memory += size;
  71	spin_unlock(&dev_priv->mm.object_stat_lock);
  72}
  73
  74static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  75				     size_t size)
  76{
  77	spin_lock(&dev_priv->mm.object_stat_lock);
  78	dev_priv->mm.object_count--;
  79	dev_priv->mm.object_memory -= size;
  80	spin_unlock(&dev_priv->mm.object_stat_lock);
  81}
  82
  83static int
  84i915_gem_wait_for_error(struct i915_gpu_error *error)
  85{
  86	int ret;
  87
  88#define EXIT_COND (!i915_reset_in_progress(error) || \
  89		   i915_terminally_wedged(error))
  90	if (EXIT_COND)
  91		return 0;
  92
  93	/*
  94	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  95	 * userspace. If it takes that long something really bad is going on and
  96	 * we should simply try to bail out and fail as gracefully as possible.
  97	 */
  98	ret = wait_event_interruptible_timeout(error->reset_queue,
  99					       EXIT_COND,
 100					       10*HZ);
 101	if (ret == 0) {
 102		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
 103		return -EIO;
 104	} else if (ret < 0) {
 105		return ret;
 
 
 106	}
 107#undef EXIT_COND
 108
 109	return 0;
 110}
 111
 112int i915_mutex_lock_interruptible(struct drm_device *dev)
 113{
 114	struct drm_i915_private *dev_priv = dev->dev_private;
 115	int ret;
 116
 117	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
 118	if (ret)
 119		return ret;
 120
 121	ret = mutex_lock_interruptible(&dev->struct_mutex);
 122	if (ret)
 123		return ret;
 124
 125	WARN_ON(i915_verify_lists(dev));
 126	return 0;
 127}
 128
 129int
 130i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 131			    struct drm_file *file)
 132{
 133	struct drm_i915_private *dev_priv = dev->dev_private;
 
 134	struct drm_i915_gem_get_aperture *args = data;
 135	struct i915_gtt *ggtt = &dev_priv->gtt;
 136	struct i915_vma *vma;
 137	size_t pinned;
 138
 139	pinned = 0;
 140	mutex_lock(&dev->struct_mutex);
 141	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
 142		if (vma->pin_count)
 143			pinned += vma->node.size;
 144	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
 145		if (vma->pin_count)
 146			pinned += vma->node.size;
 147	mutex_unlock(&dev->struct_mutex);
 148
 149	args->aper_size = dev_priv->gtt.base.total;
 150	args->aper_available_size = args->aper_size - pinned;
 151
 152	return 0;
 153}
 154
 155static int
 156i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
 157{
 158	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
 159	char *vaddr = obj->phys_handle->vaddr;
 160	struct sg_table *st;
 161	struct scatterlist *sg;
 
 162	int i;
 163
 164	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
 165		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 166
 
 167	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 168		struct page *page;
 169		char *src;
 170
 171		page = shmem_read_mapping_page(mapping, i);
 172		if (IS_ERR(page))
 173			return PTR_ERR(page);
 
 
 174
 175		src = kmap_atomic(page);
 176		memcpy(vaddr, src, PAGE_SIZE);
 177		drm_clflush_virt_range(vaddr, PAGE_SIZE);
 178		kunmap_atomic(src);
 179
 180		put_page(page);
 181		vaddr += PAGE_SIZE;
 182	}
 183
 184	i915_gem_chipset_flush(obj->base.dev);
 185
 186	st = kmalloc(sizeof(*st), GFP_KERNEL);
 187	if (st == NULL)
 188		return -ENOMEM;
 
 
 189
 190	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
 191		kfree(st);
 192		return -ENOMEM;
 
 193	}
 194
 195	sg = st->sgl;
 196	sg->offset = 0;
 197	sg->length = obj->base.size;
 198
 199	sg_dma_address(sg) = obj->phys_handle->busaddr;
 200	sg_dma_len(sg) = obj->base.size;
 201
 202	obj->pages = st;
 203	return 0;
 
 
 
 
 204}
 205
 206static void
 207i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
 208{
 209	int ret;
 
 
 
 
 
 
 
 
 
 
 210
 211	BUG_ON(obj->madv == __I915_MADV_PURGED);
 212
 213	ret = i915_gem_object_set_to_cpu_domain(obj, true);
 214	if (ret) {
 215		/* In the event of a disaster, abandon all caches and
 216		 * hope for the best.
 217		 */
 218		WARN_ON(ret != -EIO);
 219		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
 220	}
 221
 222	if (obj->madv == I915_MADV_DONTNEED)
 223		obj->dirty = 0;
 
 
 
 224
 225	if (obj->dirty) {
 226		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
 227		char *vaddr = obj->phys_handle->vaddr;
 228		int i;
 229
 230		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 231			struct page *page;
 232			char *dst;
 233
 234			page = shmem_read_mapping_page(mapping, i);
 235			if (IS_ERR(page))
 236				continue;
 237
 238			dst = kmap_atomic(page);
 239			drm_clflush_virt_range(vaddr, PAGE_SIZE);
 240			memcpy(dst, vaddr, PAGE_SIZE);
 241			kunmap_atomic(dst);
 242
 243			set_page_dirty(page);
 244			if (obj->madv == I915_MADV_WILLNEED)
 245				mark_page_accessed(page);
 246			put_page(page);
 247			vaddr += PAGE_SIZE;
 248		}
 249		obj->dirty = 0;
 250	}
 251
 252	sg_free_table(obj->pages);
 253	kfree(obj->pages);
 
 
 254}
 255
 256static void
 257i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
 258{
 259	drm_pci_free(obj->base.dev, obj->phys_handle);
 260}
 261
 262static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
 263	.get_pages = i915_gem_object_get_pages_phys,
 264	.put_pages = i915_gem_object_put_pages_phys,
 265	.release = i915_gem_object_release_phys,
 266};
 267
 268static int
 269drop_pages(struct drm_i915_gem_object *obj)
 270{
 271	struct i915_vma *vma, *next;
 
 272	int ret;
 273
 274	drm_gem_object_reference(&obj->base);
 275	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
 276		if (i915_vma_unbind(vma))
 277			break;
 278
 279	ret = i915_gem_object_put_pages(obj);
 280	drm_gem_object_unreference(&obj->base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281
 282	return ret;
 283}
 284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285int
 286i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
 287			    int align)
 288{
 289	drm_dma_handle_t *phys;
 290	int ret;
 291
 292	if (obj->phys_handle) {
 293		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
 294			return -EBUSY;
 295
 
 296		return 0;
 297	}
 298
 299	if (obj->madv != I915_MADV_WILLNEED)
 300		return -EFAULT;
 301
 302	if (obj->base.filp == NULL)
 303		return -EINVAL;
 304
 305	ret = drop_pages(obj);
 306	if (ret)
 307		return ret;
 308
 309	/* create a new object */
 310	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
 311	if (!phys)
 312		return -ENOMEM;
 313
 314	obj->phys_handle = phys;
 315	obj->ops = &i915_gem_phys_ops;
 316
 317	return i915_gem_object_get_pages(obj);
 318}
 319
 320static int
 321i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
 322		     struct drm_i915_gem_pwrite *args,
 323		     struct drm_file *file_priv)
 324{
 325	struct drm_device *dev = obj->base.dev;
 326	void *vaddr = obj->phys_handle->vaddr + args->offset;
 327	char __user *user_data = to_user_ptr(args->data_ptr);
 328	int ret = 0;
 329
 330	/* We manually control the domain here and pretend that it
 331	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
 332	 */
 333	ret = i915_gem_object_wait_rendering(obj, false);
 334	if (ret)
 335		return ret;
 336
 337	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 338	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
 339		unsigned long unwritten;
 340
 341		/* The physical object once assigned is fixed for the lifetime
 342		 * of the obj, so we can safely drop the lock and continue
 343		 * to access vaddr.
 344		 */
 345		mutex_unlock(&dev->struct_mutex);
 346		unwritten = copy_from_user(vaddr, user_data, args->size);
 347		mutex_lock(&dev->struct_mutex);
 348		if (unwritten) {
 349			ret = -EFAULT;
 350			goto out;
 351		}
 352	}
 353
 354	drm_clflush_virt_range(vaddr, args->size);
 355	i915_gem_chipset_flush(dev);
 356
 357out:
 358	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
 359	return ret;
 360}
 361
 362void *i915_gem_object_alloc(struct drm_device *dev)
 363{
 364	struct drm_i915_private *dev_priv = dev->dev_private;
 365	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
 366}
 367
 368void i915_gem_object_free(struct drm_i915_gem_object *obj)
 369{
 370	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
 371	kmem_cache_free(dev_priv->objects, obj);
 372}
 373
 374static int
 375i915_gem_create(struct drm_file *file,
 376		struct drm_device *dev,
 377		uint64_t size,
 378		uint32_t *handle_p)
 379{
 380	struct drm_i915_gem_object *obj;
 381	int ret;
 382	u32 handle;
 383
 384	size = roundup(size, PAGE_SIZE);
 385	if (size == 0)
 386		return -EINVAL;
 387
 388	/* Allocate the new object */
 389	obj = i915_gem_alloc_object(dev, size);
 390	if (obj == NULL)
 391		return -ENOMEM;
 392
 393	ret = drm_gem_handle_create(file, &obj->base, &handle);
 394	/* drop reference from allocate - handle holds it now */
 395	drm_gem_object_unreference_unlocked(&obj->base);
 396	if (ret)
 397		return ret;
 398
 399	*handle_p = handle;
 400	return 0;
 401}
 402
 403int
 404i915_gem_dumb_create(struct drm_file *file,
 405		     struct drm_device *dev,
 406		     struct drm_mode_create_dumb *args)
 407{
 408	/* have to work out size/pitch and return them */
 409	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
 410	args->size = args->pitch * args->height;
 411	return i915_gem_create(file, dev,
 412			       args->size, &args->handle);
 413}
 414
 415/**
 416 * Creates a new mm object and returns a handle to it.
 
 
 
 417 */
 418int
 419i915_gem_create_ioctl(struct drm_device *dev, void *data,
 420		      struct drm_file *file)
 421{
 422	struct drm_i915_gem_create *args = data;
 423
 
 
 424	return i915_gem_create(file, dev,
 425			       args->size, &args->handle);
 426}
 427
 428static inline int
 429__copy_to_user_swizzled(char __user *cpu_vaddr,
 430			const char *gpu_vaddr, int gpu_offset,
 431			int length)
 432{
 433	int ret, cpu_offset = 0;
 434
 435	while (length > 0) {
 436		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 437		int this_length = min(cacheline_end - gpu_offset, length);
 438		int swizzled_gpu_offset = gpu_offset ^ 64;
 439
 440		ret = __copy_to_user(cpu_vaddr + cpu_offset,
 441				     gpu_vaddr + swizzled_gpu_offset,
 442				     this_length);
 443		if (ret)
 444			return ret + length;
 445
 446		cpu_offset += this_length;
 447		gpu_offset += this_length;
 448		length -= this_length;
 449	}
 450
 451	return 0;
 452}
 453
 454static inline int
 455__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
 456			  const char __user *cpu_vaddr,
 457			  int length)
 458{
 459	int ret, cpu_offset = 0;
 460
 461	while (length > 0) {
 462		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 463		int this_length = min(cacheline_end - gpu_offset, length);
 464		int swizzled_gpu_offset = gpu_offset ^ 64;
 465
 466		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
 467				       cpu_vaddr + cpu_offset,
 468				       this_length);
 469		if (ret)
 470			return ret + length;
 471
 472		cpu_offset += this_length;
 473		gpu_offset += this_length;
 474		length -= this_length;
 475	}
 476
 477	return 0;
 478}
 479
 480/*
 481 * Pins the specified object's pages and synchronizes the object with
 482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 483 * flush the object from the CPU cache.
 484 */
 485int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
 486				    int *needs_clflush)
 487{
 488	int ret;
 489
 
 
 490	*needs_clflush = 0;
 
 
 491
 492	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
 493		return -EINVAL;
 
 
 
 
 
 
 
 
 
 494
 495	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
 496		/* If we're not in the cpu read domain, set ourself into the gtt
 497		 * read domain and manually flush cachelines (if required). This
 498		 * optimizes for the case when the gpu will dirty the data
 499		 * anyway again before the next pread happens. */
 
 
 
 500		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
 501							obj->cache_level);
 502		ret = i915_gem_object_wait_rendering(obj, true);
 
 
 503		if (ret)
 504			return ret;
 505	}
 506
 507	ret = i915_gem_object_get_pages(obj);
 508	if (ret)
 509		return ret;
 510
 511	i915_gem_object_pin_pages(obj);
 
 512
 
 
 513	return ret;
 514}
 515
 516/* Per-page copy function for the shmem pread fastpath.
 517 * Flushes invalid cachelines before reading the target if
 518 * needs_clflush is set. */
 519static int
 520shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
 521		 char __user *user_data,
 522		 bool page_do_bit17_swizzling, bool needs_clflush)
 523{
 524	char *vaddr;
 525	int ret;
 526
 527	if (unlikely(page_do_bit17_swizzling))
 528		return -EINVAL;
 529
 530	vaddr = kmap_atomic(page);
 531	if (needs_clflush)
 532		drm_clflush_virt_range(vaddr + shmem_page_offset,
 533				       page_length);
 534	ret = __copy_to_user_inatomic(user_data,
 535				      vaddr + shmem_page_offset,
 536				      page_length);
 537	kunmap_atomic(vaddr);
 538
 539	return ret ? -EFAULT : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540}
 541
 542static void
 543shmem_clflush_swizzled_range(char *addr, unsigned long length,
 544			     bool swizzled)
 545{
 546	if (unlikely(swizzled)) {
 547		unsigned long start = (unsigned long) addr;
 548		unsigned long end = (unsigned long) addr + length;
 549
 550		/* For swizzling simply ensure that we always flush both
 551		 * channels. Lame, but simple and it works. Swizzled
 552		 * pwrite/pread is far from a hotpath - current userspace
 553		 * doesn't use it at all. */
 554		start = round_down(start, 128);
 555		end = round_up(end, 128);
 556
 557		drm_clflush_virt_range((void *)start, end - start);
 558	} else {
 559		drm_clflush_virt_range(addr, length);
 560	}
 561
 562}
 563
 564/* Only difference to the fast-path function is that this can handle bit17
 565 * and uses non-atomic copy and kmap functions. */
 566static int
 567shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
 568		 char __user *user_data,
 569		 bool page_do_bit17_swizzling, bool needs_clflush)
 570{
 571	char *vaddr;
 572	int ret;
 573
 574	vaddr = kmap(page);
 575	if (needs_clflush)
 576		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 577					     page_length,
 578					     page_do_bit17_swizzling);
 579
 580	if (page_do_bit17_swizzling)
 581		ret = __copy_to_user_swizzled(user_data,
 582					      vaddr, shmem_page_offset,
 583					      page_length);
 584	else
 585		ret = __copy_to_user(user_data,
 586				     vaddr + shmem_page_offset,
 587				     page_length);
 588	kunmap(page);
 589
 590	return ret ? - EFAULT : 0;
 591}
 592
 593static int
 594i915_gem_shmem_pread(struct drm_device *dev,
 595		     struct drm_i915_gem_object *obj,
 596		     struct drm_i915_gem_pread *args,
 597		     struct drm_file *file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598{
 599	char __user *user_data;
 600	ssize_t remain;
 601	loff_t offset;
 602	int shmem_page_offset, page_length, ret = 0;
 603	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 604	int prefaulted = 0;
 605	int needs_clflush = 0;
 606	struct sg_page_iter sg_iter;
 607
 608	user_data = to_user_ptr(args->data_ptr);
 609	remain = args->size;
 
 610
 611	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 
 
 612
 613	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
 
 614	if (ret)
 615		return ret;
 616
 617	offset = args->offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618
 619	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
 620			 offset >> PAGE_SHIFT) {
 621		struct page *page = sg_page_iter_page(&sg_iter);
 622
 623		if (remain <= 0)
 624			break;
 
 
 
 
 
 625
 626		/* Operation in this page
 627		 *
 628		 * shmem_page_offset = offset within page in shmem file
 629		 * page_length = bytes to copy for this page
 630		 */
 631		shmem_page_offset = offset_in_page(offset);
 632		page_length = remain;
 633		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 634			page_length = PAGE_SIZE - shmem_page_offset;
 635
 636		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 637			(page_to_phys(page) & (1 << 17)) != 0;
 638
 639		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
 640				       user_data, page_do_bit17_swizzling,
 641				       needs_clflush);
 642		if (ret == 0)
 643			goto next_page;
 644
 645		mutex_unlock(&dev->struct_mutex);
 
 
 
 
 
 
 
 
 
 
 646
 647		if (likely(!i915.prefault_disable) && !prefaulted) {
 648			ret = fault_in_multipages_writeable(user_data, remain);
 649			/* Userspace is tricking us, but we've already clobbered
 650			 * its pages with the prefault and promised to write the
 651			 * data up to the first fault. Hence ignore any errors
 652			 * and just continue. */
 653			(void)ret;
 654			prefaulted = 1;
 
 
 
 
 
 
 655		}
 
 
 
 
 
 
 
 656
 657		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
 658				       user_data, page_do_bit17_swizzling,
 659				       needs_clflush);
 660
 661		mutex_lock(&dev->struct_mutex);
 662
 663		if (ret)
 664			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665
 666next_page:
 667		remain -= page_length;
 668		user_data += page_length;
 669		offset += page_length;
 670	}
 671
 672out:
 673	i915_gem_object_unpin_pages(obj);
 
 
 
 
 
 
 
 
 
 
 
 674
 675	return ret;
 676}
 677
 678/**
 679 * Reads data from the object referenced by handle.
 
 
 
 680 *
 681 * On error, the contents of *data are undefined.
 682 */
 683int
 684i915_gem_pread_ioctl(struct drm_device *dev, void *data,
 685		     struct drm_file *file)
 686{
 687	struct drm_i915_gem_pread *args = data;
 688	struct drm_i915_gem_object *obj;
 689	int ret = 0;
 690
 691	if (args->size == 0)
 692		return 0;
 693
 694	if (!access_ok(VERIFY_WRITE,
 695		       to_user_ptr(args->data_ptr),
 696		       args->size))
 697		return -EFAULT;
 698
 699	ret = i915_mutex_lock_interruptible(dev);
 700	if (ret)
 701		return ret;
 702
 703	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
 704	if (&obj->base == NULL) {
 705		ret = -ENOENT;
 706		goto unlock;
 707	}
 708
 709	/* Bounds check source.  */
 710	if (args->offset > obj->base.size ||
 711	    args->size > obj->base.size - args->offset) {
 712		ret = -EINVAL;
 713		goto out;
 714	}
 715
 716	/* prime objects have no backing filp to GEM pread/pwrite
 717	 * pages from.
 718	 */
 719	if (!obj->base.filp) {
 720		ret = -EINVAL;
 
 
 721		goto out;
 722	}
 723
 724	trace_i915_gem_object_pread(obj, args->offset, args->size);
 
 
 725
 726	ret = i915_gem_shmem_pread(dev, obj, args, file);
 
 
 727
 
 728out:
 729	drm_gem_object_unreference(&obj->base);
 730unlock:
 731	mutex_unlock(&dev->struct_mutex);
 732	return ret;
 733}
 734
 735/* This is the fast write path which cannot handle
 736 * page faults in the source data
 737 */
 738
 739static inline int
 740fast_user_write(struct io_mapping *mapping,
 741		loff_t page_base, int page_offset,
 742		char __user *user_data,
 743		int length)
 744{
 745	void __iomem *vaddr_atomic;
 746	void *vaddr;
 747	unsigned long unwritten;
 748
 749	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
 750	/* We can use the cpu mem copy function because this is X86. */
 751	vaddr = (void __force*)vaddr_atomic + page_offset;
 752	unwritten = __copy_from_user_inatomic_nocache(vaddr,
 753						      user_data, length);
 754	io_mapping_unmap_atomic(vaddr_atomic);
 
 
 
 
 
 
 
 755	return unwritten;
 756}
 757
 758/**
 759 * This is the fast pwrite path, where we copy the data directly from the
 760 * user into the GTT, uncached.
 
 
 761 */
 762static int
 763i915_gem_gtt_pwrite_fast(struct drm_device *dev,
 764			 struct drm_i915_gem_object *obj,
 765			 struct drm_i915_gem_pwrite *args,
 766			 struct drm_file *file)
 767{
 768	struct drm_i915_private *dev_priv = dev->dev_private;
 769	ssize_t remain;
 770	loff_t offset, page_base;
 771	char __user *user_data;
 772	int page_offset, page_length, ret;
 
 
 773
 774	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
 775	if (ret)
 776		goto out;
 777
 778	ret = i915_gem_object_set_to_gtt_domain(obj, true);
 779	if (ret)
 780		goto out_unpin;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781
 782	ret = i915_gem_object_put_fence(obj);
 783	if (ret)
 784		goto out_unpin;
 785
 786	user_data = to_user_ptr(args->data_ptr);
 787	remain = args->size;
 788
 789	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
 790
 791	intel_fb_obj_invalidate(obj, ORIGIN_GTT);
 792
 793	while (remain > 0) {
 
 
 
 794		/* Operation in this page
 795		 *
 796		 * page_base = page offset within aperture
 797		 * page_offset = offset within page
 798		 * page_length = bytes to copy for this page
 799		 */
 800		page_base = offset & PAGE_MASK;
 801		page_offset = offset_in_page(offset);
 802		page_length = remain;
 803		if ((page_offset + remain) > PAGE_SIZE)
 804			page_length = PAGE_SIZE - page_offset;
 805
 
 
 
 
 
 
 
 806		/* If we get a fault while copying data, then (presumably) our
 807		 * source page isn't available.  Return the error and we'll
 808		 * retry in the slow path.
 
 
 809		 */
 810		if (fast_user_write(dev_priv->gtt.mappable, page_base,
 811				    page_offset, user_data, page_length)) {
 812			ret = -EFAULT;
 813			goto out_flush;
 814		}
 815
 816		remain -= page_length;
 817		user_data += page_length;
 818		offset += page_length;
 819	}
 
 820
 821out_flush:
 822	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
 823out_unpin:
 824	i915_gem_object_ggtt_unpin(obj);
 825out:
 
 
 
 
 
 
 
 
 
 826	return ret;
 827}
 828
 829/* Per-page copy function for the shmem pwrite fastpath.
 830 * Flushes invalid cachelines before writing to the target if
 831 * needs_clflush_before is set and flushes out any written cachelines after
 832 * writing if needs_clflush is set. */
 833static int
 834shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
 835		  char __user *user_data,
 836		  bool page_do_bit17_swizzling,
 837		  bool needs_clflush_before,
 838		  bool needs_clflush_after)
 839{
 840	char *vaddr;
 841	int ret;
 842
 843	if (unlikely(page_do_bit17_swizzling))
 844		return -EINVAL;
 845
 846	vaddr = kmap_atomic(page);
 847	if (needs_clflush_before)
 848		drm_clflush_virt_range(vaddr + shmem_page_offset,
 849				       page_length);
 850	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
 851					user_data, page_length);
 852	if (needs_clflush_after)
 853		drm_clflush_virt_range(vaddr + shmem_page_offset,
 854				       page_length);
 855	kunmap_atomic(vaddr);
 856
 857	return ret ? -EFAULT : 0;
 858}
 859
 860/* Only difference to the fast-path function is that this can handle bit17
 861 * and uses non-atomic copy and kmap functions. */
 862static int
 863shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
 864		  char __user *user_data,
 865		  bool page_do_bit17_swizzling,
 866		  bool needs_clflush_before,
 867		  bool needs_clflush_after)
 868{
 869	char *vaddr;
 870	int ret;
 871
 872	vaddr = kmap(page);
 873	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
 874		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 875					     page_length,
 876					     page_do_bit17_swizzling);
 877	if (page_do_bit17_swizzling)
 878		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
 879						user_data,
 880						page_length);
 881	else
 882		ret = __copy_from_user(vaddr + shmem_page_offset,
 883				       user_data,
 884				       page_length);
 885	if (needs_clflush_after)
 886		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
 887					     page_length,
 888					     page_do_bit17_swizzling);
 889	kunmap(page);
 890
 891	return ret ? -EFAULT : 0;
 892}
 893
 
 
 
 
 
 894static int
 895i915_gem_shmem_pwrite(struct drm_device *dev,
 896		      struct drm_i915_gem_object *obj,
 897		      struct drm_i915_gem_pwrite *args,
 898		      struct drm_file *file)
 899{
 900	ssize_t remain;
 901	loff_t offset;
 902	char __user *user_data;
 903	int shmem_page_offset, page_length, ret = 0;
 904	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
 905	int hit_slowpath = 0;
 906	int needs_clflush_after = 0;
 907	int needs_clflush_before = 0;
 908	struct sg_page_iter sg_iter;
 909
 910	user_data = to_user_ptr(args->data_ptr);
 911	remain = args->size;
 912
 913	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
 
 
 
 
 
 
 
 
 914
 915	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
 916		/* If we're not in the cpu write domain, set ourself into the gtt
 917		 * write domain and manually flush cachelines (if required). This
 918		 * optimizes for the case when the gpu will use the data
 919		 * right away and we therefore have to clflush anyway. */
 920		needs_clflush_after = cpu_write_needs_clflush(obj);
 921		ret = i915_gem_object_wait_rendering(obj, false);
 922		if (ret)
 923			return ret;
 924	}
 925	/* Same trick applies to invalidate partially written cachelines read
 926	 * before writing. */
 927	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
 928		needs_clflush_before =
 929			!cpu_cache_is_coherent(dev, obj->cache_level);
 930
 931	ret = i915_gem_object_get_pages(obj);
 932	if (ret)
 933		return ret;
 934
 935	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 936
 937	i915_gem_object_pin_pages(obj);
 938
 939	offset = args->offset;
 940	obj->dirty = 1;
 941
 942	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
 943			 offset >> PAGE_SHIFT) {
 944		struct page *page = sg_page_iter_page(&sg_iter);
 945		int partial_cacheline_write;
 946
 947		if (remain <= 0)
 948			break;
 
 
 
 
 
 
 
 
 
 
 949
 950		/* Operation in this page
 951		 *
 952		 * shmem_page_offset = offset within page in shmem file
 953		 * page_length = bytes to copy for this page
 954		 */
 955		shmem_page_offset = offset_in_page(offset);
 956
 957		page_length = remain;
 958		if ((shmem_page_offset + page_length) > PAGE_SIZE)
 959			page_length = PAGE_SIZE - shmem_page_offset;
 960
 961		/* If we don't overwrite a cacheline completely we need to be
 962		 * careful to have up-to-date data by first clflushing. Don't
 963		 * overcomplicate things and flush the entire patch. */
 964		partial_cacheline_write = needs_clflush_before &&
 965			((shmem_page_offset | page_length)
 966				& (boot_cpu_data.x86_clflush_size - 1));
 967
 968		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
 969			(page_to_phys(page) & (1 << 17)) != 0;
 970
 971		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
 972					user_data, page_do_bit17_swizzling,
 973					partial_cacheline_write,
 974					needs_clflush_after);
 975		if (ret == 0)
 976			goto next_page;
 977
 978		hit_slowpath = 1;
 979		mutex_unlock(&dev->struct_mutex);
 980		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
 981					user_data, page_do_bit17_swizzling,
 982					partial_cacheline_write,
 983					needs_clflush_after);
 984
 985		mutex_lock(&dev->struct_mutex);
 
 
 
 
 
 
 986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987		if (ret)
 988			goto out;
 989
 990next_page:
 991		remain -= page_length;
 992		user_data += page_length;
 993		offset += page_length;
 994	}
 995
 996out:
 997	i915_gem_object_unpin_pages(obj);
 998
 999	if (hit_slowpath) {
1000		/*
1001		 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002		 * cachelines in-line while writing and the object moved
1003		 * out of the cpu write domain while we've dropped the lock.
1004		 */
1005		if (!needs_clflush_after &&
1006		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007			if (i915_gem_clflush_object(obj, obj->pin_display))
1008				needs_clflush_after = true;
1009		}
1010	}
1011
1012	if (needs_clflush_after)
1013		i915_gem_chipset_flush(dev);
1014	else
1015		obj->cache_dirty = true;
1016
1017	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
 
1018	return ret;
1019}
1020
1021/**
1022 * Writes data to the object referenced by handle.
 
 
 
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026int
1027i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028		      struct drm_file *file)
1029{
1030	struct drm_i915_private *dev_priv = dev->dev_private;
1031	struct drm_i915_gem_pwrite *args = data;
1032	struct drm_i915_gem_object *obj;
1033	int ret;
1034
1035	if (args->size == 0)
1036		return 0;
1037
1038	if (!access_ok(VERIFY_READ,
1039		       to_user_ptr(args->data_ptr),
1040		       args->size))
1041		return -EFAULT;
1042
1043	if (likely(!i915.prefault_disable)) {
1044		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045						   args->size);
1046		if (ret)
1047			return -EFAULT;
1048	}
1049
1050	intel_runtime_pm_get(dev_priv);
1051
1052	ret = i915_mutex_lock_interruptible(dev);
1053	if (ret)
1054		goto put_rpm;
1055
1056	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057	if (&obj->base == NULL) {
1058		ret = -ENOENT;
1059		goto unlock;
1060	}
1061
1062	/* Bounds check destination. */
1063	if (args->offset > obj->base.size ||
1064	    args->size > obj->base.size - args->offset) {
1065		ret = -EINVAL;
1066		goto out;
1067	}
1068
1069	/* prime objects have no backing filp to GEM pread/pwrite
1070	 * pages from.
1071	 */
1072	if (!obj->base.filp) {
1073		ret = -EINVAL;
1074		goto out;
1075	}
1076
1077	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
 
 
 
 
 
 
 
 
 
 
 
 
1079	ret = -EFAULT;
1080	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1081	 * it would end up going through the fenced access, and we'll get
1082	 * different detiling behavior between reading and writing.
1083	 * pread/pwrite currently are reading and writing from the CPU
1084	 * perspective, requiring manual detiling by the client.
1085	 */
1086	if (obj->tiling_mode == I915_TILING_NONE &&
1087	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088	    cpu_write_needs_clflush(obj)) {
1089		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090		/* Note that the gtt paths might fail with non-page-backed user
1091		 * pointers (e.g. gtt mappings when moving data between
1092		 * textures). Fallback to the shmem path in that case. */
1093	}
 
1094
1095	if (ret == -EFAULT || ret == -ENOSPC) {
1096		if (obj->phys_handle)
1097			ret = i915_gem_phys_pwrite(obj, args, file);
1098		else
1099			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100	}
1101
1102out:
1103	drm_gem_object_unreference(&obj->base);
1104unlock:
1105	mutex_unlock(&dev->struct_mutex);
1106put_rpm:
1107	intel_runtime_pm_put(dev_priv);
1108
1109	return ret;
1110}
1111
1112int
1113i915_gem_check_wedge(struct i915_gpu_error *error,
1114		     bool interruptible)
1115{
1116	if (i915_reset_in_progress(error)) {
1117		/* Non-interruptible callers can't handle -EAGAIN, hence return
1118		 * -EIO unconditionally for these. */
1119		if (!interruptible)
1120			return -EIO;
1121
1122		/* Recovery complete, but the reset failed ... */
1123		if (i915_terminally_wedged(error))
1124			return -EIO;
1125
1126		/*
1127		 * Check if GPU Reset is in progress - we need intel_ring_begin
1128		 * to work properly to reinit the hw state while the gpu is
1129		 * still marked as reset-in-progress. Handle this with a flag.
1130		 */
1131		if (!error->reload_in_reset)
1132			return -EAGAIN;
1133	}
1134
1135	return 0;
1136}
1137
1138static void fake_irq(unsigned long data)
1139{
1140	wake_up_process((struct task_struct *)data);
1141}
1142
1143static bool missed_irq(struct drm_i915_private *dev_priv,
1144		       struct intel_engine_cs *ring)
1145{
1146	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147}
1148
1149static unsigned long local_clock_us(unsigned *cpu)
1150{
1151	unsigned long t;
1152
1153	/* Cheaply and approximately convert from nanoseconds to microseconds.
1154	 * The result and subsequent calculations are also defined in the same
1155	 * approximate microseconds units. The principal source of timing
1156	 * error here is from the simple truncation.
1157	 *
1158	 * Note that local_clock() is only defined wrt to the current CPU;
1159	 * the comparisons are no longer valid if we switch CPUs. Instead of
1160	 * blocking preemption for the entire busywait, we can detect the CPU
1161	 * switch and use that as indicator of system load and a reason to
1162	 * stop busywaiting, see busywait_stop().
1163	 */
1164	*cpu = get_cpu();
1165	t = local_clock() >> 10;
1166	put_cpu();
1167
1168	return t;
1169}
1170
1171static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172{
1173	unsigned this_cpu;
1174
1175	if (time_after(local_clock_us(&this_cpu), timeout))
1176		return true;
1177
1178	return this_cpu != cpu;
1179}
1180
1181static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182{
1183	unsigned long timeout;
1184	unsigned cpu;
1185
1186	/* When waiting for high frequency requests, e.g. during synchronous
1187	 * rendering split between the CPU and GPU, the finite amount of time
1188	 * required to set up the irq and wait upon it limits the response
1189	 * rate. By busywaiting on the request completion for a short while we
1190	 * can service the high frequency waits as quick as possible. However,
1191	 * if it is a slow request, we want to sleep as quickly as possible.
1192	 * The tradeoff between waiting and sleeping is roughly the time it
1193	 * takes to sleep on a request, on the order of a microsecond.
1194	 */
1195
1196	if (req->ring->irq_refcount)
1197		return -EBUSY;
1198
1199	/* Only spin if we know the GPU is processing this request */
1200	if (!i915_gem_request_started(req, true))
1201		return -EAGAIN;
1202
1203	timeout = local_clock_us(&cpu) + 5;
1204	while (!need_resched()) {
1205		if (i915_gem_request_completed(req, true))
1206			return 0;
1207
1208		if (signal_pending_state(state, current))
1209			break;
1210
1211		if (busywait_stop(timeout, cpu))
1212			break;
1213
1214		cpu_relax_lowlatency();
1215	}
1216
1217	if (i915_gem_request_completed(req, false))
1218		return 0;
1219
1220	return -EAGAIN;
1221}
1222
1223/**
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
1237 * Returns 0 if the request was found within the alloted time. Else returns the
1238 * errno with remaining time filled in timeout argument.
1239 */
1240int __i915_wait_request(struct drm_i915_gem_request *req,
1241			unsigned reset_counter,
1242			bool interruptible,
1243			s64 *timeout,
1244			struct intel_rps_client *rps)
1245{
1246	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247	struct drm_device *dev = ring->dev;
1248	struct drm_i915_private *dev_priv = dev->dev_private;
1249	const bool irq_test_in_progress =
1250		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251	int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252	DEFINE_WAIT(wait);
1253	unsigned long timeout_expire;
1254	s64 before = 0; /* Only to silence a compiler warning. */
1255	int ret;
1256
1257	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259	if (list_empty(&req->list))
1260		return 0;
1261
1262	if (i915_gem_request_completed(req, true))
1263		return 0;
1264
1265	timeout_expire = 0;
1266	if (timeout) {
1267		if (WARN_ON(*timeout < 0))
1268			return -EINVAL;
1269
1270		if (*timeout == 0)
1271			return -ETIME;
1272
1273		timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274
1275		/*
1276		 * Record current time in case interrupted by signal, or wedged.
1277		 */
1278		before = ktime_get_raw_ns();
1279	}
1280
1281	if (INTEL_INFO(dev_priv)->gen >= 6)
1282		gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1283
1284	trace_i915_gem_request_wait_begin(req);
1285
1286	/* Optimistic spin for the next jiffie before touching IRQs */
1287	ret = __i915_spin_request(req, state);
1288	if (ret == 0)
1289		goto out;
1290
1291	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1292		ret = -ENODEV;
1293		goto out;
1294	}
1295
1296	for (;;) {
1297		struct timer_list timer;
1298
1299		prepare_to_wait(&ring->irq_queue, &wait, state);
1300
1301		/* We need to check whether any gpu reset happened in between
1302		 * the caller grabbing the seqno and now ... */
1303		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1304			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
1305			 * is truely gone. */
1306			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1307			if (ret == 0)
1308				ret = -EAGAIN;
1309			break;
1310		}
1311
1312		if (i915_gem_request_completed(req, false)) {
1313			ret = 0;
1314			break;
1315		}
1316
1317		if (signal_pending_state(state, current)) {
1318			ret = -ERESTARTSYS;
1319			break;
1320		}
1321
1322		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1323			ret = -ETIME;
1324			break;
1325		}
1326
1327		timer.function = NULL;
1328		if (timeout || missed_irq(dev_priv, ring)) {
1329			unsigned long expire;
1330
1331			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1332			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1333			mod_timer(&timer, expire);
1334		}
1335
1336		io_schedule();
1337
1338		if (timer.function) {
1339			del_singleshot_timer_sync(&timer);
1340			destroy_timer_on_stack(&timer);
1341		}
1342	}
1343	if (!irq_test_in_progress)
1344		ring->irq_put(ring);
1345
1346	finish_wait(&ring->irq_queue, &wait);
1347
1348out:
1349	trace_i915_gem_request_wait_end(req);
1350
1351	if (timeout) {
1352		s64 tres = *timeout - (ktime_get_raw_ns() - before);
1353
1354		*timeout = tres < 0 ? 0 : tres;
1355
1356		/*
1357		 * Apparently ktime isn't accurate enough and occasionally has a
1358		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1359		 * things up to make the test happy. We allow up to 1 jiffy.
1360		 *
1361		 * This is a regrssion from the timespec->ktime conversion.
1362		 */
1363		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1364			*timeout = 0;
1365	}
1366
 
 
 
1367	return ret;
1368}
1369
1370int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1371				   struct drm_file *file)
1372{
1373	struct drm_i915_private *dev_private;
1374	struct drm_i915_file_private *file_priv;
1375
1376	WARN_ON(!req || !file || req->file_priv);
1377
1378	if (!req || !file)
1379		return -EINVAL;
1380
1381	if (req->file_priv)
1382		return -EINVAL;
1383
1384	dev_private = req->ring->dev->dev_private;
1385	file_priv = file->driver_priv;
1386
1387	spin_lock(&file_priv->mm.lock);
1388	req->file_priv = file_priv;
1389	list_add_tail(&req->client_list, &file_priv->mm.request_list);
1390	spin_unlock(&file_priv->mm.lock);
1391
1392	req->pid = get_pid(task_pid(current));
1393
1394	return 0;
1395}
1396
1397static inline void
1398i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1399{
1400	struct drm_i915_file_private *file_priv = request->file_priv;
1401
1402	if (!file_priv)
1403		return;
1404
1405	spin_lock(&file_priv->mm.lock);
1406	list_del(&request->client_list);
1407	request->file_priv = NULL;
1408	spin_unlock(&file_priv->mm.lock);
1409
1410	put_pid(request->pid);
1411	request->pid = NULL;
1412}
1413
1414static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1415{
1416	trace_i915_gem_request_retire(request);
1417
1418	/* We know the GPU must have read the request to have
1419	 * sent us the seqno + interrupt, so use the position
1420	 * of tail of the request to update the last known position
1421	 * of the GPU head.
1422	 *
1423	 * Note this requires that we are always called in request
1424	 * completion order.
1425	 */
1426	request->ringbuf->last_retired_head = request->postfix;
1427
1428	list_del_init(&request->list);
1429	i915_gem_request_remove_from_client(request);
1430
1431	i915_gem_request_unreference(request);
1432}
1433
1434static void
1435__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1436{
1437	struct intel_engine_cs *engine = req->ring;
1438	struct drm_i915_gem_request *tmp;
1439
1440	lockdep_assert_held(&engine->dev->struct_mutex);
1441
1442	if (list_empty(&req->list))
1443		return;
1444
1445	do {
1446		tmp = list_first_entry(&engine->request_list,
1447				       typeof(*tmp), list);
1448
1449		i915_gem_request_retire(tmp);
1450	} while (tmp != req);
1451
1452	WARN_ON(i915_verify_lists(engine->dev));
1453}
1454
1455/**
1456 * Waits for a request to be signaled, and cleans up the
1457 * request and object lists appropriately for that event.
1458 */
1459int
1460i915_wait_request(struct drm_i915_gem_request *req)
1461{
1462	struct drm_device *dev;
1463	struct drm_i915_private *dev_priv;
1464	bool interruptible;
1465	int ret;
1466
1467	BUG_ON(req == NULL);
1468
1469	dev = req->ring->dev;
1470	dev_priv = dev->dev_private;
1471	interruptible = dev_priv->mm.interruptible;
1472
1473	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1474
1475	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1476	if (ret)
1477		return ret;
1478
1479	ret = __i915_wait_request(req,
1480				  atomic_read(&dev_priv->gpu_error.reset_counter),
1481				  interruptible, NULL, NULL);
1482	if (ret)
1483		return ret;
1484
1485	__i915_gem_request_retire__upto(req);
1486	return 0;
1487}
1488
1489/**
1490 * Ensures that all rendering to the object has completed and the object is
1491 * safe to unbind from the GTT or access from the CPU.
1492 */
1493int
1494i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1495			       bool readonly)
1496{
1497	int ret, i;
1498
1499	if (!obj->active)
1500		return 0;
1501
1502	if (readonly) {
1503		if (obj->last_write_req != NULL) {
1504			ret = i915_wait_request(obj->last_write_req);
1505			if (ret)
1506				return ret;
1507
1508			i = obj->last_write_req->ring->id;
1509			if (obj->last_read_req[i] == obj->last_write_req)
1510				i915_gem_object_retire__read(obj, i);
1511			else
1512				i915_gem_object_retire__write(obj);
1513		}
1514	} else {
1515		for (i = 0; i < I915_NUM_RINGS; i++) {
1516			if (obj->last_read_req[i] == NULL)
1517				continue;
1518
1519			ret = i915_wait_request(obj->last_read_req[i]);
1520			if (ret)
1521				return ret;
1522
1523			i915_gem_object_retire__read(obj, i);
1524		}
1525		RQ_BUG_ON(obj->active);
1526	}
1527
1528	return 0;
1529}
1530
1531static void
1532i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1533			       struct drm_i915_gem_request *req)
1534{
1535	int ring = req->ring->id;
1536
1537	if (obj->last_read_req[ring] == req)
1538		i915_gem_object_retire__read(obj, ring);
1539	else if (obj->last_write_req == req)
1540		i915_gem_object_retire__write(obj);
1541
1542	__i915_gem_request_retire__upto(req);
1543}
1544
1545/* A nonblocking variant of the above wait. This is a highly dangerous routine
1546 * as the object state may change during this call.
1547 */
1548static __must_check int
1549i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1550					    struct intel_rps_client *rps,
1551					    bool readonly)
1552{
1553	struct drm_device *dev = obj->base.dev;
1554	struct drm_i915_private *dev_priv = dev->dev_private;
1555	struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1556	unsigned reset_counter;
1557	int ret, i, n = 0;
1558
1559	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1560	BUG_ON(!dev_priv->mm.interruptible);
1561
1562	if (!obj->active)
1563		return 0;
1564
1565	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1566	if (ret)
1567		return ret;
1568
1569	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1570
1571	if (readonly) {
1572		struct drm_i915_gem_request *req;
1573
1574		req = obj->last_write_req;
1575		if (req == NULL)
1576			return 0;
1577
1578		requests[n++] = i915_gem_request_reference(req);
1579	} else {
1580		for (i = 0; i < I915_NUM_RINGS; i++) {
1581			struct drm_i915_gem_request *req;
1582
1583			req = obj->last_read_req[i];
1584			if (req == NULL)
1585				continue;
1586
1587			requests[n++] = i915_gem_request_reference(req);
1588		}
1589	}
1590
1591	mutex_unlock(&dev->struct_mutex);
1592	for (i = 0; ret == 0 && i < n; i++)
1593		ret = __i915_wait_request(requests[i], reset_counter, true,
1594					  NULL, rps);
1595	mutex_lock(&dev->struct_mutex);
1596
1597	for (i = 0; i < n; i++) {
1598		if (ret == 0)
1599			i915_gem_object_retire_request(obj, requests[i]);
1600		i915_gem_request_unreference(requests[i]);
1601	}
1602
1603	return ret;
1604}
1605
1606static struct intel_rps_client *to_rps_client(struct drm_file *file)
1607{
1608	struct drm_i915_file_private *fpriv = file->driver_priv;
1609	return &fpriv->rps;
1610}
1611
1612/**
1613 * Called when user space prepares to use an object with the CPU, either
1614 * through the mmap ioctl's mapping or a GTT mapping.
 
