Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * at24.c - handle most I2C EEPROMs
  3 *
  4 * Copyright (C) 2005-2007 David Brownell
  5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License as published by
  9 * the Free Software Foundation; either version 2 of the License, or
 10 * (at your option) any later version.
 11 */
 12#include <linux/kernel.h>
 13#include <linux/init.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/delay.h>
 17#include <linux/mutex.h>
 18#include <linux/mod_devicetable.h>
 19#include <linux/log2.h>
 20#include <linux/bitops.h>
 21#include <linux/jiffies.h>
 22#include <linux/of.h>
 23#include <linux/acpi.h>
 24#include <linux/i2c.h>
 25#include <linux/nvmem-provider.h>
 26#include <linux/regmap.h>
 27#include <linux/platform_data/at24.h>
 28
 29/*
 30 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
 31 * Differences between different vendor product lines (like Atmel AT24C or
 32 * MicroChip 24LC, etc) won't much matter for typical read/write access.
 33 * There are also I2C RAM chips, likewise interchangeable. One example
 34 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
 35 *
 36 * However, misconfiguration can lose data. "Set 16-bit memory address"
 37 * to a part with 8-bit addressing will overwrite data. Writing with too
 38 * big a page size also loses data. And it's not safe to assume that the
 39 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
 40 * uses 0x51, for just one example.
 41 *
 42 * Accordingly, explicit board-specific configuration data should be used
 43 * in almost all cases. (One partial exception is an SMBus used to access
 44 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
 45 *
 46 * So this driver uses "new style" I2C driver binding, expecting to be
 47 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
 48 * similar kernel-resident tables; or, configuration data coming from
 49 * a bootloader.
 50 *
 51 * Other than binding model, current differences from "eeprom" driver are
 52 * that this one handles write access and isn't restricted to 24c02 devices.
 53 * It also handles larger devices (32 kbit and up) with two-byte addresses,
 54 * which won't work on pure SMBus systems.
 55 */
 56
 57struct at24_data {
 58	struct at24_platform_data chip;
 59	int use_smbus;
 60	int use_smbus_write;
 61
 
 
 
 
 62	/*
 63	 * Lock protects against activities from other Linux tasks,
 64	 * but not from changes by other I2C masters.
 65	 */
 66	struct mutex lock;
 67
 68	u8 *writebuf;
 69	unsigned write_max;
 70	unsigned num_addresses;
 71
 72	struct regmap_config regmap_config;
 73	struct nvmem_config nvmem_config;
 74	struct nvmem_device *nvmem;
 75
 76	/*
 77	 * Some chips tie up multiple I2C addresses; dummy devices reserve
 78	 * them for us, and we'll use them with SMBus calls.
 79	 */
 80	struct i2c_client *client[];
 81};
 82
 83/*
 84 * This parameter is to help this driver avoid blocking other drivers out
 85 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
 86 * clock, one 256 byte read takes about 1/43 second which is excessive;
 87 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
 88 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
 89 *
 90 * This value is forced to be a power of two so that writes align on pages.
 91 */
 92static unsigned io_limit = 128;
 93module_param(io_limit, uint, 0);
 94MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
 95
 96/*
 97 * Specs often allow 5 msec for a page write, sometimes 20 msec;
 98 * it's important to recover from write timeouts.
 99 */
100static unsigned write_timeout = 25;
101module_param(write_timeout, uint, 0);
102MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
103
104#define AT24_SIZE_BYTELEN 5
105#define AT24_SIZE_FLAGS 8
106
107#define AT24_BITMASK(x) (BIT(x) - 1)
108
109/* create non-zero magic value for given eeprom parameters */
110#define AT24_DEVICE_MAGIC(_len, _flags) 		\
111	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
112	    << AT24_SIZE_BYTELEN | ilog2(_len))
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114static const struct i2c_device_id at24_ids[] = {
115	/* needs 8 addresses as A0-A2 are ignored */
116	{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
117	/* old variants can't be handled with this generic entry! */
118	{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
119	{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
 
 
 
 
 
 
 
 
120	/* spd is a 24c02 in memory DIMMs */
121	{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
122		AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
123	{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
 
 
124	/* 24rf08 quirk is handled at i2c-core */
125	{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
126	{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
127	{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
128	{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
129	{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
130	{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
131	{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
132	{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
 
 
 
 
 
 
 
 
 
 
 
 
133	{ "at24", 0 },
134	{ /* END OF LIST */ }
135};
136MODULE_DEVICE_TABLE(i2c, at24_ids);
137
138static const struct acpi_device_id at24_acpi_ids[] = {
139	{ "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
140	{ }
141};
142MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
143
144/*-------------------------------------------------------------------------*/
145
146/*
147 * This routine supports chips which consume multiple I2C addresses. It
148 * computes the addressing information to be used for a given r/w request.
149 * Assumes that sanity checks for offset happened at sysfs-layer.
 
 
 
 
 
 
 
 
 
 
 
 
 
150 */
151static struct i2c_client *at24_translate_offset(struct at24_data *at24,
152		unsigned *offset)
153{
154	unsigned i;
155
156	if (at24->chip.flags & AT24_FLAG_ADDR16) {
157		i = *offset >> 16;
158		*offset &= 0xffff;
159	} else {
160		i = *offset >> 8;
161		*offset &= 0xff;
162	}
163
164	return at24->client[i];
165}
166
167static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
168		unsigned offset, size_t count)
169{
170	struct i2c_msg msg[2];
171	u8 msgbuf[2];
172	struct i2c_client *client;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173	unsigned long timeout, read_time;
 
 
174	int status, i;
 
