Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * at24.c - handle most I2C EEPROMs
  3 *
  4 * Copyright (C) 2005-2007 David Brownell
  5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License as published by
  9 * the Free Software Foundation; either version 2 of the License, or
 10 * (at your option) any later version.
 11 */
 12#include <linux/kernel.h>
 13#include <linux/init.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/delay.h>
 17#include <linux/mutex.h>
 
 18#include <linux/mod_devicetable.h>
 19#include <linux/log2.h>
 20#include <linux/bitops.h>
 21#include <linux/jiffies.h>
 22#include <linux/of.h>
 23#include <linux/acpi.h>
 24#include <linux/i2c.h>
 25#include <linux/nvmem-provider.h>
 26#include <linux/regmap.h>
 27#include <linux/platform_data/at24.h>
 28
 29/*
 30 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
 31 * Differences between different vendor product lines (like Atmel AT24C or
 32 * MicroChip 24LC, etc) won't much matter for typical read/write access.
 33 * There are also I2C RAM chips, likewise interchangeable. One example
 34 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
 35 *
 36 * However, misconfiguration can lose data. "Set 16-bit memory address"
 37 * to a part with 8-bit addressing will overwrite data. Writing with too
 38 * big a page size also loses data. And it's not safe to assume that the
 39 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
 40 * uses 0x51, for just one example.
 41 *
 42 * Accordingly, explicit board-specific configuration data should be used
 43 * in almost all cases. (One partial exception is an SMBus used to access
 44 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
 45 *
 46 * So this driver uses "new style" I2C driver binding, expecting to be
 47 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
 48 * similar kernel-resident tables; or, configuration data coming from
 49 * a bootloader.
 50 *
 51 * Other than binding model, current differences from "eeprom" driver are
 52 * that this one handles write access and isn't restricted to 24c02 devices.
 53 * It also handles larger devices (32 kbit and up) with two-byte addresses,
 54 * which won't work on pure SMBus systems.
 55 */
 56
 57struct at24_data {
 58	struct at24_platform_data chip;
 
 59	int use_smbus;
 60	int use_smbus_write;
 61
 62	/*
 63	 * Lock protects against activities from other Linux tasks,
 64	 * but not from changes by other I2C masters.
 65	 */
 66	struct mutex lock;
 
 67
 68	u8 *writebuf;
 69	unsigned write_max;
 70	unsigned num_addresses;
 71
 72	struct regmap_config regmap_config;
 73	struct nvmem_config nvmem_config;
 74	struct nvmem_device *nvmem;
 75
 76	/*
 77	 * Some chips tie up multiple I2C addresses; dummy devices reserve
 78	 * them for us, and we'll use them with SMBus calls.
 79	 */
 80	struct i2c_client *client[];
 81};
 82
 83/*
 84 * This parameter is to help this driver avoid blocking other drivers out
 85 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
 86 * clock, one 256 byte read takes about 1/43 second which is excessive;
 87 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
 88 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
 89 *
 90 * This value is forced to be a power of two so that writes align on pages.
 91 */
 92static unsigned io_limit = 128;
 93module_param(io_limit, uint, 0);
 94MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
 95
 96/*
 97 * Specs often allow 5 msec for a page write, sometimes 20 msec;
 98 * it's important to recover from write timeouts.
 99 */
100static unsigned write_timeout = 25;
101module_param(write_timeout, uint, 0);
102MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
103
104#define AT24_SIZE_BYTELEN 5
105#define AT24_SIZE_FLAGS 8
106
107#define AT24_BITMASK(x) (BIT(x) - 1)
108
109/* create non-zero magic value for given eeprom parameters */
110#define AT24_DEVICE_MAGIC(_len, _flags) 		\
111	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
112	    << AT24_SIZE_BYTELEN | ilog2(_len))
113
114static const struct i2c_device_id at24_ids[] = {
115	/* needs 8 addresses as A0-A2 are ignored */
116	{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
117	/* old variants can't be handled with this generic entry! */
118	{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
119	{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
120	/* spd is a 24c02 in memory DIMMs */
121	{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
122		AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
123	{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
124	/* 24rf08 quirk is handled at i2c-core */
125	{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
126	{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
127	{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
128	{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
129	{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
130	{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
131	{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
132	{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
133	{ "at24", 0 },
134	{ /* END OF LIST */ }
135};
136MODULE_DEVICE_TABLE(i2c, at24_ids);
137
138static const struct acpi_device_id at24_acpi_ids[] = {
139	{ "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
140	{ }
141};
142MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
143
144/*-------------------------------------------------------------------------*/
145
146/*
147 * This routine supports chips which consume multiple I2C addresses. It
148 * computes the addressing information to be used for a given r/w request.
149 * Assumes that sanity checks for offset happened at sysfs-layer.
150 */
151static struct i2c_client *at24_translate_offset(struct at24_data *at24,
152		unsigned *offset)
153{
154	unsigned i;
155
156	if (at24->chip.flags & AT24_FLAG_ADDR16) {
157		i = *offset >> 16;
158		*offset &= 0xffff;
159	} else {
160		i = *offset >> 8;
161		*offset &= 0xff;
162	}
163
164	return at24->client[i];
165}
166
167static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
168		unsigned offset, size_t count)
169{
170	struct i2c_msg msg[2];
171	u8 msgbuf[2];
172	struct i2c_client *client;
173	unsigned long timeout, read_time;
174	int status, i;
175
176	memset(msg, 0, sizeof(msg));
177
178	/*
179	 * REVISIT some multi-address chips don't rollover page reads to
180	 * the next slave address, so we may need to truncate the count.
181	 * Those chips might need another quirk flag.
182	 *
183	 * If the real hardware used four adjacent 24c02 chips and that
184	 * were misconfigured as one 24c08, that would be a similar effect:
185	 * one "eeprom" file not four, but larger reads would fail when
186	 * they crossed certain pages.
187	 */
188
189	/*
190	 * Slave address and byte offset derive from the offset. Always
191	 * set the byte address; on a multi-master board, another master
192	 * may have changed the chip's "current" address pointer.
193	 */
194	client = at24_translate_offset(at24, &offset);
195
196	if (count > io_limit)
197		count = io_limit;
198
199	if (at24->use_smbus) {
 