 
 
1615 */
1616int
1617i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1618			  struct drm_file *file)
1619{
1620	struct drm_i915_gem_set_domain *args = data;
1621	struct drm_i915_gem_object *obj;
1622	uint32_t read_domains = args->read_domains;
1623	uint32_t write_domain = args->write_domain;
1624	int ret;
1625
1626	/* Only handle setting domains to types used by the CPU. */
1627	if (write_domain & I915_GEM_GPU_DOMAINS)
1628		return -EINVAL;
1629
1630	if (read_domains & I915_GEM_GPU_DOMAINS)
1631		return -EINVAL;
1632
1633	/* Having something in the write domain implies it's in the read
1634	 * domain, and only that read domain.  Enforce that in the request.
1635	 */
1636	if (write_domain != 0 && read_domains != write_domain)
1637		return -EINVAL;
1638
1639	ret = i915_mutex_lock_interruptible(dev);
1640	if (ret)
1641		return ret;
1642
1643	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1644	if (&obj->base == NULL) {
1645		ret = -ENOENT;
1646		goto unlock;
1647	}
1648
1649	/* Try to flush the object off the GPU without holding the lock.
1650	 * We will repeat the flush holding the lock in the normal manner
1651	 * to catch cases where we are gazumped.
1652	 */
1653	ret = i915_gem_object_wait_rendering__nonblocking(obj,
1654							  to_rps_client(file),
1655							  !write_domain);
1656	if (ret)
1657		goto unref;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658
1659	if (read_domains & I915_GEM_DOMAIN_GTT)
1660		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1661	else
1662		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1663
1664	if (write_domain != 0)
1665		intel_fb_obj_invalidate(obj,
1666					write_domain == I915_GEM_DOMAIN_GTT ?
1667					ORIGIN_GTT : ORIGIN_CPU);
1668
1669unref:
1670	drm_gem_object_unreference(&obj->base);
1671unlock:
1672	mutex_unlock(&dev->struct_mutex);
1673	return ret;
 
 
 
 
 
 
 
 
1674}
1675
1676/**
1677 * Called when user space has done writes to this buffer
 
 
 
1678 */
1679int
1680i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1681			 struct drm_file *file)
1682{
1683	struct drm_i915_gem_sw_finish *args = data;
1684	struct drm_i915_gem_object *obj;
1685	int ret = 0;
1686
1687	ret = i915_mutex_lock_interruptible(dev);
1688	if (ret)
1689		return ret;
1690
1691	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1692	if (&obj->base == NULL) {
1693		ret = -ENOENT;
1694		goto unlock;
1695	}
1696
1697	/* Pinned buffers may be scanout, so flush the cache */
1698	if (obj->pin_display)
1699		i915_gem_object_flush_cpu_write_domain(obj);
 
 
 
 
 
1700
1701	drm_gem_object_unreference(&obj->base);
1702unlock:
1703	mutex_unlock(&dev->struct_mutex);
1704	return ret;
1705}
1706
1707/**
1708 * Maps the contents of an object, returning the address it is mapped
1709 * into.
 
 
 
1710 *
1711 * While the mapping holds a reference on the contents of the object, it doesn't
1712 * imply a ref on the object itself.
1713 *
1714 * IMPORTANT:
1715 *
1716 * DRM driver writers who look a this function as an example for how to do GEM
1717 * mmap support, please don't implement mmap support like here. The modern way
1718 * to implement DRM mmap support is with an mmap offset ioctl (like
1719 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1720 * That way debug tooling like valgrind will understand what's going on, hiding
1721 * the mmap call in a driver private ioctl will break that. The i915 driver only
1722 * does cpu mmaps this way because we didn't know better.
1723 */
1724int
1725i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1726		    struct drm_file *file)
1727{
1728	struct drm_i915_gem_mmap *args = data;
1729	struct drm_gem_object *obj;
1730	unsigned long addr;
1731
1732	if (args->flags & ~(I915_MMAP_WC))
1733		return -EINVAL;
1734
1735	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1736		return -ENODEV;
1737
1738	obj = drm_gem_object_lookup(dev, file, args->handle);
1739	if (obj == NULL)
1740		return -ENOENT;
1741
1742	/* prime objects have no backing filp to GEM mmap
1743	 * pages from.
1744	 */
1745	if (!obj->filp) {
1746		drm_gem_object_unreference_unlocked(obj);
1747		return -EINVAL;
1748	}
1749
1750	addr = vm_mmap(obj->filp, 0, args->size,
1751		       PROT_READ | PROT_WRITE, MAP_SHARED,
1752		       args->offset);
1753	if (args->flags & I915_MMAP_WC) {
1754		struct mm_struct *mm = current->mm;
1755		struct vm_area_struct *vma;
1756
1757		down_write(&mm->mmap_sem);
 
 
 
1758		vma = find_vma(mm, addr);
1759		if (vma)
1760			vma->vm_page_prot =
1761				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1762		else
1763			addr = -ENOMEM;
1764		up_write(&mm->mmap_sem);
 
 
 
1765	}
1766	drm_gem_object_unreference_unlocked(obj);
1767	if (IS_ERR((void *)addr))
1768		return addr;
1769
1770	args->addr_ptr = (uint64_t) addr;
1771
1772	return 0;
1773}
1774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1775/**
1776 * i915_gem_fault - fault a page into the GTT
1777 * @vma: VMA in question
1778 * @vmf: fault info
1779 *
1780 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1781 * from userspace.  The fault handler takes care of binding the object to
1782 * the GTT (if needed), allocating and programming a fence register (again,
1783 * only if needed based on whether the old reg is still valid or the object
1784 * is tiled) and inserting a new PTE into the faulting process.
1785 *
1786 * Note that the faulting process may involve evicting existing objects
1787 * from the GTT and/or fence registers to make room.  So performance may
1788 * suffer if the GTT working set is large or there are few fence registers
1789 * left.
 
 
 
1790 */
1791int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1792{
1793	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
 
1794	struct drm_device *dev = obj->base.dev;
1795	struct drm_i915_private *dev_priv = dev->dev_private;
1796	struct i915_ggtt_view view = i915_ggtt_view_normal;
1797	pgoff_t page_offset;
1798	unsigned long pfn;
1799	int ret = 0;
1800	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801
1802	intel_runtime_pm_get(dev_priv);
 
 
1803
1804	/* We don't use vmf->pgoff since that has the fake offset */
1805	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806		PAGE_SHIFT;
1807
1808	ret = i915_mutex_lock_interruptible(dev);
1809	if (ret)
1810		goto out;
1811
1812	trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
1814	/* Try to flush the object off the GPU first without holding the lock.
1815	 * Upon reacquiring the lock, we will perform our sanity checks and then
1816	 * repeat the flush holding the lock in the normal manner to catch cases
1817	 * where we are gazumped.
1818	 */
1819	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
 
 
 
1820	if (ret)
1821		goto unlock;
 
 
 
 
 
 
 
 
 
 
1822
1823	/* Access to snoopable pages through the GTT is incoherent. */
1824	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825		ret = -EFAULT;
1826		goto unlock;
1827	}
1828
1829	/* Use a partial view if the object is bigger than the aperture. */
1830	if (obj->base.size >= dev_priv->gtt.mappable_end &&
1831	    obj->tiling_mode == I915_TILING_NONE) {
1832		static const unsigned int chunk_size = 256; // 1 MiB
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833
1834		memset(&view, 0, sizeof(view));
1835		view.type = I915_GGTT_VIEW_PARTIAL;
1836		view.params.partial.offset = rounddown(page_offset, chunk_size);
1837		view.params.partial.size =
1838			min_t(unsigned int,
1839			      chunk_size,
1840			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841			      view.params.partial.offset);
1842	}
1843
1844	/* Now pin it into the GTT if needed */
1845	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846	if (ret)
1847		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
1848
1849	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850	if (ret)
1851		goto unpin;
1852
1853	ret = i915_gem_object_get_fence(obj);
1854	if (ret)
1855		goto unpin;
1856
1857	/* Finally, remap it using the new GTT offset */
1858	pfn = dev_priv->gtt.mappable_base +
1859		i915_gem_obj_ggtt_offset_view(obj, &view);
1860	pfn >>= PAGE_SHIFT;
1861
1862	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863		/* Overriding existing pages in partial view does not cause
1864		 * us any trouble as TLBs are still valid because the fault
1865		 * is due to userspace losing part of the mapping or never
1866		 * having accessed it before (at this partials' range).
1867		 */
1868		unsigned long base = vma->vm_start +
1869				     (view.params.partial.offset << PAGE_SHIFT);
1870		unsigned int i;
1871
1872		for (i = 0; i < view.params.partial.size; i++) {
1873			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874			if (ret)
1875				break;
1876		}
1877
1878		obj->fault_mappable = true;
1879	} else {
1880		if (!obj->fault_mappable) {
1881			unsigned long size = min_t(unsigned long,
1882						   vma->vm_end - vma->vm_start,
1883						   obj->base.size);
1884			int i;
1885
1886			for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887				ret = vm_insert_pfn(vma,
1888						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889						    pfn + i);
1890				if (ret)
1891					break;
1892			}
1893
1894			obj->fault_mappable = true;
1895		} else
1896			ret = vm_insert_pfn(vma,
1897					    (unsigned long)vmf->virtual_address,
1898					    pfn + page_offset);
1899	}
1900unpin:
1901	i915_gem_object_ggtt_unpin_view(obj, &view);
1902unlock:
1903	mutex_unlock(&dev->struct_mutex);
1904out:
 
 
 
1905	switch (ret) {
1906	case -EIO:
1907		/*
1908		 * We eat errors when the gpu is terminally wedged to avoid
1909		 * userspace unduly crashing (gl has no provisions for mmaps to
1910		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911		 * and so needs to be reported.
1912		 */
1913		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914			ret = VM_FAULT_SIGBUS;
1915			break;
1916		}
1917	case -EAGAIN:
1918		/*
1919		 * EAGAIN means the gpu is hung and we'll wait for the error
1920		 * handler to reset everything when re-faulting in
1921		 * i915_mutex_lock_interruptible.
1922		 */
1923	case 0:
1924	case -ERESTARTSYS:
1925	case -EINTR:
1926	case -EBUSY:
1927		/*
1928		 * EBUSY is ok: this just means that another thread
1929		 * already did the job.
1930		 */
1931		ret = VM_FAULT_NOPAGE;
1932		break;
1933	case -ENOMEM:
1934		ret = VM_FAULT_OOM;
1935		break;
1936	case -ENOSPC:
1937	case -EFAULT:
1938		ret = VM_FAULT_SIGBUS;
1939		break;
1940	default:
1941		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942		ret = VM_FAULT_SIGBUS;
1943		break;
1944	}
1945
1946	intel_runtime_pm_put(dev_priv);
1947	return ret;
1948}
1949
1950/**
1951 * i915_gem_release_mmap - remove physical page mappings
1952 * @obj: obj in question
1953 *
1954 * Preserve the reservation of the mmapping with the DRM core code, but
1955 * relinquish ownership of the pages back to the system.
1956 *
1957 * It is vital that we remove the page mapping if we have mapped a tiled
1958 * object through the GTT and then lose the fence register due to
1959 * resource pressure. Similarly if the object has been moved out of the
1960 * aperture, than pages mapped into userspace must be revoked. Removing the
1961 * mapping will then trigger a page fault on the next user access, allowing
1962 * fixup by i915_gem_fault().
1963 */
1964void
1965i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966{
1967	if (!obj->fault_mappable)
1968		return;
1969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1970	drm_vma_node_unmap(&obj->base.vma_node,
1971			   obj->base.dev->anon_inode->i_mapping);
1972	obj->fault_mappable = false;
 
 
 
 
 
 
 
 
 
 
 
1973}
1974
1975void
1976i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977{
1978	struct drm_i915_gem_object *obj;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1979
1980	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981		i915_gem_release_mmap(obj);
 
 
 
 
1982}
1983
1984uint32_t
1985i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
 
 
 
 
 
 
 
 
 
1986{
1987	uint32_t gtt_size;
 
 
1988
1989	if (INTEL_INFO(dev)->gen >= 4 ||
1990	    tiling_mode == I915_TILING_NONE)
1991		return size;
1992
1993	/* Previous chips need a power-of-two fence region when tiling */
1994	if (INTEL_INFO(dev)->gen == 3)
1995		gtt_size = 1024*1024;
1996	else
1997		gtt_size = 512*1024;
1998
1999	while (gtt_size < size)
2000		gtt_size <<= 1;
2001
2002	return gtt_size;
2003}
2004
2005/**
2006 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007 * @obj: object to check
 
 
 
2008 *
2009 * Return the required GTT alignment for an object, taking into account
2010 * potential fence register mapping.
2011 */
2012uint32_t
2013i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014			   int tiling_mode, bool fenced)
2015{
 
 
2016	/*
2017	 * Minimum alignment is 4k (GTT page size), but might be greater
2018	 * if a fence register is needed for the object.
2019	 */
2020	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021	    tiling_mode == I915_TILING_NONE)
2022		return 4096;
2023
2024	/*
2025	 * Previous chips need to be aligned to the size of the smallest
2026	 * fence register that can contain the object.
2027	 */
2028	return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029}
2030
2031static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032{
2033	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034	int ret;
2035
2036	if (drm_vma_node_has_offset(&obj->base.vma_node))
 
2037		return 0;
2038
2039	dev_priv->mm.shrinker_no_lock_stealing = true;
2040
2041	ret = drm_gem_create_mmap_offset(&obj->base);
2042	if (ret != -ENOSPC)
2043		goto out;
2044
2045	/* Badly fragmented mmap space? The only way we can recover
2046	 * space is by destroying unwanted objects. We can't randomly release
2047	 * mmap_offsets as userspace expects them to be persistent for the
2048	 * lifetime of the objects. The closest we can is to release the
2049	 * offsets on purgeable objects by truncating it and marking it purged,
2050	 * which prevents userspace from ever using that object again.
2051	 */
2052	i915_gem_shrink(dev_priv,
2053			obj->base.size >> PAGE_SHIFT,
2054			I915_SHRINK_BOUND |
2055			I915_SHRINK_UNBOUND |
2056			I915_SHRINK_PURGEABLE);
2057	ret = drm_gem_create_mmap_offset(&obj->base);
2058	if (ret != -ENOSPC)
2059		goto out;
2060
2061	i915_gem_shrink_all(dev_priv);
2062	ret = drm_gem_create_mmap_offset(&obj->base);
2063out:
2064	dev_priv->mm.shrinker_no_lock_stealing = false;
2065
2066	return ret;
2067}
2068
2069static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070{
2071	drm_gem_free_mmap_offset(&obj->base);
2072}
2073
2074int
2075i915_gem_mmap_gtt(struct drm_file *file,
2076		  struct drm_device *dev,
2077		  uint32_t handle,
2078		  uint64_t *offset)
2079{
2080	struct drm_i915_gem_object *obj;
2081	int ret;
2082
2083	ret = i915_mutex_lock_interruptible(dev);
2084	if (ret)
2085		return ret;
2086
2087	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088	if (&obj->base == NULL) {
2089		ret = -ENOENT;
2090		goto unlock;
2091	}
2092
2093	if (obj->madv != I915_MADV_WILLNEED) {
2094		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095		ret = -EFAULT;
2096		goto out;
2097	}
2098
2099	ret = i915_gem_object_create_mmap_offset(obj);
2100	if (ret)
2101		goto out;
2102
2103	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104
2105out:
2106	drm_gem_object_unreference(&obj->base);
2107unlock:
2108	mutex_unlock(&dev->struct_mutex);
2109	return ret;
2110}
2111
2112/**
2113 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114 * @dev: DRM device
2115 * @data: GTT mapping ioctl data
2116 * @file: GEM object info
2117 *
2118 * Simply returns the fake offset to userspace so it can mmap it.
2119 * The mmap call will end up in drm_gem_mmap(), which will set things
2120 * up so we can get faults in the handler above.
2121 *
2122 * The fault handler will take care of binding the object into the GTT
2123 * (since it may have been evicted to make room for something), allocating
2124 * a fence register, and mapping the appropriate aperture address into
2125 * userspace.
2126 */
2127int
2128i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129			struct drm_file *file)
2130{
2131	struct drm_i915_gem_mmap_gtt *args = data;
2132
2133	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134}
2135
2136/* Immediately discard the backing storage */
2137static void
2138i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139{
2140	i915_gem_object_free_mmap_offset(obj);
2141
2142	if (obj->base.filp == NULL)
2143		return;
2144
2145	/* Our goal here is to return as much of the memory as
2146	 * is possible back to the system as we are called from OOM.
2147	 * To do this we must instruct the shmfs to drop all of its
2148	 * backing pages, *now*.
2149	 */
2150	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2151	obj->madv = __I915_MADV_PURGED;
 
2152}
2153
2154/* Try to discard unwanted pages */
2155static void
2156i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2157{
2158	struct address_space *mapping;
2159
2160	switch (obj->madv) {
 
 
 
2161	case I915_MADV_DONTNEED:
2162		i915_gem_object_truncate(obj);
2163	case __I915_MADV_PURGED:
2164		return;
2165	}
2166
2167	if (obj->base.filp == NULL)
2168		return;
2169
2170	mapping = file_inode(obj->base.filp)->i_mapping,
2171	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172}
2173
2174static void
2175i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
 
2176{
2177	struct sg_page_iter sg_iter;
2178	int ret;
2179
2180	BUG_ON(obj->madv == __I915_MADV_PURGED);
2181
2182	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183	if (ret) {
2184		/* In the event of a disaster, abandon all caches and
2185		 * hope for the best.
2186		 */
2187		WARN_ON(ret != -EIO);
2188		i915_gem_clflush_object(obj, true);
2189		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190	}
2191
2192	i915_gem_gtt_finish_object(obj);
2193
2194	if (i915_gem_object_needs_bit17_swizzle(obj))
2195		i915_gem_object_save_bit_17_swizzle(obj);
2196
2197	if (obj->madv == I915_MADV_DONTNEED)
2198		obj->dirty = 0;
2199
2200	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201		struct page *page = sg_page_iter_page(&sg_iter);
2202
2203		if (obj->dirty)
2204			set_page_dirty(page);
2205
2206		if (obj->madv == I915_MADV_WILLNEED)
2207			mark_page_accessed(page);
2208
2209		put_page(page);
2210	}
2211	obj->dirty = 0;
2212
2213	sg_free_table(obj->pages);
2214	kfree(obj->pages);
2215}
2216
2217int
2218i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219{
2220	const struct drm_i915_gem_object_ops *ops = obj->ops;
 
2221
2222	if (obj->pages == NULL)
2223		return 0;
 
2224
2225	if (obj->pages_pin_count)
2226		return -EBUSY;
 
 
 
 
 
2227
2228	BUG_ON(i915_gem_obj_bound_any(obj));
 
 
 
 
 
 
 
2229
2230	/* ->put_pages might need to allocate memory for the bit17 swizzle
2231	 * array, hence protect them from being reaped by removing them from gtt
2232	 * lists early. */
2233	list_del(&obj->global_list);
 
2234
2235	ops->put_pages(obj);
2236	obj->pages = NULL;
2237
2238	i915_gem_object_invalidate(obj);
 
 
 
 
2239
2240	return 0;
 
 
 
 
 
 
 
 
 
2241}
2242
2243static int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2244i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245{
2246	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247	int page_count, i;
 
2248	struct address_space *mapping;
2249	struct sg_table *st;
2250	struct scatterlist *sg;
2251	struct sg_page_iter sg_iter;
2252	struct page *page;
2253	unsigned long last_pfn = 0;	/* suppress gcc warning */
 
2254	int ret;
2255	gfp_t gfp;
2256
2257	/* Assert that the object is not currently in any GPU domain. As it
2258	 * wasn't in the GTT, there shouldn't be any way it could have been in
2259	 * a GPU cache
2260	 */
2261	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
 
 
 
 
2263
2264	st = kmalloc(sizeof(*st), GFP_KERNEL);
2265	if (st == NULL)
2266		return -ENOMEM;
2267
2268	page_count = obj->base.size / PAGE_SIZE;
2269	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2270		kfree(st);
2271		return -ENOMEM;
2272	}
2273
2274	/* Get the list of pages out of our struct file.  They'll be pinned
2275	 * at this point until we release them.
2276	 *
2277	 * Fail silently without starting the shrinker
2278	 */
2279	mapping = file_inode(obj->base.filp)->i_mapping;
2280	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282	sg = st->sgl;
2283	st->nents = 0;
2284	for (i = 0; i < page_count; i++) {
2285		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286		if (IS_ERR(page)) {
2287			i915_gem_shrink(dev_priv,
2288					page_count,
2289					I915_SHRINK_BOUND |
2290					I915_SHRINK_UNBOUND |
2291					I915_SHRINK_PURGEABLE);
2292			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293		}
2294		if (IS_ERR(page)) {
2295			/* We've tried hard to allocate the memory by reaping
2296			 * our own buffer, now let the real VM do its job and
2297			 * go down in flames if truly OOM.
2298			 */
2299			i915_gem_shrink_all(dev_priv);
2300			page = shmem_read_mapping_page(mapping, i);
2301			if (IS_ERR(page)) {
2302				ret = PTR_ERR(page);
2303				goto err_pages;
2304			}
2305		}
2306#ifdef CONFIG_SWIOTLB
2307		if (swiotlb_nr_tbl()) {
2308			st->nents++;
2309			sg_set_page(sg, page, PAGE_SIZE, 0);
2310			sg = sg_next(sg);
2311			continue;
2312		}
2313#endif
2314		if (!i || page_to_pfn(page) != last_pfn + 1) {
2315			if (i)
2316				sg = sg_next(sg);
2317			st->nents++;
2318			sg_set_page(sg, page, PAGE_SIZE, 0);
2319		} else {
2320			sg->length += PAGE_SIZE;
2321		}
2322		last_pfn = page_to_pfn(page);
2323
2324		/* Check that the i965g/gm workaround works. */
2325		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326	}
2327#ifdef CONFIG_SWIOTLB
2328	if (!swiotlb_nr_tbl())
2329#endif
2330		sg_mark_end(sg);
2331	obj->pages = st;
2332
2333	ret = i915_gem_gtt_prepare_object(obj);
2334	if (ret)
2335		goto err_pages;
2336
2337	if (i915_gem_object_needs_bit17_swizzle(obj))
2338		i915_gem_object_do_bit_17_swizzle(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2339
2340	if (obj->tiling_mode != I915_TILING_NONE &&
2341	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342		i915_gem_object_pin_pages(obj);
2343
2344	return 0;
2345
2346err_pages:
2347	sg_mark_end(sg);
2348	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2349		put_page(sg_page_iter_page(&sg_iter));
 
2350	sg_free_table(st);
2351	kfree(st);
2352
2353	/* shmemfs first checks if there is enough memory to allocate the page
2354	 * and reports ENOSPC should there be insufficient, along with the usual
2355	 * ENOMEM for a genuine allocation failure.
2356	 *
2357	 * We use ENOSPC in our driver to mean that we have run out of aperture
2358	 * space and so want to translate the error from shmemfs back to our
2359	 * usual understanding of ENOMEM.
2360	 */
2361	if (ret == -ENOSPC)
2362		ret = -ENOMEM;
2363
2364	return ret;
2365}
2366
2367/* Ensure that the associated pages are gathered from the backing storage
2368 * and pinned into our object. i915_gem_object_get_pages() may be called
2369 * multiple times before they are released by a single call to
2370 * i915_gem_object_put_pages() - once the pages are no longer referenced
2371 * either as a result of memory pressure (reaping pages under the shrinker)
2372 * or as the object is itself released.
2373 */
2374int
2375i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376{
2377	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378	const struct drm_i915_gem_object_ops *ops = obj->ops;
2379	int ret;
2380
2381	if (obj->pages)
2382		return 0;
2383
2384	if (obj->madv != I915_MADV_WILLNEED) {
2385		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386		return -EFAULT;
2387	}
2388
2389	BUG_ON(obj->pages_pin_count);
2390
2391	ret = ops->get_pages(obj);
2392	if (ret)
2393		return ret;
2394
2395	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396
2397	obj->get_page.sg = obj->pages->sgl;
2398	obj->get_page.last = 0;
2399
2400	return 0;
2401}
2402
2403void i915_vma_move_to_active(struct i915_vma *vma,
2404			     struct drm_i915_gem_request *req)
2405{
2406	struct drm_i915_gem_object *obj = vma->obj;
2407	struct intel_engine_cs *ring;
2408
2409	ring = i915_gem_request_get_ring(req);
2410
2411	/* Add a reference if we're newly entering the active list. */
2412	if (obj->active == 0)
2413		drm_gem_object_reference(&obj->base);
2414	obj->active |= intel_ring_flag(ring);
2415
2416	list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2417	i915_gem_request_assign(&obj->last_read_req[ring->id], req);
 
 
2418
2419	list_move_tail(&vma->vm_link, &vma->vm->active_list);
2420}
 
2421
2422static void
2423i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2424{
2425	RQ_BUG_ON(obj->last_write_req == NULL);
2426	RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2427
2428	i915_gem_request_assign(&obj->last_write_req, NULL);
2429	intel_fb_obj_flush(obj, true, ORIGIN_CS);
2430}
2431
2432static void
2433i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
 
 
 
 
 
 
2434{
2435	struct i915_vma *vma;
2436
2437	RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2438	RQ_BUG_ON(!(obj->active & (1 << ring)));
2439
2440	list_del_init(&obj->ring_list[ring]);
2441	i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2442
2443	if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2444		i915_gem_object_retire__write(obj);
2445
2446	obj->active &= ~(1 << ring);
2447	if (obj->active)
2448		return;
2449
2450	/* Bump our place on the bound list to keep it roughly in LRU order
2451	 * so that we don't steal from recently used but inactive objects
2452	 * (unless we are forced to ofc!)
2453	 */
2454	list_move_tail(&obj->global_list,
2455		       &to_i915(obj->base.dev)->mm.bound_list);
 
 
2456
2457	list_for_each_entry(vma, &obj->vma_list, obj_link) {
2458		if (!list_empty(&vma->vm_link))
2459			list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2460	}
 
2461
2462	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2463	drm_gem_object_unreference(&obj->base);
 
2464}
2465
2466static int
2467i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
 
2468{
2469	struct drm_i915_private *dev_priv = dev->dev_private;
2470	struct intel_engine_cs *ring;
2471	int ret, i, j;
2472
2473	/* Carefully retire all requests without writing to the rings */
2474	for_each_ring(ring, dev_priv, i) {
2475		ret = intel_ring_idle(ring);
2476		if (ret)
2477			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2478	}
2479	i915_gem_retire_requests(dev);
2480
2481	/* Finally reset hw state */
2482	for_each_ring(ring, dev_priv, i) {
2483		intel_ring_init_seqno(ring, seqno);
2484
2485		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2486			ring->semaphore.sync_seqno[j] = 0;
2487	}
2488
2489	return 0;
2490}
2491
2492int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
 
 
2493{
2494	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
2495	int ret;
2496
2497	if (seqno == 0)
2498		return -EINVAL;
2499
2500	/* HWS page needs to be set less than what we
2501	 * will inject to ring
2502	 */
2503	ret = i915_gem_init_seqno(dev, seqno - 1);
2504	if (ret)
2505		return ret;
2506
2507	/* Carefully set the last_seqno value so that wrap
2508	 * detection still works
2509	 */
2510	dev_priv->next_seqno = seqno;
2511	dev_priv->last_seqno = seqno - 1;
2512	if (dev_priv->last_seqno == 0)
2513		dev_priv->last_seqno--;
2514
2515	return 0;
2516}
2517
2518int
2519i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2520{
2521	struct drm_i915_private *dev_priv = dev->dev_private;
2522
2523	/* reserve 0 for non-seqno */
2524	if (dev_priv->next_seqno == 0) {
2525		int ret = i915_gem_init_seqno(dev, 0);
2526		if (ret)
2527			return ret;
 
2528
2529		dev_priv->next_seqno = 1;
 
 
 
2530	}
 
2531
2532	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2533	return 0;
2534}
2535
2536/*
2537 * NB: This function is not allowed to fail. Doing so would mean the the
2538 * request is not being tracked for completion but the work itself is
2539 * going to happen on the hardware. This would be a Bad Thing(tm).
2540 */
2541void __i915_add_request(struct drm_i915_gem_request *request,
2542			struct drm_i915_gem_object *obj,
2543			bool flush_caches)
2544{
2545	struct intel_engine_cs *ring;
2546	struct drm_i915_private *dev_priv;
2547	struct intel_ringbuffer *ringbuf;
2548	u32 request_start;
2549	int ret;
2550
2551	if (WARN_ON(request == NULL))
2552		return;
2553
2554	ring = request->ring;
2555	dev_priv = ring->dev->dev_private;
2556	ringbuf = request->ringbuf;
2557
2558	/*
2559	 * To ensure that this call will not fail, space for its emissions
2560	 * should already have been reserved in the ring buffer. Let the ring
2561	 * know that it is time to use that space up.
2562	 */
2563	intel_ring_reserved_space_use(ringbuf);
2564
2565	request_start = intel_ring_get_tail(ringbuf);
2566	/*
2567	 * Emit any outstanding flushes - execbuf can fail to emit the flush
2568	 * after having emitted the batchbuffer command. Hence we need to fix
2569	 * things up similar to emitting the lazy request. The difference here
2570	 * is that the flush _must_ happen before the next request, no matter
2571	 * what.
2572	 */
2573	if (flush_caches) {
2574		if (i915.enable_execlists)
2575			ret = logical_ring_flush_all_caches(request);
2576		else
2577			ret = intel_ring_flush_all_caches(request);
2578		/* Not allowed to fail! */
2579		WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2580	}
2581
2582	/* Record the position of the start of the request so that
2583	 * should we detect the updated seqno part-way through the
2584	 * GPU processing the request, we never over-estimate the
2585	 * position of the head.
2586	 */
2587	request->postfix = intel_ring_get_tail(ringbuf);
2588
2589	if (i915.enable_execlists)
2590		ret = ring->emit_request(request);
2591	else {
2592		ret = ring->add_request(request);
2593
2594		request->tail = intel_ring_get_tail(ringbuf);
2595	}
2596	/* Not allowed to fail! */
2597	WARN(ret, "emit|add_request failed: %d!\n", ret);
2598
2599	request->head = request_start;
2600
2601	/* Whilst this request exists, batch_obj will be on the
2602	 * active_list, and so will hold the active reference. Only when this
2603	 * request is retired will the the batch_obj be moved onto the
2604	 * inactive_list and lose its active reference. Hence we do not need
2605	 * to explicitly hold another reference here.
2606	 */
2607	request->batch_obj = obj;
2608
2609	request->emitted_jiffies = jiffies;
2610	request->previous_seqno = ring->last_submitted_seqno;
2611	ring->last_submitted_seqno = request->seqno;
2612	list_add_tail(&request->list, &ring->request_list);
2613
2614	trace_i915_gem_request_add(request);
2615
2616	i915_queue_hangcheck(ring->dev);
 
2617
2618	queue_delayed_work(dev_priv->wq,
2619			   &dev_priv->mm.retire_work,
2620			   round_jiffies_up_relative(HZ));
2621	intel_mark_busy(dev_priv->dev);
2622
2623	/* Sanity check that the reserved size was large enough. */
2624	intel_ring_reserved_space_end(ringbuf);
 
 
 
2625}
2626
2627static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2628				   const struct intel_context *ctx)
2629{
2630	unsigned long elapsed;
2631
2632	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2633
2634	if (ctx->hang_stats.banned)
2635		return true;
2636
 
2637	if (ctx->hang_stats.ban_period_seconds &&
2638	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2639		if (!i915_gem_context_is_default(ctx)) {
2640			DRM_DEBUG("context hanging too fast, banning!\n");
2641			return true;
2642		} else if (i915_stop_ring_allow_ban(dev_priv)) {
2643			if (i915_stop_ring_allow_warn(dev_priv))
2644				DRM_ERROR("gpu hanging too fast, banning!\n");
2645			return true;
2646		}
2647	}
2648
2649	return false;
2650}
2651
2652static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2653				  struct intel_context *ctx,
2654				  const bool guilty)
2655{
2656	struct i915_ctx_hang_stats *hs;
2657
2658	if (WARN_ON(!ctx))
2659		return;
2660
2661	hs = &ctx->hang_stats;
2662
2663	if (guilty) {
2664		hs->banned = i915_context_is_banned(dev_priv, ctx);
2665		hs->batch_active++;
2666		hs->guilty_ts = get_seconds();
2667	} else {
2668		hs->batch_pending++;
2669	}
2670}
2671
2672void i915_gem_request_free(struct kref *req_ref)
 
2673{
2674	struct drm_i915_gem_request *req = container_of(req_ref,
2675						 typeof(*req), ref);
2676	struct intel_context *ctx = req->ctx;
2677
2678	if (req->file_priv)
2679		i915_gem_request_remove_from_client(req);
2680
2681	if (ctx) {
2682		if (i915.enable_execlists && ctx != req->i915->kernel_context)
2683			intel_lr_context_unpin(ctx, req->ring);
 
 
 
 
 
 
 
 
2684
2685		i915_gem_context_unreference(ctx);
2686	}
2687
2688	kmem_cache_free(req->i915->requests, req);
2689}
2690
2691static inline int
2692__i915_gem_request_alloc(struct intel_engine_cs *ring,
2693			 struct intel_context *ctx,
2694			 struct drm_i915_gem_request **req_out)
2695{
2696	struct drm_i915_private *dev_priv = to_i915(ring->dev);
2697	struct drm_i915_gem_request *req;
2698	int ret;
2699
2700	if (!req_out)
2701		return -EINVAL;
2702
2703	*req_out = NULL;
2704
2705	req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2706	if (req == NULL)
2707		return -ENOMEM;
2708
2709	ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2710	if (ret)
2711		goto err;
2712
2713	kref_init(&req->ref);
2714	req->i915 = dev_priv;
2715	req->ring = ring;
2716	req->ctx  = ctx;
2717	i915_gem_context_reference(req->ctx);
2718
2719	if (i915.enable_execlists)
2720		ret = intel_logical_ring_alloc_request_extras(req);
2721	else
2722		ret = intel_ring_alloc_request_extras(req);
2723	if (ret) {
2724		i915_gem_context_unreference(req->ctx);
2725		goto err;
2726	}
2727
2728	/*
2729	 * Reserve space in the ring buffer for all the commands required to
2730	 * eventually emit this request. This is to guarantee that the
2731	 * i915_add_request() call can't fail. Note that the reserve may need
2732	 * to be redone if the request is not actually submitted straight
2733	 * away, e.g. because a GPU scheduler has deferred it.
2734	 */
2735	if (i915.enable_execlists)
2736		ret = intel_logical_ring_reserve_space(req);
2737	else
2738		ret = intel_ring_reserve_space(req);
2739	if (ret) {
2740		/*
2741		 * At this point, the request is fully allocated even if not
2742		 * fully prepared. Thus it can be cleaned up using the proper
2743		 * free code.
2744		 */
2745		i915_gem_request_cancel(req);
2746		return ret;
2747	}
2748
2749	*req_out = req;
2750	return 0;
2751
2752err:
2753	kmem_cache_free(dev_priv->requests, req);
2754	return ret;
2755}
2756
2757/**
2758 * i915_gem_request_alloc - allocate a request structure
2759 *
2760 * @engine: engine that we wish to issue the request on.
2761 * @ctx: context that the request will be associated with.
2762 *       This can be NULL if the request is not directly related to
2763 *       any specific user context, in which case this function will
2764 *       choose an appropriate context to use.
2765 *
2766 * Returns a pointer to the allocated request if successful,
2767 * or an error code if not.
2768 */
2769struct drm_i915_gem_request *
2770i915_gem_request_alloc(struct intel_engine_cs *engine,
2771		       struct intel_context *ctx)
2772{
2773	struct drm_i915_gem_request *req;
2774	int err;
2775
2776	if (ctx == NULL)
2777		ctx = to_i915(engine->dev)->kernel_context;
2778	err = __i915_gem_request_alloc(engine, ctx, &req);
2779	return err ? ERR_PTR(err) : req;
2780}
2781
2782void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2783{
2784	intel_ring_reserved_space_cancel(req->ringbuf);
2785
2786	i915_gem_request_unreference(req);
2787}
2788
2789struct drm_i915_gem_request *
2790i915_gem_find_active_request(struct intel_engine_cs *ring)
2791{
2792	struct drm_i915_gem_request *request;
2793
2794	list_for_each_entry(request, &ring->request_list, list) {
2795		if (i915_gem_request_completed(request, false))
2796			continue;
2797
2798		return request;
2799	}
2800
2801	return NULL;
2802}
2803
2804static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2805				       struct intel_engine_cs *ring)
2806{
2807	struct drm_i915_gem_request *request;
 
 
 
2808	bool ring_hung;
2809
2810	request = i915_gem_find_active_request(ring);
 
2811
2812	if (request == NULL)
 
2813		return;
2814
2815	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
 
 
2816
2817	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2818
2819	list_for_each_entry_continue(request, &ring->request_list, list)
2820		i915_set_reset_status(dev_priv, request->ctx, false);
2821}
2822
2823static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2824					struct intel_engine_cs *ring)
2825{
2826	struct intel_ringbuffer *buffer;
2827
2828	while (!list_empty(&ring->active_list)) {
2829		struct drm_i915_gem_object *obj;
2830
2831		obj = list_first_entry(&ring->active_list,
2832				       struct drm_i915_gem_object,
2833				       ring_list[ring->id]);
2834
2835		i915_gem_object_retire__read(obj, ring->id);
2836	}
2837
2838	/*
2839	 * Clear the execlists queue up before freeing the requests, as those
2840	 * are the ones that keep the context and ringbuffer backing objects
2841	 * pinned in place.
 
