Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v4.6
   1/*
   2 * Copyright © 2008-2010 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *    Zou Nan hai <nanhai.zou@intel.com>
  26 *    Xiang Hai hao<haihao.xiang@intel.com>
  27 *
  28 */
  29
  30#include <linux/log2.h>
  31#include <drm/drmP.h>
  32#include "i915_drv.h"
  33#include <drm/i915_drm.h>
  34#include "i915_trace.h"
  35#include "intel_drv.h"
  36
  37int __intel_ring_space(int head, int tail, int size)
  38{
  39	int space = head - tail;
  40	if (space <= 0)
  41		space += size;
  42	return space - I915_RING_FREE_SPACE;
  43}
  44
  45void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  46{
  47	if (ringbuf->last_retired_head != -1) {
  48		ringbuf->head = ringbuf->last_retired_head;
  49		ringbuf->last_retired_head = -1;
  50	}
  51
  52	ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  53					    ringbuf->tail, ringbuf->size);
  54}
  55
  56int intel_ring_space(struct intel_ringbuffer *ringbuf)
  57{
  58	intel_ring_update_space(ringbuf);
  59	return ringbuf->space;
  60}
  61
  62bool intel_ring_stopped(struct intel_engine_cs *ring)
  63{
  64	struct drm_i915_private *dev_priv = ring->dev->dev_private;
  65	return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  66}
  67
  68static void __intel_ring_advance(struct intel_engine_cs *ring)
  69{
  70	struct intel_ringbuffer *ringbuf = ring->buffer;
  71	ringbuf->tail &= ringbuf->size - 1;
  72	if (intel_ring_stopped(ring))
  73		return;
  74	ring->write_tail(ring, ringbuf->tail);
  75}
  76
  77static int
  78gen2_render_ring_flush(struct drm_i915_gem_request *req,
  79		       u32	invalidate_domains,
  80		       u32	flush_domains)
  81{
  82	struct intel_engine_cs *ring = req->ring;
  83	u32 cmd;
  84	int ret;
  85
  86	cmd = MI_FLUSH;
  87	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  88		cmd |= MI_NO_WRITE_FLUSH;
  89
  90	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  91		cmd |= MI_READ_FLUSH;
  92
  93	ret = intel_ring_begin(req, 2);
  94	if (ret)
  95		return ret;
  96
  97	intel_ring_emit(ring, cmd);
  98	intel_ring_emit(ring, MI_NOOP);
  99	intel_ring_advance(ring);
 100
 101	return 0;
 102}
 103
 104static int
 105gen4_render_ring_flush(struct drm_i915_gem_request *req,
 106		       u32	invalidate_domains,
 107		       u32	flush_domains)
 108{
 109	struct intel_engine_cs *ring = req->ring;
 110	struct drm_device *dev = ring->dev;
 111	u32 cmd;
 112	int ret;
 113
 114	/*
 115	 * read/write caches:
 116	 *
 117	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
 118	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
 119	 * also flushed at 2d versus 3d pipeline switches.
 120	 *
 121	 * read-only caches:
 122	 *
 123	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
 124	 * MI_READ_FLUSH is set, and is always flushed on 965.
 125	 *
 126	 * I915_GEM_DOMAIN_COMMAND may not exist?
 127	 *
 128	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
 129	 * invalidated when MI_EXE_FLUSH is set.
 130	 *
 131	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
 132	 * invalidated with every MI_FLUSH.
 133	 *
 134	 * TLBs:
 135	 *
 136	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
 137	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
 138	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
 139	 * are flushed at any MI_FLUSH.
 140	 */
 141
 142	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
 143	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
 144		cmd &= ~MI_NO_WRITE_FLUSH;
 145	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
 146		cmd |= MI_EXE_FLUSH;
 147
 148	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
 149	    (IS_G4X(dev) || IS_GEN5(dev)))
 150		cmd |= MI_INVALIDATE_ISP;
 151
 152	ret = intel_ring_begin(req, 2);
 153	if (ret)
 154		return ret;
 155
 156	intel_ring_emit(ring, cmd);
 157	intel_ring_emit(ring, MI_NOOP);
 158	intel_ring_advance(ring);
 159
 160	return 0;
 161}
 162
 163/**
 164 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 165 * implementing two workarounds on gen6.  From section 1.4.7.1
 166 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 167 *
 168 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 169 * produced by non-pipelined state commands), software needs to first
 170 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 171 * 0.
 172 *
 173 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 174 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 175 *
 176 * And the workaround for these two requires this workaround first:
 177 *
 178 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 179 * BEFORE the pipe-control with a post-sync op and no write-cache
 180 * flushes.
 181 *
 182 * And this last workaround is tricky because of the requirements on
 183 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 184 * volume 2 part 1:
 185 *
 186 *     "1 of the following must also be set:
 187 *      - Render Target Cache Flush Enable ([12] of DW1)
 188 *      - Depth Cache Flush Enable ([0] of DW1)
 189 *      - Stall at Pixel Scoreboard ([1] of DW1)
 190 *      - Depth Stall ([13] of DW1)
 191 *      - Post-Sync Operation ([13] of DW1)
 192 *      - Notify Enable ([8] of DW1)"
 193 *
 194 * The cache flushes require the workaround flush that triggered this
 195 * one, so we can't use it.  Depth stall would trigger the same.
 196 * Post-sync nonzero is what triggered this second workaround, so we
 197 * can't use that one either.  Notify enable is IRQs, which aren't
 198 * really our business.  That leaves only stall at scoreboard.
 199 */
 200static int
 201intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
 202{
 203	struct intel_engine_cs *ring = req->ring;
 204	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
 205	int ret;
 206
 207	ret = intel_ring_begin(req, 6);
 
 208	if (ret)
 209		return ret;
 210
 211	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
 212	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
 213			PIPE_CONTROL_STALL_AT_SCOREBOARD);
 214	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
 215	intel_ring_emit(ring, 0); /* low dword */
 216	intel_ring_emit(ring, 0); /* high dword */
 217	intel_ring_emit(ring, MI_NOOP);
 218	intel_ring_advance(ring);
 219
 220	ret = intel_ring_begin(req, 6);
 221	if (ret)
 222		return ret;
 223
 224	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
 225	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
 226	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
 227	intel_ring_emit(ring, 0);
 228	intel_ring_emit(ring, 0);
 229	intel_ring_emit(ring, MI_NOOP);
 230	intel_ring_advance(ring);
 231
 232	return 0;
 233}
 234
 235static int
 236gen6_render_ring_flush(struct drm_i915_gem_request *req,
 237		       u32 invalidate_domains, u32 flush_domains)
 238{
 239	struct intel_engine_cs *ring = req->ring;
 240	u32 flags = 0;
 241	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
 
 242	int ret;
 243
 244	/* Force SNB workarounds for PIPE_CONTROL flushes */
 245	ret = intel_emit_post_sync_nonzero_flush(req);
 246	if (ret)
 247		return ret;
 248
 249	/* Just flush everything.  Experiments have shown that reducing the
 250	 * number of bits based on the write domains has little performance
 251	 * impact.
 252	 */
 253	if (flush_domains) {
 254		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 255		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 256		/*
 257		 * Ensure that any following seqno writes only happen
 258		 * when the render cache is indeed flushed.
 259		 */
 260		flags |= PIPE_CONTROL_CS_STALL;
 261	}
 262	if (invalidate_domains) {
 263		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 264		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 265		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 266		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 267		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 268		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 269		/*
 270		 * TLB invalidate requires a post-sync write.
 271		 */
 272		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
 273	}
 274
 275	ret = intel_ring_begin(req, 4);
 276	if (ret)
 277		return ret;
 278
 279	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 280	intel_ring_emit(ring, flags);
 281	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
 282	intel_ring_emit(ring, 0);
 283	intel_ring_advance(ring);
 284
 285	return 0;
 286}
 287
 288static int
 289gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
 290{
 291	struct intel_engine_cs *ring = req->ring;
 292	int ret;
 293
 294	ret = intel_ring_begin(req, 4);
 295	if (ret)
 296		return ret;
 297
 298	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 299	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
 300			      PIPE_CONTROL_STALL_AT_SCOREBOARD);
 301	intel_ring_emit(ring, 0);
 302	intel_ring_emit(ring, 0);
 303	intel_ring_advance(ring);
 304
 305	return 0;
 306}
 307
 308static int
 309gen7_render_ring_flush(struct drm_i915_gem_request *req,
 310		       u32 invalidate_domains, u32 flush_domains)
 311{
 312	struct intel_engine_cs *ring = req->ring;
 313	u32 flags = 0;
 314	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
 315	int ret;
 316
 317	/*
 318	 * Ensure that any following seqno writes only happen when the render
 319	 * cache is indeed flushed.
 320	 *
 321	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
 322	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
 323	 * don't try to be clever and just set it unconditionally.
 324	 */
 325	flags |= PIPE_CONTROL_CS_STALL;
 326
 327	/* Just flush everything.  Experiments have shown that reducing the
 328	 * number of bits based on the write domains has little performance
 329	 * impact.
 330	 */
 331	if (flush_domains) {
 332		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 333		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 334		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
 335		flags |= PIPE_CONTROL_FLUSH_ENABLE;
 336	}
 337	if (invalidate_domains) {
 338		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 339		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 340		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 341		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 342		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 343		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 344		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
 345		/*
 346		 * TLB invalidate requires a post-sync write.
 347		 */
 348		flags |= PIPE_CONTROL_QW_WRITE;
 349		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
 350
 351		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
 352
 353		/* Workaround: we must issue a pipe_control with CS-stall bit
 354		 * set before a pipe_control command that has the state cache
 355		 * invalidate bit set. */
 356		gen7_render_ring_cs_stall_wa(req);
 357	}
 358
 359	ret = intel_ring_begin(req, 4);
 360	if (ret)
 361		return ret;
 362
 363	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
 364	intel_ring_emit(ring, flags);
 365	intel_ring_emit(ring, scratch_addr);
 366	intel_ring_emit(ring, 0);
 367	intel_ring_advance(ring);
 368
 369	return 0;
 370}
 371
 372static int
 373gen8_emit_pipe_control(struct drm_i915_gem_request *req,
 374		       u32 flags, u32 scratch_addr)
 375{
 376	struct intel_engine_cs *ring = req->ring;
 377	int ret;
 378
 379	ret = intel_ring_begin(req, 6);
 380	if (ret)
 381		return ret;
 382
 383	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
 384	intel_ring_emit(ring, flags);
 385	intel_ring_emit(ring, scratch_addr);
 386	intel_ring_emit(ring, 0);
 387	intel_ring_emit(ring, 0);
 388	intel_ring_emit(ring, 0);
 389	intel_ring_advance(ring);
 390
 391	return 0;
 392}
 393
 394static int
 395gen8_render_ring_flush(struct drm_i915_gem_request *req,
 396		       u32 invalidate_domains, u32 flush_domains)
 397{
 398	u32 flags = 0;
 399	u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
 400	int ret;
 401
 402	flags |= PIPE_CONTROL_CS_STALL;
 403
 404	if (flush_domains) {
 405		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 406		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 407		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
 408		flags |= PIPE_CONTROL_FLUSH_ENABLE;
 409	}
 410	if (invalidate_domains) {
 411		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 412		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 413		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 414		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 415		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 416		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 417		flags |= PIPE_CONTROL_QW_WRITE;
 418		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
 419
 420		/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
 421		ret = gen8_emit_pipe_control(req,
 422					     PIPE_CONTROL_CS_STALL |
 423					     PIPE_CONTROL_STALL_AT_SCOREBOARD,
 424					     0);
 425		if (ret)
 426			return ret;
 427	}
 428
 429	return gen8_emit_pipe_control(req, flags, scratch_addr);
 430}
 431
 432static void ring_write_tail(struct intel_engine_cs *ring,
 433			    u32 value)
 434{
 435	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 436	I915_WRITE_TAIL(ring, value);
 437}
 438
 439u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
 440{
 441	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 442	u64 acthd;
 443
 444	if (INTEL_INFO(ring->dev)->gen >= 8)
 445		acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
 446					 RING_ACTHD_UDW(ring->mmio_base));
 447	else if (INTEL_INFO(ring->dev)->gen >= 4)
 448		acthd = I915_READ(RING_ACTHD(ring->mmio_base));
 449	else
 450		acthd = I915_READ(ACTHD);
 451
 452	return acthd;
 453}
 454
 455static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
 456{
 457	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 458	u32 addr;
 
 459
 460	addr = dev_priv->status_page_dmah->busaddr;
 461	if (INTEL_INFO(ring->dev)->gen >= 4)
 462		addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
 463	I915_WRITE(HWS_PGA, addr);
 464}
 465
 466static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
 467{
 468	struct drm_device *dev = ring->dev;
 469	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 470	i915_reg_t mmio;
 471
 472	/* The ring status page addresses are no longer next to the rest of
 473	 * the ring registers as of gen7.
 474	 */
 475	if (IS_GEN7(dev)) {
 476		switch (ring->id) {
 477		case RCS:
 478			mmio = RENDER_HWS_PGA_GEN7;
 479			break;
 480		case BCS:
 481			mmio = BLT_HWS_PGA_GEN7;
 482			break;
 483		/*
 484		 * VCS2 actually doesn't exist on Gen7. Only shut up
 485		 * gcc switch check warning
 486		 */
 487		case VCS2:
 488		case VCS:
 489			mmio = BSD_HWS_PGA_GEN7;
 490			break;
 491		case VECS:
 492			mmio = VEBOX_HWS_PGA_GEN7;
 493			break;
 494		}
 495	} else if (IS_GEN6(ring->dev)) {
 496		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
 497	} else {
 498		/* XXX: gen8 returns to sanity */
 499		mmio = RING_HWS_PGA(ring->mmio_base);
 500	}
 501
 502	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
 503	POSTING_READ(mmio);
 504
 505	/*
 506	 * Flush the TLB for this page
 507	 *
 508	 * FIXME: These two bits have disappeared on gen8, so a question
 509	 * arises: do we still need this and if so how should we go about
 510	 * invalidating the TLB?
 511	 */
 512	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
 513		i915_reg_t reg = RING_INSTPM(ring->mmio_base);
 514
 515		/* ring should be idle before issuing a sync flush*/
 516		WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
 517
 518		I915_WRITE(reg,
 519			   _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
 520					      INSTPM_SYNC_FLUSH));
 521		if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
 522			     1000))
 523			DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
 524				  ring->name);
 525	}
 526}
 527
 528static bool stop_ring(struct intel_engine_cs *ring)
 529{
 530	struct drm_i915_private *dev_priv = to_i915(ring->dev);
 531
 532	if (!IS_GEN2(ring->dev)) {
 533		I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
 534		if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
 535			DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
 536			/* Sometimes we observe that the idle flag is not
 537			 * set even though the ring is empty. So double
 538			 * check before giving up.
 539			 */
 540			if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
 541				return false;
 542		}
 543	}
 544
 
