Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright © 2008-2010 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *    Zou Nan hai <nanhai.zou@intel.com>
  26 *    Xiang Hai hao<haihao.xiang@intel.com>
  27 *
  28 */
  29
  30#include <linux/log2.h>
  31#include <drm/drmP.h>
  32#include "i915_drv.h"
  33#include <drm/i915_drm.h>
  34#include "i915_trace.h"
  35#include "intel_drv.h"
  36
 
 
 
 
 
  37int __intel_ring_space(int head, int tail, int size)
  38{
  39	int space = head - tail;
  40	if (space <= 0)
  41		space += size;
  42	return space - I915_RING_FREE_SPACE;
  43}
  44
  45void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  46{
  47	if (ringbuf->last_retired_head != -1) {
  48		ringbuf->head = ringbuf->last_retired_head;
  49		ringbuf->last_retired_head = -1;
  50	}
  51
  52	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  53					    ringbuf->tail, ringbuf->size);
  54}
  55
  56int intel_ring_space(struct intel_ringbuffer *ringbuf)
  57{
  58	intel_ring_update_space(ringbuf);
  59	return ringbuf->space;
  60}
  61
  62bool intel_ring_stopped(struct intel_engine_cs *ring)
  63{
  64	struct drm_i915_private *dev_priv = ring->dev->dev_private;
  65	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  66}
  67
  68static void __intel_ring_advance(struct intel_engine_cs *ring)
  69{
  70	struct intel_ringbuffer *ringbuf = ring->buffer;
  71	ringbuf->tail &= ringbuf->size - 1;
  72	if (intel_ring_stopped(ring))
  73		return;
  74	ring->write_tail(ring, ringbuf->tail);
  75}
  76
  77static int
  78gen2_render_ring_flush(struct drm_i915_gem_request *req,
  79		       u32	invalidate_domains,
  80		       u32	flush_domains)
  81{
  82	struct intel_engine_cs *ring = req->ring;
  83	u32 cmd;
  84	int ret;
  85
  86	cmd = MI_FLUSH;
  87	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  88		cmd |= MI_NO_WRITE_FLUSH;
  89
  90	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  91		cmd |= MI_READ_FLUSH;
  92
  93	ret = intel_ring_begin(req, 2);
  94	if (ret)
  95		return ret;
  96
  97	intel_ring_emit(ring, cmd);
  98	intel_ring_emit(ring, MI_NOOP);
  99	intel_ring_advance(ring);
 100
 101	return 0;
 102}
 103
 104static int
 105gen4_render_ring_flush(struct drm_i915_gem_request *req,
 106		       u32	invalidate_domains,
 107		       u32	flush_domains)
 108{
 109	struct intel_engine_cs *ring = req->ring;
 110	struct drm_device *dev = ring->dev;
 111	u32 cmd;
 112	int ret;
 113
 114	/*
 115	 * read/write caches:
 116	 *
 117	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
 118	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
 119	 * also flushed at 2d versus 3d pipeline switches.
 120	 *
 121	 * read-only caches:
 122	 *
 123	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
 124	 * MI_READ_FLUSH is set, and is always flushed on 965.
 125	 *
 126	 * I915_GEM_DOMAIN_COMMAND may not exist?
 127	 *
 128	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
 129	 * invalidated when MI_EXE_FLUSH is set.
 130	 *
 131	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
 132	 * invalidated with every MI_FLUSH.
 133	 *
 134	 * TLBs:
 135	 *
 136	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
 137	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
 138	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
 139	 * are flushed at any MI_FLUSH.
 140	 */
 141
 142	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
 143	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
 144		cmd &= ~MI_NO_WRITE_FLUSH;
 145	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
 146		cmd |= MI_EXE_FLUSH;
 147
 148	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
 149	    (IS_G4X(dev) || IS_GEN5(dev)))
 150		cmd |= MI_INVALIDATE_ISP;
 151
 152	ret = intel_ring_begin(req, 2);
 153	if (ret)
 154		return ret;
 155
 156	intel_ring_emit(ring, cmd);
 157	intel_ring_emit(ring, MI_NOOP);
 158	intel_ring_advance(ring);
 159
 160	return 0;
 161}
 162
 163/**
 164 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 165 * implementing two workarounds on gen6.  From section 1.4.7.1
 166 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 167 *
 168 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 169 * produced by non-pipelined state commands), software needs to first
 170 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 171 * 0.
 172 *
 173 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 174 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 175 *
 176 * And the workaround for these two requires this workaround first:
 177 *
 178 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 179 * BEFORE the pipe-control with a post-sync op and no write-cache
 180 * flushes.
 181 *
 182 * And this last workaround is tricky because of the requirements on
 183 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 184 * volume 2 part 1:
 185 *
 186 *     "1 of the following must also be set:
 187 *      - Render Target Cache Flush Enable ([12] of DW1)
 188 *      - Depth Cache Flush Enable ([0] of DW1)
 189 *      - Stall at Pixel Scoreboard ([1] of DW1)
 190 *      - Depth Stall ([13] of DW1)
 191 *      - Post-Sync Operation ([13] of DW1)
 192 *      - Notify Enable ([8] of DW1)"
 193 *
 194 * The cache flushes require the workaround flush that triggered this
 195 * one, so we can't use it.  Depth stall would trigger the same.
 196 * Post-sync nonzero is what triggered this second workaround, so we
 197 * can't use that one either.  Notify enable is IRQs, which aren't
 198 * really our business.  That leaves only stall at scoreboard.
 199 */
 200static int
 201intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
 202{
 203	struct intel_engine_cs *ring = req->ring;
 204	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
 
 205	int ret;
 206
 207	ret = intel_ring_begin(req, 6);
 208	if (ret)
 209		return ret;
 210
 211	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
 212	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
 213			PIPE_CONTROL_STALL_AT_SCOREBOARD);
 214	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
 215	intel_ring_emit(ring, 0); /* low dword */
 216	intel_ring_emit(ring, 0); /* high dword */
 217	intel_ring_emit(ring, MI_NOOP);
 218	intel_ring_advance(ring);
 219
 220	ret = intel_ring_begin(req, 6);
 221	if (ret)
 222		return ret;
 223
 224	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
 225	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
 226	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
 227	intel_ring_emit(ring, 0);
 228	intel_ring_emit(ring, 0);
 229	intel_ring_emit(ring, MI_NOOP);
 230	intel_ring_advance(ring);
 231
 232	return 0;
 233}
 234
 235static int
 236gen6_render_ring_flush(struct drm_i915_gem_request *req,
 237		       u32 invalidate_domains, u32 flush_domains)
 238{
 239	struct intel_engine_cs *ring = req->ring;
 
 
 240	u32 flags = 0;
 241	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
 242	int ret;
 243
 244	/* Force SNB workarounds for PIPE_CONTROL flushes */
 245	ret = intel_emit_post_sync_nonzero_flush(req);
 246	if (ret)
 247		return ret;
 248
 249	/* Just flush everything.  Experiments have shown that reducing the
 250	 * number of bits based on the write domains has little performance
 251	 * impact.
 252	 */
 253	if (flush_domains) {
 254		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 255		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 256		/*
 257		 * Ensure that any following seqno writes only happen
 258		 * when the render cache is indeed flushed.
 259		 */
 260		flags |= PIPE_CONTROL_CS_STALL;
 261	}
 262	if (invalidate_domains) {
 263		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 264		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 265		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 266		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 267		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 268		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 269		/*
 270		 * TLB invalidate requires a post-sync write.
 271		 */
 272		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
 273	}
 274
 275	ret = intel_ring_begin(req, 4);
 276	if (ret)
 277		return ret;
 278
 279	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 280	intel_ring_emit(ring, flags);
 281	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
 282	intel_ring_emit(ring, 0);
 283	intel_ring_advance(ring);
 284
 285	return 0;
 286}
 287
 288static int
 289gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
 290{
 291	struct intel_engine_cs *ring = req->ring;
 292	int ret;
 293
 294	ret = intel_ring_begin(req, 4);
 295	if (ret)
 296		return ret;
 297
 298	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 299	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
 300			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
 
 301	intel_ring_emit(ring, 0);
 302	intel_ring_emit(ring, 0);
 303	intel_ring_advance(ring);
 304
 305	return 0;
 306}
 307
 308static int
 309gen7_render_ring_flush(struct drm_i915_gem_request *req,
 310		       u32 invalidate_domains, u32 flush_domains)
 311{
 312	struct intel_engine_cs *ring = req->ring;
 
 
 313	u32 flags = 0;
 314	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
 315	int ret;
 316
 317	/*
 318	 * Ensure that any following seqno writes only happen when the render
 319	 * cache is indeed flushed.
 320	 *
 321	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
 322	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
 323	 * don't try to be clever and just set it unconditionally.
 324	 */
 325	flags |= PIPE_CONTROL_CS_STALL;
 326
 327	/* Just flush everything.  Experiments have shown that reducing the
 328	 * number of bits based on the write domains has little performance
 329	 * impact.
 330	 */
 331	if (flush_domains) {
 332		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 333		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 334		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
 335		flags |= PIPE_CONTROL_FLUSH_ENABLE;
 336	}
 337	if (invalidate_domains) {
 338		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 339		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 340		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 341		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 342		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 343		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 344		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
 345		/*
 346		 * TLB invalidate requires a post-sync write.
 347		 */
 348		flags |= PIPE_CONTROL_QW_WRITE;
 349		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
 350
 351		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
 352
 353		/* Workaround: we must issue a pipe_control with CS-stall bit
 354		 * set before a pipe_control command that has the state cache
 355		 * invalidate bit set. */
 356		gen7_render_ring_cs_stall_wa(req);
 357	}
 358
 359	ret = intel_ring_begin(req, 4);
 360	if (ret)
 361		return ret;
 362
 363	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 364	intel_ring_emit(ring, flags);
 365	intel_ring_emit(ring, scratch_addr);
 366	intel_ring_emit(ring, 0);
 367	intel_ring_advance(ring);
 368
 369	return 0;
 370}
 371
 372static int
 373gen8_emit_pipe_control(struct drm_i915_gem_request *req,
 374		       u32 flags, u32 scratch_addr)
 375{
 376	struct intel_engine_cs *ring = req->ring;
 377	int ret;
 378
 379	ret = intel_ring_begin(req, 6);
 380	if (ret)
 381		return ret;
 382
 383	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
 384	intel_ring_emit(ring, flags);
 385	intel_ring_emit(ring, scratch_addr);
 386	intel_ring_emit(ring, 0);
 387	intel_ring_emit(ring, 0);
 388	intel_ring_emit(ring, 0);
 389	intel_ring_advance(ring);
 390
 391	return 0;
 392}
 393
 394static int
 395gen8_render_ring_flush(struct drm_i915_gem_request *req,
 396		       u32 invalidate_domains, u32 flush_domains)
 397{
 
 
 398	u32 flags = 0;
 399	u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
 400	int ret;
 401
 402	flags |= PIPE_CONTROL_CS_STALL;
 403
 404	if (flush_domains) {
 405		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 406		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 407		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
 408		flags |= PIPE_CONTROL_FLUSH_ENABLE;
 409	}
 410	if (invalidate_domains) {
 411		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 412		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 413		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 414		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 415		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 416		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 417		flags |= PIPE_CONTROL_QW_WRITE;
 418		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
 419
 420		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
 421		ret = gen8_emit_pipe_control(req,
 422					     PIPE_CONTROL_CS_STALL |
 423					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
 424					     0);
 425		if (ret)
 426			return ret;
 427	}
 428
 429	return gen8_emit_pipe_control(req, flags, scratch_addr);
 430}
 431
 432static void ring_write_tail(struct intel_engine_cs *ring,
 433			    u32 value)
 434{
 435	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 436	I915_WRITE_TAIL(ring, value);
 437}
 438
 439u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
 440{
 441	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 442	u64 acthd;
 443
 444	if (INTEL_INFO(ring->dev)->gen >= 8)
 445		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
 446					 RING_ACTHD_UDW(ring->mmio_base));
 447	else if (INTEL_INFO(ring->dev)->gen >= 4)
 448		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
 449	else
 450		acthd = I915_READ(ACTHD);
 451
 452	return acthd;
 453}
 454
 455static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
 456{
 457	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 458	u32 addr;
 459
 460	addr = dev_priv->status_page_dmah->busaddr;
 461	if (INTEL_INFO(ring->dev)->gen >= 4)
 462		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
 463	I915_WRITE(HWS_PGA, addr);
 464}
 465
 466static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
 467{
 468	struct drm_device *dev = ring->dev;
 469	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 470	i915_reg_t mmio;
 471
 472	/* The ring status page addresses are no longer next to the rest of
 473	 * the ring registers as of gen7.
 474	 */
 475	if (IS_GEN7(dev)) {
 476		switch (ring->id) {
 477		case RCS:
 478			mmio = RENDER_HWS_PGA_GEN7;
 479			break;
 480		case BCS:
 481			mmio = BLT_HWS_PGA_GEN7;
 482			break;
 483		/*
 484		 * VCS2 actually doesn't exist on Gen7. Only shut up
 485		 * gcc switch check warning
 486		 */
 487		case VCS2:
 488		case VCS:
 489			mmio = BSD_HWS_PGA_GEN7;
 490			break;
 491		case VECS:
 492			mmio = VEBOX_HWS_PGA_GEN7;
 493			break;
 494		}
 495	} else if (IS_GEN6(ring->dev)) {
 496		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
 497	} else {
 498		/* XXX: gen8 returns to sanity */
 499		mmio = RING_HWS_PGA(ring->mmio_base);
 500	}
 501
 502	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
 503	POSTING_READ(mmio);
 504
 505	/*
 506	 * Flush the TLB for this page
 507	 *
 508	 * FIXME: These two bits have disappeared on gen8, so a question
 509	 * arises: do we still need this and if so how should we go about
 510	 * invalidating the TLB?
 511	 */
 512	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
 513		i915_reg_t reg = RING_INSTPM(ring->mmio_base);
 514
 515		/* ring should be idle before issuing a sync flush*/
 516		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
 517
 518		I915_WRITE(reg,
 519			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
 520					      INSTPM_SYNC_FLUSH));
 521		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
 522			     1000))
 
 523			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
 524				  ring->name);
 525	}
 526}
 527
 528static bool stop_ring(struct intel_engine_cs *ring)
 529{
 530	struct drm_i915_private *dev_priv = to_i915(ring->dev);
 531
 532	if (!IS_GEN2(ring->dev)) {
 533		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
 534		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
 535			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
 
 
 
 
 
 536			/* Sometimes we observe that the idle flag is not
 537			 * set even though the ring is empty. So double
 538			 * check before giving up.
 539			 */
 540			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
 541				return false;
 542		}
 543	}
 544
 545	I915_WRITE_CTL(ring, 0);
 546	I915_WRITE_HEAD(ring, 0);
 547	ring->write_tail(ring, 0);
 548
 549	if (!IS_GEN2(ring->dev)) {
 550		(void)I915_READ_CTL(ring);
 551		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
 552	}
 553
 554	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
 555}
 556
 557static int init_ring_common(struct intel_engine_cs *ring)
 558{
 559	struct drm_device *dev = ring->dev;
 560	struct drm_i915_private *dev_priv = dev->dev_private;
 561	struct intel_ringbuffer *ringbuf = ring->buffer;
 562	struct drm_i915_gem_object *obj = ringbuf->obj;
 563	int ret = 0;
 564
 565	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
 566
 567	if (!stop_ring(ring)) {
 568		/* G45 ring initialization often fails to reset head to zero */
 569		DRM_DEBUG_KMS("%s head not reset to zero "
 570			      "ctl %08x head %08x tail %08x start %08x\n",
 571			      ring->name,
 572			      I915_READ_CTL(ring),
 573			      I915_READ_HEAD(ring),
 574			      I915_READ_TAIL(ring),
 575			      I915_READ_START(ring));
 576
 577		if (!stop_ring(ring)) {
 578			DRM_ERROR("failed to set %s head to zero "
 579				  "ctl %08x head %08x tail %08x start %08x\n",
 580				  ring->name,
 581				  I915_READ_CTL(ring),
 582				  I915_READ_HEAD(ring),
 583				  I915_READ_TAIL(ring),
 584				  I915_READ_START(ring));
 585			ret = -EIO;
 586			goto out;
 587		}
 588	}
 589
 590	if (I915_NEED_GFX_HWS(dev))
 591		intel_ring_setup_status_page(ring);
 592	else
 593		ring_setup_phys_status_page(ring);
 
 
 594
 595	/* Enforce ordering by reading HEAD register back */
 596	I915_READ_HEAD(ring);
 597
 598	/* Initialize the ring. This must happen _after_ we've cleared the ring
 599	 * registers with the above sequence (the readback of the HEAD registers
 600	 * also enforces ordering), otherwise the hw might lose the new ring
 601	 * register values. */
 602	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
 603
 604	/* WaClearRingBufHeadRegAtInit:ctg,elk */
 605	if (I915_READ_HEAD(ring))
 606		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
 607			  ring->name, I915_READ_HEAD(ring));
 608	I915_WRITE_HEAD(ring, 0);
 609	(void)I915_READ_HEAD(ring);
 610
 611	I915_WRITE_CTL(ring,
 612			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
 613			| RING_VALID);
 
 614
 615	/* If the head is still not zero, the ring is dead */
 616	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
 617		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
 618		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
 619		DRM_ERROR("%s initialization failed "
 620			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
 621			  ring->name,
 622			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
 623			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
 624			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
 
 
 
 625		ret = -EIO;
 626		goto out;
 627	}
 628
 629	ringbuf->last_retired_head = -1;
 630	ringbuf->head = I915_READ_HEAD(ring);
 631	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
 632	intel_ring_update_space(ringbuf);
 633
 634	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
 635
 636out:
 637	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
 638
 639	return ret;
 640}
 641
 642void
 643intel_fini_pipe_control(struct intel_engine_cs *ring)
 644{
 645	struct drm_device *dev = ring->dev;
 646
 647	if (ring->scratch.obj == NULL)
 648		return;
 649
 650	if (INTEL_INFO(dev)->gen >= 5) {
 651		kunmap(sg_page(ring->scratch.obj->pages->sgl));
 652		i915_gem_object_ggtt_unpin(ring->scratch.obj);
 653	}
 654
 655	drm_gem_object_unreference(&ring->scratch.obj->base);
 656	ring->scratch.obj = NULL;
 657}
 658
 659int
 660intel_init_pipe_control(struct intel_engine_cs *ring)
 661{
 662	int ret;
 663
 664	WARN_ON(ring->scratch.obj);
 665
 666	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
 667	if (ring->scratch.obj == NULL) {
 668		DRM_ERROR("Failed to allocate seqno page\n");
 669		ret = -ENOMEM;
 670		goto err;
 671	}
 672
 673	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
 674	if (ret)
 675		goto err_unref;
 676
 677	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
 678	if (ret)
 679		goto err_unref;
 680
 681	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
 682	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
 683	if (ring->scratch.cpu_page == NULL) {
 684		ret = -ENOMEM;
 685		goto err_unpin;
 686	}
 687
 688	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
 689			 ring->name, ring->scratch.gtt_offset);
 690	return 0;
 691
 692err_unpin:
 693	i915_gem_object_ggtt_unpin(ring->scratch.obj);
 694err_unref:
 695	drm_gem_object_unreference(&ring->scratch.obj->base);
 696err:
 697	return ret;
 698}
 699
 700static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
 701{
 
 
 702	int ret, i;
 703	struct intel_engine_cs *ring = req->ring;
 704	struct drm_device *dev = ring->dev;
 705	struct drm_i915_private *dev_priv = dev->dev_private;
 706	struct i915_workarounds *w = &dev_priv->workarounds;
 707
 708	if (w->count == 0)
 709		return 0;
 710
 711	ring->gpu_caches_dirty = true;
 712	ret = intel_ring_flush_all_caches(req);
 713	if (ret)
 714		return ret;
 715
 716	ret = intel_ring_begin(req, (w->count * 2 + 2));
 717	if (ret)
 718		return ret;
 719
 720	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
 721	for (i = 0; i < w->count; i++) {
 722		intel_ring_emit_reg(ring, w->reg[i].addr);
 723		intel_ring_emit(ring, w->reg[i].value);
 724	}
 725	intel_ring_emit(ring, MI_NOOP);
 726
 727	intel_ring_advance(ring);
 728
 729	ring->gpu_caches_dirty = true;
 730	ret = intel_ring_flush_all_caches(req);
 731	if (ret)
 732		return ret;
 733
 734	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
 735
 736	return 0;
 737}
 738
 739static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
 740{
 741	int ret;
 742
 743	ret = intel_ring_workarounds_emit(req);
 744	if (ret != 0)
 745		return ret;
 746
 747	ret = i915_gem_render_state_init(req);
 748	if (ret)
 749		return ret;
 750
 751	return 0;
 752}
 753
 754static int wa_add(struct drm_i915_private *dev_priv,
 755		  i915_reg_t addr,
 756		  const u32 mask, const u32 val)
 757{
 758	const u32 idx = dev_priv->workarounds.count;
 759
 760	if (WARN_ON(idx >= I915_MAX_WA_REGS))
 761		return -ENOSPC;
 762
 763	dev_priv->workarounds.reg[idx].addr = addr;
 764	dev_priv->workarounds.reg[idx].value = val;
 765	dev_priv->workarounds.reg[idx].mask = mask;
 766
 767	dev_priv->workarounds.count++;
 768
 769	return 0;
 770}
 771
 772#define WA_REG(addr, mask, val) do { \
 773		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
 774		if (r) \
 775			return r; \
 776	} while (0)
 777
 778#define WA_SET_BIT_MASKED(addr, mask) \
 779	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
 780
 781#define WA_CLR_BIT_MASKED(addr, mask) \
 782	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
 783
 784#define WA_SET_FIELD_MASKED(addr, mask, value) \
 785	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
 786
 787#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
 788#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
 789
 790#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
 791
 792static int wa_ring_whitelist_reg(struct intel_engine_cs *ring, i915_reg_t reg)
 