200		/* Smaller eeproms can work given some SMBus extension calls */
201		if (count > I2C_SMBUS_BLOCK_MAX)
202			count = I2C_SMBUS_BLOCK_MAX;
203	} else {
 
 
 
 
 
 
 
204		/*
205		 * When we have a better choice than SMBus calls, use a
206		 * combined I2C message. Write address; then read up to
207		 * io_limit data bytes. Note that read page rollover helps us
208		 * here (unlike writes). msgbuf is u8 and will cast to our
209		 * needs.
210		 */
211		i = 0;
212		if (at24->chip.flags & AT24_FLAG_ADDR16)
213			msgbuf[i++] = offset >> 8;
214		msgbuf[i++] = offset;
215
216		msg[0].addr = client->addr;
217		msg[0].buf = msgbuf;
218		msg[0].len = i;
219
220		msg[1].addr = client->addr;
221		msg[1].flags = I2C_M_RD;
222		msg[1].buf = buf;
223		msg[1].len = count;
224	}
225
226	/*
227	 * Reads fail if the previous write didn't complete yet. We may
228	 * loop a few times until this one succeeds, waiting at least
229	 * long enough for one entire page write to work.
230	 */
231	timeout = jiffies + msecs_to_jiffies(write_timeout);
232	do {
233		read_time = jiffies;
234		if (at24->use_smbus) {
235			status = i2c_smbus_read_i2c_block_data_or_emulated(client, offset,
236									   count, buf);
237		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238			status = i2c_transfer(client->adapter, msg, 2);
239			if (status == 2)
240				status = count;
241		}
242		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
243				count, offset, status, jiffies);
244
245		if (status == count)
246			return count;
247
248		/* REVISIT: at HZ=100, this is sloooow */
249		msleep(1);
250	} while (time_before(read_time, timeout));
251
252	return -ETIMEDOUT;
253}
254
255static ssize_t at24_read(struct at24_data *at24,
256		char *buf, loff_t off, size_t count)
257{
258	ssize_t retval = 0;
259
260	if (unlikely(!count))
261		return count;
262
263	/*
264	 * Read data from chip, protecting against concurrent updates
265	 * from this host, but not from other I2C masters.
266	 */
267	mutex_lock(&at24->lock);
268
269	while (count) {
270		ssize_t	status;
271
272		status = at24_eeprom_read(at24, buf, off, count);
273		if (status <= 0) {
274			if (retval == 0)
275				retval = status;
276			break;
277		}
278		buf += status;
279		off += status;
280		count -= status;
281		retval += status;
282	}
283
284	mutex_unlock(&at24->lock);
285
286	return retval;
287}
288
 
 
 
 
 
 
 
 
 
 
 
289/*
290 * Note that if the hardware write-protect pin is pulled high, the whole
291 * chip is normally write protected. But there are plenty of product
292 * variants here, including OTP fuses and partial chip protect.
293 *
294 * We only use page mode writes; the alternative is sloooow. This routine
295 * writes at most one page.
296 */
297static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
298		unsigned offset, size_t count)
299{
300	struct i2c_client *client;
301	struct i2c_msg msg;
302	ssize_t status = 0;
303	unsigned long timeout, write_time;
304	unsigned next_page;
305
306	/* Get corresponding I2C address and adjust offset */
307	client = at24_translate_offset(at24, &offset);
308
309	/* write_max is at most a page */
310	if (count > at24->write_max)
311		count = at24->write_max;
312
313	/* Never roll over backwards, to the start of this page */
314	next_page = roundup(offset + 1, at24->chip.page_size);
315	if (offset + count > next_page)
316		count = next_page - offset;
317
318	/* If we'll use I2C calls for I/O, set up the message */
319	if (!at24->use_smbus) {
320		int i = 0;
321
322		msg.addr = client->addr;
323		msg.flags = 0;
324
325		/* msg.buf is u8 and casts will mask the values */
326		msg.buf = at24->writebuf;
327		if (at24->chip.flags & AT24_FLAG_ADDR16)
328			msg.buf[i++] = offset >> 8;
329
330		msg.buf[i++] = offset;
331		memcpy(&msg.buf[i], buf, count);
332		msg.len = i + count;
333	}
334
335	/*
336	 * Writes fail if the previous one didn't complete yet. We may
337	 * loop a few times until this one succeeds, waiting at least
338	 * long enough for one entire page write to work.
339	 */
340	timeout = jiffies + msecs_to_jiffies(write_timeout);
341	do {
342		write_time = jiffies;
343		if (at24->use_smbus_write) {
344			switch (at24->use_smbus_write) {
345			case I2C_SMBUS_I2C_BLOCK_DATA:
346				status = i2c_smbus_write_i2c_block_data(client,
347						offset, count, buf);
348				break;
349			case I2C_SMBUS_BYTE_DATA:
350				status = i2c_smbus_write_byte_data(client,
351						offset, buf[0]);
352				break;
353			}
354
355			if (status == 0)
356				status = count;
357		} else {
358			status = i2c_transfer(client->adapter, &msg, 1);
359			if (status == 1)
360				status = count;
361		}
362		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
363				count, offset, status, jiffies);
364
365		if (status == count)
366			return count;
367
368		/* REVISIT: at HZ=100, this is sloooow */
369		msleep(1);
370	} while (time_before(write_time, timeout));
371
372	return -ETIMEDOUT;
373}
374
375static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
376			  size_t count)
377{
378	ssize_t retval = 0;
379
380	if (unlikely(!count))
381		return count;
382
383	/*
384	 * Write data to chip, protecting against concurrent updates
385	 * from this host, but not from other I2C masters.
386	 */
387	mutex_lock(&at24->lock);
388
389	while (count) {
390		ssize_t	status;
391
392		status = at24_eeprom_write(at24, buf, off, count);
393		if (status <= 0) {
394			if (retval == 0)
395				retval = status;
396			break;
397		}
398		buf += status;
399		off += status;
400		count -= status;
401		retval += status;
402	}
403
404	mutex_unlock(&at24->lock);
405
406	return retval;
407}
408
 
