Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *		Pedro Roque	:	Fast Retransmit/Recovery.
  24 *					Two receive queues.
  25 *					Retransmit queue handled by TCP.
  26 *					Better retransmit timer handling.
  27 *					New congestion avoidance.
  28 *					Header prediction.
  29 *					Variable renaming.
  30 *
  31 *		Eric		:	Fast Retransmit.
  32 *		Randy Scott	:	MSS option defines.
  33 *		Eric Schenk	:	Fixes to slow start algorithm.
  34 *		Eric Schenk	:	Yet another double ACK bug.
  35 *		Eric Schenk	:	Delayed ACK bug fixes.
  36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  37 *		David S. Miller	:	Don't allow zero congestion window.
  38 *		Eric Schenk	:	Fix retransmitter so that it sends
  39 *					next packet on ack of previous packet.
  40 *		Andi Kleen	:	Moved open_request checking here
  41 *					and process RSTs for open_requests.
  42 *		Andi Kleen	:	Better prune_queue, and other fixes.
  43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  44 *					timestamps.
  45 *		Andrey Savochkin:	Check sequence numbers correctly when
  46 *					removing SACKs due to in sequence incoming
  47 *					data segments.
  48 *		Andi Kleen:		Make sure we never ack data there is not
  49 *					enough room for. Also make this condition
  50 *					a fatal error if it might still happen.
  51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  52 *					connections with MSS<min(MTU,ann. MSS)
  53 *					work without delayed acks.
  54 *		Andi Kleen:		Process packets with PSH set in the
  55 *					fast path.
  56 *		J Hadi Salim:		ECN support
  57 *	 	Andrei Gurtov,
  58 *		Pasi Sarolahti,
  59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  60 *					engine. Lots of bugs are found.
  61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  62 */
  63
  64#define pr_fmt(fmt) "TCP: " fmt
  65
  66#include <linux/mm.h>
  67#include <linux/slab.h>
  68#include <linux/module.h>
  69#include <linux/sysctl.h>
  70#include <linux/kernel.h>
  71#include <linux/prefetch.h>
  72#include <net/dst.h>
  73#include <net/tcp.h>
  74#include <net/inet_common.h>
  75#include <linux/ipsec.h>
  76#include <asm/unaligned.h>
  77#include <linux/errqueue.h>
  78
  79int sysctl_tcp_timestamps __read_mostly = 1;
  80int sysctl_tcp_window_scaling __read_mostly = 1;
  81int sysctl_tcp_sack __read_mostly = 1;
  82int sysctl_tcp_fack __read_mostly = 1;
  83int sysctl_tcp_max_reordering __read_mostly = 300;
  84int sysctl_tcp_dsack __read_mostly = 1;
  85int sysctl_tcp_app_win __read_mostly = 31;
  86int sysctl_tcp_adv_win_scale __read_mostly = 1;
  87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
 
  88
  89/* rfc5961 challenge ack rate limiting */
  90int sysctl_tcp_challenge_ack_limit = 100;
  91
  92int sysctl_tcp_stdurg __read_mostly;
  93int sysctl_tcp_rfc1337 __read_mostly;
  94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  95int sysctl_tcp_frto __read_mostly = 2;
  96int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  97
  98int sysctl_tcp_thin_dupack __read_mostly;
  99
 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
 101int sysctl_tcp_early_retrans __read_mostly = 3;
 102int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
 103
 104#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
 105#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
 106#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
 107#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
 108#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
 109#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
 110#define FLAG_ECE		0x40 /* ECE in this ACK				*/
 111#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
 112#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
 113#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
 114#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 115#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
 116#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 117#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
 118
 119#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 120#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 121#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
 122#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 123
 124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 126
 127#define REXMIT_NONE	0 /* no loss recovery to do */
 128#define REXMIT_LOST	1 /* retransmit packets marked lost */
 129#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131/* Adapt the MSS value used to make delayed ack decision to the
 132 * real world.
 133 */
 134static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 135{
 136	struct inet_connection_sock *icsk = inet_csk(sk);
 137	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 138	unsigned int len;
 139
 140	icsk->icsk_ack.last_seg_size = 0;
 141
 142	/* skb->len may jitter because of SACKs, even if peer
 143	 * sends good full-sized frames.
 144	 */
 145	len = skb_shinfo(skb)->gso_size ? : skb->len;
 146	if (len >= icsk->icsk_ack.rcv_mss) {
 147		icsk->icsk_ack.rcv_mss = len;
 
 
 
 148	} else {
 149		/* Otherwise, we make more careful check taking into account,
 150		 * that SACKs block is variable.
 151		 *
 152		 * "len" is invariant segment length, including TCP header.
 153		 */
 154		len += skb->data - skb_transport_header(skb);
 155		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 156		    /* If PSH is not set, packet should be
 157		     * full sized, provided peer TCP is not badly broken.
 158		     * This observation (if it is correct 8)) allows
 159		     * to handle super-low mtu links fairly.
 160		     */
 161		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 162		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 163			/* Subtract also invariant (if peer is RFC compliant),
 164			 * tcp header plus fixed timestamp option length.
 165			 * Resulting "len" is MSS free of SACK jitter.
 166			 */
 167			len -= tcp_sk(sk)->tcp_header_len;
 168			icsk->icsk_ack.last_seg_size = len;
 169			if (len == lss) {
 170				icsk->icsk_ack.rcv_mss = len;
 171				return;
 172			}
 173		}
 174		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 175			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 176		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 177	}
 178}
 179
 180static void tcp_incr_quickack(struct sock *sk)
 181{
 182	struct inet_connection_sock *icsk = inet_csk(sk);
 183	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 184
 185	if (quickacks == 0)
 186		quickacks = 2;
 187	if (quickacks > icsk->icsk_ack.quick)
 188		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 189}
 190
 191static void tcp_enter_quickack_mode(struct sock *sk)
 192{
 193	struct inet_connection_sock *icsk = inet_csk(sk);
 194	tcp_incr_quickack(sk);
 195	icsk->icsk_ack.pingpong = 0;
 196	icsk->icsk_ack.ato = TCP_ATO_MIN;
 197}
 198
 199/* Send ACKs quickly, if "quick" count is not exhausted
 200 * and the session is not interactive.
 201 */
 202
 203static bool tcp_in_quickack_mode(struct sock *sk)
 204{
 205	const struct inet_connection_sock *icsk = inet_csk(sk);
 206	const struct dst_entry *dst = __sk_dst_get(sk);
 207
 208	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 209		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
 210}
 211
 212static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 213{
 214	if (tp->ecn_flags & TCP_ECN_OK)
 215		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 216}
 217
 218static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 219{
 220	if (tcp_hdr(skb)->cwr)
 221		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 222}
 223
 224static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 225{
 226	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 227}
 228
 229static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 230{
 231	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 232	case INET_ECN_NOT_ECT:
 233		/* Funny extension: if ECT is not set on a segment,
 234		 * and we already seen ECT on a previous segment,
 235		 * it is probably a retransmit.
 236		 */
 237		if (tp->ecn_flags & TCP_ECN_SEEN)
 238			tcp_enter_quickack_mode((struct sock *)tp);
 239		break;
 240	case INET_ECN_CE:
 241		if (tcp_ca_needs_ecn((struct sock *)tp))
 242			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
 243
 244		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 245			/* Better not delay acks, sender can have a very low cwnd */
 246			tcp_enter_quickack_mode((struct sock *)tp);
 247			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 248		}
 249		tp->ecn_flags |= TCP_ECN_SEEN;
 250		break;
 251	default:
 252		if (tcp_ca_needs_ecn((struct sock *)tp))
 253			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
 254		tp->ecn_flags |= TCP_ECN_SEEN;
 255		break;
 256	}
 257}
 258
 259static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 260{
 261	if (tp->ecn_flags & TCP_ECN_OK)
 262		__tcp_ecn_check_ce(tp, skb);
 263}
 264
 265static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 266{
 267	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 268		tp->ecn_flags &= ~TCP_ECN_OK;
 269}
 270
 271static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 272{
 273	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 274		tp->ecn_flags &= ~TCP_ECN_OK;
 275}
 276
 277static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 278{
 279	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 280		return true;
 281	return false;
 282}
 283
 284/* Buffer size and advertised window tuning.
 285 *
 286 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 287 */
 288
 289static void tcp_sndbuf_expand(struct sock *sk)
 290{
 291	const struct tcp_sock *tp = tcp_sk(sk);
 
 292	int sndmem, per_mss;
 293	u32 nr_segs;
 294
 295	/* Worst case is non GSO/TSO : each frame consumes one skb
 296	 * and skb->head is kmalloced using power of two area of memory
 297	 */
 298	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 299		  MAX_TCP_HEADER +
 300		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 301
 302	per_mss = roundup_pow_of_two(per_mss) +
 303		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 304
 305	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 306	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 307
 308	/* Fast Recovery (RFC 5681 3.2) :
 309	 * Cubic needs 1.7 factor, rounded to 2 to include
 310	 * extra cushion (application might react slowly to POLLOUT)
 311	 */
 312	sndmem = 2 * nr_segs * per_mss;
 
 313
 314	if (sk->sk_sndbuf < sndmem)
 315		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 316}
 317
 318/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 319 *
 320 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 321 * forward and advertised in receiver window (tp->rcv_wnd) and
 322 * "application buffer", required to isolate scheduling/application
 323 * latencies from network.
 324 * window_clamp is maximal advertised window. It can be less than
 325 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 326 * is reserved for "application" buffer. The less window_clamp is
 327 * the smoother our behaviour from viewpoint of network, but the lower
 328 * throughput and the higher sensitivity of the connection to losses. 8)
 329 *
 330 * rcv_ssthresh is more strict window_clamp used at "slow start"
 331 * phase to predict further behaviour of this connection.
 332 * It is used for two goals:
 333 * - to enforce header prediction at sender, even when application
 334 *   requires some significant "application buffer". It is check #1.
 335 * - to prevent pruning of receive queue because of misprediction
 336 *   of receiver window. Check #2.
 337 *
 338 * The scheme does not work when sender sends good segments opening
 339 * window and then starts to feed us spaghetti. But it should work
 340 * in common situations. Otherwise, we have to rely on queue collapsing.
 341 */
 342
 343/* Slow part of check#2. */
 344static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 345{
 346	struct tcp_sock *tp = tcp_sk(sk);
 347	/* Optimize this! */
 348	int truesize = tcp_win_from_space(skb->truesize) >> 1;
 349	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 350
 351	while (tp->rcv_ssthresh <= window) {
 352		if (truesize <= skb->len)
 353			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 354
 355		truesize >>= 1;
 356		window >>= 1;
 357	}
 358	return 0;
 359}
 360
 361static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 362{
 363	struct tcp_sock *tp = tcp_sk(sk);
 364
 365	/* Check #1 */
 366	if (tp->rcv_ssthresh < tp->window_clamp &&
 367	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
 368	    !tcp_under_memory_pressure(sk)) {
 369		int incr;
 370
 371		/* Check #2. Increase window, if skb with such overhead
 372		 * will fit to rcvbuf in future.
 373		 */
 374		if (tcp_win_from_space(skb->truesize) <= skb->len)
 375			incr = 2 * tp->advmss;
 376		else
 377			incr = __tcp_grow_window(sk, skb);
 378
 379		if (incr) {
 380			incr = max_t(int, incr, 2 * skb->len);
 381			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 382					       tp->window_clamp);
 383			inet_csk(sk)->icsk_ack.quick |= 1;
 384		}
 385	}
 386}
 387
 388/* 3. Tuning rcvbuf, when connection enters established state. */
 389static void tcp_fixup_rcvbuf(struct sock *sk)
 390{
 391	u32 mss = tcp_sk(sk)->advmss;
 392	int rcvmem;
 393
 394	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
 395		 tcp_default_init_rwnd(mss);
 396
 397	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
 398	 * Allow enough cushion so that sender is not limited by our window
 399	 */
 400	if (sysctl_tcp_moderate_rcvbuf)
 401		rcvmem <<= 2;
 402
 403	if (sk->sk_rcvbuf < rcvmem)
 404		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
 405}
 406
 407/* 4. Try to fixup all. It is made immediately after connection enters
 408 *    established state.
 409 */
 410void tcp_init_buffer_space(struct sock *sk)
 411{
 412	struct tcp_sock *tp = tcp_sk(sk);
 413	int maxwin;
 414
 415	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 416		tcp_fixup_rcvbuf(sk);
 417	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 418		tcp_sndbuf_expand(sk);
 419
 420	tp->rcvq_space.space = tp->rcv_wnd;
 421	tp->rcvq_space.time = tcp_time_stamp;
 422	tp->rcvq_space.seq = tp->copied_seq;
 423
 424	maxwin = tcp_full_space(sk);
 425
 426	if (tp->window_clamp >= maxwin) {
 427		tp->window_clamp = maxwin;
 428
 429		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 430			tp->window_clamp = max(maxwin -
 431					       (maxwin >> sysctl_tcp_app_win),
 432					       4 * tp->advmss);
 433	}
 434
 435	/* Force reservation of one segment. */
 436	if (sysctl_tcp_app_win &&
 437	    tp->window_clamp > 2 * tp->advmss &&
 438	    tp->window_clamp + tp->advmss > maxwin)
 439		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 440
 441	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 442	tp->snd_cwnd_stamp = tcp_time_stamp;
 443}
 444
 445/* 5. Recalculate window clamp after socket hit its memory bounds. */
 446static void tcp_clamp_window(struct sock *sk)
 447{
 448	struct tcp_sock *tp = tcp_sk(sk);
 449	struct inet_connection_sock *icsk = inet_csk(sk);
 450
 451	icsk->icsk_ack.quick = 0;
 452
 453	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 454	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 455	    !tcp_under_memory_pressure(sk) &&
 456	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 457		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 458				    sysctl_tcp_rmem[2]);
 459	}
 460	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 461		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 462}
 463
 464/* Initialize RCV_MSS value.
 465 * RCV_MSS is an our guess about MSS used by the peer.
 466 * We haven't any direct information about the MSS.
 467 * It's better to underestimate the RCV_MSS rather than overestimate.
 468 * Overestimations make us ACKing less frequently than needed.
 469 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 470 */
 471void tcp_initialize_rcv_mss(struct sock *sk)
 472{
 473	const struct tcp_sock *tp = tcp_sk(sk);
 474	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 475
 476	hint = min(hint, tp->rcv_wnd / 2);
 477	hint = min(hint, TCP_MSS_DEFAULT);
 478	hint = max(hint, TCP_MIN_MSS);
 479
 480	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 481}
 482EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 483
 484/* Receiver "autotuning" code.
 485 *
 486 * The algorithm for RTT estimation w/o timestamps is based on
 487 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 488 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 489 *
 490 * More detail on this code can be found at
 491 * <http://staff.psc.edu/jheffner/>,
 492 * though this reference is out of date.  A new paper
 493 * is pending.
 494 */
 495static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 496{
 497	u32 new_sample = tp->rcv_rtt_est.rtt;
 498	long m = sample;
 499
 500	if (m == 0)
 501		m = 1;
 502
 503	if (new_sample != 0) {
 504		/* If we sample in larger samples in the non-timestamp
 505		 * case, we could grossly overestimate the RTT especially
 506		 * with chatty applications or bulk transfer apps which
 507		 * are stalled on filesystem I/O.
 508		 *
 509		 * Also, since we are only going for a minimum in the
 510		 * non-timestamp case, we do not smooth things out
 511		 * else with timestamps disabled convergence takes too
 512		 * long.
 513		 */
 514		if (!win_dep) {
 515			m -= (new_sample >> 3);
 516			new_sample += m;
 517		} else {
 518			m <<= 3;
 519			if (m < new_sample)
 520				new_sample = m;
 521		}
 522	} else {
 523		/* No previous measure. */
 524		new_sample = m << 3;
 525	}
 526
 527	if (tp->rcv_rtt_est.rtt != new_sample)
 528		tp->rcv_rtt_est.rtt = new_sample;
 529}
 530
 531static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 532{
 533	if (tp->rcv_rtt_est.time == 0)
 534		goto new_measure;
 535	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 536		return;
 537	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
 538
 539new_measure:
 540	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 541	tp->rcv_rtt_est.time = tcp_time_stamp;
 542}
 543
 544static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 545					  const struct sk_buff *skb)
 546{
 547	struct tcp_sock *tp = tcp_sk(sk);
 548	if (tp->rx_opt.rcv_tsecr &&
 549	    (TCP_SKB_CB(skb)->end_seq -
 550	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 551		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 552}
 553
 554/*
 555 * This function should be called every time data is copied to user space.
 556 * It calculates the appropriate TCP receive buffer space.
 557 */
 558void tcp_rcv_space_adjust(struct sock *sk)
 559{
 560	struct tcp_sock *tp = tcp_sk(sk);
 561	int time;
 562	int copied;
 563
 564	time = tcp_time_stamp - tp->rcvq_space.time;
 565	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 566		return;
 567
 568	/* Number of bytes copied to user in last RTT */
 569	copied = tp->copied_seq - tp->rcvq_space.seq;
 570	if (copied <= tp->rcvq_space.space)
 571		goto new_measure;
 572
 573	/* A bit of theory :
 574	 * copied = bytes received in previous RTT, our base window
 575	 * To cope with packet losses, we need a 2x factor
 576	 * To cope with slow start, and sender growing its cwin by 100 %
 577	 * every RTT, we need a 4x factor, because the ACK we are sending
 578	 * now is for the next RTT, not the current one :
 579	 * <prev RTT . ><current RTT .. ><next RTT .... >
 580	 */
 581
 582	if (sysctl_tcp_moderate_rcvbuf &&
 583	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 584		int rcvwin, rcvmem, rcvbuf;
 585
 586		/* minimal window to cope with packet losses, assuming
 587		 * steady state. Add some cushion because of small variations.
 588		 */
 589		rcvwin = (copied << 1) + 16 * tp->advmss;
 590
 591		/* If rate increased by 25%,
 592		 *	assume slow start, rcvwin = 3 * copied
 593		 * If rate increased by 50%,
 594		 *	assume sender can use 2x growth, rcvwin = 4 * copied
 595		 */
 596		if (copied >=
 597		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
 598			if (copied >=
 599			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
 600				rcvwin <<= 1;
 601			else
 602				rcvwin += (rcvwin >> 1);
 603		}
 604
 605		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 606		while (tcp_win_from_space(rcvmem) < tp->advmss)
 607			rcvmem += 128;
 608
 609		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
 610		if (rcvbuf > sk->sk_rcvbuf) {
 611			sk->sk_rcvbuf = rcvbuf;
 612
 613			/* Make the window clamp follow along.  */
 614			tp->window_clamp = rcvwin;
 615		}
 616	}
 617	tp->rcvq_space.space = copied;
 618
 619new_measure:
 620	tp->rcvq_space.seq = tp->copied_seq;
 621	tp->rcvq_space.time = tcp_time_stamp;
 622}
 623
 624/* There is something which you must keep in mind when you analyze the
 625 * behavior of the tp->ato delayed ack timeout interval.  When a
 626 * connection starts up, we want to ack as quickly as possible.  The
 627 * problem is that "good" TCP's do slow start at the beginning of data
 628 * transmission.  The means that until we send the first few ACK's the
 629 * sender will sit on his end and only queue most of his data, because
 630 * he can only send snd_cwnd unacked packets at any given time.  For
 631 * each ACK we send, he increments snd_cwnd and transmits more of his
 632 * queue.  -DaveM
 633 */
 634static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 635{
 636	struct tcp_sock *tp = tcp_sk(sk);
 637	struct inet_connection_sock *icsk = inet_csk(sk);
 638	u32 now;
 639
 640	inet_csk_schedule_ack(sk);
 641
 642	tcp_measure_rcv_mss(sk, skb);
 643
 644	tcp_rcv_rtt_measure(tp);
 645
 646	now = tcp_time_stamp;
 647
 648	if (!icsk->icsk_ack.ato) {
 649		/* The _first_ data packet received, initialize
 650		 * delayed ACK engine.
 651		 */
 652		tcp_incr_quickack(sk);
 653		icsk->icsk_ack.ato = TCP_ATO_MIN;
 654	} else {
 655		int m = now - icsk->icsk_ack.lrcvtime;
 656
 657		if (m <= TCP_ATO_MIN / 2) {
 658			/* The fastest case is the first. */
 659			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 660		} else if (m < icsk->icsk_ack.ato) {
 661			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 662			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 663				icsk->icsk_ack.ato = icsk->icsk_rto;
 664		} else if (m > icsk->icsk_rto) {
 665			/* Too long gap. Apparently sender failed to
 666			 * restart window, so that we send ACKs quickly.
 667			 */
 668			tcp_incr_quickack(sk);
 669			sk_mem_reclaim(sk);
 670		}
 671	}
 672	icsk->icsk_ack.lrcvtime = now;
 673
 674	tcp_ecn_check_ce(tp, skb);
 675
 676	if (skb->len >= 128)
 677		tcp_grow_window(sk, skb);
 678}
 679
 680/* Called to compute a smoothed rtt estimate. The data fed to this
 681 * routine either comes from timestamps, or from segments that were
 682 * known _not_ to have been retransmitted [see Karn/Partridge
 683 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 684 * piece by Van Jacobson.
 685 * NOTE: the next three routines used to be one big routine.
 686 * To save cycles in the RFC 1323 implementation it was better to break
 687 * it up into three procedures. -- erics
 688 */
 689static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 690{
 691	struct tcp_sock *tp = tcp_sk(sk);
 692	long m = mrtt_us; /* RTT */
 693	u32 srtt = tp->srtt_us;
 694
 695	/*	The following amusing code comes from Jacobson's
 696	 *	article in SIGCOMM '88.  Note that rtt and mdev
 697	 *	are scaled versions of rtt and mean deviation.
 698	 *	This is designed to be as fast as possible
 699	 *	m stands for "measurement".
 700	 *
 701	 *	On a 1990 paper the rto value is changed to:
 702	 *	RTO = rtt + 4 * mdev
 703	 *
 704	 * Funny. This algorithm seems to be very broken.
 705	 * These formulae increase RTO, when it should be decreased, increase
 706	 * too slowly, when it should be increased quickly, decrease too quickly
 707	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 708	 * does not matter how to _calculate_ it. Seems, it was trap
 709	 * that VJ failed to avoid. 8)
 710	 */
 711	if (srtt != 0) {
 712		m -= (srtt >> 3);	/* m is now error in rtt est */
 713		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 714		if (m < 0) {
 715			m = -m;		/* m is now abs(error) */
 716			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 717			/* This is similar to one of Eifel findings.
 718			 * Eifel blocks mdev updates when rtt decreases.
 719			 * This solution is a bit different: we use finer gain
 720			 * for mdev in this case (alpha*beta).
 721			 * Like Eifel it also prevents growth of rto,
 722			 * but also it limits too fast rto decreases,
 723			 * happening in pure Eifel.
 724			 */
 725			if (m > 0)
 726				m >>= 3;
 727		} else {
 728			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 729		}
 730		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 731		if (tp->mdev_us > tp->mdev_max_us) {
 732			tp->mdev_max_us = tp->mdev_us;
 733			if (tp->mdev_max_us > tp->rttvar_us)
 734				tp->rttvar_us = tp->mdev_max_us;
 735		}
 736		if (after(tp->snd_una, tp->rtt_seq)) {
 737			if (tp->mdev_max_us < tp->rttvar_us)
 738				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 739			tp->rtt_seq = tp->snd_nxt;
 740			tp->mdev_max_us = tcp_rto_min_us(sk);
 741		}
 742	} else {
 743		/* no previous measure. */
 744		srtt = m << 3;		/* take the measured time to be rtt */
 745		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 746		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 747		tp->mdev_max_us = tp->rttvar_us;
 748		tp->rtt_seq = tp->snd_nxt;
 749	}
 750	tp->srtt_us = max(1U, srtt);
 751}
 752
 753/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
 754 * Note: TCP stack does not yet implement pacing.
 755 * FQ packet scheduler can be used to implement cheap but effective
 756 * TCP pacing, to smooth the burst on large writes when packets
 757 * in flight is significantly lower than cwnd (or rwin)
 758 */
 759int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
 760int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
 761
 762static void tcp_update_pacing_rate(struct sock *sk)
 763{
 764	const struct tcp_sock *tp = tcp_sk(sk);
 765	u64 rate;
 766
 767	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 768	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 769
 770	/* current rate is (cwnd * mss) / srtt
 771	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 772	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 773	 *
 774	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 775	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 776	 *	 end of slow start and should slow down.
 777	 */
 778	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 779		rate *= sysctl_tcp_pacing_ss_ratio;
 780	else
 781		rate *= sysctl_tcp_pacing_ca_ratio;
 782
 783	rate *= max(tp->snd_cwnd, tp->packets_out);
 784
 785	if (likely(tp->srtt_us))
 786		do_div(rate, tp->srtt_us);
 787
 788	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
 789	 * without any lock. We want to make sure compiler wont store
 790	 * intermediate values in this location.
 791	 */
 792	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
 793						sk->sk_max_pacing_rate);
 794}
 795
 796/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 797 * routine referred to above.
 798 */
 799static void tcp_set_rto(struct sock *sk)
 800{
 801	const struct tcp_sock *tp = tcp_sk(sk);
 802	/* Old crap is replaced with new one. 8)
 803	 *
 804	 * More seriously:
 805	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 806	 *    It cannot be less due to utterly erratic ACK generation made
 807	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 808	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 809	 *    is invisible. Actually, Linux-2.4 also generates erratic
 810	 *    ACKs in some circumstances.
 811	 */
 812	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 813
 814	/* 2. Fixups made earlier cannot be right.
 815	 *    If we do not estimate RTO correctly without them,
 816	 *    all the algo is pure shit and should be replaced
 817	 *    with correct one. It is exactly, which we pretend to do.
 818	 */
 819
 820	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 821	 * guarantees that rto is higher.
 822	 */
 823	tcp_bound_rto(sk);
 824}
 825
 826__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 827{
 828	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 829
 830	if (!cwnd)
 831		cwnd = TCP_INIT_CWND;
 832	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 833}
 834
 835/*
 836 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 837 * disables it when reordering is detected
 838 */
 839void tcp_disable_fack(struct tcp_sock *tp)
 840{
 841	/* RFC3517 uses different metric in lost marker => reset on change */
 842	if (tcp_is_fack(tp))
 843		tp->lost_skb_hint = NULL;
 844	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
 845}
 846
 847/* Take a notice that peer is sending D-SACKs */
 848static void tcp_dsack_seen(struct tcp_sock *tp)
 849{
 850	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 851}
 852
 853static void tcp_update_reordering(struct sock *sk, const int metric,
 854				  const int ts)
 855{
 856	struct tcp_sock *tp = tcp_sk(sk);
 857	if (metric > tp->reordering) {
 858		int mib_idx;
 859
 860		tp->reordering = min(sysctl_tcp_max_reordering, metric);
 861
 862		/* This exciting event is worth to be remembered. 8) */
 863		if (ts)
 864			mib_idx = LINUX_MIB_TCPTSREORDER;
 865		else if (tcp_is_reno(tp))
 866			mib_idx = LINUX_MIB_TCPRENOREORDER;
 867		else if (tcp_is_fack(tp))
 868			mib_idx = LINUX_MIB_TCPFACKREORDER;
 869		else
 870			mib_idx = LINUX_MIB_TCPSACKREORDER;
 871
 872		NET_INC_STATS_BH(sock_net(sk), mib_idx);
 873#if FASTRETRANS_DEBUG > 1
 874		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 875			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 876			 tp->reordering,
 877			 tp->fackets_out,
 878			 tp->sacked_out,
 879			 tp->undo_marker ? tp->undo_retrans : 0);
 880#endif
 881		tcp_disable_fack(tp);
 882	}
 883
 884	if (metric > 0)
 885		tcp_disable_early_retrans(tp);
 886	tp->rack.reord = 1;
 887}
 888
 889/* This must be called before lost_out is incremented */
 890static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 891{
 892	if (!tp->retransmit_skb_hint ||
 893	    before(TCP_SKB_CB(skb)->seq,
 894		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 895		tp->retransmit_skb_hint = skb;
 896
 897	if (!tp->lost_out ||
 898	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
 899		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
 900}
 901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 902static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 903{
 904	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 905		tcp_verify_retransmit_hint(tp, skb);
 906
 907		tp->lost_out += tcp_skb_pcount(skb);
 
 908		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 909	}
 910}
 911
 912void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
 913{
 914	tcp_verify_retransmit_hint(tp, skb);
 915
 
 916	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 917		tp->lost_out += tcp_skb_pcount(skb);
 918		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 919	}
 920}
 921
 922/* This procedure tags the retransmission queue when SACKs arrive.
 923 *
 924 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 925 * Packets in queue with these bits set are counted in variables
 926 * sacked_out, retrans_out and lost_out, correspondingly.
 927 *
 928 * Valid combinations are:
 929 * Tag  InFlight	Description
 930 * 0	1		- orig segment is in flight.
 931 * S	0		- nothing flies, orig reached receiver.
 932 * L	0		- nothing flies, orig lost by net.
 933 * R	2		- both orig and retransmit are in flight.
 934 * L|R	1		- orig is lost, retransmit is in flight.
 935 * S|R  1		- orig reached receiver, retrans is still in flight.
 936 * (L|S|R is logically valid, it could occur when L|R is sacked,
 937 *  but it is equivalent to plain S and code short-curcuits it to S.
 938 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 939 *
 940 * These 6 states form finite state machine, controlled by the following events:
 941 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 942 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 943 * 3. Loss detection event of two flavors:
 944 *	A. Scoreboard estimator decided the packet is lost.
 945 *	   A'. Reno "three dupacks" marks head of queue lost.
 946 *	   A''. Its FACK modification, head until snd.fack is lost.
 947 *	B. SACK arrives sacking SND.NXT at the moment, when the
 948 *	   segment was retransmitted.
 949 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 950 *
 951 * It is pleasant to note, that state diagram turns out to be commutative,
 952 * so that we are allowed not to be bothered by order of our actions,
 953 * when multiple events arrive simultaneously. (see the function below).
 954 *
 955 * Reordering detection.
 956 * --------------------
 957 * Reordering metric is maximal distance, which a packet can be displaced
 958 * in packet stream. With SACKs we can estimate it:
 959 *
 960 * 1. SACK fills old hole and the corresponding segment was not
 961 *    ever retransmitted -> reordering. Alas, we cannot use it
 962 *    when segment was retransmitted.
 963 * 2. The last flaw is solved with D-SACK. D-SACK arrives
 964 *    for retransmitted and already SACKed segment -> reordering..
 965 * Both of these heuristics are not used in Loss state, when we cannot
 966 * account for retransmits accurately.
 967 *
 968 * SACK block validation.
 969 * ----------------------
 970 *
 971 * SACK block range validation checks that the received SACK block fits to
 972 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
 973 * Note that SND.UNA is not included to the range though being valid because
 974 * it means that the receiver is rather inconsistent with itself reporting
 975 * SACK reneging when it should advance SND.UNA. Such SACK block this is
 976 * perfectly valid, however, in light of RFC2018 which explicitly states
 977 * that "SACK block MUST reflect the newest segment.  Even if the newest
 978 * segment is going to be discarded ...", not that it looks very clever
 979 * in case of head skb. Due to potentional receiver driven attacks, we
 980 * choose to avoid immediate execution of a walk in write queue due to
 981 * reneging and defer head skb's loss recovery to standard loss recovery
 982 * procedure that will eventually trigger (nothing forbids us doing this).
 983 *
 984 * Implements also blockage to start_seq wrap-around. Problem lies in the
 985 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
 986 * there's no guarantee that it will be before snd_nxt (n). The problem
 987 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
 988 * wrap (s_w):
 989 *
 990 *         <- outs wnd ->                          <- wrapzone ->
 991 *         u     e      n                         u_w   e_w  s n_w
 992 *         |     |      |                          |     |   |  |
 993 * |<------------+------+----- TCP seqno space --------------+---------->|
 994 * ...-- <2^31 ->|                                           |<--------...
 995 * ...---- >2^31 ------>|                                    |<--------...
 996 *
 997 * Current code wouldn't be vulnerable but it's better still to discard such
 998 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
 999 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001 * equal to the ideal case (infinite seqno space without wrap caused issues).
1002 *
1003 * With D-SACK the lower bound is extended to cover sequence space below
1004 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1005 * again, D-SACK block must not to go across snd_una (for the same reason as
1006 * for the normal SACK blocks, explained above). But there all simplicity
1007 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008 * fully below undo_marker they do not affect behavior in anyway and can
1009 * therefore be safely ignored. In rare cases (which are more or less
1010 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011 * fragmentation and packet reordering past skb's retransmission. To consider
1012 * them correctly, the acceptable range must be extended even more though
1013 * the exact amount is rather hard to quantify. However, tp->max_window can
1014 * be used as an exaggerated estimate.
1015 */
1016static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1017				   u32 start_seq, u32 end_seq)
1018{
1019	/* Too far in future, or reversed (interpretation is ambiguous) */
1020	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1021		return false;
1022
1023	/* Nasty start_seq wrap-around check (see comments above) */
1024	if (!before(start_seq, tp->snd_nxt))
1025		return false;
1026
1027	/* In outstanding window? ...This is valid exit for D-SACKs too.
1028	 * start_seq == snd_una is non-sensical (see comments above)
1029	 */
1030	if (after(start_seq, tp->snd_una))
1031		return true;
1032
1033	if (!is_dsack || !tp->undo_marker)
1034		return false;
1035
1036	/* ...Then it's D-SACK, and must reside below snd_una completely */
1037	if (after(end_seq, tp->snd_una))
1038		return false;
1039
1040	if (!before(start_seq, tp->undo_marker))
1041		return true;
1042
1043	/* Too old */
1044	if (!after(end_seq, tp->undo_marker))
1045		return false;
1046
1047	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1048	 *   start_seq < undo_marker and end_seq >= undo_marker.
1049	 */
1050	return !before(start_seq, end_seq - tp->max_window);
1051}
1052
1053static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054			    struct tcp_sack_block_wire *sp, int num_sacks,
1055			    u32 prior_snd_una)
1056{
1057	struct tcp_sock *tp = tcp_sk(sk);
1058	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1060	bool dup_sack = false;
1061
1062	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1063		dup_sack = true;
1064		tcp_dsack_seen(tp);
1065		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1066	} else if (num_sacks > 1) {
1067		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1069
1070		if (!after(end_seq_0, end_seq_1) &&
1071		    !before(start_seq_0, start_seq_1)) {
1072			dup_sack = true;
1073			tcp_dsack_seen(tp);
1074			NET_INC_STATS_BH(sock_net(sk),
1075					LINUX_MIB_TCPDSACKOFORECV);
1076		}
1077	}
1078
1079	/* D-SACK for already forgotten data... Do dumb counting. */
1080	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1081	    !after(end_seq_0, prior_snd_una) &&
1082	    after(end_seq_0, tp->undo_marker))
1083		tp->undo_retrans--;
1084
1085	return dup_sack;
1086}
1087
1088struct tcp_sacktag_state {
1089	int	reord;
1090	int	fack_count;
1091	/* Timestamps for earliest and latest never-retransmitted segment
1092	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093	 * but congestion control should still get an accurate delay signal.
1094	 */
1095	struct skb_mstamp first_sackt;
1096	struct skb_mstamp last_sackt;
 
1097	int	flag;
1098};
1099
1100/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101 * the incoming SACK may not exactly match but we can find smaller MSS
1102 * aligned portion of it that matches. Therefore we might need to fragment
1103 * which may fail and creates some hassle (caller must handle error case
1104 * returns).
1105 *
1106 * FIXME: this could be merged to shift decision code
1107 */
1108static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1109				  u32 start_seq, u32 end_seq)
1110{
1111	int err;
1112	bool in_sack;
1113	unsigned int pkt_len;
1114	unsigned int mss;
1115
1116	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1117		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1118
1119	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1120	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1121		mss = tcp_skb_mss(skb);
1122		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1123
1124		if (!in_sack) {
1125			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1126			if (pkt_len < mss)
1127				pkt_len = mss;
1128		} else {
1129			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1130			if (pkt_len < mss)
1131				return -EINVAL;
1132		}
1133
1134		/* Round if necessary so that SACKs cover only full MSSes
1135		 * and/or the remaining small portion (if present)
1136		 */
1137		if (pkt_len > mss) {
1138			unsigned int new_len = (pkt_len / mss) * mss;
1139			if (!in_sack && new_len < pkt_len) {
1140				new_len += mss;
1141				if (new_len >= skb->len)
1142					return 0;
1143			}
1144			pkt_len = new_len;
1145		}
1146		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1147		if (err < 0)
1148			return err;
1149	}
1150
1151	return in_sack;
1152}
1153
1154/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155static u8 tcp_sacktag_one(struct sock *sk,
1156			  struct tcp_sacktag_state *state, u8 sacked,
1157			  u32 start_seq, u32 end_seq,
1158			  int dup_sack, int pcount,
1159			  const struct skb_mstamp *xmit_time)
1160{
1161	struct tcp_sock *tp = tcp_sk(sk);
1162	int fack_count = state->fack_count;
1163
1164	/* Account D-SACK for retransmitted packet. */
1165	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1166		if (tp->undo_marker && tp->undo_retrans > 0 &&
1167		    after(end_seq, tp->undo_marker))
1168			tp->undo_retrans--;
1169		if (sacked & TCPCB_SACKED_ACKED)
1170			state->reord = min(fack_count, state->reord);
1171	}
1172
1173	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1174	if (!after(end_seq, tp->snd_una))
1175		return sacked;
1176
1177	if (!(sacked & TCPCB_SACKED_ACKED)) {
1178		tcp_rack_advance(tp, xmit_time, sacked);
1179
1180		if (sacked & TCPCB_SACKED_RETRANS) {
1181			/* If the segment is not tagged as lost,
1182			 * we do not clear RETRANS, believing
1183			 * that retransmission is still in flight.
1184			 */
1185			if (sacked & TCPCB_LOST) {
1186				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1187				tp->lost_out -= pcount;
1188				tp->retrans_out -= pcount;
1189			}
1190		} else {
1191			if (!(sacked & TCPCB_RETRANS)) {
1192				/* New sack for not retransmitted frame,
1193				 * which was in hole. It is reordering.
1194				 */
1195				if (before(start_seq,
1196					   tcp_highest_sack_seq(tp)))
1197					state->reord = min(fack_count,
1198							   state->reord);
1199				if (!after(end_seq, tp->high_seq))
1200					state->flag |= FLAG_ORIG_SACK_ACKED;
1201				if (state->first_sackt.v64 == 0)
1202					state->first_sackt = *xmit_time;
1203				state->last_sackt = *xmit_time;
1204			}
1205
1206			if (sacked & TCPCB_LOST) {
1207				sacked &= ~TCPCB_LOST;
1208				tp->lost_out -= pcount;
1209			}
1210		}
1211
1212		sacked |= TCPCB_SACKED_ACKED;
1213		state->flag |= FLAG_DATA_SACKED;
1214		tp->sacked_out += pcount;
1215		tp->delivered += pcount;  /* Out-of-order packets delivered */
1216
1217		fack_count += pcount;
1218
1219		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1220		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1221		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1222			tp->lost_cnt_hint += pcount;
1223
1224		if (fack_count > tp->fackets_out)
1225			tp->fackets_out = fack_count;
1226	}
1227
1228	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1229	 * frames and clear it. undo_retrans is decreased above, L|R frames
1230	 * are accounted above as well.
1231	 */
1232	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1233		sacked &= ~TCPCB_SACKED_RETRANS;
1234		tp->retrans_out -= pcount;
1235	}
1236
1237	return sacked;
1238}
1239
1240/* Shift newly-SACKed bytes from this skb to the immediately previous
1241 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1242 */
1243static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1244			    struct tcp_sacktag_state *state,
1245			    unsigned int pcount, int shifted, int mss,
1246			    bool dup_sack)
1247{
1248	struct tcp_sock *tp = tcp_sk(sk);
1249	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1250	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1251	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1252
1253	BUG_ON(!pcount);
1254
1255	/* Adjust counters and hints for the newly sacked sequence
1256	 * range but discard the return value since prev is already
1257	 * marked. We must tag the range first because the seq
1258	 * advancement below implicitly advances
1259	 * tcp_highest_sack_seq() when skb is highest_sack.
1260	 */
1261	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1262			start_seq, end_seq, dup_sack, pcount,
1263			&skb->skb_mstamp);
 
1264
1265	if (skb == tp->lost_skb_hint)
1266		tp->lost_cnt_hint += pcount;
1267
1268	TCP_SKB_CB(prev)->end_seq += shifted;
1269	TCP_SKB_CB(skb)->seq += shifted;
1270
1271	tcp_skb_pcount_add(prev, pcount);
1272	BUG_ON(tcp_skb_pcount(skb) < pcount);
1273	tcp_skb_pcount_add(skb, -pcount);
1274
1275	/* When we're adding to gso_segs == 1, gso_size will be zero,
1276	 * in theory this shouldn't be necessary but as long as DSACK
1277	 * code can come after this skb later on it's better to keep
1278	 * setting gso_size to something.
1279	 */
1280	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1281		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1282
1283	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1284	if (tcp_skb_pcount(skb) <= 1)
1285		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1286
1287	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1289
1290	if (skb->len > 0) {
1291		BUG_ON(!tcp_skb_pcount(skb));
1292		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1293		return false;
1294	}
1295
1296	/* Whole SKB was eaten :-) */
1297
1298	if (skb == tp->retransmit_skb_hint)
1299		tp->retransmit_skb_hint = prev;
1300	if (skb == tp->lost_skb_hint) {
1301		tp->lost_skb_hint = prev;
1302		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1303	}
1304
1305	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
 
1306	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1307		TCP_SKB_CB(prev)->end_seq++;
1308
1309	if (skb == tcp_highest_sack(sk))
1310		tcp_advance_highest_sack(sk, skb);
1311
1312	tcp_skb_collapse_tstamp(prev, skb);
 
 
 
1313	tcp_unlink_write_queue(skb, sk);
1314	sk_wmem_free_skb(sk, skb);
1315
1316	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1317
1318	return true;
1319}
1320
1321/* I wish gso_size would have a bit more sane initialization than
1322 * something-or-zero which complicates things
1323 */
1324static int tcp_skb_seglen(const struct sk_buff *skb)
1325{
1326	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1327}
1328
1329/* Shifting pages past head area doesn't work */
1330static int skb_can_shift(const struct sk_buff *skb)
1331{
1332	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1333}
1334
1335/* Try collapsing SACK blocks spanning across multiple skbs to a single
1336 * skb.
1337 */
1338static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1339					  struct tcp_sacktag_state *state,
1340					  u32 start_seq, u32 end_seq,
1341					  bool dup_sack)
1342{
1343	struct tcp_sock *tp = tcp_sk(sk);
1344	struct sk_buff *prev;
1345	int mss;
1346	int pcount = 0;
1347	int len;
1348	int in_sack;
1349
1350	if (!sk_can_gso(sk))
1351		goto fallback;
1352
1353	/* Normally R but no L won't result in plain S */
1354	if (!dup_sack &&
1355	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1356		goto fallback;
1357	if (!skb_can_shift(skb))
1358		goto fallback;
1359	/* This frame is about to be dropped (was ACKed). */
1360	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1361		goto fallback;
1362
1363	/* Can only happen with delayed DSACK + discard craziness */
1364	if (unlikely(skb == tcp_write_queue_head(sk)))
1365		goto fallback;
1366	prev = tcp_write_queue_prev(sk, skb);
1367
1368	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1369		goto fallback;
1370
 
 
 
1371	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1372		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1373
1374	if (in_sack) {
1375		len = skb->len;
1376		pcount = tcp_skb_pcount(skb);
1377		mss = tcp_skb_seglen(skb);
1378
1379		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1380		 * drop this restriction as unnecessary
1381		 */
1382		if (mss != tcp_skb_seglen(prev))
1383			goto fallback;
1384	} else {
1385		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1386			goto noop;
1387		/* CHECKME: This is non-MSS split case only?, this will
1388		 * cause skipped skbs due to advancing loop btw, original
1389		 * has that feature too
1390		 */
1391		if (tcp_skb_pcount(skb) <= 1)
1392			goto noop;
1393
1394		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1395		if (!in_sack) {
1396			/* TODO: head merge to next could be attempted here
1397			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1398			 * though it might not be worth of the additional hassle
1399			 *
1400			 * ...we can probably just fallback to what was done
1401			 * previously. We could try merging non-SACKed ones
1402			 * as well but it probably isn't going to buy off
1403			 * because later SACKs might again split them, and
1404			 * it would make skb timestamp tracking considerably
1405			 * harder problem.
1406			 */
1407			goto fallback;
1408		}
1409
1410		len = end_seq - TCP_SKB_CB(skb)->seq;
1411		BUG_ON(len < 0);
1412		BUG_ON(len > skb->len);
1413
1414		/* MSS boundaries should be honoured or else pcount will
1415		 * severely break even though it makes things bit trickier.
1416		 * Optimize common case to avoid most of the divides
1417		 */
1418		mss = tcp_skb_mss(skb);
1419
1420		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1421		 * drop this restriction as unnecessary
1422		 */
1423		if (mss != tcp_skb_seglen(prev))
1424			goto fallback;
1425
1426		if (len == mss) {
1427			pcount = 1;
1428		} else if (len < mss) {
1429			goto noop;
1430		} else {
1431			pcount = len / mss;
1432			len = pcount * mss;
1433		}
1434	}
1435
1436	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1437	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1438		goto fallback;
1439
1440	if (!skb_shift(prev, skb, len))
1441		goto fallback;
1442	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1443		goto out;
1444
1445	/* Hole filled allows collapsing with the next as well, this is very
1446	 * useful when hole on every nth skb pattern happens
1447	 */
1448	if (prev == tcp_write_queue_tail(sk))
1449		goto out;
1450	skb = tcp_write_queue_next(sk, prev);
1451
1452	if (!skb_can_shift(skb) ||
1453	    (skb == tcp_send_head(sk)) ||
1454	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1455	    (mss != tcp_skb_seglen(skb)))
1456		goto out;
1457
1458	len = skb->len;
1459	if (skb_shift(prev, skb, len)) {
1460		pcount += tcp_skb_pcount(skb);
1461		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1462	}
1463
1464out:
1465	state->fack_count += pcount;
1466	return prev;
1467
1468noop:
1469	return skb;
1470
1471fallback:
1472	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1473	return NULL;
1474}
1475
1476static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1477					struct tcp_sack_block *next_dup,
1478					struct tcp_sacktag_state *state,
1479					u32 start_seq, u32 end_seq,
1480					bool dup_sack_in)
1481{
1482	struct tcp_sock *tp = tcp_sk(sk);
1483	struct sk_buff *tmp;
1484
1485	tcp_for_write_queue_from(skb, sk) {
1486		int in_sack = 0;
1487		bool dup_sack = dup_sack_in;
1488
1489		if (skb == tcp_send_head(sk))
1490			break;
1491
1492		/* queue is in-order => we can short-circuit the walk early */
1493		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1494			break;
1495
1496		if (next_dup  &&
1497		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1498			in_sack = tcp_match_skb_to_sack(sk, skb,
1499							next_dup->start_seq,
1500							next_dup->end_seq);
1501			if (in_sack > 0)
1502				dup_sack = true;
1503		}
1504
1505		/* skb reference here is a bit tricky to get right, since
1506		 * shifting can eat and free both this skb and the next,
1507		 * so not even _safe variant of the loop is enough.
1508		 */
1509		if (in_sack <= 0) {
1510			tmp = tcp_shift_skb_data(sk, skb, state,
1511						 start_seq, end_seq, dup_sack);
1512			if (tmp) {
1513				if (tmp != skb) {
1514					skb = tmp;
1515					continue;
1516				}
1517
1518				in_sack = 0;
1519			} else {
1520				in_sack = tcp_match_skb_to_sack(sk, skb,
1521								start_seq,
1522								end_seq);
1523			}
1524		}
1525
1526		if (unlikely(in_sack < 0))
1527			break;
1528
1529		if (in_sack) {
1530			TCP_SKB_CB(skb)->sacked =
1531				tcp_sacktag_one(sk,
1532						state,
1533						TCP_SKB_CB(skb)->sacked,
1534						TCP_SKB_CB(skb)->seq,
1535						TCP_SKB_CB(skb)->end_seq,
1536						dup_sack,
1537						tcp_skb_pcount(skb),
1538						&skb->skb_mstamp);
 