 793{
 794	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 795	struct i915_workarounds *wa = &dev_priv->workarounds;
 796	const uint32_t index = wa->hw_whitelist_count[ring->id];
 797
 798	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
 799		return -EINVAL;
 800
 801	WA_WRITE(RING_FORCE_TO_NONPRIV(ring->mmio_base, index),
 802		 i915_mmio_reg_offset(reg));
 803	wa->hw_whitelist_count[ring->id]++;
 804
 805	return 0;
 806}
 807
 808static int gen8_init_workarounds(struct intel_engine_cs *ring)
 809{
 810	struct drm_device *dev = ring->dev;
 811	struct drm_i915_private *dev_priv = dev->dev_private;
 812
 813	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
 814
 815	/* WaDisableAsyncFlipPerfMode:bdw,chv */
 816	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
 817
 818	/* WaDisablePartialInstShootdown:bdw,chv */
 819	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
 820			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
 821
 822	/* Use Force Non-Coherent whenever executing a 3D context. This is a
 823	 * workaround for for a possible hang in the unlikely event a TLB
 824	 * invalidation occurs during a PSD flush.
 825	 */
 826	/* WaForceEnableNonCoherent:bdw,chv */
 827	/* WaHdcDisableFetchWhenMasked:bdw,chv */
 828	WA_SET_BIT_MASKED(HDC_CHICKEN0,
 829			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
 830			  HDC_FORCE_NON_COHERENT);
 831
 832	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
 833	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
 834	 *  polygons in the same 8x4 pixel/sample area to be processed without
 835	 *  stalling waiting for the earlier ones to write to Hierarchical Z
 836	 *  buffer."
 837	 *
 838	 * This optimization is off by default for BDW and CHV; turn it on.
 839	 */
 840	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
 841
 842	/* Wa4x4STCOptimizationDisable:bdw,chv */
 843	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
 844
 845	/*
 846	 * BSpec recommends 8x4 when MSAA is used,
 847	 * however in practice 16x4 seems fastest.
 848	 *
 849	 * Note that PS/WM thread counts depend on the WIZ hashing
 850	 * disable bit, which we don't touch here, but it's good
 851	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
 852	 */
 853	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
 854			    GEN6_WIZ_HASHING_MASK,
 855			    GEN6_WIZ_HASHING_16x4);
 856
 857	return 0;
 858}
 859
 860static int bdw_init_workarounds(struct intel_engine_cs *ring)
 861{
 
 862	int ret;
 863	struct drm_device *dev = ring->dev;
 864	struct drm_i915_private *dev_priv = dev->dev_private;
 865
 866	ret = gen8_init_workarounds(ring);
 867	if (ret)
 868		return ret;
 869
 870	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
 871	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
 872
 873	/* WaDisableDopClockGating:bdw */
 874	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
 875			  DOP_CLOCK_GATING_DISABLE);
 876
 877	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
 878			  GEN8_SAMPLER_POWER_BYPASS_DIS);
 879
 880	WA_SET_BIT_MASKED(HDC_CHICKEN0,
 881			  /* WaForceContextSaveRestoreNonCoherent:bdw */
 882			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
 883			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
 884			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
 885
 886	return 0;
 887}
 888
 889static int chv_init_workarounds(struct intel_engine_cs *ring)
 890{
 
 891	int ret;
 892	struct drm_device *dev = ring->dev;
 893	struct drm_i915_private *dev_priv = dev->dev_private;
 894
 895	ret = gen8_init_workarounds(ring);
 896	if (ret)
 897		return ret;
 898
 899	/* WaDisableThreadStallDopClockGating:chv */
 900	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
 901
 902	/* Improve HiZ throughput on CHV. */
 903	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
 904
 905	return 0;
 906}
 907
 908static int gen9_init_workarounds(struct intel_engine_cs *ring)
 909{
 910	struct drm_device *dev = ring->dev;
 911	struct drm_i915_private *dev_priv = dev->dev_private;
 912	uint32_t tmp;
 913	int ret;
 914
 915	/* WaEnableLbsSlaRetryTimerDecrement:skl */
 
 
 
 916	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
 917		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
 918
 919	/* WaDisableKillLogic:bxt,skl */
 920	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
 921		   ECOCHK_DIS_TLB);
 922
 923	/* WaDisablePartialInstShootdown:skl,bxt */
 
 924	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
 
 925			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
 926
 927	/* Syncing dependencies between camera and graphics:skl,bxt */
 928	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
 929			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
 930
 931	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
 932	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
 933	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
 934		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
 935				  GEN9_DG_MIRROR_FIX_ENABLE);
 936
 937	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
 938	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
 939	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
 940		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
 941				  GEN9_RHWO_OPTIMIZATION_DISABLE);
 942		/*
 943		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
 944		 * but we do that in per ctx batchbuffer as there is an issue
 945		 * with this register not getting restored on ctx restore
 946		 */
 947	}
 948
 949	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
 950	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
 951		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
 952				  GEN9_ENABLE_YV12_BUGFIX);
 953
 954	/* Wa4x4STCOptimizationDisable:skl,bxt */
 955	/* WaDisablePartialResolveInVc:skl,bxt */
 956	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
 957					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
 958
 959	/* WaCcsTlbPrefetchDisable:skl,bxt */
 960	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
 961			  GEN9_CCS_TLB_PREFETCH_ENABLE);
 962
 963	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
 964	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
 965	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
 966		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
 967				  PIXEL_MASK_CAMMING_DISABLE);
 968
 969	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
 970	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
 971	if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
 972	    IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
 973		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
 974	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
 
 
 
 
 
 
 
 
 
 
 
 975
 976	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
 977	if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
 
 
 
 
 
 
 
 
 
 
 978		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
 979				  GEN8_SAMPLER_POWER_BYPASS_DIS);
 980
 981	/* WaDisableSTUnitPowerOptimization:skl,bxt */
 982	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
 983
 984	/* WaOCLCoherentLineFlush:skl,bxt */
 985	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
 986				    GEN8_LQSC_FLUSH_COHERENT_LINES));
 987
 988	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
 989	ret= wa_ring_whitelist_reg(ring, GEN8_CS_CHICKEN1);
 990	if (ret)
 991		return ret;
 992
 993	/* WaAllowUMDToModifyHDCChicken1:skl,bxt */
 994	ret = wa_ring_whitelist_reg(ring, GEN8_HDC_CHICKEN1);
 
 
 
 
 
 995	if (ret)
 996		return ret;
 997
 998	return 0;
 999}
1000
1001static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
1002{
1003	struct drm_device *dev = ring->dev;
1004	struct drm_i915_private *dev_priv = dev->dev_private;
1005	u8 vals[3] = { 0, 0, 0 };
1006	unsigned int i;
1007
1008	for (i = 0; i < 3; i++) {
1009		u8 ss;
1010
1011		/*
1012		 * Only consider slices where one, and only one, subslice has 7
1013		 * EUs
1014		 */
1015		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1016			continue;
1017
1018		/*
1019		 * subslice_7eu[i] != 0 (because of the check above) and
1020		 * ss_max == 4 (maximum number of subslices possible per slice)
1021		 *
1022		 * ->    0 <= ss <= 3;
1023		 */
1024		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1025		vals[i] = 3 - ss;
1026	}
1027
1028	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1029		return 0;
1030
1031	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1032	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1033			    GEN9_IZ_HASHING_MASK(2) |
1034			    GEN9_IZ_HASHING_MASK(1) |
1035			    GEN9_IZ_HASHING_MASK(0),
1036			    GEN9_IZ_HASHING(2, vals[2]) |
1037			    GEN9_IZ_HASHING(1, vals[1]) |
1038			    GEN9_IZ_HASHING(0, vals[0]));
1039
1040	return 0;
1041}
1042
1043static int skl_init_workarounds(struct intel_engine_cs *ring)
1044{
 
1045	int ret;
1046	struct drm_device *dev = ring->dev;
1047	struct drm_i915_private *dev_priv = dev->dev_private;
1048
1049	ret = gen9_init_workarounds(ring);
1050	if (ret)
1051		return ret;
1052
1053	/*
1054	 * Actual WA is to disable percontext preemption granularity control
1055	 * until D0 which is the default case so this is equivalent to
1056	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1057	 */
1058	if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
1059		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1060			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1061	}
1062
1063	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1064		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1065		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1066			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1067	}
1068
1069	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1070	 * involving this register should also be added to WA batch as required.
1071	 */
1072	if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1073		/* WaDisableLSQCROPERFforOCL:skl */
1074		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1075			   GEN8_LQSC_RO_PERF_DIS);
1076
1077	/* WaEnableGapsTsvCreditFix:skl */
1078	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1079		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1080					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1081	}
1082
1083	/* WaDisablePowerCompilerClockGating:skl */
1084	if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1085		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1086				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1087
1088	/* This is tied to WaForceContextSaveRestoreNonCoherent */
1089	if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
1090		/*
1091		 *Use Force Non-Coherent whenever executing a 3D context. This
1092		 * is a workaround for a possible hang in the unlikely event
1093		 * a TLB invalidation occurs during a PSD flush.
1094		 */
1095		/* WaForceEnableNonCoherent:skl */
1096		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1097				  HDC_FORCE_NON_COHERENT);
1098
1099		/* WaDisableHDCInvalidation:skl */
1100		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1101			   BDW_DISABLE_HDC_INVALIDATION);
1102	}
1103
1104	/* WaBarrierPerformanceFixDisable:skl */
1105	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1106		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1107				  HDC_FENCE_DEST_SLM_DISABLE |
1108				  HDC_BARRIER_PERFORMANCE_DISABLE);
1109
1110	/* WaDisableSbeCacheDispatchPortSharing:skl */
1111	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1112		WA_SET_BIT_MASKED(
1113			GEN7_HALF_SLICE_CHICKEN1,
1114			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1115
1116	/* WaDisableLSQCROPERFforOCL:skl */
1117	ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
1118	if (ret)
1119		return ret;
1120
1121	return skl_tune_iz_hashing(ring);
1122}
1123
1124static int bxt_init_workarounds(struct intel_engine_cs *ring)
1125{
 
1126	int ret;
1127	struct drm_device *dev = ring->dev;
1128	struct drm_i915_private *dev_priv = dev->dev_private;
1129
1130	ret = gen9_init_workarounds(ring);
1131	if (ret)
1132		return ret;
1133
1134	/* WaStoreMultiplePTEenable:bxt */
1135	/* This is a requirement according to Hardware specification */
1136	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1137		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1138
1139	/* WaSetClckGatingDisableMedia:bxt */
1140	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1141		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1142					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1143	}
1144
1145	/* WaDisableThreadStallDopClockGating:bxt */
1146	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1147			  STALL_DOP_GATING_DISABLE);
1148
 
 
 
 
 
 
1149	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1150	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1151		WA_SET_BIT_MASKED(
1152			GEN7_HALF_SLICE_CHICKEN1,
1153			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1154	}
1155
1156	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1157	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1158	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1159	/* WaDisableLSQCROPERFforOCL:bxt */
1160	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1161		ret = wa_ring_whitelist_reg(ring, GEN9_CS_DEBUG_MODE1);
1162		if (ret)
1163			return ret;
1164
1165		ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
1166		if (ret)
1167			return ret;
1168	}
1169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170	return 0;
1171}
1172
1173int init_workarounds_ring(struct intel_engine_cs *ring)
1174{
1175	struct drm_device *dev = ring->dev;
1176	struct drm_i915_private *dev_priv = dev->dev_private;
1177
1178	WARN_ON(ring->id != RCS);
1179
1180	dev_priv->workarounds.count = 0;
1181	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1182
1183	if (IS_BROADWELL(dev))
1184		return bdw_init_workarounds(ring);
 
 
 
1185
1186	if (IS_CHERRYVIEW(dev))
1187		return chv_init_workarounds(ring);
1188
1189	if (IS_SKYLAKE(dev))
1190		return skl_init_workarounds(ring);
1191
1192	if (IS_BROXTON(dev))
1193		return bxt_init_workarounds(ring);
1194
1195	return 0;
1196}
1197
1198static int init_render_ring(struct intel_engine_cs *ring)
1199{
1200	struct drm_device *dev = ring->dev;
1201	struct drm_i915_private *dev_priv = dev->dev_private;
1202	int ret = init_ring_common(ring);
1203	if (ret)
1204		return ret;
1205
1206	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1207	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1208		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1209
1210	/* We need to disable the AsyncFlip performance optimisations in order
1211	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1212	 * programmed to '1' on all products.
1213	 *
1214	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1215	 */
1216	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1217		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1218
1219	/* Required for the hardware to program scanline values for waiting */
1220	/* WaEnableFlushTlbInvalidationMode:snb */
1221	if (INTEL_INFO(dev)->gen == 6)
1222		I915_WRITE(GFX_MODE,
1223			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1224
1225	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1226	if (IS_GEN7(dev))
1227		I915_WRITE(GFX_MODE_GEN7,
1228			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1229			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1230
1231	if (IS_GEN6(dev)) {
1232		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1233		 * "If this bit is set, STCunit will have LRA as replacement
1234		 *  policy. [...] This bit must be reset.  LRA replacement
1235		 *  policy is not supported."
1236		 */
1237		I915_WRITE(CACHE_MODE_0,
1238			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1239	}
1240
1241	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1242		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1243
1244	if (HAS_L3_DPF(dev))
1245		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1246
1247	return init_workarounds_ring(ring);
1248}
1249
1250static void render_ring_cleanup(struct intel_engine_cs *ring)
1251{
1252	struct drm_device *dev = ring->dev;
1253	struct drm_i915_private *dev_priv = dev->dev_private;
1254
1255	if (dev_priv->semaphore_obj) {
1256		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1257		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1258		dev_priv->semaphore_obj = NULL;
1259	}
1260
1261	intel_fini_pipe_control(ring);
1262}
1263
1264static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1265			   unsigned int num_dwords)
1266{
1267#define MBOX_UPDATE_DWORDS 8
1268	struct intel_engine_cs *signaller = signaller_req->ring;
1269	struct drm_device *dev = signaller->dev;
1270	struct drm_i915_private *dev_priv = dev->dev_private;
1271	struct intel_engine_cs *waiter;
1272	int i, ret, num_rings;
1273
1274	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1275	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1276#undef MBOX_UPDATE_DWORDS
1277
1278	ret = intel_ring_begin(signaller_req, num_dwords);
1279	if (ret)
1280		return ret;
1281
1282	for_each_ring(waiter, dev_priv, i) {
1283		u32 seqno;
1284		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1285		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1286			continue;
1287
1288		seqno = i915_gem_request_get_seqno(signaller_req);
1289		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1290		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1291					   PIPE_CONTROL_QW_WRITE |
1292					   PIPE_CONTROL_FLUSH_ENABLE);
1293		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1294		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1295		intel_ring_emit(signaller, seqno);
1296		intel_ring_emit(signaller, 0);
1297		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1298					   MI_SEMAPHORE_TARGET(waiter->id));
1299		intel_ring_emit(signaller, 0);
1300	}
1301
1302	return 0;
1303}
1304
1305static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1306			   unsigned int num_dwords)
1307{
1308#define MBOX_UPDATE_DWORDS 6
1309	struct intel_engine_cs *signaller = signaller_req->ring;
1310	struct drm_device *dev = signaller->dev;
1311	struct drm_i915_private *dev_priv = dev->dev_private;
1312	struct intel_engine_cs *waiter;
1313	int i, ret, num_rings;
1314
1315	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1316	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1317#undef MBOX_UPDATE_DWORDS
1318
1319	ret = intel_ring_begin(signaller_req, num_dwords);
1320	if (ret)
1321		return ret;
1322
1323	for_each_ring(waiter, dev_priv, i) {
1324		u32 seqno;
1325		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1326		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1327			continue;
1328
1329		seqno = i915_gem_request_get_seqno(signaller_req);
1330		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1331					   MI_FLUSH_DW_OP_STOREDW);
1332		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1333					   MI_FLUSH_DW_USE_GTT);
1334		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1335		intel_ring_emit(signaller, seqno);
1336		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1337					   MI_SEMAPHORE_TARGET(waiter->id));
1338		intel_ring_emit(signaller, 0);
1339	}
1340
1341	return 0;
1342}
1343
1344static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1345		       unsigned int num_dwords)
1346{
1347	struct intel_engine_cs *signaller = signaller_req->ring;
1348	struct drm_device *dev = signaller->dev;
1349	struct drm_i915_private *dev_priv = dev->dev_private;
1350	struct intel_engine_cs *useless;
1351	int i, ret, num_rings;
1352
1353#define MBOX_UPDATE_DWORDS 3
1354	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1355	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1356#undef MBOX_UPDATE_DWORDS
1357
1358	ret = intel_ring_begin(signaller_req, num_dwords);
1359	if (ret)
1360		return ret;
1361
1362	for_each_ring(useless, dev_priv, i) {
1363		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1364
 
1365		if (i915_mmio_reg_valid(mbox_reg)) {
1366			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1367
1368			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1369			intel_ring_emit_reg(signaller, mbox_reg);
1370			intel_ring_emit(signaller, seqno);
1371		}
1372	}
 
 
 
 
 
1373
1374	/* If num_dwords was rounded, make sure the tail pointer is correct */
1375	if (num_rings % 2 == 0)
1376		intel_ring_emit(signaller, MI_NOOP);
1377
1378	return 0;
 
 
1379}
1380
 
 
 
 
 
 
 
 
 
 
 
 
 
1381/**
1382 * gen6_add_request - Update the semaphore mailbox registers
1383 *
1384 * @request - request to write to the ring
1385 *
1386 * Update the mailbox registers in the *other* rings with the current seqno.
1387 * This acts like a signal in the canonical semaphore.
1388 */
1389static int
1390gen6_add_request(struct drm_i915_gem_request *req)
1391{
1392	struct intel_engine_cs *ring = req->ring;
1393	int ret;
 
1394
1395	if (ring->semaphore.signal)
1396		ret = ring->semaphore.signal(req, 4);
1397	else
1398		ret = intel_ring_begin(req, 4);
1399
1400	if (ret)
1401		return ret;
1402
1403	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1404	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1405	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1406	intel_ring_emit(ring, MI_USER_INTERRUPT);
1407	__intel_ring_advance(ring);
 
 
 
 
 
 
1408
1409	return 0;
1410}
1411
1412static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1413					      u32 seqno)
1414{
1415	struct drm_i915_private *dev_priv = dev->dev_private;
1416	return dev_priv->last_seqno < seqno;
1417}
1418
1419/**
1420 * intel_ring_sync - sync the waiter to the signaller on seqno
1421 *
1422 * @waiter - ring that is waiting
1423 * @signaller - ring which has, or will signal
1424 * @seqno - seqno which the waiter will block on
1425 */
1426
1427static int
1428gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1429	       struct intel_engine_cs *signaller,
1430	       u32 seqno)
1431{
1432	struct intel_engine_cs *waiter = waiter_req->ring;
1433	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
 
 
1434	int ret;
1435
1436	ret = intel_ring_begin(waiter_req, 4);
1437	if (ret)
1438		return ret;
1439
1440	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1441				MI_SEMAPHORE_GLOBAL_GTT |
1442				MI_SEMAPHORE_POLL |
1443				MI_SEMAPHORE_SAD_GTE_SDD);
1444	intel_ring_emit(waiter, seqno);
1445	intel_ring_emit(waiter,
1446			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1447	intel_ring_emit(waiter,
1448			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1449	intel_ring_advance(waiter);
 
 
 
 
 
 
 
1450	return 0;
1451}
1452
1453static int
1454gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1455	       struct intel_engine_cs *signaller,
1456	       u32 seqno)
1457{
1458	struct intel_engine_cs *waiter = waiter_req->ring;
1459	u32 dw1 = MI_SEMAPHORE_MBOX |
1460		  MI_SEMAPHORE_COMPARE |
1461		  MI_SEMAPHORE_REGISTER;
1462	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1463	int ret;
1464
1465	/* Throughout all of the GEM code, seqno passed implies our current
1466	 * seqno is >= the last seqno executed. However for hardware the
1467	 * comparison is strictly greater than.
1468	 */
1469	seqno -= 1;
1470
1471	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1472
1473	ret = intel_ring_begin(waiter_req, 4);
1474	if (ret)
1475		return ret;
1476
1477	/* If seqno wrap happened, omit the wait with no-ops */
1478	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1479		intel_ring_emit(waiter, dw1 | wait_mbox);
1480		intel_ring_emit(waiter, seqno);
1481		intel_ring_emit(waiter, 0);
1482		intel_ring_emit(waiter, MI_NOOP);
1483	} else {
1484		intel_ring_emit(waiter, MI_NOOP);
1485		intel_ring_emit(waiter, MI_NOOP);
1486		intel_ring_emit(waiter, MI_NOOP);
1487		intel_ring_emit(waiter, MI_NOOP);
1488	}
1489	intel_ring_advance(waiter);
1490
1491	return 0;
1492}
1493
1494#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1495do {									\
1496	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1497		 PIPE_CONTROL_DEPTH_STALL);				\
1498	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1499	intel_ring_emit(ring__, 0);							\
1500	intel_ring_emit(ring__, 0);							\
1501} while (0)
1502
1503static int
1504pc_render_add_request(struct drm_i915_gem_request *req)
1505{
1506	struct intel_engine_cs *ring = req->ring;
1507	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1508	int ret;
1509
1510	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1511	 * incoherent with writes to memory, i.e. completely fubar,
1512	 * so we need to use PIPE_NOTIFY instead.
 