 545	I915_WRITE_CTL(ring, 0);
 546	I915_WRITE_HEAD(ring, 0);
 547	ring->write_tail(ring, 0);
 548
 549	if (!IS_GEN2(ring->dev)) {
 550		(void)I915_READ_CTL(ring);
 551		I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
 552	}
 553
 554	return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
 555}
 556
 557static int init_ring_common(struct intel_engine_cs *ring)
 558{
 559	struct drm_device *dev = ring->dev;
 560	struct drm_i915_private *dev_priv = dev->dev_private;
 561	struct intel_ringbuffer *ringbuf = ring->buffer;
 562	struct drm_i915_gem_object *obj = ringbuf->obj;
 563	int ret = 0;
 564
 565	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
 566
 567	if (!stop_ring(ring)) {
 568		/* G45 ring initialization often fails to reset head to zero */
 569		DRM_DEBUG_KMS("%s head not reset to zero "
 570			      "ctl %08x head %08x tail %08x start %08x\n",
 571			      ring->name,
 572			      I915_READ_CTL(ring),
 573			      I915_READ_HEAD(ring),
 574			      I915_READ_TAIL(ring),
 575			      I915_READ_START(ring));
 576
 577		if (!stop_ring(ring)) {
 
 
 578			DRM_ERROR("failed to set %s head to zero "
 579				  "ctl %08x head %08x tail %08x start %08x\n",
 580				  ring->name,
 581				  I915_READ_CTL(ring),
 582				  I915_READ_HEAD(ring),
 583				  I915_READ_TAIL(ring),
 584				  I915_READ_START(ring));
 585			ret = -EIO;
 586			goto out;
 587		}
 588	}
 589
 590	if (I915_NEED_GFX_HWS(dev))
 591		intel_ring_setup_status_page(ring);
 592	else
 593		ring_setup_phys_status_page(ring);
 594
 595	/* Enforce ordering by reading HEAD register back */
 596	I915_READ_HEAD(ring);
 597
 598	/* Initialize the ring. This must happen _after_ we've cleared the ring
 599	 * registers with the above sequence (the readback of the HEAD registers
 600	 * also enforces ordering), otherwise the hw might lose the new ring
 601	 * register values. */
 602	I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
 603
 604	/* WaClearRingBufHeadRegAtInit:ctg,elk */
 605	if (I915_READ_HEAD(ring))
 606		DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
 607			  ring->name, I915_READ_HEAD(ring));
 608	I915_WRITE_HEAD(ring, 0);
 609	(void)I915_READ_HEAD(ring);
 610
 611	I915_WRITE_CTL(ring,
 612			((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
 613			| RING_VALID);
 614
 615	/* If the head is still not zero, the ring is dead */
 616	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
 617		     I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
 618		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
 619		DRM_ERROR("%s initialization failed "
 620			  "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
 621			  ring->name,
 622			  I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
 623			  I915_READ_HEAD(ring), I915_READ_TAIL(ring),
 624			  I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
 
 625		ret = -EIO;
 626		goto out;
 627	}
 628
 629	ringbuf->last_retired_head = -1;
 630	ringbuf->head = I915_READ_HEAD(ring);
 631	ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
 632	intel_ring_update_space(ringbuf);
 633
 634	memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
 
 
 635
 636out:
 637	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
 
 638
 639	return ret;
 640}
 641
 642void
 643intel_fini_pipe_control(struct intel_engine_cs *ring)
 644{
 645	struct drm_device *dev = ring->dev;
 646
 647	if (ring->scratch.obj == NULL)
 648		return;
 649
 650	if (INTEL_INFO(dev)->gen >= 5) {
 651		kunmap(sg_page(ring->scratch.obj->pages->sgl));
 652		i915_gem_object_ggtt_unpin(ring->scratch.obj);
 653	}
 654
 655	drm_gem_object_unreference(&ring->scratch.obj->base);
 656	ring->scratch.obj = NULL;
 657}
 658
 659int
 660intel_init_pipe_control(struct intel_engine_cs *ring)
 661{
 
 
 662	int ret;
 663
 664	WARN_ON(ring->scratch.obj);
 
 
 
 
 
 665
 666	ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
 667	if (ring->scratch.obj == NULL) {
 668		DRM_ERROR("Failed to allocate seqno page\n");
 669		ret = -ENOMEM;
 670		goto err;
 671	}
 672
 673	ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
 674	if (ret)
 675		goto err_unref;
 676
 677	ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
 678	if (ret)
 679		goto err_unref;
 680
 681	ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
 682	ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
 683	if (ring->scratch.cpu_page == NULL) {
 684		ret = -ENOMEM;
 685		goto err_unpin;
 686	}
 687
 688	DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
 689			 ring->name, ring->scratch.gtt_offset);
 690	return 0;
 691
 692err_unpin:
 693	i915_gem_object_ggtt_unpin(ring->scratch.obj);
 694err_unref:
 695	drm_gem_object_unreference(&ring->scratch.obj->base);
 696err:
 
 697	return ret;
 698}
 699
 700static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
 701{
 702	int ret, i;
 703	struct intel_engine_cs *ring = req->ring;
 704	struct drm_device *dev = ring->dev;
 705	struct drm_i915_private *dev_priv = dev->dev_private;
 706	struct i915_workarounds *w = &dev_priv->workarounds;
 707
 708	if (w->count == 0)
 709		return 0;
 710
 711	ring->gpu_caches_dirty = true;
 712	ret = intel_ring_flush_all_caches(req);
 713	if (ret)
 714		return ret;
 715
 716	ret = intel_ring_begin(req, (w->count * 2 + 2));
 717	if (ret)
 718		return ret;
 719
 720	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
 721	for (i = 0; i < w->count; i++) {
 722		intel_ring_emit_reg(ring, w->reg[i].addr);
 723		intel_ring_emit(ring, w->reg[i].value);
 724	}
 725	intel_ring_emit(ring, MI_NOOP);
 726
 727	intel_ring_advance(ring);
 728
 729	ring->gpu_caches_dirty = true;
 730	ret = intel_ring_flush_all_caches(req);
 731	if (ret)
 732		return ret;
 733
 734	DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
 735
 736	return 0;
 737}
 738
 739static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
 740{
 741	int ret;
 742
 743	ret = intel_ring_workarounds_emit(req);
 744	if (ret != 0)
 745		return ret;
 746
 747	ret = i915_gem_render_state_init(req);
 748	if (ret)
 749		return ret;
 750
 751	return 0;
 752}
 753
 754static int wa_add(struct drm_i915_private *dev_priv,
 755		  i915_reg_t addr,
 756		  const u32 mask, const u32 val)
 757{
 758	const u32 idx = dev_priv->workarounds.count;
 759
 760	if (WARN_ON(idx >= I915_MAX_WA_REGS))
 761		return -ENOSPC;
 762
 763	dev_priv->workarounds.reg[idx].addr = addr;
 764	dev_priv->workarounds.reg[idx].value = val;
 765	dev_priv->workarounds.reg[idx].mask = mask;
 766
 767	dev_priv->workarounds.count++;
 768
 769	return 0;
 770}
 771
 772#define WA_REG(addr, mask, val) do { \
 773		const int r = wa_add(dev_priv, (addr), (mask), (val)); \
 774		if (r) \
 775			return r; \
 776	} while (0)
 777
 778#define WA_SET_BIT_MASKED(addr, mask) \
 779	WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
 780
 781#define WA_CLR_BIT_MASKED(addr, mask) \
 782	WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
 783
 784#define WA_SET_FIELD_MASKED(addr, mask, value) \
 785	WA_REG(addr, mask, _MASKED_FIELD(mask, value))
 786
 787#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
 788#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
 789
 790#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
 791
 792static int wa_ring_whitelist_reg(struct intel_engine_cs *ring, i915_reg_t reg)
 793{
 794	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 795	struct i915_workarounds *wa = &dev_priv->workarounds;
 796	const uint32_t index = wa->hw_whitelist_count[ring->id];
 797
 798	if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
 799		return -EINVAL;
 800
 801	WA_WRITE(RING_FORCE_TO_NONPRIV(ring->mmio_base, index),
 802		 i915_mmio_reg_offset(reg));
 803	wa->hw_whitelist_count[ring->id]++;
 804
 805	return 0;
 806}
 807
 808static int gen8_init_workarounds(struct intel_engine_cs *ring)
 809{
 810	struct drm_device *dev = ring->dev;
 811	struct drm_i915_private *dev_priv = dev->dev_private;
 812
 813	WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
 814
 815	/* WaDisableAsyncFlipPerfMode:bdw,chv */
 816	WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
 817
 818	/* WaDisablePartialInstShootdown:bdw,chv */
 819	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
 820			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
 821
 822	/* Use Force Non-Coherent whenever executing a 3D context. This is a
 823	 * workaround for for a possible hang in the unlikely event a TLB
 824	 * invalidation occurs during a PSD flush.
 825	 */
 826	/* WaForceEnableNonCoherent:bdw,chv */
 827	/* WaHdcDisableFetchWhenMasked:bdw,chv */
 828	WA_SET_BIT_MASKED(HDC_CHICKEN0,
 829			  HDC_DONOT_FETCH_MEM_WHEN_MASKED |
 830			  HDC_FORCE_NON_COHERENT);
 831
 832	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
 833	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
 834	 *  polygons in the same 8x4 pixel/sample area to be processed without
 835	 *  stalling waiting for the earlier ones to write to Hierarchical Z
 836	 *  buffer."
 837	 *
 838	 * This optimization is off by default for BDW and CHV; turn it on.
 839	 */
 840	WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
 841
 842	/* Wa4x4STCOptimizationDisable:bdw,chv */
 843	WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
 844
 845	/*
 846	 * BSpec recommends 8x4 when MSAA is used,
 847	 * however in practice 16x4 seems fastest.
 848	 *
 849	 * Note that PS/WM thread counts depend on the WIZ hashing
 850	 * disable bit, which we don't touch here, but it's good
 851	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
 852	 */
 853	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
 854			    GEN6_WIZ_HASHING_MASK,
 855			    GEN6_WIZ_HASHING_16x4);
 856
 857	return 0;
 858}
 859
 860static int bdw_init_workarounds(struct intel_engine_cs *ring)
 861{
 862	int ret;
 863	struct drm_device *dev = ring->dev;
 864	struct drm_i915_private *dev_priv = dev->dev_private;
 865
 866	ret = gen8_init_workarounds(ring);
 867	if (ret)
 868		return ret;
 869
 870	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
 871	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
 872
 873	/* WaDisableDopClockGating:bdw */
 874	WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
 875			  DOP_CLOCK_GATING_DISABLE);
 876
 877	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
 878			  GEN8_SAMPLER_POWER_BYPASS_DIS);
 879
 880	WA_SET_BIT_MASKED(HDC_CHICKEN0,
 881			  /* WaForceContextSaveRestoreNonCoherent:bdw */
 882			  HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
 883			  /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
 884			  (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
 885
 886	return 0;
 887}
 888
 889static int chv_init_workarounds(struct intel_engine_cs *ring)
 890{
 891	int ret;
 892	struct drm_device *dev = ring->dev;
 893	struct drm_i915_private *dev_priv = dev->dev_private;
 894
 895	ret = gen8_init_workarounds(ring);
 896	if (ret)
 897		return ret;
 898
 899	/* WaDisableThreadStallDopClockGating:chv */
 900	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
 901
 902	/* Improve HiZ throughput on CHV. */
 903	WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
 904
 905	return 0;
 906}
 907
 908static int gen9_init_workarounds(struct intel_engine_cs *ring)
 909{
 910	struct drm_device *dev = ring->dev;
 911	struct drm_i915_private *dev_priv = dev->dev_private;
 912	uint32_t tmp;
 913	int ret;
 914
 915	/* WaEnableLbsSlaRetryTimerDecrement:skl */
 916	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
 917		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
 918
 919	/* WaDisableKillLogic:bxt,skl */
 920	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
 921		   ECOCHK_DIS_TLB);
 922
 923	/* WaDisablePartialInstShootdown:skl,bxt */
 924	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
 925			  PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
 926
 927	/* Syncing dependencies between camera and graphics:skl,bxt */
 928	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
 929			  GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
 930
 931	/* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
 932	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
 933	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
 934		WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
 935				  GEN9_DG_MIRROR_FIX_ENABLE);
 936
 937	/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
 938	if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
 939	    IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
 940		WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
 941				  GEN9_RHWO_OPTIMIZATION_DISABLE);
 942		/*
 943		 * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
 944		 * but we do that in per ctx batchbuffer as there is an issue
 945		 * with this register not getting restored on ctx restore
 946		 */
 947	}
 948
 949	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
 950	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER) || IS_BROXTON(dev))
 951		WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
 952				  GEN9_ENABLE_YV12_BUGFIX);
 953
 954	/* Wa4x4STCOptimizationDisable:skl,bxt */
 955	/* WaDisablePartialResolveInVc:skl,bxt */
 956	WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
 957					 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
 958
 959	/* WaCcsTlbPrefetchDisable:skl,bxt */
 960	WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
 961			  GEN9_CCS_TLB_PREFETCH_ENABLE);
 962
 963	/* WaDisableMaskBasedCammingInRCC:skl,bxt */
 964	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_C0) ||
 965	    IS_BXT_REVID(dev, 0, BXT_REVID_A1))
 966		WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
 967				  PIXEL_MASK_CAMMING_DISABLE);
 968
 969	/* WaForceContextSaveRestoreNonCoherent:skl,bxt */
 970	tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
 971	if (IS_SKL_REVID(dev, SKL_REVID_F0, REVID_FOREVER) ||
 972	    IS_BXT_REVID(dev, BXT_REVID_B0, REVID_FOREVER))
 973		tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
 974	WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
 975
 976	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt */
 977	if (IS_SKYLAKE(dev) || IS_BXT_REVID(dev, 0, BXT_REVID_B0))
 978		WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
 979				  GEN8_SAMPLER_POWER_BYPASS_DIS);
 980
 981	/* WaDisableSTUnitPowerOptimization:skl,bxt */
 982	WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
 983
 984	/* WaOCLCoherentLineFlush:skl,bxt */
 985	I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
 986				    GEN8_LQSC_FLUSH_COHERENT_LINES));
 987
 988	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt */
 989	ret= wa_ring_whitelist_reg(ring, GEN8_CS_CHICKEN1);
 990	if (ret)
 991		return ret;
 992
 993	/* WaAllowUMDToModifyHDCChicken1:skl,bxt */
 994	ret = wa_ring_whitelist_reg(ring, GEN8_HDC_CHICKEN1);
 995	if (ret)
 996		return ret;
 997
 998	return 0;
 999}
1000
1001static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
1002{
1003	struct drm_device *dev = ring->dev;
1004	struct drm_i915_private *dev_priv = dev->dev_private;
1005	u8 vals[3] = { 0, 0, 0 };
1006	unsigned int i;
1007
1008	for (i = 0; i < 3; i++) {
1009		u8 ss;
1010
1011		/*
1012		 * Only consider slices where one, and only one, subslice has 7
1013		 * EUs
1014		 */
1015		if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
1016			continue;
1017
1018		/*
1019		 * subslice_7eu[i] != 0 (because of the check above) and
1020		 * ss_max == 4 (maximum number of subslices possible per slice)
1021		 *
1022		 * ->    0 <= ss <= 3;
1023		 */
1024		ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
1025		vals[i] = 3 - ss;
1026	}
1027
1028	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
1029		return 0;
1030
1031	/* Tune IZ hashing. See intel_device_info_runtime_init() */
1032	WA_SET_FIELD_MASKED(GEN7_GT_MODE,
1033			    GEN9_IZ_HASHING_MASK(2) |
1034			    GEN9_IZ_HASHING_MASK(1) |
1035			    GEN9_IZ_HASHING_MASK(0),
1036			    GEN9_IZ_HASHING(2, vals[2]) |
1037			    GEN9_IZ_HASHING(1, vals[1]) |
1038			    GEN9_IZ_HASHING(0, vals[0]));
1039
1040	return 0;
 