 
 
2842	 */
 
 
 
2843
2844	if (i915.enable_execlists) {
2845		spin_lock_irq(&ring->execlist_lock);
2846
2847		/* list_splice_tail_init checks for empty lists */
2848		list_splice_tail_init(&ring->execlist_queue,
2849				      &ring->execlist_retired_req_list);
2850
2851		spin_unlock_irq(&ring->execlist_lock);
2852		intel_execlists_retire_requests(ring);
2853	}
2854
2855	/*
2856	 * We must free the requests after all the corresponding objects have
2857	 * been moved off active lists. Which is the same order as the normal
2858	 * retire_requests function does. This is important if object hold
2859	 * implicit references on things like e.g. ppgtt address spaces through
2860	 * the request.
2861	 */
2862	while (!list_empty(&ring->request_list)) {
2863		struct drm_i915_gem_request *request;
2864
2865		request = list_first_entry(&ring->request_list,
2866					   struct drm_i915_gem_request,
2867					   list);
2868
2869		i915_gem_request_retire(request);
2870	}
2871
2872	/* Having flushed all requests from all queues, we know that all
2873	 * ringbuffers must now be empty. However, since we do not reclaim
2874	 * all space when retiring the request (to prevent HEADs colliding
2875	 * with rapid ringbuffer wraparound) the amount of available space
2876	 * upon reset is less than when we start. Do one more pass over
2877	 * all the ringbuffers to reset last_retired_head.
2878	 */
2879	list_for_each_entry(buffer, &ring->buffers, link) {
2880		buffer->last_retired_head = buffer->tail;
2881		intel_ring_update_space(buffer);
2882	}
2883}
2884
2885void i915_gem_reset(struct drm_device *dev)
2886{
2887	struct drm_i915_private *dev_priv = dev->dev_private;
2888	struct intel_engine_cs *ring;
2889	int i;
2890
2891	/*
2892	 * Before we free the objects from the requests, we need to inspect
2893	 * them for finding the guilty party. As the requests only borrow
2894	 * their reference to the objects, the inspection must be done first.
2895	 */
2896	for_each_ring(ring, dev_priv, i)
2897		i915_gem_reset_ring_status(dev_priv, ring);
2898
2899	for_each_ring(ring, dev_priv, i)
2900		i915_gem_reset_ring_cleanup(dev_priv, ring);
2901
2902	i915_gem_context_reset(dev);
 
2903
2904	i915_gem_restore_fences(dev);
2905
2906	WARN_ON(i915_verify_lists(dev));
 
 
 
 
 
2907}
2908
2909/**
2910 * This function clears the request list as sequence numbers are passed.
2911 */
2912void
2913i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2914{
2915	WARN_ON(i915_verify_lists(ring->dev));
2916
2917	/* Retire requests first as we use it above for the early return.
2918	 * If we retire requests last, we may use a later seqno and so clear
2919	 * the requests lists without clearing the active list, leading to
2920	 * confusion.
2921	 */
2922	while (!list_empty(&ring->request_list)) {
2923		struct drm_i915_gem_request *request;
2924
2925		request = list_first_entry(&ring->request_list,
2926					   struct drm_i915_gem_request,
2927					   list);
2928
2929		if (!i915_gem_request_completed(request, true))
2930			break;
 
2931
2932		i915_gem_request_retire(request);
2933	}
 
 
 
 
2934
2935	/* Move any buffers on the active list that are no longer referenced
2936	 * by the ringbuffer to the flushing/inactive lists as appropriate,
2937	 * before we free the context associated with the requests.
 
2938	 */
2939	while (!list_empty(&ring->active_list)) {
2940		struct drm_i915_gem_object *obj;
2941
2942		obj = list_first_entry(&ring->active_list,
2943				      struct drm_i915_gem_object,
2944				      ring_list[ring->id]);
2945
2946		if (!list_empty(&obj->last_read_req[ring->id]->list))
2947			break;
2948
2949		i915_gem_object_retire__read(obj, ring->id);
2950	}
 
 
 
2951
2952	if (unlikely(ring->trace_irq_req &&
2953		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2954		ring->irq_put(ring);
2955		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2956	}
2957
2958	WARN_ON(i915_verify_lists(ring->dev));
2959}
2960
2961bool
2962i915_gem_retire_requests(struct drm_device *dev)
2963{
2964	struct drm_i915_private *dev_priv = dev->dev_private;
2965	struct intel_engine_cs *ring;
2966	bool idle = true;
2967	int i;
2968
2969	for_each_ring(ring, dev_priv, i) {
2970		i915_gem_retire_requests_ring(ring);
2971		idle &= list_empty(&ring->request_list);
2972		if (i915.enable_execlists) {
2973			spin_lock_irq(&ring->execlist_lock);
2974			idle &= list_empty(&ring->execlist_queue);
2975			spin_unlock_irq(&ring->execlist_lock);
2976
2977			intel_execlists_retire_requests(ring);
2978		}
2979	}
2980
2981	if (idle)
2982		mod_delayed_work(dev_priv->wq,
2983				   &dev_priv->mm.idle_work,
2984				   msecs_to_jiffies(100));
2985
2986	return idle;
2987}
2988
2989static void
2990i915_gem_retire_work_handler(struct work_struct *work)
2991{
2992	struct drm_i915_private *dev_priv =
2993		container_of(work, typeof(*dev_priv), mm.retire_work.work);
2994	struct drm_device *dev = dev_priv->dev;
2995	bool idle;
2996
2997	/* Come back later if the device is busy... */
2998	idle = false;
2999	if (mutex_trylock(&dev->struct_mutex)) {
3000		idle = i915_gem_retire_requests(dev);
3001		mutex_unlock(&dev->struct_mutex);
3002	}
3003	if (!idle)
3004		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
 
 
 
 
 
 
 
3005				   round_jiffies_up_relative(HZ));
 
3006}
3007
3008static void
3009i915_gem_idle_work_handler(struct work_struct *work)
3010{
3011	struct drm_i915_private *dev_priv =
3012		container_of(work, typeof(*dev_priv), mm.idle_work.work);
3013	struct drm_device *dev = dev_priv->dev;
3014	struct intel_engine_cs *ring;
3015	int i;
 
3016
3017	for_each_ring(ring, dev_priv, i)
3018		if (!list_empty(&ring->request_list))
3019			return;
3020
3021	/* we probably should sync with hangcheck here, using cancel_work_sync.
3022	 * Also locking seems to be fubar here, ring->request_list is protected
3023	 * by dev->struct_mutex. */
3024
3025	intel_mark_idle(dev);
 
 
 
 
 
3026
3027	if (mutex_trylock(&dev->struct_mutex)) {
3028		struct intel_engine_cs *ring;
3029		int i;
3030
3031		for_each_ring(ring, dev_priv, i)
3032			i915_gem_batch_pool_fini(&ring->batch_pool);
3033
3034		mutex_unlock(&dev->struct_mutex);
 
 
 
 
 
3035	}
3036}
3037
3038/**
3039 * Ensures that an object will eventually get non-busy by flushing any required
3040 * write domains, emitting any outstanding lazy request and retiring and
3041 * completed requests.
3042 */
3043static int
3044i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3045{
3046	int i;
3047
3048	if (!obj->active)
3049		return 0;
3050
3051	for (i = 0; i < I915_NUM_RINGS; i++) {
3052		struct drm_i915_gem_request *req;
3053
3054		req = obj->last_read_req[i];
3055		if (req == NULL)
3056			continue;
3057
3058		if (list_empty(&req->list))
3059			goto retire;
 
3060
3061		if (i915_gem_request_completed(req, true)) {
3062			__i915_gem_request_retire__upto(req);
3063retire:
3064			i915_gem_object_retire__read(obj, i);
3065		}
 
 
 
 
 
3066	}
 
3067
3068	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3069}
3070
3071/**
3072 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3073 * @DRM_IOCTL_ARGS: standard ioctl arguments
 
 
3074 *
3075 * Returns 0 if successful, else an error is returned with the remaining time in
3076 * the timeout parameter.
3077 *  -ETIME: object is still busy after timeout
3078 *  -ERESTARTSYS: signal interrupted the wait
3079 *  -ENONENT: object doesn't exist
3080 * Also possible, but rare:
3081 *  -EAGAIN: GPU wedged
3082 *  -ENOMEM: damn
3083 *  -ENODEV: Internal IRQ fail
3084 *  -E?: The add request failed
3085 *
3086 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3087 * non-zero timeout parameter the wait ioctl will wait for the given number of
3088 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3089 * without holding struct_mutex the object may become re-busied before this
3090 * function completes. A similar but shorter * race condition exists in the busy
3091 * ioctl
3092 */
3093int
3094i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3095{
3096	struct drm_i915_private *dev_priv = dev->dev_private;
3097	struct drm_i915_gem_wait *args = data;
3098	struct drm_i915_gem_object *obj;
3099	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3100	unsigned reset_counter;
3101	int i, n = 0;
3102	int ret;
3103
3104	if (args->flags != 0)
3105		return -EINVAL;
3106
3107	ret = i915_mutex_lock_interruptible(dev);
3108	if (ret)
3109		return ret;
3110
3111	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3112	if (&obj->base == NULL) {
3113		mutex_unlock(&dev->struct_mutex);
3114		return -ENOENT;
3115	}
3116
3117	/* Need to make sure the object gets inactive eventually. */
3118	ret = i915_gem_object_flush_active(obj);
3119	if (ret)
3120		goto out;
3121
3122	if (!obj->active)
3123		goto out;
3124
3125	/* Do this after OLR check to make sure we make forward progress polling
3126	 * on this IOCTL with a timeout == 0 (like busy ioctl)
3127	 */
3128	if (args->timeout_ns == 0) {
3129		ret = -ETIME;
3130		goto out;
3131	}
3132
3133	drm_gem_object_unreference(&obj->base);
3134	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3135
3136	for (i = 0; i < I915_NUM_RINGS; i++) {
3137		if (obj->last_read_req[i] == NULL)
3138			continue;
3139
3140		req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3141	}
3142
3143	mutex_unlock(&dev->struct_mutex);
 
 
 
 
 
 
 
 
3144
3145	for (i = 0; i < n; i++) {
3146		if (ret == 0)
3147			ret = __i915_wait_request(req[i], reset_counter, true,
3148						  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3149						  to_rps_client(file));
3150		i915_gem_request_unreference__unlocked(req[i]);
 
 
 
3151	}
3152	return ret;
3153
3154out:
3155	drm_gem_object_unreference(&obj->base);
3156	mutex_unlock(&dev->struct_mutex);
3157	return ret;
3158}
3159
3160static int
3161__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3162		       struct intel_engine_cs *to,
3163		       struct drm_i915_gem_request *from_req,
3164		       struct drm_i915_gem_request **to_req)
3165{
3166	struct intel_engine_cs *from;
3167	int ret;
3168
3169	from = i915_gem_request_get_ring(from_req);
3170	if (to == from)
3171		return 0;
3172
3173	if (i915_gem_request_completed(from_req, true))
3174		return 0;
3175
3176	if (!i915_semaphore_is_enabled(obj->base.dev)) {
3177		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3178		ret = __i915_wait_request(from_req,
3179					  atomic_read(&i915->gpu_error.reset_counter),
3180					  i915->mm.interruptible,
3181					  NULL,
3182					  &i915->rps.semaphores);
3183		if (ret)
3184			return ret;
3185
3186		i915_gem_object_retire_request(obj, from_req);
3187	} else {
3188		int idx = intel_ring_sync_index(from, to);
3189		u32 seqno = i915_gem_request_get_seqno(from_req);
3190
3191		WARN_ON(!to_req);
3192
3193		if (seqno <= from->semaphore.sync_seqno[idx])
3194			return 0;
3195
3196		if (*to_req == NULL) {
3197			struct drm_i915_gem_request *req;
3198
3199			req = i915_gem_request_alloc(to, NULL);
3200			if (IS_ERR(req))
3201				return PTR_ERR(req);
3202
3203			*to_req = req;
3204		}
3205
3206		trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3207		ret = to->semaphore.sync_to(*to_req, from, seqno);
3208		if (ret)
3209			return ret;
3210
3211		/* We use last_read_req because sync_to()
3212		 * might have just caused seqno wrap under
3213		 * the radar.
3214		 */
3215		from->semaphore.sync_seqno[idx] =
3216			i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3217	}
3218
3219	return 0;
3220}
3221
3222/**
3223 * i915_gem_object_sync - sync an object to a ring.
3224 *
3225 * @obj: object which may be in use on another ring.
3226 * @to: ring we wish to use the object on. May be NULL.
3227 * @to_req: request we wish to use the object for. See below.
3228 *          This will be allocated and returned if a request is
3229 *          required but not passed in.
3230 *
3231 * This code is meant to abstract object synchronization with the GPU.
3232 * Calling with NULL implies synchronizing the object with the CPU
3233 * rather than a particular GPU ring. Conceptually we serialise writes
3234 * between engines inside the GPU. We only allow one engine to write
3235 * into a buffer at any time, but multiple readers. To ensure each has
3236 * a coherent view of memory, we must:
3237 *
3238 * - If there is an outstanding write request to the object, the new
3239 *   request must wait for it to complete (either CPU or in hw, requests
3240 *   on the same ring will be naturally ordered).
3241 *
3242 * - If we are a write request (pending_write_domain is set), the new
3243 *   request must wait for outstanding read requests to complete.
3244 *
3245 * For CPU synchronisation (NULL to) no request is required. For syncing with
3246 * rings to_req must be non-NULL. However, a request does not have to be
3247 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3248 * request will be allocated automatically and returned through *to_req. Note
3249 * that it is not guaranteed that commands will be emitted (because the system
3250 * might already be idle). Hence there is no need to create a request that
3251 * might never have any work submitted. Note further that if a request is
3252 * returned in *to_req, it is the responsibility of the caller to submit
3253 * that request (after potentially adding more work to it).
3254 *
3255 * Returns 0 if successful, else propagates up the lower layer error.
3256 */
3257int
3258i915_gem_object_sync(struct drm_i915_gem_object *obj,
3259		     struct intel_engine_cs *to,
3260		     struct drm_i915_gem_request **to_req)
3261{
3262	const bool readonly = obj->base.pending_write_domain == 0;
3263	struct drm_i915_gem_request *req[I915_NUM_RINGS];
3264	int ret, i, n;
3265
3266	if (!obj->active)
3267		return 0;
3268
3269	if (to == NULL)
3270		return i915_gem_object_wait_rendering(obj, readonly);
3271
3272	n = 0;
3273	if (readonly) {
3274		if (obj->last_write_req)
3275			req[n++] = obj->last_write_req;
3276	} else {
3277		for (i = 0; i < I915_NUM_RINGS; i++)
3278			if (obj->last_read_req[i])
3279				req[n++] = obj->last_read_req[i];
3280	}
3281	for (i = 0; i < n; i++) {
3282		ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3283		if (ret)
3284			return ret;
3285	}
3286
3287	return 0;
3288}
3289
3290static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3291{
3292	u32 old_write_domain, old_read_domains;
3293
3294	/* Force a pagefault for domain tracking on next user access */
3295	i915_gem_release_mmap(obj);
3296
3297	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3298		return;
3299
3300	/* Wait for any direct GTT access to complete */
3301	mb();
3302
3303	old_read_domains = obj->base.read_domains;
3304	old_write_domain = obj->base.write_domain;
3305
3306	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3307	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3308
3309	trace_i915_gem_object_change_domain(obj,
3310					    old_read_domains,
3311					    old_write_domain);
3312}
3313
3314static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3315{
3316	struct drm_i915_gem_object *obj = vma->obj;
3317	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3318	int ret;
3319
3320	if (list_empty(&vma->obj_link))
3321		return 0;
3322
3323	if (!drm_mm_node_allocated(&vma->node)) {
3324		i915_gem_vma_destroy(vma);
3325		return 0;
3326	}
3327
3328	if (vma->pin_count)
3329		return -EBUSY;
3330
3331	BUG_ON(obj->pages == NULL);
3332
3333	if (wait) {
3334		ret = i915_gem_object_wait_rendering(obj, false);
3335		if (ret)
3336			return ret;
3337	}
3338
3339	if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3340		i915_gem_object_finish_gtt(obj);
3341
3342		/* release the fence reg _after_ flushing */
3343		ret = i915_gem_object_put_fence(obj);
3344		if (ret)
3345			return ret;
3346	}
3347
3348	trace_i915_vma_unbind(vma);
3349
3350	vma->vm->unbind_vma(vma);
3351	vma->bound = 0;
3352
3353	list_del_init(&vma->vm_link);
3354	if (vma->is_ggtt) {
3355		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3356			obj->map_and_fenceable = false;
3357		} else if (vma->ggtt_view.pages) {
3358			sg_free_table(vma->ggtt_view.pages);
3359			kfree(vma->ggtt_view.pages);
3360		}
3361		vma->ggtt_view.pages = NULL;
3362	}
3363
3364	drm_mm_remove_node(&vma->node);
3365	i915_gem_vma_destroy(vma);
3366
3367	/* Since the unbound list is global, only move to that list if
3368	 * no more VMAs exist. */
3369	if (list_empty(&obj->vma_list))
3370		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3371
3372	/* And finally now the object is completely decoupled from this vma,
3373	 * we can drop its hold on the backing storage and allow it to be
3374	 * reaped by the shrinker.
3375	 */
3376	i915_gem_object_unpin_pages(obj);
3377
3378	return 0;
3379}
3380
3381int i915_vma_unbind(struct i915_vma *vma)
3382{
3383	return __i915_vma_unbind(vma, true);
3384}
3385
3386int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3387{
3388	return __i915_vma_unbind(vma, false);
3389}
3390
3391int i915_gpu_idle(struct drm_device *dev)
3392{
3393	struct drm_i915_private *dev_priv = dev->dev_private;
3394	struct intel_engine_cs *ring;
3395	int ret, i;
3396
3397	/* Flush everything onto the inactive list. */
3398	for_each_ring(ring, dev_priv, i) {
3399		if (!i915.enable_execlists) {
3400			struct drm_i915_gem_request *req;
3401
3402			req = i915_gem_request_alloc(ring, NULL);
3403			if (IS_ERR(req))
3404				return PTR_ERR(req);
3405
3406			ret = i915_switch_context(req);
3407			if (ret) {
3408				i915_gem_request_cancel(req);
3409				return ret;
3410			}
3411
3412			i915_add_request_no_flush(req);
3413		}
3414
3415		ret = intel_ring_idle(ring);
3416		if (ret)
3417			return ret;
3418	}
3419
3420	WARN_ON(i915_verify_lists(dev));
3421	return 0;
3422}
3423
3424static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3425				     unsigned long cache_level)
3426{
3427	struct drm_mm_node *gtt_space = &vma->node;
3428	struct drm_mm_node *other;
3429
3430	/*
3431	 * On some machines we have to be careful when putting differing types
3432	 * of snoopable memory together to avoid the prefetcher crossing memory
3433	 * domains and dying. During vm initialisation, we decide whether or not
3434	 * these constraints apply and set the drm_mm.color_adjust
3435	 * appropriately.
3436	 */
3437	if (vma->vm->mm.color_adjust == NULL)
3438		return true;
3439
3440	if (!drm_mm_node_allocated(gtt_space))
3441		return true;
3442
3443	if (list_empty(&gtt_space->node_list))
3444		return true;
3445
3446	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3447	if (other->allocated && !other->hole_follows && other->color != cache_level)
3448		return false;
3449
3450	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3451	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3452		return false;
3453
3454	return true;
3455}
3456
3457/**
3458 * Finds free space in the GTT aperture and binds the object or a view of it
3459 * there.
3460 */
3461static struct i915_vma *
3462i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3463			   struct i915_address_space *vm,
3464			   const struct i915_ggtt_view *ggtt_view,
3465			   unsigned alignment,
3466			   uint64_t flags)
3467{
3468	struct drm_device *dev = obj->base.dev;
3469	struct drm_i915_private *dev_priv = dev->dev_private;
3470	u32 fence_alignment, unfenced_alignment;
3471	u32 search_flag, alloc_flag;
3472	u64 start, end;
3473	u64 size, fence_size;
3474	struct i915_vma *vma;
3475	int ret;
3476
3477	if (i915_is_ggtt(vm)) {
3478		u32 view_size;
3479
3480		if (WARN_ON(!ggtt_view))
3481			return ERR_PTR(-EINVAL);
3482
3483		view_size = i915_ggtt_view_size(obj, ggtt_view);
3484
3485		fence_size = i915_gem_get_gtt_size(dev,
3486						   view_size,
3487						   obj->tiling_mode);
3488		fence_alignment = i915_gem_get_gtt_alignment(dev,
3489							     view_size,
3490							     obj->tiling_mode,
3491							     true);
3492		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3493								view_size,
3494								obj->tiling_mode,
3495								false);
3496		size = flags & PIN_MAPPABLE ? fence_size : view_size;
3497	} else {
3498		fence_size = i915_gem_get_gtt_size(dev,
3499						   obj->base.size,
3500						   obj->tiling_mode);
3501		fence_alignment = i915_gem_get_gtt_alignment(dev,
3502							     obj->base.size,
3503							     obj->tiling_mode,
3504							     true);
3505		unfenced_alignment =
3506			i915_gem_get_gtt_alignment(dev,
3507						   obj->base.size,
3508						   obj->tiling_mode,
3509						   false);
3510		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3511	}
3512
3513	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3514	end = vm->total;
3515	if (flags & PIN_MAPPABLE)
3516		end = min_t(u64, end, dev_priv->gtt.mappable_end);
3517	if (flags & PIN_ZONE_4G)
3518		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3519
3520	if (alignment == 0)
3521		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3522						unfenced_alignment;
3523	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3524		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3525			  ggtt_view ? ggtt_view->type : 0,
3526			  alignment);
3527		return ERR_PTR(-EINVAL);
3528	}
3529
3530	/* If binding the object/GGTT view requires more space than the entire
3531	 * aperture has, reject it early before evicting everything in a vain
3532	 * attempt to find space.
3533	 */
3534	if (size > end) {
3535		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3536			  ggtt_view ? ggtt_view->type : 0,
3537			  size,
3538			  flags & PIN_MAPPABLE ? "mappable" : "total",
3539			  end);
3540		return ERR_PTR(-E2BIG);
3541	}
3542
3543	ret = i915_gem_object_get_pages(obj);
3544	if (ret)
3545		return ERR_PTR(ret);
3546
3547	i915_gem_object_pin_pages(obj);
3548
3549	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3550			  i915_gem_obj_lookup_or_create_vma(obj, vm);
3551
3552	if (IS_ERR(vma))
3553		goto err_unpin;
3554
3555	if (flags & PIN_OFFSET_FIXED) {
3556		uint64_t offset = flags & PIN_OFFSET_MASK;
3557
3558		if (offset & (alignment - 1) || offset + size > end) {
3559			ret = -EINVAL;
3560			goto err_free_vma;
3561		}
3562		vma->node.start = offset;
3563		vma->node.size = size;
3564		vma->node.color = obj->cache_level;
3565		ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3566		if (ret) {
3567			ret = i915_gem_evict_for_vma(vma);
3568			if (ret == 0)
3569				ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3570		}
3571		if (ret)
3572			goto err_free_vma;
3573	} else {
3574		if (flags & PIN_HIGH) {
3575			search_flag = DRM_MM_SEARCH_BELOW;
3576			alloc_flag = DRM_MM_CREATE_TOP;
3577		} else {
3578			search_flag = DRM_MM_SEARCH_DEFAULT;
3579			alloc_flag = DRM_MM_CREATE_DEFAULT;
3580		}
3581
3582search_free:
3583		ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3584							  size, alignment,
3585							  obj->cache_level,
3586							  start, end,
3587							  search_flag,
3588							  alloc_flag);
3589		if (ret) {
3590			ret = i915_gem_evict_something(dev, vm, size, alignment,
3591						       obj->cache_level,
3592						       start, end,
3593						       flags);
3594			if (ret == 0)
3595				goto search_free;
3596
3597			goto err_free_vma;
3598		}
3599	}
3600	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3601		ret = -EINVAL;
3602		goto err_remove_node;
3603	}
3604
3605	trace_i915_vma_bind(vma, flags);
3606	ret = i915_vma_bind(vma, obj->cache_level, flags);
3607	if (ret)
3608		goto err_remove_node;
3609
3610	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3611	list_add_tail(&vma->vm_link, &vm->inactive_list);
3612
3613	return vma;
3614
3615err_remove_node:
3616	drm_mm_remove_node(&vma->node);
3617err_free_vma:
3618	i915_gem_vma_destroy(vma);
3619	vma = ERR_PTR(ret);
3620err_unpin:
3621	i915_gem_object_unpin_pages(obj);
3622	return vma;
3623}
3624
3625bool
3626i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3627			bool force)
3628{
3629	/* If we don't have a page list set up, then we're not pinned
3630	 * to GPU, and we can ignore the cache flush because it'll happen
3631	 * again at bind time.
3632	 */
3633	if (obj->pages == NULL)
3634		return false;
3635
3636	/*
3637	 * Stolen memory is always coherent with the GPU as it is explicitly
3638	 * marked as wc by the system, or the system is cache-coherent.
3639	 */
3640	if (obj->stolen || obj->phys_handle)
3641		return false;
3642
3643	/* If the GPU is snooping the contents of the CPU cache,
3644	 * we do not need to manually clear the CPU cache lines.  However,
3645	 * the caches are only snooped when the render cache is
3646	 * flushed/invalidated.  As we always have to emit invalidations
3647	 * and flushes when moving into and out of the RENDER domain, correct
3648	 * snooping behaviour occurs naturally as the result of our domain
3649	 * tracking.
3650	 */
3651	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3652		obj->cache_dirty = true;
3653		return false;
3654	}
3655
3656	trace_i915_gem_object_clflush(obj);
3657	drm_clflush_sg(obj->pages);
3658	obj->cache_dirty = false;
3659
3660	return true;
3661}
3662
3663/** Flushes the GTT write domain for the object if it's dirty. */
3664static void
3665i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3666{
3667	uint32_t old_write_domain;
3668
3669	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3670		return;
3671
3672	/* No actual flushing is required for the GTT write domain.  Writes
3673	 * to it immediately go to main memory as far as we know, so there's
3674	 * no chipset flush.  It also doesn't land in render cache.
3675	 *
3676	 * However, we do have to enforce the order so that all writes through
3677	 * the GTT land before any writes to the device, such as updates to
3678	 * the GATT itself.
 
 
 
 
 
 
 
3679	 */
3680	wmb();
 
 
3681
3682	old_write_domain = obj->base.write_domain;
3683	obj->base.write_domain = 0;
3684
3685	intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3686
 
3687	trace_i915_gem_object_change_domain(obj,
3688					    obj->base.read_domains,
3689					    old_write_domain);
3690}
3691
3692/** Flushes the CPU write domain for the object if it's dirty. */
3693static void
3694i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3695{
3696	uint32_t old_write_domain;
3697
3698	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3699		return;
3700
3701	if (i915_gem_clflush_object(obj, obj->pin_display))
3702		i915_gem_chipset_flush(obj->base.dev);
3703
3704	old_write_domain = obj->base.write_domain;
3705	obj->base.write_domain = 0;
3706
3707	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3708
 
3709	trace_i915_gem_object_change_domain(obj,
3710					    obj->base.read_domains,
3711					    old_write_domain);
3712}
3713
3714/**
3715 * Moves a single object to the GTT read, and possibly write domain.
 
 
3716 *
3717 * This function returns when the move is complete, including waiting on
3718 * flushes to occur.
3719 */
3720int
3721i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3722{
3723	uint32_t old_write_domain, old_read_domains;
3724	struct i915_vma *vma;
3725	int ret;
3726
3727	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3728		return 0;
3729
3730	ret = i915_gem_object_wait_rendering(obj, !write);
 
 
 
 
 
3731	if (ret)
3732		return ret;
3733
 
 
 
3734	/* Flush and acquire obj->pages so that we are coherent through
3735	 * direct access in memory with previous cached writes through
3736	 * shmemfs and that our cache domain tracking remains valid.
3737	 * For example, if the obj->filp was moved to swap without us
3738	 * being notified and releasing the pages, we would mistakenly
3739	 * continue to assume that the obj remained out of the CPU cached
3740	 * domain.
3741	 */
3742	ret = i915_gem_object_get_pages(obj);
3743	if (ret)
3744		return ret;
3745
3746	i915_gem_object_flush_cpu_write_domain(obj);
3747
3748	/* Serialise direct access to this object with the barriers for
3749	 * coherent writes from the GPU, by effectively invalidating the
3750	 * GTT domain upon first access.
3751	 */
3752	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3753		mb();
3754
3755	old_write_domain = obj->base.write_domain;
3756	old_read_domains = obj->base.read_domains;
3757
3758	/* It should now be out of any other write domains, and we can update
3759	 * the domain values for our changes.
3760	 */
3761	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3762	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3763	if (write) {
3764		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3765		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3766		obj->dirty = 1;
3767	}
3768
3769	trace_i915_gem_object_change_domain(obj,
3770					    old_read_domains,
3771					    old_write_domain);
3772
3773	/* And bump the LRU for this access */
3774	vma = i915_gem_obj_to_ggtt(obj);
3775	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3776		list_move_tail(&vma->vm_link,
3777			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3778
3779	return 0;
3780}
3781
3782/**
3783 * Changes the cache-level of an object across all VMA.
 
 
3784 *
3785 * After this function returns, the object will be in the new cache-level
3786 * across all GTT and the contents of the backing storage will be coherent,
3787 * with respect to the new cache-level. In order to keep the backing storage
3788 * coherent for all users, we only allow a single cache level to be set
3789 * globally on the object and prevent it from being changed whilst the
3790 * hardware is reading from the object. That is if the object is currently
3791 * on the scanout it will be set to uncached (or equivalent display
3792 * cache coherency) and all non-MOCS GPU access will also be uncached so
3793 * that all direct access to the scanout remains coherent.
3794 */
3795int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3796				    enum i915_cache_level cache_level)
3797{
3798	struct drm_device *dev = obj->base.dev;
3799	struct i915_vma *vma, *next;
3800	bool bound = false;
3801	int ret = 0;
3802
3803	if (obj->cache_level == cache_level)
3804		goto out;
3805
3806	/* Inspect the list of currently bound VMA and unbind any that would
3807	 * be invalid given the new cache-level. This is principally to
3808	 * catch the issue of the CS prefetch crossing page boundaries and
3809	 * reading an invalid PTE on older architectures.
3810	 */
3811	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
 
3812		if (!drm_mm_node_allocated(&vma->node))
3813			continue;
3814
3815		if (vma->pin_count) {
3816			DRM_DEBUG("can not change the cache level of pinned objects\n");
3817			return -EBUSY;
3818		}
3819
3820		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3821			ret = i915_vma_unbind(vma);
3822			if (ret)
3823				return ret;
3824		} else
3825			bound = true;
 
 
 
 
 
 
3826	}
3827
3828	/* We can reuse the existing drm_mm nodes but need to change the
3829	 * cache-level on the PTE. We could simply unbind them all and
3830	 * rebind with the correct cache-level on next use. However since
3831	 * we already have a valid slot, dma mapping, pages etc, we may as
3832	 * rewrite the PTE in the belief that doing so tramples upon less
3833	 * state and so involves less work.
3834	 */
3835	if (bound) {
3836		/* Before we change the PTE, the GPU must not be accessing it.
3837		 * If we wait upon the object, we know that all the bound
3838		 * VMA are no longer active.
3839		 */
3840		ret = i915_gem_object_wait_rendering(obj, false);
 
 
 
 
 
3841		if (ret)
3842			return ret;
3843
3844		if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
 
3845			/* Access to snoopable pages through the GTT is
3846			 * incoherent and on some machines causes a hard
3847			 * lockup. Relinquish the CPU mmaping to force
3848			 * userspace to refault in the pages and we can
3849			 * then double check if the GTT mapping is still
3850			 * valid for that pointer access.
3851			 */
3852			i915_gem_release_mmap(obj);
3853
3854			/* As we no longer need a fence for GTT access,
3855			 * we can relinquish it now (and so prevent having
3856			 * to steal a fence from someone else on the next
3857			 * fence request). Note GPU activity would have
3858			 * dropped the fence as all snoopable access is
3859			 * supposed to be linear.
3860			 */
3861			ret = i915_gem_object_put_fence(obj);
3862			if (ret)
3863				return ret;
 
 
3864		} else {
3865			/* We either have incoherent backing store and
3866			 * so no GTT access or the architecture is fully
3867			 * coherent. In such cases, existing GTT mmaps
3868			 * ignore the cache bit in the PTE and we can
3869			 * rewrite it without confusing the GPU or having
3870			 * to force userspace to fault back in its mmaps.
3871			 */
3872		}
3873
3874		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3875			if (!drm_mm_node_allocated(&vma->node))
3876				continue;
3877
3878			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3879			if (ret)
3880				return ret;
3881		}
3882	}
3883
 
 
 
 
3884	list_for_each_entry(vma, &obj->vma_list, obj_link)
3885		vma->node.color = cache_level;
3886	obj->cache_level = cache_level;
3887
3888out:
3889	/* Flush the dirty CPU caches to the backing storage so that the
3890	 * object is now coherent at its new cache level (with respect
3891	 * to the access domain).
3892	 */
3893	if (obj->cache_dirty &&
3894	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3895	    cpu_write_needs_clflush(obj)) {
3896		if (i915_gem_clflush_object(obj, true))
3897			i915_gem_chipset_flush(obj->base.dev);
3898	}
3899
3900	return 0;
3901}
3902
3903int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3904			       struct drm_file *file)
3905{
3906	struct drm_i915_gem_caching *args = data;
3907	struct drm_i915_gem_object *obj;
 
3908
3909	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3910	if (&obj->base == NULL)
3911		return -ENOENT;
 
 
 
3912
3913	switch (obj->cache_level) {
3914	case I915_CACHE_LLC:
3915	case I915_CACHE_L3_LLC:
3916		args->caching = I915_CACHING_CACHED;
3917		break;
3918
3919	case I915_CACHE_WT:
3920		args->caching = I915_CACHING_DISPLAY;
3921		break;
3922
3923	default:
3924		args->caching = I915_CACHING_NONE;
3925		break;
3926	}
3927
3928	drm_gem_object_unreference_unlocked(&obj->base);
3929	return 0;
3930}
3931
3932int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3933			       struct drm_file *file)
3934{
3935	struct drm_i915_private *dev_priv = dev->dev_private;
3936	struct drm_i915_gem_caching *args = data;
3937	struct drm_i915_gem_object *obj;
3938	enum i915_cache_level level;
3939	int ret;
3940
3941	switch (args->caching) {
3942	case I915_CACHING_NONE:
3943		level = I915_CACHE_NONE;
3944		break;
3945	case I915_CACHING_CACHED:
3946		/*
3947		 * Due to a HW issue on BXT A stepping, GPU stores via a
3948		 * snooped mapping may leave stale data in a corresponding CPU
3949		 * cacheline, whereas normally such cachelines would get
3950		 * invalidated.
3951		 */
3952		if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3953			return -ENODEV;
3954
3955		level = I915_CACHE_LLC;
3956		break;
3957	case I915_CACHING_DISPLAY:
3958		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3959		break;
3960	default:
3961		return -EINVAL;
3962	}
3963
3964	intel_runtime_pm_get(dev_priv);
3965
3966	ret = i915_mutex_lock_interruptible(dev);
3967	if (ret)
3968		goto rpm_put;
3969
3970	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3971	if (&obj->base == NULL) {
3972		ret = -ENOENT;
3973		goto unlock;
3974	}
3975
3976	ret = i915_gem_object_set_cache_level(obj, level);
3977
3978	drm_gem_object_unreference(&obj->base);
3979unlock:
3980	mutex_unlock(&dev->struct_mutex);
3981rpm_put:
3982	intel_runtime_pm_put(dev_priv);
3983
3984	return ret;
3985}
3986
3987/*
3988 * Prepare buffer for display plane (scanout, cursors, etc).
3989 * Can be called from an uninterruptible phase (modesetting) and allows
3990 * any flushes to be pipelined (for pageflips).
3991 */
3992int
3993i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3994				     u32 alignment,
3995				     const struct i915_ggtt_view *view)
3996{
 
3997	u32 old_read_domains, old_write_domain;
3998	int ret;
3999
 
 
4000	/* Mark the pin_display early so that we account for the
4001	 * display coherency whilst setting up the cache domains.
4002	 */
4003	obj->pin_display++;
4004
4005	/* The display engine is not coherent with the LLC cache on gen6.  As
4006	 * a result, we make sure that the pinning that is about to occur is
4007	 * done with uncached PTEs. This is lowest common denominator for all
4008	 * chipsets.
4009	 *
4010	 * However for gen6+, we could do better by using the GFDT bit instead
4011	 * of uncaching, which would allow us to flush all the LLC-cached data
4012	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4013	 */
4014	ret = i915_gem_object_set_cache_level(obj,
4015					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4016	if (ret)
 
 
4017		goto err_unpin_display;
 
4018
4019	/* As the user may map the buffer once pinned in the display plane
4020	 * (e.g. libkms for the bootup splash), we have to ensure that we
4021	 * always use map_and_fenceable for all scanout buffers.
4022	 */
4023	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4024				       view->type == I915_GGTT_VIEW_NORMAL ?
4025				       PIN_MAPPABLE : 0);
4026	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4027		goto err_unpin_display;
4028
4029	i915_gem_object_flush_cpu_write_domain(obj);
 
 
 
 
 
 
4030
4031	old_write_domain = obj->base.write_domain;
4032	old_read_domains = obj->base.read_domains;
4033
4034	/* It should now be out of any other write domains, and we can update
4035	 * the domain values for our changes.
4036	 */
4037	obj->base.write_domain = 0;
4038	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4039
4040	trace_i915_gem_object_change_domain(obj,
4041					    old_read_domains,
4042					    old_write_domain);
4043
4044	return 0;
4045
4046err_unpin_display:
4047	obj->pin_display--;
4048	return ret;
4049}
4050
4051void
4052i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4053					 const struct i915_ggtt_view *view)
4054{
4055	if (WARN_ON(obj->pin_display == 0))
 
 
4056		return;
4057
4058	i915_gem_object_ggtt_unpin_view(obj, view);
 
4059
4060	obj->pin_display--;
 
 
 
 
4061}
4062
4063/**
4064 * Moves a single object to the CPU read, and possibly write domain.
 
