Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *		Pedro Roque	:	Fast Retransmit/Recovery.
  24 *					Two receive queues.
  25 *					Retransmit queue handled by TCP.
  26 *					Better retransmit timer handling.
  27 *					New congestion avoidance.
  28 *					Header prediction.
  29 *					Variable renaming.
  30 *
  31 *		Eric		:	Fast Retransmit.
  32 *		Randy Scott	:	MSS option defines.
  33 *		Eric Schenk	:	Fixes to slow start algorithm.
  34 *		Eric Schenk	:	Yet another double ACK bug.
  35 *		Eric Schenk	:	Delayed ACK bug fixes.
  36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  37 *		David S. Miller	:	Don't allow zero congestion window.
  38 *		Eric Schenk	:	Fix retransmitter so that it sends
  39 *					next packet on ack of previous packet.
  40 *		Andi Kleen	:	Moved open_request checking here
  41 *					and process RSTs for open_requests.
  42 *		Andi Kleen	:	Better prune_queue, and other fixes.
  43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  44 *					timestamps.
  45 *		Andrey Savochkin:	Check sequence numbers correctly when
  46 *					removing SACKs due to in sequence incoming
  47 *					data segments.
  48 *		Andi Kleen:		Make sure we never ack data there is not
  49 *					enough room for. Also make this condition
  50 *					a fatal error if it might still happen.
  51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  52 *					connections with MSS<min(MTU,ann. MSS)
  53 *					work without delayed acks.
  54 *		Andi Kleen:		Process packets with PSH set in the
  55 *					fast path.
  56 *		J Hadi Salim:		ECN support
  57 *	 	Andrei Gurtov,
  58 *		Pasi Sarolahti,
  59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  60 *					engine. Lots of bugs are found.
  61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  62 */
  63
  64#define pr_fmt(fmt) "TCP: " fmt
  65
  66#include <linux/mm.h>
  67#include <linux/slab.h>
  68#include <linux/module.h>
  69#include <linux/sysctl.h>
  70#include <linux/kernel.h>
  71#include <linux/prefetch.h>
  72#include <net/dst.h>
  73#include <net/tcp.h>
  74#include <net/inet_common.h>
  75#include <linux/ipsec.h>
  76#include <asm/unaligned.h>
  77#include <linux/errqueue.h>
  78
  79int sysctl_tcp_timestamps __read_mostly = 1;
  80int sysctl_tcp_window_scaling __read_mostly = 1;
  81int sysctl_tcp_sack __read_mostly = 1;
  82int sysctl_tcp_fack __read_mostly = 1;
  83int sysctl_tcp_max_reordering __read_mostly = 300;
 
 
 
  84int sysctl_tcp_dsack __read_mostly = 1;
  85int sysctl_tcp_app_win __read_mostly = 31;
  86int sysctl_tcp_adv_win_scale __read_mostly = 1;
  87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  88
  89/* rfc5961 challenge ack rate limiting */
  90int sysctl_tcp_challenge_ack_limit = 100;
  91
  92int sysctl_tcp_stdurg __read_mostly;
  93int sysctl_tcp_rfc1337 __read_mostly;
  94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  95int sysctl_tcp_frto __read_mostly = 2;
  96int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
 
  97
  98int sysctl_tcp_thin_dupack __read_mostly;
  99
 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
 101int sysctl_tcp_early_retrans __read_mostly = 3;
 102int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
 103
 104#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
 105#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
 106#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
 107#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
 108#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
 109#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
 110#define FLAG_ECE		0x40 /* ECE in this ACK				*/
 111#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
 112#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
 113#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
 114#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 115#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
 
 116#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 117#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
 118
 119#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 120#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 121#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
 122#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 
 123
 124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 126
 127#define REXMIT_NONE	0 /* no loss recovery to do */
 128#define REXMIT_LOST	1 /* retransmit packets marked lost */
 129#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
 130
 131/* Adapt the MSS value used to make delayed ack decision to the
 132 * real world.
 133 */
 134static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 135{
 136	struct inet_connection_sock *icsk = inet_csk(sk);
 137	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 138	unsigned int len;
 139
 140	icsk->icsk_ack.last_seg_size = 0;
 141
 142	/* skb->len may jitter because of SACKs, even if peer
 143	 * sends good full-sized frames.
 144	 */
 145	len = skb_shinfo(skb)->gso_size ? : skb->len;
 146	if (len >= icsk->icsk_ack.rcv_mss) {
 147		icsk->icsk_ack.rcv_mss = len;
 148	} else {
 149		/* Otherwise, we make more careful check taking into account,
 150		 * that SACKs block is variable.
 151		 *
 152		 * "len" is invariant segment length, including TCP header.
 153		 */
 154		len += skb->data - skb_transport_header(skb);
 155		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 156		    /* If PSH is not set, packet should be
 157		     * full sized, provided peer TCP is not badly broken.
 158		     * This observation (if it is correct 8)) allows
 159		     * to handle super-low mtu links fairly.
 160		     */
 161		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 162		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 163			/* Subtract also invariant (if peer is RFC compliant),
 164			 * tcp header plus fixed timestamp option length.
 165			 * Resulting "len" is MSS free of SACK jitter.
 166			 */
 167			len -= tcp_sk(sk)->tcp_header_len;
 168			icsk->icsk_ack.last_seg_size = len;
 169			if (len == lss) {
 170				icsk->icsk_ack.rcv_mss = len;
 171				return;
 172			}
 173		}
 174		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 175			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 176		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 177	}
 178}
 179
 180static void tcp_incr_quickack(struct sock *sk)
 181{
 182	struct inet_connection_sock *icsk = inet_csk(sk);
 183	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 184
 185	if (quickacks == 0)
 186		quickacks = 2;
 187	if (quickacks > icsk->icsk_ack.quick)
 188		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 189}
 190
 191static void tcp_enter_quickack_mode(struct sock *sk)
 192{
 193	struct inet_connection_sock *icsk = inet_csk(sk);
 194	tcp_incr_quickack(sk);
 195	icsk->icsk_ack.pingpong = 0;
 196	icsk->icsk_ack.ato = TCP_ATO_MIN;
 197}
 198
 199/* Send ACKs quickly, if "quick" count is not exhausted
 200 * and the session is not interactive.
 201 */
 202
 203static bool tcp_in_quickack_mode(struct sock *sk)
 204{
 205	const struct inet_connection_sock *icsk = inet_csk(sk);
 206	const struct dst_entry *dst = __sk_dst_get(sk);
 207
 208	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 209		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
 210}
 211
 212static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 213{
 214	if (tp->ecn_flags & TCP_ECN_OK)
 215		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 216}
 217
 218static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 219{
 220	if (tcp_hdr(skb)->cwr)
 221		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 222}
 223
 224static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 225{
 226	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 227}
 228
 229static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 230{
 
 
 
 231	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 232	case INET_ECN_NOT_ECT:
 233		/* Funny extension: if ECT is not set on a segment,
 234		 * and we already seen ECT on a previous segment,
 235		 * it is probably a retransmit.
 236		 */
 237		if (tp->ecn_flags & TCP_ECN_SEEN)
 238			tcp_enter_quickack_mode((struct sock *)tp);
 239		break;
 240	case INET_ECN_CE:
 241		if (tcp_ca_needs_ecn((struct sock *)tp))
 242			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
 243
 244		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 245			/* Better not delay acks, sender can have a very low cwnd */
 246			tcp_enter_quickack_mode((struct sock *)tp);
 247			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 248		}
 249		tp->ecn_flags |= TCP_ECN_SEEN;
 250		break;
 251	default:
 252		if (tcp_ca_needs_ecn((struct sock *)tp))
 253			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
 254		tp->ecn_flags |= TCP_ECN_SEEN;
 255		break;
 256	}
 257}
 258
 259static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 260{
 261	if (tp->ecn_flags & TCP_ECN_OK)
 262		__tcp_ecn_check_ce(tp, skb);
 263}
 264
 265static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 266{
 267	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 268		tp->ecn_flags &= ~TCP_ECN_OK;
 269}
 270
 271static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 272{
 273	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 274		tp->ecn_flags &= ~TCP_ECN_OK;
 275}
 276
 277static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 278{
 279	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 280		return true;
 281	return false;
 282}
 283
 284/* Buffer size and advertised window tuning.
 285 *
 286 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 287 */
 288
 289static void tcp_sndbuf_expand(struct sock *sk)
 290{
 291	const struct tcp_sock *tp = tcp_sk(sk);
 292	int sndmem, per_mss;
 293	u32 nr_segs;
 294
 295	/* Worst case is non GSO/TSO : each frame consumes one skb
 296	 * and skb->head is kmalloced using power of two area of memory
 297	 */
 298	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 299		  MAX_TCP_HEADER +
 300		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 301
 302	per_mss = roundup_pow_of_two(per_mss) +
 303		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 304
 305	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 306	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 307
 308	/* Fast Recovery (RFC 5681 3.2) :
 309	 * Cubic needs 1.7 factor, rounded to 2 to include
 310	 * extra cushion (application might react slowly to POLLOUT)
 311	 */
 312	sndmem = 2 * nr_segs * per_mss;
 313
 
 314	if (sk->sk_sndbuf < sndmem)
 315		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 316}
 317
 318/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 319 *
 320 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 321 * forward and advertised in receiver window (tp->rcv_wnd) and
 322 * "application buffer", required to isolate scheduling/application
 323 * latencies from network.
 324 * window_clamp is maximal advertised window. It can be less than
 325 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 326 * is reserved for "application" buffer. The less window_clamp is
 327 * the smoother our behaviour from viewpoint of network, but the lower
 328 * throughput and the higher sensitivity of the connection to losses. 8)
 329 *
 330 * rcv_ssthresh is more strict window_clamp used at "slow start"
 331 * phase to predict further behaviour of this connection.
 332 * It is used for two goals:
 333 * - to enforce header prediction at sender, even when application
 334 *   requires some significant "application buffer". It is check #1.
 335 * - to prevent pruning of receive queue because of misprediction
 336 *   of receiver window. Check #2.
 337 *
 338 * The scheme does not work when sender sends good segments opening
 339 * window and then starts to feed us spaghetti. But it should work
 340 * in common situations. Otherwise, we have to rely on queue collapsing.
 341 */
 342
 343/* Slow part of check#2. */
 344static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 345{
 346	struct tcp_sock *tp = tcp_sk(sk);
 347	/* Optimize this! */
 348	int truesize = tcp_win_from_space(skb->truesize) >> 1;
 349	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 350
 351	while (tp->rcv_ssthresh <= window) {
 352		if (truesize <= skb->len)
 353			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 354
 355		truesize >>= 1;
 356		window >>= 1;
 357	}
 358	return 0;
 359}
 360
 361static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 362{
 363	struct tcp_sock *tp = tcp_sk(sk);
 364
 365	/* Check #1 */
 366	if (tp->rcv_ssthresh < tp->window_clamp &&
 367	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
 368	    !tcp_under_memory_pressure(sk)) {
 369		int incr;
 370
 371		/* Check #2. Increase window, if skb with such overhead
 372		 * will fit to rcvbuf in future.
 373		 */
 374		if (tcp_win_from_space(skb->truesize) <= skb->len)
 375			incr = 2 * tp->advmss;
 376		else
 377			incr = __tcp_grow_window(sk, skb);
 378
 379		if (incr) {
 380			incr = max_t(int, incr, 2 * skb->len);
 381			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 382					       tp->window_clamp);
 383			inet_csk(sk)->icsk_ack.quick |= 1;
 384		}
 385	}
 386}
 387
 388/* 3. Tuning rcvbuf, when connection enters established state. */
 
 389static void tcp_fixup_rcvbuf(struct sock *sk)
 390{
 391	u32 mss = tcp_sk(sk)->advmss;
 
 392	int rcvmem;
 393
 394	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
 395		 tcp_default_init_rwnd(mss);
 396
 397	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
 398	 * Allow enough cushion so that sender is not limited by our window
 399	 */
 400	if (sysctl_tcp_moderate_rcvbuf)
 401		rcvmem <<= 2;
 
 
 
 
 
 
 402
 403	if (sk->sk_rcvbuf < rcvmem)
 404		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
 405}
 406
 407/* 4. Try to fixup all. It is made immediately after connection enters
 408 *    established state.
 409 */
 410void tcp_init_buffer_space(struct sock *sk)
 411{
 412	struct tcp_sock *tp = tcp_sk(sk);
 413	int maxwin;
 414
 415	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 416		tcp_fixup_rcvbuf(sk);
 417	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 418		tcp_sndbuf_expand(sk);
 419
 420	tp->rcvq_space.space = tp->rcv_wnd;
 421	tp->rcvq_space.time = tcp_time_stamp;
 422	tp->rcvq_space.seq = tp->copied_seq;
 423
 424	maxwin = tcp_full_space(sk);
 425
 426	if (tp->window_clamp >= maxwin) {
 427		tp->window_clamp = maxwin;
 428
 429		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 430			tp->window_clamp = max(maxwin -
 431					       (maxwin >> sysctl_tcp_app_win),
 432					       4 * tp->advmss);
 433	}
 434
 435	/* Force reservation of one segment. */
 436	if (sysctl_tcp_app_win &&
 437	    tp->window_clamp > 2 * tp->advmss &&
 438	    tp->window_clamp + tp->advmss > maxwin)
 439		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 440
 441	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 442	tp->snd_cwnd_stamp = tcp_time_stamp;
 443}
 444
 445/* 5. Recalculate window clamp after socket hit its memory bounds. */
 446static void tcp_clamp_window(struct sock *sk)
 447{
 448	struct tcp_sock *tp = tcp_sk(sk);
 449	struct inet_connection_sock *icsk = inet_csk(sk);
 450
 451	icsk->icsk_ack.quick = 0;
 452
 453	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 454	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 455	    !tcp_under_memory_pressure(sk) &&
 456	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 457		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 458				    sysctl_tcp_rmem[2]);
 459	}
 460	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 461		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 462}
 463
 464/* Initialize RCV_MSS value.
 465 * RCV_MSS is an our guess about MSS used by the peer.
 466 * We haven't any direct information about the MSS.
 467 * It's better to underestimate the RCV_MSS rather than overestimate.
 468 * Overestimations make us ACKing less frequently than needed.
 469 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 470 */
 471void tcp_initialize_rcv_mss(struct sock *sk)
 472{
 473	const struct tcp_sock *tp = tcp_sk(sk);
 474	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 475
 476	hint = min(hint, tp->rcv_wnd / 2);
 477	hint = min(hint, TCP_MSS_DEFAULT);
 478	hint = max(hint, TCP_MIN_MSS);
 479
 480	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 481}
 482EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 483
 484/* Receiver "autotuning" code.
 485 *
 486 * The algorithm for RTT estimation w/o timestamps is based on
 487 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 488 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 489 *
 490 * More detail on this code can be found at
 491 * <http://staff.psc.edu/jheffner/>,
 492 * though this reference is out of date.  A new paper
 493 * is pending.
 494 */
 495static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 496{
 497	u32 new_sample = tp->rcv_rtt_est.rtt;
 498	long m = sample;
 499
 500	if (m == 0)
 501		m = 1;
 502
 503	if (new_sample != 0) {
 504		/* If we sample in larger samples in the non-timestamp
 505		 * case, we could grossly overestimate the RTT especially
 506		 * with chatty applications or bulk transfer apps which
 507		 * are stalled on filesystem I/O.
 508		 *
 509		 * Also, since we are only going for a minimum in the
 510		 * non-timestamp case, we do not smooth things out
 511		 * else with timestamps disabled convergence takes too
 512		 * long.
 513		 */
 514		if (!win_dep) {
 515			m -= (new_sample >> 3);
 516			new_sample += m;
 517		} else {
 518			m <<= 3;
 519			if (m < new_sample)
 520				new_sample = m;
 521		}
 522	} else {
 523		/* No previous measure. */
 524		new_sample = m << 3;
 525	}
 526
 527	if (tp->rcv_rtt_est.rtt != new_sample)
 528		tp->rcv_rtt_est.rtt = new_sample;
 529}
 530
 531static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 532{
 533	if (tp->rcv_rtt_est.time == 0)
 534		goto new_measure;
 535	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 536		return;
 537	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
 538
 539new_measure:
 540	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 541	tp->rcv_rtt_est.time = tcp_time_stamp;
 542}
 543
 544static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 545					  const struct sk_buff *skb)
 546{
 547	struct tcp_sock *tp = tcp_sk(sk);
 548	if (tp->rx_opt.rcv_tsecr &&
 549	    (TCP_SKB_CB(skb)->end_seq -
 550	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 551		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 552}
 553
 554/*
 555 * This function should be called every time data is copied to user space.
 556 * It calculates the appropriate TCP receive buffer space.
 557 */
 558void tcp_rcv_space_adjust(struct sock *sk)
 559{
 560	struct tcp_sock *tp = tcp_sk(sk);
 561	int time;
 562	int copied;
 
 
 
 563
 564	time = tcp_time_stamp - tp->rcvq_space.time;
 565	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 566		return;
 567
 568	/* Number of bytes copied to user in last RTT */
 569	copied = tp->copied_seq - tp->rcvq_space.seq;
 570	if (copied <= tp->rcvq_space.space)
 571		goto new_measure;
 572
 573	/* A bit of theory :
 574	 * copied = bytes received in previous RTT, our base window
 575	 * To cope with packet losses, we need a 2x factor
 576	 * To cope with slow start, and sender growing its cwin by 100 %
 577	 * every RTT, we need a 4x factor, because the ACK we are sending
 578	 * now is for the next RTT, not the current one :
 579	 * <prev RTT . ><current RTT .. ><next RTT .... >
 580	 */
 581
 582	if (sysctl_tcp_moderate_rcvbuf &&
 583	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 584		int rcvwin, rcvmem, rcvbuf;
 585
 586		/* minimal window to cope with packet losses, assuming
 587		 * steady state. Add some cushion because of small variations.
 588		 */
 589		rcvwin = (copied << 1) + 16 * tp->advmss;
 590
 591		/* If rate increased by 25%,
 592		 *	assume slow start, rcvwin = 3 * copied
 593		 * If rate increased by 50%,
 594		 *	assume sender can use 2x growth, rcvwin = 4 * copied
 595		 */
 596		if (copied >=
 597		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
 598			if (copied >=
 599			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
 600				rcvwin <<= 1;
 601			else
 602				rcvwin += (rcvwin >> 1);
 603		}
 604
 605		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 606		while (tcp_win_from_space(rcvmem) < tp->advmss)
 607			rcvmem += 128;
 608
 609		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
 610		if (rcvbuf > sk->sk_rcvbuf) {
 611			sk->sk_rcvbuf = rcvbuf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612
 613			/* Make the window clamp follow along.  */
 614			tp->window_clamp = rcvwin;
 
 615		}
 616	}
 617	tp->rcvq_space.space = copied;
 618
 619new_measure:
 620	tp->rcvq_space.seq = tp->copied_seq;
 621	tp->rcvq_space.time = tcp_time_stamp;
 622}
 623
 624/* There is something which you must keep in mind when you analyze the
 625 * behavior of the tp->ato delayed ack timeout interval.  When a
 626 * connection starts up, we want to ack as quickly as possible.  The
 627 * problem is that "good" TCP's do slow start at the beginning of data
 628 * transmission.  The means that until we send the first few ACK's the
 629 * sender will sit on his end and only queue most of his data, because
 630 * he can only send snd_cwnd unacked packets at any given time.  For
 631 * each ACK we send, he increments snd_cwnd and transmits more of his
 632 * queue.  -DaveM
 633 */
 634static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 635{
 636	struct tcp_sock *tp = tcp_sk(sk);
 637	struct inet_connection_sock *icsk = inet_csk(sk);
 638	u32 now;
 639
 640	inet_csk_schedule_ack(sk);
 641
 642	tcp_measure_rcv_mss(sk, skb);
 643
 644	tcp_rcv_rtt_measure(tp);
 645
 646	now = tcp_time_stamp;
 647
 648	if (!icsk->icsk_ack.ato) {
 649		/* The _first_ data packet received, initialize
 650		 * delayed ACK engine.
 651		 */
 652		tcp_incr_quickack(sk);
 653		icsk->icsk_ack.ato = TCP_ATO_MIN;
 654	} else {
 655		int m = now - icsk->icsk_ack.lrcvtime;
 656
 657		if (m <= TCP_ATO_MIN / 2) {
 658			/* The fastest case is the first. */
 659			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 660		} else if (m < icsk->icsk_ack.ato) {
 661			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 662			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 663				icsk->icsk_ack.ato = icsk->icsk_rto;
 664		} else if (m > icsk->icsk_rto) {
 665			/* Too long gap. Apparently sender failed to
 666			 * restart window, so that we send ACKs quickly.
 667			 */
 668			tcp_incr_quickack(sk);
 669			sk_mem_reclaim(sk);
 670		}
 671	}
 672	icsk->icsk_ack.lrcvtime = now;
 673
 674	tcp_ecn_check_ce(tp, skb);
 675
 676	if (skb->len >= 128)
 677		tcp_grow_window(sk, skb);
 678}
 679
 680/* Called to compute a smoothed rtt estimate. The data fed to this
 681 * routine either comes from timestamps, or from segments that were
 682 * known _not_ to have been retransmitted [see Karn/Partridge
 683 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 684 * piece by Van Jacobson.
 685 * NOTE: the next three routines used to be one big routine.
 686 * To save cycles in the RFC 1323 implementation it was better to break
 687 * it up into three procedures. -- erics
 688 */
 689static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 690{
 691	struct tcp_sock *tp = tcp_sk(sk);
 692	long m = mrtt_us; /* RTT */
 693	u32 srtt = tp->srtt_us;
 694
 695	/*	The following amusing code comes from Jacobson's
 696	 *	article in SIGCOMM '88.  Note that rtt and mdev
 697	 *	are scaled versions of rtt and mean deviation.
 698	 *	This is designed to be as fast as possible
 699	 *	m stands for "measurement".
 700	 *
 701	 *	On a 1990 paper the rto value is changed to:
 702	 *	RTO = rtt + 4 * mdev
 703	 *
 704	 * Funny. This algorithm seems to be very broken.
 705	 * These formulae increase RTO, when it should be decreased, increase
 706	 * too slowly, when it should be increased quickly, decrease too quickly
 707	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 708	 * does not matter how to _calculate_ it. Seems, it was trap
 709	 * that VJ failed to avoid. 8)
 710	 */
 711	if (srtt != 0) {
 712		m -= (srtt >> 3);	/* m is now error in rtt est */
 713		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 
 
 714		if (m < 0) {
 715			m = -m;		/* m is now abs(error) */
 716			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 717			/* This is similar to one of Eifel findings.
 718			 * Eifel blocks mdev updates when rtt decreases.
 719			 * This solution is a bit different: we use finer gain
 720			 * for mdev in this case (alpha*beta).
 721			 * Like Eifel it also prevents growth of rto,
 722			 * but also it limits too fast rto decreases,
 723			 * happening in pure Eifel.
 724			 */
 725			if (m > 0)
 726				m >>= 3;
 727		} else {
 728			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 729		}
 730		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
 731		if (tp->mdev_us > tp->mdev_max_us) {
 732			tp->mdev_max_us = tp->mdev_us;
 733			if (tp->mdev_max_us > tp->rttvar_us)
 734				tp->rttvar_us = tp->mdev_max_us;
 735		}
 736		if (after(tp->snd_una, tp->rtt_seq)) {
 737			if (tp->mdev_max_us < tp->rttvar_us)
 738				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 739			tp->rtt_seq = tp->snd_nxt;
 740			tp->mdev_max_us = tcp_rto_min_us(sk);
 741		}
 742	} else {
 743		/* no previous measure. */
 744		srtt = m << 3;		/* take the measured time to be rtt */
 745		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
 746		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 747		tp->mdev_max_us = tp->rttvar_us;
 748		tp->rtt_seq = tp->snd_nxt;
 749	}
 750	tp->srtt_us = max(1U, srtt);
 751}
 752
 753/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
 754 * Note: TCP stack does not yet implement pacing.
 755 * FQ packet scheduler can be used to implement cheap but effective
 756 * TCP pacing, to smooth the burst on large writes when packets
 757 * in flight is significantly lower than cwnd (or rwin)
 758 */
 759int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
 760int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
 761
 762static void tcp_update_pacing_rate(struct sock *sk)
 763{
 764	const struct tcp_sock *tp = tcp_sk(sk);
 765	u64 rate;
 766
 767	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 768	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 769
 770	/* current rate is (cwnd * mss) / srtt
 771	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 772	 * In Congestion Avoidance phase, set it to 120 % the current rate.
 773	 *
 774	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 775	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 776	 *	 end of slow start and should slow down.
 777	 */
 778	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 779		rate *= sysctl_tcp_pacing_ss_ratio;
 780	else
 781		rate *= sysctl_tcp_pacing_ca_ratio;
 782
 783	rate *= max(tp->snd_cwnd, tp->packets_out);
 784
 785	if (likely(tp->srtt_us))
 786		do_div(rate, tp->srtt_us);
 787
 788	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
 789	 * without any lock. We want to make sure compiler wont store
 790	 * intermediate values in this location.
 791	 */
 792	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
 793						sk->sk_max_pacing_rate);
 794}
 795
 796/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 797 * routine referred to above.
 798 */
 799static void tcp_set_rto(struct sock *sk)
 800{
 801	const struct tcp_sock *tp = tcp_sk(sk);
 802	/* Old crap is replaced with new one. 8)
 803	 *
 804	 * More seriously:
 805	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 806	 *    It cannot be less due to utterly erratic ACK generation made
 807	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 808	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 809	 *    is invisible. Actually, Linux-2.4 also generates erratic
 810	 *    ACKs in some circumstances.
 811	 */
 812	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 813
 814	/* 2. Fixups made earlier cannot be right.
 815	 *    If we do not estimate RTO correctly without them,
 816	 *    all the algo is pure shit and should be replaced
 817	 *    with correct one. It is exactly, which we pretend to do.
 818	 */
 819
 820	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 821	 * guarantees that rto is higher.
 822	 */
 823	tcp_bound_rto(sk);
 824}
 825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 827{
 828	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 829
 830	if (!cwnd)
 831		cwnd = TCP_INIT_CWND;
 832	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 833}
 834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835/*
 836 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 837 * disables it when reordering is detected
 838 */
 839void tcp_disable_fack(struct tcp_sock *tp)
 840{
 841	/* RFC3517 uses different metric in lost marker => reset on change */
 842	if (tcp_is_fack(tp))
 843		tp->lost_skb_hint = NULL;
 844	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
 845}
 846
 847/* Take a notice that peer is sending D-SACKs */
 848static void tcp_dsack_seen(struct tcp_sock *tp)
 849{
 850	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 851}
 852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853static void tcp_update_reordering(struct sock *sk, const int metric,
 854				  const int ts)
 855{
 856	struct tcp_sock *tp = tcp_sk(sk);
 857	if (metric > tp->reordering) {
 858		int mib_idx;
 859
 860		tp->reordering = min(sysctl_tcp_max_reordering, metric);
 861
 862		/* This exciting event is worth to be remembered. 8) */
 863		if (ts)
 864			mib_idx = LINUX_MIB_TCPTSREORDER;
 865		else if (tcp_is_reno(tp))
 866			mib_idx = LINUX_MIB_TCPRENOREORDER;
 867		else if (tcp_is_fack(tp))
 868			mib_idx = LINUX_MIB_TCPFACKREORDER;
 869		else
 870			mib_idx = LINUX_MIB_TCPSACKREORDER;
 871
 872		NET_INC_STATS_BH(sock_net(sk), mib_idx);
 873#if FASTRETRANS_DEBUG > 1
 874		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 875			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 876			 tp->reordering,
 877			 tp->fackets_out,
 878			 tp->sacked_out,
 879			 tp->undo_marker ? tp->undo_retrans : 0);
 880#endif
 881		tcp_disable_fack(tp);
 882	}
 883
 884	if (metric > 0)
 885		tcp_disable_early_retrans(tp);
 886	tp->rack.reord = 1;
 887}
 888
 889/* This must be called before lost_out is incremented */
 890static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 891{
 892	if (!tp->retransmit_skb_hint ||
 893	    before(TCP_SKB_CB(skb)->seq,
 894		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 895		tp->retransmit_skb_hint = skb;
 896
 897	if (!tp->lost_out ||
 898	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
 899		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
 900}
 901
 902static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 903{
 904	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 905		tcp_verify_retransmit_hint(tp, skb);
 906
 907		tp->lost_out += tcp_skb_pcount(skb);
 908		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 909	}
 910}
 911
 912void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
 
 913{
 914	tcp_verify_retransmit_hint(tp, skb);
 915
 916	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 917		tp->lost_out += tcp_skb_pcount(skb);
 918		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 919	}
 920}
 921
 922/* This procedure tags the retransmission queue when SACKs arrive.
 923 *
 924 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 925 * Packets in queue with these bits set are counted in variables
 926 * sacked_out, retrans_out and lost_out, correspondingly.
 927 *
 928 * Valid combinations are:
 929 * Tag  InFlight	Description
 930 * 0	1		- orig segment is in flight.
 931 * S	0		- nothing flies, orig reached receiver.
 932 * L	0		- nothing flies, orig lost by net.
 933 * R	2		- both orig and retransmit are in flight.
 934 * L|R	1		- orig is lost, retransmit is in flight.
 935 * S|R  1		- orig reached receiver, retrans is still in flight.
 936 * (L|S|R is logically valid, it could occur when L|R is sacked,
 937 *  but it is equivalent to plain S and code short-curcuits it to S.
 938 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 939 *
 940 * These 6 states form finite state machine, controlled by the following events:
 941 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 942 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 943 * 3. Loss detection event of two flavors:
 944 *	A. Scoreboard estimator decided the packet is lost.
 945 *	   A'. Reno "three dupacks" marks head of queue lost.
 946 *	   A''. Its FACK modification, head until snd.fack is lost.
 947 *	B. SACK arrives sacking SND.NXT at the moment, when the
 948 *	   segment was retransmitted.
 949 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 950 *
 951 * It is pleasant to note, that state diagram turns out to be commutative,
 952 * so that we are allowed not to be bothered by order of our actions,
 953 * when multiple events arrive simultaneously. (see the function below).
 954 *
 955 * Reordering detection.
 956 * --------------------
 957 * Reordering metric is maximal distance, which a packet can be displaced
 958 * in packet stream. With SACKs we can estimate it:
 959 *
 960 * 1. SACK fills old hole and the corresponding segment was not
 961 *    ever retransmitted -> reordering. Alas, we cannot use it
 962 *    when segment was retransmitted.
 963 * 2. The last flaw is solved with D-SACK. D-SACK arrives
 964 *    for retransmitted and already SACKed segment -> reordering..
 965 * Both of these heuristics are not used in Loss state, when we cannot
 966 * account for retransmits accurately.
 967 *
 968 * SACK block validation.
 969 * ----------------------
 970 *
 971 * SACK block range validation checks that the received SACK block fits to
 972 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
 973 * Note that SND.UNA is not included to the range though being valid because
 974 * it means that the receiver is rather inconsistent with itself reporting
 975 * SACK reneging when it should advance SND.UNA. Such SACK block this is
 976 * perfectly valid, however, in light of RFC2018 which explicitly states
 977 * that "SACK block MUST reflect the newest segment.  Even if the newest
 978 * segment is going to be discarded ...", not that it looks very clever
 979 * in case of head skb. Due to potentional receiver driven attacks, we
 980 * choose to avoid immediate execution of a walk in write queue due to
 981 * reneging and defer head skb's loss recovery to standard loss recovery
 982 * procedure that will eventually trigger (nothing forbids us doing this).
 983 *
 984 * Implements also blockage to start_seq wrap-around. Problem lies in the
 985 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
 986 * there's no guarantee that it will be before snd_nxt (n). The problem
 987 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
 988 * wrap (s_w):
 989 *
 990 *         <- outs wnd ->                          <- wrapzone ->
 991 *         u     e      n                         u_w   e_w  s n_w
 992 *         |     |      |                          |     |   |  |
 993 * |<------------+------+----- TCP seqno space --------------+---------->|
 994 * ...-- <2^31 ->|                                           |<--------...
 995 * ...---- >2^31 ------>|                                    |<--------...
 996 *
 997 * Current code wouldn't be vulnerable but it's better still to discard such
 998 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
 999 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001 * equal to the ideal case (infinite seqno space without wrap caused issues).
1002 *
1003 * With D-SACK the lower bound is extended to cover sequence space below
1004 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1005 * again, D-SACK block must not to go across snd_una (for the same reason as
1006 * for the normal SACK blocks, explained above). But there all simplicity
1007 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008 * fully below undo_marker they do not affect behavior in anyway and can
1009 * therefore be safely ignored. In rare cases (which are more or less
1010 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011 * fragmentation and packet reordering past skb's retransmission. To consider
1012 * them correctly, the acceptable range must be extended even more though
1013 * the exact amount is rather hard to quantify. However, tp->max_window can
1014 * be used as an exaggerated estimate.
1015 */
1016static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1017				   u32 start_seq, u32 end_seq)
1018{
1019	/* Too far in future, or reversed (interpretation is ambiguous) */
1020	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1021		return false;
1022
1023	/* Nasty start_seq wrap-around check (see comments above) */
1024	if (!before(start_seq, tp->snd_nxt))
1025		return false;
1026
1027	/* In outstanding window? ...This is valid exit for D-SACKs too.
1028	 * start_seq == snd_una is non-sensical (see comments above)
1029	 */
1030	if (after(start_seq, tp->snd_una))
1031		return true;
1032
1033	if (!is_dsack || !tp->undo_marker)
1034		return false;
1035
1036	/* ...Then it's D-SACK, and must reside below snd_una completely */
1037	if (after(end_seq, tp->snd_una))
1038		return false;
1039
1040	if (!before(start_seq, tp->undo_marker))
1041		return true;
1042
1043	/* Too old */
1044	if (!after(end_seq, tp->undo_marker))
1045		return false;
1046
1047	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1048	 *   start_seq < undo_marker and end_seq >= undo_marker.
1049	 */
1050	return !before(start_seq, end_seq - tp->max_window);
1051}
1052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054			    struct tcp_sack_block_wire *sp, int num_sacks,
1055			    u32 prior_snd_una)
1056{
1057	struct tcp_sock *tp = tcp_sk(sk);
1058	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1060	bool dup_sack = false;
1061
1062	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1063		dup_sack = true;
1064		tcp_dsack_seen(tp);
1065		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1066	} else if (num_sacks > 1) {
1067		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1069
1070		if (!after(end_seq_0, end_seq_1) &&
1071		    !before(start_seq_0, start_seq_1)) {
1072			dup_sack = true;
1073			tcp_dsack_seen(tp);
1074			NET_INC_STATS_BH(sock_net(sk),
1075					LINUX_MIB_TCPDSACKOFORECV);
1076		}
1077	}
1078
1079	/* D-SACK for already forgotten data... Do dumb counting. */
1080	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1081	    !after(end_seq_0, prior_snd_una) &&
1082	    after(end_seq_0, tp->undo_marker))
1083		tp->undo_retrans--;
1084
1085	return dup_sack;
1086}
1087
1088struct tcp_sacktag_state {
1089	int	reord;
1090	int	fack_count;
1091	/* Timestamps for earliest and latest never-retransmitted segment
1092	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093	 * but congestion control should still get an accurate delay signal.
1094	 */
1095	struct skb_mstamp first_sackt;
1096	struct skb_mstamp last_sackt;
1097	int	flag;
1098};
1099
1100/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101 * the incoming SACK may not exactly match but we can find smaller MSS
1102 * aligned portion of it that matches. Therefore we might need to fragment
1103 * which may fail and creates some hassle (caller must handle error case
1104 * returns).
1105 *
1106 * FIXME: this could be merged to shift decision code
1107 */
1108static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1109				  u32 start_seq, u32 end_seq)
1110{
1111	int err;
1112	bool in_sack;
1113	unsigned int pkt_len;
1114	unsigned int mss;
1115
1116	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1117		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1118
1119	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1120	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1121		mss = tcp_skb_mss(skb);
1122		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1123
1124		if (!in_sack) {
1125			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1126			if (pkt_len < mss)
1127				pkt_len = mss;
1128		} else {
1129			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1130			if (pkt_len < mss)
1131				return -EINVAL;
1132		}
1133
1134		/* Round if necessary so that SACKs cover only full MSSes
1135		 * and/or the remaining small portion (if present)
1136		 */
1137		if (pkt_len > mss) {
1138			unsigned int new_len = (pkt_len / mss) * mss;
1139			if (!in_sack && new_len < pkt_len) {
1140				new_len += mss;
1141				if (new_len >= skb->len)
1142					return 0;
1143			}
1144			pkt_len = new_len;
1145		}
1146		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1147		if (err < 0)
1148			return err;
1149	}
1150
1151	return in_sack;
1152}
1153
1154/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155static u8 tcp_sacktag_one(struct sock *sk,
1156			  struct tcp_sacktag_state *state, u8 sacked,
1157			  u32 start_seq, u32 end_seq,
1158			  int dup_sack, int pcount,
1159			  const struct skb_mstamp *xmit_time)
1160{
1161	struct tcp_sock *tp = tcp_sk(sk);
1162	int fack_count = state->fack_count;
1163
1164	/* Account D-SACK for retransmitted packet. */
1165	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1166		if (tp->undo_marker && tp->undo_retrans > 0 &&
1167		    after(end_seq, tp->undo_marker))
1168			tp->undo_retrans--;
1169		if (sacked & TCPCB_SACKED_ACKED)
1170			state->reord = min(fack_count, state->reord);
1171	}
1172
1173	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1174	if (!after(end_seq, tp->snd_una))
1175		return sacked;
1176
1177	if (!(sacked & TCPCB_SACKED_ACKED)) {
1178		tcp_rack_advance(tp, xmit_time, sacked);
1179
1180		if (sacked & TCPCB_SACKED_RETRANS) {
1181			/* If the segment is not tagged as lost,
1182			 * we do not clear RETRANS, believing
1183			 * that retransmission is still in flight.
1184			 */
1185			if (sacked & TCPCB_LOST) {
1186				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1187				tp->lost_out -= pcount;
1188				tp->retrans_out -= pcount;
1189			}
1190		} else {
1191			if (!(sacked & TCPCB_RETRANS)) {
1192				/* New sack for not retransmitted frame,
1193				 * which was in hole. It is reordering.
1194				 */
1195				if (before(start_seq,
1196					   tcp_highest_sack_seq(tp)))
1197					state->reord = min(fack_count,
1198							   state->reord);
1199				if (!after(end_seq, tp->high_seq))
1200					state->flag |= FLAG_ORIG_SACK_ACKED;
1201				if (state->first_sackt.v64 == 0)
1202					state->first_sackt = *xmit_time;
1203				state->last_sackt = *xmit_time;
1204			}
1205
1206			if (sacked & TCPCB_LOST) {
1207				sacked &= ~TCPCB_LOST;
1208				tp->lost_out -= pcount;
1209			}
1210		}
1211
1212		sacked |= TCPCB_SACKED_ACKED;
1213		state->flag |= FLAG_DATA_SACKED;
1214		tp->sacked_out += pcount;
1215		tp->delivered += pcount;  /* Out-of-order packets delivered */
1216
1217		fack_count += pcount;
1218
1219		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1220		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1221		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1222			tp->lost_cnt_hint += pcount;
1223
1224		if (fack_count > tp->fackets_out)
1225			tp->fackets_out = fack_count;
1226	}
1227
1228	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1229	 * frames and clear it. undo_retrans is decreased above, L|R frames
1230	 * are accounted above as well.
1231	 */
1232	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1233		sacked &= ~TCPCB_SACKED_RETRANS;
1234		tp->retrans_out -= pcount;
1235	}
1236
1237	return sacked;
1238}
1239
1240/* Shift newly-SACKed bytes from this skb to the immediately previous
1241 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1242 */
1243static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1244			    struct tcp_sacktag_state *state,
1245			    unsigned int pcount, int shifted, int mss,
1246			    bool dup_sack)
1247{
1248	struct tcp_sock *tp = tcp_sk(sk);
1249	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1250	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1251	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1252
1253	BUG_ON(!pcount);
1254
1255	/* Adjust counters and hints for the newly sacked sequence
1256	 * range but discard the return value since prev is already
1257	 * marked. We must tag the range first because the seq
1258	 * advancement below implicitly advances
1259	 * tcp_highest_sack_seq() when skb is highest_sack.
1260	 */
1261	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1262			start_seq, end_seq, dup_sack, pcount,
1263			&skb->skb_mstamp);
1264
1265	if (skb == tp->lost_skb_hint)
1266		tp->lost_cnt_hint += pcount;
1267
1268	TCP_SKB_CB(prev)->end_seq += shifted;
1269	TCP_SKB_CB(skb)->seq += shifted;
1270
1271	tcp_skb_pcount_add(prev, pcount);
1272	BUG_ON(tcp_skb_pcount(skb) < pcount);
1273	tcp_skb_pcount_add(skb, -pcount);
1274
1275	/* When we're adding to gso_segs == 1, gso_size will be zero,
1276	 * in theory this shouldn't be necessary but as long as DSACK
1277	 * code can come after this skb later on it's better to keep
1278	 * setting gso_size to something.
1279	 */
1280	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1281		TCP_SKB_CB(prev)->tcp_gso_size = mss;
 
 
1282
1283	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1284	if (tcp_skb_pcount(skb) <= 1)
1285		TCP_SKB_CB(skb)->tcp_gso_size = 0;
 
 
1286
1287	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1289
1290	if (skb->len > 0) {
1291		BUG_ON(!tcp_skb_pcount(skb));
1292		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1293		return false;
1294	}
1295
1296	/* Whole SKB was eaten :-) */
1297
1298	if (skb == tp->retransmit_skb_hint)
1299		tp->retransmit_skb_hint = prev;
 
 
1300	if (skb == tp->lost_skb_hint) {
1301		tp->lost_skb_hint = prev;
1302		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1303	}
1304
1305	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1306	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1307		TCP_SKB_CB(prev)->end_seq++;
1308
1309	if (skb == tcp_highest_sack(sk))
1310		tcp_advance_highest_sack(sk, skb);
1311
1312	tcp_skb_collapse_tstamp(prev, skb);
1313	tcp_unlink_write_queue(skb, sk);
1314	sk_wmem_free_skb(sk, skb);
1315
1316	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1317
1318	return true;
1319}
1320
1321/* I wish gso_size would have a bit more sane initialization than
1322 * something-or-zero which complicates things
1323 */
1324static int tcp_skb_seglen(const struct sk_buff *skb)
1325{
1326	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1327}
1328
1329/* Shifting pages past head area doesn't work */
1330static int skb_can_shift(const struct sk_buff *skb)
1331{
1332	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1333}
1334
1335/* Try collapsing SACK blocks spanning across multiple skbs to a single
1336 * skb.
1337 */
1338static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1339					  struct tcp_sacktag_state *state,
1340					  u32 start_seq, u32 end_seq,
1341					  bool dup_sack)
1342{
1343	struct tcp_sock *tp = tcp_sk(sk);
1344	struct sk_buff *prev;
1345	int mss;
1346	int pcount = 0;
1347	int len;
1348	int in_sack;
1349
1350	if (!sk_can_gso(sk))
1351		goto fallback;
1352
1353	/* Normally R but no L won't result in plain S */
1354	if (!dup_sack &&
1355	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1356		goto fallback;
1357	if (!skb_can_shift(skb))
1358		goto fallback;
1359	/* This frame is about to be dropped (was ACKed). */
1360	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1361		goto fallback;
1362
1363	/* Can only happen with delayed DSACK + discard craziness */
1364	if (unlikely(skb == tcp_write_queue_head(sk)))
1365		goto fallback;
1366	prev = tcp_write_queue_prev(sk, skb);
1367
1368	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1369		goto fallback;
1370
1371	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1372		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1373
1374	if (in_sack) {
1375		len = skb->len;
1376		pcount = tcp_skb_pcount(skb);
1377		mss = tcp_skb_seglen(skb);
1378
1379		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1380		 * drop this restriction as unnecessary
1381		 */
1382		if (mss != tcp_skb_seglen(prev))
1383			goto fallback;
1384	} else {
1385		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1386			goto noop;
1387		/* CHECKME: This is non-MSS split case only?, this will
1388		 * cause skipped skbs due to advancing loop btw, original
1389		 * has that feature too
1390		 */
1391		if (tcp_skb_pcount(skb) <= 1)
1392			goto noop;
1393
1394		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1395		if (!in_sack) {
1396			/* TODO: head merge to next could be attempted here
1397			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1398			 * though it might not be worth of the additional hassle
1399			 *
1400			 * ...we can probably just fallback to what was done
1401			 * previously. We could try merging non-SACKed ones
1402			 * as well but it probably isn't going to buy off
1403			 * because later SACKs might again split them, and
1404			 * it would make skb timestamp tracking considerably
1405			 * harder problem.
1406			 */
1407			goto fallback;
1408		}
1409
1410		len = end_seq - TCP_SKB_CB(skb)->seq;
1411		BUG_ON(len < 0);
1412		BUG_ON(len > skb->len);
1413
1414		/* MSS boundaries should be honoured or else pcount will
1415		 * severely break even though it makes things bit trickier.
1416		 * Optimize common case to avoid most of the divides
1417		 */
1418		mss = tcp_skb_mss(skb);
1419
1420		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1421		 * drop this restriction as unnecessary
1422		 */
1423		if (mss != tcp_skb_seglen(prev))
1424			goto fallback;
1425
1426		if (len == mss) {
1427			pcount = 1;
1428		} else if (len < mss) {
1429			goto noop;
1430		} else {
1431			pcount = len / mss;
1432			len = pcount * mss;
1433		}
1434	}
1435
1436	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1437	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1438		goto fallback;
1439
1440	if (!skb_shift(prev, skb, len))
1441		goto fallback;
1442	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1443		goto out;
1444
1445	/* Hole filled allows collapsing with the next as well, this is very
1446	 * useful when hole on every nth skb pattern happens
1447	 */
1448	if (prev == tcp_write_queue_tail(sk))
1449		goto out;
1450	skb = tcp_write_queue_next(sk, prev);
1451
1452	if (!skb_can_shift(skb) ||
1453	    (skb == tcp_send_head(sk)) ||
1454	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1455	    (mss != tcp_skb_seglen(skb)))
1456		goto out;
1457
1458	len = skb->len;
1459	if (skb_shift(prev, skb, len)) {
1460		pcount += tcp_skb_pcount(skb);
1461		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1462	}
1463
1464out:
1465	state->fack_count += pcount;
1466	return prev;
1467
1468noop:
1469	return skb;
1470
1471fallback:
1472	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1473	return NULL;
1474}
1475
1476static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1477					struct tcp_sack_block *next_dup,
1478					struct tcp_sacktag_state *state,
1479					u32 start_seq, u32 end_seq,
1480					bool dup_sack_in)
1481{
1482	struct tcp_sock *tp = tcp_sk(sk);
1483	struct sk_buff *tmp;
1484
1485	tcp_for_write_queue_from(skb, sk) {
1486		int in_sack = 0;
1487		bool dup_sack = dup_sack_in;
1488
1489		if (skb == tcp_send_head(sk))
1490			break;
1491
1492		/* queue is in-order => we can short-circuit the walk early */
1493		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1494			break;
1495
1496		if (next_dup  &&
1497		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1498			in_sack = tcp_match_skb_to_sack(sk, skb,
1499							next_dup->start_seq,
1500							next_dup->end_seq);
1501			if (in_sack > 0)
1502				dup_sack = true;
1503		}
1504
1505		/* skb reference here is a bit tricky to get right, since
1506		 * shifting can eat and free both this skb and the next,
1507		 * so not even _safe variant of the loop is enough.
1508		 */
1509		if (in_sack <= 0) {
1510			tmp = tcp_shift_skb_data(sk, skb, state,
1511						 start_seq, end_seq, dup_sack);
1512			if (tmp) {
1513				if (tmp != skb) {
1514					skb = tmp;
1515					continue;
1516				}
1517
1518				in_sack = 0;
1519			} else {
1520				in_sack = tcp_match_skb_to_sack(sk, skb,
1521								start_seq,
1522								end_seq);
1523			}
1524		}
1525
1526		if (unlikely(in_sack < 0))
1527			break;
1528
1529		if (in_sack) {
1530			TCP_SKB_CB(skb)->sacked =
1531				tcp_sacktag_one(sk,
1532						state,
1533						TCP_SKB_CB(skb)->sacked,
1534						TCP_SKB_CB(skb)->seq,
1535						TCP_SKB_CB(skb)->end_seq,
1536						dup_sack,
1537						tcp_skb_pcount(skb),
1538						&skb->skb_mstamp);
1539
1540			if (!before(TCP_SKB_CB(skb)->seq,
1541				    tcp_highest_sack_seq(tp)))
1542				tcp_advance_highest_sack(sk, skb);
1543		}
1544
1545		state->fack_count += tcp_skb_pcount(skb);
1546	}
1547	return skb;
1548}
1549
1550/* Avoid all extra work that is being done by sacktag while walking in
1551 * a normal way
1552 */
1553static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1554					struct tcp_sacktag_state *state,
1555					u32 skip_to_seq)
1556{
1557	tcp_for_write_queue_from(skb, sk) {
1558		if (skb == tcp_send_head(sk))
1559			break;
1560
1561		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1562			break;
1563
1564		state->fack_count += tcp_skb_pcount(skb);
1565	}
1566	return skb;
1567}
1568
1569static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1570						struct sock *sk,
1571						struct tcp_sack_block *next_dup,
1572						struct tcp_sacktag_state *state,
1573						u32 skip_to_seq)
1574{
1575	if (!next_dup)
1576		return skb;
1577
1578	if (before(next_dup->start_seq, skip_to_seq)) {
1579		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1580		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1581				       next_dup->start_seq, next_dup->end_seq,
1582				       1);
1583	}
1584
1585	return skb;
1586}
1587
1588static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1589{
1590	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1591}
1592
1593static int
1594tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1595			u32 prior_snd_una, struct tcp_sacktag_state *state)
1596{
 
