Loading...
1/*
2 * Alarmtimer interface
3 *
4 * This interface provides a timer which is similarto hrtimers,
5 * but triggers a RTC alarm if the box is suspend.
6 *
7 * This interface is influenced by the Android RTC Alarm timer
8 * interface.
9 *
10 * Copyright (C) 2010 IBM Corperation
11 *
12 * Author: John Stultz <john.stultz@linaro.org>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18#include <linux/time.h>
19#include <linux/hrtimer.h>
20#include <linux/timerqueue.h>
21#include <linux/rtc.h>
22#include <linux/alarmtimer.h>
23#include <linux/mutex.h>
24#include <linux/platform_device.h>
25#include <linux/posix-timers.h>
26#include <linux/workqueue.h>
27#include <linux/freezer.h>
28
29/**
30 * struct alarm_base - Alarm timer bases
31 * @lock: Lock for syncrhonized access to the base
32 * @timerqueue: Timerqueue head managing the list of events
33 * @timer: hrtimer used to schedule events while running
34 * @gettime: Function to read the time correlating to the base
35 * @base_clockid: clockid for the base
36 */
37static struct alarm_base {
38 spinlock_t lock;
39 struct timerqueue_head timerqueue;
40 ktime_t (*gettime)(void);
41 clockid_t base_clockid;
42} alarm_bases[ALARM_NUMTYPE];
43
44/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
45static ktime_t freezer_delta;
46static DEFINE_SPINLOCK(freezer_delta_lock);
47
48static struct wakeup_source *ws;
49
50#ifdef CONFIG_RTC_CLASS
51/* rtc timer and device for setting alarm wakeups at suspend */
52static struct rtc_timer rtctimer;
53static struct rtc_device *rtcdev;
54static DEFINE_SPINLOCK(rtcdev_lock);
55
56/**
57 * alarmtimer_get_rtcdev - Return selected rtcdevice
58 *
59 * This function returns the rtc device to use for wakealarms.
60 * If one has not already been chosen, it checks to see if a
61 * functional rtc device is available.
62 */
63struct rtc_device *alarmtimer_get_rtcdev(void)
64{
65 unsigned long flags;
66 struct rtc_device *ret;
67
68 spin_lock_irqsave(&rtcdev_lock, flags);
69 ret = rtcdev;
70 spin_unlock_irqrestore(&rtcdev_lock, flags);
71
72 return ret;
73}
74EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
75
76static int alarmtimer_rtc_add_device(struct device *dev,
77 struct class_interface *class_intf)
78{
79 unsigned long flags;
80 struct rtc_device *rtc = to_rtc_device(dev);
81
82 if (rtcdev)
83 return -EBUSY;
84
85 if (!rtc->ops->set_alarm)
86 return -1;
87 if (!device_may_wakeup(rtc->dev.parent))
88 return -1;
89
90 spin_lock_irqsave(&rtcdev_lock, flags);
91 if (!rtcdev) {
92 rtcdev = rtc;
93 /* hold a reference so it doesn't go away */
94 get_device(dev);
95 }
96 spin_unlock_irqrestore(&rtcdev_lock, flags);
97 return 0;
98}
99
100static inline void alarmtimer_rtc_timer_init(void)
101{
102 rtc_timer_init(&rtctimer, NULL, NULL);
103}
104
105static struct class_interface alarmtimer_rtc_interface = {
106 .add_dev = &alarmtimer_rtc_add_device,
107};
108
109static int alarmtimer_rtc_interface_setup(void)
110{
111 alarmtimer_rtc_interface.class = rtc_class;
112 return class_interface_register(&alarmtimer_rtc_interface);
113}
114static void alarmtimer_rtc_interface_remove(void)
115{
116 class_interface_unregister(&alarmtimer_rtc_interface);
117}
118#else
119struct rtc_device *alarmtimer_get_rtcdev(void)
120{
121 return NULL;
122}
123#define rtcdev (NULL)
124static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
125static inline void alarmtimer_rtc_interface_remove(void) { }
126static inline void alarmtimer_rtc_timer_init(void) { }
127#endif
128
129/**
130 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
131 * @base: pointer to the base where the timer is being run
132 * @alarm: pointer to alarm being enqueued.
133 *
134 * Adds alarm to a alarm_base timerqueue
135 *
136 * Must hold base->lock when calling.
137 */
138static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139{
140 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
141 timerqueue_del(&base->timerqueue, &alarm->node);
142
143 timerqueue_add(&base->timerqueue, &alarm->node);
144 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
145}
146
147/**
148 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
149 * @base: pointer to the base where the timer is running
150 * @alarm: pointer to alarm being removed
151 *
152 * Removes alarm to a alarm_base timerqueue
153 *
154 * Must hold base->lock when calling.
155 */
156static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
157{
158 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
159 return;
160
161 timerqueue_del(&base->timerqueue, &alarm->node);
162 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
163}
164
165
166/**
167 * alarmtimer_fired - Handles alarm hrtimer being fired.
168 * @timer: pointer to hrtimer being run
169 *
170 * When a alarm timer fires, this runs through the timerqueue to
171 * see which alarms expired, and runs those. If there are more alarm
172 * timers queued for the future, we set the hrtimer to fire when
173 * when the next future alarm timer expires.
174 */
175static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
176{
177 struct alarm *alarm = container_of(timer, struct alarm, timer);
178 struct alarm_base *base = &alarm_bases[alarm->type];
179 unsigned long flags;
180 int ret = HRTIMER_NORESTART;
181 int restart = ALARMTIMER_NORESTART;
182
183 spin_lock_irqsave(&base->lock, flags);
184 alarmtimer_dequeue(base, alarm);
185 spin_unlock_irqrestore(&base->lock, flags);
186
187 if (alarm->function)
188 restart = alarm->function(alarm, base->gettime());
189
190 spin_lock_irqsave(&base->lock, flags);
191 if (restart != ALARMTIMER_NORESTART) {
192 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
193 alarmtimer_enqueue(base, alarm);
194 ret = HRTIMER_RESTART;
195 }
196 spin_unlock_irqrestore(&base->lock, flags);
197
198 return ret;
199
200}
201
202ktime_t alarm_expires_remaining(const struct alarm *alarm)
203{
204 struct alarm_base *base = &alarm_bases[alarm->type];
205 return ktime_sub(alarm->node.expires, base->gettime());
206}
207EXPORT_SYMBOL_GPL(alarm_expires_remaining);
208
209#ifdef CONFIG_RTC_CLASS
210/**
211 * alarmtimer_suspend - Suspend time callback
212 * @dev: unused
213 * @state: unused
214 *
215 * When we are going into suspend, we look through the bases
216 * to see which is the soonest timer to expire. We then
217 * set an rtc timer to fire that far into the future, which
218 * will wake us from suspend.