 
 
 
 
 
 
 
 
 
 
 
 
409/*-------------------------------------------------------------------------*/
410
411/*
412 * Provide a regmap interface, which is registered with the NVMEM
413 * framework
414*/
415static int at24_regmap_read(void *context, const void *reg, size_t reg_size,
416			    void *val, size_t val_size)
 
 
417{
418	struct at24_data *at24 = context;
419	off_t offset = *(u32 *)reg;
420	int err;
421
422	err = at24_read(at24, val, offset, val_size);
423	if (err)
424		return err;
425	return 0;
426}
427
428static int at24_regmap_write(void *context, const void *data, size_t count)
 
429{
430	struct at24_data *at24 = context;
431	const char *buf;
432	u32 offset;
433	size_t len;
434	int err;
435
436	memcpy(&offset, data, sizeof(offset));
437	buf = (const char *)data + sizeof(offset);
438	len = count - sizeof(offset);
439
440	err = at24_write(at24, buf, offset, len);
441	if (err)
442		return err;
443	return 0;
444}
445
446static const struct regmap_bus at24_regmap_bus = {
447	.read = at24_regmap_read,
448	.write = at24_regmap_write,
449	.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
450};
451
452/*-------------------------------------------------------------------------*/
453
454#ifdef CONFIG_OF
455static void at24_get_ofdata(struct i2c_client *client,
456		struct at24_platform_data *chip)
457{
458	const __be32 *val;
459	struct device_node *node = client->dev.of_node;
460
461	if (node) {
462		if (of_get_property(node, "read-only", NULL))
463			chip->flags |= AT24_FLAG_READONLY;
464		val = of_get_property(node, "pagesize", NULL);
465		if (val)
466			chip->page_size = be32_to_cpup(val);
467	}
468}
469#else
470static void at24_get_ofdata(struct i2c_client *client,
471		struct at24_platform_data *chip)
472{ }
473#endif /* CONFIG_OF */
474
475static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
476{
477	struct at24_platform_data chip;
478	kernel_ulong_t magic = 0;
479	bool writable;
480	int use_smbus = 0;
481	int use_smbus_write = 0;
482	struct at24_data *at24;
483	int err;
484	unsigned i, num_addresses;
485	struct regmap *regmap;
486
487	if (client->dev.platform_data) {
488		chip = *(struct at24_platform_data *)client->dev.platform_data;
489	} else {
490		if (id) {
491			magic = id->driver_data;
492		} else {
493			const struct acpi_device_id *aid;
494
495			aid = acpi_match_device(at24_acpi_ids, &client->dev);
496			if (aid)
497				magic = aid->driver_data;
498		}
499		if (!magic)
500			return -ENODEV;
501
 
502		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
503		magic >>= AT24_SIZE_BYTELEN;
504		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
505		/*
506		 * This is slow, but we can't know all eeproms, so we better
507		 * play safe. Specifying custom eeprom-types via platform_data
508		 * is recommended anyhow.
509		 */
510		chip.page_size = 1;
511
512		/* update chipdata if OF is present */
513		at24_get_ofdata(client, &chip);
514
515		chip.setup = NULL;
516		chip.context = NULL;
517	}
518
519	if (!is_power_of_2(chip.byte_len))
520		dev_warn(&client->dev,
521			"byte_len looks suspicious (no power of 2)!\n");
522	if (!chip.page_size) {
523		dev_err(&client->dev, "page_size must not be 0!\n");
524		return -EINVAL;
525	}
526	if (!is_power_of_2(chip.page_size))
527		dev_warn(&client->dev,
528			"page_size looks suspicious (no power of 2)!\n");
529
530	/* Use I2C operations unless we're stuck with SMBus extensions. */
531	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
532		if (chip.flags & AT24_FLAG_ADDR16)
533			return -EPFNOSUPPORT;
534
535		if (i2c_check_functionality(client->adapter,
536				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
537			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
538		} else if (i2c_check_functionality(client->adapter,
539				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
540			use_smbus = I2C_SMBUS_WORD_DATA;
541		} else if (i2c_check_functionality(client->adapter,
542				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
543			use_smbus = I2C_SMBUS_BYTE_DATA;
544		} else {
545			return -EPFNOSUPPORT;
546		}
547	}
548
549	/* Use I2C operations unless we're stuck with SMBus extensions. */
550	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
551		if (i2c_check_functionality(client->adapter,
552				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
553			use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
554		} else if (i2c_check_functionality(client->adapter,
555				I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
556			use_smbus_write = I2C_SMBUS_BYTE_DATA;
557			chip.page_size = 1;
558		}
559	}
560
561	if (chip.flags & AT24_FLAG_TAKE8ADDR)
562		num_addresses = 8;
563	else
564		num_addresses =	DIV_ROUND_UP(chip.byte_len,
565			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
566
567	at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
568		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
569	if (!at24)
570		return -ENOMEM;
571
572	mutex_init(&at24->lock);
573	at24->use_smbus = use_smbus;
574	at24->use_smbus_write = use_smbus_write;
575	at24->chip = chip;
576	at24->num_addresses = num_addresses;
577
 