1513	 *
1514	 * However, we also need to workaround the qword write
1515	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1516	 * memory before requesting an interrupt.
1517	 */
1518	ret = intel_ring_begin(req, 32);
1519	if (ret)
1520		return ret;
1521
1522	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1523			PIPE_CONTROL_WRITE_FLUSH |
1524			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1525	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1526	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1527	intel_ring_emit(ring, 0);
1528	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1529	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1530	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1531	scratch_addr += 2 * CACHELINE_BYTES;
1532	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1533	scratch_addr += 2 * CACHELINE_BYTES;
1534	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1535	scratch_addr += 2 * CACHELINE_BYTES;
1536	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1537	scratch_addr += 2 * CACHELINE_BYTES;
1538	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1539
1540	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1541			PIPE_CONTROL_WRITE_FLUSH |
1542			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1543			PIPE_CONTROL_NOTIFY);
1544	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1545	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1546	intel_ring_emit(ring, 0);
1547	__intel_ring_advance(ring);
1548
1549	return 0;
1550}
1551
1552static u32
1553gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1554{
 
 
1555	/* Workaround to force correct ordering between irq and seqno writes on
1556	 * ivb (and maybe also on snb) by reading from a CS register (like
1557	 * ACTHD) before reading the status page. */
1558	if (!lazy_coherency) {
1559		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1560		POSTING_READ(RING_ACTHD(ring->mmio_base));
1561	}
1562
1563	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1564}
1565
1566static u32
1567ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1568{
1569	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
 
 
 
1570}
1571
1572static void
1573ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1574{
1575	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1576}
1577
1578static u32
1579pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1580{
1581	return ring->scratch.cpu_page[0];
1582}
1583
1584static void
1585pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1586{
1587	ring->scratch.cpu_page[0] = seqno;
1588}
1589
1590static bool
1591gen5_ring_get_irq(struct intel_engine_cs *ring)
1592{
1593	struct drm_device *dev = ring->dev;
1594	struct drm_i915_private *dev_priv = dev->dev_private;
1595	unsigned long flags;
1596
1597	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1598		return false;
1599
1600	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1601	if (ring->irq_refcount++ == 0)
1602		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1603	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1604
1605	return true;
1606}
1607
1608static void
1609gen5_ring_put_irq(struct intel_engine_cs *ring)
1610{
1611	struct drm_device *dev = ring->dev;
1612	struct drm_i915_private *dev_priv = dev->dev_private;
1613	unsigned long flags;
1614
1615	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1616	if (--ring->irq_refcount == 0)
1617		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1618	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1619}
1620
1621static bool
1622i9xx_ring_get_irq(struct intel_engine_cs *ring)
1623{
1624	struct drm_device *dev = ring->dev;
1625	struct drm_i915_private *dev_priv = dev->dev_private;
1626	unsigned long flags;
1627
1628	if (!intel_irqs_enabled(dev_priv))
1629		return false;
1630
1631	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1632	if (ring->irq_refcount++ == 0) {
1633		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1634		I915_WRITE(IMR, dev_priv->irq_mask);
1635		POSTING_READ(IMR);
1636	}
1637	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1638
1639	return true;
1640}
1641
1642static void
1643i9xx_ring_put_irq(struct intel_engine_cs *ring)
1644{
1645	struct drm_device *dev = ring->dev;
1646	struct drm_i915_private *dev_priv = dev->dev_private;
1647	unsigned long flags;
1648
1649	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1650	if (--ring->irq_refcount == 0) {
1651		dev_priv->irq_mask |= ring->irq_enable_mask;
1652		I915_WRITE(IMR, dev_priv->irq_mask);
1653		POSTING_READ(IMR);
1654	}
1655	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1656}
1657
1658static bool
1659i8xx_ring_get_irq(struct intel_engine_cs *ring)
1660{
1661	struct drm_device *dev = ring->dev;
1662	struct drm_i915_private *dev_priv = dev->dev_private;
1663	unsigned long flags;
1664
1665	if (!intel_irqs_enabled(dev_priv))
1666		return false;
1667
1668	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1669	if (ring->irq_refcount++ == 0) {
1670		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1671		I915_WRITE16(IMR, dev_priv->irq_mask);
1672		POSTING_READ16(IMR);
1673	}
1674	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1675
1676	return true;
1677}
1678
1679static void
1680i8xx_ring_put_irq(struct intel_engine_cs *ring)
1681{
1682	struct drm_device *dev = ring->dev;
1683	struct drm_i915_private *dev_priv = dev->dev_private;
1684	unsigned long flags;
1685
1686	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1687	if (--ring->irq_refcount == 0) {
1688		dev_priv->irq_mask |= ring->irq_enable_mask;
1689		I915_WRITE16(IMR, dev_priv->irq_mask);
1690		POSTING_READ16(IMR);
1691	}
1692	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1693}
1694
1695static int
1696bsd_ring_flush(struct drm_i915_gem_request *req,
1697	       u32     invalidate_domains,
1698	       u32     flush_domains)
1699{
1700	struct intel_engine_cs *ring = req->ring;
1701	int ret;
1702
1703	ret = intel_ring_begin(req, 2);
1704	if (ret)
1705		return ret;
1706
1707	intel_ring_emit(ring, MI_FLUSH);
1708	intel_ring_emit(ring, MI_NOOP);
1709	intel_ring_advance(ring);
1710	return 0;
1711}
1712
1713static int
1714i9xx_add_request(struct drm_i915_gem_request *req)
1715{
1716	struct intel_engine_cs *ring = req->ring;
1717	int ret;
1718
1719	ret = intel_ring_begin(req, 4);
1720	if (ret)
1721		return ret;
1722
1723	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1724	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1725	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1726	intel_ring_emit(ring, MI_USER_INTERRUPT);
1727	__intel_ring_advance(ring);
1728
1729	return 0;
1730}
1731
1732static bool
1733gen6_ring_get_irq(struct intel_engine_cs *ring)
1734{
1735	struct drm_device *dev = ring->dev;
1736	struct drm_i915_private *dev_priv = dev->dev_private;
1737	unsigned long flags;
1738
1739	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1740		return false;
1741
1742	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1743	if (ring->irq_refcount++ == 0) {
1744		if (HAS_L3_DPF(dev) && ring->id == RCS)
1745			I915_WRITE_IMR(ring,
1746				       ~(ring->irq_enable_mask |
1747					 GT_PARITY_ERROR(dev)));
1748		else
1749			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1750		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1751	}
1752	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1753
1754	return true;
 
1755}
1756
1757static void
1758gen6_ring_put_irq(struct intel_engine_cs *ring)
1759{
1760	struct drm_device *dev = ring->dev;
1761	struct drm_i915_private *dev_priv = dev->dev_private;
1762	unsigned long flags;
1763
1764	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1765	if (--ring->irq_refcount == 0) {
1766		if (HAS_L3_DPF(dev) && ring->id == RCS)
1767			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1768		else
1769			I915_WRITE_IMR(ring, ~0);
1770		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1771	}
1772	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1773}
1774
1775static bool
1776hsw_vebox_get_irq(struct intel_engine_cs *ring)
1777{
1778	struct drm_device *dev = ring->dev;
1779	struct drm_i915_private *dev_priv = dev->dev_private;
1780	unsigned long flags;
1781
1782	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1783		return false;
1784
1785	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1786	if (ring->irq_refcount++ == 0) {
1787		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1788		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1789	}
1790	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1791
1792	return true;
 
1793}
1794
1795static void
1796hsw_vebox_put_irq(struct intel_engine_cs *ring)
1797{
1798	struct drm_device *dev = ring->dev;
1799	struct drm_i915_private *dev_priv = dev->dev_private;
1800	unsigned long flags;
1801
1802	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1803	if (--ring->irq_refcount == 0) {
1804		I915_WRITE_IMR(ring, ~0);
1805		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1806	}
1807	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1808}
1809
1810static bool
1811gen8_ring_get_irq(struct intel_engine_cs *ring)
1812{
1813	struct drm_device *dev = ring->dev;
1814	struct drm_i915_private *dev_priv = dev->dev_private;
1815	unsigned long flags;
1816
1817	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1818		return false;
1819
1820	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1821	if (ring->irq_refcount++ == 0) {
1822		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1823			I915_WRITE_IMR(ring,
1824				       ~(ring->irq_enable_mask |
1825					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1826		} else {
1827			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1828		}
1829		POSTING_READ(RING_IMR(ring->mmio_base));
1830	}
1831	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1832
1833	return true;
1834}
1835
1836static void
1837gen8_ring_put_irq(struct intel_engine_cs *ring)
1838{
1839	struct drm_device *dev = ring->dev;
1840	struct drm_i915_private *dev_priv = dev->dev_private;
1841	unsigned long flags;
1842
1843	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1844	if (--ring->irq_refcount == 0) {
1845		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1846			I915_WRITE_IMR(ring,
1847				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1848		} else {
1849			I915_WRITE_IMR(ring, ~0);
1850		}
1851		POSTING_READ(RING_IMR(ring->mmio_base));
1852	}
1853	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1854}
1855
1856static int
1857i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1858			 u64 offset, u32 length,
1859			 unsigned dispatch_flags)
1860{
1861	struct intel_engine_cs *ring = req->ring;
1862	int ret;
1863
1864	ret = intel_ring_begin(req, 2);
1865	if (ret)
1866		return ret;
1867
1868	intel_ring_emit(ring,
1869			MI_BATCH_BUFFER_START |
1870			MI_BATCH_GTT |
1871			(dispatch_flags & I915_DISPATCH_SECURE ?
1872			 0 : MI_BATCH_NON_SECURE_I965));
1873	intel_ring_emit(ring, offset);
1874	intel_ring_advance(ring);
1875
1876	return 0;
1877}
1878
1879/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1880#define I830_BATCH_LIMIT (256*1024)
1881#define I830_TLB_ENTRIES (2)
1882#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1883static int
1884i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1885			 u64 offset, u32 len,
1886			 unsigned dispatch_flags)
1887{
1888	struct intel_engine_cs *ring = req->ring;
1889	u32 cs_offset = ring->scratch.gtt_offset;
1890	int ret;
1891
1892	ret = intel_ring_begin(req, 6);
1893	if (ret)
1894		return ret;
1895
1896	/* Evict the invalid PTE TLBs */
1897	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1898	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1899	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1900	intel_ring_emit(ring, cs_offset);
1901	intel_ring_emit(ring, 0xdeadbeef);
1902	intel_ring_emit(ring, MI_NOOP);
1903	intel_ring_advance(ring);
1904
1905	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1906		if (len > I830_BATCH_LIMIT)
1907			return -ENOSPC;
1908
1909		ret = intel_ring_begin(req, 6 + 2);
1910		if (ret)
1911			return ret;
1912
1913		/* Blit the batch (which has now all relocs applied) to the
1914		 * stable batch scratch bo area (so that the CS never
1915		 * stumbles over its tlb invalidation bug) ...
1916		 */
1917		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1918		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
 
1919		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1920		intel_ring_emit(ring, cs_offset);
1921		intel_ring_emit(ring, 4096);
1922		intel_ring_emit(ring, offset);
1923
1924		intel_ring_emit(ring, MI_FLUSH);
1925		intel_ring_emit(ring, MI_NOOP);
1926		intel_ring_advance(ring);
1927
1928		/* ... and execute it. */
1929		offset = cs_offset;
1930	}
1931
1932	ret = intel_ring_begin(req, 2);
1933	if (ret)
1934		return ret;
1935
1936	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1937	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1938					0 : MI_BATCH_NON_SECURE));
1939	intel_ring_advance(ring);
1940
1941	return 0;
1942}
1943
1944static int
1945i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1946			 u64 offset, u32 len,
1947			 unsigned dispatch_flags)
1948{
1949	struct intel_engine_cs *ring = req->ring;
1950	int ret;
1951
1952	ret = intel_ring_begin(req, 2);
1953	if (ret)
1954		return ret;
1955
1956	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1957	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1958					0 : MI_BATCH_NON_SECURE));
1959	intel_ring_advance(ring);
1960
1961	return 0;
1962}
1963
1964static void cleanup_phys_status_page(struct intel_engine_cs *ring)
1965{
1966	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1967
1968	if (!dev_priv->status_page_dmah)
1969		return;
1970
1971	drm_pci_free(ring->dev, dev_priv->status_page_dmah);
1972	ring->status_page.page_addr = NULL;
1973}
1974
1975static void cleanup_status_page(struct intel_engine_cs *ring)
1976{
 
1977	struct drm_i915_gem_object *obj;
1978
1979	obj = ring->status_page.obj;
1980	if (obj == NULL)
1981		return;
1982
1983	kunmap(sg_page(obj->pages->sgl));
1984	i915_gem_object_ggtt_unpin(obj);
1985	drm_gem_object_unreference(&obj->base);
1986	ring->status_page.obj = NULL;
1987}
1988
1989static int init_status_page(struct intel_engine_cs *ring)
1990{
1991	struct drm_i915_gem_object *obj = ring->status_page.obj;
1992
1993	if (obj == NULL) {
1994		unsigned flags;
1995		int ret;
1996
1997		obj = i915_gem_alloc_object(ring->dev, 4096);
1998		if (obj == NULL) {
1999			DRM_ERROR("Failed to allocate status page\n");
2000			return -ENOMEM;
2001		}
2002
2003		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2004		if (ret)
2005			goto err_unref;
2006
2007		flags = 0;
2008		if (!HAS_LLC(ring->dev))
2009			/* On g33, we cannot place HWS above 256MiB, so
2010			 * restrict its pinning to the low mappable arena.
2011			 * Though this restriction is not documented for
2012			 * gen4, gen5, or byt, they also behave similarly
2013			 * and hang if the HWS is placed at the top of the
2014			 * GTT. To generalise, it appears that all !llc
2015			 * platforms have issues with us placing the HWS
2016			 * above the mappable region (even though we never
2017			 * actualy map it).
2018			 */
2019			flags |= PIN_MAPPABLE;
2020		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2021		if (ret) {
2022err_unref:
2023			drm_gem_object_unreference(&obj->base);
2024			return ret;
2025		}
2026
2027		ring->status_page.obj = obj;
 
 
 
2028	}
2029
2030	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2031	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
2032	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2033
2034	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2035			ring->name, ring->status_page.gfx_addr);
2036
2037	return 0;
2038}
 
 
 
2039
2040static int init_phys_status_page(struct intel_engine_cs *ring)
2041{
2042	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
2043
2044	if (!dev_priv->status_page_dmah) {
2045		dev_priv->status_page_dmah =
2046			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
2047		if (!dev_priv->status_page_dmah)
2048			return -ENOMEM;
2049	}
2050
2051	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2052	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
 
2053
 
 
2054	return 0;
2055}
2056
2057void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2058{
2059	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2060		vunmap(ringbuf->virtual_start);
2061	else
2062		iounmap(ringbuf->virtual_start);
2063	ringbuf->virtual_start = NULL;
2064	ringbuf->vma = NULL;
2065	i915_gem_object_ggtt_unpin(ringbuf->obj);
2066}
2067
2068static u32 *vmap_obj(struct drm_i915_gem_object *obj)
2069{
2070	struct sg_page_iter sg_iter;
2071	struct page **pages;
2072	void *addr;
2073	int i;
2074
2075	pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2076	if (pages == NULL)
2077		return NULL;
2078
2079	i = 0;
2080	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2081		pages[i++] = sg_page_iter_page(&sg_iter);
2082
2083	addr = vmap(pages, i, 0, PAGE_KERNEL);
2084	drm_free_large(pages);
2085
2086	return addr;
2087}
2088
2089int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2090				     struct intel_ringbuffer *ringbuf)
2091{
2092	struct drm_i915_private *dev_priv = to_i915(dev);
2093	struct drm_i915_gem_object *obj = ringbuf->obj;
2094	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2095	unsigned flags = PIN_OFFSET_BIAS | 4096;
 
 
 
2096	int ret;
2097
2098	if (HAS_LLC(dev_priv) && !obj->stolen) {
2099		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2100		if (ret)
2101			return ret;
2102
2103		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2104		if (ret) {
2105			i915_gem_object_ggtt_unpin(obj);
2106			return ret;
2107		}
2108
2109		ringbuf->virtual_start = vmap_obj(obj);
2110		if (ringbuf->virtual_start == NULL) {
2111			i915_gem_object_ggtt_unpin(obj);
2112			return -ENOMEM;
2113		}
2114	} else {
2115		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2116					    flags | PIN_MAPPABLE);
2117		if (ret)
2118			return ret;
2119
2120		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2121		if (ret) {
2122			i915_gem_object_ggtt_unpin(obj);
 
 
 
2123			return ret;
2124		}
2125
2126		/* Access through the GTT requires the device to be awake. */
2127		assert_rpm_wakelock_held(dev_priv);
2128
2129		ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2130						    i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2131		if (ringbuf->virtual_start == NULL) {
2132			i915_gem_object_ggtt_unpin(obj);
2133			return -EINVAL;
2134		}
2135	}
2136
2137	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
 
 
2138
 
 
 
 
 
 
 
 
2139	return 0;
 
 
 
 
2140}
2141
2142static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2143{
2144	drm_gem_object_unreference(&ringbuf->obj->base);
2145	ringbuf->obj = NULL;
 
 
 
 
 
 
 
 
2146}
2147
2148static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2149				      struct intel_ringbuffer *ringbuf)
2150{
2151	struct drm_i915_gem_object *obj;
 
2152
2153	obj = NULL;
2154	if (!HAS_LLC(dev))
2155		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2156	if (obj == NULL)
2157		obj = i915_gem_alloc_object(dev, ringbuf->size);
2158	if (obj == NULL)
2159		return -ENOMEM;
2160
2161	/* mark ring buffers as read-only from GPU side by default */
2162	obj->gt_ro = 1;
2163
2164	ringbuf->obj = obj;
 
 
 
 
2165
2166	return 0;
 
 
2167}
2168
2169struct intel_ringbuffer *
2170intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2171{
2172	struct intel_ringbuffer *ring;
2173	int ret;
 
 
 
2174
2175	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2176	if (ring == NULL) {
2177		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2178				 engine->name);
2179		return ERR_PTR(-ENOMEM);
2180	}
2181
2182	ring->ring = engine;
2183	list_add(&ring->link, &engine->buffers);
 
2184
2185	ring->size = size;
2186	/* Workaround an erratum on the i830 which causes a hang if
2187	 * the TAIL pointer points to within the last 2 cachelines
2188	 * of the buffer.
2189	 */
2190	ring->effective_size = size;
2191	if (IS_I830(engine->dev) || IS_845G(engine->dev))
2192		ring->effective_size -= 2 * CACHELINE_BYTES;
2193
2194	ring->last_retired_head = -1;
2195	intel_ring_update_space(ring);
2196
2197	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2198	if (ret) {
2199		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2200				 engine->name, ret);
2201		list_del(&ring->link);
2202		kfree(ring);
2203		return ERR_PTR(ret);
2204	}
 
2205
2206	return ring;
2207}
2208
2209void
2210intel_ringbuffer_free(struct intel_ringbuffer *ring)
2211{
2212	intel_destroy_ringbuffer_obj(ring);
2213	list_del(&ring->link);
 
 
 
2214	kfree(ring);
2215}
2216
2217static int intel_init_ring_buffer(struct drm_device *dev,
2218				  struct intel_engine_cs *ring)
2219{
2220	struct intel_ringbuffer *ringbuf;
2221	int ret;
2222
2223	WARN_ON(ring->buffer);
2224
2225	ring->dev = dev;
2226	INIT_LIST_HEAD(&ring->active_list);
2227	INIT_LIST_HEAD(&ring->request_list);
2228	INIT_LIST_HEAD(&ring->execlist_queue);
2229	INIT_LIST_HEAD(&ring->buffers);
2230	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2231	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2232
2233	init_waitqueue_head(&ring->irq_queue);
2234
2235	ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2236	if (IS_ERR(ringbuf)) {
2237		ret = PTR_ERR(ringbuf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2238		goto error;
2239	}
2240	ring->buffer = ringbuf;
2241
2242	if (I915_NEED_GFX_HWS(dev)) {
2243		ret = init_status_page(ring);
 
2244		if (ret)
2245			goto error;
2246	} else {
2247		WARN_ON(ring->id != RCS);
2248		ret = init_phys_status_page(ring);
2249		if (ret)
2250			goto error;
2251	}
2252
2253	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2254	if (ret) {
2255		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2256				ring->name, ret);
2257		intel_destroy_ringbuffer_obj(ringbuf);
2258		goto error;
2259	}
2260
2261	ret = i915_cmd_parser_init_ring(ring);
2262	if (ret)
2263		goto error;
2264
2265	return 0;
2266
2267error:
2268	intel_cleanup_ring_buffer(ring);
2269	return ret;
2270}
2271
2272void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2273{
2274	struct drm_i915_private *dev_priv;
2275
2276	if (!intel_ring_initialized(ring))
2277		return;
2278
2279	dev_priv = to_i915(ring->dev);
2280
2281	if (ring->buffer) {
2282		intel_stop_ring_buffer(ring);
2283		WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2284
2285		intel_unpin_ringbuffer_obj(ring->buffer);
2286		intel_ringbuffer_free(ring->buffer);
2287		ring->buffer = NULL;
2288	}
2289
2290	if (ring->cleanup)
2291		ring->cleanup(ring);
2292
2293	if (I915_NEED_GFX_HWS(ring->dev)) {
2294		cleanup_status_page(ring);
 
2295	} else {
2296		WARN_ON(ring->id != RCS);
2297		cleanup_phys_status_page(ring);
2298	}
2299
2300	i915_cmd_parser_fini_ring(ring);
2301	i915_gem_batch_pool_fini(&ring->batch_pool);
2302	ring->dev = NULL;
 
 
 
 
2303}
2304
2305static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2306{
2307	struct intel_ringbuffer *ringbuf = ring->buffer;
2308	struct drm_i915_gem_request *request;
2309	unsigned space;
2310	int ret;
2311
2312	if (intel_ring_space(ringbuf) >= n)
2313		return 0;
 
 
 
2314
2315	/* The whole point of reserving space is to not wait! */
2316	WARN_ON(ringbuf->reserved_in_use);
 
2317
2318	list_for_each_entry(request, &ring->request_list, list) {
2319		space = __intel_ring_space(request->postfix, ringbuf->tail,
2320					   ringbuf->size);
2321		if (space >= n)
2322			break;
2323	}
2324
2325	if (WARN_ON(&request->list == &ring->request_list))
2326		return -ENOSPC;
2327
2328	ret = i915_wait_request(request);
2329	if (ret)
2330		return ret;
2331
2332	ringbuf->space = space;
2333	return 0;
2334}
2335
2336static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2337{
2338	uint32_t __iomem *virt;
2339	int rem = ringbuf->size - ringbuf->tail;
 
2340
2341	virt = ringbuf->virtual_start + ringbuf->tail;
2342	rem /= 4;
2343	while (rem--)
2344		iowrite32(MI_NOOP, virt++);
2345
2346	ringbuf->tail = 0;
2347	intel_ring_update_space(ringbuf);
2348}
2349
2350int intel_ring_idle(struct intel_engine_cs *ring)
2351{
2352	struct drm_i915_gem_request *req;
2353
2354	/* Wait upon the last request to be completed */
2355	if (list_empty(&ring->request_list))
2356		return 0;
2357
2358	req = list_entry(ring->request_list.prev,
2359			struct drm_i915_gem_request,
2360			list);
2361
2362	/* Make sure we do not trigger any retires */
2363	return __i915_wait_request(req,
2364				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2365				   to_i915(ring->dev)->mm.interruptible,
2366				   NULL, NULL);
2367}
2368
2369int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2370{
2371	request->ringbuf = request->ring->buffer;
2372	return 0;
2373}
2374
2375int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2376{
2377	/*
2378	 * The first call merely notes the reserve request and is common for
2379	 * all back ends. The subsequent localised _begin() call actually
2380	 * ensures that the reservation is available. Without the begin, if
2381	 * the request creator immediately submitted the request without
2382	 * adding any commands to it then there might not actually be
2383	 * sufficient room for the submission commands.
 