1539
1540			if (!before(TCP_SKB_CB(skb)->seq,
1541				    tcp_highest_sack_seq(tp)))
1542				tcp_advance_highest_sack(sk, skb);
1543		}
1544
1545		state->fack_count += tcp_skb_pcount(skb);
1546	}
1547	return skb;
1548}
1549
1550/* Avoid all extra work that is being done by sacktag while walking in
1551 * a normal way
1552 */
1553static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1554					struct tcp_sacktag_state *state,
1555					u32 skip_to_seq)
1556{
1557	tcp_for_write_queue_from(skb, sk) {
1558		if (skb == tcp_send_head(sk))
1559			break;
1560
1561		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1562			break;
1563
1564		state->fack_count += tcp_skb_pcount(skb);
1565	}
1566	return skb;
1567}
1568
1569static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1570						struct sock *sk,
1571						struct tcp_sack_block *next_dup,
1572						struct tcp_sacktag_state *state,
1573						u32 skip_to_seq)
1574{
1575	if (!next_dup)
1576		return skb;
1577
1578	if (before(next_dup->start_seq, skip_to_seq)) {
1579		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1580		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1581				       next_dup->start_seq, next_dup->end_seq,
1582				       1);
1583	}
1584
1585	return skb;
1586}
1587
1588static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1589{
1590	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1591}
1592
1593static int
1594tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1595			u32 prior_snd_una, struct tcp_sacktag_state *state)
1596{
1597	struct tcp_sock *tp = tcp_sk(sk);
1598	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1599				    TCP_SKB_CB(ack_skb)->sacked);
1600	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1601	struct tcp_sack_block sp[TCP_NUM_SACKS];
1602	struct tcp_sack_block *cache;
1603	struct sk_buff *skb;
1604	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1605	int used_sacks;
1606	bool found_dup_sack = false;
1607	int i, j;
1608	int first_sack_index;
1609
1610	state->flag = 0;
1611	state->reord = tp->packets_out;
1612
1613	if (!tp->sacked_out) {
1614		if (WARN_ON(tp->fackets_out))
1615			tp->fackets_out = 0;
1616		tcp_highest_sack_reset(sk);
1617	}
1618
1619	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1620					 num_sacks, prior_snd_una);
1621	if (found_dup_sack)
1622		state->flag |= FLAG_DSACKING_ACK;
 
 
1623
1624	/* Eliminate too old ACKs, but take into
1625	 * account more or less fresh ones, they can
1626	 * contain valid SACK info.
1627	 */
1628	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1629		return 0;
1630
1631	if (!tp->packets_out)
1632		goto out;
1633
1634	used_sacks = 0;
1635	first_sack_index = 0;
1636	for (i = 0; i < num_sacks; i++) {
1637		bool dup_sack = !i && found_dup_sack;
1638
1639		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1640		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1641
1642		if (!tcp_is_sackblock_valid(tp, dup_sack,
1643					    sp[used_sacks].start_seq,
1644					    sp[used_sacks].end_seq)) {
1645			int mib_idx;
1646
1647			if (dup_sack) {
1648				if (!tp->undo_marker)
1649					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1650				else
1651					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1652			} else {
1653				/* Don't count olds caused by ACK reordering */
1654				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1655				    !after(sp[used_sacks].end_seq, tp->snd_una))
1656					continue;
1657				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1658			}
1659
1660			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1661			if (i == 0)
1662				first_sack_index = -1;
1663			continue;
1664		}
1665
1666		/* Ignore very old stuff early */
1667		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1668			continue;
1669
1670		used_sacks++;
1671	}
1672
1673	/* order SACK blocks to allow in order walk of the retrans queue */
1674	for (i = used_sacks - 1; i > 0; i--) {
1675		for (j = 0; j < i; j++) {
1676			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1677				swap(sp[j], sp[j + 1]);
1678
1679				/* Track where the first SACK block goes to */
1680				if (j == first_sack_index)
1681					first_sack_index = j + 1;
1682			}
1683		}
1684	}
1685
1686	skb = tcp_write_queue_head(sk);
1687	state->fack_count = 0;
1688	i = 0;
1689
1690	if (!tp->sacked_out) {
1691		/* It's already past, so skip checking against it */
1692		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1693	} else {
1694		cache = tp->recv_sack_cache;
1695		/* Skip empty blocks in at head of the cache */
1696		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1697		       !cache->end_seq)
1698			cache++;
1699	}
1700
1701	while (i < used_sacks) {
1702		u32 start_seq = sp[i].start_seq;
1703		u32 end_seq = sp[i].end_seq;
1704		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1705		struct tcp_sack_block *next_dup = NULL;
1706
1707		if (found_dup_sack && ((i + 1) == first_sack_index))
1708			next_dup = &sp[i + 1];
1709
1710		/* Skip too early cached blocks */
1711		while (tcp_sack_cache_ok(tp, cache) &&
1712		       !before(start_seq, cache->end_seq))
1713			cache++;
1714
1715		/* Can skip some work by looking recv_sack_cache? */
1716		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1717		    after(end_seq, cache->start_seq)) {
1718
1719			/* Head todo? */
1720			if (before(start_seq, cache->start_seq)) {
1721				skb = tcp_sacktag_skip(skb, sk, state,
1722						       start_seq);
1723				skb = tcp_sacktag_walk(skb, sk, next_dup,
1724						       state,
1725						       start_seq,
1726						       cache->start_seq,
1727						       dup_sack);
1728			}
1729
1730			/* Rest of the block already fully processed? */
1731			if (!after(end_seq, cache->end_seq))
1732				goto advance_sp;
1733
1734			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1735						       state,
1736						       cache->end_seq);
1737
1738			/* ...tail remains todo... */
1739			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1740				/* ...but better entrypoint exists! */
1741				skb = tcp_highest_sack(sk);
1742				if (!skb)
1743					break;
1744				state->fack_count = tp->fackets_out;
1745				cache++;
1746				goto walk;
1747			}
1748
1749			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1750			/* Check overlap against next cached too (past this one already) */
1751			cache++;
1752			continue;
1753		}
1754
1755		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1756			skb = tcp_highest_sack(sk);
1757			if (!skb)
1758				break;
1759			state->fack_count = tp->fackets_out;
1760		}
1761		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1762
1763walk:
1764		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1765				       start_seq, end_seq, dup_sack);
1766
1767advance_sp:
1768		i++;
1769	}
1770
1771	/* Clear the head of the cache sack blocks so we can skip it next time */
1772	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1773		tp->recv_sack_cache[i].start_seq = 0;
1774		tp->recv_sack_cache[i].end_seq = 0;
1775	}
1776	for (j = 0; j < used_sacks; j++)
1777		tp->recv_sack_cache[i++] = sp[j];
1778
1779	if ((state->reord < tp->fackets_out) &&
1780	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1781		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1782
1783	tcp_verify_left_out(tp);
1784out:
1785
1786#if FASTRETRANS_DEBUG > 0
1787	WARN_ON((int)tp->sacked_out < 0);
1788	WARN_ON((int)tp->lost_out < 0);
1789	WARN_ON((int)tp->retrans_out < 0);
1790	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1791#endif
1792	return state->flag;
1793}
1794
1795/* Limits sacked_out so that sum with lost_out isn't ever larger than
1796 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1797 */
1798static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1799{
1800	u32 holes;
1801
1802	holes = max(tp->lost_out, 1U);
1803	holes = min(holes, tp->packets_out);
1804
1805	if ((tp->sacked_out + holes) > tp->packets_out) {
1806		tp->sacked_out = tp->packets_out - holes;
1807		return true;
1808	}
1809	return false;
1810}
1811
1812/* If we receive more dupacks than we expected counting segments
1813 * in assumption of absent reordering, interpret this as reordering.
1814 * The only another reason could be bug in receiver TCP.
1815 */
1816static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1817{
1818	struct tcp_sock *tp = tcp_sk(sk);
1819	if (tcp_limit_reno_sacked(tp))
1820		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1821}
1822
1823/* Emulate SACKs for SACKless connection: account for a new dupack. */
1824
1825static void tcp_add_reno_sack(struct sock *sk)
1826{
1827	struct tcp_sock *tp = tcp_sk(sk);
1828	u32 prior_sacked = tp->sacked_out;
1829
1830	tp->sacked_out++;
1831	tcp_check_reno_reordering(sk, 0);
1832	if (tp->sacked_out > prior_sacked)
1833		tp->delivered++; /* Some out-of-order packet is delivered */
1834	tcp_verify_left_out(tp);
1835}
1836
1837/* Account for ACK, ACKing some data in Reno Recovery phase. */
1838
1839static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1840{
1841	struct tcp_sock *tp = tcp_sk(sk);
1842
1843	if (acked > 0) {
1844		/* One ACK acked hole. The rest eat duplicate ACKs. */
1845		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1846		if (acked - 1 >= tp->sacked_out)
1847			tp->sacked_out = 0;
1848		else
1849			tp->sacked_out -= acked - 1;
1850	}
1851	tcp_check_reno_reordering(sk, acked);
1852	tcp_verify_left_out(tp);
1853}
1854
1855static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1856{
1857	tp->sacked_out = 0;
1858}
1859
1860void tcp_clear_retrans(struct tcp_sock *tp)
1861{
1862	tp->retrans_out = 0;
1863	tp->lost_out = 0;
1864	tp->undo_marker = 0;
1865	tp->undo_retrans = -1;
1866	tp->fackets_out = 0;
1867	tp->sacked_out = 0;
1868}
1869
1870static inline void tcp_init_undo(struct tcp_sock *tp)
1871{
1872	tp->undo_marker = tp->snd_una;
1873	/* Retransmission still in flight may cause DSACKs later. */
1874	tp->undo_retrans = tp->retrans_out ? : -1;
1875}
1876
1877/* Enter Loss state. If we detect SACK reneging, forget all SACK information
1878 * and reset tags completely, otherwise preserve SACKs. If receiver
1879 * dropped its ofo queue, we will know this due to reneging detection.
1880 */
1881void tcp_enter_loss(struct sock *sk)
1882{
1883	const struct inet_connection_sock *icsk = inet_csk(sk);
1884	struct tcp_sock *tp = tcp_sk(sk);
1885	struct net *net = sock_net(sk);
1886	struct sk_buff *skb;
1887	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1888	bool is_reneg;			/* is receiver reneging on SACKs? */
 
1889
1890	/* Reduce ssthresh if it has not yet been made inside this window. */
1891	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1892	    !after(tp->high_seq, tp->snd_una) ||
1893	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1894		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1895		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1896		tcp_ca_event(sk, CA_EVENT_LOSS);
1897		tcp_init_undo(tp);
1898	}
1899	tp->snd_cwnd	   = 1;
1900	tp->snd_cwnd_cnt   = 0;
1901	tp->snd_cwnd_stamp = tcp_time_stamp;
1902
1903	tp->retrans_out = 0;
1904	tp->lost_out = 0;
1905
1906	if (tcp_is_reno(tp))
1907		tcp_reset_reno_sack(tp);
1908
1909	skb = tcp_write_queue_head(sk);
1910	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1911	if (is_reneg) {
1912		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1913		tp->sacked_out = 0;
1914		tp->fackets_out = 0;
1915	}
1916	tcp_clear_all_retrans_hints(tp);
1917
1918	tcp_for_write_queue(skb, sk) {
1919		if (skb == tcp_send_head(sk))
1920			break;
1921
 
 
 
 
1922		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1923		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1924			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1925			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1926			tp->lost_out += tcp_skb_pcount(skb);
1927			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1928		}
1929	}
1930	tcp_verify_left_out(tp);
1931
1932	/* Timeout in disordered state after receiving substantial DUPACKs
1933	 * suggests that the degree of reordering is over-estimated.
1934	 */
1935	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1936	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1937		tp->reordering = min_t(unsigned int, tp->reordering,
1938				       net->ipv4.sysctl_tcp_reordering);
1939	tcp_set_ca_state(sk, TCP_CA_Loss);
1940	tp->high_seq = tp->snd_nxt;
1941	tcp_ecn_queue_cwr(tp);
1942
1943	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1944	 * loss recovery is underway except recurring timeout(s) on
1945	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1946	 */
1947	tp->frto = sysctl_tcp_frto &&
1948		   (new_recovery || icsk->icsk_retransmits) &&
1949		   !inet_csk(sk)->icsk_mtup.probe_size;
1950}
1951
1952/* If ACK arrived pointing to a remembered SACK, it means that our
1953 * remembered SACKs do not reflect real state of receiver i.e.
1954 * receiver _host_ is heavily congested (or buggy).
1955 *
1956 * To avoid big spurious retransmission bursts due to transient SACK
1957 * scoreboard oddities that look like reneging, we give the receiver a
1958 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1959 * restore sanity to the SACK scoreboard. If the apparent reneging
1960 * persists until this RTO then we'll clear the SACK scoreboard.
1961 */
1962static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1963{
1964	if (flag & FLAG_SACK_RENEGING) {
1965		struct tcp_sock *tp = tcp_sk(sk);
1966		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1967					  msecs_to_jiffies(10));
1968
1969		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1970					  delay, TCP_RTO_MAX);
1971		return true;
1972	}
1973	return false;
1974}
1975
1976static inline int tcp_fackets_out(const struct tcp_sock *tp)
1977{
1978	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1979}
1980
1981/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1982 * counter when SACK is enabled (without SACK, sacked_out is used for
1983 * that purpose).
1984 *
1985 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1986 * segments up to the highest received SACK block so far and holes in
1987 * between them.
1988 *
1989 * With reordering, holes may still be in flight, so RFC3517 recovery
1990 * uses pure sacked_out (total number of SACKed segments) even though
1991 * it violates the RFC that uses duplicate ACKs, often these are equal
1992 * but when e.g. out-of-window ACKs or packet duplication occurs,
1993 * they differ. Since neither occurs due to loss, TCP should really
1994 * ignore them.
1995 */
1996static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1997{
1998	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1999}
2000
2001static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2002{
2003	struct tcp_sock *tp = tcp_sk(sk);
2004	unsigned long delay;
2005
2006	/* Delay early retransmit and entering fast recovery for
2007	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2008	 * available, or RTO is scheduled to fire first.
2009	 */
2010	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2011	    (flag & FLAG_ECE) || !tp->srtt_us)
2012		return false;
2013
2014	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2015		    msecs_to_jiffies(2));
2016
2017	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2018		return false;
2019
2020	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2021				  TCP_RTO_MAX);
2022	return true;
2023}
2024
2025/* Linux NewReno/SACK/FACK/ECN state machine.
2026 * --------------------------------------
2027 *
2028 * "Open"	Normal state, no dubious events, fast path.
2029 * "Disorder"   In all the respects it is "Open",
2030 *		but requires a bit more attention. It is entered when
2031 *		we see some SACKs or dupacks. It is split of "Open"
2032 *		mainly to move some processing from fast path to slow one.
2033 * "CWR"	CWND was reduced due to some Congestion Notification event.
2034 *		It can be ECN, ICMP source quench, local device congestion.
2035 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2036 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2037 *
2038 * tcp_fastretrans_alert() is entered:
2039 * - each incoming ACK, if state is not "Open"
2040 * - when arrived ACK is unusual, namely:
2041 *	* SACK
2042 *	* Duplicate ACK.
2043 *	* ECN ECE.
2044 *
2045 * Counting packets in flight is pretty simple.
2046 *
2047 *	in_flight = packets_out - left_out + retrans_out
2048 *
2049 *	packets_out is SND.NXT-SND.UNA counted in packets.
2050 *
2051 *	retrans_out is number of retransmitted segments.
2052 *
2053 *	left_out is number of segments left network, but not ACKed yet.
2054 *
2055 *		left_out = sacked_out + lost_out
2056 *
2057 *     sacked_out: Packets, which arrived to receiver out of order
2058 *		   and hence not ACKed. With SACKs this number is simply
2059 *		   amount of SACKed data. Even without SACKs
2060 *		   it is easy to give pretty reliable estimate of this number,
2061 *		   counting duplicate ACKs.
2062 *
2063 *       lost_out: Packets lost by network. TCP has no explicit
2064 *		   "loss notification" feedback from network (for now).
2065 *		   It means that this number can be only _guessed_.
2066 *		   Actually, it is the heuristics to predict lossage that
2067 *		   distinguishes different algorithms.
2068 *
2069 *	F.e. after RTO, when all the queue is considered as lost,
2070 *	lost_out = packets_out and in_flight = retrans_out.
2071 *
2072 *		Essentially, we have now two algorithms counting
2073 *		lost packets.
2074 *
2075 *		FACK: It is the simplest heuristics. As soon as we decided
2076 *		that something is lost, we decide that _all_ not SACKed
2077 *		packets until the most forward SACK are lost. I.e.
2078 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2079 *		It is absolutely correct estimate, if network does not reorder
2080 *		packets. And it loses any connection to reality when reordering
2081 *		takes place. We use FACK by default until reordering
2082 *		is suspected on the path to this destination.
2083 *
2084 *		NewReno: when Recovery is entered, we assume that one segment
2085 *		is lost (classic Reno). While we are in Recovery and
2086 *		a partial ACK arrives, we assume that one more packet
2087 *		is lost (NewReno). This heuristics are the same in NewReno
2088 *		and SACK.
2089 *
2090 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2091 *  deflation etc. CWND is real congestion window, never inflated, changes
2092 *  only according to classic VJ rules.
2093 *
2094 * Really tricky (and requiring careful tuning) part of algorithm
2095 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2096 * The first determines the moment _when_ we should reduce CWND and,
2097 * hence, slow down forward transmission. In fact, it determines the moment
2098 * when we decide that hole is caused by loss, rather than by a reorder.
2099 *
2100 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2101 * holes, caused by lost packets.
2102 *
2103 * And the most logically complicated part of algorithm is undo
2104 * heuristics. We detect false retransmits due to both too early
2105 * fast retransmit (reordering) and underestimated RTO, analyzing
2106 * timestamps and D-SACKs. When we detect that some segments were
2107 * retransmitted by mistake and CWND reduction was wrong, we undo
2108 * window reduction and abort recovery phase. This logic is hidden
2109 * inside several functions named tcp_try_undo_<something>.
2110 */
2111
2112/* This function decides, when we should leave Disordered state
2113 * and enter Recovery phase, reducing congestion window.
2114 *
2115 * Main question: may we further continue forward transmission
2116 * with the same cwnd?
2117 */
2118static bool tcp_time_to_recover(struct sock *sk, int flag)
2119{
2120	struct tcp_sock *tp = tcp_sk(sk);
2121	__u32 packets_out;
2122	int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2123
2124	/* Trick#1: The loss is proven. */
2125	if (tp->lost_out)
2126		return true;
2127
2128	/* Not-A-Trick#2 : Classic rule... */
2129	if (tcp_dupack_heuristics(tp) > tp->reordering)
2130		return true;
2131
2132	/* Trick#4: It is still not OK... But will it be useful to delay
2133	 * recovery more?
2134	 */
2135	packets_out = tp->packets_out;
2136	if (packets_out <= tp->reordering &&
2137	    tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2138	    !tcp_may_send_now(sk)) {
2139		/* We have nothing to send. This connection is limited
2140		 * either by receiver window or by application.
2141		 */
2142		return true;
2143	}
2144
2145	/* If a thin stream is detected, retransmit after first
2146	 * received dupack. Employ only if SACK is supported in order
2147	 * to avoid possible corner-case series of spurious retransmissions
2148	 * Use only if there are no unsent data.
2149	 */
2150	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2151	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2152	    tcp_is_sack(tp) && !tcp_send_head(sk))
2153		return true;
2154
2155	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2156	 * retransmissions due to small network reorderings, we implement
2157	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2158	 * interval if appropriate.
2159	 */
2160	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2161	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2162	    !tcp_may_send_now(sk))
2163		return !tcp_pause_early_retransmit(sk, flag);
2164
2165	return false;
2166}
2167
2168/* Detect loss in event "A" above by marking head of queue up as lost.
2169 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2170 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2171 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2172 * the maximum SACKed segments to pass before reaching this limit.
2173 */
2174static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2175{
2176	struct tcp_sock *tp = tcp_sk(sk);
2177	struct sk_buff *skb;
2178	int cnt, oldcnt, lost;
2179	unsigned int mss;
2180	/* Use SACK to deduce losses of new sequences sent during recovery */
2181	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2182
2183	WARN_ON(packets > tp->packets_out);
2184	if (tp->lost_skb_hint) {
2185		skb = tp->lost_skb_hint;
2186		cnt = tp->lost_cnt_hint;
2187		/* Head already handled? */
2188		if (mark_head && skb != tcp_write_queue_head(sk))
2189			return;
2190	} else {
2191		skb = tcp_write_queue_head(sk);
2192		cnt = 0;
2193	}
2194
2195	tcp_for_write_queue_from(skb, sk) {
2196		if (skb == tcp_send_head(sk))
2197			break;
2198		/* TODO: do this better */
2199		/* this is not the most efficient way to do this... */
2200		tp->lost_skb_hint = skb;
2201		tp->lost_cnt_hint = cnt;
2202
2203		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2204			break;
2205
2206		oldcnt = cnt;
2207		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2208		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2209			cnt += tcp_skb_pcount(skb);
2210
2211		if (cnt > packets) {
2212			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2213			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2214			    (oldcnt >= packets))
2215				break;
2216
2217			mss = tcp_skb_mss(skb);
2218			/* If needed, chop off the prefix to mark as lost. */
2219			lost = (packets - oldcnt) * mss;
2220			if (lost < skb->len &&
2221			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2222				break;
2223			cnt = packets;
2224		}
2225
2226		tcp_skb_mark_lost(tp, skb);
2227
2228		if (mark_head)
2229			break;
2230	}
2231	tcp_verify_left_out(tp);
2232}
2233
2234/* Account newly detected lost packet(s) */
2235
2236static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2237{
2238	struct tcp_sock *tp = tcp_sk(sk);
2239
2240	if (tcp_is_reno(tp)) {
2241		tcp_mark_head_lost(sk, 1, 1);
2242	} else if (tcp_is_fack(tp)) {
2243		int lost = tp->fackets_out - tp->reordering;
2244		if (lost <= 0)
2245			lost = 1;
2246		tcp_mark_head_lost(sk, lost, 0);
2247	} else {
2248		int sacked_upto = tp->sacked_out - tp->reordering;
2249		if (sacked_upto >= 0)
2250			tcp_mark_head_lost(sk, sacked_upto, 0);
2251		else if (fast_rexmit)
2252			tcp_mark_head_lost(sk, 1, 1);
2253	}
2254}
2255
2256/* CWND moderation, preventing bursts due to too big ACKs
2257 * in dubious situations.
2258 */
2259static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2260{
2261	tp->snd_cwnd = min(tp->snd_cwnd,
2262			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2263	tp->snd_cwnd_stamp = tcp_time_stamp;
2264}
2265
2266static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2267{
2268	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2269	       before(tp->rx_opt.rcv_tsecr, when);
2270}
2271
2272/* skb is spurious retransmitted if the returned timestamp echo
2273 * reply is prior to the skb transmission time
2274 */
2275static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2276				     const struct sk_buff *skb)
2277{
2278	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2279	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2280}
2281
2282/* Nothing was retransmitted or returned timestamp is less
2283 * than timestamp of the first retransmission.
2284 */
2285static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2286{
2287	return !tp->retrans_stamp ||
2288	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2289}
2290
2291/* Undo procedures. */
2292
2293/* We can clear retrans_stamp when there are no retransmissions in the
2294 * window. It would seem that it is trivially available for us in
2295 * tp->retrans_out, however, that kind of assumptions doesn't consider
2296 * what will happen if errors occur when sending retransmission for the
2297 * second time. ...It could the that such segment has only
2298 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2299 * the head skb is enough except for some reneging corner cases that
2300 * are not worth the effort.
2301 *
2302 * Main reason for all this complexity is the fact that connection dying
2303 * time now depends on the validity of the retrans_stamp, in particular,
2304 * that successive retransmissions of a segment must not advance
2305 * retrans_stamp under any conditions.
2306 */
2307static bool tcp_any_retrans_done(const struct sock *sk)
2308{
2309	const struct tcp_sock *tp = tcp_sk(sk);
2310	struct sk_buff *skb;
2311
2312	if (tp->retrans_out)
2313		return true;
2314
2315	skb = tcp_write_queue_head(sk);
2316	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2317		return true;
2318
2319	return false;
2320}
2321
2322#if FASTRETRANS_DEBUG > 1
2323static void DBGUNDO(struct sock *sk, const char *msg)
2324{
2325	struct tcp_sock *tp = tcp_sk(sk);
2326	struct inet_sock *inet = inet_sk(sk);
2327
2328	if (sk->sk_family == AF_INET) {
2329		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2330			 msg,
2331			 &inet->inet_daddr, ntohs(inet->inet_dport),
2332			 tp->snd_cwnd, tcp_left_out(tp),
2333			 tp->snd_ssthresh, tp->prior_ssthresh,
2334			 tp->packets_out);
2335	}
2336#if IS_ENABLED(CONFIG_IPV6)
2337	else if (sk->sk_family == AF_INET6) {
2338		struct ipv6_pinfo *np = inet6_sk(sk);
2339		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2340			 msg,
2341			 &np->daddr, ntohs(inet->inet_dport),
2342			 tp->snd_cwnd, tcp_left_out(tp),
2343			 tp->snd_ssthresh, tp->prior_ssthresh,
2344			 tp->packets_out);
2345	}
2346#endif
2347}
2348#else
2349#define DBGUNDO(x...) do { } while (0)
2350#endif
2351
2352static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2353{
2354	struct tcp_sock *tp = tcp_sk(sk);
2355
2356	if (unmark_loss) {
2357		struct sk_buff *skb;
2358
2359		tcp_for_write_queue(skb, sk) {
2360			if (skb == tcp_send_head(sk))
2361				break;
2362			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2363		}
2364		tp->lost_out = 0;
2365		tcp_clear_all_retrans_hints(tp);
2366	}
2367
2368	if (tp->prior_ssthresh) {
2369		const struct inet_connection_sock *icsk = inet_csk(sk);
2370
2371		if (icsk->icsk_ca_ops->undo_cwnd)
2372			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2373		else
2374			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2375
2376		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2377			tp->snd_ssthresh = tp->prior_ssthresh;
2378			tcp_ecn_withdraw_cwr(tp);
2379		}
2380	}
2381	tp->snd_cwnd_stamp = tcp_time_stamp;
2382	tp->undo_marker = 0;
2383}
2384
2385static inline bool tcp_may_undo(const struct tcp_sock *tp)
2386{
2387	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2388}
2389
2390/* People celebrate: "We love our President!" */
2391static bool tcp_try_undo_recovery(struct sock *sk)
2392{
2393	struct tcp_sock *tp = tcp_sk(sk);
2394
2395	if (tcp_may_undo(tp)) {
2396		int mib_idx;
2397
2398		/* Happy end! We did not retransmit anything
2399		 * or our original transmission succeeded.
2400		 */
2401		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2402		tcp_undo_cwnd_reduction(sk, false);
2403		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2404			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2405		else
2406			mib_idx = LINUX_MIB_TCPFULLUNDO;
2407
2408		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2409	}
2410	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2411		/* Hold old state until something *above* high_seq
2412		 * is ACKed. For Reno it is MUST to prevent false
2413		 * fast retransmits (RFC2582). SACK TCP is safe. */
2414		tcp_moderate_cwnd(tp);
2415		if (!tcp_any_retrans_done(sk))
2416			tp->retrans_stamp = 0;
2417		return true;
2418	}
2419	tcp_set_ca_state(sk, TCP_CA_Open);
2420	return false;
2421}
2422
2423/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2424static bool tcp_try_undo_dsack(struct sock *sk)
2425{
2426	struct tcp_sock *tp = tcp_sk(sk);
2427
2428	if (tp->undo_marker && !tp->undo_retrans) {
2429		DBGUNDO(sk, "D-SACK");
2430		tcp_undo_cwnd_reduction(sk, false);
2431		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2432		return true;
2433	}
2434	return false;
2435}
2436
2437/* Undo during loss recovery after partial ACK or using F-RTO. */
2438static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2439{
2440	struct tcp_sock *tp = tcp_sk(sk);
2441
2442	if (frto_undo || tcp_may_undo(tp)) {
2443		tcp_undo_cwnd_reduction(sk, true);
2444
2445		DBGUNDO(sk, "partial loss");
2446		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2447		if (frto_undo)
2448			NET_INC_STATS_BH(sock_net(sk),
2449					 LINUX_MIB_TCPSPURIOUSRTOS);
2450		inet_csk(sk)->icsk_retransmits = 0;
2451		if (frto_undo || tcp_is_sack(tp))
2452			tcp_set_ca_state(sk, TCP_CA_Open);
2453		return true;
2454	}
2455	return false;
2456}
2457
2458/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2459 * It computes the number of packets to send (sndcnt) based on packets newly
2460 * delivered:
2461 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2462 *	cwnd reductions across a full RTT.
2463 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2464 *      But when the retransmits are acked without further losses, PRR
2465 *      slow starts cwnd up to ssthresh to speed up the recovery.
2466 */
2467static void tcp_init_cwnd_reduction(struct sock *sk)
2468{
2469	struct tcp_sock *tp = tcp_sk(sk);
2470
2471	tp->high_seq = tp->snd_nxt;
2472	tp->tlp_high_seq = 0;
2473	tp->snd_cwnd_cnt = 0;
2474	tp->prior_cwnd = tp->snd_cwnd;
2475	tp->prr_delivered = 0;
2476	tp->prr_out = 0;
2477	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2478	tcp_ecn_queue_cwr(tp);
2479}
2480
2481static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2482			       int flag)
2483{
2484	struct tcp_sock *tp = tcp_sk(sk);
2485	int sndcnt = 0;
2486	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2487
2488	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2489		return;
2490
2491	tp->prr_delivered += newly_acked_sacked;
2492	if (delta < 0) {
2493		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2494			       tp->prior_cwnd - 1;
2495		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2496	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2497		   !(flag & FLAG_LOST_RETRANS)) {
2498		sndcnt = min_t(int, delta,
2499			       max_t(int, tp->prr_delivered - tp->prr_out,
2500				     newly_acked_sacked) + 1);
2501	} else {
2502		sndcnt = min(delta, newly_acked_sacked);
2503	}
2504	/* Force a fast retransmit upon entering fast recovery */
2505	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2506	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2507}
2508
2509static inline void tcp_end_cwnd_reduction(struct sock *sk)
2510{
2511	struct tcp_sock *tp = tcp_sk(sk);
2512
 
 
 
2513	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2514	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2515	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2516		tp->snd_cwnd = tp->snd_ssthresh;
2517		tp->snd_cwnd_stamp = tcp_time_stamp;
2518	}
2519	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2520}
2521
2522/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2523void tcp_enter_cwr(struct sock *sk)
2524{
2525	struct tcp_sock *tp = tcp_sk(sk);
2526
2527	tp->prior_ssthresh = 0;
2528	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2529		tp->undo_marker = 0;
2530		tcp_init_cwnd_reduction(sk);
2531		tcp_set_ca_state(sk, TCP_CA_CWR);
2532	}
2533}
2534EXPORT_SYMBOL(tcp_enter_cwr);
2535
2536static void tcp_try_keep_open(struct sock *sk)
2537{
2538	struct tcp_sock *tp = tcp_sk(sk);
2539	int state = TCP_CA_Open;
2540
2541	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2542		state = TCP_CA_Disorder;
2543
2544	if (inet_csk(sk)->icsk_ca_state != state) {
2545		tcp_set_ca_state(sk, state);
2546		tp->high_seq = tp->snd_nxt;
2547	}
2548}
2549
2550static void tcp_try_to_open(struct sock *sk, int flag)
2551{
2552	struct tcp_sock *tp = tcp_sk(sk);
2553
2554	tcp_verify_left_out(tp);
2555
2556	if (!tcp_any_retrans_done(sk))
2557		tp->retrans_stamp = 0;
2558
2559	if (flag & FLAG_ECE)
2560		tcp_enter_cwr(sk);
2561
2562	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2563		tcp_try_keep_open(sk);
2564	}
2565}
2566
2567static void tcp_mtup_probe_failed(struct sock *sk)
2568{
2569	struct inet_connection_sock *icsk = inet_csk(sk);
2570
2571	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2572	icsk->icsk_mtup.probe_size = 0;
2573	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2574}
2575
2576static void tcp_mtup_probe_success(struct sock *sk)
2577{
2578	struct tcp_sock *tp = tcp_sk(sk);
2579	struct inet_connection_sock *icsk = inet_csk(sk);
2580
2581	/* FIXME: breaks with very large cwnd */
2582	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2583	tp->snd_cwnd = tp->snd_cwnd *
2584		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2585		       icsk->icsk_mtup.probe_size;
2586	tp->snd_cwnd_cnt = 0;
2587	tp->snd_cwnd_stamp = tcp_time_stamp;
2588	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2589
2590	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2591	icsk->icsk_mtup.probe_size = 0;
2592	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2593	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2594}
2595
2596/* Do a simple retransmit without using the backoff mechanisms in
2597 * tcp_timer. This is used for path mtu discovery.
2598 * The socket is already locked here.
2599 */
2600void tcp_simple_retransmit(struct sock *sk)
2601{
2602	const struct inet_connection_sock *icsk = inet_csk(sk);
2603	struct tcp_sock *tp = tcp_sk(sk);
2604	struct sk_buff *skb;
2605	unsigned int mss = tcp_current_mss(sk);
2606	u32 prior_lost = tp->lost_out;
2607
2608	tcp_for_write_queue(skb, sk) {
2609		if (skb == tcp_send_head(sk))
2610			break;
2611		if (tcp_skb_seglen(skb) > mss &&
2612		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2613			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2614				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2615				tp->retrans_out -= tcp_skb_pcount(skb);
2616			}
2617			tcp_skb_mark_lost_uncond_verify(tp, skb);
2618		}
2619	}
2620
2621	tcp_clear_retrans_hints_partial(tp);
2622
2623	if (prior_lost == tp->lost_out)
2624		return;
2625
2626	if (tcp_is_reno(tp))
2627		tcp_limit_reno_sacked(tp);
2628
2629	tcp_verify_left_out(tp);
2630
2631	/* Don't muck with the congestion window here.
2632	 * Reason is that we do not increase amount of _data_
2633	 * in network, but units changed and effective
2634	 * cwnd/ssthresh really reduced now.
2635	 */
2636	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2637		tp->high_seq = tp->snd_nxt;
2638		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2639		tp->prior_ssthresh = 0;
2640		tp->undo_marker = 0;
2641		tcp_set_ca_state(sk, TCP_CA_Loss);
2642	}
2643	tcp_xmit_retransmit_queue(sk);
2644}
2645EXPORT_SYMBOL(tcp_simple_retransmit);
2646
2647static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2648{
2649	struct tcp_sock *tp = tcp_sk(sk);
2650	int mib_idx;
2651
2652	if (tcp_is_reno(tp))
2653		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2654	else
2655		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2656
2657	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2658
2659	tp->prior_ssthresh = 0;
2660	tcp_init_undo(tp);
2661
2662	if (!tcp_in_cwnd_reduction(sk)) {
2663		if (!ece_ack)
2664			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2665		tcp_init_cwnd_reduction(sk);
2666	}
2667	tcp_set_ca_state(sk, TCP_CA_Recovery);
2668}
2669
2670/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2671 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2672 */
2673static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2674			     int *rexmit)
2675{
2676	struct tcp_sock *tp = tcp_sk(sk);
2677	bool recovered = !before(tp->snd_una, tp->high_seq);
2678
2679	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2680	    tcp_try_undo_loss(sk, false))
2681		return;
2682
2683	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2684		/* Step 3.b. A timeout is spurious if not all data are
2685		 * lost, i.e., never-retransmitted data are (s)acked.
2686		 */
2687		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2688		    tcp_try_undo_loss(sk, true))
2689			return;
2690
2691		if (after(tp->snd_nxt, tp->high_seq)) {
2692			if (flag & FLAG_DATA_SACKED || is_dupack)
2693				tp->frto = 0; /* Step 3.a. loss was real */
2694		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2695			tp->high_seq = tp->snd_nxt;
2696			/* Step 2.b. Try send new data (but deferred until cwnd
2697			 * is updated in tcp_ack()). Otherwise fall back to
2698			 * the conventional recovery.
2699			 */
2700			if (tcp_send_head(sk) &&
2701			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2702				*rexmit = REXMIT_NEW;
2703				return;
2704			}
2705			tp->frto = 0;
2706		}
2707	}
2708
2709	if (recovered) {
2710		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2711		tcp_try_undo_recovery(sk);
2712		return;
2713	}
2714	if (tcp_is_reno(tp)) {
2715		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2716		 * delivered. Lower inflight to clock out (re)tranmissions.
2717		 */
2718		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2719			tcp_add_reno_sack(sk);
2720		else if (flag & FLAG_SND_UNA_ADVANCED)
2721			tcp_reset_reno_sack(tp);
2722	}
2723	*rexmit = REXMIT_LOST;
2724}
2725
2726/* Undo during fast recovery after partial ACK. */
2727static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2728{
2729	struct tcp_sock *tp = tcp_sk(sk);
2730
2731	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2732		/* Plain luck! Hole if filled with delayed
2733		 * packet, rather than with a retransmit.
2734		 */
2735		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2736
2737		/* We are getting evidence that the reordering degree is higher
2738		 * than we realized. If there are no retransmits out then we
2739		 * can undo. Otherwise we clock out new packets but do not
2740		 * mark more packets lost or retransmit more.
2741		 */
2742		if (tp->retrans_out)
2743			return true;
2744
2745		if (!tcp_any_retrans_done(sk))
2746			tp->retrans_stamp = 0;
2747
2748		DBGUNDO(sk, "partial recovery");
2749		tcp_undo_cwnd_reduction(sk, true);
2750		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2751		tcp_try_keep_open(sk);
2752		return true;
2753	}
2754	return false;
2755}
2756
2757/* Process an event, which can update packets-in-flight not trivially.
2758 * Main goal of this function is to calculate new estimate for left_out,
2759 * taking into account both packets sitting in receiver's buffer and
2760 * packets lost by network.
2761 *
2762 * Besides that it updates the congestion state when packet loss or ECN
2763 * is detected. But it does not reduce the cwnd, it is done by the
2764 * congestion control later.
2765 *
2766 * It does _not_ decide what to send, it is made in function
2767 * tcp_xmit_retransmit_queue().
2768 */
2769static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2770				  bool is_dupack, int *ack_flag, int *rexmit)
2771{
2772	struct inet_connection_sock *icsk = inet_csk(sk);
2773	struct tcp_sock *tp = tcp_sk(sk);
2774	int fast_rexmit = 0, flag = *ack_flag;
2775	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2776				    (tcp_fackets_out(tp) > tp->reordering));
2777
2778	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2779		tp->sacked_out = 0;
2780	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2781		tp->fackets_out = 0;
2782
2783	/* Now state machine starts.
2784	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2785	if (flag & FLAG_ECE)
2786		tp->prior_ssthresh = 0;
2787
2788	/* B. In all the states check for reneging SACKs. */
2789	if (tcp_check_sack_reneging(sk, flag))
2790		return;
2791
2792	/* C. Check consistency of the current state. */
2793	tcp_verify_left_out(tp);
2794
2795	/* D. Check state exit conditions. State can be terminated
2796	 *    when high_seq is ACKed. */
2797	if (icsk->icsk_ca_state == TCP_CA_Open) {
2798		WARN_ON(tp->retrans_out != 0);
2799		tp->retrans_stamp = 0;
2800	} else if (!before(tp->snd_una, tp->high_seq)) {
2801		switch (icsk->icsk_ca_state) {
2802		case TCP_CA_CWR:
2803			/* CWR is to be held something *above* high_seq
2804			 * is ACKed for CWR bit to reach receiver. */
2805			if (tp->snd_una != tp->high_seq) {
2806				tcp_end_cwnd_reduction(sk);
2807				tcp_set_ca_state(sk, TCP_CA_Open);
2808			}
2809			break;
2810
2811		case TCP_CA_Recovery:
2812			if (tcp_is_reno(tp))
2813				tcp_reset_reno_sack(tp);
2814			if (tcp_try_undo_recovery(sk))
2815				return;
2816			tcp_end_cwnd_reduction(sk);
2817			break;
2818		}
2819	}
2820
2821	/* Use RACK to detect loss */
2822	if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2823	    tcp_rack_mark_lost(sk)) {
2824		flag |= FLAG_LOST_RETRANS;
2825		*ack_flag |= FLAG_LOST_RETRANS;
2826	}
2827
2828	/* E. Process state. */
2829	switch (icsk->icsk_ca_state) {
2830	case TCP_CA_Recovery:
2831		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2832			if (tcp_is_reno(tp) && is_dupack)
2833				tcp_add_reno_sack(sk);
2834		} else {
2835			if (tcp_try_undo_partial(sk, acked))
2836				return;
2837			/* Partial ACK arrived. Force fast retransmit. */
2838			do_lost = tcp_is_reno(tp) ||
2839				  tcp_fackets_out(tp) > tp->reordering;
2840		}
2841		if (tcp_try_undo_dsack(sk)) {
2842			tcp_try_keep_open(sk);
2843			return;
2844		}
2845		break;
2846	case TCP_CA_Loss:
2847		tcp_process_loss(sk, flag, is_dupack, rexmit);
2848		if (icsk->icsk_ca_state != TCP_CA_Open &&
2849		    !(flag & FLAG_LOST_RETRANS))
2850			return;
2851		/* Change state if cwnd is undone or retransmits are lost */
2852	default:
2853		if (tcp_is_reno(tp)) {
2854			if (flag & FLAG_SND_UNA_ADVANCED)
2855				tcp_reset_reno_sack(tp);
2856			if (is_dupack)
2857				tcp_add_reno_sack(sk);
2858		}
2859
2860		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2861			tcp_try_undo_dsack(sk);
2862
2863		if (!tcp_time_to_recover(sk, flag)) {
2864			tcp_try_to_open(sk, flag);
2865			return;
2866		}
2867
2868		/* MTU probe failure: don't reduce cwnd */
2869		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2870		    icsk->icsk_mtup.probe_size &&
2871		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2872			tcp_mtup_probe_failed(sk);
2873			/* Restores the reduction we did in tcp_mtup_probe() */
2874			tp->snd_cwnd++;
2875			tcp_simple_retransmit(sk);
2876			return;
2877		}
2878
2879		/* Otherwise enter Recovery state */
2880		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2881		fast_rexmit = 1;
2882	}
2883
2884	if (do_lost)
2885		tcp_update_scoreboard(sk, fast_rexmit);
2886	*rexmit = REXMIT_LOST;
2887}
2888
2889/* Kathleen Nichols' algorithm for tracking the minimum value of
2890 * a data stream over some fixed time interval. (E.g., the minimum
2891 * RTT over the past five minutes.) It uses constant space and constant
2892 * time per update yet almost always delivers the same minimum as an
2893 * implementation that has to keep all the data in the window.
2894 *
2895 * The algorithm keeps track of the best, 2nd best & 3rd best min
2896 * values, maintaining an invariant that the measurement time of the
2897 * n'th best >= n-1'th best. It also makes sure that the three values
2898 * are widely separated in the time window since that bounds the worse
2899 * case error when that data is monotonically increasing over the window.
2900 *
2901 * Upon getting a new min, we can forget everything earlier because it
2902 * has no value - the new min is <= everything else in the window by
2903 * definition and it's the most recent. So we restart fresh on every new min
2904 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2905 * best.
2906 */
2907static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2908{
2909	const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2910	struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2911	struct rtt_meas rttm = {
2912		.rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
2913		.ts = now,
2914	};
2915	u32 elapsed;
2916
2917	/* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2918	if (unlikely(rttm.rtt <= m[0].rtt))
2919		m[0] = m[1] = m[2] = rttm;
2920	else if (rttm.rtt <= m[1].rtt)
2921		m[1] = m[2] = rttm;
2922	else if (rttm.rtt <= m[2].rtt)
2923		m[2] = rttm;
2924
2925	elapsed = now - m[0].ts;
2926	if (unlikely(elapsed > wlen)) {
2927		/* Passed entire window without a new min so make 2nd choice
2928		 * the new min & 3rd choice the new 2nd. So forth and so on.
2929		 */
2930		m[0] = m[1];
2931		m[1] = m[2];
2932		m[2] = rttm;
2933		if (now - m[0].ts > wlen) {
2934			m[0] = m[1];
2935			m[1] = rttm;
2936			if (now - m[0].ts > wlen)
2937				m[0] = rttm;
2938		}
2939	} else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2940		/* Passed a quarter of the window without a new min so
2941		 * take 2nd choice from the 2nd quarter of the window.
2942		 */
2943		m[2] = m[1] = rttm;
2944	} else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2945		/* Passed half the window without a new min so take the 3rd
2946		 * choice from the last half of the window.
2947		 */
2948		m[2] = rttm;
2949	}
2950}
2951
2952static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2953				      long seq_rtt_us, long sack_rtt_us,
2954				      long ca_rtt_us)
2955{
2956	const struct tcp_sock *tp = tcp_sk(sk);
2957
2958	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2959	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2960	 * Karn's algorithm forbids taking RTT if some retransmitted data
2961	 * is acked (RFC6298).
2962	 */
2963	if (seq_rtt_us < 0)
2964		seq_rtt_us = sack_rtt_us;
2965
2966	/* RTTM Rule: A TSecr value received in a segment is used to
2967	 * update the averaged RTT measurement only if the segment
2968	 * acknowledges some new data, i.e., only if it advances the
2969	 * left edge of the send window.
2970	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2971	 */
2972	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2973	    flag & FLAG_ACKED)
2974		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2975							  tp->rx_opt.rcv_tsecr);
2976	if (seq_rtt_us < 0)
2977		return false;
2978
2979	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2980	 * always taken together with ACK, SACK, or TS-opts. Any negative
2981	 * values will be skipped with the seq_rtt_us < 0 check above.
2982	 */
2983	tcp_update_rtt_min(sk, ca_rtt_us);
2984	tcp_rtt_estimator(sk, seq_rtt_us);
2985	tcp_set_rto(sk);
2986
2987	/* RFC6298: only reset backoff on valid RTT measurement. */
2988	inet_csk(sk)->icsk_backoff = 0;
2989	return true;
2990}
2991
2992/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2993void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2994{
2995	long rtt_us = -1L;
2996
2997	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2998		struct skb_mstamp now;
2999
3000		skb_mstamp_get(&now);
3001		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
3002	}
3003
3004	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
3005}
3006
3007
3008static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3009{
3010	const struct inet_connection_sock *icsk = inet_csk(sk);
3011
3012	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3013	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3014}
3015
3016/* Restart timer after forward progress on connection.
3017 * RFC2988 recommends to restart timer to now+rto.
3018 */
3019void tcp_rearm_rto(struct sock *sk)
3020{
3021	const struct inet_connection_sock *icsk = inet_csk(sk);
3022	struct tcp_sock *tp = tcp_sk(sk);
3023
3024	/* If the retrans timer is currently being used by Fast Open
3025	 * for SYN-ACK retrans purpose, stay put.
3026	 */
3027	if (tp->fastopen_rsk)
3028		return;
3029
3030	if (!tp->packets_out) {
3031		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3032	} else {
3033		u32 rto = inet_csk(sk)->icsk_rto;
3034		/* Offset the time elapsed after installing regular RTO */
3035		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3036		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3037			struct sk_buff *skb = tcp_write_queue_head(sk);
3038			const u32 rto_time_stamp =
3039				tcp_skb_timestamp(skb) + rto;
3040			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3041			/* delta may not be positive if the socket is locked
3042			 * when the retrans timer fires and is rescheduled.
3043			 */
3044			if (delta > 0)
3045				rto = delta;
3046		}
3047		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3048					  TCP_RTO_MAX);
3049	}
3050}
3051
3052/* This function is called when the delayed ER timer fires. TCP enters
3053 * fast recovery and performs fast-retransmit.
3054 */
3055void tcp_resume_early_retransmit(struct sock *sk)
3056{
3057	struct tcp_sock *tp = tcp_sk(sk);
3058
3059	tcp_rearm_rto(sk);
3060
3061	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3062	if (!tp->do_early_retrans)
3063		return;
3064
3065	tcp_enter_recovery(sk, false);
3066	tcp_update_scoreboard(sk, 1);
3067	tcp_xmit_retransmit_queue(sk);
3068}
3069
3070/* If we get here, the whole TSO packet has not been acked. */
3071static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3072{
3073	struct tcp_sock *tp = tcp_sk(sk);
3074	u32 packets_acked;
3075
3076	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3077
3078	packets_acked = tcp_skb_pcount(skb);
3079	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3080		return 0;
3081	packets_acked -= tcp_skb_pcount(skb);
3082
3083	if (packets_acked) {
3084		BUG_ON(tcp_skb_pcount(skb) == 0);
3085		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3086	}
3087
3088	return packets_acked;
3089}
3090
3091static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3092			   u32 prior_snd_una)
3093{
3094	const struct skb_shared_info *shinfo;
3095
3096	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3097	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3098		return;
3099
3100	shinfo = skb_shinfo(skb);
3101	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3102	    !before(shinfo->tskey, prior_snd_una) &&
3103	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3104		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3105}
3106
3107/* Remove acknowledged frames from the retransmission queue. If our packet
3108 * is before the ack sequence we can discard it as it's confirmed to have
3109 * arrived at the other end.
3110 */
3111static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3112			       u32 prior_snd_una, int *acked,
3113			       struct tcp_sacktag_state *sack)
 
3114{
3115	const struct inet_connection_sock *icsk = inet_csk(sk);
3116	struct skb_mstamp first_ackt, last_ackt, now;
3117	struct tcp_sock *tp = tcp_sk(sk);
3118	u32 prior_sacked = tp->sacked_out;
3119	u32 reord = tp->packets_out;
3120	bool fully_acked = true;
3121	long sack_rtt_us = -1L;
3122	long seq_rtt_us = -1L;
3123	long ca_rtt_us = -1L;
3124	struct sk_buff *skb;
3125	u32 pkts_acked = 0;
 