 
 
 
 
 
 
 
 
 
 
 
578	writable = !(chip.flags & AT24_FLAG_READONLY);
579	if (writable) {
580		if (!use_smbus || use_smbus_write) {
 
581
582			unsigned write_max = chip.page_size;
583
 
 
 
 
 
584			if (write_max > io_limit)
585				write_max = io_limit;
586			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
587				write_max = I2C_SMBUS_BLOCK_MAX;
588			at24->write_max = write_max;
589
590			/* buffer (data + address at the beginning) */
591			at24->writebuf = devm_kzalloc(&client->dev,
592				write_max + 2, GFP_KERNEL);
593			if (!at24->writebuf)
594				return -ENOMEM;
595		} else {
596			dev_warn(&client->dev,
597				"cannot write due to controller restrictions.");
598		}
599	}
600
601	at24->client[0] = client;
602
603	/* use dummy devices for multiple-address chips */
604	for (i = 1; i < num_addresses; i++) {
605		at24->client[i] = i2c_new_dummy(client->adapter,
606					client->addr + i);
607		if (!at24->client[i]) {
608			dev_err(&client->dev, "address 0x%02x unavailable\n",
609					client->addr + i);
610			err = -EADDRINUSE;
611			goto err_clients;
612		}
613	}
614
615	at24->regmap_config.reg_bits = 32;
616	at24->regmap_config.val_bits = 8;
617	at24->regmap_config.reg_stride = 1;
618	at24->regmap_config.max_register = chip.byte_len - 1;
619
620	regmap = devm_regmap_init(&client->dev, &at24_regmap_bus, at24,
621				  &at24->regmap_config);
622	if (IS_ERR(regmap)) {
623		dev_err(&client->dev, "regmap init failed\n");
624		err = PTR_ERR(regmap);
625		goto err_clients;
626	}
627
628	at24->nvmem_config.name = dev_name(&client->dev);
629	at24->nvmem_config.dev = &client->dev;
630	at24->nvmem_config.read_only = !writable;
631	at24->nvmem_config.root_only = true;
632	at24->nvmem_config.owner = THIS_MODULE;
633	at24->nvmem_config.compat = true;
634	at24->nvmem_config.base_dev = &client->dev;
635
636	at24->nvmem = nvmem_register(&at24->nvmem_config);
637
638	if (IS_ERR(at24->nvmem)) {
639		err = PTR_ERR(at24->nvmem);
640		goto err_clients;
641	}
642
643	i2c_set_clientdata(client, at24);
644
645	dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
646		chip.byte_len, client->name,
647		writable ? "writable" : "read-only", at24->write_max);
648	if (use_smbus == I2C_SMBUS_WORD_DATA ||
649	    use_smbus == I2C_SMBUS_BYTE_DATA) {
650		dev_notice(&client->dev, "Falling back to %s reads, "
651			   "performance will suffer\n", use_smbus ==
652			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
653	}
654
655	/* export data to kernel code */
656	if (chip.setup)
657		chip.setup(at24->nvmem, chip.context);
658
659	return 0;
660
661err_clients:
662	for (i = 1; i < num_addresses; i++)
663		if (at24->client[i])
664			i2c_unregister_device(at24->client[i]);
665
666	return err;
667}
668
669static int at24_remove(struct i2c_client *client)
670{
671	struct at24_data *at24;
672	int i;
673
674	at24 = i2c_get_clientdata(client);
675
676	nvmem_unregister(at24->nvmem);
677
678	for (i = 1; i < at24->num_addresses; i++)
679		i2c_unregister_device(at24->client[i]);
680
681	return 0;
682}
683
684/*-------------------------------------------------------------------------*/
685
686static struct i2c_driver at24_driver = {
687	.driver = {
688		.name = "at24",
689		.acpi_match_table = ACPI_PTR(at24_acpi_ids),
690	},
691	.probe = at24_probe,
692	.remove = at24_remove,
693	.id_table = at24_ids,
694};
695
696static int __init at24_init(void)
697{
698	if (!io_limit) {
699		pr_err("at24: io_limit must not be 0!\n");
700		return -EINVAL;
701	}
702
703	io_limit = rounddown_pow_of_two(io_limit);
704	return i2c_add_driver(&at24_driver);
705}
706module_init(at24_init);
707
708static void __exit at24_exit(void)
709{
710	i2c_del_driver(&at24_driver);
711}
712module_exit(at24_exit);
713
714MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
715MODULE_AUTHOR("David Brownell and Wolfram Sang");
716MODULE_LICENSE("GPL");
v3.15
  1/*
  2 * at24.c - handle most I2C EEPROMs
  3 *
  4 * Copyright (C) 2005-2007 David Brownell
  5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License as published by
  9 * the Free Software Foundation; either version 2 of the License, or
 10 * (at your option) any later version.
 11 */
 12#include <linux/kernel.h>
 13#include <linux/init.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/delay.h>
 17#include <linux/mutex.h>
 18#include <linux/sysfs.h>
 19#include <linux/mod_devicetable.h>
 20#include <linux/log2.h>
 21#include <linux/bitops.h>
 22#include <linux/jiffies.h>
 23#include <linux/of.h>
 