2384	 */
2385	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2386
2387	return intel_ring_begin(request, 0);
2388}
2389
2390void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2391{
2392	WARN_ON(ringbuf->reserved_size);
2393	WARN_ON(ringbuf->reserved_in_use);
2394
2395	ringbuf->reserved_size = size;
2396}
2397
2398void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2399{
2400	WARN_ON(ringbuf->reserved_in_use);
2401
2402	ringbuf->reserved_size   = 0;
2403	ringbuf->reserved_in_use = false;
2404}
2405
2406void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2407{
2408	WARN_ON(ringbuf->reserved_in_use);
 
 
2409
2410	ringbuf->reserved_in_use = true;
2411	ringbuf->reserved_tail   = ringbuf->tail;
2412}
2413
2414void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2415{
2416	WARN_ON(!ringbuf->reserved_in_use);
2417	if (ringbuf->tail > ringbuf->reserved_tail) {
2418		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2419		     "request reserved size too small: %d vs %d!\n",
2420		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2421	} else {
2422		/*
2423		 * The ring was wrapped while the reserved space was in use.
2424		 * That means that some unknown amount of the ring tail was
2425		 * no-op filled and skipped. Thus simply adding the ring size
2426		 * to the tail and doing the above space check will not work.
2427		 * Rather than attempt to track how much tail was skipped,
2428		 * it is much simpler to say that also skipping the sanity
2429		 * check every once in a while is not a big issue.
2430		 */
2431	}
2432
2433	ringbuf->reserved_size   = 0;
2434	ringbuf->reserved_in_use = false;
2435}
2436
2437static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2438{
2439	struct intel_ringbuffer *ringbuf = ring->buffer;
2440	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2441	int remain_actual = ringbuf->size - ringbuf->tail;
2442	int ret, total_bytes, wait_bytes = 0;
 
2443	bool need_wrap = false;
2444
2445	if (ringbuf->reserved_in_use)
2446		total_bytes = bytes;
2447	else
2448		total_bytes = bytes + ringbuf->reserved_size;
2449
2450	if (unlikely(bytes > remain_usable)) {
2451		/*
2452		 * Not enough space for the basic request. So need to flush
2453		 * out the remainder and then wait for base + reserved.
2454		 */
2455		wait_bytes = remain_actual + total_bytes;
2456		need_wrap = true;
 
 
 
 
 
 
 
 
2457	} else {
2458		if (unlikely(total_bytes > remain_usable)) {
2459			/*
2460			 * The base request will fit but the reserved space
2461			 * falls off the end. So don't need an immediate wrap
2462			 * and only need to effectively wait for the reserved
2463			 * size space from the start of ringbuffer.
2464			 */
2465			wait_bytes = remain_actual + ringbuf->reserved_size;
2466		} else if (total_bytes > ringbuf->space) {
2467			/* No wrapping required, just waiting. */
2468			wait_bytes = total_bytes;
2469		}
2470	}
2471
2472	if (wait_bytes) {
2473		ret = ring_wait_for_space(ring, wait_bytes);
2474		if (unlikely(ret))
2475			return ret;
2476
2477		if (need_wrap)
2478			__wrap_ring_buffer(ringbuf);
2479	}
2480
2481	return 0;
2482}
2483
2484int intel_ring_begin(struct drm_i915_gem_request *req,
2485		     int num_dwords)
2486{
2487	struct intel_engine_cs *ring;
2488	struct drm_i915_private *dev_priv;
2489	int ret;
2490
2491	WARN_ON(req == NULL);
2492	ring = req->ring;
2493	dev_priv = ring->dev->dev_private;
2494
2495	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2496				   dev_priv->mm.interruptible);
2497	if (ret)
2498		return ret;
2499
2500	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2501	if (ret)
2502		return ret;
2503
2504	ring->buffer->space -= num_dwords * sizeof(uint32_t);
 
2505	return 0;
2506}
2507
2508/* Align the ring tail to a cacheline boundary */
2509int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2510{
2511	struct intel_engine_cs *ring = req->ring;
2512	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
 
2513	int ret;
2514
2515	if (num_dwords == 0)
2516		return 0;
2517
2518	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2519	ret = intel_ring_begin(req, num_dwords);
2520	if (ret)
2521		return ret;
2522
2523	while (num_dwords--)
2524		intel_ring_emit(ring, MI_NOOP);
2525
2526	intel_ring_advance(ring);
2527
2528	return 0;
2529}
2530
2531void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2532{
2533	struct drm_device *dev = ring->dev;
2534	struct drm_i915_private *dev_priv = dev->dev_private;
2535
2536	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2537		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2538		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2539		if (HAS_VEBOX(dev))
2540			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2541	}
2542
2543	ring->set_seqno(ring, seqno);
2544	ring->hangcheck.seqno = seqno;
2545}
2546
2547static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2548				     u32 value)
2549{
2550	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2551
2552       /* Every tail move must follow the sequence below */
2553
2554	/* Disable notification that the ring is IDLE. The GT
2555	 * will then assume that it is busy and bring it out of rc6.
2556	 */
2557	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2558		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2559
2560	/* Clear the context id. Here be magic! */
2561	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2562
2563	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2564	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2565		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2566		     50))
 
 
2567		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2568
2569	/* Now that the ring is fully powered up, update the tail */
2570	I915_WRITE_TAIL(ring, value);
2571	POSTING_READ(RING_TAIL(ring->mmio_base));
2572
2573	/* Let the ring send IDLE messages to the GT again,
2574	 * and so let it sleep to conserve power when idle.
2575	 */
2576	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2577		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
 
 
2578}
2579
2580static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2581			       u32 invalidate, u32 flush)
2582{
2583	struct intel_engine_cs *ring = req->ring;
2584	uint32_t cmd;
2585	int ret;
2586
2587	ret = intel_ring_begin(req, 4);
2588	if (ret)
2589		return ret;
2590
2591	cmd = MI_FLUSH_DW;
2592	if (INTEL_INFO(ring->dev)->gen >= 8)
2593		cmd += 1;
2594
2595	/* We always require a command barrier so that subsequent
2596	 * commands, such as breadcrumb interrupts, are strictly ordered
2597	 * wrt the contents of the write cache being flushed to memory
2598	 * (and thus being coherent from the CPU).
2599	 */
2600	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2601
2602	/*
2603	 * Bspec vol 1c.5 - video engine command streamer:
2604	 * "If ENABLED, all TLBs will be invalidated once the flush
2605	 * operation is complete. This bit is only valid when the
2606	 * Post-Sync Operation field is a value of 1h or 3h."
2607	 */
2608	if (invalidate & I915_GEM_GPU_DOMAINS)
2609		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2610
2611	intel_ring_emit(ring, cmd);
2612	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2613	if (INTEL_INFO(ring->dev)->gen >= 8) {
2614		intel_ring_emit(ring, 0); /* upper addr */
2615		intel_ring_emit(ring, 0); /* value */
2616	} else  {
2617		intel_ring_emit(ring, 0);
2618		intel_ring_emit(ring, MI_NOOP);
2619	}
2620	intel_ring_advance(ring);
2621	return 0;
2622}
2623
2624static int
2625gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2626			      u64 offset, u32 len,
2627			      unsigned dispatch_flags)
2628{
2629	struct intel_engine_cs *ring = req->ring;
2630	bool ppgtt = USES_PPGTT(ring->dev) &&
2631			!(dispatch_flags & I915_DISPATCH_SECURE);
2632	int ret;
2633
2634	ret = intel_ring_begin(req, 4);
2635	if (ret)
2636		return ret;
2637
2638	/* FIXME(BDW): Address space and security selectors. */
2639	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2640			(dispatch_flags & I915_DISPATCH_RS ?
2641			 MI_BATCH_RESOURCE_STREAMER : 0));
2642	intel_ring_emit(ring, lower_32_bits(offset));
2643	intel_ring_emit(ring, upper_32_bits(offset));
2644	intel_ring_emit(ring, MI_NOOP);
2645	intel_ring_advance(ring);
2646
2647	return 0;
2648}
2649
2650static int
2651hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2652			     u64 offset, u32 len,
2653			     unsigned dispatch_flags)
2654{
2655	struct intel_engine_cs *ring = req->ring;
2656	int ret;
2657
2658	ret = intel_ring_begin(req, 2);
2659	if (ret)
2660		return ret;
2661
2662	intel_ring_emit(ring,
2663			MI_BATCH_BUFFER_START |
2664			(dispatch_flags & I915_DISPATCH_SECURE ?
2665			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2666			(dispatch_flags & I915_DISPATCH_RS ?
2667			 MI_BATCH_RESOURCE_STREAMER : 0));
2668	/* bit0-7 is the length on GEN6+ */
2669	intel_ring_emit(ring, offset);
2670	intel_ring_advance(ring);
2671
2672	return 0;
2673}
2674
2675static int
2676gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2677			      u64 offset, u32 len,
2678			      unsigned dispatch_flags)
2679{
2680	struct intel_engine_cs *ring = req->ring;
2681	int ret;
2682
2683	ret = intel_ring_begin(req, 2);
2684	if (ret)
2685		return ret;
2686
2687	intel_ring_emit(ring,
2688			MI_BATCH_BUFFER_START |
2689			(dispatch_flags & I915_DISPATCH_SECURE ?
2690			 0 : MI_BATCH_NON_SECURE_I965));
2691	/* bit0-7 is the length on GEN6+ */
2692	intel_ring_emit(ring, offset);
2693	intel_ring_advance(ring);
2694
2695	return 0;
2696}
2697
2698/* Blitter support (SandyBridge+) */
2699
2700static int gen6_ring_flush(struct drm_i915_gem_request *req,
2701			   u32 invalidate, u32 flush)
2702{
2703	struct intel_engine_cs *ring = req->ring;
2704	struct drm_device *dev = ring->dev;
2705	uint32_t cmd;
2706	int ret;
2707
2708	ret = intel_ring_begin(req, 4);
2709	if (ret)
2710		return ret;
2711
2712	cmd = MI_FLUSH_DW;
2713	if (INTEL_INFO(dev)->gen >= 8)
2714		cmd += 1;
2715
2716	/* We always require a command barrier so that subsequent
2717	 * commands, such as breadcrumb interrupts, are strictly ordered
2718	 * wrt the contents of the write cache being flushed to memory
2719	 * (and thus being coherent from the CPU).
2720	 */
2721	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2722
2723	/*
2724	 * Bspec vol 1c.3 - blitter engine command streamer:
2725	 * "If ENABLED, all TLBs will be invalidated once the flush
2726	 * operation is complete. This bit is only valid when the
2727	 * Post-Sync Operation field is a value of 1h or 3h."
2728	 */
2729	if (invalidate & I915_GEM_DOMAIN_RENDER)
2730		cmd |= MI_INVALIDATE_TLB;
2731	intel_ring_emit(ring, cmd);
2732	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2733	if (INTEL_INFO(dev)->gen >= 8) {
 
2734		intel_ring_emit(ring, 0); /* upper addr */
2735		intel_ring_emit(ring, 0); /* value */
2736	} else  {
2737		intel_ring_emit(ring, 0);
2738		intel_ring_emit(ring, MI_NOOP);
2739	}
2740	intel_ring_advance(ring);
2741
2742	return 0;
2743}
2744
2745int intel_init_render_ring_buffer(struct drm_device *dev)
 
2746{
2747	struct drm_i915_private *dev_priv = dev->dev_private;
2748	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2749	struct drm_i915_gem_object *obj;
2750	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2751
2752	ring->name = "render ring";
2753	ring->id = RCS;
2754	ring->exec_id = I915_EXEC_RENDER;
2755	ring->mmio_base = RENDER_RING_BASE;
2756
2757	if (INTEL_INFO(dev)->gen >= 8) {
2758		if (i915_semaphore_is_enabled(dev)) {
2759			obj = i915_gem_alloc_object(dev, 4096);
2760			if (obj == NULL) {
2761				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2762				i915.semaphores = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2763			} else {
2764				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2765				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2766				if (ret != 0) {
2767					drm_gem_object_unreference(&obj->base);
2768					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2769					i915.semaphores = 0;
2770				} else
2771					dev_priv->semaphore_obj = obj;
2772			}
2773		}
2774
2775		ring->init_context = intel_rcs_ctx_init;
2776		ring->add_request = gen6_add_request;
2777		ring->flush = gen8_render_ring_flush;
2778		ring->irq_get = gen8_ring_get_irq;
2779		ring->irq_put = gen8_ring_put_irq;
2780		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2781		ring->get_seqno = gen6_ring_get_seqno;
2782		ring->set_seqno = ring_set_seqno;
2783		if (i915_semaphore_is_enabled(dev)) {
2784			WARN_ON(!dev_priv->semaphore_obj);
2785			ring->semaphore.sync_to = gen8_ring_sync;
2786			ring->semaphore.signal = gen8_rcs_signal;
2787			GEN8_RING_SEMAPHORE_INIT;
2788		}
2789	} else if (INTEL_INFO(dev)->gen >= 6) {
2790		ring->init_context = intel_rcs_ctx_init;
2791		ring->add_request = gen6_add_request;
2792		ring->flush = gen7_render_ring_flush;
2793		if (INTEL_INFO(dev)->gen == 6)
2794			ring->flush = gen6_render_ring_flush;
2795		ring->irq_get = gen6_ring_get_irq;
2796		ring->irq_put = gen6_ring_put_irq;
2797		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2798		ring->get_seqno = gen6_ring_get_seqno;
2799		ring->set_seqno = ring_set_seqno;
2800		if (i915_semaphore_is_enabled(dev)) {
2801			ring->semaphore.sync_to = gen6_ring_sync;
2802			ring->semaphore.signal = gen6_signal;
2803			/*
2804			 * The current semaphore is only applied on pre-gen8
2805			 * platform.  And there is no VCS2 ring on the pre-gen8
2806			 * platform. So the semaphore between RCS and VCS2 is
2807			 * initialized as INVALID.  Gen8 will initialize the
2808			 * sema between VCS2 and RCS later.
2809			 */
2810			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2811			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2812			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2813			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2814			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2815			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2816			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2817			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2818			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2819			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2820		}
2821	} else if (IS_GEN5(dev)) {
2822		ring->add_request = pc_render_add_request;
2823		ring->flush = gen4_render_ring_flush;
2824		ring->get_seqno = pc_render_get_seqno;
2825		ring->set_seqno = pc_render_set_seqno;
2826		ring->irq_get = gen5_ring_get_irq;
2827		ring->irq_put = gen5_ring_put_irq;
2828		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2829					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2830	} else {
2831		ring->add_request = i9xx_add_request;
2832		if (INTEL_INFO(dev)->gen < 4)
2833			ring->flush = gen2_render_ring_flush;
2834		else
2835			ring->flush = gen4_render_ring_flush;
2836		ring->get_seqno = ring_get_seqno;
2837		ring->set_seqno = ring_set_seqno;
2838		if (IS_GEN2(dev)) {
2839			ring->irq_get = i8xx_ring_get_irq;
2840			ring->irq_put = i8xx_ring_put_irq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2841		} else {
2842			ring->irq_get = i9xx_ring_get_irq;
2843			ring->irq_put = i9xx_ring_put_irq;
 
2844		}
2845		ring->irq_enable_mask = I915_USER_INTERRUPT;
2846	}
2847	ring->write_tail = ring_write_tail;
2848
2849	if (IS_HASWELL(dev))
2850		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2851	else if (IS_GEN8(dev))
2852		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2853	else if (INTEL_INFO(dev)->gen >= 6)
2854		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2855	else if (INTEL_INFO(dev)->gen >= 4)
2856		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2857	else if (IS_I830(dev) || IS_845G(dev))
2858		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2859	else
2860		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2861	ring->init_hw = init_render_ring;
2862	ring->cleanup = render_ring_cleanup;
2863
2864	/* Workaround batchbuffer to combat CS tlb bug. */
2865	if (HAS_BROKEN_CS_TLB(dev)) {
2866		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2867		if (obj == NULL) {
2868			DRM_ERROR("Failed to allocate batch bo\n");
2869			return -ENOMEM;
2870		}
2871
2872		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2873		if (ret != 0) {
2874			drm_gem_object_unreference(&obj->base);
2875			DRM_ERROR("Failed to ping batch bo\n");
2876			return ret;
2877		}
2878
2879		ring->scratch.obj = obj;
2880		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2881	}
2882
2883	ret = intel_init_ring_buffer(dev, ring);
 
 
 
 
 
 
2884	if (ret)
2885		return ret;
2886
2887	if (INTEL_INFO(dev)->gen >= 5) {
2888		ret = intel_init_pipe_control(ring);
 
 
 
 
2889		if (ret)
2890			return ret;
2891	}
2892
2893	return 0;
2894}
2895
2896int intel_init_bsd_ring_buffer(struct drm_device *dev)
2897{
2898	struct drm_i915_private *dev_priv = dev->dev_private;
2899	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2900
2901	ring->name = "bsd ring";
2902	ring->id = VCS;
2903	ring->exec_id = I915_EXEC_BSD;
2904
2905	ring->write_tail = ring_write_tail;
2906	if (INTEL_INFO(dev)->gen >= 6) {
2907		ring->mmio_base = GEN6_BSD_RING_BASE;
2908		/* gen6 bsd needs a special wa for tail updates */
2909		if (IS_GEN6(dev))
2910			ring->write_tail = gen6_bsd_ring_write_tail;
2911		ring->flush = gen6_bsd_ring_flush;
2912		ring->add_request = gen6_add_request;
2913		ring->get_seqno = gen6_ring_get_seqno;
2914		ring->set_seqno = ring_set_seqno;
2915		if (INTEL_INFO(dev)->gen >= 8) {
2916			ring->irq_enable_mask =
2917				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2918			ring->irq_get = gen8_ring_get_irq;
2919			ring->irq_put = gen8_ring_put_irq;
2920			ring->dispatch_execbuffer =
2921				gen8_ring_dispatch_execbuffer;
2922			if (i915_semaphore_is_enabled(dev)) {
2923				ring->semaphore.sync_to = gen8_ring_sync;
2924				ring->semaphore.signal = gen8_xcs_signal;
2925				GEN8_RING_SEMAPHORE_INIT;
2926			}
2927		} else {
2928			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2929			ring->irq_get = gen6_ring_get_irq;
2930			ring->irq_put = gen6_ring_put_irq;
2931			ring->dispatch_execbuffer =
2932				gen6_ring_dispatch_execbuffer;
2933			if (i915_semaphore_is_enabled(dev)) {
2934				ring->semaphore.sync_to = gen6_ring_sync;
2935				ring->semaphore.signal = gen6_signal;
2936				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2937				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2938				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2939				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2940				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2941				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2942				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2943				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2944				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2945				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2946			}
2947		}
2948	} else {
2949		ring->mmio_base = BSD_RING_BASE;
2950		ring->flush = bsd_ring_flush;
2951		ring->add_request = i9xx_add_request;
2952		ring->get_seqno = ring_get_seqno;
2953		ring->set_seqno = ring_set_seqno;
2954		if (IS_GEN5(dev)) {
2955			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2956			ring->irq_get = gen5_ring_get_irq;
2957			ring->irq_put = gen5_ring_put_irq;
2958		} else {
2959			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2960			ring->irq_get = i9xx_ring_get_irq;
2961			ring->irq_put = i9xx_ring_put_irq;
2962		}
2963		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2964	}
2965	ring->init_hw = init_ring_common;
2966
2967	return intel_init_ring_buffer(dev, ring);
2968}
2969
2970/**
2971 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2972 */
2973int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2974{
2975	struct drm_i915_private *dev_priv = dev->dev_private;
2976	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2977
2978	ring->name = "bsd2 ring";
2979	ring->id = VCS2;
2980	ring->exec_id = I915_EXEC_BSD;
2981
2982	ring->write_tail = ring_write_tail;
2983	ring->mmio_base = GEN8_BSD2_RING_BASE;
2984	ring->flush = gen6_bsd_ring_flush;
2985	ring->add_request = gen6_add_request;
2986	ring->get_seqno = gen6_ring_get_seqno;
2987	ring->set_seqno = ring_set_seqno;
2988	ring->irq_enable_mask =
2989			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2990	ring->irq_get = gen8_ring_get_irq;
2991	ring->irq_put = gen8_ring_put_irq;
2992	ring->dispatch_execbuffer =
2993			gen8_ring_dispatch_execbuffer;
2994	if (i915_semaphore_is_enabled(dev)) {
2995		ring->semaphore.sync_to = gen8_ring_sync;
2996		ring->semaphore.signal = gen8_xcs_signal;
2997		GEN8_RING_SEMAPHORE_INIT;
2998	}
2999	ring->init_hw = init_ring_common;
3000
3001	return intel_init_ring_buffer(dev, ring);
3002}
3003
3004int intel_init_blt_ring_buffer(struct drm_device *dev)
3005{
3006	struct drm_i915_private *dev_priv = dev->dev_private;
3007	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
3008
3009	ring->name = "blitter ring";
3010	ring->id = BCS;
3011	ring->exec_id = I915_EXEC_BLT;
3012
3013	ring->mmio_base = BLT_RING_BASE;
3014	ring->write_tail = ring_write_tail;
3015	ring->flush = gen6_ring_flush;
3016	ring->add_request = gen6_add_request;
3017	ring->get_seqno = gen6_ring_get_seqno;
3018	ring->set_seqno = ring_set_seqno;
3019	if (INTEL_INFO(dev)->gen >= 8) {
3020		ring->irq_enable_mask =
3021			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3022		ring->irq_get = gen8_ring_get_irq;
3023		ring->irq_put = gen8_ring_put_irq;
3024		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3025		if (i915_semaphore_is_enabled(dev)) {
3026			ring->semaphore.sync_to = gen8_ring_sync;
3027			ring->semaphore.signal = gen8_xcs_signal;
3028			GEN8_RING_SEMAPHORE_INIT;
3029		}
3030	} else {
3031		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3032		ring->irq_get = gen6_ring_get_irq;
3033		ring->irq_put = gen6_ring_put_irq;
3034		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3035		if (i915_semaphore_is_enabled(dev)) {
3036			ring->semaphore.signal = gen6_signal;
3037			ring->semaphore.sync_to = gen6_ring_sync;
3038			/*
3039			 * The current semaphore is only applied on pre-gen8
3040			 * platform.  And there is no VCS2 ring on the pre-gen8
3041			 * platform. So the semaphore between BCS and VCS2 is
3042			 * initialized as INVALID.  Gen8 will initialize the
3043			 * sema between BCS and VCS2 later.
3044			 */
3045			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3046			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3047			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3048			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3049			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3050			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3051			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3052			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3053			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3054			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3055		}
3056	}
3057	ring->init_hw = init_ring_common;
3058
3059	return intel_init_ring_buffer(dev, ring);
3060}
3061
3062int intel_init_vebox_ring_buffer(struct drm_device *dev)
3063{
3064	struct drm_i915_private *dev_priv = dev->dev_private;
3065	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
3066
3067	ring->name = "video enhancement ring";
3068	ring->id = VECS;
3069	ring->exec_id = I915_EXEC_VEBOX;
3070
3071	ring->mmio_base = VEBOX_RING_BASE;
3072	ring->write_tail = ring_write_tail;
3073	ring->flush = gen6_ring_flush;
3074	ring->add_request = gen6_add_request;
3075	ring->get_seqno = gen6_ring_get_seqno;
3076	ring->set_seqno = ring_set_seqno;
3077
3078	if (INTEL_INFO(dev)->gen >= 8) {
3079		ring->irq_enable_mask =
3080			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3081		ring->irq_get = gen8_ring_get_irq;
3082		ring->irq_put = gen8_ring_put_irq;
3083		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3084		if (i915_semaphore_is_enabled(dev)) {
3085			ring->semaphore.sync_to = gen8_ring_sync;
3086			ring->semaphore.signal = gen8_xcs_signal;
3087			GEN8_RING_SEMAPHORE_INIT;
3088		}
3089	} else {
3090		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3091		ring->irq_get = hsw_vebox_get_irq;
3092		ring->irq_put = hsw_vebox_put_irq;
3093		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3094		if (i915_semaphore_is_enabled(dev)) {
3095			ring->semaphore.sync_to = gen6_ring_sync;
3096			ring->semaphore.signal = gen6_signal;
3097			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3098			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3099			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3100			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3101			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3102			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3103			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3104			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3105			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3106			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3107		}
3108	}
3109	ring->init_hw = init_ring_common;
3110
3111	return intel_init_ring_buffer(dev, ring);
3112}
3113
3114int
3115intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3116{
3117	struct intel_engine_cs *ring = req->ring;
3118	int ret;
3119
3120	if (!ring->gpu_caches_dirty)
3121		return 0;
3122
3123	ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3124	if (ret)
3125		return ret;
3126
3127	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
 