219 */
220static int alarmtimer_suspend(struct device *dev)
221{
222 struct rtc_time tm;
223 ktime_t min, now;
224 unsigned long flags;
225 struct rtc_device *rtc;
226 int i;
227 int ret;
228
229 spin_lock_irqsave(&freezer_delta_lock, flags);
230 min = freezer_delta;
231 freezer_delta = ktime_set(0, 0);
232 spin_unlock_irqrestore(&freezer_delta_lock, flags);
233
234 rtc = alarmtimer_get_rtcdev();
235 /* If we have no rtcdev, just return */
236 if (!rtc)
237 return 0;
238
239 /* Find the soonest timer to expire*/
240 for (i = 0; i < ALARM_NUMTYPE; i++) {
241 struct alarm_base *base = &alarm_bases[i];
242 struct timerqueue_node *next;
243 ktime_t delta;
244
245 spin_lock_irqsave(&base->lock, flags);
246 next = timerqueue_getnext(&base->timerqueue);
247 spin_unlock_irqrestore(&base->lock, flags);
248 if (!next)
249 continue;
250 delta = ktime_sub(next->expires, base->gettime());
251 if (!min.tv64 || (delta.tv64 < min.tv64))
252 min = delta;
253 }
254 if (min.tv64 == 0)
255 return 0;
256
257 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
258 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
259 return -EBUSY;
260 }
261
262 /* Setup an rtc timer to fire that far in the future */
263 rtc_timer_cancel(rtc, &rtctimer);
264 rtc_read_time(rtc, &tm);
265 now = rtc_tm_to_ktime(tm);
266 now = ktime_add(now, min);
267
268 /* Set alarm, if in the past reject suspend briefly to handle */
269 ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
270 if (ret < 0)
271 __pm_wakeup_event(ws, MSEC_PER_SEC);
272 return ret;
273}
274
275static int alarmtimer_resume(struct device *dev)
276{
277 struct rtc_device *rtc;
278
279 rtc = alarmtimer_get_rtcdev();
280 if (rtc)
281 rtc_timer_cancel(rtc, &rtctimer);
282 return 0;
283}
284
285#else
286static int alarmtimer_suspend(struct device *dev)
287{
288 return 0;
289}
290
291static int alarmtimer_resume(struct device *dev)
292{
293 return 0;
294}
295#endif
296
297static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
298{
299 ktime_t delta;
300 unsigned long flags;
301 struct alarm_base *base = &alarm_bases[type];
302
303 delta = ktime_sub(absexp, base->gettime());
304
305 spin_lock_irqsave(&freezer_delta_lock, flags);
306 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
307 freezer_delta = delta;
308 spin_unlock_irqrestore(&freezer_delta_lock, flags);
309}
310
311
312/**
313 * alarm_init - Initialize an alarm structure
314 * @alarm: ptr to alarm to be initialized
315 * @type: the type of the alarm
316 * @function: callback that is run when the alarm fires
317 */
318void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
319 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
320{
321 timerqueue_init(&alarm->node);
322 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
323 HRTIMER_MODE_ABS);
324 alarm->timer.function = alarmtimer_fired;
325 alarm->function = function;
326 alarm->type = type;
327 alarm->state = ALARMTIMER_STATE_INACTIVE;
328}
329EXPORT_SYMBOL_GPL(alarm_init);
330
331/**
332 * alarm_start - Sets an absolute alarm to fire
333 * @alarm: ptr to alarm to set
334 * @start: time to run the alarm
335 */
336void alarm_start(struct alarm *alarm, ktime_t start)
337{
338 struct alarm_base *base = &alarm_bases[alarm->type];
339 unsigned long flags;
340
341 spin_lock_irqsave(&base->lock, flags);
342 alarm->node.expires = start;
343 alarmtimer_enqueue(base, alarm);
344 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
345 spin_unlock_irqrestore(&base->lock, flags);
346}
347EXPORT_SYMBOL_GPL(alarm_start);
348
349/**
350 * alarm_start_relative - Sets a relative alarm to fire
351 * @alarm: ptr to alarm to set
352 * @start: time relative to now to run the alarm
353 */
354void alarm_start_relative(struct alarm *alarm, ktime_t start)
355{
356 struct alarm_base *base = &alarm_bases[alarm->type];
357
358 start = ktime_add(start, base->gettime());
359 alarm_start(alarm, start);
360}
361EXPORT_SYMBOL_GPL(alarm_start_relative);
362
363void alarm_restart(struct alarm *alarm)
364{
365 struct alarm_base *base = &alarm_bases[alarm->type];
366 unsigned long flags;
367
368 spin_lock_irqsave(&base->lock, flags);
369 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
370 hrtimer_restart(&alarm->timer);
371 alarmtimer_enqueue(base, alarm);
372 spin_unlock_irqrestore(&base->lock, flags);
373}
374EXPORT_SYMBOL_GPL(alarm_restart);
375
376/**
377 * alarm_try_to_cancel - Tries to cancel an alarm timer
378 * @alarm: ptr to alarm to be canceled
379 *
380 * Returns 1 if the timer was canceled, 0 if it was not running,
381 * and -1 if the callback was running
382 */
383int alarm_try_to_cancel(struct alarm *alarm)
384{
385 struct alarm_base *base = &alarm_bases[alarm->type];
386 unsigned long flags;
387 int ret;
388
389 spin_lock_irqsave(&base->lock, flags);
390 ret = hrtimer_try_to_cancel(&alarm->timer);
391 if (ret >= 0)
392 alarmtimer_dequeue(base, alarm);
393 spin_unlock_irqrestore(&base->lock, flags);
394 return ret;
395}
396EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
397
398
399/**
400 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
401 * @alarm: ptr to alarm to be canceled
402 *
403 * Returns 1 if the timer was canceled, 0 if it was not active.