1597	struct tcp_sock *tp = tcp_sk(sk);
1598	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1599				    TCP_SKB_CB(ack_skb)->sacked);
1600	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1601	struct tcp_sack_block sp[TCP_NUM_SACKS];
1602	struct tcp_sack_block *cache;
 
1603	struct sk_buff *skb;
1604	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1605	int used_sacks;
1606	bool found_dup_sack = false;
1607	int i, j;
1608	int first_sack_index;
1609
1610	state->flag = 0;
1611	state->reord = tp->packets_out;
1612
1613	if (!tp->sacked_out) {
1614		if (WARN_ON(tp->fackets_out))
1615			tp->fackets_out = 0;
1616		tcp_highest_sack_reset(sk);
1617	}
1618
1619	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1620					 num_sacks, prior_snd_una);
1621	if (found_dup_sack)
1622		state->flag |= FLAG_DSACKING_ACK;
1623
1624	/* Eliminate too old ACKs, but take into
1625	 * account more or less fresh ones, they can
1626	 * contain valid SACK info.
1627	 */
1628	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1629		return 0;
1630
1631	if (!tp->packets_out)
1632		goto out;
1633
1634	used_sacks = 0;
1635	first_sack_index = 0;
1636	for (i = 0; i < num_sacks; i++) {
1637		bool dup_sack = !i && found_dup_sack;
1638
1639		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1640		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1641
1642		if (!tcp_is_sackblock_valid(tp, dup_sack,
1643					    sp[used_sacks].start_seq,
1644					    sp[used_sacks].end_seq)) {
1645			int mib_idx;
1646
1647			if (dup_sack) {
1648				if (!tp->undo_marker)
1649					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1650				else
1651					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1652			} else {
1653				/* Don't count olds caused by ACK reordering */
1654				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1655				    !after(sp[used_sacks].end_seq, tp->snd_una))
1656					continue;
1657				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1658			}
1659
1660			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1661			if (i == 0)
1662				first_sack_index = -1;
1663			continue;
1664		}
1665
1666		/* Ignore very old stuff early */
1667		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1668			continue;
1669
1670		used_sacks++;
1671	}
1672
1673	/* order SACK blocks to allow in order walk of the retrans queue */
1674	for (i = used_sacks - 1; i > 0; i--) {
1675		for (j = 0; j < i; j++) {
1676			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1677				swap(sp[j], sp[j + 1]);
1678
1679				/* Track where the first SACK block goes to */
1680				if (j == first_sack_index)
1681					first_sack_index = j + 1;
1682			}
1683		}
1684	}
1685
1686	skb = tcp_write_queue_head(sk);
1687	state->fack_count = 0;
1688	i = 0;
1689
1690	if (!tp->sacked_out) {
1691		/* It's already past, so skip checking against it */
1692		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1693	} else {
1694		cache = tp->recv_sack_cache;
1695		/* Skip empty blocks in at head of the cache */
1696		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1697		       !cache->end_seq)
1698			cache++;
1699	}
1700
1701	while (i < used_sacks) {
1702		u32 start_seq = sp[i].start_seq;
1703		u32 end_seq = sp[i].end_seq;
1704		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1705		struct tcp_sack_block *next_dup = NULL;
1706
1707		if (found_dup_sack && ((i + 1) == first_sack_index))
1708			next_dup = &sp[i + 1];
1709
1710		/* Skip too early cached blocks */
1711		while (tcp_sack_cache_ok(tp, cache) &&
1712		       !before(start_seq, cache->end_seq))
1713			cache++;
1714
1715		/* Can skip some work by looking recv_sack_cache? */
1716		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1717		    after(end_seq, cache->start_seq)) {
1718
1719			/* Head todo? */
1720			if (before(start_seq, cache->start_seq)) {
1721				skb = tcp_sacktag_skip(skb, sk, state,
1722						       start_seq);
1723				skb = tcp_sacktag_walk(skb, sk, next_dup,
1724						       state,
1725						       start_seq,
1726						       cache->start_seq,
1727						       dup_sack);
1728			}
1729
1730			/* Rest of the block already fully processed? */
1731			if (!after(end_seq, cache->end_seq))
1732				goto advance_sp;
1733
1734			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1735						       state,
1736						       cache->end_seq);
1737
1738			/* ...tail remains todo... */
1739			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1740				/* ...but better entrypoint exists! */
1741				skb = tcp_highest_sack(sk);
1742				if (!skb)
1743					break;
1744				state->fack_count = tp->fackets_out;
1745				cache++;
1746				goto walk;
1747			}
1748
1749			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1750			/* Check overlap against next cached too (past this one already) */
1751			cache++;
1752			continue;
1753		}
1754
1755		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1756			skb = tcp_highest_sack(sk);
1757			if (!skb)
1758				break;
1759			state->fack_count = tp->fackets_out;
1760		}
1761		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1762
1763walk:
1764		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1765				       start_seq, end_seq, dup_sack);
1766
1767advance_sp:
 
 
 
 
 
 
1768		i++;
1769	}
1770
1771	/* Clear the head of the cache sack blocks so we can skip it next time */
1772	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1773		tp->recv_sack_cache[i].start_seq = 0;
1774		tp->recv_sack_cache[i].end_seq = 0;
1775	}
1776	for (j = 0; j < used_sacks; j++)
1777		tp->recv_sack_cache[i++] = sp[j];
1778
1779	if ((state->reord < tp->fackets_out) &&
1780	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1781		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1782
1783	tcp_verify_left_out(tp);
 
 
 
 
 
 
1784out:
1785
1786#if FASTRETRANS_DEBUG > 0
1787	WARN_ON((int)tp->sacked_out < 0);
1788	WARN_ON((int)tp->lost_out < 0);
1789	WARN_ON((int)tp->retrans_out < 0);
1790	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1791#endif
1792	return state->flag;
1793}
1794
1795/* Limits sacked_out so that sum with lost_out isn't ever larger than
1796 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1797 */
1798static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1799{
1800	u32 holes;
1801
1802	holes = max(tp->lost_out, 1U);
1803	holes = min(holes, tp->packets_out);
1804
1805	if ((tp->sacked_out + holes) > tp->packets_out) {
1806		tp->sacked_out = tp->packets_out - holes;
1807		return true;
1808	}
1809	return false;
1810}
1811
1812/* If we receive more dupacks than we expected counting segments
1813 * in assumption of absent reordering, interpret this as reordering.
1814 * The only another reason could be bug in receiver TCP.
1815 */
1816static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1817{
1818	struct tcp_sock *tp = tcp_sk(sk);
1819	if (tcp_limit_reno_sacked(tp))
1820		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1821}
1822
1823/* Emulate SACKs for SACKless connection: account for a new dupack. */
1824
1825static void tcp_add_reno_sack(struct sock *sk)
1826{
1827	struct tcp_sock *tp = tcp_sk(sk);
1828	u32 prior_sacked = tp->sacked_out;
1829
1830	tp->sacked_out++;
1831	tcp_check_reno_reordering(sk, 0);
1832	if (tp->sacked_out > prior_sacked)
1833		tp->delivered++; /* Some out-of-order packet is delivered */
1834	tcp_verify_left_out(tp);
1835}
1836
1837/* Account for ACK, ACKing some data in Reno Recovery phase. */
1838
1839static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1840{
1841	struct tcp_sock *tp = tcp_sk(sk);
1842
1843	if (acked > 0) {
1844		/* One ACK acked hole. The rest eat duplicate ACKs. */
1845		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1846		if (acked - 1 >= tp->sacked_out)
1847			tp->sacked_out = 0;
1848		else
1849			tp->sacked_out -= acked - 1;
1850	}
1851	tcp_check_reno_reordering(sk, acked);
1852	tcp_verify_left_out(tp);
1853}
1854
1855static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1856{
1857	tp->sacked_out = 0;
1858}
1859
1860void tcp_clear_retrans(struct tcp_sock *tp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861{
1862	tp->retrans_out = 0;
1863	tp->lost_out = 0;
 
1864	tp->undo_marker = 0;
1865	tp->undo_retrans = -1;
1866	tp->fackets_out = 0;
1867	tp->sacked_out = 0;
1868}
1869
1870static inline void tcp_init_undo(struct tcp_sock *tp)
1871{
1872	tp->undo_marker = tp->snd_una;
1873	/* Retransmission still in flight may cause DSACKs later. */
1874	tp->undo_retrans = tp->retrans_out ? : -1;
 
1875}
1876
1877/* Enter Loss state. If we detect SACK reneging, forget all SACK information
1878 * and reset tags completely, otherwise preserve SACKs. If receiver
1879 * dropped its ofo queue, we will know this due to reneging detection.
1880 */
1881void tcp_enter_loss(struct sock *sk)
1882{
1883	const struct inet_connection_sock *icsk = inet_csk(sk);
1884	struct tcp_sock *tp = tcp_sk(sk);
1885	struct net *net = sock_net(sk);
1886	struct sk_buff *skb;
1887	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1888	bool is_reneg;			/* is receiver reneging on SACKs? */
1889
1890	/* Reduce ssthresh if it has not yet been made inside this window. */
1891	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1892	    !after(tp->high_seq, tp->snd_una) ||
1893	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1894		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1895		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1896		tcp_ca_event(sk, CA_EVENT_LOSS);
1897		tcp_init_undo(tp);
1898	}
1899	tp->snd_cwnd	   = 1;
1900	tp->snd_cwnd_cnt   = 0;
1901	tp->snd_cwnd_stamp = tcp_time_stamp;
1902
1903	tp->retrans_out = 0;
1904	tp->lost_out = 0;
1905
1906	if (tcp_is_reno(tp))
1907		tcp_reset_reno_sack(tp);
1908
1909	skb = tcp_write_queue_head(sk);
1910	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1911	if (is_reneg) {
1912		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
 
1913		tp->sacked_out = 0;
1914		tp->fackets_out = 0;
1915	}
1916	tcp_clear_all_retrans_hints(tp);
1917
1918	tcp_for_write_queue(skb, sk) {
1919		if (skb == tcp_send_head(sk))
1920			break;
1921
 
 
1922		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1923		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1924			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1925			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1926			tp->lost_out += tcp_skb_pcount(skb);
1927			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1928		}
1929	}
1930	tcp_verify_left_out(tp);
1931
1932	/* Timeout in disordered state after receiving substantial DUPACKs
1933	 * suggests that the degree of reordering is over-estimated.
1934	 */
1935	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1936	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1937		tp->reordering = min_t(unsigned int, tp->reordering,
1938				       net->ipv4.sysctl_tcp_reordering);
1939	tcp_set_ca_state(sk, TCP_CA_Loss);
1940	tp->high_seq = tp->snd_nxt;
1941	tcp_ecn_queue_cwr(tp);
1942
1943	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1944	 * loss recovery is underway except recurring timeout(s) on
1945	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1946	 */
1947	tp->frto = sysctl_tcp_frto &&
1948		   (new_recovery || icsk->icsk_retransmits) &&
1949		   !inet_csk(sk)->icsk_mtup.probe_size;
1950}
1951
1952/* If ACK arrived pointing to a remembered SACK, it means that our
1953 * remembered SACKs do not reflect real state of receiver i.e.
1954 * receiver _host_ is heavily congested (or buggy).
1955 *
1956 * To avoid big spurious retransmission bursts due to transient SACK
1957 * scoreboard oddities that look like reneging, we give the receiver a
1958 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1959 * restore sanity to the SACK scoreboard. If the apparent reneging
1960 * persists until this RTO then we'll clear the SACK scoreboard.
1961 */
1962static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1963{
1964	if (flag & FLAG_SACK_RENEGING) {
1965		struct tcp_sock *tp = tcp_sk(sk);
1966		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1967					  msecs_to_jiffies(10));
1968
 
 
 
1969		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1970					  delay, TCP_RTO_MAX);
1971		return true;
1972	}
1973	return false;
1974}
1975
1976static inline int tcp_fackets_out(const struct tcp_sock *tp)
1977{
1978	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1979}
1980
1981/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1982 * counter when SACK is enabled (without SACK, sacked_out is used for
1983 * that purpose).
1984 *
1985 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1986 * segments up to the highest received SACK block so far and holes in
1987 * between them.
1988 *
1989 * With reordering, holes may still be in flight, so RFC3517 recovery
1990 * uses pure sacked_out (total number of SACKed segments) even though
1991 * it violates the RFC that uses duplicate ACKs, often these are equal
1992 * but when e.g. out-of-window ACKs or packet duplication occurs,
1993 * they differ. Since neither occurs due to loss, TCP should really
1994 * ignore them.
1995 */
1996static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1997{
1998	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1999}
2000
2001static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2002{
2003	struct tcp_sock *tp = tcp_sk(sk);
2004	unsigned long delay;
2005
2006	/* Delay early retransmit and entering fast recovery for
2007	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2008	 * available, or RTO is scheduled to fire first.
2009	 */
2010	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2011	    (flag & FLAG_ECE) || !tp->srtt_us)
2012		return false;
2013
2014	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2015		    msecs_to_jiffies(2));
2016
2017	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2018		return false;
2019
2020	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2021				  TCP_RTO_MAX);
2022	return true;
2023}
2024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2025/* Linux NewReno/SACK/FACK/ECN state machine.
2026 * --------------------------------------
2027 *
2028 * "Open"	Normal state, no dubious events, fast path.
2029 * "Disorder"   In all the respects it is "Open",
2030 *		but requires a bit more attention. It is entered when
2031 *		we see some SACKs or dupacks. It is split of "Open"
2032 *		mainly to move some processing from fast path to slow one.
2033 * "CWR"	CWND was reduced due to some Congestion Notification event.
2034 *		It can be ECN, ICMP source quench, local device congestion.
2035 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2036 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2037 *
2038 * tcp_fastretrans_alert() is entered:
2039 * - each incoming ACK, if state is not "Open"
2040 * - when arrived ACK is unusual, namely:
2041 *	* SACK
2042 *	* Duplicate ACK.
2043 *	* ECN ECE.
2044 *
2045 * Counting packets in flight is pretty simple.
2046 *
2047 *	in_flight = packets_out - left_out + retrans_out
2048 *
2049 *	packets_out is SND.NXT-SND.UNA counted in packets.
2050 *
2051 *	retrans_out is number of retransmitted segments.
2052 *
2053 *	left_out is number of segments left network, but not ACKed yet.
2054 *
2055 *		left_out = sacked_out + lost_out
2056 *
2057 *     sacked_out: Packets, which arrived to receiver out of order
2058 *		   and hence not ACKed. With SACKs this number is simply
2059 *		   amount of SACKed data. Even without SACKs
2060 *		   it is easy to give pretty reliable estimate of this number,
2061 *		   counting duplicate ACKs.
2062 *
2063 *       lost_out: Packets lost by network. TCP has no explicit
2064 *		   "loss notification" feedback from network (for now).
2065 *		   It means that this number can be only _guessed_.
2066 *		   Actually, it is the heuristics to predict lossage that
2067 *		   distinguishes different algorithms.
2068 *
2069 *	F.e. after RTO, when all the queue is considered as lost,
2070 *	lost_out = packets_out and in_flight = retrans_out.
2071 *
2072 *		Essentially, we have now two algorithms counting
2073 *		lost packets.
2074 *
2075 *		FACK: It is the simplest heuristics. As soon as we decided
2076 *		that something is lost, we decide that _all_ not SACKed
2077 *		packets until the most forward SACK are lost. I.e.
2078 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2079 *		It is absolutely correct estimate, if network does not reorder
2080 *		packets. And it loses any connection to reality when reordering
2081 *		takes place. We use FACK by default until reordering
2082 *		is suspected on the path to this destination.
2083 *
2084 *		NewReno: when Recovery is entered, we assume that one segment
2085 *		is lost (classic Reno). While we are in Recovery and
2086 *		a partial ACK arrives, we assume that one more packet
2087 *		is lost (NewReno). This heuristics are the same in NewReno
2088 *		and SACK.
2089 *
2090 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2091 *  deflation etc. CWND is real congestion window, never inflated, changes
2092 *  only according to classic VJ rules.
2093 *
2094 * Really tricky (and requiring careful tuning) part of algorithm
2095 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2096 * The first determines the moment _when_ we should reduce CWND and,
2097 * hence, slow down forward transmission. In fact, it determines the moment
2098 * when we decide that hole is caused by loss, rather than by a reorder.
2099 *
2100 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2101 * holes, caused by lost packets.
2102 *
2103 * And the most logically complicated part of algorithm is undo
2104 * heuristics. We detect false retransmits due to both too early
2105 * fast retransmit (reordering) and underestimated RTO, analyzing
2106 * timestamps and D-SACKs. When we detect that some segments were
2107 * retransmitted by mistake and CWND reduction was wrong, we undo
2108 * window reduction and abort recovery phase. This logic is hidden
2109 * inside several functions named tcp_try_undo_<something>.
2110 */
2111
2112/* This function decides, when we should leave Disordered state
2113 * and enter Recovery phase, reducing congestion window.
2114 *
2115 * Main question: may we further continue forward transmission
2116 * with the same cwnd?
2117 */
2118static bool tcp_time_to_recover(struct sock *sk, int flag)
2119{
2120	struct tcp_sock *tp = tcp_sk(sk);
2121	__u32 packets_out;
2122	int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
 
 
 
2123
2124	/* Trick#1: The loss is proven. */
2125	if (tp->lost_out)
2126		return true;
2127
2128	/* Not-A-Trick#2 : Classic rule... */
2129	if (tcp_dupack_heuristics(tp) > tp->reordering)
2130		return true;
2131
 
 
 
 
 
 
2132	/* Trick#4: It is still not OK... But will it be useful to delay
2133	 * recovery more?
2134	 */
2135	packets_out = tp->packets_out;
2136	if (packets_out <= tp->reordering &&
2137	    tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2138	    !tcp_may_send_now(sk)) {
2139		/* We have nothing to send. This connection is limited
2140		 * either by receiver window or by application.
2141		 */
2142		return true;
2143	}
2144
2145	/* If a thin stream is detected, retransmit after first
2146	 * received dupack. Employ only if SACK is supported in order
2147	 * to avoid possible corner-case series of spurious retransmissions
2148	 * Use only if there are no unsent data.
2149	 */
2150	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2151	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2152	    tcp_is_sack(tp) && !tcp_send_head(sk))
2153		return true;
2154
2155	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2156	 * retransmissions due to small network reorderings, we implement
2157	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2158	 * interval if appropriate.
2159	 */
2160	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2161	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2162	    !tcp_may_send_now(sk))
2163		return !tcp_pause_early_retransmit(sk, flag);
2164
2165	return false;
2166}
2167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2168/* Detect loss in event "A" above by marking head of queue up as lost.
2169 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2170 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2171 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2172 * the maximum SACKed segments to pass before reaching this limit.
2173 */
2174static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2175{
2176	struct tcp_sock *tp = tcp_sk(sk);
2177	struct sk_buff *skb;
2178	int cnt, oldcnt, lost;
 
2179	unsigned int mss;
2180	/* Use SACK to deduce losses of new sequences sent during recovery */
2181	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2182
2183	WARN_ON(packets > tp->packets_out);
2184	if (tp->lost_skb_hint) {
2185		skb = tp->lost_skb_hint;
2186		cnt = tp->lost_cnt_hint;
2187		/* Head already handled? */
2188		if (mark_head && skb != tcp_write_queue_head(sk))
2189			return;
2190	} else {
2191		skb = tcp_write_queue_head(sk);
2192		cnt = 0;
2193	}
2194
2195	tcp_for_write_queue_from(skb, sk) {
2196		if (skb == tcp_send_head(sk))
2197			break;
2198		/* TODO: do this better */
2199		/* this is not the most efficient way to do this... */
2200		tp->lost_skb_hint = skb;
2201		tp->lost_cnt_hint = cnt;
2202
2203		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2204			break;
2205
2206		oldcnt = cnt;
2207		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2208		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2209			cnt += tcp_skb_pcount(skb);
2210
2211		if (cnt > packets) {
2212			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2213			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2214			    (oldcnt >= packets))
2215				break;
2216
2217			mss = tcp_skb_mss(skb);
2218			/* If needed, chop off the prefix to mark as lost. */
2219			lost = (packets - oldcnt) * mss;
2220			if (lost < skb->len &&
2221			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2222				break;
2223			cnt = packets;
2224		}
2225
2226		tcp_skb_mark_lost(tp, skb);
2227
2228		if (mark_head)
2229			break;
2230	}
2231	tcp_verify_left_out(tp);
2232}
2233
2234/* Account newly detected lost packet(s) */
2235
2236static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2237{
2238	struct tcp_sock *tp = tcp_sk(sk);
2239
2240	if (tcp_is_reno(tp)) {
2241		tcp_mark_head_lost(sk, 1, 1);
2242	} else if (tcp_is_fack(tp)) {
2243		int lost = tp->fackets_out - tp->reordering;
2244		if (lost <= 0)
2245			lost = 1;
2246		tcp_mark_head_lost(sk, lost, 0);
2247	} else {
2248		int sacked_upto = tp->sacked_out - tp->reordering;
2249		if (sacked_upto >= 0)
2250			tcp_mark_head_lost(sk, sacked_upto, 0);
2251		else if (fast_rexmit)
2252			tcp_mark_head_lost(sk, 1, 1);
2253	}
 
 
2254}
2255
2256/* CWND moderation, preventing bursts due to too big ACKs
2257 * in dubious situations.
2258 */
2259static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2260{
2261	tp->snd_cwnd = min(tp->snd_cwnd,
2262			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2263	tp->snd_cwnd_stamp = tcp_time_stamp;
2264}
2265
2266static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
 
 
 
2267{
2268	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2269	       before(tp->rx_opt.rcv_tsecr, when);
 
2270}
2271
2272/* skb is spurious retransmitted if the returned timestamp echo
2273 * reply is prior to the skb transmission time
2274 */
2275static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2276				     const struct sk_buff *skb)
2277{
2278	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2279	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
 
 
 
 
 
 
 
 
 
 
 
 
2280}
2281
2282/* Nothing was retransmitted or returned timestamp is less
2283 * than timestamp of the first retransmission.
2284 */
2285static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2286{
2287	return !tp->retrans_stamp ||
2288	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
 
2289}
2290
2291/* Undo procedures. */
2292
2293/* We can clear retrans_stamp when there are no retransmissions in the
2294 * window. It would seem that it is trivially available for us in
2295 * tp->retrans_out, however, that kind of assumptions doesn't consider
2296 * what will happen if errors occur when sending retransmission for the
2297 * second time. ...It could the that such segment has only
2298 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2299 * the head skb is enough except for some reneging corner cases that
2300 * are not worth the effort.
2301 *
2302 * Main reason for all this complexity is the fact that connection dying
2303 * time now depends on the validity of the retrans_stamp, in particular,
2304 * that successive retransmissions of a segment must not advance
2305 * retrans_stamp under any conditions.
2306 */
2307static bool tcp_any_retrans_done(const struct sock *sk)
2308{
2309	const struct tcp_sock *tp = tcp_sk(sk);
2310	struct sk_buff *skb;
2311
2312	if (tp->retrans_out)
2313		return true;
2314
2315	skb = tcp_write_queue_head(sk);
2316	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2317		return true;
2318
2319	return false;
2320}
2321
2322#if FASTRETRANS_DEBUG > 1
2323static void DBGUNDO(struct sock *sk, const char *msg)
2324{
2325	struct tcp_sock *tp = tcp_sk(sk);
2326	struct inet_sock *inet = inet_sk(sk);
2327
2328	if (sk->sk_family == AF_INET) {
2329		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2330			 msg,
2331			 &inet->inet_daddr, ntohs(inet->inet_dport),
2332			 tp->snd_cwnd, tcp_left_out(tp),
2333			 tp->snd_ssthresh, tp->prior_ssthresh,
2334			 tp->packets_out);
2335	}
2336#if IS_ENABLED(CONFIG_IPV6)
2337	else if (sk->sk_family == AF_INET6) {
2338		struct ipv6_pinfo *np = inet6_sk(sk);
2339		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2340			 msg,
2341			 &np->daddr, ntohs(inet->inet_dport),
2342			 tp->snd_cwnd, tcp_left_out(tp),
2343			 tp->snd_ssthresh, tp->prior_ssthresh,
2344			 tp->packets_out);
2345	}
2346#endif
2347}
2348#else
2349#define DBGUNDO(x...) do { } while (0)
2350#endif
2351
2352static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2353{
2354	struct tcp_sock *tp = tcp_sk(sk);
2355
2356	if (unmark_loss) {
2357		struct sk_buff *skb;
2358
2359		tcp_for_write_queue(skb, sk) {
2360			if (skb == tcp_send_head(sk))
2361				break;
2362			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2363		}
2364		tp->lost_out = 0;
2365		tcp_clear_all_retrans_hints(tp);
2366	}
2367
2368	if (tp->prior_ssthresh) {
2369		const struct inet_connection_sock *icsk = inet_csk(sk);
2370
2371		if (icsk->icsk_ca_ops->undo_cwnd)
2372			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2373		else
2374			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2375
2376		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2377			tp->snd_ssthresh = tp->prior_ssthresh;
2378			tcp_ecn_withdraw_cwr(tp);
2379		}
 
 
2380	}
2381	tp->snd_cwnd_stamp = tcp_time_stamp;
2382	tp->undo_marker = 0;
2383}
2384
2385static inline bool tcp_may_undo(const struct tcp_sock *tp)
2386{
2387	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2388}
2389
2390/* People celebrate: "We love our President!" */
2391static bool tcp_try_undo_recovery(struct sock *sk)
2392{
2393	struct tcp_sock *tp = tcp_sk(sk);
2394
2395	if (tcp_may_undo(tp)) {
2396		int mib_idx;
2397
2398		/* Happy end! We did not retransmit anything
2399		 * or our original transmission succeeded.
2400		 */
2401		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2402		tcp_undo_cwnd_reduction(sk, false);
2403		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2404			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2405		else
2406			mib_idx = LINUX_MIB_TCPFULLUNDO;
2407
2408		NET_INC_STATS_BH(sock_net(sk), mib_idx);
 
2409	}
2410	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2411		/* Hold old state until something *above* high_seq
2412		 * is ACKed. For Reno it is MUST to prevent false
2413		 * fast retransmits (RFC2582). SACK TCP is safe. */
2414		tcp_moderate_cwnd(tp);
2415		if (!tcp_any_retrans_done(sk))
2416			tp->retrans_stamp = 0;
2417		return true;
2418	}
2419	tcp_set_ca_state(sk, TCP_CA_Open);
2420	return false;
2421}
2422
2423/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2424static bool tcp_try_undo_dsack(struct sock *sk)
2425{
2426	struct tcp_sock *tp = tcp_sk(sk);
2427
2428	if (tp->undo_marker && !tp->undo_retrans) {
2429		DBGUNDO(sk, "D-SACK");
2430		tcp_undo_cwnd_reduction(sk, false);
 
2431		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2432		return true;
2433	}
2434	return false;
2435}
2436
2437/* Undo during loss recovery after partial ACK or using F-RTO. */
2438static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
 
 
 
 
 
 
 
 
 
 
 
 
 
2439{
2440	struct tcp_sock *tp = tcp_sk(sk);
 
2441
2442	if (frto_undo || tcp_may_undo(tp)) {
2443		tcp_undo_cwnd_reduction(sk, true);
2444
2445		DBGUNDO(sk, "partial loss");
2446		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2447		if (frto_undo)
2448			NET_INC_STATS_BH(sock_net(sk),
2449					 LINUX_MIB_TCPSPURIOUSRTOS);
2450		inet_csk(sk)->icsk_retransmits = 0;
2451		if (frto_undo || tcp_is_sack(tp))
2452			tcp_set_ca_state(sk, TCP_CA_Open);
2453		return true;
2454	}
2455	return false;
2456}
2457
2458/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2459 * It computes the number of packets to send (sndcnt) based on packets newly
2460 * delivered:
2461 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2462 *	cwnd reductions across a full RTT.
2463 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2464 *      But when the retransmits are acked without further losses, PRR
2465 *      slow starts cwnd up to ssthresh to speed up the recovery.
2466 */
2467static void tcp_init_cwnd_reduction(struct sock *sk)
2468{
2469	struct tcp_sock *tp = tcp_sk(sk);
 
 
2470
2471	tp->high_seq = tp->snd_nxt;
2472	tp->tlp_high_seq = 0;
2473	tp->snd_cwnd_cnt = 0;
2474	tp->prior_cwnd = tp->snd_cwnd;
2475	tp->prr_delivered = 0;
2476	tp->prr_out = 0;
2477	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2478	tcp_ecn_queue_cwr(tp);
2479}
2480
2481static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2482			       int flag)
2483{
2484	struct tcp_sock *tp = tcp_sk(sk);
2485	int sndcnt = 0;
2486	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2487
2488	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2489		return;
 
2490
2491	tp->prr_delivered += newly_acked_sacked;
2492	if (delta < 0) {
2493		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2494			       tp->prior_cwnd - 1;
2495		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2496	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2497		   !(flag & FLAG_LOST_RETRANS)) {
2498		sndcnt = min_t(int, delta,
2499			       max_t(int, tp->prr_delivered - tp->prr_out,
2500				     newly_acked_sacked) + 1);
2501	} else {
2502		sndcnt = min(delta, newly_acked_sacked);
2503	}
2504	/* Force a fast retransmit upon entering fast recovery */
2505	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2506	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2507}
2508
2509static inline void tcp_end_cwnd_reduction(struct sock *sk)
 
2510{
2511	struct tcp_sock *tp = tcp_sk(sk);
2512
2513	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2514	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2515	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2516		tp->snd_cwnd = tp->snd_ssthresh;
2517		tp->snd_cwnd_stamp = tcp_time_stamp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2518	}
2519	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2520}
2521
2522/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2523void tcp_enter_cwr(struct sock *sk)
2524{
2525	struct tcp_sock *tp = tcp_sk(sk);
2526
2527	tp->prior_ssthresh = 0;
2528	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2529		tp->undo_marker = 0;
2530		tcp_init_cwnd_reduction(sk);
2531		tcp_set_ca_state(sk, TCP_CA_CWR);
 
 
 
 
 
2532	}
 
2533}
2534EXPORT_SYMBOL(tcp_enter_cwr);
2535
2536static void tcp_try_keep_open(struct sock *sk)
2537{
2538	struct tcp_sock *tp = tcp_sk(sk);
2539	int state = TCP_CA_Open;
2540
2541	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2542		state = TCP_CA_Disorder;
2543
2544	if (inet_csk(sk)->icsk_ca_state != state) {
2545		tcp_set_ca_state(sk, state);
2546		tp->high_seq = tp->snd_nxt;
2547	}
2548}
2549
2550static void tcp_try_to_open(struct sock *sk, int flag)
2551{
2552	struct tcp_sock *tp = tcp_sk(sk);
2553
2554	tcp_verify_left_out(tp);
2555
2556	if (!tcp_any_retrans_done(sk))
2557		tp->retrans_stamp = 0;
2558
2559	if (flag & FLAG_ECE)
2560		tcp_enter_cwr(sk);
2561
2562	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2563		tcp_try_keep_open(sk);
 
 
 
 
2564	}
2565}
2566
2567static void tcp_mtup_probe_failed(struct sock *sk)
2568{
2569	struct inet_connection_sock *icsk = inet_csk(sk);
2570
2571	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2572	icsk->icsk_mtup.probe_size = 0;
2573	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2574}
2575
2576static void tcp_mtup_probe_success(struct sock *sk)
2577{
2578	struct tcp_sock *tp = tcp_sk(sk);
2579	struct inet_connection_sock *icsk = inet_csk(sk);
2580
2581	/* FIXME: breaks with very large cwnd */
2582	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2583	tp->snd_cwnd = tp->snd_cwnd *
2584		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2585		       icsk->icsk_mtup.probe_size;
2586	tp->snd_cwnd_cnt = 0;
2587	tp->snd_cwnd_stamp = tcp_time_stamp;
2588	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2589
2590	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2591	icsk->icsk_mtup.probe_size = 0;
2592	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2593	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2594}
2595
2596/* Do a simple retransmit without using the backoff mechanisms in
2597 * tcp_timer. This is used for path mtu discovery.
2598 * The socket is already locked here.
2599 */
2600void tcp_simple_retransmit(struct sock *sk)
2601{
2602	const struct inet_connection_sock *icsk = inet_csk(sk);
2603	struct tcp_sock *tp = tcp_sk(sk);
2604	struct sk_buff *skb;
2605	unsigned int mss = tcp_current_mss(sk);
2606	u32 prior_lost = tp->lost_out;
2607
2608	tcp_for_write_queue(skb, sk) {
2609		if (skb == tcp_send_head(sk))
2610			break;
2611		if (tcp_skb_seglen(skb) > mss &&
2612		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2613			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2614				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2615				tp->retrans_out -= tcp_skb_pcount(skb);
2616			}
2617			tcp_skb_mark_lost_uncond_verify(tp, skb);
2618		}
2619	}
2620
2621	tcp_clear_retrans_hints_partial(tp);
2622
2623	if (prior_lost == tp->lost_out)
2624		return;
2625
2626	if (tcp_is_reno(tp))
2627		tcp_limit_reno_sacked(tp);
2628
2629	tcp_verify_left_out(tp);
2630
2631	/* Don't muck with the congestion window here.
2632	 * Reason is that we do not increase amount of _data_
2633	 * in network, but units changed and effective
2634	 * cwnd/ssthresh really reduced now.
2635	 */
2636	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2637		tp->high_seq = tp->snd_nxt;
2638		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2639		tp->prior_ssthresh = 0;
2640		tp->undo_marker = 0;
2641		tcp_set_ca_state(sk, TCP_CA_Loss);
2642	}
2643	tcp_xmit_retransmit_queue(sk);
2644}
2645EXPORT_SYMBOL(tcp_simple_retransmit);
2646
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2647static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2648{
2649	struct tcp_sock *tp = tcp_sk(sk);
2650	int mib_idx;
2651
2652	if (tcp_is_reno(tp))
2653		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2654	else
2655		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2656
2657	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2658
 
2659	tp->prior_ssthresh = 0;
2660	tcp_init_undo(tp);
 
2661
2662	if (!tcp_in_cwnd_reduction(sk)) {
2663		if (!ece_ack)
2664			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2665		tcp_init_cwnd_reduction(sk);
2666	}
2667	tcp_set_ca_state(sk, TCP_CA_Recovery);
2668}
2669
2670/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2671 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2672 */
2673static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2674			     int *rexmit)
2675{
2676	struct tcp_sock *tp = tcp_sk(sk);
2677	bool recovered = !before(tp->snd_una, tp->high_seq);
2678
2679	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2680	    tcp_try_undo_loss(sk, false))
2681		return;
2682
2683	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2684		/* Step 3.b. A timeout is spurious if not all data are
2685		 * lost, i.e., never-retransmitted data are (s)acked.
2686		 */
2687		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2688		    tcp_try_undo_loss(sk, true))
2689			return;
2690
2691		if (after(tp->snd_nxt, tp->high_seq)) {
2692			if (flag & FLAG_DATA_SACKED || is_dupack)
2693				tp->frto = 0; /* Step 3.a. loss was real */
2694		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2695			tp->high_seq = tp->snd_nxt;
2696			/* Step 2.b. Try send new data (but deferred until cwnd
2697			 * is updated in tcp_ack()). Otherwise fall back to
2698			 * the conventional recovery.
2699			 */
2700			if (tcp_send_head(sk) &&
2701			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2702				*rexmit = REXMIT_NEW;
2703				return;
2704			}
2705			tp->frto = 0;
2706		}
2707	}
2708
2709	if (recovered) {
2710		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2711		tcp_try_undo_recovery(sk);
2712		return;
2713	}
2714	if (tcp_is_reno(tp)) {
2715		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2716		 * delivered. Lower inflight to clock out (re)tranmissions.
2717		 */
2718		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2719			tcp_add_reno_sack(sk);
2720		else if (flag & FLAG_SND_UNA_ADVANCED)
2721			tcp_reset_reno_sack(tp);
2722	}
2723	*rexmit = REXMIT_LOST;
2724}
2725
2726/* Undo during fast recovery after partial ACK. */
2727static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2728{
2729	struct tcp_sock *tp = tcp_sk(sk);
2730
2731	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2732		/* Plain luck! Hole if filled with delayed
2733		 * packet, rather than with a retransmit.
2734		 */
2735		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2736
2737		/* We are getting evidence that the reordering degree is higher
2738		 * than we realized. If there are no retransmits out then we
2739		 * can undo. Otherwise we clock out new packets but do not
2740		 * mark more packets lost or retransmit more.
2741		 */
2742		if (tp->retrans_out)
2743			return true;
2744
2745		if (!tcp_any_retrans_done(sk))
2746			tp->retrans_stamp = 0;
2747
2748		DBGUNDO(sk, "partial recovery");
2749		tcp_undo_cwnd_reduction(sk, true);
2750		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2751		tcp_try_keep_open(sk);
2752		return true;
2753	}
2754	return false;
2755}
2756
2757/* Process an event, which can update packets-in-flight not trivially.
2758 * Main goal of this function is to calculate new estimate for left_out,
2759 * taking into account both packets sitting in receiver's buffer and
2760 * packets lost by network.
2761 *
2762 * Besides that it updates the congestion state when packet loss or ECN
2763 * is detected. But it does not reduce the cwnd, it is done by the
2764 * congestion control later.
2765 *
2766 * It does _not_ decide what to send, it is made in function
2767 * tcp_xmit_retransmit_queue().
2768 */
2769static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2770				  bool is_dupack, int *ack_flag, int *rexmit)
 
2771{
2772	struct inet_connection_sock *icsk = inet_csk(sk);
2773	struct tcp_sock *tp = tcp_sk(sk);
2774	int fast_rexmit = 0, flag = *ack_flag;
2775	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2776				    (tcp_fackets_out(tp) > tp->reordering));
 
 
2777
2778	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2779		tp->sacked_out = 0;
2780	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2781		tp->fackets_out = 0;
2782
2783	/* Now state machine starts.
2784	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2785	if (flag & FLAG_ECE)
2786		tp->prior_ssthresh = 0;
2787
2788	/* B. In all the states check for reneging SACKs. */
2789	if (tcp_check_sack_reneging(sk, flag))
2790		return;
2791
2792	/* C. Check consistency of the current state. */
2793	tcp_verify_left_out(tp);
2794
2795	/* D. Check state exit conditions. State can be terminated
2796	 *    when high_seq is ACKed. */
2797	if (icsk->icsk_ca_state == TCP_CA_Open) {
2798		WARN_ON(tp->retrans_out != 0);
2799		tp->retrans_stamp = 0;
2800	} else if (!before(tp->snd_una, tp->high_seq)) {
2801		switch (icsk->icsk_ca_state) {
 
 
 
 
 
 
2802		case TCP_CA_CWR:
2803			/* CWR is to be held something *above* high_seq
2804			 * is ACKed for CWR bit to reach receiver. */
2805			if (tp->snd_una != tp->high_seq) {
2806				tcp_end_cwnd_reduction(sk);
2807				tcp_set_ca_state(sk, TCP_CA_Open);
2808			}
2809			break;
2810
2811		case TCP_CA_Recovery:
2812			if (tcp_is_reno(tp))
2813				tcp_reset_reno_sack(tp);
2814			if (tcp_try_undo_recovery(sk))
2815				return;
2816			tcp_end_cwnd_reduction(sk);
2817			break;
2818		}
2819	}
2820
2821	/* Use RACK to detect loss */
2822	if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2823	    tcp_rack_mark_lost(sk)) {
2824		flag |= FLAG_LOST_RETRANS;
2825		*ack_flag |= FLAG_LOST_RETRANS;
2826	}
2827
2828	/* E. Process state. */
2829	switch (icsk->icsk_ca_state) {
2830	case TCP_CA_Recovery:
2831		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2832			if (tcp_is_reno(tp) && is_dupack)
2833				tcp_add_reno_sack(sk);
2834		} else {
2835			if (tcp_try_undo_partial(sk, acked))
2836				return;
2837			/* Partial ACK arrived. Force fast retransmit. */
2838			do_lost = tcp_is_reno(tp) ||
2839				  tcp_fackets_out(tp) > tp->reordering;
2840		}
2841		if (tcp_try_undo_dsack(sk)) {
2842			tcp_try_keep_open(sk);
2843			return;
2844		}
2845		break;
2846	case TCP_CA_Loss:
2847		tcp_process_loss(sk, flag, is_dupack, rexmit);
2848		if (icsk->icsk_ca_state != TCP_CA_Open &&
2849		    !(flag & FLAG_LOST_RETRANS))
 
 
 
 
 
 
 
2850			return;
2851		/* Change state if cwnd is undone or retransmits are lost */
2852	default:
2853		if (tcp_is_reno(tp)) {
2854			if (flag & FLAG_SND_UNA_ADVANCED)
2855				tcp_reset_reno_sack(tp);
2856			if (is_dupack)
2857				tcp_add_reno_sack(sk);
2858		}
 
2859
2860		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2861			tcp_try_undo_dsack(sk);
2862
2863		if (!tcp_time_to_recover(sk, flag)) {
2864			tcp_try_to_open(sk, flag);
2865			return;
2866		}
2867
2868		/* MTU probe failure: don't reduce cwnd */
2869		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2870		    icsk->icsk_mtup.probe_size &&
2871		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2872			tcp_mtup_probe_failed(sk);
2873			/* Restores the reduction we did in tcp_mtup_probe() */
2874			tp->snd_cwnd++;
2875			tcp_simple_retransmit(sk);
2876			return;
2877		}
2878
2879		/* Otherwise enter Recovery state */
2880		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2881		fast_rexmit = 1;
2882	}
2883
2884	if (do_lost)
2885		tcp_update_scoreboard(sk, fast_rexmit);
2886	*rexmit = REXMIT_LOST;
 
 
2887}
2888
2889/* Kathleen Nichols' algorithm for tracking the minimum value of
2890 * a data stream over some fixed time interval. (E.g., the minimum
2891 * RTT over the past five minutes.) It uses constant space and constant
2892 * time per update yet almost always delivers the same minimum as an
2893 * implementation that has to keep all the data in the window.
2894 *
2895 * The algorithm keeps track of the best, 2nd best & 3rd best min
2896 * values, maintaining an invariant that the measurement time of the
2897 * n'th best >= n-1'th best. It also makes sure that the three values
2898 * are widely separated in the time window since that bounds the worse
2899 * case error when that data is monotonically increasing over the window.
2900 *
2901 * Upon getting a new min, we can forget everything earlier because it
2902 * has no value - the new min is <= everything else in the window by
2903 * definition and it's the most recent. So we restart fresh on every new min
2904 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2905 * best.
2906 */
2907static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2908{
2909	const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2910	struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2911	struct rtt_meas rttm = {
2912		.rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
2913		.ts = now,
2914	};
2915	u32 elapsed;
2916
2917	/* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2918	if (unlikely(rttm.rtt <= m[0].rtt))
2919		m[0] = m[1] = m[2] = rttm;
2920	else if (rttm.rtt <= m[1].rtt)
2921		m[1] = m[2] = rttm;
2922	else if (rttm.rtt <= m[2].rtt)
2923		m[2] = rttm;
2924
2925	elapsed = now - m[0].ts;
2926	if (unlikely(elapsed > wlen)) {
2927		/* Passed entire window without a new min so make 2nd choice
2928		 * the new min & 3rd choice the new 2nd. So forth and so on.
2929		 */
2930		m[0] = m[1];
2931		m[1] = m[2];
2932		m[2] = rttm;
2933		if (now - m[0].ts > wlen) {
2934			m[0] = m[1];
2935			m[1] = rttm;
2936			if (now - m[0].ts > wlen)
2937				m[0] = rttm;
2938		}
2939	} else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2940		/* Passed a quarter of the window without a new min so
2941		 * take 2nd choice from the 2nd quarter of the window.
2942		 */
2943		m[2] = m[1] = rttm;
2944	} else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2945		/* Passed half the window without a new min so take the 3rd
2946		 * choice from the last half of the window.
2947		 */
2948		m[2] = rttm;
2949	}
2950}
2951
2952static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2953				      long seq_rtt_us, long sack_rtt_us,
2954				      long ca_rtt_us)
2955{
2956	const struct tcp_sock *tp = tcp_sk(sk);
2957
2958	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2959	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2960	 * Karn's algorithm forbids taking RTT if some retransmitted data
2961	 * is acked (RFC6298).
2962	 */
2963	if (seq_rtt_us < 0)
2964		seq_rtt_us = sack_rtt_us;
2965
 
 
 
 
 
2966	/* RTTM Rule: A TSecr value received in a segment is used to
2967	 * update the averaged RTT measurement only if the segment
2968	 * acknowledges some new data, i.e., only if it advances the
2969	 * left edge of the send window.
 