 
3128
3129	ring->gpu_caches_dirty = false;
3130	return 0;
3131}
3132
3133int
3134intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3135{
3136	struct intel_engine_cs *ring = req->ring;
3137	uint32_t flush_domains;
3138	int ret;
3139
3140	flush_domains = 0;
3141	if (ring->gpu_caches_dirty)
3142		flush_domains = I915_GEM_GPU_DOMAINS;
3143
3144	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3145	if (ret)
3146		return ret;
3147
3148	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3149
3150	ring->gpu_caches_dirty = false;
3151	return 0;
3152}
3153
3154void
3155intel_stop_ring_buffer(struct intel_engine_cs *ring)
3156{
3157	int ret;
3158
3159	if (!intel_ring_initialized(ring))
3160		return;
3161
3162	ret = intel_ring_idle(ring);
3163	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3164		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3165			  ring->name, ret);
3166
3167	stop_ring(ring);
3168}
v4.10.11
   1/*
   2 * Copyright © 2008-2010 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *    Zou Nan hai <nanhai.zou@intel.com>
  26 *    Xiang Hai hao<haihao.xiang@intel.com>
  27 *
  28 */
  29
  30#include <linux/log2.h>
  31#include <drm/drmP.h>
  32#include "i915_drv.h"
  33#include <drm/i915_drm.h>
  34#include "i915_trace.h"
  35#include "intel_drv.h"
  36
  37/* Rough estimate of the typical request size, performing a flush,
  38 * set-context and then emitting the batch.
  39 */
  40#define LEGACY_REQUEST_SIZE 200
  41
  42int __intel_ring_space(int head, int tail, int size)
  43{
  44	int space = head - tail;
  45	if (space <= 0)
  46		space += size;
  47	return space - I915_RING_FREE_SPACE;
  48}
  49
  50void intel_ring_update_space(struct intel_ring *ring)
  51{
  52	if (ring->last_retired_head != -1) {
  53		ring->head = ring->last_retired_head;
  54		ring->last_retired_head = -1;
  55	}
  56
  57	ring->space = __intel_ring_space(ring->head & HEAD_ADDR,
  58					 ring->tail, ring->size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59}
  60
  61static int
  62gen2_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 
 
  63{
  64	struct intel_ring *ring = req->ring;
  65	u32 cmd;
  66	int ret;
  67
  68	cmd = MI_FLUSH;
 
 
  69
  70	if (mode & EMIT_INVALIDATE)
  71		cmd |= MI_READ_FLUSH;
  72
  73	ret = intel_ring_begin(req, 2);
  74	if (ret)
  75		return ret;
  76
  77	intel_ring_emit(ring, cmd);
  78	intel_ring_emit(ring, MI_NOOP);
  79	intel_ring_advance(ring);
  80
  81	return 0;
  82}
  83
  84static int
  85gen4_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 
 
  86{
  87	struct intel_ring *ring = req->ring;
 
  88	u32 cmd;
  89	int ret;
  90
  91	/*
  92	 * read/write caches:
  93	 *
  94	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  95	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
  96	 * also flushed at 2d versus 3d pipeline switches.
  97	 *
  98	 * read-only caches:
  99	 *
 100	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
 101	 * MI_READ_FLUSH is set, and is always flushed on 965.
 102	 *
 103	 * I915_GEM_DOMAIN_COMMAND may not exist?
 104	 *
 105	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
 106	 * invalidated when MI_EXE_FLUSH is set.
 107	 *
 108	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
 109	 * invalidated with every MI_FLUSH.
 110	 *
 111	 * TLBs:
 112	 *
 113	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
 114	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
 115	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
 116	 * are flushed at any MI_FLUSH.
 117	 */
 118
 119	cmd = MI_FLUSH;
 120	if (mode & EMIT_INVALIDATE) {
 
 
 121		cmd |= MI_EXE_FLUSH;
 122		if (IS_G4X(req->i915) || IS_GEN5(req->i915))
 123			cmd |= MI_INVALIDATE_ISP;
 124	}
 
 125
 126	ret = intel_ring_begin(req, 2);
 127	if (ret)
 128		return ret;
 129
 130	intel_ring_emit(ring, cmd);
 131	intel_ring_emit(ring, MI_NOOP);
 132	intel_ring_advance(ring);
 133
 134	return 0;
 135}
 136
 137/**
 138 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 139 * implementing two workarounds on gen6.  From section 1.4.7.1
 140 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 141 *
 142 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 143 * produced by non-pipelined state commands), software needs to first
 144 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 145 * 0.
 146 *
 147 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 148 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 149 *
 150 * And the workaround for these two requires this workaround first:
 151 *
 152 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 153 * BEFORE the pipe-control with a post-sync op and no write-cache
 154 * flushes.
 155 *
 156 * And this last workaround is tricky because of the requirements on
 157 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 158 * volume 2 part 1:
 159 *
 160 *     "1 of the following must also be set:
 161 *      - Render Target Cache Flush Enable ([12] of DW1)
 162 *      - Depth Cache Flush Enable ([0] of DW1)
 163 *      - Stall at Pixel Scoreboard ([1] of DW1)
 164 *      - Depth Stall ([13] of DW1)
 165 *      - Post-Sync Operation ([13] of DW1)
 166 *      - Notify Enable ([8] of DW1)"
 167 *
 168 * The cache flushes require the workaround flush that triggered this
 169 * one, so we can't use it.  Depth stall would trigger the same.
 170 * Post-sync nonzero is what triggered this second workaround, so we
 171 * can't use that one either.  Notify enable is IRQs, which aren't
 172 * really our business.  That leaves only stall at scoreboard.
 173 */
 174static int
 175intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
 176{
 177	struct intel_ring *ring = req->ring;
 178	u32 scratch_addr =
 179		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
 180	int ret;
 181
 182	ret = intel_ring_begin(req, 6);
 183	if (ret)
 184		return ret;
 185
 186	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
 187	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
 188			PIPE_CONTROL_STALL_AT_SCOREBOARD);
 189	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
 190	intel_ring_emit(ring, 0); /* low dword */
 191	intel_ring_emit(ring, 0); /* high dword */
 192	intel_ring_emit(ring, MI_NOOP);
 193	intel_ring_advance(ring);
 194
 195	ret = intel_ring_begin(req, 6);
 196	if (ret)
 197		return ret;
 198
 199	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
 200	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
 201	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
 202	intel_ring_emit(ring, 0);
 203	intel_ring_emit(ring, 0);
 204	intel_ring_emit(ring, MI_NOOP);
 205	intel_ring_advance(ring);
 206
 207	return 0;
 208}
 209
 210static int
 211gen6_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 
 212{
 213	struct intel_ring *ring = req->ring;
 214	u32 scratch_addr =
 215		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
 216	u32 flags = 0;
 
 217	int ret;
 218
 219	/* Force SNB workarounds for PIPE_CONTROL flushes */
 220	ret = intel_emit_post_sync_nonzero_flush(req);
 221	if (ret)
 222		return ret;
 223
 224	/* Just flush everything.  Experiments have shown that reducing the
 225	 * number of bits based on the write domains has little performance
 226	 * impact.
 227	 */
 228	if (mode & EMIT_FLUSH) {
 229		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 230		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 231		/*
 232		 * Ensure that any following seqno writes only happen
 233		 * when the render cache is indeed flushed.
 234		 */
 235		flags |= PIPE_CONTROL_CS_STALL;
 236	}
 237	if (mode & EMIT_INVALIDATE) {
 238		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 239		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 240		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 241		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 242		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 243		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 244		/*
 245		 * TLB invalidate requires a post-sync write.
 246		 */
 247		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
 248	}
 249
 250	ret = intel_ring_begin(req, 4);
 251	if (ret)
 252		return ret;
 253
 254	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 255	intel_ring_emit(ring, flags);
 256	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
 257	intel_ring_emit(ring, 0);
 258	intel_ring_advance(ring);
 259
 260	return 0;
 261}
 262
 263static int
 264gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
 265{
 266	struct intel_ring *ring = req->ring;
 267	int ret;
 268
 269	ret = intel_ring_begin(req, 4);
 270	if (ret)
 271		return ret;
 272
 273	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 274	intel_ring_emit(ring,
 275			PIPE_CONTROL_CS_STALL |
 276			PIPE_CONTROL_STALL_AT_SCOREBOARD);
 277	intel_ring_emit(ring, 0);
 278	intel_ring_emit(ring, 0);
 279	intel_ring_advance(ring);
 280
 281	return 0;
 282}
 283
 284static int
 285gen7_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 
 286{
 287	struct intel_ring *ring = req->ring;
 288	u32 scratch_addr =
 289		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
 290	u32 flags = 0;
 
 291	int ret;
 292
 293	/*
 294	 * Ensure that any following seqno writes only happen when the render
 295	 * cache is indeed flushed.
 296	 *
 297	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
 298	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
 299	 * don't try to be clever and just set it unconditionally.
 300	 */
 301	flags |= PIPE_CONTROL_CS_STALL;
 302
 303	/* Just flush everything.  Experiments have shown that reducing the
 304	 * number of bits based on the write domains has little performance
 305	 * impact.
 306	 */
 307	if (mode & EMIT_FLUSH) {
 308		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 309		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 310		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
 311		flags |= PIPE_CONTROL_FLUSH_ENABLE;
 312	}
 313	if (mode & EMIT_INVALIDATE) {
 314		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 315		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 316		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 317		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 318		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 319		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 320		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
 321		/*
 322		 * TLB invalidate requires a post-sync write.
 323		 */
 324		flags |= PIPE_CONTROL_QW_WRITE;
 325		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
 326
 327		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
 328
 329		/* Workaround: we must issue a pipe_control with CS-stall bit
 330		 * set before a pipe_control command that has the state cache
 331		 * invalidate bit set. */
 332		gen7_render_ring_cs_stall_wa(req);
 333	}
 334
 335	ret = intel_ring_begin(req, 4);
 336	if (ret)
 337		return ret;
 338
 339	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 340	intel_ring_emit(ring, flags);
 341	intel_ring_emit(ring, scratch_addr);
 342	intel_ring_emit(ring, 0);
 343	intel_ring_advance(ring);
 344
 345	return 0;
 346}
 347
 348static int
 349gen8_emit_pipe_control(struct drm_i915_gem_request *req,
 350		       u32 flags, u32 scratch_addr)
 351{
 352	struct intel_ring *ring = req->ring;
 353	int ret;
 354
 355	ret = intel_ring_begin(req, 6);
 356	if (ret)
 357		return ret;
 358
 359	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
 360	intel_ring_emit(ring, flags);
 361	intel_ring_emit(ring, scratch_addr);
 362	intel_ring_emit(ring, 0);
 363	intel_ring_emit(ring, 0);
 364	intel_ring_emit(ring, 0);
 365	intel_ring_advance(ring);
 366
 367	return 0;
 368}
 369
 370static int
 371gen8_render_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 
 372{
 373	u32 scratch_addr =
 374		i915_ggtt_offset(req->engine->scratch) + 2 * CACHELINE_BYTES;
 375	u32 flags = 0;
 
 376	int ret;
 377
 378	flags |= PIPE_CONTROL_CS_STALL;
 379
 380	if (mode & EMIT_FLUSH) {
 381		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 382		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 383		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
 384		flags |= PIPE_CONTROL_FLUSH_ENABLE;
 385	}
 386	if (mode & EMIT_INVALIDATE) {
 387		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 388		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 389		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 390		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 391		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 392		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 393		flags |= PIPE_CONTROL_QW_WRITE;
 394		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
 395
 396		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
 397		ret = gen8_emit_pipe_control(req,
 398					     PIPE_CONTROL_CS_STALL |
 399					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
 400					     0);
 401		if (ret)
 402			return ret;
 403	}
 404
 405	return gen8_emit_pipe_control(req, flags, scratch_addr);
 406}
 407
 408static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
 
 
 
 
 
 
 
 409{
 410	struct drm_i915_private *dev_priv = engine->i915;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411	u32 addr;
 412
 413	addr = dev_priv->status_page_dmah->busaddr;
 414	if (INTEL_GEN(dev_priv) >= 4)
 415		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
 416	I915_WRITE(HWS_PGA, addr);
 417}
 418
 419static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
 420{
 421	struct drm_i915_private *dev_priv = engine->i915;
 
 422	i915_reg_t mmio;
 423
 424	/* The ring status page addresses are no longer next to the rest of
 425	 * the ring registers as of gen7.
 426	 */
 427	if (IS_GEN7(dev_priv)) {
 428		switch (engine->id) {
 429		case RCS:
 430			mmio = RENDER_HWS_PGA_GEN7;
 431			break;
 432		case BCS:
 433			mmio = BLT_HWS_PGA_GEN7;
 434			break;
 435		/*
 436		 * VCS2 actually doesn't exist on Gen7. Only shut up
 437		 * gcc switch check warning
 438		 */
 439		case VCS2:
 440		case VCS:
 441			mmio = BSD_HWS_PGA_GEN7;
 442			break;
 443		case VECS:
 444			mmio = VEBOX_HWS_PGA_GEN7;
 445			break;
 446		}
 447	} else if (IS_GEN6(dev_priv)) {
 448		mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
 449	} else {
 450		/* XXX: gen8 returns to sanity */
 451		mmio = RING_HWS_PGA(engine->mmio_base);
 452	}
 453
 454	I915_WRITE(mmio, engine->status_page.ggtt_offset);
 455	POSTING_READ(mmio);
 456
 457	/*
 458	 * Flush the TLB for this page
 459	 *
 460	 * FIXME: These two bits have disappeared on gen8, so a question
 461	 * arises: do we still need this and if so how should we go about
 462	 * invalidating the TLB?
 463	 */
 464	if (IS_GEN(dev_priv, 6, 7)) {
 465		i915_reg_t reg = RING_INSTPM(engine->mmio_base);
 466
 467		/* ring should be idle before issuing a sync flush*/
 468		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
 469
 470		I915_WRITE(reg,
 471			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
 472					      INSTPM_SYNC_FLUSH));
 473		if (intel_wait_for_register(dev_priv,
 474					    reg, INSTPM_SYNC_FLUSH, 0,
 475					    1000))
 476			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
 477				  engine->name);
 478	}
 479}
 480
 481static bool stop_ring(struct intel_engine_cs *engine)
 482{
 483	struct drm_i915_private *dev_priv = engine->i915;
 484
 485	if (INTEL_GEN(dev_priv) > 2) {
 486		I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
 487		if (intel_wait_for_register(dev_priv,
 488					    RING_MI_MODE(engine->mmio_base),
 489					    MODE_IDLE,
 490					    MODE_IDLE,
 491					    1000)) {
 492			DRM_ERROR("%s : timed out trying to stop ring\n",
 493				  engine->name);
 494			/* Sometimes we observe that the idle flag is not
 495			 * set even though the ring is empty. So double
 496			 * check before giving up.
 497			 */
 498			if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
 499				return false;
 500		}
 501	}
 502
 503	I915_WRITE_CTL(engine, 0);
 504	I915_WRITE_HEAD(engine, 0);
 505	I915_WRITE_TAIL(engine, 0);
 506
 507	if (INTEL_GEN(dev_priv) > 2) {
 508		(void)I915_READ_CTL(engine);
 509		I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
 510	}
 511
 512	return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
 513}
 514
 515static int init_ring_common(struct intel_engine_cs *engine)
 516{
 517	struct drm_i915_private *dev_priv = engine->i915;
 518	struct intel_ring *ring = engine->buffer;
 
 
 519	int ret = 0;
 520
 521	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
 522
 523	if (!stop_ring(engine)) {
 524		/* G45 ring initialization often fails to reset head to zero */
 525		DRM_DEBUG_KMS("%s head not reset to zero "
 526			      "ctl %08x head %08x tail %08x start %08x\n",
 527			      engine->name,
 528			      I915_READ_CTL(engine),
 529			      I915_READ_HEAD(engine),
 530			      I915_READ_TAIL(engine),
 531			      I915_READ_START(engine));
 532
 533		if (!stop_ring(engine)) {
 534			DRM_ERROR("failed to set %s head to zero "
 535				  "ctl %08x head %08x tail %08x start %08x\n",
 536				  engine->name,
 537				  I915_READ_CTL(engine),
 538				  I915_READ_HEAD(engine),
 539				  I915_READ_TAIL(engine),
 540				  I915_READ_START(engine));
 541			ret = -EIO;
 542			goto out;
 543		}
 544	}
 545
 546	if (HWS_NEEDS_PHYSICAL(dev_priv))
 547		ring_setup_phys_status_page(engine);
 548	else
 549		intel_ring_setup_status_page(engine);
 550
 551	intel_engine_reset_breadcrumbs(engine);
 552
 553	/* Enforce ordering by reading HEAD register back */
 554	I915_READ_HEAD(engine);
 555
 556	/* Initialize the ring. This must happen _after_ we've cleared the ring
 557	 * registers with the above sequence (the readback of the HEAD registers
 558	 * also enforces ordering), otherwise the hw might lose the new ring
 559	 * register values. */
 560	I915_WRITE_START(engine, i915_ggtt_offset(ring->vma));
 561
 562	/* WaClearRingBufHeadRegAtInit:ctg,elk */
 563	if (I915_READ_HEAD(engine))
 564		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
 565			  engine->name, I915_READ_HEAD(engine));
 566
 567	intel_ring_update_space(ring);
 568	I915_WRITE_HEAD(engine, ring->head);
 569	I915_WRITE_TAIL(engine, ring->tail);
 570	(void)I915_READ_TAIL(engine);
 571
 572	I915_WRITE_CTL(engine, RING_CTL_SIZE(ring->size) | RING_VALID);
 573
 574	/* If the head is still not zero, the ring is dead */
 575	if (intel_wait_for_register_fw(dev_priv, RING_CTL(engine->mmio_base),
 576				       RING_VALID, RING_VALID,
 577				       50)) {
 578		DRM_ERROR("%s initialization failed "
 579			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
 580			  engine->name,
 581			  I915_READ_CTL(engine),
 582			  I915_READ_CTL(engine) & RING_VALID,
 583			  I915_READ_HEAD(engine), ring->head,
 584			  I915_READ_TAIL(engine), ring->tail,
 585			  I915_READ_START(engine),
 586			  i915_ggtt_offset(ring->vma));
 587		ret = -EIO;
 588		goto out;
 589	}
 590
 591	intel_engine_init_hangcheck(engine);
 
 
 
 
 
 592
 593out:
 594	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
 595
 596	return ret;
 597}
 598
 599static void reset_ring_common(struct intel_engine_cs *engine,
 600			      struct drm_i915_gem_request *request)
 601{
 602	struct intel_ring *ring = request->ring;
 603
 604	ring->head = request->postfix;
 605	ring->last_retired_head = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 606}
 607
 608static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
 609{
 610	struct intel_ring *ring = req->ring;
 611	struct i915_workarounds *w = &req->i915->workarounds;
 612	int ret, i;
 
 
 
 
 613
 614	if (w->count == 0)
 615		return 0;
 616
 617	ret = req->engine->emit_flush(req, EMIT_BARRIER);
 
 618	if (ret)
 619		return ret;
 620
 621	ret = intel_ring_begin(req, (w->count * 2 + 2));
 622	if (ret)
 623		return ret;
 624
 625	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
 626	for (i = 0; i < w->count; i++) {
 627		intel_ring_emit_reg(ring, w->reg[i].addr);
 628		intel_ring_emit(ring, w->reg[i].value);
 629	}
 630	intel_ring_emit(ring, MI_NOOP);
 631
 632	intel_ring_advance(ring);
 633
 634	ret = req->engine->emit_flush(req, EMIT_BARRIER);
 
 635	if (ret)
 636		return ret;
 637
 638	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
 639
 640	return 0;
 641}
 642
 643static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
 644{
 645	int ret;
 646
 647	ret = intel_ring_workarounds_emit(req);
 648	if (ret != 0)
 649		return ret;
 650
 651	ret = i915_gem_render_state_emit(req);
 652	if (ret)
 653		return ret;
 654
 655	return 0;
 656}
 657
 658static int wa_add(struct drm_i915_private *dev_priv,
 659		  i915_reg_t addr,
 660		  const u32 mask, const u32 val)
 661{
 662	const u32 idx = dev_priv->workarounds.count;
 663
 664	if (WARN_ON(idx >= I915_MAX_WA_REGS))
 665		return -ENOSPC;
 666
 667	dev_priv->workarounds.reg[idx].addr = addr;
 668	dev_priv->workarounds.reg[idx].value = val;
 669	dev_priv->workarounds.reg[idx].mask = mask;
 670
 671	dev_priv->workarounds.count++;
 672
 673	return 0;
 674}
 675
 676#define WA_REG(addr, mask, val) do { \
 677		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
 678		if (r) \
 679			return r; \
 680	} while (0)
 681
 682#define WA_SET_BIT_MASKED(addr, mask) \
 683	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
 684
 685#define WA_CLR_BIT_MASKED(addr, mask) \
 686	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
 687
 688#define WA_SET_FIELD_MASKED(addr, mask, value) \
 689	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
 690
 691#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
 692#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
 693
 694#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
 695
 696static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
 697				 i915_reg_t reg)
 698{
 699	struct drm_i915_private *dev_priv = engine->i915;
 700	struct i915_workarounds *wa = &dev_priv->workarounds;
 701	const uint32_t index = wa->hw_whitelist_count[engine->id];
 702
 703	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
 704		return -EINVAL;
 705
 706	WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
 707		 i915_mmio_reg_offset(reg));
 708	wa->hw_whitelist_count[engine->id]++;
 709
 710	return 0;
 711}
 712
 713static int gen8_init_workarounds(struct intel_engine_cs *engine)
 714{
 715	struct drm_i915_private *dev_priv = engine->i915;
 
 716
 717	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
 718
 719	/* WaDisableAsyncFlipPerfMode:bdw,chv */
 720	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
 721
 722	/* WaDisablePartialInstShootdown:bdw,chv */
 723	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
 724			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
 725
 726	/* Use Force Non-Coherent whenever executing a 3D context. This is a
 727	 * workaround for for a possible hang in the unlikely event a TLB
 728	 * invalidation occurs during a PSD flush.
 729	 */
 730	/* WaForceEnableNonCoherent:bdw,chv */
 731	/* WaHdcDisableFetchWhenMasked:bdw,chv */
 732	WA_SET_BIT_MASKED(HDC_CHICKEN0,
 733			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
 734			  HDC_FORCE_NON_COHERENT);
 735
 736	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
 737	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
 738	 *  polygons in the same 8x4 pixel/sample area to be processed without
 739	 *  stalling waiting for the earlier ones to write to Hierarchical Z
 740	 *  buffer."
 741	 *
 742	 * This optimization is off by default for BDW and CHV; turn it on.
 743	 */
 744	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
 745
 746	/* Wa4x4STCOptimizationDisable:bdw,chv */
 747	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
 748
 749	/*
 750	 * BSpec recommends 8x4 when MSAA is used,
 751	 * however in practice 16x4 seems fastest.
 752	 *
 753	 * Note that PS/WM thread counts depend on the WIZ hashing
 754	 * disable bit, which we don't touch here, but it's good
 755	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
 756	 */
 757	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
 758			    GEN6_WIZ_HASHING_MASK,
 759			    GEN6_WIZ_HASHING_16x4);
 760
 761	return 0;
 762}
 763
 764static int bdw_init_workarounds(struct intel_engine_cs *engine)
 765{
 766	struct drm_i915_private *dev_priv = engine->i915;
 767	int ret;
 