1041}
1042
1043static int skl_init_workarounds(struct intel_engine_cs *ring)
1044{
1045	int ret;
1046	struct drm_device *dev = ring->dev;
1047	struct drm_i915_private *dev_priv = dev->dev_private;
 
1048
1049	ret = gen9_init_workarounds(ring);
1050	if (ret)
1051		return ret;
1052
1053	/*
1054	 * Actual WA is to disable percontext preemption granularity control
1055	 * until D0 which is the default case so this is equivalent to
1056	 * !WaDisablePerCtxtPreemptionGranularityControl:skl
1057	 */
1058	if (IS_SKL_REVID(dev, SKL_REVID_E0, REVID_FOREVER)) {
1059		I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
1060			   _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
1061	}
1062
1063	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0)) {
1064		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
1065		I915_WRITE(FF_SLICE_CS_CHICKEN2,
1066			   _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
1067	}
1068
1069	/* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
1070	 * involving this register should also be added to WA batch as required.
1071	 */
1072	if (IS_SKL_REVID(dev, 0, SKL_REVID_E0))
1073		/* WaDisableLSQCROPERFforOCL:skl */
1074		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
1075			   GEN8_LQSC_RO_PERF_DIS);
1076
1077	/* WaEnableGapsTsvCreditFix:skl */
1078	if (IS_SKL_REVID(dev, SKL_REVID_C0, REVID_FOREVER)) {
1079		I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
1080					   GEN9_GAPS_TSV_CREDIT_DISABLE));
1081	}
1082
1083	/* WaDisablePowerCompilerClockGating:skl */
1084	if (IS_SKL_REVID(dev, SKL_REVID_B0, SKL_REVID_B0))
1085		WA_SET_BIT_MASKED(HIZ_CHICKEN,
1086				  BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
1087
1088	/* This is tied to WaForceContextSaveRestoreNonCoherent */
1089	if (IS_SKL_REVID(dev, 0, REVID_FOREVER)) {
1090		/*
1091		 *Use Force Non-Coherent whenever executing a 3D context. This
1092		 * is a workaround for a possible hang in the unlikely event
1093		 * a TLB invalidation occurs during a PSD flush.
1094		 */
1095		/* WaForceEnableNonCoherent:skl */
1096		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1097				  HDC_FORCE_NON_COHERENT);
1098
1099		/* WaDisableHDCInvalidation:skl */
1100		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
1101			   BDW_DISABLE_HDC_INVALIDATION);
1102	}
1103
1104	/* WaBarrierPerformanceFixDisable:skl */
1105	if (IS_SKL_REVID(dev, SKL_REVID_C0, SKL_REVID_D0))
1106		WA_SET_BIT_MASKED(HDC_CHICKEN0,
1107				  HDC_FENCE_DEST_SLM_DISABLE |
1108				  HDC_BARRIER_PERFORMANCE_DISABLE);
1109
1110	/* WaDisableSbeCacheDispatchPortSharing:skl */
1111	if (IS_SKL_REVID(dev, 0, SKL_REVID_F0))
1112		WA_SET_BIT_MASKED(
1113			GEN7_HALF_SLICE_CHICKEN1,
1114			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1115
1116	/* WaDisableLSQCROPERFforOCL:skl */
1117	ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
1118	if (ret)
1119		return ret;
1120
1121	return skl_tune_iz_hashing(ring);
1122}
1123
1124static int bxt_init_workarounds(struct intel_engine_cs *ring)
1125{
1126	int ret;
1127	struct drm_device *dev = ring->dev;
1128	struct drm_i915_private *dev_priv = dev->dev_private;
1129
1130	ret = gen9_init_workarounds(ring);
1131	if (ret)
1132		return ret;
1133
1134	/* WaStoreMultiplePTEenable:bxt */
1135	/* This is a requirement according to Hardware specification */
1136	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1137		I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
1138
1139	/* WaSetClckGatingDisableMedia:bxt */
1140	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1141		I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1142					    ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
1143	}
1144
1145	/* WaDisableThreadStallDopClockGating:bxt */
1146	WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
1147			  STALL_DOP_GATING_DISABLE);
1148
1149	/* WaDisableSbeCacheDispatchPortSharing:bxt */
1150	if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1151		WA_SET_BIT_MASKED(
1152			GEN7_HALF_SLICE_CHICKEN1,
1153			GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
1154	}
1155
1156	/* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
1157	/* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
1158	/* WaDisableObjectLevelPreemtionForInstanceId:bxt */
1159	/* WaDisableLSQCROPERFforOCL:bxt */
1160	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1161		ret = wa_ring_whitelist_reg(ring, GEN9_CS_DEBUG_MODE1);
1162		if (ret)
1163			return ret;
1164
1165		ret = wa_ring_whitelist_reg(ring, GEN8_L3SQCREG4);
1166		if (ret)
1167			return ret;
1168	}
1169
1170	return 0;
1171}
1172
1173int init_workarounds_ring(struct intel_engine_cs *ring)
1174{
1175	struct drm_device *dev = ring->dev;
1176	struct drm_i915_private *dev_priv = dev->dev_private;
1177
1178	WARN_ON(ring->id != RCS);
1179
1180	dev_priv->workarounds.count = 0;
1181	dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
1182
1183	if (IS_BROADWELL(dev))
1184		return bdw_init_workarounds(ring);
1185
1186	if (IS_CHERRYVIEW(dev))
1187		return chv_init_workarounds(ring);
1188
1189	if (IS_SKYLAKE(dev))
1190		return skl_init_workarounds(ring);
1191
1192	if (IS_BROXTON(dev))
1193		return bxt_init_workarounds(ring);
1194
1195	return 0;
1196}
1197
1198static int init_render_ring(struct intel_engine_cs *ring)
1199{
1200	struct drm_device *dev = ring->dev;
1201	struct drm_i915_private *dev_priv = dev->dev_private;
1202	int ret = init_ring_common(ring);
1203	if (ret)
1204		return ret;
1205
1206	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
1207	if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
1208		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1209
1210	/* We need to disable the AsyncFlip performance optimisations in order
1211	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1212	 * programmed to '1' on all products.
1213	 *
1214	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1215	 */
1216	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1217		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1218
1219	/* Required for the hardware to program scanline values for waiting */
1220	/* WaEnableFlushTlbInvalidationMode:snb */
1221	if (INTEL_INFO(dev)->gen == 6)
1222		I915_WRITE(GFX_MODE,
1223			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
1224
1225	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
1226	if (IS_GEN7(dev))
1227		I915_WRITE(GFX_MODE_GEN7,
1228			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
1229			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1230
1231	if (IS_GEN6(dev)) {
1232		/* From the Sandybridge PRM, volume 1 part 3, page 24:
1233		 * "If this bit is set, STCunit will have LRA as replacement
1234		 *  policy. [...] This bit must be reset.  LRA replacement
1235		 *  policy is not supported."
1236		 */
1237		I915_WRITE(CACHE_MODE_0,
1238			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1239	}
1240
1241	if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
1242		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1243
1244	if (HAS_L3_DPF(dev))
1245		I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1246
1247	return init_workarounds_ring(ring);
1248}
1249
1250static void render_ring_cleanup(struct intel_engine_cs *ring)
1251{
1252	struct drm_device *dev = ring->dev;
1253	struct drm_i915_private *dev_priv = dev->dev_private;
1254
1255	if (dev_priv->semaphore_obj) {
1256		i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
1257		drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
1258		dev_priv->semaphore_obj = NULL;
1259	}
1260
1261	intel_fini_pipe_control(ring);
1262}
1263
1264static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
1265			   unsigned int num_dwords)
1266{
1267#define MBOX_UPDATE_DWORDS 8
1268	struct intel_engine_cs *signaller = signaller_req->ring;
1269	struct drm_device *dev = signaller->dev;
1270	struct drm_i915_private *dev_priv = dev->dev_private;
1271	struct intel_engine_cs *waiter;
1272	int i, ret, num_rings;
1273
1274	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1275	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1276#undef MBOX_UPDATE_DWORDS
1277
1278	ret = intel_ring_begin(signaller_req, num_dwords);
1279	if (ret)
1280		return ret;
1281
1282	for_each_ring(waiter, dev_priv, i) {
1283		u32 seqno;
1284		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1285		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1286			continue;
1287
1288		seqno = i915_gem_request_get_seqno(signaller_req);
1289		intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
1290		intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
1291					   PIPE_CONTROL_QW_WRITE |
1292					   PIPE_CONTROL_FLUSH_ENABLE);
1293		intel_ring_emit(signaller, lower_32_bits(gtt_offset));
1294		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1295		intel_ring_emit(signaller, seqno);
1296		intel_ring_emit(signaller, 0);
1297		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1298					   MI_SEMAPHORE_TARGET(waiter->id));
1299		intel_ring_emit(signaller, 0);
1300	}
1301
1302	return 0;
1303}
1304
1305static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
1306			   unsigned int num_dwords)
1307{
1308#define MBOX_UPDATE_DWORDS 6
1309	struct intel_engine_cs *signaller = signaller_req->ring;
1310	struct drm_device *dev = signaller->dev;
1311	struct drm_i915_private *dev_priv = dev->dev_private;
1312	struct intel_engine_cs *waiter;
1313	int i, ret, num_rings;
1314
1315	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1316	num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
1317#undef MBOX_UPDATE_DWORDS
1318
1319	ret = intel_ring_begin(signaller_req, num_dwords);
1320	if (ret)
1321		return ret;
1322
1323	for_each_ring(waiter, dev_priv, i) {
1324		u32 seqno;
1325		u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
1326		if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
1327			continue;
1328
1329		seqno = i915_gem_request_get_seqno(signaller_req);
1330		intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
1331					   MI_FLUSH_DW_OP_STOREDW);
1332		intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
1333					   MI_FLUSH_DW_USE_GTT);
1334		intel_ring_emit(signaller, upper_32_bits(gtt_offset));
1335		intel_ring_emit(signaller, seqno);
1336		intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
1337					   MI_SEMAPHORE_TARGET(waiter->id));
1338		intel_ring_emit(signaller, 0);
1339	}
1340
1341	return 0;
1342}
1343
1344static int gen6_signal(struct drm_i915_gem_request *signaller_req,
1345		       unsigned int num_dwords)
1346{
1347	struct intel_engine_cs *signaller = signaller_req->ring;
1348	struct drm_device *dev = signaller->dev;
1349	struct drm_i915_private *dev_priv = dev->dev_private;
1350	struct intel_engine_cs *useless;
1351	int i, ret, num_rings;
1352
1353#define MBOX_UPDATE_DWORDS 3
1354	num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
1355	num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
1356#undef MBOX_UPDATE_DWORDS
1357
1358	ret = intel_ring_begin(signaller_req, num_dwords);
1359	if (ret)
1360		return ret;
1361
1362	for_each_ring(useless, dev_priv, i) {
1363		i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[i];
1364
1365		if (i915_mmio_reg_valid(mbox_reg)) {
1366			u32 seqno = i915_gem_request_get_seqno(signaller_req);
1367
1368			intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
1369			intel_ring_emit_reg(signaller, mbox_reg);
1370			intel_ring_emit(signaller, seqno);
1371		}
1372	}
1373
1374	/* If num_dwords was rounded, make sure the tail pointer is correct */
1375	if (num_rings % 2 == 0)
1376		intel_ring_emit(signaller, MI_NOOP);
1377
1378	return 0;
1379}
1380
1381/**
1382 * gen6_add_request - Update the semaphore mailbox registers
1383 *
1384 * @request - request to write to the ring
 
1385 *
1386 * Update the mailbox registers in the *other* rings with the current seqno.
1387 * This acts like a signal in the canonical semaphore.
1388 */
1389static int
1390gen6_add_request(struct drm_i915_gem_request *req)
 
1391{
1392	struct intel_engine_cs *ring = req->ring;
 
1393	int ret;
1394
1395	if (ring->semaphore.signal)
1396		ret = ring->semaphore.signal(req, 4);
1397	else
1398		ret = intel_ring_begin(req, 4);
1399
1400	if (ret)
1401		return ret;
1402
 
 
 
 
 
 
 