2970	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
 
 
 
 
 
 
 
 
2971	 */
2972	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2973	    flag & FLAG_ACKED)
2974		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2975							  tp->rx_opt.rcv_tsecr);
2976	if (seq_rtt_us < 0)
2977		return false;
2978
2979	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2980	 * always taken together with ACK, SACK, or TS-opts. Any negative
2981	 * values will be skipped with the seq_rtt_us < 0 check above.
2982	 */
2983	tcp_update_rtt_min(sk, ca_rtt_us);
2984	tcp_rtt_estimator(sk, seq_rtt_us);
2985	tcp_set_rto(sk);
2986
2987	/* RFC6298: only reset backoff on valid RTT measurement. */
2988	inet_csk(sk)->icsk_backoff = 0;
2989	return true;
2990}
2991
2992/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2993void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2994{
2995	long rtt_us = -1L;
2996
2997	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2998		struct skb_mstamp now;
 
 
 
 
2999
3000		skb_mstamp_get(&now);
3001		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
3002	}
3003
3004	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
3005}
3006
 
 
 
 
 
 
 
 
 
 
3007
3008static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3009{
3010	const struct inet_connection_sock *icsk = inet_csk(sk);
3011
3012	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3013	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3014}
3015
3016/* Restart timer after forward progress on connection.
3017 * RFC2988 recommends to restart timer to now+rto.
3018 */
3019void tcp_rearm_rto(struct sock *sk)
3020{
3021	const struct inet_connection_sock *icsk = inet_csk(sk);
3022	struct tcp_sock *tp = tcp_sk(sk);
3023
3024	/* If the retrans timer is currently being used by Fast Open
3025	 * for SYN-ACK retrans purpose, stay put.
3026	 */
3027	if (tp->fastopen_rsk)
3028		return;
3029
3030	if (!tp->packets_out) {
3031		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3032	} else {
3033		u32 rto = inet_csk(sk)->icsk_rto;
3034		/* Offset the time elapsed after installing regular RTO */
3035		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3036		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3037			struct sk_buff *skb = tcp_write_queue_head(sk);
3038			const u32 rto_time_stamp =
3039				tcp_skb_timestamp(skb) + rto;
3040			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3041			/* delta may not be positive if the socket is locked
3042			 * when the retrans timer fires and is rescheduled.
3043			 */
3044			if (delta > 0)
3045				rto = delta;
3046		}
3047		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3048					  TCP_RTO_MAX);
3049	}
 
3050}
3051
3052/* This function is called when the delayed ER timer fires. TCP enters
3053 * fast recovery and performs fast-retransmit.
3054 */
3055void tcp_resume_early_retransmit(struct sock *sk)
3056{
3057	struct tcp_sock *tp = tcp_sk(sk);
3058
3059	tcp_rearm_rto(sk);
3060
3061	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3062	if (!tp->do_early_retrans)
3063		return;
3064
3065	tcp_enter_recovery(sk, false);
3066	tcp_update_scoreboard(sk, 1);
3067	tcp_xmit_retransmit_queue(sk);
3068}
3069
3070/* If we get here, the whole TSO packet has not been acked. */
3071static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3072{
3073	struct tcp_sock *tp = tcp_sk(sk);
3074	u32 packets_acked;
3075
3076	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3077
3078	packets_acked = tcp_skb_pcount(skb);
3079	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3080		return 0;
3081	packets_acked -= tcp_skb_pcount(skb);
3082
3083	if (packets_acked) {
3084		BUG_ON(tcp_skb_pcount(skb) == 0);
3085		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3086	}
3087
3088	return packets_acked;
3089}
3090
3091static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3092			   u32 prior_snd_una)
3093{
3094	const struct skb_shared_info *shinfo;
3095
3096	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3097	if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3098		return;
3099
3100	shinfo = skb_shinfo(skb);
3101	if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3102	    !before(shinfo->tskey, prior_snd_una) &&
3103	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3104		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3105}
3106
3107/* Remove acknowledged frames from the retransmission queue. If our packet
3108 * is before the ack sequence we can discard it as it's confirmed to have
3109 * arrived at the other end.
3110 */
3111static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3112			       u32 prior_snd_una, int *acked,
3113			       struct tcp_sacktag_state *sack)
3114{
3115	const struct inet_connection_sock *icsk = inet_csk(sk);
3116	struct skb_mstamp first_ackt, last_ackt, now;
3117	struct tcp_sock *tp = tcp_sk(sk);
3118	u32 prior_sacked = tp->sacked_out;
3119	u32 reord = tp->packets_out;
3120	bool fully_acked = true;
3121	long sack_rtt_us = -1L;
3122	long seq_rtt_us = -1L;
3123	long ca_rtt_us = -1L;
3124	struct sk_buff *skb;
3125	u32 pkts_acked = 0;
3126	bool rtt_update;
3127	int flag = 0;
3128
3129	first_ackt.v64 = 0;
 
 
 
 
3130
3131	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3132		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3133		u8 sacked = scb->sacked;
3134		u32 acked_pcount;
3135
3136		tcp_ack_tstamp(sk, skb, prior_snd_una);
3137
3138		/* Determine how many packets and what bytes were acked, tso and else */
3139		if (after(scb->end_seq, tp->snd_una)) {
3140			if (tcp_skb_pcount(skb) == 1 ||
3141			    !after(tp->snd_una, scb->seq))
3142				break;
3143
3144			acked_pcount = tcp_tso_acked(sk, skb);
3145			if (!acked_pcount)
3146				break;
3147
3148			fully_acked = false;
3149		} else {
3150			/* Speedup tcp_unlink_write_queue() and next loop */
3151			prefetchw(skb->next);
3152			acked_pcount = tcp_skb_pcount(skb);
3153		}
3154
3155		if (unlikely(sacked & TCPCB_RETRANS)) {
3156			if (sacked & TCPCB_SACKED_RETRANS)
3157				tp->retrans_out -= acked_pcount;
3158			flag |= FLAG_RETRANS_DATA_ACKED;
3159		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3160			last_ackt = skb->skb_mstamp;
3161			WARN_ON_ONCE(last_ackt.v64 == 0);
3162			if (!first_ackt.v64)
3163				first_ackt = last_ackt;
3164
3165			reord = min(pkts_acked, reord);
3166			if (!after(scb->end_seq, tp->high_seq))
3167				flag |= FLAG_ORIG_SACK_ACKED;
 
 
 
3168		}
3169
3170		if (sacked & TCPCB_SACKED_ACKED) {
3171			tp->sacked_out -= acked_pcount;
3172		} else if (tcp_is_sack(tp)) {
3173			tp->delivered += acked_pcount;
3174			if (!tcp_skb_spurious_retrans(tp, skb))
3175				tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3176		}
3177		if (sacked & TCPCB_LOST)
3178			tp->lost_out -= acked_pcount;
3179
3180		tp->packets_out -= acked_pcount;
3181		pkts_acked += acked_pcount;
3182
3183		/* Initial outgoing SYN's get put onto the write_queue
3184		 * just like anything else we transmit.  It is not
3185		 * true data, and if we misinform our callers that
3186		 * this ACK acks real data, we will erroneously exit
3187		 * connection startup slow start one packet too
3188		 * quickly.  This is severely frowned upon behavior.
3189		 */
3190		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3191			flag |= FLAG_DATA_ACKED;
3192		} else {
3193			flag |= FLAG_SYN_ACKED;
3194			tp->retrans_stamp = 0;
3195		}
3196
3197		if (!fully_acked)
3198			break;
3199
3200		tcp_unlink_write_queue(skb, sk);
3201		sk_wmem_free_skb(sk, skb);
3202		if (unlikely(skb == tp->retransmit_skb_hint))
 
3203			tp->retransmit_skb_hint = NULL;
3204		if (unlikely(skb == tp->lost_skb_hint))
3205			tp->lost_skb_hint = NULL;
3206	}
3207
3208	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3209		tp->snd_up = tp->snd_una;
3210
3211	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3212		flag |= FLAG_SACK_RENEGING;
3213
3214	skb_mstamp_get(&now);
3215	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3216		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3217		ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3218	}
3219	if (sack->first_sackt.v64) {
3220		sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3221		ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3222	}
3223
3224	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3225					ca_rtt_us);
3226
3227	if (flag & FLAG_ACKED) {
3228		tcp_rearm_rto(sk);
 
 
3229		if (unlikely(icsk->icsk_mtup.probe_size &&
3230			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3231			tcp_mtup_probe_success(sk);
3232		}
3233
 
 
 
3234		if (tcp_is_reno(tp)) {
3235			tcp_remove_reno_sacks(sk, pkts_acked);
3236		} else {
3237			int delta;
3238
3239			/* Non-retransmitted hole got filled? That's reordering */
3240			if (reord < prior_fackets)
3241				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3242
3243			delta = tcp_is_fack(tp) ? pkts_acked :
3244						  prior_sacked - tp->sacked_out;
3245			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3246		}
3247
3248		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3249
3250	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3251		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3252		/* Do not re-arm RTO if the sack RTT is measured from data sent
3253		 * after when the head was last (re)transmitted. Otherwise the
3254		 * timeout may continue to extend in loss recovery.
3255		 */
3256		tcp_rearm_rto(sk);
3257	}
 
 
 
 
 
 
3258
3259	if (icsk->icsk_ca_ops->pkts_acked)
3260		icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
 
3261
3262#if FASTRETRANS_DEBUG > 0
3263	WARN_ON((int)tp->sacked_out < 0);
3264	WARN_ON((int)tp->lost_out < 0);
3265	WARN_ON((int)tp->retrans_out < 0);
3266	if (!tp->packets_out && tcp_is_sack(tp)) {
3267		icsk = inet_csk(sk);
3268		if (tp->lost_out) {
3269			pr_debug("Leak l=%u %d\n",
3270				 tp->lost_out, icsk->icsk_ca_state);
3271			tp->lost_out = 0;
3272		}
3273		if (tp->sacked_out) {
3274			pr_debug("Leak s=%u %d\n",
3275				 tp->sacked_out, icsk->icsk_ca_state);
3276			tp->sacked_out = 0;
3277		}
3278		if (tp->retrans_out) {
3279			pr_debug("Leak r=%u %d\n",
3280				 tp->retrans_out, icsk->icsk_ca_state);
3281			tp->retrans_out = 0;
3282		}
3283	}
3284#endif
3285	*acked = pkts_acked;
3286	return flag;
3287}
3288
3289static void tcp_ack_probe(struct sock *sk)
3290{
3291	const struct tcp_sock *tp = tcp_sk(sk);
3292	struct inet_connection_sock *icsk = inet_csk(sk);
3293
3294	/* Was it a usable window open? */
3295
3296	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3297		icsk->icsk_backoff = 0;
3298		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3299		/* Socket must be waked up by subsequent tcp_data_snd_check().
3300		 * This function is not for random using!
3301		 */
3302	} else {
3303		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3304
3305		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3306					  when, TCP_RTO_MAX);
 
3307	}
3308}
3309
3310static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3311{
3312	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3313		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3314}
3315
3316/* Decide wheather to run the increase function of congestion control. */
3317static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3318{
3319	/* If reordering is high then always grow cwnd whenever data is
3320	 * delivered regardless of its ordering. Otherwise stay conservative
3321	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3322	 * new SACK or ECE mark may first advance cwnd here and later reduce
3323	 * cwnd in tcp_fastretrans_alert() based on more states.
3324	 */
3325	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3326		return flag & FLAG_FORWARD_PROGRESS;
3327
3328	return flag & FLAG_DATA_ACKED;
3329}
3330
3331/* The "ultimate" congestion control function that aims to replace the rigid
3332 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3333 * It's called toward the end of processing an ACK with precise rate
3334 * information. All transmission or retransmission are delayed afterwards.
3335 */
3336static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3337			     int flag)
3338{
3339	if (tcp_in_cwnd_reduction(sk)) {
3340		/* Reduce cwnd if state mandates */
3341		tcp_cwnd_reduction(sk, acked_sacked, flag);
3342	} else if (tcp_may_raise_cwnd(sk, flag)) {
3343		/* Advance cwnd if state allows */
3344		tcp_cong_avoid(sk, ack, acked_sacked);
3345	}
3346	tcp_update_pacing_rate(sk);
3347}
3348
3349/* Check that window update is acceptable.
3350 * The function assumes that snd_una<=ack<=snd_next.
3351 */
3352static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3353					const u32 ack, const u32 ack_seq,
3354					const u32 nwin)
3355{
3356	return	after(ack, tp->snd_una) ||
3357		after(ack_seq, tp->snd_wl1) ||
3358		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3359}
3360
3361/* If we update tp->snd_una, also update tp->bytes_acked */
3362static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3363{
3364	u32 delta = ack - tp->snd_una;
3365
3366	u64_stats_update_begin(&tp->syncp);
3367	tp->bytes_acked += delta;
3368	u64_stats_update_end(&tp->syncp);
3369	tp->snd_una = ack;
3370}
3371
3372/* If we update tp->rcv_nxt, also update tp->bytes_received */
3373static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3374{
3375	u32 delta = seq - tp->rcv_nxt;
3376
3377	u64_stats_update_begin(&tp->syncp);
3378	tp->bytes_received += delta;
3379	u64_stats_update_end(&tp->syncp);
3380	tp->rcv_nxt = seq;
3381}
3382
3383/* Update our send window.
3384 *
3385 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3386 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3387 */
3388static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3389				 u32 ack_seq)
3390{
3391	struct tcp_sock *tp = tcp_sk(sk);
3392	int flag = 0;
3393	u32 nwin = ntohs(tcp_hdr(skb)->window);
3394
3395	if (likely(!tcp_hdr(skb)->syn))
3396		nwin <<= tp->rx_opt.snd_wscale;
3397
3398	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3399		flag |= FLAG_WIN_UPDATE;
3400		tcp_update_wl(tp, ack_seq);
3401
3402		if (tp->snd_wnd != nwin) {
3403			tp->snd_wnd = nwin;
3404
3405			/* Note, it is the only place, where
3406			 * fast path is recovered for sending TCP.
3407			 */
3408			tp->pred_flags = 0;
3409			tcp_fast_path_check(sk);
3410
3411			if (tcp_send_head(sk))
3412				tcp_slow_start_after_idle_check(sk);
3413
3414			if (nwin > tp->max_window) {
3415				tp->max_window = nwin;
3416				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3417			}
3418		}
3419	}
3420
3421	tcp_snd_una_update(tp, ack);
3422
3423	return flag;
3424}
3425
3426/* Return true if we're currently rate-limiting out-of-window ACKs and
3427 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3428 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3429 * attacks that send repeated SYNs or ACKs for the same connection. To
3430 * do this, we do not send a duplicate SYNACK or ACK if the remote
3431 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3432 */
3433bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3434			  int mib_idx, u32 *last_oow_ack_time)
3435{
3436	/* Data packets without SYNs are not likely part of an ACK loop. */
3437	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3438	    !tcp_hdr(skb)->syn)
3439		goto not_rate_limited;
3440
3441	if (*last_oow_ack_time) {
3442		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3443
3444		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3445			NET_INC_STATS_BH(net, mib_idx);
3446			return true;	/* rate-limited: don't send yet! */
3447		}
3448	}
3449
3450	*last_oow_ack_time = tcp_time_stamp;
3451
3452not_rate_limited:
3453	return false;	/* not rate-limited: go ahead, send dupack now! */
3454}
3455
3456/* RFC 5961 7 [ACK Throttling] */
3457static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3458{
3459	/* unprotected vars, we dont care of overwrites */
3460	static u32 challenge_timestamp;
3461	static unsigned int challenge_count;
3462	struct tcp_sock *tp = tcp_sk(sk);
3463	u32 now;
3464
3465	/* First check our per-socket dupack rate limit. */
3466	if (tcp_oow_rate_limited(sock_net(sk), skb,
3467				 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3468				 &tp->last_oow_ack_time))
3469		return;
3470
3471	/* Then check the check host-wide RFC 5961 rate limit. */
3472	now = jiffies / HZ;
3473	if (now != challenge_timestamp) {
3474		challenge_timestamp = now;
3475		challenge_count = 0;
3476	}
3477	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3478		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3479		tcp_send_ack(sk);
3480	}
3481}
3482
3483static void tcp_store_ts_recent(struct tcp_sock *tp)
 
 
 
3484{
3485	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3486	tp->rx_opt.ts_recent_stamp = get_seconds();
3487}
3488
3489static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3490{
3491	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3492		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3493		 * extra check below makes sure this can only happen
3494		 * for pure ACK frames.  -DaveM
3495		 *
3496		 * Not only, also it occurs for expired timestamps.
3497		 */
3498
3499		if (tcp_paws_check(&tp->rx_opt, 0))
3500			tcp_store_ts_recent(tp);
3501	}
3502}
3503
3504/* This routine deals with acks during a TLP episode.
3505 * We mark the end of a TLP episode on receiving TLP dupack or when
3506 * ack is after tlp_high_seq.
3507 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3508 */
3509static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3510{
3511	struct tcp_sock *tp = tcp_sk(sk);
3512
3513	if (before(ack, tp->tlp_high_seq))
3514		return;
3515
3516	if (flag & FLAG_DSACKING_ACK) {
3517		/* This DSACK means original and TLP probe arrived; no loss */
3518		tp->tlp_high_seq = 0;
3519	} else if (after(ack, tp->tlp_high_seq)) {
3520		/* ACK advances: there was a loss, so reduce cwnd. Reset
3521		 * tlp_high_seq in tcp_init_cwnd_reduction()
3522		 */
3523		tcp_init_cwnd_reduction(sk);
3524		tcp_set_ca_state(sk, TCP_CA_CWR);
3525		tcp_end_cwnd_reduction(sk);
3526		tcp_try_keep_open(sk);
3527		NET_INC_STATS_BH(sock_net(sk),
3528				 LINUX_MIB_TCPLOSSPROBERECOVERY);
3529	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3530			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3531		/* Pure dupack: original and TLP probe arrived; no loss */
3532		tp->tlp_high_seq = 0;
3533	}
3534}
3535
3536static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3537{
3538	const struct inet_connection_sock *icsk = inet_csk(sk);
 
 
 
 
3539
3540	if (icsk->icsk_ca_ops->in_ack_event)
3541		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3542}
 
 
 
 
 
 
 
 
 
3543
3544/* Congestion control has updated the cwnd already. So if we're in
3545 * loss recovery then now we do any new sends (for FRTO) or
3546 * retransmits (for CA_Loss or CA_recovery) that make sense.
3547 */
3548static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3549{
3550	struct tcp_sock *tp = tcp_sk(sk);
 
3551
3552	if (rexmit == REXMIT_NONE)
3553		return;
 
 
3554
3555	if (unlikely(rexmit == 2)) {
3556		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3557					  TCP_NAGLE_OFF);
3558		if (after(tp->snd_nxt, tp->high_seq))
3559			return;
3560		tp->frto = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3561	}
3562	tcp_xmit_retransmit_queue(sk);
3563}
3564
3565/* This routine deals with incoming acks, but not outgoing ones. */
3566static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3567{
3568	struct inet_connection_sock *icsk = inet_csk(sk);
3569	struct tcp_sock *tp = tcp_sk(sk);
3570	struct tcp_sacktag_state sack_state;
3571	u32 prior_snd_una = tp->snd_una;
3572	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3573	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3574	bool is_dupack = false;
 
3575	u32 prior_fackets;
3576	int prior_packets = tp->packets_out;
3577	u32 prior_delivered = tp->delivered;
3578	int acked = 0; /* Number of packets newly acked */
3579	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3580
3581	sack_state.first_sackt.v64 = 0;
3582
3583	/* We very likely will need to access write queue head. */
3584	prefetchw(sk->sk_write_queue.next);
3585
3586	/* If the ack is older than previous acks
3587	 * then we can probably ignore it.
3588	 */
3589	if (before(ack, prior_snd_una)) {
3590		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3591		if (before(ack, prior_snd_una - tp->max_window)) {
3592			tcp_send_challenge_ack(sk, skb);
3593			return -1;
3594		}
3595		goto old_ack;
3596	}
3597
3598	/* If the ack includes data we haven't sent yet, discard
3599	 * this segment (RFC793 Section 3.9).
3600	 */
3601	if (after(ack, tp->snd_nxt))
3602		goto invalid_ack;
3603
3604	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3605	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3606		tcp_rearm_rto(sk);
3607
3608	if (after(ack, prior_snd_una)) {
3609		flag |= FLAG_SND_UNA_ADVANCED;
3610		icsk->icsk_retransmits = 0;
 
 
 
 
 
 
 
3611	}
3612
3613	prior_fackets = tp->fackets_out;
3614
3615	/* ts_recent update must be made after we are sure that the packet
3616	 * is in window.
3617	 */
3618	if (flag & FLAG_UPDATE_TS_RECENT)
3619		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3620
3621	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3622		/* Window is constant, pure forward advance.
3623		 * No more checks are required.
3624		 * Note, we use the fact that SND.UNA>=SND.WL2.
3625		 */
3626		tcp_update_wl(tp, ack_seq);
3627		tcp_snd_una_update(tp, ack);
3628		flag |= FLAG_WIN_UPDATE;
3629
3630		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3631
3632		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3633	} else {
3634		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3635
3636		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3637			flag |= FLAG_DATA;
3638		else
3639			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3640
3641		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3642
3643		if (TCP_SKB_CB(skb)->sacked)
3644			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3645							&sack_state);
3646
3647		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3648			flag |= FLAG_ECE;
3649			ack_ev_flags |= CA_ACK_ECE;
3650		}
3651
3652		if (flag & FLAG_WIN_UPDATE)
3653			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3654
3655		tcp_in_ack_event(sk, ack_ev_flags);
3656	}
3657
3658	/* We passed data and got it acked, remove any soft error
3659	 * log. Something worked...
3660	 */
3661	sk->sk_err_soft = 0;
3662	icsk->icsk_probes_out = 0;
3663	tp->rcv_tstamp = tcp_time_stamp;
 
3664	if (!prior_packets)
3665		goto no_queue;
3666
3667	/* See if we can take anything off of the retransmit queue. */
3668	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3669				    &sack_state);
 
 
 
 
 
 
 
3670
3671	if (tcp_ack_is_dubious(sk, flag)) {
 
 
 
 
3672		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3673		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
 
 
 
 
3674	}
3675	if (tp->tlp_high_seq)
3676		tcp_process_tlp_ack(sk, ack, flag);
3677
3678	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3679		struct dst_entry *dst = __sk_dst_get(sk);
3680		if (dst)
3681			dst_confirm(dst);
3682	}
3683
3684	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3685		tcp_schedule_loss_probe(sk);
3686	tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
3687	tcp_xmit_recovery(sk, rexmit);
3688	return 1;
3689
3690no_queue:
3691	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3692	if (flag & FLAG_DSACKING_ACK)
3693		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
 
3694	/* If this ack opens up a zero window, clear backoff.  It was
3695	 * being used to time the probes, and is probably far higher than
3696	 * it needs to be for normal retransmission.
3697	 */
3698	if (tcp_send_head(sk))
3699		tcp_ack_probe(sk);
3700
3701	if (tp->tlp_high_seq)
3702		tcp_process_tlp_ack(sk, ack, flag);
3703	return 1;
3704
3705invalid_ack:
3706	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3707	return -1;
3708
3709old_ack:
3710	/* If data was SACKed, tag it and see if we should send more data.
3711	 * If data was DSACKed, see if we can undo a cwnd reduction.
3712	 */
3713	if (TCP_SKB_CB(skb)->sacked) {
3714		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3715						&sack_state);
3716		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3717		tcp_xmit_recovery(sk, rexmit);
3718	}
3719
3720	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3721	return 0;
3722}
3723
3724static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3725				      bool syn, struct tcp_fastopen_cookie *foc,
3726				      bool exp_opt)
3727{
3728	/* Valid only in SYN or SYN-ACK with an even length.  */
3729	if (!foc || !syn || len < 0 || (len & 1))
3730		return;
3731
3732	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3733	    len <= TCP_FASTOPEN_COOKIE_MAX)
3734		memcpy(foc->val, cookie, len);
3735	else if (len != 0)
3736		len = -1;
3737	foc->len = len;
3738	foc->exp = exp_opt;
3739}
3740
3741/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3742 * But, this can also be called on packets in the established flow when
3743 * the fast version below fails.
3744 */
3745void tcp_parse_options(const struct sk_buff *skb,
3746		       struct tcp_options_received *opt_rx, int estab,
3747		       struct tcp_fastopen_cookie *foc)
3748{
3749	const unsigned char *ptr;
3750	const struct tcphdr *th = tcp_hdr(skb);
3751	int length = (th->doff * 4) - sizeof(struct tcphdr);
3752
3753	ptr = (const unsigned char *)(th + 1);
3754	opt_rx->saw_tstamp = 0;
3755
3756	while (length > 0) {
3757		int opcode = *ptr++;
3758		int opsize;
3759
3760		switch (opcode) {
3761		case TCPOPT_EOL:
3762			return;
3763		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3764			length--;
3765			continue;
3766		default:
3767			opsize = *ptr++;
3768			if (opsize < 2) /* "silly options" */
3769				return;
3770			if (opsize > length)
3771				return;	/* don't parse partial options */
3772			switch (opcode) {
3773			case TCPOPT_MSS:
3774				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3775					u16 in_mss = get_unaligned_be16(ptr);
3776					if (in_mss) {
3777						if (opt_rx->user_mss &&
3778						    opt_rx->user_mss < in_mss)
3779							in_mss = opt_rx->user_mss;
3780						opt_rx->mss_clamp = in_mss;
3781					}
3782				}
3783				break;
3784			case TCPOPT_WINDOW:
3785				if (opsize == TCPOLEN_WINDOW && th->syn &&
3786				    !estab && sysctl_tcp_window_scaling) {
3787					__u8 snd_wscale = *(__u8 *)ptr;
3788					opt_rx->wscale_ok = 1;
3789					if (snd_wscale > 14) {
3790						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3791								     __func__,
3792								     snd_wscale);
3793						snd_wscale = 14;
3794					}
3795					opt_rx->snd_wscale = snd_wscale;
3796				}
3797				break;
3798			case TCPOPT_TIMESTAMP:
3799				if ((opsize == TCPOLEN_TIMESTAMP) &&
3800				    ((estab && opt_rx->tstamp_ok) ||
3801				     (!estab && sysctl_tcp_timestamps))) {
3802					opt_rx->saw_tstamp = 1;
3803					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3804					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3805				}
3806				break;
3807			case TCPOPT_SACK_PERM:
3808				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3809				    !estab && sysctl_tcp_sack) {
3810					opt_rx->sack_ok = TCP_SACK_SEEN;
3811					tcp_sack_reset(opt_rx);
3812				}
3813				break;
3814
3815			case TCPOPT_SACK:
3816				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3817				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3818				   opt_rx->sack_ok) {
3819					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3820				}
3821				break;
3822#ifdef CONFIG_TCP_MD5SIG
3823			case TCPOPT_MD5SIG:
3824				/*
3825				 * The MD5 Hash has already been
3826				 * checked (see tcp_v{4,6}_do_rcv()).
3827				 */
3828				break;
3829#endif
3830			case TCPOPT_FASTOPEN:
3831				tcp_parse_fastopen_option(
3832					opsize - TCPOLEN_FASTOPEN_BASE,
3833					ptr, th->syn, foc, false);
3834				break;
3835
3836			case TCPOPT_EXP:
3837				/* Fast Open option shares code 254 using a
3838				 * 16 bits magic number.
3839				 */
3840				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3841				    get_unaligned_be16(ptr) ==
3842				    TCPOPT_FASTOPEN_MAGIC)
3843					tcp_parse_fastopen_option(opsize -
3844						TCPOLEN_EXP_FASTOPEN_BASE,
3845						ptr + 2, th->syn, foc, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3846				break;
3847
3848			}
 
3849			ptr += opsize-2;
3850			length -= opsize;
3851		}
3852	}
3853}
3854EXPORT_SYMBOL(tcp_parse_options);
3855
3856static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3857{
3858	const __be32 *ptr = (const __be32 *)(th + 1);
3859
3860	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3861			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3862		tp->rx_opt.saw_tstamp = 1;
3863		++ptr;
3864		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3865		++ptr;
3866		if (*ptr)
3867			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3868		else
3869			tp->rx_opt.rcv_tsecr = 0;
3870		return true;
3871	}
3872	return false;
3873}
3874
3875/* Fast parse options. This hopes to only see timestamps.
3876 * If it is wrong it falls back on tcp_parse_options().
3877 */
3878static bool tcp_fast_parse_options(const struct sk_buff *skb,
3879				   const struct tcphdr *th, struct tcp_sock *tp)
 
3880{
3881	/* In the spirit of fast parsing, compare doff directly to constant
3882	 * values.  Because equality is used, short doff can be ignored here.
3883	 */
3884	if (th->doff == (sizeof(*th) / 4)) {
3885		tp->rx_opt.saw_tstamp = 0;
3886		return false;
3887	} else if (tp->rx_opt.tstamp_ok &&
3888		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3889		if (tcp_parse_aligned_timestamp(tp, th))
3890			return true;
3891	}
3892
3893	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3894	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3895		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3896
3897	return true;
3898}
3899
3900#ifdef CONFIG_TCP_MD5SIG
3901/*
3902 * Parse MD5 Signature option
3903 */
3904const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3905{
3906	int length = (th->doff << 2) - sizeof(*th);
3907	const u8 *ptr = (const u8 *)(th + 1);
3908
3909	/* If the TCP option is too short, we can short cut */
3910	if (length < TCPOLEN_MD5SIG)
3911		return NULL;
3912
3913	while (length > 0) {
3914		int opcode = *ptr++;
3915		int opsize;
3916
3917		switch (opcode) {
3918		case TCPOPT_EOL:
3919			return NULL;
3920		case TCPOPT_NOP:
3921			length--;
3922			continue;
3923		default:
3924			opsize = *ptr++;
3925			if (opsize < 2 || opsize > length)
3926				return NULL;
3927			if (opcode == TCPOPT_MD5SIG)
3928				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3929		}
3930		ptr += opsize - 2;
3931		length -= opsize;
3932	}
3933	return NULL;
3934}
3935EXPORT_SYMBOL(tcp_parse_md5sig_option);
3936#endif
3937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3938/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3939 *
3940 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3941 * it can pass through stack. So, the following predicate verifies that
3942 * this segment is not used for anything but congestion avoidance or
3943 * fast retransmit. Moreover, we even are able to eliminate most of such
3944 * second order effects, if we apply some small "replay" window (~RTO)
3945 * to timestamp space.
3946 *
3947 * All these measures still do not guarantee that we reject wrapped ACKs
3948 * on networks with high bandwidth, when sequence space is recycled fastly,
3949 * but it guarantees that such events will be very rare and do not affect
3950 * connection seriously. This doesn't look nice, but alas, PAWS is really
3951 * buggy extension.
3952 *
3953 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3954 * states that events when retransmit arrives after original data are rare.
3955 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3956 * the biggest problem on large power networks even with minor reordering.
3957 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3958 * up to bandwidth of 18Gigabit/sec. 8) ]
3959 */
3960
3961static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3962{
3963	const struct tcp_sock *tp = tcp_sk(sk);
3964	const struct tcphdr *th = tcp_hdr(skb);
3965	u32 seq = TCP_SKB_CB(skb)->seq;
3966	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3967
3968	return (/* 1. Pure ACK with correct sequence number. */
3969		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3970
3971		/* 2. ... and duplicate ACK. */
3972		ack == tp->snd_una &&
3973
3974		/* 3. ... and does not update window. */
3975		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3976
3977		/* 4. ... and sits in replay window. */
3978		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3979}
3980
3981static inline bool tcp_paws_discard(const struct sock *sk,
3982				   const struct sk_buff *skb)
3983{
3984	const struct tcp_sock *tp = tcp_sk(sk);
3985
3986	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3987	       !tcp_disordered_ack(sk, skb);
3988}
3989
3990/* Check segment sequence number for validity.
3991 *
3992 * Segment controls are considered valid, if the segment
3993 * fits to the window after truncation to the window. Acceptability
3994 * of data (and SYN, FIN, of course) is checked separately.
3995 * See tcp_data_queue(), for example.
3996 *
3997 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3998 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3999 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4000 * (borrowed from freebsd)
4001 */
4002
4003static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4004{
4005	return	!before(end_seq, tp->rcv_wup) &&
4006		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4007}
4008
4009/* When we get a reset we do this. */
4010void tcp_reset(struct sock *sk)
4011{
4012	/* We want the right error as BSD sees it (and indeed as we do). */
4013	switch (sk->sk_state) {
4014	case TCP_SYN_SENT:
4015		sk->sk_err = ECONNREFUSED;
4016		break;
4017	case TCP_CLOSE_WAIT:
4018		sk->sk_err = EPIPE;
4019		break;
4020	case TCP_CLOSE:
4021		return;
4022	default:
4023		sk->sk_err = ECONNRESET;
4024	}
4025	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4026	smp_wmb();
4027
4028	if (!sock_flag(sk, SOCK_DEAD))
4029		sk->sk_error_report(sk);
4030
4031	tcp_done(sk);
4032}
4033
4034/*
4035 * 	Process the FIN bit. This now behaves as it is supposed to work
4036 *	and the FIN takes effect when it is validly part of sequence
4037 *	space. Not before when we get holes.
4038 *
4039 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4040 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4041 *	TIME-WAIT)
4042 *
4043 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4044 *	close and we go into CLOSING (and later onto TIME-WAIT)
4045 *
4046 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4047 */
4048void tcp_fin(struct sock *sk)
4049{
4050	struct tcp_sock *tp = tcp_sk(sk);
4051
4052	inet_csk_schedule_ack(sk);
4053
4054	sk->sk_shutdown |= RCV_SHUTDOWN;
4055	sock_set_flag(sk, SOCK_DONE);
4056
4057	switch (sk->sk_state) {
4058	case TCP_SYN_RECV:
4059	case TCP_ESTABLISHED:
4060		/* Move to CLOSE_WAIT */
4061		tcp_set_state(sk, TCP_CLOSE_WAIT);
4062		inet_csk(sk)->icsk_ack.pingpong = 1;
4063		break;
4064
4065	case TCP_CLOSE_WAIT:
4066	case TCP_CLOSING:
4067		/* Received a retransmission of the FIN, do
4068		 * nothing.
4069		 */
4070		break;
4071	case TCP_LAST_ACK:
4072		/* RFC793: Remain in the LAST-ACK state. */
4073		break;
4074
4075	case TCP_FIN_WAIT1:
4076		/* This case occurs when a simultaneous close
4077		 * happens, we must ack the received FIN and
4078		 * enter the CLOSING state.
4079		 */
4080		tcp_send_ack(sk);
4081		tcp_set_state(sk, TCP_CLOSING);
4082		break;
4083	case TCP_FIN_WAIT2:
4084		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4085		tcp_send_ack(sk);
4086		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4087		break;
4088	default:
4089		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4090		 * cases we should never reach this piece of code.
4091		 */
4092		pr_err("%s: Impossible, sk->sk_state=%d\n",
4093		       __func__, sk->sk_state);
4094		break;
4095	}
4096
4097	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4098	 * Probably, we should reset in this case. For now drop them.
4099	 */
4100	__skb_queue_purge(&tp->out_of_order_queue);
4101	if (tcp_is_sack(tp))
4102		tcp_sack_reset(&tp->rx_opt);
4103	sk_mem_reclaim(sk);
4104
4105	if (!sock_flag(sk, SOCK_DEAD)) {
4106		sk->sk_state_change(sk);
4107
4108		/* Do not send POLL_HUP for half duplex close. */
4109		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4110		    sk->sk_state == TCP_CLOSE)
4111			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4112		else
4113			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4114	}
4115}
4116
4117static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4118				  u32 end_seq)
4119{
4120	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4121		if (before(seq, sp->start_seq))
4122			sp->start_seq = seq;
4123		if (after(end_seq, sp->end_seq))
4124			sp->end_seq = end_seq;
4125		return true;
4126	}
4127	return false;
4128}
4129
4130static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4131{
4132	struct tcp_sock *tp = tcp_sk(sk);
4133
4134	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4135		int mib_idx;
4136
4137		if (before(seq, tp->rcv_nxt))
4138			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4139		else
4140			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4141
4142		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4143
4144		tp->rx_opt.dsack = 1;
4145		tp->duplicate_sack[0].start_seq = seq;
4146		tp->duplicate_sack[0].end_seq = end_seq;
4147	}
4148}
4149
4150static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4151{
4152	struct tcp_sock *tp = tcp_sk(sk);
4153
4154	if (!tp->rx_opt.dsack)
4155		tcp_dsack_set(sk, seq, end_seq);
4156	else
4157		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4158}
4159
4160static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4161{
4162	struct tcp_sock *tp = tcp_sk(sk);
4163
4164	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4165	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4166		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4167		tcp_enter_quickack_mode(sk);
4168
4169		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4170			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4171
4172			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4173				end_seq = tp->rcv_nxt;
4174			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4175		}
4176	}
4177
4178	tcp_send_ack(sk);
4179}
4180
4181/* These routines update the SACK block as out-of-order packets arrive or
4182 * in-order packets close up the sequence space.
4183 */
4184static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4185{
4186	int this_sack;
4187	struct tcp_sack_block *sp = &tp->selective_acks[0];
4188	struct tcp_sack_block *swalk = sp + 1;
4189
4190	/* See if the recent change to the first SACK eats into
4191	 * or hits the sequence space of other SACK blocks, if so coalesce.
4192	 */
4193	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4194		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4195			int i;
4196
4197			/* Zap SWALK, by moving every further SACK up by one slot.
4198			 * Decrease num_sacks.
4199			 */
4200			tp->rx_opt.num_sacks--;
4201			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4202				sp[i] = sp[i + 1];
4203			continue;
4204		}
4205		this_sack++, swalk++;
4206	}
4207}
4208
4209static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4210{
4211	struct tcp_sock *tp = tcp_sk(sk);
4212	struct tcp_sack_block *sp = &tp->selective_acks[0];
4213	int cur_sacks = tp->rx_opt.num_sacks;
4214	int this_sack;
4215
4216	if (!cur_sacks)
4217		goto new_sack;
4218
4219	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4220		if (tcp_sack_extend(sp, seq, end_seq)) {
4221			/* Rotate this_sack to the first one. */
4222			for (; this_sack > 0; this_sack--, sp--)
4223				swap(*sp, *(sp - 1));
4224			if (cur_sacks > 1)
4225				tcp_sack_maybe_coalesce(tp);
4226			return;
4227		}
4228	}
4229
4230	/* Could not find an adjacent existing SACK, build a new one,
4231	 * put it at the front, and shift everyone else down.  We
4232	 * always know there is at least one SACK present already here.
4233	 *
4234	 * If the sack array is full, forget about the last one.
4235	 */
4236	if (this_sack >= TCP_NUM_SACKS) {
4237		this_sack--;
4238		tp->rx_opt.num_sacks--;
4239		sp--;
4240	}
4241	for (; this_sack > 0; this_sack--, sp--)
4242		*sp = *(sp - 1);
4243
4244new_sack:
4245	/* Build the new head SACK, and we're done. */
4246	sp->start_seq = seq;
4247	sp->end_seq = end_seq;
4248	tp->rx_opt.num_sacks++;
4249}
4250
4251/* RCV.NXT advances, some SACKs should be eaten. */
4252
4253static void tcp_sack_remove(struct tcp_sock *tp)
4254{
4255	struct tcp_sack_block *sp = &tp->selective_acks[0];
4256	int num_sacks = tp->rx_opt.num_sacks;
4257	int this_sack;
4258
4259	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4260	if (skb_queue_empty(&tp->out_of_order_queue)) {
4261		tp->rx_opt.num_sacks = 0;
4262		return;
4263	}
4264
4265	for (this_sack = 0; this_sack < num_sacks;) {
4266		/* Check if the start of the sack is covered by RCV.NXT. */
4267		if (!before(tp->rcv_nxt, sp->start_seq)) {
4268			int i;
4269
4270			/* RCV.NXT must cover all the block! */
4271			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4272
4273			/* Zap this SACK, by moving forward any other SACKS. */
4274			for (i = this_sack+1; i < num_sacks; i++)
4275				tp->selective_acks[i-1] = tp->selective_acks[i];
4276			num_sacks--;
4277			continue;
4278		}
4279		this_sack++;
4280		sp++;
4281	}
4282	tp->rx_opt.num_sacks = num_sacks;
4283}
4284
4285/**
4286 * tcp_try_coalesce - try to merge skb to prior one
4287 * @sk: socket
4288 * @to: prior buffer
4289 * @from: buffer to add in queue
4290 * @fragstolen: pointer to boolean
4291 *
4292 * Before queueing skb @from after @to, try to merge them
4293 * to reduce overall memory use and queue lengths, if cost is small.
4294 * Packets in ofo or receive queues can stay a long time.
4295 * Better try to coalesce them right now to avoid future collapses.
4296 * Returns true if caller should free @from instead of queueing it
4297 */
4298static bool tcp_try_coalesce(struct sock *sk,
4299			     struct sk_buff *to,
4300			     struct sk_buff *from,
4301			     bool *fragstolen)
4302{
4303	int delta;
4304
4305	*fragstolen = false;
4306
4307	/* Its possible this segment overlaps with prior segment in queue */
4308	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4309		return false;
4310
4311	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4312		return false;
4313
4314	atomic_add(delta, &sk->sk_rmem_alloc);
4315	sk_mem_charge(sk, delta);
4316	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4317	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4318	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4319	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4320	return true;
4321}
4322
4323/* This one checks to see if we can put data from the
4324 * out_of_order queue into the receive_queue.
4325 */
4326static void tcp_ofo_queue(struct sock *sk)
4327{
4328	struct tcp_sock *tp = tcp_sk(sk);
4329	__u32 dsack_high = tp->rcv_nxt;
4330	struct sk_buff *skb, *tail;
4331	bool fragstolen, eaten;
4332
4333	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4334		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4335			break;
4336
4337		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4338			__u32 dsack = dsack_high;
4339			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4340				dsack_high = TCP_SKB_CB(skb)->end_seq;
4341			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4342		}
4343
4344		__skb_unlink(skb, &tp->out_of_order_queue);
4345		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4346			SOCK_DEBUG(sk, "ofo packet was already received\n");
 
4347			__kfree_skb(skb);
4348			continue;
4349		}
4350		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4351			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4352			   TCP_SKB_CB(skb)->end_seq);
4353
4354		tail = skb_peek_tail(&sk->sk_receive_queue);
4355		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4356		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4357		if (!eaten)
4358			__skb_queue_tail(&sk->sk_receive_queue, skb);
4359		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4360			tcp_fin(sk);
4361		if (eaten)
4362			kfree_skb_partial(skb, fragstolen);
4363	}
4364}
4365
4366static bool tcp_prune_ofo_queue(struct sock *sk);
4367static int tcp_prune_queue(struct sock *sk);
4368
4369static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4370				 unsigned int size)
4371{
4372	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4373	    !sk_rmem_schedule(sk, skb, size)) {
4374
4375		if (tcp_prune_queue(sk) < 0)
4376			return -1;
4377
4378		if (!sk_rmem_schedule(sk, skb, size)) {
4379			if (!tcp_prune_ofo_queue(sk))
4380				return -1;
4381
4382			if (!sk_rmem_schedule(sk, skb, size))
4383				return -1;
4384		}
4385	}
4386	return 0;
4387}
4388
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4389static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4390{
4391	struct tcp_sock *tp = tcp_sk(sk);
4392	struct sk_buff *skb1;
4393	u32 seq, end_seq;
4394
4395	tcp_ecn_check_ce(tp, skb);
4396
4397	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4398		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4399		__kfree_skb(skb);
4400		return;
4401	}
4402
4403	/* Disable header prediction. */
4404	tp->pred_flags = 0;
4405	inet_csk_schedule_ack(sk);
4406
4407	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4408	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4409		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4410
4411	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4412	if (!skb1) {
4413		/* Initial out of order segment, build 1 SACK. */
4414		if (tcp_is_sack(tp)) {
4415			tp->rx_opt.num_sacks = 1;
4416			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4417			tp->selective_acks[0].end_seq =
4418						TCP_SKB_CB(skb)->end_seq;
4419		}
4420		__skb_queue_head(&tp->out_of_order_queue, skb);
4421		goto end;
4422	}
4423
4424	seq = TCP_SKB_CB(skb)->seq;
4425	end_seq = TCP_SKB_CB(skb)->end_seq;
4426
4427	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4428		bool fragstolen;
4429
4430		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4431			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4432		} else {
4433			tcp_grow_window(sk, skb);
4434			kfree_skb_partial(skb, fragstolen);
4435			skb = NULL;
4436		}
4437
4438		if (!tp->rx_opt.num_sacks ||
4439		    tp->selective_acks[0].end_seq != seq)
4440			goto add_sack;
4441
4442		/* Common case: data arrive in order after hole. */
4443		tp->selective_acks[0].end_seq = end_seq;
4444		goto end;
4445	}
4446
4447	/* Find place to insert this segment. */
4448	while (1) {
4449		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4450			break;
4451		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4452			skb1 = NULL;
4453			break;
4454		}
4455		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4456	}
4457
4458	/* Do skb overlap to previous one? */
4459	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4460		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4461			/* All the bits are present. Drop. */
4462			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4463			__kfree_skb(skb);
4464			skb = NULL;
4465			tcp_dsack_set(sk, seq, end_seq);
4466			goto add_sack;
4467		}
4468		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4469			/* Partial overlap. */
4470			tcp_dsack_set(sk, seq,
4471				      TCP_SKB_CB(skb1)->end_seq);
4472		} else {
4473			if (skb_queue_is_first(&tp->out_of_order_queue,
4474					       skb1))
4475				skb1 = NULL;
4476			else
4477				skb1 = skb_queue_prev(
4478					&tp->out_of_order_queue,
4479					skb1);
4480		}
4481	}
4482	if (!skb1)
4483		__skb_queue_head(&tp->out_of_order_queue, skb);
4484	else
4485		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4486
4487	/* And clean segments covered by new one as whole. */
4488	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4489		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4490
4491		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4492			break;
4493		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4494			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4495					 end_seq);
4496			break;
4497		}
4498		__skb_unlink(skb1, &tp->out_of_order_queue);
4499		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4500				 TCP_SKB_CB(skb1)->end_seq);
4501		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4502		__kfree_skb(skb1);
4503	}
4504
4505add_sack:
4506	if (tcp_is_sack(tp))
4507		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4508end:
4509	if (skb) {
4510		tcp_grow_window(sk, skb);
4511		skb_set_owner_r(skb, sk);
4512	}
4513}
4514
4515static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4516		  bool *fragstolen)
4517{
4518	int eaten;
4519	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4520
4521	__skb_pull(skb, hdrlen);
4522	eaten = (tail &&
4523		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4524	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4525	if (!eaten) {
4526		__skb_queue_tail(&sk->sk_receive_queue, skb);
4527		skb_set_owner_r(skb, sk);
4528	}
4529	return eaten;
4530}
4531
4532int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4533{
4534	struct sk_buff *skb;
4535	int err = -ENOMEM;
4536	int data_len = 0;
4537	bool fragstolen;
4538
4539	if (size == 0)
4540		return 0;
4541
4542	if (size > PAGE_SIZE) {
4543		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4544
4545		data_len = npages << PAGE_SHIFT;
4546		size = data_len + (size & ~PAGE_MASK);
4547	}
4548	skb = alloc_skb_with_frags(size - data_len, data_len,
4549				   PAGE_ALLOC_COSTLY_ORDER,
4550				   &err, sk->sk_allocation);
4551	if (!skb)
4552		goto err;
4553
4554	skb_put(skb, size - data_len);
4555	skb->data_len = data_len;
4556	skb->len = size;
4557
4558	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4559		goto err_free;
4560
4561	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4562	if (err)
4563		goto err_free;
4564
4565	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4566	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4567	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4568
4569	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4570		WARN_ON_ONCE(fragstolen); /* should not happen */
4571		__kfree_skb(skb);
4572	}
4573	return size;
4574
4575err_free:
4576	kfree_skb(skb);
4577err:
4578	return err;
4579
4580}
4581
4582static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4583{
 
4584	struct tcp_sock *tp = tcp_sk(sk);
4585	int eaten = -1;
4586	bool fragstolen = false;
4587
4588	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4589		goto drop;
4590
4591	skb_dst_drop(skb);
4592	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4593
4594	tcp_ecn_accept_cwr(tp, skb);
4595
4596	tp->rx_opt.dsack = 0;
4597
4598	/*  Queue data for delivery to the user.
4599	 *  Packets in sequence go to the receive queue.
4600	 *  Out of sequence packets to the out_of_order_queue.
4601	 */
4602	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4603		if (tcp_receive_window(tp) == 0)
4604			goto out_of_window;
4605
4606		/* Ok. In sequence. In window. */
4607		if (tp->ucopy.task == current &&
4608		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4609		    sock_owned_by_user(sk) && !tp->urg_data) {
4610			int chunk = min_t(unsigned int, skb->len,
4611					  tp->ucopy.len);
4612
4613			__set_current_state(TASK_RUNNING);
4614
4615			local_bh_enable();
4616			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4617				tp->ucopy.len -= chunk;
4618				tp->copied_seq += chunk;
4619				eaten = (chunk == skb->len);
4620				tcp_rcv_space_adjust(sk);
4621			}
4622			local_bh_disable();
4623		}
4624
4625		if (eaten <= 0) {
4626queue_and_out:
4627			if (eaten < 0) {
4628				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4629					sk_forced_mem_schedule(sk, skb->truesize);
4630				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4631					goto drop;
4632			}
4633			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4634		}
4635		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4636		if (skb->len)
4637			tcp_event_data_recv(sk, skb);
4638		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4639			tcp_fin(sk);
4640
4641		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4642			tcp_ofo_queue(sk);
4643
4644			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4645			 * gap in queue is filled.
4646			 */
4647			if (skb_queue_empty(&tp->out_of_order_queue))
4648				inet_csk(sk)->icsk_ack.pingpong = 0;
4649		}
4650
4651		if (tp->rx_opt.num_sacks)
4652			tcp_sack_remove(tp);
4653
4654		tcp_fast_path_check(sk);
4655
4656		if (eaten > 0)
4657			kfree_skb_partial(skb, fragstolen);
4658		if (!sock_flag(sk, SOCK_DEAD))
4659			sk->sk_data_ready(sk);
4660		return;
4661	}
4662
4663	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4664		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4665		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4666		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4667
4668out_of_window:
4669		tcp_enter_quickack_mode(sk);
4670		inet_csk_schedule_ack(sk);
4671drop:
4672		__kfree_skb(skb);
4673		return;
4674	}
4675
4676	/* Out of window. F.e. zero window probe. */
4677	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4678		goto out_of_window;
4679
4680	tcp_enter_quickack_mode(sk);
4681
4682	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4683		/* Partial packet, seq < rcv_next < end_seq */
4684		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4685			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4686			   TCP_SKB_CB(skb)->end_seq);
4687
4688		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4689
4690		/* If window is closed, drop tail of packet. But after
4691		 * remembering D-SACK for its head made in previous line.
4692		 */
4693		if (!tcp_receive_window(tp))
4694			goto out_of_window;
4695		goto queue_and_out;
4696	}
4697
4698	tcp_data_queue_ofo(sk, skb);
4699}
4700
4701static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4702					struct sk_buff_head *list)
4703{
4704	struct sk_buff *next = NULL;
4705
4706	if (!skb_queue_is_last(list, skb))
4707		next = skb_queue_next(list, skb);
4708
4709	__skb_unlink(skb, list);
4710	__kfree_skb(skb);
4711	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4712
4713	return next;
4714}
4715
4716/* Collapse contiguous sequence of skbs head..tail with
4717 * sequence numbers start..end.
4718 *
4719 * If tail is NULL, this means until the end of the list.
4720 *
4721 * Segments with FIN/SYN are not collapsed (only because this
4722 * simplifies code)
4723 */
4724static void
4725tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4726	     struct sk_buff *head, struct sk_buff *tail,
4727	     u32 start, u32 end)
4728{
4729	struct sk_buff *skb, *n;
4730	bool end_of_skbs;
4731
4732	/* First, check that queue is collapsible and find
4733	 * the point where collapsing can be useful. */
4734	skb = head;
4735restart:
4736	end_of_skbs = true;
4737	skb_queue_walk_from_safe(list, skb, n) {
4738		if (skb == tail)
4739			break;
4740		/* No new bits? It is possible on ofo queue. */
4741		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4742			skb = tcp_collapse_one(sk, skb, list);
4743			if (!skb)
4744				break;
4745			goto restart;
4746		}
4747
4748		/* The first skb to collapse is:
4749		 * - not SYN/FIN and
4750		 * - bloated or contains data before "start" or
4751		 *   overlaps to the next one.
4752		 */
4753		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4754		    (tcp_win_from_space(skb->truesize) > skb->len ||
4755		     before(TCP_SKB_CB(skb)->seq, start))) {
4756			end_of_skbs = false;
4757			break;
4758		}
4759
4760		if (!skb_queue_is_last(list, skb)) {
4761			struct sk_buff *next = skb_queue_next(list, skb);
4762			if (next != tail &&
4763			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4764				end_of_skbs = false;
4765				break;
4766			}
4767		}
4768
4769		/* Decided to skip this, advance start seq. */
4770		start = TCP_SKB_CB(skb)->end_seq;
4771	}
4772	if (end_of_skbs ||
4773	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4774		return;
4775
4776	while (before(start, end)) {
4777		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4778		struct sk_buff *nskb;
 