 
 768
 769	ret = gen8_init_workarounds(engine);
 770	if (ret)
 771		return ret;
 772
 773	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
 774	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
 775
 776	/* WaDisableDopClockGating:bdw */
 777	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
 778			  DOP_CLOCK_GATING_DISABLE);
 779
 780	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
 781			  GEN8_SAMPLER_POWER_BYPASS_DIS);
 782
 783	WA_SET_BIT_MASKED(HDC_CHICKEN0,
 784			  /* WaForceContextSaveRestoreNonCoherent:bdw */
 785			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
 786			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
 787			  (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
 788
 789	return 0;
 790}
 791
 792static int chv_init_workarounds(struct intel_engine_cs *engine)
 793{
 794	struct drm_i915_private *dev_priv = engine->i915;
 795	int ret;
 
 
 796
 797	ret = gen8_init_workarounds(engine);
 798	if (ret)
 799		return ret;
 800
 801	/* WaDisableThreadStallDopClockGating:chv */
 802	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
 803
 804	/* Improve HiZ throughput on CHV. */
 805	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
 806
 807	return 0;
 808}
 809
 810static int gen9_init_workarounds(struct intel_engine_cs *engine)
 811{
 812	struct drm_i915_private *dev_priv = engine->i915;
 
 
 813	int ret;
 814
 815	/* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
 816	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
 817
 818	/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
 819	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
 820		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
 821
 822	/* WaDisableKillLogic:bxt,skl,kbl */
 823	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
 824		   ECOCHK_DIS_TLB);
 825
 826	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
 827	/* WaDisablePartialInstShootdown:skl,bxt,kbl */
 828	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
 829			  FLOW_CONTROL_ENABLE |
 830			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
 831
 832	/* Syncing dependencies between camera and graphics:skl,bxt,kbl */
 833	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
 834			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
 835
 836	/* WaDisableDgMirrorFixInHalfSliceChicken5:bxt */
 837	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
 
 838		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
 839				  GEN9_DG_MIRROR_FIX_ENABLE);
 840
 841	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:bxt */
 842	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
 
 843		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
 844				  GEN9_RHWO_OPTIMIZATION_DISABLE);
 845		/*
 846		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
 847		 * but we do that in per ctx batchbuffer as there is an issue
 848		 * with this register not getting restored on ctx restore
 849		 */
 850	}
 851
 852	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
 853	WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
 854			  GEN9_ENABLE_GPGPU_PREEMPTION);
 
 855
 856	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
 857	/* WaDisablePartialResolveInVc:skl,bxt,kbl */
 858	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
 859					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
 860
 861	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
 862	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
 863			  GEN9_CCS_TLB_PREFETCH_ENABLE);
 864
 865	/* WaDisableMaskBasedCammingInRCC:bxt */
 866	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
 
 867		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
 868				  PIXEL_MASK_CAMMING_DISABLE);
 869
 870	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
 871	WA_SET_BIT_MASKED(HDC_CHICKEN0,
 872			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
 873			  HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
 874
 875	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
 876	 * both tied to WaForceContextSaveRestoreNonCoherent
 877	 * in some hsds for skl. We keep the tie for all gen9. The
 878	 * documentation is a bit hazy and so we want to get common behaviour,
 879	 * even though there is no clear evidence we would need both on kbl/bxt.
 880	 * This area has been source of system hangs so we play it safe
 881	 * and mimic the skl regardless of what bspec says.
 882	 *
 883	 * Use Force Non-Coherent whenever executing a 3D context. This
 884	 * is a workaround for a possible hang in the unlikely event
 885	 * a TLB invalidation occurs during a PSD flush.
 886	 */
 887
 888	/* WaForceEnableNonCoherent:skl,bxt,kbl */
 889	WA_SET_BIT_MASKED(HDC_CHICKEN0,
 890			  HDC_FORCE_NON_COHERENT);
 891
 892	/* WaDisableHDCInvalidation:skl,bxt,kbl */
 893	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
 894		   BDW_DISABLE_HDC_INVALIDATION);
 895
 896	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
 897	if (IS_SKYLAKE(dev_priv) ||
 898	    IS_KABYLAKE(dev_priv) ||
 899	    IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
 900		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
 901				  GEN8_SAMPLER_POWER_BYPASS_DIS);
 902
 903	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
 904	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
 905
 906	/* WaOCLCoherentLineFlush:skl,bxt,kbl */
 907	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
 908				    GEN8_LQSC_FLUSH_COHERENT_LINES));
 909
 910	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
 911	ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
 912	if (ret)
 913		return ret;
 914
 915	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
 916	ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
 917	if (ret)
 918		return ret;
 919
 920	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
 921	ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
 922	if (ret)
 923		return ret;
 924
 925	return 0;
 926}
 927
 928static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
 929{
 930	struct drm_i915_private *dev_priv = engine->i915;
 
 931	u8 vals[3] = { 0, 0, 0 };
 932	unsigned int i;
 933
 934	for (i = 0; i < 3; i++) {
 935		u8 ss;
 936
 937		/*
 938		 * Only consider slices where one, and only one, subslice has 7
 939		 * EUs
 940		 */
 941		if (!is_power_of_2(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]))
 942			continue;
 943
 944		/*
 945		 * subslice_7eu[i] != 0 (because of the check above) and
 946		 * ss_max == 4 (maximum number of subslices possible per slice)
 947		 *
 948		 * ->    0 <= ss <= 3;
 949		 */
 950		ss = ffs(INTEL_INFO(dev_priv)->sseu.subslice_7eu[i]) - 1;
 951		vals[i] = 3 - ss;
 952	}
 953
 954	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
 955		return 0;
 956
 957	/* Tune IZ hashing. See intel_device_info_runtime_init() */
 958	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
 959			    GEN9_IZ_HASHING_MASK(2) |
 960			    GEN9_IZ_HASHING_MASK(1) |
 961			    GEN9_IZ_HASHING_MASK(0),
 962			    GEN9_IZ_HASHING(2, vals[2]) |
 963			    GEN9_IZ_HASHING(1, vals[1]) |
 964			    GEN9_IZ_HASHING(0, vals[0]));
 965
 966	return 0;
 967}
 968
 969static int skl_init_workarounds(struct intel_engine_cs *engine)
 970{
 971	struct drm_i915_private *dev_priv = engine->i915;
 972	int ret;
 
 
 973
 974	ret = gen9_init_workarounds(engine);
 975	if (ret)
 976		return ret;
 977
 978	/*
 979	 * Actual WA is to disable percontext preemption granularity control
 980	 * until D0 which is the default case so this is equivalent to
 981	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
 982	 */
 983	I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
 984		   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985
 986	/* WaEnableGapsTsvCreditFix:skl */
 987	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
 988				   GEN9_GAPS_TSV_CREDIT_DISABLE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989
 990	/* WaDisableGafsUnitClkGating:skl */
 991	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
 
 
 992
 993	/* WaInPlaceDecompressionHang:skl */
 994	if (IS_SKL_REVID(dev_priv, SKL_REVID_H0, REVID_FOREVER))
 995		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
 996			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
 
 
 
 
 
 
 
 997
 998	/* WaDisableLSQCROPERFforOCL:skl */
 999	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1000	if (ret)
1001		return ret;
1002
1003	return skl_tune_iz_hashing(engine);
1004}
1005
1006static int bxt_init_workarounds(struct intel_engine_cs *engine)
1007{
1008	struct drm_i915_private *dev_priv = engine->i915;
1009	int ret;
 
 
1010
1011	ret = gen9_init_workarounds(engine);
1012	if (ret)
1013		return ret;
1014
1015	/* WaStoreMultiplePTEenable:bxt */
1016	/* This is a requirement according to Hardware specification */
1017	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
1018		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1019
1020	/* WaSetClckGatingDisableMedia:bxt */
1021	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1022		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1023					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1024	}
1025
1026	/* WaDisableThreadStallDopClockGating:bxt */
1027	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1028			  STALL_DOP_GATING_DISABLE);
1029
1030	/* WaDisablePooledEuLoadBalancingFix:bxt */
1031	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER)) {
1032		WA_SET_BIT_MASKED(FF_SLICE_CS_CHICKEN2,
1033				  GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
1034	}
1035
1036	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1037	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
1038		WA_SET_BIT_MASKED(
1039			GEN7_HALF_SLICE_CHICKEN1,
1040			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1041	}
1042
1043	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1044	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1045	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1046	/* WaDisableLSQCROPERFforOCL:bxt */
1047	if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
1048		ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
1049		if (ret)
1050			return ret;
1051
1052		ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1053		if (ret)
1054			return ret;
1055	}
1056
1057	/* WaProgramL3SqcReg1DefaultForPerf:bxt */
1058	if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
1059		I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
1060					   L3_HIGH_PRIO_CREDITS(2));
1061
1062	/* WaToEnableHwFixForPushConstHWBug:bxt */
1063	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1064		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1065				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1066
1067	/* WaInPlaceDecompressionHang:bxt */
1068	if (IS_BXT_REVID(dev_priv, BXT_REVID_C0, REVID_FOREVER))
1069		WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1070			   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1071
1072	return 0;
1073}
1074
1075static int kbl_init_workarounds(struct intel_engine_cs *engine)
1076{
1077	struct drm_i915_private *dev_priv = engine->i915;
1078	int ret;
1079
1080	ret = gen9_init_workarounds(engine);
1081	if (ret)
1082		return ret;
1083
1084	/* WaEnableGapsTsvCreditFix:kbl */
1085	I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1086				   GEN9_GAPS_TSV_CREDIT_DISABLE));
1087
1088	/* WaDisableDynamicCreditSharing:kbl */
1089	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
1090		WA_SET_BIT(GAMT_CHKN_BIT_REG,
1091			   GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1092
1093	/* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
1094	if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
1095		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1096				  HDC_FENCE_DEST_SLM_DISABLE);
1097
1098	/* WaToEnableHwFixForPushConstHWBug:kbl */
1099	if (IS_KBL_REVID(dev_priv, KBL_REVID_C0, REVID_FOREVER))
1100		WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
1101				  GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
1102
1103	/* WaDisableGafsUnitClkGating:kbl */
1104	WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1105
1106	/* WaDisableSbeCacheDispatchPortSharing:kbl */
1107	WA_SET_BIT_MASKED(
1108		GEN7_HALF_SLICE_CHICKEN1,
1109		GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1110
1111	/* WaInPlaceDecompressionHang:kbl */
1112	WA_SET_BIT(GEN9_GAMT_ECO_REG_RW_IA,
1113		   GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1114
1115	/* WaDisableLSQCROPERFforOCL:kbl */
1116	ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
1117	if (ret)
1118		return ret;
1119
1120	return 0;
1121}
1122
1123int init_workarounds_ring(struct intel_engine_cs *engine)
1124{
1125	struct drm_i915_private *dev_priv = engine->i915;
 
1126
1127	WARN_ON(engine->id != RCS);
1128
1129	dev_priv->workarounds.count = 0;
1130	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1131
1132	if (IS_BROADWELL(dev_priv))
1133		return bdw_init_workarounds(engine);
1134
1135	if (IS_CHERRYVIEW(dev_priv))
1136		return chv_init_workarounds(engine);
1137
1138	if (IS_SKYLAKE(dev_priv))
1139		return skl_init_workarounds(engine);
1140
1141	if (IS_BROXTON(dev_priv))
1142		return bxt_init_workarounds(engine);
1143
1144	if (IS_KABYLAKE(dev_priv))
1145		return kbl_init_workarounds(engine);
1146
1147	return 0;
1148}
1149
1150static int init_render_ring(struct intel_engine_cs *engine)
1151{
1152	struct drm_i915_private *dev_priv = engine->i915;
1153	int ret = init_ring_common(engine);
 
1154	if (ret)
1155		return ret;
1156
1157	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1158	if (IS_GEN(dev_priv, 4, 6))
1159		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1160
1161	/* We need to disable the AsyncFlip performance optimisations in order
1162	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1163	 * programmed to '1' on all products.
1164	 *
1165	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1166	 */
1167	if (IS_GEN(dev_priv, 6, 7))
1168		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1169
1170	/* Required for the hardware to program scanline values for waiting */
1171	/* WaEnableFlushTlbInvalidationMode:snb */
1172	if (IS_GEN6(dev_priv))
1173		I915_WRITE(GFX_MODE,
1174			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1175
1176	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1177	if (IS_GEN7(dev_priv))
1178		I915_WRITE(GFX_MODE_GEN7,
1179			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1180			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1181
1182	if (IS_GEN6(dev_priv)) {
1183		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1184		 * "If this bit is set, STCunit will have LRA as replacement
1185		 *  policy. [...] This bit must be reset.  LRA replacement
1186		 *  policy is not supported."
1187		 */
1188		I915_WRITE(CACHE_MODE_0,
1189			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1190	}
1191
1192	if (IS_GEN(dev_priv, 6, 7))
1193		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1194
1195	if (INTEL_INFO(dev_priv)->gen >= 6)
1196		I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1197
1198	return init_workarounds_ring(engine);
1199}
1200
1201static void render_ring_cleanup(struct intel_engine_cs *engine)
1202{
1203	struct drm_i915_private *dev_priv = engine->i915;
 
 
 
 
 
 
 
1204
1205	i915_vma_unpin_and_release(&dev_priv->semaphore);
1206}
1207
1208static u32 *gen8_rcs_signal(struct drm_i915_gem_request *req, u32 *out)
 
1209{
1210	struct drm_i915_private *dev_priv = req->i915;
 
 
 
1211	struct intel_engine_cs *waiter;
1212	enum intel_engine_id id;
1213
1214	for_each_engine(waiter, dev_priv, id) {
1215		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
 
 
 
 
 
 
 
 
 
1216		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1217			continue;
1218
1219		*out++ = GFX_OP_PIPE_CONTROL(6);
1220		*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1221			  PIPE_CONTROL_QW_WRITE |
1222			  PIPE_CONTROL_CS_STALL);
1223		*out++ = lower_32_bits(gtt_offset);
1224		*out++ = upper_32_bits(gtt_offset);
1225		*out++ = req->global_seqno;
1226		*out++ = 0;
1227		*out++ = (MI_SEMAPHORE_SIGNAL |
1228			  MI_SEMAPHORE_TARGET(waiter->hw_id));
1229		*out++ = 0;
 
1230	}
1231
1232	return out;
1233}
1234
1235static u32 *gen8_xcs_signal(struct drm_i915_gem_request *req, u32 *out)
1236{
1237	struct drm_i915_private *dev_priv = req->i915;
 
 
 
 
1238	struct intel_engine_cs *waiter;
1239	enum intel_engine_id id;
 
 
 
 
1240
1241	for_each_engine(waiter, dev_priv, id) {
1242		u64 gtt_offset = req->engine->semaphore.signal_ggtt[id];
 
 
 
 
 
1243		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1244			continue;
1245
1246		*out++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1247		*out++ = lower_32_bits(gtt_offset) | MI_FLUSH_DW_USE_GTT;
1248		*out++ = upper_32_bits(gtt_offset);
1249		*out++ = req->global_seqno;
1250		*out++ = (MI_SEMAPHORE_SIGNAL |
1251			  MI_SEMAPHORE_TARGET(waiter->hw_id));
1252		*out++ = 0;
 
 
 
1253	}
1254
1255	return out;
1256}
1257
1258static u32 *gen6_signal(struct drm_i915_gem_request *req, u32 *out)
 
1259{
1260	struct drm_i915_private *dev_priv = req->i915;
1261	struct intel_engine_cs *engine;
1262	enum intel_engine_id id;
1263	int num_rings = 0;
 
1264
1265	for_each_engine(engine, dev_priv, id) {
1266		i915_reg_t mbox_reg;
 
 
 
 
 
 
1267
1268		if (!(BIT(engine->hw_id) & GEN6_SEMAPHORES_MASK))
1269			continue;
1270
1271		mbox_reg = req->engine->semaphore.mbox.signal[engine->hw_id];
1272		if (i915_mmio_reg_valid(mbox_reg)) {
1273			*out++ = MI_LOAD_REGISTER_IMM(1);
1274			*out++ = i915_mmio_reg_offset(mbox_reg);
1275			*out++ = req->global_seqno;
1276			num_rings++;
 
1277		}
1278	}
1279	if (num_rings & 1)
1280		*out++ = MI_NOOP;
1281
1282	return out;
1283}
1284
1285static void i9xx_submit_request(struct drm_i915_gem_request *request)
1286{
1287	struct drm_i915_private *dev_priv = request->i915;
1288
1289	i915_gem_request_submit(request);
1290
1291	I915_WRITE_TAIL(request->engine, request->tail);
1292}
1293
1294static void i9xx_emit_breadcrumb(struct drm_i915_gem_request *req,
1295				 u32 *out)
1296{
1297	*out++ = MI_STORE_DWORD_INDEX;
1298	*out++ = I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT;
1299	*out++ = req->global_seqno;
1300	*out++ = MI_USER_INTERRUPT;
1301
1302	req->tail = intel_ring_offset(req->ring, out);
1303}
1304
1305static const int i9xx_emit_breadcrumb_sz = 4;
1306
1307/**
1308 * gen6_sema_emit_breadcrumb - Update the semaphore mailbox registers
1309 *
1310 * @request - request to write to the ring
1311 *
1312 * Update the mailbox registers in the *other* rings with the current seqno.
1313 * This acts like a signal in the canonical semaphore.
1314 */
1315static void gen6_sema_emit_breadcrumb(struct drm_i915_gem_request *req,
1316				      u32 *out)
1317{
1318	return i9xx_emit_breadcrumb(req,
1319				    req->engine->semaphore.signal(req, out));
1320}
1321
1322static void gen8_render_emit_breadcrumb(struct drm_i915_gem_request *req,
1323					u32 *out)
1324{
1325	struct intel_engine_cs *engine = req->engine;
1326
1327	if (engine->semaphore.signal)
1328		out = engine->semaphore.signal(req, out);
1329
1330	*out++ = GFX_OP_PIPE_CONTROL(6);
1331	*out++ = (PIPE_CONTROL_GLOBAL_GTT_IVB |
1332			       PIPE_CONTROL_CS_STALL |
1333			       PIPE_CONTROL_QW_WRITE);
1334	*out++ = intel_hws_seqno_address(engine);
1335	*out++ = 0;
1336	*out++ = req->global_seqno;
1337	/* We're thrashing one dword of HWS. */
1338	*out++ = 0;
1339	*out++ = MI_USER_INTERRUPT;
1340	*out++ = MI_NOOP;
1341
1342	req->tail = intel_ring_offset(req->ring, out);
1343}
1344
1345static const int gen8_render_emit_breadcrumb_sz = 8;
 
 
 
 
 
1346
1347/**
1348 * intel_ring_sync - sync the waiter to the signaller on seqno
1349 *
1350 * @waiter - ring that is waiting
1351 * @signaller - ring which has, or will signal
1352 * @seqno - seqno which the waiter will block on
1353 */
1354
1355static int
1356gen8_ring_sync_to(struct drm_i915_gem_request *req,
1357		  struct drm_i915_gem_request *signal)
 
1358{
1359	struct intel_ring *ring = req->ring;
1360	struct drm_i915_private *dev_priv = req->i915;
1361	u64 offset = GEN8_WAIT_OFFSET(req->engine, signal->engine->id);
1362	struct i915_hw_ppgtt *ppgtt;
1363	int ret;
1364
1365	ret = intel_ring_begin(req, 4);
1366	if (ret)
1367		return ret;
1368
1369	intel_ring_emit(ring,
1370			MI_SEMAPHORE_WAIT |
1371			MI_SEMAPHORE_GLOBAL_GTT |
1372			MI_SEMAPHORE_SAD_GTE_SDD);
1373	intel_ring_emit(ring, signal->global_seqno);
1374	intel_ring_emit(ring, lower_32_bits(offset));
1375	intel_ring_emit(ring, upper_32_bits(offset));
1376	intel_ring_advance(ring);
1377
1378	/* When the !RCS engines idle waiting upon a semaphore, they lose their
1379	 * pagetables and we must reload them before executing the batch.
1380	 * We do this on the i915_switch_context() following the wait and
1381	 * before the dispatch.
1382	 */
1383	ppgtt = req->ctx->ppgtt;
1384	if (ppgtt && req->engine->id != RCS)
1385		ppgtt->pd_dirty_rings |= intel_engine_flag(req->engine);
1386	return 0;
1387}
1388
1389static int
1390gen6_ring_sync_to(struct drm_i915_gem_request *req,
1391		  struct drm_i915_gem_request *signal)
 
1392{
1393	struct intel_ring *ring = req->ring;
1394	u32 dw1 = MI_SEMAPHORE_MBOX |
1395		  MI_SEMAPHORE_COMPARE |
1396		  MI_SEMAPHORE_REGISTER;
1397	u32 wait_mbox = signal->engine->semaphore.mbox.wait[req->engine->hw_id];
1398	int ret;
1399
 
 
 
 
 
 
1400	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1401
1402	ret = intel_ring_begin(req, 4);
1403	if (ret)
1404		return ret;
1405
1406	intel_ring_emit(ring, dw1 | wait_mbox);
1407	/* Throughout all of the GEM code, seqno passed implies our current
1408	 * seqno is >= the last seqno executed. However for hardware the
1409	 * comparison is strictly greater than.
1410	 */
1411	intel_ring_emit(ring, signal->global_seqno - 1);
1412	intel_ring_emit(ring, 0);
1413	intel_ring_emit(ring, MI_NOOP);
1414	intel_ring_advance(ring);
 
 
 
 
1415
1416	return 0;
1417}
1418
1419static void
1420gen5_seqno_barrier(struct intel_engine_cs *engine)
 
 
 
 
 
 
 
 
 
1421{
1422	/* MI_STORE are internally buffered by the GPU and not flushed
1423	 * either by MI_FLUSH or SyncFlush or any other combination of
1424	 * MI commands.
1425	 *
1426	 * "Only the submission of the store operation is guaranteed.
1427	 * The write result will be complete (coherent) some time later
1428	 * (this is practically a finite period but there is no guaranteed
1429	 * latency)."
1430	 *
1431	 * Empirically, we observe that we need a delay of at least 75us to
1432	 * be sure that the seqno write is visible by the CPU.
 