175
176	memset(msg, 0, sizeof(msg));
177
178	/*
179	 * REVISIT some multi-address chips don't rollover page reads to
180	 * the next slave address, so we may need to truncate the count.
181	 * Those chips might need another quirk flag.
182	 *
183	 * If the real hardware used four adjacent 24c02 chips and that
184	 * were misconfigured as one 24c08, that would be a similar effect:
185	 * one "eeprom" file not four, but larger reads would fail when
186	 * they crossed certain pages.
187	 */
188
189	/*
190	 * Slave address and byte offset derive from the offset. Always
191	 * set the byte address; on a multi-master board, another master
192	 * may have changed the chip's "current" address pointer.
193	 */
194	client = at24_translate_offset(at24, &offset);
195
196	if (count > io_limit)
197		count = io_limit;
198
199	if (at24->use_smbus) {
200		/* Smaller eeproms can work given some SMBus extension calls */
201		if (count > I2C_SMBUS_BLOCK_MAX)
202			count = I2C_SMBUS_BLOCK_MAX;
203	} else {
204		/*
205		 * When we have a better choice than SMBus calls, use a
206		 * combined I2C message. Write address; then read up to
207		 * io_limit data bytes. Note that read page rollover helps us
208		 * here (unlike writes). msgbuf is u8 and will cast to our
209		 * needs.
210		 */
211		i = 0;
212		if (at24->chip.flags & AT24_FLAG_ADDR16)
213			msgbuf[i++] = offset >> 8;
214		msgbuf[i++] = offset;
215
216		msg[0].addr = client->addr;
217		msg[0].buf = msgbuf;
218		msg[0].len = i;
219
220		msg[1].addr = client->addr;
221		msg[1].flags = I2C_M_RD;
222		msg[1].buf = buf;
223		msg[1].len = count;
224	}
225
226	/*
227	 * Reads fail if the previous write didn't complete yet. We may
228	 * loop a few times until this one succeeds, waiting at least
229	 * long enough for one entire page write to work.
 
230	 */
231	timeout = jiffies + msecs_to_jiffies(write_timeout);
232	do {
233		read_time = jiffies;
234		if (at24->use_smbus) {
235			status = i2c_smbus_read_i2c_block_data_or_emulated(client, offset,
236									   count, buf);
237		} else {
238			status = i2c_transfer(client->adapter, msg, 2);
239			if (status == 2)
240				status = count;
241		}
 
 
 
 
 
 
 
 
242		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
243				count, offset, status, jiffies);
244
245		if (status == count)
246			return count;
247
248		/* REVISIT: at HZ=100, this is sloooow */
249		msleep(1);
250	} while (time_before(read_time, timeout));
251
252	return -ETIMEDOUT;
253}
254
255static ssize_t at24_read(struct at24_data *at24,
256		char *buf, loff_t off, size_t count)
257{
258	ssize_t retval = 0;
 
 
 
 
259
260	if (unlikely(!count))
261		return count;
 
 
 
262
263	/*
264	 * Read data from chip, protecting against concurrent updates
265	 * from this host, but not from other I2C masters.
 
 
266	 */
267	mutex_lock(&at24->lock);
268
269	while (count) {
270		ssize_t	status;
 
 
 
 
 
 
 
 
 
 
 
 
 
271
272		status = at24_eeprom_read(at24, buf, off, count);
273		if (status <= 0) {
274			if (retval == 0)
275				retval = status;
276			break;
277		}
278		buf += status;
279		off += status;
280		count -= status;
281		retval += status;
282	}
283
284	mutex_unlock(&at24->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
286	return retval;
287}
288
289/*
290 * Note that if the hardware write-protect pin is pulled high, the whole
291 * chip is normally write protected. But there are plenty of product
292 * variants here, including OTP fuses and partial chip protect.
293 *
294 * We only use page mode writes; the alternative is sloooow. This routine
295 * writes at most one page.
296 */
297static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
298		unsigned offset, size_t count)
 
299{
300	struct i2c_client *client;
301	struct i2c_msg msg;
302	ssize_t status = 0;
303	unsigned long timeout, write_time;
304	unsigned next_page;
305
306	/* Get corresponding I2C address and adjust offset */
307	client = at24_translate_offset(at24, &offset);
308
309	/* write_max is at most a page */
310	if (count > at24->write_max)
311		count = at24->write_max;
312
313	/* Never roll over backwards, to the start of this page */
314	next_page = roundup(offset + 1, at24->chip.page_size);
315	if (offset + count > next_page)
316		count = next_page - offset;
317
318	/* If we'll use I2C calls for I/O, set up the message */
319	if (!at24->use_smbus) {
320		int i = 0;
321
322		msg.addr = client->addr;
323		msg.flags = 0;
324
325		/* msg.buf is u8 and casts will mask the values */
326		msg.buf = at24->writebuf;
327		if (at24->chip.flags & AT24_FLAG_ADDR16)
328			msg.buf[i++] = offset >> 8;
329
330		msg.buf[i++] = offset;
331		memcpy(&msg.buf[i], buf, count);
332		msg.len = i + count;
 
 
 
 
 
 
 
 
 
 
333	}
334
335	/*
336	 * Writes fail if the previous one didn't complete yet. We may
337	 * loop a few times until this one succeeds, waiting at least
338	 * long enough for one entire page write to work.
339	 */
340	timeout = jiffies + msecs_to_jiffies(write_timeout);
341	do {
342		write_time = jiffies;
343		if (at24->use_smbus_write) {
344			switch (at24->use_smbus_write) {
345			case I2C_SMBUS_I2C_BLOCK_DATA:
346				status = i2c_smbus_write_i2c_block_data(client,
347						offset, count, buf);
348				break;
349			case I2C_SMBUS_BYTE_DATA:
350				status = i2c_smbus_write_byte_data(client,
351						offset, buf[0]);
352				break;
353			}
354
355			if (status == 0)
356				status = count;
357		} else {
358			status = i2c_transfer(client->adapter, &msg, 1);
359			if (status == 1)
360				status = count;
361		}
362		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
363				count, offset, status, jiffies);
364
365		if (status == count)
366			return count;
 
 
 
 
 
 
 
 
 
 
 
 
 
367
368		/* REVISIT: at HZ=100, this is sloooow */
369		msleep(1);
370	} while (time_before(write_time, timeout));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371
372	return -ETIMEDOUT;
373}
374
375static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
376			  size_t count)
377{
378	ssize_t retval = 0;
 