 
4779
4780		nskb = alloc_skb(copy, GFP_ATOMIC);
 
 
 
 
 
4781		if (!nskb)
4782			return;
4783
 
 
 
 
 
 
 
4784		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4785		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4786		__skb_queue_before(list, skb, nskb);
4787		skb_set_owner_r(nskb, sk);
4788
4789		/* Copy data, releasing collapsed skbs. */
4790		while (copy > 0) {
4791			int offset = start - TCP_SKB_CB(skb)->seq;
4792			int size = TCP_SKB_CB(skb)->end_seq - start;
4793
4794			BUG_ON(offset < 0);
4795			if (size > 0) {
4796				size = min(copy, size);
4797				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4798					BUG();
4799				TCP_SKB_CB(nskb)->end_seq += size;
4800				copy -= size;
4801				start += size;
4802			}
4803			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4804				skb = tcp_collapse_one(sk, skb, list);
4805				if (!skb ||
4806				    skb == tail ||
4807				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
 
4808					return;
4809			}
4810		}
4811	}
4812}
4813
4814/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4815 * and tcp_collapse() them until all the queue is collapsed.
4816 */
4817static void tcp_collapse_ofo_queue(struct sock *sk)
4818{
4819	struct tcp_sock *tp = tcp_sk(sk);
4820	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4821	struct sk_buff *head;
4822	u32 start, end;
4823
4824	if (!skb)
4825		return;
4826
4827	start = TCP_SKB_CB(skb)->seq;
4828	end = TCP_SKB_CB(skb)->end_seq;
4829	head = skb;
4830
4831	for (;;) {
4832		struct sk_buff *next = NULL;
4833
4834		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4835			next = skb_queue_next(&tp->out_of_order_queue, skb);
4836		skb = next;
4837
4838		/* Segment is terminated when we see gap or when
4839		 * we are at the end of all the queue. */
4840		if (!skb ||
4841		    after(TCP_SKB_CB(skb)->seq, end) ||
4842		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4843			tcp_collapse(sk, &tp->out_of_order_queue,
4844				     head, skb, start, end);
4845			head = skb;
4846			if (!skb)
4847				break;
4848			/* Start new segment */
4849			start = TCP_SKB_CB(skb)->seq;
4850			end = TCP_SKB_CB(skb)->end_seq;
4851		} else {
4852			if (before(TCP_SKB_CB(skb)->seq, start))
4853				start = TCP_SKB_CB(skb)->seq;
4854			if (after(TCP_SKB_CB(skb)->end_seq, end))
4855				end = TCP_SKB_CB(skb)->end_seq;
4856		}
4857	}
4858}
4859
4860/*
4861 * Purge the out-of-order queue.
4862 * Return true if queue was pruned.
4863 */
4864static bool tcp_prune_ofo_queue(struct sock *sk)
4865{
4866	struct tcp_sock *tp = tcp_sk(sk);
4867	bool res = false;
4868
4869	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4870		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4871		__skb_queue_purge(&tp->out_of_order_queue);
4872
4873		/* Reset SACK state.  A conforming SACK implementation will
4874		 * do the same at a timeout based retransmit.  When a connection
4875		 * is in a sad state like this, we care only about integrity
4876		 * of the connection not performance.
4877		 */
4878		if (tp->rx_opt.sack_ok)
4879			tcp_sack_reset(&tp->rx_opt);
4880		sk_mem_reclaim(sk);
4881		res = true;
4882	}
4883	return res;
4884}
4885
4886/* Reduce allocated memory if we can, trying to get
4887 * the socket within its memory limits again.
4888 *
4889 * Return less than zero if we should start dropping frames
4890 * until the socket owning process reads some of the data
4891 * to stabilize the situation.
4892 */
4893static int tcp_prune_queue(struct sock *sk)
4894{
4895	struct tcp_sock *tp = tcp_sk(sk);
4896
4897	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4898
4899	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4900
4901	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4902		tcp_clamp_window(sk);
4903	else if (tcp_under_memory_pressure(sk))
4904		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4905
4906	tcp_collapse_ofo_queue(sk);
4907	if (!skb_queue_empty(&sk->sk_receive_queue))
4908		tcp_collapse(sk, &sk->sk_receive_queue,
4909			     skb_peek(&sk->sk_receive_queue),
4910			     NULL,
4911			     tp->copied_seq, tp->rcv_nxt);
4912	sk_mem_reclaim(sk);
4913
4914	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4915		return 0;
4916
4917	/* Collapsing did not help, destructive actions follow.
4918	 * This must not ever occur. */
4919
4920	tcp_prune_ofo_queue(sk);
4921
4922	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4923		return 0;
4924
4925	/* If we are really being abused, tell the caller to silently
4926	 * drop receive data on the floor.  It will get retransmitted
4927	 * and hopefully then we'll have sufficient space.
4928	 */
4929	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4930
4931	/* Massive buffer overcommit. */
4932	tp->pred_flags = 0;
4933	return -1;
4934}
4935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4936static bool tcp_should_expand_sndbuf(const struct sock *sk)
4937{
4938	const struct tcp_sock *tp = tcp_sk(sk);
4939
4940	/* If the user specified a specific send buffer setting, do
4941	 * not modify it.
4942	 */
4943	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4944		return false;
4945
4946	/* If we are under global TCP memory pressure, do not expand.  */
4947	if (tcp_under_memory_pressure(sk))
4948		return false;
4949
4950	/* If we are under soft global TCP memory pressure, do not expand.  */
4951	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4952		return false;
4953
4954	/* If we filled the congestion window, do not expand.  */
4955	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4956		return false;
4957
4958	return true;
4959}
4960
4961/* When incoming ACK allowed to free some skb from write_queue,
4962 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4963 * on the exit from tcp input handler.
4964 *
4965 * PROBLEM: sndbuf expansion does not work well with largesend.
4966 */
4967static void tcp_new_space(struct sock *sk)
4968{
4969	struct tcp_sock *tp = tcp_sk(sk);
4970
4971	if (tcp_should_expand_sndbuf(sk)) {
4972		tcp_sndbuf_expand(sk);
 
 
 
 
 
 
 
 
4973		tp->snd_cwnd_stamp = tcp_time_stamp;
4974	}
4975
4976	sk->sk_write_space(sk);
4977}
4978
4979static void tcp_check_space(struct sock *sk)
4980{
4981	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4982		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4983		/* pairs with tcp_poll() */
4984		smp_mb__after_atomic();
4985		if (sk->sk_socket &&
4986		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4987			tcp_new_space(sk);
4988	}
4989}
4990
4991static inline void tcp_data_snd_check(struct sock *sk)
4992{
4993	tcp_push_pending_frames(sk);
4994	tcp_check_space(sk);
4995}
4996
4997/*
4998 * Check if sending an ack is needed.
4999 */
5000static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5001{
5002	struct tcp_sock *tp = tcp_sk(sk);
5003
5004	    /* More than one full frame received... */
5005	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5006	     /* ... and right edge of window advances far enough.
5007	      * (tcp_recvmsg() will send ACK otherwise). Or...
5008	      */
5009	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5010	    /* We ACK each frame or... */
5011	    tcp_in_quickack_mode(sk) ||
5012	    /* We have out of order data. */
5013	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5014		/* Then ack it now */
5015		tcp_send_ack(sk);
5016	} else {
5017		/* Else, send delayed ack. */
5018		tcp_send_delayed_ack(sk);
5019	}
5020}
5021
5022static inline void tcp_ack_snd_check(struct sock *sk)
5023{
5024	if (!inet_csk_ack_scheduled(sk)) {
5025		/* We sent a data segment already. */
5026		return;
5027	}
5028	__tcp_ack_snd_check(sk, 1);
5029}
5030
5031/*
5032 *	This routine is only called when we have urgent data
5033 *	signaled. Its the 'slow' part of tcp_urg. It could be
5034 *	moved inline now as tcp_urg is only called from one
5035 *	place. We handle URGent data wrong. We have to - as
5036 *	BSD still doesn't use the correction from RFC961.
5037 *	For 1003.1g we should support a new option TCP_STDURG to permit
5038 *	either form (or just set the sysctl tcp_stdurg).
5039 */
5040
5041static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5042{
5043	struct tcp_sock *tp = tcp_sk(sk);
5044	u32 ptr = ntohs(th->urg_ptr);
5045
5046	if (ptr && !sysctl_tcp_stdurg)
5047		ptr--;
5048	ptr += ntohl(th->seq);
5049
5050	/* Ignore urgent data that we've already seen and read. */
5051	if (after(tp->copied_seq, ptr))
5052		return;
5053
5054	/* Do not replay urg ptr.
5055	 *
5056	 * NOTE: interesting situation not covered by specs.
5057	 * Misbehaving sender may send urg ptr, pointing to segment,
5058	 * which we already have in ofo queue. We are not able to fetch
5059	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5060	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5061	 * situations. But it is worth to think about possibility of some
5062	 * DoSes using some hypothetical application level deadlock.
5063	 */
5064	if (before(ptr, tp->rcv_nxt))
5065		return;
5066
5067	/* Do we already have a newer (or duplicate) urgent pointer? */
5068	if (tp->urg_data && !after(ptr, tp->urg_seq))
5069		return;
5070
5071	/* Tell the world about our new urgent pointer. */
5072	sk_send_sigurg(sk);
5073
5074	/* We may be adding urgent data when the last byte read was
5075	 * urgent. To do this requires some care. We cannot just ignore
5076	 * tp->copied_seq since we would read the last urgent byte again
5077	 * as data, nor can we alter copied_seq until this data arrives
5078	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5079	 *
5080	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5081	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5082	 * and expect that both A and B disappear from stream. This is _wrong_.
5083	 * Though this happens in BSD with high probability, this is occasional.
5084	 * Any application relying on this is buggy. Note also, that fix "works"
5085	 * only in this artificial test. Insert some normal data between A and B and we will
5086	 * decline of BSD again. Verdict: it is better to remove to trap
5087	 * buggy users.
5088	 */
5089	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5090	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5091		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5092		tp->copied_seq++;
5093		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5094			__skb_unlink(skb, &sk->sk_receive_queue);
5095			__kfree_skb(skb);
5096		}
5097	}
5098
5099	tp->urg_data = TCP_URG_NOTYET;
5100	tp->urg_seq = ptr;
5101
5102	/* Disable header prediction. */
5103	tp->pred_flags = 0;
5104}
5105
5106/* This is the 'fast' part of urgent handling. */
5107static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5108{
5109	struct tcp_sock *tp = tcp_sk(sk);
5110
5111	/* Check if we get a new urgent pointer - normally not. */
5112	if (th->urg)
5113		tcp_check_urg(sk, th);
5114
5115	/* Do we wait for any urgent data? - normally not... */
5116	if (tp->urg_data == TCP_URG_NOTYET) {
5117		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5118			  th->syn;
5119
5120		/* Is the urgent pointer pointing into this packet? */
5121		if (ptr < skb->len) {
5122			u8 tmp;
5123			if (skb_copy_bits(skb, ptr, &tmp, 1))
5124				BUG();
5125			tp->urg_data = TCP_URG_VALID | tmp;
5126			if (!sock_flag(sk, SOCK_DEAD))
5127				sk->sk_data_ready(sk);
5128		}
5129	}
5130}
5131
5132static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5133{
5134	struct tcp_sock *tp = tcp_sk(sk);
5135	int chunk = skb->len - hlen;
5136	int err;
5137
5138	local_bh_enable();
5139	if (skb_csum_unnecessary(skb))
5140		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5141	else
5142		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
 
5143
5144	if (!err) {
5145		tp->ucopy.len -= chunk;
5146		tp->copied_seq += chunk;
5147		tcp_rcv_space_adjust(sk);
5148	}
5149
5150	local_bh_disable();
5151	return err;
5152}
5153
5154static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5155					    struct sk_buff *skb)
5156{
5157	__sum16 result;
5158
5159	if (sock_owned_by_user(sk)) {
5160		local_bh_enable();
5161		result = __tcp_checksum_complete(skb);
5162		local_bh_disable();
5163	} else {
5164		result = __tcp_checksum_complete(skb);
5165	}
5166	return result;
5167}
5168
5169static inline bool tcp_checksum_complete_user(struct sock *sk,
5170					     struct sk_buff *skb)
5171{
5172	return !skb_csum_unnecessary(skb) &&
5173	       __tcp_checksum_complete_user(sk, skb);
5174}
5175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5176/* Does PAWS and seqno based validation of an incoming segment, flags will
5177 * play significant role here.
5178 */
5179static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5180				  const struct tcphdr *th, int syn_inerr)
5181{
 
5182	struct tcp_sock *tp = tcp_sk(sk);
5183
5184	/* RFC1323: H1. Apply PAWS check first. */
5185	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
 
5186	    tcp_paws_discard(sk, skb)) {
5187		if (!th->rst) {
5188			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5189			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5190						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5191						  &tp->last_oow_ack_time))
5192				tcp_send_dupack(sk, skb);
5193			goto discard;
5194		}
5195		/* Reset is accepted even if it did not pass PAWS. */
5196	}
5197
5198	/* Step 1: check sequence number */
5199	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5200		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5201		 * (RST) segments are validated by checking their SEQ-fields."
5202		 * And page 69: "If an incoming segment is not acceptable,
5203		 * an acknowledgment should be sent in reply (unless the RST
5204		 * bit is set, if so drop the segment and return)".
5205		 */
5206		if (!th->rst) {
5207			if (th->syn)
5208				goto syn_challenge;
5209			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5210						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5211						  &tp->last_oow_ack_time))
5212				tcp_send_dupack(sk, skb);
5213		}
5214		goto discard;
5215	}
5216
5217	/* Step 2: check RST bit */
5218	if (th->rst) {
5219		/* RFC 5961 3.2 :
5220		 * If sequence number exactly matches RCV.NXT, then
5221		 *     RESET the connection
5222		 * else
5223		 *     Send a challenge ACK
5224		 */
5225		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5226			tcp_reset(sk);
5227		else
5228			tcp_send_challenge_ack(sk, skb);
5229		goto discard;
5230	}
5231
 
 
 
 
 
5232	/* step 3: check security and precedence [ignored] */
5233
5234	/* step 4: Check for a SYN
5235	 * RFC 5961 4.2 : Send a challenge ack
5236	 */
5237	if (th->syn) {
5238syn_challenge:
5239		if (syn_inerr)
5240			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5241		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5242		tcp_send_challenge_ack(sk, skb);
5243		goto discard;
5244	}
5245
5246	return true;
5247
5248discard:
5249	__kfree_skb(skb);
5250	return false;
5251}
5252
5253/*
5254 *	TCP receive function for the ESTABLISHED state.
5255 *
5256 *	It is split into a fast path and a slow path. The fast path is
5257 * 	disabled when:
5258 *	- A zero window was announced from us - zero window probing
5259 *        is only handled properly in the slow path.
5260 *	- Out of order segments arrived.
5261 *	- Urgent data is expected.
5262 *	- There is no buffer space left
5263 *	- Unexpected TCP flags/window values/header lengths are received
5264 *	  (detected by checking the TCP header against pred_flags)
5265 *	- Data is sent in both directions. Fast path only supports pure senders
5266 *	  or pure receivers (this means either the sequence number or the ack
5267 *	  value must stay constant)
5268 *	- Unexpected TCP option.
5269 *
5270 *	When these conditions are not satisfied it drops into a standard
5271 *	receive procedure patterned after RFC793 to handle all cases.
5272 *	The first three cases are guaranteed by proper pred_flags setting,
5273 *	the rest is checked inline. Fast processing is turned on in
5274 *	tcp_data_queue when everything is OK.
5275 */
5276void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5277			 const struct tcphdr *th, unsigned int len)
5278{
5279	struct tcp_sock *tp = tcp_sk(sk);
 
5280
5281	if (unlikely(!sk->sk_rx_dst))
5282		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5283	/*
5284	 *	Header prediction.
5285	 *	The code loosely follows the one in the famous
5286	 *	"30 instruction TCP receive" Van Jacobson mail.
5287	 *
5288	 *	Van's trick is to deposit buffers into socket queue
5289	 *	on a device interrupt, to call tcp_recv function
5290	 *	on the receive process context and checksum and copy
5291	 *	the buffer to user space. smart...
5292	 *
5293	 *	Our current scheme is not silly either but we take the
5294	 *	extra cost of the net_bh soft interrupt processing...
5295	 *	We do checksum and copy also but from device to kernel.
5296	 */
5297
5298	tp->rx_opt.saw_tstamp = 0;
5299
5300	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5301	 *	if header_prediction is to be made
5302	 *	'S' will always be tp->tcp_header_len >> 2
5303	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5304	 *  turn it off	(when there are holes in the receive
5305	 *	 space for instance)
5306	 *	PSH flag is ignored.
5307	 */
5308
5309	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5310	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5311	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5312		int tcp_header_len = tp->tcp_header_len;
5313
5314		/* Timestamp header prediction: tcp_header_len
5315		 * is automatically equal to th->doff*4 due to pred_flags
5316		 * match.
5317		 */
5318
5319		/* Check timestamp */
5320		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5321			/* No? Slow path! */
5322			if (!tcp_parse_aligned_timestamp(tp, th))
5323				goto slow_path;
5324
5325			/* If PAWS failed, check it more carefully in slow path */
5326			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5327				goto slow_path;
5328
5329			/* DO NOT update ts_recent here, if checksum fails
5330			 * and timestamp was corrupted part, it will result
5331			 * in a hung connection since we will drop all
5332			 * future packets due to the PAWS test.
5333			 */
5334		}
5335
5336		if (len <= tcp_header_len) {
5337			/* Bulk data transfer: sender */
5338			if (len == tcp_header_len) {
5339				/* Predicted packet is in window by definition.
5340				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5341				 * Hence, check seq<=rcv_wup reduces to:
5342				 */
5343				if (tcp_header_len ==
5344				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5345				    tp->rcv_nxt == tp->rcv_wup)
5346					tcp_store_ts_recent(tp);
5347
5348				/* We know that such packets are checksummed
5349				 * on entry.
5350				 */
5351				tcp_ack(sk, skb, 0);
5352				__kfree_skb(skb);
5353				tcp_data_snd_check(sk);
5354				return;
5355			} else { /* Header too small */
5356				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5357				goto discard;
5358			}
5359		} else {
5360			int eaten = 0;
 
5361			bool fragstolen = false;
5362
5363			if (tp->ucopy.task == current &&
5364			    tp->copied_seq == tp->rcv_nxt &&
5365			    len - tcp_header_len <= tp->ucopy.len &&
5366			    sock_owned_by_user(sk)) {
5367				__set_current_state(TASK_RUNNING);
 
 
 
 
 
 
 
 
5368
5369				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
 
 
 
5370					/* Predicted packet is in window by definition.
5371					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5372					 * Hence, check seq<=rcv_wup reduces to:
5373					 */
5374					if (tcp_header_len ==
5375					    (sizeof(struct tcphdr) +
5376					     TCPOLEN_TSTAMP_ALIGNED) &&
5377					    tp->rcv_nxt == tp->rcv_wup)
5378						tcp_store_ts_recent(tp);
5379
5380					tcp_rcv_rtt_measure_ts(sk, skb);
5381
5382					__skb_pull(skb, tcp_header_len);
5383					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5384					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5385					eaten = 1;
5386				}
 
 
5387			}
5388			if (!eaten) {
5389				if (tcp_checksum_complete_user(sk, skb))
5390					goto csum_error;
5391
5392				if ((int)skb->truesize > sk->sk_forward_alloc)
5393					goto step5;
5394
5395				/* Predicted packet is in window by definition.
5396				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5397				 * Hence, check seq<=rcv_wup reduces to:
5398				 */
5399				if (tcp_header_len ==
5400				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5401				    tp->rcv_nxt == tp->rcv_wup)
5402					tcp_store_ts_recent(tp);
5403
5404				tcp_rcv_rtt_measure_ts(sk, skb);
5405
 
 
 
5406				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5407
5408				/* Bulk data transfer: receiver */
5409				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5410						      &fragstolen);
5411			}
5412
5413			tcp_event_data_recv(sk, skb);
5414
5415			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5416				/* Well, only one small jumplet in fast path... */
5417				tcp_ack(sk, skb, FLAG_DATA);
5418				tcp_data_snd_check(sk);
5419				if (!inet_csk_ack_scheduled(sk))
5420					goto no_ack;
5421			}
5422
5423			__tcp_ack_snd_check(sk, 0);
 
5424no_ack:
 
 
 
 
 
5425			if (eaten)
5426				kfree_skb_partial(skb, fragstolen);
5427			sk->sk_data_ready(sk);
5428			return;
 
5429		}
5430	}
5431
5432slow_path:
5433	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5434		goto csum_error;
5435
5436	if (!th->ack && !th->rst && !th->syn)
5437		goto discard;
5438
5439	/*
5440	 *	Standard slow path.
5441	 */
5442
5443	if (!tcp_validate_incoming(sk, skb, th, 1))
5444		return;
 
5445
5446step5:
5447	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5448		goto discard;
5449
5450	tcp_rcv_rtt_measure_ts(sk, skb);
5451
5452	/* Process urgent data. */
5453	tcp_urg(sk, skb, th);
5454
5455	/* step 7: process the segment text */
5456	tcp_data_queue(sk, skb);
5457
5458	tcp_data_snd_check(sk);
5459	tcp_ack_snd_check(sk);
5460	return;
5461
5462csum_error:
5463	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5464	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5465
5466discard:
5467	__kfree_skb(skb);
 
5468}
5469EXPORT_SYMBOL(tcp_rcv_established);
5470
5471void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5472{
5473	struct tcp_sock *tp = tcp_sk(sk);
5474	struct inet_connection_sock *icsk = inet_csk(sk);
5475
5476	tcp_set_state(sk, TCP_ESTABLISHED);
5477
5478	if (skb) {
5479		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5480		security_inet_conn_established(sk, skb);
5481	}
5482
5483	/* Make sure socket is routed, for correct metrics.  */
5484	icsk->icsk_af_ops->rebuild_header(sk);
5485
5486	tcp_init_metrics(sk);
5487
5488	tcp_init_congestion_control(sk);
5489
5490	/* Prevent spurious tcp_cwnd_restart() on first data
5491	 * packet.
5492	 */
5493	tp->lsndtime = tcp_time_stamp;
5494
5495	tcp_init_buffer_space(sk);
5496
5497	if (sock_flag(sk, SOCK_KEEPOPEN))
5498		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5499
5500	if (!tp->rx_opt.snd_wscale)
5501		__tcp_fast_path_on(tp, tp->snd_wnd);
5502	else
5503		tp->pred_flags = 0;
5504
5505	if (!sock_flag(sk, SOCK_DEAD)) {
5506		sk->sk_state_change(sk);
5507		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5508	}
5509}
5510
5511static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5512				    struct tcp_fastopen_cookie *cookie)
5513{
5514	struct tcp_sock *tp = tcp_sk(sk);
5515	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5516	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5517	bool syn_drop = false;
5518
5519	if (mss == tp->rx_opt.user_mss) {
5520		struct tcp_options_received opt;
5521
5522		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5523		tcp_clear_options(&opt);
5524		opt.user_mss = opt.mss_clamp = 0;
5525		tcp_parse_options(synack, &opt, 0, NULL);
5526		mss = opt.mss_clamp;
5527	}
5528
5529	if (!tp->syn_fastopen) {
5530		/* Ignore an unsolicited cookie */
5531		cookie->len = -1;
5532	} else if (tp->total_retrans) {
5533		/* SYN timed out and the SYN-ACK neither has a cookie nor
5534		 * acknowledges data. Presumably the remote received only
5535		 * the retransmitted (regular) SYNs: either the original
5536		 * SYN-data or the corresponding SYN-ACK was dropped.
5537		 */
5538		syn_drop = (cookie->len < 0 && data);
5539	} else if (cookie->len < 0 && !tp->syn_data) {
5540		/* We requested a cookie but didn't get it. If we did not use
5541		 * the (old) exp opt format then try so next time (try_exp=1).
5542		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5543		 */
5544		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5545	}
5546
5547	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5548
5549	if (data) { /* Retransmit unacked data in SYN */
5550		tcp_for_write_queue_from(data, sk) {
5551			if (data == tcp_send_head(sk) ||
5552			    __tcp_retransmit_skb(sk, data))
5553				break;
5554		}
5555		tcp_rearm_rto(sk);
5556		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5557		return true;
5558	}
5559	tp->syn_data_acked = tp->syn_data;
5560	if (tp->syn_data_acked)
5561		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5562
5563	tcp_fastopen_add_skb(sk, synack);
5564
5565	return false;
5566}
5567
5568static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5569					 const struct tcphdr *th)
5570{
 
5571	struct inet_connection_sock *icsk = inet_csk(sk);
5572	struct tcp_sock *tp = tcp_sk(sk);
5573	struct tcp_fastopen_cookie foc = { .len = -1 };
5574	int saved_clamp = tp->rx_opt.mss_clamp;
5575
5576	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5577	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5578		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5579
5580	if (th->ack) {
5581		/* rfc793:
5582		 * "If the state is SYN-SENT then
5583		 *    first check the ACK bit
5584		 *      If the ACK bit is set
5585		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5586		 *        a reset (unless the RST bit is set, if so drop
5587		 *        the segment and return)"
 
 
 
5588		 */
5589		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5590		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5591			goto reset_and_undo;
5592
5593		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5594		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5595			     tcp_time_stamp)) {
5596			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5597			goto reset_and_undo;
5598		}
5599
5600		/* Now ACK is acceptable.
5601		 *
5602		 * "If the RST bit is set
5603		 *    If the ACK was acceptable then signal the user "error:
5604		 *    connection reset", drop the segment, enter CLOSED state,
5605		 *    delete TCB, and return."
5606		 */
5607
5608		if (th->rst) {
5609			tcp_reset(sk);
5610			goto discard;
5611		}
5612
5613		/* rfc793:
5614		 *   "fifth, if neither of the SYN or RST bits is set then
5615		 *    drop the segment and return."
5616		 *
5617		 *    See note below!
5618		 *                                        --ANK(990513)
5619		 */
5620		if (!th->syn)
5621			goto discard_and_undo;
5622
5623		/* rfc793:
5624		 *   "If the SYN bit is on ...
5625		 *    are acceptable then ...
5626		 *    (our SYN has been ACKed), change the connection
5627		 *    state to ESTABLISHED..."
5628		 */
5629
5630		tcp_ecn_rcv_synack(tp, th);
5631
5632		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5633		tcp_ack(sk, skb, FLAG_SLOWPATH);
5634
5635		/* Ok.. it's good. Set up sequence numbers and
5636		 * move to established.
5637		 */
5638		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5639		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5640
5641		/* RFC1323: The window in SYN & SYN/ACK segments is
5642		 * never scaled.
5643		 */
5644		tp->snd_wnd = ntohs(th->window);
 
5645
5646		if (!tp->rx_opt.wscale_ok) {
5647			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5648			tp->window_clamp = min(tp->window_clamp, 65535U);
5649		}
5650
5651		if (tp->rx_opt.saw_tstamp) {
5652			tp->rx_opt.tstamp_ok	   = 1;
5653			tp->tcp_header_len =
5654				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5655			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5656			tcp_store_ts_recent(tp);
5657		} else {
5658			tp->tcp_header_len = sizeof(struct tcphdr);
5659		}
5660
5661		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5662			tcp_enable_fack(tp);
5663
5664		tcp_mtup_init(sk);
5665		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5666		tcp_initialize_rcv_mss(sk);
5667
5668		/* Remember, tcp_poll() does not lock socket!
5669		 * Change state from SYN-SENT only after copied_seq
5670		 * is initialized. */
5671		tp->copied_seq = tp->rcv_nxt;
5672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5673		smp_mb();
5674
5675		tcp_finish_connect(sk, skb);
5676
5677		if ((tp->syn_fastopen || tp->syn_data) &&
5678		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5679			return -1;
5680
5681		if (sk->sk_write_pending ||
5682		    icsk->icsk_accept_queue.rskq_defer_accept ||
5683		    icsk->icsk_ack.pingpong) {
5684			/* Save one ACK. Data will be ready after
5685			 * several ticks, if write_pending is set.
5686			 *
5687			 * It may be deleted, but with this feature tcpdumps
5688			 * look so _wonderfully_ clever, that I was not able
5689			 * to stand against the temptation 8)     --ANK
5690			 */
5691			inet_csk_schedule_ack(sk);
5692			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5693			tcp_enter_quickack_mode(sk);
5694			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5695						  TCP_DELACK_MAX, TCP_RTO_MAX);
5696
5697discard:
5698			__kfree_skb(skb);
5699			return 0;
5700		} else {
5701			tcp_send_ack(sk);
5702		}
5703		return -1;
5704	}
5705
5706	/* No ACK in the segment */
5707
5708	if (th->rst) {
5709		/* rfc793:
5710		 * "If the RST bit is set
5711		 *
5712		 *      Otherwise (no ACK) drop the segment and return."
5713		 */
5714
5715		goto discard_and_undo;
5716	}
5717
5718	/* PAWS check. */
5719	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5720	    tcp_paws_reject(&tp->rx_opt, 0))
5721		goto discard_and_undo;
5722
5723	if (th->syn) {
5724		/* We see SYN without ACK. It is attempt of
5725		 * simultaneous connect with crossed SYNs.
5726		 * Particularly, it can be connect to self.
5727		 */
5728		tcp_set_state(sk, TCP_SYN_RECV);
5729
5730		if (tp->rx_opt.saw_tstamp) {
5731			tp->rx_opt.tstamp_ok = 1;
5732			tcp_store_ts_recent(tp);
5733			tp->tcp_header_len =
5734				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5735		} else {
5736			tp->tcp_header_len = sizeof(struct tcphdr);
5737		}
5738
5739		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5740		tp->copied_seq = tp->rcv_nxt;
5741		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5742
5743		/* RFC1323: The window in SYN & SYN/ACK segments is
5744		 * never scaled.
5745		 */
5746		tp->snd_wnd    = ntohs(th->window);
5747		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5748		tp->max_window = tp->snd_wnd;
5749
5750		tcp_ecn_rcv_syn(tp, th);
5751
5752		tcp_mtup_init(sk);
5753		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5754		tcp_initialize_rcv_mss(sk);
5755
5756		tcp_send_synack(sk);
5757#if 0
5758		/* Note, we could accept data and URG from this segment.
5759		 * There are no obstacles to make this (except that we must
5760		 * either change tcp_recvmsg() to prevent it from returning data
5761		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5762		 *
5763		 * However, if we ignore data in ACKless segments sometimes,
5764		 * we have no reasons to accept it sometimes.
5765		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5766		 * is not flawless. So, discard packet for sanity.
5767		 * Uncomment this return to process the data.
5768		 */
5769		return -1;
5770#else
5771		goto discard;
5772#endif
5773	}
5774	/* "fifth, if neither of the SYN or RST bits is set then
5775	 * drop the segment and return."
5776	 */
5777
5778discard_and_undo:
5779	tcp_clear_options(&tp->rx_opt);
5780	tp->rx_opt.mss_clamp = saved_clamp;
5781	goto discard;
5782
5783reset_and_undo:
5784	tcp_clear_options(&tp->rx_opt);
5785	tp->rx_opt.mss_clamp = saved_clamp;
5786	return 1;
5787}
5788
5789/*
5790 *	This function implements the receiving procedure of RFC 793 for
5791 *	all states except ESTABLISHED and TIME_WAIT.
5792 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5793 *	address independent.
5794 */
5795
5796int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
 
5797{
5798	struct tcp_sock *tp = tcp_sk(sk);
5799	struct inet_connection_sock *icsk = inet_csk(sk);
5800	const struct tcphdr *th = tcp_hdr(skb);
5801	struct request_sock *req;
5802	int queued = 0;
5803	bool acceptable;
5804
5805	tp->rx_opt.saw_tstamp = 0;
5806
5807	switch (sk->sk_state) {
5808	case TCP_CLOSE:
5809		goto discard;
5810
5811	case TCP_LISTEN:
5812		if (th->ack)
5813			return 1;
5814
5815		if (th->rst)
5816			goto discard;
5817
5818		if (th->syn) {
5819			if (th->fin)
5820				goto discard;
5821			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5822				return 1;
5823
5824			/* Now we have several options: In theory there is
5825			 * nothing else in the frame. KA9Q has an option to
5826			 * send data with the syn, BSD accepts data with the
5827			 * syn up to the [to be] advertised window and
5828			 * Solaris 2.1 gives you a protocol error. For now
5829			 * we just ignore it, that fits the spec precisely
5830			 * and avoids incompatibilities. It would be nice in
5831			 * future to drop through and process the data.
5832			 *
5833			 * Now that TTCP is starting to be used we ought to
5834			 * queue this data.
5835			 * But, this leaves one open to an easy denial of
5836			 * service attack, and SYN cookies can't defend
5837			 * against this problem. So, we drop the data
5838			 * in the interest of security over speed unless
5839			 * it's still in use.
5840			 */
5841			kfree_skb(skb);
5842			return 0;
5843		}
5844		goto discard;
5845
5846	case TCP_SYN_SENT:
5847		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5848		if (queued >= 0)
5849			return queued;
5850
5851		/* Do step6 onward by hand. */
5852		tcp_urg(sk, skb, th);
5853		__kfree_skb(skb);
5854		tcp_data_snd_check(sk);
5855		return 0;
5856	}
5857
5858	req = tp->fastopen_rsk;
5859	if (req) {
5860		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5861		    sk->sk_state != TCP_FIN_WAIT1);
5862
5863		if (!tcp_check_req(sk, skb, req, true))
5864			goto discard;
5865	}
5866
5867	if (!th->ack && !th->rst && !th->syn)
5868		goto discard;
5869
5870	if (!tcp_validate_incoming(sk, skb, th, 0))
5871		return 0;
5872
5873	/* step 5: check the ACK field */
5874	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5875				      FLAG_UPDATE_TS_RECENT) > 0;
5876
5877	switch (sk->sk_state) {
5878	case TCP_SYN_RECV:
5879		if (!acceptable)
5880			return 1;
5881
5882		if (!tp->srtt_us)
5883			tcp_synack_rtt_meas(sk, req);
5884
5885		/* Once we leave TCP_SYN_RECV, we no longer need req
5886		 * so release it.
5887		 */
5888		if (req) {
5889			tp->total_retrans = req->num_retrans;
5890			reqsk_fastopen_remove(sk, req, false);
5891		} else {
5892			/* Make sure socket is routed, for correct metrics. */
5893			icsk->icsk_af_ops->rebuild_header(sk);
5894			tcp_init_congestion_control(sk);
5895
5896			tcp_mtup_init(sk);
5897			tp->copied_seq = tp->rcv_nxt;
5898			tcp_init_buffer_space(sk);
5899		}
5900		smp_mb();
5901		tcp_set_state(sk, TCP_ESTABLISHED);
5902		sk->sk_state_change(sk);
5903
5904		/* Note, that this wakeup is only for marginal crossed SYN case.
5905		 * Passively open sockets are not waked up, because
5906		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5907		 */
5908		if (sk->sk_socket)
5909			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5910
5911		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5912		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5913		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5914
5915		if (tp->rx_opt.tstamp_ok)
5916			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5917
5918		if (req) {
5919			/* Re-arm the timer because data may have been sent out.
5920			 * This is similar to the regular data transmission case
5921			 * when new data has just been ack'ed.
5922			 *
5923			 * (TFO) - we could try to be more aggressive and
5924			 * retransmitting any data sooner based on when they
5925			 * are sent out.
5926			 */
5927			tcp_rearm_rto(sk);
5928		} else
5929			tcp_init_metrics(sk);
5930
5931		tcp_update_pacing_rate(sk);
5932
5933		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5934		tp->lsndtime = tcp_time_stamp;
5935
5936		tcp_initialize_rcv_mss(sk);
5937		tcp_fast_path_on(tp);
5938		break;
 
5939
5940	case TCP_FIN_WAIT1: {
5941		struct dst_entry *dst;
5942		int tmo;
5943
5944		/* If we enter the TCP_FIN_WAIT1 state and we are a
5945		 * Fast Open socket and this is the first acceptable
5946		 * ACK we have received, this would have acknowledged
5947		 * our SYNACK so stop the SYNACK timer.
5948		 */
5949		if (req) {
5950			/* Return RST if ack_seq is invalid.
5951			 * Note that RFC793 only says to generate a
5952			 * DUPACK for it but for TCP Fast Open it seems
5953			 * better to treat this case like TCP_SYN_RECV
5954			 * above.
5955			 */
5956			if (!acceptable)
5957				return 1;
5958			/* We no longer need the request sock. */
5959			reqsk_fastopen_remove(sk, req, false);
5960			tcp_rearm_rto(sk);
5961		}
5962		if (tp->snd_una != tp->write_seq)
5963			break;
5964
5965		tcp_set_state(sk, TCP_FIN_WAIT2);
5966		sk->sk_shutdown |= SEND_SHUTDOWN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5967
5968		dst = __sk_dst_get(sk);
5969		if (dst)
5970			dst_confirm(dst);
5971
5972		if (!sock_flag(sk, SOCK_DEAD)) {
5973			/* Wake up lingering close() */
5974			sk->sk_state_change(sk);
 
 
 
 
 
 
 
 
 
 
5975			break;
5976		}
5977
5978		if (tp->linger2 < 0 ||
5979		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5980		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5981			tcp_done(sk);
5982			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5983			return 1;
5984		}
5985
5986		tmo = tcp_fin_time(sk);
5987		if (tmo > TCP_TIMEWAIT_LEN) {
5988			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5989		} else if (th->fin || sock_owned_by_user(sk)) {
5990			/* Bad case. We could lose such FIN otherwise.
5991			 * It is not a big problem, but it looks confusing
5992			 * and not so rare event. We still can lose it now,
5993			 * if it spins in bh_lock_sock(), but it is really
5994			 * marginal case.
5995			 */
5996			inet_csk_reset_keepalive_timer(sk, tmo);
5997		} else {
5998			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5999			goto discard;
6000		}
6001		break;
6002	}
6003
6004	case TCP_CLOSING:
6005		if (tp->snd_una == tp->write_seq) {
6006			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6007			goto discard;
6008		}
6009		break;
6010
6011	case TCP_LAST_ACK:
6012		if (tp->snd_una == tp->write_seq) {
6013			tcp_update_metrics(sk);
6014			tcp_done(sk);
6015			goto discard;
 
 
6016		}
6017		break;
6018	}
6019
6020	/* step 6: check the URG bit */
6021	tcp_urg(sk, skb, th);
6022
6023	/* step 7: process the segment text */
6024	switch (sk->sk_state) {
6025	case TCP_CLOSE_WAIT:
6026	case TCP_CLOSING:
6027	case TCP_LAST_ACK:
6028		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6029			break;
6030	case TCP_FIN_WAIT1:
6031	case TCP_FIN_WAIT2:
6032		/* RFC 793 says to queue data in these states,
6033		 * RFC 1122 says we MUST send a reset.
6034		 * BSD 4.4 also does reset.
6035		 */
6036		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6037			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6038			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6039				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6040				tcp_reset(sk);
6041				return 1;
6042			}
6043		}
6044		/* Fall through */
6045	case TCP_ESTABLISHED:
6046		tcp_data_queue(sk, skb);
6047		queued = 1;
6048		break;
6049	}
6050
6051	/* tcp_data could move socket to TIME-WAIT */
6052	if (sk->sk_state != TCP_CLOSE) {
6053		tcp_data_snd_check(sk);
6054		tcp_ack_snd_check(sk);
6055	}
6056
6057	if (!queued) {
6058discard:
6059		__kfree_skb(skb);
6060	}
6061	return 0;
6062}
6063EXPORT_SYMBOL(tcp_rcv_state_process);
6064
6065static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6066{
6067	struct inet_request_sock *ireq = inet_rsk(req);
6068
6069	if (family == AF_INET)
6070		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6071				    &ireq->ir_rmt_addr, port);
6072#if IS_ENABLED(CONFIG_IPV6)
6073	else if (family == AF_INET6)
6074		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6075				    &ireq->ir_v6_rmt_addr, port);
6076#endif
6077}
6078
6079/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6080 *
6081 * If we receive a SYN packet with these bits set, it means a
6082 * network is playing bad games with TOS bits. In order to
6083 * avoid possible false congestion notifications, we disable
6084 * TCP ECN negotiation.
6085 *
6086 * Exception: tcp_ca wants ECN. This is required for DCTCP
6087 * congestion control: Linux DCTCP asserts ECT on all packets,
6088 * including SYN, which is most optimal solution; however,
6089 * others, such as FreeBSD do not.
6090 */
6091static void tcp_ecn_create_request(struct request_sock *req,
6092				   const struct sk_buff *skb,
6093				   const struct sock *listen_sk,
6094				   const struct dst_entry *dst)
6095{
6096	const struct tcphdr *th = tcp_hdr(skb);
6097	const struct net *net = sock_net(listen_sk);
6098	bool th_ecn = th->ece && th->cwr;
6099	bool ect, ecn_ok;
6100	u32 ecn_ok_dst;
6101
6102	if (!th_ecn)
6103		return;
6104
6105	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6106	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6107	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6108
6109	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6110	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6111		inet_rsk(req)->ecn_ok = 1;
6112}
6113
6114static void tcp_openreq_init(struct request_sock *req,
6115			     const struct tcp_options_received *rx_opt,
6116			     struct sk_buff *skb, const struct sock *sk)
6117{
6118	struct inet_request_sock *ireq = inet_rsk(req);
6119
6120	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6121	req->cookie_ts = 0;
6122	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6123	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6124	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6125	tcp_rsk(req)->last_oow_ack_time = 0;
6126	req->mss = rx_opt->mss_clamp;
6127	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6128	ireq->tstamp_ok = rx_opt->tstamp_ok;
6129	ireq->sack_ok = rx_opt->sack_ok;
6130	ireq->snd_wscale = rx_opt->snd_wscale;
6131	ireq->wscale_ok = rx_opt->wscale_ok;
6132	ireq->acked = 0;
6133	ireq->ecn_ok = 0;
6134	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6135	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6136	ireq->ir_mark = inet_request_mark(sk, skb);
6137}
6138
6139struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6140				      struct sock *sk_listener,
6141				      bool attach_listener)
6142{
6143	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6144					       attach_listener);
6145
6146	if (req) {
6147		struct inet_request_sock *ireq = inet_rsk(req);
6148
6149		kmemcheck_annotate_bitfield(ireq, flags);
6150		ireq->opt = NULL;
6151		atomic64_set(&ireq->ir_cookie, 0);
6152		ireq->ireq_state = TCP_NEW_SYN_RECV;
6153		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6154		ireq->ireq_family = sk_listener->sk_family;
6155	}
6156
6157	return req;
6158}
6159EXPORT_SYMBOL(inet_reqsk_alloc);
6160
6161/*
6162 * Return true if a syncookie should be sent
6163 */
6164static bool tcp_syn_flood_action(const struct sock *sk,
6165				 const struct sk_buff *skb,
6166				 const char *proto)
6167{
6168	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6169	const char *msg = "Dropping request";
6170	bool want_cookie = false;
6171	struct net *net = sock_net(sk);
6172
6173#ifdef CONFIG_SYN_COOKIES
6174	if (net->ipv4.sysctl_tcp_syncookies) {
6175		msg = "Sending cookies";
6176		want_cookie = true;
6177		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6178	} else
6179#endif
6180		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6181
6182	if (!queue->synflood_warned &&
6183	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6184	    xchg(&queue->synflood_warned, 1) == 0)
6185		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6186			proto, ntohs(tcp_hdr(skb)->dest), msg);
6187
6188	return want_cookie;
6189}
6190
6191static void tcp_reqsk_record_syn(const struct sock *sk,
6192				 struct request_sock *req,
6193				 const struct sk_buff *skb)
6194{
6195	if (tcp_sk(sk)->save_syn) {
6196		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6197		u32 *copy;
6198
6199		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6200		if (copy) {
6201			copy[0] = len;
6202			memcpy(&copy[1], skb_network_header(skb), len);
6203			req->saved_syn = copy;
6204		}
6205	}
6206}
6207
6208int tcp_conn_request(struct request_sock_ops *rsk_ops,
6209		     const struct tcp_request_sock_ops *af_ops,
6210		     struct sock *sk, struct sk_buff *skb)
6211{
6212	struct tcp_fastopen_cookie foc = { .len = -1 };
6213	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6214	struct tcp_options_received tmp_opt;
6215	struct tcp_sock *tp = tcp_sk(sk);
6216	struct net *net = sock_net(sk);
6217	struct sock *fastopen_sk = NULL;
6218	struct dst_entry *dst = NULL;
6219	struct request_sock *req;
6220	bool want_cookie = false;
6221	struct flowi fl;
6222
6223	/* TW buckets are converted to open requests without
6224	 * limitations, they conserve resources and peer is
6225	 * evidently real one.
6226	 */
6227	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6228	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6229		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6230		if (!want_cookie)
6231			goto drop;
6232	}
6233
6234
6235	/* Accept backlog is full. If we have already queued enough
6236	 * of warm entries in syn queue, drop request. It is better than
6237	 * clogging syn queue with openreqs with exponentially increasing
6238	 * timeout.
6239	 */
6240	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6241		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6242		goto drop;
6243	}
6244
6245	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6246	if (!req)
6247		goto drop;
6248
6249	tcp_rsk(req)->af_specific = af_ops;
6250
6251	tcp_clear_options(&tmp_opt);
6252	tmp_opt.mss_clamp = af_ops->mss_clamp;
6253	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6254	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6255
6256	if (want_cookie && !tmp_opt.saw_tstamp)
6257		tcp_clear_options(&tmp_opt);
6258
6259	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6260	tcp_openreq_init(req, &tmp_opt, skb, sk);
6261
6262	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6263	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6264
6265	af_ops->init_req(req, sk, skb);
6266
6267	if (security_inet_conn_request(sk, skb, req))
6268		goto drop_and_free;
6269
6270	if (!want_cookie && !isn) {
6271		/* VJ's idea. We save last timestamp seen
6272		 * from the destination in peer table, when entering
6273		 * state TIME-WAIT, and check against it before
6274		 * accepting new connection request.
6275		 *
6276		 * If "isn" is not zero, this request hit alive
6277		 * timewait bucket, so that all the necessary checks
6278		 * are made in the function processing timewait state.
6279		 */
6280		if (tcp_death_row.sysctl_tw_recycle) {
6281			bool strict;
6282
6283			dst = af_ops->route_req(sk, &fl, req, &strict);
6284
6285			if (dst && strict &&
6286			    !tcp_peer_is_proven(req, dst, true,
6287						tmp_opt.saw_tstamp)) {
6288				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6289				goto drop_and_release;
6290			}
6291		}
6292		/* Kill the following clause, if you dislike this way. */
6293		else if (!net->ipv4.sysctl_tcp_syncookies &&
6294			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6295			  (sysctl_max_syn_backlog >> 2)) &&
6296			 !tcp_peer_is_proven(req, dst, false,
6297					     tmp_opt.saw_tstamp)) {
6298			/* Without syncookies last quarter of
6299			 * backlog is filled with destinations,
6300			 * proven to be alive.
6301			 * It means that we continue to communicate
6302			 * to destinations, already remembered
6303			 * to the moment of synflood.
6304			 */
6305			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6306				    rsk_ops->family);
6307			goto drop_and_release;
6308		}
6309
6310		isn = af_ops->init_seq(skb);
6311	}
6312	if (!dst) {
6313		dst = af_ops->route_req(sk, &fl, req, NULL);
6314		if (!dst)
6315			goto drop_and_free;
6316	}
6317
6318	tcp_ecn_create_request(req, skb, sk, dst);
6319
6320	if (want_cookie) {
6321		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6322		req->cookie_ts = tmp_opt.tstamp_ok;
6323		if (!tmp_opt.tstamp_ok)
6324			inet_rsk(req)->ecn_ok = 0;
6325	}
6326
6327	tcp_rsk(req)->snt_isn = isn;
6328	tcp_rsk(req)->txhash = net_tx_rndhash();
6329	tcp_openreq_init_rwin(req, sk, dst);
6330	if (!want_cookie) {
6331		tcp_reqsk_record_syn(sk, req, skb);
6332		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6333	}
6334	if (fastopen_sk) {
6335		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6336				    &foc, false);
6337		/* Add the child socket directly into the accept queue */
6338		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6339		sk->sk_data_ready(sk);
6340		bh_unlock_sock(fastopen_sk);
6341		sock_put(fastopen_sk);
6342	} else {
6343		tcp_rsk(req)->tfo_listener = false;
6344		if (!want_cookie)
6345			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6346		af_ops->send_synack(sk, dst, &fl, req,
6347				    &foc, !want_cookie);
6348		if (want_cookie)
6349			goto drop_and_free;
6350	}
6351	reqsk_put(req);
6352	return 0;
6353
6354drop_and_release:
6355	dst_release(dst);
6356drop_and_free:
6357	reqsk_free(req);
6358drop:
6359	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6360	return 0;
6361}
6362EXPORT_SYMBOL(tcp_conn_request);
v3.5.6
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *		Pedro Roque	:	Fast Retransmit/Recovery.
  24 *					Two receive queues.
  25 *					Retransmit queue handled by TCP.
  26 *					Better retransmit timer handling.
  27 *					New congestion avoidance.
  28 *					Header prediction.
  29 *					Variable renaming.
  30 *
  31 *		Eric		:	Fast Retransmit.
  32 *		Randy Scott	:	MSS option defines.
  33 *		Eric Schenk	:	Fixes to slow start algorithm.
  34 *		Eric Schenk	:	Yet another double ACK bug.
  35 *		Eric Schenk	:	Delayed ACK bug fixes.
  36 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
  37 *		David S. Miller	:	Don't allow zero congestion window.
  38 *		Eric Schenk	:	Fix retransmitter so that it sends
  39 *					next packet on ack of previous packet.
  40 *		Andi Kleen	:	Moved open_request checking here
  41 *					and process RSTs for open_requests.
  42 *		Andi Kleen	:	Better prune_queue, and other fixes.
  43 *		Andrey Savochkin:	Fix RTT measurements in the presence of
  44 *					timestamps.
  45 *		Andrey Savochkin:	Check sequence numbers correctly when
  46 *					removing SACKs due to in sequence incoming
  47 *					data segments.
  48 *		Andi Kleen:		Make sure we never ack data there is not
  49 *					enough room for. Also make this condition
  50 *					a fatal error if it might still happen.
  51 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
  52 *					connections with MSS<min(MTU,ann. MSS)
  53 *					work without delayed acks.
  54 *		Andi Kleen:		Process packets with PSH set in the
  55 *					fast path.
  56 *		J Hadi Salim:		ECN support
  57 *	 	Andrei Gurtov,
  58 *		Pasi Sarolahti,
  59 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
  60 *					engine. Lots of bugs are found.
  61 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
  62 */
  63
  64#define pr_fmt(fmt) "TCP: " fmt
  65
  66#include <linux/mm.h>
  67#include <linux/slab.h>
  68#include <linux/module.h>
  69#include <linux/sysctl.h>
  70#include <linux/kernel.h>
 
