Loading...
1/*
2 * Alarmtimer interface
3 *
4 * This interface provides a timer which is similarto hrtimers,
5 * but triggers a RTC alarm if the box is suspend.
6 *
7 * This interface is influenced by the Android RTC Alarm timer
8 * interface.
9 *
10 * Copyright (C) 2010 IBM Corperation
11 *
12 * Author: John Stultz <john.stultz@linaro.org>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18#include <linux/time.h>
19#include <linux/hrtimer.h>
20#include <linux/timerqueue.h>
21#include <linux/rtc.h>
22#include <linux/alarmtimer.h>
23#include <linux/mutex.h>
24#include <linux/platform_device.h>
25#include <linux/posix-timers.h>
26#include <linux/workqueue.h>
27#include <linux/freezer.h>
28
29/**
30 * struct alarm_base - Alarm timer bases
31 * @lock: Lock for syncrhonized access to the base
32 * @timerqueue: Timerqueue head managing the list of events
33 * @timer: hrtimer used to schedule events while running
34 * @gettime: Function to read the time correlating to the base
35 * @base_clockid: clockid for the base
36 */
37static struct alarm_base {
38 spinlock_t lock;
39 struct timerqueue_head timerqueue;
40 ktime_t (*gettime)(void);
41 clockid_t base_clockid;
42} alarm_bases[ALARM_NUMTYPE];
43
44/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
45static ktime_t freezer_delta;
46static DEFINE_SPINLOCK(freezer_delta_lock);
47
48static struct wakeup_source *ws;
49
50#ifdef CONFIG_RTC_CLASS
51/* rtc timer and device for setting alarm wakeups at suspend */
52static struct rtc_timer rtctimer;
53static struct rtc_device *rtcdev;
54static DEFINE_SPINLOCK(rtcdev_lock);
55
56/**
57 * alarmtimer_get_rtcdev - Return selected rtcdevice
58 *
59 * This function returns the rtc device to use for wakealarms.
60 * If one has not already been chosen, it checks to see if a
61 * functional rtc device is available.
62 */
63struct rtc_device *alarmtimer_get_rtcdev(void)
64{
65 unsigned long flags;
66 struct rtc_device *ret;
67
68 spin_lock_irqsave(&rtcdev_lock, flags);
69 ret = rtcdev;
70 spin_unlock_irqrestore(&rtcdev_lock, flags);
71
72 return ret;
73}
74EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
75
76static int alarmtimer_rtc_add_device(struct device *dev,
77 struct class_interface *class_intf)
78{
79 unsigned long flags;
80 struct rtc_device *rtc = to_rtc_device(dev);
81
82 if (rtcdev)
83 return -EBUSY;
84
85 if (!rtc->ops->set_alarm)
86 return -1;
87 if (!device_may_wakeup(rtc->dev.parent))
88 return -1;
89
90 spin_lock_irqsave(&rtcdev_lock, flags);
91 if (!rtcdev) {
92 rtcdev = rtc;
93 /* hold a reference so it doesn't go away */
94 get_device(dev);
95 }
96 spin_unlock_irqrestore(&rtcdev_lock, flags);
97 return 0;
98}
99
100static inline void alarmtimer_rtc_timer_init(void)
101{
102 rtc_timer_init(&rtctimer, NULL, NULL);
103}
104
105static struct class_interface alarmtimer_rtc_interface = {
106 .add_dev = &alarmtimer_rtc_add_device,
107};
108
109static int alarmtimer_rtc_interface_setup(void)
110{
111 alarmtimer_rtc_interface.class = rtc_class;
112 return class_interface_register(&alarmtimer_rtc_interface);
113}
114static void alarmtimer_rtc_interface_remove(void)
115{
116 class_interface_unregister(&alarmtimer_rtc_interface);
117}
118#else
119struct rtc_device *alarmtimer_get_rtcdev(void)
120{
121 return NULL;
122}
123#define rtcdev (NULL)
124static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
125static inline void alarmtimer_rtc_interface_remove(void) { }
126static inline void alarmtimer_rtc_timer_init(void) { }
127#endif
128
129/**
130 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
131 * @base: pointer to the base where the timer is being run
132 * @alarm: pointer to alarm being enqueued.
133 *
134 * Adds alarm to a alarm_base timerqueue
135 *
136 * Must hold base->lock when calling.
137 */
138static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139{
140 if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
141 timerqueue_del(&base->timerqueue, &alarm->node);
142
143 timerqueue_add(&base->timerqueue, &alarm->node);
144 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
145}
146
147/**
148 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
149 * @base: pointer to the base where the timer is running
150 * @alarm: pointer to alarm being removed
151 *
152 * Removes alarm to a alarm_base timerqueue
153 *
154 * Must hold base->lock when calling.
155 */
156static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
157{
158 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
159 return;
160
161 timerqueue_del(&base->timerqueue, &alarm->node);
162 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
163}
164
165
166/**
167 * alarmtimer_fired - Handles alarm hrtimer being fired.
168 * @timer: pointer to hrtimer being run
169 *
170 * When a alarm timer fires, this runs through the timerqueue to
171 * see which alarms expired, and runs those. If there are more alarm
172 * timers queued for the future, we set the hrtimer to fire when
173 * when the next future alarm timer expires.
174 */
175static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
176{
177 struct alarm *alarm = container_of(timer, struct alarm, timer);
178 struct alarm_base *base = &alarm_bases[alarm->type];
179 unsigned long flags;
180 int ret = HRTIMER_NORESTART;
181 int restart = ALARMTIMER_NORESTART;
182
183 spin_lock_irqsave(&base->lock, flags);
184 alarmtimer_dequeue(base, alarm);
185 spin_unlock_irqrestore(&base->lock, flags);
186
187 if (alarm->function)
188 restart = alarm->function(alarm, base->gettime());
189
190 spin_lock_irqsave(&base->lock, flags);
191 if (restart != ALARMTIMER_NORESTART) {
192 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
193 alarmtimer_enqueue(base, alarm);
194 ret = HRTIMER_RESTART;
195 }
196 spin_unlock_irqrestore(&base->lock, flags);
197
198 return ret;
199
200}
201
202ktime_t alarm_expires_remaining(const struct alarm *alarm)
203{
204 struct alarm_base *base = &alarm_bases[alarm->type];
205 return ktime_sub(alarm->node.expires, base->gettime());
206}
207EXPORT_SYMBOL_GPL(alarm_expires_remaining);
208
209#ifdef CONFIG_RTC_CLASS
210/**
211 * alarmtimer_suspend - Suspend time callback
212 * @dev: unused
213 * @state: unused
214 *
215 * When we are going into suspend, we look through the bases
216 * to see which is the soonest timer to expire. We then
217 * set an rtc timer to fire that far into the future, which
218 * will wake us from suspend.