379
380	if (unlikely(!count))
381		return count;
382
383	/*
384	 * Write data to chip, protecting against concurrent updates
385	 * from this host, but not from other I2C masters.
386	 */
387	mutex_lock(&at24->lock);
388
389	while (count) {
390		ssize_t	status;
391
392		status = at24_eeprom_write(at24, buf, off, count);
393		if (status <= 0) {
394			if (retval == 0)
395				retval = status;
396			break;
397		}
398		buf += status;
399		off += status;
400		count -= status;
401		retval += status;
402	}
403
404	mutex_unlock(&at24->lock);
405
406	return retval;
407}
408
409/*-------------------------------------------------------------------------*/
410
411/*
412 * Provide a regmap interface, which is registered with the NVMEM
413 * framework
414*/
415static int at24_regmap_read(void *context, const void *reg, size_t reg_size,
416			    void *val, size_t val_size)
417{
418	struct at24_data *at24 = context;
419	off_t offset = *(u32 *)reg;
420	int err;
421
422	err = at24_read(at24, val, offset, val_size);
423	if (err)
424		return err;
425	return 0;
426}
427
428static int at24_regmap_write(void *context, const void *data, size_t count)
429{
430	struct at24_data *at24 = context;
431	const char *buf;
432	u32 offset;
433	size_t len;
434	int err;
435
436	memcpy(&offset, data, sizeof(offset));
437	buf = (const char *)data + sizeof(offset);
438	len = count - sizeof(offset);
439
440	err = at24_write(at24, buf, offset, len);
441	if (err)
442		return err;
443	return 0;
444}
445
446static const struct regmap_bus at24_regmap_bus = {
447	.read = at24_regmap_read,
448	.write = at24_regmap_write,
449	.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
450};
 
 
 
 
451
452/*-------------------------------------------------------------------------*/
 
 
 
453
454#ifdef CONFIG_OF
455static void at24_get_ofdata(struct i2c_client *client,
456		struct at24_platform_data *chip)
457{
458	const __be32 *val;
459	struct device_node *node = client->dev.of_node;
460
461	if (node) {
462		if (of_get_property(node, "read-only", NULL))
463			chip->flags |= AT24_FLAG_READONLY;
464		val = of_get_property(node, "pagesize", NULL);
465		if (val)
466			chip->page_size = be32_to_cpup(val);
467	}
468}
469#else
470static void at24_get_ofdata(struct i2c_client *client,
471		struct at24_platform_data *chip)
472{ }
473#endif /* CONFIG_OF */
474
475static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
476{
477	struct at24_platform_data chip;
478	kernel_ulong_t magic = 0;
479	bool writable;
480	int use_smbus = 0;
481	int use_smbus_write = 0;
482	struct at24_data *at24;
483	int err;
484	unsigned i, num_addresses;
485	struct regmap *regmap;
486
487	if (client->dev.platform_data) {
488		chip = *(struct at24_platform_data *)client->dev.platform_data;
489	} else {
490		if (id) {
491			magic = id->driver_data;
492		} else {
493			const struct acpi_device_id *aid;
494
495			aid = acpi_match_device(at24_acpi_ids, &client->dev);
496			if (aid)
497				magic = aid->driver_data;
498		}
499		if (!magic)
500			return -ENODEV;
501
502		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
503		magic >>= AT24_SIZE_BYTELEN;
504		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
505		/*
506		 * This is slow, but we can't know all eeproms, so we better
507		 * play safe. Specifying custom eeprom-types via platform_data
508		 * is recommended anyhow.
509		 */
510		chip.page_size = 1;
511
512		/* update chipdata if OF is present */
513		at24_get_ofdata(client, &chip);
514
515		chip.setup = NULL;
516		chip.context = NULL;
517	}
518
519	if (!is_power_of_2(chip.byte_len))
520		dev_warn(&client->dev,
521			"byte_len looks suspicious (no power of 2)!\n");
522	if (!chip.page_size) {
523		dev_err(&client->dev, "page_size must not be 0!\n");
524		return -EINVAL;
525	}
526	if (!is_power_of_2(chip.page_size))
527		dev_warn(&client->dev,
528			"page_size looks suspicious (no power of 2)!\n");
529
530	/* Use I2C operations unless we're stuck with SMBus extensions. */
531	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
532		if (chip.flags & AT24_FLAG_ADDR16)
533			return -EPFNOSUPPORT;
534
535		if (i2c_check_functionality(client->adapter,
536				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
537			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
538		} else if (i2c_check_functionality(client->adapter,
539				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
540			use_smbus = I2C_SMBUS_WORD_DATA;
541		} else if (i2c_check_functionality(client->adapter,
542				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
543			use_smbus = I2C_SMBUS_BYTE_DATA;
544		} else {
545			return -EPFNOSUPPORT;
546		}
547	}
548
549	/* Use I2C operations unless we're stuck with SMBus extensions. */
550	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
551		if (i2c_check_functionality(client->adapter,
552				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
553			use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
554		} else if (i2c_check_functionality(client->adapter,
555				I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
556			use_smbus_write = I2C_SMBUS_BYTE_DATA;
557			chip.page_size = 1;
558		}
559	}
560
561	if (chip.flags & AT24_FLAG_TAKE8ADDR)
562		num_addresses = 8;
563	else
564		num_addresses =	DIV_ROUND_UP(chip.byte_len,
565			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
566
567	at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
568		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
569	if (!at24)
570		return -ENOMEM;
571
572	mutex_init(&at24->lock);
573	at24->use_smbus = use_smbus;
574	at24->use_smbus_write = use_smbus_write;
575	at24->chip = chip;
576	at24->num_addresses = num_addresses;
577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
578	writable = !(chip.flags & AT24_FLAG_READONLY);
579	if (writable) {
580		if (!use_smbus || use_smbus_write) {
581
582			unsigned write_max = chip.page_size;
583
584			if (write_max > io_limit)
585				write_max = io_limit;
586			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
587				write_max = I2C_SMBUS_BLOCK_MAX;
588			at24->write_max = write_max;
589
590			/* buffer (data + address at the beginning) */
591			at24->writebuf = devm_kzalloc(&client->dev,
592				write_max + 2, GFP_KERNEL);
593			if (!at24->writebuf)
594				return -ENOMEM;
595		} else {
596			dev_warn(&client->dev,
597				"cannot write due to controller restrictions.");
598		}
599	}
600
601	at24->client[0] = client;
602
603	/* use dummy devices for multiple-address chips */
604	for (i = 1; i < num_addresses; i++) {
605		at24->client[i] = i2c_new_dummy(client->adapter,
606					client->addr + i);
607		if (!at24->client[i]) {
608			dev_err(&client->dev, "address 0x%02x unavailable\n",
609					client->addr + i);
610			err = -EADDRINUSE;
611			goto err_clients;
612		}
613	}
614
615	at24->regmap_config.reg_bits = 32;
616	at24->regmap_config.val_bits = 8;
617	at24->regmap_config.reg_stride = 1;
618	at24->regmap_config.max_register = chip.byte_len - 1;
619
620	regmap = devm_regmap_init(&client->dev, &at24_regmap_bus, at24,
621				  &at24->regmap_config);
622	if (IS_ERR(regmap)) {
623		dev_err(&client->dev, "regmap init failed\n");
624		err = PTR_ERR(regmap);
625		goto err_clients;
626	}
627
628	at24->nvmem_config.name = dev_name(&client->dev);
629	at24->nvmem_config.dev = &client->dev;
630	at24->nvmem_config.read_only = !writable;
631	at24->nvmem_config.root_only = true;
632	at24->nvmem_config.owner = THIS_MODULE;
633	at24->nvmem_config.compat = true;
634	at24->nvmem_config.base_dev = &client->dev;
 