  71#include <net/dst.h>
  72#include <net/tcp.h>
  73#include <net/inet_common.h>
  74#include <linux/ipsec.h>
  75#include <asm/unaligned.h>
  76#include <net/netdma.h>
  77
  78int sysctl_tcp_timestamps __read_mostly = 1;
  79int sysctl_tcp_window_scaling __read_mostly = 1;
  80int sysctl_tcp_sack __read_mostly = 1;
  81int sysctl_tcp_fack __read_mostly = 1;
  82int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  83EXPORT_SYMBOL(sysctl_tcp_reordering);
  84int sysctl_tcp_ecn __read_mostly = 2;
  85EXPORT_SYMBOL(sysctl_tcp_ecn);
  86int sysctl_tcp_dsack __read_mostly = 1;
  87int sysctl_tcp_app_win __read_mostly = 31;
  88int sysctl_tcp_adv_win_scale __read_mostly = 1;
  89EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  90
 
 
 
  91int sysctl_tcp_stdurg __read_mostly;
  92int sysctl_tcp_rfc1337 __read_mostly;
  93int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  94int sysctl_tcp_frto __read_mostly = 2;
  95int sysctl_tcp_frto_response __read_mostly;
  96int sysctl_tcp_nometrics_save __read_mostly;
  97
  98int sysctl_tcp_thin_dupack __read_mostly;
  99
 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
 101int sysctl_tcp_abc __read_mostly;
 102int sysctl_tcp_early_retrans __read_mostly = 2;
 103
 104#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
 105#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
 106#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
 107#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
 108#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
 109#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
 110#define FLAG_ECE		0x40 /* ECE in this ACK				*/
 
 111#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
 112#define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
 113#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 114#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
 115#define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
 116#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
 
 117
 118#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 119#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 120#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
 121#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
 122#define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
 123
 124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 126
 
 
 
 
 127/* Adapt the MSS value used to make delayed ack decision to the
 128 * real world.
 129 */
 130static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 131{
 132	struct inet_connection_sock *icsk = inet_csk(sk);
 133	const unsigned int lss = icsk->icsk_ack.last_seg_size;
 134	unsigned int len;
 135
 136	icsk->icsk_ack.last_seg_size = 0;
 137
 138	/* skb->len may jitter because of SACKs, even if peer
 139	 * sends good full-sized frames.
 140	 */
 141	len = skb_shinfo(skb)->gso_size ? : skb->len;
 142	if (len >= icsk->icsk_ack.rcv_mss) {
 143		icsk->icsk_ack.rcv_mss = len;
 144	} else {
 145		/* Otherwise, we make more careful check taking into account,
 146		 * that SACKs block is variable.
 147		 *
 148		 * "len" is invariant segment length, including TCP header.
 149		 */
 150		len += skb->data - skb_transport_header(skb);
 151		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 152		    /* If PSH is not set, packet should be
 153		     * full sized, provided peer TCP is not badly broken.
 154		     * This observation (if it is correct 8)) allows
 155		     * to handle super-low mtu links fairly.
 156		     */
 157		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 158		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 159			/* Subtract also invariant (if peer is RFC compliant),
 160			 * tcp header plus fixed timestamp option length.
 161			 * Resulting "len" is MSS free of SACK jitter.
 162			 */
 163			len -= tcp_sk(sk)->tcp_header_len;
 164			icsk->icsk_ack.last_seg_size = len;
 165			if (len == lss) {
 166				icsk->icsk_ack.rcv_mss = len;
 167				return;
 168			}
 169		}
 170		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 171			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 172		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 173	}
 174}
 175
 176static void tcp_incr_quickack(struct sock *sk)
 177{
 178	struct inet_connection_sock *icsk = inet_csk(sk);
 179	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 180
 181	if (quickacks == 0)
 182		quickacks = 2;
 183	if (quickacks > icsk->icsk_ack.quick)
 184		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 185}
 186
 187static void tcp_enter_quickack_mode(struct sock *sk)
 188{
 189	struct inet_connection_sock *icsk = inet_csk(sk);
 190	tcp_incr_quickack(sk);
 191	icsk->icsk_ack.pingpong = 0;
 192	icsk->icsk_ack.ato = TCP_ATO_MIN;
 193}
 194
 195/* Send ACKs quickly, if "quick" count is not exhausted
 196 * and the session is not interactive.
 197 */
 198
 199static inline bool tcp_in_quickack_mode(const struct sock *sk)
 200{
 201	const struct inet_connection_sock *icsk = inet_csk(sk);
 
 202
 203	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
 
 204}
 205
 206static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
 207{
 208	if (tp->ecn_flags & TCP_ECN_OK)
 209		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 210}
 211
 212static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 213{
 214	if (tcp_hdr(skb)->cwr)
 215		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 216}
 217
 218static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
 219{
 220	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 221}
 222
 223static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 224{
 225	if (!(tp->ecn_flags & TCP_ECN_OK))
 226		return;
 227
 228	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 229	case INET_ECN_NOT_ECT:
 230		/* Funny extension: if ECT is not set on a segment,
 231		 * and we already seen ECT on a previous segment,
 232		 * it is probably a retransmit.
 233		 */
 234		if (tp->ecn_flags & TCP_ECN_SEEN)
 235			tcp_enter_quickack_mode((struct sock *)tp);
 236		break;
 237	case INET_ECN_CE:
 238		tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 239		/* fallinto */
 
 
 
 
 
 
 
 
 240	default:
 
 
 241		tp->ecn_flags |= TCP_ECN_SEEN;
 
 242	}
 243}
 244
 245static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 
 
 
 
 
 
 246{
 247	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 248		tp->ecn_flags &= ~TCP_ECN_OK;
 249}
 250
 251static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 252{
 253	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 254		tp->ecn_flags &= ~TCP_ECN_OK;
 255}
 256
 257static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 258{
 259	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 260		return true;
 261	return false;
 262}
 263
 264/* Buffer size and advertised window tuning.
 265 *
 266 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 267 */
 268
 269static void tcp_fixup_sndbuf(struct sock *sk)
 270{
 271	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 272
 273	sndmem *= TCP_INIT_CWND;
 274	if (sk->sk_sndbuf < sndmem)
 275		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 276}
 277
 278/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 279 *
 280 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 281 * forward and advertised in receiver window (tp->rcv_wnd) and
 282 * "application buffer", required to isolate scheduling/application
 283 * latencies from network.
 284 * window_clamp is maximal advertised window. It can be less than
 285 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 286 * is reserved for "application" buffer. The less window_clamp is
 287 * the smoother our behaviour from viewpoint of network, but the lower
 288 * throughput and the higher sensitivity of the connection to losses. 8)
 289 *
 290 * rcv_ssthresh is more strict window_clamp used at "slow start"
 291 * phase to predict further behaviour of this connection.
 292 * It is used for two goals:
 293 * - to enforce header prediction at sender, even when application
 294 *   requires some significant "application buffer". It is check #1.
 295 * - to prevent pruning of receive queue because of misprediction
 296 *   of receiver window. Check #2.
 297 *
 298 * The scheme does not work when sender sends good segments opening
 299 * window and then starts to feed us spaghetti. But it should work
 300 * in common situations. Otherwise, we have to rely on queue collapsing.
 301 */
 302
 303/* Slow part of check#2. */
 304static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 305{
 306	struct tcp_sock *tp = tcp_sk(sk);
 307	/* Optimize this! */
 308	int truesize = tcp_win_from_space(skb->truesize) >> 1;
 309	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 310
 311	while (tp->rcv_ssthresh <= window) {
 312		if (truesize <= skb->len)
 313			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 314
 315		truesize >>= 1;
 316		window >>= 1;
 317	}
 318	return 0;
 319}
 320
 321static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 322{
 323	struct tcp_sock *tp = tcp_sk(sk);
 324
 325	/* Check #1 */
 326	if (tp->rcv_ssthresh < tp->window_clamp &&
 327	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
 328	    !sk_under_memory_pressure(sk)) {
 329		int incr;
 330
 331		/* Check #2. Increase window, if skb with such overhead
 332		 * will fit to rcvbuf in future.
 333		 */
 334		if (tcp_win_from_space(skb->truesize) <= skb->len)
 335			incr = 2 * tp->advmss;
 336		else
 337			incr = __tcp_grow_window(sk, skb);
 338
 339		if (incr) {
 340			incr = max_t(int, incr, 2 * skb->len);
 341			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 342					       tp->window_clamp);
 343			inet_csk(sk)->icsk_ack.quick |= 1;
 344		}
 345	}
 346}
 347
 348/* 3. Tuning rcvbuf, when connection enters established state. */
 349
 350static void tcp_fixup_rcvbuf(struct sock *sk)
 351{
 352	u32 mss = tcp_sk(sk)->advmss;
 353	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
 354	int rcvmem;
 355
 356	/* Limit to 10 segments if mss <= 1460,
 357	 * or 14600/mss segments, with a minimum of two segments.
 
 
 
 358	 */
 359	if (mss > 1460)
 360		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
 361
 362	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
 363	while (tcp_win_from_space(rcvmem) < mss)
 364		rcvmem += 128;
 365
 366	rcvmem *= icwnd;
 367
 368	if (sk->sk_rcvbuf < rcvmem)
 369		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
 370}
 371
 372/* 4. Try to fixup all. It is made immediately after connection enters
 373 *    established state.
 374 */
 375static void tcp_init_buffer_space(struct sock *sk)
 376{
 377	struct tcp_sock *tp = tcp_sk(sk);
 378	int maxwin;
 379
 380	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 381		tcp_fixup_rcvbuf(sk);
 382	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 383		tcp_fixup_sndbuf(sk);
 384
 385	tp->rcvq_space.space = tp->rcv_wnd;
 
 
 386
 387	maxwin = tcp_full_space(sk);
 388
 389	if (tp->window_clamp >= maxwin) {
 390		tp->window_clamp = maxwin;
 391
 392		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 393			tp->window_clamp = max(maxwin -
 394					       (maxwin >> sysctl_tcp_app_win),
 395					       4 * tp->advmss);
 396	}
 397
 398	/* Force reservation of one segment. */
 399	if (sysctl_tcp_app_win &&
 400	    tp->window_clamp > 2 * tp->advmss &&
 401	    tp->window_clamp + tp->advmss > maxwin)
 402		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 403
 404	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 405	tp->snd_cwnd_stamp = tcp_time_stamp;
 406}
 407
 408/* 5. Recalculate window clamp after socket hit its memory bounds. */
 409static void tcp_clamp_window(struct sock *sk)
 410{
 411	struct tcp_sock *tp = tcp_sk(sk);
 412	struct inet_connection_sock *icsk = inet_csk(sk);
 413
 414	icsk->icsk_ack.quick = 0;
 415
 416	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 417	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 418	    !sk_under_memory_pressure(sk) &&
 419	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 420		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 421				    sysctl_tcp_rmem[2]);
 422	}
 423	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 424		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 425}
 426
 427/* Initialize RCV_MSS value.
 428 * RCV_MSS is an our guess about MSS used by the peer.
 429 * We haven't any direct information about the MSS.
 430 * It's better to underestimate the RCV_MSS rather than overestimate.
 431 * Overestimations make us ACKing less frequently than needed.
 432 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 433 */
 434void tcp_initialize_rcv_mss(struct sock *sk)
 435{
 436	const struct tcp_sock *tp = tcp_sk(sk);
 437	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 438
 439	hint = min(hint, tp->rcv_wnd / 2);
 440	hint = min(hint, TCP_MSS_DEFAULT);
 441	hint = max(hint, TCP_MIN_MSS);
 442
 443	inet_csk(sk)->icsk_ack.rcv_mss = hint;
 444}
 445EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 446
 447/* Receiver "autotuning" code.
 448 *
 449 * The algorithm for RTT estimation w/o timestamps is based on
 450 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 451 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 452 *
 453 * More detail on this code can be found at
 454 * <http://staff.psc.edu/jheffner/>,
 455 * though this reference is out of date.  A new paper
 456 * is pending.
 457 */
 458static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 459{
 460	u32 new_sample = tp->rcv_rtt_est.rtt;
 461	long m = sample;
 462
 463	if (m == 0)
 464		m = 1;
 465
 466	if (new_sample != 0) {
 467		/* If we sample in larger samples in the non-timestamp
 468		 * case, we could grossly overestimate the RTT especially
 469		 * with chatty applications or bulk transfer apps which
 470		 * are stalled on filesystem I/O.
 471		 *
 472		 * Also, since we are only going for a minimum in the
 473		 * non-timestamp case, we do not smooth things out
 474		 * else with timestamps disabled convergence takes too
 475		 * long.
 476		 */
 477		if (!win_dep) {
 478			m -= (new_sample >> 3);
 479			new_sample += m;
 480		} else {
 481			m <<= 3;
 482			if (m < new_sample)
 483				new_sample = m;
 484		}
 485	} else {
 486		/* No previous measure. */
 487		new_sample = m << 3;
 488	}
 489
 490	if (tp->rcv_rtt_est.rtt != new_sample)
 491		tp->rcv_rtt_est.rtt = new_sample;
 492}
 493
 494static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 495{
 496	if (tp->rcv_rtt_est.time == 0)
 497		goto new_measure;
 498	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 499		return;
 500	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
 501
 502new_measure:
 503	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 504	tp->rcv_rtt_est.time = tcp_time_stamp;
 505}
 506
 507static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 508					  const struct sk_buff *skb)
 509{
 510	struct tcp_sock *tp = tcp_sk(sk);
 511	if (tp->rx_opt.rcv_tsecr &&
 512	    (TCP_SKB_CB(skb)->end_seq -
 513	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 514		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 515}
 516
 517/*
 518 * This function should be called every time data is copied to user space.
 519 * It calculates the appropriate TCP receive buffer space.
 520 */
 521void tcp_rcv_space_adjust(struct sock *sk)
 522{
 523	struct tcp_sock *tp = tcp_sk(sk);
 524	int time;
 525	int space;
 526
 527	if (tp->rcvq_space.time == 0)
 528		goto new_measure;
 529
 530	time = tcp_time_stamp - tp->rcvq_space.time;
 531	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 532		return;
 533
 534	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
 
 
 
 535
 536	space = max(tp->rcvq_space.space, space);
 537
 538	if (tp->rcvq_space.space != space) {
 539		int rcvmem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540
 541		tp->rcvq_space.space = space;
 
 
 542
 543		if (sysctl_tcp_moderate_rcvbuf &&
 544		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 545			int new_clamp = space;
 546
 547			/* Receive space grows, normalize in order to
 548			 * take into account packet headers and sk_buff
 549			 * structure overhead.
 550			 */
 551			space /= tp->advmss;
 552			if (!space)
 553				space = 1;
 554			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 555			while (tcp_win_from_space(rcvmem) < tp->advmss)
 556				rcvmem += 128;
 557			space *= rcvmem;
 558			space = min(space, sysctl_tcp_rmem[2]);
 559			if (space > sk->sk_rcvbuf) {
 560				sk->sk_rcvbuf = space;
 561
 562				/* Make the window clamp follow along.  */
 563				tp->window_clamp = new_clamp;
 564			}
 565		}
 566	}
 
 567
 568new_measure:
 569	tp->rcvq_space.seq = tp->copied_seq;
 570	tp->rcvq_space.time = tcp_time_stamp;
 571}
 572
 573/* There is something which you must keep in mind when you analyze the
 574 * behavior of the tp->ato delayed ack timeout interval.  When a
 575 * connection starts up, we want to ack as quickly as possible.  The
 576 * problem is that "good" TCP's do slow start at the beginning of data
 577 * transmission.  The means that until we send the first few ACK's the
 578 * sender will sit on his end and only queue most of his data, because
 579 * he can only send snd_cwnd unacked packets at any given time.  For
 580 * each ACK we send, he increments snd_cwnd and transmits more of his
 581 * queue.  -DaveM
 582 */
 583static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 584{
 585	struct tcp_sock *tp = tcp_sk(sk);
 586	struct inet_connection_sock *icsk = inet_csk(sk);
 587	u32 now;
 588
 589	inet_csk_schedule_ack(sk);
 590
 591	tcp_measure_rcv_mss(sk, skb);
 592
 593	tcp_rcv_rtt_measure(tp);
 594
 595	now = tcp_time_stamp;
 596
 597	if (!icsk->icsk_ack.ato) {
 598		/* The _first_ data packet received, initialize
 599		 * delayed ACK engine.
 600		 */
 601		tcp_incr_quickack(sk);
 602		icsk->icsk_ack.ato = TCP_ATO_MIN;
 603	} else {
 604		int m = now - icsk->icsk_ack.lrcvtime;
 605
 606		if (m <= TCP_ATO_MIN / 2) {
 607			/* The fastest case is the first. */
 608			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 609		} else if (m < icsk->icsk_ack.ato) {
 610			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 611			if (icsk->icsk_ack.ato > icsk->icsk_rto)
 612				icsk->icsk_ack.ato = icsk->icsk_rto;
 613		} else if (m > icsk->icsk_rto) {
 614			/* Too long gap. Apparently sender failed to
 615			 * restart window, so that we send ACKs quickly.
 616			 */
 617			tcp_incr_quickack(sk);
 618			sk_mem_reclaim(sk);
 619		}
 620	}
 621	icsk->icsk_ack.lrcvtime = now;
 622
 623	TCP_ECN_check_ce(tp, skb);
 624
 625	if (skb->len >= 128)
 626		tcp_grow_window(sk, skb);
 627}
 628
 629/* Called to compute a smoothed rtt estimate. The data fed to this
 630 * routine either comes from timestamps, or from segments that were
 631 * known _not_ to have been retransmitted [see Karn/Partridge
 632 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 633 * piece by Van Jacobson.
 634 * NOTE: the next three routines used to be one big routine.
 635 * To save cycles in the RFC 1323 implementation it was better to break
 636 * it up into three procedures. -- erics
 637 */
 638static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
 639{
 640	struct tcp_sock *tp = tcp_sk(sk);
 641	long m = mrtt; /* RTT */
 
 642
 643	/*	The following amusing code comes from Jacobson's
 644	 *	article in SIGCOMM '88.  Note that rtt and mdev
 645	 *	are scaled versions of rtt and mean deviation.
 646	 *	This is designed to be as fast as possible
 647	 *	m stands for "measurement".
 648	 *
 649	 *	On a 1990 paper the rto value is changed to:
 650	 *	RTO = rtt + 4 * mdev
 651	 *
 652	 * Funny. This algorithm seems to be very broken.
 653	 * These formulae increase RTO, when it should be decreased, increase
 654	 * too slowly, when it should be increased quickly, decrease too quickly
 655	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 656	 * does not matter how to _calculate_ it. Seems, it was trap
 657	 * that VJ failed to avoid. 8)
 658	 */
 659	if (m == 0)
 660		m = 1;
 661	if (tp->srtt != 0) {
 662		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
 663		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
 664		if (m < 0) {
 665			m = -m;		/* m is now abs(error) */
 666			m -= (tp->mdev >> 2);   /* similar update on mdev */
 667			/* This is similar to one of Eifel findings.
 668			 * Eifel blocks mdev updates when rtt decreases.
 669			 * This solution is a bit different: we use finer gain
 670			 * for mdev in this case (alpha*beta).
 671			 * Like Eifel it also prevents growth of rto,
 672			 * but also it limits too fast rto decreases,
 673			 * happening in pure Eifel.
 674			 */
 675			if (m > 0)
 676				m >>= 3;
 677		} else {
 678			m -= (tp->mdev >> 2);   /* similar update on mdev */
 679		}
 680		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
 681		if (tp->mdev > tp->mdev_max) {
 682			tp->mdev_max = tp->mdev;
 683			if (tp->mdev_max > tp->rttvar)
 684				tp->rttvar = tp->mdev_max;
 685		}
 686		if (after(tp->snd_una, tp->rtt_seq)) {
 687			if (tp->mdev_max < tp->rttvar)
 688				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
 689			tp->rtt_seq = tp->snd_nxt;
 690			tp->mdev_max = tcp_rto_min(sk);
 691		}
 692	} else {
 693		/* no previous measure. */
 694		tp->srtt = m << 3;	/* take the measured time to be rtt */
 695		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
 696		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
 
 697		tp->rtt_seq = tp->snd_nxt;
 698	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699}
 700
 701/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 702 * routine referred to above.
 703 */
 704static inline void tcp_set_rto(struct sock *sk)
 705{
 706	const struct tcp_sock *tp = tcp_sk(sk);
 707	/* Old crap is replaced with new one. 8)
 708	 *
 709	 * More seriously:
 710	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
 711	 *    It cannot be less due to utterly erratic ACK generation made
 712	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 713	 *    to do with delayed acks, because at cwnd>2 true delack timeout
 714	 *    is invisible. Actually, Linux-2.4 also generates erratic
 715	 *    ACKs in some circumstances.
 716	 */
 717	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 718
 719	/* 2. Fixups made earlier cannot be right.
 720	 *    If we do not estimate RTO correctly without them,
 721	 *    all the algo is pure shit and should be replaced
 722	 *    with correct one. It is exactly, which we pretend to do.
 723	 */
 724
 725	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 726	 * guarantees that rto is higher.
 727	 */
 728	tcp_bound_rto(sk);
 729}
 730
 731/* Save metrics learned by this TCP session.
 732   This function is called only, when TCP finishes successfully
 733   i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
 734 */
 735void tcp_update_metrics(struct sock *sk)
 736{
 737	struct tcp_sock *tp = tcp_sk(sk);
 738	struct dst_entry *dst = __sk_dst_get(sk);
 739
 740	if (sysctl_tcp_nometrics_save)
 741		return;
 742
 743	dst_confirm(dst);
 744
 745	if (dst && (dst->flags & DST_HOST)) {
 746		const struct inet_connection_sock *icsk = inet_csk(sk);
 747		int m;
 748		unsigned long rtt;
 749
 750		if (icsk->icsk_backoff || !tp->srtt) {
 751			/* This session failed to estimate rtt. Why?
 752			 * Probably, no packets returned in time.
 753			 * Reset our results.
 754			 */
 755			if (!(dst_metric_locked(dst, RTAX_RTT)))
 756				dst_metric_set(dst, RTAX_RTT, 0);
 757			return;
 758		}
 759
 760		rtt = dst_metric_rtt(dst, RTAX_RTT);
 761		m = rtt - tp->srtt;
 762
 763		/* If newly calculated rtt larger than stored one,
 764		 * store new one. Otherwise, use EWMA. Remember,
 765		 * rtt overestimation is always better than underestimation.
 766		 */
 767		if (!(dst_metric_locked(dst, RTAX_RTT))) {
 768			if (m <= 0)
 769				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
 770			else
 771				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
 772		}
 773
 774		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
 775			unsigned long var;
 776			if (m < 0)
 777				m = -m;
 778
 779			/* Scale deviation to rttvar fixed point */
 780			m >>= 1;
 781			if (m < tp->mdev)
 782				m = tp->mdev;
 783
 784			var = dst_metric_rtt(dst, RTAX_RTTVAR);
 785			if (m >= var)
 786				var = m;
 787			else
 788				var -= (var - m) >> 2;
 789
 790			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
 791		}
 792
 793		if (tcp_in_initial_slowstart(tp)) {
 794			/* Slow start still did not finish. */
 795			if (dst_metric(dst, RTAX_SSTHRESH) &&
 796			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
 797			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
 798				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
 799			if (!dst_metric_locked(dst, RTAX_CWND) &&
 800			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
 801				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
 802		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
 803			   icsk->icsk_ca_state == TCP_CA_Open) {
 804			/* Cong. avoidance phase, cwnd is reliable. */
 805			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
 806				dst_metric_set(dst, RTAX_SSTHRESH,
 807					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
 808			if (!dst_metric_locked(dst, RTAX_CWND))
 809				dst_metric_set(dst, RTAX_CWND,
 810					       (dst_metric(dst, RTAX_CWND) +
 811						tp->snd_cwnd) >> 1);
 812		} else {
 813			/* Else slow start did not finish, cwnd is non-sense,
 814			   ssthresh may be also invalid.
 815			 */
 816			if (!dst_metric_locked(dst, RTAX_CWND))
 817				dst_metric_set(dst, RTAX_CWND,
 818					       (dst_metric(dst, RTAX_CWND) +
 819						tp->snd_ssthresh) >> 1);
 820			if (dst_metric(dst, RTAX_SSTHRESH) &&
 821			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
 822			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
 823				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
 824		}
 825
 826		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
 827			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
 828			    tp->reordering != sysctl_tcp_reordering)
 829				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
 830		}
 831	}
 832}
 833
 834__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 835{
 836	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 837
 838	if (!cwnd)
 839		cwnd = TCP_INIT_CWND;
 840	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 841}
 842
 843/* Set slow start threshold and cwnd not falling to slow start */
 844void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
 845{
 846	struct tcp_sock *tp = tcp_sk(sk);
 847	const struct inet_connection_sock *icsk = inet_csk(sk);
 848
 849	tp->prior_ssthresh = 0;
 850	tp->bytes_acked = 0;
 851	if (icsk->icsk_ca_state < TCP_CA_CWR) {
 852		tp->undo_marker = 0;
 853		if (set_ssthresh)
 854			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
 855		tp->snd_cwnd = min(tp->snd_cwnd,
 856				   tcp_packets_in_flight(tp) + 1U);
 857		tp->snd_cwnd_cnt = 0;
 858		tp->high_seq = tp->snd_nxt;
 859		tp->snd_cwnd_stamp = tcp_time_stamp;
 860		TCP_ECN_queue_cwr(tp);
 861
 862		tcp_set_ca_state(sk, TCP_CA_CWR);
 863	}
 864}
 865
 866/*
 867 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 868 * disables it when reordering is detected
 869 */
 870static void tcp_disable_fack(struct tcp_sock *tp)
 871{
 872	/* RFC3517 uses different metric in lost marker => reset on change */
 873	if (tcp_is_fack(tp))
 874		tp->lost_skb_hint = NULL;
 875	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
 876}
 877
 878/* Take a notice that peer is sending D-SACKs */
 879static void tcp_dsack_seen(struct tcp_sock *tp)
 880{
 881	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 882}
 883
 884/* Initialize metrics on socket. */
 885
 886static void tcp_init_metrics(struct sock *sk)
 887{
 888	struct tcp_sock *tp = tcp_sk(sk);
 889	struct dst_entry *dst = __sk_dst_get(sk);
 890
 891	if (dst == NULL)
 892		goto reset;
 893
 894	dst_confirm(dst);
 895
 896	if (dst_metric_locked(dst, RTAX_CWND))
 897		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
 898	if (dst_metric(dst, RTAX_SSTHRESH)) {
 899		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
 900		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
 901			tp->snd_ssthresh = tp->snd_cwnd_clamp;
 902	} else {
 903		/* ssthresh may have been reduced unnecessarily during.
 904		 * 3WHS. Restore it back to its initial default.
 905		 */
 906		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 907	}
 908	if (dst_metric(dst, RTAX_REORDERING) &&
 909	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
 910		tcp_disable_fack(tp);
 911		tcp_disable_early_retrans(tp);
 912		tp->reordering = dst_metric(dst, RTAX_REORDERING);
 913	}
 914
 915	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
 916		goto reset;
 917
 918	/* Initial rtt is determined from SYN,SYN-ACK.
 919	 * The segment is small and rtt may appear much
 920	 * less than real one. Use per-dst memory
 921	 * to make it more realistic.
 922	 *
 923	 * A bit of theory. RTT is time passed after "normal" sized packet
 924	 * is sent until it is ACKed. In normal circumstances sending small
 925	 * packets force peer to delay ACKs and calculation is correct too.
 926	 * The algorithm is adaptive and, provided we follow specs, it
 927	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
 928	 * tricks sort of "quick acks" for time long enough to decrease RTT
 929	 * to low value, and then abruptly stops to do it and starts to delay
 930	 * ACKs, wait for troubles.
 931	 */
 932	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
 933		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
 934		tp->rtt_seq = tp->snd_nxt;
 935	}
 936	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
 937		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
 938		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
 939	}
 940	tcp_set_rto(sk);
 941reset:
 942	if (tp->srtt == 0) {
 943		/* RFC6298: 5.7 We've failed to get a valid RTT sample from
 944		 * 3WHS. This is most likely due to retransmission,
 945		 * including spurious one. Reset the RTO back to 3secs
 946		 * from the more aggressive 1sec to avoid more spurious
 947		 * retransmission.
 948		 */
 949		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
 950		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
 951	}
 952	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
 953	 * retransmitted. In light of RFC6298 more aggressive 1sec
 954	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
 955	 * retransmission has occurred.
 956	 */
 957	if (tp->total_retrans > 1)
 958		tp->snd_cwnd = 1;
 959	else
 960		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
 961	tp->snd_cwnd_stamp = tcp_time_stamp;
 962}
 963
 964static void tcp_update_reordering(struct sock *sk, const int metric,
 965				  const int ts)
 966{
 967	struct tcp_sock *tp = tcp_sk(sk);
 968	if (metric > tp->reordering) {
 969		int mib_idx;
 970
 971		tp->reordering = min(TCP_MAX_REORDERING, metric);
 972
 973		/* This exciting event is worth to be remembered. 8) */
 974		if (ts)
 975			mib_idx = LINUX_MIB_TCPTSREORDER;
 976		else if (tcp_is_reno(tp))
 977			mib_idx = LINUX_MIB_TCPRENOREORDER;
 978		else if (tcp_is_fack(tp))
 979			mib_idx = LINUX_MIB_TCPFACKREORDER;
 980		else
 981			mib_idx = LINUX_MIB_TCPSACKREORDER;
 982
 983		NET_INC_STATS_BH(sock_net(sk), mib_idx);
 984#if FASTRETRANS_DEBUG > 1
 985		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 986			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 987			 tp->reordering,
 988			 tp->fackets_out,
 989			 tp->sacked_out,
 990			 tp->undo_marker ? tp->undo_retrans : 0);
 991#endif
 992		tcp_disable_fack(tp);
 993	}
 994
 995	if (metric > 0)
 996		tcp_disable_early_retrans(tp);
 
 997}
 998
 999/* This must be called before lost_out is incremented */
1000static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1001{
1002	if ((tp->retransmit_skb_hint == NULL) ||
1003	    before(TCP_SKB_CB(skb)->seq,
1004		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1005		tp->retransmit_skb_hint = skb;
1006
1007	if (!tp->lost_out ||
1008	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1009		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1010}
1011
1012static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1013{
1014	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1015		tcp_verify_retransmit_hint(tp, skb);
1016
1017		tp->lost_out += tcp_skb_pcount(skb);
1018		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1019	}
1020}
1021
1022static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1023					    struct sk_buff *skb)
1024{
1025	tcp_verify_retransmit_hint(tp, skb);
1026
1027	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1028		tp->lost_out += tcp_skb_pcount(skb);
1029		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1030	}
1031}
1032
1033/* This procedure tags the retransmission queue when SACKs arrive.
1034 *
1035 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1036 * Packets in queue with these bits set are counted in variables
1037 * sacked_out, retrans_out and lost_out, correspondingly.
1038 *
1039 * Valid combinations are:
1040 * Tag  InFlight	Description
1041 * 0	1		- orig segment is in flight.
1042 * S	0		- nothing flies, orig reached receiver.
1043 * L	0		- nothing flies, orig lost by net.
1044 * R	2		- both orig and retransmit are in flight.
1045 * L|R	1		- orig is lost, retransmit is in flight.
1046 * S|R  1		- orig reached receiver, retrans is still in flight.
1047 * (L|S|R is logically valid, it could occur when L|R is sacked,
1048 *  but it is equivalent to plain S and code short-curcuits it to S.
1049 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1050 *
1051 * These 6 states form finite state machine, controlled by the following events:
1052 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1053 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1054 * 3. Loss detection event of two flavors:
1055 *	A. Scoreboard estimator decided the packet is lost.
1056 *	   A'. Reno "three dupacks" marks head of queue lost.
1057 *	   A''. Its FACK modification, head until snd.fack is lost.
1058 *	B. SACK arrives sacking SND.NXT at the moment, when the
1059 *	   segment was retransmitted.
1060 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1061 *
1062 * It is pleasant to note, that state diagram turns out to be commutative,
1063 * so that we are allowed not to be bothered by order of our actions,
1064 * when multiple events arrive simultaneously. (see the function below).
1065 *
1066 * Reordering detection.
1067 * --------------------
1068 * Reordering metric is maximal distance, which a packet can be displaced
1069 * in packet stream. With SACKs we can estimate it:
1070 *
1071 * 1. SACK fills old hole and the corresponding segment was not
1072 *    ever retransmitted -> reordering. Alas, we cannot use it
1073 *    when segment was retransmitted.
1074 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1075 *    for retransmitted and already SACKed segment -> reordering..
1076 * Both of these heuristics are not used in Loss state, when we cannot
1077 * account for retransmits accurately.
1078 *
1079 * SACK block validation.
1080 * ----------------------
1081 *
1082 * SACK block range validation checks that the received SACK block fits to
1083 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1084 * Note that SND.UNA is not included to the range though being valid because
1085 * it means that the receiver is rather inconsistent with itself reporting
1086 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1087 * perfectly valid, however, in light of RFC2018 which explicitly states
1088 * that "SACK block MUST reflect the newest segment.  Even if the newest
1089 * segment is going to be discarded ...", not that it looks very clever
1090 * in case of head skb. Due to potentional receiver driven attacks, we
1091 * choose to avoid immediate execution of a walk in write queue due to
1092 * reneging and defer head skb's loss recovery to standard loss recovery
1093 * procedure that will eventually trigger (nothing forbids us doing this).
1094 *
1095 * Implements also blockage to start_seq wrap-around. Problem lies in the
1096 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1097 * there's no guarantee that it will be before snd_nxt (n). The problem
1098 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1099 * wrap (s_w):
1100 *
1101 *         <- outs wnd ->                          <- wrapzone ->
1102 *         u     e      n                         u_w   e_w  s n_w
1103 *         |     |      |                          |     |   |  |
1104 * |<------------+------+----- TCP seqno space --------------+---------->|
1105 * ...-- <2^31 ->|                                           |<--------...
1106 * ...---- >2^31 ------>|                                    |<--------...
1107 *
1108 * Current code wouldn't be vulnerable but it's better still to discard such
1109 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1110 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1111 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1112 * equal to the ideal case (infinite seqno space without wrap caused issues).
1113 *
1114 * With D-SACK the lower bound is extended to cover sequence space below
1115 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1116 * again, D-SACK block must not to go across snd_una (for the same reason as
1117 * for the normal SACK blocks, explained above). But there all simplicity
1118 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1119 * fully below undo_marker they do not affect behavior in anyway and can
1120 * therefore be safely ignored. In rare cases (which are more or less
1121 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1122 * fragmentation and packet reordering past skb's retransmission. To consider
1123 * them correctly, the acceptable range must be extended even more though
1124 * the exact amount is rather hard to quantify. However, tp->max_window can
1125 * be used as an exaggerated estimate.
1126 */
1127static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1128				   u32 start_seq, u32 end_seq)
1129{
1130	/* Too far in future, or reversed (interpretation is ambiguous) */
1131	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1132		return false;
1133
1134	/* Nasty start_seq wrap-around check (see comments above) */
1135	if (!before(start_seq, tp->snd_nxt))
1136		return false;
1137
1138	/* In outstanding window? ...This is valid exit for D-SACKs too.
1139	 * start_seq == snd_una is non-sensical (see comments above)
1140	 */
1141	if (after(start_seq, tp->snd_una))
1142		return true;
1143
1144	if (!is_dsack || !tp->undo_marker)
1145		return false;
1146
1147	/* ...Then it's D-SACK, and must reside below snd_una completely */
1148	if (after(end_seq, tp->snd_una))
1149		return false;
1150
1151	if (!before(start_seq, tp->undo_marker))
1152		return true;
1153
1154	/* Too old */
1155	if (!after(end_seq, tp->undo_marker))
1156		return false;
1157
1158	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1159	 *   start_seq < undo_marker and end_seq >= undo_marker.
1160	 */
1161	return !before(start_seq, end_seq - tp->max_window);
1162}
1163
1164/* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1165 * Event "B". Later note: FACK people cheated me again 8), we have to account
1166 * for reordering! Ugly, but should help.
1167 *
1168 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1169 * less than what is now known to be received by the other end (derived from
1170 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1171 * retransmitted skbs to avoid some costly processing per ACKs.
1172 */
1173static void tcp_mark_lost_retrans(struct sock *sk)
1174{
1175	const struct inet_connection_sock *icsk = inet_csk(sk);
1176	struct tcp_sock *tp = tcp_sk(sk);
1177	struct sk_buff *skb;
1178	int cnt = 0;
1179	u32 new_low_seq = tp->snd_nxt;
1180	u32 received_upto = tcp_highest_sack_seq(tp);
1181
1182	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1183	    !after(received_upto, tp->lost_retrans_low) ||
1184	    icsk->icsk_ca_state != TCP_CA_Recovery)
1185		return;
1186
1187	tcp_for_write_queue(skb, sk) {
1188		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1189
1190		if (skb == tcp_send_head(sk))
1191			break;
1192		if (cnt == tp->retrans_out)
1193			break;
1194		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1195			continue;
1196
1197		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1198			continue;
1199
1200		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1201		 * constraint here (see above) but figuring out that at
1202		 * least tp->reordering SACK blocks reside between ack_seq
1203		 * and received_upto is not easy task to do cheaply with
1204		 * the available datastructures.
1205		 *
1206		 * Whether FACK should check here for tp->reordering segs
1207		 * in-between one could argue for either way (it would be
1208		 * rather simple to implement as we could count fack_count
1209		 * during the walk and do tp->fackets_out - fack_count).
1210		 */
1211		if (after(received_upto, ack_seq)) {
1212			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1213			tp->retrans_out -= tcp_skb_pcount(skb);
1214
1215			tcp_skb_mark_lost_uncond_verify(tp, skb);
1216			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1217		} else {
1218			if (before(ack_seq, new_low_seq))
1219				new_low_seq = ack_seq;
1220			cnt += tcp_skb_pcount(skb);
1221		}
1222	}
1223
1224	if (tp->retrans_out)
1225		tp->lost_retrans_low = new_low_seq;
1226}
1227
1228static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1229			    struct tcp_sack_block_wire *sp, int num_sacks,
1230			    u32 prior_snd_una)
1231{
1232	struct tcp_sock *tp = tcp_sk(sk);
1233	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1234	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1235	bool dup_sack = false;
1236
1237	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1238		dup_sack = true;
1239		tcp_dsack_seen(tp);
1240		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1241	} else if (num_sacks > 1) {
1242		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1243		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1244
1245		if (!after(end_seq_0, end_seq_1) &&
1246		    !before(start_seq_0, start_seq_1)) {
1247			dup_sack = true;
1248			tcp_dsack_seen(tp);
1249			NET_INC_STATS_BH(sock_net(sk),
1250					LINUX_MIB_TCPDSACKOFORECV);
1251		}
1252	}
1253
1254	/* D-SACK for already forgotten data... Do dumb counting. */
1255	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1256	    !after(end_seq_0, prior_snd_una) &&
1257	    after(end_seq_0, tp->undo_marker))
1258		tp->undo_retrans--;
1259
1260	return dup_sack;
1261}
1262
1263struct tcp_sacktag_state {
1264	int reord;
1265	int fack_count;
1266	int flag;
 
 
 
 
 
 
1267};
1268
1269/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1270 * the incoming SACK may not exactly match but we can find smaller MSS
1271 * aligned portion of it that matches. Therefore we might need to fragment
1272 * which may fail and creates some hassle (caller must handle error case
1273 * returns).
1274 *
1275 * FIXME: this could be merged to shift decision code
1276 */
1277static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1278				  u32 start_seq, u32 end_seq)
1279{
1280	int err;
1281	bool in_sack;
1282	unsigned int pkt_len;
1283	unsigned int mss;
1284
1285	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1286		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1287
1288	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1289	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1290		mss = tcp_skb_mss(skb);
1291		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1292
1293		if (!in_sack) {
1294			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1295			if (pkt_len < mss)
1296				pkt_len = mss;
1297		} else {
1298			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1299			if (pkt_len < mss)
1300				return -EINVAL;
1301		}
1302
1303		/* Round if necessary so that SACKs cover only full MSSes
1304		 * and/or the remaining small portion (if present)
1305		 */
1306		if (pkt_len > mss) {
1307			unsigned int new_len = (pkt_len / mss) * mss;
1308			if (!in_sack && new_len < pkt_len) {
1309				new_len += mss;
1310				if (new_len > skb->len)
1311					return 0;
1312			}
1313			pkt_len = new_len;
1314		}
1315		err = tcp_fragment(sk, skb, pkt_len, mss);
1316		if (err < 0)
1317			return err;
1318	}
1319
1320	return in_sack;
1321}
1322
1323/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1324static u8 tcp_sacktag_one(struct sock *sk,
1325			  struct tcp_sacktag_state *state, u8 sacked,
1326			  u32 start_seq, u32 end_seq,
1327			  bool dup_sack, int pcount)
 
1328{
1329	struct tcp_sock *tp = tcp_sk(sk);
1330	int fack_count = state->fack_count;
1331
1332	/* Account D-SACK for retransmitted packet. */
1333	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1334		if (tp->undo_marker && tp->undo_retrans &&
1335		    after(end_seq, tp->undo_marker))
1336			tp->undo_retrans--;
1337		if (sacked & TCPCB_SACKED_ACKED)
1338			state->reord = min(fack_count, state->reord);
1339	}
1340
1341	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1342	if (!after(end_seq, tp->snd_una))
1343		return sacked;
1344
1345	if (!(sacked & TCPCB_SACKED_ACKED)) {
 
 
1346		if (sacked & TCPCB_SACKED_RETRANS) {
1347			/* If the segment is not tagged as lost,
1348			 * we do not clear RETRANS, believing
1349			 * that retransmission is still in flight.
1350			 */
1351			if (sacked & TCPCB_LOST) {
1352				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1353				tp->lost_out -= pcount;
1354				tp->retrans_out -= pcount;
1355			}
1356		} else {
1357			if (!(sacked & TCPCB_RETRANS)) {
1358				/* New sack for not retransmitted frame,
1359				 * which was in hole. It is reordering.
1360				 */
1361				if (before(start_seq,
1362					   tcp_highest_sack_seq(tp)))
1363					state->reord = min(fack_count,
1364							   state->reord);
1365
1366				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1367				if (!after(end_seq, tp->frto_highmark))
1368					state->flag |= FLAG_ONLY_ORIG_SACKED;
 
1369			}
1370
1371			if (sacked & TCPCB_LOST) {
1372				sacked &= ~TCPCB_LOST;
1373				tp->lost_out -= pcount;
1374			}
1375		}
1376
1377		sacked |= TCPCB_SACKED_ACKED;
1378		state->flag |= FLAG_DATA_SACKED;
1379		tp->sacked_out += pcount;
 
1380
1381		fack_count += pcount;
1382
1383		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1384		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1385		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1386			tp->lost_cnt_hint += pcount;
1387
1388		if (fack_count > tp->fackets_out)
1389			tp->fackets_out = fack_count;
1390	}
1391
1392	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1393	 * frames and clear it. undo_retrans is decreased above, L|R frames
1394	 * are accounted above as well.
1395	 */
1396	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1397		sacked &= ~TCPCB_SACKED_RETRANS;
1398		tp->retrans_out -= pcount;
1399	}
1400
1401	return sacked;
1402}
1403
1404/* Shift newly-SACKed bytes from this skb to the immediately previous
1405 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1406 */
1407static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1408			    struct tcp_sacktag_state *state,
1409			    unsigned int pcount, int shifted, int mss,
1410			    bool dup_sack)
1411{
1412	struct tcp_sock *tp = tcp_sk(sk);
1413	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1414	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1415	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1416
1417	BUG_ON(!pcount);
1418
1419	/* Adjust counters and hints for the newly sacked sequence
1420	 * range but discard the return value since prev is already
1421	 * marked. We must tag the range first because the seq
1422	 * advancement below implicitly advances
1423	 * tcp_highest_sack_seq() when skb is highest_sack.
1424	 */
1425	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1426			start_seq, end_seq, dup_sack, pcount);
 
1427
1428	if (skb == tp->lost_skb_hint)
1429		tp->lost_cnt_hint += pcount;
1430
1431	TCP_SKB_CB(prev)->end_seq += shifted;
1432	TCP_SKB_CB(skb)->seq += shifted;
1433
1434	skb_shinfo(prev)->gso_segs += pcount;
1435	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1436	skb_shinfo(skb)->gso_segs -= pcount;
1437
1438	/* When we're adding to gso_segs == 1, gso_size will be zero,
1439	 * in theory this shouldn't be necessary but as long as DSACK
1440	 * code can come after this skb later on it's better to keep
1441	 * setting gso_size to something.
1442	 */
1443	if (!skb_shinfo(prev)->gso_size) {
1444		skb_shinfo(prev)->gso_size = mss;
1445		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1446	}
1447
1448	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1449	if (skb_shinfo(skb)->gso_segs <= 1) {
1450		skb_shinfo(skb)->gso_size = 0;
1451		skb_shinfo(skb)->gso_type = 0;
1452	}
1453
1454	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1455	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1456
1457	if (skb->len > 0) {
1458		BUG_ON(!tcp_skb_pcount(skb));
1459		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1460		return false;
1461	}
1462
1463	/* Whole SKB was eaten :-) */
1464
1465	if (skb == tp->retransmit_skb_hint)
1466		tp->retransmit_skb_hint = prev;
1467	if (skb == tp->scoreboard_skb_hint)
1468		tp->scoreboard_skb_hint = prev;
1469	if (skb == tp->lost_skb_hint) {
1470		tp->lost_skb_hint = prev;
1471		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1472	}
1473
1474	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
 