3126	bool rtt_update;
3127	int flag = 0;
3128
3129	first_ackt.v64 = 0;
3130
3131	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3132		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3133		u8 sacked = scb->sacked;
3134		u32 acked_pcount;
3135
3136		tcp_ack_tstamp(sk, skb, prior_snd_una);
3137
3138		/* Determine how many packets and what bytes were acked, tso and else */
3139		if (after(scb->end_seq, tp->snd_una)) {
3140			if (tcp_skb_pcount(skb) == 1 ||
3141			    !after(tp->snd_una, scb->seq))
3142				break;
3143
3144			acked_pcount = tcp_tso_acked(sk, skb);
3145			if (!acked_pcount)
3146				break;
3147
3148			fully_acked = false;
3149		} else {
3150			/* Speedup tcp_unlink_write_queue() and next loop */
3151			prefetchw(skb->next);
3152			acked_pcount = tcp_skb_pcount(skb);
3153		}
3154
3155		if (unlikely(sacked & TCPCB_RETRANS)) {
3156			if (sacked & TCPCB_SACKED_RETRANS)
3157				tp->retrans_out -= acked_pcount;
3158			flag |= FLAG_RETRANS_DATA_ACKED;
3159		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3160			last_ackt = skb->skb_mstamp;
3161			WARN_ON_ONCE(last_ackt.v64 == 0);
3162			if (!first_ackt.v64)
3163				first_ackt = last_ackt;
3164
 
3165			reord = min(pkts_acked, reord);
3166			if (!after(scb->end_seq, tp->high_seq))
3167				flag |= FLAG_ORIG_SACK_ACKED;
3168		}
3169
3170		if (sacked & TCPCB_SACKED_ACKED) {
3171			tp->sacked_out -= acked_pcount;
3172		} else if (tcp_is_sack(tp)) {
3173			tp->delivered += acked_pcount;
3174			if (!tcp_skb_spurious_retrans(tp, skb))
3175				tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3176		}
3177		if (sacked & TCPCB_LOST)
3178			tp->lost_out -= acked_pcount;
3179
3180		tp->packets_out -= acked_pcount;
3181		pkts_acked += acked_pcount;
 
3182
3183		/* Initial outgoing SYN's get put onto the write_queue
3184		 * just like anything else we transmit.  It is not
3185		 * true data, and if we misinform our callers that
3186		 * this ACK acks real data, we will erroneously exit
3187		 * connection startup slow start one packet too
3188		 * quickly.  This is severely frowned upon behavior.
3189		 */
3190		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3191			flag |= FLAG_DATA_ACKED;
3192		} else {
3193			flag |= FLAG_SYN_ACKED;
3194			tp->retrans_stamp = 0;
3195		}
3196
3197		if (!fully_acked)
3198			break;
3199
3200		tcp_unlink_write_queue(skb, sk);
3201		sk_wmem_free_skb(sk, skb);
3202		if (unlikely(skb == tp->retransmit_skb_hint))
3203			tp->retransmit_skb_hint = NULL;
3204		if (unlikely(skb == tp->lost_skb_hint))
3205			tp->lost_skb_hint = NULL;
3206	}
3207
 
 
 
3208	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3209		tp->snd_up = tp->snd_una;
3210
3211	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3212		flag |= FLAG_SACK_RENEGING;
3213
3214	skb_mstamp_get(&now);
3215	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3216		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3217		ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3218	}
3219	if (sack->first_sackt.v64) {
3220		sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3221		ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3222	}
3223
3224	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3225					ca_rtt_us);
3226
3227	if (flag & FLAG_ACKED) {
3228		tcp_rearm_rto(sk);
3229		if (unlikely(icsk->icsk_mtup.probe_size &&
3230			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3231			tcp_mtup_probe_success(sk);
3232		}
3233
3234		if (tcp_is_reno(tp)) {
3235			tcp_remove_reno_sacks(sk, pkts_acked);
3236		} else {
3237			int delta;
3238
3239			/* Non-retransmitted hole got filled? That's reordering */
3240			if (reord < prior_fackets)
3241				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3242
3243			delta = tcp_is_fack(tp) ? pkts_acked :
3244						  prior_sacked - tp->sacked_out;
3245			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3246		}
3247
3248		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3249
3250	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3251		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3252		/* Do not re-arm RTO if the sack RTT is measured from data sent
3253		 * after when the head was last (re)transmitted. Otherwise the
3254		 * timeout may continue to extend in loss recovery.
3255		 */
3256		tcp_rearm_rto(sk);
3257	}
3258
3259	if (icsk->icsk_ca_ops->pkts_acked)
3260		icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
 
 
 
 
 
3261
3262#if FASTRETRANS_DEBUG > 0
3263	WARN_ON((int)tp->sacked_out < 0);
3264	WARN_ON((int)tp->lost_out < 0);
3265	WARN_ON((int)tp->retrans_out < 0);
3266	if (!tp->packets_out && tcp_is_sack(tp)) {
3267		icsk = inet_csk(sk);
3268		if (tp->lost_out) {
3269			pr_debug("Leak l=%u %d\n",
3270				 tp->lost_out, icsk->icsk_ca_state);
3271			tp->lost_out = 0;
3272		}
3273		if (tp->sacked_out) {
3274			pr_debug("Leak s=%u %d\n",
3275				 tp->sacked_out, icsk->icsk_ca_state);
3276			tp->sacked_out = 0;
3277		}
3278		if (tp->retrans_out) {
3279			pr_debug("Leak r=%u %d\n",
3280				 tp->retrans_out, icsk->icsk_ca_state);
3281			tp->retrans_out = 0;
3282		}
3283	}
3284#endif
3285	*acked = pkts_acked;
3286	return flag;
3287}
3288
3289static void tcp_ack_probe(struct sock *sk)
3290{
3291	const struct tcp_sock *tp = tcp_sk(sk);
3292	struct inet_connection_sock *icsk = inet_csk(sk);
3293
3294	/* Was it a usable window open? */
3295
3296	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3297		icsk->icsk_backoff = 0;
3298		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3299		/* Socket must be waked up by subsequent tcp_data_snd_check().
3300		 * This function is not for random using!
3301		 */
3302	} else {
3303		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3304
3305		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3306					  when, TCP_RTO_MAX);
3307	}
3308}
3309
3310static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3311{
3312	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3313		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3314}
3315
3316/* Decide wheather to run the increase function of congestion control. */
3317static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3318{
3319	/* If reordering is high then always grow cwnd whenever data is
3320	 * delivered regardless of its ordering. Otherwise stay conservative
3321	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3322	 * new SACK or ECE mark may first advance cwnd here and later reduce
3323	 * cwnd in tcp_fastretrans_alert() based on more states.
3324	 */
3325	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3326		return flag & FLAG_FORWARD_PROGRESS;
3327
3328	return flag & FLAG_DATA_ACKED;
3329}
3330
3331/* The "ultimate" congestion control function that aims to replace the rigid
3332 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3333 * It's called toward the end of processing an ACK with precise rate
3334 * information. All transmission or retransmission are delayed afterwards.
3335 */
3336static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3337			     int flag)
3338{
 
 
 
 
 
 
 
3339	if (tcp_in_cwnd_reduction(sk)) {
3340		/* Reduce cwnd if state mandates */
3341		tcp_cwnd_reduction(sk, acked_sacked, flag);
3342	} else if (tcp_may_raise_cwnd(sk, flag)) {
3343		/* Advance cwnd if state allows */
3344		tcp_cong_avoid(sk, ack, acked_sacked);
3345	}
3346	tcp_update_pacing_rate(sk);
3347}
3348
3349/* Check that window update is acceptable.
3350 * The function assumes that snd_una<=ack<=snd_next.
3351 */
3352static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3353					const u32 ack, const u32 ack_seq,
3354					const u32 nwin)
3355{
3356	return	after(ack, tp->snd_una) ||
3357		after(ack_seq, tp->snd_wl1) ||
3358		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3359}
3360
3361/* If we update tp->snd_una, also update tp->bytes_acked */
3362static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3363{
3364	u32 delta = ack - tp->snd_una;
3365
3366	u64_stats_update_begin(&tp->syncp);
3367	tp->bytes_acked += delta;
3368	u64_stats_update_end(&tp->syncp);
3369	tp->snd_una = ack;
3370}
3371
3372/* If we update tp->rcv_nxt, also update tp->bytes_received */
3373static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3374{
3375	u32 delta = seq - tp->rcv_nxt;
3376
3377	u64_stats_update_begin(&tp->syncp);
3378	tp->bytes_received += delta;
3379	u64_stats_update_end(&tp->syncp);
3380	tp->rcv_nxt = seq;
3381}
3382
3383/* Update our send window.
3384 *
3385 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3386 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3387 */
3388static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3389				 u32 ack_seq)
3390{
3391	struct tcp_sock *tp = tcp_sk(sk);
3392	int flag = 0;
3393	u32 nwin = ntohs(tcp_hdr(skb)->window);
3394
3395	if (likely(!tcp_hdr(skb)->syn))
3396		nwin <<= tp->rx_opt.snd_wscale;
3397
3398	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3399		flag |= FLAG_WIN_UPDATE;
3400		tcp_update_wl(tp, ack_seq);
3401
3402		if (tp->snd_wnd != nwin) {
3403			tp->snd_wnd = nwin;
3404
3405			/* Note, it is the only place, where
3406			 * fast path is recovered for sending TCP.
3407			 */
3408			tp->pred_flags = 0;
3409			tcp_fast_path_check(sk);
3410
3411			if (tcp_send_head(sk))
3412				tcp_slow_start_after_idle_check(sk);
3413
3414			if (nwin > tp->max_window) {
3415				tp->max_window = nwin;
3416				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3417			}
3418		}
3419	}
3420
3421	tcp_snd_una_update(tp, ack);
3422
3423	return flag;
3424}
3425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3426/* Return true if we're currently rate-limiting out-of-window ACKs and
3427 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3428 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3429 * attacks that send repeated SYNs or ACKs for the same connection. To
3430 * do this, we do not send a duplicate SYNACK or ACK if the remote
3431 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3432 */
3433bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3434			  int mib_idx, u32 *last_oow_ack_time)
3435{
3436	/* Data packets without SYNs are not likely part of an ACK loop. */
3437	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3438	    !tcp_hdr(skb)->syn)
3439		goto not_rate_limited;
3440
3441	if (*last_oow_ack_time) {
3442		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3443
3444		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3445			NET_INC_STATS_BH(net, mib_idx);
3446			return true;	/* rate-limited: don't send yet! */
3447		}
3448	}
3449
3450	*last_oow_ack_time = tcp_time_stamp;
3451
3452not_rate_limited:
3453	return false;	/* not rate-limited: go ahead, send dupack now! */
3454}
3455
3456/* RFC 5961 7 [ACK Throttling] */
3457static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3458{
3459	/* unprotected vars, we dont care of overwrites */
3460	static u32 challenge_timestamp;
3461	static unsigned int challenge_count;
3462	struct tcp_sock *tp = tcp_sk(sk);
3463	u32 now;
3464
3465	/* First check our per-socket dupack rate limit. */
3466	if (tcp_oow_rate_limited(sock_net(sk), skb,
3467				 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3468				 &tp->last_oow_ack_time))
3469		return;
3470
3471	/* Then check the check host-wide RFC 5961 rate limit. */
3472	now = jiffies / HZ;
3473	if (now != challenge_timestamp) {
 
 
3474		challenge_timestamp = now;
3475		challenge_count = 0;
 
3476	}
3477	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3478		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
 
 
3479		tcp_send_ack(sk);
3480	}
3481}
3482
3483static void tcp_store_ts_recent(struct tcp_sock *tp)
3484{
3485	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3486	tp->rx_opt.ts_recent_stamp = get_seconds();
3487}
3488
3489static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3490{
3491	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3492		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3493		 * extra check below makes sure this can only happen
3494		 * for pure ACK frames.  -DaveM
3495		 *
3496		 * Not only, also it occurs for expired timestamps.
3497		 */
3498
3499		if (tcp_paws_check(&tp->rx_opt, 0))
3500			tcp_store_ts_recent(tp);
3501	}
3502}
3503
3504/* This routine deals with acks during a TLP episode.
3505 * We mark the end of a TLP episode on receiving TLP dupack or when
3506 * ack is after tlp_high_seq.
3507 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3508 */
3509static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3510{
3511	struct tcp_sock *tp = tcp_sk(sk);
3512
3513	if (before(ack, tp->tlp_high_seq))
3514		return;
3515
3516	if (flag & FLAG_DSACKING_ACK) {
3517		/* This DSACK means original and TLP probe arrived; no loss */
3518		tp->tlp_high_seq = 0;
3519	} else if (after(ack, tp->tlp_high_seq)) {
3520		/* ACK advances: there was a loss, so reduce cwnd. Reset
3521		 * tlp_high_seq in tcp_init_cwnd_reduction()
3522		 */
3523		tcp_init_cwnd_reduction(sk);
3524		tcp_set_ca_state(sk, TCP_CA_CWR);
3525		tcp_end_cwnd_reduction(sk);
3526		tcp_try_keep_open(sk);
3527		NET_INC_STATS_BH(sock_net(sk),
3528				 LINUX_MIB_TCPLOSSPROBERECOVERY);
3529	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3530			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3531		/* Pure dupack: original and TLP probe arrived; no loss */
3532		tp->tlp_high_seq = 0;
3533	}
3534}
3535
3536static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3537{
3538	const struct inet_connection_sock *icsk = inet_csk(sk);
3539
3540	if (icsk->icsk_ca_ops->in_ack_event)
3541		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3542}
3543
3544/* Congestion control has updated the cwnd already. So if we're in
3545 * loss recovery then now we do any new sends (for FRTO) or
3546 * retransmits (for CA_Loss or CA_recovery) that make sense.
3547 */
3548static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3549{
3550	struct tcp_sock *tp = tcp_sk(sk);
3551
3552	if (rexmit == REXMIT_NONE)
3553		return;
3554
3555	if (unlikely(rexmit == 2)) {
3556		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3557					  TCP_NAGLE_OFF);
3558		if (after(tp->snd_nxt, tp->high_seq))
3559			return;
3560		tp->frto = 0;
3561	}
3562	tcp_xmit_retransmit_queue(sk);
3563}
3564
3565/* This routine deals with incoming acks, but not outgoing ones. */
3566static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3567{
3568	struct inet_connection_sock *icsk = inet_csk(sk);
3569	struct tcp_sock *tp = tcp_sk(sk);
3570	struct tcp_sacktag_state sack_state;
 
3571	u32 prior_snd_una = tp->snd_una;
3572	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3573	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3574	bool is_dupack = false;
3575	u32 prior_fackets;
3576	int prior_packets = tp->packets_out;
3577	u32 prior_delivered = tp->delivered;
 
3578	int acked = 0; /* Number of packets newly acked */
3579	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
 
3580
3581	sack_state.first_sackt.v64 = 0;
 
3582
3583	/* We very likely will need to access write queue head. */
3584	prefetchw(sk->sk_write_queue.next);
3585
3586	/* If the ack is older than previous acks
3587	 * then we can probably ignore it.
3588	 */
3589	if (before(ack, prior_snd_una)) {
3590		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3591		if (before(ack, prior_snd_una - tp->max_window)) {
3592			tcp_send_challenge_ack(sk, skb);
3593			return -1;
3594		}
3595		goto old_ack;
3596	}
3597
3598	/* If the ack includes data we haven't sent yet, discard
3599	 * this segment (RFC793 Section 3.9).
3600	 */
3601	if (after(ack, tp->snd_nxt))
3602		goto invalid_ack;
3603
 
 
3604	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3605	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3606		tcp_rearm_rto(sk);
3607
3608	if (after(ack, prior_snd_una)) {
3609		flag |= FLAG_SND_UNA_ADVANCED;
3610		icsk->icsk_retransmits = 0;
3611	}
3612
3613	prior_fackets = tp->fackets_out;
 
3614
3615	/* ts_recent update must be made after we are sure that the packet
3616	 * is in window.
3617	 */
3618	if (flag & FLAG_UPDATE_TS_RECENT)
3619		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3620
3621	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3622		/* Window is constant, pure forward advance.
3623		 * No more checks are required.
3624		 * Note, we use the fact that SND.UNA>=SND.WL2.
3625		 */
3626		tcp_update_wl(tp, ack_seq);
3627		tcp_snd_una_update(tp, ack);
3628		flag |= FLAG_WIN_UPDATE;
3629
3630		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3631
3632		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3633	} else {
3634		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3635
3636		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3637			flag |= FLAG_DATA;
3638		else
3639			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3640
3641		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3642
3643		if (TCP_SKB_CB(skb)->sacked)
3644			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3645							&sack_state);
3646
3647		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3648			flag |= FLAG_ECE;
3649			ack_ev_flags |= CA_ACK_ECE;
3650		}
3651
3652		if (flag & FLAG_WIN_UPDATE)
3653			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3654
3655		tcp_in_ack_event(sk, ack_ev_flags);
3656	}
3657
3658	/* We passed data and got it acked, remove any soft error
3659	 * log. Something worked...
3660	 */
3661	sk->sk_err_soft = 0;
3662	icsk->icsk_probes_out = 0;
3663	tp->rcv_tstamp = tcp_time_stamp;
3664	if (!prior_packets)
3665		goto no_queue;
3666
3667	/* See if we can take anything off of the retransmit queue. */
3668	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3669				    &sack_state);
3670
3671	if (tcp_ack_is_dubious(sk, flag)) {
3672		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3673		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3674	}
3675	if (tp->tlp_high_seq)
3676		tcp_process_tlp_ack(sk, ack, flag);
3677
3678	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3679		struct dst_entry *dst = __sk_dst_get(sk);
3680		if (dst)
3681			dst_confirm(dst);
3682	}
3683
3684	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3685		tcp_schedule_loss_probe(sk);
3686	tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
 
 
 
3687	tcp_xmit_recovery(sk, rexmit);
3688	return 1;
3689
3690no_queue:
3691	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3692	if (flag & FLAG_DSACKING_ACK)
3693		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3694	/* If this ack opens up a zero window, clear backoff.  It was
3695	 * being used to time the probes, and is probably far higher than
3696	 * it needs to be for normal retransmission.
3697	 */
3698	if (tcp_send_head(sk))
3699		tcp_ack_probe(sk);
3700
3701	if (tp->tlp_high_seq)
3702		tcp_process_tlp_ack(sk, ack, flag);
3703	return 1;
3704
3705invalid_ack:
3706	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3707	return -1;
3708
3709old_ack:
3710	/* If data was SACKed, tag it and see if we should send more data.
3711	 * If data was DSACKed, see if we can undo a cwnd reduction.
3712	 */
3713	if (TCP_SKB_CB(skb)->sacked) {
3714		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3715						&sack_state);
3716		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3717		tcp_xmit_recovery(sk, rexmit);
3718	}
3719
3720	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3721	return 0;
3722}
3723
3724static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3725				      bool syn, struct tcp_fastopen_cookie *foc,
3726				      bool exp_opt)
3727{
3728	/* Valid only in SYN or SYN-ACK with an even length.  */
3729	if (!foc || !syn || len < 0 || (len & 1))
3730		return;
3731
3732	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3733	    len <= TCP_FASTOPEN_COOKIE_MAX)
3734		memcpy(foc->val, cookie, len);
3735	else if (len != 0)
3736		len = -1;
3737	foc->len = len;
3738	foc->exp = exp_opt;
3739}
3740
3741/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3742 * But, this can also be called on packets in the established flow when
3743 * the fast version below fails.
3744 */
3745void tcp_parse_options(const struct sk_buff *skb,
3746		       struct tcp_options_received *opt_rx, int estab,
3747		       struct tcp_fastopen_cookie *foc)
3748{
3749	const unsigned char *ptr;
3750	const struct tcphdr *th = tcp_hdr(skb);
3751	int length = (th->doff * 4) - sizeof(struct tcphdr);
3752
3753	ptr = (const unsigned char *)(th + 1);
3754	opt_rx->saw_tstamp = 0;
3755
3756	while (length > 0) {
3757		int opcode = *ptr++;
3758		int opsize;
3759
3760		switch (opcode) {
3761		case TCPOPT_EOL:
3762			return;
3763		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3764			length--;
3765			continue;
3766		default:
3767			opsize = *ptr++;
3768			if (opsize < 2) /* "silly options" */
3769				return;
3770			if (opsize > length)
3771				return;	/* don't parse partial options */
3772			switch (opcode) {
3773			case TCPOPT_MSS:
3774				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3775					u16 in_mss = get_unaligned_be16(ptr);
3776					if (in_mss) {
3777						if (opt_rx->user_mss &&
3778						    opt_rx->user_mss < in_mss)
3779							in_mss = opt_rx->user_mss;
3780						opt_rx->mss_clamp = in_mss;
3781					}
3782				}
3783				break;
3784			case TCPOPT_WINDOW:
3785				if (opsize == TCPOLEN_WINDOW && th->syn &&
3786				    !estab && sysctl_tcp_window_scaling) {
3787					__u8 snd_wscale = *(__u8 *)ptr;
3788					opt_rx->wscale_ok = 1;
3789					if (snd_wscale > 14) {
3790						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3791								     __func__,
3792								     snd_wscale);
3793						snd_wscale = 14;
3794					}
3795					opt_rx->snd_wscale = snd_wscale;
3796				}
3797				break;
3798			case TCPOPT_TIMESTAMP:
3799				if ((opsize == TCPOLEN_TIMESTAMP) &&
3800				    ((estab && opt_rx->tstamp_ok) ||
3801				     (!estab && sysctl_tcp_timestamps))) {
3802					opt_rx->saw_tstamp = 1;
3803					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3804					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3805				}
3806				break;
3807			case TCPOPT_SACK_PERM:
3808				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3809				    !estab && sysctl_tcp_sack) {
3810					opt_rx->sack_ok = TCP_SACK_SEEN;
3811					tcp_sack_reset(opt_rx);
3812				}
3813				break;
3814
3815			case TCPOPT_SACK:
3816				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3817				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3818				   opt_rx->sack_ok) {
3819					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3820				}
3821				break;
3822#ifdef CONFIG_TCP_MD5SIG
3823			case TCPOPT_MD5SIG:
3824				/*
3825				 * The MD5 Hash has already been
3826				 * checked (see tcp_v{4,6}_do_rcv()).
3827				 */
3828				break;
3829#endif
3830			case TCPOPT_FASTOPEN:
3831				tcp_parse_fastopen_option(
3832					opsize - TCPOLEN_FASTOPEN_BASE,
3833					ptr, th->syn, foc, false);
3834				break;
3835
3836			case TCPOPT_EXP:
3837				/* Fast Open option shares code 254 using a
3838				 * 16 bits magic number.
3839				 */
3840				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3841				    get_unaligned_be16(ptr) ==
3842				    TCPOPT_FASTOPEN_MAGIC)
3843					tcp_parse_fastopen_option(opsize -
3844						TCPOLEN_EXP_FASTOPEN_BASE,
3845						ptr + 2, th->syn, foc, true);
3846				break;
3847
3848			}
3849			ptr += opsize-2;
3850			length -= opsize;
3851		}
3852	}
3853}
3854EXPORT_SYMBOL(tcp_parse_options);
3855
3856static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3857{
3858	const __be32 *ptr = (const __be32 *)(th + 1);
3859
3860	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3861			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3862		tp->rx_opt.saw_tstamp = 1;
3863		++ptr;
3864		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3865		++ptr;
3866		if (*ptr)
3867			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3868		else
3869			tp->rx_opt.rcv_tsecr = 0;
3870		return true;
3871	}
3872	return false;
3873}
3874
3875/* Fast parse options. This hopes to only see timestamps.
3876 * If it is wrong it falls back on tcp_parse_options().
3877 */
3878static bool tcp_fast_parse_options(const struct sk_buff *skb,
3879				   const struct tcphdr *th, struct tcp_sock *tp)
3880{
3881	/* In the spirit of fast parsing, compare doff directly to constant
3882	 * values.  Because equality is used, short doff can be ignored here.
3883	 */
3884	if (th->doff == (sizeof(*th) / 4)) {
3885		tp->rx_opt.saw_tstamp = 0;
3886		return false;
3887	} else if (tp->rx_opt.tstamp_ok &&
3888		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3889		if (tcp_parse_aligned_timestamp(tp, th))
3890			return true;
3891	}
3892
3893	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3894	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3895		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3896
3897	return true;
3898}
3899
3900#ifdef CONFIG_TCP_MD5SIG
3901/*
3902 * Parse MD5 Signature option
3903 */
3904const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3905{
3906	int length = (th->doff << 2) - sizeof(*th);
3907	const u8 *ptr = (const u8 *)(th + 1);
3908
3909	/* If the TCP option is too short, we can short cut */
3910	if (length < TCPOLEN_MD5SIG)
3911		return NULL;
3912
3913	while (length > 0) {
3914		int opcode = *ptr++;
3915		int opsize;
3916
3917		switch (opcode) {
3918		case TCPOPT_EOL:
3919			return NULL;
3920		case TCPOPT_NOP:
3921			length--;
3922			continue;
3923		default:
3924			opsize = *ptr++;
3925			if (opsize < 2 || opsize > length)
3926				return NULL;
3927			if (opcode == TCPOPT_MD5SIG)
3928				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3929		}
3930		ptr += opsize - 2;
3931		length -= opsize;
3932	}
3933	return NULL;
3934}
3935EXPORT_SYMBOL(tcp_parse_md5sig_option);
3936#endif
3937
3938/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3939 *
3940 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3941 * it can pass through stack. So, the following predicate verifies that
3942 * this segment is not used for anything but congestion avoidance or
3943 * fast retransmit. Moreover, we even are able to eliminate most of such
3944 * second order effects, if we apply some small "replay" window (~RTO)
3945 * to timestamp space.
3946 *
3947 * All these measures still do not guarantee that we reject wrapped ACKs
3948 * on networks with high bandwidth, when sequence space is recycled fastly,
3949 * but it guarantees that such events will be very rare and do not affect
3950 * connection seriously. This doesn't look nice, but alas, PAWS is really
3951 * buggy extension.
3952 *
3953 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3954 * states that events when retransmit arrives after original data are rare.
3955 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3956 * the biggest problem on large power networks even with minor reordering.
3957 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3958 * up to bandwidth of 18Gigabit/sec. 8) ]
3959 */
3960
3961static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3962{
3963	const struct tcp_sock *tp = tcp_sk(sk);
3964	const struct tcphdr *th = tcp_hdr(skb);
3965	u32 seq = TCP_SKB_CB(skb)->seq;
3966	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3967
3968	return (/* 1. Pure ACK with correct sequence number. */
3969		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3970
3971		/* 2. ... and duplicate ACK. */
3972		ack == tp->snd_una &&
3973
3974		/* 3. ... and does not update window. */
3975		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3976
3977		/* 4. ... and sits in replay window. */
3978		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3979}
3980
3981static inline bool tcp_paws_discard(const struct sock *sk,
3982				   const struct sk_buff *skb)
3983{
3984	const struct tcp_sock *tp = tcp_sk(sk);
3985
3986	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3987	       !tcp_disordered_ack(sk, skb);
3988}
3989
3990/* Check segment sequence number for validity.
3991 *
3992 * Segment controls are considered valid, if the segment
3993 * fits to the window after truncation to the window. Acceptability
3994 * of data (and SYN, FIN, of course) is checked separately.
3995 * See tcp_data_queue(), for example.
3996 *
3997 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3998 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3999 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4000 * (borrowed from freebsd)
4001 */
4002
4003static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4004{
4005	return	!before(end_seq, tp->rcv_wup) &&
4006		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4007}
4008
4009/* When we get a reset we do this. */
4010void tcp_reset(struct sock *sk)
4011{
4012	/* We want the right error as BSD sees it (and indeed as we do). */
4013	switch (sk->sk_state) {
4014	case TCP_SYN_SENT:
4015		sk->sk_err = ECONNREFUSED;
4016		break;
4017	case TCP_CLOSE_WAIT:
4018		sk->sk_err = EPIPE;
4019		break;
4020	case TCP_CLOSE:
4021		return;
4022	default:
4023		sk->sk_err = ECONNRESET;
4024	}
4025	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4026	smp_wmb();
4027
4028	if (!sock_flag(sk, SOCK_DEAD))
4029		sk->sk_error_report(sk);
4030
4031	tcp_done(sk);
4032}
4033
4034/*
4035 * 	Process the FIN bit. This now behaves as it is supposed to work
4036 *	and the FIN takes effect when it is validly part of sequence
4037 *	space. Not before when we get holes.
4038 *
4039 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4040 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4041 *	TIME-WAIT)
4042 *
4043 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4044 *	close and we go into CLOSING (and later onto TIME-WAIT)
4045 *
4046 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4047 */
4048void tcp_fin(struct sock *sk)
4049{
4050	struct tcp_sock *tp = tcp_sk(sk);
4051
4052	inet_csk_schedule_ack(sk);
4053
4054	sk->sk_shutdown |= RCV_SHUTDOWN;
4055	sock_set_flag(sk, SOCK_DONE);
4056
4057	switch (sk->sk_state) {
4058	case TCP_SYN_RECV:
4059	case TCP_ESTABLISHED:
4060		/* Move to CLOSE_WAIT */
4061		tcp_set_state(sk, TCP_CLOSE_WAIT);
4062		inet_csk(sk)->icsk_ack.pingpong = 1;
4063		break;
4064
4065	case TCP_CLOSE_WAIT:
4066	case TCP_CLOSING:
4067		/* Received a retransmission of the FIN, do
4068		 * nothing.
4069		 */
4070		break;
4071	case TCP_LAST_ACK:
4072		/* RFC793: Remain in the LAST-ACK state. */
4073		break;
4074
4075	case TCP_FIN_WAIT1:
4076		/* This case occurs when a simultaneous close
4077		 * happens, we must ack the received FIN and
4078		 * enter the CLOSING state.
4079		 */
4080		tcp_send_ack(sk);
4081		tcp_set_state(sk, TCP_CLOSING);
4082		break;
4083	case TCP_FIN_WAIT2:
4084		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4085		tcp_send_ack(sk);
4086		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4087		break;
4088	default:
4089		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4090		 * cases we should never reach this piece of code.
4091		 */
4092		pr_err("%s: Impossible, sk->sk_state=%d\n",
4093		       __func__, sk->sk_state);
4094		break;
4095	}
4096
4097	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4098	 * Probably, we should reset in this case. For now drop them.
4099	 */
4100	__skb_queue_purge(&tp->out_of_order_queue);
4101	if (tcp_is_sack(tp))
4102		tcp_sack_reset(&tp->rx_opt);
4103	sk_mem_reclaim(sk);
4104
4105	if (!sock_flag(sk, SOCK_DEAD)) {
4106		sk->sk_state_change(sk);
4107
4108		/* Do not send POLL_HUP for half duplex close. */
4109		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4110		    sk->sk_state == TCP_CLOSE)
4111			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4112		else
4113			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4114	}
4115}
4116
4117static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4118				  u32 end_seq)
4119{
4120	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4121		if (before(seq, sp->start_seq))
4122			sp->start_seq = seq;
4123		if (after(end_seq, sp->end_seq))
4124			sp->end_seq = end_seq;
4125		return true;
4126	}
4127	return false;
4128}
4129
4130static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4131{
4132	struct tcp_sock *tp = tcp_sk(sk);
4133
4134	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4135		int mib_idx;
4136
4137		if (before(seq, tp->rcv_nxt))
4138			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4139		else
4140			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4141
4142		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4143
4144		tp->rx_opt.dsack = 1;
4145		tp->duplicate_sack[0].start_seq = seq;
4146		tp->duplicate_sack[0].end_seq = end_seq;
4147	}
4148}
4149
4150static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4151{
4152	struct tcp_sock *tp = tcp_sk(sk);
4153
4154	if (!tp->rx_opt.dsack)
4155		tcp_dsack_set(sk, seq, end_seq);
4156	else
4157		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4158}
4159
4160static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4161{
4162	struct tcp_sock *tp = tcp_sk(sk);
4163
4164	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4165	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4166		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4167		tcp_enter_quickack_mode(sk);
4168
4169		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4170			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4171
4172			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4173				end_seq = tp->rcv_nxt;
4174			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4175		}
4176	}
4177
4178	tcp_send_ack(sk);
4179}
4180
4181/* These routines update the SACK block as out-of-order packets arrive or
4182 * in-order packets close up the sequence space.
4183 */
4184static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4185{
4186	int this_sack;
4187	struct tcp_sack_block *sp = &tp->selective_acks[0];
4188	struct tcp_sack_block *swalk = sp + 1;
4189
4190	/* See if the recent change to the first SACK eats into
4191	 * or hits the sequence space of other SACK blocks, if so coalesce.
4192	 */
4193	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4194		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4195			int i;
4196
4197			/* Zap SWALK, by moving every further SACK up by one slot.
4198			 * Decrease num_sacks.
4199			 */
4200			tp->rx_opt.num_sacks--;
4201			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4202				sp[i] = sp[i + 1];
4203			continue;
4204		}
4205		this_sack++, swalk++;
4206	}
4207}
4208
4209static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4210{
4211	struct tcp_sock *tp = tcp_sk(sk);
4212	struct tcp_sack_block *sp = &tp->selective_acks[0];
4213	int cur_sacks = tp->rx_opt.num_sacks;
4214	int this_sack;
4215
4216	if (!cur_sacks)
4217		goto new_sack;
4218
4219	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4220		if (tcp_sack_extend(sp, seq, end_seq)) {
4221			/* Rotate this_sack to the first one. */
4222			for (; this_sack > 0; this_sack--, sp--)
4223				swap(*sp, *(sp - 1));
4224			if (cur_sacks > 1)
4225				tcp_sack_maybe_coalesce(tp);
4226			return;
4227		}
4228	}
4229
4230	/* Could not find an adjacent existing SACK, build a new one,
4231	 * put it at the front, and shift everyone else down.  We
4232	 * always know there is at least one SACK present already here.
4233	 *
4234	 * If the sack array is full, forget about the last one.
4235	 */
4236	if (this_sack >= TCP_NUM_SACKS) {
4237		this_sack--;
4238		tp->rx_opt.num_sacks--;
4239		sp--;
4240	}
4241	for (; this_sack > 0; this_sack--, sp--)
4242		*sp = *(sp - 1);
4243
4244new_sack:
4245	/* Build the new head SACK, and we're done. */
4246	sp->start_seq = seq;
4247	sp->end_seq = end_seq;
4248	tp->rx_opt.num_sacks++;
4249}
4250
4251/* RCV.NXT advances, some SACKs should be eaten. */
4252
4253static void tcp_sack_remove(struct tcp_sock *tp)
4254{
4255	struct tcp_sack_block *sp = &tp->selective_acks[0];
4256	int num_sacks = tp->rx_opt.num_sacks;
4257	int this_sack;
4258
4259	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4260	if (skb_queue_empty(&tp->out_of_order_queue)) {
4261		tp->rx_opt.num_sacks = 0;
4262		return;
4263	}
4264
4265	for (this_sack = 0; this_sack < num_sacks;) {
4266		/* Check if the start of the sack is covered by RCV.NXT. */
4267		if (!before(tp->rcv_nxt, sp->start_seq)) {
4268			int i;
4269
4270			/* RCV.NXT must cover all the block! */
4271			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4272
4273			/* Zap this SACK, by moving forward any other SACKS. */
4274			for (i = this_sack+1; i < num_sacks; i++)
4275				tp->selective_acks[i-1] = tp->selective_acks[i];
4276			num_sacks--;
4277			continue;
4278		}
4279		this_sack++;
4280		sp++;
4281	}
4282	tp->rx_opt.num_sacks = num_sacks;
4283}
4284
4285/**
4286 * tcp_try_coalesce - try to merge skb to prior one
4287 * @sk: socket
4288 * @to: prior buffer
4289 * @from: buffer to add in queue
4290 * @fragstolen: pointer to boolean
4291 *
4292 * Before queueing skb @from after @to, try to merge them
4293 * to reduce overall memory use and queue lengths, if cost is small.
4294 * Packets in ofo or receive queues can stay a long time.
4295 * Better try to coalesce them right now to avoid future collapses.
4296 * Returns true if caller should free @from instead of queueing it
4297 */
4298static bool tcp_try_coalesce(struct sock *sk,
4299			     struct sk_buff *to,
4300			     struct sk_buff *from,
4301			     bool *fragstolen)
4302{
4303	int delta;
4304
4305	*fragstolen = false;
4306
4307	/* Its possible this segment overlaps with prior segment in queue */
4308	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4309		return false;
4310
4311	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4312		return false;
4313
4314	atomic_add(delta, &sk->sk_rmem_alloc);
4315	sk_mem_charge(sk, delta);
4316	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4317	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4318	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4319	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4320	return true;
4321}
4322
 
 
 
 
 
 
4323/* This one checks to see if we can put data from the
4324 * out_of_order queue into the receive_queue.
4325 */
4326static void tcp_ofo_queue(struct sock *sk)
4327{
4328	struct tcp_sock *tp = tcp_sk(sk);
4329	__u32 dsack_high = tp->rcv_nxt;
 
4330	struct sk_buff *skb, *tail;
4331	bool fragstolen, eaten;
4332
4333	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
 
 
4334		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4335			break;
4336
4337		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4338			__u32 dsack = dsack_high;
4339			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4340				dsack_high = TCP_SKB_CB(skb)->end_seq;
4341			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4342		}
 
 
4343
4344		__skb_unlink(skb, &tp->out_of_order_queue);
4345		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4346			SOCK_DEBUG(sk, "ofo packet was already received\n");
4347			__kfree_skb(skb);
4348			continue;
4349		}
4350		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4351			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4352			   TCP_SKB_CB(skb)->end_seq);
4353
4354		tail = skb_peek_tail(&sk->sk_receive_queue);
4355		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4356		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
 
4357		if (!eaten)
4358			__skb_queue_tail(&sk->sk_receive_queue, skb);
4359		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4360			tcp_fin(sk);
4361		if (eaten)
4362			kfree_skb_partial(skb, fragstolen);
 
 
 
 
 
 
 
 
4363	}
4364}
4365
4366static bool tcp_prune_ofo_queue(struct sock *sk);
4367static int tcp_prune_queue(struct sock *sk);
4368
4369static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4370				 unsigned int size)
4371{
4372	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4373	    !sk_rmem_schedule(sk, skb, size)) {
4374
4375		if (tcp_prune_queue(sk) < 0)
4376			return -1;
4377
4378		if (!sk_rmem_schedule(sk, skb, size)) {
4379			if (!tcp_prune_ofo_queue(sk))
4380				return -1;
4381
4382			if (!sk_rmem_schedule(sk, skb, size))
4383				return -1;
4384		}
4385	}
4386	return 0;
4387}
4388
4389static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4390{
4391	struct tcp_sock *tp = tcp_sk(sk);
 
4392	struct sk_buff *skb1;
4393	u32 seq, end_seq;
 
4394
4395	tcp_ecn_check_ce(tp, skb);
4396
4397	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4398		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4399		__kfree_skb(skb);
4400		return;
4401	}
4402
4403	/* Disable header prediction. */
4404	tp->pred_flags = 0;
4405	inet_csk_schedule_ack(sk);
4406
4407	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
 
 
4408	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4409		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4410
4411	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4412	if (!skb1) {
4413		/* Initial out of order segment, build 1 SACK. */
4414		if (tcp_is_sack(tp)) {
4415			tp->rx_opt.num_sacks = 1;
4416			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4417			tp->selective_acks[0].end_seq =
4418						TCP_SKB_CB(skb)->end_seq;
4419		}
4420		__skb_queue_head(&tp->out_of_order_queue, skb);
4421		goto end;
4422	}
4423
4424	seq = TCP_SKB_CB(skb)->seq;
4425	end_seq = TCP_SKB_CB(skb)->end_seq;
4426
4427	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4428		bool fragstolen;
4429
4430		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4431			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4432		} else {
4433			tcp_grow_window(sk, skb);
4434			kfree_skb_partial(skb, fragstolen);
4435			skb = NULL;
4436		}
4437
4438		if (!tp->rx_opt.num_sacks ||
4439		    tp->selective_acks[0].end_seq != seq)
4440			goto add_sack;
4441
4442		/* Common case: data arrive in order after hole. */
4443		tp->selective_acks[0].end_seq = end_seq;
4444		goto end;
4445	}
4446
4447	/* Find place to insert this segment. */
4448	while (1) {
4449		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4450			break;
4451		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4452			skb1 = NULL;
4453			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4454		}
4455		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4456	}
4457
4458	/* Do skb overlap to previous one? */
4459	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4460		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4461			/* All the bits are present. Drop. */
4462			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4463			__kfree_skb(skb);
4464			skb = NULL;
4465			tcp_dsack_set(sk, seq, end_seq);
4466			goto add_sack;
4467		}
4468		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4469			/* Partial overlap. */
4470			tcp_dsack_set(sk, seq,
4471				      TCP_SKB_CB(skb1)->end_seq);
4472		} else {
4473			if (skb_queue_is_first(&tp->out_of_order_queue,
4474					       skb1))
4475				skb1 = NULL;
4476			else
4477				skb1 = skb_queue_prev(
4478					&tp->out_of_order_queue,
4479					skb1);
 
 
 
 
4480		}
 
4481	}
4482	if (!skb1)
4483		__skb_queue_head(&tp->out_of_order_queue, skb);
4484	else
4485		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4486
4487	/* And clean segments covered by new one as whole. */
4488	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4489		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
 
4490
4491		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4492			break;
4493		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4494			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4495					 end_seq);
4496			break;
4497		}
4498		__skb_unlink(skb1, &tp->out_of_order_queue);
4499		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4500				 TCP_SKB_CB(skb1)->end_seq);
4501		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4502		__kfree_skb(skb1);
4503	}
 
 
 
4504
4505add_sack:
4506	if (tcp_is_sack(tp))
4507		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4508end:
4509	if (skb) {
4510		tcp_grow_window(sk, skb);
4511		skb_set_owner_r(skb, sk);
4512	}
4513}
4514
4515static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4516		  bool *fragstolen)
4517{
4518	int eaten;
4519	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4520
4521	__skb_pull(skb, hdrlen);
4522	eaten = (tail &&
4523		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4524	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4525	if (!eaten) {
4526		__skb_queue_tail(&sk->sk_receive_queue, skb);
4527		skb_set_owner_r(skb, sk);
4528	}
4529	return eaten;
4530}
4531
4532int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4533{
4534	struct sk_buff *skb;
4535	int err = -ENOMEM;
4536	int data_len = 0;
4537	bool fragstolen;
4538
4539	if (size == 0)
4540		return 0;
4541
4542	if (size > PAGE_SIZE) {
4543		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4544
4545		data_len = npages << PAGE_SHIFT;
4546		size = data_len + (size & ~PAGE_MASK);
4547	}
4548	skb = alloc_skb_with_frags(size - data_len, data_len,
4549				   PAGE_ALLOC_COSTLY_ORDER,
4550				   &err, sk->sk_allocation);
4551	if (!skb)
4552		goto err;
4553
4554	skb_put(skb, size - data_len);
4555	skb->data_len = data_len;
4556	skb->len = size;
4557
4558	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4559		goto err_free;
4560
4561	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4562	if (err)
4563		goto err_free;
4564
4565	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4566	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4567	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4568
4569	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4570		WARN_ON_ONCE(fragstolen); /* should not happen */
4571		__kfree_skb(skb);
4572	}
4573	return size;
4574
4575err_free:
4576	kfree_skb(skb);
4577err:
4578	return err;
4579
4580}
4581
4582static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4583{
4584	struct tcp_sock *tp = tcp_sk(sk);
4585	int eaten = -1;
4586	bool fragstolen = false;
 
4587
4588	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4589		goto drop;
4590
 
4591	skb_dst_drop(skb);
4592	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4593
4594	tcp_ecn_accept_cwr(tp, skb);
4595
4596	tp->rx_opt.dsack = 0;
4597
4598	/*  Queue data for delivery to the user.
4599	 *  Packets in sequence go to the receive queue.
4600	 *  Out of sequence packets to the out_of_order_queue.
4601	 */
4602	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4603		if (tcp_receive_window(tp) == 0)
4604			goto out_of_window;
4605
4606		/* Ok. In sequence. In window. */
4607		if (tp->ucopy.task == current &&
4608		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4609		    sock_owned_by_user(sk) && !tp->urg_data) {
4610			int chunk = min_t(unsigned int, skb->len,
4611					  tp->ucopy.len);
4612
4613			__set_current_state(TASK_RUNNING);
4614
4615			local_bh_enable();
4616			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4617				tp->ucopy.len -= chunk;
4618				tp->copied_seq += chunk;
4619				eaten = (chunk == skb->len);
4620				tcp_rcv_space_adjust(sk);
4621			}
4622			local_bh_disable();
4623		}
4624
4625		if (eaten <= 0) {
4626queue_and_out:
4627			if (eaten < 0) {
4628				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4629					sk_forced_mem_schedule(sk, skb->truesize);
4630				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4631					goto drop;
4632			}
4633			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4634		}
4635		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4636		if (skb->len)
4637			tcp_event_data_recv(sk, skb);
4638		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4639			tcp_fin(sk);
4640
4641		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4642			tcp_ofo_queue(sk);
4643
4644			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4645			 * gap in queue is filled.
4646			 */
4647			if (skb_queue_empty(&tp->out_of_order_queue))
4648				inet_csk(sk)->icsk_ack.pingpong = 0;
4649		}
4650
4651		if (tp->rx_opt.num_sacks)
4652			tcp_sack_remove(tp);
4653
4654		tcp_fast_path_check(sk);
4655
4656		if (eaten > 0)
4657			kfree_skb_partial(skb, fragstolen);
4658		if (!sock_flag(sk, SOCK_DEAD))
4659			sk->sk_data_ready(sk);
4660		return;
4661	}
4662
4663	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4664		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4665		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4666		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4667
4668out_of_window:
4669		tcp_enter_quickack_mode(sk);
4670		inet_csk_schedule_ack(sk);
4671drop:
4672		__kfree_skb(skb);
4673		return;
4674	}
4675
4676	/* Out of window. F.e. zero window probe. */
4677	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4678		goto out_of_window;
4679
4680	tcp_enter_quickack_mode(sk);
4681
4682	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4683		/* Partial packet, seq < rcv_next < end_seq */
4684		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4685			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4686			   TCP_SKB_CB(skb)->end_seq);
4687
4688		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4689
4690		/* If window is closed, drop tail of packet. But after
4691		 * remembering D-SACK for its head made in previous line.
4692		 */
4693		if (!tcp_receive_window(tp))
4694			goto out_of_window;
4695		goto queue_and_out;
4696	}
4697
4698	tcp_data_queue_ofo(sk, skb);
4699}
4700
 
 
 
 
 
 
 
 
4701static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4702					struct sk_buff_head *list)
 
4703{
4704	struct sk_buff *next = NULL;
4705
4706	if (!skb_queue_is_last(list, skb))
4707		next = skb_queue_next(list, skb);
 
 
4708
4709	__skb_unlink(skb, list);
4710	__kfree_skb(skb);
4711	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4712
4713	return next;
4714}
4715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4716/* Collapse contiguous sequence of skbs head..tail with
4717 * sequence numbers start..end.
4718 *
4719 * If tail is NULL, this means until the end of the list.
4720 *
4721 * Segments with FIN/SYN are not collapsed (only because this
4722 * simplifies code)
4723 */
4724static void
4725tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4726	     struct sk_buff *head, struct sk_buff *tail,
4727	     u32 start, u32 end)
4728{
4729	struct sk_buff *skb, *n;
 
4730	bool end_of_skbs;
4731
4732	/* First, check that queue is collapsible and find
4733	 * the point where collapsing can be useful. */
4734	skb = head;
4735restart:
4736	end_of_skbs = true;
4737	skb_queue_walk_from_safe(list, skb, n) {
4738		if (skb == tail)
4739			break;
4740		/* No new bits? It is possible on ofo queue. */
4741		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4742			skb = tcp_collapse_one(sk, skb, list);
4743			if (!skb)
4744				break;
4745			goto restart;
4746		}
4747
4748		/* The first skb to collapse is:
4749		 * - not SYN/FIN and
4750		 * - bloated or contains data before "start" or
4751		 *   overlaps to the next one.
4752		 */
4753		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4754		    (tcp_win_from_space(skb->truesize) > skb->len ||
4755		     before(TCP_SKB_CB(skb)->seq, start))) {
4756			end_of_skbs = false;
4757			break;
4758		}
4759
4760		if (!skb_queue_is_last(list, skb)) {
4761			struct sk_buff *next = skb_queue_next(list, skb);
4762			if (next != tail &&
4763			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4764				end_of_skbs = false;
4765				break;
4766			}
4767		}
4768
4769		/* Decided to skip this, advance start seq. */
4770		start = TCP_SKB_CB(skb)->end_seq;
4771	}
4772	if (end_of_skbs ||
4773	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4774		return;
4775
 
 
4776	while (before(start, end)) {
4777		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4778		struct sk_buff *nskb;
4779
4780		nskb = alloc_skb(copy, GFP_ATOMIC);
4781		if (!nskb)
4782			return;
4783
4784		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4785		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4786		__skb_queue_before(list, skb, nskb);
 
 
 
4787		skb_set_owner_r(nskb, sk);
4788
4789		/* Copy data, releasing collapsed skbs. */
4790		while (copy > 0) {
4791			int offset = start - TCP_SKB_CB(skb)->seq;
4792			int size = TCP_SKB_CB(skb)->end_seq - start;
4793
4794			BUG_ON(offset < 0);
4795			if (size > 0) {
4796				size = min(copy, size);
4797				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4798					BUG();
4799				TCP_SKB_CB(nskb)->end_seq += size;
4800				copy -= size;
4801				start += size;
4802			}
4803			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4804				skb = tcp_collapse_one(sk, skb, list);
4805				if (!skb ||
4806				    skb == tail ||
4807				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4808					return;
4809			}
4810		}
4811	}
 
 
 
4812}
4813
4814/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4815 * and tcp_collapse() them until all the queue is collapsed.
4816 */
4817static void tcp_collapse_ofo_queue(struct sock *sk)
4818{
4819	struct tcp_sock *tp = tcp_sk(sk);
4820	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4821	struct sk_buff *head;
4822	u32 start, end;
4823
4824	if (!skb)
 
 
 
 
 
 
 
 
 
4825		return;
4826
4827	start = TCP_SKB_CB(skb)->seq;
4828	end = TCP_SKB_CB(skb)->end_seq;
4829	head = skb;
4830
4831	for (;;) {
4832		struct sk_buff *next = NULL;
4833
4834		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4835			next = skb_queue_next(&tp->out_of_order_queue, skb);
4836		skb = next;
4837
4838		/* Segment is terminated when we see gap or when
4839		 * we are at the end of all the queue. */
 
4840		if (!skb ||
4841		    after(TCP_SKB_CB(skb)->seq, end) ||
4842		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4843			tcp_collapse(sk, &tp->out_of_order_queue,
4844				     head, skb, start, end);
4845			head = skb;
4846			if (!skb)
4847				break;
4848			/* Start new segment */
4849			start = TCP_SKB_CB(skb)->seq;
 
4850			end = TCP_SKB_CB(skb)->end_seq;
4851		} else {
4852			if (before(TCP_SKB_CB(skb)->seq, start))
4853				start = TCP_SKB_CB(skb)->seq;
4854			if (after(TCP_SKB_CB(skb)->end_seq, end))
4855				end = TCP_SKB_CB(skb)->end_seq;
4856		}
4857	}
4858}
4859
4860/*
4861 * Purge the out-of-order queue.
4862 * Return true if queue was pruned.
 