 
4065 *
4066 * This function returns when the move is complete, including waiting on
4067 * flushes to occur.
4068 */
4069int
4070i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4071{
4072	uint32_t old_write_domain, old_read_domains;
4073	int ret;
4074
4075	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4076		return 0;
4077
4078	ret = i915_gem_object_wait_rendering(obj, !write);
 
 
 
 
 
4079	if (ret)
4080		return ret;
4081
 
 
 
4082	i915_gem_object_flush_gtt_write_domain(obj);
4083
4084	old_write_domain = obj->base.write_domain;
4085	old_read_domains = obj->base.read_domains;
4086
4087	/* Flush the CPU cache if it's still invalid. */
4088	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4089		i915_gem_clflush_object(obj, false);
4090
4091		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4092	}
4093
4094	/* It should now be out of any other write domains, and we can update
4095	 * the domain values for our changes.
4096	 */
4097	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4098
4099	/* If we're writing through the CPU, then the GPU read domains will
4100	 * need to be invalidated at next use.
4101	 */
4102	if (write) {
4103		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4104		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4105	}
4106
4107	trace_i915_gem_object_change_domain(obj,
4108					    old_read_domains,
4109					    old_write_domain);
4110
4111	return 0;
4112}
4113
4114/* Throttle our rendering by waiting until the ring has completed our requests
4115 * emitted over 20 msec ago.
4116 *
4117 * Note that if we were to use the current jiffies each time around the loop,
4118 * we wouldn't escape the function with any frames outstanding if the time to
4119 * render a frame was over 20ms.
4120 *
4121 * This should get us reasonable parallelism between CPU and GPU but also
4122 * relatively low latency when blocking on a particular request to finish.
4123 */
4124static int
4125i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4126{
4127	struct drm_i915_private *dev_priv = dev->dev_private;
4128	struct drm_i915_file_private *file_priv = file->driver_priv;
4129	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4130	struct drm_i915_gem_request *request, *target = NULL;
4131	unsigned reset_counter;
4132	int ret;
4133
4134	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4135	if (ret)
4136		return ret;
4137
4138	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4139	if (ret)
4140		return ret;
4141
4142	spin_lock(&file_priv->mm.lock);
4143	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4144		if (time_after_eq(request->emitted_jiffies, recent_enough))
4145			break;
4146
4147		/*
4148		 * Note that the request might not have been submitted yet.
4149		 * In which case emitted_jiffies will be zero.
4150		 */
4151		if (!request->emitted_jiffies)
4152			continue;
4153
4154		target = request;
4155	}
4156	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4157	if (target)
4158		i915_gem_request_reference(target);
4159	spin_unlock(&file_priv->mm.lock);
4160
4161	if (target == NULL)
4162		return 0;
4163
4164	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4165	if (ret == 0)
4166		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4167
4168	i915_gem_request_unreference__unlocked(target);
4169
4170	return ret;
4171}
4172
4173static bool
4174i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4175{
4176	struct drm_i915_gem_object *obj = vma->obj;
4177
4178	if (alignment &&
4179	    vma->node.start & (alignment - 1))
4180		return true;
4181
4182	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4183		return true;
4184
4185	if (flags & PIN_OFFSET_BIAS &&
4186	    vma->node.start < (flags & PIN_OFFSET_MASK))
4187		return true;
4188
4189	if (flags & PIN_OFFSET_FIXED &&
4190	    vma->node.start != (flags & PIN_OFFSET_MASK))
4191		return true;
4192
4193	return false;
4194}
4195
4196void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4197{
4198	struct drm_i915_gem_object *obj = vma->obj;
4199	bool mappable, fenceable;
4200	u32 fence_size, fence_alignment;
4201
4202	fence_size = i915_gem_get_gtt_size(obj->base.dev,
4203					   obj->base.size,
4204					   obj->tiling_mode);
4205	fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4206						     obj->base.size,
4207						     obj->tiling_mode,
4208						     true);
4209
4210	fenceable = (vma->node.size == fence_size &&
4211		     (vma->node.start & (fence_alignment - 1)) == 0);
4212
4213	mappable = (vma->node.start + fence_size <=
4214		    to_i915(obj->base.dev)->gtt.mappable_end);
4215
4216	obj->map_and_fenceable = mappable && fenceable;
4217}
4218
4219static int
4220i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4221		       struct i915_address_space *vm,
4222		       const struct i915_ggtt_view *ggtt_view,
4223		       uint32_t alignment,
4224		       uint64_t flags)
4225{
4226	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
 
4227	struct i915_vma *vma;
4228	unsigned bound;
4229	int ret;
4230
4231	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4232		return -ENODEV;
4233
4234	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4235		return -EINVAL;
4236
4237	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4238		return -EINVAL;
4239
4240	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4241		return -EINVAL;
4242
4243	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4244			  i915_gem_obj_to_vma(obj, vm);
4245
 
4246	if (IS_ERR(vma))
4247		return PTR_ERR(vma);
4248
4249	if (vma) {
4250		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4251			return -EBUSY;
4252
4253		if (i915_vma_misplaced(vma, alignment, flags)) {
4254			WARN(vma->pin_count,
4255			     "bo is already pinned in %s with incorrect alignment:"
4256			     " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4257			     " obj->map_and_fenceable=%d\n",
4258			     ggtt_view ? "ggtt" : "ppgtt",
4259			     upper_32_bits(vma->node.start),
4260			     lower_32_bits(vma->node.start),
4261			     alignment,
4262			     !!(flags & PIN_MAPPABLE),
4263			     obj->map_and_fenceable);
4264			ret = i915_vma_unbind(vma);
4265			if (ret)
4266				return ret;
 
 
 
 
 
4267
4268			vma = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4269		}
4270	}
4271
4272	bound = vma ? vma->bound : 0;
4273	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4274		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4275						 flags);
4276		if (IS_ERR(vma))
4277			return PTR_ERR(vma);
4278	} else {
4279		ret = i915_vma_bind(vma, obj->cache_level, flags);
4280		if (ret)
4281			return ret;
4282	}
4283
4284	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4285	    (bound ^ vma->bound) & GLOBAL_BIND) {
4286		__i915_vma_set_map_and_fenceable(vma);
4287		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4288	}
4289
4290	vma->pin_count++;
4291	return 0;
4292}
4293
4294int
4295i915_gem_object_pin(struct drm_i915_gem_object *obj,
4296		    struct i915_address_space *vm,
4297		    uint32_t alignment,
4298		    uint64_t flags)
4299{
4300	return i915_gem_object_do_pin(obj, vm,
4301				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4302				      alignment, flags);
 
 
4303}
4304
4305int
4306i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4307			 const struct i915_ggtt_view *view,
4308			 uint32_t alignment,
4309			 uint64_t flags)
4310{
4311	if (WARN_ONCE(!view, "no view specified"))
4312		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4313
4314	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4315				      alignment, flags | PIN_GLOBAL);
4316}
4317
4318void
4319i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4320				const struct i915_ggtt_view *view)
4321{
4322	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
 
4323
4324	BUG_ON(!vma);
4325	WARN_ON(vma->pin_count == 0);
4326	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
 
 
4327
4328	--vma->pin_count;
4329}
4330
4331int
4332i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4333		    struct drm_file *file)
4334{
4335	struct drm_i915_gem_busy *args = data;
4336	struct drm_i915_gem_object *obj;
4337	int ret;
4338
4339	ret = i915_mutex_lock_interruptible(dev);
4340	if (ret)
4341		return ret;
4342
4343	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4344	if (&obj->base == NULL) {
4345		ret = -ENOENT;
4346		goto unlock;
4347	}
4348
4349	/* Count all active objects as busy, even if they are currently not used
4350	 * by the gpu. Users of this interface expect objects to eventually
4351	 * become non-busy without any further actions, therefore emit any
4352	 * necessary flushes here.
 
 
 
 
 
 
 
 
 
 
 
4353	 */
4354	ret = i915_gem_object_flush_active(obj);
4355	if (ret)
4356		goto unref;
4357
4358	args->busy = 0;
4359	if (obj->active) {
4360		int i;
4361
4362		for (i = 0; i < I915_NUM_RINGS; i++) {
4363			struct drm_i915_gem_request *req;
 
 
4364
4365			req = obj->last_read_req[i];
4366			if (req)
4367				args->busy |= 1 << (16 + req->ring->exec_id);
 
 
4368		}
4369		if (obj->last_write_req)
4370			args->busy |= obj->last_write_req->ring->exec_id;
4371	}
4372
4373unref:
4374	drm_gem_object_unreference(&obj->base);
4375unlock:
4376	mutex_unlock(&dev->struct_mutex);
4377	return ret;
 
 
4378}
4379
4380int
4381i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4382			struct drm_file *file_priv)
4383{
4384	return i915_gem_ring_throttle(dev, file_priv);
4385}
4386
4387int
4388i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4389		       struct drm_file *file_priv)
4390{
4391	struct drm_i915_private *dev_priv = dev->dev_private;
4392	struct drm_i915_gem_madvise *args = data;
4393	struct drm_i915_gem_object *obj;
4394	int ret;
4395
4396	switch (args->madv) {
4397	case I915_MADV_DONTNEED:
4398	case I915_MADV_WILLNEED:
4399	    break;
4400	default:
4401	    return -EINVAL;
4402	}
4403
4404	ret = i915_mutex_lock_interruptible(dev);
4405	if (ret)
4406		return ret;
4407
4408	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4409	if (&obj->base == NULL) {
4410		ret = -ENOENT;
4411		goto unlock;
4412	}
4413
4414	if (i915_gem_obj_is_pinned(obj)) {
4415		ret = -EINVAL;
4416		goto out;
4417	}
4418
4419	if (obj->pages &&
4420	    obj->tiling_mode != I915_TILING_NONE &&
4421	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4422		if (obj->madv == I915_MADV_WILLNEED)
4423			i915_gem_object_unpin_pages(obj);
4424		if (args->madv == I915_MADV_WILLNEED)
4425			i915_gem_object_pin_pages(obj);
 
 
 
 
 
 
4426	}
4427
4428	if (obj->madv != __I915_MADV_PURGED)
4429		obj->madv = args->madv;
4430
4431	/* if the object is no longer attached, discard its backing storage */
4432	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4433		i915_gem_object_truncate(obj);
4434
4435	args->retained = obj->madv != __I915_MADV_PURGED;
 
4436
4437out:
4438	drm_gem_object_unreference(&obj->base);
4439unlock:
4440	mutex_unlock(&dev->struct_mutex);
4441	return ret;
 
 
 
 
 
 
 
 
4442}
4443
4444void i915_gem_object_init(struct drm_i915_gem_object *obj,
4445			  const struct drm_i915_gem_object_ops *ops)
4446{
4447	int i;
4448
4449	INIT_LIST_HEAD(&obj->global_list);
4450	for (i = 0; i < I915_NUM_RINGS; i++)
4451		INIT_LIST_HEAD(&obj->ring_list[i]);
4452	INIT_LIST_HEAD(&obj->obj_exec_link);
4453	INIT_LIST_HEAD(&obj->vma_list);
4454	INIT_LIST_HEAD(&obj->batch_pool_link);
4455
4456	obj->ops = ops;
4457
4458	obj->fence_reg = I915_FENCE_REG_NONE;
4459	obj->madv = I915_MADV_WILLNEED;
4460
4461	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
 
 
 
 
 
 
 
4462}
4463
4464static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4465	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
 
4466	.get_pages = i915_gem_object_get_pages_gtt,
4467	.put_pages = i915_gem_object_put_pages_gtt,
4468};
4469
4470struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4471						  size_t size)
 
 
 
 
4472{
 
4473	struct drm_i915_gem_object *obj;
4474	struct address_space *mapping;
4475	gfp_t mask;
 
 
 
 
 
 
 
 
 
 
 
 
4476
4477	obj = i915_gem_object_alloc(dev);
4478	if (obj == NULL)
4479		return NULL;
4480
4481	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4482		i915_gem_object_free(obj);
4483		return NULL;
4484	}
4485
4486	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4487	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4488		/* 965gm cannot relocate objects above 4GiB. */
4489		mask &= ~__GFP_HIGHMEM;
4490		mask |= __GFP_DMA32;
4491	}
4492
4493	mapping = file_inode(obj->base.filp)->i_mapping;
4494	mapping_set_gfp_mask(mapping, mask);
4495
4496	i915_gem_object_init(obj, &i915_gem_object_ops);
4497
4498	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4499	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4500
4501	if (HAS_LLC(dev)) {
4502		/* On some devices, we can have the GPU use the LLC (the CPU
4503		 * cache) for about a 10% performance improvement
4504		 * compared to uncached.  Graphics requests other than
4505		 * display scanout are coherent with the CPU in
4506		 * accessing this cache.  This means in this mode we
4507		 * don't need to clflush on the CPU side, and on the
4508		 * GPU side we only need to flush internal caches to
4509		 * get data visible to the CPU.
4510		 *
4511		 * However, we maintain the display planes as UC, and so
4512		 * need to rebind when first used as such.
4513		 */
4514		obj->cache_level = I915_CACHE_LLC;
4515	} else
4516		obj->cache_level = I915_CACHE_NONE;
4517
4518	trace_i915_gem_object_create(obj);
4519
4520	return obj;
 
 
 
 
4521}
4522
4523static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4524{
4525	/* If we are the last user of the backing storage (be it shmemfs
4526	 * pages or stolen etc), we know that the pages are going to be
4527	 * immediately released. In this case, we can then skip copying
4528	 * back the contents from the GPU.
4529	 */
4530
4531	if (obj->madv != I915_MADV_WILLNEED)
4532		return false;
4533
4534	if (obj->base.filp == NULL)
4535		return true;
4536
4537	/* At first glance, this looks racy, but then again so would be
4538	 * userspace racing mmap against close. However, the first external
4539	 * reference to the filp can only be obtained through the
4540	 * i915_gem_mmap_ioctl() which safeguards us against the user
4541	 * acquiring such a reference whilst we are in the middle of
4542	 * freeing the object.
4543	 */
4544	return atomic_long_read(&obj->base.filp->f_count) == 1;
4545}
4546
4547void i915_gem_free_object(struct drm_gem_object *gem_obj)
 
4548{
4549	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4550	struct drm_device *dev = obj->base.dev;
4551	struct drm_i915_private *dev_priv = dev->dev_private;
4552	struct i915_vma *vma, *next;
4553
4554	intel_runtime_pm_get(dev_priv);
4555
4556	trace_i915_gem_object_destroy(obj);
4557
4558	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4559		int ret;
4560
4561		vma->pin_count = 0;
4562		ret = i915_vma_unbind(vma);
4563		if (WARN_ON(ret == -ERESTARTSYS)) {
4564			bool was_interruptible;
4565
4566			was_interruptible = dev_priv->mm.interruptible;
4567			dev_priv->mm.interruptible = false;
 
 
4568
4569			WARN_ON(i915_vma_unbind(vma));
4570
4571			dev_priv->mm.interruptible = was_interruptible;
 
 
 
 
 
 
4572		}
 
 
 
 
4573	}
 
 
4574
4575	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4576	 * before progressing. */
4577	if (obj->stolen)
4578		i915_gem_object_unpin_pages(obj);
4579
4580	WARN_ON(obj->frontbuffer_bits);
4581
4582	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4583	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4584	    obj->tiling_mode != I915_TILING_NONE)
4585		i915_gem_object_unpin_pages(obj);
4586
4587	if (WARN_ON(obj->pages_pin_count))
4588		obj->pages_pin_count = 0;
4589	if (discard_backing_storage(obj))
4590		obj->madv = I915_MADV_DONTNEED;
4591	i915_gem_object_put_pages(obj);
4592	i915_gem_object_free_mmap_offset(obj);
4593
4594	BUG_ON(obj->pages);
 
 
 
4595
4596	if (obj->base.import_attach)
4597		drm_prime_gem_destroy(&obj->base, NULL);
4598
4599	if (obj->ops->release)
4600		obj->ops->release(obj);
 
4601
4602	drm_gem_object_release(&obj->base);
4603	i915_gem_info_remove_obj(dev_priv, obj->base.size);
 
 
4604
4605	kfree(obj->bit_17);
4606	i915_gem_object_free(obj);
 
4607
4608	intel_runtime_pm_put(dev_priv);
 
 
4609}
4610
4611struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4612				     struct i915_address_space *vm)
4613{
4614	struct i915_vma *vma;
4615	list_for_each_entry(vma, &obj->vma_list, obj_link) {
4616		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4617		    vma->vm == vm)
4618			return vma;
4619	}
4620	return NULL;
 
 
 
 
 
 
 
4621}
4622
4623struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4624					   const struct i915_ggtt_view *view)
4625{
4626	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4627	struct i915_vma *vma;
 
4628
4629	if (WARN_ONCE(!view, "no view specified"))
4630		return ERR_PTR(-EINVAL);
4631
4632	list_for_each_entry(vma, &obj->vma_list, obj_link)
4633		if (vma->vm == ggtt &&
4634		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4635			return vma;
4636	return NULL;
4637}
4638
4639void i915_gem_vma_destroy(struct i915_vma *vma)
4640{
4641	WARN_ON(vma->node.allocated);
4642
4643	/* Keep the vma as a placeholder in the execbuffer reservation lists */
4644	if (!list_empty(&vma->exec_list))
4645		return;
4646
4647	if (!vma->is_ggtt)
4648		i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4649
4650	list_del(&vma->obj_link);
 
 
 
 
 
 
4651
4652	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
 
 
 
 
 
 
 
 
4653}
4654
4655static void
4656i915_gem_stop_ringbuffers(struct drm_device *dev)
4657{
4658	struct drm_i915_private *dev_priv = dev->dev_private;
4659	struct intel_engine_cs *ring;
4660	int i;
4661
4662	for_each_ring(ring, dev_priv, i)
4663		dev_priv->gt.stop_ring(ring);
4664}
4665
4666int
4667i915_gem_suspend(struct drm_device *dev)
4668{
4669	struct drm_i915_private *dev_priv = dev->dev_private;
4670	int ret = 0;
 
 
4671
4672	mutex_lock(&dev->struct_mutex);
4673	ret = i915_gpu_idle(dev);
 
 
 
 
 
 
 
 
 
4674	if (ret)
4675		goto err;
4676
4677	i915_gem_retire_requests(dev);
 
 
 
 
 
 
 
4678
4679	i915_gem_stop_ringbuffers(dev);
 
4680	mutex_unlock(&dev->struct_mutex);
4681
4682	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4683	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4684	flush_delayed_work(&dev_priv->mm.idle_work);
 
4685
4686	/* Assert that we sucessfully flushed all the work and
4687	 * reset the GPU back to its idle, low power state.
4688	 */
4689	WARN_ON(dev_priv->mm.busy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4690
4691	return 0;
4692
4693err:
4694	mutex_unlock(&dev->struct_mutex);
4695	return ret;
4696}
4697
4698int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4699{
4700	struct intel_engine_cs *ring = req->ring;
4701	struct drm_device *dev = ring->dev;
4702	struct drm_i915_private *dev_priv = dev->dev_private;
4703	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4704	int i, ret;
4705
4706	if (!HAS_L3_DPF(dev) || !remap_info)
4707		return 0;
4708
4709	ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4710	if (ret)
4711		return ret;
4712
4713	/*
4714	 * Note: We do not worry about the concurrent register cacheline hang
4715	 * here because no other code should access these registers other than
4716	 * at initialization time.
4717	 */
4718	for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4719		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4720		intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4721		intel_ring_emit(ring, remap_info[i]);
4722	}
4723
4724	intel_ring_advance(ring);
4725
4726	return ret;
4727}
4728
4729void i915_gem_init_swizzling(struct drm_device *dev)
4730{
4731	struct drm_i915_private *dev_priv = dev->dev_private;
4732
4733	if (INTEL_INFO(dev)->gen < 5 ||
4734	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4735		return;
4736
4737	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4738				 DISP_TILE_SURFACE_SWIZZLING);
4739
4740	if (IS_GEN5(dev))
4741		return;
4742
4743	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4744	if (IS_GEN6(dev))
4745		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4746	else if (IS_GEN7(dev))
4747		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4748	else if (IS_GEN8(dev))
4749		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4750	else
4751		BUG();
4752}
4753
4754static void init_unused_ring(struct drm_device *dev, u32 base)
4755{
4756	struct drm_i915_private *dev_priv = dev->dev_private;
4757
4758	I915_WRITE(RING_CTL(base), 0);
4759	I915_WRITE(RING_HEAD(base), 0);
4760	I915_WRITE(RING_TAIL(base), 0);
4761	I915_WRITE(RING_START(base), 0);
4762}
4763
4764static void init_unused_rings(struct drm_device *dev)
4765{
4766	if (IS_I830(dev)) {
4767		init_unused_ring(dev, PRB1_BASE);
4768		init_unused_ring(dev, SRB0_BASE);
4769		init_unused_ring(dev, SRB1_BASE);
4770		init_unused_ring(dev, SRB2_BASE);
4771		init_unused_ring(dev, SRB3_BASE);
4772	} else if (IS_GEN2(dev)) {
4773		init_unused_ring(dev, SRB0_BASE);
4774		init_unused_ring(dev, SRB1_BASE);
4775	} else if (IS_GEN3(dev)) {
4776		init_unused_ring(dev, PRB1_BASE);
4777		init_unused_ring(dev, PRB2_BASE);
4778	}
4779}
4780
4781int i915_gem_init_rings(struct drm_device *dev)
4782{
4783	struct drm_i915_private *dev_priv = dev->dev_private;
4784	int ret;
4785
4786	ret = intel_init_render_ring_buffer(dev);
4787	if (ret)
4788		return ret;
4789
4790	if (HAS_BSD(dev)) {
4791		ret = intel_init_bsd_ring_buffer(dev);
4792		if (ret)
4793			goto cleanup_render_ring;
4794	}
4795
4796	if (HAS_BLT(dev)) {
4797		ret = intel_init_blt_ring_buffer(dev);
4798		if (ret)
4799			goto cleanup_bsd_ring;
4800	}
4801
4802	if (HAS_VEBOX(dev)) {
4803		ret = intel_init_vebox_ring_buffer(dev);
4804		if (ret)
4805			goto cleanup_blt_ring;
4806	}
4807
4808	if (HAS_BSD2(dev)) {
4809		ret = intel_init_bsd2_ring_buffer(dev);
4810		if (ret)
4811			goto cleanup_vebox_ring;
4812	}
4813
4814	return 0;
4815
4816cleanup_vebox_ring:
4817	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4818cleanup_blt_ring:
4819	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4820cleanup_bsd_ring:
4821	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4822cleanup_render_ring:
4823	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4824
4825	return ret;
4826}
4827
4828int
4829i915_gem_init_hw(struct drm_device *dev)
4830{
4831	struct drm_i915_private *dev_priv = dev->dev_private;
4832	struct intel_engine_cs *ring;
4833	int ret, i, j;
 
4834
4835	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4836		return -EIO;
4837
4838	/* Double layer security blanket, see i915_gem_init() */
4839	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4840
4841	if (dev_priv->ellc_size)
4842		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4843
4844	if (IS_HASWELL(dev))
4845		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4846			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4847
4848	if (HAS_PCH_NOP(dev)) {
4849		if (IS_IVYBRIDGE(dev)) {
4850			u32 temp = I915_READ(GEN7_MSG_CTL);
4851			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4852			I915_WRITE(GEN7_MSG_CTL, temp);
4853		} else if (INTEL_INFO(dev)->gen >= 7) {
4854			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4855			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4856			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4857		}
4858	}
4859
4860	i915_gem_init_swizzling(dev);
4861
4862	/*
4863	 * At least 830 can leave some of the unused rings
4864	 * "active" (ie. head != tail) after resume which
4865	 * will prevent c3 entry. Makes sure all unused rings
4866	 * are totally idle.
4867	 */
4868	init_unused_rings(dev);
4869
4870	BUG_ON(!dev_priv->kernel_context);
4871
4872	ret = i915_ppgtt_init_hw(dev);
4873	if (ret) {
4874		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4875		goto out;
4876	}
4877
4878	/* Need to do basic initialisation of all rings first: */
4879	for_each_ring(ring, dev_priv, i) {
4880		ret = ring->init_hw(ring);
4881		if (ret)
4882			goto out;
4883	}
4884
4885	/* We can't enable contexts until all firmware is loaded */
4886	if (HAS_GUC_UCODE(dev)) {
4887		ret = intel_guc_ucode_load(dev);
4888		if (ret) {
4889			DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4890			ret = -EIO;
4891			goto out;
4892		}
4893	}
4894
4895	/*
4896	 * Increment the next seqno by 0x100 so we have a visible break
4897	 * on re-initialisation
4898	 */
4899	ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4900	if (ret)
4901		goto out;
4902
4903	/* Now it is safe to go back round and do everything else: */
4904	for_each_ring(ring, dev_priv, i) {
4905		struct drm_i915_gem_request *req;
4906
4907		req = i915_gem_request_alloc(ring, NULL);
4908		if (IS_ERR(req)) {
4909			ret = PTR_ERR(req);
4910			i915_gem_cleanup_ringbuffer(dev);
4911			goto out;
4912		}
4913
4914		if (ring->id == RCS) {
4915			for (j = 0; j < NUM_L3_SLICES(dev); j++)
4916				i915_gem_l3_remap(req, j);
4917		}
4918
4919		ret = i915_ppgtt_init_ring(req);
4920		if (ret && ret != -EIO) {
4921			DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4922			i915_gem_request_cancel(req);
4923			i915_gem_cleanup_ringbuffer(dev);
4924			goto out;
4925		}
4926
4927		ret = i915_gem_context_enable(req);
4928		if (ret && ret != -EIO) {
4929			DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4930			i915_gem_request_cancel(req);
4931			i915_gem_cleanup_ringbuffer(dev);
4932			goto out;
4933		}
4934
4935		i915_add_request_no_flush(req);
4936	}
 
 
 
4937
4938out:
4939	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4940	return ret;
4941}
4942
4943int i915_gem_init(struct drm_device *dev)
4944{
4945	struct drm_i915_private *dev_priv = dev->dev_private;
4946	int ret;
4947
4948	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4949			i915.enable_execlists);
4950
4951	mutex_lock(&dev->struct_mutex);
4952
4953	if (!i915.enable_execlists) {
4954		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4955		dev_priv->gt.init_rings = i915_gem_init_rings;
4956		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4957		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4958	} else {
4959		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4960		dev_priv->gt.init_rings = intel_logical_rings_init;
4961		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4962		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4963	}
4964
4965	/* This is just a security blanket to placate dragons.
4966	 * On some systems, we very sporadically observe that the first TLBs
4967	 * used by the CS may be stale, despite us poking the TLB reset. If
4968	 * we hold the forcewake during initialisation these problems
4969	 * just magically go away.
4970	 */
4971	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4972
4973	ret = i915_gem_init_userptr(dev);
 
 
4974	if (ret)
4975		goto out_unlock;
4976
4977	i915_gem_init_global_gtt(dev);
4978
4979	ret = i915_gem_context_init(dev);
4980	if (ret)
4981		goto out_unlock;
4982
4983	ret = dev_priv->gt.init_rings(dev);
4984	if (ret)
4985		goto out_unlock;
4986
4987	ret = i915_gem_init_hw(dev);
4988	if (ret == -EIO) {
4989		/* Allow ring initialisation to fail by marking the GPU as
4990		 * wedged. But we only want to do this where the GPU is angry,
4991		 * for all other failure, such as an allocation failure, bail.
4992		 */
4993		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4994		atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4995		ret = 0;
4996	}
4997
4998out_unlock:
4999	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5000	mutex_unlock(&dev->struct_mutex);
5001
5002	return ret;
5003}
5004
5005void
5006i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5007{
5008	struct drm_i915_private *dev_priv = dev->dev_private;
5009	struct intel_engine_cs *ring;
5010	int i;
5011
5012	for_each_ring(ring, dev_priv, i)
5013		dev_priv->gt.cleanup_ring(ring);
5014
5015    if (i915.enable_execlists)
5016            /*
5017             * Neither the BIOS, ourselves or any other kernel
5018             * expects the system to be in execlists mode on startup,
5019             * so we need to reset the GPU back to legacy mode.
5020             */
5021            intel_gpu_reset(dev);
5022}
5023
5024static void
5025init_ring_lists(struct intel_engine_cs *ring)
5026{
5027	INIT_LIST_HEAD(&ring->active_list);
5028	INIT_LIST_HEAD(&ring->request_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5029}
5030
5031void
5032i915_gem_load_init(struct drm_device *dev)
5033{
5034	struct drm_i915_private *dev_priv = dev->dev_private;
5035	int i;
5036
5037	dev_priv->objects =
5038		kmem_cache_create("i915_gem_object",
5039				  sizeof(struct drm_i915_gem_object), 0,
5040				  SLAB_HWCACHE_ALIGN,
5041				  NULL);
5042	dev_priv->vmas =
5043		kmem_cache_create("i915_gem_vma",
5044				  sizeof(struct i915_vma), 0,
5045				  SLAB_HWCACHE_ALIGN,
5046				  NULL);
5047	dev_priv->requests =
5048		kmem_cache_create("i915_gem_request",
5049				  sizeof(struct drm_i915_gem_request), 0,
5050				  SLAB_HWCACHE_ALIGN,
5051				  NULL);
 
 
 
 
 
 
 
 
 
 
 
 
5052
5053	INIT_LIST_HEAD(&dev_priv->vm_list);
5054	INIT_LIST_HEAD(&dev_priv->context_list);
 
 
5055	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5056	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5057	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5058	for (i = 0; i < I915_NUM_RINGS; i++)
5059		init_ring_lists(&dev_priv->ring[i]);
5060	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5061		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5062	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5063			  i915_gem_retire_work_handler);
5064	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5065			  i915_gem_idle_work_handler);
 
5066	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5067
5068	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5069
5070	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5071		dev_priv->num_fence_regs = 32;
5072	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5073		dev_priv->num_fence_regs = 16;
5074	else
5075		dev_priv->num_fence_regs = 8;
5076
5077	if (intel_vgpu_active(dev))
5078		dev_priv->num_fence_regs =
5079				I915_READ(vgtif_reg(avail_rs.fence_num));
5080
5081	/*
5082	 * Set initial sequence number for requests.
5083	 * Using this number allows the wraparound to happen early,
5084	 * catching any obvious problems.
5085	 */
5086	dev_priv->next_seqno = ((u32)~0 - 0x1100);
5087	dev_priv->last_seqno = ((u32)~0 - 0x1101);
5088
5089	/* Initialize fence registers to zero */
5090	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5091	i915_gem_restore_fences(dev);
5092
5093	i915_gem_detect_bit_6_swizzle(dev);
5094	init_waitqueue_head(&dev_priv->pending_flip_queue);
5095
5096	dev_priv->mm.interruptible = true;
5097
5098	mutex_init(&dev_priv->fb_tracking.lock);
 
 
 
 
 
 
 
 
 
5099}
5100
5101void i915_gem_load_cleanup(struct drm_device *dev)
5102{
5103	struct drm_i915_private *dev_priv = to_i915(dev);
5104
 
 
 
 
 
 
 
 
5105	kmem_cache_destroy(dev_priv->requests);
5106	kmem_cache_destroy(dev_priv->vmas);
5107	kmem_cache_destroy(dev_priv->objects);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5108}
5109
5110void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5111{
5112	struct drm_i915_file_private *file_priv = file->driver_priv;
 
5113
5114	/* Clean up our request list when the client is going away, so that
5115	 * later retire_requests won't dereference our soon-to-be-gone
5116	 * file_priv.
5117	 */
5118	spin_lock(&file_priv->mm.lock);
5119	while (!list_empty(&file_priv->mm.request_list)) {
5120		struct drm_i915_gem_request *request;
5121
5122		request = list_first_entry(&file_priv->mm.request_list,
5123					   struct drm_i915_gem_request,
5124					   client_list);
5125		list_del(&request->client_list);
5126		request->file_priv = NULL;
5127	}
5128	spin_unlock(&file_priv->mm.lock);
5129
5130	if (!list_empty(&file_priv->rps.link)) {
5131		spin_lock(&to_i915(dev)->rps.client_lock);
5132		list_del(&file_priv->rps.link);
5133		spin_unlock(&to_i915(dev)->rps.client_lock);
5134	}
5135}
5136
5137int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5138{
5139	struct drm_i915_file_private *file_priv;
5140	int ret;
5141
5142	DRM_DEBUG_DRIVER("\n");
5143
5144	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5145	if (!file_priv)
5146		return -ENOMEM;
5147
5148	file->driver_priv = file_priv;
5149	file_priv->dev_priv = dev->dev_private;
5150	file_priv->file = file;
5151	INIT_LIST_HEAD(&file_priv->rps.link);
5152
5153	spin_lock_init(&file_priv->mm.lock);
5154	INIT_LIST_HEAD(&file_priv->mm.request_list);
5155
5156	file_priv->bsd_ring = -1;
5157
5158	ret = i915_gem_context_open(dev, file);
5159	if (ret)
5160		kfree(file_priv);
5161
5162	return ret;
5163}
5164
5165/**
5166 * i915_gem_track_fb - update frontbuffer tracking
5167 * @old: current GEM buffer for the frontbuffer slots
5168 * @new: new GEM buffer for the frontbuffer slots
5169 * @frontbuffer_bits: bitmask of frontbuffer slots
5170 *
5171 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5172 * from @old and setting them in @new. Both @old and @new can be NULL.
5173 */
5174void i915_gem_track_fb(struct drm_i915_gem_object *old,
5175		       struct drm_i915_gem_object *new,
5176		       unsigned frontbuffer_bits)
5177{
 
 
 
 
 
 
 
 
 
5178	if (old) {
5179		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5180		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5181		old->frontbuffer_bits &= ~frontbuffer_bits;
5182	}
5183
5184	if (new) {
5185		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5186		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5187		new->frontbuffer_bits |= frontbuffer_bits;
5188	}
5189}
5190
5191/* All the new VM stuff */
5192u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5193			struct i915_address_space *vm)
 
5194{
5195	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5196	struct i915_vma *vma;
 
 
5197
5198	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
 
 
5199
5200	list_for_each_entry(vma, &o->vma_list, obj_link) {
5201		if (vma->is_ggtt &&
5202		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5203			continue;
5204		if (vma->vm == vm)
5205			return vma->node.start;
 
 
 
 
 
 
 
 
 
 
 
5206	}
5207
5208	WARN(1, "%s vma for this object not found.\n",
5209	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5210	return -1;
 
 
5211}
5212
5213u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5214				  const struct i915_ggtt_view *view)
 
 
5215{
5216	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5217	struct i915_vma *vma;
 
5218
5219	list_for_each_entry(vma, &o->vma_list, obj_link)
5220		if (vma->vm == ggtt &&
5221		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5222			return vma->node.start;
 
 
 
 
 
 
 
 
 
 
 
5223
5224	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5225	return -1;
5226}
5227
5228bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5229			struct i915_address_space *vm)
5230{
5231	struct i915_vma *vma;
5232
5233	list_for_each_entry(vma, &o->vma_list, obj_link) {
5234		if (vma->is_ggtt &&
5235		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5236			continue;
5237		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5238			return true;
5239	}
5240
5241	return false;
5242}
 
5243
5244bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5245				  const struct i915_ggtt_view *view)
5246{
5247	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5248	struct i915_vma *vma;
 
 
 
 
 
 
5249
5250	list_for_each_entry(vma, &o->vma_list, obj_link)
5251		if (vma->vm == ggtt &&
5252		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5253		    drm_mm_node_allocated(&vma->node))
5254			return true;
 
 
 
 
5255
5256	return false;
5257}
 
 
5258
5259bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5260{
5261	struct i915_vma *vma;
5262
5263	list_for_each_entry(vma, &o->vma_list, obj_link)
5264		if (drm_mm_node_allocated(&vma->node))
5265			return true;
5266
5267	return false;
5268}
5269
5270unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5271				struct i915_address_space *vm)
5272{
5273	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5274	struct i915_vma *vma;
 
 
 
5275
5276	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
 
5277
5278	BUG_ON(list_empty(&o->vma_list));
 