 24#include <linux/i2c.h>
 
 
 25#include <linux/platform_data/at24.h>
 26
 27/*
 28 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
 29 * Differences between different vendor product lines (like Atmel AT24C or
 30 * MicroChip 24LC, etc) won't much matter for typical read/write access.
 31 * There are also I2C RAM chips, likewise interchangeable. One example
 32 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
 33 *
 34 * However, misconfiguration can lose data. "Set 16-bit memory address"
 35 * to a part with 8-bit addressing will overwrite data. Writing with too
 36 * big a page size also loses data. And it's not safe to assume that the
 37 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
 38 * uses 0x51, for just one example.
 39 *
 40 * Accordingly, explicit board-specific configuration data should be used
 41 * in almost all cases. (One partial exception is an SMBus used to access
 42 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
 43 *
 44 * So this driver uses "new style" I2C driver binding, expecting to be
 45 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
 46 * similar kernel-resident tables; or, configuration data coming from
 47 * a bootloader.
 48 *
 49 * Other than binding model, current differences from "eeprom" driver are
 50 * that this one handles write access and isn't restricted to 24c02 devices.
 51 * It also handles larger devices (32 kbit and up) with two-byte addresses,
 52 * which won't work on pure SMBus systems.
 53 */
 54
 55struct at24_data {
 56	struct at24_platform_data chip;
 57	struct memory_accessor macc;
 58	int use_smbus;
 
 59
 60	/*
 61	 * Lock protects against activities from other Linux tasks,
 62	 * but not from changes by other I2C masters.
 63	 */
 64	struct mutex lock;
 65	struct bin_attribute bin;
 66
 67	u8 *writebuf;
 68	unsigned write_max;
 69	unsigned num_addresses;
 70
 
 
 
 
 71	/*
 72	 * Some chips tie up multiple I2C addresses; dummy devices reserve
 73	 * them for us, and we'll use them with SMBus calls.
 74	 */
 75	struct i2c_client *client[];
 76};
 77
 78/*
 79 * This parameter is to help this driver avoid blocking other drivers out
 80 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
 81 * clock, one 256 byte read takes about 1/43 second which is excessive;
 82 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
 83 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
 84 *
 85 * This value is forced to be a power of two so that writes align on pages.
 86 */
 87static unsigned io_limit = 128;
 88module_param(io_limit, uint, 0);
 89MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
 90
 91/*
 92 * Specs often allow 5 msec for a page write, sometimes 20 msec;
 93 * it's important to recover from write timeouts.
 94 */
 95static unsigned write_timeout = 25;
 96module_param(write_timeout, uint, 0);
 97MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
 98
 99#define AT24_SIZE_BYTELEN 5
100#define AT24_SIZE_FLAGS 8
101
102#define AT24_BITMASK(x) (BIT(x) - 1)
103
104/* create non-zero magic value for given eeprom parameters */
105#define AT24_DEVICE_MAGIC(_len, _flags) 		\
106	((1 << AT24_SIZE_FLAGS | (_flags)) 		\
107	    << AT24_SIZE_BYTELEN | ilog2(_len))
108
109static const struct i2c_device_id at24_ids[] = {
110	/* needs 8 addresses as A0-A2 are ignored */
111	{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
112	/* old variants can't be handled with this generic entry! */
113	{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
114	{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
115	/* spd is a 24c02 in memory DIMMs */
116	{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
117		AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
118	{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
119	/* 24rf08 quirk is handled at i2c-core */
120	{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
121	{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
122	{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
123	{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
124	{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
125	{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
126	{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
127	{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
128	{ "at24", 0 },
129	{ /* END OF LIST */ }
130};
131MODULE_DEVICE_TABLE(i2c, at24_ids);
132
 
 
 
 
 