 
 
 
 
 
4863 */
4864static bool tcp_prune_ofo_queue(struct sock *sk)
4865{
4866	struct tcp_sock *tp = tcp_sk(sk);
4867	bool res = false;
4868
4869	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4870		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4871		__skb_queue_purge(&tp->out_of_order_queue);
4872
4873		/* Reset SACK state.  A conforming SACK implementation will
4874		 * do the same at a timeout based retransmit.  When a connection
4875		 * is in a sad state like this, we care only about integrity
4876		 * of the connection not performance.
4877		 */
4878		if (tp->rx_opt.sack_ok)
4879			tcp_sack_reset(&tp->rx_opt);
4880		sk_mem_reclaim(sk);
4881		res = true;
4882	}
4883	return res;
 
 
 
 
 
 
 
 
 
 
 
 
4884}
4885
4886/* Reduce allocated memory if we can, trying to get
4887 * the socket within its memory limits again.
4888 *
4889 * Return less than zero if we should start dropping frames
4890 * until the socket owning process reads some of the data
4891 * to stabilize the situation.
4892 */
4893static int tcp_prune_queue(struct sock *sk)
4894{
4895	struct tcp_sock *tp = tcp_sk(sk);
4896
4897	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4898
4899	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4900
4901	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4902		tcp_clamp_window(sk);
4903	else if (tcp_under_memory_pressure(sk))
4904		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4905
4906	tcp_collapse_ofo_queue(sk);
4907	if (!skb_queue_empty(&sk->sk_receive_queue))
4908		tcp_collapse(sk, &sk->sk_receive_queue,
4909			     skb_peek(&sk->sk_receive_queue),
4910			     NULL,
4911			     tp->copied_seq, tp->rcv_nxt);
4912	sk_mem_reclaim(sk);
4913
4914	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4915		return 0;
4916
4917	/* Collapsing did not help, destructive actions follow.
4918	 * This must not ever occur. */
4919
4920	tcp_prune_ofo_queue(sk);
4921
4922	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4923		return 0;
4924
4925	/* If we are really being abused, tell the caller to silently
4926	 * drop receive data on the floor.  It will get retransmitted
4927	 * and hopefully then we'll have sufficient space.
4928	 */
4929	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4930
4931	/* Massive buffer overcommit. */
4932	tp->pred_flags = 0;
4933	return -1;
4934}
4935
4936static bool tcp_should_expand_sndbuf(const struct sock *sk)
4937{
4938	const struct tcp_sock *tp = tcp_sk(sk);
4939
4940	/* If the user specified a specific send buffer setting, do
4941	 * not modify it.
4942	 */
4943	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4944		return false;
4945
4946	/* If we are under global TCP memory pressure, do not expand.  */
4947	if (tcp_under_memory_pressure(sk))
4948		return false;
4949
4950	/* If we are under soft global TCP memory pressure, do not expand.  */
4951	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4952		return false;
4953
4954	/* If we filled the congestion window, do not expand.  */
4955	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4956		return false;
4957
4958	return true;
4959}
4960
4961/* When incoming ACK allowed to free some skb from write_queue,
4962 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4963 * on the exit from tcp input handler.
4964 *
4965 * PROBLEM: sndbuf expansion does not work well with largesend.
4966 */
4967static void tcp_new_space(struct sock *sk)
4968{
4969	struct tcp_sock *tp = tcp_sk(sk);
4970
4971	if (tcp_should_expand_sndbuf(sk)) {
4972		tcp_sndbuf_expand(sk);
4973		tp->snd_cwnd_stamp = tcp_time_stamp;
4974	}
4975
4976	sk->sk_write_space(sk);
4977}
4978
4979static void tcp_check_space(struct sock *sk)
4980{
4981	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4982		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4983		/* pairs with tcp_poll() */
4984		smp_mb__after_atomic();
4985		if (sk->sk_socket &&
4986		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4987			tcp_new_space(sk);
 
 
 
4988	}
4989}
4990
4991static inline void tcp_data_snd_check(struct sock *sk)
4992{
4993	tcp_push_pending_frames(sk);
4994	tcp_check_space(sk);
4995}
4996
4997/*
4998 * Check if sending an ack is needed.
4999 */
5000static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5001{
5002	struct tcp_sock *tp = tcp_sk(sk);
5003
5004	    /* More than one full frame received... */
5005	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5006	     /* ... and right edge of window advances far enough.
5007	      * (tcp_recvmsg() will send ACK otherwise). Or...
5008	      */
5009	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5010	    /* We ACK each frame or... */
5011	    tcp_in_quickack_mode(sk) ||
5012	    /* We have out of order data. */
5013	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5014		/* Then ack it now */
5015		tcp_send_ack(sk);
5016	} else {
5017		/* Else, send delayed ack. */
5018		tcp_send_delayed_ack(sk);
5019	}
5020}
5021
5022static inline void tcp_ack_snd_check(struct sock *sk)
5023{
5024	if (!inet_csk_ack_scheduled(sk)) {
5025		/* We sent a data segment already. */
5026		return;
5027	}
5028	__tcp_ack_snd_check(sk, 1);
5029}
5030
5031/*
5032 *	This routine is only called when we have urgent data
5033 *	signaled. Its the 'slow' part of tcp_urg. It could be
5034 *	moved inline now as tcp_urg is only called from one
5035 *	place. We handle URGent data wrong. We have to - as
5036 *	BSD still doesn't use the correction from RFC961.
5037 *	For 1003.1g we should support a new option TCP_STDURG to permit
5038 *	either form (or just set the sysctl tcp_stdurg).
5039 */
5040
5041static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5042{
5043	struct tcp_sock *tp = tcp_sk(sk);
5044	u32 ptr = ntohs(th->urg_ptr);
5045
5046	if (ptr && !sysctl_tcp_stdurg)
5047		ptr--;
5048	ptr += ntohl(th->seq);
5049
5050	/* Ignore urgent data that we've already seen and read. */
5051	if (after(tp->copied_seq, ptr))
5052		return;
5053
5054	/* Do not replay urg ptr.
5055	 *
5056	 * NOTE: interesting situation not covered by specs.
5057	 * Misbehaving sender may send urg ptr, pointing to segment,
5058	 * which we already have in ofo queue. We are not able to fetch
5059	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5060	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5061	 * situations. But it is worth to think about possibility of some
5062	 * DoSes using some hypothetical application level deadlock.
5063	 */
5064	if (before(ptr, tp->rcv_nxt))
5065		return;
5066
5067	/* Do we already have a newer (or duplicate) urgent pointer? */
5068	if (tp->urg_data && !after(ptr, tp->urg_seq))
5069		return;
5070
5071	/* Tell the world about our new urgent pointer. */
5072	sk_send_sigurg(sk);
5073
5074	/* We may be adding urgent data when the last byte read was
5075	 * urgent. To do this requires some care. We cannot just ignore
5076	 * tp->copied_seq since we would read the last urgent byte again
5077	 * as data, nor can we alter copied_seq until this data arrives
5078	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5079	 *
5080	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5081	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5082	 * and expect that both A and B disappear from stream. This is _wrong_.
5083	 * Though this happens in BSD with high probability, this is occasional.
5084	 * Any application relying on this is buggy. Note also, that fix "works"
5085	 * only in this artificial test. Insert some normal data between A and B and we will
5086	 * decline of BSD again. Verdict: it is better to remove to trap
5087	 * buggy users.
5088	 */
5089	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5090	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5091		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5092		tp->copied_seq++;
5093		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5094			__skb_unlink(skb, &sk->sk_receive_queue);
5095			__kfree_skb(skb);
5096		}
5097	}
5098
5099	tp->urg_data = TCP_URG_NOTYET;
5100	tp->urg_seq = ptr;
5101
5102	/* Disable header prediction. */
5103	tp->pred_flags = 0;
5104}
5105
5106/* This is the 'fast' part of urgent handling. */
5107static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5108{
5109	struct tcp_sock *tp = tcp_sk(sk);
5110
5111	/* Check if we get a new urgent pointer - normally not. */
5112	if (th->urg)
5113		tcp_check_urg(sk, th);
5114
5115	/* Do we wait for any urgent data? - normally not... */
5116	if (tp->urg_data == TCP_URG_NOTYET) {
5117		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5118			  th->syn;
5119
5120		/* Is the urgent pointer pointing into this packet? */
5121		if (ptr < skb->len) {
5122			u8 tmp;
5123			if (skb_copy_bits(skb, ptr, &tmp, 1))
5124				BUG();
5125			tp->urg_data = TCP_URG_VALID | tmp;
5126			if (!sock_flag(sk, SOCK_DEAD))
5127				sk->sk_data_ready(sk);
5128		}
5129	}
5130}
5131
5132static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5133{
5134	struct tcp_sock *tp = tcp_sk(sk);
5135	int chunk = skb->len - hlen;
5136	int err;
5137
5138	local_bh_enable();
5139	if (skb_csum_unnecessary(skb))
5140		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5141	else
5142		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5143
5144	if (!err) {
5145		tp->ucopy.len -= chunk;
5146		tp->copied_seq += chunk;
5147		tcp_rcv_space_adjust(sk);
5148	}
5149
5150	local_bh_disable();
5151	return err;
5152}
5153
5154static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5155					    struct sk_buff *skb)
5156{
5157	__sum16 result;
5158
5159	if (sock_owned_by_user(sk)) {
5160		local_bh_enable();
5161		result = __tcp_checksum_complete(skb);
5162		local_bh_disable();
5163	} else {
5164		result = __tcp_checksum_complete(skb);
5165	}
5166	return result;
5167}
5168
5169static inline bool tcp_checksum_complete_user(struct sock *sk,
5170					     struct sk_buff *skb)
5171{
5172	return !skb_csum_unnecessary(skb) &&
5173	       __tcp_checksum_complete_user(sk, skb);
5174}
5175
5176/* Does PAWS and seqno based validation of an incoming segment, flags will
5177 * play significant role here.
5178 */
5179static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5180				  const struct tcphdr *th, int syn_inerr)
5181{
5182	struct tcp_sock *tp = tcp_sk(sk);
 
5183
5184	/* RFC1323: H1. Apply PAWS check first. */
5185	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5186	    tcp_paws_discard(sk, skb)) {
5187		if (!th->rst) {
5188			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5189			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5190						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5191						  &tp->last_oow_ack_time))
5192				tcp_send_dupack(sk, skb);
5193			goto discard;
5194		}
5195		/* Reset is accepted even if it did not pass PAWS. */
5196	}
5197
5198	/* Step 1: check sequence number */
5199	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5200		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5201		 * (RST) segments are validated by checking their SEQ-fields."
5202		 * And page 69: "If an incoming segment is not acceptable,
5203		 * an acknowledgment should be sent in reply (unless the RST
5204		 * bit is set, if so drop the segment and return)".
5205		 */
5206		if (!th->rst) {
5207			if (th->syn)
5208				goto syn_challenge;
5209			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5210						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5211						  &tp->last_oow_ack_time))
5212				tcp_send_dupack(sk, skb);
5213		}
5214		goto discard;
5215	}
5216
5217	/* Step 2: check RST bit */
5218	if (th->rst) {
5219		/* RFC 5961 3.2 :
5220		 * If sequence number exactly matches RCV.NXT, then
 
5221		 *     RESET the connection
5222		 * else
5223		 *     Send a challenge ACK
5224		 */
5225		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5226			tcp_reset(sk);
5227		else
5228			tcp_send_challenge_ack(sk, skb);
5229		goto discard;
5230	}
5231
5232	/* step 3: check security and precedence [ignored] */
5233
5234	/* step 4: Check for a SYN
5235	 * RFC 5961 4.2 : Send a challenge ack
5236	 */
5237	if (th->syn) {
5238syn_challenge:
5239		if (syn_inerr)
5240			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5241		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5242		tcp_send_challenge_ack(sk, skb);
5243		goto discard;
5244	}
5245
5246	return true;
5247
5248discard:
5249	__kfree_skb(skb);
5250	return false;
5251}
5252
5253/*
5254 *	TCP receive function for the ESTABLISHED state.
5255 *
5256 *	It is split into a fast path and a slow path. The fast path is
5257 * 	disabled when:
5258 *	- A zero window was announced from us - zero window probing
5259 *        is only handled properly in the slow path.
5260 *	- Out of order segments arrived.
5261 *	- Urgent data is expected.
5262 *	- There is no buffer space left
5263 *	- Unexpected TCP flags/window values/header lengths are received
5264 *	  (detected by checking the TCP header against pred_flags)
5265 *	- Data is sent in both directions. Fast path only supports pure senders
5266 *	  or pure receivers (this means either the sequence number or the ack
5267 *	  value must stay constant)
5268 *	- Unexpected TCP option.
5269 *
5270 *	When these conditions are not satisfied it drops into a standard
5271 *	receive procedure patterned after RFC793 to handle all cases.
5272 *	The first three cases are guaranteed by proper pred_flags setting,
5273 *	the rest is checked inline. Fast processing is turned on in
5274 *	tcp_data_queue when everything is OK.
5275 */
5276void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5277			 const struct tcphdr *th, unsigned int len)
5278{
5279	struct tcp_sock *tp = tcp_sk(sk);
5280
5281	if (unlikely(!sk->sk_rx_dst))
5282		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5283	/*
5284	 *	Header prediction.
5285	 *	The code loosely follows the one in the famous
5286	 *	"30 instruction TCP receive" Van Jacobson mail.
5287	 *
5288	 *	Van's trick is to deposit buffers into socket queue
5289	 *	on a device interrupt, to call tcp_recv function
5290	 *	on the receive process context and checksum and copy
5291	 *	the buffer to user space. smart...
5292	 *
5293	 *	Our current scheme is not silly either but we take the
5294	 *	extra cost of the net_bh soft interrupt processing...
5295	 *	We do checksum and copy also but from device to kernel.
5296	 */
5297
5298	tp->rx_opt.saw_tstamp = 0;
5299
5300	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5301	 *	if header_prediction is to be made
5302	 *	'S' will always be tp->tcp_header_len >> 2
5303	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5304	 *  turn it off	(when there are holes in the receive
5305	 *	 space for instance)
5306	 *	PSH flag is ignored.
5307	 */
5308
5309	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5310	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5311	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5312		int tcp_header_len = tp->tcp_header_len;
5313
5314		/* Timestamp header prediction: tcp_header_len
5315		 * is automatically equal to th->doff*4 due to pred_flags
5316		 * match.
5317		 */
5318
5319		/* Check timestamp */
5320		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5321			/* No? Slow path! */
5322			if (!tcp_parse_aligned_timestamp(tp, th))
5323				goto slow_path;
5324
5325			/* If PAWS failed, check it more carefully in slow path */
5326			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5327				goto slow_path;
5328
5329			/* DO NOT update ts_recent here, if checksum fails
5330			 * and timestamp was corrupted part, it will result
5331			 * in a hung connection since we will drop all
5332			 * future packets due to the PAWS test.
5333			 */
5334		}
5335
5336		if (len <= tcp_header_len) {
5337			/* Bulk data transfer: sender */
5338			if (len == tcp_header_len) {
5339				/* Predicted packet is in window by definition.
5340				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5341				 * Hence, check seq<=rcv_wup reduces to:
5342				 */
5343				if (tcp_header_len ==
5344				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5345				    tp->rcv_nxt == tp->rcv_wup)
5346					tcp_store_ts_recent(tp);
5347
5348				/* We know that such packets are checksummed
5349				 * on entry.
5350				 */
5351				tcp_ack(sk, skb, 0);
5352				__kfree_skb(skb);
5353				tcp_data_snd_check(sk);
5354				return;
5355			} else { /* Header too small */
5356				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5357				goto discard;
5358			}
5359		} else {
5360			int eaten = 0;
5361			bool fragstolen = false;
5362
5363			if (tp->ucopy.task == current &&
5364			    tp->copied_seq == tp->rcv_nxt &&
5365			    len - tcp_header_len <= tp->ucopy.len &&
5366			    sock_owned_by_user(sk)) {
5367				__set_current_state(TASK_RUNNING);
5368
5369				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5370					/* Predicted packet is in window by definition.
5371					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5372					 * Hence, check seq<=rcv_wup reduces to:
5373					 */
5374					if (tcp_header_len ==
5375					    (sizeof(struct tcphdr) +
5376					     TCPOLEN_TSTAMP_ALIGNED) &&
5377					    tp->rcv_nxt == tp->rcv_wup)
5378						tcp_store_ts_recent(tp);
5379
5380					tcp_rcv_rtt_measure_ts(sk, skb);
5381
5382					__skb_pull(skb, tcp_header_len);
5383					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5384					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
 
5385					eaten = 1;
5386				}
5387			}
5388			if (!eaten) {
5389				if (tcp_checksum_complete_user(sk, skb))
5390					goto csum_error;
5391
5392				if ((int)skb->truesize > sk->sk_forward_alloc)
5393					goto step5;
5394
5395				/* Predicted packet is in window by definition.
5396				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5397				 * Hence, check seq<=rcv_wup reduces to:
5398				 */
5399				if (tcp_header_len ==
5400				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5401				    tp->rcv_nxt == tp->rcv_wup)
5402					tcp_store_ts_recent(tp);
5403
5404				tcp_rcv_rtt_measure_ts(sk, skb);
5405
5406				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5407
5408				/* Bulk data transfer: receiver */
5409				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5410						      &fragstolen);
5411			}
5412
5413			tcp_event_data_recv(sk, skb);
5414
5415			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5416				/* Well, only one small jumplet in fast path... */
5417				tcp_ack(sk, skb, FLAG_DATA);
5418				tcp_data_snd_check(sk);
5419				if (!inet_csk_ack_scheduled(sk))
5420					goto no_ack;
5421			}
5422
5423			__tcp_ack_snd_check(sk, 0);
5424no_ack:
5425			if (eaten)
5426				kfree_skb_partial(skb, fragstolen);
5427			sk->sk_data_ready(sk);
5428			return;
5429		}
5430	}
5431
5432slow_path:
5433	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5434		goto csum_error;
5435
5436	if (!th->ack && !th->rst && !th->syn)
5437		goto discard;
5438
5439	/*
5440	 *	Standard slow path.
5441	 */
5442
5443	if (!tcp_validate_incoming(sk, skb, th, 1))
5444		return;
5445
5446step5:
5447	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5448		goto discard;
5449
5450	tcp_rcv_rtt_measure_ts(sk, skb);
5451
5452	/* Process urgent data. */
5453	tcp_urg(sk, skb, th);
5454
5455	/* step 7: process the segment text */
5456	tcp_data_queue(sk, skb);
5457
5458	tcp_data_snd_check(sk);
5459	tcp_ack_snd_check(sk);
5460	return;
5461
5462csum_error:
5463	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5464	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5465
5466discard:
5467	__kfree_skb(skb);
5468}
5469EXPORT_SYMBOL(tcp_rcv_established);
5470
5471void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5472{
5473	struct tcp_sock *tp = tcp_sk(sk);
5474	struct inet_connection_sock *icsk = inet_csk(sk);
5475
5476	tcp_set_state(sk, TCP_ESTABLISHED);
 
5477
5478	if (skb) {
5479		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5480		security_inet_conn_established(sk, skb);
5481	}
5482
5483	/* Make sure socket is routed, for correct metrics.  */
5484	icsk->icsk_af_ops->rebuild_header(sk);
5485
5486	tcp_init_metrics(sk);
5487
5488	tcp_init_congestion_control(sk);
5489
5490	/* Prevent spurious tcp_cwnd_restart() on first data
5491	 * packet.
5492	 */
5493	tp->lsndtime = tcp_time_stamp;
5494
5495	tcp_init_buffer_space(sk);
5496
5497	if (sock_flag(sk, SOCK_KEEPOPEN))
5498		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5499
5500	if (!tp->rx_opt.snd_wscale)
5501		__tcp_fast_path_on(tp, tp->snd_wnd);
5502	else
5503		tp->pred_flags = 0;
5504
5505	if (!sock_flag(sk, SOCK_DEAD)) {
5506		sk->sk_state_change(sk);
5507		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5508	}
5509}
5510
5511static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5512				    struct tcp_fastopen_cookie *cookie)
5513{
5514	struct tcp_sock *tp = tcp_sk(sk);
5515	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5516	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5517	bool syn_drop = false;
5518
5519	if (mss == tp->rx_opt.user_mss) {
5520		struct tcp_options_received opt;
5521
5522		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5523		tcp_clear_options(&opt);
5524		opt.user_mss = opt.mss_clamp = 0;
5525		tcp_parse_options(synack, &opt, 0, NULL);
5526		mss = opt.mss_clamp;
5527	}
5528
5529	if (!tp->syn_fastopen) {
5530		/* Ignore an unsolicited cookie */
5531		cookie->len = -1;
5532	} else if (tp->total_retrans) {
5533		/* SYN timed out and the SYN-ACK neither has a cookie nor
5534		 * acknowledges data. Presumably the remote received only
5535		 * the retransmitted (regular) SYNs: either the original
5536		 * SYN-data or the corresponding SYN-ACK was dropped.
5537		 */
5538		syn_drop = (cookie->len < 0 && data);
5539	} else if (cookie->len < 0 && !tp->syn_data) {
5540		/* We requested a cookie but didn't get it. If we did not use
5541		 * the (old) exp opt format then try so next time (try_exp=1).
5542		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5543		 */
5544		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5545	}
5546
5547	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5548
5549	if (data) { /* Retransmit unacked data in SYN */
5550		tcp_for_write_queue_from(data, sk) {
5551			if (data == tcp_send_head(sk) ||
5552			    __tcp_retransmit_skb(sk, data))
5553				break;
5554		}
5555		tcp_rearm_rto(sk);
5556		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
 
5557		return true;
5558	}
5559	tp->syn_data_acked = tp->syn_data;
5560	if (tp->syn_data_acked)
5561		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
 
5562
5563	tcp_fastopen_add_skb(sk, synack);
5564
5565	return false;
5566}
5567
5568static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5569					 const struct tcphdr *th)
5570{
5571	struct inet_connection_sock *icsk = inet_csk(sk);
5572	struct tcp_sock *tp = tcp_sk(sk);
5573	struct tcp_fastopen_cookie foc = { .len = -1 };
5574	int saved_clamp = tp->rx_opt.mss_clamp;
5575
5576	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5577	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5578		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5579
5580	if (th->ack) {
5581		/* rfc793:
5582		 * "If the state is SYN-SENT then
5583		 *    first check the ACK bit
5584		 *      If the ACK bit is set
5585		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5586		 *        a reset (unless the RST bit is set, if so drop
5587		 *        the segment and return)"
5588		 */
5589		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5590		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5591			goto reset_and_undo;
5592
5593		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5594		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5595			     tcp_time_stamp)) {
5596			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
 
5597			goto reset_and_undo;
5598		}
5599
5600		/* Now ACK is acceptable.
5601		 *
5602		 * "If the RST bit is set
5603		 *    If the ACK was acceptable then signal the user "error:
5604		 *    connection reset", drop the segment, enter CLOSED state,
5605		 *    delete TCB, and return."
5606		 */
5607
5608		if (th->rst) {
5609			tcp_reset(sk);
5610			goto discard;
5611		}
5612
5613		/* rfc793:
5614		 *   "fifth, if neither of the SYN or RST bits is set then
5615		 *    drop the segment and return."
5616		 *
5617		 *    See note below!
5618		 *                                        --ANK(990513)
5619		 */
5620		if (!th->syn)
5621			goto discard_and_undo;
5622
5623		/* rfc793:
5624		 *   "If the SYN bit is on ...
5625		 *    are acceptable then ...
5626		 *    (our SYN has been ACKed), change the connection
5627		 *    state to ESTABLISHED..."
5628		 */
5629
5630		tcp_ecn_rcv_synack(tp, th);
5631
5632		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5633		tcp_ack(sk, skb, FLAG_SLOWPATH);
5634
5635		/* Ok.. it's good. Set up sequence numbers and
5636		 * move to established.
5637		 */
5638		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5639		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5640
5641		/* RFC1323: The window in SYN & SYN/ACK segments is
5642		 * never scaled.
5643		 */
5644		tp->snd_wnd = ntohs(th->window);
5645
5646		if (!tp->rx_opt.wscale_ok) {
5647			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5648			tp->window_clamp = min(tp->window_clamp, 65535U);
5649		}
5650
5651		if (tp->rx_opt.saw_tstamp) {
5652			tp->rx_opt.tstamp_ok	   = 1;
5653			tp->tcp_header_len =
5654				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5655			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5656			tcp_store_ts_recent(tp);
5657		} else {
5658			tp->tcp_header_len = sizeof(struct tcphdr);
5659		}
5660
5661		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5662			tcp_enable_fack(tp);
5663
5664		tcp_mtup_init(sk);
5665		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5666		tcp_initialize_rcv_mss(sk);
5667
5668		/* Remember, tcp_poll() does not lock socket!
5669		 * Change state from SYN-SENT only after copied_seq
5670		 * is initialized. */
5671		tp->copied_seq = tp->rcv_nxt;
5672
5673		smp_mb();
5674
5675		tcp_finish_connect(sk, skb);
5676
5677		if ((tp->syn_fastopen || tp->syn_data) &&
5678		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5679			return -1;
5680
5681		if (sk->sk_write_pending ||
5682		    icsk->icsk_accept_queue.rskq_defer_accept ||
5683		    icsk->icsk_ack.pingpong) {
5684			/* Save one ACK. Data will be ready after
5685			 * several ticks, if write_pending is set.
5686			 *
5687			 * It may be deleted, but with this feature tcpdumps
5688			 * look so _wonderfully_ clever, that I was not able
5689			 * to stand against the temptation 8)     --ANK
5690			 */
5691			inet_csk_schedule_ack(sk);
5692			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5693			tcp_enter_quickack_mode(sk);
5694			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5695						  TCP_DELACK_MAX, TCP_RTO_MAX);
5696
5697discard:
5698			__kfree_skb(skb);
5699			return 0;
5700		} else {
5701			tcp_send_ack(sk);
5702		}
5703		return -1;
5704	}
5705
5706	/* No ACK in the segment */
5707
5708	if (th->rst) {
5709		/* rfc793:
5710		 * "If the RST bit is set
5711		 *
5712		 *      Otherwise (no ACK) drop the segment and return."
5713		 */
5714
5715		goto discard_and_undo;
5716	}
5717
5718	/* PAWS check. */
5719	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5720	    tcp_paws_reject(&tp->rx_opt, 0))
5721		goto discard_and_undo;
5722
5723	if (th->syn) {
5724		/* We see SYN without ACK. It is attempt of
5725		 * simultaneous connect with crossed SYNs.
5726		 * Particularly, it can be connect to self.
5727		 */
5728		tcp_set_state(sk, TCP_SYN_RECV);
5729
5730		if (tp->rx_opt.saw_tstamp) {
5731			tp->rx_opt.tstamp_ok = 1;
5732			tcp_store_ts_recent(tp);
5733			tp->tcp_header_len =
5734				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5735		} else {
5736			tp->tcp_header_len = sizeof(struct tcphdr);
5737		}
5738
5739		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5740		tp->copied_seq = tp->rcv_nxt;
5741		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5742
5743		/* RFC1323: The window in SYN & SYN/ACK segments is
5744		 * never scaled.
5745		 */
5746		tp->snd_wnd    = ntohs(th->window);
5747		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5748		tp->max_window = tp->snd_wnd;
5749
5750		tcp_ecn_rcv_syn(tp, th);
5751
5752		tcp_mtup_init(sk);
5753		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5754		tcp_initialize_rcv_mss(sk);
5755
5756		tcp_send_synack(sk);
5757#if 0
5758		/* Note, we could accept data and URG from this segment.
5759		 * There are no obstacles to make this (except that we must
5760		 * either change tcp_recvmsg() to prevent it from returning data
5761		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5762		 *
5763		 * However, if we ignore data in ACKless segments sometimes,
5764		 * we have no reasons to accept it sometimes.
5765		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5766		 * is not flawless. So, discard packet for sanity.
5767		 * Uncomment this return to process the data.
5768		 */
5769		return -1;
5770#else
5771		goto discard;
5772#endif
5773	}
5774	/* "fifth, if neither of the SYN or RST bits is set then
5775	 * drop the segment and return."
5776	 */
5777
5778discard_and_undo:
5779	tcp_clear_options(&tp->rx_opt);
5780	tp->rx_opt.mss_clamp = saved_clamp;
5781	goto discard;
5782
5783reset_and_undo:
5784	tcp_clear_options(&tp->rx_opt);
5785	tp->rx_opt.mss_clamp = saved_clamp;
5786	return 1;
5787}
5788
5789/*
5790 *	This function implements the receiving procedure of RFC 793 for
5791 *	all states except ESTABLISHED and TIME_WAIT.
5792 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5793 *	address independent.
5794 */
5795
5796int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5797{
5798	struct tcp_sock *tp = tcp_sk(sk);
5799	struct inet_connection_sock *icsk = inet_csk(sk);
5800	const struct tcphdr *th = tcp_hdr(skb);
5801	struct request_sock *req;
5802	int queued = 0;
5803	bool acceptable;
5804
5805	tp->rx_opt.saw_tstamp = 0;
5806
5807	switch (sk->sk_state) {
5808	case TCP_CLOSE:
5809		goto discard;
5810
5811	case TCP_LISTEN:
5812		if (th->ack)
5813			return 1;
5814
5815		if (th->rst)
5816			goto discard;
5817
5818		if (th->syn) {
5819			if (th->fin)
5820				goto discard;
5821			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5822				return 1;
5823
5824			/* Now we have several options: In theory there is
5825			 * nothing else in the frame. KA9Q has an option to
5826			 * send data with the syn, BSD accepts data with the
5827			 * syn up to the [to be] advertised window and
5828			 * Solaris 2.1 gives you a protocol error. For now
5829			 * we just ignore it, that fits the spec precisely
5830			 * and avoids incompatibilities. It would be nice in
5831			 * future to drop through and process the data.
5832			 *
5833			 * Now that TTCP is starting to be used we ought to
5834			 * queue this data.
5835			 * But, this leaves one open to an easy denial of
5836			 * service attack, and SYN cookies can't defend
5837			 * against this problem. So, we drop the data
5838			 * in the interest of security over speed unless
5839			 * it's still in use.
5840			 */
5841			kfree_skb(skb);
 
 
 
 
 
 
5842			return 0;
5843		}
5844		goto discard;
5845
5846	case TCP_SYN_SENT:
 
5847		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5848		if (queued >= 0)
5849			return queued;
5850
5851		/* Do step6 onward by hand. */
5852		tcp_urg(sk, skb, th);
5853		__kfree_skb(skb);
5854		tcp_data_snd_check(sk);
5855		return 0;
5856	}
5857
 
5858	req = tp->fastopen_rsk;
5859	if (req) {
5860		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5861		    sk->sk_state != TCP_FIN_WAIT1);
5862
5863		if (!tcp_check_req(sk, skb, req, true))
5864			goto discard;
5865	}
5866
5867	if (!th->ack && !th->rst && !th->syn)
5868		goto discard;
5869
5870	if (!tcp_validate_incoming(sk, skb, th, 0))
5871		return 0;
5872
5873	/* step 5: check the ACK field */
5874	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5875				      FLAG_UPDATE_TS_RECENT) > 0;
5876
5877	switch (sk->sk_state) {
5878	case TCP_SYN_RECV:
5879		if (!acceptable)
5880			return 1;
5881
5882		if (!tp->srtt_us)
5883			tcp_synack_rtt_meas(sk, req);
5884
5885		/* Once we leave TCP_SYN_RECV, we no longer need req
5886		 * so release it.
5887		 */
5888		if (req) {
5889			tp->total_retrans = req->num_retrans;
5890			reqsk_fastopen_remove(sk, req, false);
5891		} else {
5892			/* Make sure socket is routed, for correct metrics. */
5893			icsk->icsk_af_ops->rebuild_header(sk);
5894			tcp_init_congestion_control(sk);
5895
5896			tcp_mtup_init(sk);
5897			tp->copied_seq = tp->rcv_nxt;
5898			tcp_init_buffer_space(sk);
5899		}
5900		smp_mb();
5901		tcp_set_state(sk, TCP_ESTABLISHED);
5902		sk->sk_state_change(sk);
5903
5904		/* Note, that this wakeup is only for marginal crossed SYN case.
5905		 * Passively open sockets are not waked up, because
5906		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5907		 */
5908		if (sk->sk_socket)
5909			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5910
5911		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5912		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5913		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5914
5915		if (tp->rx_opt.tstamp_ok)
5916			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5917
5918		if (req) {
5919			/* Re-arm the timer because data may have been sent out.
5920			 * This is similar to the regular data transmission case
5921			 * when new data has just been ack'ed.
5922			 *
5923			 * (TFO) - we could try to be more aggressive and
5924			 * retransmitting any data sooner based on when they
5925			 * are sent out.
5926			 */
5927			tcp_rearm_rto(sk);
5928		} else
5929			tcp_init_metrics(sk);
5930
5931		tcp_update_pacing_rate(sk);
 
5932
5933		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5934		tp->lsndtime = tcp_time_stamp;
5935
5936		tcp_initialize_rcv_mss(sk);
5937		tcp_fast_path_on(tp);
5938		break;
5939
5940	case TCP_FIN_WAIT1: {
5941		struct dst_entry *dst;
5942		int tmo;
5943
5944		/* If we enter the TCP_FIN_WAIT1 state and we are a
5945		 * Fast Open socket and this is the first acceptable
5946		 * ACK we have received, this would have acknowledged
5947		 * our SYNACK so stop the SYNACK timer.
5948		 */
5949		if (req) {
5950			/* Return RST if ack_seq is invalid.
5951			 * Note that RFC793 only says to generate a
5952			 * DUPACK for it but for TCP Fast Open it seems
5953			 * better to treat this case like TCP_SYN_RECV
5954			 * above.
5955			 */
5956			if (!acceptable)
5957				return 1;
5958			/* We no longer need the request sock. */
5959			reqsk_fastopen_remove(sk, req, false);
5960			tcp_rearm_rto(sk);
5961		}
5962		if (tp->snd_una != tp->write_seq)
5963			break;
5964
5965		tcp_set_state(sk, TCP_FIN_WAIT2);
5966		sk->sk_shutdown |= SEND_SHUTDOWN;
5967
5968		dst = __sk_dst_get(sk);
5969		if (dst)
5970			dst_confirm(dst);
5971
5972		if (!sock_flag(sk, SOCK_DEAD)) {
5973			/* Wake up lingering close() */
5974			sk->sk_state_change(sk);
5975			break;
5976		}
5977
5978		if (tp->linger2 < 0 ||
5979		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5980		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5981			tcp_done(sk);
5982			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5983			return 1;
5984		}
5985
5986		tmo = tcp_fin_time(sk);
5987		if (tmo > TCP_TIMEWAIT_LEN) {
5988			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5989		} else if (th->fin || sock_owned_by_user(sk)) {
5990			/* Bad case. We could lose such FIN otherwise.
5991			 * It is not a big problem, but it looks confusing
5992			 * and not so rare event. We still can lose it now,
5993			 * if it spins in bh_lock_sock(), but it is really
5994			 * marginal case.
5995			 */
5996			inet_csk_reset_keepalive_timer(sk, tmo);
5997		} else {
5998			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5999			goto discard;
6000		}
6001		break;
6002	}
6003
6004	case TCP_CLOSING:
6005		if (tp->snd_una == tp->write_seq) {
6006			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6007			goto discard;
6008		}
6009		break;
6010
6011	case TCP_LAST_ACK:
6012		if (tp->snd_una == tp->write_seq) {
6013			tcp_update_metrics(sk);
6014			tcp_done(sk);
6015			goto discard;
6016		}
6017		break;
6018	}
6019
6020	/* step 6: check the URG bit */
6021	tcp_urg(sk, skb, th);
6022
6023	/* step 7: process the segment text */
6024	switch (sk->sk_state) {
6025	case TCP_CLOSE_WAIT:
6026	case TCP_CLOSING:
6027	case TCP_LAST_ACK:
6028		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6029			break;
6030	case TCP_FIN_WAIT1:
6031	case TCP_FIN_WAIT2:
6032		/* RFC 793 says to queue data in these states,
6033		 * RFC 1122 says we MUST send a reset.
6034		 * BSD 4.4 also does reset.
6035		 */
6036		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6037			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6038			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6039				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6040				tcp_reset(sk);
6041				return 1;
6042			}
6043		}
6044		/* Fall through */
6045	case TCP_ESTABLISHED:
6046		tcp_data_queue(sk, skb);
6047		queued = 1;
6048		break;
6049	}
6050
6051	/* tcp_data could move socket to TIME-WAIT */
6052	if (sk->sk_state != TCP_CLOSE) {
6053		tcp_data_snd_check(sk);
6054		tcp_ack_snd_check(sk);
6055	}
6056
6057	if (!queued) {
6058discard:
6059		__kfree_skb(skb);
6060	}
6061	return 0;
6062}
6063EXPORT_SYMBOL(tcp_rcv_state_process);
6064
6065static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6066{
6067	struct inet_request_sock *ireq = inet_rsk(req);
6068
6069	if (family == AF_INET)
6070		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6071				    &ireq->ir_rmt_addr, port);
6072#if IS_ENABLED(CONFIG_IPV6)
6073	else if (family == AF_INET6)
6074		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6075				    &ireq->ir_v6_rmt_addr, port);
6076#endif
6077}
6078
6079/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6080 *
6081 * If we receive a SYN packet with these bits set, it means a
6082 * network is playing bad games with TOS bits. In order to
6083 * avoid possible false congestion notifications, we disable
6084 * TCP ECN negotiation.
6085 *
6086 * Exception: tcp_ca wants ECN. This is required for DCTCP
6087 * congestion control: Linux DCTCP asserts ECT on all packets,
6088 * including SYN, which is most optimal solution; however,
6089 * others, such as FreeBSD do not.
6090 */
6091static void tcp_ecn_create_request(struct request_sock *req,
6092				   const struct sk_buff *skb,
6093				   const struct sock *listen_sk,
6094				   const struct dst_entry *dst)
6095{
6096	const struct tcphdr *th = tcp_hdr(skb);
6097	const struct net *net = sock_net(listen_sk);
6098	bool th_ecn = th->ece && th->cwr;
6099	bool ect, ecn_ok;
6100	u32 ecn_ok_dst;
6101
6102	if (!th_ecn)
6103		return;
6104
6105	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6106	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6107	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6108
6109	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6110	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6111		inet_rsk(req)->ecn_ok = 1;
6112}
6113
6114static void tcp_openreq_init(struct request_sock *req,
6115			     const struct tcp_options_received *rx_opt,
6116			     struct sk_buff *skb, const struct sock *sk)
6117{
6118	struct inet_request_sock *ireq = inet_rsk(req);
6119
6120	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6121	req->cookie_ts = 0;
6122	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6123	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6124	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6125	tcp_rsk(req)->last_oow_ack_time = 0;
6126	req->mss = rx_opt->mss_clamp;
6127	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6128	ireq->tstamp_ok = rx_opt->tstamp_ok;
6129	ireq->sack_ok = rx_opt->sack_ok;
6130	ireq->snd_wscale = rx_opt->snd_wscale;
6131	ireq->wscale_ok = rx_opt->wscale_ok;
6132	ireq->acked = 0;
6133	ireq->ecn_ok = 0;
6134	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6135	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6136	ireq->ir_mark = inet_request_mark(sk, skb);
6137}
6138
6139struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6140				      struct sock *sk_listener,
6141				      bool attach_listener)
6142{
6143	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6144					       attach_listener);
6145
6146	if (req) {
6147		struct inet_request_sock *ireq = inet_rsk(req);
6148
6149		kmemcheck_annotate_bitfield(ireq, flags);
6150		ireq->opt = NULL;
 
 
 
6151		atomic64_set(&ireq->ir_cookie, 0);
6152		ireq->ireq_state = TCP_NEW_SYN_RECV;
6153		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6154		ireq->ireq_family = sk_listener->sk_family;
6155	}
6156
6157	return req;
6158}
6159EXPORT_SYMBOL(inet_reqsk_alloc);
6160
6161/*
6162 * Return true if a syncookie should be sent
6163 */
6164static bool tcp_syn_flood_action(const struct sock *sk,
6165				 const struct sk_buff *skb,
6166				 const char *proto)
6167{
6168	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6169	const char *msg = "Dropping request";
6170	bool want_cookie = false;
6171	struct net *net = sock_net(sk);
6172
6173#ifdef CONFIG_SYN_COOKIES
6174	if (net->ipv4.sysctl_tcp_syncookies) {
6175		msg = "Sending cookies";
6176		want_cookie = true;
6177		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6178	} else
6179#endif
6180		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6181
6182	if (!queue->synflood_warned &&
6183	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6184	    xchg(&queue->synflood_warned, 1) == 0)
6185		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6186			proto, ntohs(tcp_hdr(skb)->dest), msg);
6187
6188	return want_cookie;
6189}
6190
6191static void tcp_reqsk_record_syn(const struct sock *sk,
6192				 struct request_sock *req,
6193				 const struct sk_buff *skb)
6194{
6195	if (tcp_sk(sk)->save_syn) {
6196		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6197		u32 *copy;
6198
6199		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6200		if (copy) {
6201			copy[0] = len;
6202			memcpy(&copy[1], skb_network_header(skb), len);
6203			req->saved_syn = copy;
6204		}
6205	}
6206}
6207
6208int tcp_conn_request(struct request_sock_ops *rsk_ops,
6209		     const struct tcp_request_sock_ops *af_ops,
6210		     struct sock *sk, struct sk_buff *skb)
6211{
6212	struct tcp_fastopen_cookie foc = { .len = -1 };
6213	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6214	struct tcp_options_received tmp_opt;
6215	struct tcp_sock *tp = tcp_sk(sk);
6216	struct net *net = sock_net(sk);
6217	struct sock *fastopen_sk = NULL;
6218	struct dst_entry *dst = NULL;
6219	struct request_sock *req;
6220	bool want_cookie = false;
6221	struct flowi fl;
6222
6223	/* TW buckets are converted to open requests without
6224	 * limitations, they conserve resources and peer is
6225	 * evidently real one.
6226	 */
6227	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6228	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6229		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6230		if (!want_cookie)
6231			goto drop;
6232	}
6233
6234
6235	/* Accept backlog is full. If we have already queued enough
6236	 * of warm entries in syn queue, drop request. It is better than
6237	 * clogging syn queue with openreqs with exponentially increasing
6238	 * timeout.
6239	 */
6240	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6241		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6242		goto drop;
6243	}
6244
6245	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6246	if (!req)
6247		goto drop;
6248
6249	tcp_rsk(req)->af_specific = af_ops;
 
6250
6251	tcp_clear_options(&tmp_opt);
6252	tmp_opt.mss_clamp = af_ops->mss_clamp;
6253	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6254	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6255
6256	if (want_cookie && !tmp_opt.saw_tstamp)
6257		tcp_clear_options(&tmp_opt);
6258
6259	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6260	tcp_openreq_init(req, &tmp_opt, skb, sk);
 
6261
6262	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6263	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6264
6265	af_ops->init_req(req, sk, skb);
6266
6267	if (security_inet_conn_request(sk, skb, req))
6268		goto drop_and_free;
6269
 
 
 
6270	if (!want_cookie && !isn) {
6271		/* VJ's idea. We save last timestamp seen
6272		 * from the destination in peer table, when entering
6273		 * state TIME-WAIT, and check against it before
6274		 * accepting new connection request.
6275		 *
6276		 * If "isn" is not zero, this request hit alive
6277		 * timewait bucket, so that all the necessary checks
6278		 * are made in the function processing timewait state.
6279		 */
6280		if (tcp_death_row.sysctl_tw_recycle) {
6281			bool strict;
6282
6283			dst = af_ops->route_req(sk, &fl, req, &strict);
6284
6285			if (dst && strict &&
6286			    !tcp_peer_is_proven(req, dst, true,
6287						tmp_opt.saw_tstamp)) {
6288				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6289				goto drop_and_release;
6290			}
6291		}
6292		/* Kill the following clause, if you dislike this way. */
6293		else if (!net->ipv4.sysctl_tcp_syncookies &&
6294			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6295			  (sysctl_max_syn_backlog >> 2)) &&
6296			 !tcp_peer_is_proven(req, dst, false,
6297					     tmp_opt.saw_tstamp)) {
6298			/* Without syncookies last quarter of
6299			 * backlog is filled with destinations,
6300			 * proven to be alive.
6301			 * It means that we continue to communicate
6302			 * to destinations, already remembered
6303			 * to the moment of synflood.
6304			 */
6305			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6306				    rsk_ops->family);
6307			goto drop_and_release;
6308		}
6309
6310		isn = af_ops->init_seq(skb);
6311	}
6312	if (!dst) {
6313		dst = af_ops->route_req(sk, &fl, req, NULL);
6314		if (!dst)
6315			goto drop_and_free;
6316	}
6317
6318	tcp_ecn_create_request(req, skb, sk, dst);
6319
6320	if (want_cookie) {
6321		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
 
6322		req->cookie_ts = tmp_opt.tstamp_ok;
6323		if (!tmp_opt.tstamp_ok)
6324			inet_rsk(req)->ecn_ok = 0;
6325	}
6326
6327	tcp_rsk(req)->snt_isn = isn;
6328	tcp_rsk(req)->txhash = net_tx_rndhash();
6329	tcp_openreq_init_rwin(req, sk, dst);
6330	if (!want_cookie) {
6331		tcp_reqsk_record_syn(sk, req, skb);
6332		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6333	}
6334	if (fastopen_sk) {
6335		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6336				    &foc, false);
6337		/* Add the child socket directly into the accept queue */
6338		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6339		sk->sk_data_ready(sk);
6340		bh_unlock_sock(fastopen_sk);
6341		sock_put(fastopen_sk);
6342	} else {
6343		tcp_rsk(req)->tfo_listener = false;
6344		if (!want_cookie)
6345			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6346		af_ops->send_synack(sk, dst, &fl, req,
6347				    &foc, !want_cookie);
6348		if (want_cookie)
6349			goto drop_and_free;
 
 
 