219 */
220static int alarmtimer_suspend(struct device *dev)
221{
222 struct rtc_time tm;
223 ktime_t min, now;
224 unsigned long flags;
225 struct rtc_device *rtc;
226 int i;
227 int ret;
228
229 spin_lock_irqsave(&freezer_delta_lock, flags);
230 min = freezer_delta;
231 freezer_delta = ktime_set(0, 0);
232 spin_unlock_irqrestore(&freezer_delta_lock, flags);
233
234 rtc = alarmtimer_get_rtcdev();
235 /* If we have no rtcdev, just return */
236 if (!rtc)
237 return 0;
238
239 /* Find the soonest timer to expire*/
240 for (i = 0; i < ALARM_NUMTYPE; i++) {
241 struct alarm_base *base = &alarm_bases[i];
242 struct timerqueue_node *next;
243 ktime_t delta;
244
245 spin_lock_irqsave(&base->lock, flags);
246 next = timerqueue_getnext(&base->timerqueue);
247 spin_unlock_irqrestore(&base->lock, flags);
248 if (!next)
249 continue;
250 delta = ktime_sub(next->expires, base->gettime());
251 if (!min.tv64 || (delta.tv64 < min.tv64))
252 min = delta;
253 }
254 if (min.tv64 == 0)
255 return 0;
256
257 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
258 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
259 return -EBUSY;
260 }
261
262 /* Setup an rtc timer to fire that far in the future */
263 rtc_timer_cancel(rtc, &rtctimer);
264 rtc_read_time(rtc, &tm);
265 now = rtc_tm_to_ktime(tm);
266 now = ktime_add(now, min);
267
268 /* Set alarm, if in the past reject suspend briefly to handle */
269 ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
270 if (ret < 0)
271 __pm_wakeup_event(ws, MSEC_PER_SEC);
272 return ret;
273}
274
275static int alarmtimer_resume(struct device *dev)
276{
277 struct rtc_device *rtc;
278
279 rtc = alarmtimer_get_rtcdev();
280 if (rtc)
281 rtc_timer_cancel(rtc, &rtctimer);
282 return 0;
283}
284
285#else
286static int alarmtimer_suspend(struct device *dev)
287{
288 return 0;
289}
290
291static int alarmtimer_resume(struct device *dev)
292{
293 return 0;
294}
295#endif
296
297static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
298{
299 ktime_t delta;
300 unsigned long flags;
301 struct alarm_base *base = &alarm_bases[type];
302
303 delta = ktime_sub(absexp, base->gettime());
304
305 spin_lock_irqsave(&freezer_delta_lock, flags);
306 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
307 freezer_delta = delta;
308 spin_unlock_irqrestore(&freezer_delta_lock, flags);
309}
310
311
312/**
313 * alarm_init - Initialize an alarm structure
314 * @alarm: ptr to alarm to be initialized
315 * @type: the type of the alarm
316 * @function: callback that is run when the alarm fires
317 */
318void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
319 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
320{
321 timerqueue_init(&alarm->node);
322 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
323 HRTIMER_MODE_ABS);
324 alarm->timer.function = alarmtimer_fired;
325 alarm->function = function;
326 alarm->type = type;
327 alarm->state = ALARMTIMER_STATE_INACTIVE;
328}
329EXPORT_SYMBOL_GPL(alarm_init);
330
331/**
332 * alarm_start - Sets an absolute alarm to fire
333 * @alarm: ptr to alarm to set
334 * @start: time to run the alarm
335 */
336void alarm_start(struct alarm *alarm, ktime_t start)
337{
338 struct alarm_base *base = &alarm_bases[alarm->type];
339 unsigned long flags;
340
341 spin_lock_irqsave(&base->lock, flags);
342 alarm->node.expires = start;
343 alarmtimer_enqueue(base, alarm);
344 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
345 spin_unlock_irqrestore(&base->lock, flags);
346}
347EXPORT_SYMBOL_GPL(alarm_start);
348
349/**
350 * alarm_start_relative - Sets a relative alarm to fire
351 * @alarm: ptr to alarm to set
352 * @start: time relative to now to run the alarm
353 */
354void alarm_start_relative(struct alarm *alarm, ktime_t start)
355{
356 struct alarm_base *base = &alarm_bases[alarm->type];
357
358 start = ktime_add(start, base->gettime());
359 alarm_start(alarm, start);
360}
361EXPORT_SYMBOL_GPL(alarm_start_relative);
362
363void alarm_restart(struct alarm *alarm)
364{
365 struct alarm_base *base = &alarm_bases[alarm->type];
366 unsigned long flags;
367
368 spin_lock_irqsave(&base->lock, flags);
369 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
370 hrtimer_restart(&alarm->timer);
371 alarmtimer_enqueue(base, alarm);
372 spin_unlock_irqrestore(&base->lock, flags);
373}
374EXPORT_SYMBOL_GPL(alarm_restart);
375
376/**
377 * alarm_try_to_cancel - Tries to cancel an alarm timer
378 * @alarm: ptr to alarm to be canceled
379 *
380 * Returns 1 if the timer was canceled, 0 if it was not running,
381 * and -1 if the callback was running
382 */
383int alarm_try_to_cancel(struct alarm *alarm)
384{
385 struct alarm_base *base = &alarm_bases[alarm->type];
386 unsigned long flags;
387 int ret;
388
389 spin_lock_irqsave(&base->lock, flags);
390 ret = hrtimer_try_to_cancel(&alarm->timer);
391 if (ret >= 0)
392 alarmtimer_dequeue(base, alarm);
393 spin_unlock_irqrestore(&base->lock, flags);
394 return ret;
395}
396EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
397
398
399/**
400 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
401 * @alarm: ptr to alarm to be canceled
402 *
403 * Returns 1 if the timer was canceled, 0 if it was not active.