404 */
405int alarm_cancel(struct alarm *alarm)
406{
407 for (;;) {
408 int ret = alarm_try_to_cancel(alarm);
409 if (ret >= 0)
410 return ret;
411 cpu_relax();
412 }
413}
414EXPORT_SYMBOL_GPL(alarm_cancel);
415
416
417u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
418{
419 u64 overrun = 1;
420 ktime_t delta;
421
422 delta = ktime_sub(now, alarm->node.expires);
423
424 if (delta.tv64 < 0)
425 return 0;
426
427 if (unlikely(delta.tv64 >= interval.tv64)) {
428 s64 incr = ktime_to_ns(interval);
429
430 overrun = ktime_divns(delta, incr);
431
432 alarm->node.expires = ktime_add_ns(alarm->node.expires,
433 incr*overrun);
434
435 if (alarm->node.expires.tv64 > now.tv64)
436 return overrun;
437 /*
438 * This (and the ktime_add() below) is the
439 * correction for exact:
440 */
441 overrun++;
442 }
443
444 alarm->node.expires = ktime_add(alarm->node.expires, interval);
445 return overrun;
446}
447EXPORT_SYMBOL_GPL(alarm_forward);
448
449u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
450{
451 struct alarm_base *base = &alarm_bases[alarm->type];
452
453 return alarm_forward(alarm, base->gettime(), interval);
454}
455EXPORT_SYMBOL_GPL(alarm_forward_now);
456
457
458/**
459 * clock2alarm - helper that converts from clockid to alarmtypes
460 * @clockid: clockid.
461 */
462static enum alarmtimer_type clock2alarm(clockid_t clockid)
463{
464 if (clockid == CLOCK_REALTIME_ALARM)
465 return ALARM_REALTIME;
466 if (clockid == CLOCK_BOOTTIME_ALARM)
467 return ALARM_BOOTTIME;
468 return -1;
469}
470
471/**
472 * alarm_handle_timer - Callback for posix timers
473 * @alarm: alarm that fired
474 *
475 * Posix timer callback for expired alarm timers.
476 */
477static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
478 ktime_t now)
479{
480 unsigned long flags;
481 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
482 it.alarm.alarmtimer);
483 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
484
485 spin_lock_irqsave(&ptr->it_lock, flags);
486 if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
487 if (posix_timer_event(ptr, 0) != 0)
488 ptr->it_overrun++;
489 }
490
491 /* Re-add periodic timers */
492 if (ptr->it.alarm.interval.tv64) {
493 ptr->it_overrun += alarm_forward(alarm, now,
494 ptr->it.alarm.interval);
495 result = ALARMTIMER_RESTART;
496 }
497 spin_unlock_irqrestore(&ptr->it_lock, flags);
498
499 return result;
500}
501
502/**
503 * alarm_clock_getres - posix getres interface
504 * @which_clock: clockid
505 * @tp: timespec to fill
506 *
507 * Returns the granularity of underlying alarm base clock
508 */
509static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
510{
511 if (!alarmtimer_get_rtcdev())
512 return -EINVAL;
513
514 tp->tv_sec = 0;
515 tp->tv_nsec = hrtimer_resolution;
516 return 0;
517}
518
519/**
520 * alarm_clock_get - posix clock_get interface
521 * @which_clock: clockid
522 * @tp: timespec to fill.
523 *
524 * Provides the underlying alarm base time.
525 */
526static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
527{
528 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
529
530 if (!alarmtimer_get_rtcdev())
531 return -EINVAL;
532
533 *tp = ktime_to_timespec(base->gettime());
534 return 0;
535}
536
537/**
538 * alarm_timer_create - posix timer_create interface
539 * @new_timer: k_itimer pointer to manage
540 *
541 * Initializes the k_itimer structure.
542 */
543static int alarm_timer_create(struct k_itimer *new_timer)
544{
545 enum alarmtimer_type type;
546 struct alarm_base *base;
547
548 if (!alarmtimer_get_rtcdev())
549 return -ENOTSUPP;
550
551 if (!capable(CAP_WAKE_ALARM))
552 return -EPERM;
553
554 type = clock2alarm(new_timer->it_clock);
555 base = &alarm_bases[type];
556 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
557 return 0;
558}
559
560/**
561 * alarm_timer_get - posix timer_get interface
562 * @new_timer: k_itimer pointer
563 * @cur_setting: itimerspec data to fill
564 *
565 * Copies out the current itimerspec data
566 */
567static void alarm_timer_get(struct k_itimer *timr,
568 struct itimerspec *cur_setting)
569{
570 ktime_t relative_expiry_time =
571 alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
572
573 if (ktime_to_ns(relative_expiry_time) > 0) {
574 cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
575 } else {
576 cur_setting->it_value.tv_sec = 0;
577 cur_setting->it_value.tv_nsec = 0;
578 }
579
580 cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
581}
582
583/**
584 * alarm_timer_del - posix timer_del interface
585 * @timr: k_itimer pointer to be deleted
586 *
587 * Cancels any programmed alarms for the given timer.
588 */
589static int alarm_timer_del(struct k_itimer *timr)
590{
591 if (!rtcdev)
592 return -ENOTSUPP;
593
594 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
595 return TIMER_RETRY;
596
597 return 0;
598}
599
600/**
601 * alarm_timer_set - posix timer_set interface
602 * @timr: k_itimer pointer to be deleted
603 * @flags: timer flags
604 * @new_setting: itimerspec to be used
605 * @old_setting: itimerspec being replaced
606 *
607 * Sets the timer to new_setting, and starts the timer.
608 */
609static int alarm_timer_set(struct k_itimer *timr, int flags,
610 struct itimerspec *new_setting,
611 struct itimerspec *old_setting)
612{
613 ktime_t exp;
614
615 if (!rtcdev)
616 return -ENOTSUPP;
617
618 if (flags & ~TIMER_ABSTIME)
619 return -EINVAL;
620
621 if (old_setting)
622 alarm_timer_get(timr, old_setting);
623
624 /* If the timer was already set, cancel it */
625 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
626 return TIMER_RETRY;
627
628 /* start the timer */
629 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
630 exp = timespec_to_ktime(new_setting->it_value);
631 /* Convert (if necessary) to absolute time */
632 if (flags != TIMER_ABSTIME) {
633 ktime_t now;
634
635 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
636 exp = ktime_add(now, exp);
637 }
638
639 alarm_start(&timr->it.alarm.alarmtimer, exp);
640 return 0;
641}
642
643/**
644 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
645 * @alarm: ptr to alarm that fired
646 *
647 * Wakes up the task that set the alarmtimer
648 */
649static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
650 ktime_t now)
651{
652 struct task_struct *task = (struct task_struct *)alarm->data;
653
654 alarm->data = NULL;
655 if (task)
656 wake_up_process(task);
657 return ALARMTIMER_NORESTART;
658}
659
660/**
661 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
662 * @alarm: ptr to alarmtimer
663 * @absexp: absolute expiration time
664 *
665 * Sets the alarm timer and sleeps until it is fired or interrupted.