6350	}
6351	reqsk_put(req);
6352	return 0;
6353
6354drop_and_release:
6355	dst_release(dst);
6356drop_and_free:
6357	reqsk_free(req);
6358drop:
6359	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6360	return 0;
6361}
6362EXPORT_SYMBOL(tcp_conn_request);
v4.10.11
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *		Pedro Roque	:	Fast Retransmit/Recovery.
  24 *					Two receive queues.
  25 *					Retransmit queue handled by TCP.
  26 *					Better retransmit timer handling.
  27 *					New congestion avoidance.
  28 *					Header prediction.
  29 *					Variable renaming.
  30 *
  31 *		Eric		:	Fast Retransmit.
  32 *		Randy Scott	:	MSS option defines.
  33 *		Eric Schenk	:	Fixes to slow start algorithm.
  34 *		Eric Schenk	:	Yet another double ACK bug.
  35 *		Eric Schenk	:	Delayed ACK bug fixes.
  36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  37 *		David S. Miller	:	Don't allow zero congestion window.
  38 *		Eric Schenk	:	Fix retransmitter so that it sends
  39 *					next packet on ack of previous packet.
  40 *		Andi Kleen	:	Moved open_request checking here
  41 *					and process RSTs for open_requests.
  42 *		Andi Kleen	:	Better prune_queue, and other fixes.
  43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  44 *					timestamps.
  45 *		Andrey Savochkin:	Check sequence numbers correctly when
  46 *					removing SACKs due to in sequence incoming
  47 *					data segments.
  48 *		Andi Kleen:		Make sure we never ack data there is not
  49 *					enough room for. Also make this condition
  50 *					a fatal error if it might still happen.
  51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  52 *					connections with MSS<min(MTU,ann. MSS)
  53 *					work without delayed acks.
  54 *		Andi Kleen:		Process packets with PSH set in the
  55 *					fast path.
  56 *		J Hadi Salim:		ECN support
  57 *	 	Andrei Gurtov,
  58 *		Pasi Sarolahti,
  59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  60 *					engine. Lots of bugs are found.
  61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  62 */
  63
  64#define pr_fmt(fmt) "TCP: " fmt
  65
  66#include <linux/mm.h>
  67#include <linux/slab.h>
  68#include <linux/module.h>
  69#include <linux/sysctl.h>
  70#include <linux/kernel.h>
  71#include <linux/prefetch.h>
  72#include <net/dst.h>
  73#include <net/tcp.h>
  74#include <net/inet_common.h>
  75#include <linux/ipsec.h>
  76#include <asm/unaligned.h>
  77#include <linux/errqueue.h>
  78
  79int sysctl_tcp_timestamps __read_mostly = 1;
  80int sysctl_tcp_window_scaling __read_mostly = 1;
  81int sysctl_tcp_sack __read_mostly = 1;
  82int sysctl_tcp_fack __read_mostly = 1;
  83int sysctl_tcp_max_reordering __read_mostly = 300;
  84int sysctl_tcp_dsack __read_mostly = 1;
  85int sysctl_tcp_app_win __read_mostly = 31;
  86int sysctl_tcp_adv_win_scale __read_mostly = 1;
  87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  88EXPORT_SYMBOL(sysctl_tcp_timestamps);
  89
  90/* rfc5961 challenge ack rate limiting */
  91int sysctl_tcp_challenge_ack_limit = 1000;
  92
  93int sysctl_tcp_stdurg __read_mostly;
  94int sysctl_tcp_rfc1337 __read_mostly;
  95int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  96int sysctl_tcp_frto __read_mostly = 2;
  97int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  98
  99int sysctl_tcp_thin_dupack __read_mostly;
 100
 101int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
 102int sysctl_tcp_early_retrans __read_mostly = 3;
 103int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
 104
 105#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
 106#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
 107#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
 108#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
 109#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
 110#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
 111#define FLAG_ECE		0x40 /* ECE in this ACK				*/
 112#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
 113#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
 114#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
 115#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 116#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
 117#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 118#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
 119
 120#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 121#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 122#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
 123#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 124
 125#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 126#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 127
 128#define REXMIT_NONE	0 /* no loss recovery to do */
 129#define REXMIT_LOST	1 /* retransmit packets marked lost */
 130#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 131
 132static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb)
 133{
 134	static bool __once __read_mostly;
 135
 136	if (!__once) {
 137		struct net_device *dev;
 138
 139		__once = true;
 140
 141		rcu_read_lock();
 142		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 143		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 144			dev ? dev->name : "Unknown driver");
 145		rcu_read_unlock();
 146	}
 147}
 148
 149/* Adapt the MSS value used to make delayed ack decision to the
 150 * real world.
 151 */
 152static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 153{
 154	struct inet_connection_sock *icsk = inet_csk(sk);
 155	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 156	unsigned int len;
 157
 158	icsk->icsk_ack.last_seg_size = 0;
 159
 160	/* skb->len may jitter because of SACKs, even if peer
 161	 * sends good full-sized frames.
 162	 */
 163	len = skb_shinfo(skb)->gso_size ? : skb->len;
 164	if (len >= icsk->icsk_ack.rcv_mss) {
 165		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 166					       tcp_sk(sk)->advmss);
 167		if (unlikely(icsk->icsk_ack.rcv_mss != len))
 168			tcp_gro_dev_warn(sk, skb);
 169	} else {
 170		/* Otherwise, we make more careful check taking into account,
 171		 * that SACKs block is variable.
 172		 *
 173		 * "len" is invariant segment length, including TCP header.
 174		 */
 175		len += skb->data - skb_transport_header(skb);
 176		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 177		    /* If PSH is not set, packet should be
 178		     * full sized, provided peer TCP is not badly broken.
 179		     * This observation (if it is correct 8)) allows
 180		     * to handle super-low mtu links fairly.
 181		     */
 182		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 183		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 184			/* Subtract also invariant (if peer is RFC compliant),
 185			 * tcp header plus fixed timestamp option length.
 186			 * Resulting "len" is MSS free of SACK jitter.
 187			 */
 188			len -= tcp_sk(sk)->tcp_header_len;
 189			icsk->icsk_ack.last_seg_size = len;
 190			if (len == lss) {
 191				icsk->icsk_ack.rcv_mss = len;
 192				return;
 193			}
 194		}
 195		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 196			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 197		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 198	}
 199}
 200
 201static void tcp_incr_quickack(struct sock *sk)
 202{
 203	struct inet_connection_sock *icsk = inet_csk(sk);
 204	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 205
 206	if (quickacks == 0)
 207		quickacks = 2;
 208	if (quickacks > icsk->icsk_ack.quick)
 209		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 210}
 211
 212static void tcp_enter_quickack_mode(struct sock *sk)
 213{
 214	struct inet_connection_sock *icsk = inet_csk(sk);
 215	tcp_incr_quickack(sk);
 216	icsk->icsk_ack.pingpong = 0;
 217	icsk->icsk_ack.ato = TCP_ATO_MIN;
 218}
 219
 220/* Send ACKs quickly, if "quick" count is not exhausted
 221 * and the session is not interactive.
 222 */
 223
 224static bool tcp_in_quickack_mode(struct sock *sk)
 225{
 226	const struct inet_connection_sock *icsk = inet_csk(sk);
 227	const struct dst_entry *dst = __sk_dst_get(sk);
 228
 229	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 230		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
 231}
 232
 233static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 234{
 235	if (tp->ecn_flags & TCP_ECN_OK)
 236		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 237}
 238
 239static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 240{
 241	if (tcp_hdr(skb)->cwr)
 242		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 243}
 244
 245static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 246{
 247	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 248}
 249
 250static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 251{
 252	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 253	case INET_ECN_NOT_ECT:
 254		/* Funny extension: if ECT is not set on a segment,
 255		 * and we already seen ECT on a previous segment,
 256		 * it is probably a retransmit.
 257		 */
 258		if (tp->ecn_flags & TCP_ECN_SEEN)
 259			tcp_enter_quickack_mode((struct sock *)tp);
 260		break;
 261	case INET_ECN_CE:
 262		if (tcp_ca_needs_ecn((struct sock *)tp))
 263			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
 264
 265		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 266			/* Better not delay acks, sender can have a very low cwnd */
 267			tcp_enter_quickack_mode((struct sock *)tp);
 268			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 269		}
 270		tp->ecn_flags |= TCP_ECN_SEEN;
 271		break;
 272	default:
 273		if (tcp_ca_needs_ecn((struct sock *)tp))
 274			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
 275		tp->ecn_flags |= TCP_ECN_SEEN;
 276		break;
 277	}
 278}
 279
 280static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 281{
 282	if (tp->ecn_flags & TCP_ECN_OK)
 283		__tcp_ecn_check_ce(tp, skb);
 284}
 285
 286static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 287{
 288	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 289		tp->ecn_flags &= ~TCP_ECN_OK;
 290}
 291
 292static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 293{
 294	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 295		tp->ecn_flags &= ~TCP_ECN_OK;
 296}
 297
 298static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 299{
 300	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 301		return true;
 302	return false;
 303}
 304
 305/* Buffer size and advertised window tuning.
 306 *
 307 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 308 */
 309
 310static void tcp_sndbuf_expand(struct sock *sk)
 311{
 312	const struct tcp_sock *tp = tcp_sk(sk);
 313	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 314	int sndmem, per_mss;
 315	u32 nr_segs;
 316
 317	/* Worst case is non GSO/TSO : each frame consumes one skb
 318	 * and skb->head is kmalloced using power of two area of memory
 319	 */
 320	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 321		  MAX_TCP_HEADER +
 322		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 323
 324	per_mss = roundup_pow_of_two(per_mss) +
 325		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 326
 327	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 328	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 329
 330	/* Fast Recovery (RFC 5681 3.2) :
 331	 * Cubic needs 1.7 factor, rounded to 2 to include
 332	 * extra cushion (application might react slowly to POLLOUT)
 333	 */
 334	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 335	sndmem *= nr_segs * per_mss;
 336
 337	if (sk->sk_sndbuf < sndmem)
 338		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 339}
 340
 341/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 342 *
 343 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 344 * forward and advertised in receiver window (tp->rcv_wnd) and
 345 * "application buffer", required to isolate scheduling/application
 346 * latencies from network.
 347 * window_clamp is maximal advertised window. It can be less than
 348 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 349 * is reserved for "application" buffer. The less window_clamp is
 350 * the smoother our behaviour from viewpoint of network, but the lower
 351 * throughput and the higher sensitivity of the connection to losses. 8)
 352 *
 353 * rcv_ssthresh is more strict window_clamp used at "slow start"
 354 * phase to predict further behaviour of this connection.
 355 * It is used for two goals:
 356 * - to enforce header prediction at sender, even when application
 357 *   requires some significant "application buffer". It is check #1.
 358 * - to prevent pruning of receive queue because of misprediction
 359 *   of receiver window. Check #2.
 360 *
 361 * The scheme does not work when sender sends good segments opening
 362 * window and then starts to feed us spaghetti. But it should work
 363 * in common situations. Otherwise, we have to rely on queue collapsing.
 364 */
 365
 366/* Slow part of check#2. */
 367static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 368{
 369	struct tcp_sock *tp = tcp_sk(sk);
 370	/* Optimize this! */
 371	int truesize = tcp_win_from_space(skb->truesize) >> 1;
 372	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 373
 374	while (tp->rcv_ssthresh <= window) {
 375		if (truesize <= skb->len)
 376			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 377
 378		truesize >>= 1;
 379		window >>= 1;
 380	}
 381	return 0;
 382}
 383
 384static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 385{
 386	struct tcp_sock *tp = tcp_sk(sk);
 387
 388	/* Check #1 */
 389	if (tp->rcv_ssthresh < tp->window_clamp &&
 390	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
 391	    !tcp_under_memory_pressure(sk)) {
 392		int incr;
 393
 394		/* Check #2. Increase window, if skb with such overhead
 395		 * will fit to rcvbuf in future.
 396		 */
 397		if (tcp_win_from_space(skb->truesize) <= skb->len)
 398			incr = 2 * tp->advmss;
 399		else
 400			incr = __tcp_grow_window(sk, skb);
 401
 402		if (incr) {
 403			incr = max_t(int, incr, 2 * skb->len);
 404			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 405					       tp->window_clamp);
 406			inet_csk(sk)->icsk_ack.quick |= 1;
 407		}
 408	}
 409}
 410
 411/* 3. Tuning rcvbuf, when connection enters established state. */
 412static void tcp_fixup_rcvbuf(struct sock *sk)
 413{
 414	u32 mss = tcp_sk(sk)->advmss;
 415	int rcvmem;
 416
 417	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
 418		 tcp_default_init_rwnd(mss);
 419
 420	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
 421	 * Allow enough cushion so that sender is not limited by our window
 422	 */
 423	if (sysctl_tcp_moderate_rcvbuf)
 424		rcvmem <<= 2;
 425
 426	if (sk->sk_rcvbuf < rcvmem)
 427		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
 428}
 429
 430/* 4. Try to fixup all. It is made immediately after connection enters
 431 *    established state.
 432 */
 433void tcp_init_buffer_space(struct sock *sk)
 434{
 435	struct tcp_sock *tp = tcp_sk(sk);
 436	int maxwin;
 437
 438	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 439		tcp_fixup_rcvbuf(sk);
 440	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 441		tcp_sndbuf_expand(sk);
 442
 443	tp->rcvq_space.space = tp->rcv_wnd;
 444	tp->rcvq_space.time = tcp_time_stamp;
 445	tp->rcvq_space.seq = tp->copied_seq;
 446
 447	maxwin = tcp_full_space(sk);
 448
 449	if (tp->window_clamp >= maxwin) {
 450		tp->window_clamp = maxwin;
 451
 452		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 453			tp->window_clamp = max(maxwin -
 454					       (maxwin >> sysctl_tcp_app_win),
 455					       4 * tp->advmss);
 456	}
 457
 458	/* Force reservation of one segment. */
 459	if (sysctl_tcp_app_win &&
 460	    tp->window_clamp > 2 * tp->advmss &&
 461	    tp->window_clamp + tp->advmss > maxwin)
 462		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 463
 464	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 465	tp->snd_cwnd_stamp = tcp_time_stamp;
 466}
 467
 468/* 5. Recalculate window clamp after socket hit its memory bounds. */
 469static void tcp_clamp_window(struct sock *sk)
 470{
 471	struct tcp_sock *tp = tcp_sk(sk);
 472	struct inet_connection_sock *icsk = inet_csk(sk);
 473
 474	icsk->icsk_ack.quick = 0;
 475
 476	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 477	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 478	    !tcp_under_memory_pressure(sk) &&
 479	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 480		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 481				    sysctl_tcp_rmem[2]);
 482	}
 483	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 484		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 485}
 486
 487/* Initialize RCV_MSS value.
 488 * RCV_MSS is an our guess about MSS used by the peer.
 489 * We haven't any direct information about the MSS.
 490 * It's better to underestimate the RCV_MSS rather than overestimate.
 491 * Overestimations make us ACKing less frequently than needed.
 492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 493 */
 494void tcp_initialize_rcv_mss(struct sock *sk)
 495{
 496	const struct tcp_sock *tp = tcp_sk(sk);
 497	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 498
 499	hint = min(hint, tp->rcv_wnd / 2);
 500	hint = min(hint, TCP_MSS_DEFAULT);
 501	hint = max(hint, TCP_MIN_MSS);
 502
 503	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 504}
 505EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 506
 507/* Receiver "autotuning" code.
 508 *
 509 * The algorithm for RTT estimation w/o timestamps is based on
 510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 511 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 512 *
 513 * More detail on this code can be found at
 514 * <http://staff.psc.edu/jheffner/>,
 515 * though this reference is out of date.  A new paper
 516 * is pending.
 517 */
 518static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 519{
 520	u32 new_sample = tp->rcv_rtt_est.rtt;
 521	long m = sample;
 522
 523	if (m == 0)
 524		m = 1;
 525
 526	if (new_sample != 0) {
 527		/* If we sample in larger samples in the non-timestamp
 528		 * case, we could grossly overestimate the RTT especially
 529		 * with chatty applications or bulk transfer apps which
 530		 * are stalled on filesystem I/O.
 531		 *
 532		 * Also, since we are only going for a minimum in the
 533		 * non-timestamp case, we do not smooth things out
 534		 * else with timestamps disabled convergence takes too
 535		 * long.
 536		 */
 537		if (!win_dep) {
 538			m -= (new_sample >> 3);
 539			new_sample += m;
 540		} else {
 541			m <<= 3;
 542			if (m < new_sample)
 543				new_sample = m;
 544		}
 545	} else {
 546		/* No previous measure. */
 547		new_sample = m << 3;
 548	}
 549
 550	if (tp->rcv_rtt_est.rtt != new_sample)
 551		tp->rcv_rtt_est.rtt = new_sample;
 552}
 553
 554static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 555{
 556	if (tp->rcv_rtt_est.time == 0)
 557		goto new_measure;
 558	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 559		return;
 560	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
 561
 562new_measure:
 563	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 564	tp->rcv_rtt_est.time = tcp_time_stamp;
 565}
 566
 567static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 568					  const struct sk_buff *skb)
 569{
 570	struct tcp_sock *tp = tcp_sk(sk);
 571	if (tp->rx_opt.rcv_tsecr &&
 572	    (TCP_SKB_CB(skb)->end_seq -
 573	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 574		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 575}
 576
 577/*
 578 * This function should be called every time data is copied to user space.
 579 * It calculates the appropriate TCP receive buffer space.
 580 */
 581void tcp_rcv_space_adjust(struct sock *sk)
 582{
 583	struct tcp_sock *tp = tcp_sk(sk);
 584	int time;
 585	int copied;
 586
 587	time = tcp_time_stamp - tp->rcvq_space.time;
 588	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 589		return;
 590
 591	/* Number of bytes copied to user in last RTT */
 592	copied = tp->copied_seq - tp->rcvq_space.seq;
 593	if (copied <= tp->rcvq_space.space)
 594		goto new_measure;
 595
 596	/* A bit of theory :
 597	 * copied = bytes received in previous RTT, our base window
 598	 * To cope with packet losses, we need a 2x factor
 599	 * To cope with slow start, and sender growing its cwin by 100 %
 600	 * every RTT, we need a 4x factor, because the ACK we are sending
 601	 * now is for the next RTT, not the current one :
 602	 * <prev RTT . ><current RTT .. ><next RTT .... >
 603	 */
 604
 605	if (sysctl_tcp_moderate_rcvbuf &&
 606	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 607		int rcvwin, rcvmem, rcvbuf;
 608
 609		/* minimal window to cope with packet losses, assuming
 610		 * steady state. Add some cushion because of small variations.
 611		 */
 612		rcvwin = (copied << 1) + 16 * tp->advmss;
 613
 614		/* If rate increased by 25%,
 615		 *	assume slow start, rcvwin = 3 * copied
 616		 * If rate increased by 50%,
 617		 *	assume sender can use 2x growth, rcvwin = 4 * copied
 618		 */
 619		if (copied >=
 620		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
 621			if (copied >=
 622			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
 623				rcvwin <<= 1;
 624			else
 625				rcvwin += (rcvwin >> 1);
 626		}
 627
 628		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 629		while (tcp_win_from_space(rcvmem) < tp->advmss)
 630			rcvmem += 128;
 631
 632		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
 633		if (rcvbuf > sk->sk_rcvbuf) {
 634			sk->sk_rcvbuf = rcvbuf;
 635
 636			/* Make the window clamp follow along.  */
 637			tp->window_clamp = rcvwin;
 638		}
 639	}
 640	tp->rcvq_space.space = copied;
 641
 642new_measure:
 643	tp->rcvq_space.seq = tp->copied_seq;
 644	tp->rcvq_space.time = tcp_time_stamp;
 645}
 646
 647/* There is something which you must keep in mind when you analyze the
 648 * behavior of the tp->ato delayed ack timeout interval.  When a
 649 * connection starts up, we want to ack as quickly as possible.  The
 650 * problem is that "good" TCP's do slow start at the beginning of data
 651 * transmission.  The means that until we send the first few ACK's the
 652 * sender will sit on his end and only queue most of his data, because
 653 * he can only send snd_cwnd unacked packets at any given time.  For
 654 * each ACK we send, he increments snd_cwnd and transmits more of his
 655 * queue.  -DaveM
 656 */
 657static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 658{
 659	struct tcp_sock *tp = tcp_sk(sk);
 660	struct inet_connection_sock *icsk = inet_csk(sk);
 661	u32 now;
 662
 663	inet_csk_schedule_ack(sk);
 664
 665	tcp_measure_rcv_mss(sk, skb);
 666
 667	tcp_rcv_rtt_measure(tp);
 668
 669	now = tcp_time_stamp;
 670
 671	if (!icsk->icsk_ack.ato) {
 672		/* The _first_ data packet received, initialize
 673		 * delayed ACK engine.
 674		 */
 675		tcp_incr_quickack(sk);
 676		icsk->icsk_ack.ato = TCP_ATO_MIN;
 677	} else {
 678		int m = now - icsk->icsk_ack.lrcvtime;
 679
 680		if (m <= TCP_ATO_MIN / 2) {
 681			/* The fastest case is the first. */
 682			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 683		} else if (m < icsk->icsk_ack.ato) {
 684			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 685			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 686				icsk->icsk_ack.ato = icsk->icsk_rto;
 687		} else if (m > icsk->icsk_rto) {
 688			/* Too long gap. Apparently sender failed to
 689			 * restart window, so that we send ACKs quickly.
 690			 */
 691			tcp_incr_quickack(sk);
 692			sk_mem_reclaim(sk);
 693		}
 694	}
 695	icsk->icsk_ack.lrcvtime = now;
 696
 697	tcp_ecn_check_ce(tp, skb);
 698
 699	if (skb->len >= 128)
 700		tcp_grow_window(sk, skb);
 701}
 702
 703/* Called to compute a smoothed rtt estimate. The data fed to this
 704 * routine either comes from timestamps, or from segments that were
 705 * known _not_ to have been retransmitted [see Karn/Partridge
 706 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 707 * piece by Van Jacobson.
 708 * NOTE: the next three routines used to be one big routine.
 709 * To save cycles in the RFC 1323 implementation it was better to break
 710 * it up into three procedures. -- erics
 711 */
 712static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 713{
 714	struct tcp_sock *tp = tcp_sk(sk);
 715	long m = mrtt_us; /* RTT */
 716	u32 srtt = tp->srtt_us;
 717
 718	/*	The following amusing code comes from Jacobson's
 719	 *	article in SIGCOMM '88.  Note that rtt and mdev
 720	 *	are scaled versions of rtt and mean deviation.
 721	 *	This is designed to be as fast as possible
 722	 *	m stands for "measurement".
 723	 *
 724	 *	On a 1990 paper the rto value is changed to:
 725	 *	RTO = rtt + 4 * mdev
 726	 *
 727	 * Funny. This algorithm seems to be very broken.
 728	 * These formulae increase RTO, when it should be decreased, increase
 729	 * too slowly, when it should be increased quickly, decrease too quickly
 730	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 731	 * does not matter how to _calculate_ it. Seems, it was trap
 732	 * that VJ failed to avoid. 8)
 733	 */
 734	if (srtt != 0) {
 735		m -= (srtt >> 3);	/* m is now error in rtt est */
 736		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 737		if (m < 0) {
 738			m = -m;		/* m is now abs(error) */
 739			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 740			/* This is similar to one of Eifel findings.
 741			 * Eifel blocks mdev updates when rtt decreases.
 742			 * This solution is a bit different: we use finer gain
 743			 * for mdev in this case (alpha*beta).
 744			 * Like Eifel it also prevents growth of rto,
 745			 * but also it limits too fast rto decreases,
 746			 * happening in pure Eifel.
 747			 */
 748			if (m > 0)
 749				m >>= 3;
 750		} else {
 751			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 752		}
 753		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 754		if (tp->mdev_us > tp->mdev_max_us) {
 755			tp->mdev_max_us = tp->mdev_us;
 756			if (tp->mdev_max_us > tp->rttvar_us)
 757				tp->rttvar_us = tp->mdev_max_us;
 758		}
 759		if (after(tp->snd_una, tp->rtt_seq)) {
 760			if (tp->mdev_max_us < tp->rttvar_us)
 761				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 762			tp->rtt_seq = tp->snd_nxt;
 763			tp->mdev_max_us = tcp_rto_min_us(sk);
 764		}
 765	} else {
 766		/* no previous measure. */
 767		srtt = m << 3;		/* take the measured time to be rtt */
 768		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 769		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 770		tp->mdev_max_us = tp->rttvar_us;
 771		tp->rtt_seq = tp->snd_nxt;
 772	}
 773	tp->srtt_us = max(1U, srtt);
 774}
 775
 776/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
 777 * Note: TCP stack does not yet implement pacing.
 778 * FQ packet scheduler can be used to implement cheap but effective
 779 * TCP pacing, to smooth the burst on large writes when packets
 780 * in flight is significantly lower than cwnd (or rwin)
 781 */
 782int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
 783int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
 784
 785static void tcp_update_pacing_rate(struct sock *sk)
 786{
 787	const struct tcp_sock *tp = tcp_sk(sk);
 788	u64 rate;
 789
 790	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 791	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 792
 793	/* current rate is (cwnd * mss) / srtt
 794	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 795	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 796	 *
 797	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 798	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 799	 *	 end of slow start and should slow down.
 800	 */
 801	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 802		rate *= sysctl_tcp_pacing_ss_ratio;
 803	else
 804		rate *= sysctl_tcp_pacing_ca_ratio;
 805
 806	rate *= max(tp->snd_cwnd, tp->packets_out);
 807
 808	if (likely(tp->srtt_us))
 809		do_div(rate, tp->srtt_us);
 810
 811	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
 812	 * without any lock. We want to make sure compiler wont store
 813	 * intermediate values in this location.
 814	 */
 815	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
 816						sk->sk_max_pacing_rate);
 817}
 818
 819/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 820 * routine referred to above.
 821 */
 822static void tcp_set_rto(struct sock *sk)
 823{
 824	const struct tcp_sock *tp = tcp_sk(sk);
 825	/* Old crap is replaced with new one. 8)
 826	 *
 827	 * More seriously:
 828	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 829	 *    It cannot be less due to utterly erratic ACK generation made
 830	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 831	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 832	 *    is invisible. Actually, Linux-2.4 also generates erratic
 833	 *    ACKs in some circumstances.
 834	 */
 835	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 836
 837	/* 2. Fixups made earlier cannot be right.
 838	 *    If we do not estimate RTO correctly without them,
 839	 *    all the algo is pure shit and should be replaced
 840	 *    with correct one. It is exactly, which we pretend to do.
 841	 */
 842
 843	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 844	 * guarantees that rto is higher.
 845	 */
 846	tcp_bound_rto(sk);
 847}
 848
 849__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 850{
 851	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 852
 853	if (!cwnd)
 854		cwnd = TCP_INIT_CWND;
 855	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 856}
 857
 858/*
 859 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 860 * disables it when reordering is detected
 861 */
 862void tcp_disable_fack(struct tcp_sock *tp)
 863{
 864	/* RFC3517 uses different metric in lost marker => reset on change */
 865	if (tcp_is_fack(tp))
 866		tp->lost_skb_hint = NULL;
 867	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
 868}
 869
 870/* Take a notice that peer is sending D-SACKs */
 871static void tcp_dsack_seen(struct tcp_sock *tp)
 872{
 873	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 874}
 875
 876static void tcp_update_reordering(struct sock *sk, const int metric,
 877				  const int ts)
 878{
 879	struct tcp_sock *tp = tcp_sk(sk);
 880	if (metric > tp->reordering) {
 881		int mib_idx;
 882
 883		tp->reordering = min(sysctl_tcp_max_reordering, metric);
 884
 885		/* This exciting event is worth to be remembered. 8) */
 886		if (ts)
 887			mib_idx = LINUX_MIB_TCPTSREORDER;
 888		else if (tcp_is_reno(tp))
 889			mib_idx = LINUX_MIB_TCPRENOREORDER;
 890		else if (tcp_is_fack(tp))
 891			mib_idx = LINUX_MIB_TCPFACKREORDER;
 892		else
 893			mib_idx = LINUX_MIB_TCPSACKREORDER;
 894
 895		NET_INC_STATS(sock_net(sk), mib_idx);
 896#if FASTRETRANS_DEBUG > 1
 897		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 898			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 899			 tp->reordering,
 900			 tp->fackets_out,
 901			 tp->sacked_out,
 902			 tp->undo_marker ? tp->undo_retrans : 0);
 903#endif
 904		tcp_disable_fack(tp);
 905	}
 906
 907	if (metric > 0)
 908		tcp_disable_early_retrans(tp);
 909	tp->rack.reord = 1;
 910}
 911
 912/* This must be called before lost_out is incremented */
 913static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 914{
 915	if (!tp->retransmit_skb_hint ||
 916	    before(TCP_SKB_CB(skb)->seq,
 917		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 918		tp->retransmit_skb_hint = skb;
 919
 920	if (!tp->lost_out ||
 921	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
 922		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
 923}
 924
 925/* Sum the number of packets on the wire we have marked as lost.
 926 * There are two cases we care about here:
 927 * a) Packet hasn't been marked lost (nor retransmitted),
 928 *    and this is the first loss.
 929 * b) Packet has been marked both lost and retransmitted,
 930 *    and this means we think it was lost again.
 931 */
 932static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
 933{
 934	__u8 sacked = TCP_SKB_CB(skb)->sacked;
 935
 936	if (!(sacked & TCPCB_LOST) ||
 937	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
 938		tp->lost += tcp_skb_pcount(skb);
 939}
 940
 941static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 942{
 943	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 944		tcp_verify_retransmit_hint(tp, skb);
 945
 946		tp->lost_out += tcp_skb_pcount(skb);
 947		tcp_sum_lost(tp, skb);
 948		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 949	}
 950}
 951
 952void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
 953{
 954	tcp_verify_retransmit_hint(tp, skb);
 955
 956	tcp_sum_lost(tp, skb);
 957	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 958		tp->lost_out += tcp_skb_pcount(skb);
 959		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 960	}
 961}
 962
 963/* This procedure tags the retransmission queue when SACKs arrive.
 964 *
 965 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 966 * Packets in queue with these bits set are counted in variables
 967 * sacked_out, retrans_out and lost_out, correspondingly.
 968 *
 969 * Valid combinations are:
 970 * Tag  InFlight	Description
 971 * 0	1		- orig segment is in flight.
 972 * S	0		- nothing flies, orig reached receiver.
 973 * L	0		- nothing flies, orig lost by net.
 974 * R	2		- both orig and retransmit are in flight.
 975 * L|R	1		- orig is lost, retransmit is in flight.
 976 * S|R  1		- orig reached receiver, retrans is still in flight.
 977 * (L|S|R is logically valid, it could occur when L|R is sacked,
 978 *  but it is equivalent to plain S and code short-curcuits it to S.
 979 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 980 *
 981 * These 6 states form finite state machine, controlled by the following events:
 982 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 983 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 984 * 3. Loss detection event of two flavors:
 985 *	A. Scoreboard estimator decided the packet is lost.
 986 *	   A'. Reno "three dupacks" marks head of queue lost.
 987 *	   A''. Its FACK modification, head until snd.fack is lost.
 988 *	B. SACK arrives sacking SND.NXT at the moment, when the
 989 *	   segment was retransmitted.
 990 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 991 *
 992 * It is pleasant to note, that state diagram turns out to be commutative,
 993 * so that we are allowed not to be bothered by order of our actions,
 994 * when multiple events arrive simultaneously. (see the function below).
 995 *
 996 * Reordering detection.
 997 * --------------------
 998 * Reordering metric is maximal distance, which a packet can be displaced
 999 * in packet stream. With SACKs we can estimate it:
1000 *
1001 * 1. SACK fills old hole and the corresponding segment was not
1002 *    ever retransmitted -> reordering. Alas, we cannot use it
1003 *    when segment was retransmitted.
1004 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1005 *    for retransmitted and already SACKed segment -> reordering..
1006 * Both of these heuristics are not used in Loss state, when we cannot
1007 * account for retransmits accurately.
1008 *
1009 * SACK block validation.
1010 * ----------------------
1011 *
1012 * SACK block range validation checks that the received SACK block fits to
1013 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1014 * Note that SND.UNA is not included to the range though being valid because
1015 * it means that the receiver is rather inconsistent with itself reporting
1016 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1017 * perfectly valid, however, in light of RFC2018 which explicitly states
1018 * that "SACK block MUST reflect the newest segment.  Even if the newest
1019 * segment is going to be discarded ...", not that it looks very clever
1020 * in case of head skb. Due to potentional receiver driven attacks, we
1021 * choose to avoid immediate execution of a walk in write queue due to
1022 * reneging and defer head skb's loss recovery to standard loss recovery
1023 * procedure that will eventually trigger (nothing forbids us doing this).
1024 *
1025 * Implements also blockage to start_seq wrap-around. Problem lies in the
1026 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1027 * there's no guarantee that it will be before snd_nxt (n). The problem
1028 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1029 * wrap (s_w):
1030 *
1031 *         <- outs wnd ->                          <- wrapzone ->
1032 *         u     e      n                         u_w   e_w  s n_w
1033 *         |     |      |                          |     |   |  |
1034 * |<------------+------+----- TCP seqno space --------------+---------->|
1035 * ...-- <2^31 ->|                                           |<--------...
1036 * ...---- >2^31 ------>|                                    |<--------...
1037 *
1038 * Current code wouldn't be vulnerable but it's better still to discard such
1039 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1040 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1041 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1042 * equal to the ideal case (infinite seqno space without wrap caused issues).
1043 *
1044 * With D-SACK the lower bound is extended to cover sequence space below
1045 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1046 * again, D-SACK block must not to go across snd_una (for the same reason as
1047 * for the normal SACK blocks, explained above). But there all simplicity
1048 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1049 * fully below undo_marker they do not affect behavior in anyway and can
1050 * therefore be safely ignored. In rare cases (which are more or less
1051 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1052 * fragmentation and packet reordering past skb's retransmission. To consider
1053 * them correctly, the acceptable range must be extended even more though
1054 * the exact amount is rather hard to quantify. However, tp->max_window can
1055 * be used as an exaggerated estimate.
1056 */
1057static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1058				   u32 start_seq, u32 end_seq)
1059{
1060	/* Too far in future, or reversed (interpretation is ambiguous) */
1061	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1062		return false;
1063
1064	/* Nasty start_seq wrap-around check (see comments above) */
1065	if (!before(start_seq, tp->snd_nxt))
1066		return false;
1067
1068	/* In outstanding window? ...This is valid exit for D-SACKs too.
1069	 * start_seq == snd_una is non-sensical (see comments above)
1070	 */
1071	if (after(start_seq, tp->snd_una))
1072		return true;
1073
1074	if (!is_dsack || !tp->undo_marker)
1075		return false;
1076
1077	/* ...Then it's D-SACK, and must reside below snd_una completely */
1078	if (after(end_seq, tp->snd_una))
1079		return false;
1080
1081	if (!before(start_seq, tp->undo_marker))
1082		return true;
1083
1084	/* Too old */
1085	if (!after(end_seq, tp->undo_marker))
1086		return false;
1087
1088	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1089	 *   start_seq < undo_marker and end_seq >= undo_marker.
1090	 */
1091	return !before(start_seq, end_seq - tp->max_window);
1092}
1093
1094static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1095			    struct tcp_sack_block_wire *sp, int num_sacks,
1096			    u32 prior_snd_una)
1097{
1098	struct tcp_sock *tp = tcp_sk(sk);
1099	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1100	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1101	bool dup_sack = false;
1102
1103	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1104		dup_sack = true;
1105		tcp_dsack_seen(tp);
1106		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1107	} else if (num_sacks > 1) {
1108		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1109		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1110
1111		if (!after(end_seq_0, end_seq_1) &&
1112		    !before(start_seq_0, start_seq_1)) {
1113			dup_sack = true;
1114			tcp_dsack_seen(tp);
1115			NET_INC_STATS(sock_net(sk),
1116					LINUX_MIB_TCPDSACKOFORECV);
1117		}
1118	}
1119
1120	/* D-SACK for already forgotten data... Do dumb counting. */
1121	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1122	    !after(end_seq_0, prior_snd_una) &&
1123	    after(end_seq_0, tp->undo_marker))
1124		tp->undo_retrans--;
1125
1126	return dup_sack;
1127}
1128
1129struct tcp_sacktag_state {
1130	int	reord;
1131	int	fack_count;
1132	/* Timestamps for earliest and latest never-retransmitted segment
1133	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1134	 * but congestion control should still get an accurate delay signal.
1135	 */
1136	struct skb_mstamp first_sackt;
1137	struct skb_mstamp last_sackt;
1138	struct rate_sample *rate;
1139	int	flag;
1140};
1141
1142/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1143 * the incoming SACK may not exactly match but we can find smaller MSS
1144 * aligned portion of it that matches. Therefore we might need to fragment
1145 * which may fail and creates some hassle (caller must handle error case
1146 * returns).
1147 *
1148 * FIXME: this could be merged to shift decision code
1149 */
1150static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1151				  u32 start_seq, u32 end_seq)
1152{
1153	int err;
1154	bool in_sack;
1155	unsigned int pkt_len;
1156	unsigned int mss;
1157
1158	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1159		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1160
1161	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1162	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1163		mss = tcp_skb_mss(skb);
1164		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1165
1166		if (!in_sack) {
1167			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1168			if (pkt_len < mss)
1169				pkt_len = mss;
1170		} else {
1171			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1172			if (pkt_len < mss)
1173				return -EINVAL;
1174		}
1175
1176		/* Round if necessary so that SACKs cover only full MSSes
1177		 * and/or the remaining small portion (if present)
1178		 */
1179		if (pkt_len > mss) {
1180			unsigned int new_len = (pkt_len / mss) * mss;
1181			if (!in_sack && new_len < pkt_len) {
1182				new_len += mss;
1183				if (new_len >= skb->len)
1184					return 0;
1185			}
1186			pkt_len = new_len;
1187		}
1188		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1189		if (err < 0)
1190			return err;
1191	}
1192
1193	return in_sack;
1194}
1195
1196/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1197static u8 tcp_sacktag_one(struct sock *sk,
1198			  struct tcp_sacktag_state *state, u8 sacked,
1199			  u32 start_seq, u32 end_seq,
1200			  int dup_sack, int pcount,
1201			  const struct skb_mstamp *xmit_time)
1202{
1203	struct tcp_sock *tp = tcp_sk(sk);
1204	int fack_count = state->fack_count;
1205
1206	/* Account D-SACK for retransmitted packet. */
1207	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1208		if (tp->undo_marker && tp->undo_retrans > 0 &&
1209		    after(end_seq, tp->undo_marker))
1210			tp->undo_retrans--;
1211		if (sacked & TCPCB_SACKED_ACKED)
1212			state->reord = min(fack_count, state->reord);
1213	}
1214
1215	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1216	if (!after(end_seq, tp->snd_una))
1217		return sacked;
1218
1219	if (!(sacked & TCPCB_SACKED_ACKED)) {
1220		tcp_rack_advance(tp, xmit_time, sacked);
1221
1222		if (sacked & TCPCB_SACKED_RETRANS) {
1223			/* If the segment is not tagged as lost,
1224			 * we do not clear RETRANS, believing
1225			 * that retransmission is still in flight.
1226			 */
1227			if (sacked & TCPCB_LOST) {
1228				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1229				tp->lost_out -= pcount;
1230				tp->retrans_out -= pcount;
1231			}
1232		} else {
1233			if (!(sacked & TCPCB_RETRANS)) {
1234				/* New sack for not retransmitted frame,
1235				 * which was in hole. It is reordering.
1236				 */
1237				if (before(start_seq,
1238					   tcp_highest_sack_seq(tp)))
1239					state->reord = min(fack_count,
1240							   state->reord);
1241				if (!after(end_seq, tp->high_seq))
1242					state->flag |= FLAG_ORIG_SACK_ACKED;
1243				if (state->first_sackt.v64 == 0)
1244					state->first_sackt = *xmit_time;
1245				state->last_sackt = *xmit_time;
1246			}
1247
1248			if (sacked & TCPCB_LOST) {
1249				sacked &= ~TCPCB_LOST;
1250				tp->lost_out -= pcount;
1251			}
1252		}
1253
1254		sacked |= TCPCB_SACKED_ACKED;
1255		state->flag |= FLAG_DATA_SACKED;
1256		tp->sacked_out += pcount;
1257		tp->delivered += pcount;  /* Out-of-order packets delivered */
1258
1259		fack_count += pcount;
1260
1261		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1262		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1263		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1264			tp->lost_cnt_hint += pcount;
1265
1266		if (fack_count > tp->fackets_out)
1267			tp->fackets_out = fack_count;
1268	}
1269
1270	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1271	 * frames and clear it. undo_retrans is decreased above, L|R frames
1272	 * are accounted above as well.
1273	 */
1274	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1275		sacked &= ~TCPCB_SACKED_RETRANS;
1276		tp->retrans_out -= pcount;
1277	}
1278
1279	return sacked;
1280}
1281
1282/* Shift newly-SACKed bytes from this skb to the immediately previous
1283 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1284 */
1285static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1286			    struct tcp_sacktag_state *state,
1287			    unsigned int pcount, int shifted, int mss,
1288			    bool dup_sack)
1289{
1290	struct tcp_sock *tp = tcp_sk(sk);
1291	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1292	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1293	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1294
1295	BUG_ON(!pcount);
1296
1297	/* Adjust counters and hints for the newly sacked sequence
1298	 * range but discard the return value since prev is already
1299	 * marked. We must tag the range first because the seq
1300	 * advancement below implicitly advances
1301	 * tcp_highest_sack_seq() when skb is highest_sack.
1302	 */
1303	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1304			start_seq, end_seq, dup_sack, pcount,
1305			&skb->skb_mstamp);
1306	tcp_rate_skb_delivered(sk, skb, state->rate);
1307
1308	if (skb == tp->lost_skb_hint)
1309		tp->lost_cnt_hint += pcount;
1310
1311	TCP_SKB_CB(prev)->end_seq += shifted;
1312	TCP_SKB_CB(skb)->seq += shifted;
1313
1314	tcp_skb_pcount_add(prev, pcount);
1315	BUG_ON(tcp_skb_pcount(skb) < pcount);
1316	tcp_skb_pcount_add(skb, -pcount);
1317
1318	/* When we're adding to gso_segs == 1, gso_size will be zero,
1319	 * in theory this shouldn't be necessary but as long as DSACK
1320	 * code can come after this skb later on it's better to keep
1321	 * setting gso_size to something.
1322	 */
1323	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1324		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1325
1326	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1327	if (tcp_skb_pcount(skb) <= 1)
1328		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1329
1330	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1331	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1332
1333	if (skb->len > 0) {
1334		BUG_ON(!tcp_skb_pcount(skb));
1335		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1336		return false;
1337	}
1338
1339	/* Whole SKB was eaten :-) */
1340
1341	if (skb == tp->retransmit_skb_hint)
1342		tp->retransmit_skb_hint = prev;
1343	if (skb == tp->lost_skb_hint) {
1344		tp->lost_skb_hint = prev;
1345		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1346	}
1347
1348	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1349	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1350	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1351		TCP_SKB_CB(prev)->end_seq++;
1352
1353	if (skb == tcp_highest_sack(sk))
1354		tcp_advance_highest_sack(sk, skb);
1355
1356	tcp_skb_collapse_tstamp(prev, skb);
1357	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1358		TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1359
1360	tcp_unlink_write_queue(skb, sk);
1361	sk_wmem_free_skb(sk, skb);
1362
1363	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1364
1365	return true;
1366}
1367
1368/* I wish gso_size would have a bit more sane initialization than
1369 * something-or-zero which complicates things
1370 */
1371static int tcp_skb_seglen(const struct sk_buff *skb)
1372{
1373	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1374}
1375
1376/* Shifting pages past head area doesn't work */
1377static int skb_can_shift(const struct sk_buff *skb)
1378{
1379	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1380}
1381
1382/* Try collapsing SACK blocks spanning across multiple skbs to a single
1383 * skb.
1384 */
1385static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1386					  struct tcp_sacktag_state *state,
1387					  u32 start_seq, u32 end_seq,
1388					  bool dup_sack)
1389{
1390	struct tcp_sock *tp = tcp_sk(sk);
1391	struct sk_buff *prev;
1392	int mss;
1393	int pcount = 0;
1394	int len;
1395	int in_sack;
1396
1397	if (!sk_can_gso(sk))
1398		goto fallback;
1399
1400	/* Normally R but no L won't result in plain S */
1401	if (!dup_sack &&
1402	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1403		goto fallback;
1404	if (!skb_can_shift(skb))
1405		goto fallback;
1406	/* This frame is about to be dropped (was ACKed). */
1407	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1408		goto fallback;
1409
1410	/* Can only happen with delayed DSACK + discard craziness */
1411	if (unlikely(skb == tcp_write_queue_head(sk)))
1412		goto fallback;
1413	prev = tcp_write_queue_prev(sk, skb);
1414
1415	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1416		goto fallback;
1417
1418	if (!tcp_skb_can_collapse_to(prev))
1419		goto fallback;
1420
1421	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1422		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1423
1424	if (in_sack) {
1425		len = skb->len;
1426		pcount = tcp_skb_pcount(skb);
1427		mss = tcp_skb_seglen(skb);
1428
1429		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1430		 * drop this restriction as unnecessary
1431		 */
1432		if (mss != tcp_skb_seglen(prev))
1433			goto fallback;
1434	} else {
1435		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1436			goto noop;
1437		/* CHECKME: This is non-MSS split case only?, this will
1438		 * cause skipped skbs due to advancing loop btw, original
1439		 * has that feature too
1440		 */
1441		if (tcp_skb_pcount(skb) <= 1)
1442			goto noop;
1443
1444		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1445		if (!in_sack) {
1446			/* TODO: head merge to next could be attempted here
1447			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1448			 * though it might not be worth of the additional hassle
1449			 *
1450			 * ...we can probably just fallback to what was done
1451			 * previously. We could try merging non-SACKed ones
1452			 * as well but it probably isn't going to buy off
1453			 * because later SACKs might again split them, and
1454			 * it would make skb timestamp tracking considerably
1455			 * harder problem.
1456			 */
1457			goto fallback;
1458		}
1459
1460		len = end_seq - TCP_SKB_CB(skb)->seq;
1461		BUG_ON(len < 0);
1462		BUG_ON(len > skb->len);
1463
1464		/* MSS boundaries should be honoured or else pcount will
1465		 * severely break even though it makes things bit trickier.
1466		 * Optimize common case to avoid most of the divides
1467		 */
1468		mss = tcp_skb_mss(skb);
1469
1470		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1471		 * drop this restriction as unnecessary
1472		 */
1473		if (mss != tcp_skb_seglen(prev))
1474			goto fallback;
1475
1476		if (len == mss) {
1477			pcount = 1;
1478		} else if (len < mss) {
1479			goto noop;
1480		} else {
1481			pcount = len / mss;
1482			len = pcount * mss;
1483		}
1484	}
1485
1486	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1487	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1488		goto fallback;
1489
1490	if (!skb_shift(prev, skb, len))
1491		goto fallback;
1492	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1493		goto out;
1494
1495	/* Hole filled allows collapsing with the next as well, this is very
1496	 * useful when hole on every nth skb pattern happens
1497	 */
1498	if (prev == tcp_write_queue_tail(sk))
1499		goto out;
1500	skb = tcp_write_queue_next(sk, prev);
1501
1502	if (!skb_can_shift(skb) ||
1503	    (skb == tcp_send_head(sk)) ||
1504	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1505	    (mss != tcp_skb_seglen(skb)))
1506		goto out;
1507
1508	len = skb->len;
1509	if (skb_shift(prev, skb, len)) {
1510		pcount += tcp_skb_pcount(skb);
1511		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1512	}
1513
1514out:
1515	state->fack_count += pcount;
1516	return prev;
1517
1518noop:
1519	return skb;
1520
1521fallback:
1522	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1523	return NULL;
1524}
1525
1526static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1527					struct tcp_sack_block *next_dup,
1528					struct tcp_sacktag_state *state,
1529					u32 start_seq, u32 end_seq,
1530					bool dup_sack_in)
1531{
1532	struct tcp_sock *tp = tcp_sk(sk);
1533	struct sk_buff *tmp;
1534
1535	tcp_for_write_queue_from(skb, sk) {
1536		int in_sack = 0;
1537		bool dup_sack = dup_sack_in;
1538
1539		if (skb == tcp_send_head(sk))
1540			break;
1541
1542		/* queue is in-order => we can short-circuit the walk early */
1543		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1544			break;
1545
1546		if (next_dup  &&
1547		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1548			in_sack = tcp_match_skb_to_sack(sk, skb,
1549							next_dup->start_seq,
1550							next_dup->end_seq);
1551			if (in_sack > 0)
1552				dup_sack = true;
1553		}
1554
1555		/* skb reference here is a bit tricky to get right, since
1556		 * shifting can eat and free both this skb and the next,
1557		 * so not even _safe variant of the loop is enough.
1558		 */
1559		if (in_sack <= 0) {
1560			tmp = tcp_shift_skb_data(sk, skb, state,
1561						 start_seq, end_seq, dup_sack);
1562			if (tmp) {
1563				if (tmp != skb) {
1564					skb = tmp;
1565					continue;
1566				}
1567
1568				in_sack = 0;
1569			} else {
1570				in_sack = tcp_match_skb_to_sack(sk, skb,
1571								start_seq,
1572								end_seq);
1573			}
1574		}
1575
1576		if (unlikely(in_sack < 0))
1577			break;
1578
1579		if (in_sack) {
1580			TCP_SKB_CB(skb)->sacked =
1581				tcp_sacktag_one(sk,
1582						state,
1583						TCP_SKB_CB(skb)->sacked,
1584						TCP_SKB_CB(skb)->seq,
1585						TCP_SKB_CB(skb)->end_seq,
1586						dup_sack,
1587						tcp_skb_pcount(skb),
1588						&skb->skb_mstamp);
1589			tcp_rate_skb_delivered(sk, skb, state->rate);
1590
1591			if (!before(TCP_SKB_CB(skb)->seq,
1592				    tcp_highest_sack_seq(tp)))
1593				tcp_advance_highest_sack(sk, skb);
1594		}
1595
1596		state->fack_count += tcp_skb_pcount(skb);
1597	}
1598	return skb;
1599}
1600
1601/* Avoid all extra work that is being done by sacktag while walking in
1602 * a normal way
1603 */
1604static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1605					struct tcp_sacktag_state *state,
1606					u32 skip_to_seq)
1607{
1608	tcp_for_write_queue_from(skb, sk) {
1609		if (skb == tcp_send_head(sk))
1610			break;
1611
1612		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1613			break;
1614
1615		state->fack_count += tcp_skb_pcount(skb);
1616	}
1617	return skb;
1618}
1619
1620static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1621						struct sock *sk,
1622						struct tcp_sack_block *next_dup,
1623						struct tcp_sacktag_state *state,
1624						u32 skip_to_seq)
1625{
1626	if (!next_dup)
1627		return skb;
1628
1629	if (before(next_dup->start_seq, skip_to_seq)) {
1630		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1631		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1632				       next_dup->start_seq, next_dup->end_seq,
1633				       1);
1634	}
1635
1636	return skb;
1637}
1638
1639static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1640{
1641	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1642}
1643
1644static int
1645tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1646			u32 prior_snd_una, struct tcp_sacktag_state *state)
1647{
1648	struct tcp_sock *tp = tcp_sk(sk);
1649	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1650				    TCP_SKB_CB(ack_skb)->sacked);
1651	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1652	struct tcp_sack_block sp[TCP_NUM_SACKS];
1653	struct tcp_sack_block *cache;
1654	struct sk_buff *skb;
1655	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1656	int used_sacks;
1657	bool found_dup_sack = false;
1658	int i, j;
1659	int first_sack_index;
1660
1661	state->flag = 0;
1662	state->reord = tp->packets_out;
1663
1664	if (!tp->sacked_out) {
1665		if (WARN_ON(tp->fackets_out))
1666			tp->fackets_out = 0;
1667		tcp_highest_sack_reset(sk);
1668	}
1669
1670	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1671					 num_sacks, prior_snd_una);
1672	if (found_dup_sack) {
1673		state->flag |= FLAG_DSACKING_ACK;
1674		tp->delivered++; /* A spurious retransmission is delivered */
1675	}
1676
1677	/* Eliminate too old ACKs, but take into
1678	 * account more or less fresh ones, they can
1679	 * contain valid SACK info.
1680	 */
1681	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1682		return 0;
1683
1684	if (!tp->packets_out)
1685		goto out;
1686
1687	used_sacks = 0;
1688	first_sack_index = 0;
1689	for (i = 0; i < num_sacks; i++) {
1690		bool dup_sack = !i && found_dup_sack;
1691
1692		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1693		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1694
1695		if (!tcp_is_sackblock_valid(tp, dup_sack,
1696					    sp[used_sacks].start_seq,
1697					    sp[used_sacks].end_seq)) {
1698			int mib_idx;
1699
1700			if (dup_sack) {
1701				if (!tp->undo_marker)
1702					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1703				else
1704					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1705			} else {
1706				/* Don't count olds caused by ACK reordering */
1707				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1708				    !after(sp[used_sacks].end_seq, tp->snd_una))
1709					continue;
1710				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1711			}
1712
1713			NET_INC_STATS(sock_net(sk), mib_idx);
1714			if (i == 0)
1715				first_sack_index = -1;
1716			continue;
1717		}
1718
1719		/* Ignore very old stuff early */
1720		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1721			continue;
1722
1723		used_sacks++;
1724	}
1725
1726	/* order SACK blocks to allow in order walk of the retrans queue */
1727	for (i = used_sacks - 1; i > 0; i--) {
1728		for (j = 0; j < i; j++) {
1729			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1730				swap(sp[j], sp[j + 1]);
1731
1732				/* Track where the first SACK block goes to */
1733				if (j == first_sack_index)
1734					first_sack_index = j + 1;
1735			}
1736		}
1737	}
1738
1739	skb = tcp_write_queue_head(sk);
1740	state->fack_count = 0;
1741	i = 0;
1742
1743	if (!tp->sacked_out) {
1744		/* It's already past, so skip checking against it */
1745		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1746	} else {
1747		cache = tp->recv_sack_cache;
1748		/* Skip empty blocks in at head of the cache */
1749		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1750		       !cache->end_seq)
1751			cache++;
1752	}
1753
1754	while (i < used_sacks) {
1755		u32 start_seq = sp[i].start_seq;
1756		u32 end_seq = sp[i].end_seq;
1757		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1758		struct tcp_sack_block *next_dup = NULL;
1759
1760		if (found_dup_sack && ((i + 1) == first_sack_index))
1761			next_dup = &sp[i + 1];
1762
1763		/* Skip too early cached blocks */
1764		while (tcp_sack_cache_ok(tp, cache) &&
1765		       !before(start_seq, cache->end_seq))
1766			cache++;
1767
1768		/* Can skip some work by looking recv_sack_cache? */
1769		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1770		    after(end_seq, cache->start_seq)) {
1771
1772			/* Head todo? */
1773			if (before(start_seq, cache->start_seq)) {
1774				skb = tcp_sacktag_skip(skb, sk, state,
1775						       start_seq);
1776				skb = tcp_sacktag_walk(skb, sk, next_dup,
1777						       state,
1778						       start_seq,
1779						       cache->start_seq,
1780						       dup_sack);
1781			}
1782
1783			/* Rest of the block already fully processed? */
1784			if (!after(end_seq, cache->end_seq))
1785				goto advance_sp;
1786
1787			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1788						       state,
1789						       cache->end_seq);
1790
1791			/* ...tail remains todo... */
1792			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1793				/* ...but better entrypoint exists! */
1794				skb = tcp_highest_sack(sk);
1795				if (!skb)
1796					break;
1797				state->fack_count = tp->fackets_out;
1798				cache++;
1799				goto walk;
1800			}
1801
1802			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1803			/* Check overlap against next cached too (past this one already) */
1804			cache++;
1805			continue;
1806		}
1807
1808		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1809			skb = tcp_highest_sack(sk);
1810			if (!skb)
1811				break;
1812			state->fack_count = tp->fackets_out;
1813		}
1814		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1815
1816walk:
1817		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1818				       start_seq, end_seq, dup_sack);
1819
1820advance_sp:
1821		i++;
1822	}
1823
1824	/* Clear the head of the cache sack blocks so we can skip it next time */
1825	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1826		tp->recv_sack_cache[i].start_seq = 0;
1827		tp->recv_sack_cache[i].end_seq = 0;
1828	}
1829	for (j = 0; j < used_sacks; j++)
1830		tp->recv_sack_cache[i++] = sp[j];
1831
1832	if ((state->reord < tp->fackets_out) &&
1833	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1834		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1835
1836	tcp_verify_left_out(tp);
1837out:
1838
1839#if FASTRETRANS_DEBUG > 0
1840	WARN_ON((int)tp->sacked_out < 0);
1841	WARN_ON((int)tp->lost_out < 0);
1842	WARN_ON((int)tp->retrans_out < 0);
1843	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1844#endif
1845	return state->flag;
1846}
1847
1848/* Limits sacked_out so that sum with lost_out isn't ever larger than
1849 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1850 */
1851static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1852{
1853	u32 holes;
1854
1855	holes = max(tp->lost_out, 1U);
1856	holes = min(holes, tp->packets_out);
1857
1858	if ((tp->sacked_out + holes) > tp->packets_out) {
1859		tp->sacked_out = tp->packets_out - holes;
1860		return true;
1861	}
1862	return false;
1863}
1864
1865/* If we receive more dupacks than we expected counting segments
1866 * in assumption of absent reordering, interpret this as reordering.
1867 * The only another reason could be bug in receiver TCP.
1868 */
1869static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1870{
1871	struct tcp_sock *tp = tcp_sk(sk);
1872	if (tcp_limit_reno_sacked(tp))
1873		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1874}
1875
1876/* Emulate SACKs for SACKless connection: account for a new dupack. */
1877
1878static void tcp_add_reno_sack(struct sock *sk)
1879{
1880	struct tcp_sock *tp = tcp_sk(sk);
1881	u32 prior_sacked = tp->sacked_out;
1882
1883	tp->sacked_out++;
1884	tcp_check_reno_reordering(sk, 0);
1885	if (tp->sacked_out > prior_sacked)
1886		tp->delivered++; /* Some out-of-order packet is delivered */
1887	tcp_verify_left_out(tp);
1888}
1889
1890/* Account for ACK, ACKing some data in Reno Recovery phase. */
1891
1892static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1893{
1894	struct tcp_sock *tp = tcp_sk(sk);
1895
1896	if (acked > 0) {
1897		/* One ACK acked hole. The rest eat duplicate ACKs. */
1898		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1899		if (acked - 1 >= tp->sacked_out)
1900			tp->sacked_out = 0;
1901		else
1902			tp->sacked_out -= acked - 1;
1903	}
1904	tcp_check_reno_reordering(sk, acked);
1905	tcp_verify_left_out(tp);
1906}
1907
1908static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1909{
1910	tp->sacked_out = 0;
1911}
1912
1913void tcp_clear_retrans(struct tcp_sock *tp)
1914{
1915	tp->retrans_out = 0;
1916	tp->lost_out = 0;
1917	tp->undo_marker = 0;
1918	tp->undo_retrans = -1;
1919	tp->fackets_out = 0;
1920	tp->sacked_out = 0;
1921}
1922
1923static inline void tcp_init_undo(struct tcp_sock *tp)
1924{
1925	tp->undo_marker = tp->snd_una;
1926	/* Retransmission still in flight may cause DSACKs later. */
1927	tp->undo_retrans = tp->retrans_out ? : -1;
1928}
1929
1930/* Enter Loss state. If we detect SACK reneging, forget all SACK information
1931 * and reset tags completely, otherwise preserve SACKs. If receiver
1932 * dropped its ofo queue, we will know this due to reneging detection.
1933 */
1934void tcp_enter_loss(struct sock *sk)
1935{
1936	const struct inet_connection_sock *icsk = inet_csk(sk);
1937	struct tcp_sock *tp = tcp_sk(sk);
1938	struct net *net = sock_net(sk);
1939	struct sk_buff *skb;
1940	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1941	bool is_reneg;			/* is receiver reneging on SACKs? */
1942	bool mark_lost;
1943
1944	/* Reduce ssthresh if it has not yet been made inside this window. */
1945	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1946	    !after(tp->high_seq, tp->snd_una) ||
1947	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1948		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1949		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1950		tcp_ca_event(sk, CA_EVENT_LOSS);
1951		tcp_init_undo(tp);
1952	}
1953	tp->snd_cwnd	   = 1;
1954	tp->snd_cwnd_cnt   = 0;
1955	tp->snd_cwnd_stamp = tcp_time_stamp;
1956
1957	tp->retrans_out = 0;
1958	tp->lost_out = 0;
1959
1960	if (tcp_is_reno(tp))
1961		tcp_reset_reno_sack(tp);
1962
1963	skb = tcp_write_queue_head(sk);
1964	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1965	if (is_reneg) {
1966		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1967		tp->sacked_out = 0;
1968		tp->fackets_out = 0;
1969	}
1970	tcp_clear_all_retrans_hints(tp);
1971
1972	tcp_for_write_queue(skb, sk) {
1973		if (skb == tcp_send_head(sk))
1974			break;
1975
1976		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1977			     is_reneg);
1978		if (mark_lost)
1979			tcp_sum_lost(tp, skb);
1980		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1981		if (mark_lost) {
1982			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1983			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1984			tp->lost_out += tcp_skb_pcount(skb);
1985			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1986		}
1987	}
1988	tcp_verify_left_out(tp);
1989
1990	/* Timeout in disordered state after receiving substantial DUPACKs
1991	 * suggests that the degree of reordering is over-estimated.
1992	 */
1993	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1994	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1995		tp->reordering = min_t(unsigned int, tp->reordering,
1996				       net->ipv4.sysctl_tcp_reordering);
1997	tcp_set_ca_state(sk, TCP_CA_Loss);
1998	tp->high_seq = tp->snd_nxt;
1999	tcp_ecn_queue_cwr(tp);
2000
2001	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2002	 * loss recovery is underway except recurring timeout(s) on
2003	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2004	 */
2005	tp->frto = sysctl_tcp_frto &&
2006		   (new_recovery || icsk->icsk_retransmits) &&
2007		   !inet_csk(sk)->icsk_mtup.probe_size;
2008}
2009
2010/* If ACK arrived pointing to a remembered SACK, it means that our
2011 * remembered SACKs do not reflect real state of receiver i.e.
2012 * receiver _host_ is heavily congested (or buggy).
2013 *
2014 * To avoid big spurious retransmission bursts due to transient SACK
2015 * scoreboard oddities that look like reneging, we give the receiver a
2016 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2017 * restore sanity to the SACK scoreboard. If the apparent reneging
2018 * persists until this RTO then we'll clear the SACK scoreboard.
2019 */
2020static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2021{
2022	if (flag & FLAG_SACK_RENEGING) {
2023		struct tcp_sock *tp = tcp_sk(sk);
2024		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2025					  msecs_to_jiffies(10));
2026
2027		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2028					  delay, TCP_RTO_MAX);
2029		return true;
2030	}
2031	return false;
2032}
2033
2034static inline int tcp_fackets_out(const struct tcp_sock *tp)
2035{
2036	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2037}
2038
2039/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2040 * counter when SACK is enabled (without SACK, sacked_out is used for
2041 * that purpose).
2042 *
2043 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2044 * segments up to the highest received SACK block so far and holes in
2045 * between them.
2046 *
2047 * With reordering, holes may still be in flight, so RFC3517 recovery
2048 * uses pure sacked_out (total number of SACKed segments) even though
2049 * it violates the RFC that uses duplicate ACKs, often these are equal
2050 * but when e.g. out-of-window ACKs or packet duplication occurs,
2051 * they differ. Since neither occurs due to loss, TCP should really
2052 * ignore them.
2053 */
2054static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2055{
2056	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2057}
2058
2059static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2060{
2061	struct tcp_sock *tp = tcp_sk(sk);
2062	unsigned long delay;
2063
2064	/* Delay early retransmit and entering fast recovery for
2065	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2066	 * available, or RTO is scheduled to fire first.
2067	 */
2068	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2069	    (flag & FLAG_ECE) || !tp->srtt_us)
2070		return false;
2071
2072	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2073		    msecs_to_jiffies(2));
2074
2075	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2076		return false;
2077
2078	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2079				  TCP_RTO_MAX);
2080	return true;
2081}
2082
2083/* Linux NewReno/SACK/FACK/ECN state machine.
2084 * --------------------------------------
2085 *
2086 * "Open"	Normal state, no dubious events, fast path.
2087 * "Disorder"   In all the respects it is "Open",
2088 *		but requires a bit more attention. It is entered when
2089 *		we see some SACKs or dupacks. It is split of "Open"
2090 *		mainly to move some processing from fast path to slow one.
2091 * "CWR"	CWND was reduced due to some Congestion Notification event.
2092 *		It can be ECN, ICMP source quench, local device congestion.
2093 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2094 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2095 *
2096 * tcp_fastretrans_alert() is entered:
2097 * - each incoming ACK, if state is not "Open"
2098 * - when arrived ACK is unusual, namely:
2099 *	* SACK
2100 *	* Duplicate ACK.
2101 *	* ECN ECE.
2102 *
2103 * Counting packets in flight is pretty simple.
2104 *
2105 *	in_flight = packets_out - left_out + retrans_out
2106 *
2107 *	packets_out is SND.NXT-SND.UNA counted in packets.
2108 *
2109 *	retrans_out is number of retransmitted segments.
2110 *
2111 *	left_out is number of segments left network, but not ACKed yet.
2112 *
2113 *		left_out = sacked_out + lost_out
2114 *
2115 *     sacked_out: Packets, which arrived to receiver out of order
2116 *		   and hence not ACKed. With SACKs this number is simply
2117 *		   amount of SACKed data. Even without SACKs
2118 *		   it is easy to give pretty reliable estimate of this number,
2119 *		   counting duplicate ACKs.
2120 *
2121 *       lost_out: Packets lost by network. TCP has no explicit
2122 *		   "loss notification" feedback from network (for now).
2123 *		   It means that this number can be only _guessed_.
2124 *		   Actually, it is the heuristics to predict lossage that
2125 *		   distinguishes different algorithms.
2126 *
2127 *	F.e. after RTO, when all the queue is considered as lost,
2128 *	lost_out = packets_out and in_flight = retrans_out.
2129 *
2130 *		Essentially, we have now two algorithms counting
2131 *		lost packets.
2132 *
2133 *		FACK: It is the simplest heuristics. As soon as we decided
2134 *		that something is lost, we decide that _all_ not SACKed
2135 *		packets until the most forward SACK are lost. I.e.
2136 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2137 *		It is absolutely correct estimate, if network does not reorder
2138 *		packets. And it loses any connection to reality when reordering
2139 *		takes place. We use FACK by default until reordering
2140 *		is suspected on the path to this destination.
2141 *
2142 *		NewReno: when Recovery is entered, we assume that one segment
2143 *		is lost (classic Reno). While we are in Recovery and
2144 *		a partial ACK arrives, we assume that one more packet
2145 *		is lost (NewReno). This heuristics are the same in NewReno
2146 *		and SACK.
2147 *
2148 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2149 *  deflation etc. CWND is real congestion window, never inflated, changes
2150 *  only according to classic VJ rules.
2151 *
2152 * Really tricky (and requiring careful tuning) part of algorithm
2153 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2154 * The first determines the moment _when_ we should reduce CWND and,
2155 * hence, slow down forward transmission. In fact, it determines the moment
2156 * when we decide that hole is caused by loss, rather than by a reorder.
2157 *
2158 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2159 * holes, caused by lost packets.
2160 *
2161 * And the most logically complicated part of algorithm is undo
2162 * heuristics. We detect false retransmits due to both too early
2163 * fast retransmit (reordering) and underestimated RTO, analyzing
2164 * timestamps and D-SACKs. When we detect that some segments were
2165 * retransmitted by mistake and CWND reduction was wrong, we undo
2166 * window reduction and abort recovery phase. This logic is hidden
2167 * inside several functions named tcp_try_undo_<something>.
2168 */
2169
2170/* This function decides, when we should leave Disordered state
2171 * and enter Recovery phase, reducing congestion window.
2172 *
2173 * Main question: may we further continue forward transmission
2174 * with the same cwnd?
2175 */
2176static bool tcp_time_to_recover(struct sock *sk, int flag)
2177{
2178	struct tcp_sock *tp = tcp_sk(sk);
2179	__u32 packets_out;
2180	int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2181
2182	/* Trick#1: The loss is proven. */
2183	if (tp->lost_out)
2184		return true;
2185
2186	/* Not-A-Trick#2 : Classic rule... */
2187	if (tcp_dupack_heuristics(tp) > tp->reordering)
2188		return true;
2189
2190	/* Trick#4: It is still not OK... But will it be useful to delay
2191	 * recovery more?
2192	 */
2193	packets_out = tp->packets_out;
2194	if (packets_out <= tp->reordering &&
2195	    tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2196	    !tcp_may_send_now(sk)) {
2197		/* We have nothing to send. This connection is limited
2198		 * either by receiver window or by application.
2199		 */
2200		return true;
2201	}
2202
2203	/* If a thin stream is detected, retransmit after first
2204	 * received dupack. Employ only if SACK is supported in order
2205	 * to avoid possible corner-case series of spurious retransmissions
2206	 * Use only if there are no unsent data.
2207	 */
2208	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2209	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2210	    tcp_is_sack(tp) && !tcp_send_head(sk))
2211		return true;
2212
2213	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2214	 * retransmissions due to small network reorderings, we implement
2215	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2216	 * interval if appropriate.
2217	 */
2218	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2219	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2220	    !tcp_may_send_now(sk))
2221		return !tcp_pause_early_retransmit(sk, flag);
2222
2223	return false;
2224}
2225
2226/* Detect loss in event "A" above by marking head of queue up as lost.
2227 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2228 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2229 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2230 * the maximum SACKed segments to pass before reaching this limit.
2231 */
2232static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2233{
2234	struct tcp_sock *tp = tcp_sk(sk);
2235	struct sk_buff *skb;
2236	int cnt, oldcnt, lost;
2237	unsigned int mss;
2238	/* Use SACK to deduce losses of new sequences sent during recovery */
2239	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2240
2241	WARN_ON(packets > tp->packets_out);
2242	if (tp->lost_skb_hint) {
2243		skb = tp->lost_skb_hint;
2244		cnt = tp->lost_cnt_hint;
2245		/* Head already handled? */
2246		if (mark_head && skb != tcp_write_queue_head(sk))
2247			return;
2248	} else {
2249		skb = tcp_write_queue_head(sk);
2250		cnt = 0;
2251	}
2252
2253	tcp_for_write_queue_from(skb, sk) {
2254		if (skb == tcp_send_head(sk))
2255			break;
2256		/* TODO: do this better */
2257		/* this is not the most efficient way to do this... */
2258		tp->lost_skb_hint = skb;
2259		tp->lost_cnt_hint = cnt;
2260
2261		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2262			break;
2263
2264		oldcnt = cnt;
2265		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2266		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2267			cnt += tcp_skb_pcount(skb);
2268
2269		if (cnt > packets) {
2270			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2271			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2272			    (oldcnt >= packets))
2273				break;
2274
2275			mss = tcp_skb_mss(skb);
2276			/* If needed, chop off the prefix to mark as lost. */
2277			lost = (packets - oldcnt) * mss;
2278			if (lost < skb->len &&
2279			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2280				break;
2281			cnt = packets;
2282		}
2283
2284		tcp_skb_mark_lost(tp, skb);
2285
2286		if (mark_head)
2287			break;
2288	}
2289	tcp_verify_left_out(tp);
2290}
2291
2292/* Account newly detected lost packet(s) */
2293
2294static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2295{
2296	struct tcp_sock *tp = tcp_sk(sk);
2297
2298	if (tcp_is_reno(tp)) {
2299		tcp_mark_head_lost(sk, 1, 1);
2300	} else if (tcp_is_fack(tp)) {
2301		int lost = tp->fackets_out - tp->reordering;
2302		if (lost <= 0)
2303			lost = 1;
2304		tcp_mark_head_lost(sk, lost, 0);
2305	} else {
2306		int sacked_upto = tp->sacked_out - tp->reordering;
2307		if (sacked_upto >= 0)
2308			tcp_mark_head_lost(sk, sacked_upto, 0);
2309		else if (fast_rexmit)
2310			tcp_mark_head_lost(sk, 1, 1);
2311	}
2312}
2313
 