1433	 */
1434	usleep_range(125, 250);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1435}
1436
1437static void
1438gen6_seqno_barrier(struct intel_engine_cs *engine)
1439{
1440	struct drm_i915_private *dev_priv = engine->i915;
1441
1442	/* Workaround to force correct ordering between irq and seqno writes on
1443	 * ivb (and maybe also on snb) by reading from a CS register (like
1444	 * ACTHD) before reading the status page.
1445	 *
1446	 * Note that this effectively stalls the read by the time it takes to
1447	 * do a memory transaction, which more or less ensures that the write
1448	 * from the GPU has sufficient time to invalidate the CPU cacheline.
1449	 * Alternatively we could delay the interrupt from the CS ring to give
1450	 * the write time to land, but that would incur a delay after every
1451	 * batch i.e. much more frequent than a delay when waiting for the
1452	 * interrupt (with the same net latency).
1453	 *
1454	 * Also note that to prevent whole machine hangs on gen7, we have to
1455	 * take the spinlock to guard against concurrent cacheline access.
1456	 */
1457	spin_lock_irq(&dev_priv->uncore.lock);
1458	POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
1459	spin_unlock_irq(&dev_priv->uncore.lock);
1460}
1461
1462static void
1463gen5_irq_enable(struct intel_engine_cs *engine)
 
 
 
 
 
 
1464{
1465	gen5_enable_gt_irq(engine->i915, engine->irq_enable_mask);
1466}
1467
1468static void
1469gen5_irq_disable(struct intel_engine_cs *engine)
1470{
1471	gen5_disable_gt_irq(engine->i915, engine->irq_enable_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1472}
1473
1474static void
1475i9xx_irq_enable(struct intel_engine_cs *engine)
1476{
1477	struct drm_i915_private *dev_priv = engine->i915;
 
 
1478
1479	dev_priv->irq_mask &= ~engine->irq_enable_mask;
1480	I915_WRITE(IMR, dev_priv->irq_mask);
1481	POSTING_READ_FW(RING_IMR(engine->mmio_base));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482}
1483
1484static void
1485i9xx_irq_disable(struct intel_engine_cs *engine)
1486{
1487	struct drm_i915_private *dev_priv = engine->i915;
 
 
1488
1489	dev_priv->irq_mask |= engine->irq_enable_mask;
1490	I915_WRITE(IMR, dev_priv->irq_mask);
 
 
 
 
 
1491}
1492
1493static void
1494i8xx_irq_enable(struct intel_engine_cs *engine)
1495{
1496	struct drm_i915_private *dev_priv = engine->i915;
 
 
 
 
 
1497
1498	dev_priv->irq_mask &= ~engine->irq_enable_mask;
1499	I915_WRITE16(IMR, dev_priv->irq_mask);
1500	POSTING_READ16(RING_IMR(engine->mmio_base));
 
 
 
 
 
 
1501}
1502
1503static void
1504i8xx_irq_disable(struct intel_engine_cs *engine)
1505{
1506	struct drm_i915_private *dev_priv = engine->i915;
1507
1508	dev_priv->irq_mask |= engine->irq_enable_mask;
1509	I915_WRITE16(IMR, dev_priv->irq_mask);
 
 
 
 
 
 
 
1510}
1511
1512static int
1513bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 
 
1514{
1515	struct intel_ring *ring = req->ring;
1516	int ret;
1517
1518	ret = intel_ring_begin(req, 2);
1519	if (ret)
1520		return ret;
1521
1522	intel_ring_emit(ring, MI_FLUSH);
1523	intel_ring_emit(ring, MI_NOOP);
1524	intel_ring_advance(ring);
1525	return 0;
1526}
1527
1528static void
1529gen6_irq_enable(struct intel_engine_cs *engine)
1530{
1531	struct drm_i915_private *dev_priv = engine->i915;
 
1532
1533	I915_WRITE_IMR(engine,
1534		       ~(engine->irq_enable_mask |
1535			 engine->irq_keep_mask));
1536	gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
 
 
 
 
 
 
 
1537}
1538
1539static void
1540gen6_irq_disable(struct intel_engine_cs *engine)
1541{
1542	struct drm_i915_private *dev_priv = engine->i915;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1543
1544	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1545	gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
1546}
1547
1548static void
1549hsw_vebox_irq_enable(struct intel_engine_cs *engine)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550{
1551	struct drm_i915_private *dev_priv = engine->i915;
 
 
 
 
 
 
 
 
 
 
 
 
1552
1553	I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
1554	gen6_unmask_pm_irq(dev_priv, engine->irq_enable_mask);
1555}
1556
1557static void
1558hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1559{
1560	struct drm_i915_private *dev_priv = engine->i915;
 
 
1561
1562	I915_WRITE_IMR(engine, ~0);
1563	gen6_mask_pm_irq(dev_priv, engine->irq_enable_mask);
 
 
 
 
1564}
1565
1566static void
1567gen8_irq_enable(struct intel_engine_cs *engine)
1568{
1569	struct drm_i915_private *dev_priv = engine->i915;
 
 
1570
1571	I915_WRITE_IMR(engine,
1572		       ~(engine->irq_enable_mask |
1573			 engine->irq_keep_mask));
1574	POSTING_READ_FW(RING_IMR(engine->mmio_base));
 
 
 
 
 
 
 
 
 
 
 
 
 
1575}
1576
1577static void
1578gen8_irq_disable(struct intel_engine_cs *engine)
1579{
1580	struct drm_i915_private *dev_priv = engine->i915;
1581
1582	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
 
 
 
 
 
 
 
 
 
 
 
 
1583}
1584
1585static int
1586i965_emit_bb_start(struct drm_i915_gem_request *req,
1587		   u64 offset, u32 length,
1588		   unsigned int dispatch_flags)
1589{
1590	struct intel_ring *ring = req->ring;
1591	int ret;
1592
1593	ret = intel_ring_begin(req, 2);
1594	if (ret)
1595		return ret;
1596
1597	intel_ring_emit(ring,
1598			MI_BATCH_BUFFER_START |
1599			MI_BATCH_GTT |
1600			(dispatch_flags & I915_DISPATCH_SECURE ?
1601			 0 : MI_BATCH_NON_SECURE_I965));
1602	intel_ring_emit(ring, offset);
1603	intel_ring_advance(ring);
1604
1605	return 0;
1606}
1607
1608/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1609#define I830_BATCH_LIMIT (256*1024)
1610#define I830_TLB_ENTRIES (2)
1611#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1612static int
1613i830_emit_bb_start(struct drm_i915_gem_request *req,
1614		   u64 offset, u32 len,
1615		   unsigned int dispatch_flags)
1616{
1617	struct intel_ring *ring = req->ring;
1618	u32 cs_offset = i915_ggtt_offset(req->engine->scratch);
1619	int ret;
1620
1621	ret = intel_ring_begin(req, 6);
1622	if (ret)
1623		return ret;
1624
1625	/* Evict the invalid PTE TLBs */
1626	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1627	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1628	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1629	intel_ring_emit(ring, cs_offset);
1630	intel_ring_emit(ring, 0xdeadbeef);
1631	intel_ring_emit(ring, MI_NOOP);
1632	intel_ring_advance(ring);
1633
1634	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1635		if (len > I830_BATCH_LIMIT)
1636			return -ENOSPC;
1637
1638		ret = intel_ring_begin(req, 6 + 2);
1639		if (ret)
1640			return ret;
1641
1642		/* Blit the batch (which has now all relocs applied) to the
1643		 * stable batch scratch bo area (so that the CS never
1644		 * stumbles over its tlb invalidation bug) ...
1645		 */
1646		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1647		intel_ring_emit(ring,
1648				BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1649		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1650		intel_ring_emit(ring, cs_offset);
1651		intel_ring_emit(ring, 4096);
1652		intel_ring_emit(ring, offset);
1653
1654		intel_ring_emit(ring, MI_FLUSH);
1655		intel_ring_emit(ring, MI_NOOP);
1656		intel_ring_advance(ring);
1657
1658		/* ... and execute it. */
1659		offset = cs_offset;
1660	}
1661
1662	ret = intel_ring_begin(req, 2);
1663	if (ret)
1664		return ret;
1665
1666	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1667	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1668					0 : MI_BATCH_NON_SECURE));
1669	intel_ring_advance(ring);
1670
1671	return 0;
1672}
1673
1674static int
1675i915_emit_bb_start(struct drm_i915_gem_request *req,
1676		   u64 offset, u32 len,
1677		   unsigned int dispatch_flags)
1678{
1679	struct intel_ring *ring = req->ring;
1680	int ret;
1681
1682	ret = intel_ring_begin(req, 2);
1683	if (ret)
1684		return ret;
1685
1686	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1687	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1688					0 : MI_BATCH_NON_SECURE));
1689	intel_ring_advance(ring);
1690
1691	return 0;
1692}
1693
1694static void cleanup_phys_status_page(struct intel_engine_cs *engine)
1695{
1696	struct drm_i915_private *dev_priv = engine->i915;
1697
1698	if (!dev_priv->status_page_dmah)
1699		return;
1700
1701	drm_pci_free(&dev_priv->drm, dev_priv->status_page_dmah);
1702	engine->status_page.page_addr = NULL;
1703}
1704
1705static void cleanup_status_page(struct intel_engine_cs *engine)
1706{
1707	struct i915_vma *vma;
1708	struct drm_i915_gem_object *obj;
1709
1710	vma = fetch_and_zero(&engine->status_page.vma);
1711	if (!vma)
1712		return;
1713
1714	obj = vma->obj;
 
 
 
 
 
 
 
 
1715
1716	i915_vma_unpin(vma);
1717	i915_vma_close(vma);
 
1718
1719	i915_gem_object_unpin_map(obj);
1720	__i915_gem_object_release_unless_active(obj);
1721}
 
 
 
 
 
 
1722
1723static int init_status_page(struct intel_engine_cs *engine)
1724{
1725	struct drm_i915_gem_object *obj;
1726	struct i915_vma *vma;
1727	unsigned int flags;
1728	void *vaddr;
1729	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
1730
1731	obj = i915_gem_object_create_internal(engine->i915, 4096);
1732	if (IS_ERR(obj)) {
1733		DRM_ERROR("Failed to allocate status page\n");
1734		return PTR_ERR(obj);
1735	}
1736
1737	ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1738	if (ret)
1739		goto err;
 
 
 
1740
1741	vma = i915_vma_create(obj, &engine->i915->ggtt.base, NULL);
1742	if (IS_ERR(vma)) {
1743		ret = PTR_ERR(vma);
1744		goto err;
1745	}
1746
1747	flags = PIN_GLOBAL;
1748	if (!HAS_LLC(engine->i915))
1749		/* On g33, we cannot place HWS above 256MiB, so
1750		 * restrict its pinning to the low mappable arena.
1751		 * Though this restriction is not documented for
1752		 * gen4, gen5, or byt, they also behave similarly
1753		 * and hang if the HWS is placed at the top of the
1754		 * GTT. To generalise, it appears that all !llc
1755		 * platforms have issues with us placing the HWS
1756		 * above the mappable region (even though we never
1757		 * actualy map it).
1758		 */
1759		flags |= PIN_MAPPABLE;
1760	ret = i915_vma_pin(vma, 0, 4096, flags);
1761	if (ret)
1762		goto err;
1763
1764	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1765	if (IS_ERR(vaddr)) {
1766		ret = PTR_ERR(vaddr);
1767		goto err_unpin;
 
1768	}
1769
1770	engine->status_page.vma = vma;
1771	engine->status_page.ggtt_offset = i915_ggtt_offset(vma);
1772	engine->status_page.page_addr = memset(vaddr, 0, 4096);
1773
1774	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1775			 engine->name, i915_ggtt_offset(vma));
1776	return 0;
 
1777
1778err_unpin:
1779	i915_vma_unpin(vma);
1780err:
1781	i915_gem_object_put(obj);
1782	return ret;
 
 
 
 
1783}
1784
1785static int init_phys_status_page(struct intel_engine_cs *engine)
1786{
1787	struct drm_i915_private *dev_priv = engine->i915;
 
 
 
1788
1789	dev_priv->status_page_dmah =
1790		drm_pci_alloc(&dev_priv->drm, PAGE_SIZE, PAGE_SIZE);
1791	if (!dev_priv->status_page_dmah)
1792		return -ENOMEM;
 
 
 
1793
1794	engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1795	memset(engine->status_page.page_addr, 0, PAGE_SIZE);
1796
1797	return 0;
1798}
1799
1800int intel_ring_pin(struct intel_ring *ring)
 
1801{
 
 
1802	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1803	unsigned int flags = PIN_GLOBAL | PIN_OFFSET_BIAS | 4096;
1804	enum i915_map_type map;
1805	struct i915_vma *vma = ring->vma;
1806	void *addr;
1807	int ret;
1808
1809	GEM_BUG_ON(ring->vaddr);
 
 
 
1810
1811	map = HAS_LLC(ring->engine->i915) ? I915_MAP_WB : I915_MAP_WC;
 
 
 
 
1812
1813	if (vma->obj->stolen)
1814		flags |= PIN_MAPPABLE;
 
 
 
 
 
 
 
 
1815
1816	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
1817		if (flags & PIN_MAPPABLE || map == I915_MAP_WC)
1818			ret = i915_gem_object_set_to_gtt_domain(vma->obj, true);
1819		else
1820			ret = i915_gem_object_set_to_cpu_domain(vma->obj, true);
1821		if (unlikely(ret))
1822			return ret;
 
 
 
 
 
 
 
 
 
 
 
1823	}
1824
1825	ret = i915_vma_pin(vma, 0, PAGE_SIZE, flags);
1826	if (unlikely(ret))
1827		return ret;
1828
1829	if (i915_vma_is_map_and_fenceable(vma))
1830		addr = (void __force *)i915_vma_pin_iomap(vma);
1831	else
1832		addr = i915_gem_object_pin_map(vma->obj, map);
1833	if (IS_ERR(addr))
1834		goto err;
1835
1836	ring->vaddr = addr;
1837	return 0;
1838
1839err:
1840	i915_vma_unpin(vma);
1841	return PTR_ERR(addr);
1842}
1843
1844void intel_ring_unpin(struct intel_ring *ring)
1845{
1846	GEM_BUG_ON(!ring->vma);
1847	GEM_BUG_ON(!ring->vaddr);
1848
1849	if (i915_vma_is_map_and_fenceable(ring->vma))
1850		i915_vma_unpin_iomap(ring->vma);
1851	else
1852		i915_gem_object_unpin_map(ring->vma->obj);
1853	ring->vaddr = NULL;
1854
1855	i915_vma_unpin(ring->vma);
1856}
1857
1858static struct i915_vma *
1859intel_ring_create_vma(struct drm_i915_private *dev_priv, int size)
1860{
1861	struct drm_i915_gem_object *obj;
1862	struct i915_vma *vma;
1863
1864	obj = i915_gem_object_create_stolen(&dev_priv->drm, size);
1865	if (!obj)
1866		obj = i915_gem_object_create(&dev_priv->drm, size);
1867	if (IS_ERR(obj))
1868		return ERR_CAST(obj);
 
 
1869
1870	/* mark ring buffers as read-only from GPU side by default */
1871	obj->gt_ro = 1;
1872
1873	vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
1874	if (IS_ERR(vma))
1875		goto err;
1876
1877	return vma;
1878
1879err:
1880	i915_gem_object_put(obj);
1881	return vma;
1882}
1883
1884struct intel_ring *
1885intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1886{
1887	struct intel_ring *ring;
1888	struct i915_vma *vma;
1889
1890	GEM_BUG_ON(!is_power_of_2(size));
1891	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1892
1893	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1894	if (!ring)
 
 
1895		return ERR_PTR(-ENOMEM);
 
1896
1897	ring->engine = engine;
1898
1899	INIT_LIST_HEAD(&ring->request_list);
1900
1901	ring->size = size;
1902	/* Workaround an erratum on the i830 which causes a hang if
1903	 * the TAIL pointer points to within the last 2 cachelines
1904	 * of the buffer.
1905	 */
1906	ring->effective_size = size;
1907	if (IS_I830(engine->i915) || IS_845G(engine->i915))
1908		ring->effective_size -= 2 * CACHELINE_BYTES;
1909
1910	ring->last_retired_head = -1;
1911	intel_ring_update_space(ring);
1912
1913	vma = intel_ring_create_vma(engine->i915, size);
1914	if (IS_ERR(vma)) {
 
 
 
1915		kfree(ring);
1916		return ERR_CAST(vma);
1917	}
1918	ring->vma = vma;
1919
1920	return ring;
1921}
1922
1923void
1924intel_ring_free(struct intel_ring *ring)
1925{
1926	struct drm_i915_gem_object *obj = ring->vma->obj;
1927
1928	i915_vma_close(ring->vma);
1929	__i915_gem_object_release_unless_active(obj);
1930
1931	kfree(ring);
1932}
1933
1934static int intel_ring_context_pin(struct i915_gem_context *ctx,
1935				  struct intel_engine_cs *engine)
1936{
1937	struct intel_context *ce = &ctx->engine[engine->id];
1938	int ret;
1939
1940	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1941
1942	if (ce->pin_count++)
1943		return 0;
1944
1945	if (ce->state) {
1946		struct i915_vma *vma;
1947
1948		vma = i915_gem_context_pin_legacy(ctx, PIN_HIGH);
1949		if (IS_ERR(vma)) {
1950			ret = PTR_ERR(vma);
1951			goto error;
1952		}
1953	}
1954
1955	/* The kernel context is only used as a placeholder for flushing the
1956	 * active context. It is never used for submitting user rendering and
1957	 * as such never requires the golden render context, and so we can skip
1958	 * emitting it when we switch to the kernel context. This is required
1959	 * as during eviction we cannot allocate and pin the renderstate in
1960	 * order to initialise the context.
1961	 */
1962	if (ctx == ctx->i915->kernel_context)
1963		ce->initialised = true;
1964
1965	i915_gem_context_get(ctx);
1966	return 0;
1967
1968error:
1969	ce->pin_count = 0;
1970	return ret;
1971}
1972
1973static void intel_ring_context_unpin(struct i915_gem_context *ctx,
1974				     struct intel_engine_cs *engine)
1975{
1976	struct intel_context *ce = &ctx->engine[engine->id];
1977
1978	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1979
1980	if (--ce->pin_count)
1981		return;
1982
1983	if (ce->state)
1984		i915_vma_unpin(ce->state);
1985
1986	i915_gem_context_put(ctx);
1987}
1988
1989static int intel_init_ring_buffer(struct intel_engine_cs *engine)
1990{
1991	struct drm_i915_private *dev_priv = engine->i915;
1992	struct intel_ring *ring;
1993	int ret;
1994
1995	WARN_ON(engine->buffer);
1996
1997	intel_engine_setup_common(engine);
1998
1999	ret = intel_engine_init_common(engine);
2000	if (ret)
2001		goto error;
2002
2003	/* We may need to do things with the shrinker which
2004	 * require us to immediately switch back to the default
2005	 * context. This can cause a problem as pinning the
2006	 * default context also requires GTT space which may not
2007	 * be available. To avoid this we always pin the default
2008	 * context.
2009	 */
2010	ret = intel_ring_context_pin(dev_priv->kernel_context, engine);
2011	if (ret)
2012		goto error;
2013
2014	ring = intel_engine_create_ring(engine, 32 * PAGE_SIZE);
2015	if (IS_ERR(ring)) {
2016		ret = PTR_ERR(ring);
2017		goto error;
2018	}
 
2019
2020	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2021		WARN_ON(engine->id != RCS);
2022		ret = init_phys_status_page(engine);
2023		if (ret)
2024			goto error;
2025	} else {
2026		ret = init_status_page(engine);
 
2027		if (ret)
2028			goto error;
2029	}
2030
2031	ret = intel_ring_pin(ring);
2032	if (ret) {
2033		intel_ring_free(ring);
 
 
2034		goto error;
2035	}
2036	engine->buffer = ring;
 
 
 
2037
2038	return 0;
2039
2040error:
2041	intel_engine_cleanup(engine);
2042	return ret;
2043}
2044
2045void intel_engine_cleanup(struct intel_engine_cs *engine)
2046{
2047	struct drm_i915_private *dev_priv;
2048
2049	dev_priv = engine->i915;
 
 
 
2050
2051	if (engine->buffer) {
2052		WARN_ON(INTEL_GEN(dev_priv) > 2 &&
2053			(I915_READ_MODE(engine) & MODE_IDLE) == 0);
2054
2055		intel_ring_unpin(engine->buffer);
2056		intel_ring_free(engine->buffer);
2057		engine->buffer = NULL;
2058	}
2059
2060	if (engine->cleanup)
2061		engine->cleanup(engine);
2062
2063	if (HWS_NEEDS_PHYSICAL(dev_priv)) {
2064		WARN_ON(engine->id != RCS);
2065		cleanup_phys_status_page(engine);
2066	} else {
2067		cleanup_status_page(engine);
 
2068	}
2069
2070	intel_engine_cleanup_common(engine);
2071
2072	intel_ring_context_unpin(dev_priv->kernel_context, engine);
2073
2074	engine->i915 = NULL;
2075	dev_priv->engine[engine->id] = NULL;
2076	kfree(engine);
2077}
2078
2079void intel_legacy_submission_resume(struct drm_i915_private *dev_priv)
2080{
2081	struct intel_engine_cs *engine;
2082	enum intel_engine_id id;
 
 
2083
2084	for_each_engine(engine, dev_priv, id) {
2085		engine->buffer->head = engine->buffer->tail;
2086		engine->buffer->last_retired_head = -1;
2087	}
2088}
2089
2090int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2091{
2092	int ret;
2093
2094	/* Flush enough space to reduce the likelihood of waiting after
2095	 * we start building the request - in which case we will just
2096	 * have to repeat work.
2097	 */
2098	request->reserved_space += LEGACY_REQUEST_SIZE;
 
2099
2100	request->ring = request->engine->buffer;
 
2101
2102	ret = intel_ring_begin(request, 0);
2103	if (ret)
2104		return ret;
2105
2106	request->reserved_space -= LEGACY_REQUEST_SIZE;
2107	return 0;
2108}
2109
2110static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
2111{
2112	struct intel_ring *ring = req->ring;
2113	struct drm_i915_gem_request *target;
2114	long timeout;
2115
2116	lockdep_assert_held(&req->i915->drm.struct_mutex);
 
 
 
2117
2118	intel_ring_update_space(ring);
2119	if (ring->space >= bytes)
 
 
 
 
 
 
 
 
2120		return 0;
2121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2122	/*
2123	 * Space is reserved in the ringbuffer for finalising the request,
2124	 * as that cannot be allowed to fail. During request finalisation,
2125	 * reserved_space is set to 0 to stop the overallocation and the
2126	 * assumption is that then we never need to wait (which has the
2127	 * risk of failing with EINTR).
2128	 *
2129	 * See also i915_gem_request_alloc() and i915_add_request().
2130	 */
2131	GEM_BUG_ON(!req->reserved_space);
2132
2133	list_for_each_entry(target, &ring->request_list, ring_link) {
2134		unsigned space;
 