404 */
405int alarm_cancel(struct alarm *alarm)
406{
407 for (;;) {
408 int ret = alarm_try_to_cancel(alarm);
409 if (ret >= 0)
410 return ret;
411 cpu_relax();
412 }
413}
414EXPORT_SYMBOL_GPL(alarm_cancel);
415
416
417u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
418{
419 u64 overrun = 1;
420 ktime_t delta;
421
422 delta = ktime_sub(now, alarm->node.expires);
423
424 if (delta.tv64 < 0)
425 return 0;
426
427 if (unlikely(delta.tv64 >= interval.tv64)) {
428 s64 incr = ktime_to_ns(interval);
429
430 overrun = ktime_divns(delta, incr);
431
432 alarm->node.expires = ktime_add_ns(alarm->node.expires,
433 incr*overrun);
434
435 if (alarm->node.expires.tv64 > now.tv64)
436 return overrun;
437 /*
438 * This (and the ktime_add() below) is the
439 * correction for exact:
440 */
441 overrun++;
442 }
443
444 alarm->node.expires = ktime_add(alarm->node.expires, interval);
445 return overrun;
446}
447EXPORT_SYMBOL_GPL(alarm_forward);
448
449u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
450{
451 struct alarm_base *base = &alarm_bases[alarm->type];
452
453 return alarm_forward(alarm, base->gettime(), interval);
454}
455EXPORT_SYMBOL_GPL(alarm_forward_now);
456
457
458/**
459 * clock2alarm - helper that converts from clockid to alarmtypes
460 * @clockid: clockid.
461 */
462static enum alarmtimer_type clock2alarm(clockid_t clockid)
463{
464 if (clockid == CLOCK_REALTIME_ALARM)
465 return ALARM_REALTIME;
466 if (clockid == CLOCK_BOOTTIME_ALARM)
467 return ALARM_BOOTTIME;
468 return -1;
469}
470
471/**
472 * alarm_handle_timer - Callback for posix timers
473 * @alarm: alarm that fired
474 *
475 * Posix timer callback for expired alarm timers.
476 */
477static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
478 ktime_t now)
479{
480 unsigned long flags;
481 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
482 it.alarm.alarmtimer);
483 enum alarmtimer_restart result = ALARMTIMER_NORESTART;
484
485 spin_lock_irqsave(&ptr->it_lock, flags);
486 if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
487 if (posix_timer_event(ptr, 0) != 0)
488 ptr->it_overrun++;
489 }
490
491 /* Re-add periodic timers */
492 if (ptr->it.alarm.interval.tv64) {
493 ptr->it_overrun += alarm_forward(alarm, now,
494 ptr->it.alarm.interval);
495 result = ALARMTIMER_RESTART;
496 }
497 spin_unlock_irqrestore(&ptr->it_lock, flags);
498
499 return result;
500}
501
502/**
503 * alarm_clock_getres - posix getres interface
504 * @which_clock: clockid
505 * @tp: timespec to fill
506 *
507 * Returns the granularity of underlying alarm base clock
508 */
509static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
510{
511 if (!alarmtimer_get_rtcdev())
512 return -EINVAL;
513
514 tp->tv_sec = 0;
515 tp->tv_nsec = hrtimer_resolution;
516 return 0;
517}
518
519/**
520 * alarm_clock_get - posix clock_get interface
521 * @which_clock: clockid
522 * @tp: timespec to fill.
523 *
524 * Provides the underlying alarm base time.
525 */
526static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
527{
528 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
529
530 if (!alarmtimer_get_rtcdev())
531 return -EINVAL;
532
533 *tp = ktime_to_timespec(base->gettime());
534 return 0;
535}
536
537/**
538 * alarm_timer_create - posix timer_create interface
539 * @new_timer: k_itimer pointer to manage
540 *
541 * Initializes the k_itimer structure.
542 */
543static int alarm_timer_create(struct k_itimer *new_timer)
544{
545 enum alarmtimer_type type;
546 struct alarm_base *base;
547
548 if (!alarmtimer_get_rtcdev())
549 return -ENOTSUPP;
550
551 if (!capable(CAP_WAKE_ALARM))
552 return -EPERM;
553
554 type = clock2alarm(new_timer->it_clock);
555 base = &alarm_bases[type];
556 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
557 return 0;
558}
559
560/**
561 * alarm_timer_get - posix timer_get interface
562 * @new_timer: k_itimer pointer
563 * @cur_setting: itimerspec data to fill
564 *
565 * Copies out the current itimerspec data
566 */
567static void alarm_timer_get(struct k_itimer *timr,
568 struct itimerspec *cur_setting)
569{
570 ktime_t relative_expiry_time =
571 alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
572
573 if (ktime_to_ns(relative_expiry_time) > 0) {
574 cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
575 } else {
576 cur_setting->it_value.tv_sec = 0;
577 cur_setting->it_value.tv_nsec = 0;
578 }
579
580 cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
581}
582
583/**
584 * alarm_timer_del - posix timer_del interface
585 * @timr: k_itimer pointer to be deleted
586 *
587 * Cancels any programmed alarms for the given timer.
588 */
589static int alarm_timer_del(struct k_itimer *timr)
590{
591 if (!rtcdev)
592 return -ENOTSUPP;
593
594 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
595 return TIMER_RETRY;
596
597 return 0;
598}
599
600/**
601 * alarm_timer_set - posix timer_set interface
602 * @timr: k_itimer pointer to be deleted
603 * @flags: timer flags
604 * @new_setting: itimerspec to be used
605 * @old_setting: itimerspec being replaced
606 *
607 * Sets the timer to new_setting, and starts the timer.
608 */
609static int alarm_timer_set(struct k_itimer *timr, int flags,
610 struct itimerspec *new_setting,
611 struct itimerspec *old_setting)
612{
613 ktime_t exp;
614
615 if (!rtcdev)
616 return -ENOTSUPP;
617
618 if (flags & ~TIMER_ABSTIME)
619 return -EINVAL;
620
621 if (old_setting)
622 alarm_timer_get(timr, old_setting);
623
624 /* If the timer was already set, cancel it */
625 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
626 return TIMER_RETRY;
627
628 /* start the timer */
629 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
630 exp = timespec_to_ktime(new_setting->it_value);
631 /* Convert (if necessary) to absolute time */
632 if (flags != TIMER_ABSTIME) {
633 ktime_t now;
634
635 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
636 exp = ktime_add(now, exp);
637 }
638
639 alarm_start(&timr->it.alarm.alarmtimer, exp);
640 return 0;
641}
642
643/**
644 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
645 * @alarm: ptr to alarm that fired
646 *
647 * Wakes up the task that set the alarmtimer
648 */
649static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
650 ktime_t now)
651{
652 struct task_struct *task = (struct task_struct *)alarm->data;
653
654 alarm->data = NULL;
655 if (task)
656 wake_up_process(task);
657 return ALARMTIMER_NORESTART;
658}
659
660/**
661 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
662 * @alarm: ptr to alarmtimer
663 * @absexp: absolute expiration time
664 *
665 * Sets the alarm timer and sleeps until it is fired or interrupted.