1403	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1404	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1405	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1406	intel_ring_emit(ring, MI_USER_INTERRUPT);
1407	__intel_ring_advance(ring);
1408
1409	return 0;
1410}
1411
1412static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1413					      u32 seqno)
1414{
1415	struct drm_i915_private *dev_priv = dev->dev_private;
1416	return dev_priv->last_seqno < seqno;
1417}
1418
1419/**
1420 * intel_ring_sync - sync the waiter to the signaller on seqno
1421 *
1422 * @waiter - ring that is waiting
1423 * @signaller - ring which has, or will signal
1424 * @seqno - seqno which the waiter will block on
1425 */
1426
1427static int
1428gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
1429	       struct intel_engine_cs *signaller,
1430	       u32 seqno)
1431{
1432	struct intel_engine_cs *waiter = waiter_req->ring;
1433	struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1434	int ret;
1435
1436	ret = intel_ring_begin(waiter_req, 4);
1437	if (ret)
1438		return ret;
1439
1440	intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1441				MI_SEMAPHORE_GLOBAL_GTT |
1442				MI_SEMAPHORE_POLL |
1443				MI_SEMAPHORE_SAD_GTE_SDD);
1444	intel_ring_emit(waiter, seqno);
1445	intel_ring_emit(waiter,
1446			lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1447	intel_ring_emit(waiter,
1448			upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1449	intel_ring_advance(waiter);
1450	return 0;
1451}
1452
1453static int
1454gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
1455	       struct intel_engine_cs *signaller,
1456	       u32 seqno)
1457{
1458	struct intel_engine_cs *waiter = waiter_req->ring;
1459	u32 dw1 = MI_SEMAPHORE_MBOX |
1460		  MI_SEMAPHORE_COMPARE |
1461		  MI_SEMAPHORE_REGISTER;
1462	u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1463	int ret;
1464
1465	/* Throughout all of the GEM code, seqno passed implies our current
1466	 * seqno is >= the last seqno executed. However for hardware the
1467	 * comparison is strictly greater than.
1468	 */
1469	seqno -= 1;
1470
1471	WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
 
1472
1473	ret = intel_ring_begin(waiter_req, 4);
1474	if (ret)
1475		return ret;
1476
1477	/* If seqno wrap happened, omit the wait with no-ops */
1478	if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1479		intel_ring_emit(waiter, dw1 | wait_mbox);
1480		intel_ring_emit(waiter, seqno);
1481		intel_ring_emit(waiter, 0);
1482		intel_ring_emit(waiter, MI_NOOP);
1483	} else {
1484		intel_ring_emit(waiter, MI_NOOP);
1485		intel_ring_emit(waiter, MI_NOOP);
1486		intel_ring_emit(waiter, MI_NOOP);
1487		intel_ring_emit(waiter, MI_NOOP);
1488	}
1489	intel_ring_advance(waiter);
1490
1491	return 0;
1492}
1493
1494#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
1495do {									\
1496	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
1497		 PIPE_CONTROL_DEPTH_STALL);				\
1498	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
1499	intel_ring_emit(ring__, 0);							\
1500	intel_ring_emit(ring__, 0);							\
1501} while (0)
1502
1503static int
1504pc_render_add_request(struct drm_i915_gem_request *req)
 
1505{
1506	struct intel_engine_cs *ring = req->ring;
1507	u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
 
1508	int ret;
1509
1510	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1511	 * incoherent with writes to memory, i.e. completely fubar,
1512	 * so we need to use PIPE_NOTIFY instead.
1513	 *
1514	 * However, we also need to workaround the qword write
1515	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1516	 * memory before requesting an interrupt.
1517	 */
1518	ret = intel_ring_begin(req, 32);
1519	if (ret)
1520		return ret;
1521
1522	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1523			PIPE_CONTROL_WRITE_FLUSH |
1524			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1525	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1526	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1527	intel_ring_emit(ring, 0);
1528	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1529	scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1530	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1531	scratch_addr += 2 * CACHELINE_BYTES;
1532	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1533	scratch_addr += 2 * CACHELINE_BYTES;
1534	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1535	scratch_addr += 2 * CACHELINE_BYTES;
1536	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1537	scratch_addr += 2 * CACHELINE_BYTES;
1538	PIPE_CONTROL_FLUSH(ring, scratch_addr);
1539
1540	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1541			PIPE_CONTROL_WRITE_FLUSH |
1542			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1543			PIPE_CONTROL_NOTIFY);
1544	intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1545	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1546	intel_ring_emit(ring, 0);
1547	__intel_ring_advance(ring);
1548
 
1549	return 0;
1550}
1551
1552static u32
1553gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1554{
 
 
1555	/* Workaround to force correct ordering between irq and seqno writes on
1556	 * ivb (and maybe also on snb) by reading from a CS register (like
1557	 * ACTHD) before reading the status page. */
1558	if (!lazy_coherency) {
1559		struct drm_i915_private *dev_priv = ring->dev->dev_private;
1560		POSTING_READ(RING_ACTHD(ring->mmio_base));
1561	}
1562
1563	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1564}
1565
1566static u32
1567ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1568{
1569	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1570}
1571
1572static void
1573ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1574{
1575	intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1576}
1577
1578static u32
1579pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1580{
1581	return ring->scratch.cpu_page[0];
1582}
1583
1584static void
1585pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1586{
1587	ring->scratch.cpu_page[0] = seqno;
 
1588}
1589
1590static bool
1591gen5_ring_get_irq(struct intel_engine_cs *ring)
1592{
1593	struct drm_device *dev = ring->dev;
1594	struct drm_i915_private *dev_priv = dev->dev_private;
1595	unsigned long flags;
1596
1597	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1598		return false;
1599
1600	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1601	if (ring->irq_refcount++ == 0)
1602		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
 
 
 
1603	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1604
1605	return true;
1606}
1607
1608static void
1609gen5_ring_put_irq(struct intel_engine_cs *ring)
1610{
1611	struct drm_device *dev = ring->dev;
1612	struct drm_i915_private *dev_priv = dev->dev_private;
1613	unsigned long flags;
1614
1615	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1616	if (--ring->irq_refcount == 0)
1617		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
 
 
 
1618	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1619}
1620
1621static bool
1622i9xx_ring_get_irq(struct intel_engine_cs *ring)
1623{
1624	struct drm_device *dev = ring->dev;
1625	struct drm_i915_private *dev_priv = dev->dev_private;
1626	unsigned long flags;
1627
1628	if (!intel_irqs_enabled(dev_priv))
1629		return false;
1630
1631	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1632	if (ring->irq_refcount++ == 0) {
1633		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1634		I915_WRITE(IMR, dev_priv->irq_mask);
1635		POSTING_READ(IMR);
1636	}
1637	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1638
1639	return true;
1640}
1641
1642static void
1643i9xx_ring_put_irq(struct intel_engine_cs *ring)
1644{
1645	struct drm_device *dev = ring->dev;
1646	struct drm_i915_private *dev_priv = dev->dev_private;
1647	unsigned long flags;
1648
1649	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1650	if (--ring->irq_refcount == 0) {
1651		dev_priv->irq_mask |= ring->irq_enable_mask;
1652		I915_WRITE(IMR, dev_priv->irq_mask);
1653		POSTING_READ(IMR);
1654	}
1655	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1656}
1657
1658static bool
1659i8xx_ring_get_irq(struct intel_engine_cs *ring)
1660{
1661	struct drm_device *dev = ring->dev;
1662	struct drm_i915_private *dev_priv = dev->dev_private;
1663	unsigned long flags;
1664
1665	if (!intel_irqs_enabled(dev_priv))
1666		return false;
1667
1668	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1669	if (ring->irq_refcount++ == 0) {
1670		dev_priv->irq_mask &= ~ring->irq_enable_mask;
1671		I915_WRITE16(IMR, dev_priv->irq_mask);
1672		POSTING_READ16(IMR);
1673	}
1674	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1675
1676	return true;
1677}
1678
1679static void
1680i8xx_ring_put_irq(struct intel_engine_cs *ring)
1681{
1682	struct drm_device *dev = ring->dev;
1683	struct drm_i915_private *dev_priv = dev->dev_private;
1684	unsigned long flags;
1685
1686	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1687	if (--ring->irq_refcount == 0) {
1688		dev_priv->irq_mask |= ring->irq_enable_mask;
1689		I915_WRITE16(IMR, dev_priv->irq_mask);
1690		POSTING_READ16(IMR);
1691	}
1692	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1693}
1694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1695static int
1696bsd_ring_flush(struct drm_i915_gem_request *req,
1697	       u32     invalidate_domains,
1698	       u32     flush_domains)
1699{
1700	struct intel_engine_cs *ring = req->ring;
1701	int ret;
1702
1703	ret = intel_ring_begin(req, 2);
1704	if (ret)
1705		return ret;
1706
1707	intel_ring_emit(ring, MI_FLUSH);
1708	intel_ring_emit(ring, MI_NOOP);
1709	intel_ring_advance(ring);
1710	return 0;
1711}
1712
1713static int
1714i9xx_add_request(struct drm_i915_gem_request *req)
 
1715{
1716	struct intel_engine_cs *ring = req->ring;
1717	int ret;
1718
1719	ret = intel_ring_begin(req, 4);
1720	if (ret)
1721		return ret;
1722
 
 
1723	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1724	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1725	intel_ring_emit(ring, i915_gem_request_get_seqno(req));
1726	intel_ring_emit(ring, MI_USER_INTERRUPT);
1727	__intel_ring_advance(ring);
1728
 
1729	return 0;
1730}
1731
1732static bool
1733gen6_ring_get_irq(struct intel_engine_cs *ring)
1734{
1735	struct drm_device *dev = ring->dev;
1736	struct drm_i915_private *dev_priv = dev->dev_private;
1737	unsigned long flags;
1738
1739	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1740		return false;
1741
1742	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1743	if (ring->irq_refcount++ == 0) {
1744		if (HAS_L3_DPF(dev) && ring->id == RCS)
1745			I915_WRITE_IMR(ring,
1746				       ~(ring->irq_enable_mask |
1747					 GT_PARITY_ERROR(dev)));
1748		else
1749			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1750		gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1751	}
1752	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1753
1754	return true;
1755}
1756
1757static void
1758gen6_ring_put_irq(struct intel_engine_cs *ring)
1759{
1760	struct drm_device *dev = ring->dev;
1761	struct drm_i915_private *dev_priv = dev->dev_private;
1762	unsigned long flags;
1763
1764	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1765	if (--ring->irq_refcount == 0) {
1766		if (HAS_L3_DPF(dev) && ring->id == RCS)
1767			I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1768		else
1769			I915_WRITE_IMR(ring, ~0);
1770		gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1771	}
1772	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1773}
1774
1775static bool
1776hsw_vebox_get_irq(struct intel_engine_cs *ring)
1777{
1778	struct drm_device *dev = ring->dev;
1779	struct drm_i915_private *dev_priv = dev->dev_private;
1780	unsigned long flags;
1781
1782	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1783		return false;
 
 
1784
1785	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1786	if (ring->irq_refcount++ == 0) {
1787		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1788		gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
 
 
1789	}
1790	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1791
1792	return true;
1793}
1794
1795static void
1796hsw_vebox_put_irq(struct intel_engine_cs *ring)
1797{
1798	struct drm_device *dev = ring->dev;
1799	struct drm_i915_private *dev_priv = dev->dev_private;
1800	unsigned long flags;
1801
1802	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1803	if (--ring->irq_refcount == 0) {
1804		I915_WRITE_IMR(ring, ~0);
1805		gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1806	}
1807	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1808}
1809
1810static bool
1811gen8_ring_get_irq(struct intel_engine_cs *ring)
1812{
1813	struct drm_device *dev = ring->dev;
1814	struct drm_i915_private *dev_priv = dev->dev_private;
1815	unsigned long flags;
1816
1817	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1818		return false;
1819
1820	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1821	if (ring->irq_refcount++ == 0) {
1822		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1823			I915_WRITE_IMR(ring,
1824				       ~(ring->irq_enable_mask |
1825					 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1826		} else {
1827			I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1828		}
1829		POSTING_READ(RING_IMR(ring->mmio_base));
1830	}
1831	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1832
1833	return true;
1834}
1835
1836static void
1837gen8_ring_put_irq(struct intel_engine_cs *ring)
1838{
1839	struct drm_device *dev = ring->dev;
1840	struct drm_i915_private *dev_priv = dev->dev_private;
1841	unsigned long flags;
1842
1843	spin_lock_irqsave(&dev_priv->irq_lock, flags);
1844	if (--ring->irq_refcount == 0) {
1845		if (HAS_L3_DPF(dev) && ring->id == RCS) {
1846			I915_WRITE_IMR(ring,
1847				       ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1848		} else {
1849			I915_WRITE_IMR(ring, ~0);
1850		}
1851		POSTING_READ(RING_IMR(ring->mmio_base));
1852	}
1853	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1854}
1855
1856static int
1857i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
1858			 u64 offset, u32 length,
1859			 unsigned dispatch_flags)
1860{
1861	struct intel_engine_cs *ring = req->ring;
1862	int ret;
1863
1864	ret = intel_ring_begin(req, 2);
1865	if (ret)
1866		return ret;
1867
1868	intel_ring_emit(ring,
1869			MI_BATCH_BUFFER_START |
1870			MI_BATCH_GTT |
1871			(dispatch_flags & I915_DISPATCH_SECURE ?
1872			 0 : MI_BATCH_NON_SECURE_I965));
1873	intel_ring_emit(ring, offset);
1874	intel_ring_advance(ring);
1875
1876	return 0;
1877}
1878
1879/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1880#define I830_BATCH_LIMIT (256*1024)
1881#define I830_TLB_ENTRIES (2)
1882#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1883static int
1884i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
1885			 u64 offset, u32 len,
1886			 unsigned dispatch_flags)
1887{
1888	struct intel_engine_cs *ring = req->ring;
1889	u32 cs_offset = ring->scratch.gtt_offset;
1890	int ret;
1891
1892	ret = intel_ring_begin(req, 6);
1893	if (ret)
1894		return ret;
1895
1896	/* Evict the invalid PTE TLBs */
1897	intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1898	intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1899	intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1900	intel_ring_emit(ring, cs_offset);
1901	intel_ring_emit(ring, 0xdeadbeef);
1902	intel_ring_emit(ring, MI_NOOP);
1903	intel_ring_advance(ring);
1904
1905	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1906		if (len > I830_BATCH_LIMIT)
1907			return -ENOSPC;
1908
1909		ret = intel_ring_begin(req, 6 + 2);
1910		if (ret)
1911			return ret;
1912
1913		/* Blit the batch (which has now all relocs applied) to the
1914		 * stable batch scratch bo area (so that the CS never
1915		 * stumbles over its tlb invalidation bug) ...
1916		 */
1917		intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1918		intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1919		intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1920		intel_ring_emit(ring, cs_offset);
1921		intel_ring_emit(ring, 4096);
1922		intel_ring_emit(ring, offset);
1923
1924		intel_ring_emit(ring, MI_FLUSH);
1925		intel_ring_emit(ring, MI_NOOP);
1926		intel_ring_advance(ring);
1927
1928		/* ... and execute it. */
1929		offset = cs_offset;
1930	}
1931
1932	ret = intel_ring_begin(req, 2);
1933	if (ret)
1934		return ret;
1935
1936	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1937	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1938					0 : MI_BATCH_NON_SECURE));
 