 
 
 
 
 
 
 
 
 
2314static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2315{
2316	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2317	       before(tp->rx_opt.rcv_tsecr, when);
2318}
2319
2320/* skb is spurious retransmitted if the returned timestamp echo
2321 * reply is prior to the skb transmission time
2322 */
2323static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2324				     const struct sk_buff *skb)
2325{
2326	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2327	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2328}
2329
2330/* Nothing was retransmitted or returned timestamp is less
2331 * than timestamp of the first retransmission.
2332 */
2333static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2334{
2335	return !tp->retrans_stamp ||
2336	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2337}
2338
2339/* Undo procedures. */
2340
2341/* We can clear retrans_stamp when there are no retransmissions in the
2342 * window. It would seem that it is trivially available for us in
2343 * tp->retrans_out, however, that kind of assumptions doesn't consider
2344 * what will happen if errors occur when sending retransmission for the
2345 * second time. ...It could the that such segment has only
2346 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2347 * the head skb is enough except for some reneging corner cases that
2348 * are not worth the effort.
2349 *
2350 * Main reason for all this complexity is the fact that connection dying
2351 * time now depends on the validity of the retrans_stamp, in particular,
2352 * that successive retransmissions of a segment must not advance
2353 * retrans_stamp under any conditions.
2354 */
2355static bool tcp_any_retrans_done(const struct sock *sk)
2356{
2357	const struct tcp_sock *tp = tcp_sk(sk);
2358	struct sk_buff *skb;
2359
2360	if (tp->retrans_out)
2361		return true;
2362
2363	skb = tcp_write_queue_head(sk);
2364	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2365		return true;
2366
2367	return false;
2368}
2369
2370#if FASTRETRANS_DEBUG > 1
2371static void DBGUNDO(struct sock *sk, const char *msg)
2372{
2373	struct tcp_sock *tp = tcp_sk(sk);
2374	struct inet_sock *inet = inet_sk(sk);
2375
2376	if (sk->sk_family == AF_INET) {
2377		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2378			 msg,
2379			 &inet->inet_daddr, ntohs(inet->inet_dport),
2380			 tp->snd_cwnd, tcp_left_out(tp),
2381			 tp->snd_ssthresh, tp->prior_ssthresh,
2382			 tp->packets_out);
2383	}
2384#if IS_ENABLED(CONFIG_IPV6)
2385	else if (sk->sk_family == AF_INET6) {
 
2386		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2387			 msg,
2388			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2389			 tp->snd_cwnd, tcp_left_out(tp),
2390			 tp->snd_ssthresh, tp->prior_ssthresh,
2391			 tp->packets_out);
2392	}
2393#endif
2394}
2395#else
2396#define DBGUNDO(x...) do { } while (0)
2397#endif
2398
2399static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2400{
2401	struct tcp_sock *tp = tcp_sk(sk);
2402
2403	if (unmark_loss) {
2404		struct sk_buff *skb;
2405
2406		tcp_for_write_queue(skb, sk) {
2407			if (skb == tcp_send_head(sk))
2408				break;
2409			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2410		}
2411		tp->lost_out = 0;
2412		tcp_clear_all_retrans_hints(tp);
2413	}
2414
2415	if (tp->prior_ssthresh) {
2416		const struct inet_connection_sock *icsk = inet_csk(sk);
2417
2418		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
 
 
 
2419
2420		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2421			tp->snd_ssthresh = tp->prior_ssthresh;
2422			tcp_ecn_withdraw_cwr(tp);
2423		}
2424	}
2425	tp->snd_cwnd_stamp = tcp_time_stamp;
2426	tp->undo_marker = 0;
2427}
2428
2429static inline bool tcp_may_undo(const struct tcp_sock *tp)
2430{
2431	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2432}
2433
2434/* People celebrate: "We love our President!" */
2435static bool tcp_try_undo_recovery(struct sock *sk)
2436{
2437	struct tcp_sock *tp = tcp_sk(sk);
2438
2439	if (tcp_may_undo(tp)) {
2440		int mib_idx;
2441
2442		/* Happy end! We did not retransmit anything
2443		 * or our original transmission succeeded.
2444		 */
2445		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2446		tcp_undo_cwnd_reduction(sk, false);
2447		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2448			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2449		else
2450			mib_idx = LINUX_MIB_TCPFULLUNDO;
2451
2452		NET_INC_STATS(sock_net(sk), mib_idx);
2453	}
2454	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2455		/* Hold old state until something *above* high_seq
2456		 * is ACKed. For Reno it is MUST to prevent false
2457		 * fast retransmits (RFC2582). SACK TCP is safe. */
 
2458		if (!tcp_any_retrans_done(sk))
2459			tp->retrans_stamp = 0;
2460		return true;
2461	}
2462	tcp_set_ca_state(sk, TCP_CA_Open);
2463	return false;
2464}
2465
2466/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2467static bool tcp_try_undo_dsack(struct sock *sk)
2468{
2469	struct tcp_sock *tp = tcp_sk(sk);
2470
2471	if (tp->undo_marker && !tp->undo_retrans) {
2472		DBGUNDO(sk, "D-SACK");
2473		tcp_undo_cwnd_reduction(sk, false);
2474		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2475		return true;
2476	}
2477	return false;
2478}
2479
2480/* Undo during loss recovery after partial ACK or using F-RTO. */
2481static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2482{
2483	struct tcp_sock *tp = tcp_sk(sk);
2484
2485	if (frto_undo || tcp_may_undo(tp)) {
2486		tcp_undo_cwnd_reduction(sk, true);
2487
2488		DBGUNDO(sk, "partial loss");
2489		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2490		if (frto_undo)
2491			NET_INC_STATS(sock_net(sk),
2492					LINUX_MIB_TCPSPURIOUSRTOS);
2493		inet_csk(sk)->icsk_retransmits = 0;
2494		if (frto_undo || tcp_is_sack(tp))
2495			tcp_set_ca_state(sk, TCP_CA_Open);
2496		return true;
2497	}
2498	return false;
2499}
2500
2501/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2502 * It computes the number of packets to send (sndcnt) based on packets newly
2503 * delivered:
2504 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2505 *	cwnd reductions across a full RTT.
2506 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2507 *      But when the retransmits are acked without further losses, PRR
2508 *      slow starts cwnd up to ssthresh to speed up the recovery.
2509 */
2510static void tcp_init_cwnd_reduction(struct sock *sk)
2511{
2512	struct tcp_sock *tp = tcp_sk(sk);
2513
2514	tp->high_seq = tp->snd_nxt;
2515	tp->tlp_high_seq = 0;
2516	tp->snd_cwnd_cnt = 0;
2517	tp->prior_cwnd = tp->snd_cwnd;
2518	tp->prr_delivered = 0;
2519	tp->prr_out = 0;
2520	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2521	tcp_ecn_queue_cwr(tp);
2522}
2523
2524static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2525			       int flag)
2526{
2527	struct tcp_sock *tp = tcp_sk(sk);
2528	int sndcnt = 0;
2529	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2530
2531	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2532		return;
2533
2534	tp->prr_delivered += newly_acked_sacked;
2535	if (delta < 0) {
2536		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2537			       tp->prior_cwnd - 1;
2538		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2539	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2540		   !(flag & FLAG_LOST_RETRANS)) {
2541		sndcnt = min_t(int, delta,
2542			       max_t(int, tp->prr_delivered - tp->prr_out,
2543				     newly_acked_sacked) + 1);
2544	} else {
2545		sndcnt = min(delta, newly_acked_sacked);
2546	}
2547	/* Force a fast retransmit upon entering fast recovery */
2548	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2549	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2550}
2551
2552static inline void tcp_end_cwnd_reduction(struct sock *sk)
2553{
2554	struct tcp_sock *tp = tcp_sk(sk);
2555
2556	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2557		return;
2558
2559	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2560	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2561	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2562		tp->snd_cwnd = tp->snd_ssthresh;
2563		tp->snd_cwnd_stamp = tcp_time_stamp;
2564	}
2565	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2566}
2567
2568/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2569void tcp_enter_cwr(struct sock *sk)
2570{
2571	struct tcp_sock *tp = tcp_sk(sk);
2572
2573	tp->prior_ssthresh = 0;
2574	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2575		tp->undo_marker = 0;
2576		tcp_init_cwnd_reduction(sk);
2577		tcp_set_ca_state(sk, TCP_CA_CWR);
2578	}
2579}
2580EXPORT_SYMBOL(tcp_enter_cwr);
2581
2582static void tcp_try_keep_open(struct sock *sk)
2583{
2584	struct tcp_sock *tp = tcp_sk(sk);
2585	int state = TCP_CA_Open;
2586
2587	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2588		state = TCP_CA_Disorder;
2589
2590	if (inet_csk(sk)->icsk_ca_state != state) {
2591		tcp_set_ca_state(sk, state);
2592		tp->high_seq = tp->snd_nxt;
2593	}
2594}
2595
2596static void tcp_try_to_open(struct sock *sk, int flag)
2597{
2598	struct tcp_sock *tp = tcp_sk(sk);
2599
2600	tcp_verify_left_out(tp);
2601
2602	if (!tcp_any_retrans_done(sk))
2603		tp->retrans_stamp = 0;
2604
2605	if (flag & FLAG_ECE)
2606		tcp_enter_cwr(sk);
2607
2608	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2609		tcp_try_keep_open(sk);
2610	}
2611}
2612
2613static void tcp_mtup_probe_failed(struct sock *sk)
2614{
2615	struct inet_connection_sock *icsk = inet_csk(sk);
2616
2617	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2618	icsk->icsk_mtup.probe_size = 0;
2619	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2620}
2621
2622static void tcp_mtup_probe_success(struct sock *sk)
2623{
2624	struct tcp_sock *tp = tcp_sk(sk);
2625	struct inet_connection_sock *icsk = inet_csk(sk);
2626
2627	/* FIXME: breaks with very large cwnd */
2628	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2629	tp->snd_cwnd = tp->snd_cwnd *
2630		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2631		       icsk->icsk_mtup.probe_size;
2632	tp->snd_cwnd_cnt = 0;
2633	tp->snd_cwnd_stamp = tcp_time_stamp;
2634	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2635
2636	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2637	icsk->icsk_mtup.probe_size = 0;
2638	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2639	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2640}
2641
2642/* Do a simple retransmit without using the backoff mechanisms in
2643 * tcp_timer. This is used for path mtu discovery.
2644 * The socket is already locked here.
2645 */
2646void tcp_simple_retransmit(struct sock *sk)
2647{
2648	const struct inet_connection_sock *icsk = inet_csk(sk);
2649	struct tcp_sock *tp = tcp_sk(sk);
2650	struct sk_buff *skb;
2651	unsigned int mss = tcp_current_mss(sk);
2652	u32 prior_lost = tp->lost_out;
2653
2654	tcp_for_write_queue(skb, sk) {
2655		if (skb == tcp_send_head(sk))
2656			break;
2657		if (tcp_skb_seglen(skb) > mss &&
2658		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2659			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2660				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2661				tp->retrans_out -= tcp_skb_pcount(skb);
2662			}
2663			tcp_skb_mark_lost_uncond_verify(tp, skb);
2664		}
2665	}
2666
2667	tcp_clear_retrans_hints_partial(tp);
2668
2669	if (prior_lost == tp->lost_out)
2670		return;
2671
2672	if (tcp_is_reno(tp))
2673		tcp_limit_reno_sacked(tp);
2674
2675	tcp_verify_left_out(tp);
2676
2677	/* Don't muck with the congestion window here.
2678	 * Reason is that we do not increase amount of _data_
2679	 * in network, but units changed and effective
2680	 * cwnd/ssthresh really reduced now.
2681	 */
2682	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2683		tp->high_seq = tp->snd_nxt;
2684		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2685		tp->prior_ssthresh = 0;
2686		tp->undo_marker = 0;
2687		tcp_set_ca_state(sk, TCP_CA_Loss);
2688	}
2689	tcp_xmit_retransmit_queue(sk);
2690}
2691EXPORT_SYMBOL(tcp_simple_retransmit);
2692
2693static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2694{
2695	struct tcp_sock *tp = tcp_sk(sk);
2696	int mib_idx;
2697
2698	if (tcp_is_reno(tp))
2699		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2700	else
2701		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2702
2703	NET_INC_STATS(sock_net(sk), mib_idx);
2704
2705	tp->prior_ssthresh = 0;
2706	tcp_init_undo(tp);
2707
2708	if (!tcp_in_cwnd_reduction(sk)) {
2709		if (!ece_ack)
2710			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2711		tcp_init_cwnd_reduction(sk);
2712	}
2713	tcp_set_ca_state(sk, TCP_CA_Recovery);
2714}
2715
2716/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2717 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2718 */
2719static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2720			     int *rexmit)
2721{
2722	struct tcp_sock *tp = tcp_sk(sk);
2723	bool recovered = !before(tp->snd_una, tp->high_seq);
2724
2725	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2726	    tcp_try_undo_loss(sk, false))
2727		return;
2728
2729	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2730		/* Step 3.b. A timeout is spurious if not all data are
2731		 * lost, i.e., never-retransmitted data are (s)acked.
2732		 */
2733		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2734		    tcp_try_undo_loss(sk, true))
2735			return;
2736
2737		if (after(tp->snd_nxt, tp->high_seq)) {
2738			if (flag & FLAG_DATA_SACKED || is_dupack)
2739				tp->frto = 0; /* Step 3.a. loss was real */
2740		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2741			tp->high_seq = tp->snd_nxt;
2742			/* Step 2.b. Try send new data (but deferred until cwnd
2743			 * is updated in tcp_ack()). Otherwise fall back to
2744			 * the conventional recovery.
2745			 */
2746			if (tcp_send_head(sk) &&
2747			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2748				*rexmit = REXMIT_NEW;
2749				return;
2750			}
2751			tp->frto = 0;
2752		}
2753	}
2754
2755	if (recovered) {
2756		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2757		tcp_try_undo_recovery(sk);
2758		return;
2759	}
2760	if (tcp_is_reno(tp)) {
2761		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2762		 * delivered. Lower inflight to clock out (re)tranmissions.
2763		 */
2764		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2765			tcp_add_reno_sack(sk);
2766		else if (flag & FLAG_SND_UNA_ADVANCED)
2767			tcp_reset_reno_sack(tp);
2768	}
2769	*rexmit = REXMIT_LOST;
2770}
2771
2772/* Undo during fast recovery after partial ACK. */
2773static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2774{
2775	struct tcp_sock *tp = tcp_sk(sk);
2776
2777	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2778		/* Plain luck! Hole if filled with delayed
2779		 * packet, rather than with a retransmit.
2780		 */
2781		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2782
2783		/* We are getting evidence that the reordering degree is higher
2784		 * than we realized. If there are no retransmits out then we
2785		 * can undo. Otherwise we clock out new packets but do not
2786		 * mark more packets lost or retransmit more.
2787		 */
2788		if (tp->retrans_out)
2789			return true;
2790
2791		if (!tcp_any_retrans_done(sk))
2792			tp->retrans_stamp = 0;
2793
2794		DBGUNDO(sk, "partial recovery");
2795		tcp_undo_cwnd_reduction(sk, true);
2796		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2797		tcp_try_keep_open(sk);
2798		return true;
2799	}
2800	return false;
2801}
2802
2803/* Process an event, which can update packets-in-flight not trivially.
2804 * Main goal of this function is to calculate new estimate for left_out,
2805 * taking into account both packets sitting in receiver's buffer and
2806 * packets lost by network.
2807 *
2808 * Besides that it updates the congestion state when packet loss or ECN
2809 * is detected. But it does not reduce the cwnd, it is done by the
2810 * congestion control later.
2811 *
2812 * It does _not_ decide what to send, it is made in function
2813 * tcp_xmit_retransmit_queue().
2814 */
2815static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2816				  bool is_dupack, int *ack_flag, int *rexmit)
2817{
2818	struct inet_connection_sock *icsk = inet_csk(sk);
2819	struct tcp_sock *tp = tcp_sk(sk);
2820	int fast_rexmit = 0, flag = *ack_flag;
2821	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2822				    (tcp_fackets_out(tp) > tp->reordering));
2823
2824	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2825		tp->sacked_out = 0;
2826	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2827		tp->fackets_out = 0;
2828
2829	/* Now state machine starts.
2830	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2831	if (flag & FLAG_ECE)
2832		tp->prior_ssthresh = 0;
2833
2834	/* B. In all the states check for reneging SACKs. */
2835	if (tcp_check_sack_reneging(sk, flag))
2836		return;
2837
2838	/* C. Check consistency of the current state. */
2839	tcp_verify_left_out(tp);
2840
2841	/* D. Check state exit conditions. State can be terminated
2842	 *    when high_seq is ACKed. */
2843	if (icsk->icsk_ca_state == TCP_CA_Open) {
2844		WARN_ON(tp->retrans_out != 0);
2845		tp->retrans_stamp = 0;
2846	} else if (!before(tp->snd_una, tp->high_seq)) {
2847		switch (icsk->icsk_ca_state) {
2848		case TCP_CA_CWR:
2849			/* CWR is to be held something *above* high_seq
2850			 * is ACKed for CWR bit to reach receiver. */
2851			if (tp->snd_una != tp->high_seq) {
2852				tcp_end_cwnd_reduction(sk);
2853				tcp_set_ca_state(sk, TCP_CA_Open);
2854			}
2855			break;
2856
2857		case TCP_CA_Recovery:
2858			if (tcp_is_reno(tp))
2859				tcp_reset_reno_sack(tp);
2860			if (tcp_try_undo_recovery(sk))
2861				return;
2862			tcp_end_cwnd_reduction(sk);
2863			break;
2864		}
2865	}
2866
2867	/* Use RACK to detect loss */
2868	if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2869	    tcp_rack_mark_lost(sk)) {
2870		flag |= FLAG_LOST_RETRANS;
2871		*ack_flag |= FLAG_LOST_RETRANS;
2872	}
2873
2874	/* E. Process state. */
2875	switch (icsk->icsk_ca_state) {
2876	case TCP_CA_Recovery:
2877		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2878			if (tcp_is_reno(tp) && is_dupack)
2879				tcp_add_reno_sack(sk);
2880		} else {
2881			if (tcp_try_undo_partial(sk, acked))
2882				return;
2883			/* Partial ACK arrived. Force fast retransmit. */
2884			do_lost = tcp_is_reno(tp) ||
2885				  tcp_fackets_out(tp) > tp->reordering;
2886		}
2887		if (tcp_try_undo_dsack(sk)) {
2888			tcp_try_keep_open(sk);
2889			return;
2890		}
2891		break;
2892	case TCP_CA_Loss:
2893		tcp_process_loss(sk, flag, is_dupack, rexmit);
2894		if (icsk->icsk_ca_state != TCP_CA_Open &&
2895		    !(flag & FLAG_LOST_RETRANS))
2896			return;
2897		/* Change state if cwnd is undone or retransmits are lost */
2898	default:
2899		if (tcp_is_reno(tp)) {
2900			if (flag & FLAG_SND_UNA_ADVANCED)
2901				tcp_reset_reno_sack(tp);
2902			if (is_dupack)
2903				tcp_add_reno_sack(sk);
2904		}
2905
2906		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2907			tcp_try_undo_dsack(sk);
2908
2909		if (!tcp_time_to_recover(sk, flag)) {
2910			tcp_try_to_open(sk, flag);
2911			return;
2912		}
2913
2914		/* MTU probe failure: don't reduce cwnd */
2915		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2916		    icsk->icsk_mtup.probe_size &&
2917		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2918			tcp_mtup_probe_failed(sk);
2919			/* Restores the reduction we did in tcp_mtup_probe() */
2920			tp->snd_cwnd++;
2921			tcp_simple_retransmit(sk);
2922			return;
2923		}
2924
2925		/* Otherwise enter Recovery state */
2926		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2927		fast_rexmit = 1;
2928	}
2929
2930	if (do_lost)
2931		tcp_update_scoreboard(sk, fast_rexmit);
2932	*rexmit = REXMIT_LOST;
2933}
2934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2935static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2936{
2937	struct tcp_sock *tp = tcp_sk(sk);
2938	u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2939
2940	minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2941			   rtt_us ? : jiffies_to_usecs(1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2942}
2943
2944static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2945				      long seq_rtt_us, long sack_rtt_us,
2946				      long ca_rtt_us)
2947{
2948	const struct tcp_sock *tp = tcp_sk(sk);
2949
2950	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2951	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2952	 * Karn's algorithm forbids taking RTT if some retransmitted data
2953	 * is acked (RFC6298).
2954	 */
2955	if (seq_rtt_us < 0)
2956		seq_rtt_us = sack_rtt_us;
2957
2958	/* RTTM Rule: A TSecr value received in a segment is used to
2959	 * update the averaged RTT measurement only if the segment
2960	 * acknowledges some new data, i.e., only if it advances the
2961	 * left edge of the send window.
2962	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2963	 */
2964	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2965	    flag & FLAG_ACKED)
2966		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2967							  tp->rx_opt.rcv_tsecr);
2968	if (seq_rtt_us < 0)
2969		return false;
2970
2971	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2972	 * always taken together with ACK, SACK, or TS-opts. Any negative
2973	 * values will be skipped with the seq_rtt_us < 0 check above.
2974	 */
2975	tcp_update_rtt_min(sk, ca_rtt_us);
2976	tcp_rtt_estimator(sk, seq_rtt_us);
2977	tcp_set_rto(sk);
2978
2979	/* RFC6298: only reset backoff on valid RTT measurement. */
2980	inet_csk(sk)->icsk_backoff = 0;
2981	return true;
2982}
2983
2984/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2985void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2986{
2987	long rtt_us = -1L;
2988
2989	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2990		struct skb_mstamp now;
2991
2992		skb_mstamp_get(&now);
2993		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2994	}
2995
2996	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2997}
2998
2999
3000static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3001{
3002	const struct inet_connection_sock *icsk = inet_csk(sk);
3003
3004	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3005	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3006}
3007
3008/* Restart timer after forward progress on connection.
3009 * RFC2988 recommends to restart timer to now+rto.
3010 */
3011void tcp_rearm_rto(struct sock *sk)
3012{
3013	const struct inet_connection_sock *icsk = inet_csk(sk);
3014	struct tcp_sock *tp = tcp_sk(sk);
3015
3016	/* If the retrans timer is currently being used by Fast Open
3017	 * for SYN-ACK retrans purpose, stay put.
3018	 */
3019	if (tp->fastopen_rsk)
3020		return;
3021
3022	if (!tp->packets_out) {
3023		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3024	} else {
3025		u32 rto = inet_csk(sk)->icsk_rto;
3026		/* Offset the time elapsed after installing regular RTO */
3027		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3028		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3029			struct sk_buff *skb = tcp_write_queue_head(sk);
3030			const u32 rto_time_stamp =
3031				tcp_skb_timestamp(skb) + rto;
3032			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3033			/* delta may not be positive if the socket is locked
3034			 * when the retrans timer fires and is rescheduled.
3035			 */
3036			if (delta > 0)
3037				rto = delta;
3038		}
3039		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3040					  TCP_RTO_MAX);
3041	}
3042}
3043
3044/* This function is called when the delayed ER timer fires. TCP enters
3045 * fast recovery and performs fast-retransmit.
3046 */
3047void tcp_resume_early_retransmit(struct sock *sk)
3048{
3049	struct tcp_sock *tp = tcp_sk(sk);
3050
3051	tcp_rearm_rto(sk);
3052
3053	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3054	if (!tp->do_early_retrans)
3055		return;
3056
3057	tcp_enter_recovery(sk, false);
3058	tcp_update_scoreboard(sk, 1);
3059	tcp_xmit_retransmit_queue(sk);
3060}
3061
3062/* If we get here, the whole TSO packet has not been acked. */
3063static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3064{
3065	struct tcp_sock *tp = tcp_sk(sk);
3066	u32 packets_acked;
3067
3068	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3069
3070	packets_acked = tcp_skb_pcount(skb);
3071	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3072		return 0;
3073	packets_acked -= tcp_skb_pcount(skb);
3074
3075	if (packets_acked) {
3076		BUG_ON(tcp_skb_pcount(skb) == 0);
3077		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3078	}
3079
3080	return packets_acked;
3081}
3082
3083static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3084			   u32 prior_snd_una)
3085{
3086	const struct skb_shared_info *shinfo;
3087
3088	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3089	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3090		return;
3091
3092	shinfo = skb_shinfo(skb);
3093	if (!before(shinfo->tskey, prior_snd_una) &&
 
3094	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3095		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3096}
3097
3098/* Remove acknowledged frames from the retransmission queue. If our packet
3099 * is before the ack sequence we can discard it as it's confirmed to have
3100 * arrived at the other end.
3101 */
3102static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3103			       u32 prior_snd_una, int *acked,
3104			       struct tcp_sacktag_state *sack,
3105			       struct skb_mstamp *now)
3106{
3107	const struct inet_connection_sock *icsk = inet_csk(sk);
3108	struct skb_mstamp first_ackt, last_ackt;
3109	struct tcp_sock *tp = tcp_sk(sk);
3110	u32 prior_sacked = tp->sacked_out;
3111	u32 reord = tp->packets_out;
3112	bool fully_acked = true;
3113	long sack_rtt_us = -1L;
3114	long seq_rtt_us = -1L;
3115	long ca_rtt_us = -1L;
3116	struct sk_buff *skb;
3117	u32 pkts_acked = 0;
3118	u32 last_in_flight = 0;
3119	bool rtt_update;
3120	int flag = 0;
3121
3122	first_ackt.v64 = 0;
3123
3124	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3125		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3126		u8 sacked = scb->sacked;
3127		u32 acked_pcount;
3128
3129		tcp_ack_tstamp(sk, skb, prior_snd_una);
3130
3131		/* Determine how many packets and what bytes were acked, tso and else */
3132		if (after(scb->end_seq, tp->snd_una)) {
3133			if (tcp_skb_pcount(skb) == 1 ||
3134			    !after(tp->snd_una, scb->seq))
3135				break;
3136
3137			acked_pcount = tcp_tso_acked(sk, skb);
3138			if (!acked_pcount)
3139				break;
 
3140			fully_acked = false;
3141		} else {
3142			/* Speedup tcp_unlink_write_queue() and next loop */
3143			prefetchw(skb->next);
3144			acked_pcount = tcp_skb_pcount(skb);
3145		}
3146
3147		if (unlikely(sacked & TCPCB_RETRANS)) {
3148			if (sacked & TCPCB_SACKED_RETRANS)
3149				tp->retrans_out -= acked_pcount;
3150			flag |= FLAG_RETRANS_DATA_ACKED;
3151		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3152			last_ackt = skb->skb_mstamp;
3153			WARN_ON_ONCE(last_ackt.v64 == 0);
3154			if (!first_ackt.v64)
3155				first_ackt = last_ackt;
3156
3157			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3158			reord = min(pkts_acked, reord);
3159			if (!after(scb->end_seq, tp->high_seq))
3160				flag |= FLAG_ORIG_SACK_ACKED;
3161		}
3162
3163		if (sacked & TCPCB_SACKED_ACKED) {
3164			tp->sacked_out -= acked_pcount;
3165		} else if (tcp_is_sack(tp)) {
3166			tp->delivered += acked_pcount;
3167			if (!tcp_skb_spurious_retrans(tp, skb))
3168				tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3169		}
3170		if (sacked & TCPCB_LOST)
3171			tp->lost_out -= acked_pcount;
3172
3173		tp->packets_out -= acked_pcount;
3174		pkts_acked += acked_pcount;
3175		tcp_rate_skb_delivered(sk, skb, sack->rate);
3176
3177		/* Initial outgoing SYN's get put onto the write_queue
3178		 * just like anything else we transmit.  It is not
3179		 * true data, and if we misinform our callers that
3180		 * this ACK acks real data, we will erroneously exit
3181		 * connection startup slow start one packet too
3182		 * quickly.  This is severely frowned upon behavior.
3183		 */
3184		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3185			flag |= FLAG_DATA_ACKED;
3186		} else {
3187			flag |= FLAG_SYN_ACKED;
3188			tp->retrans_stamp = 0;
3189		}
3190
3191		if (!fully_acked)
3192			break;
3193
3194		tcp_unlink_write_queue(skb, sk);
3195		sk_wmem_free_skb(sk, skb);
3196		if (unlikely(skb == tp->retransmit_skb_hint))
3197			tp->retransmit_skb_hint = NULL;
3198		if (unlikely(skb == tp->lost_skb_hint))
3199			tp->lost_skb_hint = NULL;
3200	}
3201
3202	if (!skb)
3203		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3204
3205	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3206		tp->snd_up = tp->snd_una;
3207
3208	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3209		flag |= FLAG_SACK_RENEGING;
3210
 