5279
5280	list_for_each_entry(vma, &o->vma_list, obj_link) {
5281		if (vma->is_ggtt &&
5282		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5283			continue;
5284		if (vma->vm == vm)
5285			return vma->node.size;
 
 
 
 
 
 
 
 
 
 
 
 
5286	}
5287	return 0;
 
 
 
5288}
5289
5290bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
 
5291{
5292	struct i915_vma *vma;
5293	list_for_each_entry(vma, &obj->vma_list, obj_link)
5294		if (vma->pin_count > 0)
5295			return true;
5296
5297	return false;
 
 
 
5298}
5299
5300/* Like i915_gem_object_get_page(), but mark the returned page dirty */
5301struct page *
5302i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
 
5303{
5304	struct page *page;
5305
5306	/* Only default objects have per-page dirty tracking */
5307	if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5308		return NULL;
5309
5310	page = i915_gem_object_get_page(obj, n);
5311	set_page_dirty(page);
 
 
5312	return page;
5313}
5314
5315/* Allocate a new GEM object and fill it with the supplied data */
5316struct drm_i915_gem_object *
5317i915_gem_object_create_from_data(struct drm_device *dev,
5318			         const void *data, size_t size)
5319{
5320	struct drm_i915_gem_object *obj;
5321	struct sg_table *sg;
5322	size_t bytes;
5323	int ret;
5324
5325	obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5326	if (IS_ERR_OR_NULL(obj))
5327		return obj;
5328
5329	ret = i915_gem_object_set_to_cpu_domain(obj, true);
5330	if (ret)
5331		goto fail;
5332
5333	ret = i915_gem_object_get_pages(obj);
5334	if (ret)
5335		goto fail;
5336
5337	i915_gem_object_pin_pages(obj);
5338	sg = obj->pages;
5339	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5340	obj->dirty = 1;		/* Backing store is now out of date */
5341	i915_gem_object_unpin_pages(obj);
5342
5343	if (WARN_ON(bytes != size)) {
5344		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5345		ret = -EFAULT;
5346		goto fail;
5347	}
5348
5349	return obj;
5350
5351fail:
5352	drm_gem_object_unreference(&obj->base);
5353	return ERR_PTR(ret);
5354}
v4.10.11
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *
  26 */
  27
  28#include <drm/drmP.h>
  29#include <drm/drm_vma_manager.h>
  30#include <drm/i915_drm.h>
  31#include "i915_drv.h"
  32#include "i915_vgpu.h"
  33#include "i915_trace.h"
  34#include "intel_drv.h"
  35#include "intel_frontbuffer.h"
  36#include "intel_mocs.h"
  37#include <linux/dma-fence-array.h>
  38#include <linux/reservation.h>
  39#include <linux/shmem_fs.h>
  40#include <linux/slab.h>
  41#include <linux/swap.h>
  42#include <linux/pci.h>
  43#include <linux/dma-buf.h>
  44
  45static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
 
  46static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  47static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
 
 
 
 
  48
  49static bool cpu_cache_is_coherent(struct drm_device *dev,
  50				  enum i915_cache_level level)
  51{
  52	return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
  53}
  54
  55static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
  56{
  57	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  58		return false;
  59
  60	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
  61		return true;
  62
  63	return obj->pin_display;
  64}
  65
  66static int
  67insert_mappable_node(struct i915_ggtt *ggtt,
  68                     struct drm_mm_node *node, u32 size)
  69{
  70	memset(node, 0, sizeof(*node));
  71	return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
  72						   size, 0, -1,
  73						   0, ggtt->mappable_end,
  74						   DRM_MM_SEARCH_DEFAULT,
  75						   DRM_MM_CREATE_DEFAULT);
  76}
  77
  78static void
  79remove_mappable_node(struct drm_mm_node *node)
  80{
  81	drm_mm_remove_node(node);
  82}
  83
  84/* some bookkeeping */
  85static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  86				  u64 size)
  87{
  88	spin_lock(&dev_priv->mm.object_stat_lock);
  89	dev_priv->mm.object_count++;
  90	dev_priv->mm.object_memory += size;
  91	spin_unlock(&dev_priv->mm.object_stat_lock);
  92}
  93
  94static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  95				     u64 size)
  96{
  97	spin_lock(&dev_priv->mm.object_stat_lock);
  98	dev_priv->mm.object_count--;
  99	dev_priv->mm.object_memory -= size;
 100	spin_unlock(&dev_priv->mm.object_stat_lock);
 101}
 102
 103static int
 104i915_gem_wait_for_error(struct i915_gpu_error *error)
 105{
 106	int ret;
 107
 108	might_sleep();
 109
 110	if (!i915_reset_in_progress(error))
 111		return 0;
 112
 113	/*
 114	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
 115	 * userspace. If it takes that long something really bad is going on and
 116	 * we should simply try to bail out and fail as gracefully as possible.
 117	 */
 118	ret = wait_event_interruptible_timeout(error->reset_queue,
 119					       !i915_reset_in_progress(error),
 120					       I915_RESET_TIMEOUT);
 121	if (ret == 0) {
 122		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
 123		return -EIO;
 124	} else if (ret < 0) {
 125		return ret;
 126	} else {
 127		return 0;
 128	}
 
 
 
 129}
 130
 131int i915_mutex_lock_interruptible(struct drm_device *dev)
 132{
 133	struct drm_i915_private *dev_priv = to_i915(dev);
 134	int ret;
 135
 136	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
 137	if (ret)
 138		return ret;
 139
 140	ret = mutex_lock_interruptible(&dev->struct_mutex);
 141	if (ret)
 142		return ret;
 143
 
 144	return 0;
 145}
 146
 147int
 148i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
 149			    struct drm_file *file)
 150{
 151	struct drm_i915_private *dev_priv = to_i915(dev);
 152	struct i915_ggtt *ggtt = &dev_priv->ggtt;
 153	struct drm_i915_gem_get_aperture *args = data;
 
 154	struct i915_vma *vma;
 155	size_t pinned;
 156
 157	pinned = 0;
 158	mutex_lock(&dev->struct_mutex);
 159	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
 160		if (i915_vma_is_pinned(vma))
 161			pinned += vma->node.size;
 162	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
 163		if (i915_vma_is_pinned(vma))
 164			pinned += vma->node.size;
 165	mutex_unlock(&dev->struct_mutex);
 166
 167	args->aper_size = ggtt->base.total;
 168	args->aper_available_size = args->aper_size - pinned;
 169
 170	return 0;
 171}
 172
 173static struct sg_table *
 174i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
 175{
 176	struct address_space *mapping = obj->base.filp->f_mapping;
 177	drm_dma_handle_t *phys;
 178	struct sg_table *st;
 179	struct scatterlist *sg;
 180	char *vaddr;
 181	int i;
 182
 183	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
 184		return ERR_PTR(-EINVAL);
 185
 186	/* Always aligning to the object size, allows a single allocation
 187	 * to handle all possible callers, and given typical object sizes,
 188	 * the alignment of the buddy allocation will naturally match.
 189	 */
 190	phys = drm_pci_alloc(obj->base.dev,
 191			     obj->base.size,
 192			     roundup_pow_of_two(obj->base.size));
 193	if (!phys)
 194		return ERR_PTR(-ENOMEM);
 195
 196	vaddr = phys->vaddr;
 197	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 198		struct page *page;
 199		char *src;
 200
 201		page = shmem_read_mapping_page(mapping, i);
 202		if (IS_ERR(page)) {
 203			st = ERR_CAST(page);
 204			goto err_phys;
 205		}
 206
 207		src = kmap_atomic(page);
 208		memcpy(vaddr, src, PAGE_SIZE);
 209		drm_clflush_virt_range(vaddr, PAGE_SIZE);
 210		kunmap_atomic(src);
 211
 212		put_page(page);
 213		vaddr += PAGE_SIZE;
 214	}
 215
 216	i915_gem_chipset_flush(to_i915(obj->base.dev));
 217
 218	st = kmalloc(sizeof(*st), GFP_KERNEL);
 219	if (!st) {
 220		st = ERR_PTR(-ENOMEM);
 221		goto err_phys;
 222	}
 223
 224	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
 225		kfree(st);
 226		st = ERR_PTR(-ENOMEM);
 227		goto err_phys;
 228	}
 229
 230	sg = st->sgl;
 231	sg->offset = 0;
 232	sg->length = obj->base.size;
 233
 234	sg_dma_address(sg) = phys->busaddr;
 235	sg_dma_len(sg) = obj->base.size;
 236
 237	obj->phys_handle = phys;
 238	return st;
 239
 240err_phys:
 241	drm_pci_free(obj->base.dev, phys);
 242	return st;
 243}
 244
 245static void
 246__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
 247				struct sg_table *pages,
 248				bool needs_clflush)
 249{
 250	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
 251
 252	if (obj->mm.madv == I915_MADV_DONTNEED)
 253		obj->mm.dirty = false;
 254
 255	if (needs_clflush &&
 256	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
 257	    !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
 258		drm_clflush_sg(pages);
 259
 260	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
 261	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
 262}
 
 
 
 
 
 
 
 263
 264static void
 265i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
 266			       struct sg_table *pages)
 267{
 268	__i915_gem_object_release_shmem(obj, pages, false);
 269
 270	if (obj->mm.dirty) {
 271		struct address_space *mapping = obj->base.filp->f_mapping;
 272		char *vaddr = obj->phys_handle->vaddr;
 273		int i;
 274
 275		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
 276			struct page *page;
 277			char *dst;
 278
 279			page = shmem_read_mapping_page(mapping, i);
 280			if (IS_ERR(page))
 281				continue;
 282
 283			dst = kmap_atomic(page);
 284			drm_clflush_virt_range(vaddr, PAGE_SIZE);
 285			memcpy(dst, vaddr, PAGE_SIZE);
 286			kunmap_atomic(dst);
 287
 288			set_page_dirty(page);
 289			if (obj->mm.madv == I915_MADV_WILLNEED)
 290				mark_page_accessed(page);
 291			put_page(page);
 292			vaddr += PAGE_SIZE;
 293		}
 294		obj->mm.dirty = false;
 295	}
 296
 297	sg_free_table(pages);
 298	kfree(pages);
 299
 300	drm_pci_free(obj->base.dev, obj->phys_handle);
 301}
 302
 303static void
 304i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
 305{
 306	i915_gem_object_unpin_pages(obj);
 307}
 308
 309static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
 310	.get_pages = i915_gem_object_get_pages_phys,
 311	.put_pages = i915_gem_object_put_pages_phys,
 312	.release = i915_gem_object_release_phys,
 313};
 314
 315int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
 
 316{
 317	struct i915_vma *vma;
 318	LIST_HEAD(still_in_list);
 319	int ret;
 320
 321	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
 
 
 322
 323	/* Closed vma are removed from the obj->vma_list - but they may
 324	 * still have an active binding on the object. To remove those we
 325	 * must wait for all rendering to complete to the object (as unbinding
 326	 * must anyway), and retire the requests.
 327	 */
 328	ret = i915_gem_object_wait(obj,
 329				   I915_WAIT_INTERRUPTIBLE |
 330				   I915_WAIT_LOCKED |
 331				   I915_WAIT_ALL,
 332				   MAX_SCHEDULE_TIMEOUT,
 333				   NULL);
 334	if (ret)
 335		return ret;
 336
 337	i915_gem_retire_requests(to_i915(obj->base.dev));
 338
 339	while ((vma = list_first_entry_or_null(&obj->vma_list,
 340					       struct i915_vma,
 341					       obj_link))) {
 342		list_move_tail(&vma->obj_link, &still_in_list);
 343		ret = i915_vma_unbind(vma);
 344		if (ret)
 345			break;
 346	}
 347	list_splice(&still_in_list, &obj->vma_list);
 348
 349	return ret;
 350}
 351
 352static long
 353i915_gem_object_wait_fence(struct dma_fence *fence,
 354			   unsigned int flags,
 355			   long timeout,
 356			   struct intel_rps_client *rps)
 357{
 358	struct drm_i915_gem_request *rq;
 359
 360	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
 361
 362	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
 363		return timeout;
 364
 365	if (!dma_fence_is_i915(fence))
 366		return dma_fence_wait_timeout(fence,
 367					      flags & I915_WAIT_INTERRUPTIBLE,
 368					      timeout);
 369
 370	rq = to_request(fence);
 371	if (i915_gem_request_completed(rq))
 372		goto out;
 373
 374	/* This client is about to stall waiting for the GPU. In many cases
 375	 * this is undesirable and limits the throughput of the system, as
 376	 * many clients cannot continue processing user input/output whilst
 377	 * blocked. RPS autotuning may take tens of milliseconds to respond
 378	 * to the GPU load and thus incurs additional latency for the client.
 379	 * We can circumvent that by promoting the GPU frequency to maximum
 380	 * before we wait. This makes the GPU throttle up much more quickly
 381	 * (good for benchmarks and user experience, e.g. window animations),
 382	 * but at a cost of spending more power processing the workload
 383	 * (bad for battery). Not all clients even want their results
 384	 * immediately and for them we should just let the GPU select its own
 385	 * frequency to maximise efficiency. To prevent a single client from
 386	 * forcing the clocks too high for the whole system, we only allow
 387	 * each client to waitboost once in a busy period.
 388	 */
 389	if (rps) {
 390		if (INTEL_GEN(rq->i915) >= 6)
 391			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
 392		else
 393			rps = NULL;
 394	}
 395
 396	timeout = i915_wait_request(rq, flags, timeout);
 397
 398out:
 399	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
 400		i915_gem_request_retire_upto(rq);
 401
 402	if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
 403		/* The GPU is now idle and this client has stalled.
 404		 * Since no other client has submitted a request in the
 405		 * meantime, assume that this client is the only one
 406		 * supplying work to the GPU but is unable to keep that
 407		 * work supplied because it is waiting. Since the GPU is
 408		 * then never kept fully busy, RPS autoclocking will
 409		 * keep the clocks relatively low, causing further delays.
 410		 * Compensate by giving the synchronous client credit for
 411		 * a waitboost next time.
 412		 */
 413		spin_lock(&rq->i915->rps.client_lock);
 414		list_del_init(&rps->link);
 415		spin_unlock(&rq->i915->rps.client_lock);
 416	}
 417
 418	return timeout;
 419}
 420
 421static long
 422i915_gem_object_wait_reservation(struct reservation_object *resv,
 423				 unsigned int flags,
 424				 long timeout,
 425				 struct intel_rps_client *rps)
 426{
 427	struct dma_fence *excl;
 428
 429	if (flags & I915_WAIT_ALL) {
 430		struct dma_fence **shared;
 431		unsigned int count, i;
 432		int ret;
 433
 434		ret = reservation_object_get_fences_rcu(resv,
 435							&excl, &count, &shared);
 436		if (ret)
 437			return ret;
 438
 439		for (i = 0; i < count; i++) {
 440			timeout = i915_gem_object_wait_fence(shared[i],
 441							     flags, timeout,
 442							     rps);
 443			if (timeout < 0)
 444				break;
 445
 446			dma_fence_put(shared[i]);
 447		}
 448
 449		for (; i < count; i++)
 450			dma_fence_put(shared[i]);
 451		kfree(shared);
 452	} else {
 453		excl = reservation_object_get_excl_rcu(resv);
 454	}
 455
 456	if (excl && timeout >= 0)
 457		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
 458
 459	dma_fence_put(excl);
 460
 461	return timeout;
 462}
 463
 464static void __fence_set_priority(struct dma_fence *fence, int prio)
 465{
 466	struct drm_i915_gem_request *rq;
 467	struct intel_engine_cs *engine;
 468
 469	if (!dma_fence_is_i915(fence))
 470		return;
 471
 472	rq = to_request(fence);
 473	engine = rq->engine;
 474	if (!engine->schedule)
 475		return;
 476
 477	engine->schedule(rq, prio);
 478}
 479
 480static void fence_set_priority(struct dma_fence *fence, int prio)
 481{
 482	/* Recurse once into a fence-array */
 483	if (dma_fence_is_array(fence)) {
 484		struct dma_fence_array *array = to_dma_fence_array(fence);
 485		int i;
 486
 487		for (i = 0; i < array->num_fences; i++)
 488			__fence_set_priority(array->fences[i], prio);
 489	} else {
 490		__fence_set_priority(fence, prio);
 491	}
 492}
 493
 494int
 495i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
 496			      unsigned int flags,
 497			      int prio)
 498{
 499	struct dma_fence *excl;
 500
 501	if (flags & I915_WAIT_ALL) {
 502		struct dma_fence **shared;
 503		unsigned int count, i;
 504		int ret;
 505
 506		ret = reservation_object_get_fences_rcu(obj->resv,
 507							&excl, &count, &shared);
 508		if (ret)
 509			return ret;
 510
 511		for (i = 0; i < count; i++) {
 512			fence_set_priority(shared[i], prio);
 513			dma_fence_put(shared[i]);
 514		}
 515
 516		kfree(shared);
 517	} else {
 518		excl = reservation_object_get_excl_rcu(obj->resv);
 519	}
 520
 521	if (excl) {
 522		fence_set_priority(excl, prio);
 523		dma_fence_put(excl);
 524	}
 525	return 0;
 526}
 527
 528/**
 529 * Waits for rendering to the object to be completed
 530 * @obj: i915 gem object
 531 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 532 * @timeout: how long to wait
 533 * @rps: client (user process) to charge for any waitboosting
 534 */
 535int
 536i915_gem_object_wait(struct drm_i915_gem_object *obj,
 537		     unsigned int flags,
 538		     long timeout,
 539		     struct intel_rps_client *rps)
 540{
 541	might_sleep();
 542#if IS_ENABLED(CONFIG_LOCKDEP)
 543	GEM_BUG_ON(debug_locks &&
 544		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
 545		   !!(flags & I915_WAIT_LOCKED));
 546#endif
 547	GEM_BUG_ON(timeout < 0);
 548
 549	timeout = i915_gem_object_wait_reservation(obj->resv,
 550						   flags, timeout,
 551						   rps);
 552	return timeout < 0 ? timeout : 0;
 553}
 554
 555static struct intel_rps_client *to_rps_client(struct drm_file *file)
 556{
 557	struct drm_i915_file_private *fpriv = file->driver_priv;
 558
 559	return &fpriv->rps;
 560}
 561
 562int
 563i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
 564			    int align)
 565{
 
 566	int ret;
 567
 568	if (align > obj->base.size)
 569		return -EINVAL;
 
 570
 571	if (obj->ops == &i915_gem_phys_ops)
 572		return 0;
 
 573
 574	if (obj->mm.madv != I915_MADV_WILLNEED)
 575		return -EFAULT;
 576
 577	if (obj->base.filp == NULL)
 578		return -EINVAL;
 579
 580	ret = i915_gem_object_unbind(obj);
 581	if (ret)
 582		return ret;
 583
 584	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
 585	if (obj->mm.pages)
 586		return -EBUSY;
 
 587
 
 588	obj->ops = &i915_gem_phys_ops;
 589
 590	return i915_gem_object_pin_pages(obj);
 591}
 592
 593static int
 594i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
 595		     struct drm_i915_gem_pwrite *args,
 596		     struct drm_file *file)
 597{
 
 598	void *vaddr = obj->phys_handle->vaddr + args->offset;
 599	char __user *user_data = u64_to_user_ptr(args->data_ptr);
 
 600
 601	/* We manually control the domain here and pretend that it
 602	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
 603	 */
 
 
 
 
 604	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 605	if (copy_from_user(vaddr, user_data, args->size))
 606		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 607
 608	drm_clflush_virt_range(vaddr, args->size);
 609	i915_gem_chipset_flush(to_i915(obj->base.dev));
 610
 
 611	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
 612	return 0;
 613}
 614
 615void *i915_gem_object_alloc(struct drm_device *dev)
 616{
 617	struct drm_i915_private *dev_priv = to_i915(dev);
 618	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
 619}
 620
 621void i915_gem_object_free(struct drm_i915_gem_object *obj)
 622{
 623	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
 624	kmem_cache_free(dev_priv->objects, obj);
 625}
 626
 627static int
 628i915_gem_create(struct drm_file *file,
 629		struct drm_device *dev,
 630		uint64_t size,
 631		uint32_t *handle_p)
 632{
 633	struct drm_i915_gem_object *obj;
 634	int ret;
 635	u32 handle;
 636
 637	size = roundup(size, PAGE_SIZE);
 638	if (size == 0)
 639		return -EINVAL;
 640
 641	/* Allocate the new object */
 642	obj = i915_gem_object_create(dev, size);
 643	if (IS_ERR(obj))
 644		return PTR_ERR(obj);
 645
 646	ret = drm_gem_handle_create(file, &obj->base, &handle);
 647	/* drop reference from allocate - handle holds it now */
 648	i915_gem_object_put(obj);
 649	if (ret)
 650		return ret;
 651
 652	*handle_p = handle;
 653	return 0;
 654}
 655
 656int
 657i915_gem_dumb_create(struct drm_file *file,
 658		     struct drm_device *dev,
 659		     struct drm_mode_create_dumb *args)
 660{
 661	/* have to work out size/pitch and return them */
 662	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
 663	args->size = args->pitch * args->height;
 664	return i915_gem_create(file, dev,
 665			       args->size, &args->handle);
 666}
 667
 668/**
 669 * Creates a new mm object and returns a handle to it.
 670 * @dev: drm device pointer
 671 * @data: ioctl data blob
 672 * @file: drm file pointer
 673 */
 674int
 675i915_gem_create_ioctl(struct drm_device *dev, void *data,
 676		      struct drm_file *file)
 677{
 678	struct drm_i915_gem_create *args = data;
 679
 680	i915_gem_flush_free_objects(to_i915(dev));
 681
 682	return i915_gem_create(file, dev,
 683			       args->size, &args->handle);
 684}
 685
 686static inline int
 687__copy_to_user_swizzled(char __user *cpu_vaddr,
 688			const char *gpu_vaddr, int gpu_offset,
 689			int length)
 690{
 691	int ret, cpu_offset = 0;
 692
 693	while (length > 0) {
 694		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 695		int this_length = min(cacheline_end - gpu_offset, length);
 696		int swizzled_gpu_offset = gpu_offset ^ 64;
 697
 698		ret = __copy_to_user(cpu_vaddr + cpu_offset,
 699				     gpu_vaddr + swizzled_gpu_offset,
 700				     this_length);
 701		if (ret)
 702			return ret + length;
 703
 704		cpu_offset += this_length;
 705		gpu_offset += this_length;
 706		length -= this_length;
 707	}
 708
 709	return 0;
 710}
 711
 712static inline int
 713__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
 714			  const char __user *cpu_vaddr,
 715			  int length)
 716{
 717	int ret, cpu_offset = 0;
 718
 719	while (length > 0) {
 720		int cacheline_end = ALIGN(gpu_offset + 1, 64);
 721		int this_length = min(cacheline_end - gpu_offset, length);
 722		int swizzled_gpu_offset = gpu_offset ^ 64;
 723
 724		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
 725				       cpu_vaddr + cpu_offset,
 726				       this_length);
 727		if (ret)
 728			return ret + length;
 729
 730		cpu_offset += this_length;
 731		gpu_offset += this_length;
 732		length -= this_length;
 733	}
 734
 735	return 0;
 736}
 737
 738/*
 739 * Pins the specified object's pages and synchronizes the object with
 740 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 741 * flush the object from the CPU cache.
 742 */
 743int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
 744				    unsigned int *needs_clflush)
 745{
 746	int ret;
 747
 748	lockdep_assert_held(&obj->base.dev->struct_mutex);
 749
 750	*needs_clflush = 0;
 751	if (!i915_gem_object_has_struct_page(obj))
 752		return -ENODEV;
 753
 754	ret = i915_gem_object_wait(obj,
 755				   I915_WAIT_INTERRUPTIBLE |
 756				   I915_WAIT_LOCKED,
 757				   MAX_SCHEDULE_TIMEOUT,
 758				   NULL);
 759	if (ret)
 760		return ret;
 761
 762	ret = i915_gem_object_pin_pages(obj);
 763	if (ret)
 764		return ret;
 765
 766	i915_gem_object_flush_gtt_write_domain(obj);
 767
 768	/* If we're not in the cpu read domain, set ourself into the gtt
 769	 * read domain and manually flush cachelines (if required). This
 770	 * optimizes for the case when the gpu will dirty the data
 771	 * anyway again before the next pread happens.
 772	 */
 773	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
 774		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
 775							obj->cache_level);
 776
 777	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 778		ret = i915_gem_object_set_to_cpu_domain(obj, false);
 779		if (ret)
 780			goto err_unpin;
 
 781
 782		*needs_clflush = 0;
 783	}
 
 784
 785	/* return with the pages pinned */
 786	return 0;
 787
 788err_unpin:
 789	i915_gem_object_unpin_pages(obj);
 790	return ret;
 791}
 792
 793int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
 794				     unsigned int *needs_clflush)
 
 
 
 
 
 795{
 
 796	int ret;
 797
 798	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
 799
 800	*needs_clflush = 0;
 801	if (!i915_gem_object_has_struct_page(obj))
 802		return -ENODEV;
 
 
 
 
 
 803
 804	ret = i915_gem_object_wait(obj,
 805				   I915_WAIT_INTERRUPTIBLE |
 806				   I915_WAIT_LOCKED |
 807				   I915_WAIT_ALL,
 808				   MAX_SCHEDULE_TIMEOUT,
 809				   NULL);
 810	if (ret)
 811		return ret;
 812
 813	ret = i915_gem_object_pin_pages(obj);
 814	if (ret)
 815		return ret;
 816
 817	i915_gem_object_flush_gtt_write_domain(obj);
 818
 819	/* If we're not in the cpu write domain, set ourself into the
 820	 * gtt write domain and manually flush cachelines (as required).
 821	 * This optimizes for the case when the gpu will use the data
 822	 * right away and we therefore have to clflush anyway.
 823	 */
 824	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
 825		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;
 826
 827	/* Same trick applies to invalidate partially written cachelines read
 828	 * before writing.
 829	 */
 830	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
 831		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
 832							 obj->cache_level);
 833
 834	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 835		ret = i915_gem_object_set_to_cpu_domain(obj, true);
 836		if (ret)
 837			goto err_unpin;
 838
 839		*needs_clflush = 0;
 840	}
 841
 842	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
 843		obj->cache_dirty = true;
 844
 845	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
 846	obj->mm.dirty = true;
 847	/* return with the pages pinned */
 848	return 0;
 849
 850err_unpin:
 851	i915_gem_object_unpin_pages(obj);
 852	return ret;
 853}
 854
 855static void
 856shmem_clflush_swizzled_range(char *addr, unsigned long length,
 857			     bool swizzled)
 858{
 859	if (unlikely(swizzled)) {
 860		unsigned long start = (unsigned long) addr;
 861		unsigned long end = (unsigned long) addr + length;
 862
 863		/* For swizzling simply ensure that we always flush both
 864		 * channels. Lame, but simple and it works. Swizzled
 865		 * pwrite/pread is far from a hotpath - current userspace
 866		 * doesn't use it at all. */
 867		start = round_down(start, 128);
 868		end = round_up(end, 128);
 869
 870		drm_clflush_virt_range((void *)start, end - start);
 871	} else {
 872		drm_clflush_virt_range(addr, length);
 873	}
 874
 875}
 876
 877/* Only difference to the fast-path function is that this can handle bit17
 878 * and uses non-atomic copy and kmap functions. */
 879static int
 880shmem_pread_slow(struct page *page, int offset, int length,
 881		 char __user *user_data,
 882		 bool page_do_bit17_swizzling, bool needs_clflush)
 883{
 884	char *vaddr;
 885	int ret;
 886
 887	vaddr = kmap(page);
 888	if (needs_clflush)
 889		shmem_clflush_swizzled_range(vaddr + offset, length,
 
 890					     page_do_bit17_swizzling);
 891
 892	if (page_do_bit17_swizzling)
 893		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
 
 
 894	else
 895		ret = __copy_to_user(user_data, vaddr + offset, length);
 
 
 896	kunmap(page);
 897
 898	return ret ? - EFAULT : 0;
 899}
 900
 901static int
 902shmem_pread(struct page *page, int offset, int length, char __user *user_data,
 903	    bool page_do_bit17_swizzling, bool needs_clflush)
 904{
 905	int ret;
 906
 907	ret = -ENODEV;
 908	if (!page_do_bit17_swizzling) {
 909		char *vaddr = kmap_atomic(page);
 910
 911		if (needs_clflush)
 912			drm_clflush_virt_range(vaddr + offset, length);
 913		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
 914		kunmap_atomic(vaddr);
 915	}
 916	if (ret == 0)
 917		return 0;
 918
 919	return shmem_pread_slow(page, offset, length, user_data,
 920				page_do_bit17_swizzling, needs_clflush);
 921}
 922
 923static int
 924i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
 925		     struct drm_i915_gem_pread *args)
 926{
 927	char __user *user_data;
 928	u64 remain;
 929	unsigned int obj_do_bit17_swizzling;
 930	unsigned int needs_clflush;
 931	unsigned int idx, offset;
 932	int ret;
 
 
 933
 934	obj_do_bit17_swizzling = 0;
 935	if (i915_gem_object_needs_bit17_swizzle(obj))
 936		obj_do_bit17_swizzling = BIT(17);
 937
 938	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
 939	if (ret)
 940		return ret;
 941
 942	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
 943	mutex_unlock(&obj->base.dev->struct_mutex);
 944	if (ret)
 945		return ret;
 946
 947	remain = args->size;
 948	user_data = u64_to_user_ptr(args->data_ptr);
 949	offset = offset_in_page(args->offset);
 950	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
 951		struct page *page = i915_gem_object_get_page(obj, idx);
 952		int length;
 953
 954		length = remain;
 955		if (offset + length > PAGE_SIZE)
 956			length = PAGE_SIZE - offset;
 957
 958		ret = shmem_pread(page, offset, length, user_data,
 959				  page_to_phys(page) & obj_do_bit17_swizzling,
 960				  needs_clflush);
 961		if (ret)
 962			break;
 963
 964		remain -= length;
 965		user_data += length;
 966		offset = 0;
 967	}
 968
 969	i915_gem_obj_finish_shmem_access(obj);
 970	return ret;
 971}
 972
 973static inline bool
 974gtt_user_read(struct io_mapping *mapping,
 975	      loff_t base, int offset,
 976	      char __user *user_data, int length)
 977{
 978	void *vaddr;
 979	unsigned long unwritten;
 980
 981	/* We can use the cpu mem copy function because this is X86. */
 982	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
 983	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
 984	io_mapping_unmap_atomic(vaddr);
 985	if (unwritten) {
 986		vaddr = (void __force *)
 987			io_mapping_map_wc(mapping, base, PAGE_SIZE);
 988		unwritten = copy_to_user(user_data, vaddr + offset, length);
 989		io_mapping_unmap(vaddr);
 990	}
 991	return unwritten;
 992}
 
 
 
 
 
 
 993
 994static int
 995i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
 996		   const struct drm_i915_gem_pread *args)
 997{
 998	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 999	struct i915_ggtt *ggtt = &i915->ggtt;
1000	struct drm_mm_node node;
1001	struct i915_vma *vma;
1002	void __user *user_data;
1003	u64 remain, offset;
1004	int ret;
1005
1006	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1007	if (ret)
1008		return ret;
1009
1010	intel_runtime_pm_get(i915);
1011	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1012				       PIN_MAPPABLE | PIN_NONBLOCK);
1013	if (!IS_ERR(vma)) {
1014		node.start = i915_ggtt_offset(vma);
1015		node.allocated = false;
1016		ret = i915_vma_put_fence(vma);
1017		if (ret) {
1018			i915_vma_unpin(vma);
1019			vma = ERR_PTR(ret);
1020		}
1021	}
1022	if (IS_ERR(vma)) {
1023		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1024		if (ret)
1025			goto out_unlock;
1026		GEM_BUG_ON(!node.allocated);
1027	}
1028
1029	ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030	if (ret)
1031		goto out_unpin;
1032
1033	mutex_unlock(&i915->drm.struct_mutex);
1034
1035	user_data = u64_to_user_ptr(args->data_ptr);
1036	remain = args->size;
1037	offset = args->offset;
1038
1039	while (remain > 0) {
1040		/* Operation in this page
1041		 *
1042		 * page_base = page offset within aperture
1043		 * page_offset = offset within page
1044		 * page_length = bytes to copy for this page
1045		 */
1046		u32 page_base = node.start;
1047		unsigned page_offset = offset_in_page(offset);
1048		unsigned page_length = PAGE_SIZE - page_offset;
1049		page_length = remain < page_length ? remain : page_length;
1050		if (node.allocated) {
1051			wmb();
1052			ggtt->base.insert_page(&ggtt->base,
1053					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1054					       node.start, I915_CACHE_NONE, 0);
1055			wmb();
1056		} else {
1057			page_base += offset & PAGE_MASK;
1058		}
1059
1060		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1061				  user_data, page_length)) {
1062			ret = -EFAULT;
1063			break;
1064		}
1065
 
1066		remain -= page_length;
1067		user_data += page_length;
1068		offset += page_length;
1069	}
1070
1071	mutex_lock(&i915->drm.struct_mutex);
1072out_unpin:
1073	if (node.allocated) {
1074		wmb();
1075		ggtt->base.clear_range(&ggtt->base,
1076				       node.start, node.size);
1077		remove_mappable_node(&node);
1078	} else {
1079		i915_vma_unpin(vma);
1080	}
1081out_unlock:
1082	intel_runtime_pm_put(i915);
1083	mutex_unlock(&i915->drm.struct_mutex);
1084
1085	return ret;
1086}
1087
1088/**
1089 * Reads data from the object referenced by handle.
1090 * @dev: drm device pointer
1091 * @data: ioctl data blob
1092 * @file: drm file pointer
1093 *
1094 * On error, the contents of *data are undefined.
1095 */
1096int
1097i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1098		     struct drm_file *file)
1099{
1100	struct drm_i915_gem_pread *args = data;
1101	struct drm_i915_gem_object *obj;
1102	int ret;
1103
1104	if (args->size == 0)
1105		return 0;
1106
1107	if (!access_ok(VERIFY_WRITE,
1108		       u64_to_user_ptr(args->data_ptr),
1109		       args->size))
1110		return -EFAULT;
1111
1112	obj = i915_gem_object_lookup(file, args->handle);
1113	if (!obj)
1114		return -ENOENT;
 
 
 
 
 
 
1115
1116	/* Bounds check source.  */
1117	if (args->offset > obj->base.size ||
1118	    args->size > obj->base.size - args->offset) {
1119		ret = -EINVAL;
1120		goto out;
1121	}
1122
1123	trace_i915_gem_object_pread(obj, args->offset, args->size);
1124
1125	ret = i915_gem_object_wait(obj,
1126				   I915_WAIT_INTERRUPTIBLE,
1127				   MAX_SCHEDULE_TIMEOUT,
1128				   to_rps_client(file));
1129	if (ret)
1130		goto out;
 
1131
1132	ret = i915_gem_object_pin_pages(obj);
1133	if (ret)
1134		goto out;
1135
1136	ret = i915_gem_shmem_pread(obj, args);
1137	if (ret == -EFAULT || ret == -ENODEV)
1138		ret = i915_gem_gtt_pread(obj, args);
1139
1140	i915_gem_object_unpin_pages(obj);
1141out:
1142	i915_gem_object_put(obj);
 
 
1143	return ret;
1144}
1145
1146/* This is the fast write path which cannot handle
1147 * page faults in the source data
1148 */
1149
1150static inline bool
1151ggtt_write(struct io_mapping *mapping,
1152	   loff_t base, int offset,
1153	   char __user *user_data, int length)
 
1154{
 
1155	void *vaddr;
1156	unsigned long unwritten;
1157
 
1158	/* We can use the cpu mem copy function because this is X86. */
1159	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1160	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1161						      user_data, length);
1162	io_mapping_unmap_atomic(vaddr);
1163	if (unwritten) {
1164		vaddr = (void __force *)
1165			io_mapping_map_wc(mapping, base, PAGE_SIZE);
1166		unwritten = copy_from_user(vaddr + offset, user_data, length);
1167		io_mapping_unmap(vaddr);
1168	}
1169
1170	return unwritten;
1171}
1172
1173/**
1174 * This is the fast pwrite path, where we copy the data directly from the
1175 * user into the GTT, uncached.
1176 * @obj: i915 GEM object
1177 * @args: pwrite arguments structure
1178 */
1179static int
1180i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1181			 const struct drm_i915_gem_pwrite *args)
 
 
1182{
1183	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1184	struct i915_ggtt *ggtt = &i915->ggtt;
1185	struct drm_mm_node node;
1186	struct i915_vma *vma;
1187	u64 remain, offset;
1188	void __user *user_data;
1189	int ret;
1190
1191	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1192	if (ret)
1193		return ret;
1194
1195	intel_runtime_pm_get(i915);
1196	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1197				       PIN_MAPPABLE | PIN_NONBLOCK);
1198	if (!IS_ERR(vma)) {
1199		node.start = i915_ggtt_offset(vma);
1200		node.allocated = false;
1201		ret = i915_vma_put_fence(vma);
1202		if (ret) {
1203			i915_vma_unpin(vma);
1204			vma = ERR_PTR(ret);
1205		}
1206	}
1207	if (IS_ERR(vma)) {
1208		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1209		if (ret)
1210			goto out_unlock;
1211		GEM_BUG_ON(!node.allocated);
1212	}
1213
1214	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1215	if (ret)
1216		goto out_unpin;
1217
1218	mutex_unlock(&i915->drm.struct_mutex);
 
 
 
1219
1220	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1221
1222	user_data = u64_to_user_ptr(args->data_ptr);
1223	offset = args->offset;
1224	remain = args->size;
1225	while (remain) {
1226		/* Operation in this page
1227		 *
1228		 * page_base = page offset within aperture
1229		 * page_offset = offset within page
1230		 * page_length = bytes to copy for this page
1231		 */
1232		u32 page_base = node.start;
1233		unsigned int page_offset = offset_in_page(offset);
1234		unsigned int page_length = PAGE_SIZE - page_offset;
1235		page_length = remain < page_length ? remain : page_length;
1236		if (node.allocated) {
1237			wmb(); /* flush the write before we modify the GGTT */
1238			ggtt->base.insert_page(&ggtt->base,
1239					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1240					       node.start, I915_CACHE_NONE, 0);
1241			wmb(); /* flush modifications to the GGTT (insert_page) */
1242		} else {
1243			page_base += offset & PAGE_MASK;
1244		}
1245		/* If we get a fault while copying data, then (presumably) our
1246		 * source page isn't available.  Return the error and we'll
1247		 * retry in the slow path.
1248		 * If the object is non-shmem backed, we retry again with the
1249		 * path that handles page fault.
1250		 */
1251		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1252			       user_data, page_length)) {
1253			ret = -EFAULT;
1254			break;
1255		}
1256
1257		remain -= page_length;
1258		user_data += page_length;
1259		offset += page_length;
1260	}
1261	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1262
1263	mutex_lock(&i915->drm.struct_mutex);
 