 
 
 
 
 
635
636	at24->nvmem = nvmem_register(&at24->nvmem_config);
637
638	if (IS_ERR(at24->nvmem)) {
639		err = PTR_ERR(at24->nvmem);
640		goto err_clients;
641	}
642
643	i2c_set_clientdata(client, at24);
644
645	dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
646		chip.byte_len, client->name,
647		writable ? "writable" : "read-only", at24->write_max);
648	if (use_smbus == I2C_SMBUS_WORD_DATA ||
649	    use_smbus == I2C_SMBUS_BYTE_DATA) {
650		dev_notice(&client->dev, "Falling back to %s reads, "
651			   "performance will suffer\n", use_smbus ==
652			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
653	}
654
655	/* export data to kernel code */
656	if (chip.setup)
657		chip.setup(at24->nvmem, chip.context);
658
659	return 0;
660
661err_clients:
662	for (i = 1; i < num_addresses; i++)
663		if (at24->client[i])
664			i2c_unregister_device(at24->client[i]);
665
666	return err;
667}
668
669static int at24_remove(struct i2c_client *client)
670{
671	struct at24_data *at24;
672	int i;
673
674	at24 = i2c_get_clientdata(client);
675
676	nvmem_unregister(at24->nvmem);
677
678	for (i = 1; i < at24->num_addresses; i++)
679		i2c_unregister_device(at24->client[i]);
680
681	return 0;
682}
683
684/*-------------------------------------------------------------------------*/
685
686static struct i2c_driver at24_driver = {
687	.driver = {
688		.name = "at24",
689		.acpi_match_table = ACPI_PTR(at24_acpi_ids),
690	},
691	.probe = at24_probe,
692	.remove = at24_remove,
693	.id_table = at24_ids,
694};
695
696static int __init at24_init(void)
697{
698	if (!io_limit) {
699		pr_err("at24: io_limit must not be 0!\n");
700		return -EINVAL;
701	}
702
703	io_limit = rounddown_pow_of_two(io_limit);
704	return i2c_add_driver(&at24_driver);
705}
706module_init(at24_init);
707
708static void __exit at24_exit(void)
709{
710	i2c_del_driver(&at24_driver);
711}
712module_exit(at24_exit);
713
714MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
715MODULE_AUTHOR("David Brownell and Wolfram Sang");
716MODULE_LICENSE("GPL");
v4.10.11
  1/*
  2 * at24.c - handle most I2C EEPROMs
  3 *
  4 * Copyright (C) 2005-2007 David Brownell
  5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License as published by
  9 * the Free Software Foundation; either version 2 of the License, or
 10 * (at your option) any later version.
 11 */
 12#include <linux/kernel.h>
 13#include <linux/init.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/delay.h>
 17#include <linux/mutex.h>
 18#include <linux/mod_devicetable.h>
 19#include <linux/log2.h>
 20#include <linux/bitops.h>
 21#include <linux/jiffies.h>
 22#include <linux/of.h>
 23#include <linux/acpi.h>
 24#include <linux/i2c.h>
 25#include <linux/nvmem-provider.h>
 
 26#include <linux/platform_data/at24.h>
 27
 28/*
 29 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
 30 * Differences between different vendor product lines (like Atmel AT24C or
 31 * MicroChip 24LC, etc) won't much matter for typical read/write access.
 32 * There are also I2C RAM chips, likewise interchangeable. One example
 33 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
 34 *
 35 * However, misconfiguration can lose data. "Set 16-bit memory address"
 36 * to a part with 8-bit addressing will overwrite data. Writing with too
 37 * big a page size also loses data. And it's not safe to assume that the
 38 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
 39 * uses 0x51, for just one example.
 40 *
 41 * Accordingly, explicit board-specific configuration data should be used
 42 * in almost all cases. (One partial exception is an SMBus used to access
 43 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
 44 *
 45 * So this driver uses "new style" I2C driver binding, expecting to be
 46 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
 47 * similar kernel-resident tables; or, configuration data coming from
 48 * a bootloader.
 49 *
 50 * Other than binding model, current differences from "eeprom" driver are
 51 * that this one handles write access and isn't restricted to 24c02 devices.
 52 * It also handles larger devices (32 kbit and up) with two-byte addresses,
 53 * which won't work on pure SMBus systems.
 54 */
 55
 56struct at24_data {
 57	struct at24_platform_data chip;
 58	int use_smbus;
 59	int use_smbus_write;
 60
 61	ssize_t (*read_func)(struct at24_data *, char *, unsigned int, size_t);
 62	ssize_t (*write_func)(struct at24_data *,
 63			      const char *, unsigned int, size_t);
 64
 65	/*
 66	 * Lock protects against activities from other Linux tasks,
 67	 * but not from changes by other I2C masters.
 68	 */
 69	struct mutex lock;
 70
 71	u8 *writebuf;
 72	unsigned write_max;
 73	unsigned num_addresses;
 74
 