1939	intel_ring_advance(ring);
1940
1941	return 0;
1942}
1943
1944static int
1945i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
1946			 u64 offset, u32 len,
1947			 unsigned dispatch_flags)
1948{
1949	struct intel_engine_cs *ring = req->ring;
1950	int ret;
1951
1952	ret = intel_ring_begin(req, 2);
1953	if (ret)
1954		return ret;
1955
1956	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1957	intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
1958					0 : MI_BATCH_NON_SECURE));
1959	intel_ring_advance(ring);
1960
1961	return 0;
1962}
1963
1964static void cleanup_phys_status_page(struct intel_engine_cs *ring)
1965{
1966	struct drm_i915_private *dev_priv = to_i915(ring->dev);
1967
1968	if (!dev_priv->status_page_dmah)
1969		return;
1970
1971	drm_pci_free(ring->dev, dev_priv->status_page_dmah);
1972	ring->status_page.page_addr = NULL;
1973}
1974
1975static void cleanup_status_page(struct intel_engine_cs *ring)
1976{
1977	struct drm_i915_gem_object *obj;
1978
1979	obj = ring->status_page.obj;
1980	if (obj == NULL)
1981		return;
1982
1983	kunmap(sg_page(obj->pages->sgl));
1984	i915_gem_object_ggtt_unpin(obj);
1985	drm_gem_object_unreference(&obj->base);
1986	ring->status_page.obj = NULL;
1987}
1988
1989static int init_status_page(struct intel_engine_cs *ring)
1990{
1991	struct drm_i915_gem_object *obj = ring->status_page.obj;
 
 
1992
 
1993	if (obj == NULL) {
1994		unsigned flags;
1995		int ret;
1996
1997		obj = i915_gem_alloc_object(ring->dev, 4096);
1998		if (obj == NULL) {
1999			DRM_ERROR("Failed to allocate status page\n");
2000			return -ENOMEM;
2001		}
2002
2003		ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2004		if (ret)
2005			goto err_unref;
2006
2007		flags = 0;
2008		if (!HAS_LLC(ring->dev))
2009			/* On g33, we cannot place HWS above 256MiB, so
2010			 * restrict its pinning to the low mappable arena.
2011			 * Though this restriction is not documented for
2012			 * gen4, gen5, or byt, they also behave similarly
2013			 * and hang if the HWS is placed at the top of the
2014			 * GTT. To generalise, it appears that all !llc
2015			 * platforms have issues with us placing the HWS
2016			 * above the mappable region (even though we never
2017			 * actualy map it).
2018			 */
2019			flags |= PIN_MAPPABLE;
2020		ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
2021		if (ret) {
2022err_unref:
2023			drm_gem_object_unreference(&obj->base);
2024			return ret;
2025		}
2026
2027		ring->status_page.obj = obj;
 
 
2028	}
2029
2030	ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
2031	ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
 
 
 
 
2032	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2033
 
2034	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
2035			ring->name, ring->status_page.gfx_addr);
2036
2037	return 0;
2038}
2039
2040static int init_phys_status_page(struct intel_engine_cs *ring)
2041{
2042	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2043
2044	if (!dev_priv->status_page_dmah) {
2045		dev_priv->status_page_dmah =
2046			drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
2047		if (!dev_priv->status_page_dmah)
2048			return -ENOMEM;
2049	}
2050
2051	ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
2052	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
2053
2054	return 0;
2055}
2056
2057void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2058{
2059	if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
2060		vunmap(ringbuf->virtual_start);
2061	else
2062		iounmap(ringbuf->virtual_start);
2063	ringbuf->virtual_start = NULL;
2064	ringbuf->vma = NULL;
2065	i915_gem_object_ggtt_unpin(ringbuf->obj);
2066}
2067
2068static u32 *vmap_obj(struct drm_i915_gem_object *obj)
2069{
2070	struct sg_page_iter sg_iter;
2071	struct page **pages;
2072	void *addr;
2073	int i;
2074
2075	pages = drm_malloc_ab(obj->base.size >> PAGE_SHIFT, sizeof(*pages));
2076	if (pages == NULL)
2077		return NULL;
2078
2079	i = 0;
2080	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0)
2081		pages[i++] = sg_page_iter_page(&sg_iter);
2082
2083	addr = vmap(pages, i, 0, PAGE_KERNEL);
2084	drm_free_large(pages);
2085
2086	return addr;
 
 
 
 
 
2087}
2088
2089int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
2090				     struct intel_ringbuffer *ringbuf)
2091{
2092	struct drm_i915_private *dev_priv = to_i915(dev);
2093	struct drm_i915_gem_object *obj = ringbuf->obj;
2094	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
2095	unsigned flags = PIN_OFFSET_BIAS | 4096;
2096	int ret;
2097
2098	if (HAS_LLC(dev_priv) && !obj->stolen) {
2099		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
2100		if (ret)
2101			return ret;
 
2102
2103		ret = i915_gem_object_set_to_cpu_domain(obj, true);
2104		if (ret) {
2105			i915_gem_object_ggtt_unpin(obj);
2106			return ret;
2107		}
2108
2109		ringbuf->virtual_start = vmap_obj(obj);
2110		if (ringbuf->virtual_start == NULL) {
2111			i915_gem_object_ggtt_unpin(obj);
2112			return -ENOMEM;
2113		}
2114	} else {
2115		ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
2116					    flags | PIN_MAPPABLE);
2117		if (ret)
2118			return ret;
2119
2120		ret = i915_gem_object_set_to_gtt_domain(obj, true);
2121		if (ret) {
2122			i915_gem_object_ggtt_unpin(obj);
2123			return ret;
2124		}
2125
2126		/* Access through the GTT requires the device to be awake. */
2127		assert_rpm_wakelock_held(dev_priv);
2128
2129		ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
2130						    i915_gem_obj_ggtt_offset(obj), ringbuf->size);
2131		if (ringbuf->virtual_start == NULL) {
2132			i915_gem_object_ggtt_unpin(obj);
2133			return -EINVAL;
2134		}
2135	}
2136
2137	ringbuf->vma = i915_gem_obj_to_ggtt(obj);
2138
2139	return 0;
2140}
2141
2142static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
2143{
2144	drm_gem_object_unreference(&ringbuf->obj->base);
2145	ringbuf->obj = NULL;
2146}
2147
2148static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
2149				      struct intel_ringbuffer *ringbuf)
2150{
2151	struct drm_i915_gem_object *obj;
2152
2153	obj = NULL;
2154	if (!HAS_LLC(dev))
2155		obj = i915_gem_object_create_stolen(dev, ringbuf->size);
2156	if (obj == NULL)
2157		obj = i915_gem_alloc_object(dev, ringbuf->size);
2158	if (obj == NULL)
2159		return -ENOMEM;
2160
2161	/* mark ring buffers as read-only from GPU side by default */
2162	obj->gt_ro = 1;
2163
2164	ringbuf->obj = obj;
2165
2166	return 0;
2167}
 
2168
2169struct intel_ringbuffer *
2170intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
2171{
2172	struct intel_ringbuffer *ring;
2173	int ret;
2174
2175	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2176	if (ring == NULL) {
2177		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
2178				 engine->name);
2179		return ERR_PTR(-ENOMEM);
 
2180	}
2181
2182	ring->ring = engine;
2183	list_add(&ring->link, &engine->buffers);
 
2184
2185	ring->size = size;
2186	/* Workaround an erratum on the i830 which causes a hang if
2187	 * the TAIL pointer points to within the last 2 cachelines
2188	 * of the buffer.
2189	 */
2190	ring->effective_size = size;
2191	if (IS_I830(engine->dev) || IS_845G(engine->dev))
2192		ring->effective_size -= 2 * CACHELINE_BYTES;
2193
2194	ring->last_retired_head = -1;
2195	intel_ring_update_space(ring);
2196
2197	ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
2198	if (ret) {
2199		DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
2200				 engine->name, ret);
2201		list_del(&ring->link);
2202		kfree(ring);
2203		return ERR_PTR(ret);
2204	}
2205
2206	return ring;
2207}
2208
2209void
2210intel_ringbuffer_free(struct intel_ringbuffer *ring)
2211{
2212	intel_destroy_ringbuffer_obj(ring);
2213	list_del(&ring->link);
2214	kfree(ring);
2215}
2216
2217static int intel_init_ring_buffer(struct drm_device *dev,
2218				  struct intel_engine_cs *ring)
2219{
2220	struct intel_ringbuffer *ringbuf;
2221	int ret;
2222
2223	WARN_ON(ring->buffer);
2224
2225	ring->dev = dev;
2226	INIT_LIST_HEAD(&ring->active_list);
2227	INIT_LIST_HEAD(&ring->request_list);
2228	INIT_LIST_HEAD(&ring->execlist_queue);
2229	INIT_LIST_HEAD(&ring->buffers);
2230	i915_gem_batch_pool_init(dev, &ring->batch_pool);
2231	memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
2232
2233	init_waitqueue_head(&ring->irq_queue);
2234
2235	ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
2236	if (IS_ERR(ringbuf)) {
2237		ret = PTR_ERR(ringbuf);
2238		goto error;
2239	}
2240	ring->buffer = ringbuf;
2241
2242	if (I915_NEED_GFX_HWS(dev)) {
2243		ret = init_status_page(ring);
2244		if (ret)
2245			goto error;
2246	} else {
2247		WARN_ON(ring->id != RCS);
2248		ret = init_phys_status_page(ring);
2249		if (ret)
2250			goto error;
2251	}
2252
2253	ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
2254	if (ret) {
2255		DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
2256				ring->name, ret);
2257		intel_destroy_ringbuffer_obj(ringbuf);
2258		goto error;
2259	}
2260
2261	ret = i915_cmd_parser_init_ring(ring);
2262	if (ret)
2263		goto error;
2264
2265	return 0;
2266
2267error:
2268	intel_cleanup_ring_buffer(ring);
 
 
 
 
 
 
 
2269	return ret;
2270}
2271
2272void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
2273{
2274	struct drm_i915_private *dev_priv;
 
2275
2276	if (!intel_ring_initialized(ring))
2277		return;
2278
2279	dev_priv = to_i915(ring->dev);
 
 
 
 
 
 
 
 
 
2280
2281	if (ring->buffer) {
2282		intel_stop_ring_buffer(ring);
2283		WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
2284
2285		intel_unpin_ringbuffer_obj(ring->buffer);
2286		intel_ringbuffer_free(ring->buffer);
2287		ring->buffer = NULL;
2288	}
2289
2290	if (ring->cleanup)
2291		ring->cleanup(ring);
2292
2293	if (I915_NEED_GFX_HWS(ring->dev)) {
2294		cleanup_status_page(ring);
2295	} else {
2296		WARN_ON(ring->id != RCS);
2297		cleanup_phys_status_page(ring);
2298	}
2299
2300	i915_cmd_parser_fini_ring(ring);
2301	i915_gem_batch_pool_fini(&ring->batch_pool);
2302	ring->dev = NULL;
2303}
2304
2305static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
2306{
2307	struct intel_ringbuffer *ringbuf = ring->buffer;
2308	struct drm_i915_gem_request *request;
2309	unsigned space;
2310	int ret;
2311
2312	if (intel_ring_space(ringbuf) >= n)
2313		return 0;
2314
2315	/* The whole point of reserving space is to not wait! */
2316	WARN_ON(ringbuf->reserved_in_use);
2317
2318	list_for_each_entry(request, &ring->request_list, list) {
2319		space = __intel_ring_space(request->postfix, ringbuf->tail,
2320					   ringbuf->size);
2321		if (space >= n)
2322			break;
2323	}
2324
2325	if (WARN_ON(&request->list == &ring->request_list))
2326		return -ENOSPC;
2327
2328	ret = i915_wait_request(request);
2329	if (ret)
2330		return ret;
2331
2332	ringbuf->space = space;
2333	return 0;
2334}
2335
2336static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
2337{
2338	uint32_t __iomem *virt;
2339	int rem = ringbuf->size - ringbuf->tail;
2340
2341	virt = ringbuf->virtual_start + ringbuf->tail;
2342	rem /= 4;
2343	while (rem--)
2344		iowrite32(MI_NOOP, virt++);
2345
2346	ringbuf->tail = 0;
2347	intel_ring_update_space(ringbuf);
2348}
2349
2350int intel_ring_idle(struct intel_engine_cs *ring)
2351{
2352	struct drm_i915_gem_request *req;
2353
2354	/* Wait upon the last request to be completed */
2355	if (list_empty(&ring->request_list))
2356		return 0;
2357
2358	req = list_entry(ring->request_list.prev,
2359			struct drm_i915_gem_request,
2360			list);
2361
2362	/* Make sure we do not trigger any retires */
2363	return __i915_wait_request(req,
2364				   atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
2365				   to_i915(ring->dev)->mm.interruptible,
2366				   NULL, NULL);
2367}
2368
2369int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
2370{
2371	request->ringbuf = request->ring->buffer;
2372	return 0;
2373}
2374
2375int intel_ring_reserve_space(struct drm_i915_gem_request *request)
2376{
2377	/*
2378	 * The first call merely notes the reserve request and is common for
2379	 * all back ends. The subsequent localised _begin() call actually
2380	 * ensures that the reservation is available. Without the begin, if
2381	 * the request creator immediately submitted the request without
2382	 * adding any commands to it then there might not actually be
2383	 * sufficient room for the submission commands.
2384	 */
2385	intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2386
2387	return intel_ring_begin(request, 0);
2388}
2389
2390void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
2391{
2392	WARN_ON(ringbuf->reserved_size);
2393	WARN_ON(ringbuf->reserved_in_use);
 
 
2394
2395	ringbuf->reserved_size = size;
2396}
2397
2398void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
2399{
2400	WARN_ON(ringbuf->reserved_in_use);
2401
2402	ringbuf->reserved_size   = 0;
2403	ringbuf->reserved_in_use = false;
2404}
2405
2406void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
2407{
2408	WARN_ON(ringbuf->reserved_in_use);
 