3211	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3212		seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3213		ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3214	}
3215	if (sack->first_sackt.v64) {
3216		sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3217		ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3218	}
3219	sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3220	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3221					ca_rtt_us);
3222
3223	if (flag & FLAG_ACKED) {
3224		tcp_rearm_rto(sk);
3225		if (unlikely(icsk->icsk_mtup.probe_size &&
3226			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3227			tcp_mtup_probe_success(sk);
3228		}
3229
3230		if (tcp_is_reno(tp)) {
3231			tcp_remove_reno_sacks(sk, pkts_acked);
3232		} else {
3233			int delta;
3234
3235			/* Non-retransmitted hole got filled? That's reordering */
3236			if (reord < prior_fackets)
3237				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3238
3239			delta = tcp_is_fack(tp) ? pkts_acked :
3240						  prior_sacked - tp->sacked_out;
3241			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3242		}
3243
3244		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3245
3246	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3247		   sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3248		/* Do not re-arm RTO if the sack RTT is measured from data sent
3249		 * after when the head was last (re)transmitted. Otherwise the
3250		 * timeout may continue to extend in loss recovery.
3251		 */
3252		tcp_rearm_rto(sk);
3253	}
3254
3255	if (icsk->icsk_ca_ops->pkts_acked) {
3256		struct ack_sample sample = { .pkts_acked = pkts_acked,
3257					     .rtt_us = ca_rtt_us,
3258					     .in_flight = last_in_flight };
3259
3260		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3261	}
3262
3263#if FASTRETRANS_DEBUG > 0
3264	WARN_ON((int)tp->sacked_out < 0);
3265	WARN_ON((int)tp->lost_out < 0);
3266	WARN_ON((int)tp->retrans_out < 0);
3267	if (!tp->packets_out && tcp_is_sack(tp)) {
3268		icsk = inet_csk(sk);
3269		if (tp->lost_out) {
3270			pr_debug("Leak l=%u %d\n",
3271				 tp->lost_out, icsk->icsk_ca_state);
3272			tp->lost_out = 0;
3273		}
3274		if (tp->sacked_out) {
3275			pr_debug("Leak s=%u %d\n",
3276				 tp->sacked_out, icsk->icsk_ca_state);
3277			tp->sacked_out = 0;
3278		}
3279		if (tp->retrans_out) {
3280			pr_debug("Leak r=%u %d\n",
3281				 tp->retrans_out, icsk->icsk_ca_state);
3282			tp->retrans_out = 0;
3283		}
3284	}
3285#endif
3286	*acked = pkts_acked;
3287	return flag;
3288}
3289
3290static void tcp_ack_probe(struct sock *sk)
3291{
3292	const struct tcp_sock *tp = tcp_sk(sk);
3293	struct inet_connection_sock *icsk = inet_csk(sk);
3294
3295	/* Was it a usable window open? */
3296
3297	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3298		icsk->icsk_backoff = 0;
3299		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3300		/* Socket must be waked up by subsequent tcp_data_snd_check().
3301		 * This function is not for random using!
3302		 */
3303	} else {
3304		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3305
3306		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3307					  when, TCP_RTO_MAX);
3308	}
3309}
3310
3311static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3312{
3313	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3314		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3315}
3316
3317/* Decide wheather to run the increase function of congestion control. */
3318static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3319{
3320	/* If reordering is high then always grow cwnd whenever data is
3321	 * delivered regardless of its ordering. Otherwise stay conservative
3322	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3323	 * new SACK or ECE mark may first advance cwnd here and later reduce
3324	 * cwnd in tcp_fastretrans_alert() based on more states.
3325	 */
3326	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3327		return flag & FLAG_FORWARD_PROGRESS;
3328
3329	return flag & FLAG_DATA_ACKED;
3330}
3331
3332/* The "ultimate" congestion control function that aims to replace the rigid
3333 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3334 * It's called toward the end of processing an ACK with precise rate
3335 * information. All transmission or retransmission are delayed afterwards.
3336 */
3337static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3338			     int flag, const struct rate_sample *rs)
3339{
3340	const struct inet_connection_sock *icsk = inet_csk(sk);
3341
3342	if (icsk->icsk_ca_ops->cong_control) {
3343		icsk->icsk_ca_ops->cong_control(sk, rs);
3344		return;
3345	}
3346
3347	if (tcp_in_cwnd_reduction(sk)) {
3348		/* Reduce cwnd if state mandates */
3349		tcp_cwnd_reduction(sk, acked_sacked, flag);
3350	} else if (tcp_may_raise_cwnd(sk, flag)) {
3351		/* Advance cwnd if state allows */
3352		tcp_cong_avoid(sk, ack, acked_sacked);
3353	}
3354	tcp_update_pacing_rate(sk);
3355}
3356
3357/* Check that window update is acceptable.
3358 * The function assumes that snd_una<=ack<=snd_next.
3359 */
3360static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3361					const u32 ack, const u32 ack_seq,
3362					const u32 nwin)
3363{
3364	return	after(ack, tp->snd_una) ||
3365		after(ack_seq, tp->snd_wl1) ||
3366		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3367}
3368
3369/* If we update tp->snd_una, also update tp->bytes_acked */
3370static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3371{
3372	u32 delta = ack - tp->snd_una;
3373
3374	sock_owned_by_me((struct sock *)tp);
3375	tp->bytes_acked += delta;
 
3376	tp->snd_una = ack;
3377}
3378
3379/* If we update tp->rcv_nxt, also update tp->bytes_received */
3380static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3381{
3382	u32 delta = seq - tp->rcv_nxt;
3383
3384	sock_owned_by_me((struct sock *)tp);
3385	tp->bytes_received += delta;
 
3386	tp->rcv_nxt = seq;
3387}
3388
3389/* Update our send window.
3390 *
3391 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3392 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3393 */
3394static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3395				 u32 ack_seq)
3396{
3397	struct tcp_sock *tp = tcp_sk(sk);
3398	int flag = 0;
3399	u32 nwin = ntohs(tcp_hdr(skb)->window);
3400
3401	if (likely(!tcp_hdr(skb)->syn))
3402		nwin <<= tp->rx_opt.snd_wscale;
3403
3404	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3405		flag |= FLAG_WIN_UPDATE;
3406		tcp_update_wl(tp, ack_seq);
3407
3408		if (tp->snd_wnd != nwin) {
3409			tp->snd_wnd = nwin;
3410
3411			/* Note, it is the only place, where
3412			 * fast path is recovered for sending TCP.
3413			 */
3414			tp->pred_flags = 0;
3415			tcp_fast_path_check(sk);
3416
3417			if (tcp_send_head(sk))
3418				tcp_slow_start_after_idle_check(sk);
3419
3420			if (nwin > tp->max_window) {
3421				tp->max_window = nwin;
3422				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3423			}
3424		}
3425	}
3426
3427	tcp_snd_una_update(tp, ack);
3428
3429	return flag;
3430}
3431
3432static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3433				   u32 *last_oow_ack_time)
3434{
3435	if (*last_oow_ack_time) {
3436		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3437
3438		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3439			NET_INC_STATS(net, mib_idx);
3440			return true;	/* rate-limited: don't send yet! */
3441		}
3442	}
3443
3444	*last_oow_ack_time = tcp_time_stamp;
3445
3446	return false;	/* not rate-limited: go ahead, send dupack now! */
3447}
3448
3449/* Return true if we're currently rate-limiting out-of-window ACKs and
3450 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3451 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3452 * attacks that send repeated SYNs or ACKs for the same connection. To
3453 * do this, we do not send a duplicate SYNACK or ACK if the remote
3454 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3455 */
3456bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3457			  int mib_idx, u32 *last_oow_ack_time)
3458{
3459	/* Data packets without SYNs are not likely part of an ACK loop. */
3460	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3461	    !tcp_hdr(skb)->syn)
3462		return false;
 
 
 
 
 
 
 
 
 
 
 
3463
3464	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
 
3465}
3466
3467/* RFC 5961 7 [ACK Throttling] */
3468static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3469{
3470	/* unprotected vars, we dont care of overwrites */
3471	static u32 challenge_timestamp;
3472	static unsigned int challenge_count;
3473	struct tcp_sock *tp = tcp_sk(sk);
3474	u32 count, now;
3475
3476	/* First check our per-socket dupack rate limit. */
3477	if (__tcp_oow_rate_limited(sock_net(sk),
3478				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3479				   &tp->last_oow_ack_time))
3480		return;
3481
3482	/* Then check host-wide RFC 5961 rate limit. */
3483	now = jiffies / HZ;
3484	if (now != challenge_timestamp) {
3485		u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3486
3487		challenge_timestamp = now;
3488		WRITE_ONCE(challenge_count, half +
3489			   prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3490	}
3491	count = READ_ONCE(challenge_count);
3492	if (count > 0) {
3493		WRITE_ONCE(challenge_count, count - 1);
3494		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3495		tcp_send_ack(sk);
3496	}
3497}
3498
3499static void tcp_store_ts_recent(struct tcp_sock *tp)
3500{
3501	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3502	tp->rx_opt.ts_recent_stamp = get_seconds();
3503}
3504
3505static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3506{
3507	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3508		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3509		 * extra check below makes sure this can only happen
3510		 * for pure ACK frames.  -DaveM
3511		 *
3512		 * Not only, also it occurs for expired timestamps.
3513		 */
3514
3515		if (tcp_paws_check(&tp->rx_opt, 0))
3516			tcp_store_ts_recent(tp);
3517	}
3518}
3519
3520/* This routine deals with acks during a TLP episode.
3521 * We mark the end of a TLP episode on receiving TLP dupack or when
3522 * ack is after tlp_high_seq.
3523 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3524 */
3525static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3526{
3527	struct tcp_sock *tp = tcp_sk(sk);
3528
3529	if (before(ack, tp->tlp_high_seq))
3530		return;
3531
3532	if (flag & FLAG_DSACKING_ACK) {
3533		/* This DSACK means original and TLP probe arrived; no loss */
3534		tp->tlp_high_seq = 0;
3535	} else if (after(ack, tp->tlp_high_seq)) {
3536		/* ACK advances: there was a loss, so reduce cwnd. Reset
3537		 * tlp_high_seq in tcp_init_cwnd_reduction()
3538		 */
3539		tcp_init_cwnd_reduction(sk);
3540		tcp_set_ca_state(sk, TCP_CA_CWR);
3541		tcp_end_cwnd_reduction(sk);
3542		tcp_try_keep_open(sk);
3543		NET_INC_STATS(sock_net(sk),
3544				LINUX_MIB_TCPLOSSPROBERECOVERY);
3545	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3546			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3547		/* Pure dupack: original and TLP probe arrived; no loss */
3548		tp->tlp_high_seq = 0;
3549	}
3550}
3551
3552static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3553{
3554	const struct inet_connection_sock *icsk = inet_csk(sk);
3555
3556	if (icsk->icsk_ca_ops->in_ack_event)
3557		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3558}
3559
3560/* Congestion control has updated the cwnd already. So if we're in
3561 * loss recovery then now we do any new sends (for FRTO) or
3562 * retransmits (for CA_Loss or CA_recovery) that make sense.
3563 */
3564static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3565{
3566	struct tcp_sock *tp = tcp_sk(sk);
3567
3568	if (rexmit == REXMIT_NONE)
3569		return;
3570
3571	if (unlikely(rexmit == 2)) {
3572		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3573					  TCP_NAGLE_OFF);
3574		if (after(tp->snd_nxt, tp->high_seq))
3575			return;
3576		tp->frto = 0;
3577	}
3578	tcp_xmit_retransmit_queue(sk);
3579}
3580
3581/* This routine deals with incoming acks, but not outgoing ones. */
3582static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3583{
3584	struct inet_connection_sock *icsk = inet_csk(sk);
3585	struct tcp_sock *tp = tcp_sk(sk);
3586	struct tcp_sacktag_state sack_state;
3587	struct rate_sample rs = { .prior_delivered = 0 };
3588	u32 prior_snd_una = tp->snd_una;
3589	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3590	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3591	bool is_dupack = false;
3592	u32 prior_fackets;
3593	int prior_packets = tp->packets_out;
3594	u32 delivered = tp->delivered;
3595	u32 lost = tp->lost;
3596	int acked = 0; /* Number of packets newly acked */
3597	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3598	struct skb_mstamp now;
3599
3600	sack_state.first_sackt.v64 = 0;
3601	sack_state.rate = &rs;
3602
3603	/* We very likely will need to access write queue head. */
3604	prefetchw(sk->sk_write_queue.next);
3605
3606	/* If the ack is older than previous acks
3607	 * then we can probably ignore it.
3608	 */
3609	if (before(ack, prior_snd_una)) {
3610		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3611		if (before(ack, prior_snd_una - tp->max_window)) {
3612			tcp_send_challenge_ack(sk, skb);
3613			return -1;
3614		}
3615		goto old_ack;
3616	}
3617
3618	/* If the ack includes data we haven't sent yet, discard
3619	 * this segment (RFC793 Section 3.9).
3620	 */
3621	if (after(ack, tp->snd_nxt))
3622		goto invalid_ack;
3623
3624	skb_mstamp_get(&now);
3625
3626	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3627	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3628		tcp_rearm_rto(sk);
3629
3630	if (after(ack, prior_snd_una)) {
3631		flag |= FLAG_SND_UNA_ADVANCED;
3632		icsk->icsk_retransmits = 0;
3633	}
3634
3635	prior_fackets = tp->fackets_out;
3636	rs.prior_in_flight = tcp_packets_in_flight(tp);
3637
3638	/* ts_recent update must be made after we are sure that the packet
3639	 * is in window.
3640	 */
3641	if (flag & FLAG_UPDATE_TS_RECENT)
3642		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3643
3644	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3645		/* Window is constant, pure forward advance.
3646		 * No more checks are required.
3647		 * Note, we use the fact that SND.UNA>=SND.WL2.
3648		 */
3649		tcp_update_wl(tp, ack_seq);
3650		tcp_snd_una_update(tp, ack);
3651		flag |= FLAG_WIN_UPDATE;
3652
3653		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3654
3655		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3656	} else {
3657		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3658
3659		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3660			flag |= FLAG_DATA;
3661		else
3662			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3663
3664		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3665
3666		if (TCP_SKB_CB(skb)->sacked)
3667			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3668							&sack_state);
3669
3670		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3671			flag |= FLAG_ECE;
3672			ack_ev_flags |= CA_ACK_ECE;
3673		}
3674
3675		if (flag & FLAG_WIN_UPDATE)
3676			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3677
3678		tcp_in_ack_event(sk, ack_ev_flags);
3679	}
3680
3681	/* We passed data and got it acked, remove any soft error
3682	 * log. Something worked...
3683	 */
3684	sk->sk_err_soft = 0;
3685	icsk->icsk_probes_out = 0;
3686	tp->rcv_tstamp = tcp_time_stamp;
3687	if (!prior_packets)
3688		goto no_queue;
3689
3690	/* See if we can take anything off of the retransmit queue. */
3691	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3692				    &sack_state, &now);
3693
3694	if (tcp_ack_is_dubious(sk, flag)) {
3695		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3696		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3697	}
3698	if (tp->tlp_high_seq)
3699		tcp_process_tlp_ack(sk, ack, flag);
3700
3701	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3702		struct dst_entry *dst = __sk_dst_get(sk);
3703		if (dst)
3704			dst_confirm(dst);
3705	}
3706
3707	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3708		tcp_schedule_loss_probe(sk);
3709	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3710	lost = tp->lost - lost;			/* freshly marked lost */
3711	tcp_rate_gen(sk, delivered, lost, &now, &rs);
3712	tcp_cong_control(sk, ack, delivered, flag, &rs);
3713	tcp_xmit_recovery(sk, rexmit);
3714	return 1;
3715
3716no_queue:
3717	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3718	if (flag & FLAG_DSACKING_ACK)
3719		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3720	/* If this ack opens up a zero window, clear backoff.  It was
3721	 * being used to time the probes, and is probably far higher than
3722	 * it needs to be for normal retransmission.
3723	 */
3724	if (tcp_send_head(sk))
3725		tcp_ack_probe(sk);
3726
3727	if (tp->tlp_high_seq)
3728		tcp_process_tlp_ack(sk, ack, flag);
3729	return 1;
3730
3731invalid_ack:
3732	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3733	return -1;
3734
3735old_ack:
3736	/* If data was SACKed, tag it and see if we should send more data.
3737	 * If data was DSACKed, see if we can undo a cwnd reduction.
3738	 */
3739	if (TCP_SKB_CB(skb)->sacked) {
3740		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3741						&sack_state);
3742		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3743		tcp_xmit_recovery(sk, rexmit);
3744	}
3745
3746	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3747	return 0;
3748}
3749
3750static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3751				      bool syn, struct tcp_fastopen_cookie *foc,
3752				      bool exp_opt)
3753{
3754	/* Valid only in SYN or SYN-ACK with an even length.  */
3755	if (!foc || !syn || len < 0 || (len & 1))
3756		return;
3757
3758	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3759	    len <= TCP_FASTOPEN_COOKIE_MAX)
3760		memcpy(foc->val, cookie, len);
3761	else if (len != 0)
3762		len = -1;
3763	foc->len = len;
3764	foc->exp = exp_opt;
3765}
3766
3767/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3768 * But, this can also be called on packets in the established flow when
3769 * the fast version below fails.
3770 */
3771void tcp_parse_options(const struct sk_buff *skb,
3772		       struct tcp_options_received *opt_rx, int estab,
3773		       struct tcp_fastopen_cookie *foc)
3774{
3775	const unsigned char *ptr;
3776	const struct tcphdr *th = tcp_hdr(skb);
3777	int length = (th->doff * 4) - sizeof(struct tcphdr);
3778
3779	ptr = (const unsigned char *)(th + 1);
3780	opt_rx->saw_tstamp = 0;
3781
3782	while (length > 0) {
3783		int opcode = *ptr++;
3784		int opsize;
3785
3786		switch (opcode) {
3787		case TCPOPT_EOL:
3788			return;
3789		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3790			length--;
3791			continue;
3792		default:
3793			opsize = *ptr++;
3794			if (opsize < 2) /* "silly options" */
3795				return;
3796			if (opsize > length)
3797				return;	/* don't parse partial options */
3798			switch (opcode) {
3799			case TCPOPT_MSS:
3800				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3801					u16 in_mss = get_unaligned_be16(ptr);
3802					if (in_mss) {
3803						if (opt_rx->user_mss &&
3804						    opt_rx->user_mss < in_mss)
3805							in_mss = opt_rx->user_mss;
3806						opt_rx->mss_clamp = in_mss;
3807					}
3808				}
3809				break;
3810			case TCPOPT_WINDOW:
3811				if (opsize == TCPOLEN_WINDOW && th->syn &&
3812				    !estab && sysctl_tcp_window_scaling) {
3813					__u8 snd_wscale = *(__u8 *)ptr;
3814					opt_rx->wscale_ok = 1;
3815					if (snd_wscale > 14) {
3816						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3817								     __func__,
3818								     snd_wscale);
3819						snd_wscale = 14;
3820					}
3821					opt_rx->snd_wscale = snd_wscale;
3822				}
3823				break;
3824			case TCPOPT_TIMESTAMP:
3825				if ((opsize == TCPOLEN_TIMESTAMP) &&
3826				    ((estab && opt_rx->tstamp_ok) ||
3827				     (!estab && sysctl_tcp_timestamps))) {
3828					opt_rx->saw_tstamp = 1;
3829					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3830					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3831				}
3832				break;
3833			case TCPOPT_SACK_PERM:
3834				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3835				    !estab && sysctl_tcp_sack) {
3836					opt_rx->sack_ok = TCP_SACK_SEEN;
3837					tcp_sack_reset(opt_rx);
3838				}
3839				break;
3840
3841			case TCPOPT_SACK:
3842				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3843				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3844				   opt_rx->sack_ok) {
3845					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3846				}
3847				break;
3848#ifdef CONFIG_TCP_MD5SIG
3849			case TCPOPT_MD5SIG:
3850				/*
3851				 * The MD5 Hash has already been
3852				 * checked (see tcp_v{4,6}_do_rcv()).
3853				 */
3854				break;
3855#endif
3856			case TCPOPT_FASTOPEN:
3857				tcp_parse_fastopen_option(
3858					opsize - TCPOLEN_FASTOPEN_BASE,
3859					ptr, th->syn, foc, false);
3860				break;
3861
3862			case TCPOPT_EXP:
3863				/* Fast Open option shares code 254 using a
3864				 * 16 bits magic number.
3865				 */
3866				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3867				    get_unaligned_be16(ptr) ==
3868				    TCPOPT_FASTOPEN_MAGIC)
3869					tcp_parse_fastopen_option(opsize -
3870						TCPOLEN_EXP_FASTOPEN_BASE,
3871						ptr + 2, th->syn, foc, true);
3872				break;
3873
3874			}
3875			ptr += opsize-2;
3876			length -= opsize;
3877		}
3878	}
3879}
3880EXPORT_SYMBOL(tcp_parse_options);
3881
3882static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3883{
3884	const __be32 *ptr = (const __be32 *)(th + 1);
3885
3886	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3887			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3888		tp->rx_opt.saw_tstamp = 1;
3889		++ptr;
3890		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3891		++ptr;
3892		if (*ptr)
3893			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3894		else
3895			tp->rx_opt.rcv_tsecr = 0;
3896		return true;
3897	}
3898	return false;
3899}
3900
3901/* Fast parse options. This hopes to only see timestamps.
3902 * If it is wrong it falls back on tcp_parse_options().
3903 */
3904static bool tcp_fast_parse_options(const struct sk_buff *skb,
3905				   const struct tcphdr *th, struct tcp_sock *tp)
3906{
3907	/* In the spirit of fast parsing, compare doff directly to constant
3908	 * values.  Because equality is used, short doff can be ignored here.
3909	 */
3910	if (th->doff == (sizeof(*th) / 4)) {
3911		tp->rx_opt.saw_tstamp = 0;
3912		return false;
3913	} else if (tp->rx_opt.tstamp_ok &&
3914		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3915		if (tcp_parse_aligned_timestamp(tp, th))
3916			return true;
3917	}
3918
3919	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3920	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3921		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3922
3923	return true;
3924}
3925
3926#ifdef CONFIG_TCP_MD5SIG
3927/*
3928 * Parse MD5 Signature option
3929 */
3930const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3931{
3932	int length = (th->doff << 2) - sizeof(*th);
3933	const u8 *ptr = (const u8 *)(th + 1);
3934
3935	/* If the TCP option is too short, we can short cut */
3936	if (length < TCPOLEN_MD5SIG)
3937		return NULL;
3938
3939	while (length > 0) {
3940		int opcode = *ptr++;
3941		int opsize;
3942
3943		switch (opcode) {
3944		case TCPOPT_EOL:
3945			return NULL;
3946		case TCPOPT_NOP:
3947			length--;
3948			continue;
3949		default:
3950			opsize = *ptr++;
3951			if (opsize < 2 || opsize > length)
3952				return NULL;
3953			if (opcode == TCPOPT_MD5SIG)
3954				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3955		}
3956		ptr += opsize - 2;
3957		length -= opsize;
3958	}
3959	return NULL;
3960}
3961EXPORT_SYMBOL(tcp_parse_md5sig_option);
3962#endif
3963
3964/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3965 *
3966 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3967 * it can pass through stack. So, the following predicate verifies that
3968 * this segment is not used for anything but congestion avoidance or
3969 * fast retransmit. Moreover, we even are able to eliminate most of such
3970 * second order effects, if we apply some small "replay" window (~RTO)
3971 * to timestamp space.
3972 *
3973 * All these measures still do not guarantee that we reject wrapped ACKs
3974 * on networks with high bandwidth, when sequence space is recycled fastly,
3975 * but it guarantees that such events will be very rare and do not affect
3976 * connection seriously. This doesn't look nice, but alas, PAWS is really
3977 * buggy extension.
3978 *
3979 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3980 * states that events when retransmit arrives after original data are rare.
3981 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3982 * the biggest problem on large power networks even with minor reordering.
3983 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3984 * up to bandwidth of 18Gigabit/sec. 8) ]
3985 */
3986
3987static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3988{
3989	const struct tcp_sock *tp = tcp_sk(sk);
3990	const struct tcphdr *th = tcp_hdr(skb);
3991	u32 seq = TCP_SKB_CB(skb)->seq;
3992	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3993
3994	return (/* 1. Pure ACK with correct sequence number. */
3995		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3996
3997		/* 2. ... and duplicate ACK. */
3998		ack == tp->snd_una &&
3999
4000		/* 3. ... and does not update window. */
4001		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4002
4003		/* 4. ... and sits in replay window. */
4004		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4005}
4006
4007static inline bool tcp_paws_discard(const struct sock *sk,
4008				   const struct sk_buff *skb)
4009{
4010	const struct tcp_sock *tp = tcp_sk(sk);
4011
4012	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4013	       !tcp_disordered_ack(sk, skb);
4014}
4015
4016/* Check segment sequence number for validity.
4017 *
4018 * Segment controls are considered valid, if the segment
4019 * fits to the window after truncation to the window. Acceptability
4020 * of data (and SYN, FIN, of course) is checked separately.
4021 * See tcp_data_queue(), for example.
4022 *
4023 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4024 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4025 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4026 * (borrowed from freebsd)
4027 */
4028
4029static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4030{
4031	return	!before(end_seq, tp->rcv_wup) &&
4032		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4033}
4034
4035/* When we get a reset we do this. */
4036void tcp_reset(struct sock *sk)
4037{
4038	/* We want the right error as BSD sees it (and indeed as we do). */
4039	switch (sk->sk_state) {
4040	case TCP_SYN_SENT:
4041		sk->sk_err = ECONNREFUSED;
4042		break;
4043	case TCP_CLOSE_WAIT:
4044		sk->sk_err = EPIPE;
4045		break;
4046	case TCP_CLOSE:
4047		return;
4048	default:
4049		sk->sk_err = ECONNRESET;
4050	}
4051	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4052	smp_wmb();
4053
4054	if (!sock_flag(sk, SOCK_DEAD))
4055		sk->sk_error_report(sk);
4056
4057	tcp_done(sk);
4058}
4059
4060/*
4061 * 	Process the FIN bit. This now behaves as it is supposed to work
4062 *	and the FIN takes effect when it is validly part of sequence
4063 *	space. Not before when we get holes.
4064 *
4065 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4066 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4067 *	TIME-WAIT)
4068 *
4069 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4070 *	close and we go into CLOSING (and later onto TIME-WAIT)
4071 *
4072 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4073 */
4074void tcp_fin(struct sock *sk)
4075{
4076	struct tcp_sock *tp = tcp_sk(sk);
4077
4078	inet_csk_schedule_ack(sk);
4079
4080	sk->sk_shutdown |= RCV_SHUTDOWN;
4081	sock_set_flag(sk, SOCK_DONE);
4082
4083	switch (sk->sk_state) {
4084	case TCP_SYN_RECV:
4085	case TCP_ESTABLISHED:
4086		/* Move to CLOSE_WAIT */
4087		tcp_set_state(sk, TCP_CLOSE_WAIT);
4088		inet_csk(sk)->icsk_ack.pingpong = 1;
4089		break;
4090
4091	case TCP_CLOSE_WAIT:
4092	case TCP_CLOSING:
4093		/* Received a retransmission of the FIN, do
4094		 * nothing.
4095		 */
4096		break;
4097	case TCP_LAST_ACK:
4098		/* RFC793: Remain in the LAST-ACK state. */
4099		break;
4100
4101	case TCP_FIN_WAIT1:
4102		/* This case occurs when a simultaneous close
4103		 * happens, we must ack the received FIN and
4104		 * enter the CLOSING state.
4105		 */
4106		tcp_send_ack(sk);
4107		tcp_set_state(sk, TCP_CLOSING);
4108		break;
4109	case TCP_FIN_WAIT2:
4110		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4111		tcp_send_ack(sk);
4112		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4113		break;
4114	default:
4115		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4116		 * cases we should never reach this piece of code.
4117		 */
4118		pr_err("%s: Impossible, sk->sk_state=%d\n",
4119		       __func__, sk->sk_state);
4120		break;
4121	}
4122
4123	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4124	 * Probably, we should reset in this case. For now drop them.
4125	 */
4126	skb_rbtree_purge(&tp->out_of_order_queue);
4127	if (tcp_is_sack(tp))
4128		tcp_sack_reset(&tp->rx_opt);
4129	sk_mem_reclaim(sk);
4130
4131	if (!sock_flag(sk, SOCK_DEAD)) {
4132		sk->sk_state_change(sk);
4133
4134		/* Do not send POLL_HUP for half duplex close. */
4135		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4136		    sk->sk_state == TCP_CLOSE)
4137			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4138		else
4139			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4140	}
4141}
4142
4143static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4144				  u32 end_seq)
4145{
4146	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4147		if (before(seq, sp->start_seq))
4148			sp->start_seq = seq;
4149		if (after(end_seq, sp->end_seq))
4150			sp->end_seq = end_seq;
4151		return true;
4152	}
4153	return false;
4154}
4155
4156static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4157{
4158	struct tcp_sock *tp = tcp_sk(sk);
4159
4160	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4161		int mib_idx;
4162
4163		if (before(seq, tp->rcv_nxt))
4164			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4165		else
4166			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4167
4168		NET_INC_STATS(sock_net(sk), mib_idx);
4169
4170		tp->rx_opt.dsack = 1;
4171		tp->duplicate_sack[0].start_seq = seq;
4172		tp->duplicate_sack[0].end_seq = end_seq;
4173	}
4174}
4175
4176static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4177{
4178	struct tcp_sock *tp = tcp_sk(sk);
4179
4180	if (!tp->rx_opt.dsack)
4181		tcp_dsack_set(sk, seq, end_seq);
4182	else
4183		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4184}
4185
4186static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4187{
4188	struct tcp_sock *tp = tcp_sk(sk);
4189
4190	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4191	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4192		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4193		tcp_enter_quickack_mode(sk);
4194
4195		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4196			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4197
4198			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4199				end_seq = tp->rcv_nxt;
4200			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4201		}
4202	}
4203
4204	tcp_send_ack(sk);
4205}
4206
4207/* These routines update the SACK block as out-of-order packets arrive or
4208 * in-order packets close up the sequence space.
4209 */
4210static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4211{
4212	int this_sack;
4213	struct tcp_sack_block *sp = &tp->selective_acks[0];
4214	struct tcp_sack_block *swalk = sp + 1;
4215
4216	/* See if the recent change to the first SACK eats into
4217	 * or hits the sequence space of other SACK blocks, if so coalesce.
4218	 */
4219	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4220		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4221			int i;
4222
4223			/* Zap SWALK, by moving every further SACK up by one slot.
4224			 * Decrease num_sacks.
4225			 */
4226			tp->rx_opt.num_sacks--;
4227			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4228				sp[i] = sp[i + 1];
4229			continue;
4230		}
4231		this_sack++, swalk++;
4232	}
4233}
4234
4235static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4236{
4237	struct tcp_sock *tp = tcp_sk(sk);
4238	struct tcp_sack_block *sp = &tp->selective_acks[0];
4239	int cur_sacks = tp->rx_opt.num_sacks;
4240	int this_sack;
4241
4242	if (!cur_sacks)
4243		goto new_sack;
4244
4245	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4246		if (tcp_sack_extend(sp, seq, end_seq)) {
4247			/* Rotate this_sack to the first one. */
4248			for (; this_sack > 0; this_sack--, sp--)
4249				swap(*sp, *(sp - 1));
4250			if (cur_sacks > 1)
4251				tcp_sack_maybe_coalesce(tp);
4252			return;
4253		}
4254	}
4255
4256	/* Could not find an adjacent existing SACK, build a new one,
4257	 * put it at the front, and shift everyone else down.  We
4258	 * always know there is at least one SACK present already here.
4259	 *
4260	 * If the sack array is full, forget about the last one.
4261	 */
4262	if (this_sack >= TCP_NUM_SACKS) {
4263		this_sack--;
4264		tp->rx_opt.num_sacks--;
4265		sp--;
4266	}
4267	for (; this_sack > 0; this_sack--, sp--)
4268		*sp = *(sp - 1);
4269
4270new_sack:
4271	/* Build the new head SACK, and we're done. */
4272	sp->start_seq = seq;
4273	sp->end_seq = end_seq;
4274	tp->rx_opt.num_sacks++;
4275}
4276
4277/* RCV.NXT advances, some SACKs should be eaten. */
4278
4279static void tcp_sack_remove(struct tcp_sock *tp)
4280{
4281	struct tcp_sack_block *sp = &tp->selective_acks[0];
4282	int num_sacks = tp->rx_opt.num_sacks;
4283	int this_sack;
4284
4285	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4286	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4287		tp->rx_opt.num_sacks = 0;
4288		return;
4289	}
4290
4291	for (this_sack = 0; this_sack < num_sacks;) {
4292		/* Check if the start of the sack is covered by RCV.NXT. */
4293		if (!before(tp->rcv_nxt, sp->start_seq)) {
4294			int i;
4295
4296			/* RCV.NXT must cover all the block! */
4297			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4298
4299			/* Zap this SACK, by moving forward any other SACKS. */
4300			for (i = this_sack+1; i < num_sacks; i++)
4301				tp->selective_acks[i-1] = tp->selective_acks[i];
4302			num_sacks--;
4303			continue;
4304		}
4305		this_sack++;
4306		sp++;
4307	}
4308	tp->rx_opt.num_sacks = num_sacks;
4309}
4310
4311/**
4312 * tcp_try_coalesce - try to merge skb to prior one
4313 * @sk: socket
4314 * @to: prior buffer
4315 * @from: buffer to add in queue
4316 * @fragstolen: pointer to boolean
4317 *
4318 * Before queueing skb @from after @to, try to merge them
4319 * to reduce overall memory use and queue lengths, if cost is small.
4320 * Packets in ofo or receive queues can stay a long time.
4321 * Better try to coalesce them right now to avoid future collapses.
4322 * Returns true if caller should free @from instead of queueing it
4323 */
4324static bool tcp_try_coalesce(struct sock *sk,
4325			     struct sk_buff *to,
4326			     struct sk_buff *from,
4327			     bool *fragstolen)
4328{
4329	int delta;
4330
4331	*fragstolen = false;
4332
4333	/* Its possible this segment overlaps with prior segment in queue */
4334	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4335		return false;
4336
4337	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4338		return false;
4339
4340	atomic_add(delta, &sk->sk_rmem_alloc);
4341	sk_mem_charge(sk, delta);
4342	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4343	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4344	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4345	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4346	return true;
4347}
4348
4349static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4350{
4351	sk_drops_add(sk, skb);
4352	__kfree_skb(skb);
4353}
4354
4355/* This one checks to see if we can put data from the
4356 * out_of_order queue into the receive_queue.
4357 */
4358static void tcp_ofo_queue(struct sock *sk)
4359{
4360	struct tcp_sock *tp = tcp_sk(sk);
4361	__u32 dsack_high = tp->rcv_nxt;
4362	bool fin, fragstolen, eaten;
4363	struct sk_buff *skb, *tail;
4364	struct rb_node *p;
4365
4366	p = rb_first(&tp->out_of_order_queue);
4367	while (p) {
4368		skb = rb_entry(p, struct sk_buff, rbnode);
4369		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4370			break;
4371
4372		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4373			__u32 dsack = dsack_high;
4374			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4375				dsack_high = TCP_SKB_CB(skb)->end_seq;
4376			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4377		}
4378		p = rb_next(p);
4379		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4380
4381		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
 
4382			SOCK_DEBUG(sk, "ofo packet was already received\n");
4383			tcp_drop(sk, skb);
4384			continue;
4385		}
4386		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4387			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4388			   TCP_SKB_CB(skb)->end_seq);
4389
4390		tail = skb_peek_tail(&sk->sk_receive_queue);
4391		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4392		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4393		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4394		if (!eaten)
4395			__skb_queue_tail(&sk->sk_receive_queue, skb);
4396		else
 
 
4397			kfree_skb_partial(skb, fragstolen);
4398
4399		if (unlikely(fin)) {
4400			tcp_fin(sk);
4401			/* tcp_fin() purges tp->out_of_order_queue,
4402			 * so we must end this loop right now.
4403			 */
4404			break;
4405		}
4406	}
4407}
4408
4409static bool tcp_prune_ofo_queue(struct sock *sk);
4410static int tcp_prune_queue(struct sock *sk);
4411
4412static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4413				 unsigned int size)
4414{
4415	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4416	    !sk_rmem_schedule(sk, skb, size)) {
4417
4418		if (tcp_prune_queue(sk) < 0)
4419			return -1;
4420
4421		while (!sk_rmem_schedule(sk, skb, size)) {
4422			if (!tcp_prune_ofo_queue(sk))
4423				return -1;
 
 
 
4424		}
4425	}
4426	return 0;
4427}
4428
4429static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4430{
4431	struct tcp_sock *tp = tcp_sk(sk);
4432	struct rb_node **p, *q, *parent;
4433	struct sk_buff *skb1;
4434	u32 seq, end_seq;
4435	bool fragstolen;
4436
4437	tcp_ecn_check_ce(tp, skb);
4438
4439	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4440		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4441		tcp_drop(sk, skb);
4442		return;
4443	}
4444
4445	/* Disable header prediction. */
4446	tp->pred_flags = 0;
4447	inet_csk_schedule_ack(sk);
4448
4449	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4450	seq = TCP_SKB_CB(skb)->seq;
4451	end_seq = TCP_SKB_CB(skb)->end_seq;
4452	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4453		   tp->rcv_nxt, seq, end_seq);
4454
4455	p = &tp->out_of_order_queue.rb_node;
4456	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4457		/* Initial out of order segment, build 1 SACK. */
4458		if (tcp_is_sack(tp)) {
4459			tp->rx_opt.num_sacks = 1;
4460			tp->selective_acks[0].start_seq = seq;
4461			tp->selective_acks[0].end_seq = end_seq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4462		}
4463		rb_link_node(&skb->rbnode, NULL, p);
4464		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4465		tp->ooo_last_skb = skb;
 
 
 
 
4466		goto end;
4467	}
4468
4469	/* In the typical case, we are adding an skb to the end of the list.
4470	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4471	 */
4472	if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4473coalesce_done:
4474		tcp_grow_window(sk, skb);
4475		kfree_skb_partial(skb, fragstolen);
4476		skb = NULL;
4477		goto add_sack;
4478	}
4479	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4480	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4481		parent = &tp->ooo_last_skb->rbnode;
4482		p = &parent->rb_right;
4483		goto insert;
4484	}
4485
4486	/* Find place to insert this segment. Handle overlaps on the way. */
4487	parent = NULL;
4488	while (*p) {
4489		parent = *p;
4490		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4491		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4492			p = &parent->rb_left;
4493			continue;
4494		}
4495		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4496			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4497				/* All the bits are present. Drop. */
4498				NET_INC_STATS(sock_net(sk),
4499					      LINUX_MIB_TCPOFOMERGE);
4500				__kfree_skb(skb);
4501				skb = NULL;
4502				tcp_dsack_set(sk, seq, end_seq);
4503				goto add_sack;
4504			}
4505			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4506				/* Partial overlap. */
4507				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4508			} else {
4509				/* skb's seq == skb1's seq and skb covers skb1.
4510				 * Replace skb1 with skb.
4511				 */
4512				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4513						&tp->out_of_order_queue);
4514				tcp_dsack_extend(sk,
4515						 TCP_SKB_CB(skb1)->seq,
4516						 TCP_SKB_CB(skb1)->end_seq);
4517				NET_INC_STATS(sock_net(sk),
4518					      LINUX_MIB_TCPOFOMERGE);
4519				__kfree_skb(skb1);
4520				goto merge_right;
4521			}
4522		} else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4523			goto coalesce_done;
4524		}
4525		p = &parent->rb_right;
4526	}
4527insert:
4528	/* Insert segment into RB tree. */
4529	rb_link_node(&skb->rbnode, parent, p);
4530	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4531
4532merge_right:
4533	/* Remove other segments covered by skb. */
4534	while ((q = rb_next(&skb->rbnode)) != NULL) {
4535		skb1 = rb_entry(q, struct sk_buff, rbnode);
4536
4537		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4538			break;
4539		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4540			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4541					 end_seq);
4542			break;
4543		}
4544		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4545		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4546				 TCP_SKB_CB(skb1)->end_seq);
4547		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4548		tcp_drop(sk, skb1);
4549	}
4550	/* If there is no skb after us, we are the last_skb ! */
4551	if (!q)
4552		tp->ooo_last_skb = skb;
4553
4554add_sack:
4555	if (tcp_is_sack(tp))
4556		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4557end:
4558	if (skb) {
4559		tcp_grow_window(sk, skb);
4560		skb_set_owner_r(skb, sk);
4561	}
4562}
4563
4564static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4565		  bool *fragstolen)
4566{
4567	int eaten;
4568	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4569
4570	__skb_pull(skb, hdrlen);
4571	eaten = (tail &&
4572		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4573	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4574	if (!eaten) {
4575		__skb_queue_tail(&sk->sk_receive_queue, skb);
4576		skb_set_owner_r(skb, sk);
4577	}
4578	return eaten;
4579}
4580
4581int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4582{
4583	struct sk_buff *skb;
4584	int err = -ENOMEM;
4585	int data_len = 0;
4586	bool fragstolen;
4587
4588	if (size == 0)
4589		return 0;
4590
4591	if (size > PAGE_SIZE) {
4592		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4593
4594		data_len = npages << PAGE_SHIFT;
4595		size = data_len + (size & ~PAGE_MASK);
4596	}
4597	skb = alloc_skb_with_frags(size - data_len, data_len,
4598				   PAGE_ALLOC_COSTLY_ORDER,
4599				   &err, sk->sk_allocation);
4600	if (!skb)
4601		goto err;
4602
4603	skb_put(skb, size - data_len);
4604	skb->data_len = data_len;
4605	skb->len = size;
4606
4607	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4608		goto err_free;
4609
4610	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4611	if (err)
4612		goto err_free;
4613
4614	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4615	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4616	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4617
4618	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4619		WARN_ON_ONCE(fragstolen); /* should not happen */
4620		__kfree_skb(skb);
4621	}
4622	return size;
4623
4624err_free:
4625	kfree_skb(skb);
4626err:
4627	return err;
4628
4629}
4630
4631static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4632{
4633	struct tcp_sock *tp = tcp_sk(sk);
 
4634	bool fragstolen = false;
4635	int eaten = -1;
4636
4637	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4638		__kfree_skb(skb);
4639		return;
4640	}
4641	skb_dst_drop(skb);
4642	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4643
4644	tcp_ecn_accept_cwr(tp, skb);
4645
4646	tp->rx_opt.dsack = 0;
4647
4648	/*  Queue data for delivery to the user.
4649	 *  Packets in sequence go to the receive queue.
4650	 *  Out of sequence packets to the out_of_order_queue.
4651	 */
4652	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4653		if (tcp_receive_window(tp) == 0)
4654			goto out_of_window;
4655
4656		/* Ok. In sequence. In window. */
4657		if (tp->ucopy.task == current &&
4658		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4659		    sock_owned_by_user(sk) && !tp->urg_data) {
4660			int chunk = min_t(unsigned int, skb->len,
4661					  tp->ucopy.len);
4662
4663			__set_current_state(TASK_RUNNING);
4664
 
4665			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4666				tp->ucopy.len -= chunk;
4667				tp->copied_seq += chunk;
4668				eaten = (chunk == skb->len);
4669				tcp_rcv_space_adjust(sk);
4670			}
 
4671		}
4672
4673		if (eaten <= 0) {
4674queue_and_out:
4675			if (eaten < 0) {
4676				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4677					sk_forced_mem_schedule(sk, skb->truesize);
4678				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4679					goto drop;
4680			}
4681			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4682		}
4683		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4684		if (skb->len)
4685			tcp_event_data_recv(sk, skb);
4686		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4687			tcp_fin(sk);
4688
4689		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4690			tcp_ofo_queue(sk);
4691
4692			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4693			 * gap in queue is filled.
4694			 */
4695			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4696				inet_csk(sk)->icsk_ack.pingpong = 0;
4697		}
4698
4699		if (tp->rx_opt.num_sacks)
4700			tcp_sack_remove(tp);
4701
4702		tcp_fast_path_check(sk);
4703
4704		if (eaten > 0)
4705			kfree_skb_partial(skb, fragstolen);
4706		if (!sock_flag(sk, SOCK_DEAD))
4707			sk->sk_data_ready(sk);
4708		return;
4709	}
4710
4711	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4712		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4713		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4714		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4715
4716out_of_window:
4717		tcp_enter_quickack_mode(sk);
4718		inet_csk_schedule_ack(sk);
4719drop:
4720		tcp_drop(sk, skb);
4721		return;
4722	}
4723
4724	/* Out of window. F.e. zero window probe. */
4725	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4726		goto out_of_window;
4727
4728	tcp_enter_quickack_mode(sk);
4729
4730	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4731		/* Partial packet, seq < rcv_next < end_seq */
4732		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4733			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4734			   TCP_SKB_CB(skb)->end_seq);
4735
4736		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4737
4738		/* If window is closed, drop tail of packet. But after
4739		 * remembering D-SACK for its head made in previous line.
4740		 */
4741		if (!tcp_receive_window(tp))
4742			goto out_of_window;
4743		goto queue_and_out;
4744	}
4745
4746	tcp_data_queue_ofo(sk, skb);
4747}
4748
4749static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4750{
4751	if (list)
4752		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4753
4754	return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4755}
4756
4757static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4758					struct sk_buff_head *list,
4759					struct rb_root *root)
4760{
4761	struct sk_buff *next = tcp_skb_next(skb, list);
4762
4763	if (list)
4764		__skb_unlink(skb, list);
4765	else
4766		rb_erase(&skb->rbnode, root);
4767
 
4768	__kfree_skb(skb);
4769	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4770
4771	return next;
4772}
4773
4774/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4775static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4776{
4777	struct rb_node **p = &root->rb_node;
4778	struct rb_node *parent = NULL;
4779	struct sk_buff *skb1;
4780
4781	while (*p) {
4782		parent = *p;
4783		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4784		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4785			p = &parent->rb_left;
4786		else
4787			p = &parent->rb_right;
4788	}
4789	rb_link_node(&skb->rbnode, parent, p);
4790	rb_insert_color(&skb->rbnode, root);
4791}
4792
4793/* Collapse contiguous sequence of skbs head..tail with
4794 * sequence numbers start..end.
4795 *
4796 * If tail is NULL, this means until the end of the queue.
4797 *
4798 * Segments with FIN/SYN are not collapsed (only because this
4799 * simplifies code)
4800 */
4801static void
4802tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4803	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
 
4804{
4805	struct sk_buff *skb = head, *n;
4806	struct sk_buff_head tmp;
4807	bool end_of_skbs;
4808
4809	/* First, check that queue is collapsible and find
4810	 * the point where collapsing can be useful.
4811	 */
4812restart:
4813	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4814		n = tcp_skb_next(skb, list);
4815
 
4816		/* No new bits? It is possible on ofo queue. */
4817		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4818			skb = tcp_collapse_one(sk, skb, list, root);
4819			if (!skb)
4820				break;
4821			goto restart;
4822		}
4823
4824		/* The first skb to collapse is:
4825		 * - not SYN/FIN and
4826		 * - bloated or contains data before "start" or
4827		 *   overlaps to the next one.
4828		 */
4829		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4830		    (tcp_win_from_space(skb->truesize) > skb->len ||
4831		     before(TCP_SKB_CB(skb)->seq, start))) {
4832			end_of_skbs = false;
4833			break;
4834		}
4835
4836		if (n && n != tail &&
4837		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4838			end_of_skbs = false;
4839			break;
 
 
 