 
133/*-------------------------------------------------------------------------*/
134
135/*
136 * This routine supports chips which consume multiple I2C addresses. It
137 * computes the addressing information to be used for a given r/w request.
138 * Assumes that sanity checks for offset happened at sysfs-layer.
139 */
140static struct i2c_client *at24_translate_offset(struct at24_data *at24,
141		unsigned *offset)
142{
143	unsigned i;
144
145	if (at24->chip.flags & AT24_FLAG_ADDR16) {
146		i = *offset >> 16;
147		*offset &= 0xffff;
148	} else {
149		i = *offset >> 8;
150		*offset &= 0xff;
151	}
152
153	return at24->client[i];
154}
155
156static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
157		unsigned offset, size_t count)
158{
159	struct i2c_msg msg[2];
160	u8 msgbuf[2];
161	struct i2c_client *client;
162	unsigned long timeout, read_time;
163	int status, i;
164
165	memset(msg, 0, sizeof(msg));
166
167	/*
168	 * REVISIT some multi-address chips don't rollover page reads to
169	 * the next slave address, so we may need to truncate the count.
170	 * Those chips might need another quirk flag.
171	 *
172	 * If the real hardware used four adjacent 24c02 chips and that
173	 * were misconfigured as one 24c08, that would be a similar effect:
174	 * one "eeprom" file not four, but larger reads would fail when
175	 * they crossed certain pages.
176	 */
177
178	/*
179	 * Slave address and byte offset derive from the offset. Always
180	 * set the byte address; on a multi-master board, another master
181	 * may have changed the chip's "current" address pointer.
182	 */
183	client = at24_translate_offset(at24, &offset);
184
185	if (count > io_limit)
186		count = io_limit;
187
188	switch (at24->use_smbus) {
189	case I2C_SMBUS_I2C_BLOCK_DATA:
190		/* Smaller eeproms can work given some SMBus extension calls */
191		if (count > I2C_SMBUS_BLOCK_MAX)
192			count = I2C_SMBUS_BLOCK_MAX;
193		break;
194	case I2C_SMBUS_WORD_DATA:
195		count = 2;
196		break;
197	case I2C_SMBUS_BYTE_DATA:
198		count = 1;
199		break;
200	default:
201		/*
202		 * When we have a better choice than SMBus calls, use a
203		 * combined I2C message. Write address; then read up to
204		 * io_limit data bytes. Note that read page rollover helps us
205		 * here (unlike writes). msgbuf is u8 and will cast to our
206		 * needs.
207		 */
208		i = 0;
209		if (at24->chip.flags & AT24_FLAG_ADDR16)
210			msgbuf[i++] = offset >> 8;
211		msgbuf[i++] = offset;
212
213		msg[0].addr = client->addr;
214		msg[0].buf = msgbuf;
215		msg[0].len = i;
216
217		msg[1].addr = client->addr;
218		msg[1].flags = I2C_M_RD;
219		msg[1].buf = buf;
220		msg[1].len = count;
221	}
222
223	/*
224	 * Reads fail if the previous write didn't complete yet. We may
225	 * loop a few times until this one succeeds, waiting at least
226	 * long enough for one entire page write to work.
227	 */
228	timeout = jiffies + msecs_to_jiffies(write_timeout);
229	do {
230		read_time = jiffies;
231		switch (at24->use_smbus) {
232		case I2C_SMBUS_I2C_BLOCK_DATA:
233			status = i2c_smbus_read_i2c_block_data(client, offset,
234					count, buf);
235			break;
236		case I2C_SMBUS_WORD_DATA:
237			status = i2c_smbus_read_word_data(client, offset);
238			if (status >= 0) {
239				buf[0] = status & 0xff;
240				buf[1] = status >> 8;
241				status = count;
242			}
243			break;
244		case I2C_SMBUS_BYTE_DATA:
245			status = i2c_smbus_read_byte_data(client, offset);
246			if (status >= 0) {
247				buf[0] = status;
248				status = count;
249			}
250			break;
251		default:
252			status = i2c_transfer(client->adapter, msg, 2);
253			if (status == 2)
254				status = count;
255		}
256		dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
257				count, offset, status, jiffies);
258
259		if (status == count)
260			return count;
261
262		/* REVISIT: at HZ=100, this is sloooow */
263		msleep(1);
264	} while (time_before(read_time, timeout));
265
266	return -ETIMEDOUT;
267}
268
269static ssize_t at24_read(struct at24_data *at24,
270		char *buf, loff_t off, size_t count)
271{
272	ssize_t retval = 0;
273
274	if (unlikely(!count))
275		return count;
276
277	/*
278	 * Read data from chip, protecting against concurrent updates
279	 * from this host, but not from other I2C masters.
280	 */
281	mutex_lock(&at24->lock);
282
283	while (count) {
284		ssize_t	status;
285
286		status = at24_eeprom_read(at24, buf, off, count);
287		if (status <= 0) {
288			if (retval == 0)
289				retval = status;
290			break;
291		}
292		buf += status;
293		off += status;
294		count -= status;
295		retval += status;
296	}
297
298	mutex_unlock(&at24->lock);
299
300	return retval;
301}
302
303static ssize_t at24_bin_read(struct file *filp, struct kobject *kobj,
304		struct bin_attribute *attr,
305		char *buf, loff_t off, size_t count)
306{
307	struct at24_data *at24;
308
309	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
310	return at24_read(at24, buf, off, count);
311}
312
313
314/*
315 * Note that if the hardware write-protect pin is pulled high, the whole
316 * chip is normally write protected. But there are plenty of product
317 * variants here, including OTP fuses and partial chip protect.
318 *
319 * We only use page mode writes; the alternative is sloooow. This routine
320 * writes at most one page.
321 */
322static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
323		unsigned offset, size_t count)
324{
325	struct i2c_client *client;
326	struct i2c_msg msg;
327	ssize_t status;
328	unsigned long timeout, write_time;
329	unsigned next_page;
330
331	/* Get corresponding I2C address and adjust offset */
332	client = at24_translate_offset(at24, &offset);
333
334	/* write_max is at most a page */
335	if (count > at24->write_max)
336		count = at24->write_max;
337
338	/* Never roll over backwards, to the start of this page */
339	next_page = roundup(offset + 1, at24->chip.page_size);
340	if (offset + count > next_page)
341		count = next_page - offset;
342
343	/* If we'll use I2C calls for I/O, set up the message */
344	if (!at24->use_smbus) {
345		int i = 0;
346
347		msg.addr = client->addr;
348		msg.flags = 0;
349
350		/* msg.buf is u8 and casts will mask the values */
351		msg.buf = at24->writebuf;
352		if (at24->chip.flags & AT24_FLAG_ADDR16)
353			msg.buf[i++] = offset >> 8;
354
355		msg.buf[i++] = offset;
356		memcpy(&msg.buf[i], buf, count);
357		msg.len = i + count;
358	}
359
360	/*
361	 * Writes fail if the previous one didn't complete yet. We may
362	 * loop a few times until this one succeeds, waiting at least
363	 * long enough for one entire page write to work.
364	 */
365	timeout = jiffies + msecs_to_jiffies(write_timeout);
366	do {
367		write_time = jiffies;
368		if (at24->use_smbus) {
369			status = i2c_smbus_write_i2c_block_data(client,
370					offset, count, buf);
 