666 */
667static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
668{
669 alarm->data = (void *)current;
670 do {
671 set_current_state(TASK_INTERRUPTIBLE);
672 alarm_start(alarm, absexp);
673 if (likely(alarm->data))
674 schedule();
675
676 alarm_cancel(alarm);
677 } while (alarm->data && !signal_pending(current));
678
679 __set_current_state(TASK_RUNNING);
680
681 return (alarm->data == NULL);
682}
683
684
685/**
686 * update_rmtp - Update remaining timespec value
687 * @exp: expiration time
688 * @type: timer type
689 * @rmtp: user pointer to remaining timepsec value
690 *
691 * Helper function that fills in rmtp value with time between
692 * now and the exp value
693 */
694static int update_rmtp(ktime_t exp, enum alarmtimer_type type,
695 struct timespec __user *rmtp)
696{
697 struct timespec rmt;
698 ktime_t rem;
699
700 rem = ktime_sub(exp, alarm_bases[type].gettime());
701
702 if (rem.tv64 <= 0)
703 return 0;
704 rmt = ktime_to_timespec(rem);
705
706 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
707 return -EFAULT;
708
709 return 1;
710
711}
712
713/**
714 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
715 * @restart: ptr to restart block
716 *
717 * Handles restarted clock_nanosleep calls
718 */
719static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
720{
721 enum alarmtimer_type type = restart->nanosleep.clockid;
722 ktime_t exp;
723 struct timespec __user *rmtp;
724 struct alarm alarm;
725 int ret = 0;
726
727 exp.tv64 = restart->nanosleep.expires;
728 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
729
730 if (alarmtimer_do_nsleep(&alarm, exp))
731 goto out;
732
733 if (freezing(current))
734 alarmtimer_freezerset(exp, type);
735
736 rmtp = restart->nanosleep.rmtp;
737 if (rmtp) {
738 ret = update_rmtp(exp, type, rmtp);
739 if (ret <= 0)
740 goto out;
741 }
742
743
744 /* The other values in restart are already filled in */
745 ret = -ERESTART_RESTARTBLOCK;
746out:
747 return ret;
748}
749
750/**
751 * alarm_timer_nsleep - alarmtimer nanosleep
752 * @which_clock: clockid
753 * @flags: determins abstime or relative
754 * @tsreq: requested sleep time (abs or rel)
755 * @rmtp: remaining sleep time saved
756 *
757 * Handles clock_nanosleep calls against _ALARM clockids
758 */
759static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
760 struct timespec *tsreq, struct timespec __user *rmtp)
761{
762 enum alarmtimer_type type = clock2alarm(which_clock);
763 struct alarm alarm;
764 ktime_t exp;
765 int ret = 0;
766 struct restart_block *restart;
767
768 if (!alarmtimer_get_rtcdev())
769 return -ENOTSUPP;
770
771 if (flags & ~TIMER_ABSTIME)
772 return -EINVAL;
773
774 if (!capable(CAP_WAKE_ALARM))
775 return -EPERM;
776
777 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
778
779 exp = timespec_to_ktime(*tsreq);
780 /* Convert (if necessary) to absolute time */
781 if (flags != TIMER_ABSTIME) {
782 ktime_t now = alarm_bases[type].gettime();
783 exp = ktime_add(now, exp);
784 }
785
786 if (alarmtimer_do_nsleep(&alarm, exp))
787 goto out;
788
789 if (freezing(current))
790 alarmtimer_freezerset(exp, type);
791
792 /* abs timers don't set remaining time or restart */
793 if (flags == TIMER_ABSTIME) {
794 ret = -ERESTARTNOHAND;
795 goto out;
796 }
797
798 if (rmtp) {
799 ret = update_rmtp(exp, type, rmtp);
800 if (ret <= 0)
801 goto out;
802 }
803
804 restart = ¤t->restart_block;
805 restart->fn = alarm_timer_nsleep_restart;
806 restart->nanosleep.clockid = type;
807 restart->nanosleep.expires = exp.tv64;
808 restart->nanosleep.rmtp = rmtp;
809 ret = -ERESTART_RESTARTBLOCK;
810
811out:
812 return ret;
813}
814
815
816/* Suspend hook structures */
817static const struct dev_pm_ops alarmtimer_pm_ops = {
818 .suspend = alarmtimer_suspend,
819 .resume = alarmtimer_resume,
820};
821
822static struct platform_driver alarmtimer_driver = {
823 .driver = {
824 .name = "alarmtimer",
825 .pm = &alarmtimer_pm_ops,
826 }
827};
828
829/**
830 * alarmtimer_init - Initialize alarm timer code
831 *
832 * This function initializes the alarm bases and registers
833 * the posix clock ids.
834 */
835static int __init alarmtimer_init(void)
836{
837 struct platform_device *pdev;
838 int error = 0;
839 int i;
840 struct k_clock alarm_clock = {
841 .clock_getres = alarm_clock_getres,
842 .clock_get = alarm_clock_get,
843 .timer_create = alarm_timer_create,
844 .timer_set = alarm_timer_set,
845 .timer_del = alarm_timer_del,
846 .timer_get = alarm_timer_get,
847 .nsleep = alarm_timer_nsleep,
848 };
849
850 alarmtimer_rtc_timer_init();
851
852 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
853 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
854
855 /* Initialize alarm bases */
856 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
857 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
858 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
859 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
860 for (i = 0; i < ALARM_NUMTYPE; i++) {
861 timerqueue_init_head(&alarm_bases[i].timerqueue);
862 spin_lock_init(&alarm_bases[i].lock);
863 }
864
865 error = alarmtimer_rtc_interface_setup();
866 if (error)
867 return error;
868
869 error = platform_driver_register(&alarmtimer_driver);
870 if (error)
871 goto out_if;
872
873 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
874 if (IS_ERR(pdev)) {
875 error = PTR_ERR(pdev);
876 goto out_drv;
877 }
878 ws = wakeup_source_register("alarmtimer");
879 return 0;
880
881out_drv:
882 platform_driver_unregister(&alarmtimer_driver);
883out_if:
884 alarmtimer_rtc_interface_remove();
885 return error;
886}
887device_initcall(alarmtimer_init);
1/*
2 * Alarmtimer interface
3 *
4 * This interface provides a timer which is similarto hrtimers,
5 * but triggers a RTC alarm if the box is suspend.
6 *
7 * This interface is influenced by the Android RTC Alarm timer
8 * interface.