666 */
667static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
668{
669 alarm->data = (void *)current;
670 do {
671 set_current_state(TASK_INTERRUPTIBLE);
672 alarm_start(alarm, absexp);
673 if (likely(alarm->data))
674 schedule();
675
676 alarm_cancel(alarm);
677 } while (alarm->data && !signal_pending(current));
678
679 __set_current_state(TASK_RUNNING);
680
681 return (alarm->data == NULL);
682}
683
684
685/**
686 * update_rmtp - Update remaining timespec value
687 * @exp: expiration time
688 * @type: timer type
689 * @rmtp: user pointer to remaining timepsec value
690 *
691 * Helper function that fills in rmtp value with time between
692 * now and the exp value
693 */
694static int update_rmtp(ktime_t exp, enum alarmtimer_type type,
695 struct timespec __user *rmtp)
696{
697 struct timespec rmt;
698 ktime_t rem;
699
700 rem = ktime_sub(exp, alarm_bases[type].gettime());
701
702 if (rem.tv64 <= 0)
703 return 0;
704 rmt = ktime_to_timespec(rem);
705
706 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
707 return -EFAULT;
708
709 return 1;
710
711}
712
713/**
714 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
715 * @restart: ptr to restart block
716 *
717 * Handles restarted clock_nanosleep calls
718 */
719static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
720{
721 enum alarmtimer_type type = restart->nanosleep.clockid;
722 ktime_t exp;
723 struct timespec __user *rmtp;
724 struct alarm alarm;
725 int ret = 0;
726
727 exp.tv64 = restart->nanosleep.expires;
728 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
729
730 if (alarmtimer_do_nsleep(&alarm, exp))
731 goto out;
732
733 if (freezing(current))
734 alarmtimer_freezerset(exp, type);
735
736 rmtp = restart->nanosleep.rmtp;
737 if (rmtp) {
738 ret = update_rmtp(exp, type, rmtp);
739 if (ret <= 0)
740 goto out;
741 }
742
743
744 /* The other values in restart are already filled in */
745 ret = -ERESTART_RESTARTBLOCK;
746out:
747 return ret;
748}
749
750/**
751 * alarm_timer_nsleep - alarmtimer nanosleep
752 * @which_clock: clockid
753 * @flags: determins abstime or relative
754 * @tsreq: requested sleep time (abs or rel)
755 * @rmtp: remaining sleep time saved
756 *
757 * Handles clock_nanosleep calls against _ALARM clockids
758 */
759static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
760 struct timespec *tsreq, struct timespec __user *rmtp)
761{
762 enum alarmtimer_type type = clock2alarm(which_clock);
763 struct alarm alarm;
764 ktime_t exp;
765 int ret = 0;
766 struct restart_block *restart;
767
768 if (!alarmtimer_get_rtcdev())
769 return -ENOTSUPP;
770
771 if (flags & ~TIMER_ABSTIME)
772 return -EINVAL;
773
774 if (!capable(CAP_WAKE_ALARM))
775 return -EPERM;
776
777 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
778
779 exp = timespec_to_ktime(*tsreq);
780 /* Convert (if necessary) to absolute time */
781 if (flags != TIMER_ABSTIME) {
782 ktime_t now = alarm_bases[type].gettime();
783 exp = ktime_add(now, exp);
784 }
785
786 if (alarmtimer_do_nsleep(&alarm, exp))
787 goto out;
788
789 if (freezing(current))
790 alarmtimer_freezerset(exp, type);
791
792 /* abs timers don't set remaining time or restart */
793 if (flags == TIMER_ABSTIME) {
794 ret = -ERESTARTNOHAND;
795 goto out;
796 }
797
798 if (rmtp) {
799 ret = update_rmtp(exp, type, rmtp);
800 if (ret <= 0)
801 goto out;
802 }
803
804 restart = ¤t->restart_block;
805 restart->fn = alarm_timer_nsleep_restart;
806 restart->nanosleep.clockid = type;
807 restart->nanosleep.expires = exp.tv64;
808 restart->nanosleep.rmtp = rmtp;
809 ret = -ERESTART_RESTARTBLOCK;
810
811out:
812 return ret;
813}
814
815
816/* Suspend hook structures */
817static const struct dev_pm_ops alarmtimer_pm_ops = {
818 .suspend = alarmtimer_suspend,
819 .resume = alarmtimer_resume,
820};
821
822static struct platform_driver alarmtimer_driver = {
823 .driver = {
824 .name = "alarmtimer",
825 .pm = &alarmtimer_pm_ops,
826 }
827};
828
829/**
830 * alarmtimer_init - Initialize alarm timer code
831 *
832 * This function initializes the alarm bases and registers
833 * the posix clock ids.
834 */
835static int __init alarmtimer_init(void)
836{
837 struct platform_device *pdev;
838 int error = 0;
839 int i;
840 struct k_clock alarm_clock = {
841 .clock_getres = alarm_clock_getres,
842 .clock_get = alarm_clock_get,
843 .timer_create = alarm_timer_create,
844 .timer_set = alarm_timer_set,
845 .timer_del = alarm_timer_del,
846 .timer_get = alarm_timer_get,
847 .nsleep = alarm_timer_nsleep,
848 };
849
850 alarmtimer_rtc_timer_init();
851
852 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
853 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
854
855 /* Initialize alarm bases */
856 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
857 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
858 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
859 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
860 for (i = 0; i < ALARM_NUMTYPE; i++) {
861 timerqueue_init_head(&alarm_bases[i].timerqueue);
862 spin_lock_init(&alarm_bases[i].lock);
863 }
864
865 error = alarmtimer_rtc_interface_setup();
866 if (error)
867 return error;
868
869 error = platform_driver_register(&alarmtimer_driver);
870 if (error)
871 goto out_if;
872
873 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
874 if (IS_ERR(pdev)) {
875 error = PTR_ERR(pdev);
876 goto out_drv;
877 }
878 ws = wakeup_source_register("alarmtimer");
879 return 0;
880
881out_drv:
882 platform_driver_unregister(&alarmtimer_driver);
883out_if:
884 alarmtimer_rtc_interface_remove();
885 return error;
886}
887device_initcall(alarmtimer_init);
1/*
2 * Alarmtimer interface
3 *
4 * This interface provides a timer which is similarto hrtimers,
5 * but triggers a RTC alarm if the box is suspend.