 
2409
2410	ringbuf->reserved_in_use = true;
2411	ringbuf->reserved_tail   = ringbuf->tail;
2412}
2413
2414void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
2415{
2416	WARN_ON(!ringbuf->reserved_in_use);
2417	if (ringbuf->tail > ringbuf->reserved_tail) {
2418		WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
2419		     "request reserved size too small: %d vs %d!\n",
2420		     ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
2421	} else {
2422		/*
2423		 * The ring was wrapped while the reserved space was in use.
2424		 * That means that some unknown amount of the ring tail was
2425		 * no-op filled and skipped. Thus simply adding the ring size
2426		 * to the tail and doing the above space check will not work.
2427		 * Rather than attempt to track how much tail was skipped,
2428		 * it is much simpler to say that also skipping the sanity
2429		 * check every once in a while is not a big issue.
2430		 */
2431	}
2432
2433	ringbuf->reserved_size   = 0;
2434	ringbuf->reserved_in_use = false;
2435}
2436
2437static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
2438{
2439	struct intel_ringbuffer *ringbuf = ring->buffer;
2440	int remain_usable = ringbuf->effective_size - ringbuf->tail;
2441	int remain_actual = ringbuf->size - ringbuf->tail;
2442	int ret, total_bytes, wait_bytes = 0;
2443	bool need_wrap = false;
2444
2445	if (ringbuf->reserved_in_use)
2446		total_bytes = bytes;
2447	else
2448		total_bytes = bytes + ringbuf->reserved_size;
 
 
 
2449
2450	if (unlikely(bytes > remain_usable)) {
2451		/*
2452		 * Not enough space for the basic request. So need to flush
2453		 * out the remainder and then wait for base + reserved.
2454		 */
2455		wait_bytes = remain_actual + total_bytes;
2456		need_wrap = true;
2457	} else {
2458		if (unlikely(total_bytes > remain_usable)) {
2459			/*
2460			 * The base request will fit but the reserved space
2461			 * falls off the end. So don't need an immediate wrap
2462			 * and only need to effectively wait for the reserved
2463			 * size space from the start of ringbuffer.
2464			 */
2465			wait_bytes = remain_actual + ringbuf->reserved_size;
2466		} else if (total_bytes > ringbuf->space) {
2467			/* No wrapping required, just waiting. */
2468			wait_bytes = total_bytes;
2469		}
2470	}
2471
2472	if (wait_bytes) {
2473		ret = ring_wait_for_space(ring, wait_bytes);
2474		if (unlikely(ret))
2475			return ret;
2476
2477		if (need_wrap)
2478			__wrap_ring_buffer(ringbuf);
2479	}
 
 
 
 
 
 
 
 
 
2480
2481	return 0;
2482}
2483
2484int intel_ring_begin(struct drm_i915_gem_request *req,
2485		     int num_dwords)
2486{
2487	struct intel_engine_cs *ring;
2488	struct drm_i915_private *dev_priv;
 
2489	int ret;
2490
2491	WARN_ON(req == NULL);
2492	ring = req->ring;
2493	dev_priv = ring->dev->dev_private;
2494
2495	ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2496				   dev_priv->mm.interruptible);
2497	if (ret)
2498		return ret;
2499
2500	ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2501	if (ret)
2502		return ret;
 
 
 
 
2503
2504	ring->buffer->space -= num_dwords * sizeof(uint32_t);
2505	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2506}
2507
2508/* Align the ring tail to a cacheline boundary */
2509int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
2510{
2511	struct intel_engine_cs *ring = req->ring;
2512	int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2513	int ret;
2514
2515	if (num_dwords == 0)
2516		return 0;
2517
2518	num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2519	ret = intel_ring_begin(req, num_dwords);
2520	if (ret)
2521		return ret;
2522
2523	while (num_dwords--)
2524		intel_ring_emit(ring, MI_NOOP);
 
 
 
2525
2526	intel_ring_advance(ring);
 
 
 
 
2527
 
2528	return 0;
2529}
2530
2531void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2532{
2533	struct drm_device *dev = ring->dev;
2534	struct drm_i915_private *dev_priv = dev->dev_private;
2535
2536	if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2537		I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2538		I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2539		if (HAS_VEBOX(dev))
2540			I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2541	}
2542
2543	ring->set_seqno(ring, seqno);
2544	ring->hangcheck.seqno = seqno;
 
 
2545}
2546
2547static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
 
2548				     u32 value)
2549{
2550	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2551
2552       /* Every tail move must follow the sequence below */
2553
2554	/* Disable notification that the ring is IDLE. The GT
2555	 * will then assume that it is busy and bring it out of rc6.
2556	 */
2557	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2558		   _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2559
2560	/* Clear the context id. Here be magic! */
2561	I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2562
2563	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2564	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2565		      GEN6_BSD_SLEEP_INDICATOR) == 0,
2566		     50))
2567		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2568
2569	/* Now that the ring is fully powered up, update the tail */
2570	I915_WRITE_TAIL(ring, value);
2571	POSTING_READ(RING_TAIL(ring->mmio_base));
2572
2573	/* Let the ring send IDLE messages to the GT again,
2574	 * and so let it sleep to conserve power when idle.
2575	 */
2576	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2577		   _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
 
2578}
2579
2580static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
2581			       u32 invalidate, u32 flush)
2582{
2583	struct intel_engine_cs *ring = req->ring;
2584	uint32_t cmd;
2585	int ret;
2586
2587	ret = intel_ring_begin(req, 4);
2588	if (ret)
2589		return ret;
2590
2591	cmd = MI_FLUSH_DW;
2592	if (INTEL_INFO(ring->dev)->gen >= 8)
2593		cmd += 1;
2594
2595	/* We always require a command barrier so that subsequent
2596	 * commands, such as breadcrumb interrupts, are strictly ordered
2597	 * wrt the contents of the write cache being flushed to memory
2598	 * (and thus being coherent from the CPU).
2599	 */
2600	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2601
2602	/*
2603	 * Bspec vol 1c.5 - video engine command streamer:
2604	 * "If ENABLED, all TLBs will be invalidated once the flush
2605	 * operation is complete. This bit is only valid when the
2606	 * Post-Sync Operation field is a value of 1h or 3h."
2607	 */
2608	if (invalidate & I915_GEM_GPU_DOMAINS)
2609		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
2610
2611	intel_ring_emit(ring, cmd);
2612	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2613	if (INTEL_INFO(ring->dev)->gen >= 8) {
2614		intel_ring_emit(ring, 0); /* upper addr */
2615		intel_ring_emit(ring, 0); /* value */
2616	} else  {
2617		intel_ring_emit(ring, 0);
2618		intel_ring_emit(ring, MI_NOOP);
2619	}
2620	intel_ring_advance(ring);
2621	return 0;
2622}
2623
2624static int
2625gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2626			      u64 offset, u32 len,
2627			      unsigned dispatch_flags)
2628{
2629	struct intel_engine_cs *ring = req->ring;
2630	bool ppgtt = USES_PPGTT(ring->dev) &&
2631			!(dispatch_flags & I915_DISPATCH_SECURE);
2632	int ret;
2633
2634	ret = intel_ring_begin(req, 4);
2635	if (ret)
2636		return ret;
2637
2638	/* FIXME(BDW): Address space and security selectors. */
2639	intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
2640			(dispatch_flags & I915_DISPATCH_RS ?
2641			 MI_BATCH_RESOURCE_STREAMER : 0));
2642	intel_ring_emit(ring, lower_32_bits(offset));
2643	intel_ring_emit(ring, upper_32_bits(offset));
2644	intel_ring_emit(ring, MI_NOOP);
2645	intel_ring_advance(ring);
2646
2647	return 0;
2648}
2649
2650static int
2651hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2652			     u64 offset, u32 len,
2653			     unsigned dispatch_flags)
2654{
2655	struct intel_engine_cs *ring = req->ring;
2656	int ret;
2657
2658	ret = intel_ring_begin(req, 2);
2659	if (ret)
2660		return ret;
2661
2662	intel_ring_emit(ring,
2663			MI_BATCH_BUFFER_START |
2664			(dispatch_flags & I915_DISPATCH_SECURE ?
2665			 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
2666			(dispatch_flags & I915_DISPATCH_RS ?
2667			 MI_BATCH_RESOURCE_STREAMER : 0));
2668	/* bit0-7 is the length on GEN6+ */
2669	intel_ring_emit(ring, offset);
2670	intel_ring_advance(ring);
2671
2672	return 0;
2673}
2674
2675static int
2676gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
2677			      u64 offset, u32 len,
2678			      unsigned dispatch_flags)
2679{
2680	struct intel_engine_cs *ring = req->ring;
2681	int ret;
2682
2683	ret = intel_ring_begin(req, 2);
2684	if (ret)
2685		return ret;
2686
2687	intel_ring_emit(ring,
2688			MI_BATCH_BUFFER_START |
2689			(dispatch_flags & I915_DISPATCH_SECURE ?
2690			 0 : MI_BATCH_NON_SECURE_I965));
2691	/* bit0-7 is the length on GEN6+ */
2692	intel_ring_emit(ring, offset);
2693	intel_ring_advance(ring);
2694
2695	return 0;
2696}
2697
2698/* Blitter support (SandyBridge+) */
2699
2700static int gen6_ring_flush(struct drm_i915_gem_request *req,
2701			   u32 invalidate, u32 flush)
2702{
2703	struct intel_engine_cs *ring = req->ring;
2704	struct drm_device *dev = ring->dev;
2705	uint32_t cmd;
2706	int ret;
2707
2708	ret = intel_ring_begin(req, 4);
2709	if (ret)
2710		return ret;
2711
2712	cmd = MI_FLUSH_DW;
2713	if (INTEL_INFO(dev)->gen >= 8)
2714		cmd += 1;
2715
2716	/* We always require a command barrier so that subsequent
2717	 * commands, such as breadcrumb interrupts, are strictly ordered
2718	 * wrt the contents of the write cache being flushed to memory
2719	 * (and thus being coherent from the CPU).
2720	 */
2721	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2722
2723	/*
2724	 * Bspec vol 1c.3 - blitter engine command streamer:
2725	 * "If ENABLED, all TLBs will be invalidated once the flush
2726	 * operation is complete. This bit is only valid when the
2727	 * Post-Sync Operation field is a value of 1h or 3h."
2728	 */
2729	if (invalidate & I915_GEM_DOMAIN_RENDER)
2730		cmd |= MI_INVALIDATE_TLB;
2731	intel_ring_emit(ring, cmd);
2732	intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2733	if (INTEL_INFO(dev)->gen >= 8) {
2734		intel_ring_emit(ring, 0); /* upper addr */
2735		intel_ring_emit(ring, 0); /* value */
2736	} else  {
2737		intel_ring_emit(ring, 0);
2738		intel_ring_emit(ring, MI_NOOP);
2739	}
2740	intel_ring_advance(ring);
2741
2742	return 0;
2743}
2744
2745int intel_init_render_ring_buffer(struct drm_device *dev)
2746{
2747	struct drm_i915_private *dev_priv = dev->dev_private;
2748	struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2749	struct drm_i915_gem_object *obj;
2750	int ret;
2751
2752	ring->name = "render ring";
2753	ring->id = RCS;
2754	ring->exec_id = I915_EXEC_RENDER;
2755	ring->mmio_base = RENDER_RING_BASE;
2756
2757	if (INTEL_INFO(dev)->gen >= 8) {
2758		if (i915_semaphore_is_enabled(dev)) {
2759			obj = i915_gem_alloc_object(dev, 4096);
2760			if (obj == NULL) {
2761				DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2762				i915.semaphores = 0;
2763			} else {
2764				i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2765				ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2766				if (ret != 0) {
2767					drm_gem_object_unreference(&obj->base);
2768					DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2769					i915.semaphores = 0;
2770				} else
2771					dev_priv->semaphore_obj = obj;
2772			}
2773		}
2774
2775		ring->init_context = intel_rcs_ctx_init;
2776		ring->add_request = gen6_add_request;
2777		ring->flush = gen8_render_ring_flush;
2778		ring->irq_get = gen8_ring_get_irq;
2779		ring->irq_put = gen8_ring_put_irq;
2780		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2781		ring->get_seqno = gen6_ring_get_seqno;
2782		ring->set_seqno = ring_set_seqno;
2783		if (i915_semaphore_is_enabled(dev)) {
2784			WARN_ON(!dev_priv->semaphore_obj);
2785			ring->semaphore.sync_to = gen8_ring_sync;
2786			ring->semaphore.signal = gen8_rcs_signal;
2787			GEN8_RING_SEMAPHORE_INIT;
2788		}
2789	} else if (INTEL_INFO(dev)->gen >= 6) {
2790		ring->init_context = intel_rcs_ctx_init;
2791		ring->add_request = gen6_add_request;
2792		ring->flush = gen7_render_ring_flush;
2793		if (INTEL_INFO(dev)->gen == 6)
2794			ring->flush = gen6_render_ring_flush;
2795		ring->irq_get = gen6_ring_get_irq;
2796		ring->irq_put = gen6_ring_put_irq;
2797		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2798		ring->get_seqno = gen6_ring_get_seqno;
2799		ring->set_seqno = ring_set_seqno;
2800		if (i915_semaphore_is_enabled(dev)) {
2801			ring->semaphore.sync_to = gen6_ring_sync;
2802			ring->semaphore.signal = gen6_signal;
2803			/*
2804			 * The current semaphore is only applied on pre-gen8
2805			 * platform.  And there is no VCS2 ring on the pre-gen8
2806			 * platform. So the semaphore between RCS and VCS2 is
2807			 * initialized as INVALID.  Gen8 will initialize the
2808			 * sema between VCS2 and RCS later.
2809			 */
2810			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2811			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2812			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2813			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2814			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2815			ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2816			ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2817			ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2818			ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2819			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2820		}
2821	} else if (IS_GEN5(dev)) {
2822		ring->add_request = pc_render_add_request;
2823		ring->flush = gen4_render_ring_flush;
2824		ring->get_seqno = pc_render_get_seqno;
2825		ring->set_seqno = pc_render_set_seqno;
2826		ring->irq_get = gen5_ring_get_irq;
2827		ring->irq_put = gen5_ring_put_irq;
2828		ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2829					GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2830	} else {
2831		ring->add_request = i9xx_add_request;
2832		if (INTEL_INFO(dev)->gen < 4)
2833			ring->flush = gen2_render_ring_flush;
2834		else
2835			ring->flush = gen4_render_ring_flush;
2836		ring->get_seqno = ring_get_seqno;
2837		ring->set_seqno = ring_set_seqno;
2838		if (IS_GEN2(dev)) {
2839			ring->irq_get = i8xx_ring_get_irq;
2840			ring->irq_put = i8xx_ring_put_irq;
2841		} else {
2842			ring->irq_get = i9xx_ring_get_irq;
2843			ring->irq_put = i9xx_ring_put_irq;
2844		}
2845		ring->irq_enable_mask = I915_USER_INTERRUPT;
2846	}
2847	ring->write_tail = ring_write_tail;
2848
2849	if (IS_HASWELL(dev))
2850		ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2851	else if (IS_GEN8(dev))
2852		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2853	else if (INTEL_INFO(dev)->gen >= 6)
2854		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2855	else if (INTEL_INFO(dev)->gen >= 4)
2856		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2857	else if (IS_I830(dev) || IS_845G(dev))
2858		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2859	else
2860		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2861	ring->init_hw = init_render_ring;
2862	ring->cleanup = render_ring_cleanup;
2863
2864	/* Workaround batchbuffer to combat CS tlb bug. */
2865	if (HAS_BROKEN_CS_TLB(dev)) {
2866		obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2867		if (obj == NULL) {
2868			DRM_ERROR("Failed to allocate batch bo\n");
2869			return -ENOMEM;
2870		}
2871
2872		ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2873		if (ret != 0) {
2874			drm_gem_object_unreference(&obj->base);
2875			DRM_ERROR("Failed to ping batch bo\n");
2876			return ret;
2877		}
 