9 *
10 * Copyright (C) 2010 IBM Corperation
11 *
12 * Author: John Stultz <john.stultz@linaro.org>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18#include <linux/time.h>
19#include <linux/hrtimer.h>
20#include <linux/timerqueue.h>
21#include <linux/rtc.h>
22#include <linux/alarmtimer.h>
23#include <linux/mutex.h>
24#include <linux/platform_device.h>
25#include <linux/posix-timers.h>
26#include <linux/workqueue.h>
27#include <linux/freezer.h>
28
29#define CREATE_TRACE_POINTS
30#include <trace/events/alarmtimer.h>
31
32/**
33 * struct alarm_base - Alarm timer bases
34 * @lock: Lock for syncrhonized access to the base
35 * @timerqueue: Timerqueue head managing the list of events
36 * @gettime: Function to read the time correlating to the base
37 * @base_clockid: clockid for the base
38 */
39static struct alarm_base {
40 spinlock_t lock;
41 struct timerqueue_head timerqueue;
42 ktime_t (*gettime)(void);
43 clockid_t base_clockid;
44} alarm_bases[ALARM_NUMTYPE];
45
46/* freezer information to handle clock_nanosleep triggered wakeups */
47static enum alarmtimer_type freezer_alarmtype;
48static ktime_t freezer_expires;
49static ktime_t freezer_delta;
50static DEFINE_SPINLOCK(freezer_delta_lock);
51
52static struct wakeup_source *ws;
53
54#ifdef CONFIG_RTC_CLASS
55/* rtc timer and device for setting alarm wakeups at suspend */
56static struct rtc_timer rtctimer;
57static struct rtc_device *rtcdev;
58static DEFINE_SPINLOCK(rtcdev_lock);
59
60/**
61 * alarmtimer_get_rtcdev - Return selected rtcdevice
62 *
63 * This function returns the rtc device to use for wakealarms.
64 * If one has not already been chosen, it checks to see if a
65 * functional rtc device is available.
66 */
67struct rtc_device *alarmtimer_get_rtcdev(void)
68{
69 unsigned long flags;
70 struct rtc_device *ret;
71
72 spin_lock_irqsave(&rtcdev_lock, flags);
73 ret = rtcdev;
74 spin_unlock_irqrestore(&rtcdev_lock, flags);
75
76 return ret;
77}
78EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
79
80static int alarmtimer_rtc_add_device(struct device *dev,
81 struct class_interface *class_intf)
82{
83 unsigned long flags;
84 struct rtc_device *rtc = to_rtc_device(dev);
85
86 if (rtcdev)
87 return -EBUSY;
88
89 if (!rtc->ops->set_alarm)
90 return -1;
91 if (!device_may_wakeup(rtc->dev.parent))
92 return -1;
93
94 spin_lock_irqsave(&rtcdev_lock, flags);
95 if (!rtcdev) {
96 rtcdev = rtc;
97 /* hold a reference so it doesn't go away */
98 get_device(dev);
99 }
100 spin_unlock_irqrestore(&rtcdev_lock, flags);
101 return 0;
102}
103
104static inline void alarmtimer_rtc_timer_init(void)
105{
106 rtc_timer_init(&rtctimer, NULL, NULL);
107}
108
109static struct class_interface alarmtimer_rtc_interface = {
110 .add_dev = &alarmtimer_rtc_add_device,
111};
112
113static int alarmtimer_rtc_interface_setup(void)
114{
115 alarmtimer_rtc_interface.class = rtc_class;
116 return class_interface_register(&alarmtimer_rtc_interface);
117}
118static void alarmtimer_rtc_interface_remove(void)
119{
120 class_interface_unregister(&alarmtimer_rtc_interface);
121}
122#else
123struct rtc_device *alarmtimer_get_rtcdev(void)
124{
125 return NULL;
126}
127#define rtcdev (NULL)
128static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
129static inline void alarmtimer_rtc_interface_remove(void) { }
130static inline void alarmtimer_rtc_timer_init(void) { }
131#endif
132
133/**
134 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
135 * @base: pointer to the base where the timer is being run
136 * @alarm: pointer to alarm being enqueued.
137 *
138 * Adds alarm to a alarm_base timerqueue
139 *
140 * Must hold base->lock when calling.
141 */
142static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
143{
144 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
145 timerqueue_del(&base->timerqueue, &alarm->node);
146
147 timerqueue_add(&base->timerqueue, &alarm->node);
148 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
149}
150
151/**
152 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
153 * @base: pointer to the base where the timer is running
154 * @alarm: pointer to alarm being removed
155 *
156 * Removes alarm to a alarm_base timerqueue
157 *
158 * Must hold base->lock when calling.
159 */
160static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
161{
162 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
163 return;
164
165 timerqueue_del(&base->timerqueue, &alarm->node);
166 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
167}
168
169
170/**
171 * alarmtimer_fired - Handles alarm hrtimer being fired.
172 * @timer: pointer to hrtimer being run
173 *
174 * When a alarm timer fires, this runs through the timerqueue to
175 * see which alarms expired, and runs those. If there are more alarm
176 * timers queued for the future, we set the hrtimer to fire when
177 * when the next future alarm timer expires.
178 */
179static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
180{
181 struct alarm *alarm = container_of(timer, struct alarm, timer);
182 struct alarm_base *base = &alarm_bases[alarm->type];
183 unsigned long flags;
184 int ret = HRTIMER_NORESTART;
185 int restart = ALARMTIMER_NORESTART;
186
187 spin_lock_irqsave(&base->lock, flags);
188 alarmtimer_dequeue(base, alarm);
189 spin_unlock_irqrestore(&base->lock, flags);
190
191 if (alarm->function)
192 restart = alarm->function(alarm, base->gettime());
193
194 spin_lock_irqsave(&base->lock, flags);
195 if (restart != ALARMTIMER_NORESTART) {
196 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
197 alarmtimer_enqueue(base, alarm);
198 ret = HRTIMER_RESTART;
199 }
200 spin_unlock_irqrestore(&base->lock, flags);
201
202 trace_alarmtimer_fired(alarm, base->gettime());
203 return ret;
204
205}
206
207ktime_t alarm_expires_remaining(const struct alarm *alarm)
208{
209 struct alarm_base *base = &alarm_bases[alarm->type];
210 return ktime_sub(alarm->node.expires, base->gettime());
211}
212EXPORT_SYMBOL_GPL(alarm_expires_remaining);
213
214#ifdef CONFIG_RTC_CLASS
215/**
216 * alarmtimer_suspend - Suspend time callback
217 * @dev: unused
218 * @state: unused
219 *
220 * When we are going into suspend, we look through the bases
221 * to see which is the soonest timer to expire. We then
222 * set an rtc timer to fire that far into the future, which
223 * will wake us from suspend.