6 *
7 * This interface is influenced by the Android RTC Alarm timer
8 * interface.
9 *
10 * Copyright (C) 2010 IBM Corperation
11 *
12 * Author: John Stultz <john.stultz@linaro.org>
13 *
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
17 */
18#include <linux/time.h>
19#include <linux/hrtimer.h>
20#include <linux/timerqueue.h>
21#include <linux/rtc.h>
22#include <linux/alarmtimer.h>
23#include <linux/mutex.h>
24#include <linux/platform_device.h>
25#include <linux/posix-timers.h>
26#include <linux/workqueue.h>
27#include <linux/freezer.h>
28
29/**
30 * struct alarm_base - Alarm timer bases
31 * @lock: Lock for syncrhonized access to the base
32 * @timerqueue: Timerqueue head managing the list of events
33 * @timer: hrtimer used to schedule events while running
34 * @gettime: Function to read the time correlating to the base
35 * @base_clockid: clockid for the base
36 */
37static struct alarm_base {
38 spinlock_t lock;
39 struct timerqueue_head timerqueue;
40 struct hrtimer timer;
41 ktime_t (*gettime)(void);
42 clockid_t base_clockid;
43} alarm_bases[ALARM_NUMTYPE];
44
45/* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
46static ktime_t freezer_delta;
47static DEFINE_SPINLOCK(freezer_delta_lock);
48
49#ifdef CONFIG_RTC_CLASS
50/* rtc timer and device for setting alarm wakeups at suspend */
51static struct rtc_timer rtctimer;
52static struct rtc_device *rtcdev;
53static DEFINE_SPINLOCK(rtcdev_lock);
54
55/**
56 * alarmtimer_get_rtcdev - Return selected rtcdevice
57 *
58 * This function returns the rtc device to use for wakealarms.
59 * If one has not already been chosen, it checks to see if a
60 * functional rtc device is available.
61 */
62struct rtc_device *alarmtimer_get_rtcdev(void)
63{
64 unsigned long flags;
65 struct rtc_device *ret;
66
67 spin_lock_irqsave(&rtcdev_lock, flags);
68 ret = rtcdev;
69 spin_unlock_irqrestore(&rtcdev_lock, flags);
70
71 return ret;
72}
73
74
75static int alarmtimer_rtc_add_device(struct device *dev,
76 struct class_interface *class_intf)
77{
78 unsigned long flags;
79 struct rtc_device *rtc = to_rtc_device(dev);
80
81 if (rtcdev)
82 return -EBUSY;
83
84 if (!rtc->ops->set_alarm)
85 return -1;
86 if (!device_may_wakeup(rtc->dev.parent))
87 return -1;
88
89 spin_lock_irqsave(&rtcdev_lock, flags);
90 if (!rtcdev) {
91 rtcdev = rtc;
92 /* hold a reference so it doesn't go away */
93 get_device(dev);
94 }
95 spin_unlock_irqrestore(&rtcdev_lock, flags);
96 return 0;
97}
98
99static inline void alarmtimer_rtc_timer_init(void)
100{
101 rtc_timer_init(&rtctimer, NULL, NULL);
102}
103
104static struct class_interface alarmtimer_rtc_interface = {
105 .add_dev = &alarmtimer_rtc_add_device,
106};
107
108static int alarmtimer_rtc_interface_setup(void)
109{
110 alarmtimer_rtc_interface.class = rtc_class;
111 return class_interface_register(&alarmtimer_rtc_interface);
112}
113static void alarmtimer_rtc_interface_remove(void)
114{
115 class_interface_unregister(&alarmtimer_rtc_interface);
116}
117#else
118struct rtc_device *alarmtimer_get_rtcdev(void)
119{
120 return NULL;
121}
122#define rtcdev (NULL)
123static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
124static inline void alarmtimer_rtc_interface_remove(void) { }
125static inline void alarmtimer_rtc_timer_init(void) { }
126#endif
127
128/**
129 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
130 * @base: pointer to the base where the timer is being run
131 * @alarm: pointer to alarm being enqueued.
132 *
133 * Adds alarm to a alarm_base timerqueue and if necessary sets
134 * an hrtimer to run.
135 *
136 * Must hold base->lock when calling.
137 */
138static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139{
140 timerqueue_add(&base->timerqueue, &alarm->node);
141 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
142
143 if (&alarm->node == timerqueue_getnext(&base->timerqueue)) {
144 hrtimer_try_to_cancel(&base->timer);
145 hrtimer_start(&base->timer, alarm->node.expires,
146 HRTIMER_MODE_ABS);
147 }
148}
149
150/**
151 * alarmtimer_remove - Removes an alarm timer from an alarm_base timerqueue
152 * @base: pointer to the base where the timer is running
153 * @alarm: pointer to alarm being removed
154 *
155 * Removes alarm to a alarm_base timerqueue and if necessary sets
156 * a new timer to run.
157 *
158 * Must hold base->lock when calling.
159 */
160static void alarmtimer_remove(struct alarm_base *base, struct alarm *alarm)
161{
162 struct timerqueue_node *next = timerqueue_getnext(&base->timerqueue);
163
164 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
165 return;
166
167 timerqueue_del(&base->timerqueue, &alarm->node);
168 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
169
170 if (next == &alarm->node) {
171 hrtimer_try_to_cancel(&base->timer);
172 next = timerqueue_getnext(&base->timerqueue);
173 if (!next)
174 return;
175 hrtimer_start(&base->timer, next->expires, HRTIMER_MODE_ABS);
176 }
177}
178
179
180/**
181 * alarmtimer_fired - Handles alarm hrtimer being fired.