 
 
 
 
2135
2136		/* Would completion of this request free enough space? */
2137		space = __intel_ring_space(target->postfix, ring->tail,
2138					   ring->size);
2139		if (space >= bytes)
2140			break;
2141	}
2142
2143	if (WARN_ON(&target->ring_link == &ring->request_list))
2144		return -ENOSPC;
 
2145
2146	timeout = i915_wait_request(target,
2147				    I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
2148				    MAX_SCHEDULE_TIMEOUT);
2149	if (timeout < 0)
2150		return timeout;
2151
2152	i915_gem_request_retire_upto(target);
 
 
2153
2154	intel_ring_update_space(ring);
2155	GEM_BUG_ON(ring->space < bytes);
2156	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157}
2158
2159int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
2160{
2161	struct intel_ring *ring = req->ring;
2162	int remain_actual = ring->size - ring->tail;
2163	int remain_usable = ring->effective_size - ring->tail;
2164	int bytes = num_dwords * sizeof(u32);
2165	int total_bytes, wait_bytes;
2166	bool need_wrap = false;
2167
2168	total_bytes = bytes + req->reserved_space;
 
 
 
2169
2170	if (unlikely(bytes > remain_usable)) {
2171		/*
2172		 * Not enough space for the basic request. So need to flush
2173		 * out the remainder and then wait for base + reserved.
2174		 */
2175		wait_bytes = remain_actual + total_bytes;
2176		need_wrap = true;
2177	} else if (unlikely(total_bytes > remain_usable)) {
2178		/*
2179		 * The base request will fit but the reserved space
2180		 * falls off the end. So we don't need an immediate wrap
2181		 * and only need to effectively wait for the reserved
2182		 * size space from the start of ringbuffer.
2183		 */
2184		wait_bytes = remain_actual + req->reserved_space;
2185	} else {
2186		/* No wrapping required, just waiting. */
2187		wait_bytes = total_bytes;
 
 
 
 
 
 
 
 
 
 
2188	}
2189
2190	if (wait_bytes > ring->space) {
2191		int ret = wait_for_space(req, wait_bytes);
2192		if (unlikely(ret))
2193			return ret;
 
 
 
2194	}
2195
2196	if (unlikely(need_wrap)) {
2197		GEM_BUG_ON(remain_actual > ring->space);
2198		GEM_BUG_ON(ring->tail + remain_actual > ring->size);
2199
2200		/* Fill the tail with MI_NOOP */
2201		memset(ring->vaddr + ring->tail, 0, remain_actual);
2202		ring->tail = 0;
2203		ring->space -= remain_actual;
2204	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2205
2206	ring->space -= bytes;
2207	GEM_BUG_ON(ring->space < 0);
2208	return 0;
2209}
2210
2211/* Align the ring tail to a cacheline boundary */
2212int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2213{
2214	struct intel_ring *ring = req->ring;
2215	int num_dwords =
2216		(ring->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2217	int ret;
2218
2219	if (num_dwords == 0)
2220		return 0;
2221
2222	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2223	ret = intel_ring_begin(req, num_dwords);
2224	if (ret)
2225		return ret;
2226
2227	while (num_dwords--)
2228		intel_ring_emit(ring, MI_NOOP);
2229
2230	intel_ring_advance(ring);
2231
2232	return 0;
2233}
2234
2235static void gen6_bsd_submit_request(struct drm_i915_gem_request *request)
2236{
2237	struct drm_i915_private *dev_priv = request->i915;
 
 
 
 
 
 
 
 
2238
2239	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
 
 
 
 
 
 
 
2240
2241       /* Every tail move must follow the sequence below */
2242
2243	/* Disable notification that the ring is IDLE. The GT
2244	 * will then assume that it is busy and bring it out of rc6.
2245	 */
2246	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2247		      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2248
2249	/* Clear the context id. Here be magic! */
2250	I915_WRITE64_FW(GEN6_BSD_RNCID, 0x0);
2251
2252	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2253	if (intel_wait_for_register_fw(dev_priv,
2254				       GEN6_BSD_SLEEP_PSMI_CONTROL,
2255				       GEN6_BSD_SLEEP_INDICATOR,
2256				       0,
2257				       50))
2258		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2259
2260	/* Now that the ring is fully powered up, update the tail */
2261	i9xx_submit_request(request);
 
2262
2263	/* Let the ring send IDLE messages to the GT again,
2264	 * and so let it sleep to conserve power when idle.
2265	 */
2266	I915_WRITE_FW(GEN6_BSD_SLEEP_PSMI_CONTROL,
2267		      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2268
2269	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2270}
2271
2272static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 
2273{
2274	struct intel_ring *ring = req->ring;
2275	uint32_t cmd;
2276	int ret;
2277
2278	ret = intel_ring_begin(req, 4);
2279	if (ret)
2280		return ret;
2281
2282	cmd = MI_FLUSH_DW;
2283	if (INTEL_GEN(req->i915) >= 8)
2284		cmd += 1;
2285
2286	/* We always require a command barrier so that subsequent
2287	 * commands, such as breadcrumb interrupts, are strictly ordered
2288	 * wrt the contents of the write cache being flushed to memory
2289	 * (and thus being coherent from the CPU).
2290	 */
2291	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2292
2293	/*
2294	 * Bspec vol 1c.5 - video engine command streamer:
2295	 * "If ENABLED, all TLBs will be invalidated once the flush
2296	 * operation is complete. This bit is only valid when the
2297	 * Post-Sync Operation field is a value of 1h or 3h."
2298	 */
2299	if (mode & EMIT_INVALIDATE)
2300		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2301
2302	intel_ring_emit(ring, cmd);
2303	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2304	if (INTEL_GEN(req->i915) >= 8) {
2305		intel_ring_emit(ring, 0); /* upper addr */
2306		intel_ring_emit(ring, 0); /* value */
2307	} else  {
2308		intel_ring_emit(ring, 0);
2309		intel_ring_emit(ring, MI_NOOP);
2310	}
2311	intel_ring_advance(ring);
2312	return 0;
2313}
2314
2315static int
2316gen8_emit_bb_start(struct drm_i915_gem_request *req,
2317		   u64 offset, u32 len,
2318		   unsigned int dispatch_flags)
2319{
2320	struct intel_ring *ring = req->ring;
2321	bool ppgtt = USES_PPGTT(req->i915) &&
2322			!(dispatch_flags & I915_DISPATCH_SECURE);
2323	int ret;
2324
2325	ret = intel_ring_begin(req, 4);
2326	if (ret)
2327		return ret;
2328
2329	/* FIXME(BDW): Address space and security selectors. */
2330	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2331			(dispatch_flags & I915_DISPATCH_RS ?
2332			 MI_BATCH_RESOURCE_STREAMER : 0));
2333	intel_ring_emit(ring, lower_32_bits(offset));
2334	intel_ring_emit(ring, upper_32_bits(offset));
2335	intel_ring_emit(ring, MI_NOOP);
2336	intel_ring_advance(ring);
2337
2338	return 0;
2339}
2340
2341static int
2342hsw_emit_bb_start(struct drm_i915_gem_request *req,
2343		  u64 offset, u32 len,
2344		  unsigned int dispatch_flags)
2345{
2346	struct intel_ring *ring = req->ring;
2347	int ret;
2348
2349	ret = intel_ring_begin(req, 2);
2350	if (ret)
2351		return ret;
2352
2353	intel_ring_emit(ring,
2354			MI_BATCH_BUFFER_START |
2355			(dispatch_flags & I915_DISPATCH_SECURE ?
2356			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2357			(dispatch_flags & I915_DISPATCH_RS ?
2358			 MI_BATCH_RESOURCE_STREAMER : 0));
2359	/* bit0-7 is the length on GEN6+ */
2360	intel_ring_emit(ring, offset);
2361	intel_ring_advance(ring);
2362
2363	return 0;
2364}
2365
2366static int
2367gen6_emit_bb_start(struct drm_i915_gem_request *req,
2368		   u64 offset, u32 len,
2369		   unsigned int dispatch_flags)
2370{
2371	struct intel_ring *ring = req->ring;
2372	int ret;
2373
2374	ret = intel_ring_begin(req, 2);
2375	if (ret)
2376		return ret;
2377
2378	intel_ring_emit(ring,
2379			MI_BATCH_BUFFER_START |
2380			(dispatch_flags & I915_DISPATCH_SECURE ?
2381			 0 : MI_BATCH_NON_SECURE_I965));
2382	/* bit0-7 is the length on GEN6+ */
2383	intel_ring_emit(ring, offset);
2384	intel_ring_advance(ring);
2385
2386	return 0;
2387}
2388
2389/* Blitter support (SandyBridge+) */
2390
2391static int gen6_ring_flush(struct drm_i915_gem_request *req, u32 mode)
 
2392{
2393	struct intel_ring *ring = req->ring;
 
2394	uint32_t cmd;
2395	int ret;
2396
2397	ret = intel_ring_begin(req, 4);
2398	if (ret)
2399		return ret;
2400
2401	cmd = MI_FLUSH_DW;
2402	if (INTEL_GEN(req->i915) >= 8)
2403		cmd += 1;
2404
2405	/* We always require a command barrier so that subsequent
2406	 * commands, such as breadcrumb interrupts, are strictly ordered
2407	 * wrt the contents of the write cache being flushed to memory
2408	 * (and thus being coherent from the CPU).
2409	 */
2410	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2411
2412	/*
2413	 * Bspec vol 1c.3 - blitter engine command streamer:
2414	 * "If ENABLED, all TLBs will be invalidated once the flush
2415	 * operation is complete. This bit is only valid when the
2416	 * Post-Sync Operation field is a value of 1h or 3h."
2417	 */
2418	if (mode & EMIT_INVALIDATE)
2419		cmd |= MI_INVALIDATE_TLB;
2420	intel_ring_emit(ring, cmd);
2421	intel_ring_emit(ring,
2422			I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2423	if (INTEL_GEN(req->i915) >= 8) {
2424		intel_ring_emit(ring, 0); /* upper addr */
2425		intel_ring_emit(ring, 0); /* value */
2426	} else  {
2427		intel_ring_emit(ring, 0);
2428		intel_ring_emit(ring, MI_NOOP);
2429	}
2430	intel_ring_advance(ring);
2431
2432	return 0;
2433}
2434
2435static void intel_ring_init_semaphores(struct drm_i915_private *dev_priv,
2436				       struct intel_engine_cs *engine)
2437{
 
 
2438	struct drm_i915_gem_object *obj;
2439	int ret, i;
2440
2441	if (!i915.semaphores)
2442		return;
2443
2444	if (INTEL_GEN(dev_priv) >= 8 && !dev_priv->semaphore) {
2445		struct i915_vma *vma;
2446
2447		obj = i915_gem_object_create(&dev_priv->drm, 4096);
2448		if (IS_ERR(obj))
2449			goto err;
2450
2451		vma = i915_vma_create(obj, &dev_priv->ggtt.base, NULL);
2452		if (IS_ERR(vma))
2453			goto err_obj;
2454
2455		ret = i915_gem_object_set_to_gtt_domain(obj, false);
2456		if (ret)
2457			goto err_obj;
2458
2459		ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2460		if (ret)
2461			goto err_obj;
2462
2463		dev_priv->semaphore = vma;
2464	}
2465
2466	if (INTEL_GEN(dev_priv) >= 8) {
2467		u32 offset = i915_ggtt_offset(dev_priv->semaphore);
2468
2469		engine->semaphore.sync_to = gen8_ring_sync_to;
2470		engine->semaphore.signal = gen8_xcs_signal;
2471
2472		for (i = 0; i < I915_NUM_ENGINES; i++) {
2473			u32 ring_offset;
2474
2475			if (i != engine->id)
2476				ring_offset = offset + GEN8_SEMAPHORE_OFFSET(engine->id, i);
2477			else
2478				ring_offset = MI_SEMAPHORE_SYNC_INVALID;
2479
2480			engine->semaphore.signal_ggtt[i] = ring_offset;
2481		}
2482	} else if (INTEL_GEN(dev_priv) >= 6) {
2483		engine->semaphore.sync_to = gen6_ring_sync_to;
2484		engine->semaphore.signal = gen6_signal;
2485
2486		/*
2487		 * The current semaphore is only applied on pre-gen8
2488		 * platform.  And there is no VCS2 ring on the pre-gen8
2489		 * platform. So the semaphore between RCS and VCS2 is
2490		 * initialized as INVALID.  Gen8 will initialize the
2491		 * sema between VCS2 and RCS later.
2492		 */
2493		for (i = 0; i < GEN6_NUM_SEMAPHORES; i++) {
2494			static const struct {
2495				u32 wait_mbox;
2496				i915_reg_t mbox_reg;
2497			} sem_data[GEN6_NUM_SEMAPHORES][GEN6_NUM_SEMAPHORES] = {
2498				[RCS_HW] = {
2499					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RV,  .mbox_reg = GEN6_VRSYNC },
2500					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_RB,  .mbox_reg = GEN6_BRSYNC },
2501					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_RVE, .mbox_reg = GEN6_VERSYNC },
2502				},
2503				[VCS_HW] = {
2504					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VR,  .mbox_reg = GEN6_RVSYNC },
2505					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VB,  .mbox_reg = GEN6_BVSYNC },
2506					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_VVE, .mbox_reg = GEN6_VEVSYNC },
2507				},
2508				[BCS_HW] = {
2509					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BR,  .mbox_reg = GEN6_RBSYNC },
2510					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_BV,  .mbox_reg = GEN6_VBSYNC },
2511					[VECS_HW] = { .wait_mbox = MI_SEMAPHORE_SYNC_BVE, .mbox_reg = GEN6_VEBSYNC },
2512				},
2513				[VECS_HW] = {
2514					[RCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VER, .mbox_reg = GEN6_RVESYNC },
2515					[VCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEV, .mbox_reg = GEN6_VVESYNC },
2516					[BCS_HW] =  { .wait_mbox = MI_SEMAPHORE_SYNC_VEB, .mbox_reg = GEN6_BVESYNC },
2517				},
2518			};
2519			u32 wait_mbox;
2520			i915_reg_t mbox_reg;
2521
2522			if (i == engine->hw_id) {
2523				wait_mbox = MI_SEMAPHORE_SYNC_INVALID;
2524				mbox_reg = GEN6_NOSYNC;
2525			} else {
2526				wait_mbox = sem_data[engine->hw_id][i].wait_mbox;
2527				mbox_reg = sem_data[engine->hw_id][i].mbox_reg;
 
 
 
 
 
 
2528			}
 
2529
2530			engine->semaphore.mbox.wait[i] = wait_mbox;
2531			engine->semaphore.mbox.signal[i] = mbox_reg;
 
 
 
 
 
 
 
 
 
 
 
2532		}
2533	}
2534
2535	return;
2536
2537err_obj:
2538	i915_gem_object_put(obj);
2539err:
2540	DRM_DEBUG_DRIVER("Failed to allocate space for semaphores, disabling\n");
2541	i915.semaphores = 0;
2542}
2543
2544static void intel_ring_init_irq(struct drm_i915_private *dev_priv,
2545				struct intel_engine_cs *engine)
2546{
2547	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << engine->irq_shift;
2548
2549	if (INTEL_GEN(dev_priv) >= 8) {
2550		engine->irq_enable = gen8_irq_enable;
2551		engine->irq_disable = gen8_irq_disable;
2552		engine->irq_seqno_barrier = gen6_seqno_barrier;
2553	} else if (INTEL_GEN(dev_priv) >= 6) {
2554		engine->irq_enable = gen6_irq_enable;
2555		engine->irq_disable = gen6_irq_disable;
2556		engine->irq_seqno_barrier = gen6_seqno_barrier;
2557	} else if (INTEL_GEN(dev_priv) >= 5) {
2558		engine->irq_enable = gen5_irq_enable;
2559		engine->irq_disable = gen5_irq_disable;
2560		engine->irq_seqno_barrier = gen5_seqno_barrier;
2561	} else if (INTEL_GEN(dev_priv) >= 3) {
2562		engine->irq_enable = i9xx_irq_enable;
2563		engine->irq_disable = i9xx_irq_disable;
 
 
 
 
 
 
 
 
 
 
2564	} else {
2565		engine->irq_enable = i8xx_irq_enable;
2566		engine->irq_disable = i8xx_irq_disable;
2567	}
2568}
2569
2570static void intel_ring_default_vfuncs(struct drm_i915_private *dev_priv,
2571				      struct intel_engine_cs *engine)
2572{
2573	intel_ring_init_irq(dev_priv, engine);
2574	intel_ring_init_semaphores(dev_priv, engine);
2575
2576	engine->init_hw = init_ring_common;
2577	engine->reset_hw = reset_ring_common;
2578
2579	engine->emit_breadcrumb = i9xx_emit_breadcrumb;
2580	engine->emit_breadcrumb_sz = i9xx_emit_breadcrumb_sz;
2581	if (i915.semaphores) {
2582		int num_rings;
2583
2584		engine->emit_breadcrumb = gen6_sema_emit_breadcrumb;
2585
2586		num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2587		if (INTEL_GEN(dev_priv) >= 8) {
2588			engine->emit_breadcrumb_sz += num_rings * 6;
2589		} else {
2590			engine->emit_breadcrumb_sz += num_rings * 3;
2591			if (num_rings & 1)
2592				engine->emit_breadcrumb_sz++;
2593		}
 
2594	}
2595	engine->submit_request = i9xx_submit_request;
2596
2597	if (INTEL_GEN(dev_priv) >= 8)
2598		engine->emit_bb_start = gen8_emit_bb_start;
2599	else if (INTEL_GEN(dev_priv) >= 6)
2600		engine->emit_bb_start = gen6_emit_bb_start;
2601	else if (INTEL_GEN(dev_priv) >= 4)
2602		engine->emit_bb_start = i965_emit_bb_start;
2603	else if (IS_I830(dev_priv) || IS_845G(dev_priv))
2604		engine->emit_bb_start = i830_emit_bb_start;
 
 
2605	else
2606		engine->emit_bb_start = i915_emit_bb_start;
2607}
 
 
 
 
 
 
 
 
 
2608
2609int intel_init_render_ring_buffer(struct intel_engine_cs *engine)
2610{
2611	struct drm_i915_private *dev_priv = engine->i915;
2612	int ret;
 
 
2613
2614	intel_ring_default_vfuncs(dev_priv, engine);
2615
2616	if (HAS_L3_DPF(dev_priv))
2617		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2618
2619	if (INTEL_GEN(dev_priv) >= 8) {
2620		engine->init_context = intel_rcs_ctx_init;
2621		engine->emit_breadcrumb = gen8_render_emit_breadcrumb;
2622		engine->emit_breadcrumb_sz = gen8_render_emit_breadcrumb_sz;
2623		engine->emit_flush = gen8_render_ring_flush;
2624		if (i915.semaphores) {
2625			int num_rings;
2626
2627			engine->semaphore.signal = gen8_rcs_signal;
2628
2629			num_rings =
2630				hweight32(INTEL_INFO(dev_priv)->ring_mask) - 1;
2631			engine->emit_breadcrumb_sz += num_rings * 6;
2632		}
2633	} else if (INTEL_GEN(dev_priv) >= 6) {
2634		engine->init_context = intel_rcs_ctx_init;
2635		engine->emit_flush = gen7_render_ring_flush;
2636		if (IS_GEN6(dev_priv))
2637			engine->emit_flush = gen6_render_ring_flush;
2638	} else if (IS_GEN5(dev_priv)) {
2639		engine->emit_flush = gen4_render_ring_flush;
2640	} else {
2641		if (INTEL_GEN(dev_priv) < 4)
2642			engine->emit_flush = gen2_render_ring_flush;
2643		else
2644			engine->emit_flush = gen4_render_ring_flush;
2645		engine->irq_enable_mask = I915_USER_INTERRUPT;
2646	}
2647
2648	if (IS_HASWELL(dev_priv))
2649		engine->emit_bb_start = hsw_emit_bb_start;
2650
2651	engine->init_hw = init_render_ring;
2652	engine->cleanup = render_ring_cleanup;
2653
2654	ret = intel_init_ring_buffer(engine);
2655	if (ret)
2656		return ret;
2657
2658	if (INTEL_GEN(dev_priv) >= 6) {
2659		ret = intel_engine_create_scratch(engine, 4096);
2660		if (ret)
2661			return ret;
2662	} else if (HAS_BROKEN_CS_TLB(dev_priv)) {
2663		ret = intel_engine_create_scratch(engine, I830_WA_SIZE);
2664		if (ret)
2665			return ret;
2666	}
2667
2668	return 0;
2669}
2670
2671int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine)
2672{
2673	struct drm_i915_private *dev_priv = engine->i915;
 
2674
2675	intel_ring_default_vfuncs(dev_priv, engine);
2676
2677	if (INTEL_GEN(dev_priv) >= 6) {
 
 
 
 
2678		/* gen6 bsd needs a special wa for tail updates */
2679		if (IS_GEN6(dev_priv))
2680			engine->submit_request = gen6_bsd_submit_request;
2681		engine->emit_flush = gen6_bsd_ring_flush;
2682		if (INTEL_GEN(dev_priv) < 8)
2683			engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2684	} else {
2685		engine->mmio_base = BSD_RING_BASE;
2686		engine->emit_flush = bsd_ring_flush;
2687		if (IS_GEN5(dev_priv))
2688			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2689		else
2690			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
 
 
 
 
 
 
 
 
 
2691	}
 
2692
2693	return intel_init_ring_buffer(engine);
2694}
2695
2696/**
2697 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2698 */
2699int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine)
2700{
2701	struct drm_i915_private *dev_priv = engine->i915;
 
2702
2703	intel_ring_default_vfuncs(dev_priv, engine);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704
2705	engine->emit_flush = gen6_bsd_ring_flush;
 
2706
2707	return intel_init_ring_buffer(engine);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2708}
2709
2710int intel_init_blt_ring_buffer(struct intel_engine_cs *engine)
 
2711{
2712	struct drm_i915_private *dev_priv = engine->i915;
 
 
 
 
2713
2714	intel_ring_default_vfuncs(dev_priv, engine);
 
 
2715
2716	engine->emit_flush = gen6_ring_flush;
2717	if (INTEL_GEN(dev_priv) < 8)
2718		engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2719
2720	return intel_init_ring_buffer(engine);
 
2721}
2722
2723int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine)
 
2724{
2725	struct drm_i915_private *dev_priv = engine->i915;
 
 
2726
2727	intel_ring_default_vfuncs(dev_priv, engine);
 
 
2728
2729	engine->emit_flush = gen6_ring_flush;
 
 
 
 
2730
2731	if (INTEL_GEN(dev_priv) < 8) {
2732		engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2733		engine->irq_enable = hsw_vebox_irq_enable;
2734		engine->irq_disable = hsw_vebox_irq_disable;
2735	}
 
 
 
 
 
 
 
 
 
 
 
2736
2737	return intel_init_ring_buffer(engine);
2738}