224 */
225static int alarmtimer_suspend(struct device *dev)
226{
227 ktime_t min, now, expires;
228 int i, ret, type;
229 struct rtc_device *rtc;
230 unsigned long flags;
231 struct rtc_time tm;
232
233 spin_lock_irqsave(&freezer_delta_lock, flags);
234 min = freezer_delta;
235 expires = freezer_expires;
236 type = freezer_alarmtype;
237 freezer_delta = 0;
238 spin_unlock_irqrestore(&freezer_delta_lock, flags);
239
240 rtc = alarmtimer_get_rtcdev();
241 /* If we have no rtcdev, just return */
242 if (!rtc)
243 return 0;
244
245 /* Find the soonest timer to expire*/
246 for (i = 0; i < ALARM_NUMTYPE; i++) {
247 struct alarm_base *base = &alarm_bases[i];
248 struct timerqueue_node *next;
249 ktime_t delta;
250
251 spin_lock_irqsave(&base->lock, flags);
252 next = timerqueue_getnext(&base->timerqueue);
253 spin_unlock_irqrestore(&base->lock, flags);
254 if (!next)
255 continue;
256 delta = ktime_sub(next->expires, base->gettime());
257 if (!min || (delta < min)) {
258 expires = next->expires;
259 min = delta;
260 type = i;
261 }
262 }
263 if (min == 0)
264 return 0;
265
266 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
267 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
268 return -EBUSY;
269 }
270
271 trace_alarmtimer_suspend(expires, type);
272
273 /* Setup an rtc timer to fire that far in the future */
274 rtc_timer_cancel(rtc, &rtctimer);
275 rtc_read_time(rtc, &tm);
276 now = rtc_tm_to_ktime(tm);
277 now = ktime_add(now, min);
278
279 /* Set alarm, if in the past reject suspend briefly to handle */
280 ret = rtc_timer_start(rtc, &rtctimer, now, 0);
281 if (ret < 0)
282 __pm_wakeup_event(ws, MSEC_PER_SEC);
283 return ret;
284}
285
286static int alarmtimer_resume(struct device *dev)
287{
288 struct rtc_device *rtc;
289
290 rtc = alarmtimer_get_rtcdev();
291 if (rtc)
292 rtc_timer_cancel(rtc, &rtctimer);
293 return 0;
294}
295
296#else
297static int alarmtimer_suspend(struct device *dev)
298{
299 return 0;
300}
301
302static int alarmtimer_resume(struct device *dev)
303{
304 return 0;
305}
306#endif
307
308static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
309{
310 struct alarm_base *base;
311 unsigned long flags;
312 ktime_t delta;
313
314 switch(type) {
315 case ALARM_REALTIME:
316 base = &alarm_bases[ALARM_REALTIME];
317 type = ALARM_REALTIME_FREEZER;
318 break;
319 case ALARM_BOOTTIME:
320 base = &alarm_bases[ALARM_BOOTTIME];
321 type = ALARM_BOOTTIME_FREEZER;
322 break;
323 default:
324 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
325 return;
326 }
327
328 delta = ktime_sub(absexp, base->gettime());
329
330 spin_lock_irqsave(&freezer_delta_lock, flags);
331 if (!freezer_delta || (delta < freezer_delta)) {
332 freezer_delta = delta;
333 freezer_expires = absexp;
334 freezer_alarmtype = type;
335 }
336 spin_unlock_irqrestore(&freezer_delta_lock, flags);
337}
338
339
340/**
341 * alarm_init - Initialize an alarm structure
342 * @alarm: ptr to alarm to be initialized
343 * @type: the type of the alarm
344 * @function: callback that is run when the alarm fires
345 */
346void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
347 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
348{
349 timerqueue_init(&alarm->node);
350 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
351 HRTIMER_MODE_ABS);
352 alarm->timer.function = alarmtimer_fired;
353 alarm->function = function;
354 alarm->type = type;
355 alarm->state = ALARMTIMER_STATE_INACTIVE;
356}
357EXPORT_SYMBOL_GPL(alarm_init);
358
359/**
360 * alarm_start - Sets an absolute alarm to fire
361 * @alarm: ptr to alarm to set
362 * @start: time to run the alarm
363 */
364void alarm_start(struct alarm *alarm, ktime_t start)
365{
366 struct alarm_base *base = &alarm_bases[alarm->type];
367 unsigned long flags;
368
369 spin_lock_irqsave(&base->lock, flags);
370 alarm->node.expires = start;
371 alarmtimer_enqueue(base, alarm);
372 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
373 spin_unlock_irqrestore(&base->lock, flags);
374
375 trace_alarmtimer_start(alarm, base->gettime());
376}
377EXPORT_SYMBOL_GPL(alarm_start);
378
379/**
380 * alarm_start_relative - Sets a relative alarm to fire
381 * @alarm: ptr to alarm to set
382 * @start: time relative to now to run the alarm
383 */
384void alarm_start_relative(struct alarm *alarm, ktime_t start)
385{
386 struct alarm_base *base = &alarm_bases[alarm->type];
387
388 start = ktime_add(start, base->gettime());
389 alarm_start(alarm, start);
390}
391EXPORT_SYMBOL_GPL(alarm_start_relative);
392
393void alarm_restart(struct alarm *alarm)
394{
395 struct alarm_base *base = &alarm_bases[alarm->type];
396 unsigned long flags;
397
398 spin_lock_irqsave(&base->lock, flags);
399 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
400 hrtimer_restart(&alarm->timer);
401 alarmtimer_enqueue(base, alarm);
402 spin_unlock_irqrestore(&base->lock, flags);
403}
404EXPORT_SYMBOL_GPL(alarm_restart);
405
406/**
407 * alarm_try_to_cancel - Tries to cancel an alarm timer
408 * @alarm: ptr to alarm to be canceled
409 *
410 * Returns 1 if the timer was canceled, 0 if it was not running,
411 * and -1 if the callback was running
412 */
413int alarm_try_to_cancel(struct alarm *alarm)
414{
415 struct alarm_base *base = &alarm_bases[alarm->type];
416 unsigned long flags;
417 int ret;
418
419 spin_lock_irqsave(&base->lock, flags);
420 ret = hrtimer_try_to_cancel(&alarm->timer);
421 if (ret >= 0)
422 alarmtimer_dequeue(base, alarm);
423 spin_unlock_irqrestore(&base->lock, flags);
424
425 trace_alarmtimer_cancel(alarm, base->gettime());
426 return ret;
427}
428EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
429
430
431/**
432 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
433 * @alarm: ptr to alarm to be canceled
434 *
435 * Returns 1 if the timer was canceled, 0 if it was not active.