182 * @timer: pointer to hrtimer being run
183 *
184 * When a alarm timer fires, this runs through the timerqueue to
185 * see which alarms expired, and runs those. If there are more alarm
186 * timers queued for the future, we set the hrtimer to fire when
187 * when the next future alarm timer expires.
188 */
189static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
190{
191 struct alarm_base *base = container_of(timer, struct alarm_base, timer);
192 struct timerqueue_node *next;
193 unsigned long flags;
194 ktime_t now;
195 int ret = HRTIMER_NORESTART;
196 int restart = ALARMTIMER_NORESTART;
197
198 spin_lock_irqsave(&base->lock, flags);
199 now = base->gettime();
200 while ((next = timerqueue_getnext(&base->timerqueue))) {
201 struct alarm *alarm;
202 ktime_t expired = next->expires;
203
204 if (expired.tv64 > now.tv64)
205 break;
206
207 alarm = container_of(next, struct alarm, node);
208
209 timerqueue_del(&base->timerqueue, &alarm->node);
210 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
211
212 alarm->state |= ALARMTIMER_STATE_CALLBACK;
213 spin_unlock_irqrestore(&base->lock, flags);
214 if (alarm->function)
215 restart = alarm->function(alarm, now);
216 spin_lock_irqsave(&base->lock, flags);
217 alarm->state &= ~ALARMTIMER_STATE_CALLBACK;
218
219 if (restart != ALARMTIMER_NORESTART) {
220 timerqueue_add(&base->timerqueue, &alarm->node);
221 alarm->state |= ALARMTIMER_STATE_ENQUEUED;
222 }
223 }
224
225 if (next) {
226 hrtimer_set_expires(&base->timer, next->expires);
227 ret = HRTIMER_RESTART;
228 }
229 spin_unlock_irqrestore(&base->lock, flags);
230
231 return ret;
232
233}
234
235#ifdef CONFIG_RTC_CLASS
236/**
237 * alarmtimer_suspend - Suspend time callback
238 * @dev: unused
239 * @state: unused
240 *
241 * When we are going into suspend, we look through the bases
242 * to see which is the soonest timer to expire. We then
243 * set an rtc timer to fire that far into the future, which
244 * will wake us from suspend.
245 */
246static int alarmtimer_suspend(struct device *dev)
247{
248 struct rtc_time tm;
249 ktime_t min, now;
250 unsigned long flags;
251 struct rtc_device *rtc;
252 int i;
253
254 spin_lock_irqsave(&freezer_delta_lock, flags);
255 min = freezer_delta;
256 freezer_delta = ktime_set(0, 0);
257 spin_unlock_irqrestore(&freezer_delta_lock, flags);
258
259 rtc = alarmtimer_get_rtcdev();
260 /* If we have no rtcdev, just return */
261 if (!rtc)
262 return 0;
263
264 /* Find the soonest timer to expire*/
265 for (i = 0; i < ALARM_NUMTYPE; i++) {
266 struct alarm_base *base = &alarm_bases[i];
267 struct timerqueue_node *next;
268 ktime_t delta;
269
270 spin_lock_irqsave(&base->lock, flags);
271 next = timerqueue_getnext(&base->timerqueue);
272 spin_unlock_irqrestore(&base->lock, flags);
273 if (!next)
274 continue;
275 delta = ktime_sub(next->expires, base->gettime());
276 if (!min.tv64 || (delta.tv64 < min.tv64))
277 min = delta;
278 }
279 if (min.tv64 == 0)
280 return 0;
281
282 /* XXX - Should we enforce a minimum sleep time? */
283 WARN_ON(min.tv64 < NSEC_PER_SEC);
284
285 /* Setup an rtc timer to fire that far in the future */
286 rtc_timer_cancel(rtc, &rtctimer);
287 rtc_read_time(rtc, &tm);
288 now = rtc_tm_to_ktime(tm);
289 now = ktime_add(now, min);
290
291 rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
292
293 return 0;
294}
295#else
296static int alarmtimer_suspend(struct device *dev)
297{
298 return 0;
299}
300#endif
301
302static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
303{
304 ktime_t delta;
305 unsigned long flags;
306 struct alarm_base *base = &alarm_bases[type];
307
308 delta = ktime_sub(absexp, base->gettime());
309
310 spin_lock_irqsave(&freezer_delta_lock, flags);
311 if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
312 freezer_delta = delta;
313 spin_unlock_irqrestore(&freezer_delta_lock, flags);
314}
315
316
317/**
318 * alarm_init - Initialize an alarm structure
319 * @alarm: ptr to alarm to be initialized
320 * @type: the type of the alarm
321 * @function: callback that is run when the alarm fires
322 */
323void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
324 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
325{
326 timerqueue_init(&alarm->node);
327 alarm->function = function;
328 alarm->type = type;
329 alarm->state = ALARMTIMER_STATE_INACTIVE;
330}
331
332/**
333 * alarm_start - Sets an alarm to fire
334 * @alarm: ptr to alarm to set
335 * @start: time to run the alarm
336 */
337void alarm_start(struct alarm *alarm, ktime_t start)
338{
339 struct alarm_base *base = &alarm_bases[alarm->type];
340 unsigned long flags;
341
342 spin_lock_irqsave(&base->lock, flags);
343 if (alarmtimer_active(alarm))
344 alarmtimer_remove(base, alarm);
345 alarm->node.expires = start;
346 alarmtimer_enqueue(base, alarm);
347 spin_unlock_irqrestore(&base->lock, flags);
348}
349
350/**
351 * alarm_try_to_cancel - Tries to cancel an alarm timer
352 * @alarm: ptr to alarm to be canceled
353 *
354 * Returns 1 if the timer was canceled, 0 if it was not running,
355 * and -1 if the callback was running
356 */
357int alarm_try_to_cancel(struct alarm *alarm)
358{
359 struct alarm_base *base = &alarm_bases[alarm->type];
360 unsigned long flags;
361 int ret = -1;
362 spin_lock_irqsave(&base->lock, flags);
363
364 if (alarmtimer_callback_running(alarm))
365 goto out;
366
367 if (alarmtimer_is_queued(alarm)) {
368 alarmtimer_remove(base, alarm);
369 ret = 1;
370 } else
371 ret = 0;
372out:
373 spin_unlock_irqrestore(&base->lock, flags);
374 return ret;
375}
376
377
378/**
379 * alarm_cancel - Spins trying to cancel an alarm timer until it is done
380 * @alarm: ptr to alarm to be canceled
381 *
382 * Returns 1 if the timer was canceled, 0 if it was not active.