 
 
 
 
 
 
 
 
371			if (status == 0)
372				status = count;
373		} else {
374			status = i2c_transfer(client->adapter, &msg, 1);
375			if (status == 1)
376				status = count;
377		}
378		dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
379				count, offset, status, jiffies);
380
381		if (status == count)
382			return count;
383
384		/* REVISIT: at HZ=100, this is sloooow */
385		msleep(1);
386	} while (time_before(write_time, timeout));
387
388	return -ETIMEDOUT;
389}
390
391static ssize_t at24_write(struct at24_data *at24, const char *buf, loff_t off,
392			  size_t count)
393{
394	ssize_t retval = 0;
395
396	if (unlikely(!count))
397		return count;
398
399	/*
400	 * Write data to chip, protecting against concurrent updates
401	 * from this host, but not from other I2C masters.
402	 */
403	mutex_lock(&at24->lock);
404
405	while (count) {
406		ssize_t	status;
407
408		status = at24_eeprom_write(at24, buf, off, count);
409		if (status <= 0) {
410			if (retval == 0)
411				retval = status;
412			break;
413		}
414		buf += status;
415		off += status;
416		count -= status;
417		retval += status;
418	}
419
420	mutex_unlock(&at24->lock);
421
422	return retval;
423}
424
425static ssize_t at24_bin_write(struct file *filp, struct kobject *kobj,
426		struct bin_attribute *attr,
427		char *buf, loff_t off, size_t count)
428{
429	struct at24_data *at24;
430
431	if (unlikely(off >= attr->size))
432		return -EFBIG;
433
434	at24 = dev_get_drvdata(container_of(kobj, struct device, kobj));
435	return at24_write(at24, buf, off, count);
436}
437
438/*-------------------------------------------------------------------------*/
439
440/*
441 * This lets other kernel code access the eeprom data. For example, it
442 * might hold a board's Ethernet address, or board-specific calibration
443 * data generated on the manufacturing floor.
444 */
445
446static ssize_t at24_macc_read(struct memory_accessor *macc, char *buf,
447			 off_t offset, size_t count)
448{
449	struct at24_data *at24 = container_of(macc, struct at24_data, macc);
 
 
450
451	return at24_read(at24, buf, offset, count);
 
 
 
452}
453
454static ssize_t at24_macc_write(struct memory_accessor *macc, const char *buf,
455			  off_t offset, size_t count)
456{
457	struct at24_data *at24 = container_of(macc, struct at24_data, macc);
 
 
 
 
 
 
 
 
458
459	return at24_write(at24, buf, offset, count);
 
 
 
460}
461
 
 
 
 
 
 
462/*-------------------------------------------------------------------------*/
463
464#ifdef CONFIG_OF
465static void at24_get_ofdata(struct i2c_client *client,
466		struct at24_platform_data *chip)
467{
468	const __be32 *val;
469	struct device_node *node = client->dev.of_node;
470
471	if (node) {
472		if (of_get_property(node, "read-only", NULL))
473			chip->flags |= AT24_FLAG_READONLY;
474		val = of_get_property(node, "pagesize", NULL);
475		if (val)
476			chip->page_size = be32_to_cpup(val);
477	}
478}
479#else
480static void at24_get_ofdata(struct i2c_client *client,
481		struct at24_platform_data *chip)
482{ }
483#endif /* CONFIG_OF */
484
485static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
486{
487	struct at24_platform_data chip;
 
488	bool writable;
489	int use_smbus = 0;
 
490	struct at24_data *at24;
491	int err;
492	unsigned i, num_addresses;
493	kernel_ulong_t magic;
494
495	if (client->dev.platform_data) {
496		chip = *(struct at24_platform_data *)client->dev.platform_data;
497	} else {
498		if (!id->driver_data)
 
 
 
 
 
 
 
 
 
499			return -ENODEV;
500
501		magic = id->driver_data;
502		chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
503		magic >>= AT24_SIZE_BYTELEN;
504		chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
505		/*
506		 * This is slow, but we can't know all eeproms, so we better
507		 * play safe. Specifying custom eeprom-types via platform_data
508		 * is recommended anyhow.
509		 */
510		chip.page_size = 1;
511
512		/* update chipdata if OF is present */
513		at24_get_ofdata(client, &chip);
514
515		chip.setup = NULL;
516		chip.context = NULL;
517	}
518
519	if (!is_power_of_2(chip.byte_len))
520		dev_warn(&client->dev,
521			"byte_len looks suspicious (no power of 2)!\n");
522	if (!chip.page_size) {
523		dev_err(&client->dev, "page_size must not be 0!\n");
524		return -EINVAL;
525	}
526	if (!is_power_of_2(chip.page_size))
527		dev_warn(&client->dev,
528			"page_size looks suspicious (no power of 2)!\n");
529
530	/* Use I2C operations unless we're stuck with SMBus extensions. */
531	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
532		if (chip.flags & AT24_FLAG_ADDR16)
533			return -EPFNOSUPPORT;
534
535		if (i2c_check_functionality(client->adapter,
536				I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
537			use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
538		} else if (i2c_check_functionality(client->adapter,
539				I2C_FUNC_SMBUS_READ_WORD_DATA)) {
540			use_smbus = I2C_SMBUS_WORD_DATA;
541		} else if (i2c_check_functionality(client->adapter,
542				I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
543			use_smbus = I2C_SMBUS_BYTE_DATA;
544		} else {
545			return -EPFNOSUPPORT;
546		}
547	}
548
 