 
 
1475	if (skb == tcp_highest_sack(sk))
1476		tcp_advance_highest_sack(sk, skb);
1477
 
1478	tcp_unlink_write_queue(skb, sk);
1479	sk_wmem_free_skb(sk, skb);
1480
1481	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1482
1483	return true;
1484}
1485
1486/* I wish gso_size would have a bit more sane initialization than
1487 * something-or-zero which complicates things
1488 */
1489static int tcp_skb_seglen(const struct sk_buff *skb)
1490{
1491	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1492}
1493
1494/* Shifting pages past head area doesn't work */
1495static int skb_can_shift(const struct sk_buff *skb)
1496{
1497	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1498}
1499
1500/* Try collapsing SACK blocks spanning across multiple skbs to a single
1501 * skb.
1502 */
1503static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1504					  struct tcp_sacktag_state *state,
1505					  u32 start_seq, u32 end_seq,
1506					  bool dup_sack)
1507{
1508	struct tcp_sock *tp = tcp_sk(sk);
1509	struct sk_buff *prev;
1510	int mss;
1511	int pcount = 0;
1512	int len;
1513	int in_sack;
1514
1515	if (!sk_can_gso(sk))
1516		goto fallback;
1517
1518	/* Normally R but no L won't result in plain S */
1519	if (!dup_sack &&
1520	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1521		goto fallback;
1522	if (!skb_can_shift(skb))
1523		goto fallback;
1524	/* This frame is about to be dropped (was ACKed). */
1525	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1526		goto fallback;
1527
1528	/* Can only happen with delayed DSACK + discard craziness */
1529	if (unlikely(skb == tcp_write_queue_head(sk)))
1530		goto fallback;
1531	prev = tcp_write_queue_prev(sk, skb);
1532
1533	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1534		goto fallback;
1535
1536	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1537		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1538
1539	if (in_sack) {
1540		len = skb->len;
1541		pcount = tcp_skb_pcount(skb);
1542		mss = tcp_skb_seglen(skb);
1543
1544		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1545		 * drop this restriction as unnecessary
1546		 */
1547		if (mss != tcp_skb_seglen(prev))
1548			goto fallback;
1549	} else {
1550		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1551			goto noop;
1552		/* CHECKME: This is non-MSS split case only?, this will
1553		 * cause skipped skbs due to advancing loop btw, original
1554		 * has that feature too
1555		 */
1556		if (tcp_skb_pcount(skb) <= 1)
1557			goto noop;
1558
1559		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1560		if (!in_sack) {
1561			/* TODO: head merge to next could be attempted here
1562			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1563			 * though it might not be worth of the additional hassle
1564			 *
1565			 * ...we can probably just fallback to what was done
1566			 * previously. We could try merging non-SACKed ones
1567			 * as well but it probably isn't going to buy off
1568			 * because later SACKs might again split them, and
1569			 * it would make skb timestamp tracking considerably
1570			 * harder problem.
1571			 */
1572			goto fallback;
1573		}
1574
1575		len = end_seq - TCP_SKB_CB(skb)->seq;
1576		BUG_ON(len < 0);
1577		BUG_ON(len > skb->len);
1578
1579		/* MSS boundaries should be honoured or else pcount will
1580		 * severely break even though it makes things bit trickier.
1581		 * Optimize common case to avoid most of the divides
1582		 */
1583		mss = tcp_skb_mss(skb);
1584
1585		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1586		 * drop this restriction as unnecessary
1587		 */
1588		if (mss != tcp_skb_seglen(prev))
1589			goto fallback;
1590
1591		if (len == mss) {
1592			pcount = 1;
1593		} else if (len < mss) {
1594			goto noop;
1595		} else {
1596			pcount = len / mss;
1597			len = pcount * mss;
1598		}
1599	}
1600
1601	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1602	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1603		goto fallback;
1604
1605	if (!skb_shift(prev, skb, len))
1606		goto fallback;
1607	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1608		goto out;
1609
1610	/* Hole filled allows collapsing with the next as well, this is very
1611	 * useful when hole on every nth skb pattern happens
1612	 */
1613	if (prev == tcp_write_queue_tail(sk))
1614		goto out;
1615	skb = tcp_write_queue_next(sk, prev);
1616
1617	if (!skb_can_shift(skb) ||
1618	    (skb == tcp_send_head(sk)) ||
1619	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620	    (mss != tcp_skb_seglen(skb)))
1621		goto out;
1622
1623	len = skb->len;
1624	if (skb_shift(prev, skb, len)) {
1625		pcount += tcp_skb_pcount(skb);
1626		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1627	}
1628
1629out:
1630	state->fack_count += pcount;
1631	return prev;
1632
1633noop:
1634	return skb;
1635
1636fallback:
1637	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1638	return NULL;
1639}
1640
1641static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1642					struct tcp_sack_block *next_dup,
1643					struct tcp_sacktag_state *state,
1644					u32 start_seq, u32 end_seq,
1645					bool dup_sack_in)
1646{
1647	struct tcp_sock *tp = tcp_sk(sk);
1648	struct sk_buff *tmp;
1649
1650	tcp_for_write_queue_from(skb, sk) {
1651		int in_sack = 0;
1652		bool dup_sack = dup_sack_in;
1653
1654		if (skb == tcp_send_head(sk))
1655			break;
1656
1657		/* queue is in-order => we can short-circuit the walk early */
1658		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1659			break;
1660
1661		if ((next_dup != NULL) &&
1662		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1663			in_sack = tcp_match_skb_to_sack(sk, skb,
1664							next_dup->start_seq,
1665							next_dup->end_seq);
1666			if (in_sack > 0)
1667				dup_sack = true;
1668		}
1669
1670		/* skb reference here is a bit tricky to get right, since
1671		 * shifting can eat and free both this skb and the next,
1672		 * so not even _safe variant of the loop is enough.
1673		 */
1674		if (in_sack <= 0) {
1675			tmp = tcp_shift_skb_data(sk, skb, state,
1676						 start_seq, end_seq, dup_sack);
1677			if (tmp != NULL) {
1678				if (tmp != skb) {
1679					skb = tmp;
1680					continue;
1681				}
1682
1683				in_sack = 0;
1684			} else {
1685				in_sack = tcp_match_skb_to_sack(sk, skb,
1686								start_seq,
1687								end_seq);
1688			}
1689		}
1690
1691		if (unlikely(in_sack < 0))
1692			break;
1693
1694		if (in_sack) {
1695			TCP_SKB_CB(skb)->sacked =
1696				tcp_sacktag_one(sk,
1697						state,
1698						TCP_SKB_CB(skb)->sacked,
1699						TCP_SKB_CB(skb)->seq,
1700						TCP_SKB_CB(skb)->end_seq,
1701						dup_sack,
1702						tcp_skb_pcount(skb));
 
1703
1704			if (!before(TCP_SKB_CB(skb)->seq,
1705				    tcp_highest_sack_seq(tp)))
1706				tcp_advance_highest_sack(sk, skb);
1707		}
1708
1709		state->fack_count += tcp_skb_pcount(skb);
1710	}
1711	return skb;
1712}
1713
1714/* Avoid all extra work that is being done by sacktag while walking in
1715 * a normal way
1716 */
1717static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1718					struct tcp_sacktag_state *state,
1719					u32 skip_to_seq)
1720{
1721	tcp_for_write_queue_from(skb, sk) {
1722		if (skb == tcp_send_head(sk))
1723			break;
1724
1725		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1726			break;
1727
1728		state->fack_count += tcp_skb_pcount(skb);
1729	}
1730	return skb;
1731}
1732
1733static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1734						struct sock *sk,
1735						struct tcp_sack_block *next_dup,
1736						struct tcp_sacktag_state *state,
1737						u32 skip_to_seq)
1738{
1739	if (next_dup == NULL)
1740		return skb;
1741
1742	if (before(next_dup->start_seq, skip_to_seq)) {
1743		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1744		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1745				       next_dup->start_seq, next_dup->end_seq,
1746				       1);
1747	}
1748
1749	return skb;
1750}
1751
1752static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1753{
1754	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1755}
1756
1757static int
1758tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1759			u32 prior_snd_una)
1760{
1761	const struct inet_connection_sock *icsk = inet_csk(sk);
1762	struct tcp_sock *tp = tcp_sk(sk);
1763	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1764				    TCP_SKB_CB(ack_skb)->sacked);
1765	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1766	struct tcp_sack_block sp[TCP_NUM_SACKS];
1767	struct tcp_sack_block *cache;
1768	struct tcp_sacktag_state state;
1769	struct sk_buff *skb;
1770	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1771	int used_sacks;
1772	bool found_dup_sack = false;
1773	int i, j;
1774	int first_sack_index;
1775
1776	state.flag = 0;
1777	state.reord = tp->packets_out;
1778
1779	if (!tp->sacked_out) {
1780		if (WARN_ON(tp->fackets_out))
1781			tp->fackets_out = 0;
1782		tcp_highest_sack_reset(sk);
1783	}
1784
1785	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1786					 num_sacks, prior_snd_una);
1787	if (found_dup_sack)
1788		state.flag |= FLAG_DSACKING_ACK;
1789
1790	/* Eliminate too old ACKs, but take into
1791	 * account more or less fresh ones, they can
1792	 * contain valid SACK info.
1793	 */
1794	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1795		return 0;
1796
1797	if (!tp->packets_out)
1798		goto out;
1799
1800	used_sacks = 0;
1801	first_sack_index = 0;
1802	for (i = 0; i < num_sacks; i++) {
1803		bool dup_sack = !i && found_dup_sack;
1804
1805		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1806		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1807
1808		if (!tcp_is_sackblock_valid(tp, dup_sack,
1809					    sp[used_sacks].start_seq,
1810					    sp[used_sacks].end_seq)) {
1811			int mib_idx;
1812
1813			if (dup_sack) {
1814				if (!tp->undo_marker)
1815					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1816				else
1817					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1818			} else {
1819				/* Don't count olds caused by ACK reordering */
1820				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1821				    !after(sp[used_sacks].end_seq, tp->snd_una))
1822					continue;
1823				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1824			}
1825
1826			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1827			if (i == 0)
1828				first_sack_index = -1;
1829			continue;
1830		}
1831
1832		/* Ignore very old stuff early */
1833		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1834			continue;
1835
1836		used_sacks++;
1837	}
1838
1839	/* order SACK blocks to allow in order walk of the retrans queue */
1840	for (i = used_sacks - 1; i > 0; i--) {
1841		for (j = 0; j < i; j++) {
1842			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1843				swap(sp[j], sp[j + 1]);
1844
1845				/* Track where the first SACK block goes to */
1846				if (j == first_sack_index)
1847					first_sack_index = j + 1;
1848			}
1849		}
1850	}
1851
1852	skb = tcp_write_queue_head(sk);
1853	state.fack_count = 0;
1854	i = 0;
1855
1856	if (!tp->sacked_out) {
1857		/* It's already past, so skip checking against it */
1858		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1859	} else {
1860		cache = tp->recv_sack_cache;
1861		/* Skip empty blocks in at head of the cache */
1862		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1863		       !cache->end_seq)
1864			cache++;
1865	}
1866
1867	while (i < used_sacks) {
1868		u32 start_seq = sp[i].start_seq;
1869		u32 end_seq = sp[i].end_seq;
1870		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1871		struct tcp_sack_block *next_dup = NULL;
1872
1873		if (found_dup_sack && ((i + 1) == first_sack_index))
1874			next_dup = &sp[i + 1];
1875
1876		/* Skip too early cached blocks */
1877		while (tcp_sack_cache_ok(tp, cache) &&
1878		       !before(start_seq, cache->end_seq))
1879			cache++;
1880
1881		/* Can skip some work by looking recv_sack_cache? */
1882		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1883		    after(end_seq, cache->start_seq)) {
1884
1885			/* Head todo? */
1886			if (before(start_seq, cache->start_seq)) {
1887				skb = tcp_sacktag_skip(skb, sk, &state,
1888						       start_seq);
1889				skb = tcp_sacktag_walk(skb, sk, next_dup,
1890						       &state,
1891						       start_seq,
1892						       cache->start_seq,
1893						       dup_sack);
1894			}
1895
1896			/* Rest of the block already fully processed? */
1897			if (!after(end_seq, cache->end_seq))
1898				goto advance_sp;
1899
1900			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1901						       &state,
1902						       cache->end_seq);
1903
1904			/* ...tail remains todo... */
1905			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1906				/* ...but better entrypoint exists! */
1907				skb = tcp_highest_sack(sk);
1908				if (skb == NULL)
1909					break;
1910				state.fack_count = tp->fackets_out;
1911				cache++;
1912				goto walk;
1913			}
1914
1915			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1916			/* Check overlap against next cached too (past this one already) */
1917			cache++;
1918			continue;
1919		}
1920
1921		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1922			skb = tcp_highest_sack(sk);
1923			if (skb == NULL)
1924				break;
1925			state.fack_count = tp->fackets_out;
1926		}
1927		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1928
1929walk:
1930		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1931				       start_seq, end_seq, dup_sack);
1932
1933advance_sp:
1934		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1935		 * due to in-order walk
1936		 */
1937		if (after(end_seq, tp->frto_highmark))
1938			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1939
1940		i++;
1941	}
1942
1943	/* Clear the head of the cache sack blocks so we can skip it next time */
1944	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1945		tp->recv_sack_cache[i].start_seq = 0;
1946		tp->recv_sack_cache[i].end_seq = 0;
1947	}
1948	for (j = 0; j < used_sacks; j++)
1949		tp->recv_sack_cache[i++] = sp[j];
1950
1951	tcp_mark_lost_retrans(sk);
 
 
1952
1953	tcp_verify_left_out(tp);
1954
1955	if ((state.reord < tp->fackets_out) &&
1956	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1957	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1958		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1959
1960out:
1961
1962#if FASTRETRANS_DEBUG > 0
1963	WARN_ON((int)tp->sacked_out < 0);
1964	WARN_ON((int)tp->lost_out < 0);
1965	WARN_ON((int)tp->retrans_out < 0);
1966	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1967#endif
1968	return state.flag;
1969}
1970
1971/* Limits sacked_out so that sum with lost_out isn't ever larger than
1972 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1973 */
1974static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1975{
1976	u32 holes;
1977
1978	holes = max(tp->lost_out, 1U);
1979	holes = min(holes, tp->packets_out);
1980
1981	if ((tp->sacked_out + holes) > tp->packets_out) {
1982		tp->sacked_out = tp->packets_out - holes;
1983		return true;
1984	}
1985	return false;
1986}
1987
1988/* If we receive more dupacks than we expected counting segments
1989 * in assumption of absent reordering, interpret this as reordering.
1990 * The only another reason could be bug in receiver TCP.
1991 */
1992static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1993{
1994	struct tcp_sock *tp = tcp_sk(sk);
1995	if (tcp_limit_reno_sacked(tp))
1996		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1997}
1998
1999/* Emulate SACKs for SACKless connection: account for a new dupack. */
2000
2001static void tcp_add_reno_sack(struct sock *sk)
2002{
2003	struct tcp_sock *tp = tcp_sk(sk);
 
 
2004	tp->sacked_out++;
2005	tcp_check_reno_reordering(sk, 0);
 
 
2006	tcp_verify_left_out(tp);
2007}
2008
2009/* Account for ACK, ACKing some data in Reno Recovery phase. */
2010
2011static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2012{
2013	struct tcp_sock *tp = tcp_sk(sk);
2014
2015	if (acked > 0) {
2016		/* One ACK acked hole. The rest eat duplicate ACKs. */
 
2017		if (acked - 1 >= tp->sacked_out)
2018			tp->sacked_out = 0;
2019		else
2020			tp->sacked_out -= acked - 1;
2021	}
2022	tcp_check_reno_reordering(sk, acked);
2023	tcp_verify_left_out(tp);
2024}
2025
2026static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2027{
2028	tp->sacked_out = 0;
2029}
2030
2031static int tcp_is_sackfrto(const struct tcp_sock *tp)
2032{
2033	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2034}
2035
2036/* F-RTO can only be used if TCP has never retransmitted anything other than
2037 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2038 */
2039bool tcp_use_frto(struct sock *sk)
2040{
2041	const struct tcp_sock *tp = tcp_sk(sk);
2042	const struct inet_connection_sock *icsk = inet_csk(sk);
2043	struct sk_buff *skb;
2044
2045	if (!sysctl_tcp_frto)
2046		return false;
2047
2048	/* MTU probe and F-RTO won't really play nicely along currently */
2049	if (icsk->icsk_mtup.probe_size)
2050		return false;
2051
2052	if (tcp_is_sackfrto(tp))
2053		return true;
2054
2055	/* Avoid expensive walking of rexmit queue if possible */
2056	if (tp->retrans_out > 1)
2057		return false;
2058
2059	skb = tcp_write_queue_head(sk);
2060	if (tcp_skb_is_last(sk, skb))
2061		return true;
2062	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2063	tcp_for_write_queue_from(skb, sk) {
2064		if (skb == tcp_send_head(sk))
2065			break;
2066		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2067			return false;
2068		/* Short-circuit when first non-SACKed skb has been checked */
2069		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2070			break;
2071	}
2072	return true;
2073}
2074
2075/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2076 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2077 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2078 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2079 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2080 * bits are handled if the Loss state is really to be entered (in
2081 * tcp_enter_frto_loss).
2082 *
2083 * Do like tcp_enter_loss() would; when RTO expires the second time it
2084 * does:
2085 *  "Reduce ssthresh if it has not yet been made inside this window."
2086 */
2087void tcp_enter_frto(struct sock *sk)
2088{
2089	const struct inet_connection_sock *icsk = inet_csk(sk);
2090	struct tcp_sock *tp = tcp_sk(sk);
2091	struct sk_buff *skb;
2092
2093	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2094	    tp->snd_una == tp->high_seq ||
2095	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2096	     !icsk->icsk_retransmits)) {
2097		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2098		/* Our state is too optimistic in ssthresh() call because cwnd
2099		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2100		 * recovery has not yet completed. Pattern would be this: RTO,
2101		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2102		 * up here twice).
2103		 * RFC4138 should be more specific on what to do, even though
2104		 * RTO is quite unlikely to occur after the first Cumulative ACK
2105		 * due to back-off and complexity of triggering events ...
2106		 */
2107		if (tp->frto_counter) {
2108			u32 stored_cwnd;
2109			stored_cwnd = tp->snd_cwnd;
2110			tp->snd_cwnd = 2;
2111			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2112			tp->snd_cwnd = stored_cwnd;
2113		} else {
2114			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2115		}
2116		/* ... in theory, cong.control module could do "any tricks" in
2117		 * ssthresh(), which means that ca_state, lost bits and lost_out
2118		 * counter would have to be faked before the call occurs. We
2119		 * consider that too expensive, unlikely and hacky, so modules
2120		 * using these in ssthresh() must deal these incompatibility
2121		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2122		 */
2123		tcp_ca_event(sk, CA_EVENT_FRTO);
2124	}
2125
2126	tp->undo_marker = tp->snd_una;
2127	tp->undo_retrans = 0;
2128
2129	skb = tcp_write_queue_head(sk);
2130	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2131		tp->undo_marker = 0;
2132	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2133		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2134		tp->retrans_out -= tcp_skb_pcount(skb);
2135	}
2136	tcp_verify_left_out(tp);
2137
2138	/* Too bad if TCP was application limited */
2139	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2140
2141	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2142	 * The last condition is necessary at least in tp->frto_counter case.
2143	 */
2144	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2145	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2146	    after(tp->high_seq, tp->snd_una)) {
2147		tp->frto_highmark = tp->high_seq;
2148	} else {
2149		tp->frto_highmark = tp->snd_nxt;
2150	}
2151	tcp_set_ca_state(sk, TCP_CA_Disorder);
2152	tp->high_seq = tp->snd_nxt;
2153	tp->frto_counter = 1;
2154}
2155
2156/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2157 * which indicates that we should follow the traditional RTO recovery,
2158 * i.e. mark everything lost and do go-back-N retransmission.
2159 */
2160static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2161{
2162	struct tcp_sock *tp = tcp_sk(sk);
2163	struct sk_buff *skb;
2164
2165	tp->lost_out = 0;
2166	tp->retrans_out = 0;
2167	if (tcp_is_reno(tp))
2168		tcp_reset_reno_sack(tp);
2169
2170	tcp_for_write_queue(skb, sk) {
2171		if (skb == tcp_send_head(sk))
2172			break;
2173
2174		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2175		/*
2176		 * Count the retransmission made on RTO correctly (only when
2177		 * waiting for the first ACK and did not get it)...
2178		 */
2179		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2180			/* For some reason this R-bit might get cleared? */
2181			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2182				tp->retrans_out += tcp_skb_pcount(skb);
2183			/* ...enter this if branch just for the first segment */
2184			flag |= FLAG_DATA_ACKED;
2185		} else {
2186			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2187				tp->undo_marker = 0;
2188			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2189		}
2190
2191		/* Marking forward transmissions that were made after RTO lost
2192		 * can cause unnecessary retransmissions in some scenarios,
2193		 * SACK blocks will mitigate that in some but not in all cases.
2194		 * We used to not mark them but it was causing break-ups with
2195		 * receivers that do only in-order receival.
2196		 *
2197		 * TODO: we could detect presence of such receiver and select
2198		 * different behavior per flow.
2199		 */
2200		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2201			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2202			tp->lost_out += tcp_skb_pcount(skb);
2203			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2204		}
2205	}
2206	tcp_verify_left_out(tp);
2207
2208	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2209	tp->snd_cwnd_cnt = 0;
2210	tp->snd_cwnd_stamp = tcp_time_stamp;
2211	tp->frto_counter = 0;
2212	tp->bytes_acked = 0;
2213
2214	tp->reordering = min_t(unsigned int, tp->reordering,
2215			       sysctl_tcp_reordering);
2216	tcp_set_ca_state(sk, TCP_CA_Loss);
2217	tp->high_seq = tp->snd_nxt;
2218	TCP_ECN_queue_cwr(tp);
2219
2220	tcp_clear_all_retrans_hints(tp);
2221}
2222
2223static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2224{
2225	tp->retrans_out = 0;
2226	tp->lost_out = 0;
2227
2228	tp->undo_marker = 0;
2229	tp->undo_retrans = 0;
 
 
2230}
2231
2232void tcp_clear_retrans(struct tcp_sock *tp)
2233{
2234	tcp_clear_retrans_partial(tp);
2235
2236	tp->fackets_out = 0;
2237	tp->sacked_out = 0;
2238}
2239
2240/* Enter Loss state. If "how" is not zero, forget all SACK information
2241 * and reset tags completely, otherwise preserve SACKs. If receiver
2242 * dropped its ofo queue, we will know this due to reneging detection.
2243 */
2244void tcp_enter_loss(struct sock *sk, int how)
2245{
2246	const struct inet_connection_sock *icsk = inet_csk(sk);
2247	struct tcp_sock *tp = tcp_sk(sk);
 
2248	struct sk_buff *skb;
 
 
2249
2250	/* Reduce ssthresh if it has not yet been made inside this window. */
2251	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
 
2252	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2253		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2254		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2255		tcp_ca_event(sk, CA_EVENT_LOSS);
 
2256	}
2257	tp->snd_cwnd	   = 1;
2258	tp->snd_cwnd_cnt   = 0;
2259	tp->snd_cwnd_stamp = tcp_time_stamp;
2260
2261	tp->bytes_acked = 0;
2262	tcp_clear_retrans_partial(tp);
2263
2264	if (tcp_is_reno(tp))
2265		tcp_reset_reno_sack(tp);
2266
2267	if (!how) {
2268		/* Push undo marker, if it was plain RTO and nothing
2269		 * was retransmitted. */
2270		tp->undo_marker = tp->snd_una;
2271	} else {
2272		tp->sacked_out = 0;
2273		tp->fackets_out = 0;
2274	}
2275	tcp_clear_all_retrans_hints(tp);
2276
2277	tcp_for_write_queue(skb, sk) {
2278		if (skb == tcp_send_head(sk))
2279			break;
2280
2281		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2282			tp->undo_marker = 0;
2283		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2284		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2285			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2286			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2287			tp->lost_out += tcp_skb_pcount(skb);
2288			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2289		}
2290	}
2291	tcp_verify_left_out(tp);
2292
2293	tp->reordering = min_t(unsigned int, tp->reordering,
2294			       sysctl_tcp_reordering);
 
 
 
 
 
2295	tcp_set_ca_state(sk, TCP_CA_Loss);
2296	tp->high_seq = tp->snd_nxt;
2297	TCP_ECN_queue_cwr(tp);
2298	/* Abort F-RTO algorithm if one is in progress */
2299	tp->frto_counter = 0;
 
 
 
 
 
 
2300}
2301
2302/* If ACK arrived pointing to a remembered SACK, it means that our
2303 * remembered SACKs do not reflect real state of receiver i.e.
2304 * receiver _host_ is heavily congested (or buggy).
2305 *
2306 * Do processing similar to RTO timeout.
 
 
 
 
2307 */
2308static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2309{
2310	if (flag & FLAG_SACK_RENEGING) {
2311		struct inet_connection_sock *icsk = inet_csk(sk);
2312		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
 
2313
2314		tcp_enter_loss(sk, 1);
2315		icsk->icsk_retransmits++;
2316		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2317		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2318					  icsk->icsk_rto, TCP_RTO_MAX);
2319		return true;
2320	}
2321	return false;
2322}
2323
2324static inline int tcp_fackets_out(const struct tcp_sock *tp)
2325{
2326	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2327}
2328
2329/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2330 * counter when SACK is enabled (without SACK, sacked_out is used for
2331 * that purpose).
2332 *
2333 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2334 * segments up to the highest received SACK block so far and holes in
2335 * between them.
2336 *
2337 * With reordering, holes may still be in flight, so RFC3517 recovery
2338 * uses pure sacked_out (total number of SACKed segments) even though
2339 * it violates the RFC that uses duplicate ACKs, often these are equal
2340 * but when e.g. out-of-window ACKs or packet duplication occurs,
2341 * they differ. Since neither occurs due to loss, TCP should really
2342 * ignore them.
2343 */
2344static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2345{
2346	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2347}
2348
2349static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2350{
2351	struct tcp_sock *tp = tcp_sk(sk);
2352	unsigned long delay;
2353
2354	/* Delay early retransmit and entering fast recovery for
2355	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2356	 * available, or RTO is scheduled to fire first.
2357	 */
2358	if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
 
2359		return false;
2360
2361	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
 
 
2362	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2363		return false;
2364
2365	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2366	tp->early_retrans_delayed = 1;
2367	return true;
2368}
2369
2370static inline int tcp_skb_timedout(const struct sock *sk,
2371				   const struct sk_buff *skb)
2372{
2373	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2374}
2375
2376static inline int tcp_head_timedout(const struct sock *sk)
2377{
2378	const struct tcp_sock *tp = tcp_sk(sk);
2379
2380	return tp->packets_out &&
2381	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2382}
2383
2384/* Linux NewReno/SACK/FACK/ECN state machine.
2385 * --------------------------------------
2386 *
2387 * "Open"	Normal state, no dubious events, fast path.
2388 * "Disorder"   In all the respects it is "Open",
2389 *		but requires a bit more attention. It is entered when
2390 *		we see some SACKs or dupacks. It is split of "Open"
2391 *		mainly to move some processing from fast path to slow one.
2392 * "CWR"	CWND was reduced due to some Congestion Notification event.
2393 *		It can be ECN, ICMP source quench, local device congestion.
2394 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2395 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2396 *
2397 * tcp_fastretrans_alert() is entered:
2398 * - each incoming ACK, if state is not "Open"
2399 * - when arrived ACK is unusual, namely:
2400 *	* SACK
2401 *	* Duplicate ACK.
2402 *	* ECN ECE.
2403 *
2404 * Counting packets in flight is pretty simple.
2405 *
2406 *	in_flight = packets_out - left_out + retrans_out
2407 *
2408 *	packets_out is SND.NXT-SND.UNA counted in packets.
2409 *
2410 *	retrans_out is number of retransmitted segments.
2411 *
2412 *	left_out is number of segments left network, but not ACKed yet.
2413 *
2414 *		left_out = sacked_out + lost_out
2415 *
2416 *     sacked_out: Packets, which arrived to receiver out of order
2417 *		   and hence not ACKed. With SACKs this number is simply
2418 *		   amount of SACKed data. Even without SACKs
2419 *		   it is easy to give pretty reliable estimate of this number,
2420 *		   counting duplicate ACKs.
2421 *
2422 *       lost_out: Packets lost by network. TCP has no explicit
2423 *		   "loss notification" feedback from network (for now).
2424 *		   It means that this number can be only _guessed_.
2425 *		   Actually, it is the heuristics to predict lossage that
2426 *		   distinguishes different algorithms.
2427 *
2428 *	F.e. after RTO, when all the queue is considered as lost,
2429 *	lost_out = packets_out and in_flight = retrans_out.
2430 *
2431 *		Essentially, we have now two algorithms counting
2432 *		lost packets.
2433 *
2434 *		FACK: It is the simplest heuristics. As soon as we decided
2435 *		that something is lost, we decide that _all_ not SACKed
2436 *		packets until the most forward SACK are lost. I.e.
2437 *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2438 *		It is absolutely correct estimate, if network does not reorder
2439 *		packets. And it loses any connection to reality when reordering
2440 *		takes place. We use FACK by default until reordering
2441 *		is suspected on the path to this destination.
2442 *
2443 *		NewReno: when Recovery is entered, we assume that one segment
2444 *		is lost (classic Reno). While we are in Recovery and
2445 *		a partial ACK arrives, we assume that one more packet
2446 *		is lost (NewReno). This heuristics are the same in NewReno
2447 *		and SACK.
2448 *
2449 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2450 *  deflation etc. CWND is real congestion window, never inflated, changes
2451 *  only according to classic VJ rules.
2452 *
2453 * Really tricky (and requiring careful tuning) part of algorithm
2454 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2455 * The first determines the moment _when_ we should reduce CWND and,
2456 * hence, slow down forward transmission. In fact, it determines the moment
2457 * when we decide that hole is caused by loss, rather than by a reorder.
2458 *
2459 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2460 * holes, caused by lost packets.
2461 *
2462 * And the most logically complicated part of algorithm is undo
2463 * heuristics. We detect false retransmits due to both too early
2464 * fast retransmit (reordering) and underestimated RTO, analyzing
2465 * timestamps and D-SACKs. When we detect that some segments were
2466 * retransmitted by mistake and CWND reduction was wrong, we undo
2467 * window reduction and abort recovery phase. This logic is hidden
2468 * inside several functions named tcp_try_undo_<something>.
2469 */
2470
2471/* This function decides, when we should leave Disordered state
2472 * and enter Recovery phase, reducing congestion window.
2473 *
2474 * Main question: may we further continue forward transmission
2475 * with the same cwnd?
2476 */
2477static bool tcp_time_to_recover(struct sock *sk, int flag)
2478{
2479	struct tcp_sock *tp = tcp_sk(sk);
2480	__u32 packets_out;
2481
2482	/* Do not perform any recovery during F-RTO algorithm */
2483	if (tp->frto_counter)
2484		return false;
2485
2486	/* Trick#1: The loss is proven. */
2487	if (tp->lost_out)
2488		return true;
2489
2490	/* Not-A-Trick#2 : Classic rule... */
2491	if (tcp_dupack_heuristics(tp) > tp->reordering)
2492		return true;
2493
2494	/* Trick#3 : when we use RFC2988 timer restart, fast
2495	 * retransmit can be triggered by timeout of queue head.
2496	 */
2497	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2498		return true;
2499
2500	/* Trick#4: It is still not OK... But will it be useful to delay
2501	 * recovery more?
2502	 */
2503	packets_out = tp->packets_out;
2504	if (packets_out <= tp->reordering &&
2505	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2506	    !tcp_may_send_now(sk)) {
2507		/* We have nothing to send. This connection is limited
2508		 * either by receiver window or by application.
2509		 */
2510		return true;
2511	}
2512
2513	/* If a thin stream is detected, retransmit after first
2514	 * received dupack. Employ only if SACK is supported in order
2515	 * to avoid possible corner-case series of spurious retransmissions
2516	 * Use only if there are no unsent data.
2517	 */
2518	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2519	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2520	    tcp_is_sack(tp) && !tcp_send_head(sk))
2521		return true;
2522
2523	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2524	 * retransmissions due to small network reorderings, we implement
2525	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2526	 * interval if appropriate.
2527	 */
2528	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2529	    (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2530	    !tcp_may_send_now(sk))
2531		return !tcp_pause_early_retransmit(sk, flag);
2532
2533	return false;
2534}
2535
2536/* New heuristics: it is possible only after we switched to restart timer
2537 * each time when something is ACKed. Hence, we can detect timed out packets
2538 * during fast retransmit without falling to slow start.
2539 *
2540 * Usefulness of this as is very questionable, since we should know which of
2541 * the segments is the next to timeout which is relatively expensive to find
2542 * in general case unless we add some data structure just for that. The
2543 * current approach certainly won't find the right one too often and when it
2544 * finally does find _something_ it usually marks large part of the window
2545 * right away (because a retransmission with a larger timestamp blocks the
2546 * loop from advancing). -ij
2547 */
2548static void tcp_timeout_skbs(struct sock *sk)
2549{
2550	struct tcp_sock *tp = tcp_sk(sk);
2551	struct sk_buff *skb;
2552
2553	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2554		return;
2555
2556	skb = tp->scoreboard_skb_hint;
2557	if (tp->scoreboard_skb_hint == NULL)
2558		skb = tcp_write_queue_head(sk);
2559
2560	tcp_for_write_queue_from(skb, sk) {
2561		if (skb == tcp_send_head(sk))
2562			break;
2563		if (!tcp_skb_timedout(sk, skb))
2564			break;
2565
2566		tcp_skb_mark_lost(tp, skb);
2567	}
2568
2569	tp->scoreboard_skb_hint = skb;
2570
2571	tcp_verify_left_out(tp);
2572}
2573
2574/* Detect loss in event "A" above by marking head of queue up as lost.
2575 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2576 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2577 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2578 * the maximum SACKed segments to pass before reaching this limit.
2579 */
2580static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2581{
2582	struct tcp_sock *tp = tcp_sk(sk);
2583	struct sk_buff *skb;
2584	int cnt, oldcnt;
2585	int err;
2586	unsigned int mss;
2587	/* Use SACK to deduce losses of new sequences sent during recovery */
2588	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2589
2590	WARN_ON(packets > tp->packets_out);
2591	if (tp->lost_skb_hint) {
2592		skb = tp->lost_skb_hint;
2593		cnt = tp->lost_cnt_hint;
2594		/* Head already handled? */
2595		if (mark_head && skb != tcp_write_queue_head(sk))
2596			return;
2597	} else {
2598		skb = tcp_write_queue_head(sk);
2599		cnt = 0;
2600	}
2601
2602	tcp_for_write_queue_from(skb, sk) {
2603		if (skb == tcp_send_head(sk))
2604			break;
2605		/* TODO: do this better */
2606		/* this is not the most efficient way to do this... */
2607		tp->lost_skb_hint = skb;
2608		tp->lost_cnt_hint = cnt;
2609
2610		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2611			break;
2612
2613		oldcnt = cnt;
2614		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2615		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2616			cnt += tcp_skb_pcount(skb);
2617
2618		if (cnt > packets) {
2619			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2620			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2621			    (oldcnt >= packets))
2622				break;
2623
2624			mss = skb_shinfo(skb)->gso_size;
2625			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2626			if (err < 0)
 
 
2627				break;
2628			cnt = packets;
2629		}
2630
2631		tcp_skb_mark_lost(tp, skb);
2632
2633		if (mark_head)
2634			break;
2635	}
2636	tcp_verify_left_out(tp);
2637}
2638
2639/* Account newly detected lost packet(s) */
2640
2641static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2642{
2643	struct tcp_sock *tp = tcp_sk(sk);
2644
2645	if (tcp_is_reno(tp)) {
2646		tcp_mark_head_lost(sk, 1, 1);
2647	} else if (tcp_is_fack(tp)) {
2648		int lost = tp->fackets_out - tp->reordering;
2649		if (lost <= 0)
2650			lost = 1;
2651		tcp_mark_head_lost(sk, lost, 0);
2652	} else {
2653		int sacked_upto = tp->sacked_out - tp->reordering;
2654		if (sacked_upto >= 0)
2655			tcp_mark_head_lost(sk, sacked_upto, 0);
2656		else if (fast_rexmit)
2657			tcp_mark_head_lost(sk, 1, 1);
2658	}
2659
2660	tcp_timeout_skbs(sk);
2661}
2662
2663/* CWND moderation, preventing bursts due to too big ACKs
2664 * in dubious situations.
2665 */
2666static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2667{
2668	tp->snd_cwnd = min(tp->snd_cwnd,
2669			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2670	tp->snd_cwnd_stamp = tcp_time_stamp;
2671}
2672
2673/* Lower bound on congestion window is slow start threshold
2674 * unless congestion avoidance choice decides to overide it.
2675 */
2676static inline u32 tcp_cwnd_min(const struct sock *sk)
2677{
2678	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2679
2680	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2681}
2682
2683/* Decrease cwnd each second ack. */
2684static void tcp_cwnd_down(struct sock *sk, int flag)
 
 
 
2685{
2686	struct tcp_sock *tp = tcp_sk(sk);
2687	int decr = tp->snd_cwnd_cnt + 1;
2688
2689	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2690	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2691		tp->snd_cwnd_cnt = decr & 1;
2692		decr >>= 1;
2693
2694		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2695			tp->snd_cwnd -= decr;
2696
2697		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2698		tp->snd_cwnd_stamp = tcp_time_stamp;
2699	}
2700}
2701
2702/* Nothing was retransmitted or returned timestamp is less
2703 * than timestamp of the first retransmission.
2704 */
2705static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2706{
2707	return !tp->retrans_stamp ||
2708		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2709		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2710}
2711
2712/* Undo procedures. */
2713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2714#if FASTRETRANS_DEBUG > 1
2715static void DBGUNDO(struct sock *sk, const char *msg)
2716{
2717	struct tcp_sock *tp = tcp_sk(sk);
2718	struct inet_sock *inet = inet_sk(sk);
2719
2720	if (sk->sk_family == AF_INET) {
2721		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2722			 msg,
2723			 &inet->inet_daddr, ntohs(inet->inet_dport),
2724			 tp->snd_cwnd, tcp_left_out(tp),
2725			 tp->snd_ssthresh, tp->prior_ssthresh,
2726			 tp->packets_out);
2727	}
2728#if IS_ENABLED(CONFIG_IPV6)
2729	else if (sk->sk_family == AF_INET6) {
2730		struct ipv6_pinfo *np = inet6_sk(sk);
2731		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2732			 msg,
2733			 &np->daddr, ntohs(inet->inet_dport),
2734			 tp->snd_cwnd, tcp_left_out(tp),
2735			 tp->snd_ssthresh, tp->prior_ssthresh,
2736			 tp->packets_out);
2737	}
2738#endif
2739}
2740#else
2741#define DBGUNDO(x...) do { } while (0)
2742#endif
2743
2744static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2745{
2746	struct tcp_sock *tp = tcp_sk(sk);
2747
 
 
 
 
 
 
 
 
 
 
 
 
2748	if (tp->prior_ssthresh) {
2749		const struct inet_connection_sock *icsk = inet_csk(sk);
2750
2751		if (icsk->icsk_ca_ops->undo_cwnd)
2752			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2753		else
2754			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2755
2756		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2757			tp->snd_ssthresh = tp->prior_ssthresh;
2758			TCP_ECN_withdraw_cwr(tp);
2759		}
2760	} else {
2761		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2762	}
2763	tp->snd_cwnd_stamp = tcp_time_stamp;
 
2764}
2765
2766static inline int tcp_may_undo(const struct tcp_sock *tp)
2767{
2768	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2769}
2770
2771/* People celebrate: "We love our President!" */
2772static bool tcp_try_undo_recovery(struct sock *sk)
2773{
2774	struct tcp_sock *tp = tcp_sk(sk);
2775
2776	if (tcp_may_undo(tp)) {
2777		int mib_idx;
2778
2779		/* Happy end! We did not retransmit anything
2780		 * or our original transmission succeeded.
2781		 */
2782		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2783		tcp_undo_cwr(sk, true);
2784		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2785			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2786		else
2787			mib_idx = LINUX_MIB_TCPFULLUNDO;
2788
2789		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2790		tp->undo_marker = 0;
2791	}
2792	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2793		/* Hold old state until something *above* high_seq
2794		 * is ACKed. For Reno it is MUST to prevent false
2795		 * fast retransmits (RFC2582). SACK TCP is safe. */
2796		tcp_moderate_cwnd(tp);
 
 
2797		return true;
2798	}
2799	tcp_set_ca_state(sk, TCP_CA_Open);
2800	return false;
2801}
2802
2803/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2804static void tcp_try_undo_dsack(struct sock *sk)
2805{
2806	struct tcp_sock *tp = tcp_sk(sk);
2807
2808	if (tp->undo_marker && !tp->undo_retrans) {
2809		DBGUNDO(sk, "D-SACK");
2810		tcp_undo_cwr(sk, true);
2811		tp->undo_marker = 0;
2812		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
 
2813	}
 
2814}
2815
2816/* We can clear retrans_stamp when there are no retransmissions in the
2817 * window. It would seem that it is trivially available for us in
2818 * tp->retrans_out, however, that kind of assumptions doesn't consider
2819 * what will happen if errors occur when sending retransmission for the
2820 * second time. ...It could the that such segment has only
2821 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2822 * the head skb is enough except for some reneging corner cases that
2823 * are not worth the effort.
2824 *
2825 * Main reason for all this complexity is the fact that connection dying
2826 * time now depends on the validity of the retrans_stamp, in particular,
2827 * that successive retransmissions of a segment must not advance
2828 * retrans_stamp under any conditions.
2829 */
2830static bool tcp_any_retrans_done(const struct sock *sk)
2831{
2832	const struct tcp_sock *tp = tcp_sk(sk);
2833	struct sk_buff *skb;
2834
2835	if (tp->retrans_out)
2836		return true;
2837
2838	skb = tcp_write_queue_head(sk);
2839	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
 
 
 
 
 
 
2840		return true;
2841
2842	return false;
2843}
2844
2845/* Undo during fast recovery after partial ACK. */
2846
2847static int tcp_try_undo_partial(struct sock *sk, int acked)
 
 
 
 
 
 
 
2848{
2849	struct tcp_sock *tp = tcp_sk(sk);
2850	/* Partial ACK arrived. Force Hoe's retransmit. */
2851	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2852
2853	if (tcp_may_undo(tp)) {
2854		/* Plain luck! Hole if filled with delayed
2855		 * packet, rather than with a retransmit.
2856		 */
2857		if (!tcp_any_retrans_done(sk))
2858			tp->retrans_stamp = 0;
 
 
 
2859
2860		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
 
 
 
 
 
2861
2862		DBGUNDO(sk, "Hoe");
2863		tcp_undo_cwr(sk, false);
2864		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2865
2866		/* So... Do not make Hoe's retransmit yet.
2867		 * If the first packet was delayed, the rest
2868		 * ones are most probably delayed as well.
2869		 */
2870		failed = 0;
 
 
 
 
 
 
 
2871	}
2872	return failed;
 
 
2873}
2874
2875/* Undo during loss recovery after partial ACK. */
2876static bool tcp_try_undo_loss(struct sock *sk)
2877{
2878	struct tcp_sock *tp = tcp_sk(sk);
2879
2880	if (tcp_may_undo(tp)) {
2881		struct sk_buff *skb;
2882		tcp_for_write_queue(skb, sk) {
2883			if (skb == tcp_send_head(sk))
2884				break;
2885			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2886		}
2887
2888		tcp_clear_all_retrans_hints(tp);
2889
2890		DBGUNDO(sk, "partial loss");
2891		tp->lost_out = 0;
2892		tcp_undo_cwr(sk, true);
2893		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2894		inet_csk(sk)->icsk_retransmits = 0;
2895		tp->undo_marker = 0;
2896		if (tcp_is_sack(tp))
2897			tcp_set_ca_state(sk, TCP_CA_Open);
2898		return true;
2899	}
2900	return false;
2901}
2902
2903static inline void tcp_complete_cwr(struct sock *sk)
 
2904{
2905	struct tcp_sock *tp = tcp_sk(sk);
2906
2907	/* Do not moderate cwnd if it's already undone in cwr or recovery. */
2908	if (tp->undo_marker) {
2909		if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2910			tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2911			tp->snd_cwnd_stamp = tcp_time_stamp;
2912		} else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2913			/* PRR algorithm. */
2914			tp->snd_cwnd = tp->snd_ssthresh;
2915			tp->snd_cwnd_stamp = tcp_time_stamp;
2916		}
2917	}
2918	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2919}
 
2920
2921static void tcp_try_keep_open(struct sock *sk)
2922{
2923	struct tcp_sock *tp = tcp_sk(sk);
2924	int state = TCP_CA_Open;
2925
2926	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2927		state = TCP_CA_Disorder;
2928
2929	if (inet_csk(sk)->icsk_ca_state != state) {
2930		tcp_set_ca_state(sk, state);
2931		tp->high_seq = tp->snd_nxt;
2932	}
2933}
2934
2935static void tcp_try_to_open(struct sock *sk, int flag)
2936{
2937	struct tcp_sock *tp = tcp_sk(sk);
2938
2939	tcp_verify_left_out(tp);
2940
2941	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2942		tp->retrans_stamp = 0;
2943
2944	if (flag & FLAG_ECE)
2945		tcp_enter_cwr(sk, 1);
2946
2947	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2948		tcp_try_keep_open(sk);
2949		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2950			tcp_moderate_cwnd(tp);
2951	} else {
2952		tcp_cwnd_down(sk, flag);
2953	}
2954}
2955
2956static void tcp_mtup_probe_failed(struct sock *sk)
2957{
2958	struct inet_connection_sock *icsk = inet_csk(sk);
2959
2960	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2961	icsk->icsk_mtup.probe_size = 0;
 
2962}
2963
2964static void tcp_mtup_probe_success(struct sock *sk)
2965{
2966	struct tcp_sock *tp = tcp_sk(sk);
2967	struct inet_connection_sock *icsk = inet_csk(sk);
2968
2969	/* FIXME: breaks with very large cwnd */
2970	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2971	tp->snd_cwnd = tp->snd_cwnd *
2972		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2973		       icsk->icsk_mtup.probe_size;
2974	tp->snd_cwnd_cnt = 0;
2975	tp->snd_cwnd_stamp = tcp_time_stamp;
2976	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2977
2978	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2979	icsk->icsk_mtup.probe_size = 0;
2980	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
 
2981}
2982
2983/* Do a simple retransmit without using the backoff mechanisms in
2984 * tcp_timer. This is used for path mtu discovery.
2985 * The socket is already locked here.
2986 */
2987void tcp_simple_retransmit(struct sock *sk)
2988{
2989	const struct inet_connection_sock *icsk = inet_csk(sk);
2990	struct tcp_sock *tp = tcp_sk(sk);
2991	struct sk_buff *skb;
2992	unsigned int mss = tcp_current_mss(sk);
2993	u32 prior_lost = tp->lost_out;
2994
2995	tcp_for_write_queue(skb, sk) {
2996		if (skb == tcp_send_head(sk))
2997			break;
2998		if (tcp_skb_seglen(skb) > mss &&
2999		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
3000			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3001				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
3002				tp->retrans_out -= tcp_skb_pcount(skb);
3003			}
3004			tcp_skb_mark_lost_uncond_verify(tp, skb);
3005		}
3006	}
3007
3008	tcp_clear_retrans_hints_partial(tp);
3009
3010	if (prior_lost == tp->lost_out)
3011		return;
3012
3013	if (tcp_is_reno(tp))
3014		tcp_limit_reno_sacked(tp);
3015
3016	tcp_verify_left_out(tp);
3017
3018	/* Don't muck with the congestion window here.
3019	 * Reason is that we do not increase amount of _data_
3020	 * in network, but units changed and effective
3021	 * cwnd/ssthresh really reduced now.
3022	 */
3023	if (icsk->icsk_ca_state != TCP_CA_Loss) {
3024		tp->high_seq = tp->snd_nxt;
3025		tp->snd_ssthresh = tcp_current_ssthresh(sk);
3026		tp->prior_ssthresh = 0;
3027		tp->undo_marker = 0;
3028		tcp_set_ca_state(sk, TCP_CA_Loss);
3029	}
3030	tcp_xmit_retransmit_queue(sk);
3031}
3032EXPORT_SYMBOL(tcp_simple_retransmit);
3033
3034/* This function implements the PRR algorithm, specifcally the PRR-SSRB
3035 * (proportional rate reduction with slow start reduction bound) as described in
3036 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3037 * It computes the number of packets to send (sndcnt) based on packets newly
3038 * delivered:
3039 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
3040 *	cwnd reductions across a full RTT.
3041 *   2) If packets in flight is lower than ssthresh (such as due to excess
3042 *	losses and/or application stalls), do not perform any further cwnd
3043 *	reductions, but instead slow start up to ssthresh.
3044 */
3045static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3046					int fast_rexmit, int flag)
3047{
3048	struct tcp_sock *tp = tcp_sk(sk);
3049	int sndcnt = 0;
3050	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3051
3052	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3053		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3054			       tp->prior_cwnd - 1;
3055		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3056	} else {
3057		sndcnt = min_t(int, delta,
3058			       max_t(int, tp->prr_delivered - tp->prr_out,
3059				     newly_acked_sacked) + 1);
3060	}
3061
3062	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3063	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3064}
3065
3066static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
3067{
3068	struct tcp_sock *tp = tcp_sk(sk);
3069	int mib_idx;
3070
3071	if (tcp_is_reno(tp))
3072		mib_idx = LINUX_MIB_TCPRENORECOVERY;
3073	else
3074		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3075
3076	NET_INC_STATS_BH(sock_net(sk), mib_idx);
3077
3078	tp->high_seq = tp->snd_nxt;
3079	tp->prior_ssthresh = 0;
3080	tp->undo_marker = tp->snd_una;
3081	tp->undo_retrans = tp->retrans_out;
3082
3083	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
3084		if (!ece_ack)
3085			tp->prior_ssthresh = tcp_current_ssthresh(sk);
3086		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
3087		TCP_ECN_queue_cwr(tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3088	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3089
3090	tp->bytes_acked = 0;
3091	tp->snd_cwnd_cnt = 0;
3092	tp->prior_cwnd = tp->snd_cwnd;
3093	tp->prr_delivered = 0;
3094	tp->prr_out = 0;
3095	tcp_set_ca_state(sk, TCP_CA_Recovery);
 
 
 
 
3096}
3097
3098/* Process an event, which can update packets-in-flight not trivially.
3099 * Main goal of this function is to calculate new estimate for left_out,
3100 * taking into account both packets sitting in receiver's buffer and
3101 * packets lost by network.
3102 *
3103 * Besides that it does CWND reduction, when packet loss is detected
3104 * and changes state of machine.
 