436 */
437int alarm_cancel(struct alarm *alarm)
438{
439 for (;;) {
440 int ret = alarm_try_to_cancel(alarm);
441 if (ret >= 0)
442 return ret;
443 cpu_relax();
444 }
445}
446EXPORT_SYMBOL_GPL(alarm_cancel);
447
448
449u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
450{
451 u64 overrun = 1;
452 ktime_t delta;
453
454 delta = ktime_sub(now, alarm->node.expires);
455
456 if (delta < 0)
457 return 0;
458
459 if (unlikely(delta >= interval)) {
460 s64 incr = ktime_to_ns(interval);
461
462 overrun = ktime_divns(delta, incr);
463
464 alarm->node.expires = ktime_add_ns(alarm->node.expires,
465 incr*overrun);
466
467 if (alarm->node.expires > now)
468 return overrun;
469 /*
470 * This (and the ktime_add() below) is the
471 * correction for exact:
472 */
473 overrun++;
474 }
475
476 alarm->node.expires = ktime_add(alarm->node.expires, interval);
477 return overrun;
478}
479EXPORT_SYMBOL_GPL(alarm_forward);
480
481u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
482{
483 struct alarm_base *base = &alarm_bases[alarm->type];
484
485 return alarm_forward(alarm, base->gettime(), interval);
486}
487EXPORT_SYMBOL_GPL(alarm_forward_now);
488
489
490/**
491 * clock2alarm - helper that converts from clockid to alarmtypes
492 * @clockid: clockid.
493 */
494static enum alarmtimer_type clock2alarm(clockid_t clockid)
495{
496 if (clockid == CLOCK_REALTIME_ALARM)
497 return ALARM_REALTIME;
498 if (clockid == CLOCK_BOOTTIME_ALARM)
499 return ALARM_BOOTTIME;
500 return -1;
501}
502
503/**
504 * alarm_handle_timer - Callback for posix timers
505 * @alarm: alarm that fired
506 *
507 * Posix timer callback for expired alarm timers.
508 */
509static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
510 ktime_t now)
511{
512 unsigned long flags;
513 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
514 it.alarm.alarmtimer);
515 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
516
517 spin_lock_irqsave(&ptr->it_lock, flags);
518 if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
519 if (IS_ENABLED(CONFIG_POSIX_TIMERS) &&
520 posix_timer_event(ptr, 0) != 0)
521 ptr->it_overrun++;
522 }
523
524 /* Re-add periodic timers */
525 if (ptr->it.alarm.interval) {
526 ptr->it_overrun += alarm_forward(alarm, now,
527 ptr->it.alarm.interval);
528 result = ALARMTIMER_RESTART;
529 }
530 spin_unlock_irqrestore(&ptr->it_lock, flags);
531
532 return result;
533}
534
535/**
536 * alarm_clock_getres - posix getres interface
537 * @which_clock: clockid
538 * @tp: timespec to fill
539 *
540 * Returns the granularity of underlying alarm base clock
541 */
542static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
543{
544 if (!alarmtimer_get_rtcdev())
545 return -EINVAL;
546
547 tp->tv_sec = 0;
548 tp->tv_nsec = hrtimer_resolution;
549 return 0;
550}
551
552/**
553 * alarm_clock_get - posix clock_get interface
554 * @which_clock: clockid
555 * @tp: timespec to fill.
556 *
557 * Provides the underlying alarm base time.
558 */
559static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
560{
561 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
562
563 if (!alarmtimer_get_rtcdev())
564 return -EINVAL;
565
566 *tp = ktime_to_timespec(base->gettime());
567 return 0;
568}
569
570/**
571 * alarm_timer_create - posix timer_create interface
572 * @new_timer: k_itimer pointer to manage
573 *
574 * Initializes the k_itimer structure.
575 */
576static int alarm_timer_create(struct k_itimer *new_timer)
577{
578 enum alarmtimer_type type;
579
580 if (!alarmtimer_get_rtcdev())
581 return -ENOTSUPP;
582
583 if (!capable(CAP_WAKE_ALARM))
584 return -EPERM;
585
586 type = clock2alarm(new_timer->it_clock);
587 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
588 return 0;
589}
590
591/**
592 * alarm_timer_get - posix timer_get interface
593 * @new_timer: k_itimer pointer
594 * @cur_setting: itimerspec data to fill
595 *
596 * Copies out the current itimerspec data
597 */
598static void alarm_timer_get(struct k_itimer *timr,
599 struct itimerspec *cur_setting)
600{
601 ktime_t relative_expiry_time =
602 alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
603
604 if (ktime_to_ns(relative_expiry_time) > 0) {
605 cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
606 } else {
607 cur_setting->it_value.tv_sec = 0;
608 cur_setting->it_value.tv_nsec = 0;
609 }
610
611 cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
612}
613
614/**
615 * alarm_timer_del - posix timer_del interface
616 * @timr: k_itimer pointer to be deleted
617 *
618 * Cancels any programmed alarms for the given timer.
619 */
620static int alarm_timer_del(struct k_itimer *timr)
621{
622 if (!rtcdev)
623 return -ENOTSUPP;
624
625 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
626 return TIMER_RETRY;
627
628 return 0;
629}
630
631/**
632 * alarm_timer_set - posix timer_set interface
633 * @timr: k_itimer pointer to be deleted
634 * @flags: timer flags
635 * @new_setting: itimerspec to be used
636 * @old_setting: itimerspec being replaced
637 *
638 * Sets the timer to new_setting, and starts the timer.
639 */
640static int alarm_timer_set(struct k_itimer *timr, int flags,
641 struct itimerspec *new_setting,
642 struct itimerspec *old_setting)
643{
644 ktime_t exp;
645
646 if (!rtcdev)
647 return -ENOTSUPP;
648
649 if (flags & ~TIMER_ABSTIME)
650 return -EINVAL;
651
652 if (old_setting)
653 alarm_timer_get(timr, old_setting);
654
655 /* If the timer was already set, cancel it */
656 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
657 return TIMER_RETRY;
658
659 /* start the timer */
660 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
661 exp = timespec_to_ktime(new_setting->it_value);
662 /* Convert (if necessary) to absolute time */
663 if (flags != TIMER_ABSTIME) {
664 ktime_t now;
665
666 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
667 exp = ktime_add(now, exp);
668 }
669
670 alarm_start(&timr->it.alarm.alarmtimer, exp);
671 return 0;
672}
673
674/**
675 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
676 * @alarm: ptr to alarm that fired
677 *
678 * Wakes up the task that set the alarmtimer
679 */
680static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
681 ktime_t now)
682{
683 struct task_struct *task = (struct task_struct *)alarm->data;
684
685 alarm->data = NULL;
686 if (task)
687 wake_up_process(task);
688 return ALARMTIMER_NORESTART;
689}
690
691/**
692 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
693 * @alarm: ptr to alarmtimer
694 * @absexp: absolute expiration time
695 *
696 * Sets the alarm timer and sleeps until it is fired or interrupted.