4840		}
4841
4842		/* Decided to skip this, advance start seq. */
4843		start = TCP_SKB_CB(skb)->end_seq;
4844	}
4845	if (end_of_skbs ||
4846	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4847		return;
4848
4849	__skb_queue_head_init(&tmp);
4850
4851	while (before(start, end)) {
4852		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4853		struct sk_buff *nskb;
4854
4855		nskb = alloc_skb(copy, GFP_ATOMIC);
4856		if (!nskb)
4857			break;
4858
4859		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4860		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4861		if (list)
4862			__skb_queue_before(list, skb, nskb);
4863		else
4864			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4865		skb_set_owner_r(nskb, sk);
4866
4867		/* Copy data, releasing collapsed skbs. */
4868		while (copy > 0) {
4869			int offset = start - TCP_SKB_CB(skb)->seq;
4870			int size = TCP_SKB_CB(skb)->end_seq - start;
4871
4872			BUG_ON(offset < 0);
4873			if (size > 0) {
4874				size = min(copy, size);
4875				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4876					BUG();
4877				TCP_SKB_CB(nskb)->end_seq += size;
4878				copy -= size;
4879				start += size;
4880			}
4881			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4882				skb = tcp_collapse_one(sk, skb, list, root);
4883				if (!skb ||
4884				    skb == tail ||
4885				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4886					goto end;
4887			}
4888		}
4889	}
4890end:
4891	skb_queue_walk_safe(&tmp, skb, n)
4892		tcp_rbtree_insert(root, skb);
4893}
4894
4895/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4896 * and tcp_collapse() them until all the queue is collapsed.
4897 */
4898static void tcp_collapse_ofo_queue(struct sock *sk)
4899{
4900	struct tcp_sock *tp = tcp_sk(sk);
4901	struct sk_buff *skb, *head;
4902	struct rb_node *p;
4903	u32 start, end;
4904
4905	p = rb_first(&tp->out_of_order_queue);
4906	skb = rb_entry_safe(p, struct sk_buff, rbnode);
4907new_range:
4908	if (!skb) {
4909		p = rb_last(&tp->out_of_order_queue);
4910		/* Note: This is possible p is NULL here. We do not
4911		 * use rb_entry_safe(), as ooo_last_skb is valid only
4912		 * if rbtree is not empty.
4913		 */
4914		tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4915		return;
4916	}
4917	start = TCP_SKB_CB(skb)->seq;
4918	end = TCP_SKB_CB(skb)->end_seq;
 
 
 
 
4919
4920	for (head = skb;;) {
4921		skb = tcp_skb_next(skb, NULL);
 
4922
4923		/* Range is terminated when we see a gap or when
4924		 * we are at the queue end.
4925		 */
4926		if (!skb ||
4927		    after(TCP_SKB_CB(skb)->seq, end) ||
4928		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4929			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4930				     head, skb, start, end);
4931			goto new_range;
4932		}
4933
4934		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4935			start = TCP_SKB_CB(skb)->seq;
4936		if (after(TCP_SKB_CB(skb)->end_seq, end))
4937			end = TCP_SKB_CB(skb)->end_seq;
 
 
 
 
 
 
4938	}
4939}
4940
4941/*
4942 * Clean the out-of-order queue to make room.
4943 * We drop high sequences packets to :
4944 * 1) Let a chance for holes to be filled.
4945 * 2) not add too big latencies if thousands of packets sit there.
4946 *    (But if application shrinks SO_RCVBUF, we could still end up
4947 *     freeing whole queue here)
4948 *
4949 * Return true if queue has shrunk.
4950 */
4951static bool tcp_prune_ofo_queue(struct sock *sk)
4952{
4953	struct tcp_sock *tp = tcp_sk(sk);
4954	struct rb_node *node, *prev;
4955
4956	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4957		return false;
4958
4959	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4960	node = &tp->ooo_last_skb->rbnode;
4961	do {
4962		prev = rb_prev(node);
4963		rb_erase(node, &tp->out_of_order_queue);
4964		tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
 
 
4965		sk_mem_reclaim(sk);
4966		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4967		    !tcp_under_memory_pressure(sk))
4968			break;
4969		node = prev;
4970	} while (node);
4971	tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4972
4973	/* Reset SACK state.  A conforming SACK implementation will
4974	 * do the same at a timeout based retransmit.  When a connection
4975	 * is in a sad state like this, we care only about integrity
4976	 * of the connection not performance.
4977	 */
4978	if (tp->rx_opt.sack_ok)
4979		tcp_sack_reset(&tp->rx_opt);
4980	return true;
4981}
4982
4983/* Reduce allocated memory if we can, trying to get
4984 * the socket within its memory limits again.
4985 *
4986 * Return less than zero if we should start dropping frames
4987 * until the socket owning process reads some of the data
4988 * to stabilize the situation.
4989 */
4990static int tcp_prune_queue(struct sock *sk)
4991{
4992	struct tcp_sock *tp = tcp_sk(sk);
4993
4994	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4995
4996	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4997
4998	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4999		tcp_clamp_window(sk);
5000	else if (tcp_under_memory_pressure(sk))
5001		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5002
5003	tcp_collapse_ofo_queue(sk);
5004	if (!skb_queue_empty(&sk->sk_receive_queue))
5005		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5006			     skb_peek(&sk->sk_receive_queue),
5007			     NULL,
5008			     tp->copied_seq, tp->rcv_nxt);
5009	sk_mem_reclaim(sk);
5010
5011	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5012		return 0;
5013
5014	/* Collapsing did not help, destructive actions follow.
5015	 * This must not ever occur. */
5016
5017	tcp_prune_ofo_queue(sk);
5018
5019	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5020		return 0;
5021
5022	/* If we are really being abused, tell the caller to silently
5023	 * drop receive data on the floor.  It will get retransmitted
5024	 * and hopefully then we'll have sufficient space.
5025	 */
5026	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5027
5028	/* Massive buffer overcommit. */
5029	tp->pred_flags = 0;
5030	return -1;
5031}
5032
5033static bool tcp_should_expand_sndbuf(const struct sock *sk)
5034{
5035	const struct tcp_sock *tp = tcp_sk(sk);
5036
5037	/* If the user specified a specific send buffer setting, do
5038	 * not modify it.
5039	 */
5040	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5041		return false;
5042
5043	/* If we are under global TCP memory pressure, do not expand.  */
5044	if (tcp_under_memory_pressure(sk))
5045		return false;
5046
5047	/* If we are under soft global TCP memory pressure, do not expand.  */
5048	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5049		return false;
5050
5051	/* If we filled the congestion window, do not expand.  */
5052	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5053		return false;
5054
5055	return true;
5056}
5057
5058/* When incoming ACK allowed to free some skb from write_queue,
5059 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5060 * on the exit from tcp input handler.
5061 *
5062 * PROBLEM: sndbuf expansion does not work well with largesend.
5063 */
5064static void tcp_new_space(struct sock *sk)
5065{
5066	struct tcp_sock *tp = tcp_sk(sk);
5067
5068	if (tcp_should_expand_sndbuf(sk)) {
5069		tcp_sndbuf_expand(sk);
5070		tp->snd_cwnd_stamp = tcp_time_stamp;
5071	}
5072
5073	sk->sk_write_space(sk);
5074}
5075
5076static void tcp_check_space(struct sock *sk)
5077{
5078	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5079		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5080		/* pairs with tcp_poll() */
5081		smp_mb();
5082		if (sk->sk_socket &&
5083		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5084			tcp_new_space(sk);
5085			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5086				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5087		}
5088	}
5089}
5090
5091static inline void tcp_data_snd_check(struct sock *sk)
5092{
5093	tcp_push_pending_frames(sk);
5094	tcp_check_space(sk);
5095}
5096
5097/*
5098 * Check if sending an ack is needed.
5099 */
5100static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5101{
5102	struct tcp_sock *tp = tcp_sk(sk);
5103
5104	    /* More than one full frame received... */
5105	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5106	     /* ... and right edge of window advances far enough.
5107	      * (tcp_recvmsg() will send ACK otherwise). Or...
5108	      */
5109	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5110	    /* We ACK each frame or... */
5111	    tcp_in_quickack_mode(sk) ||
5112	    /* We have out of order data. */
5113	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5114		/* Then ack it now */
5115		tcp_send_ack(sk);
5116	} else {
5117		/* Else, send delayed ack. */
5118		tcp_send_delayed_ack(sk);
5119	}
5120}
5121
5122static inline void tcp_ack_snd_check(struct sock *sk)
5123{
5124	if (!inet_csk_ack_scheduled(sk)) {
5125		/* We sent a data segment already. */
5126		return;
5127	}
5128	__tcp_ack_snd_check(sk, 1);
5129}
5130
5131/*
5132 *	This routine is only called when we have urgent data
5133 *	signaled. Its the 'slow' part of tcp_urg. It could be
5134 *	moved inline now as tcp_urg is only called from one
5135 *	place. We handle URGent data wrong. We have to - as
5136 *	BSD still doesn't use the correction from RFC961.
5137 *	For 1003.1g we should support a new option TCP_STDURG to permit
5138 *	either form (or just set the sysctl tcp_stdurg).
5139 */
5140
5141static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5142{
5143	struct tcp_sock *tp = tcp_sk(sk);
5144	u32 ptr = ntohs(th->urg_ptr);
5145
5146	if (ptr && !sysctl_tcp_stdurg)
5147		ptr--;
5148	ptr += ntohl(th->seq);
5149
5150	/* Ignore urgent data that we've already seen and read. */
5151	if (after(tp->copied_seq, ptr))
5152		return;
5153
5154	/* Do not replay urg ptr.
5155	 *
5156	 * NOTE: interesting situation not covered by specs.
5157	 * Misbehaving sender may send urg ptr, pointing to segment,
5158	 * which we already have in ofo queue. We are not able to fetch
5159	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5160	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5161	 * situations. But it is worth to think about possibility of some
5162	 * DoSes using some hypothetical application level deadlock.
5163	 */
5164	if (before(ptr, tp->rcv_nxt))
5165		return;
5166
5167	/* Do we already have a newer (or duplicate) urgent pointer? */
5168	if (tp->urg_data && !after(ptr, tp->urg_seq))
5169		return;
5170
5171	/* Tell the world about our new urgent pointer. */
5172	sk_send_sigurg(sk);
5173
5174	/* We may be adding urgent data when the last byte read was
5175	 * urgent. To do this requires some care. We cannot just ignore
5176	 * tp->copied_seq since we would read the last urgent byte again
5177	 * as data, nor can we alter copied_seq until this data arrives
5178	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5179	 *
5180	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5181	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5182	 * and expect that both A and B disappear from stream. This is _wrong_.
5183	 * Though this happens in BSD with high probability, this is occasional.
5184	 * Any application relying on this is buggy. Note also, that fix "works"
5185	 * only in this artificial test. Insert some normal data between A and B and we will
5186	 * decline of BSD again. Verdict: it is better to remove to trap
5187	 * buggy users.
5188	 */
5189	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5190	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5191		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5192		tp->copied_seq++;
5193		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5194			__skb_unlink(skb, &sk->sk_receive_queue);
5195			__kfree_skb(skb);
5196		}
5197	}
5198
5199	tp->urg_data = TCP_URG_NOTYET;
5200	tp->urg_seq = ptr;
5201
5202	/* Disable header prediction. */
5203	tp->pred_flags = 0;
5204}
5205
5206/* This is the 'fast' part of urgent handling. */
5207static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5208{
5209	struct tcp_sock *tp = tcp_sk(sk);
5210
5211	/* Check if we get a new urgent pointer - normally not. */
5212	if (th->urg)
5213		tcp_check_urg(sk, th);
5214
5215	/* Do we wait for any urgent data? - normally not... */
5216	if (tp->urg_data == TCP_URG_NOTYET) {
5217		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5218			  th->syn;
5219
5220		/* Is the urgent pointer pointing into this packet? */
5221		if (ptr < skb->len) {
5222			u8 tmp;
5223			if (skb_copy_bits(skb, ptr, &tmp, 1))
5224				BUG();
5225			tp->urg_data = TCP_URG_VALID | tmp;
5226			if (!sock_flag(sk, SOCK_DEAD))
5227				sk->sk_data_ready(sk);
5228		}
5229	}
5230}
5231
5232static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5233{
5234	struct tcp_sock *tp = tcp_sk(sk);
5235	int chunk = skb->len - hlen;
5236	int err;
5237
 
5238	if (skb_csum_unnecessary(skb))
5239		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5240	else
5241		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5242
5243	if (!err) {
5244		tp->ucopy.len -= chunk;
5245		tp->copied_seq += chunk;
5246		tcp_rcv_space_adjust(sk);
5247	}
5248
 
5249	return err;
5250}
5251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5252/* Does PAWS and seqno based validation of an incoming segment, flags will
5253 * play significant role here.
5254 */
5255static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5256				  const struct tcphdr *th, int syn_inerr)
5257{
5258	struct tcp_sock *tp = tcp_sk(sk);
5259	bool rst_seq_match = false;
5260
5261	/* RFC1323: H1. Apply PAWS check first. */
5262	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5263	    tcp_paws_discard(sk, skb)) {
5264		if (!th->rst) {
5265			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5266			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5267						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5268						  &tp->last_oow_ack_time))
5269				tcp_send_dupack(sk, skb);
5270			goto discard;
5271		}
5272		/* Reset is accepted even if it did not pass PAWS. */
5273	}
5274
5275	/* Step 1: check sequence number */
5276	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5277		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5278		 * (RST) segments are validated by checking their SEQ-fields."
5279		 * And page 69: "If an incoming segment is not acceptable,
5280		 * an acknowledgment should be sent in reply (unless the RST
5281		 * bit is set, if so drop the segment and return)".
5282		 */
5283		if (!th->rst) {
5284			if (th->syn)
5285				goto syn_challenge;
5286			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5287						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5288						  &tp->last_oow_ack_time))
5289				tcp_send_dupack(sk, skb);
5290		}
5291		goto discard;
5292	}
5293
5294	/* Step 2: check RST bit */
5295	if (th->rst) {
5296		/* RFC 5961 3.2 (extend to match against SACK too if available):
5297		 * If seq num matches RCV.NXT or the right-most SACK block,
5298		 * then
5299		 *     RESET the connection
5300		 * else
5301		 *     Send a challenge ACK
5302		 */
5303		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5304			rst_seq_match = true;
5305		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5306			struct tcp_sack_block *sp = &tp->selective_acks[0];
5307			int max_sack = sp[0].end_seq;
5308			int this_sack;
5309
5310			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5311			     ++this_sack) {
5312				max_sack = after(sp[this_sack].end_seq,
5313						 max_sack) ?
5314					sp[this_sack].end_seq : max_sack;
5315			}
5316
5317			if (TCP_SKB_CB(skb)->seq == max_sack)
5318				rst_seq_match = true;
5319		}
5320
5321		if (rst_seq_match)
5322			tcp_reset(sk);
5323		else
5324			tcp_send_challenge_ack(sk, skb);
5325		goto discard;
5326	}
5327
5328	/* step 3: check security and precedence [ignored] */
5329
5330	/* step 4: Check for a SYN
5331	 * RFC 5961 4.2 : Send a challenge ack
5332	 */
5333	if (th->syn) {
5334syn_challenge:
5335		if (syn_inerr)
5336			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5337		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5338		tcp_send_challenge_ack(sk, skb);
5339		goto discard;
5340	}
5341
5342	return true;
5343
5344discard:
5345	tcp_drop(sk, skb);
5346	return false;
5347}
5348
5349/*
5350 *	TCP receive function for the ESTABLISHED state.
5351 *
5352 *	It is split into a fast path and a slow path. The fast path is
5353 * 	disabled when:
5354 *	- A zero window was announced from us - zero window probing
5355 *        is only handled properly in the slow path.
5356 *	- Out of order segments arrived.
5357 *	- Urgent data is expected.
5358 *	- There is no buffer space left
5359 *	- Unexpected TCP flags/window values/header lengths are received
5360 *	  (detected by checking the TCP header against pred_flags)
5361 *	- Data is sent in both directions. Fast path only supports pure senders
5362 *	  or pure receivers (this means either the sequence number or the ack
5363 *	  value must stay constant)
5364 *	- Unexpected TCP option.
5365 *
5366 *	When these conditions are not satisfied it drops into a standard
5367 *	receive procedure patterned after RFC793 to handle all cases.
5368 *	The first three cases are guaranteed by proper pred_flags setting,
5369 *	the rest is checked inline. Fast processing is turned on in
5370 *	tcp_data_queue when everything is OK.
5371 */
5372void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5373			 const struct tcphdr *th, unsigned int len)
5374{
5375	struct tcp_sock *tp = tcp_sk(sk);
5376
5377	if (unlikely(!sk->sk_rx_dst))
5378		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5379	/*
5380	 *	Header prediction.
5381	 *	The code loosely follows the one in the famous
5382	 *	"30 instruction TCP receive" Van Jacobson mail.
5383	 *
5384	 *	Van's trick is to deposit buffers into socket queue
5385	 *	on a device interrupt, to call tcp_recv function
5386	 *	on the receive process context and checksum and copy
5387	 *	the buffer to user space. smart...
5388	 *
5389	 *	Our current scheme is not silly either but we take the
5390	 *	extra cost of the net_bh soft interrupt processing...
5391	 *	We do checksum and copy also but from device to kernel.
5392	 */
5393
5394	tp->rx_opt.saw_tstamp = 0;
5395
5396	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5397	 *	if header_prediction is to be made
5398	 *	'S' will always be tp->tcp_header_len >> 2
5399	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5400	 *  turn it off	(when there are holes in the receive
5401	 *	 space for instance)
5402	 *	PSH flag is ignored.
5403	 */
5404
5405	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5406	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5407	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5408		int tcp_header_len = tp->tcp_header_len;
5409
5410		/* Timestamp header prediction: tcp_header_len
5411		 * is automatically equal to th->doff*4 due to pred_flags
5412		 * match.
5413		 */
5414
5415		/* Check timestamp */
5416		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5417			/* No? Slow path! */
5418			if (!tcp_parse_aligned_timestamp(tp, th))
5419				goto slow_path;
5420
5421			/* If PAWS failed, check it more carefully in slow path */
5422			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5423				goto slow_path;
5424
5425			/* DO NOT update ts_recent here, if checksum fails
5426			 * and timestamp was corrupted part, it will result
5427			 * in a hung connection since we will drop all
5428			 * future packets due to the PAWS test.
5429			 */
5430		}
5431
5432		if (len <= tcp_header_len) {
5433			/* Bulk data transfer: sender */
5434			if (len == tcp_header_len) {
5435				/* Predicted packet is in window by definition.
5436				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5437				 * Hence, check seq<=rcv_wup reduces to:
5438				 */
5439				if (tcp_header_len ==
5440				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5441				    tp->rcv_nxt == tp->rcv_wup)
5442					tcp_store_ts_recent(tp);
5443
5444				/* We know that such packets are checksummed
5445				 * on entry.
5446				 */
5447				tcp_ack(sk, skb, 0);
5448				__kfree_skb(skb);
5449				tcp_data_snd_check(sk);
5450				return;
5451			} else { /* Header too small */
5452				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5453				goto discard;
5454			}
5455		} else {
5456			int eaten = 0;
5457			bool fragstolen = false;
5458
5459			if (tp->ucopy.task == current &&
5460			    tp->copied_seq == tp->rcv_nxt &&
5461			    len - tcp_header_len <= tp->ucopy.len &&
5462			    sock_owned_by_user(sk)) {
5463				__set_current_state(TASK_RUNNING);
5464
5465				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5466					/* Predicted packet is in window by definition.
5467					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5468					 * Hence, check seq<=rcv_wup reduces to:
5469					 */
5470					if (tcp_header_len ==
5471					    (sizeof(struct tcphdr) +
5472					     TCPOLEN_TSTAMP_ALIGNED) &&
5473					    tp->rcv_nxt == tp->rcv_wup)
5474						tcp_store_ts_recent(tp);
5475
5476					tcp_rcv_rtt_measure_ts(sk, skb);
5477
5478					__skb_pull(skb, tcp_header_len);
5479					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5480					NET_INC_STATS(sock_net(sk),
5481							LINUX_MIB_TCPHPHITSTOUSER);
5482					eaten = 1;
5483				}
5484			}
5485			if (!eaten) {
5486				if (tcp_checksum_complete(skb))
5487					goto csum_error;
5488
5489				if ((int)skb->truesize > sk->sk_forward_alloc)
5490					goto step5;
5491
5492				/* Predicted packet is in window by definition.
5493				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5494				 * Hence, check seq<=rcv_wup reduces to:
5495				 */
5496				if (tcp_header_len ==
5497				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5498				    tp->rcv_nxt == tp->rcv_wup)
5499					tcp_store_ts_recent(tp);
5500
5501				tcp_rcv_rtt_measure_ts(sk, skb);
5502
5503				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5504
5505				/* Bulk data transfer: receiver */
5506				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5507						      &fragstolen);
5508			}
5509
5510			tcp_event_data_recv(sk, skb);
5511
5512			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5513				/* Well, only one small jumplet in fast path... */
5514				tcp_ack(sk, skb, FLAG_DATA);
5515				tcp_data_snd_check(sk);
5516				if (!inet_csk_ack_scheduled(sk))
5517					goto no_ack;
5518			}
5519
5520			__tcp_ack_snd_check(sk, 0);
5521no_ack:
5522			if (eaten)
5523				kfree_skb_partial(skb, fragstolen);
5524			sk->sk_data_ready(sk);
5525			return;
5526		}
5527	}
5528
5529slow_path:
5530	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5531		goto csum_error;
5532
5533	if (!th->ack && !th->rst && !th->syn)
5534		goto discard;
5535
5536	/*
5537	 *	Standard slow path.
5538	 */
5539
5540	if (!tcp_validate_incoming(sk, skb, th, 1))
5541		return;
5542
5543step5:
5544	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5545		goto discard;
5546
5547	tcp_rcv_rtt_measure_ts(sk, skb);
5548
5549	/* Process urgent data. */
5550	tcp_urg(sk, skb, th);
5551
5552	/* step 7: process the segment text */
5553	tcp_data_queue(sk, skb);
5554
5555	tcp_data_snd_check(sk);
5556	tcp_ack_snd_check(sk);
5557	return;
5558
5559csum_error:
5560	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5561	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5562
5563discard:
5564	tcp_drop(sk, skb);
5565}
5566EXPORT_SYMBOL(tcp_rcv_established);
5567
5568void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5569{
5570	struct tcp_sock *tp = tcp_sk(sk);
5571	struct inet_connection_sock *icsk = inet_csk(sk);
5572
5573	tcp_set_state(sk, TCP_ESTABLISHED);
5574	icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5575
5576	if (skb) {
5577		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5578		security_inet_conn_established(sk, skb);
5579	}
5580
5581	/* Make sure socket is routed, for correct metrics.  */
5582	icsk->icsk_af_ops->rebuild_header(sk);
5583
5584	tcp_init_metrics(sk);
5585
5586	tcp_init_congestion_control(sk);
5587
5588	/* Prevent spurious tcp_cwnd_restart() on first data
5589	 * packet.
5590	 */
5591	tp->lsndtime = tcp_time_stamp;
5592
5593	tcp_init_buffer_space(sk);
5594
5595	if (sock_flag(sk, SOCK_KEEPOPEN))
5596		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5597
5598	if (!tp->rx_opt.snd_wscale)
5599		__tcp_fast_path_on(tp, tp->snd_wnd);
5600	else
5601		tp->pred_flags = 0;
5602
5603	if (!sock_flag(sk, SOCK_DEAD)) {
5604		sk->sk_state_change(sk);
5605		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5606	}
5607}
5608
5609static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5610				    struct tcp_fastopen_cookie *cookie)
5611{
5612	struct tcp_sock *tp = tcp_sk(sk);
5613	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5614	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5615	bool syn_drop = false;
5616
5617	if (mss == tp->rx_opt.user_mss) {
5618		struct tcp_options_received opt;
5619
5620		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5621		tcp_clear_options(&opt);
5622		opt.user_mss = opt.mss_clamp = 0;
5623		tcp_parse_options(synack, &opt, 0, NULL);
5624		mss = opt.mss_clamp;
5625	}
5626
5627	if (!tp->syn_fastopen) {
5628		/* Ignore an unsolicited cookie */
5629		cookie->len = -1;
5630	} else if (tp->total_retrans) {
5631		/* SYN timed out and the SYN-ACK neither has a cookie nor
5632		 * acknowledges data. Presumably the remote received only
5633		 * the retransmitted (regular) SYNs: either the original
5634		 * SYN-data or the corresponding SYN-ACK was dropped.
5635		 */
5636		syn_drop = (cookie->len < 0 && data);
5637	} else if (cookie->len < 0 && !tp->syn_data) {
5638		/* We requested a cookie but didn't get it. If we did not use
5639		 * the (old) exp opt format then try so next time (try_exp=1).
5640		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5641		 */
5642		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5643	}
5644
5645	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5646
5647	if (data) { /* Retransmit unacked data in SYN */
5648		tcp_for_write_queue_from(data, sk) {
5649			if (data == tcp_send_head(sk) ||
5650			    __tcp_retransmit_skb(sk, data, 1))
5651				break;
5652		}
5653		tcp_rearm_rto(sk);
5654		NET_INC_STATS(sock_net(sk),
5655				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5656		return true;
5657	}
5658	tp->syn_data_acked = tp->syn_data;
5659	if (tp->syn_data_acked)
5660		NET_INC_STATS(sock_net(sk),
5661				LINUX_MIB_TCPFASTOPENACTIVE);
5662
5663	tcp_fastopen_add_skb(sk, synack);
5664
5665	return false;
5666}
5667
5668static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5669					 const struct tcphdr *th)
5670{
5671	struct inet_connection_sock *icsk = inet_csk(sk);
5672	struct tcp_sock *tp = tcp_sk(sk);
5673	struct tcp_fastopen_cookie foc = { .len = -1 };
5674	int saved_clamp = tp->rx_opt.mss_clamp;
5675
5676	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5677	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5678		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5679
5680	if (th->ack) {
5681		/* rfc793:
5682		 * "If the state is SYN-SENT then
5683		 *    first check the ACK bit
5684		 *      If the ACK bit is set
5685		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5686		 *        a reset (unless the RST bit is set, if so drop
5687		 *        the segment and return)"
5688		 */
5689		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5690		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5691			goto reset_and_undo;
5692
5693		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5694		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5695			     tcp_time_stamp)) {
5696			NET_INC_STATS(sock_net(sk),
5697					LINUX_MIB_PAWSACTIVEREJECTED);
5698			goto reset_and_undo;
5699		}
5700
5701		/* Now ACK is acceptable.
5702		 *
5703		 * "If the RST bit is set
5704		 *    If the ACK was acceptable then signal the user "error:
5705		 *    connection reset", drop the segment, enter CLOSED state,
5706		 *    delete TCB, and return."
5707		 */
5708
5709		if (th->rst) {
5710			tcp_reset(sk);
5711			goto discard;
5712		}
5713
5714		/* rfc793:
5715		 *   "fifth, if neither of the SYN or RST bits is set then
5716		 *    drop the segment and return."
5717		 *
5718		 *    See note below!
5719		 *                                        --ANK(990513)
5720		 */
5721		if (!th->syn)
5722			goto discard_and_undo;
5723
5724		/* rfc793:
5725		 *   "If the SYN bit is on ...
5726		 *    are acceptable then ...
5727		 *    (our SYN has been ACKed), change the connection
5728		 *    state to ESTABLISHED..."
5729		 */
5730
5731		tcp_ecn_rcv_synack(tp, th);
5732
5733		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5734		tcp_ack(sk, skb, FLAG_SLOWPATH);
5735
5736		/* Ok.. it's good. Set up sequence numbers and
5737		 * move to established.
5738		 */
5739		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5740		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5741
5742		/* RFC1323: The window in SYN & SYN/ACK segments is
5743		 * never scaled.
5744		 */
5745		tp->snd_wnd = ntohs(th->window);
5746
5747		if (!tp->rx_opt.wscale_ok) {
5748			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5749			tp->window_clamp = min(tp->window_clamp, 65535U);
5750		}
5751
5752		if (tp->rx_opt.saw_tstamp) {
5753			tp->rx_opt.tstamp_ok	   = 1;
5754			tp->tcp_header_len =
5755				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5756			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5757			tcp_store_ts_recent(tp);
5758		} else {
5759			tp->tcp_header_len = sizeof(struct tcphdr);
5760		}
5761
5762		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5763			tcp_enable_fack(tp);
5764
5765		tcp_mtup_init(sk);
5766		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5767		tcp_initialize_rcv_mss(sk);
5768
5769		/* Remember, tcp_poll() does not lock socket!
5770		 * Change state from SYN-SENT only after copied_seq
5771		 * is initialized. */
5772		tp->copied_seq = tp->rcv_nxt;
5773
5774		smp_mb();
5775
5776		tcp_finish_connect(sk, skb);
5777
5778		if ((tp->syn_fastopen || tp->syn_data) &&
5779		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5780			return -1;
5781
5782		if (sk->sk_write_pending ||
5783		    icsk->icsk_accept_queue.rskq_defer_accept ||
5784		    icsk->icsk_ack.pingpong) {
5785			/* Save one ACK. Data will be ready after
5786			 * several ticks, if write_pending is set.
5787			 *
5788			 * It may be deleted, but with this feature tcpdumps
5789			 * look so _wonderfully_ clever, that I was not able
5790			 * to stand against the temptation 8)     --ANK
5791			 */
5792			inet_csk_schedule_ack(sk);
 
5793			tcp_enter_quickack_mode(sk);
5794			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5795						  TCP_DELACK_MAX, TCP_RTO_MAX);
5796
5797discard:
5798			tcp_drop(sk, skb);
5799			return 0;
5800		} else {
5801			tcp_send_ack(sk);
5802		}
5803		return -1;
5804	}
5805
5806	/* No ACK in the segment */
5807
5808	if (th->rst) {
5809		/* rfc793:
5810		 * "If the RST bit is set
5811		 *
5812		 *      Otherwise (no ACK) drop the segment and return."
5813		 */
5814
5815		goto discard_and_undo;
5816	}
5817
5818	/* PAWS check. */
5819	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5820	    tcp_paws_reject(&tp->rx_opt, 0))
5821		goto discard_and_undo;
5822
5823	if (th->syn) {
5824		/* We see SYN without ACK. It is attempt of
5825		 * simultaneous connect with crossed SYNs.
5826		 * Particularly, it can be connect to self.
5827		 */
5828		tcp_set_state(sk, TCP_SYN_RECV);
5829
5830		if (tp->rx_opt.saw_tstamp) {
5831			tp->rx_opt.tstamp_ok = 1;
5832			tcp_store_ts_recent(tp);
5833			tp->tcp_header_len =
5834				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5835		} else {
5836			tp->tcp_header_len = sizeof(struct tcphdr);
5837		}
5838
5839		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5840		tp->copied_seq = tp->rcv_nxt;
5841		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5842
5843		/* RFC1323: The window in SYN & SYN/ACK segments is
5844		 * never scaled.
5845		 */
5846		tp->snd_wnd    = ntohs(th->window);
5847		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5848		tp->max_window = tp->snd_wnd;
5849
5850		tcp_ecn_rcv_syn(tp, th);
5851
5852		tcp_mtup_init(sk);
5853		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5854		tcp_initialize_rcv_mss(sk);
5855
5856		tcp_send_synack(sk);
5857#if 0
5858		/* Note, we could accept data and URG from this segment.
5859		 * There are no obstacles to make this (except that we must
5860		 * either change tcp_recvmsg() to prevent it from returning data
5861		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5862		 *
5863		 * However, if we ignore data in ACKless segments sometimes,
5864		 * we have no reasons to accept it sometimes.
5865		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5866		 * is not flawless. So, discard packet for sanity.
5867		 * Uncomment this return to process the data.
5868		 */
5869		return -1;
5870#else
5871		goto discard;
5872#endif
5873	}
5874	/* "fifth, if neither of the SYN or RST bits is set then
5875	 * drop the segment and return."
5876	 */
5877
5878discard_and_undo:
5879	tcp_clear_options(&tp->rx_opt);
5880	tp->rx_opt.mss_clamp = saved_clamp;
5881	goto discard;
5882
5883reset_and_undo:
5884	tcp_clear_options(&tp->rx_opt);
5885	tp->rx_opt.mss_clamp = saved_clamp;
5886	return 1;
5887}
5888
5889/*
5890 *	This function implements the receiving procedure of RFC 793 for
5891 *	all states except ESTABLISHED and TIME_WAIT.
5892 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5893 *	address independent.
5894 */
5895
5896int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5897{
5898	struct tcp_sock *tp = tcp_sk(sk);
5899	struct inet_connection_sock *icsk = inet_csk(sk);
5900	const struct tcphdr *th = tcp_hdr(skb);
5901	struct request_sock *req;
5902	int queued = 0;
5903	bool acceptable;
5904
 
 
5905	switch (sk->sk_state) {
5906	case TCP_CLOSE:
5907		goto discard;
5908
5909	case TCP_LISTEN:
5910		if (th->ack)
5911			return 1;
5912
5913		if (th->rst)
5914			goto discard;
5915
5916		if (th->syn) {
5917			if (th->fin)
5918				goto discard;
5919			/* It is possible that we process SYN packets from backlog,
5920			 * so we need to make sure to disable BH right there.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5921			 */
5922			local_bh_disable();
5923			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5924			local_bh_enable();
5925
5926			if (!acceptable)
5927				return 1;
5928			consume_skb(skb);
5929			return 0;
5930		}
5931		goto discard;
5932
5933	case TCP_SYN_SENT:
5934		tp->rx_opt.saw_tstamp = 0;
5935		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5936		if (queued >= 0)
5937			return queued;
5938
5939		/* Do step6 onward by hand. */
5940		tcp_urg(sk, skb, th);
5941		__kfree_skb(skb);
5942		tcp_data_snd_check(sk);
5943		return 0;
5944	}
5945
5946	tp->rx_opt.saw_tstamp = 0;
5947	req = tp->fastopen_rsk;
5948	if (req) {
5949		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5950		    sk->sk_state != TCP_FIN_WAIT1);
5951
5952		if (!tcp_check_req(sk, skb, req, true))
5953			goto discard;
5954	}
5955
5956	if (!th->ack && !th->rst && !th->syn)
5957		goto discard;
5958
5959	if (!tcp_validate_incoming(sk, skb, th, 0))
5960		return 0;
5961
5962	/* step 5: check the ACK field */
5963	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5964				      FLAG_UPDATE_TS_RECENT) > 0;
5965
5966	switch (sk->sk_state) {
5967	case TCP_SYN_RECV:
5968		if (!acceptable)
5969			return 1;
5970
5971		if (!tp->srtt_us)
5972			tcp_synack_rtt_meas(sk, req);
5973
5974		/* Once we leave TCP_SYN_RECV, we no longer need req
5975		 * so release it.
5976		 */
5977		if (req) {
5978			inet_csk(sk)->icsk_retransmits = 0;
5979			reqsk_fastopen_remove(sk, req, false);
5980		} else {
5981			/* Make sure socket is routed, for correct metrics. */
5982			icsk->icsk_af_ops->rebuild_header(sk);
5983			tcp_init_congestion_control(sk);
5984
5985			tcp_mtup_init(sk);
5986			tp->copied_seq = tp->rcv_nxt;
5987			tcp_init_buffer_space(sk);
5988		}
5989		smp_mb();
5990		tcp_set_state(sk, TCP_ESTABLISHED);
5991		sk->sk_state_change(sk);
5992
5993		/* Note, that this wakeup is only for marginal crossed SYN case.
5994		 * Passively open sockets are not waked up, because
5995		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5996		 */
5997		if (sk->sk_socket)
5998			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5999
6000		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6001		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6002		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6003
6004		if (tp->rx_opt.tstamp_ok)
6005			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6006
6007		if (req) {
6008			/* Re-arm the timer because data may have been sent out.
6009			 * This is similar to the regular data transmission case
6010			 * when new data has just been ack'ed.
6011			 *
6012			 * (TFO) - we could try to be more aggressive and
6013			 * retransmitting any data sooner based on when they
6014			 * are sent out.
6015			 */
6016			tcp_rearm_rto(sk);
6017		} else
6018			tcp_init_metrics(sk);
6019
6020		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6021			tcp_update_pacing_rate(sk);
6022
6023		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6024		tp->lsndtime = tcp_time_stamp;
6025
6026		tcp_initialize_rcv_mss(sk);
6027		tcp_fast_path_on(tp);
6028		break;
6029
6030	case TCP_FIN_WAIT1: {
6031		struct dst_entry *dst;
6032		int tmo;
6033
6034		/* If we enter the TCP_FIN_WAIT1 state and we are a
6035		 * Fast Open socket and this is the first acceptable
6036		 * ACK we have received, this would have acknowledged
6037		 * our SYNACK so stop the SYNACK timer.
6038		 */
6039		if (req) {
6040			/* Return RST if ack_seq is invalid.
6041			 * Note that RFC793 only says to generate a
6042			 * DUPACK for it but for TCP Fast Open it seems
6043			 * better to treat this case like TCP_SYN_RECV
6044			 * above.
6045			 */
6046			if (!acceptable)
6047				return 1;
6048			/* We no longer need the request sock. */
6049			reqsk_fastopen_remove(sk, req, false);
6050			tcp_rearm_rto(sk);
6051		}
6052		if (tp->snd_una != tp->write_seq)
6053			break;
6054
6055		tcp_set_state(sk, TCP_FIN_WAIT2);
6056		sk->sk_shutdown |= SEND_SHUTDOWN;
6057
6058		dst = __sk_dst_get(sk);
6059		if (dst)
6060			dst_confirm(dst);
6061
6062		if (!sock_flag(sk, SOCK_DEAD)) {
6063			/* Wake up lingering close() */
6064			sk->sk_state_change(sk);
6065			break;
6066		}
6067
6068		if (tp->linger2 < 0 ||
6069		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6070		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6071			tcp_done(sk);
6072			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6073			return 1;
6074		}
6075
6076		tmo = tcp_fin_time(sk);
6077		if (tmo > TCP_TIMEWAIT_LEN) {
6078			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6079		} else if (th->fin || sock_owned_by_user(sk)) {
6080			/* Bad case. We could lose such FIN otherwise.
6081			 * It is not a big problem, but it looks confusing
6082			 * and not so rare event. We still can lose it now,
6083			 * if it spins in bh_lock_sock(), but it is really
6084			 * marginal case.
6085			 */
6086			inet_csk_reset_keepalive_timer(sk, tmo);
6087		} else {
6088			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6089			goto discard;
6090		}
6091		break;
6092	}
6093
6094	case TCP_CLOSING:
6095		if (tp->snd_una == tp->write_seq) {
6096			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6097			goto discard;
6098		}
6099		break;
6100
6101	case TCP_LAST_ACK:
6102		if (tp->snd_una == tp->write_seq) {
6103			tcp_update_metrics(sk);
6104			tcp_done(sk);
6105			goto discard;
6106		}
6107		break;
6108	}
6109
6110	/* step 6: check the URG bit */
6111	tcp_urg(sk, skb, th);
6112
6113	/* step 7: process the segment text */
6114	switch (sk->sk_state) {
6115	case TCP_CLOSE_WAIT:
6116	case TCP_CLOSING:
6117	case TCP_LAST_ACK:
6118		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6119			break;
6120	case TCP_FIN_WAIT1:
6121	case TCP_FIN_WAIT2:
6122		/* RFC 793 says to queue data in these states,
6123		 * RFC 1122 says we MUST send a reset.
6124		 * BSD 4.4 also does reset.
6125		 */
6126		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6127			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6128			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6129				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6130				tcp_reset(sk);
6131				return 1;
6132			}
6133		}
6134		/* Fall through */
6135	case TCP_ESTABLISHED:
6136		tcp_data_queue(sk, skb);
6137		queued = 1;
6138		break;
6139	}
6140
6141	/* tcp_data could move socket to TIME-WAIT */
6142	if (sk->sk_state != TCP_CLOSE) {
6143		tcp_data_snd_check(sk);
6144		tcp_ack_snd_check(sk);
6145	}
6146
6147	if (!queued) {
6148discard:
6149		tcp_drop(sk, skb);
6150	}
6151	return 0;
6152}
6153EXPORT_SYMBOL(tcp_rcv_state_process);
6154
6155static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6156{
6157	struct inet_request_sock *ireq = inet_rsk(req);
6158
6159	if (family == AF_INET)
6160		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6161				    &ireq->ir_rmt_addr, port);
6162#if IS_ENABLED(CONFIG_IPV6)
6163	else if (family == AF_INET6)
6164		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6165				    &ireq->ir_v6_rmt_addr, port);
6166#endif
6167}
6168
6169/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6170 *
6171 * If we receive a SYN packet with these bits set, it means a
6172 * network is playing bad games with TOS bits. In order to
6173 * avoid possible false congestion notifications, we disable
6174 * TCP ECN negotiation.
6175 *
6176 * Exception: tcp_ca wants ECN. This is required for DCTCP
6177 * congestion control: Linux DCTCP asserts ECT on all packets,
6178 * including SYN, which is most optimal solution; however,
6179 * others, such as FreeBSD do not.
6180 */
6181static void tcp_ecn_create_request(struct request_sock *req,
6182				   const struct sk_buff *skb,
6183				   const struct sock *listen_sk,
6184				   const struct dst_entry *dst)
6185{
6186	const struct tcphdr *th = tcp_hdr(skb);
6187	const struct net *net = sock_net(listen_sk);
6188	bool th_ecn = th->ece && th->cwr;
6189	bool ect, ecn_ok;
6190	u32 ecn_ok_dst;
6191
6192	if (!th_ecn)
6193		return;
6194
6195	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6196	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6197	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6198
6199	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6200	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6201		inet_rsk(req)->ecn_ok = 1;
6202}
6203
6204static void tcp_openreq_init(struct request_sock *req,
6205			     const struct tcp_options_received *rx_opt,
6206			     struct sk_buff *skb, const struct sock *sk)
6207{
6208	struct inet_request_sock *ireq = inet_rsk(req);
6209
6210	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6211	req->cookie_ts = 0;
6212	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6213	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6214	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6215	tcp_rsk(req)->last_oow_ack_time = 0;
6216	req->mss = rx_opt->mss_clamp;
6217	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6218	ireq->tstamp_ok = rx_opt->tstamp_ok;
6219	ireq->sack_ok = rx_opt->sack_ok;
6220	ireq->snd_wscale = rx_opt->snd_wscale;
6221	ireq->wscale_ok = rx_opt->wscale_ok;
6222	ireq->acked = 0;
6223	ireq->ecn_ok = 0;
6224	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6225	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6226	ireq->ir_mark = inet_request_mark(sk, skb);
6227}
6228
6229struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6230				      struct sock *sk_listener,
6231				      bool attach_listener)
6232{
6233	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6234					       attach_listener);
6235
6236	if (req) {
6237		struct inet_request_sock *ireq = inet_rsk(req);
6238
6239		kmemcheck_annotate_bitfield(ireq, flags);
6240		ireq->opt = NULL;
6241#if IS_ENABLED(CONFIG_IPV6)
6242		ireq->pktopts = NULL;
6243#endif
6244		atomic64_set(&ireq->ir_cookie, 0);
6245		ireq->ireq_state = TCP_NEW_SYN_RECV;
6246		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6247		ireq->ireq_family = sk_listener->sk_family;
6248	}
6249
6250	return req;
6251}
6252EXPORT_SYMBOL(inet_reqsk_alloc);
6253
6254/*
6255 * Return true if a syncookie should be sent
6256 */
6257static bool tcp_syn_flood_action(const struct sock *sk,
6258				 const struct sk_buff *skb,
6259				 const char *proto)
6260{
6261	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6262	const char *msg = "Dropping request";
6263	bool want_cookie = false;
6264	struct net *net = sock_net(sk);
6265
6266#ifdef CONFIG_SYN_COOKIES
6267	if (net->ipv4.sysctl_tcp_syncookies) {
6268		msg = "Sending cookies";
6269		want_cookie = true;
6270		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6271	} else
6272#endif
6273		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6274
6275	if (!queue->synflood_warned &&
6276	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6277	    xchg(&queue->synflood_warned, 1) == 0)
6278		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6279			proto, ntohs(tcp_hdr(skb)->dest), msg);
6280
6281	return want_cookie;
6282}
6283
6284static void tcp_reqsk_record_syn(const struct sock *sk,
6285				 struct request_sock *req,
6286				 const struct sk_buff *skb)
6287{
6288	if (tcp_sk(sk)->save_syn) {
6289		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6290		u32 *copy;
6291
6292		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6293		if (copy) {
6294			copy[0] = len;
6295			memcpy(&copy[1], skb_network_header(skb), len);
6296			req->saved_syn = copy;
6297		}
6298	}
6299}
6300
6301int tcp_conn_request(struct request_sock_ops *rsk_ops,
6302		     const struct tcp_request_sock_ops *af_ops,
6303		     struct sock *sk, struct sk_buff *skb)
6304{
6305	struct tcp_fastopen_cookie foc = { .len = -1 };
6306	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6307	struct tcp_options_received tmp_opt;
6308	struct tcp_sock *tp = tcp_sk(sk);
6309	struct net *net = sock_net(sk);
6310	struct sock *fastopen_sk = NULL;
6311	struct dst_entry *dst = NULL;
6312	struct request_sock *req;
6313	bool want_cookie = false;
6314	struct flowi fl;
6315
6316	/* TW buckets are converted to open requests without
6317	 * limitations, they conserve resources and peer is
6318	 * evidently real one.
6319	 */
6320	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6321	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6322		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6323		if (!want_cookie)
6324			goto drop;
6325	}
6326
6327	if (sk_acceptq_is_full(sk)) {
6328		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
 
 
 
 
 
 
6329		goto drop;
6330	}
6331
6332	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6333	if (!req)
6334		goto drop;
6335
6336	tcp_rsk(req)->af_specific = af_ops;
6337	tcp_rsk(req)->ts_off = 0;
6338
6339	tcp_clear_options(&tmp_opt);
6340	tmp_opt.mss_clamp = af_ops->mss_clamp;
6341	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6342	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6343
6344	if (want_cookie && !tmp_opt.saw_tstamp)
6345		tcp_clear_options(&tmp_opt);
6346
6347	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6348	tcp_openreq_init(req, &tmp_opt, skb, sk);
6349	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6350
6351	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6352	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6353
6354	af_ops->init_req(req, sk, skb);
6355
6356	if (security_inet_conn_request(sk, skb, req))
6357		goto drop_and_free;
6358
6359	if (isn && tmp_opt.tstamp_ok)
6360		af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6361
6362	if (!want_cookie && !isn) {
6363		/* VJ's idea. We save last timestamp seen
6364		 * from the destination in peer table, when entering
6365		 * state TIME-WAIT, and check against it before
6366		 * accepting new connection request.
6367		 *
6368		 * If "isn" is not zero, this request hit alive
6369		 * timewait bucket, so that all the necessary checks
6370		 * are made in the function processing timewait state.
6371		 */
6372		if (tcp_death_row.sysctl_tw_recycle) {
6373			bool strict;
6374
6375			dst = af_ops->route_req(sk, &fl, req, &strict);
6376
6377			if (dst && strict &&
6378			    !tcp_peer_is_proven(req, dst, true,
6379						tmp_opt.saw_tstamp)) {
6380				NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6381				goto drop_and_release;
6382			}
6383		}
6384		/* Kill the following clause, if you dislike this way. */
6385		else if (!net->ipv4.sysctl_tcp_syncookies &&
6386			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6387			  (sysctl_max_syn_backlog >> 2)) &&
6388			 !tcp_peer_is_proven(req, dst, false,
6389					     tmp_opt.saw_tstamp)) {
6390			/* Without syncookies last quarter of
6391			 * backlog is filled with destinations,
6392			 * proven to be alive.
6393			 * It means that we continue to communicate
6394			 * to destinations, already remembered
6395			 * to the moment of synflood.
6396			 */
6397			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6398				    rsk_ops->family);
6399			goto drop_and_release;
6400		}
6401
6402		isn = af_ops->init_seq(skb, &tcp_rsk(req)->ts_off);
6403	}
6404	if (!dst) {
6405		dst = af_ops->route_req(sk, &fl, req, NULL);
6406		if (!dst)
6407			goto drop_and_free;
6408	}
6409
6410	tcp_ecn_create_request(req, skb, sk, dst);
6411
6412	if (want_cookie) {
6413		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6414		tcp_rsk(req)->ts_off = 0;
6415		req->cookie_ts = tmp_opt.tstamp_ok;
6416		if (!tmp_opt.tstamp_ok)
6417			inet_rsk(req)->ecn_ok = 0;
6418	}
6419
6420	tcp_rsk(req)->snt_isn = isn;
6421	tcp_rsk(req)->txhash = net_tx_rndhash();
6422	tcp_openreq_init_rwin(req, sk, dst);
6423	if (!want_cookie) {
6424		tcp_reqsk_record_syn(sk, req, skb);
6425		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6426	}
6427	if (fastopen_sk) {
6428		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6429				    &foc, TCP_SYNACK_FASTOPEN);
6430		/* Add the child socket directly into the accept queue */
6431		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6432		sk->sk_data_ready(sk);
6433		bh_unlock_sock(fastopen_sk);
6434		sock_put(fastopen_sk);
6435	} else {
6436		tcp_rsk(req)->tfo_listener = false;
6437		if (!want_cookie)
6438			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6439		af_ops->send_synack(sk, dst, &fl, req, &foc,
6440				    !want_cookie ? TCP_SYNACK_NORMAL :
6441						   TCP_SYNACK_COOKIE);
6442		if (want_cookie) {
6443			reqsk_free(req);
6444			return 0;
6445		}
6446	}
6447	reqsk_put(req);
6448	return 0;
6449
6450drop_and_release:
6451	dst_release(dst);
6452drop_and_free:
6453	reqsk_free(req);
6454drop:
6455	tcp_listendrop(sk);
6456	return 0;
6457}
6458EXPORT_SYMBOL(tcp_conn_request);