383 */
384int alarm_cancel(struct alarm *alarm)
385{
386 for (;;) {
387 int ret = alarm_try_to_cancel(alarm);
388 if (ret >= 0)
389 return ret;
390 cpu_relax();
391 }
392}
393
394
395u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
396{
397 u64 overrun = 1;
398 ktime_t delta;
399
400 delta = ktime_sub(now, alarm->node.expires);
401
402 if (delta.tv64 < 0)
403 return 0;
404
405 if (unlikely(delta.tv64 >= interval.tv64)) {
406 s64 incr = ktime_to_ns(interval);
407
408 overrun = ktime_divns(delta, incr);
409
410 alarm->node.expires = ktime_add_ns(alarm->node.expires,
411 incr*overrun);
412
413 if (alarm->node.expires.tv64 > now.tv64)
414 return overrun;
415 /*
416 * This (and the ktime_add() below) is the
417 * correction for exact:
418 */
419 overrun++;
420 }
421
422 alarm->node.expires = ktime_add(alarm->node.expires, interval);
423 return overrun;
424}
425
426
427
428
429/**
430 * clock2alarm - helper that converts from clockid to alarmtypes
431 * @clockid: clockid.
432 */
433static enum alarmtimer_type clock2alarm(clockid_t clockid)
434{
435 if (clockid == CLOCK_REALTIME_ALARM)
436 return ALARM_REALTIME;
437 if (clockid == CLOCK_BOOTTIME_ALARM)
438 return ALARM_BOOTTIME;
439 return -1;
440}
441
442/**
443 * alarm_handle_timer - Callback for posix timers
444 * @alarm: alarm that fired
445 *
446 * Posix timer callback for expired alarm timers.
447 */
448static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
449 ktime_t now)
450{
451 struct k_itimer *ptr = container_of(alarm, struct k_itimer,
452 it.alarm.alarmtimer);
453 if (posix_timer_event(ptr, 0) != 0)
454 ptr->it_overrun++;
455
456 /* Re-add periodic timers */
457 if (ptr->it.alarm.interval.tv64) {
458 ptr->it_overrun += alarm_forward(alarm, now,
459 ptr->it.alarm.interval);
460 return ALARMTIMER_RESTART;
461 }
462 return ALARMTIMER_NORESTART;
463}
464
465/**
466 * alarm_clock_getres - posix getres interface
467 * @which_clock: clockid
468 * @tp: timespec to fill
469 *
470 * Returns the granularity of underlying alarm base clock
471 */
472static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
473{
474 clockid_t baseid = alarm_bases[clock2alarm(which_clock)].base_clockid;
475
476 if (!alarmtimer_get_rtcdev())
477 return -ENOTSUPP;
478
479 return hrtimer_get_res(baseid, tp);
480}
481
482/**
483 * alarm_clock_get - posix clock_get interface
484 * @which_clock: clockid
485 * @tp: timespec to fill.
486 *
487 * Provides the underlying alarm base time.
488 */
489static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
490{
491 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
492
493 if (!alarmtimer_get_rtcdev())
494 return -ENOTSUPP;
495
496 *tp = ktime_to_timespec(base->gettime());
497 return 0;
498}
499
500/**
501 * alarm_timer_create - posix timer_create interface
502 * @new_timer: k_itimer pointer to manage
503 *
504 * Initializes the k_itimer structure.
505 */
506static int alarm_timer_create(struct k_itimer *new_timer)
507{
508 enum alarmtimer_type type;
509 struct alarm_base *base;
510
511 if (!alarmtimer_get_rtcdev())
512 return -ENOTSUPP;
513
514 if (!capable(CAP_WAKE_ALARM))
515 return -EPERM;
516
517 type = clock2alarm(new_timer->it_clock);
518 base = &alarm_bases[type];
519 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
520 return 0;
521}
522
523/**
524 * alarm_timer_get - posix timer_get interface
525 * @new_timer: k_itimer pointer
526 * @cur_setting: itimerspec data to fill
527 *
528 * Copies the itimerspec data out from the k_itimer
529 */
530static void alarm_timer_get(struct k_itimer *timr,
531 struct itimerspec *cur_setting)
532{
533 memset(cur_setting, 0, sizeof(struct itimerspec));
534
535 cur_setting->it_interval =
536 ktime_to_timespec(timr->it.alarm.interval);
537 cur_setting->it_value =
538 ktime_to_timespec(timr->it.alarm.alarmtimer.node.expires);
539 return;
540}
541
542/**
543 * alarm_timer_del - posix timer_del interface
544 * @timr: k_itimer pointer to be deleted
545 *
546 * Cancels any programmed alarms for the given timer.
547 */
548static int alarm_timer_del(struct k_itimer *timr)
549{
550 if (!rtcdev)
551 return -ENOTSUPP;
552
553 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
554 return TIMER_RETRY;
555
556 return 0;
557}
558
559/**
560 * alarm_timer_set - posix timer_set interface
561 * @timr: k_itimer pointer to be deleted
562 * @flags: timer flags
563 * @new_setting: itimerspec to be used
564 * @old_setting: itimerspec being replaced
565 *
566 * Sets the timer to new_setting, and starts the timer.
567 */
568static int alarm_timer_set(struct k_itimer *timr, int flags,
569 struct itimerspec *new_setting,
570 struct itimerspec *old_setting)
571{
572 if (!rtcdev)
573 return -ENOTSUPP;
574
575 if (old_setting)
576 alarm_timer_get(timr, old_setting);
577
578 /* If the timer was already set, cancel it */
579 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
580 return TIMER_RETRY;
581
582 /* start the timer */
583 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
584 alarm_start(&timr->it.alarm.alarmtimer,
585 timespec_to_ktime(new_setting->it_value));
586 return 0;
587}
588
589/**
590 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
591 * @alarm: ptr to alarm that fired
592 *
593 * Wakes up the task that set the alarmtimer
594 */
595static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
596 ktime_t now)
597{
598 struct task_struct *task = (struct task_struct *)alarm->data;
599
600 alarm->data = NULL;
601 if (task)
602 wake_up_process(task);
603 return ALARMTIMER_NORESTART;
604}
605
606/**
607 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
608 * @alarm: ptr to alarmtimer
609 * @absexp: absolute expiration time
610 *
611 * Sets the alarm timer and sleeps until it is fired or interrupted.