697 */
698static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
699{
700 alarm->data = (void *)current;
701 do {
702 set_current_state(TASK_INTERRUPTIBLE);
703 alarm_start(alarm, absexp);
704 if (likely(alarm->data))
705 schedule();
706
707 alarm_cancel(alarm);
708 } while (alarm->data && !signal_pending(current));
709
710 __set_current_state(TASK_RUNNING);
711
712 return (alarm->data == NULL);
713}
714
715
716/**
717 * update_rmtp - Update remaining timespec value
718 * @exp: expiration time
719 * @type: timer type
720 * @rmtp: user pointer to remaining timepsec value
721 *
722 * Helper function that fills in rmtp value with time between
723 * now and the exp value
724 */
725static int update_rmtp(ktime_t exp, enum alarmtimer_type type,
726 struct timespec __user *rmtp)
727{
728 struct timespec rmt;
729 ktime_t rem;
730
731 rem = ktime_sub(exp, alarm_bases[type].gettime());
732
733 if (rem <= 0)
734 return 0;
735 rmt = ktime_to_timespec(rem);
736
737 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
738 return -EFAULT;
739
740 return 1;
741
742}
743
744/**
745 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
746 * @restart: ptr to restart block
747 *
748 * Handles restarted clock_nanosleep calls
749 */
750static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
751{
752 enum alarmtimer_type type = restart->nanosleep.clockid;
753 ktime_t exp;
754 struct timespec __user *rmtp;
755 struct alarm alarm;
756 int ret = 0;
757
758 exp = restart->nanosleep.expires;
759 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
760
761 if (alarmtimer_do_nsleep(&alarm, exp))
762 goto out;
763
764 if (freezing(current))
765 alarmtimer_freezerset(exp, type);
766
767 rmtp = restart->nanosleep.rmtp;
768 if (rmtp) {
769 ret = update_rmtp(exp, type, rmtp);
770 if (ret <= 0)
771 goto out;
772 }
773
774
775 /* The other values in restart are already filled in */
776 ret = -ERESTART_RESTARTBLOCK;
777out:
778 return ret;
779}
780
781/**
782 * alarm_timer_nsleep - alarmtimer nanosleep
783 * @which_clock: clockid
784 * @flags: determins abstime or relative
785 * @tsreq: requested sleep time (abs or rel)
786 * @rmtp: remaining sleep time saved
787 *
788 * Handles clock_nanosleep calls against _ALARM clockids
789 */
790static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
791 struct timespec *tsreq, struct timespec __user *rmtp)
792{
793 enum alarmtimer_type type = clock2alarm(which_clock);
794 struct alarm alarm;
795 ktime_t exp;
796 int ret = 0;
797 struct restart_block *restart;
798
799 if (!alarmtimer_get_rtcdev())
800 return -ENOTSUPP;
801
802 if (flags & ~TIMER_ABSTIME)
803 return -EINVAL;
804
805 if (!capable(CAP_WAKE_ALARM))
806 return -EPERM;
807
808 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
809
810 exp = timespec_to_ktime(*tsreq);
811 /* Convert (if necessary) to absolute time */
812 if (flags != TIMER_ABSTIME) {
813 ktime_t now = alarm_bases[type].gettime();
814 exp = ktime_add(now, exp);
815 }
816
817 if (alarmtimer_do_nsleep(&alarm, exp))
818 goto out;
819
820 if (freezing(current))
821 alarmtimer_freezerset(exp, type);
822
823 /* abs timers don't set remaining time or restart */
824 if (flags == TIMER_ABSTIME) {
825 ret = -ERESTARTNOHAND;
826 goto out;
827 }
828
829 if (rmtp) {
830 ret = update_rmtp(exp, type, rmtp);
831 if (ret <= 0)
832 goto out;
833 }
834
835 restart = ¤t->restart_block;
836 restart->fn = alarm_timer_nsleep_restart;
837 restart->nanosleep.clockid = type;
838 restart->nanosleep.expires = exp;
839 restart->nanosleep.rmtp = rmtp;
840 ret = -ERESTART_RESTARTBLOCK;
841
842out:
843 return ret;
844}
845
846
847/* Suspend hook structures */
848static const struct dev_pm_ops alarmtimer_pm_ops = {
849 .suspend = alarmtimer_suspend,
850 .resume = alarmtimer_resume,
851};
852
853static struct platform_driver alarmtimer_driver = {
854 .driver = {
855 .name = "alarmtimer",
856 .pm = &alarmtimer_pm_ops,
857 }
858};
859
860/**
861 * alarmtimer_init - Initialize alarm timer code
862 *
863 * This function initializes the alarm bases and registers
864 * the posix clock ids.
865 */
866static int __init alarmtimer_init(void)
867{
868 struct platform_device *pdev;
869 int error = 0;
870 int i;
871 struct k_clock alarm_clock = {
872 .clock_getres = alarm_clock_getres,
873 .clock_get = alarm_clock_get,
874 .timer_create = alarm_timer_create,
875 .timer_set = alarm_timer_set,
876 .timer_del = alarm_timer_del,
877 .timer_get = alarm_timer_get,
878 .nsleep = alarm_timer_nsleep,
879 };
880
881 alarmtimer_rtc_timer_init();
882
883 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
884 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
885 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
886 }
887
888 /* Initialize alarm bases */
889 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
890 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
891 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
892 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
893 for (i = 0; i < ALARM_NUMTYPE; i++) {
894 timerqueue_init_head(&alarm_bases[i].timerqueue);
895 spin_lock_init(&alarm_bases[i].lock);
896 }
897
898 error = alarmtimer_rtc_interface_setup();
899 if (error)
900 return error;
901
902 error = platform_driver_register(&alarmtimer_driver);
903 if (error)
904 goto out_if;
905
906 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
907 if (IS_ERR(pdev)) {
908 error = PTR_ERR(pdev);
909 goto out_drv;
910 }
911 ws = wakeup_source_register("alarmtimer");
912 return 0;
913
914out_drv:
915 platform_driver_unregister(&alarmtimer_driver);
916out_if:
917 alarmtimer_rtc_interface_remove();
918 return error;
919}
920device_initcall(alarmtimer_init);