 75	struct nvmem_config nvmem_config;
 76	struct nvmem_device *nvmem;
 77
 78	/*
 79	 * Some chips tie up multiple I2C addresses; dummy devices reserve
 80	 * them for us, and we'll use them with SMBus calls.
 81	 */
 82	struct i2c_client *client[];
 83};
 84
 85/*
 86 * This parameter is to help this driver avoid blocking other drivers out
 87 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
 88 * clock, one 256 byte read takes about 1/43 second which is excessive;
 89 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
 90 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
 91 *
 92 * This value is forced to be a power of two so that writes align on pages.
 93 */
 94static unsigned io_limit = 128;
 95module_param(io_limit, uint, 0);
 96MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
 97
 98/*
 99 * Specs often allow 5 msec for a page write, sometimes 20 msec;
100 * it's important to recover from write timeouts.
101 */
102static unsigned write_timeout = 25;
103module_param(write_timeout, uint, 0);
104MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
105
106#define AT24_SIZE_BYTELEN 5
107#define AT24_SIZE_FLAGS 8
108
109#define AT24_BITMASK(x) (BIT(x) - 1)
110
111/* create non-zero magic value for given eeprom parameters */
112#define AT24_DEVICE_MAGIC(_len, _flags) 		\
113	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
114	    << AT24_SIZE_BYTELEN | ilog2(_len))
115
116/*
117 * Both reads and writes fail if the previous write didn't complete yet. This
118 * macro loops a few times waiting at least long enough for one entire page
119 * write to work while making sure that at least one iteration is run before
120 * checking the break condition.
121 *
122 * It takes two parameters: a variable in which the future timeout in jiffies
123 * will be stored and a temporary variable holding the time of the last
124 * iteration of processing the request. Both should be unsigned integers
125 * holding at least 32 bits.
126 */
127#define loop_until_timeout(tout, op_time)				\
128	for (tout = jiffies + msecs_to_jiffies(write_timeout), op_time = 0; \
129	     op_time ? time_before(op_time, tout) : true;		\
130	     usleep_range(1000, 1500), op_time = jiffies)
131
132static const struct i2c_device_id at24_ids[] = {
133	/* needs 8 addresses as A0-A2 are ignored */
134	{ "24c00",	AT24_DEVICE_MAGIC(128 / 8,	AT24_FLAG_TAKE8ADDR) },
135	/* old variants can't be handled with this generic entry! */
136	{ "24c01",	AT24_DEVICE_MAGIC(1024 / 8,	0) },
137	{ "24cs01",	AT24_DEVICE_MAGIC(16,
138				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
139	{ "24c02",	AT24_DEVICE_MAGIC(2048 / 8,	0) },
140	{ "24cs02",	AT24_DEVICE_MAGIC(16,
141				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
142	{ "24mac402",	AT24_DEVICE_MAGIC(48 / 8,
143				AT24_FLAG_MAC | AT24_FLAG_READONLY) },
144	{ "24mac602",	AT24_DEVICE_MAGIC(64 / 8,
145				AT24_FLAG_MAC | AT24_FLAG_READONLY) },
146	/* spd is a 24c02 in memory DIMMs */
147	{ "spd",	AT24_DEVICE_MAGIC(2048 / 8,
148				AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
149	{ "24c04",	AT24_DEVICE_MAGIC(4096 / 8,	0) },
150	{ "24cs04",	AT24_DEVICE_MAGIC(16,
151				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
152	/* 24rf08 quirk is handled at i2c-core */
153	{ "24c08",	AT24_DEVICE_MAGIC(8192 / 8,	0) },
154	{ "24cs08",	AT24_DEVICE_MAGIC(16,
155				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
156	{ "24c16",	AT24_DEVICE_MAGIC(16384 / 8,	0) },
157	{ "24cs16",	AT24_DEVICE_MAGIC(16,
158				AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
159	{ "24c32",	AT24_DEVICE_MAGIC(32768 / 8,	AT24_FLAG_ADDR16) },
160	{ "24cs32",	AT24_DEVICE_MAGIC(16,
161				AT24_FLAG_ADDR16 |
162				AT24_FLAG_SERIAL |
163				AT24_FLAG_READONLY) },
164	{ "24c64",	AT24_DEVICE_MAGIC(65536 / 8,	AT24_FLAG_ADDR16) },
165	{ "24cs64",	AT24_DEVICE_MAGIC(16,
166				AT24_FLAG_ADDR16 |
167				AT24_FLAG_SERIAL |
168				AT24_FLAG_READONLY) },
169	{ "24c128",	AT24_DEVICE_MAGIC(131072 / 8,	AT24_FLAG_ADDR16) },
170	{ "24c256",	AT24_DEVICE_MAGIC(262144 / 8,	AT24_FLAG_ADDR16) },
171	{ "24c512",	AT24_DEVICE_MAGIC(524288 / 8,	AT24_FLAG_ADDR16) },
172	{ "24c1024",	AT24_DEVICE_MAGIC(1048576 / 8,	AT24_FLAG_ADDR16) },
173	{ "at24", 0 },
174	{ /* END OF LIST */ }
175};
176MODULE_DEVICE_TABLE(i2c, at24_ids);
177
178static const struct acpi_device_id at24_acpi_ids[] = {
179	{ "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
180	{ }
181};
182MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
183
184/*-------------------------------------------------------------------------*/
185
186/*
187 * This routine supports chips which consume multiple I2C addresses. It
188 * computes the addressing information to be used for a given r/w request.
189 * Assumes that sanity checks for offset happened at sysfs-layer.
190 *
191 * Slave address and byte offset derive from the offset. Always
192 * set the byte address; on a multi-master board, another master
193 * may have changed the chip's "current" address pointer.
194 *
195 * REVISIT some multi-address chips don't rollover page reads to
196 * the next slave address, so we may need to truncate the count.
197 * Those chips might need another quirk flag.
198 *
199 * If the real hardware used four adjacent 24c02 chips and that
200 * were misconfigured as one 24c08, that would be a similar effect:
201 * one "eeprom" file not four, but larger reads would fail when
202 * they crossed certain pages.
203 */
204static struct i2c_client *at24_translate_offset(struct at24_data *at24,
205						unsigned int *offset)
206{
207	unsigned i;
208
209	if (at24->chip.flags & AT24_FLAG_ADDR16) {
210		i = *offset >> 16;
211		*offset &= 0xffff;
212	} else {
213		i = *offset >> 8;
214		*offset &= 0xff;
215	}
216
217	return at24->client[i];
218}
219
220static ssize_t at24_eeprom_read_smbus(struct at24_data *at24, char *buf,
221				      unsigned int offset, size_t count)
222{
223	unsigned long timeout, read_time;
 