3105 *
3106 * It does _not_ decide what to send, it is made in function
3107 * tcp_xmit_retransmit_queue().
3108 */
3109static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3110				  int prior_sacked, bool is_dupack,
3111				  int flag)
3112{
3113	struct inet_connection_sock *icsk = inet_csk(sk);
3114	struct tcp_sock *tp = tcp_sk(sk);
3115	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
 
3116				    (tcp_fackets_out(tp) > tp->reordering));
3117	int newly_acked_sacked = 0;
3118	int fast_rexmit = 0;
3119
3120	if (WARN_ON(!tp->packets_out && tp->sacked_out))
3121		tp->sacked_out = 0;
3122	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3123		tp->fackets_out = 0;
3124
3125	/* Now state machine starts.
3126	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3127	if (flag & FLAG_ECE)
3128		tp->prior_ssthresh = 0;
3129
3130	/* B. In all the states check for reneging SACKs. */
3131	if (tcp_check_sack_reneging(sk, flag))
3132		return;
3133
3134	/* C. Check consistency of the current state. */
3135	tcp_verify_left_out(tp);
3136
3137	/* D. Check state exit conditions. State can be terminated
3138	 *    when high_seq is ACKed. */
3139	if (icsk->icsk_ca_state == TCP_CA_Open) {
3140		WARN_ON(tp->retrans_out != 0);
3141		tp->retrans_stamp = 0;
3142	} else if (!before(tp->snd_una, tp->high_seq)) {
3143		switch (icsk->icsk_ca_state) {
3144		case TCP_CA_Loss:
3145			icsk->icsk_retransmits = 0;
3146			if (tcp_try_undo_recovery(sk))
3147				return;
3148			break;
3149
3150		case TCP_CA_CWR:
3151			/* CWR is to be held something *above* high_seq
3152			 * is ACKed for CWR bit to reach receiver. */
3153			if (tp->snd_una != tp->high_seq) {
3154				tcp_complete_cwr(sk);
3155				tcp_set_ca_state(sk, TCP_CA_Open);
3156			}
3157			break;
3158
3159		case TCP_CA_Recovery:
3160			if (tcp_is_reno(tp))
3161				tcp_reset_reno_sack(tp);
3162			if (tcp_try_undo_recovery(sk))
3163				return;
3164			tcp_complete_cwr(sk);
3165			break;
3166		}
3167	}
3168
 
 
 
 
 
 
 
3169	/* E. Process state. */
3170	switch (icsk->icsk_ca_state) {
3171	case TCP_CA_Recovery:
3172		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3173			if (tcp_is_reno(tp) && is_dupack)
3174				tcp_add_reno_sack(sk);
3175		} else
3176			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3177		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
 
 
 
 
 
 
 
 
3178		break;
3179	case TCP_CA_Loss:
3180		if (flag & FLAG_DATA_ACKED)
3181			icsk->icsk_retransmits = 0;
3182		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3183			tcp_reset_reno_sack(tp);
3184		if (!tcp_try_undo_loss(sk)) {
3185			tcp_moderate_cwnd(tp);
3186			tcp_xmit_retransmit_queue(sk);
3187			return;
3188		}
3189		if (icsk->icsk_ca_state != TCP_CA_Open)
3190			return;
3191		/* Loss is undone; fall through to processing in Open state. */
3192	default:
3193		if (tcp_is_reno(tp)) {
3194			if (flag & FLAG_SND_UNA_ADVANCED)
3195				tcp_reset_reno_sack(tp);
3196			if (is_dupack)
3197				tcp_add_reno_sack(sk);
3198		}
3199		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
3200
3201		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3202			tcp_try_undo_dsack(sk);
3203
3204		if (!tcp_time_to_recover(sk, flag)) {
3205			tcp_try_to_open(sk, flag);
3206			return;
3207		}
3208
3209		/* MTU probe failure: don't reduce cwnd */
3210		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3211		    icsk->icsk_mtup.probe_size &&
3212		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3213			tcp_mtup_probe_failed(sk);
3214			/* Restores the reduction we did in tcp_mtup_probe() */
3215			tp->snd_cwnd++;
3216			tcp_simple_retransmit(sk);
3217			return;
3218		}
3219
3220		/* Otherwise enter Recovery state */
3221		tcp_enter_recovery(sk, (flag & FLAG_ECE));
3222		fast_rexmit = 1;
3223	}
3224
3225	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3226		tcp_update_scoreboard(sk, fast_rexmit);
3227	tp->prr_delivered += newly_acked_sacked;
3228	tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3229	tcp_xmit_retransmit_queue(sk);
3230}
3231
3232void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3233{
3234	tcp_rtt_estimator(sk, seq_rtt);
3235	tcp_set_rto(sk);
3236	inet_csk(sk)->icsk_backoff = 0;
3237}
3238EXPORT_SYMBOL(tcp_valid_rtt_meas);
 
 
 
 
3239
3240/* Read draft-ietf-tcplw-high-performance before mucking
3241 * with this code. (Supersedes RFC1323)
3242 */
3243static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3244{
3245	/* RTTM Rule: A TSecr value received in a segment is used to
3246	 * update the averaged RTT measurement only if the segment
3247	 * acknowledges some new data, i.e., only if it advances the
3248	 * left edge of the send window.
3249	 *
3250	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3251	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3252	 *
3253	 * Changed: reset backoff as soon as we see the first valid sample.
3254	 * If we do not, we get strongly overestimated rto. With timestamps
3255	 * samples are accepted even from very old segments: f.e., when rtt=1
3256	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3257	 * answer arrives rto becomes 120 seconds! If at least one of segments
3258	 * in window is lost... Voila.	 			--ANK (010210)
3259	 */
3260	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
3261
3262	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
 
 
3263}
3264
3265static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
 
3266{
3267	/* We don't have a timestamp. Can only use
3268	 * packets that are not retransmitted to determine
3269	 * rtt estimates. Also, we must not reset the
3270	 * backoff for rto until we get a non-retransmitted
3271	 * packet. This allows us to deal with a situation
3272	 * where the network delay has increased suddenly.
3273	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3274	 */
3275
3276	if (flag & FLAG_RETRANS_DATA_ACKED)
3277		return;
 
3278
3279	tcp_valid_rtt_meas(sk, seq_rtt);
3280}
3281
3282static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3283				      const s32 seq_rtt)
3284{
3285	const struct tcp_sock *tp = tcp_sk(sk);
3286	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3287	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3288		tcp_ack_saw_tstamp(sk, flag);
3289	else if (seq_rtt >= 0)
3290		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3291}
3292
3293static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3294{
3295	const struct inet_connection_sock *icsk = inet_csk(sk);
3296	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
 
3297	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3298}
3299
3300/* Restart timer after forward progress on connection.
3301 * RFC2988 recommends to restart timer to now+rto.
3302 */
3303void tcp_rearm_rto(struct sock *sk)
3304{
 
3305	struct tcp_sock *tp = tcp_sk(sk);
3306
 
 
 
 
 
 
3307	if (!tp->packets_out) {
3308		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3309	} else {
3310		u32 rto = inet_csk(sk)->icsk_rto;
3311		/* Offset the time elapsed after installing regular RTO */
3312		if (tp->early_retrans_delayed) {
 
3313			struct sk_buff *skb = tcp_write_queue_head(sk);
3314			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
 
3315			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3316			/* delta may not be positive if the socket is locked
3317			 * when the delayed ER timer fires and is rescheduled.
3318			 */
3319			if (delta > 0)
3320				rto = delta;
3321		}
3322		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3323					  TCP_RTO_MAX);
3324	}
3325	tp->early_retrans_delayed = 0;
3326}
3327
3328/* This function is called when the delayed ER timer fires. TCP enters
3329 * fast recovery and performs fast-retransmit.
3330 */
3331void tcp_resume_early_retransmit(struct sock *sk)
3332{
3333	struct tcp_sock *tp = tcp_sk(sk);
3334
3335	tcp_rearm_rto(sk);
3336
3337	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3338	if (!tp->do_early_retrans)
3339		return;
3340
3341	tcp_enter_recovery(sk, false);
3342	tcp_update_scoreboard(sk, 1);
3343	tcp_xmit_retransmit_queue(sk);
3344}
3345
3346/* If we get here, the whole TSO packet has not been acked. */
3347static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3348{
3349	struct tcp_sock *tp = tcp_sk(sk);
3350	u32 packets_acked;
3351
3352	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3353
3354	packets_acked = tcp_skb_pcount(skb);
3355	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3356		return 0;
3357	packets_acked -= tcp_skb_pcount(skb);
3358
3359	if (packets_acked) {
3360		BUG_ON(tcp_skb_pcount(skb) == 0);
3361		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3362	}
3363
3364	return packets_acked;
3365}
3366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3367/* Remove acknowledged frames from the retransmission queue. If our packet
3368 * is before the ack sequence we can discard it as it's confirmed to have
3369 * arrived at the other end.
3370 */
3371static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3372			       u32 prior_snd_una)
 
3373{
 
 
3374	struct tcp_sock *tp = tcp_sk(sk);
3375	const struct inet_connection_sock *icsk = inet_csk(sk);
 
 
 
 
 
3376	struct sk_buff *skb;
3377	u32 now = tcp_time_stamp;
3378	int fully_acked = true;
3379	int flag = 0;
3380	u32 pkts_acked = 0;
3381	u32 reord = tp->packets_out;
3382	u32 prior_sacked = tp->sacked_out;
3383	s32 seq_rtt = -1;
3384	s32 ca_seq_rtt = -1;
3385	ktime_t last_ackt = net_invalid_timestamp();
3386
3387	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3388		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
 
3389		u32 acked_pcount;
3390		u8 sacked = scb->sacked;
 
3391
3392		/* Determine how many packets and what bytes were acked, tso and else */
3393		if (after(scb->end_seq, tp->snd_una)) {
3394			if (tcp_skb_pcount(skb) == 1 ||
3395			    !after(tp->snd_una, scb->seq))
3396				break;
3397
3398			acked_pcount = tcp_tso_acked(sk, skb);
3399			if (!acked_pcount)
3400				break;
3401
3402			fully_acked = false;
3403		} else {
 
 
3404			acked_pcount = tcp_skb_pcount(skb);
3405		}
3406
3407		if (sacked & TCPCB_RETRANS) {
3408			if (sacked & TCPCB_SACKED_RETRANS)
3409				tp->retrans_out -= acked_pcount;
3410			flag |= FLAG_RETRANS_DATA_ACKED;
3411			ca_seq_rtt = -1;
3412			seq_rtt = -1;
3413			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3414				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3415		} else {
3416			ca_seq_rtt = now - scb->when;
3417			last_ackt = skb->tstamp;
3418			if (seq_rtt < 0) {
3419				seq_rtt = ca_seq_rtt;
3420			}
3421			if (!(sacked & TCPCB_SACKED_ACKED))
3422				reord = min(pkts_acked, reord);
3423		}
3424
3425		if (sacked & TCPCB_SACKED_ACKED)
3426			tp->sacked_out -= acked_pcount;
 
 
 
 
 
3427		if (sacked & TCPCB_LOST)
3428			tp->lost_out -= acked_pcount;
3429
3430		tp->packets_out -= acked_pcount;
3431		pkts_acked += acked_pcount;
3432
3433		/* Initial outgoing SYN's get put onto the write_queue
3434		 * just like anything else we transmit.  It is not
3435		 * true data, and if we misinform our callers that
3436		 * this ACK acks real data, we will erroneously exit
3437		 * connection startup slow start one packet too
3438		 * quickly.  This is severely frowned upon behavior.
3439		 */
3440		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3441			flag |= FLAG_DATA_ACKED;
3442		} else {
3443			flag |= FLAG_SYN_ACKED;
3444			tp->retrans_stamp = 0;
3445		}
3446
3447		if (!fully_acked)
3448			break;
3449
3450		tcp_unlink_write_queue(skb, sk);
3451		sk_wmem_free_skb(sk, skb);
3452		tp->scoreboard_skb_hint = NULL;
3453		if (skb == tp->retransmit_skb_hint)
3454			tp->retransmit_skb_hint = NULL;
3455		if (skb == tp->lost_skb_hint)
3456			tp->lost_skb_hint = NULL;
3457	}
3458
3459	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3460		tp->snd_up = tp->snd_una;
3461
3462	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3463		flag |= FLAG_SACK_RENEGING;
3464
 
 
 
 
 
 
 
 
 
 
 
 
 
3465	if (flag & FLAG_ACKED) {
3466		const struct tcp_congestion_ops *ca_ops
3467			= inet_csk(sk)->icsk_ca_ops;
3468
3469		if (unlikely(icsk->icsk_mtup.probe_size &&
3470			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3471			tcp_mtup_probe_success(sk);
3472		}
3473
3474		tcp_ack_update_rtt(sk, flag, seq_rtt);
3475		tcp_rearm_rto(sk);
3476
3477		if (tcp_is_reno(tp)) {
3478			tcp_remove_reno_sacks(sk, pkts_acked);
3479		} else {
3480			int delta;
3481
3482			/* Non-retransmitted hole got filled? That's reordering */
3483			if (reord < prior_fackets)
3484				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3485
3486			delta = tcp_is_fack(tp) ? pkts_acked :
3487						  prior_sacked - tp->sacked_out;
3488			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3489		}
3490
3491		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3492
3493		if (ca_ops->pkts_acked) {
3494			s32 rtt_us = -1;
3495
3496			/* Is the ACK triggering packet unambiguous? */
3497			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3498				/* High resolution needed and available? */
3499				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3500				    !ktime_equal(last_ackt,
3501						 net_invalid_timestamp()))
3502					rtt_us = ktime_us_delta(ktime_get_real(),
3503								last_ackt);
3504				else if (ca_seq_rtt >= 0)
3505					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3506			}
3507
3508			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3509		}
3510	}
3511
3512#if FASTRETRANS_DEBUG > 0
3513	WARN_ON((int)tp->sacked_out < 0);
3514	WARN_ON((int)tp->lost_out < 0);
3515	WARN_ON((int)tp->retrans_out < 0);
3516	if (!tp->packets_out && tcp_is_sack(tp)) {
3517		icsk = inet_csk(sk);
3518		if (tp->lost_out) {
3519			pr_debug("Leak l=%u %d\n",
3520				 tp->lost_out, icsk->icsk_ca_state);
3521			tp->lost_out = 0;
3522		}
3523		if (tp->sacked_out) {
3524			pr_debug("Leak s=%u %d\n",
3525				 tp->sacked_out, icsk->icsk_ca_state);
3526			tp->sacked_out = 0;
3527		}
3528		if (tp->retrans_out) {
3529			pr_debug("Leak r=%u %d\n",
3530				 tp->retrans_out, icsk->icsk_ca_state);
3531			tp->retrans_out = 0;
3532		}
3533	}
3534#endif
 
3535	return flag;
3536}
3537
3538static void tcp_ack_probe(struct sock *sk)
3539{
3540	const struct tcp_sock *tp = tcp_sk(sk);
3541	struct inet_connection_sock *icsk = inet_csk(sk);
3542
3543	/* Was it a usable window open? */
3544
3545	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3546		icsk->icsk_backoff = 0;
3547		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3548		/* Socket must be waked up by subsequent tcp_data_snd_check().
3549		 * This function is not for random using!
3550		 */
3551	} else {
 
 
3552		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3553					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3554					  TCP_RTO_MAX);
3555	}
3556}
3557
3558static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3559{
3560	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3561		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3562}
3563
3564static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
 
3565{
3566	const struct tcp_sock *tp = tcp_sk(sk);
3567	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3568		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3569}
3570
3571/* Check that window update is acceptable.
3572 * The function assumes that snd_una<=ack<=snd_next.
3573 */
3574static inline int tcp_may_update_window(const struct tcp_sock *tp,
3575					const u32 ack, const u32 ack_seq,
3576					const u32 nwin)
3577{
3578	return	after(ack, tp->snd_una) ||
3579		after(ack_seq, tp->snd_wl1) ||
3580		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3581}
3582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3583/* Update our send window.
3584 *
3585 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3586 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3587 */
3588static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3589				 u32 ack_seq)
3590{
3591	struct tcp_sock *tp = tcp_sk(sk);
3592	int flag = 0;
3593	u32 nwin = ntohs(tcp_hdr(skb)->window);
3594
3595	if (likely(!tcp_hdr(skb)->syn))
3596		nwin <<= tp->rx_opt.snd_wscale;
3597
3598	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3599		flag |= FLAG_WIN_UPDATE;
3600		tcp_update_wl(tp, ack_seq);
3601
3602		if (tp->snd_wnd != nwin) {
3603			tp->snd_wnd = nwin;
3604
3605			/* Note, it is the only place, where
3606			 * fast path is recovered for sending TCP.
3607			 */
3608			tp->pred_flags = 0;
3609			tcp_fast_path_check(sk);
3610
 
 
 
3611			if (nwin > tp->max_window) {
3612				tp->max_window = nwin;
3613				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3614			}
3615		}
3616	}
3617
3618	tp->snd_una = ack;
3619
3620	return flag;
3621}
3622
3623/* A very conservative spurious RTO response algorithm: reduce cwnd and
3624 * continue in congestion avoidance.
 
 
 
 
3625 */
3626static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
 
3627{
3628	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3629	tp->snd_cwnd_cnt = 0;
3630	tp->bytes_acked = 0;
3631	TCP_ECN_queue_cwr(tp);
3632	tcp_moderate_cwnd(tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3633}
3634
3635/* A conservative spurious RTO response algorithm: reduce cwnd using
3636 * rate halving and continue in congestion avoidance.
3637 */
3638static void tcp_ratehalving_spur_to_response(struct sock *sk)
3639{
3640	tcp_enter_cwr(sk, 0);
 
3641}
3642
3643static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3644{
3645	if (flag & FLAG_ECE)
3646		tcp_ratehalving_spur_to_response(sk);
3647	else
3648		tcp_undo_cwr(sk, true);
 
 
 
 
 
 
 
3649}
3650
3651/* F-RTO spurious RTO detection algorithm (RFC4138)
3652 *
3653 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3654 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3655 * window (but not to or beyond highest sequence sent before RTO):
3656 *   On First ACK,  send two new segments out.
3657 *   On Second ACK, RTO was likely spurious. Do spurious response (response
3658 *                  algorithm is not part of the F-RTO detection algorithm
3659 *                  given in RFC4138 but can be selected separately).
3660 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3661 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3662 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3663 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3664 *
3665 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3666 * original window even after we transmit two new data segments.
3667 *
3668 * SACK version:
3669 *   on first step, wait until first cumulative ACK arrives, then move to
3670 *   the second step. In second step, the next ACK decides.
3671 *
3672 * F-RTO is implemented (mainly) in four functions:
3673 *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3674 *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3675 *     called when tcp_use_frto() showed green light
3676 *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3677 *   - tcp_enter_frto_loss() is called if there is not enough evidence
3678 *     to prove that the RTO is indeed spurious. It transfers the control
3679 *     from F-RTO to the conventional RTO recovery
3680 */
3681static bool tcp_process_frto(struct sock *sk, int flag)
3682{
3683	struct tcp_sock *tp = tcp_sk(sk);
3684
3685	tcp_verify_left_out(tp);
 
3686
3687	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3688	if (flag & FLAG_DATA_ACKED)
3689		inet_csk(sk)->icsk_retransmits = 0;
3690
3691	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3692	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3693		tp->undo_marker = 0;
3694
3695	if (!before(tp->snd_una, tp->frto_highmark)) {
3696		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3697		return true;
 
 
 
 
 
 
3698	}
 
3699
3700	if (!tcp_is_sackfrto(tp)) {
3701		/* RFC4138 shortcoming in step 2; should also have case c):
3702		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3703		 * data, winupdate
3704		 */
3705		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3706			return true;
3707
3708		if (!(flag & FLAG_DATA_ACKED)) {
3709			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3710					    flag);
3711			return true;
3712		}
3713	} else {
3714		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3715			/* Prevent sending of new data. */
3716			tp->snd_cwnd = min(tp->snd_cwnd,
3717					   tcp_packets_in_flight(tp));
3718			return true;
3719		}
3720
3721		if ((tp->frto_counter >= 2) &&
3722		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3723		     ((flag & FLAG_DATA_SACKED) &&
3724		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3725			/* RFC4138 shortcoming (see comment above) */
3726			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3727			    (flag & FLAG_NOT_DUP))
3728				return true;
3729
3730			tcp_enter_frto_loss(sk, 3, flag);
3731			return true;
3732		}
3733	}
3734
3735	if (tp->frto_counter == 1) {
3736		/* tcp_may_send_now needs to see updated state */
3737		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3738		tp->frto_counter = 2;
3739
3740		if (!tcp_may_send_now(sk))
3741			tcp_enter_frto_loss(sk, 2, flag);
3742
3743		return true;
3744	} else {
3745		switch (sysctl_tcp_frto_response) {
3746		case 2:
3747			tcp_undo_spur_to_response(sk, flag);
3748			break;
3749		case 1:
3750			tcp_conservative_spur_to_response(tp);
3751			break;
3752		default:
3753			tcp_ratehalving_spur_to_response(sk);
3754			break;
3755		}
3756		tp->frto_counter = 0;
3757		tp->undo_marker = 0;
3758		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3759	}
3760	return false;
3761}
3762
3763/* This routine deals with incoming acks, but not outgoing ones. */
3764static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3765{
3766	struct inet_connection_sock *icsk = inet_csk(sk);
3767	struct tcp_sock *tp = tcp_sk(sk);
 
3768	u32 prior_snd_una = tp->snd_una;
3769	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3770	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3771	bool is_dupack = false;
3772	u32 prior_in_flight;
3773	u32 prior_fackets;
3774	int prior_packets;
3775	int prior_sacked = tp->sacked_out;
3776	int pkts_acked = 0;
3777	bool frto_cwnd = false;
 
 
 
 
 
3778
3779	/* If the ack is older than previous acks
3780	 * then we can probably ignore it.
3781	 */
3782	if (before(ack, prior_snd_una))
 
 
 
 
 
3783		goto old_ack;
 
3784
3785	/* If the ack includes data we haven't sent yet, discard
3786	 * this segment (RFC793 Section 3.9).
3787	 */
3788	if (after(ack, tp->snd_nxt))
3789		goto invalid_ack;
3790
3791	if (tp->early_retrans_delayed)
 
3792		tcp_rearm_rto(sk);
3793
3794	if (after(ack, prior_snd_una))
3795		flag |= FLAG_SND_UNA_ADVANCED;
3796
3797	if (sysctl_tcp_abc) {
3798		if (icsk->icsk_ca_state < TCP_CA_CWR)
3799			tp->bytes_acked += ack - prior_snd_una;
3800		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3801			/* we assume just one segment left network */
3802			tp->bytes_acked += min(ack - prior_snd_una,
3803					       tp->mss_cache);
3804	}
3805
3806	prior_fackets = tp->fackets_out;
3807	prior_in_flight = tcp_packets_in_flight(tp);
 
 
 
 
 
3808
3809	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3810		/* Window is constant, pure forward advance.
3811		 * No more checks are required.
3812		 * Note, we use the fact that SND.UNA>=SND.WL2.
3813		 */
3814		tcp_update_wl(tp, ack_seq);
3815		tp->snd_una = ack;
3816		flag |= FLAG_WIN_UPDATE;
3817
3818		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3819
3820		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3821	} else {
 
 
3822		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3823			flag |= FLAG_DATA;
3824		else
3825			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3826
3827		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3828
3829		if (TCP_SKB_CB(skb)->sacked)
3830			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
 
3831
3832		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3833			flag |= FLAG_ECE;
 
 
 
 
 
3834
3835		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3836	}
3837
3838	/* We passed data and got it acked, remove any soft error
3839	 * log. Something worked...
3840	 */
3841	sk->sk_err_soft = 0;
3842	icsk->icsk_probes_out = 0;
3843	tp->rcv_tstamp = tcp_time_stamp;
3844	prior_packets = tp->packets_out;
3845	if (!prior_packets)
3846		goto no_queue;
3847
3848	/* See if we can take anything off of the retransmit queue. */
3849	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3850
3851	pkts_acked = prior_packets - tp->packets_out;
3852
3853	if (tp->frto_counter)
3854		frto_cwnd = tcp_process_frto(sk, flag);
3855	/* Guarantee sacktag reordering detection against wrap-arounds */
3856	if (before(tp->frto_highmark, tp->snd_una))
3857		tp->frto_highmark = 0;
3858
3859	if (tcp_ack_is_dubious(sk, flag)) {
3860		/* Advance CWND, if state allows this. */
3861		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3862		    tcp_may_raise_cwnd(sk, flag))
3863			tcp_cong_avoid(sk, ack, prior_in_flight);
3864		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3865		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3866				      is_dupack, flag);
3867	} else {
3868		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3869			tcp_cong_avoid(sk, ack, prior_in_flight);
3870	}
 
 
3871
3872	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3873		dst_confirm(__sk_dst_get(sk));
 
 
 
3874
 
 
 
 
3875	return 1;
3876
3877no_queue:
3878	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3879	if (flag & FLAG_DSACKING_ACK)
3880		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3881				      is_dupack, flag);
3882	/* If this ack opens up a zero window, clear backoff.  It was
3883	 * being used to time the probes, and is probably far higher than
3884	 * it needs to be for normal retransmission.
3885	 */
3886	if (tcp_send_head(sk))
3887		tcp_ack_probe(sk);
 
 
 
3888	return 1;
3889
3890invalid_ack:
3891	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3892	return -1;
3893
3894old_ack:
3895	/* If data was SACKed, tag it and see if we should send more data.
3896	 * If data was DSACKed, see if we can undo a cwnd reduction.
3897	 */
3898	if (TCP_SKB_CB(skb)->sacked) {
3899		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3900		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3901				      is_dupack, flag);
 
3902	}
3903
3904	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3905	return 0;
3906}
3907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3908/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3909 * But, this can also be called on packets in the established flow when
3910 * the fast version below fails.
3911 */
3912void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3913		       const u8 **hvpp, int estab)
 
3914{
3915	const unsigned char *ptr;
3916	const struct tcphdr *th = tcp_hdr(skb);
3917	int length = (th->doff * 4) - sizeof(struct tcphdr);
3918
3919	ptr = (const unsigned char *)(th + 1);
3920	opt_rx->saw_tstamp = 0;
3921
3922	while (length > 0) {
3923		int opcode = *ptr++;
3924		int opsize;
3925
3926		switch (opcode) {
3927		case TCPOPT_EOL:
3928			return;
3929		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3930			length--;
3931			continue;
3932		default:
3933			opsize = *ptr++;
3934			if (opsize < 2) /* "silly options" */
3935				return;
3936			if (opsize > length)
3937				return;	/* don't parse partial options */
3938			switch (opcode) {
3939			case TCPOPT_MSS:
3940				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3941					u16 in_mss = get_unaligned_be16(ptr);
3942					if (in_mss) {
3943						if (opt_rx->user_mss &&
3944						    opt_rx->user_mss < in_mss)
3945							in_mss = opt_rx->user_mss;
3946						opt_rx->mss_clamp = in_mss;
3947					}
3948				}
3949				break;
3950			case TCPOPT_WINDOW:
3951				if (opsize == TCPOLEN_WINDOW && th->syn &&
3952				    !estab && sysctl_tcp_window_scaling) {
3953					__u8 snd_wscale = *(__u8 *)ptr;
3954					opt_rx->wscale_ok = 1;
3955					if (snd_wscale > 14) {
3956						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3957								     __func__,
3958								     snd_wscale);
3959						snd_wscale = 14;
3960					}
3961					opt_rx->snd_wscale = snd_wscale;
3962				}
3963				break;
3964			case TCPOPT_TIMESTAMP:
3965				if ((opsize == TCPOLEN_TIMESTAMP) &&
3966				    ((estab && opt_rx->tstamp_ok) ||
3967				     (!estab && sysctl_tcp_timestamps))) {
3968					opt_rx->saw_tstamp = 1;
3969					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3970					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3971				}
3972				break;
3973			case TCPOPT_SACK_PERM:
3974				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3975				    !estab && sysctl_tcp_sack) {
3976					opt_rx->sack_ok = TCP_SACK_SEEN;
3977					tcp_sack_reset(opt_rx);
3978				}
3979				break;
3980
3981			case TCPOPT_SACK:
3982				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3983				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3984				   opt_rx->sack_ok) {
3985					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3986				}
3987				break;
3988#ifdef CONFIG_TCP_MD5SIG
3989			case TCPOPT_MD5SIG:
3990				/*
3991				 * The MD5 Hash has already been
3992				 * checked (see tcp_v{4,6}_do_rcv()).
3993				 */
3994				break;
3995#endif
3996			case TCPOPT_COOKIE:
3997				/* This option is variable length.
 
 
 
 
 
 
 
3998				 */
3999				switch (opsize) {
4000				case TCPOLEN_COOKIE_BASE:
4001					/* not yet implemented */
4002					break;
4003				case TCPOLEN_COOKIE_PAIR:
4004					/* not yet implemented */
4005					break;
4006				case TCPOLEN_COOKIE_MIN+0:
4007				case TCPOLEN_COOKIE_MIN+2:
4008				case TCPOLEN_COOKIE_MIN+4:
4009				case TCPOLEN_COOKIE_MIN+6:
4010				case TCPOLEN_COOKIE_MAX:
4011					/* 16-bit multiple */
4012					opt_rx->cookie_plus = opsize;
4013					*hvpp = ptr;
4014					break;
4015				default:
4016					/* ignore option */
4017					break;
4018				}
4019				break;
 
4020			}
4021
4022			ptr += opsize-2;
4023			length -= opsize;
4024		}
4025	}
4026}
4027EXPORT_SYMBOL(tcp_parse_options);
4028
4029static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4030{
4031	const __be32 *ptr = (const __be32 *)(th + 1);
4032
4033	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4034			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4035		tp->rx_opt.saw_tstamp = 1;
4036		++ptr;
4037		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4038		++ptr;
4039		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
 
 
 
4040		return true;
4041	}
4042	return false;
4043}
4044
4045/* Fast parse options. This hopes to only see timestamps.
4046 * If it is wrong it falls back on tcp_parse_options().
4047 */
4048static bool tcp_fast_parse_options(const struct sk_buff *skb,
4049				   const struct tcphdr *th,
4050				   struct tcp_sock *tp, const u8 **hvpp)
4051{
4052	/* In the spirit of fast parsing, compare doff directly to constant
4053	 * values.  Because equality is used, short doff can be ignored here.
4054	 */
4055	if (th->doff == (sizeof(*th) / 4)) {
4056		tp->rx_opt.saw_tstamp = 0;
4057		return false;
4058	} else if (tp->rx_opt.tstamp_ok &&
4059		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4060		if (tcp_parse_aligned_timestamp(tp, th))
4061			return true;
4062	}
4063	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
 
 
 
 
4064	return true;
4065}
4066
4067#ifdef CONFIG_TCP_MD5SIG
4068/*
4069 * Parse MD5 Signature option
4070 */
4071const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4072{
4073	int length = (th->doff << 2) - sizeof(*th);
4074	const u8 *ptr = (const u8 *)(th + 1);
4075
4076	/* If the TCP option is too short, we can short cut */
4077	if (length < TCPOLEN_MD5SIG)
4078		return NULL;
4079
4080	while (length > 0) {
4081		int opcode = *ptr++;
4082		int opsize;
4083
4084		switch(opcode) {
4085		case TCPOPT_EOL:
4086			return NULL;
4087		case TCPOPT_NOP:
4088			length--;
4089			continue;
4090		default:
4091			opsize = *ptr++;
4092			if (opsize < 2 || opsize > length)
4093				return NULL;
4094			if (opcode == TCPOPT_MD5SIG)
4095				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4096		}
4097		ptr += opsize - 2;
4098		length -= opsize;
4099	}
4100	return NULL;
4101}
4102EXPORT_SYMBOL(tcp_parse_md5sig_option);
4103#endif
4104
4105static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4106{
4107	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4108	tp->rx_opt.ts_recent_stamp = get_seconds();
4109}
4110
4111static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4112{
4113	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4114		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
4115		 * extra check below makes sure this can only happen
4116		 * for pure ACK frames.  -DaveM
4117		 *
4118		 * Not only, also it occurs for expired timestamps.
4119		 */
4120
4121		if (tcp_paws_check(&tp->rx_opt, 0))
4122			tcp_store_ts_recent(tp);
4123	}
4124}
4125
4126/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4127 *
4128 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4129 * it can pass through stack. So, the following predicate verifies that
4130 * this segment is not used for anything but congestion avoidance or
4131 * fast retransmit. Moreover, we even are able to eliminate most of such
4132 * second order effects, if we apply some small "replay" window (~RTO)
4133 * to timestamp space.
4134 *
4135 * All these measures still do not guarantee that we reject wrapped ACKs
4136 * on networks with high bandwidth, when sequence space is recycled fastly,
4137 * but it guarantees that such events will be very rare and do not affect
4138 * connection seriously. This doesn't look nice, but alas, PAWS is really
4139 * buggy extension.
4140 *
4141 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4142 * states that events when retransmit arrives after original data are rare.
4143 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4144 * the biggest problem on large power networks even with minor reordering.
4145 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4146 * up to bandwidth of 18Gigabit/sec. 8) ]
4147 */
4148
4149static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4150{
4151	const struct tcp_sock *tp = tcp_sk(sk);
4152	const struct tcphdr *th = tcp_hdr(skb);
4153	u32 seq = TCP_SKB_CB(skb)->seq;
4154	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4155
4156	return (/* 1. Pure ACK with correct sequence number. */
4157		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4158
4159		/* 2. ... and duplicate ACK. */
4160		ack == tp->snd_una &&
4161
4162		/* 3. ... and does not update window. */
4163		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4164
4165		/* 4. ... and sits in replay window. */
4166		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4167}
4168
4169static inline int tcp_paws_discard(const struct sock *sk,
4170				   const struct sk_buff *skb)
4171{
4172	const struct tcp_sock *tp = tcp_sk(sk);
4173
4174	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4175	       !tcp_disordered_ack(sk, skb);
4176}
4177
4178/* Check segment sequence number for validity.
4179 *
4180 * Segment controls are considered valid, if the segment
4181 * fits to the window after truncation to the window. Acceptability
4182 * of data (and SYN, FIN, of course) is checked separately.
4183 * See tcp_data_queue(), for example.
4184 *
4185 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4186 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4187 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4188 * (borrowed from freebsd)
4189 */
4190
4191static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4192{
4193	return	!before(end_seq, tp->rcv_wup) &&
4194		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4195}
4196
4197/* When we get a reset we do this. */
4198static void tcp_reset(struct sock *sk)
4199{
4200	/* We want the right error as BSD sees it (and indeed as we do). */
4201	switch (sk->sk_state) {
4202	case TCP_SYN_SENT:
4203		sk->sk_err = ECONNREFUSED;
4204		break;
4205	case TCP_CLOSE_WAIT:
4206		sk->sk_err = EPIPE;
4207		break;
4208	case TCP_CLOSE:
4209		return;
4210	default:
4211		sk->sk_err = ECONNRESET;
4212	}
4213	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4214	smp_wmb();
4215
4216	if (!sock_flag(sk, SOCK_DEAD))
4217		sk->sk_error_report(sk);
4218
4219	tcp_done(sk);
4220}
4221
4222/*
4223 * 	Process the FIN bit. This now behaves as it is supposed to work
4224 *	and the FIN takes effect when it is validly part of sequence
4225 *	space. Not before when we get holes.
4226 *
4227 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4228 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4229 *	TIME-WAIT)
4230 *
4231 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4232 *	close and we go into CLOSING (and later onto TIME-WAIT)
4233 *
4234 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4235 */
4236static void tcp_fin(struct sock *sk)
4237{
4238	struct tcp_sock *tp = tcp_sk(sk);
4239
4240	inet_csk_schedule_ack(sk);
4241
4242	sk->sk_shutdown |= RCV_SHUTDOWN;
4243	sock_set_flag(sk, SOCK_DONE);
4244
4245	switch (sk->sk_state) {
4246	case TCP_SYN_RECV:
4247	case TCP_ESTABLISHED:
4248		/* Move to CLOSE_WAIT */
4249		tcp_set_state(sk, TCP_CLOSE_WAIT);
4250		inet_csk(sk)->icsk_ack.pingpong = 1;
4251		break;
4252
4253	case TCP_CLOSE_WAIT:
4254	case TCP_CLOSING:
4255		/* Received a retransmission of the FIN, do
4256		 * nothing.
4257		 */
4258		break;
4259	case TCP_LAST_ACK:
4260		/* RFC793: Remain in the LAST-ACK state. */
4261		break;
4262
4263	case TCP_FIN_WAIT1:
4264		/* This case occurs when a simultaneous close
4265		 * happens, we must ack the received FIN and
4266		 * enter the CLOSING state.
4267		 */
4268		tcp_send_ack(sk);
4269		tcp_set_state(sk, TCP_CLOSING);
4270		break;
4271	case TCP_FIN_WAIT2:
4272		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4273		tcp_send_ack(sk);
4274		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4275		break;
4276	default:
4277		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4278		 * cases we should never reach this piece of code.
4279		 */
4280		pr_err("%s: Impossible, sk->sk_state=%d\n",
4281		       __func__, sk->sk_state);
4282		break;
4283	}
4284
4285	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4286	 * Probably, we should reset in this case. For now drop them.
4287	 */
4288	__skb_queue_purge(&tp->out_of_order_queue);
4289	if (tcp_is_sack(tp))
4290		tcp_sack_reset(&tp->rx_opt);
4291	sk_mem_reclaim(sk);
4292
4293	if (!sock_flag(sk, SOCK_DEAD)) {
4294		sk->sk_state_change(sk);
4295
4296		/* Do not send POLL_HUP for half duplex close. */
4297		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4298		    sk->sk_state == TCP_CLOSE)
4299			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4300		else
4301			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4302	}
4303}
4304
4305static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4306				  u32 end_seq)
4307{
4308	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4309		if (before(seq, sp->start_seq))
4310			sp->start_seq = seq;
4311		if (after(end_seq, sp->end_seq))
4312			sp->end_seq = end_seq;
4313		return true;
4314	}
4315	return false;
4316}
4317
4318static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4319{
4320	struct tcp_sock *tp = tcp_sk(sk);
4321
4322	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4323		int mib_idx;
4324
4325		if (before(seq, tp->rcv_nxt))
4326			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4327		else
4328			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4329
4330		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4331
4332		tp->rx_opt.dsack = 1;
4333		tp->duplicate_sack[0].start_seq = seq;
4334		tp->duplicate_sack[0].end_seq = end_seq;
4335	}
4336}
4337
4338static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4339{
4340	struct tcp_sock *tp = tcp_sk(sk);
4341
4342	if (!tp->rx_opt.dsack)
4343		tcp_dsack_set(sk, seq, end_seq);
4344	else
4345		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4346}
4347
4348static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4349{
4350	struct tcp_sock *tp = tcp_sk(sk);
4351
4352	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4353	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4354		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4355		tcp_enter_quickack_mode(sk);
4356
4357		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4358			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4359
4360			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4361				end_seq = tp->rcv_nxt;
4362			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4363		}
4364	}
4365
4366	tcp_send_ack(sk);
4367}
4368
4369/* These routines update the SACK block as out-of-order packets arrive or
4370 * in-order packets close up the sequence space.
4371 */
4372static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4373{
4374	int this_sack;
4375	struct tcp_sack_block *sp = &tp->selective_acks[0];
4376	struct tcp_sack_block *swalk = sp + 1;
4377
4378	/* See if the recent change to the first SACK eats into
4379	 * or hits the sequence space of other SACK blocks, if so coalesce.
4380	 */
4381	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4382		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4383			int i;
4384
4385			/* Zap SWALK, by moving every further SACK up by one slot.
4386			 * Decrease num_sacks.
4387			 */
4388			tp->rx_opt.num_sacks--;
4389			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4390				sp[i] = sp[i + 1];
4391			continue;
4392		}
4393		this_sack++, swalk++;
4394	}
4395}
4396
4397static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4398{
4399	struct tcp_sock *tp = tcp_sk(sk);
4400	struct tcp_sack_block *sp = &tp->selective_acks[0];
4401	int cur_sacks = tp->rx_opt.num_sacks;
4402	int this_sack;
4403
4404	if (!cur_sacks)
4405		goto new_sack;
4406
4407	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4408		if (tcp_sack_extend(sp, seq, end_seq)) {
4409			/* Rotate this_sack to the first one. */
4410			for (; this_sack > 0; this_sack--, sp--)
4411				swap(*sp, *(sp - 1));
4412			if (cur_sacks > 1)
4413				tcp_sack_maybe_coalesce(tp);
4414			return;
4415		}
4416	}
4417
4418	/* Could not find an adjacent existing SACK, build a new one,
4419	 * put it at the front, and shift everyone else down.  We
4420	 * always know there is at least one SACK present already here.
4421	 *
4422	 * If the sack array is full, forget about the last one.
4423	 */
4424	if (this_sack >= TCP_NUM_SACKS) {
4425		this_sack--;
4426		tp->rx_opt.num_sacks--;
4427		sp--;
4428	}
4429	for (; this_sack > 0; this_sack--, sp--)
4430		*sp = *(sp - 1);
4431
4432new_sack:
4433	/* Build the new head SACK, and we're done. */
4434	sp->start_seq = seq;
4435	sp->end_seq = end_seq;
4436	tp->rx_opt.num_sacks++;
4437}
4438
4439/* RCV.NXT advances, some SACKs should be eaten. */
4440
4441static void tcp_sack_remove(struct tcp_sock *tp)
4442{
4443	struct tcp_sack_block *sp = &tp->selective_acks[0];
4444	int num_sacks = tp->rx_opt.num_sacks;
4445	int this_sack;
4446
4447	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4448	if (skb_queue_empty(&tp->out_of_order_queue)) {
4449		tp->rx_opt.num_sacks = 0;
4450		return;
4451	}
4452
4453	for (this_sack = 0; this_sack < num_sacks;) {
4454		/* Check if the start of the sack is covered by RCV.NXT. */
4455		if (!before(tp->rcv_nxt, sp->start_seq)) {
4456			int i;
4457
4458			/* RCV.NXT must cover all the block! */
4459			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4460
4461			/* Zap this SACK, by moving forward any other SACKS. */
4462			for (i=this_sack+1; i < num_sacks; i++)
4463				tp->selective_acks[i-1] = tp->selective_acks[i];
4464			num_sacks--;
4465			continue;
4466		}
4467		this_sack++;
4468		sp++;
4469	}
4470	tp->rx_opt.num_sacks = num_sacks;
4471}
4472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4473/* This one checks to see if we can put data from the
4474 * out_of_order queue into the receive_queue.
4475 */
4476static void tcp_ofo_queue(struct sock *sk)
4477{
4478	struct tcp_sock *tp = tcp_sk(sk);
4479	__u32 dsack_high = tp->rcv_nxt;
4480	struct sk_buff *skb;
 
4481
4482	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4483		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4484			break;
4485
4486		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4487			__u32 dsack = dsack_high;
4488			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4489				dsack_high = TCP_SKB_CB(skb)->end_seq;
4490			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4491		}
4492
 
4493		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4494			SOCK_DEBUG(sk, "ofo packet was already received\n");
4495			__skb_unlink(skb, &tp->out_of_order_queue);
4496			__kfree_skb(skb);
4497			continue;
4498		}
4499		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4500			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4501			   TCP_SKB_CB(skb)->end_seq);
4502
4503		__skb_unlink(skb, &tp->out_of_order_queue);
4504		__skb_queue_tail(&sk->sk_receive_queue, skb);
4505		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4506		if (tcp_hdr(skb)->fin)
 
 
4507			tcp_fin(sk);
 
 
4508	}
4509}
4510
4511static bool tcp_prune_ofo_queue(struct sock *sk);
4512static int tcp_prune_queue(struct sock *sk);
4513
4514static int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
 
4515{
4516	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4517	    !sk_rmem_schedule(sk, size)) {
4518
4519		if (tcp_prune_queue(sk) < 0)
4520			return -1;
4521
4522		if (!sk_rmem_schedule(sk, size)) {
4523			if (!tcp_prune_ofo_queue(sk))
4524				return -1;
4525
4526			if (!sk_rmem_schedule(sk, size))
4527				return -1;
4528		}
4529	}
4530	return 0;
4531}
4532
4533/**
4534 * tcp_try_coalesce - try to merge skb to prior one
4535 * @sk: socket
4536 * @to: prior buffer
4537 * @from: buffer to add in queue
4538 * @fragstolen: pointer to boolean
4539 *
4540 * Before queueing skb @from after @to, try to merge them
4541 * to reduce overall memory use and queue lengths, if cost is small.
4542 * Packets in ofo or receive queues can stay a long time.
4543 * Better try to coalesce them right now to avoid future collapses.
4544 * Returns true if caller should free @from instead of queueing it
4545 */
4546static bool tcp_try_coalesce(struct sock *sk,
4547			     struct sk_buff *to,
4548			     struct sk_buff *from,
4549			     bool *fragstolen)
4550{
4551	int delta;
4552
4553	*fragstolen = false;
4554
4555	if (tcp_hdr(from)->fin)
4556		return false;
4557
4558	/* Its possible this segment overlaps with prior segment in queue */
4559	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4560		return false;
4561
4562	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4563		return false;
4564
4565	atomic_add(delta, &sk->sk_rmem_alloc);
4566	sk_mem_charge(sk, delta);
4567	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4568	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4569	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4570	return true;
4571}
4572
4573static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4574{
4575	struct tcp_sock *tp = tcp_sk(sk);
4576	struct sk_buff *skb1;
4577	u32 seq, end_seq;
4578
4579	TCP_ECN_check_ce(tp, skb);
4580
4581	if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4582		/* TODO: should increment a counter */
4583		__kfree_skb(skb);
4584		return;
4585	}
4586
4587	/* Disable header prediction. */
4588	tp->pred_flags = 0;
4589	inet_csk_schedule_ack(sk);
4590
 
4591	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4592		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4593
4594	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4595	if (!skb1) {
4596		/* Initial out of order segment, build 1 SACK. */
4597		if (tcp_is_sack(tp)) {
4598			tp->rx_opt.num_sacks = 1;
4599			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4600			tp->selective_acks[0].end_seq =
4601						TCP_SKB_CB(skb)->end_seq;
4602		}
4603		__skb_queue_head(&tp->out_of_order_queue, skb);
4604		goto end;
4605	}
4606
4607	seq = TCP_SKB_CB(skb)->seq;
4608	end_seq = TCP_SKB_CB(skb)->end_seq;
4609
4610	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4611		bool fragstolen;
4612
4613		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4614			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4615		} else {
 