1264out_unpin:
1265	if (node.allocated) {
1266		wmb();
1267		ggtt->base.clear_range(&ggtt->base,
1268				       node.start, node.size);
1269		remove_mappable_node(&node);
1270	} else {
1271		i915_vma_unpin(vma);
1272	}
1273out_unlock:
1274	intel_runtime_pm_put(i915);
1275	mutex_unlock(&i915->drm.struct_mutex);
1276	return ret;
1277}
1278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279static int
1280shmem_pwrite_slow(struct page *page, int offset, int length,
1281		  char __user *user_data,
1282		  bool page_do_bit17_swizzling,
1283		  bool needs_clflush_before,
1284		  bool needs_clflush_after)
1285{
1286	char *vaddr;
1287	int ret;
1288
1289	vaddr = kmap(page);
1290	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1291		shmem_clflush_swizzled_range(vaddr + offset, length,
 
1292					     page_do_bit17_swizzling);
1293	if (page_do_bit17_swizzling)
1294		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1295						length);
 
1296	else
1297		ret = __copy_from_user(vaddr + offset, user_data, length);
 
 
1298	if (needs_clflush_after)
1299		shmem_clflush_swizzled_range(vaddr + offset, length,
 
1300					     page_do_bit17_swizzling);
1301	kunmap(page);
1302
1303	return ret ? -EFAULT : 0;
1304}
1305
1306/* Per-page copy function for the shmem pwrite fastpath.
1307 * Flushes invalid cachelines before writing to the target if
1308 * needs_clflush_before is set and flushes out any written cachelines after
1309 * writing if needs_clflush is set.
1310 */
1311static int
1312shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1313	     bool page_do_bit17_swizzling,
1314	     bool needs_clflush_before,
1315	     bool needs_clflush_after)
1316{
1317	int ret;
 
 
 
 
 
 
 
 
 
 
 
1318
1319	ret = -ENODEV;
1320	if (!page_do_bit17_swizzling) {
1321		char *vaddr = kmap_atomic(page);
1322
1323		if (needs_clflush_before)
1324			drm_clflush_virt_range(vaddr + offset, len);
1325		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1326		if (needs_clflush_after)
1327			drm_clflush_virt_range(vaddr + offset, len);
1328
1329		kunmap_atomic(vaddr);
 
 
 
 
 
 
 
 
1330	}
1331	if (ret == 0)
 
 
 
 
 
 
 
1332		return ret;
1333
1334	return shmem_pwrite_slow(page, offset, len, user_data,
1335				 page_do_bit17_swizzling,
1336				 needs_clflush_before,
1337				 needs_clflush_after);
1338}
 
 
 
 
 
 
1339
1340static int
1341i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1342		      const struct drm_i915_gem_pwrite *args)
1343{
1344	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1345	void __user *user_data;
1346	u64 remain;
1347	unsigned int obj_do_bit17_swizzling;
1348	unsigned int partial_cacheline_write;
1349	unsigned int needs_clflush;
1350	unsigned int offset, idx;
1351	int ret;
1352
1353	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1354	if (ret)
1355		return ret;
 
 
 
1356
1357	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1358	mutex_unlock(&i915->drm.struct_mutex);
1359	if (ret)
1360		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1361
1362	obj_do_bit17_swizzling = 0;
1363	if (i915_gem_object_needs_bit17_swizzle(obj))
1364		obj_do_bit17_swizzling = BIT(17);
 
 
 
1365
1366	/* If we don't overwrite a cacheline completely we need to be
1367	 * careful to have up-to-date data by first clflushing. Don't
1368	 * overcomplicate things and flush the entire patch.
1369	 */
1370	partial_cacheline_write = 0;
1371	if (needs_clflush & CLFLUSH_BEFORE)
1372		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1373
1374	user_data = u64_to_user_ptr(args->data_ptr);
1375	remain = args->size;
1376	offset = offset_in_page(args->offset);
1377	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1378		struct page *page = i915_gem_object_get_page(obj, idx);
1379		int length;
1380
1381		length = remain;
1382		if (offset + length > PAGE_SIZE)
1383			length = PAGE_SIZE - offset;
1384
1385		ret = shmem_pwrite(page, offset, length, user_data,
1386				   page_to_phys(page) & obj_do_bit17_swizzling,
1387				   (offset | length) & partial_cacheline_write,
1388				   needs_clflush & CLFLUSH_AFTER);
1389		if (ret)
1390			break;
 
 
 
 
 
 
 
 
 
1391
1392		remain -= length;
1393		user_data += length;
1394		offset = 0;
 
 
 
 
 
 
 
 
1395	}
1396
 
 
 
 
 
1397	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1398	i915_gem_obj_finish_shmem_access(obj);
1399	return ret;
1400}
1401
1402/**
1403 * Writes data to the object referenced by handle.
1404 * @dev: drm device
1405 * @data: ioctl data blob
1406 * @file: drm file
1407 *
1408 * On error, the contents of the buffer that were to be modified are undefined.
1409 */
1410int
1411i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1412		      struct drm_file *file)
1413{
 
1414	struct drm_i915_gem_pwrite *args = data;
1415	struct drm_i915_gem_object *obj;
1416	int ret;
1417
1418	if (args->size == 0)
1419		return 0;
1420
1421	if (!access_ok(VERIFY_READ,
1422		       u64_to_user_ptr(args->data_ptr),
1423		       args->size))
1424		return -EFAULT;
1425
1426	obj = i915_gem_object_lookup(file, args->handle);
1427	if (!obj)
1428		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429
1430	/* Bounds check destination. */
1431	if (args->offset > obj->base.size ||
1432	    args->size > obj->base.size - args->offset) {
1433		ret = -EINVAL;
1434		goto err;
 
 
 
 
 
 
 
 
1435	}
1436
1437	trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1438
1439	ret = i915_gem_object_wait(obj,
1440				   I915_WAIT_INTERRUPTIBLE |
1441				   I915_WAIT_ALL,
1442				   MAX_SCHEDULE_TIMEOUT,
1443				   to_rps_client(file));
1444	if (ret)
1445		goto err;
1446
1447	ret = i915_gem_object_pin_pages(obj);
1448	if (ret)
1449		goto err;
1450
1451	ret = -EFAULT;
1452	/* We can only do the GTT pwrite on untiled buffers, as otherwise
1453	 * it would end up going through the fenced access, and we'll get
1454	 * different detiling behavior between reading and writing.
1455	 * pread/pwrite currently are reading and writing from the CPU
1456	 * perspective, requiring manual detiling by the client.
1457	 */
1458	if (!i915_gem_object_has_struct_page(obj) ||
1459	    cpu_write_needs_clflush(obj))
 
 
1460		/* Note that the gtt paths might fail with non-page-backed user
1461		 * pointers (e.g. gtt mappings when moving data between
1462		 * textures). Fallback to the shmem path in that case.
1463		 */
1464		ret = i915_gem_gtt_pwrite_fast(obj, args);
1465
1466	if (ret == -EFAULT || ret == -ENOSPC) {
1467		if (obj->phys_handle)
1468			ret = i915_gem_phys_pwrite(obj, args, file);
1469		else
1470			ret = i915_gem_shmem_pwrite(obj, args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1471	}
1472
1473	i915_gem_object_unpin_pages(obj);
1474err:
1475	i915_gem_object_put(obj);
1476	return ret;
1477}
1478
1479static inline enum fb_op_origin
1480write_origin(struct drm_i915_gem_object *obj, unsigned domain)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1481{
1482	return (domain == I915_GEM_DOMAIN_GTT ?
1483		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1484}
1485
1486static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
 
 
 
 
 
 
1487{
1488	struct drm_i915_private *i915;
1489	struct list_head *list;
1490	struct i915_vma *vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491
1492	list_for_each_entry(vma, &obj->vma_list, obj_link) {
1493		if (!i915_vma_is_ggtt(vma))
1494			continue;
1495
1496		if (i915_vma_is_active(vma))
1497			continue;
 
1498
1499		if (!drm_mm_node_allocated(&vma->node))
1500			continue;
 
 
 
1501
1502		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
 
 
 
1503	}
1504
1505	i915 = to_i915(obj->base.dev);
1506	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1507	list_move_tail(&obj->global_link, list);
 
 
 
 
1508}
1509
1510/**
1511 * Called when user space prepares to use an object with the CPU, either
1512 * through the mmap ioctl's mapping or a GTT mapping.
1513 * @dev: drm device
1514 * @data: ioctl data blob
1515 * @file: drm file
1516 */
1517int
1518i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1519			  struct drm_file *file)
1520{
1521	struct drm_i915_gem_set_domain *args = data;
1522	struct drm_i915_gem_object *obj;
1523	uint32_t read_domains = args->read_domains;
1524	uint32_t write_domain = args->write_domain;
1525	int err;
1526
1527	/* Only handle setting domains to types used by the CPU. */
1528	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
 
 
 
1529		return -EINVAL;
1530
1531	/* Having something in the write domain implies it's in the read
1532	 * domain, and only that read domain.  Enforce that in the request.
1533	 */
1534	if (write_domain != 0 && read_domains != write_domain)
1535		return -EINVAL;
1536
1537	obj = i915_gem_object_lookup(file, args->handle);
1538	if (!obj)
1539		return -ENOENT;
 
 
 
 
 
 
1540
1541	/* Try to flush the object off the GPU without holding the lock.
1542	 * We will repeat the flush holding the lock in the normal manner
1543	 * to catch cases where we are gazumped.
1544	 */
1545	err = i915_gem_object_wait(obj,
1546				   I915_WAIT_INTERRUPTIBLE |
1547				   (write_domain ? I915_WAIT_ALL : 0),
1548				   MAX_SCHEDULE_TIMEOUT,
1549				   to_rps_client(file));
1550	if (err)
1551		goto out;
1552
1553	/* Flush and acquire obj->pages so that we are coherent through
1554	 * direct access in memory with previous cached writes through
1555	 * shmemfs and that our cache domain tracking remains valid.
1556	 * For example, if the obj->filp was moved to swap without us
1557	 * being notified and releasing the pages, we would mistakenly
1558	 * continue to assume that the obj remained out of the CPU cached
1559	 * domain.
1560	 */
1561	err = i915_gem_object_pin_pages(obj);
1562	if (err)
1563		goto out;
1564
1565	err = i915_mutex_lock_interruptible(dev);
1566	if (err)
1567		goto out_unpin;
1568
1569	if (read_domains & I915_GEM_DOMAIN_GTT)
1570		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1571	else
1572		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1573
1574	/* And bump the LRU for this access */
1575	i915_gem_object_bump_inactive_ggtt(obj);
 
 
1576
 
 
 
1577	mutex_unlock(&dev->struct_mutex);
1578
1579	if (write_domain != 0)
1580		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1581
1582out_unpin:
1583	i915_gem_object_unpin_pages(obj);
1584out:
1585	i915_gem_object_put(obj);
1586	return err;
1587}
1588
1589/**
1590 * Called when user space has done writes to this buffer
1591 * @dev: drm device
1592 * @data: ioctl data blob
1593 * @file: drm file
1594 */
1595int
1596i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1597			 struct drm_file *file)
1598{
1599	struct drm_i915_gem_sw_finish *args = data;
1600	struct drm_i915_gem_object *obj;
1601	int err = 0;
 
 
 
 
1602
1603	obj = i915_gem_object_lookup(file, args->handle);
1604	if (!obj)
1605		return -ENOENT;
 
 
1606
1607	/* Pinned buffers may be scanout, so flush the cache */
1608	if (READ_ONCE(obj->pin_display)) {
1609		err = i915_mutex_lock_interruptible(dev);
1610		if (!err) {
1611			i915_gem_object_flush_cpu_write_domain(obj);
1612			mutex_unlock(&dev->struct_mutex);
1613		}
1614	}
1615
1616	i915_gem_object_put(obj);
1617	return err;
 
 
1618}
1619
1620/**
1621 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1622 *			 it is mapped to.
1623 * @dev: drm device
1624 * @data: ioctl data blob
1625 * @file: drm file
1626 *
1627 * While the mapping holds a reference on the contents of the object, it doesn't
1628 * imply a ref on the object itself.
1629 *
1630 * IMPORTANT:
1631 *
1632 * DRM driver writers who look a this function as an example for how to do GEM
1633 * mmap support, please don't implement mmap support like here. The modern way
1634 * to implement DRM mmap support is with an mmap offset ioctl (like
1635 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1636 * That way debug tooling like valgrind will understand what's going on, hiding
1637 * the mmap call in a driver private ioctl will break that. The i915 driver only
1638 * does cpu mmaps this way because we didn't know better.
1639 */
1640int
1641i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1642		    struct drm_file *file)
1643{
1644	struct drm_i915_gem_mmap *args = data;
1645	struct drm_i915_gem_object *obj;
1646	unsigned long addr;
1647
1648	if (args->flags & ~(I915_MMAP_WC))
1649		return -EINVAL;
1650
1651	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1652		return -ENODEV;
1653
1654	obj = i915_gem_object_lookup(file, args->handle);
1655	if (!obj)
1656		return -ENOENT;
1657
1658	/* prime objects have no backing filp to GEM mmap
1659	 * pages from.
1660	 */
1661	if (!obj->base.filp) {
1662		i915_gem_object_put(obj);
1663		return -EINVAL;
1664	}
1665
1666	addr = vm_mmap(obj->base.filp, 0, args->size,
1667		       PROT_READ | PROT_WRITE, MAP_SHARED,
1668		       args->offset);
1669	if (args->flags & I915_MMAP_WC) {
1670		struct mm_struct *mm = current->mm;
1671		struct vm_area_struct *vma;
1672
1673		if (down_write_killable(&mm->mmap_sem)) {
1674			i915_gem_object_put(obj);
1675			return -EINTR;
1676		}
1677		vma = find_vma(mm, addr);
1678		if (vma)
1679			vma->vm_page_prot =
1680				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1681		else
1682			addr = -ENOMEM;
1683		up_write(&mm->mmap_sem);
1684
1685		/* This may race, but that's ok, it only gets set */
1686		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1687	}
1688	i915_gem_object_put(obj);
1689	if (IS_ERR((void *)addr))
1690		return addr;
1691
1692	args->addr_ptr = (uint64_t) addr;
1693
1694	return 0;
1695}
1696
1697static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1698{
1699	u64 size;
1700
1701	size = i915_gem_object_get_stride(obj);
1702	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1703
1704	return size >> PAGE_SHIFT;
1705}
1706
1707/**
1708 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1709 *
1710 * A history of the GTT mmap interface:
1711 *
1712 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1713 *     aligned and suitable for fencing, and still fit into the available
1714 *     mappable space left by the pinned display objects. A classic problem
1715 *     we called the page-fault-of-doom where we would ping-pong between
1716 *     two objects that could not fit inside the GTT and so the memcpy
1717 *     would page one object in at the expense of the other between every
1718 *     single byte.
1719 *
1720 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1721 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1722 *     object is too large for the available space (or simply too large
1723 *     for the mappable aperture!), a view is created instead and faulted
1724 *     into userspace. (This view is aligned and sized appropriately for
1725 *     fenced access.)
1726 *
1727 * Restrictions:
1728 *
1729 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1730 *    hangs on some architectures, corruption on others. An attempt to service
1731 *    a GTT page fault from a snoopable object will generate a SIGBUS.
1732 *
1733 *  * the object must be able to fit into RAM (physical memory, though no
1734 *    limited to the mappable aperture).
1735 *
1736 *
1737 * Caveats:
1738 *
1739 *  * a new GTT page fault will synchronize rendering from the GPU and flush
1740 *    all data to system memory. Subsequent access will not be synchronized.
1741 *
1742 *  * all mappings are revoked on runtime device suspend.
1743 *
1744 *  * there are only 8, 16 or 32 fence registers to share between all users
1745 *    (older machines require fence register for display and blitter access
1746 *    as well). Contention of the fence registers will cause the previous users
1747 *    to be unmapped and any new access will generate new page faults.
1748 *
1749 *  * running out of memory while servicing a fault may generate a SIGBUS,
1750 *    rather than the expected SIGSEGV.
1751 */
1752int i915_gem_mmap_gtt_version(void)
1753{
1754	return 1;
1755}
1756
1757/**
1758 * i915_gem_fault - fault a page into the GTT
1759 * @area: CPU VMA in question
1760 * @vmf: fault info
1761 *
1762 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1763 * from userspace.  The fault handler takes care of binding the object to
1764 * the GTT (if needed), allocating and programming a fence register (again,
1765 * only if needed based on whether the old reg is still valid or the object
1766 * is tiled) and inserting a new PTE into the faulting process.
1767 *
1768 * Note that the faulting process may involve evicting existing objects
1769 * from the GTT and/or fence registers to make room.  So performance may
1770 * suffer if the GTT working set is large or there are few fence registers
1771 * left.
1772 *
1773 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1774 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1775 */
1776int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1777{
1778#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1779	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1780	struct drm_device *dev = obj->base.dev;
1781	struct drm_i915_private *dev_priv = to_i915(dev);
1782	struct i915_ggtt *ggtt = &dev_priv->ggtt;
 
 
 
1783	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1784	struct i915_vma *vma;
1785	pgoff_t page_offset;
1786	unsigned int flags;
1787	int ret;
1788
1789	/* We don't use vmf->pgoff since that has the fake offset */
1790	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
 
 
 
 
 
1791
1792	trace_i915_gem_object_fault(obj, page_offset, true, write);
1793
1794	/* Try to flush the object off the GPU first without holding the lock.
1795	 * Upon acquiring the lock, we will perform our sanity checks and then
1796	 * repeat the flush holding the lock in the normal manner to catch cases
1797	 * where we are gazumped.
1798	 */
1799	ret = i915_gem_object_wait(obj,
1800				   I915_WAIT_INTERRUPTIBLE,
1801				   MAX_SCHEDULE_TIMEOUT,
1802				   NULL);
1803	if (ret)
1804		goto err;
1805
1806	ret = i915_gem_object_pin_pages(obj);
1807	if (ret)
1808		goto err;
1809
1810	intel_runtime_pm_get(dev_priv);
1811
1812	ret = i915_mutex_lock_interruptible(dev);
1813	if (ret)
1814		goto err_rpm;
1815
1816	/* Access to snoopable pages through the GTT is incoherent. */
1817	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1818		ret = -EFAULT;
1819		goto err_unlock;
1820	}
1821
1822	/* If the object is smaller than a couple of partial vma, it is
1823	 * not worth only creating a single partial vma - we may as well
1824	 * clear enough space for the full object.
1825	 */
1826	flags = PIN_MAPPABLE;
1827	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1828		flags |= PIN_NONBLOCK | PIN_NONFAULT;
1829
1830	/* Now pin it into the GTT as needed */
1831	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1832	if (IS_ERR(vma)) {
1833		struct i915_ggtt_view view;
1834		unsigned int chunk_size;
1835
1836		/* Use a partial view if it is bigger than available space */
1837		chunk_size = MIN_CHUNK_PAGES;
1838		if (i915_gem_object_is_tiled(obj))
1839			chunk_size = roundup(chunk_size, tile_row_pages(obj));
1840
1841		memset(&view, 0, sizeof(view));
1842		view.type = I915_GGTT_VIEW_PARTIAL;
1843		view.params.partial.offset = rounddown(page_offset, chunk_size);
1844		view.params.partial.size =
1845			min_t(unsigned int, chunk_size,
1846			      vma_pages(area) - view.params.partial.offset);
 
 
 
1847
1848		/* If the partial covers the entire object, just create a
1849		 * normal VMA.
1850		 */
1851		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1852			view.type = I915_GGTT_VIEW_NORMAL;
1853
1854		/* Userspace is now writing through an untracked VMA, abandon
1855		 * all hope that the hardware is able to track future writes.
1856		 */
1857		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1858
1859		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1860	}
1861	if (IS_ERR(vma)) {
1862		ret = PTR_ERR(vma);
1863		goto err_unlock;
1864	}
1865
1866	ret = i915_gem_object_set_to_gtt_domain(obj, write);
1867	if (ret)
1868		goto err_unpin;
1869
1870	ret = i915_vma_get_fence(vma);
1871	if (ret)
1872		goto err_unpin;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1873
1874	/* Mark as being mmapped into userspace for later revocation */
1875	assert_rpm_wakelock_held(dev_priv);
1876	if (list_empty(&obj->userfault_link))
1877		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
 
1878
1879	/* Finally, remap it using the new GTT offset */
1880	ret = remap_io_mapping(area,
1881			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1882			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1883			       min_t(u64, vma->size, area->vm_end - area->vm_start),
1884			       &ggtt->mappable);
 
 
 
 
 
 
 
 
 
1885
1886err_unpin:
1887	__i915_vma_unpin(vma);
1888err_unlock:
 
 
 
 
 
 
1889	mutex_unlock(&dev->struct_mutex);
1890err_rpm:
1891	intel_runtime_pm_put(dev_priv);
1892	i915_gem_object_unpin_pages(obj);
1893err:
1894	switch (ret) {
1895	case -EIO:
1896		/*
1897		 * We eat errors when the gpu is terminally wedged to avoid
1898		 * userspace unduly crashing (gl has no provisions for mmaps to
1899		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1900		 * and so needs to be reported.
1901		 */
1902		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1903			ret = VM_FAULT_SIGBUS;
1904			break;
1905		}
1906	case -EAGAIN:
1907		/*
1908		 * EAGAIN means the gpu is hung and we'll wait for the error
1909		 * handler to reset everything when re-faulting in
1910		 * i915_mutex_lock_interruptible.
1911		 */
1912	case 0:
1913	case -ERESTARTSYS:
1914	case -EINTR:
1915	case -EBUSY:
1916		/*
1917		 * EBUSY is ok: this just means that another thread
1918		 * already did the job.
1919		 */
1920		ret = VM_FAULT_NOPAGE;
1921		break;
1922	case -ENOMEM:
1923		ret = VM_FAULT_OOM;
1924		break;
1925	case -ENOSPC:
1926	case -EFAULT:
1927		ret = VM_FAULT_SIGBUS;
1928		break;
1929	default:
1930		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1931		ret = VM_FAULT_SIGBUS;
1932		break;
1933	}
 
 
1934	return ret;
1935}
1936
1937/**
1938 * i915_gem_release_mmap - remove physical page mappings
1939 * @obj: obj in question
1940 *
1941 * Preserve the reservation of the mmapping with the DRM core code, but
1942 * relinquish ownership of the pages back to the system.
1943 *
1944 * It is vital that we remove the page mapping if we have mapped a tiled
1945 * object through the GTT and then lose the fence register due to
1946 * resource pressure. Similarly if the object has been moved out of the
1947 * aperture, than pages mapped into userspace must be revoked. Removing the
1948 * mapping will then trigger a page fault on the next user access, allowing
1949 * fixup by i915_gem_fault().
1950 */
1951void
1952i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1953{
1954	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 
1955
1956	/* Serialisation between user GTT access and our code depends upon
1957	 * revoking the CPU's PTE whilst the mutex is held. The next user
1958	 * pagefault then has to wait until we release the mutex.
1959	 *
1960	 * Note that RPM complicates somewhat by adding an additional
1961	 * requirement that operations to the GGTT be made holding the RPM
1962	 * wakeref.
1963	 */
1964	lockdep_assert_held(&i915->drm.struct_mutex);
1965	intel_runtime_pm_get(i915);
1966
1967	if (list_empty(&obj->userfault_link))
1968		goto out;
1969
1970	list_del_init(&obj->userfault_link);
1971	drm_vma_node_unmap(&obj->base.vma_node,
1972			   obj->base.dev->anon_inode->i_mapping);
1973
1974	/* Ensure that the CPU's PTE are revoked and there are not outstanding
1975	 * memory transactions from userspace before we return. The TLB
1976	 * flushing implied above by changing the PTE above *should* be
1977	 * sufficient, an extra barrier here just provides us with a bit
1978	 * of paranoid documentation about our requirement to serialise
1979	 * memory writes before touching registers / GSM.
1980	 */
1981	wmb();
1982
1983out:
1984	intel_runtime_pm_put(i915);
1985}
1986
1987void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
 
1988{
1989	struct drm_i915_gem_object *obj, *on;
1990	int i;
1991
1992	/*
1993	 * Only called during RPM suspend. All users of the userfault_list
1994	 * must be holding an RPM wakeref to ensure that this can not
1995	 * run concurrently with themselves (and use the struct_mutex for
1996	 * protection between themselves).
1997	 */
1998
1999	list_for_each_entry_safe(obj, on,
2000				 &dev_priv->mm.userfault_list, userfault_link) {
2001		list_del_init(&obj->userfault_link);
2002		drm_vma_node_unmap(&obj->base.vma_node,
2003				   obj->base.dev->anon_inode->i_mapping);
2004	}
2005
2006	/* The fence will be lost when the device powers down. If any were
2007	 * in use by hardware (i.e. they are pinned), we should not be powering
2008	 * down! All other fences will be reacquired by the user upon waking.
2009	 */
2010	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2011		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2012
2013		/* Ideally we want to assert that the fence register is not
2014		 * live at this point (i.e. that no piece of code will be
2015		 * trying to write through fence + GTT, as that both violates
2016		 * our tracking of activity and associated locking/barriers,
2017		 * but also is illegal given that the hw is powered down).
2018		 *
2019		 * Previously we used reg->pin_count as a "liveness" indicator.
2020		 * That is not sufficient, and we need a more fine-grained
2021		 * tool if we want to have a sanity check here.
2022		 */
2023
2024		if (!reg->vma)
2025			continue;
2026
2027		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2028		reg->dirty = true;
2029	}
2030}
2031
2032/**
2033 * i915_gem_get_ggtt_size - return required global GTT size for an object
2034 * @dev_priv: i915 device
2035 * @size: object size
2036 * @tiling_mode: tiling mode
2037 *
2038 * Return the required global GTT size for an object, taking into account
2039 * potential fence register mapping.
2040 */
2041u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2042			   u64 size, int tiling_mode)
2043{
2044	u64 ggtt_size;
2045
2046	GEM_BUG_ON(size == 0);
2047
2048	if (INTEL_GEN(dev_priv) >= 4 ||
2049	    tiling_mode == I915_TILING_NONE)
2050		return size;
2051
2052	/* Previous chips need a power-of-two fence region when tiling */
2053	if (IS_GEN3(dev_priv))
2054		ggtt_size = 1024*1024;
2055	else
2056		ggtt_size = 512*1024;
2057
2058	while (ggtt_size < size)
2059		ggtt_size <<= 1;
2060
2061	return ggtt_size;
2062}
2063
2064/**
2065 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2066 * @dev_priv: i915 device
2067 * @size: object size
2068 * @tiling_mode: tiling mode
2069 * @fenced: is fenced alignment required or not
2070 *
2071 * Return the required global GTT alignment for an object, taking into account
2072 * potential fence register mapping.
2073 */
2074u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2075				int tiling_mode, bool fenced)
 
2076{
2077	GEM_BUG_ON(size == 0);
2078
2079	/*
2080	 * Minimum alignment is 4k (GTT page size), but might be greater
2081	 * if a fence register is needed for the object.
2082	 */
2083	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2084	    tiling_mode == I915_TILING_NONE)
2085		return 4096;
2086
2087	/*
2088	 * Previous chips need to be aligned to the size of the smallest
2089	 * fence register that can contain the object.
2090	 */
2091	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2092}
2093
2094static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2095{
2096	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2097	int err;
2098
2099	err = drm_gem_create_mmap_offset(&obj->base);
2100	if (!err)
2101		return 0;
2102
2103	/* We can idle the GPU locklessly to flush stale objects, but in order
2104	 * to claim that space for ourselves, we need to take the big
2105	 * struct_mutex to free the requests+objects and allocate our slot.
2106	 */
2107	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2108	if (err)
2109		return err;
2110
2111	err = i915_mutex_lock_interruptible(&dev_priv->drm);
2112	if (!err) {
2113		i915_gem_retire_requests(dev_priv);
2114		err = drm_gem_create_mmap_offset(&obj->base);
2115		mutex_unlock(&dev_priv->drm.struct_mutex);
2116	}
 
 
 
 
 
 
 
 
 
 
 
 
2117
2118	return err;
2119}
2120
2121static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2122{
2123	drm_gem_free_mmap_offset(&obj->base);
2124}
2125
2126int
2127i915_gem_mmap_gtt(struct drm_file *file,
2128		  struct drm_device *dev,
2129		  uint32_t handle,
2130		  uint64_t *offset)
2131{
2132	struct drm_i915_gem_object *obj;
2133	int ret;
2134
2135	obj = i915_gem_object_lookup(file, handle);
2136	if (!obj)
2137		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
2138
2139	ret = i915_gem_object_create_mmap_offset(obj);
2140	if (ret == 0)
2141		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
 
 
2142
2143	i915_gem_object_put(obj);
 
 
 
2144	return ret;
2145}
2146
2147/**
2148 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2149 * @dev: DRM device
2150 * @data: GTT mapping ioctl data
2151 * @file: GEM object info
2152 *
2153 * Simply returns the fake offset to userspace so it can mmap it.
2154 * The mmap call will end up in drm_gem_mmap(), which will set things
2155 * up so we can get faults in the handler above.
2156 *
2157 * The fault handler will take care of binding the object into the GTT
2158 * (since it may have been evicted to make room for something), allocating
2159 * a fence register, and mapping the appropriate aperture address into
2160 * userspace.
2161 */
2162int
2163i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2164			struct drm_file *file)
2165{
2166	struct drm_i915_gem_mmap_gtt *args = data;
2167
2168	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2169}
2170
2171/* Immediately discard the backing storage */
2172static void
2173i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2174{
2175	i915_gem_object_free_mmap_offset(obj);
2176
2177	if (obj->base.filp == NULL)
2178		return;
2179
2180	/* Our goal here is to return as much of the memory as
2181	 * is possible back to the system as we are called from OOM.
2182	 * To do this we must instruct the shmfs to drop all of its
2183	 * backing pages, *now*.
2184	 */
2185	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2186	obj->mm.madv = __I915_MADV_PURGED;
2187	obj->mm.pages = ERR_PTR(-EFAULT);
2188}
2189
2190/* Try to discard unwanted pages */
2191void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
 
2192{
2193	struct address_space *mapping;
2194
2195	lockdep_assert_held(&obj->mm.lock);
2196	GEM_BUG_ON(obj->mm.pages);
2197
2198	switch (obj->mm.madv) {
2199	case I915_MADV_DONTNEED:
2200		i915_gem_object_truncate(obj);
2201	case __I915_MADV_PURGED:
2202		return;
2203	}
2204
2205	if (obj->base.filp == NULL)
2206		return;
2207
2208	mapping = obj->base.filp->f_mapping,
2209	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2210}
2211
2212static void
2213i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2214			      struct sg_table *pages)
2215{
2216	struct sgt_iter sgt_iter;
2217	struct page *page;
2218
2219	__i915_gem_object_release_shmem(obj, pages, true);
2220
2221	i915_gem_gtt_finish_pages(obj, pages);
 
 
 
 
 
 
 
 
 
 
2222
2223	if (i915_gem_object_needs_bit17_swizzle(obj))
2224		i915_gem_object_save_bit_17_swizzle(obj, pages);
 
 
 
2225
2226	for_each_sgt_page(page, sgt_iter, pages) {
2227		if (obj->mm.dirty)
 
 
2228			set_page_dirty(page);
2229
2230		if (obj->mm.madv == I915_MADV_WILLNEED)
2231			mark_page_accessed(page);
2232
2233		put_page(page);
2234	}
2235	obj->mm.dirty = false;
2236
2237	sg_free_table(pages);
2238	kfree(pages);
2239}
2240
2241static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
 
2242{
2243	struct radix_tree_iter iter;
2244	void **slot;
2245
2246	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2247		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2248}
2249
2250void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2251				 enum i915_mm_subclass subclass)
2252{
2253	struct sg_table *pages;
2254
2255	if (i915_gem_object_has_pinned_pages(obj))
2256		return;
2257
2258	GEM_BUG_ON(obj->bind_count);
2259	if (!READ_ONCE(obj->mm.pages))
2260		return;
2261
2262	/* May be called by shrinker from within get_pages() (on another bo) */
2263	mutex_lock_nested(&obj->mm.lock, subclass);
2264	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2265		goto unlock;
2266
2267	/* ->put_pages might need to allocate memory for the bit17 swizzle
2268	 * array, hence protect them from being reaped by removing them from gtt
2269	 * lists early. */
2270	pages = fetch_and_zero(&obj->mm.pages);
2271	GEM_BUG_ON(!pages);
2272
2273	if (obj->mm.mapping) {
2274		void *ptr;
2275
2276		ptr = ptr_mask_bits(obj->mm.mapping);
2277		if (is_vmalloc_addr(ptr))
2278			vunmap(ptr);
2279		else
2280			kunmap(kmap_to_page(ptr));
2281
2282		obj->mm.mapping = NULL;
2283	}
2284
2285	__i915_gem_object_reset_page_iter(obj);
2286
2287	if (!IS_ERR(pages))
2288		obj->ops->put_pages(obj, pages);
2289
2290unlock:
2291	mutex_unlock(&obj->mm.lock);
2292}
2293
2294static void i915_sg_trim(struct sg_table *orig_st)
2295{
2296	struct sg_table new_st;
2297	struct scatterlist *sg, *new_sg;
2298	unsigned int i;
2299
2300	if (orig_st->nents == orig_st->orig_nents)
2301		return;
2302
2303	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2304		return;
2305
2306	new_sg = new_st.sgl;
2307	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2308		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2309		/* called before being DMA mapped, no need to copy sg->dma_* */
2310		new_sg = sg_next(new_sg);
2311	}
2312
2313	sg_free_table(orig_st);
2314
2315	*orig_st = new_st;
2316}
2317
2318static struct sg_table *
2319i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2320{
2321	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2322	const unsigned long page_count = obj->base.size / PAGE_SIZE;
2323	unsigned long i;
2324	struct address_space *mapping;
2325	struct sg_table *st;
2326	struct scatterlist *sg;
2327	struct sgt_iter sgt_iter;
2328	struct page *page;
2329	unsigned long last_pfn = 0;	/* suppress gcc warning */
2330	unsigned int max_segment;
2331	int ret;
2332	gfp_t gfp;
2333
2334	/* Assert that the object is not currently in any GPU domain. As it
2335	 * wasn't in the GTT, there shouldn't be any way it could have been in
2336	 * a GPU cache
2337	 */
2338	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2339	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2340
2341	max_segment = swiotlb_max_segment();
2342	if (!max_segment)
2343		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2344
2345	st = kmalloc(sizeof(*st), GFP_KERNEL);
2346	if (st == NULL)
2347		return ERR_PTR(-ENOMEM);
2348
2349rebuild_st:
2350	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2351		kfree(st);
2352		return ERR_PTR(-ENOMEM);
2353	}
2354
2355	/* Get the list of pages out of our struct file.  They'll be pinned
2356	 * at this point until we release them.
2357	 *
2358	 * Fail silently without starting the shrinker
2359	 */
2360	mapping = obj->base.filp->f_mapping;
2361	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2362	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2363	sg = st->sgl;
2364	st->nents = 0;
2365	for (i = 0; i < page_count; i++) {
2366		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2367		if (IS_ERR(page)) {
2368			i915_gem_shrink(dev_priv,
2369					page_count,
2370					I915_SHRINK_BOUND |
2371					I915_SHRINK_UNBOUND |
2372					I915_SHRINK_PURGEABLE);
2373			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2374		}
2375		if (IS_ERR(page)) {
2376			/* We've tried hard to allocate the memory by reaping
2377			 * our own buffer, now let the real VM do its job and
2378			 * go down in flames if truly OOM.
2379			 */
 
2380			page = shmem_read_mapping_page(mapping, i);
2381			if (IS_ERR(page)) {
2382				ret = PTR_ERR(page);
2383				goto err_sg;
2384			}
2385		}
2386		if (!i ||
2387		    sg->length >= max_segment ||
2388		    page_to_pfn(page) != last_pfn + 1) {
 
 
 
 
 
 
2389			if (i)
2390				sg = sg_next(sg);
2391			st->nents++;
2392			sg_set_page(sg, page, PAGE_SIZE, 0);
2393		} else {
2394			sg->length += PAGE_SIZE;
2395		}
2396		last_pfn = page_to_pfn(page);
2397
2398		/* Check that the i965g/gm workaround works. */
2399		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2400	}
2401	if (sg) /* loop terminated early; short sg table */
 
 
2402		sg_mark_end(sg);
 
2403
2404	/* Trim unused sg entries to avoid wasting memory. */
2405	i915_sg_trim(st);
 
2406
2407	ret = i915_gem_gtt_prepare_pages(obj, st);
2408	if (ret) {
2409		/* DMA remapping failed? One possible cause is that
2410		 * it could not reserve enough large entries, asking
2411		 * for PAGE_SIZE chunks instead may be helpful.
2412		 */
2413		if (max_segment > PAGE_SIZE) {
2414			for_each_sgt_page(page, sgt_iter, st)
2415				put_page(page);
2416			sg_free_table(st);
2417
2418			max_segment = PAGE_SIZE;
2419			goto rebuild_st;
2420		} else {
2421			dev_warn(&dev_priv->drm.pdev->dev,
2422				 "Failed to DMA remap %lu pages\n",
2423				 page_count);
2424			goto err_pages;
2425		}
2426	}
2427
2428	if (i915_gem_object_needs_bit17_swizzle(obj))
2429		i915_gem_object_do_bit_17_swizzle(obj, st);
 
2430
2431	return st;
2432
2433err_sg:
2434	sg_mark_end(sg);
2435err_pages:
2436	for_each_sgt_page(page, sgt_iter, st)
2437		put_page(page);
2438	sg_free_table(st);
2439	kfree(st);
2440
2441	/* shmemfs first checks if there is enough memory to allocate the page
2442	 * and reports ENOSPC should there be insufficient, along with the usual
2443	 * ENOMEM for a genuine allocation failure.
2444	 *
2445	 * We use ENOSPC in our driver to mean that we have run out of aperture
2446	 * space and so want to translate the error from shmemfs back to our
2447	 * usual understanding of ENOMEM.
2448	 */
2449	if (ret == -ENOSPC)
2450		ret = -ENOMEM;
2451
2452	return ERR_PTR(ret);
2453}
2454
2455void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2456				 struct sg_table *pages)
 
 
 
 
 
 
 
2457{
2458	lockdep_assert_held(&obj->mm.lock);
 
 
2459
2460	obj->mm.get_page.sg_pos = pages->sgl;
2461	obj->mm.get_page.sg_idx = 0;
2462
2463	obj->mm.pages = pages;
 
 
 
2464
2465	if (i915_gem_object_is_tiled(obj) &&
2466	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2467		GEM_BUG_ON(obj->mm.quirked);
2468		__i915_gem_object_pin_pages(obj);
2469		obj->mm.quirked = true;
2470	}
 
 
 
 
 
 
2471}
2472
2473static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
 
2474{
2475	struct sg_table *pages;
 
 
 
2476
2477	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
 
 
 
2478
2479	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2480		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2481		return -EFAULT;
2482	}
2483
2484	pages = obj->ops->get_pages(obj);
2485	if (unlikely(IS_ERR(pages)))
2486		return PTR_ERR(pages);
2487
2488	__i915_gem_object_set_pages(obj, pages);
2489	return 0;
 
 
 
 
 