224	struct i2c_client *client;
225	int status;
226
227	client = at24_translate_offset(at24, &offset);
228
229	if (count > io_limit)
230		count = io_limit;
231
232	/* Smaller eeproms can work given some SMBus extension calls */
233	if (count > I2C_SMBUS_BLOCK_MAX)
234		count = I2C_SMBUS_BLOCK_MAX;
235
236	loop_until_timeout(timeout, read_time) {
237		status = i2c_smbus_read_i2c_block_data_or_emulated(client,
238								   offset,
239								   count, buf);
240
241		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
242				count, offset, status, jiffies);
243
244		if (status == count)
245			return count;
246	}
247
248	return -ETIMEDOUT;
249}
250
251static ssize_t at24_eeprom_read_i2c(struct at24_data *at24, char *buf,
252				    unsigned int offset, size_t count)
253{
254	unsigned long timeout, read_time;
255	struct i2c_client *client;
256	struct i2c_msg msg[2];
257	int status, i;
258	u8 msgbuf[2];
259
260	memset(msg, 0, sizeof(msg));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261	client = at24_translate_offset(at24, &offset);
262
263	if (count > io_limit)
264		count = io_limit;
265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
266	/*
267	 * When we have a better choice than SMBus calls, use a combined I2C
268	 * message. Write address; then read up to io_limit data bytes. Note
269	 * that read page rollover helps us here (unlike writes). msgbuf is
270	 * u8 and will cast to our needs.
271	 */
272	i = 0;
273	if (at24->chip.flags & AT24_FLAG_ADDR16)
274		msgbuf[i++] = offset >> 8;
275	msgbuf[i++] = offset;
276
277	msg[0].addr = client->addr;
278	msg[0].buf = msgbuf;
279	msg[0].len = i;
280
281	msg[1].addr = client->addr;
282	msg[1].flags = I2C_M_RD;
283	msg[1].buf = buf;
284	msg[1].len = count;
285
286	loop_until_timeout(timeout, read_time) {
287		status = i2c_transfer(client->adapter, msg, 2);
288		if (status == 2)
289			status = count;
290
291		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
292				count, offset, status, jiffies);
293
294		if (status == count)
295			return count;
296	}
 
 
 
297
298	return -ETIMEDOUT;
299}
300
301static ssize_t at24_eeprom_read_serial(struct at24_data *at24, char *buf,
302				       unsigned int offset, size_t count)
303{
304	unsigned long timeout, read_time;
305	struct i2c_client *client;
306	struct i2c_msg msg[2];
307	u8 addrbuf[2];
308	int status;
309
310	client = at24_translate_offset(at24, &offset);
311
312	memset(msg, 0, sizeof(msg));
313	msg[0].addr = client->addr;
314	msg[0].buf = addrbuf;
315
316	/*
317	 * The address pointer of the device is shared between the regular
318	 * EEPROM array and the serial number block. The dummy write (part of
319	 * the sequential read protocol) ensures the address pointer is reset
320	 * to the desired position.
321	 */
322	if (at24->chip.flags & AT24_FLAG_ADDR16) {
323		/*
324		 * For 16 bit address pointers, the word address must contain
325		 * a '10' sequence in bits 11 and 10 regardless of the
326		 * intended position of the address pointer.
327		 */
328		addrbuf[0] = 0x08;
329		addrbuf[1] = offset;
330		msg[0].len = 2;
331	} else {
332		/*
333		 * Otherwise the word address must begin with a '10' sequence,
334		 * regardless of the intended address.
335		 */
336		addrbuf[0] = 0x80 + offset;
337		msg[0].len = 1;
338	}
339
340	msg[1].addr = client->addr;
341	msg[1].flags = I2C_M_RD;
342	msg[1].buf = buf;
343	msg[1].len = count;
344
345	loop_until_timeout(timeout, read_time) {
346		status = i2c_transfer(client->adapter, msg, 2);
347		if (status == 2)
348			return count;
 
349	}
350
351	return -ETIMEDOUT;
352}
353
354static ssize_t at24_eeprom_read_mac(struct at24_data *at24, char *buf,
355				    unsigned int offset, size_t count)
356{
357	unsigned long timeout, read_time;
358	struct i2c_client *client;
359	struct i2c_msg msg[2];
360	u8 addrbuf[2];
361	int status;
362
363	client = at24_translate_offset(at24, &offset);
364
365	memset(msg, 0, sizeof(msg));
366	msg[0].addr = client->addr;
367	msg[0].buf = addrbuf;
368	addrbuf[0] = 0x90 + offset;
369	msg[0].len = 1;
370	msg[1].addr = client->addr;
371	msg[1].flags = I2C_M_RD;
372	msg[1].buf = buf;
373	msg[1].len = count;
374
375	loop_until_timeout(timeout, read_time) {
376		status = i2c_transfer(client->adapter, msg, 2);
377		if (status == 2)
378			return count;
379	}
380
381	return -ETIMEDOUT;
382}
383
384/*
385 * Note that if the hardware write-protect pin is pulled high, the whole
386 * chip is normally write protected. But there are plenty of product
387 * variants here, including OTP fuses and partial chip protect.
388 *
389 * We only use page mode writes; the alternative is sloooow. These routines
390 * write at most one page.
391 */
392
393static size_t at24_adjust_write_count(struct at24_data *at24,
394				      unsigned int offset, size_t count)
395{
 
 
 
 
396	unsigned next_page;
397
 
 
 
398	/* write_max is at most a page */
399	if (count > at24->write_max)
400		count = at24->write_max;
401
402	/* Never roll over backwards, to the start of this page */
403	next_page = roundup(offset + 1, at24->chip.page_size);
404	if (offset + count > next_page)
405		count = next_page - offset;
406
407	return count;
408}
409
410static ssize_t at24_eeprom_write_smbus_block(struct at24_data *at24,
411					     const char *buf,
412					     unsigned int offset, size_t count)
413{
414	unsigned long timeout, write_time;
415	struct i2c_client *client;
416	ssize_t status = 0;
417
418	client = at24_translate_offset(at24, &offset);
419	count = at24_adjust_write_count(at24, offset, count);
420
421	loop_until_timeout(timeout, write_time) {
422		status = i2c_smbus_write_i2c_block_data(client,
423							offset, count, buf);
424		if (status == 0)
425			status = count;
426
427		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
428				count, offset, status, jiffies);
429
430		if (status == count)
431			return count;
432	}
433
434	return -ETIMEDOUT;
435}
436
437static ssize_t at24_eeprom_write_smbus_byte(struct at24_data *at24,
438					    const char *buf,
439					    unsigned int offset, size_t count)
440{
441	unsigned long timeout, write_time;
442	struct i2c_client *client;
443	ssize_t status = 0;
444
445	client = at24_translate_offset(at24, &offset);
446
447	loop_until_timeout(timeout, write_time) {
448		status = i2c_smbus_write_byte_data(client, offset, buf[0]);
449		if (status == 0)
450			status = count;
 