 
 
 
 
 
 
 
 
 
2878
2879		ring->scratch.obj = obj;
2880		ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
 
2881	}
2882
2883	ret = intel_init_ring_buffer(dev, ring);
2884	if (ret)
2885		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2886
2887	if (INTEL_INFO(dev)->gen >= 5) {
2888		ret = intel_init_pipe_control(ring);
2889		if (ret)
2890			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2891	}
2892
2893	return 0;
2894}
2895
2896int intel_init_bsd_ring_buffer(struct drm_device *dev)
2897{
2898	struct drm_i915_private *dev_priv = dev->dev_private;
2899	struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2900
2901	ring->name = "bsd ring";
2902	ring->id = VCS;
2903	ring->exec_id = I915_EXEC_BSD;
2904
2905	ring->write_tail = ring_write_tail;
2906	if (INTEL_INFO(dev)->gen >= 6) {
2907		ring->mmio_base = GEN6_BSD_RING_BASE;
2908		/* gen6 bsd needs a special wa for tail updates */
2909		if (IS_GEN6(dev))
2910			ring->write_tail = gen6_bsd_ring_write_tail;
2911		ring->flush = gen6_bsd_ring_flush;
2912		ring->add_request = gen6_add_request;
2913		ring->get_seqno = gen6_ring_get_seqno;
2914		ring->set_seqno = ring_set_seqno;
2915		if (INTEL_INFO(dev)->gen >= 8) {
2916			ring->irq_enable_mask =
2917				GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2918			ring->irq_get = gen8_ring_get_irq;
2919			ring->irq_put = gen8_ring_put_irq;
2920			ring->dispatch_execbuffer =
2921				gen8_ring_dispatch_execbuffer;
2922			if (i915_semaphore_is_enabled(dev)) {
2923				ring->semaphore.sync_to = gen8_ring_sync;
2924				ring->semaphore.signal = gen8_xcs_signal;
2925				GEN8_RING_SEMAPHORE_INIT;
2926			}
2927		} else {
2928			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2929			ring->irq_get = gen6_ring_get_irq;
2930			ring->irq_put = gen6_ring_put_irq;
2931			ring->dispatch_execbuffer =
2932				gen6_ring_dispatch_execbuffer;
2933			if (i915_semaphore_is_enabled(dev)) {
2934				ring->semaphore.sync_to = gen6_ring_sync;
2935				ring->semaphore.signal = gen6_signal;
2936				ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2937				ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2938				ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2939				ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2940				ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2941				ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2942				ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2943				ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2944				ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2945				ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2946			}
2947		}
2948	} else {
2949		ring->mmio_base = BSD_RING_BASE;
2950		ring->flush = bsd_ring_flush;
2951		ring->add_request = i9xx_add_request;
2952		ring->get_seqno = ring_get_seqno;
2953		ring->set_seqno = ring_set_seqno;
2954		if (IS_GEN5(dev)) {
2955			ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2956			ring->irq_get = gen5_ring_get_irq;
2957			ring->irq_put = gen5_ring_put_irq;
2958		} else {
2959			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2960			ring->irq_get = i9xx_ring_get_irq;
2961			ring->irq_put = i9xx_ring_put_irq;
2962		}
2963		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2964	}
2965	ring->init_hw = init_ring_common;
2966
2967	return intel_init_ring_buffer(dev, ring);
2968}
2969
2970/**
2971 * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
2972 */
2973int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2974{
2975	struct drm_i915_private *dev_priv = dev->dev_private;
2976	struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2977
2978	ring->name = "bsd2 ring";
2979	ring->id = VCS2;
2980	ring->exec_id = I915_EXEC_BSD;
2981
2982	ring->write_tail = ring_write_tail;
2983	ring->mmio_base = GEN8_BSD2_RING_BASE;
2984	ring->flush = gen6_bsd_ring_flush;
2985	ring->add_request = gen6_add_request;
2986	ring->get_seqno = gen6_ring_get_seqno;
2987	ring->set_seqno = ring_set_seqno;
2988	ring->irq_enable_mask =
2989			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2990	ring->irq_get = gen8_ring_get_irq;
2991	ring->irq_put = gen8_ring_put_irq;
2992	ring->dispatch_execbuffer =
2993			gen8_ring_dispatch_execbuffer;
2994	if (i915_semaphore_is_enabled(dev)) {
2995		ring->semaphore.sync_to = gen8_ring_sync;
2996		ring->semaphore.signal = gen8_xcs_signal;
2997		GEN8_RING_SEMAPHORE_INIT;
2998	}
2999	ring->init_hw = init_ring_common;
3000
3001	return intel_init_ring_buffer(dev, ring);
3002}
3003
3004int intel_init_blt_ring_buffer(struct drm_device *dev)
3005{
3006	struct drm_i915_private *dev_priv = dev->dev_private;
3007	struct intel_engine_cs *ring = &dev_priv->ring[BCS];
3008
3009	ring->name = "blitter ring";
3010	ring->id = BCS;
3011	ring->exec_id = I915_EXEC_BLT;
3012
3013	ring->mmio_base = BLT_RING_BASE;
3014	ring->write_tail = ring_write_tail;
3015	ring->flush = gen6_ring_flush;
3016	ring->add_request = gen6_add_request;
3017	ring->get_seqno = gen6_ring_get_seqno;
3018	ring->set_seqno = ring_set_seqno;
3019	if (INTEL_INFO(dev)->gen >= 8) {
3020		ring->irq_enable_mask =
3021			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
3022		ring->irq_get = gen8_ring_get_irq;
3023		ring->irq_put = gen8_ring_put_irq;
3024		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3025		if (i915_semaphore_is_enabled(dev)) {
3026			ring->semaphore.sync_to = gen8_ring_sync;
3027			ring->semaphore.signal = gen8_xcs_signal;
3028			GEN8_RING_SEMAPHORE_INIT;
3029		}
3030	} else {
3031		ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
3032		ring->irq_get = gen6_ring_get_irq;
3033		ring->irq_put = gen6_ring_put_irq;
3034		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3035		if (i915_semaphore_is_enabled(dev)) {
3036			ring->semaphore.signal = gen6_signal;
3037			ring->semaphore.sync_to = gen6_ring_sync;
3038			/*
3039			 * The current semaphore is only applied on pre-gen8
3040			 * platform.  And there is no VCS2 ring on the pre-gen8
3041			 * platform. So the semaphore between BCS and VCS2 is
3042			 * initialized as INVALID.  Gen8 will initialize the
3043			 * sema between BCS and VCS2 later.
3044			 */
3045			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
3046			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
3047			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
3048			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
3049			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3050			ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
3051			ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
3052			ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
3053			ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
3054			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3055		}
3056	}
3057	ring->init_hw = init_ring_common;
3058
3059	return intel_init_ring_buffer(dev, ring);
3060}
3061
3062int intel_init_vebox_ring_buffer(struct drm_device *dev)
3063{
3064	struct drm_i915_private *dev_priv = dev->dev_private;
3065	struct intel_engine_cs *ring = &dev_priv->ring[VECS];
3066
3067	ring->name = "video enhancement ring";
3068	ring->id = VECS;
3069	ring->exec_id = I915_EXEC_VEBOX;
3070
3071	ring->mmio_base = VEBOX_RING_BASE;
3072	ring->write_tail = ring_write_tail;
3073	ring->flush = gen6_ring_flush;
3074	ring->add_request = gen6_add_request;
3075	ring->get_seqno = gen6_ring_get_seqno;
3076	ring->set_seqno = ring_set_seqno;
3077
3078	if (INTEL_INFO(dev)->gen >= 8) {
3079		ring->irq_enable_mask =
3080			GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
3081		ring->irq_get = gen8_ring_get_irq;
3082		ring->irq_put = gen8_ring_put_irq;
3083		ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
3084		if (i915_semaphore_is_enabled(dev)) {
3085			ring->semaphore.sync_to = gen8_ring_sync;
3086			ring->semaphore.signal = gen8_xcs_signal;
3087			GEN8_RING_SEMAPHORE_INIT;
3088		}
3089	} else {
3090		ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
3091		ring->irq_get = hsw_vebox_get_irq;
3092		ring->irq_put = hsw_vebox_put_irq;
3093		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
3094		if (i915_semaphore_is_enabled(dev)) {
3095			ring->semaphore.sync_to = gen6_ring_sync;
3096			ring->semaphore.signal = gen6_signal;
3097			ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
3098			ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
3099			ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
3100			ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
3101			ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
3102			ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
3103			ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
3104			ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
3105			ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
3106			ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
3107		}
3108	}
3109	ring->init_hw = init_ring_common;
3110
3111	return intel_init_ring_buffer(dev, ring);
3112}
3113
3114int
3115intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
3116{
3117	struct intel_engine_cs *ring = req->ring;
3118	int ret;
3119
3120	if (!ring->gpu_caches_dirty)
3121		return 0;
3122
3123	ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
3124	if (ret)
3125		return ret;
3126
3127	trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
3128
3129	ring->gpu_caches_dirty = false;
3130	return 0;
3131}
3132
3133int
3134intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
3135{
3136	struct intel_engine_cs *ring = req->ring;
3137	uint32_t flush_domains;
3138	int ret;
3139
3140	flush_domains = 0;
3141	if (ring->gpu_caches_dirty)
3142		flush_domains = I915_GEM_GPU_DOMAINS;
3143
3144	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3145	if (ret)
3146		return ret;
3147
3148	trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
3149
3150	ring->gpu_caches_dirty = false;
3151	return 0;
3152}
3153
3154void
3155intel_stop_ring_buffer(struct intel_engine_cs *ring)
3156{
3157	int ret;
3158
3159	if (!intel_ring_initialized(ring))
3160		return;
3161
3162	ret = intel_ring_idle(ring);
3163	if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
3164		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
3165			  ring->name, ret);
3166
3167	stop_ring(ring);
3168}
v3.5.6
   1/*
   2 * Copyright © 2008-2010 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *    Zou Nan hai <nanhai.zou@intel.com>
  26 *    Xiang Hai hao<haihao.xiang@intel.com>
  27 *
  28 */
  29
  30#include "drmP.h"
  31#include "drm.h"
  32#include "i915_drv.h"
  33#include "i915_drm.h"
  34#include "i915_trace.h"
  35#include "intel_drv.h"
  36
  37/*
  38 * 965+ support PIPE_CONTROL commands, which provide finer grained control
  39 * over cache flushing.
  40 */
  41struct pipe_control {
  42	struct drm_i915_gem_object *obj;
  43	volatile u32 *cpu_page;
  44	u32 gtt_offset;
  45};
  46
  47static inline int ring_space(struct intel_ring_buffer *ring)
  48{
  49	int space = (ring->head & HEAD_ADDR) - (ring->tail + 8);
  50	if (space < 0)
  51		space += ring->size;
  52	return space;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53}
  54
  55static int
  56gen2_render_ring_flush(struct intel_ring_buffer *ring,
  57		       u32	invalidate_domains,
  58		       u32	flush_domains)
  59{
 
  60	u32 cmd;
  61	int ret;
  62
  63	cmd = MI_FLUSH;
  64	if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  65		cmd |= MI_NO_WRITE_FLUSH;
  66
  67	if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  68		cmd |= MI_READ_FLUSH;
  69
  70	ret = intel_ring_begin(ring, 2);
  71	if (ret)
  72		return ret;
  73
  74	intel_ring_emit(ring, cmd);
  75	intel_ring_emit(ring, MI_NOOP);
  76	intel_ring_advance(ring);
  77
  78	return 0;
  79}
  80
  81static int
  82gen4_render_ring_flush(struct intel_ring_buffer *ring,
  83		       u32	invalidate_domains,
  84		       u32	flush_domains)
  85{
 