 
2490}
2491
2492/* Ensure that the associated pages are gathered from the backing storage
2493 * and pinned into our object. i915_gem_object_pin_pages() may be called
2494 * multiple times before they are released by a single call to
2495 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2496 * either as a result of memory pressure (reaping pages under the shrinker)
2497 * or as the object is itself released.
2498 */
2499int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2500{
2501	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
2502
2503	err = mutex_lock_interruptible(&obj->mm.lock);
2504	if (err)
2505		return err;
2506
2507	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2508		err = ____i915_gem_object_get_pages(obj);
2509		if (err)
2510			goto unlock;
2511
2512		smp_mb__before_atomic();
 
 
2513	}
2514	atomic_inc(&obj->mm.pages_pin_count);
2515
2516unlock:
2517	mutex_unlock(&obj->mm.lock);
2518	return err;
2519}
2520
2521/* The 'mapping' part of i915_gem_object_pin_map() below */
2522static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2523				 enum i915_map_type type)
2524{
2525	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2526	struct sg_table *sgt = obj->mm.pages;
2527	struct sgt_iter sgt_iter;
2528	struct page *page;
2529	struct page *stack_pages[32];
2530	struct page **pages = stack_pages;
2531	unsigned long i = 0;
2532	pgprot_t pgprot;
2533	void *addr;
2534
2535	/* A single page can always be kmapped */
2536	if (n_pages == 1 && type == I915_MAP_WB)
2537		return kmap(sg_page(sgt->sgl));
2538
2539	if (n_pages > ARRAY_SIZE(stack_pages)) {
2540		/* Too big for stack -- allocate temporary array instead */
2541		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2542		if (!pages)
2543			return NULL;
2544	}
2545
2546	for_each_sgt_page(page, sgt_iter, sgt)
2547		pages[i++] = page;
2548
2549	/* Check that we have the expected number of pages */
2550	GEM_BUG_ON(i != n_pages);
2551
2552	switch (type) {
2553	case I915_MAP_WB:
2554		pgprot = PAGE_KERNEL;
2555		break;
2556	case I915_MAP_WC:
2557		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2558		break;
2559	}
2560	addr = vmap(pages, n_pages, 0, pgprot);
2561
2562	if (pages != stack_pages)
2563		drm_free_large(pages);
 
 
 
 
 
2564
2565	return addr;
2566}
2567
2568/* get, pin, and map the pages of the object into kernel space */
2569void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2570			      enum i915_map_type type)
2571{
2572	enum i915_map_type has_type;
2573	bool pinned;
2574	void *ptr;
2575	int ret;
2576
2577	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
 
2578
2579	ret = mutex_lock_interruptible(&obj->mm.lock);
 
 
 
2580	if (ret)
2581		return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2582
2583	pinned = true;
2584	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2585		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2586			ret = ____i915_gem_object_get_pages(obj);
2587			if (ret)
2588				goto err_unlock;
2589
2590			smp_mb__before_atomic();
2591		}
2592		atomic_inc(&obj->mm.pages_pin_count);
2593		pinned = false;
2594	}
2595	GEM_BUG_ON(!obj->mm.pages);
2596
2597	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2598	if (ptr && has_type != type) {
2599		if (pinned) {
2600			ret = -EBUSY;
2601			goto err_unpin;
2602		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2603
2604		if (is_vmalloc_addr(ptr))
2605			vunmap(ptr);
 
 
 
 
 
 
 
 
 
2606		else
2607			kunmap(kmap_to_page(ptr));
 
 
 
 
 
 
 
 
 
 
2608
2609		ptr = obj->mm.mapping = NULL;
 
 
 
 
 
2610	}
 
 
2611
2612	if (!ptr) {
2613		ptr = i915_gem_object_map(obj, type);
2614		if (!ptr) {
2615			ret = -ENOMEM;
2616			goto err_unpin;
2617		}
 
 
 
 
 
 
 
 
 
 
2618
2619		obj->mm.mapping = ptr_pack_bits(ptr, type);
2620	}
2621
2622out_unlock:
2623	mutex_unlock(&obj->mm.lock);
2624	return ptr;
 
2625
2626err_unpin:
2627	atomic_dec(&obj->mm.pages_pin_count);
2628err_unlock:
2629	ptr = ERR_PTR(ret);
2630	goto out_unlock;
2631}
2632
2633static bool i915_context_is_banned(const struct i915_gem_context *ctx)
 
2634{
2635	unsigned long elapsed;
2636
 
 
2637	if (ctx->hang_stats.banned)
2638		return true;
2639
2640	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2641	if (ctx->hang_stats.ban_period_seconds &&
2642	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2643		DRM_DEBUG("context hanging too fast, banning!\n");
2644		return true;
 
 
 
 
 
 
2645	}
2646
2647	return false;
2648}
2649
2650static void i915_set_reset_status(struct i915_gem_context *ctx,
 
2651				  const bool guilty)
2652{
2653	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
 
 
 
 
 
2654
2655	if (guilty) {
2656		hs->banned = i915_context_is_banned(ctx);
2657		hs->batch_active++;
2658		hs->guilty_ts = get_seconds();
2659	} else {
2660		hs->batch_pending++;
2661	}
2662}
2663
2664struct drm_i915_gem_request *
2665i915_gem_find_active_request(struct intel_engine_cs *engine)
2666{
2667	struct drm_i915_gem_request *request;
 
 
 
 
 
2668
2669	/* We are called by the error capture and reset at a random
2670	 * point in time. In particular, note that neither is crucially
2671	 * ordered with an interrupt. After a hang, the GPU is dead and we
2672	 * assume that no more writes can happen (we waited long enough for
2673	 * all writes that were in transaction to be flushed) - adding an
2674	 * extra delay for a recent interrupt is pointless. Hence, we do
2675	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2676	 */
2677	list_for_each_entry(request, &engine->timeline->requests, link) {
2678		if (__i915_gem_request_completed(request))
2679			continue;
2680
2681		return request;
2682	}
2683
2684	return NULL;
2685}
2686
2687static void reset_request(struct drm_i915_gem_request *request)
 
 
 
2688{
2689	void *vaddr = request->ring->vaddr;
2690	u32 head;
 
2691
2692	/* As this request likely depends on state from the lost
2693	 * context, clear out all the user operations leaving the
2694	 * breadcrumb at the end (so we get the fence notifications).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2695	 */
2696	head = request->head;
2697	if (request->postfix < head) {
2698		memset(vaddr + head, 0, request->ring->size - head);
2699		head = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2700	}
2701	memset(vaddr + head, 0, request->postfix - head);
 
2702}
2703
2704static void i915_gem_reset_engine(struct intel_engine_cs *engine)
 
2705{
2706	struct drm_i915_gem_request *request;
2707	struct i915_gem_context *incomplete_ctx;
2708	struct intel_timeline *timeline;
2709	unsigned long flags;
2710	bool ring_hung;
2711
2712	if (engine->irq_seqno_barrier)
2713		engine->irq_seqno_barrier(engine);
2714
2715	request = i915_gem_find_active_request(engine);
2716	if (!request)
2717		return;
2718
2719	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2720	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2721		ring_hung = false;
2722
2723	i915_set_reset_status(request->ctx, ring_hung);
2724	if (!ring_hung)
2725		return;
 
 
 
 
 
 
 
 
 
 
2726
2727	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2728			 engine->name, request->global_seqno);
 
2729
2730	/* Setup the CS to resume from the breadcrumb of the hung request */
2731	engine->reset_hw(engine, request);
2732
2733	/* Users of the default context do not rely on logical state
2734	 * preserved between batches. They have to emit full state on
2735	 * every batch and so it is safe to execute queued requests following
2736	 * the hang.
2737	 *
2738	 * Other contexts preserve state, now corrupt. We want to skip all
2739	 * queued requests that reference the corrupt context.
2740	 */
2741	incomplete_ctx = request->ctx;
2742	if (i915_gem_context_is_default(incomplete_ctx))
2743		return;
2744
2745	timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
 
2746
2747	spin_lock_irqsave(&engine->timeline->lock, flags);
2748	spin_lock(&timeline->lock);
 
2749
2750	list_for_each_entry_continue(request, &engine->timeline->requests, link)
2751		if (request->ctx == incomplete_ctx)
2752			reset_request(request);
2753
2754	list_for_each_entry(request, &timeline->requests, link)
2755		reset_request(request);
 
 
 
 
 
 
 
 
 
 
 
2756
2757	spin_unlock(&timeline->lock);
2758	spin_unlock_irqrestore(&engine->timeline->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
2759}
2760
2761void i915_gem_reset(struct drm_i915_private *dev_priv)
2762{
2763	struct intel_engine_cs *engine;
2764	enum intel_engine_id id;
 
2765
2766	lockdep_assert_held(&dev_priv->drm.struct_mutex);
 
 
 
 
 
 
2767
2768	i915_gem_retire_requests(dev_priv);
 
2769
2770	for_each_engine(engine, dev_priv, id)
2771		i915_gem_reset_engine(engine);
2772
2773	i915_gem_restore_fences(dev_priv);
2774
2775	if (dev_priv->gt.awake) {
2776		intel_sanitize_gt_powersave(dev_priv);
2777		intel_enable_gt_powersave(dev_priv);
2778		if (INTEL_GEN(dev_priv) >= 6)
2779			gen6_rps_busy(dev_priv);
2780	}
2781}
2782
2783static void nop_submit_request(struct drm_i915_gem_request *request)
 
 
 
 
2784{
2785	i915_gem_request_submit(request);
2786	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2787}
 
 
 
 
 
 
 
 
 
 
2788
2789static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2790{
2791	engine->submit_request = nop_submit_request;
2792
2793	/* Mark all pending requests as complete so that any concurrent
2794	 * (lockless) lookup doesn't try and wait upon the request as we
2795	 * reset it.
2796	 */
2797	intel_engine_init_global_seqno(engine,
2798				       intel_engine_last_submit(engine));
2799
2800	/*
2801	 * Clear the execlists queue up before freeing the requests, as those
2802	 * are the ones that keep the context and ringbuffer backing objects
2803	 * pinned in place.
2804	 */
 
 
2805
2806	if (i915.enable_execlists) {
2807		unsigned long flags;
 
2808
2809		spin_lock_irqsave(&engine->timeline->lock, flags);
 
2810
2811		i915_gem_request_put(engine->execlist_port[0].request);
2812		i915_gem_request_put(engine->execlist_port[1].request);
2813		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2814		engine->execlist_queue = RB_ROOT;
2815		engine->execlist_first = NULL;
2816
2817		spin_unlock_irqrestore(&engine->timeline->lock, flags);
 
 
 
2818	}
 
 
2819}
2820
2821void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
 
2822{
2823	struct intel_engine_cs *engine;
2824	enum intel_engine_id id;
 
 
2825
2826	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2827	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
 
 
 
 
 
 
 
 
 
2828
2829	i915_gem_context_lost(dev_priv);
2830	for_each_engine(engine, dev_priv, id)
2831		i915_gem_cleanup_engine(engine);
2832	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2833
2834	i915_gem_retire_requests(dev_priv);
2835}
2836
2837static void
2838i915_gem_retire_work_handler(struct work_struct *work)
2839{
2840	struct drm_i915_private *dev_priv =
2841		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2842	struct drm_device *dev = &dev_priv->drm;
 
2843
2844	/* Come back later if the device is busy... */
 
2845	if (mutex_trylock(&dev->struct_mutex)) {
2846		i915_gem_retire_requests(dev_priv);
2847		mutex_unlock(&dev->struct_mutex);
2848	}
2849
2850	/* Keep the retire handler running until we are finally idle.
2851	 * We do not need to do this test under locking as in the worst-case
2852	 * we queue the retire worker once too often.
2853	 */
2854	if (READ_ONCE(dev_priv->gt.awake)) {
2855		i915_queue_hangcheck(dev_priv);
2856		queue_delayed_work(dev_priv->wq,
2857				   &dev_priv->gt.retire_work,
2858				   round_jiffies_up_relative(HZ));
2859	}
2860}
2861
2862static void
2863i915_gem_idle_work_handler(struct work_struct *work)
2864{
2865	struct drm_i915_private *dev_priv =
2866		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2867	struct drm_device *dev = &dev_priv->drm;
2868	struct intel_engine_cs *engine;
2869	enum intel_engine_id id;
2870	bool rearm_hangcheck;
2871
2872	if (!READ_ONCE(dev_priv->gt.awake))
2873		return;
 
 
 
 
 
2874
2875	/*
2876	 * Wait for last execlists context complete, but bail out in case a
2877	 * new request is submitted.
2878	 */
2879	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2880		 intel_execlists_idle(dev_priv), 10);
2881
2882	if (READ_ONCE(dev_priv->gt.active_requests))
2883		return;
 
2884
2885	rearm_hangcheck =
2886		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2887
2888	if (!mutex_trylock(&dev->struct_mutex)) {
2889		/* Currently busy, come back later */
2890		mod_delayed_work(dev_priv->wq,
2891				 &dev_priv->gt.idle_work,
2892				 msecs_to_jiffies(50));
2893		goto out_rearm;
2894	}
 
2895
2896	/*
2897	 * New request retired after this work handler started, extend active
2898	 * period until next instance of the work.
2899	 */
2900	if (work_pending(work))
2901		goto out_unlock;
 
 
 
2902
2903	if (dev_priv->gt.active_requests)
2904		goto out_unlock;
2905
2906	if (wait_for(intel_execlists_idle(dev_priv), 10))
2907		DRM_ERROR("Timeout waiting for engines to idle\n");
2908
2909	for_each_engine(engine, dev_priv, id)
2910		i915_gem_batch_pool_fini(&engine->batch_pool);
 
2911
2912	GEM_BUG_ON(!dev_priv->gt.awake);
2913	dev_priv->gt.awake = false;
2914	rearm_hangcheck = false;
2915
2916	if (INTEL_GEN(dev_priv) >= 6)
2917		gen6_rps_idle(dev_priv);
2918	intel_runtime_pm_put(dev_priv);
2919out_unlock:
2920	mutex_unlock(&dev->struct_mutex);
2921
2922out_rearm:
2923	if (rearm_hangcheck) {
2924		GEM_BUG_ON(!dev_priv->gt.awake);
2925		i915_queue_hangcheck(dev_priv);
2926	}
2927}
2928
2929void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2930{
2931	struct drm_i915_gem_object *obj = to_intel_bo(gem);
2932	struct drm_i915_file_private *fpriv = file->driver_priv;
2933	struct i915_vma *vma, *vn;
2934
2935	mutex_lock(&obj->base.dev->struct_mutex);
2936	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2937		if (vma->vm->file == fpriv)
2938			i915_vma_close(vma);
2939
2940	if (i915_gem_object_is_active(obj) &&
2941	    !i915_gem_object_has_active_reference(obj)) {
2942		i915_gem_object_set_active_reference(obj);
2943		i915_gem_object_get(obj);
2944	}
2945	mutex_unlock(&obj->base.dev->struct_mutex);
2946}
2947
2948static unsigned long to_wait_timeout(s64 timeout_ns)
2949{
2950	if (timeout_ns < 0)
2951		return MAX_SCHEDULE_TIMEOUT;
2952
2953	if (timeout_ns == 0)
2954		return 0;
2955
2956	return nsecs_to_jiffies_timeout(timeout_ns);
2957}
2958
2959/**
2960 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2961 * @dev: drm device pointer
2962 * @data: ioctl data blob
2963 * @file: drm file pointer
2964 *
2965 * Returns 0 if successful, else an error is returned with the remaining time in
2966 * the timeout parameter.
2967 *  -ETIME: object is still busy after timeout
2968 *  -ERESTARTSYS: signal interrupted the wait
2969 *  -ENONENT: object doesn't exist
2970 * Also possible, but rare:
2971 *  -EAGAIN: GPU wedged
2972 *  -ENOMEM: damn
2973 *  -ENODEV: Internal IRQ fail
2974 *  -E?: The add request failed
2975 *
2976 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2977 * non-zero timeout parameter the wait ioctl will wait for the given number of
2978 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2979 * without holding struct_mutex the object may become re-busied before this
2980 * function completes. A similar but shorter * race condition exists in the busy
2981 * ioctl
2982 */
2983int
2984i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2985{
 
2986	struct drm_i915_gem_wait *args = data;
2987	struct drm_i915_gem_object *obj;
2988	ktime_t start;
2989	long ret;
 
 
2990
2991	if (args->flags != 0)
2992		return -EINVAL;
2993
2994	obj = i915_gem_object_lookup(file, args->bo_handle);
2995	if (!obj)
 
 
 
 
 
2996		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2997
2998	start = ktime_get();
 
2999
3000	ret = i915_gem_object_wait(obj,
3001				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3002				   to_wait_timeout(args->timeout_ns),
3003				   to_rps_client(file));
3004
3005	if (args->timeout_ns > 0) {
3006		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3007		if (args->timeout_ns < 0)
3008			args->timeout_ns = 0;
3009
3010		/*
3011		 * Apparently ktime isn't accurate enough and occasionally has a
3012		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3013		 * things up to make the test happy. We allow up to 1 jiffy.
3014		 *
3015		 * This is a regression from the timespec->ktime conversion.
3016		 */
3017		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3018			args->timeout_ns = 0;
3019	}
 
3020
3021	i915_gem_object_put(obj);
 
 
3022	return ret;
3023}
3024
3025static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
 
 
 
 
3026{
3027	int ret, i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3028
3029	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3030		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
 
 
 
 
 
 
 
 
 
3031		if (ret)
3032			return ret;
3033	}
3034
3035	return 0;
3036}
3037
3038int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3039{
 
 
3040	int ret;
3041
3042	if (flags & I915_WAIT_LOCKED) {
3043		struct i915_gem_timeline *tl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3044
3045		lockdep_assert_held(&i915->drm.struct_mutex);
 
 
 
3046
3047		list_for_each_entry(tl, &i915->gt.timelines, link) {
3048			ret = wait_for_timeline(tl, flags);
3049			if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3050				return ret;
 
 
 
3051		}
3052	} else {
3053		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3054		if (ret)
3055			return ret;
3056	}
3057
 
3058	return 0;
3059}
3060
3061void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3062			     bool force)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3063{
3064	/* If we don't have a page list set up, then we're not pinned
3065	 * to GPU, and we can ignore the cache flush because it'll happen
3066	 * again at bind time.
3067	 */
3068	if (!obj->mm.pages)
3069		return;
3070
3071	/*
3072	 * Stolen memory is always coherent with the GPU as it is explicitly
3073	 * marked as wc by the system, or the system is cache-coherent.
3074	 */
3075	if (obj->stolen || obj->phys_handle)
3076		return;
3077
3078	/* If the GPU is snooping the contents of the CPU cache,
3079	 * we do not need to manually clear the CPU cache lines.  However,
3080	 * the caches are only snooped when the render cache is
3081	 * flushed/invalidated.  As we always have to emit invalidations
3082	 * and flushes when moving into and out of the RENDER domain, correct
3083	 * snooping behaviour occurs naturally as the result of our domain
3084	 * tracking.
3085	 */
3086	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3087		obj->cache_dirty = true;
3088		return;
3089	}
3090
3091	trace_i915_gem_object_clflush(obj);
3092	drm_clflush_sg(obj->mm.pages);
3093	obj->cache_dirty = false;
 
 
3094}
3095
3096/** Flushes the GTT write domain for the object if it's dirty. */
3097static void
3098i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3099{
3100	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3101
3102	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3103		return;
3104
3105	/* No actual flushing is required for the GTT write domain.  Writes
3106	 * to it "immediately" go to main memory as far as we know, so there's
3107	 * no chipset flush.  It also doesn't land in render cache.
3108	 *
3109	 * However, we do have to enforce the order so that all writes through
3110	 * the GTT land before any writes to the device, such as updates to
3111	 * the GATT itself.
3112	 *
3113	 * We also have to wait a bit for the writes to land from the GTT.
3114	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3115	 * timing. This issue has only been observed when switching quickly
3116	 * between GTT writes and CPU reads from inside the kernel on recent hw,
3117	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3118	 * system agents we cannot reproduce this behaviour).
3119	 */
3120	wmb();
3121	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3122		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3123
3124	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
 
 
 
3125
3126	obj->base.write_domain = 0;
3127	trace_i915_gem_object_change_domain(obj,
3128					    obj->base.read_domains,
3129					    I915_GEM_DOMAIN_GTT);
3130}
3131
3132/** Flushes the CPU write domain for the object if it's dirty. */
3133static void
3134i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3135{
 
 
3136	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3137		return;
3138
3139	i915_gem_clflush_object(obj, obj->pin_display);
 
 
 
 
 
3140	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3141
3142	obj->base.write_domain = 0;
3143	trace_i915_gem_object_change_domain(obj,
3144					    obj->base.read_domains,
3145					    I915_GEM_DOMAIN_CPU);
3146}
3147
3148/**
3149 * Moves a single object to the GTT read, and possibly write domain.
3150 * @obj: object to act on
3151 * @write: ask for write access or read only
3152 *
3153 * This function returns when the move is complete, including waiting on
3154 * flushes to occur.
3155 */
3156int
3157i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3158{
3159	uint32_t old_write_domain, old_read_domains;
 
3160	int ret;
3161
3162	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
3163
3164	ret = i915_gem_object_wait(obj,
3165				   I915_WAIT_INTERRUPTIBLE |
3166				   I915_WAIT_LOCKED |
3167				   (write ? I915_WAIT_ALL : 0),
3168				   MAX_SCHEDULE_TIMEOUT,
3169				   NULL);
3170	if (ret)
3171		return ret;
3172
3173	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3174		return 0;
3175
3176	/* Flush and acquire obj->pages so that we are coherent through
3177	 * direct access in memory with previous cached writes through
3178	 * shmemfs and that our cache domain tracking remains valid.
3179	 * For example, if the obj->filp was moved to swap without us
3180	 * being notified and releasing the pages, we would mistakenly
3181	 * continue to assume that the obj remained out of the CPU cached
3182	 * domain.
3183	 */
3184	ret = i915_gem_object_pin_pages(obj);
3185	if (ret)
3186		return ret;
3187
3188	i915_gem_object_flush_cpu_write_domain(obj);
3189
3190	/* Serialise direct access to this object with the barriers for
3191	 * coherent writes from the GPU, by effectively invalidating the
3192	 * GTT domain upon first access.
3193	 */
3194	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3195		mb();
3196
3197	old_write_domain = obj->base.write_domain;
3198	old_read_domains = obj->base.read_domains;
3199
3200	/* It should now be out of any other write domains, and we can update
3201	 * the domain values for our changes.
3202	 */
3203	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3204	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3205	if (write) {
3206		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3207		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3208		obj->mm.dirty = true;
3209	}
3210
3211	trace_i915_gem_object_change_domain(obj,
3212					    old_read_domains,
3213					    old_write_domain);
3214
3215	i915_gem_object_unpin_pages(obj);
 
 
 
 
 
3216	return 0;
3217}
3218
3219/**
3220 * Changes the cache-level of an object across all VMA.
3221 * @obj: object to act on
3222 * @cache_level: new cache level to set for the object
3223 *
3224 * After this function returns, the object will be in the new cache-level
3225 * across all GTT and the contents of the backing storage will be coherent,
3226 * with respect to the new cache-level. In order to keep the backing storage
3227 * coherent for all users, we only allow a single cache level to be set
3228 * globally on the object and prevent it from being changed whilst the
3229 * hardware is reading from the object. That is if the object is currently
3230 * on the scanout it will be set to uncached (or equivalent display
3231 * cache coherency) and all non-MOCS GPU access will also be uncached so
3232 * that all direct access to the scanout remains coherent.
3233 */
3234int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3235				    enum i915_cache_level cache_level)
3236{
3237	struct i915_vma *vma;
3238	int ret;
3239
3240	lockdep_assert_held(&obj->base.dev->struct_mutex);
3241
3242	if (obj->cache_level == cache_level)
3243		return 0;
3244
3245	/* Inspect the list of currently bound VMA and unbind any that would
3246	 * be invalid given the new cache-level. This is principally to
3247	 * catch the issue of the CS prefetch crossing page boundaries and
3248	 * reading an invalid PTE on older architectures.
3249	 */
3250restart:
3251	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3252		if (!drm_mm_node_allocated(&vma->node))
3253			continue;
3254
3255		if (i915_vma_is_pinned(vma)) {
3256			DRM_DEBUG("can not change the cache level of pinned objects\n");
3257			return -EBUSY;
3258		}
3259
3260		if (i915_gem_valid_gtt_space(vma, cache_level))
3261			continue;
3262
3263		ret = i915_vma_unbind(vma);
3264		if (ret)
3265			return ret;
3266
3267		/* As unbinding may affect other elements in the
3268		 * obj->vma_list (due to side-effects from retiring
3269		 * an active vma), play safe and restart the iterator.
3270		 */
3271		goto restart;
3272	}
3273
3274	/* We can reuse the existing drm_mm nodes but need to change the
3275	 * cache-level on the PTE. We could simply unbind them all and
3276	 * rebind with the correct cache-level on next use. However since
3277	 * we already have a valid slot, dma mapping, pages etc, we may as
3278	 * rewrite the PTE in the belief that doing so tramples upon less
3279	 * state and so involves less work.
3280	 */
3281	if (obj->bind_count) {
3282		/* Before we change the PTE, the GPU must not be accessing it.
3283		 * If we wait upon the object, we know that all the bound
3284		 * VMA are no longer active.
3285		 */
3286		ret = i915_gem_object_wait(obj,
3287					   I915_WAIT_INTERRUPTIBLE |
3288					   I915_WAIT_LOCKED |
3289					   I915_WAIT_ALL,
3290					   MAX_SCHEDULE_TIMEOUT,
3291					   NULL);
3292		if (ret)
3293			return ret;
3294
3295		if (!HAS_LLC(to_i915(obj->base.dev)) &&
3296		    cache_level != I915_CACHE_NONE) {
3297			/* Access to snoopable pages through the GTT is
3298			 * incoherent and on some machines causes a hard
3299			 * lockup. Relinquish the CPU mmaping to force
3300			 * userspace to refault in the pages and we can
3301			 * then double check if the GTT mapping is still
3302			 * valid for that pointer access.
3303			 */
3304			i915_gem_release_mmap(obj);
3305
3306			/* As we no longer need a fence for GTT access,
3307			 * we can relinquish it now (and so prevent having
3308			 * to steal a fence from someone else on the next
3309			 * fence request). Note GPU activity would have
3310			 * dropped the fence as all snoopable access is
3311			 * supposed to be linear.
3312			 */
3313			list_for_each_entry(vma, &obj->vma_list, obj_link) {
3314				ret = i915_vma_put_fence(vma);
3315				if (ret)
3316					return ret;
3317			}
3318		} else {
3319			/* We either have incoherent backing store and
3320			 * so no GTT access or the architecture is fully
3321			 * coherent. In such cases, existing GTT mmaps
3322			 * ignore the cache bit in the PTE and we can
3323			 * rewrite it without confusing the GPU or having
3324			 * to force userspace to fault back in its mmaps.
3325			 */
3326		}
3327
3328		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3329			if (!drm_mm_node_allocated(&vma->node))
3330				continue;
3331
3332			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3333			if (ret)
3334				return ret;
3335		}
3336	}
3337
3338	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3339	    cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3340		obj->cache_dirty = true;
3341
3342	list_for_each_entry(vma, &obj->vma_list, obj_link)
3343		vma->node.color = cache_level;
3344	obj->cache_level = cache_level;
3345
 
 
 
 
 
 
 
 
 
 
 
 
3346	return 0;
3347}
3348
3349int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3350			       struct drm_file *file)
3351{
3352	struct drm_i915_gem_caching *args = data;
3353	struct drm_i915_gem_object *obj;
3354	int err = 0;
3355
3356	rcu_read_lock();
3357	obj = i915_gem_object_lookup_rcu(file, args->handle);
3358	if (!obj) {
3359		err = -ENOENT;
3360		goto out;
3361	}
3362
3363	switch (obj->cache_level) {
3364	case I915_CACHE_LLC:
3365	case I915_CACHE_L3_LLC:
3366		args->caching = I915_CACHING_CACHED;
3367		break;
3368
3369	case I915_CACHE_WT:
3370		args->caching = I915_CACHING_DISPLAY;
3371		break;
3372
3373	default:
3374		args->caching = I915_CACHING_NONE;
3375		break;
3376	}
3377out:
3378	rcu_read_unlock();
3379	return err;
3380}
3381
3382int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3383			       struct drm_file *file)
3384{
3385	struct drm_i915_private *i915 = to_i915(dev);
3386	struct drm_i915_gem_caching *args = data;
3387	struct drm_i915_gem_object *obj;
3388	enum i915_cache_level level;
3389	int ret;
3390
3391	switch (args->caching) {
3392	case I915_CACHING_NONE:
3393		level = I915_CACHE_NONE;
3394		break;
3395	case I915_CACHING_CACHED:
3396		/*
3397		 * Due to a HW issue on BXT A stepping, GPU stores via a
3398		 * snooped mapping may leave stale data in a corresponding CPU
3399		 * cacheline, whereas normally such cachelines would get
3400		 * invalidated.
3401		 */
3402		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3403			return -ENODEV;
3404
3405		level = I915_CACHE_LLC;
3406		break;
3407	case I915_CACHING_DISPLAY:
3408		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3409		break;
3410	default:
3411		return -EINVAL;
3412	}
3413
 
 
3414	ret = i915_mutex_lock_interruptible(dev);
3415	if (ret)
3416		return ret;
3417
3418	obj = i915_gem_object_lookup(file, args->handle);
3419	if (!obj) {
3420		ret = -ENOENT;
3421		goto unlock;
3422	}
3423
3424	ret = i915_gem_object_set_cache_level(obj, level);
3425	i915_gem_object_put(obj);
 
3426unlock:
3427	mutex_unlock(&dev->struct_mutex);
 
 
 
3428	return ret;
3429}
3430
3431/*
3432 * Prepare buffer for display plane (scanout, cursors, etc).
3433 * Can be called from an uninterruptible phase (modesetting) and allows
3434 * any flushes to be pipelined (for pageflips).
3435 */
3436struct i915_vma *
3437i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3438				     u32 alignment,
3439				     const struct i915_ggtt_view *view)
3440{
3441	struct i915_vma *vma;
3442	u32 old_read_domains, old_write_domain;
3443	int ret;
3444
3445	lockdep_assert_held(&obj->base.dev->struct_mutex);
3446
3447	/* Mark the pin_display early so that we account for the
3448	 * display coherency whilst setting up the cache domains.
3449	 */
3450	obj->pin_display++;
3451
3452	/* The display engine is not coherent with the LLC cache on gen6.  As
3453	 * a result, we make sure that the pinning that is about to occur is
3454	 * done with uncached PTEs. This is lowest common denominator for all
3455	 * chipsets.
3456	 *
3457	 * However for gen6+, we could do better by using the GFDT bit instead
3458	 * of uncaching, which would allow us to flush all the LLC-cached data
3459	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3460	 */
3461	ret = i915_gem_object_set_cache_level(obj,
3462					      HAS_WT(to_i915(obj->base.dev)) ?
3463					      I915_CACHE_WT : I915_CACHE_NONE);
3464	if (ret) {
3465		vma = ERR_PTR(ret);
3466		goto err_unpin_display;
3467	}
3468
3469	/* As the user may map the buffer once pinned in the display plane
3470	 * (e.g. libkms for the bootup splash), we have to ensure that we
3471	 * always use map_and_fenceable for all scanout buffers. However,
3472	 * it may simply be too big to fit into mappable, in which case
3473	 * put it anyway and hope that userspace can cope (but always first
3474	 * try to preserve the existing ABI).
3475	 */
3476	vma = ERR_PTR(-ENOSPC);
3477	if (view->type == I915_GGTT_VIEW_NORMAL)
3478		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3479					       PIN_MAPPABLE | PIN_NONBLOCK);
3480	if (IS_ERR(vma)) {
3481		struct drm_i915_private *i915 = to_i915(obj->base.dev);
3482		unsigned int flags;
3483
3484		/* Valleyview is definitely limited to scanning out the first
3485		 * 512MiB. Lets presume this behaviour was inherited from the
3486		 * g4x display engine and that all earlier gen are similarly
3487		 * limited. Testing suggests that it is a little more
3488		 * complicated than this. For example, Cherryview appears quite
3489		 * happy to scanout from anywhere within its global aperture.
3490		 */
3491		flags = 0;
3492		if (HAS_GMCH_DISPLAY(i915))
3493			flags = PIN_MAPPABLE;
3494		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3495	}
3496	if (IS_ERR(vma))
3497		goto err_unpin_display;
3498
3499	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3500
3501	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3502	if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3503		i915_gem_clflush_object(obj, true);
3504		intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3505	}
3506
3507	old_write_domain = obj->base.write_domain;
3508	old_read_domains = obj->base.read_domains;
3509
3510	/* It should now be out of any other write domains, and we can update
3511	 * the domain values for our changes.
3512	 */
3513	obj->base.write_domain = 0;
3514	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3515
3516	trace_i915_gem_object_change_domain(obj,
3517					    old_read_domains,
3518					    old_write_domain);
3519
3520	return vma;
3521
3522err_unpin_display:
3523	obj->pin_display--;
3524	return vma;
3525}
3526
3527void
3528i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
 
3529{
3530	lockdep_assert_held(&vma->vm->dev->struct_mutex);
3531
3532	if (WARN_ON(vma->obj->pin_display == 0))
3533		return;
3534
3535	if (--vma->obj->pin_display == 0)
3536		vma->display_alignment = 0;
3537
3538	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3539	if (!i915_vma_is_active(vma))
3540		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3541
3542	i915_vma_unpin(vma);
3543}
3544
3545/**
3546 * Moves a single object to the CPU read, and possibly write domain.
3547 * @obj: object to act on
3548 * @write: requesting write or read-only access
3549 *
3550 * This function returns when the move is complete, including waiting on
3551 * flushes to occur.
3552 */
3553int
3554i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3555{
3556	uint32_t old_write_domain, old_read_domains;
3557	int ret;
3558
3559	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
3560
3561	ret = i915_gem_object_wait(obj,
3562				   I915_WAIT_INTERRUPTIBLE |
3563				   I915_WAIT_LOCKED |
3564				   (write ? I915_WAIT_ALL : 0),
3565				   MAX_SCHEDULE_TIMEOUT,
3566				   NULL);
3567	if (ret)
3568		return ret;
3569
3570	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3571		return 0;
3572
3573	i915_gem_object_flush_gtt_write_domain(obj);
3574
3575	old_write_domain = obj->base.write_domain;
3576	old_read_domains = obj->base.read_domains;
3577
3578	/* Flush the CPU cache if it's still invalid. */
3579	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3580		i915_gem_clflush_object(obj, false);
3581
3582		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3583	}
3584
3585	/* It should now be out of any other write domains, and we can update
3586	 * the domain values for our changes.
3587	 */
3588	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3589
3590	/* If we're writing through the CPU, then the GPU read domains will
3591	 * need to be invalidated at next use.
3592	 */
3593	if (write) {
3594		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3595		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3596	}
3597
3598	trace_i915_gem_object_change_domain(obj,
3599					    old_read_domains,
3600					    old_write_domain);
3601
3602	return 0;
3603}
3604
3605/* Throttle our rendering by waiting until the ring has completed our requests
3606 * emitted over 20 msec ago.
3607 *
3608 * Note that if we were to use the current jiffies each time around the loop,
3609 * we wouldn't escape the function with any frames outstanding if the time to
3610 * render a frame was over 20ms.
3611 *
3612 * This should get us reasonable parallelism between CPU and GPU but also
3613 * relatively low latency when blocking on a particular request to finish.
3614 */
3615static int
3616i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3617{
3618	struct drm_i915_private *dev_priv = to_i915(dev);
3619	struct drm_i915_file_private *file_priv = file->driver_priv;
3620	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3621	struct drm_i915_gem_request *request, *target = NULL;
3622	long ret;
 
 
 
 
 
3623
3624	/* ABI: return -EIO if already wedged */
3625	if (i915_terminally_wedged(&dev_priv->gpu_error))
3626		return -EIO;
3627
3628	spin_lock(&file_priv->mm.lock);
3629	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3630		if (time_after_eq(request->emitted_jiffies, recent_enough))
3631			break;
3632
3633		/*
3634		 * Note that the request might not have been submitted yet.
3635		 * In which case emitted_jiffies will be zero.
3636		 */
3637		if (!request->emitted_jiffies)
3638			continue;
3639
3640		target = request;
3641	}
 
3642	if (target)
3643		i915_gem_request_get(target);
3644	spin_unlock(&file_priv->mm.lock);
3645
3646	if (target == NULL)
3647		return 0;
3648
3649	ret = i915_wait_request(target,
3650				I915_WAIT_INTERRUPTIBLE,
3651				MAX_SCHEDULE_TIMEOUT);
3652	i915_gem_request_put(target);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3653
3654	return ret < 0 ? ret : 0;
3655}
3656
3657struct i915_vma *
3658i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3659			 const struct i915_ggtt_view *view,
3660			 u64 size,
3661			 u64 alignment,
3662			 u64 flags)
3663{
3664	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3665	struct i915_address_space *vm = &dev_priv->ggtt.base;
3666	struct i915_vma *vma;
 
3667	int ret;
3668
3669	lockdep_assert_held(&obj->base.dev->struct_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
3670
3671	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3672	if (IS_ERR(vma))
3673		return vma;
 
 
 
 
3674
3675	if (i915_vma_misplaced(vma, size, alignment, flags)) {
3676		if (flags & PIN_NONBLOCK &&
3677		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3678			return ERR_PTR(-ENOSPC);
3679
3680		if (flags & PIN_MAPPABLE) {
3681			u32 fence_size;
3682
3683			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3684							    i915_gem_object_get_tiling(obj));
3685			/* If the required space is larger than the available
3686			 * aperture, we will not able to find a slot for the
3687			 * object and unbinding the object now will be in
3688			 * vain. Worse, doing so may cause us to ping-pong
3689			 * the object in and out of the Global GTT and
3690			 * waste a lot of cycles under the mutex.
3691			 */
3692			if (fence_size > dev_priv->ggtt.mappable_end)
3693				return ERR_PTR(-E2BIG);
3694
3695			/* If NONBLOCK is set the caller is optimistically
3696			 * trying to cache the full object within the mappable
3697			 * aperture, and *must* have a fallback in place for
3698			 * situations where we cannot bind the object. We
3699			 * can be a little more lax here and use the fallback
3700			 * more often to avoid costly migrations of ourselves
3701			 * and other objects within the aperture.
3702			 *
3703			 * Half-the-aperture is used as a simple heuristic.
3704			 * More interesting would to do search for a free
3705			 * block prior to making the commitment to unbind.
3706			 * That caters for the self-harm case, and with a
3707			 * little more heuristics (e.g. NOFAULT, NOEVICT)
3708			 * we could try to minimise harm to others.
3709			 */
3710			if (flags & PIN_NONBLOCK &&
3711			    fence_size > dev_priv->ggtt.mappable_end / 2)
3712				return ERR_PTR(-ENOSPC);
3713		}
 