 
451
 
 
 
 
 
 
 
452		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
453				count, offset, status, jiffies);
454
455		if (status == count)
456			return count;
457	}
458
459	return -ETIMEDOUT;
460}
461
462static ssize_t at24_eeprom_write_i2c(struct at24_data *at24, const char *buf,
463				     unsigned int offset, size_t count)
464{
465	unsigned long timeout, write_time;
466	struct i2c_client *client;
467	struct i2c_msg msg;
468	ssize_t status = 0;
469	int i = 0;
470
471	client = at24_translate_offset(at24, &offset);
472	count = at24_adjust_write_count(at24, offset, count);
473
474	msg.addr = client->addr;
475	msg.flags = 0;
476
477	/* msg.buf is u8 and casts will mask the values */
478	msg.buf = at24->writebuf;
479	if (at24->chip.flags & AT24_FLAG_ADDR16)
480		msg.buf[i++] = offset >> 8;
481
482	msg.buf[i++] = offset;
483	memcpy(&msg.buf[i], buf, count);
484	msg.len = i + count;
485
486	loop_until_timeout(timeout, write_time) {
487		status = i2c_transfer(client->adapter, &msg, 1);
488		if (status == 1)
489			status = count;
490
491		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
492				count, offset, status, jiffies);
493
494		if (status == count)
495			return count;
496	}
497
498	return -ETIMEDOUT;
499}
500
501static int at24_read(void *priv, unsigned int off, void *val, size_t count)
 
502{
503	struct at24_data *at24 = priv;
504	char *buf = val;
505
506	if (unlikely(!count))
507		return count;
508
509	/*
510	 * Read data from chip, protecting against concurrent updates
511	 * from this host, but not from other I2C masters.
512	 */
513	mutex_lock(&at24->lock);
514
515	while (count) {
516		int	status;
517
518		status = at24->read_func(at24, buf, off, count);
519		if (status < 0) {
520			mutex_unlock(&at24->lock);
521			return status;
 
522		}
523		buf += status;
524		off += status;
525		count -= status;
 
526	}
527
528	mutex_unlock(&at24->lock);
529
530	return 0;
531}
532
533static int at24_write(void *priv, unsigned int off, void *val, size_t count)
 
 
 
 
 
 
 
534{
535	struct at24_data *at24 = priv;
536	char *buf = val;
 
537
538	if (unlikely(!count))
539		return -EINVAL;
 
 
 
540
541	/*
542	 * Write data to chip, protecting against concurrent updates
543	 * from this host, but not from other I2C masters.
544	 */
545	mutex_lock(&at24->lock);
 
 
546
547	while (count) {
548		int status;
 
 
 
 
 
 
 
549
550		status = at24->write_func(at24, buf, off, count);
551		if (status < 0) {
552			mutex_unlock(&at24->lock);
553			return status;
554		}
555		buf += status;
556		off += status;
557		count -= status;
558	}
559
560	mutex_unlock(&at24->lock);
561
562	return 0;
563}
564
565#ifdef CONFIG_OF
566static void at24_get_ofdata(struct i2c_client *client,
567			    struct at24_platform_data *chip)
568{
569	const __be32 *val;
570	struct device_node *node = client->dev.of_node;
571
572	if (node) {
573		if (of_get_property(node, "read-only", NULL))
574			chip->flags |= AT24_FLAG_READONLY;
575		val = of_get_property(node, "pagesize", NULL);
576		if (val)
577			chip->page_size = be32_to_cpup(val);
578	}
579}
580#else
581static void at24_get_ofdata(struct i2c_client *client,
582			    struct at24_platform_data *chip)
583{ }
584#endif /* CONFIG_OF */
585
586static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
587{
588	struct at24_platform_data chip;
589	kernel_ulong_t magic = 0;
590	bool writable;
591	int use_smbus = 0;
592	int use_smbus_write = 0;
593	struct at24_data *at24;
594	int err;
595	unsigned i, num_addresses;
596	u8 test_byte;
597
598	if (client->dev.platform_data) {
599		chip = *(struct at24_platform_data *)client->dev.platform_data;
600	} else {
601		if (id) {
602			magic = id->driver_data;
603		} else {
604			const struct acpi_device_id *aid;
605
606			aid = acpi_match_device(at24_acpi_ids, &client->dev);
607			if (aid)
608				magic = aid->driver_data;
609		}
610		if (!magic)
611			return -ENODEV;
612
613		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
614		magic >>= AT24_SIZE_BYTELEN;
615		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
616		/*
617		 * This is slow, but we can't know all eeproms, so we better
618		 * play safe. Specifying custom eeprom-types via platform_data
619		 * is recommended anyhow.
620		 */
621		chip.page_size = 1;
622
623		/* update chipdata if OF is present */
624		at24_get_ofdata(client, &chip);
625
626		chip.setup = NULL;
627		chip.context = NULL;
628	}
629
630	if (!is_power_of_2(chip.byte_len))
631		dev_warn(&client->dev,
632			"byte_len looks suspicious (no power of 2)!\n");
633	if (!chip.page_size) {
634		dev_err(&client->dev, "page_size must not be 0!\n");
635		return -EINVAL;
636	}
637	if (!is_power_of_2(chip.page_size))
638		dev_warn(&client->dev,
639			"page_size looks suspicious (no power of 2)!\n");
640
641	/* Use I2C operations unless we're stuck with SMBus extensions. */
642	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
643		if (chip.flags & AT24_FLAG_ADDR16)
644			return -EPFNOSUPPORT;
645
646		if (i2c_check_functionality(client->adapter,
647				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
648			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
649		} else if (i2c_check_functionality(client->adapter,
650				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
651			use_smbus = I2C_SMBUS_WORD_DATA;
652		} else if (i2c_check_functionality(client->adapter,
653				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
654			use_smbus = I2C_SMBUS_BYTE_DATA;
655		} else {
656			return -EPFNOSUPPORT;
657		}
 