 
 
 
 
 
 
 
 
 
 
 
549	if (chip.flags & AT24_FLAG_TAKE8ADDR)
550		num_addresses = 8;
551	else
552		num_addresses =	DIV_ROUND_UP(chip.byte_len,
553			(chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
554
555	at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
556		num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
557	if (!at24)
558		return -ENOMEM;
559
560	mutex_init(&at24->lock);
561	at24->use_smbus = use_smbus;
 
562	at24->chip = chip;
563	at24->num_addresses = num_addresses;
564
565	/*
566	 * Export the EEPROM bytes through sysfs, since that's convenient.
567	 * By default, only root should see the data (maybe passwords etc)
568	 */
569	sysfs_bin_attr_init(&at24->bin);
570	at24->bin.attr.name = "eeprom";
571	at24->bin.attr.mode = chip.flags & AT24_FLAG_IRUGO ? S_IRUGO : S_IRUSR;
572	at24->bin.read = at24_bin_read;
573	at24->bin.size = chip.byte_len;
574
575	at24->macc.read = at24_macc_read;
576
577	writable = !(chip.flags & AT24_FLAG_READONLY);
578	if (writable) {
579		if (!use_smbus || i2c_check_functionality(client->adapter,
580				I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
581
582			unsigned write_max = chip.page_size;
583
584			at24->macc.write = at24_macc_write;
585
586			at24->bin.write = at24_bin_write;
587			at24->bin.attr.mode |= S_IWUSR;
588
589			if (write_max > io_limit)
590				write_max = io_limit;
591			if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
592				write_max = I2C_SMBUS_BLOCK_MAX;
593			at24->write_max = write_max;
594
595			/* buffer (data + address at the beginning) */
596			at24->writebuf = devm_kzalloc(&client->dev,
597				write_max + 2, GFP_KERNEL);
598			if (!at24->writebuf)
599				return -ENOMEM;
600		} else {
601			dev_warn(&client->dev,
602				"cannot write due to controller restrictions.");
603		}
604	}
605
606	at24->client[0] = client;
607
608	/* use dummy devices for multiple-address chips */
609	for (i = 1; i < num_addresses; i++) {
610		at24->client[i] = i2c_new_dummy(client->adapter,
611					client->addr + i);
612		if (!at24->client[i]) {
613			dev_err(&client->dev, "address 0x%02x unavailable\n",
614					client->addr + i);
615			err = -EADDRINUSE;
616			goto err_clients;
617		}
618	}
619
620	err = sysfs_create_bin_file(&client->dev.kobj, &at24->bin);
621	if (err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622		goto err_clients;
 
623
624	i2c_set_clientdata(client, at24);
625
626	dev_info(&client->dev, "%zu byte %s EEPROM, %s, %u bytes/write\n",
627		at24->bin.size, client->name,
628		writable ? "writable" : "read-only", at24->write_max);
629	if (use_smbus == I2C_SMBUS_WORD_DATA ||
630	    use_smbus == I2C_SMBUS_BYTE_DATA) {
631		dev_notice(&client->dev, "Falling back to %s reads, "
632			   "performance will suffer\n", use_smbus ==
633			   I2C_SMBUS_WORD_DATA ? "word" : "byte");
634	}
635
636	/* export data to kernel code */
637	if (chip.setup)
638		chip.setup(&at24->macc, chip.context);
639
640	return 0;
641
642err_clients:
643	for (i = 1; i < num_addresses; i++)
644		if (at24->client[i])
645			i2c_unregister_device(at24->client[i]);
646
647	return err;
648}
649
650static int at24_remove(struct i2c_client *client)
651{
652	struct at24_data *at24;
653	int i;
654
655	at24 = i2c_get_clientdata(client);
656	sysfs_remove_bin_file(&client->dev.kobj, &at24->bin);
 
657
658	for (i = 1; i < at24->num_addresses; i++)
659		i2c_unregister_device(at24->client[i]);
660
661	return 0;
662}
663
664/*-------------------------------------------------------------------------*/
665
666static struct i2c_driver at24_driver = {
667	.driver = {
668		.name = "at24",
669		.owner = THIS_MODULE,
670	},
671	.probe = at24_probe,
672	.remove = at24_remove,
673	.id_table = at24_ids,
674};
675
676static int __init at24_init(void)
677{
678	if (!io_limit) {
679		pr_err("at24: io_limit must not be 0!\n");
680		return -EINVAL;
681	}
682
683	io_limit = rounddown_pow_of_two(io_limit);
684	return i2c_add_driver(&at24_driver);
685}
686module_init(at24_init);
687
688static void __exit at24_exit(void)
689{
690	i2c_del_driver(&at24_driver);
691}
692module_exit(at24_exit);
693
694MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
695MODULE_AUTHOR("David Brownell and Wolfram Sang");
696MODULE_LICENSE("GPL");