3714
3715		WARN(i915_vma_is_pinned(vma),
3716		     "bo is already pinned in ggtt with incorrect alignment:"
3717		     " offset=%08x, req.alignment=%llx,"
3718		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3719		     i915_ggtt_offset(vma), alignment,
3720		     !!(flags & PIN_MAPPABLE),
3721		     i915_vma_is_map_and_fenceable(vma));
3722		ret = i915_vma_unbind(vma);
3723		if (ret)
3724			return ERR_PTR(ret);
3725	}
3726
3727	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3728	if (ret)
3729		return ERR_PTR(ret);
 
 
3730
3731	return vma;
 
3732}
3733
3734static __always_inline unsigned int __busy_read_flag(unsigned int id)
3735{
3736	/* Note that we could alias engines in the execbuf API, but
3737	 * that would be very unwise as it prevents userspace from
3738	 * fine control over engine selection. Ahem.
3739	 *
3740	 * This should be something like EXEC_MAX_ENGINE instead of
3741	 * I915_NUM_ENGINES.
3742	 */
3743	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3744	return 0x10000 << id;
3745}
3746
3747static __always_inline unsigned int __busy_write_id(unsigned int id)
 
 
 
 
3748{
3749	/* The uABI guarantees an active writer is also amongst the read
3750	 * engines. This would be true if we accessed the activity tracking
3751	 * under the lock, but as we perform the lookup of the object and
3752	 * its activity locklessly we can not guarantee that the last_write
3753	 * being active implies that we have set the same engine flag from
3754	 * last_read - hence we always set both read and write busy for
3755	 * last_write.
3756	 */
3757	return id | __busy_read_flag(id);
3758}
3759
3760static __always_inline unsigned int
3761__busy_set_if_active(const struct dma_fence *fence,
3762		     unsigned int (*flag)(unsigned int id))
3763{
3764	struct drm_i915_gem_request *rq;
3765
3766	/* We have to check the current hw status of the fence as the uABI
3767	 * guarantees forward progress. We could rely on the idle worker
3768	 * to eventually flush us, but to minimise latency just ask the
3769	 * hardware.
3770	 *
3771	 * Note we only report on the status of native fences.
3772	 */
3773	if (!dma_fence_is_i915(fence))
3774		return 0;
3775
3776	/* opencode to_request() in order to avoid const warnings */
3777	rq = container_of(fence, struct drm_i915_gem_request, fence);
3778	if (i915_gem_request_completed(rq))
3779		return 0;
3780
3781	return flag(rq->engine->exec_id);
 
3782}
3783
3784static __always_inline unsigned int
3785busy_check_reader(const struct dma_fence *fence)
 
3786{
3787	return __busy_set_if_active(fence, __busy_read_flag);
3788}
3789
3790static __always_inline unsigned int
3791busy_check_writer(const struct dma_fence *fence)
3792{
3793	if (!fence)
3794		return 0;
3795
3796	return __busy_set_if_active(fence, __busy_write_id);
3797}
3798
3799int
3800i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3801		    struct drm_file *file)
3802{
3803	struct drm_i915_gem_busy *args = data;
3804	struct drm_i915_gem_object *obj;
3805	struct reservation_object_list *list;
3806	unsigned int seq;
3807	int err;
 
 
3808
3809	err = -ENOENT;
3810	rcu_read_lock();
3811	obj = i915_gem_object_lookup_rcu(file, args->handle);
3812	if (!obj)
3813		goto out;
3814
3815	/* A discrepancy here is that we do not report the status of
3816	 * non-i915 fences, i.e. even though we may report the object as idle,
3817	 * a call to set-domain may still stall waiting for foreign rendering.
3818	 * This also means that wait-ioctl may report an object as busy,
3819	 * where busy-ioctl considers it idle.
3820	 *
3821	 * We trade the ability to warn of foreign fences to report on which
3822	 * i915 engines are active for the object.
3823	 *
3824	 * Alternatively, we can trade that extra information on read/write
3825	 * activity with
3826	 *	args->busy =
3827	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
3828	 * to report the overall busyness. This is what the wait-ioctl does.
3829	 *
3830	 */
3831retry:
3832	seq = raw_read_seqcount(&obj->resv->seq);
 
3833
3834	/* Translate the exclusive fence to the READ *and* WRITE engine */
3835	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
 
3836
3837	/* Translate shared fences to READ set of engines */
3838	list = rcu_dereference(obj->resv->fence);
3839	if (list) {
3840		unsigned int shared_count = list->shared_count, i;
3841
3842		for (i = 0; i < shared_count; ++i) {
3843			struct dma_fence *fence =
3844				rcu_dereference(list->shared[i]);
3845
3846			args->busy |= busy_check_reader(fence);
3847		}
 
 
3848	}
3849
3850	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3851		goto retry;
3852
3853	err = 0;
3854out:
3855	rcu_read_unlock();
3856	return err;
3857}
3858
3859int
3860i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3861			struct drm_file *file_priv)
3862{
3863	return i915_gem_ring_throttle(dev, file_priv);
3864}
3865
3866int
3867i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3868		       struct drm_file *file_priv)
3869{
3870	struct drm_i915_private *dev_priv = to_i915(dev);
3871	struct drm_i915_gem_madvise *args = data;
3872	struct drm_i915_gem_object *obj;
3873	int err;
3874
3875	switch (args->madv) {
3876	case I915_MADV_DONTNEED:
3877	case I915_MADV_WILLNEED:
3878	    break;
3879	default:
3880	    return -EINVAL;
3881	}
3882
3883	obj = i915_gem_object_lookup(file_priv, args->handle);
3884	if (!obj)
3885		return -ENOENT;
 
 
 
 
 
 
3886
3887	err = mutex_lock_interruptible(&obj->mm.lock);
3888	if (err)
3889		goto out;
 
3890
3891	if (obj->mm.pages &&
3892	    i915_gem_object_is_tiled(obj) &&
3893	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3894		if (obj->mm.madv == I915_MADV_WILLNEED) {
3895			GEM_BUG_ON(!obj->mm.quirked);
3896			__i915_gem_object_unpin_pages(obj);
3897			obj->mm.quirked = false;
3898		}
3899		if (args->madv == I915_MADV_WILLNEED) {
3900			GEM_BUG_ON(obj->mm.quirked);
3901			__i915_gem_object_pin_pages(obj);
3902			obj->mm.quirked = true;
3903		}
3904	}
3905
3906	if (obj->mm.madv != __I915_MADV_PURGED)
3907		obj->mm.madv = args->madv;
3908
3909	/* if the object is no longer attached, discard its backing storage */
3910	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3911		i915_gem_object_truncate(obj);
3912
3913	args->retained = obj->mm.madv != __I915_MADV_PURGED;
3914	mutex_unlock(&obj->mm.lock);
3915
3916out:
3917	i915_gem_object_put(obj);
3918	return err;
3919}
3920
3921static void
3922frontbuffer_retire(struct i915_gem_active *active,
3923		   struct drm_i915_gem_request *request)
3924{
3925	struct drm_i915_gem_object *obj =
3926		container_of(active, typeof(*obj), frontbuffer_write);
3927
3928	intel_fb_obj_flush(obj, true, ORIGIN_CS);
3929}
3930
3931void i915_gem_object_init(struct drm_i915_gem_object *obj,
3932			  const struct drm_i915_gem_object_ops *ops)
3933{
3934	mutex_init(&obj->mm.lock);
3935
3936	INIT_LIST_HEAD(&obj->global_link);
3937	INIT_LIST_HEAD(&obj->userfault_link);
 
3938	INIT_LIST_HEAD(&obj->obj_exec_link);
3939	INIT_LIST_HEAD(&obj->vma_list);
3940	INIT_LIST_HEAD(&obj->batch_pool_link);
3941
3942	obj->ops = ops;
3943
3944	reservation_object_init(&obj->__builtin_resv);
3945	obj->resv = &obj->__builtin_resv;
3946
3947	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3948	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3949
3950	obj->mm.madv = I915_MADV_WILLNEED;
3951	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3952	mutex_init(&obj->mm.get_page.lock);
3953
3954	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3955}
3956
3957static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3958	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3959		 I915_GEM_OBJECT_IS_SHRINKABLE,
3960	.get_pages = i915_gem_object_get_pages_gtt,
3961	.put_pages = i915_gem_object_put_pages_gtt,
3962};
3963
3964/* Note we don't consider signbits :| */
3965#define overflows_type(x, T) \
3966	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3967
3968struct drm_i915_gem_object *
3969i915_gem_object_create(struct drm_device *dev, u64 size)
3970{
3971	struct drm_i915_private *dev_priv = to_i915(dev);
3972	struct drm_i915_gem_object *obj;
3973	struct address_space *mapping;
3974	gfp_t mask;
3975	int ret;
3976
3977	/* There is a prevalence of the assumption that we fit the object's
3978	 * page count inside a 32bit _signed_ variable. Let's document this and
3979	 * catch if we ever need to fix it. In the meantime, if you do spot
3980	 * such a local variable, please consider fixing!
3981	 */
3982	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3983		return ERR_PTR(-E2BIG);
3984
3985	if (overflows_type(size, obj->base.size))
3986		return ERR_PTR(-E2BIG);
3987
3988	obj = i915_gem_object_alloc(dev);
3989	if (obj == NULL)
3990		return ERR_PTR(-ENOMEM);
3991
3992	ret = drm_gem_object_init(dev, &obj->base, size);
3993	if (ret)
3994		goto fail;
 
3995
3996	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3997	if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
3998		/* 965gm cannot relocate objects above 4GiB. */
3999		mask &= ~__GFP_HIGHMEM;
4000		mask |= __GFP_DMA32;
4001	}
4002
4003	mapping = obj->base.filp->f_mapping;
4004	mapping_set_gfp_mask(mapping, mask);
4005
4006	i915_gem_object_init(obj, &i915_gem_object_ops);
4007
4008	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4009	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4010
4011	if (HAS_LLC(dev_priv)) {
4012		/* On some devices, we can have the GPU use the LLC (the CPU
4013		 * cache) for about a 10% performance improvement
4014		 * compared to uncached.  Graphics requests other than
4015		 * display scanout are coherent with the CPU in
4016		 * accessing this cache.  This means in this mode we
4017		 * don't need to clflush on the CPU side, and on the
4018		 * GPU side we only need to flush internal caches to
4019		 * get data visible to the CPU.
4020		 *
4021		 * However, we maintain the display planes as UC, and so
4022		 * need to rebind when first used as such.
4023		 */
4024		obj->cache_level = I915_CACHE_LLC;
4025	} else
4026		obj->cache_level = I915_CACHE_NONE;
4027
4028	trace_i915_gem_object_create(obj);
4029
4030	return obj;
4031
4032fail:
4033	i915_gem_object_free(obj);
4034	return ERR_PTR(ret);
4035}
4036
4037static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4038{
4039	/* If we are the last user of the backing storage (be it shmemfs
4040	 * pages or stolen etc), we know that the pages are going to be
4041	 * immediately released. In this case, we can then skip copying
4042	 * back the contents from the GPU.
4043	 */
4044
4045	if (obj->mm.madv != I915_MADV_WILLNEED)
4046		return false;
4047
4048	if (obj->base.filp == NULL)
4049		return true;
4050
4051	/* At first glance, this looks racy, but then again so would be
4052	 * userspace racing mmap against close. However, the first external
4053	 * reference to the filp can only be obtained through the
4054	 * i915_gem_mmap_ioctl() which safeguards us against the user
4055	 * acquiring such a reference whilst we are in the middle of
4056	 * freeing the object.
4057	 */
4058	return atomic_long_read(&obj->base.filp->f_count) == 1;
4059}
4060
4061static void __i915_gem_free_objects(struct drm_i915_private *i915,
4062				    struct llist_node *freed)
4063{
4064	struct drm_i915_gem_object *obj, *on;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4065
4066	mutex_lock(&i915->drm.struct_mutex);
4067	intel_runtime_pm_get(i915);
4068	llist_for_each_entry(obj, freed, freed) {
4069		struct i915_vma *vma, *vn;
4070
4071		trace_i915_gem_object_destroy(obj);
4072
4073		GEM_BUG_ON(i915_gem_object_is_active(obj));
4074		list_for_each_entry_safe(vma, vn,
4075					 &obj->vma_list, obj_link) {
4076			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4077			GEM_BUG_ON(i915_vma_is_active(vma));
4078			vma->flags &= ~I915_VMA_PIN_MASK;
4079			i915_vma_close(vma);
4080		}
4081		GEM_BUG_ON(!list_empty(&obj->vma_list));
4082		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4083
4084		list_del(&obj->global_link);
4085	}
4086	intel_runtime_pm_put(i915);
4087	mutex_unlock(&i915->drm.struct_mutex);
4088
4089	llist_for_each_entry_safe(obj, on, freed, freed) {
4090		GEM_BUG_ON(obj->bind_count);
4091		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
 
 
 
 
 
 
 
 
4092
4093		if (obj->ops->release)
4094			obj->ops->release(obj);
 
 
 
 
4095
4096		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4097			atomic_set(&obj->mm.pages_pin_count, 0);
4098		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4099		GEM_BUG_ON(obj->mm.pages);
4100
4101		if (obj->base.import_attach)
4102			drm_prime_gem_destroy(&obj->base, NULL);
4103
4104		reservation_object_fini(&obj->__builtin_resv);
4105		drm_gem_object_release(&obj->base);
4106		i915_gem_info_remove_obj(i915, obj->base.size);
4107
4108		kfree(obj->bit_17);
4109		i915_gem_object_free(obj);
4110	}
4111}
4112
4113static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4114{
4115	struct llist_node *freed;
4116
4117	freed = llist_del_all(&i915->mm.free_list);
4118	if (unlikely(freed))
4119		__i915_gem_free_objects(i915, freed);
4120}
4121
4122static void __i915_gem_free_work(struct work_struct *work)
 
4123{
4124	struct drm_i915_private *i915 =
4125		container_of(work, struct drm_i915_private, mm.free_work);
4126	struct llist_node *freed;
4127
4128	/* All file-owned VMA should have been released by this point through
4129	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4130	 * However, the object may also be bound into the global GTT (e.g.
4131	 * older GPUs without per-process support, or for direct access through
4132	 * the GTT either for the user or for scanout). Those VMA still need to
4133	 * unbound now.
4134	 */
4135
4136	while ((freed = llist_del_all(&i915->mm.free_list)))
4137		__i915_gem_free_objects(i915, freed);
4138}
4139
4140static void __i915_gem_free_object_rcu(struct rcu_head *head)
 
4141{
4142	struct drm_i915_gem_object *obj =
4143		container_of(head, typeof(*obj), rcu);
4144	struct drm_i915_private *i915 = to_i915(obj->base.dev);
4145
4146	/* We can't simply use call_rcu() from i915_gem_free_object()
4147	 * as we need to block whilst unbinding, and the call_rcu
4148	 * task may be called from softirq context. So we take a
4149	 * detour through a worker.
4150	 */
4151	if (llist_add(&obj->freed, &i915->mm.free_list))
4152		schedule_work(&i915->mm.free_work);
 
4153}
4154
4155void i915_gem_free_object(struct drm_gem_object *gem_obj)
4156{
4157	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4158
4159	if (obj->mm.quirked)
4160		__i915_gem_object_unpin_pages(obj);
 
4161
4162	if (discard_backing_storage(obj))
4163		obj->mm.madv = I915_MADV_DONTNEED;
4164
4165	/* Before we free the object, make sure any pure RCU-only
4166	 * read-side critical sections are complete, e.g.
4167	 * i915_gem_busy_ioctl(). For the corresponding synchronized
4168	 * lookup see i915_gem_object_lookup_rcu().
4169	 */
4170	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4171}
4172
4173void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4174{
4175	lockdep_assert_held(&obj->base.dev->struct_mutex);
4176
4177	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4178	if (i915_gem_object_is_active(obj))
4179		i915_gem_object_set_active_reference(obj);
4180	else
4181		i915_gem_object_put(obj);
4182}
4183
4184static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
 
4185{
4186	struct intel_engine_cs *engine;
4187	enum intel_engine_id id;
 
4188
4189	for_each_engine(engine, dev_priv, id)
4190		GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4191}
4192
4193int i915_gem_suspend(struct drm_device *dev)
 
4194{
4195	struct drm_i915_private *dev_priv = to_i915(dev);
4196	int ret;
4197
4198	intel_suspend_gt_powersave(dev_priv);
4199
4200	mutex_lock(&dev->struct_mutex);
4201
4202	/* We have to flush all the executing contexts to main memory so
4203	 * that they can saved in the hibernation image. To ensure the last
4204	 * context image is coherent, we have to switch away from it. That
4205	 * leaves the dev_priv->kernel_context still active when
4206	 * we actually suspend, and its image in memory may not match the GPU
4207	 * state. Fortunately, the kernel_context is disposable and we do
4208	 * not rely on its state.
4209	 */
4210	ret = i915_gem_switch_to_kernel_context(dev_priv);
4211	if (ret)
4212		goto err;
4213
4214	ret = i915_gem_wait_for_idle(dev_priv,
4215				     I915_WAIT_INTERRUPTIBLE |
4216				     I915_WAIT_LOCKED);
4217	if (ret)
4218		goto err;
4219
4220	i915_gem_retire_requests(dev_priv);
4221	GEM_BUG_ON(dev_priv->gt.active_requests);
4222
4223	assert_kernel_context_is_current(dev_priv);
4224	i915_gem_context_lost(dev_priv);
4225	mutex_unlock(&dev->struct_mutex);
4226
4227	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4228	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4229	flush_delayed_work(&dev_priv->gt.idle_work);
4230	flush_work(&dev_priv->mm.free_work);
4231
4232	/* Assert that we sucessfully flushed all the work and
4233	 * reset the GPU back to its idle, low power state.
4234	 */
4235	WARN_ON(dev_priv->gt.awake);
4236	WARN_ON(!intel_execlists_idle(dev_priv));
4237
4238	/*
4239	 * Neither the BIOS, ourselves or any other kernel
4240	 * expects the system to be in execlists mode on startup,
4241	 * so we need to reset the GPU back to legacy mode. And the only
4242	 * known way to disable logical contexts is through a GPU reset.
4243	 *
4244	 * So in order to leave the system in a known default configuration,
4245	 * always reset the GPU upon unload and suspend. Afterwards we then
4246	 * clean up the GEM state tracking, flushing off the requests and
4247	 * leaving the system in a known idle state.
4248	 *
4249	 * Note that is of the upmost importance that the GPU is idle and
4250	 * all stray writes are flushed *before* we dismantle the backing
4251	 * storage for the pinned objects.
4252	 *
4253	 * However, since we are uncertain that resetting the GPU on older
4254	 * machines is a good idea, we don't - just in case it leaves the
4255	 * machine in an unusable condition.
4256	 */
4257	if (HAS_HW_CONTEXTS(dev_priv)) {
4258		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4259		WARN_ON(reset && reset != -ENODEV);
4260	}
4261
4262	return 0;
4263
4264err:
4265	mutex_unlock(&dev->struct_mutex);
4266	return ret;
4267}
4268
4269void i915_gem_resume(struct drm_device *dev)
4270{
4271	struct drm_i915_private *dev_priv = to_i915(dev);
 
 
 
 
4272
4273	WARN_ON(dev_priv->gt.awake);
 
4274
4275	mutex_lock(&dev->struct_mutex);
4276	i915_gem_restore_gtt_mappings(dev_priv);
 
4277
4278	/* As we didn't flush the kernel context before suspend, we cannot
4279	 * guarantee that the context image is complete. So let's just reset
4280	 * it and start again.
 
4281	 */
4282	dev_priv->gt.resume(dev_priv);
 
 
 
 
4283
4284	mutex_unlock(&dev->struct_mutex);
 
 
4285}
4286
4287void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4288{
4289	if (INTEL_GEN(dev_priv) < 5 ||
 
 
4290	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4291		return;
4292
4293	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4294				 DISP_TILE_SURFACE_SWIZZLING);
4295
4296	if (IS_GEN5(dev_priv))
4297		return;
4298
4299	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4300	if (IS_GEN6(dev_priv))
4301		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4302	else if (IS_GEN7(dev_priv))
4303		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4304	else if (IS_GEN8(dev_priv))
4305		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4306	else
4307		BUG();
4308}
4309
4310static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4311{
 
 
4312	I915_WRITE(RING_CTL(base), 0);
4313	I915_WRITE(RING_HEAD(base), 0);
4314	I915_WRITE(RING_TAIL(base), 0);
4315	I915_WRITE(RING_START(base), 0);
4316}
4317
4318static void init_unused_rings(struct drm_i915_private *dev_priv)
4319{
4320	if (IS_I830(dev_priv)) {
4321		init_unused_ring(dev_priv, PRB1_BASE);
4322		init_unused_ring(dev_priv, SRB0_BASE);
4323		init_unused_ring(dev_priv, SRB1_BASE);
4324		init_unused_ring(dev_priv, SRB2_BASE);
4325		init_unused_ring(dev_priv, SRB3_BASE);
4326	} else if (IS_GEN2(dev_priv)) {
4327		init_unused_ring(dev_priv, SRB0_BASE);
4328		init_unused_ring(dev_priv, SRB1_BASE);
4329	} else if (IS_GEN3(dev_priv)) {
4330		init_unused_ring(dev_priv, PRB1_BASE);
4331		init_unused_ring(dev_priv, PRB2_BASE);
4332	}
4333}
4334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4335int
4336i915_gem_init_hw(struct drm_device *dev)
4337{
4338	struct drm_i915_private *dev_priv = to_i915(dev);
4339	struct intel_engine_cs *engine;
4340	enum intel_engine_id id;
4341	int ret;
4342
4343	dev_priv->gt.last_init_time = ktime_get();
 
4344
4345	/* Double layer security blanket, see i915_gem_init() */
4346	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4347
4348	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4349		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4350
4351	if (IS_HASWELL(dev_priv))
4352		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4353			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4354
4355	if (HAS_PCH_NOP(dev_priv)) {
4356		if (IS_IVYBRIDGE(dev_priv)) {
4357			u32 temp = I915_READ(GEN7_MSG_CTL);
4358			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4359			I915_WRITE(GEN7_MSG_CTL, temp);
4360		} else if (INTEL_GEN(dev_priv) >= 7) {
4361			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4362			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4363			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4364		}
4365	}
4366
4367	i915_gem_init_swizzling(dev_priv);
4368
4369	/*
4370	 * At least 830 can leave some of the unused rings
4371	 * "active" (ie. head != tail) after resume which
4372	 * will prevent c3 entry. Makes sure all unused rings
4373	 * are totally idle.
4374	 */
4375	init_unused_rings(dev_priv);
4376
4377	BUG_ON(!dev_priv->kernel_context);
4378
4379	ret = i915_ppgtt_init_hw(dev_priv);
4380	if (ret) {
4381		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4382		goto out;
4383	}
4384
4385	/* Need to do basic initialisation of all rings first: */
4386	for_each_engine(engine, dev_priv, id) {
4387		ret = engine->init_hw(engine);
4388		if (ret)
4389			goto out;
4390	}
4391
4392	intel_mocs_init_l3cc_table(dev);
 
 
 
 
 
 
 
 
4393
4394	/* We can't enable contexts until all firmware is loaded */
4395	ret = intel_guc_setup(dev);
 
 
 
4396	if (ret)
4397		goto out;
4398
4399out:
4400	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4401	return ret;
4402}
 
 
 
 
 
 
4403
4404bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4405{
4406	if (INTEL_INFO(dev_priv)->gen < 6)
4407		return false;
4408
4409	/* TODO: make semaphores and Execlists play nicely together */
4410	if (i915.enable_execlists)
4411		return false;
 
 
 
 
4412
4413	if (value >= 0)
4414		return value;
 
 
 
 
 
4415
4416#ifdef CONFIG_INTEL_IOMMU
4417	/* Enable semaphores on SNB when IO remapping is off */
4418	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4419		return false;
4420#endif
4421
4422	return true;
 
 
4423}
4424
4425int i915_gem_init(struct drm_device *dev)
4426{
4427	struct drm_i915_private *dev_priv = to_i915(dev);
4428	int ret;
4429
 
 
 
4430	mutex_lock(&dev->struct_mutex);
4431
4432	if (!i915.enable_execlists) {
4433		dev_priv->gt.resume = intel_legacy_submission_resume;
4434		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
 
 
4435	} else {
4436		dev_priv->gt.resume = intel_lr_context_resume;
4437		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
 
 
4438	}
4439
4440	/* This is just a security blanket to placate dragons.
4441	 * On some systems, we very sporadically observe that the first TLBs
4442	 * used by the CS may be stale, despite us poking the TLB reset. If
4443	 * we hold the forcewake during initialisation these problems
4444	 * just magically go away.
4445	 */
4446	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4447
4448	i915_gem_init_userptr(dev_priv);
4449
4450	ret = i915_gem_init_ggtt(dev_priv);
4451	if (ret)
4452		goto out_unlock;
4453
 
 
4454	ret = i915_gem_context_init(dev);
4455	if (ret)
4456		goto out_unlock;
4457
4458	ret = intel_engines_init(dev);
4459	if (ret)
4460		goto out_unlock;
4461
4462	ret = i915_gem_init_hw(dev);
4463	if (ret == -EIO) {
4464		/* Allow engine initialisation to fail by marking the GPU as
4465		 * wedged. But we only want to do this where the GPU is angry,
4466		 * for all other failure, such as an allocation failure, bail.
4467		 */
4468		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4469		i915_gem_set_wedged(dev_priv);
4470		ret = 0;
4471	}
4472
4473out_unlock:
4474	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4475	mutex_unlock(&dev->struct_mutex);
4476
4477	return ret;
4478}
4479
4480void
4481i915_gem_cleanup_engines(struct drm_device *dev)
4482{
4483	struct drm_i915_private *dev_priv = to_i915(dev);
4484	struct intel_engine_cs *engine;
4485	enum intel_engine_id id;
 
 
 
4486
4487	for_each_engine(engine, dev_priv, id)
4488		dev_priv->gt.cleanup_engine(engine);
 
 
 
 
 
4489}
4490
4491void
4492i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4493{
4494	int i;
4495
4496	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4497	    !IS_CHERRYVIEW(dev_priv))
4498		dev_priv->num_fence_regs = 32;
4499	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4500		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4501		dev_priv->num_fence_regs = 16;
4502	else
4503		dev_priv->num_fence_regs = 8;
4504
4505	if (intel_vgpu_active(dev_priv))
4506		dev_priv->num_fence_regs =
4507				I915_READ(vgtif_reg(avail_rs.fence_num));
4508
4509	/* Initialize fence registers to zero */
4510	for (i = 0; i < dev_priv->num_fence_regs; i++) {
4511		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4512
4513		fence->i915 = dev_priv;
4514		fence->id = i;
4515		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4516	}
4517	i915_gem_restore_fences(dev_priv);
4518
4519	i915_gem_detect_bit_6_swizzle(dev_priv);
4520}
4521
4522int
4523i915_gem_load_init(struct drm_device *dev)
4524{
4525	struct drm_i915_private *dev_priv = to_i915(dev);
4526	int err = -ENOMEM;
4527
4528	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4529	if (!dev_priv->objects)
4530		goto err_out;
4531
4532	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4533	if (!dev_priv->vmas)
4534		goto err_objects;
4535
4536	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4537					SLAB_HWCACHE_ALIGN |
4538					SLAB_RECLAIM_ACCOUNT |
4539					SLAB_DESTROY_BY_RCU);
4540	if (!dev_priv->requests)
4541		goto err_vmas;
4542
4543	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4544					    SLAB_HWCACHE_ALIGN |
4545					    SLAB_RECLAIM_ACCOUNT);
4546	if (!dev_priv->dependencies)
4547		goto err_requests;
4548
4549	mutex_lock(&dev_priv->drm.struct_mutex);
4550	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4551	err = i915_gem_timeline_init__global(dev_priv);
4552	mutex_unlock(&dev_priv->drm.struct_mutex);
4553	if (err)
4554		goto err_dependencies;
4555
 
4556	INIT_LIST_HEAD(&dev_priv->context_list);
4557	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4558	init_llist_head(&dev_priv->mm.free_list);
4559	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4560	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4561	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4562	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4563	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
 
 
 
4564			  i915_gem_retire_work_handler);
4565	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4566			  i915_gem_idle_work_handler);
4567	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4568	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4569
4570	init_waitqueue_head(&dev_priv->pending_flip_queue);
 
 
 
 
 
 
 
 
 
 
 
4571
4572	dev_priv->mm.interruptible = true;
 
 
 
 
 
 
4573
4574	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
 
 
4575
4576	spin_lock_init(&dev_priv->fb_tracking.lock);
 
4577
4578	return 0;
4579
4580err_dependencies:
4581	kmem_cache_destroy(dev_priv->dependencies);
4582err_requests:
4583	kmem_cache_destroy(dev_priv->requests);
4584err_vmas:
4585	kmem_cache_destroy(dev_priv->vmas);
4586err_objects:
4587	kmem_cache_destroy(dev_priv->objects);
4588err_out:
4589	return err;
4590}
4591
4592void i915_gem_load_cleanup(struct drm_device *dev)
4593{
4594	struct drm_i915_private *dev_priv = to_i915(dev);
4595
4596	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4597
4598	mutex_lock(&dev_priv->drm.struct_mutex);
4599	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4600	WARN_ON(!list_empty(&dev_priv->gt.timelines));
4601	mutex_unlock(&dev_priv->drm.struct_mutex);
4602
4603	kmem_cache_destroy(dev_priv->dependencies);
4604	kmem_cache_destroy(dev_priv->requests);
4605	kmem_cache_destroy(dev_priv->vmas);
4606	kmem_cache_destroy(dev_priv->objects);
4607
4608	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4609	rcu_barrier();
4610}
4611
4612int i915_gem_freeze(struct drm_i915_private *dev_priv)
4613{
4614	intel_runtime_pm_get(dev_priv);
4615
4616	mutex_lock(&dev_priv->drm.struct_mutex);
4617	i915_gem_shrink_all(dev_priv);
4618	mutex_unlock(&dev_priv->drm.struct_mutex);
4619
4620	intel_runtime_pm_put(dev_priv);
4621
4622	return 0;
4623}
4624
4625int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4626{
4627	struct drm_i915_gem_object *obj;
4628	struct list_head *phases[] = {
4629		&dev_priv->mm.unbound_list,
4630		&dev_priv->mm.bound_list,
4631		NULL
4632	}, **p;
4633
4634	/* Called just before we write the hibernation image.
4635	 *
4636	 * We need to update the domain tracking to reflect that the CPU
4637	 * will be accessing all the pages to create and restore from the
4638	 * hibernation, and so upon restoration those pages will be in the
4639	 * CPU domain.
4640	 *
4641	 * To make sure the hibernation image contains the latest state,
4642	 * we update that state just before writing out the image.
4643	 *
4644	 * To try and reduce the hibernation image, we manually shrink
4645	 * the objects as well.
4646	 */
4647
4648	mutex_lock(&dev_priv->drm.struct_mutex);
4649	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4650
4651	for (p = phases; *p; p++) {
4652		list_for_each_entry(obj, *p, global_link) {
4653			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4654			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4655		}
4656	}
4657	mutex_unlock(&dev_priv->drm.struct_mutex);
4658
4659	return 0;
4660}
4661
4662void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4663{
4664	struct drm_i915_file_private *file_priv = file->driver_priv;
4665	struct drm_i915_gem_request *request;
4666
4667	/* Clean up our request list when the client is going away, so that
4668	 * later retire_requests won't dereference our soon-to-be-gone
4669	 * file_priv.
4670	 */
4671	spin_lock(&file_priv->mm.lock);
4672	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
 
 
 
 
 
 
4673		request->file_priv = NULL;
 
4674	spin_unlock(&file_priv->mm.lock);
4675
4676	if (!list_empty(&file_priv->rps.link)) {
4677		spin_lock(&to_i915(dev)->rps.client_lock);
4678		list_del(&file_priv->rps.link);
4679		spin_unlock(&to_i915(dev)->rps.client_lock);
4680	}
4681}
4682
4683int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4684{
4685	struct drm_i915_file_private *file_priv;
4686	int ret;
4687
4688	DRM_DEBUG("\n");
4689
4690	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4691	if (!file_priv)
4692		return -ENOMEM;
4693
4694	file->driver_priv = file_priv;
4695	file_priv->dev_priv = to_i915(dev);
4696	file_priv->file = file;
4697	INIT_LIST_HEAD(&file_priv->rps.link);
4698
4699	spin_lock_init(&file_priv->mm.lock);
4700	INIT_LIST_HEAD(&file_priv->mm.request_list);
4701
4702	file_priv->bsd_engine = -1;
4703
4704	ret = i915_gem_context_open(dev, file);
4705	if (ret)
4706		kfree(file_priv);
4707
4708	return ret;
4709}
4710
4711/**
4712 * i915_gem_track_fb - update frontbuffer tracking
4713 * @old: current GEM buffer for the frontbuffer slots
4714 * @new: new GEM buffer for the frontbuffer slots
4715 * @frontbuffer_bits: bitmask of frontbuffer slots
4716 *
4717 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4718 * from @old and setting them in @new. Both @old and @new can be NULL.
4719 */
4720void i915_gem_track_fb(struct drm_i915_gem_object *old,
4721		       struct drm_i915_gem_object *new,
4722		       unsigned frontbuffer_bits)
4723{
4724	/* Control of individual bits within the mask are guarded by
4725	 * the owning plane->mutex, i.e. we can never see concurrent
4726	 * manipulation of individual bits. But since the bitfield as a whole
4727	 * is updated using RMW, we need to use atomics in order to update
4728	 * the bits.
4729	 */
4730	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4731		     sizeof(atomic_t) * BITS_PER_BYTE);
4732
4733	if (old) {
4734		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4735		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
 
4736	}
4737
4738	if (new) {
4739		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4740		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
 
4741	}
4742}
4743
4744/* Allocate a new GEM object and fill it with the supplied data */
4745struct drm_i915_gem_object *
4746i915_gem_object_create_from_data(struct drm_device *dev,
4747			         const void *data, size_t size)
4748{
4749	struct drm_i915_gem_object *obj;
4750	struct sg_table *sg;
4751	size_t bytes;
4752	int ret;
4753
4754	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4755	if (IS_ERR(obj))
4756		return obj;
4757
4758	ret = i915_gem_object_set_to_cpu_domain(obj, true);
4759	if (ret)
4760		goto fail;
4761
4762	ret = i915_gem_object_pin_pages(obj);
4763	if (ret)
4764		goto fail;
4765
4766	sg = obj->mm.pages;
4767	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4768	obj->mm.dirty = true; /* Backing store is now out of date */
4769	i915_gem_object_unpin_pages(obj);
4770
4771	if (WARN_ON(bytes != size)) {
4772		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4773		ret = -EFAULT;
4774		goto fail;
4775	}
4776
4777	return obj;
4778
4779fail:
4780	i915_gem_object_put(obj);
4781	return ERR_PTR(ret);
4782}
4783
4784struct scatterlist *
4785i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4786		       unsigned int n,
4787		       unsigned int *offset)
4788{
4789	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4790	struct scatterlist *sg;
4791	unsigned int idx, count;
4792
4793	might_sleep();
4794	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4795	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4796
4797	/* As we iterate forward through the sg, we record each entry in a
4798	 * radixtree for quick repeated (backwards) lookups. If we have seen
4799	 * this index previously, we will have an entry for it.
4800	 *
4801	 * Initial lookup is O(N), but this is amortized to O(1) for
4802	 * sequential page access (where each new request is consecutive
4803	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4804	 * i.e. O(1) with a large constant!
4805	 */
4806	if (n < READ_ONCE(iter->sg_idx))
4807		goto lookup;
4808
4809	mutex_lock(&iter->lock);
 
 
4810
4811	/* We prefer to reuse the last sg so that repeated lookup of this
4812	 * (or the subsequent) sg are fast - comparing against the last
4813	 * sg is faster than going through the radixtree.
4814	 */
4815
4816	sg = iter->sg_pos;
4817	idx = iter->sg_idx;
4818	count = __sg_page_count(sg);
 
 
 
 
4819
4820	while (idx + count <= n) {
4821		unsigned long exception, i;
4822		int ret;
4823
4824		/* If we cannot allocate and insert this entry, or the
4825		 * individual pages from this range, cancel updating the
4826		 * sg_idx so that on this lookup we are forced to linearly
4827		 * scan onwards, but on future lookups we will try the
4828		 * insertion again (in which case we need to be careful of
4829		 * the error return reporting that we have already inserted
4830		 * this index).
4831		 */
4832		ret = radix_tree_insert(&iter->radix, idx, sg);
4833		if (ret && ret != -EEXIST)
4834			goto scan;
4835
4836		exception =
4837			RADIX_TREE_EXCEPTIONAL_ENTRY |
4838			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4839		for (i = 1; i < count; i++) {
4840			ret = radix_tree_insert(&iter->radix, idx + i,
4841						(void *)exception);
4842			if (ret && ret != -EEXIST)
4843				goto scan;
4844		}
4845
4846		idx += count;
4847		sg = ____sg_next(sg);
4848		count = __sg_page_count(sg);
4849	}
4850
4851scan:
4852	iter->sg_pos = sg;
4853	iter->sg_idx = idx;
4854
4855	mutex_unlock(&iter->lock);
 
 
4856
4857	if (unlikely(n < idx)) /* insertion completed by another thread */
4858		goto lookup;
4859
4860	/* In case we failed to insert the entry into the radixtree, we need
4861	 * to look beyond the current sg.
4862	 */
4863	while (idx + count <= n) {
4864		idx += count;
4865		sg = ____sg_next(sg);
4866		count = __sg_page_count(sg);
4867	}
4868
4869	*offset = n - idx;
4870	return sg;
4871
4872lookup:
4873	rcu_read_lock();
4874
4875	sg = radix_tree_lookup(&iter->radix, n);
4876	GEM_BUG_ON(!sg);
4877
4878	/* If this index is in the middle of multi-page sg entry,
4879	 * the radixtree will contain an exceptional entry that points
4880	 * to the start of that range. We will return the pointer to
4881	 * the base page and the offset of this page within the
4882	 * sg entry's range.
4883	 */
4884	*offset = 0;
4885	if (unlikely(radix_tree_exception(sg))) {
4886		unsigned long base =
4887			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4888
4889		sg = radix_tree_lookup(&iter->radix, base);
4890		GEM_BUG_ON(!sg);
4891
4892		*offset = n - base;
4893	}
4894
4895	rcu_read_unlock();
4896
4897	return sg;
4898}
4899
4900struct page *
4901i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4902{
4903	struct scatterlist *sg;
4904	unsigned int offset;
 
 
4905
4906	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4907
4908	sg = i915_gem_object_get_sg(obj, n, &offset);
4909	return nth_page(sg_page(sg), offset);
4910}
4911
4912/* Like i915_gem_object_get_page(), but mark the returned page dirty */
4913struct page *
4914i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4915			       unsigned int n)
4916{
4917	struct page *page;
4918
 
 
 
 
4919	page = i915_gem_object_get_page(obj, n);
4920	if (!obj->mm.dirty)
4921		set_page_dirty(page);
4922
4923	return page;
4924}
4925
4926dma_addr_t
4927i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4928				unsigned long n)
 
4929{
4930	struct scatterlist *sg;
4931	unsigned int offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4932
4933	sg = i915_gem_object_get_sg(obj, n, &offset);
4934	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
 
4935}