658
 
 
659		if (i2c_check_functionality(client->adapter,
660				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
661			use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
662		} else if (i2c_check_functionality(client->adapter,
663				I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
664			use_smbus_write = I2C_SMBUS_BYTE_DATA;
665			chip.page_size = 1;
666		}
667	}
668
669	if (chip.flags & AT24_FLAG_TAKE8ADDR)
670		num_addresses = 8;
671	else
672		num_addresses =	DIV_ROUND_UP(chip.byte_len,
673			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
674
675	at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
676		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
677	if (!at24)
678		return -ENOMEM;
679
680	mutex_init(&at24->lock);
681	at24->use_smbus = use_smbus;
682	at24->use_smbus_write = use_smbus_write;
683	at24->chip = chip;
684	at24->num_addresses = num_addresses;
685
686	if ((chip.flags & AT24_FLAG_SERIAL) && (chip.flags & AT24_FLAG_MAC)) {
687		dev_err(&client->dev,
688			"invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
689		return -EINVAL;
690	}
691
692	if (chip.flags & AT24_FLAG_SERIAL) {
693		at24->read_func = at24_eeprom_read_serial;
694	} else if (chip.flags & AT24_FLAG_MAC) {
695		at24->read_func = at24_eeprom_read_mac;
696	} else {
697		at24->read_func = at24->use_smbus ? at24_eeprom_read_smbus
698						  : at24_eeprom_read_i2c;
699	}
700
701	if (at24->use_smbus) {
702		if (at24->use_smbus_write == I2C_SMBUS_I2C_BLOCK_DATA)
703			at24->write_func = at24_eeprom_write_smbus_block;
704		else
705			at24->write_func = at24_eeprom_write_smbus_byte;
706	} else {
707		at24->write_func = at24_eeprom_write_i2c;
708	}
709
710	writable = !(chip.flags & AT24_FLAG_READONLY);
711	if (writable) {
712		if (!use_smbus || use_smbus_write) {
713
714			unsigned write_max = chip.page_size;
715
716			if (write_max > io_limit)
717				write_max = io_limit;
718			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
719				write_max = I2C_SMBUS_BLOCK_MAX;
720			at24->write_max = write_max;
721
722			/* buffer (data + address at the beginning) */
723			at24->writebuf = devm_kzalloc(&client->dev,
724				write_max + 2, GFP_KERNEL);
725			if (!at24->writebuf)
726				return -ENOMEM;
727		} else {
728			dev_warn(&client->dev,
729				"cannot write due to controller restrictions.");
730		}
731	}
732
733	at24->client[0] = client;
734
735	/* use dummy devices for multiple-address chips */
736	for (i = 1; i < num_addresses; i++) {
737		at24->client[i] = i2c_new_dummy(client->adapter,
738					client->addr + i);
739		if (!at24->client[i]) {
740			dev_err(&client->dev, "address 0x%02x unavailable\n",
741					client->addr + i);
742			err = -EADDRINUSE;
743			goto err_clients;
744		}
745	}
746
747	i2c_set_clientdata(client, at24);
748
749	/*
750	 * Perform a one-byte test read to verify that the
751	 * chip is functional.
752	 */
753	err = at24_read(at24, 0, &test_byte, 1);
754	if (err) {
755		err = -ENODEV;
 
756		goto err_clients;
757	}
758
759	at24->nvmem_config.name = dev_name(&client->dev);
760	at24->nvmem_config.dev = &client->dev;
761	at24->nvmem_config.read_only = !writable;
762	at24->nvmem_config.root_only = true;
763	at24->nvmem_config.owner = THIS_MODULE;
764	at24->nvmem_config.compat = true;
765	at24->nvmem_config.base_dev = &client->dev;
766	at24->nvmem_config.reg_read = at24_read;
767	at24->nvmem_config.reg_write = at24_write;
768	at24->nvmem_config.priv = at24;
769	at24->nvmem_config.stride = 4;
770	at24->nvmem_config.word_size = 1;
771	at24->nvmem_config.size = chip.byte_len;
772
773	at24->nvmem = nvmem_register(&at24->nvmem_config);
774
775	if (IS_ERR(at24->nvmem)) {
776		err = PTR_ERR(at24->nvmem);
777		goto err_clients;
778	}
 
 
779
780	dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
781		chip.byte_len, client->name,
782		writable ? "writable" : "read-only", at24->write_max);
783	if (use_smbus == I2C_SMBUS_WORD_DATA ||
784	    use_smbus == I2C_SMBUS_BYTE_DATA) {
785		dev_notice(&client->dev, "Falling back to %s reads, "
786			   "performance will suffer\n", use_smbus ==
787			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
788	}
789
790	/* export data to kernel code */
791	if (chip.setup)
792		chip.setup(at24->nvmem, chip.context);
793
794	return 0;
795
796err_clients:
797	for (i = 1; i < num_addresses; i++)
798		if (at24->client[i])
799			i2c_unregister_device(at24->client[i]);
800
801	return err;
802}
803
804static int at24_remove(struct i2c_client *client)
805{
806	struct at24_data *at24;
807	int i;
808
809	at24 = i2c_get_clientdata(client);
810
811	nvmem_unregister(at24->nvmem);
812
813	for (i = 1; i < at24->num_addresses; i++)
814		i2c_unregister_device(at24->client[i]);
815
816	return 0;
817}
818
819/*-------------------------------------------------------------------------*/
820
821static struct i2c_driver at24_driver = {
822	.driver = {
823		.name = "at24",
824		.acpi_match_table = ACPI_PTR(at24_acpi_ids),
825	},
826	.probe = at24_probe,
827	.remove = at24_remove,
828	.id_table = at24_ids,
829};
830
831static int __init at24_init(void)
832{
833	if (!io_limit) {
834		pr_err("at24: io_limit must not be 0!\n");
835		return -EINVAL;
836	}
837
838	io_limit = rounddown_pow_of_two(io_limit);
839	return i2c_add_driver(&at24_driver);
840}
841module_init(at24_init);
842
843static void __exit at24_exit(void)
844{
845	i2c_del_driver(&at24_driver);
846}
847module_exit(at24_exit);
848
849MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
850MODULE_AUTHOR("David Brownell and Wolfram Sang");
851MODULE_LICENSE("GPL");