4616			kfree_skb_partial(skb, fragstolen);
4617			skb = NULL;
4618		}
4619
4620		if (!tp->rx_opt.num_sacks ||
4621		    tp->selective_acks[0].end_seq != seq)
4622			goto add_sack;
4623
4624		/* Common case: data arrive in order after hole. */
4625		tp->selective_acks[0].end_seq = end_seq;
4626		goto end;
4627	}
4628
4629	/* Find place to insert this segment. */
4630	while (1) {
4631		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4632			break;
4633		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4634			skb1 = NULL;
4635			break;
4636		}
4637		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4638	}
4639
4640	/* Do skb overlap to previous one? */
4641	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4642		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4643			/* All the bits are present. Drop. */
 
4644			__kfree_skb(skb);
4645			skb = NULL;
4646			tcp_dsack_set(sk, seq, end_seq);
4647			goto add_sack;
4648		}
4649		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4650			/* Partial overlap. */
4651			tcp_dsack_set(sk, seq,
4652				      TCP_SKB_CB(skb1)->end_seq);
4653		} else {
4654			if (skb_queue_is_first(&tp->out_of_order_queue,
4655					       skb1))
4656				skb1 = NULL;
4657			else
4658				skb1 = skb_queue_prev(
4659					&tp->out_of_order_queue,
4660					skb1);
4661		}
4662	}
4663	if (!skb1)
4664		__skb_queue_head(&tp->out_of_order_queue, skb);
4665	else
4666		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4667
4668	/* And clean segments covered by new one as whole. */
4669	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4670		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4671
4672		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4673			break;
4674		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4675			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4676					 end_seq);
4677			break;
4678		}
4679		__skb_unlink(skb1, &tp->out_of_order_queue);
4680		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4681				 TCP_SKB_CB(skb1)->end_seq);
 
4682		__kfree_skb(skb1);
4683	}
4684
4685add_sack:
4686	if (tcp_is_sack(tp))
4687		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4688end:
4689	if (skb)
 
4690		skb_set_owner_r(skb, sk);
 
4691}
4692
4693static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4694		  bool *fragstolen)
4695{
4696	int eaten;
4697	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4698
4699	__skb_pull(skb, hdrlen);
4700	eaten = (tail &&
4701		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4702	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4703	if (!eaten) {
4704		__skb_queue_tail(&sk->sk_receive_queue, skb);
4705		skb_set_owner_r(skb, sk);
4706	}
4707	return eaten;
4708}
4709
4710int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4711{
4712	struct sk_buff *skb;
4713	struct tcphdr *th;
 
4714	bool fragstolen;
4715
4716	if (tcp_try_rmem_schedule(sk, size + sizeof(*th)))
4717		goto err;
 
 
 
4718
4719	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
 
 
 
 
 
4720	if (!skb)
4721		goto err;
4722
4723	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4724	skb_reset_transport_header(skb);
4725	memset(th, 0, sizeof(*th));
 
 
 
4726
4727	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
 
4728		goto err_free;
4729
4730	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4731	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4732	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4733
4734	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4735		WARN_ON_ONCE(fragstolen); /* should not happen */
4736		__kfree_skb(skb);
4737	}
4738	return size;
4739
4740err_free:
4741	kfree_skb(skb);
4742err:
4743	return -ENOMEM;
 
4744}
4745
4746static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4747{
4748	const struct tcphdr *th = tcp_hdr(skb);
4749	struct tcp_sock *tp = tcp_sk(sk);
4750	int eaten = -1;
4751	bool fragstolen = false;
4752
4753	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4754		goto drop;
4755
4756	skb_dst_drop(skb);
4757	__skb_pull(skb, th->doff * 4);
4758
4759	TCP_ECN_accept_cwr(tp, skb);
4760
4761	tp->rx_opt.dsack = 0;
4762
4763	/*  Queue data for delivery to the user.
4764	 *  Packets in sequence go to the receive queue.
4765	 *  Out of sequence packets to the out_of_order_queue.
4766	 */
4767	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4768		if (tcp_receive_window(tp) == 0)
4769			goto out_of_window;
4770
4771		/* Ok. In sequence. In window. */
4772		if (tp->ucopy.task == current &&
4773		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4774		    sock_owned_by_user(sk) && !tp->urg_data) {
4775			int chunk = min_t(unsigned int, skb->len,
4776					  tp->ucopy.len);
4777
4778			__set_current_state(TASK_RUNNING);
4779
4780			local_bh_enable();
4781			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4782				tp->ucopy.len -= chunk;
4783				tp->copied_seq += chunk;
4784				eaten = (chunk == skb->len);
4785				tcp_rcv_space_adjust(sk);
4786			}
4787			local_bh_disable();
4788		}
4789
4790		if (eaten <= 0) {
4791queue_and_out:
4792			if (eaten < 0 &&
4793			    tcp_try_rmem_schedule(sk, skb->truesize))
4794				goto drop;
4795
 
 
4796			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4797		}
4798		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4799		if (skb->len)
4800			tcp_event_data_recv(sk, skb);
4801		if (th->fin)
4802			tcp_fin(sk);
4803
4804		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4805			tcp_ofo_queue(sk);
4806
4807			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4808			 * gap in queue is filled.
4809			 */
4810			if (skb_queue_empty(&tp->out_of_order_queue))
4811				inet_csk(sk)->icsk_ack.pingpong = 0;
4812		}
4813
4814		if (tp->rx_opt.num_sacks)
4815			tcp_sack_remove(tp);
4816
4817		tcp_fast_path_check(sk);
4818
4819		if (eaten > 0)
4820			kfree_skb_partial(skb, fragstolen);
4821		else if (!sock_flag(sk, SOCK_DEAD))
4822			sk->sk_data_ready(sk, 0);
4823		return;
4824	}
4825
4826	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4827		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4828		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4829		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4830
4831out_of_window:
4832		tcp_enter_quickack_mode(sk);
4833		inet_csk_schedule_ack(sk);
4834drop:
4835		__kfree_skb(skb);
4836		return;
4837	}
4838
4839	/* Out of window. F.e. zero window probe. */
4840	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4841		goto out_of_window;
4842
4843	tcp_enter_quickack_mode(sk);
4844
4845	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4846		/* Partial packet, seq < rcv_next < end_seq */
4847		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4848			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4849			   TCP_SKB_CB(skb)->end_seq);
4850
4851		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4852
4853		/* If window is closed, drop tail of packet. But after
4854		 * remembering D-SACK for its head made in previous line.
4855		 */
4856		if (!tcp_receive_window(tp))
4857			goto out_of_window;
4858		goto queue_and_out;
4859	}
4860
4861	tcp_data_queue_ofo(sk, skb);
4862}
4863
4864static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4865					struct sk_buff_head *list)
4866{
4867	struct sk_buff *next = NULL;
4868
4869	if (!skb_queue_is_last(list, skb))
4870		next = skb_queue_next(list, skb);
4871
4872	__skb_unlink(skb, list);
4873	__kfree_skb(skb);
4874	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4875
4876	return next;
4877}
4878
4879/* Collapse contiguous sequence of skbs head..tail with
4880 * sequence numbers start..end.
4881 *
4882 * If tail is NULL, this means until the end of the list.
4883 *
4884 * Segments with FIN/SYN are not collapsed (only because this
4885 * simplifies code)
4886 */
4887static void
4888tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4889	     struct sk_buff *head, struct sk_buff *tail,
4890	     u32 start, u32 end)
4891{
4892	struct sk_buff *skb, *n;
4893	bool end_of_skbs;
4894
4895	/* First, check that queue is collapsible and find
4896	 * the point where collapsing can be useful. */
4897	skb = head;
4898restart:
4899	end_of_skbs = true;
4900	skb_queue_walk_from_safe(list, skb, n) {
4901		if (skb == tail)
4902			break;
4903		/* No new bits? It is possible on ofo queue. */
4904		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4905			skb = tcp_collapse_one(sk, skb, list);
4906			if (!skb)
4907				break;
4908			goto restart;
4909		}
4910
4911		/* The first skb to collapse is:
4912		 * - not SYN/FIN and
4913		 * - bloated or contains data before "start" or
4914		 *   overlaps to the next one.
4915		 */
4916		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4917		    (tcp_win_from_space(skb->truesize) > skb->len ||
4918		     before(TCP_SKB_CB(skb)->seq, start))) {
4919			end_of_skbs = false;
4920			break;
4921		}
4922
4923		if (!skb_queue_is_last(list, skb)) {
4924			struct sk_buff *next = skb_queue_next(list, skb);
4925			if (next != tail &&
4926			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4927				end_of_skbs = false;
4928				break;
4929			}
4930		}
4931
4932		/* Decided to skip this, advance start seq. */
4933		start = TCP_SKB_CB(skb)->end_seq;
4934	}
4935	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
 
4936		return;
4937
4938	while (before(start, end)) {
 
4939		struct sk_buff *nskb;
4940		unsigned int header = skb_headroom(skb);
4941		int copy = SKB_MAX_ORDER(header, 0);
4942
4943		/* Too big header? This can happen with IPv6. */
4944		if (copy < 0)
4945			return;
4946		if (end - start < copy)
4947			copy = end - start;
4948		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4949		if (!nskb)
4950			return;
4951
4952		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4953		skb_set_network_header(nskb, (skb_network_header(skb) -
4954					      skb->head));
4955		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4956						skb->head));
4957		skb_reserve(nskb, header);
4958		memcpy(nskb->head, skb->head, header);
4959		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4960		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4961		__skb_queue_before(list, skb, nskb);
4962		skb_set_owner_r(nskb, sk);
4963
4964		/* Copy data, releasing collapsed skbs. */
4965		while (copy > 0) {
4966			int offset = start - TCP_SKB_CB(skb)->seq;
4967			int size = TCP_SKB_CB(skb)->end_seq - start;
4968
4969			BUG_ON(offset < 0);
4970			if (size > 0) {
4971				size = min(copy, size);
4972				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4973					BUG();
4974				TCP_SKB_CB(nskb)->end_seq += size;
4975				copy -= size;
4976				start += size;
4977			}
4978			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4979				skb = tcp_collapse_one(sk, skb, list);
4980				if (!skb ||
4981				    skb == tail ||
4982				    tcp_hdr(skb)->syn ||
4983				    tcp_hdr(skb)->fin)
4984					return;
4985			}
4986		}
4987	}
4988}
4989
4990/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4991 * and tcp_collapse() them until all the queue is collapsed.
4992 */
4993static void tcp_collapse_ofo_queue(struct sock *sk)
4994{
4995	struct tcp_sock *tp = tcp_sk(sk);
4996	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4997	struct sk_buff *head;
4998	u32 start, end;
4999
5000	if (skb == NULL)
5001		return;
5002
5003	start = TCP_SKB_CB(skb)->seq;
5004	end = TCP_SKB_CB(skb)->end_seq;
5005	head = skb;
5006
5007	for (;;) {
5008		struct sk_buff *next = NULL;
5009
5010		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
5011			next = skb_queue_next(&tp->out_of_order_queue, skb);
5012		skb = next;
5013
5014		/* Segment is terminated when we see gap or when
5015		 * we are at the end of all the queue. */
5016		if (!skb ||
5017		    after(TCP_SKB_CB(skb)->seq, end) ||
5018		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5019			tcp_collapse(sk, &tp->out_of_order_queue,
5020				     head, skb, start, end);
5021			head = skb;
5022			if (!skb)
5023				break;
5024			/* Start new segment */
5025			start = TCP_SKB_CB(skb)->seq;
5026			end = TCP_SKB_CB(skb)->end_seq;
5027		} else {
5028			if (before(TCP_SKB_CB(skb)->seq, start))
5029				start = TCP_SKB_CB(skb)->seq;
5030			if (after(TCP_SKB_CB(skb)->end_seq, end))
5031				end = TCP_SKB_CB(skb)->end_seq;
5032		}
5033	}
5034}
5035
5036/*
5037 * Purge the out-of-order queue.
5038 * Return true if queue was pruned.
5039 */
5040static bool tcp_prune_ofo_queue(struct sock *sk)
5041{
5042	struct tcp_sock *tp = tcp_sk(sk);
5043	bool res = false;
5044
5045	if (!skb_queue_empty(&tp->out_of_order_queue)) {
5046		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
5047		__skb_queue_purge(&tp->out_of_order_queue);
5048
5049		/* Reset SACK state.  A conforming SACK implementation will
5050		 * do the same at a timeout based retransmit.  When a connection
5051		 * is in a sad state like this, we care only about integrity
5052		 * of the connection not performance.
5053		 */
5054		if (tp->rx_opt.sack_ok)
5055			tcp_sack_reset(&tp->rx_opt);
5056		sk_mem_reclaim(sk);
5057		res = true;
5058	}
5059	return res;
5060}
5061
5062/* Reduce allocated memory if we can, trying to get
5063 * the socket within its memory limits again.
5064 *
5065 * Return less than zero if we should start dropping frames
5066 * until the socket owning process reads some of the data
5067 * to stabilize the situation.
5068 */
5069static int tcp_prune_queue(struct sock *sk)
5070{
5071	struct tcp_sock *tp = tcp_sk(sk);
5072
5073	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5074
5075	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
5076
5077	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5078		tcp_clamp_window(sk);
5079	else if (sk_under_memory_pressure(sk))
5080		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5081
5082	tcp_collapse_ofo_queue(sk);
5083	if (!skb_queue_empty(&sk->sk_receive_queue))
5084		tcp_collapse(sk, &sk->sk_receive_queue,
5085			     skb_peek(&sk->sk_receive_queue),
5086			     NULL,
5087			     tp->copied_seq, tp->rcv_nxt);
5088	sk_mem_reclaim(sk);
5089
5090	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5091		return 0;
5092
5093	/* Collapsing did not help, destructive actions follow.
5094	 * This must not ever occur. */
5095
5096	tcp_prune_ofo_queue(sk);
5097
5098	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5099		return 0;
5100
5101	/* If we are really being abused, tell the caller to silently
5102	 * drop receive data on the floor.  It will get retransmitted
5103	 * and hopefully then we'll have sufficient space.
5104	 */
5105	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
5106
5107	/* Massive buffer overcommit. */
5108	tp->pred_flags = 0;
5109	return -1;
5110}
5111
5112/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
5113 * As additional protections, we do not touch cwnd in retransmission phases,
5114 * and if application hit its sndbuf limit recently.
5115 */
5116void tcp_cwnd_application_limited(struct sock *sk)
5117{
5118	struct tcp_sock *tp = tcp_sk(sk);
5119
5120	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5121	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5122		/* Limited by application or receiver window. */
5123		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5124		u32 win_used = max(tp->snd_cwnd_used, init_win);
5125		if (win_used < tp->snd_cwnd) {
5126			tp->snd_ssthresh = tcp_current_ssthresh(sk);
5127			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5128		}
5129		tp->snd_cwnd_used = 0;
5130	}
5131	tp->snd_cwnd_stamp = tcp_time_stamp;
5132}
5133
5134static bool tcp_should_expand_sndbuf(const struct sock *sk)
5135{
5136	const struct tcp_sock *tp = tcp_sk(sk);
5137
5138	/* If the user specified a specific send buffer setting, do
5139	 * not modify it.
5140	 */
5141	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5142		return false;
5143
5144	/* If we are under global TCP memory pressure, do not expand.  */
5145	if (sk_under_memory_pressure(sk))
5146		return false;
5147
5148	/* If we are under soft global TCP memory pressure, do not expand.  */
5149	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5150		return false;
5151
5152	/* If we filled the congestion window, do not expand.  */
5153	if (tp->packets_out >= tp->snd_cwnd)
5154		return false;
5155
5156	return true;
5157}
5158
5159/* When incoming ACK allowed to free some skb from write_queue,
5160 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5161 * on the exit from tcp input handler.
5162 *
5163 * PROBLEM: sndbuf expansion does not work well with largesend.
5164 */
5165static void tcp_new_space(struct sock *sk)
5166{
5167	struct tcp_sock *tp = tcp_sk(sk);
5168
5169	if (tcp_should_expand_sndbuf(sk)) {
5170		int sndmem = SKB_TRUESIZE(max_t(u32,
5171						tp->rx_opt.mss_clamp,
5172						tp->mss_cache) +
5173					  MAX_TCP_HEADER);
5174		int demanded = max_t(unsigned int, tp->snd_cwnd,
5175				     tp->reordering + 1);
5176		sndmem *= 2 * demanded;
5177		if (sndmem > sk->sk_sndbuf)
5178			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5179		tp->snd_cwnd_stamp = tcp_time_stamp;
5180	}
5181
5182	sk->sk_write_space(sk);
5183}
5184
5185static void tcp_check_space(struct sock *sk)
5186{
5187	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5188		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
 
 
5189		if (sk->sk_socket &&
5190		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5191			tcp_new_space(sk);
5192	}
5193}
5194
5195static inline void tcp_data_snd_check(struct sock *sk)
5196{
5197	tcp_push_pending_frames(sk);
5198	tcp_check_space(sk);
5199}
5200
5201/*
5202 * Check if sending an ack is needed.
5203 */
5204static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5205{
5206	struct tcp_sock *tp = tcp_sk(sk);
5207
5208	    /* More than one full frame received... */
5209	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5210	     /* ... and right edge of window advances far enough.
5211	      * (tcp_recvmsg() will send ACK otherwise). Or...
5212	      */
5213	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5214	    /* We ACK each frame or... */
5215	    tcp_in_quickack_mode(sk) ||
5216	    /* We have out of order data. */
5217	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5218		/* Then ack it now */
5219		tcp_send_ack(sk);
5220	} else {
5221		/* Else, send delayed ack. */
5222		tcp_send_delayed_ack(sk);
5223	}
5224}
5225
5226static inline void tcp_ack_snd_check(struct sock *sk)
5227{
5228	if (!inet_csk_ack_scheduled(sk)) {
5229		/* We sent a data segment already. */
5230		return;
5231	}
5232	__tcp_ack_snd_check(sk, 1);
5233}
5234
5235/*
5236 *	This routine is only called when we have urgent data
5237 *	signaled. Its the 'slow' part of tcp_urg. It could be
5238 *	moved inline now as tcp_urg is only called from one
5239 *	place. We handle URGent data wrong. We have to - as
5240 *	BSD still doesn't use the correction from RFC961.
5241 *	For 1003.1g we should support a new option TCP_STDURG to permit
5242 *	either form (or just set the sysctl tcp_stdurg).
5243 */
5244
5245static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5246{
5247	struct tcp_sock *tp = tcp_sk(sk);
5248	u32 ptr = ntohs(th->urg_ptr);
5249
5250	if (ptr && !sysctl_tcp_stdurg)
5251		ptr--;
5252	ptr += ntohl(th->seq);
5253
5254	/* Ignore urgent data that we've already seen and read. */
5255	if (after(tp->copied_seq, ptr))
5256		return;
5257
5258	/* Do not replay urg ptr.
5259	 *
5260	 * NOTE: interesting situation not covered by specs.
5261	 * Misbehaving sender may send urg ptr, pointing to segment,
5262	 * which we already have in ofo queue. We are not able to fetch
5263	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5264	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5265	 * situations. But it is worth to think about possibility of some
5266	 * DoSes using some hypothetical application level deadlock.
5267	 */
5268	if (before(ptr, tp->rcv_nxt))
5269		return;
5270
5271	/* Do we already have a newer (or duplicate) urgent pointer? */
5272	if (tp->urg_data && !after(ptr, tp->urg_seq))
5273		return;
5274
5275	/* Tell the world about our new urgent pointer. */
5276	sk_send_sigurg(sk);
5277
5278	/* We may be adding urgent data when the last byte read was
5279	 * urgent. To do this requires some care. We cannot just ignore
5280	 * tp->copied_seq since we would read the last urgent byte again
5281	 * as data, nor can we alter copied_seq until this data arrives
5282	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5283	 *
5284	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5285	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5286	 * and expect that both A and B disappear from stream. This is _wrong_.
5287	 * Though this happens in BSD with high probability, this is occasional.
5288	 * Any application relying on this is buggy. Note also, that fix "works"
5289	 * only in this artificial test. Insert some normal data between A and B and we will
5290	 * decline of BSD again. Verdict: it is better to remove to trap
5291	 * buggy users.
5292	 */
5293	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5294	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5295		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5296		tp->copied_seq++;
5297		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5298			__skb_unlink(skb, &sk->sk_receive_queue);
5299			__kfree_skb(skb);
5300		}
5301	}
5302
5303	tp->urg_data = TCP_URG_NOTYET;
5304	tp->urg_seq = ptr;
5305
5306	/* Disable header prediction. */
5307	tp->pred_flags = 0;
5308}
5309
5310/* This is the 'fast' part of urgent handling. */
5311static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5312{
5313	struct tcp_sock *tp = tcp_sk(sk);
5314
5315	/* Check if we get a new urgent pointer - normally not. */
5316	if (th->urg)
5317		tcp_check_urg(sk, th);
5318
5319	/* Do we wait for any urgent data? - normally not... */
5320	if (tp->urg_data == TCP_URG_NOTYET) {
5321		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5322			  th->syn;
5323
5324		/* Is the urgent pointer pointing into this packet? */
5325		if (ptr < skb->len) {
5326			u8 tmp;
5327			if (skb_copy_bits(skb, ptr, &tmp, 1))
5328				BUG();
5329			tp->urg_data = TCP_URG_VALID | tmp;
5330			if (!sock_flag(sk, SOCK_DEAD))
5331				sk->sk_data_ready(sk, 0);
5332		}
5333	}
5334}
5335
5336static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5337{
5338	struct tcp_sock *tp = tcp_sk(sk);
5339	int chunk = skb->len - hlen;
5340	int err;
5341
5342	local_bh_enable();
5343	if (skb_csum_unnecessary(skb))
5344		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5345	else
5346		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5347						       tp->ucopy.iov);
5348
5349	if (!err) {
5350		tp->ucopy.len -= chunk;
5351		tp->copied_seq += chunk;
5352		tcp_rcv_space_adjust(sk);
5353	}
5354
5355	local_bh_disable();
5356	return err;
5357}
5358
5359static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5360					    struct sk_buff *skb)
5361{
5362	__sum16 result;
5363
5364	if (sock_owned_by_user(sk)) {
5365		local_bh_enable();
5366		result = __tcp_checksum_complete(skb);
5367		local_bh_disable();
5368	} else {
5369		result = __tcp_checksum_complete(skb);
5370	}
5371	return result;
5372}
5373
5374static inline int tcp_checksum_complete_user(struct sock *sk,
5375					     struct sk_buff *skb)
5376{
5377	return !skb_csum_unnecessary(skb) &&
5378	       __tcp_checksum_complete_user(sk, skb);
5379}
5380
5381#ifdef CONFIG_NET_DMA
5382static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5383				  int hlen)
5384{
5385	struct tcp_sock *tp = tcp_sk(sk);
5386	int chunk = skb->len - hlen;
5387	int dma_cookie;
5388	bool copied_early = false;
5389
5390	if (tp->ucopy.wakeup)
5391		return false;
5392
5393	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5394		tp->ucopy.dma_chan = net_dma_find_channel();
5395
5396	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5397
5398		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5399							 skb, hlen,
5400							 tp->ucopy.iov, chunk,
5401							 tp->ucopy.pinned_list);
5402
5403		if (dma_cookie < 0)
5404			goto out;
5405
5406		tp->ucopy.dma_cookie = dma_cookie;
5407		copied_early = true;
5408
5409		tp->ucopy.len -= chunk;
5410		tp->copied_seq += chunk;
5411		tcp_rcv_space_adjust(sk);
5412
5413		if ((tp->ucopy.len == 0) ||
5414		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5415		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5416			tp->ucopy.wakeup = 1;
5417			sk->sk_data_ready(sk, 0);
5418		}
5419	} else if (chunk > 0) {
5420		tp->ucopy.wakeup = 1;
5421		sk->sk_data_ready(sk, 0);
5422	}
5423out:
5424	return copied_early;
5425}
5426#endif /* CONFIG_NET_DMA */
5427
5428/* Does PAWS and seqno based validation of an incoming segment, flags will
5429 * play significant role here.
5430 */
5431static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5432			      const struct tcphdr *th, int syn_inerr)
5433{
5434	const u8 *hash_location;
5435	struct tcp_sock *tp = tcp_sk(sk);
5436
5437	/* RFC1323: H1. Apply PAWS check first. */
5438	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5439	    tp->rx_opt.saw_tstamp &&
5440	    tcp_paws_discard(sk, skb)) {
5441		if (!th->rst) {
5442			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5443			tcp_send_dupack(sk, skb);
 
 
 
5444			goto discard;
5445		}
5446		/* Reset is accepted even if it did not pass PAWS. */
5447	}
5448
5449	/* Step 1: check sequence number */
5450	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5451		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5452		 * (RST) segments are validated by checking their SEQ-fields."
5453		 * And page 69: "If an incoming segment is not acceptable,
5454		 * an acknowledgment should be sent in reply (unless the RST
5455		 * bit is set, if so drop the segment and return)".
5456		 */
5457		if (!th->rst)
5458			tcp_send_dupack(sk, skb);
 
 
 
 
 
 
5459		goto discard;
5460	}
5461
5462	/* Step 2: check RST bit */
5463	if (th->rst) {
5464		tcp_reset(sk);
 
 
 
 
 
 
 
 
 
5465		goto discard;
5466	}
5467
5468	/* ts_recent update must be made after we are sure that the packet
5469	 * is in window.
5470	 */
5471	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5472
5473	/* step 3: check security and precedence [ignored] */
5474
5475	/* step 4: Check for a SYN in window. */
5476	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
 
 
 
5477		if (syn_inerr)
5478			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5479		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5480		tcp_reset(sk);
5481		return -1;
5482	}
5483
5484	return 1;
5485
5486discard:
5487	__kfree_skb(skb);
5488	return 0;
5489}
5490
5491/*
5492 *	TCP receive function for the ESTABLISHED state.
5493 *
5494 *	It is split into a fast path and a slow path. The fast path is
5495 * 	disabled when:
5496 *	- A zero window was announced from us - zero window probing
5497 *        is only handled properly in the slow path.
5498 *	- Out of order segments arrived.
5499 *	- Urgent data is expected.
5500 *	- There is no buffer space left
5501 *	- Unexpected TCP flags/window values/header lengths are received
5502 *	  (detected by checking the TCP header against pred_flags)
5503 *	- Data is sent in both directions. Fast path only supports pure senders
5504 *	  or pure receivers (this means either the sequence number or the ack
5505 *	  value must stay constant)
5506 *	- Unexpected TCP option.
5507 *
5508 *	When these conditions are not satisfied it drops into a standard
5509 *	receive procedure patterned after RFC793 to handle all cases.
5510 *	The first three cases are guaranteed by proper pred_flags setting,
5511 *	the rest is checked inline. Fast processing is turned on in
5512 *	tcp_data_queue when everything is OK.
5513 */
5514int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5515			const struct tcphdr *th, unsigned int len)
5516{
5517	struct tcp_sock *tp = tcp_sk(sk);
5518	int res;
5519
 
 
5520	/*
5521	 *	Header prediction.
5522	 *	The code loosely follows the one in the famous
5523	 *	"30 instruction TCP receive" Van Jacobson mail.
5524	 *
5525	 *	Van's trick is to deposit buffers into socket queue
5526	 *	on a device interrupt, to call tcp_recv function
5527	 *	on the receive process context and checksum and copy
5528	 *	the buffer to user space. smart...
5529	 *
5530	 *	Our current scheme is not silly either but we take the
5531	 *	extra cost of the net_bh soft interrupt processing...
5532	 *	We do checksum and copy also but from device to kernel.
5533	 */
5534
5535	tp->rx_opt.saw_tstamp = 0;
5536
5537	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5538	 *	if header_prediction is to be made
5539	 *	'S' will always be tp->tcp_header_len >> 2
5540	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5541	 *  turn it off	(when there are holes in the receive
5542	 *	 space for instance)
5543	 *	PSH flag is ignored.
5544	 */
5545
5546	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5547	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5548	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5549		int tcp_header_len = tp->tcp_header_len;
5550
5551		/* Timestamp header prediction: tcp_header_len
5552		 * is automatically equal to th->doff*4 due to pred_flags
5553		 * match.
5554		 */
5555
5556		/* Check timestamp */
5557		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5558			/* No? Slow path! */
5559			if (!tcp_parse_aligned_timestamp(tp, th))
5560				goto slow_path;
5561
5562			/* If PAWS failed, check it more carefully in slow path */
5563			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5564				goto slow_path;
5565
5566			/* DO NOT update ts_recent here, if checksum fails
5567			 * and timestamp was corrupted part, it will result
5568			 * in a hung connection since we will drop all
5569			 * future packets due to the PAWS test.
5570			 */
5571		}
5572
5573		if (len <= tcp_header_len) {
5574			/* Bulk data transfer: sender */
5575			if (len == tcp_header_len) {
5576				/* Predicted packet is in window by definition.
5577				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5578				 * Hence, check seq<=rcv_wup reduces to:
5579				 */
5580				if (tcp_header_len ==
5581				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5582				    tp->rcv_nxt == tp->rcv_wup)
5583					tcp_store_ts_recent(tp);
5584
5585				/* We know that such packets are checksummed
5586				 * on entry.
5587				 */
5588				tcp_ack(sk, skb, 0);
5589				__kfree_skb(skb);
5590				tcp_data_snd_check(sk);
5591				return 0;
5592			} else { /* Header too small */
5593				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5594				goto discard;
5595			}
5596		} else {
5597			int eaten = 0;
5598			int copied_early = 0;
5599			bool fragstolen = false;
5600
5601			if (tp->copied_seq == tp->rcv_nxt &&
5602			    len - tcp_header_len <= tp->ucopy.len) {
5603#ifdef CONFIG_NET_DMA
5604				if (tp->ucopy.task == current &&
5605				    sock_owned_by_user(sk) &&
5606				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5607					copied_early = 1;
5608					eaten = 1;
5609				}
5610#endif
5611				if (tp->ucopy.task == current &&
5612				    sock_owned_by_user(sk) && !copied_early) {
5613					__set_current_state(TASK_RUNNING);
5614
5615					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5616						eaten = 1;
5617				}
5618				if (eaten) {
5619					/* Predicted packet is in window by definition.
5620					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5621					 * Hence, check seq<=rcv_wup reduces to:
5622					 */
5623					if (tcp_header_len ==
5624					    (sizeof(struct tcphdr) +
5625					     TCPOLEN_TSTAMP_ALIGNED) &&
5626					    tp->rcv_nxt == tp->rcv_wup)
5627						tcp_store_ts_recent(tp);
5628
5629					tcp_rcv_rtt_measure_ts(sk, skb);
5630
5631					__skb_pull(skb, tcp_header_len);
5632					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5633					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
 
5634				}
5635				if (copied_early)
5636					tcp_cleanup_rbuf(sk, skb->len);
5637			}
5638			if (!eaten) {
5639				if (tcp_checksum_complete_user(sk, skb))
5640					goto csum_error;
5641
 
 
 
5642				/* Predicted packet is in window by definition.
5643				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5644				 * Hence, check seq<=rcv_wup reduces to:
5645				 */
5646				if (tcp_header_len ==
5647				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5648				    tp->rcv_nxt == tp->rcv_wup)
5649					tcp_store_ts_recent(tp);
5650
5651				tcp_rcv_rtt_measure_ts(sk, skb);
5652
5653				if ((int)skb->truesize > sk->sk_forward_alloc)
5654					goto step5;
5655
5656				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5657
5658				/* Bulk data transfer: receiver */
5659				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5660						      &fragstolen);
5661			}
5662
5663			tcp_event_data_recv(sk, skb);
5664
5665			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5666				/* Well, only one small jumplet in fast path... */
5667				tcp_ack(sk, skb, FLAG_DATA);
5668				tcp_data_snd_check(sk);
5669				if (!inet_csk_ack_scheduled(sk))
5670					goto no_ack;
5671			}
5672
5673			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5674				__tcp_ack_snd_check(sk, 0);
5675no_ack:
5676#ifdef CONFIG_NET_DMA
5677			if (copied_early)
5678				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5679			else
5680#endif
5681			if (eaten)
5682				kfree_skb_partial(skb, fragstolen);
5683			else
5684				sk->sk_data_ready(sk, 0);
5685			return 0;
5686		}
5687	}
5688
5689slow_path:
5690	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5691		goto csum_error;
5692
 
 
 
5693	/*
5694	 *	Standard slow path.
5695	 */
5696
5697	res = tcp_validate_incoming(sk, skb, th, 1);
5698	if (res <= 0)
5699		return -res;
5700
5701step5:
5702	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5703		goto discard;
5704
5705	tcp_rcv_rtt_measure_ts(sk, skb);
5706
5707	/* Process urgent data. */
5708	tcp_urg(sk, skb, th);
5709
5710	/* step 7: process the segment text */
5711	tcp_data_queue(sk, skb);
5712
5713	tcp_data_snd_check(sk);
5714	tcp_ack_snd_check(sk);
5715	return 0;
5716
5717csum_error:
 
5718	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5719
5720discard:
5721	__kfree_skb(skb);
5722	return 0;
5723}
5724EXPORT_SYMBOL(tcp_rcv_established);
5725
5726void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5727{
5728	struct tcp_sock *tp = tcp_sk(sk);
5729	struct inet_connection_sock *icsk = inet_csk(sk);
5730
5731	tcp_set_state(sk, TCP_ESTABLISHED);
5732
5733	if (skb != NULL)
 
5734		security_inet_conn_established(sk, skb);
 
5735
5736	/* Make sure socket is routed, for correct metrics.  */
5737	icsk->icsk_af_ops->rebuild_header(sk);
5738
5739	tcp_init_metrics(sk);
5740
5741	tcp_init_congestion_control(sk);
5742
5743	/* Prevent spurious tcp_cwnd_restart() on first data
5744	 * packet.
5745	 */
5746	tp->lsndtime = tcp_time_stamp;
5747
5748	tcp_init_buffer_space(sk);
5749
5750	if (sock_flag(sk, SOCK_KEEPOPEN))
5751		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5752
5753	if (!tp->rx_opt.snd_wscale)
5754		__tcp_fast_path_on(tp, tp->snd_wnd);
5755	else
5756		tp->pred_flags = 0;
5757
5758	if (!sock_flag(sk, SOCK_DEAD)) {
5759		sk->sk_state_change(sk);
5760		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5761	}
5762}
5763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5764static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5765					 const struct tcphdr *th, unsigned int len)
5766{
5767	const u8 *hash_location;
5768	struct inet_connection_sock *icsk = inet_csk(sk);
5769	struct tcp_sock *tp = tcp_sk(sk);
5770	struct tcp_cookie_values *cvp = tp->cookie_values;
5771	int saved_clamp = tp->rx_opt.mss_clamp;
5772
5773	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
 
 
5774
5775	if (th->ack) {
5776		/* rfc793:
5777		 * "If the state is SYN-SENT then
5778		 *    first check the ACK bit
5779		 *      If the ACK bit is set
5780		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5781		 *        a reset (unless the RST bit is set, if so drop
5782		 *        the segment and return)"
5783		 *
5784		 *  We do not send data with SYN, so that RFC-correct
5785		 *  test reduces to:
5786		 */
5787		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
 
5788			goto reset_and_undo;
5789
5790		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5791		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5792			     tcp_time_stamp)) {
5793			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5794			goto reset_and_undo;
5795		}
5796
5797		/* Now ACK is acceptable.
5798		 *
5799		 * "If the RST bit is set
5800		 *    If the ACK was acceptable then signal the user "error:
5801		 *    connection reset", drop the segment, enter CLOSED state,
5802		 *    delete TCB, and return."
5803		 */
5804
5805		if (th->rst) {
5806			tcp_reset(sk);
5807			goto discard;
5808		}
5809
5810		/* rfc793:
5811		 *   "fifth, if neither of the SYN or RST bits is set then
5812		 *    drop the segment and return."
5813		 *
5814		 *    See note below!
5815		 *                                        --ANK(990513)
5816		 */
5817		if (!th->syn)
5818			goto discard_and_undo;
5819
5820		/* rfc793:
5821		 *   "If the SYN bit is on ...
5822		 *    are acceptable then ...
5823		 *    (our SYN has been ACKed), change the connection
5824		 *    state to ESTABLISHED..."
5825		 */
5826
5827		TCP_ECN_rcv_synack(tp, th);
5828
5829		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5830		tcp_ack(sk, skb, FLAG_SLOWPATH);
5831
5832		/* Ok.. it's good. Set up sequence numbers and
5833		 * move to established.
5834		 */
5835		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5836		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5837
5838		/* RFC1323: The window in SYN & SYN/ACK segments is
5839		 * never scaled.
5840		 */
5841		tp->snd_wnd = ntohs(th->window);
5842		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5843
5844		if (!tp->rx_opt.wscale_ok) {
5845			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5846			tp->window_clamp = min(tp->window_clamp, 65535U);
5847		}
5848
5849		if (tp->rx_opt.saw_tstamp) {
5850			tp->rx_opt.tstamp_ok	   = 1;
5851			tp->tcp_header_len =
5852				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5853			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5854			tcp_store_ts_recent(tp);
5855		} else {
5856			tp->tcp_header_len = sizeof(struct tcphdr);
5857		}
5858
5859		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5860			tcp_enable_fack(tp);
5861
5862		tcp_mtup_init(sk);
5863		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5864		tcp_initialize_rcv_mss(sk);
5865
5866		/* Remember, tcp_poll() does not lock socket!
5867		 * Change state from SYN-SENT only after copied_seq
5868		 * is initialized. */
5869		tp->copied_seq = tp->rcv_nxt;
5870
5871		if (cvp != NULL &&
5872		    cvp->cookie_pair_size > 0 &&
5873		    tp->rx_opt.cookie_plus > 0) {
5874			int cookie_size = tp->rx_opt.cookie_plus
5875					- TCPOLEN_COOKIE_BASE;
5876			int cookie_pair_size = cookie_size
5877					     + cvp->cookie_desired;
5878
5879			/* A cookie extension option was sent and returned.
5880			 * Note that each incoming SYNACK replaces the
5881			 * Responder cookie.  The initial exchange is most
5882			 * fragile, as protection against spoofing relies
5883			 * entirely upon the sequence and timestamp (above).
5884			 * This replacement strategy allows the correct pair to
5885			 * pass through, while any others will be filtered via
5886			 * Responder verification later.
5887			 */
5888			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5889				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5890				       hash_location, cookie_size);
5891				cvp->cookie_pair_size = cookie_pair_size;
5892			}
5893		}
5894
5895		smp_mb();
5896
5897		tcp_finish_connect(sk, skb);
5898
 
 
 
 
5899		if (sk->sk_write_pending ||
5900		    icsk->icsk_accept_queue.rskq_defer_accept ||
5901		    icsk->icsk_ack.pingpong) {
5902			/* Save one ACK. Data will be ready after
5903			 * several ticks, if write_pending is set.
5904			 *
5905			 * It may be deleted, but with this feature tcpdumps
5906			 * look so _wonderfully_ clever, that I was not able
5907			 * to stand against the temptation 8)     --ANK
5908			 */
5909			inet_csk_schedule_ack(sk);
5910			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5911			tcp_enter_quickack_mode(sk);
5912			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5913						  TCP_DELACK_MAX, TCP_RTO_MAX);
5914
5915discard:
5916			__kfree_skb(skb);
5917			return 0;
5918		} else {
5919			tcp_send_ack(sk);
5920		}
5921		return -1;
5922	}
5923
5924	/* No ACK in the segment */
5925
5926	if (th->rst) {
5927		/* rfc793:
5928		 * "If the RST bit is set
5929		 *
5930		 *      Otherwise (no ACK) drop the segment and return."
5931		 */
5932
5933		goto discard_and_undo;
5934	}
5935
5936	/* PAWS check. */
5937	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5938	    tcp_paws_reject(&tp->rx_opt, 0))
5939		goto discard_and_undo;
5940
5941	if (th->syn) {
5942		/* We see SYN without ACK. It is attempt of
5943		 * simultaneous connect with crossed SYNs.
5944		 * Particularly, it can be connect to self.
5945		 */
5946		tcp_set_state(sk, TCP_SYN_RECV);
5947
5948		if (tp->rx_opt.saw_tstamp) {
5949			tp->rx_opt.tstamp_ok = 1;
5950			tcp_store_ts_recent(tp);
5951			tp->tcp_header_len =
5952				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5953		} else {
5954			tp->tcp_header_len = sizeof(struct tcphdr);
5955		}
5956
5957		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
 
5958		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5959
5960		/* RFC1323: The window in SYN & SYN/ACK segments is
5961		 * never scaled.
5962		 */
5963		tp->snd_wnd    = ntohs(th->window);
5964		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5965		tp->max_window = tp->snd_wnd;
5966
5967		TCP_ECN_rcv_syn(tp, th);
5968
5969		tcp_mtup_init(sk);
5970		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5971		tcp_initialize_rcv_mss(sk);
5972
5973		tcp_send_synack(sk);
5974#if 0
5975		/* Note, we could accept data and URG from this segment.
5976		 * There are no obstacles to make this.
 
 
5977		 *
5978		 * However, if we ignore data in ACKless segments sometimes,
5979		 * we have no reasons to accept it sometimes.
5980		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5981		 * is not flawless. So, discard packet for sanity.
5982		 * Uncomment this return to process the data.
5983		 */
5984		return -1;
5985#else
5986		goto discard;
5987#endif
5988	}
5989	/* "fifth, if neither of the SYN or RST bits is set then
5990	 * drop the segment and return."
5991	 */
5992
5993discard_and_undo:
5994	tcp_clear_options(&tp->rx_opt);
5995	tp->rx_opt.mss_clamp = saved_clamp;
5996	goto discard;
5997
5998reset_and_undo:
5999	tcp_clear_options(&tp->rx_opt);
6000	tp->rx_opt.mss_clamp = saved_clamp;
6001	return 1;
6002}
6003
6004/*
6005 *	This function implements the receiving procedure of RFC 793 for
6006 *	all states except ESTABLISHED and TIME_WAIT.
6007 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6008 *	address independent.
6009 */
6010
6011int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
6012			  const struct tcphdr *th, unsigned int len)
6013{
6014	struct tcp_sock *tp = tcp_sk(sk);
6015	struct inet_connection_sock *icsk = inet_csk(sk);
 
 
6016	int queued = 0;
6017	int res;
6018
6019	tp->rx_opt.saw_tstamp = 0;
6020
6021	switch (sk->sk_state) {
6022	case TCP_CLOSE:
6023		goto discard;
6024
6025	case TCP_LISTEN:
6026		if (th->ack)
6027			return 1;
6028
6029		if (th->rst)
6030			goto discard;
6031
6032		if (th->syn) {
6033			if (th->fin)
6034				goto discard;
6035			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
6036				return 1;
6037
6038			/* Now we have several options: In theory there is
6039			 * nothing else in the frame. KA9Q has an option to
6040			 * send data with the syn, BSD accepts data with the
6041			 * syn up to the [to be] advertised window and
6042			 * Solaris 2.1 gives you a protocol error. For now
6043			 * we just ignore it, that fits the spec precisely
6044			 * and avoids incompatibilities. It would be nice in
6045			 * future to drop through and process the data.
6046			 *
6047			 * Now that TTCP is starting to be used we ought to
6048			 * queue this data.
6049			 * But, this leaves one open to an easy denial of
6050			 * service attack, and SYN cookies can't defend
6051			 * against this problem. So, we drop the data
6052			 * in the interest of security over speed unless
6053			 * it's still in use.
6054			 */
6055			kfree_skb(skb);
6056			return 0;
6057		}
6058		goto discard;
6059
6060	case TCP_SYN_SENT:
6061		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
6062		if (queued >= 0)
6063			return queued;
6064
6065		/* Do step6 onward by hand. */
6066		tcp_urg(sk, skb, th);
6067		__kfree_skb(skb);
6068		tcp_data_snd_check(sk);
6069		return 0;
6070	}
6071
6072	res = tcp_validate_incoming(sk, skb, th, 0);
6073	if (res <= 0)
6074		return -res;
 
 
 
 
 
 
 
 
 
 
 
6075
6076	/* step 5: check the ACK field */
6077	if (th->ack) {
6078		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6079
6080		switch (sk->sk_state) {
6081		case TCP_SYN_RECV:
6082			if (acceptable) {
6083				tp->copied_seq = tp->rcv_nxt;
6084				smp_mb();
6085				tcp_set_state(sk, TCP_ESTABLISHED);
6086				sk->sk_state_change(sk);
6087
6088				/* Note, that this wakeup is only for marginal
6089				 * crossed SYN case. Passively open sockets
6090				 * are not waked up, because sk->sk_sleep ==
6091				 * NULL and sk->sk_socket == NULL.
6092				 */
6093				if (sk->sk_socket)
6094					sk_wake_async(sk,
6095						      SOCK_WAKE_IO, POLL_OUT);
6096
6097				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6098				tp->snd_wnd = ntohs(th->window) <<
6099					      tp->rx_opt.snd_wscale;
6100				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6101
6102				if (tp->rx_opt.tstamp_ok)
6103					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6104
6105				/* Make sure socket is routed, for
6106				 * correct metrics.
6107				 */
6108				icsk->icsk_af_ops->rebuild_header(sk);
 
 
 
 
 
 
 
 
6109
6110				tcp_init_metrics(sk);
6111
6112				tcp_init_congestion_control(sk);
 
6113
6114				/* Prevent spurious tcp_cwnd_restart() on
6115				 * first data packet.
6116				 */
6117				tp->lsndtime = tcp_time_stamp;
6118
6119				tcp_mtup_init(sk);
6120				tcp_initialize_rcv_mss(sk);
6121				tcp_init_buffer_space(sk);
6122				tcp_fast_path_on(tp);
6123			} else {
 
 
 
 
 
 
 
 
 
 
 
 
6124				return 1;
6125			}
 
 
 
 
6126			break;
6127
6128		case TCP_FIN_WAIT1:
6129			if (tp->snd_una == tp->write_seq) {
6130				tcp_set_state(sk, TCP_FIN_WAIT2);
6131				sk->sk_shutdown |= SEND_SHUTDOWN;
6132				dst_confirm(__sk_dst_get(sk));
6133
6134				if (!sock_flag(sk, SOCK_DEAD))
6135					/* Wake up lingering close() */
6136					sk->sk_state_change(sk);
6137				else {
6138					int tmo;
6139
6140					if (tp->linger2 < 0 ||
6141					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6142					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6143						tcp_done(sk);
6144						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6145						return 1;
6146					}
6147
6148					tmo = tcp_fin_time(sk);
6149					if (tmo > TCP_TIMEWAIT_LEN) {
6150						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6151					} else if (th->fin || sock_owned_by_user(sk)) {
6152						/* Bad case. We could lose such FIN otherwise.
6153						 * It is not a big problem, but it looks confusing
6154						 * and not so rare event. We still can lose it now,
6155						 * if it spins in bh_lock_sock(), but it is really
6156						 * marginal case.
6157						 */
6158						inet_csk_reset_keepalive_timer(sk, tmo);
6159					} else {
6160						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6161						goto discard;
6162					}
6163				}
6164			}
6165			break;
 
 
 
 
 
 
 
 
 
6166
6167		case TCP_CLOSING:
6168			if (tp->snd_una == tp->write_seq) {
6169				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6170				goto discard;
6171			}
6172			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6173
6174		case TCP_LAST_ACK:
6175			if (tp->snd_una == tp->write_seq) {
6176				tcp_update_metrics(sk);
6177				tcp_done(sk);
6178				goto discard;
6179			}
6180			break;
6181		}
6182	} else
6183		goto discard;
6184
6185	/* step 6: check the URG bit */
6186	tcp_urg(sk, skb, th);
6187
6188	/* step 7: process the segment text */
6189	switch (sk->sk_state) {
6190	case TCP_CLOSE_WAIT:
6191	case TCP_CLOSING:
6192	case TCP_LAST_ACK:
6193		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6194			break;
6195	case TCP_FIN_WAIT1:
6196	case TCP_FIN_WAIT2:
6197		/* RFC 793 says to queue data in these states,
6198		 * RFC 1122 says we MUST send a reset.
6199		 * BSD 4.4 also does reset.
6200		 */
6201		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6202			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6203			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6204				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6205				tcp_reset(sk);
6206				return 1;
6207			}
6208		}
6209		/* Fall through */
6210	case TCP_ESTABLISHED:
6211		tcp_data_queue(sk, skb);
6212		queued = 1;
6213		break;
6214	}
6215
6216	/* tcp_data could move socket to TIME-WAIT */
6217	if (sk->sk_state != TCP_CLOSE) {
6218		tcp_data_snd_check(sk);
6219		tcp_ack_snd_check(sk);
6220	}
6221
6222	if (!queued) {
6223discard:
6224		__kfree_skb(skb);
6225	}
6226	return 0;
6227}
6228EXPORT_SYMBOL(tcp_rcv_state_process);