612 */
613static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
614{
615 alarm->data = (void *)current;
616 do {
617 set_current_state(TASK_INTERRUPTIBLE);
618 alarm_start(alarm, absexp);
619 if (likely(alarm->data))
620 schedule();
621
622 alarm_cancel(alarm);
623 } while (alarm->data && !signal_pending(current));
624
625 __set_current_state(TASK_RUNNING);
626
627 return (alarm->data == NULL);
628}
629
630
631/**
632 * update_rmtp - Update remaining timespec value
633 * @exp: expiration time
634 * @type: timer type
635 * @rmtp: user pointer to remaining timepsec value
636 *
637 * Helper function that fills in rmtp value with time between
638 * now and the exp value
639 */
640static int update_rmtp(ktime_t exp, enum alarmtimer_type type,
641 struct timespec __user *rmtp)
642{
643 struct timespec rmt;
644 ktime_t rem;
645
646 rem = ktime_sub(exp, alarm_bases[type].gettime());
647
648 if (rem.tv64 <= 0)
649 return 0;
650 rmt = ktime_to_timespec(rem);
651
652 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
653 return -EFAULT;
654
655 return 1;
656
657}
658
659/**
660 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
661 * @restart: ptr to restart block
662 *
663 * Handles restarted clock_nanosleep calls
664 */
665static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
666{
667 enum alarmtimer_type type = restart->nanosleep.clockid;
668 ktime_t exp;
669 struct timespec __user *rmtp;
670 struct alarm alarm;
671 int ret = 0;
672
673 exp.tv64 = restart->nanosleep.expires;
674 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
675
676 if (alarmtimer_do_nsleep(&alarm, exp))
677 goto out;
678
679 if (freezing(current))
680 alarmtimer_freezerset(exp, type);
681
682 rmtp = restart->nanosleep.rmtp;
683 if (rmtp) {
684 ret = update_rmtp(exp, type, rmtp);
685 if (ret <= 0)
686 goto out;
687 }
688
689
690 /* The other values in restart are already filled in */
691 ret = -ERESTART_RESTARTBLOCK;
692out:
693 return ret;
694}
695
696/**
697 * alarm_timer_nsleep - alarmtimer nanosleep
698 * @which_clock: clockid
699 * @flags: determins abstime or relative
700 * @tsreq: requested sleep time (abs or rel)
701 * @rmtp: remaining sleep time saved
702 *
703 * Handles clock_nanosleep calls against _ALARM clockids
704 */
705static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
706 struct timespec *tsreq, struct timespec __user *rmtp)
707{
708 enum alarmtimer_type type = clock2alarm(which_clock);
709 struct alarm alarm;
710 ktime_t exp;
711 int ret = 0;
712 struct restart_block *restart;
713
714 if (!alarmtimer_get_rtcdev())
715 return -ENOTSUPP;
716
717 if (!capable(CAP_WAKE_ALARM))
718 return -EPERM;
719
720 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
721
722 exp = timespec_to_ktime(*tsreq);
723 /* Convert (if necessary) to absolute time */
724 if (flags != TIMER_ABSTIME) {
725 ktime_t now = alarm_bases[type].gettime();
726 exp = ktime_add(now, exp);
727 }
728
729 if (alarmtimer_do_nsleep(&alarm, exp))
730 goto out;
731
732 if (freezing(current))
733 alarmtimer_freezerset(exp, type);
734
735 /* abs timers don't set remaining time or restart */
736 if (flags == TIMER_ABSTIME) {
737 ret = -ERESTARTNOHAND;
738 goto out;
739 }
740
741 if (rmtp) {
742 ret = update_rmtp(exp, type, rmtp);
743 if (ret <= 0)
744 goto out;
745 }
746
747 restart = ¤t_thread_info()->restart_block;
748 restart->fn = alarm_timer_nsleep_restart;
749 restart->nanosleep.clockid = type;
750 restart->nanosleep.expires = exp.tv64;
751 restart->nanosleep.rmtp = rmtp;
752 ret = -ERESTART_RESTARTBLOCK;
753
754out:
755 return ret;
756}
757
758
759/* Suspend hook structures */
760static const struct dev_pm_ops alarmtimer_pm_ops = {
761 .suspend = alarmtimer_suspend,
762};
763
764static struct platform_driver alarmtimer_driver = {
765 .driver = {
766 .name = "alarmtimer",
767 .pm = &alarmtimer_pm_ops,
768 }
769};
770
771/**
772 * alarmtimer_init - Initialize alarm timer code
773 *
774 * This function initializes the alarm bases and registers
775 * the posix clock ids.
776 */
777static int __init alarmtimer_init(void)
778{
779 struct platform_device *pdev;
780 int error = 0;
781 int i;
782 struct k_clock alarm_clock = {
783 .clock_getres = alarm_clock_getres,
784 .clock_get = alarm_clock_get,
785 .timer_create = alarm_timer_create,
786 .timer_set = alarm_timer_set,
787 .timer_del = alarm_timer_del,
788 .timer_get = alarm_timer_get,
789 .nsleep = alarm_timer_nsleep,
790 };
791
792 alarmtimer_rtc_timer_init();
793
794 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
795 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
796
797 /* Initialize alarm bases */
798 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
799 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
800 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
801 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
802 for (i = 0; i < ALARM_NUMTYPE; i++) {
803 timerqueue_init_head(&alarm_bases[i].timerqueue);
804 spin_lock_init(&alarm_bases[i].lock);
805 hrtimer_init(&alarm_bases[i].timer,
806 alarm_bases[i].base_clockid,
807 HRTIMER_MODE_ABS);
808 alarm_bases[i].timer.function = alarmtimer_fired;
809 }
810
811 error = alarmtimer_rtc_interface_setup();
812 if (error)
813 return error;
814
815 error = platform_driver_register(&alarmtimer_driver);
816 if (error)
817 goto out_if;
818
819 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
820 if (IS_ERR(pdev)) {
821 error = PTR_ERR(pdev);
822 goto out_drv;
823 }
824 return 0;
825
826out_drv:
827 platform_driver_unregister(&alarmtimer_driver);
828out_if:
829 alarmtimer_rtc_interface_remove();
830 return error;
831}
832device_initcall(alarmtimer_init);