  86	struct drm_device *dev = ring->dev;
  87	u32 cmd;
  88	int ret;
  89
  90	/*
  91	 * read/write caches:
  92	 *
  93	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  94	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
  95	 * also flushed at 2d versus 3d pipeline switches.
  96	 *
  97	 * read-only caches:
  98	 *
  99	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
 100	 * MI_READ_FLUSH is set, and is always flushed on 965.
 101	 *
 102	 * I915_GEM_DOMAIN_COMMAND may not exist?
 103	 *
 104	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
 105	 * invalidated when MI_EXE_FLUSH is set.
 106	 *
 107	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
 108	 * invalidated with every MI_FLUSH.
 109	 *
 110	 * TLBs:
 111	 *
 112	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
 113	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
 114	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
 115	 * are flushed at any MI_FLUSH.
 116	 */
 117
 118	cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
 119	if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
 120		cmd &= ~MI_NO_WRITE_FLUSH;
 121	if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
 122		cmd |= MI_EXE_FLUSH;
 123
 124	if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
 125	    (IS_G4X(dev) || IS_GEN5(dev)))
 126		cmd |= MI_INVALIDATE_ISP;
 127
 128	ret = intel_ring_begin(ring, 2);
 129	if (ret)
 130		return ret;
 131
 132	intel_ring_emit(ring, cmd);
 133	intel_ring_emit(ring, MI_NOOP);
 134	intel_ring_advance(ring);
 135
 136	return 0;
 137}
 138
 139/**
 140 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 141 * implementing two workarounds on gen6.  From section 1.4.7.1
 142 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 143 *
 144 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 145 * produced by non-pipelined state commands), software needs to first
 146 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 147 * 0.
 148 *
 149 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 150 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 151 *
 152 * And the workaround for these two requires this workaround first:
 153 *
 154 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 155 * BEFORE the pipe-control with a post-sync op and no write-cache
 156 * flushes.
 157 *
 158 * And this last workaround is tricky because of the requirements on
 159 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 160 * volume 2 part 1:
 161 *
 162 *     "1 of the following must also be set:
 163 *      - Render Target Cache Flush Enable ([12] of DW1)
 164 *      - Depth Cache Flush Enable ([0] of DW1)
 165 *      - Stall at Pixel Scoreboard ([1] of DW1)
 166 *      - Depth Stall ([13] of DW1)
 167 *      - Post-Sync Operation ([13] of DW1)
 168 *      - Notify Enable ([8] of DW1)"
 169 *
 170 * The cache flushes require the workaround flush that triggered this
 171 * one, so we can't use it.  Depth stall would trigger the same.
 172 * Post-sync nonzero is what triggered this second workaround, so we
 173 * can't use that one either.  Notify enable is IRQs, which aren't
 174 * really our business.  That leaves only stall at scoreboard.
 175 */
 176static int
 177intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
 178{
 179	struct pipe_control *pc = ring->private;
 180	u32 scratch_addr = pc->gtt_offset + 128;
 181	int ret;
 182
 183
 184	ret = intel_ring_begin(ring, 6);
 185	if (ret)
 186		return ret;
 187
 188	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
 189	intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
 190			PIPE_CONTROL_STALL_AT_SCOREBOARD);
 191	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
 192	intel_ring_emit(ring, 0); /* low dword */
 193	intel_ring_emit(ring, 0); /* high dword */
 194	intel_ring_emit(ring, MI_NOOP);
 195	intel_ring_advance(ring);
 196
 197	ret = intel_ring_begin(ring, 6);
 198	if (ret)
 199		return ret;
 200
 201	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
 202	intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
 203	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
 204	intel_ring_emit(ring, 0);
 205	intel_ring_emit(ring, 0);
 206	intel_ring_emit(ring, MI_NOOP);
 207	intel_ring_advance(ring);
 208
 209	return 0;
 210}
 211
 212static int
 213gen6_render_ring_flush(struct intel_ring_buffer *ring,
 214                         u32 invalidate_domains, u32 flush_domains)
 215{
 
 216	u32 flags = 0;
 217	struct pipe_control *pc = ring->private;
 218	u32 scratch_addr = pc->gtt_offset + 128;
 219	int ret;
 220
 221	/* Force SNB workarounds for PIPE_CONTROL flushes */
 222	intel_emit_post_sync_nonzero_flush(ring);
 
 
 223
 224	/* Just flush everything.  Experiments have shown that reducing the
 225	 * number of bits based on the write domains has little performance
 226	 * impact.
 227	 */
 228	flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 229	flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 230	flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 231	flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 232	flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 233	flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 234	flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235
 236	ret = intel_ring_begin(ring, 6);
 237	if (ret)
 238		return ret;
 239
 240	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
 241	intel_ring_emit(ring, flags);
 242	intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
 243	intel_ring_emit(ring, 0); /* lower dword */
 244	intel_ring_emit(ring, 0); /* uppwer dword */
 245	intel_ring_emit(ring, MI_NOOP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246	intel_ring_advance(ring);
 247
 248	return 0;
 249}
 250
 251static void ring_write_tail(struct intel_ring_buffer *ring,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252			    u32 value)
 253{
 254	drm_i915_private_t *dev_priv = ring->dev->dev_private;
 255	I915_WRITE_TAIL(ring, value);
 256}
 257
 258u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259{
 260	drm_i915_private_t *dev_priv = ring->dev->dev_private;
 261	u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
 262			RING_ACTHD(ring->mmio_base) : ACTHD;
 263
 264	return I915_READ(acthd_reg);
 
 
 
 265}
 266
 267static int init_ring_common(struct intel_ring_buffer *ring)
 268{
 269	struct drm_device *dev = ring->dev;
 270	drm_i915_private_t *dev_priv = dev->dev_private;
 271	struct drm_i915_gem_object *obj = ring->obj;
 272	int ret = 0;
 273	u32 head;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274
 275	if (HAS_FORCE_WAKE(dev))
 276		gen6_gt_force_wake_get(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277
 278	/* Stop the ring if it's running. */
 279	I915_WRITE_CTL(ring, 0);
 280	I915_WRITE_HEAD(ring, 0);
 281	ring->write_tail(ring, 0);
 282
 283	head = I915_READ_HEAD(ring) & HEAD_ADDR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 284
 285	/* G45 ring initialization fails to reset head to zero */
 286	if (head != 0) {
 287		DRM_DEBUG_KMS("%s head not reset to zero "
 288			      "ctl %08x head %08x tail %08x start %08x\n",
 289			      ring->name,
 290			      I915_READ_CTL(ring),
 291			      I915_READ_HEAD(ring),
 292			      I915_READ_TAIL(ring),
 293			      I915_READ_START(ring));
 294
 295		I915_WRITE_HEAD(ring, 0);
 296
 297		if (I915_READ_HEAD(ring) & HEAD_ADDR) {
 298			DRM_ERROR("failed to set %s head to zero "
 299				  "ctl %08x head %08x tail %08x start %08x\n",
 300				  ring->name,
 301				  I915_READ_CTL(ring),
 302				  I915_READ_HEAD(ring),
 303				  I915_READ_TAIL(ring),
 304				  I915_READ_START(ring));
 
 
 305		}
 306	}
 307
 
 
 
 
 
 
 
 
 308	/* Initialize the ring. This must happen _after_ we've cleared the ring
 309	 * registers with the above sequence (the readback of the HEAD registers
 310	 * also enforces ordering), otherwise the hw might lose the new ring
 311	 * register values. */
 312	I915_WRITE_START(ring, obj->gtt_offset);
 
 
 
 
 
 
 
 
 313	I915_WRITE_CTL(ring,
 314			((ring->size - PAGE_SIZE) & RING_NR_PAGES)
 315			| RING_VALID);
 316
 317	/* If the head is still not zero, the ring is dead */
 318	if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
 319		     I915_READ_START(ring) == obj->gtt_offset &&
 320		     (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
 321		DRM_ERROR("%s initialization failed "
 322				"ctl %08x head %08x tail %08x start %08x\n",
 323				ring->name,
 324				I915_READ_CTL(ring),
 325				I915_READ_HEAD(ring),
 326				I915_READ_TAIL(ring),
 327				I915_READ_START(ring));
 328		ret = -EIO;
 329		goto out;
 330	}
 331
 332	if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
 333		i915_kernel_lost_context(ring->dev);
 334	else {
 335		ring->head = I915_READ_HEAD(ring);
 336		ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
 337		ring->space = ring_space(ring);
 338		ring->last_retired_head = -1;
 339	}
 340
 341out:
 342	if (HAS_FORCE_WAKE(dev))
 343		gen6_gt_force_wake_put(dev_priv);
 344
 345	return ret;
 346}
 347
 348static int
 349init_pipe_control(struct intel_ring_buffer *ring)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350{
 351	struct pipe_control *pc;
 352	struct drm_i915_gem_object *obj;
 353	int ret;
 354
 355	if (ring->private)
 356		return 0;
 357
 358	pc = kmalloc(sizeof(*pc), GFP_KERNEL);
 359	if (!pc)
 360		return -ENOMEM;
 361
 362	obj = i915_gem_alloc_object(ring->dev, 4096);
 363	if (obj == NULL) {
 364		DRM_ERROR("Failed to allocate seqno page\n");
 365		ret = -ENOMEM;
 366		goto err;
 367	}
 368
 369	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
 
 
 370
 371	ret = i915_gem_object_pin(obj, 4096, true);
 372	if (ret)
 373		goto err_unref;
 374
 375	pc->gtt_offset = obj->gtt_offset;
 376	pc->cpu_page =  kmap(obj->pages[0]);
 377	if (pc->cpu_page == NULL)
 
 378		goto err_unpin;
 
 379
 380	pc->obj = obj;
 381	ring->private = pc;
 382	return 0;
 383
 384err_unpin:
 385	i915_gem_object_unpin(obj);
 386err_unref:
 387	drm_gem_object_unreference(&obj->base);
 388err:
 389	kfree(pc);
 390	return ret;
 391}
 392
 393static void
 394cleanup_pipe_control(struct intel_ring_buffer *ring)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395{
 396	struct pipe_control *pc = ring->private;
 397	struct drm_i915_gem_object *obj;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398
 399	if (!ring->private)
 400		return;
 401
 402	obj = pc->obj;
 403	kunmap(obj->pages[0]);
 404	i915_gem_object_unpin(obj);
 405	drm_gem_object_unreference(&obj->base);
 
 
 
 
 406
 407	kfree(pc);
 408	ring->private = NULL;
 409}
 410
 411static int init_render_ring(struct intel_ring_buffer *ring)
 412{
 
 413	struct drm_device *dev = ring->dev;
 414	struct drm_i915_private *dev_priv = dev->dev_private;
 415	int ret = init_ring_common(ring);
 416
 417	if (INTEL_INFO(dev)->gen > 3) {
 418		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
 419		if (IS_GEN7(dev))
 420			I915_WRITE(GFX_MODE_GEN7,
 421				   _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
 422				   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
 
 
 
 
 
 
 
 
 
 
 
 
 423	}
 424
 425	if (INTEL_INFO(dev)->gen >= 5) {
 426		ret = init_pipe_control(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427		if (ret)
 428			return ret;
 429	}
 430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431	if (IS_GEN6(dev)) {
 432		/* From the Sandybridge PRM, volume 1 part 3, page 24:
 433		 * "If this bit is set, STCunit will have LRA as replacement
 434		 *  policy. [...] This bit must be reset.  LRA replacement
 435		 *  policy is not supported."
 436		 */
 437		I915_WRITE(CACHE_MODE_0,
 438			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
 439	}
 440
 441	if (INTEL_INFO(dev)->gen >= 6)
 442		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
 443
 444	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445}
 446
 447static void render_ring_cleanup(struct intel_ring_buffer *ring)
 
 448{
 449	if (!ring->private)
 450		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451
 452	cleanup_pipe_control(ring);
 453}
 454
 455static void
 456update_mboxes(struct intel_ring_buffer *ring,
 457	    u32 seqno,
 458	    u32 mmio_offset)
 459{
 460	intel_ring_emit(ring, MI_SEMAPHORE_MBOX |
 461			      MI_SEMAPHORE_GLOBAL_GTT |
 462			      MI_SEMAPHORE_REGISTER |
 463			      MI_SEMAPHORE_UPDATE);
 464	intel_ring_emit(ring, seqno);
 465	intel_ring_emit(ring, mmio_offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 466}
 467
 468/**
 469 * gen6_add_request - Update the semaphore mailbox registers
 470 * 
 471 * @ring - ring that is adding a request
 472 * @seqno - return seqno stuck into the ring
 473 *
 474 * Update the mailbox registers in the *other* rings with the current seqno.
 475 * This acts like a signal in the canonical semaphore.
 476 */
 477static int
 478gen6_add_request(struct intel_ring_buffer *ring,
 479		 u32 *seqno)
 480{
 481	u32 mbox1_reg;
 482	u32 mbox2_reg;
 483	int ret;
 484
 485	ret = intel_ring_begin(ring, 10);
 
 
 
 
 486	if (ret)
 487		return ret;
 488
 489	mbox1_reg = ring->signal_mbox[0];
 490	mbox2_reg = ring->signal_mbox[1];
 491
 492	*seqno = i915_gem_next_request_seqno(ring);
 493
 494	update_mboxes(ring, *seqno, mbox1_reg);
 495	update_mboxes(ring, *seqno, mbox2_reg);
 496	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
 497	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
 498	intel_ring_emit(ring, *seqno);
 499	intel_ring_emit(ring, MI_USER_INTERRUPT);
 500	intel_ring_advance(ring);
 501
 502	return 0;
 503}
 504
 
 
 
 
 
 
 
 505/**
 506 * intel_ring_sync - sync the waiter to the signaller on seqno
 507 *
 508 * @waiter - ring that is waiting
 509 * @signaller - ring which has, or will signal
 510 * @seqno - seqno which the waiter will block on
 511 */
 
 512static int
 513gen6_ring_sync(struct intel_ring_buffer *waiter,
 514	       struct intel_ring_buffer *signaller,
 515	       u32 seqno)
 516{
 
 
 517	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 518	u32 dw1 = MI_SEMAPHORE_MBOX |
 519		  MI_SEMAPHORE_COMPARE |
 520		  MI_SEMAPHORE_REGISTER;
 
 
 521
 522	/* Throughout all of the GEM code, seqno passed implies our current
 523	 * seqno is >= the last seqno executed. However for hardware the
 524	 * comparison is strictly greater than.
 525	 */
 526	seqno -= 1;
 527
 528	WARN_ON(signaller->semaphore_register[waiter->id] ==
 529		MI_SEMAPHORE_SYNC_INVALID);
 530
 531	ret = intel_ring_begin(waiter, 4);
 532	if (ret)
 533		return ret;
 534
 535	intel_ring_emit(waiter,
 536			dw1 | signaller->semaphore_register[waiter->id]);
 537	intel_ring_emit(waiter, seqno);
 538	intel_ring_emit(waiter, 0);
 539	intel_ring_emit(waiter, MI_NOOP);
 
 
 
 
 
 
 
 540	intel_ring_advance(waiter);
 541
 542	return 0;
 543}
 544
 545#define PIPE_CONTROL_FLUSH(ring__, addr__)					\
 546do {									\
 547	intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |		\
 548		 PIPE_CONTROL_DEPTH_STALL);				\
 549	intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT);			\
 550	intel_ring_emit(ring__, 0);							\
 551	intel_ring_emit(ring__, 0);							\
 552} while (0)
 553
 554static int
 555pc_render_add_request(struct intel_ring_buffer *ring,
 556		      u32 *result)
 557{
 558	u32 seqno = i915_gem_next_request_seqno(ring);
 559	struct pipe_control *pc = ring->private;
 560	u32 scratch_addr = pc->gtt_offset + 128;
 561	int ret;
 562
 563	/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
 564	 * incoherent with writes to memory, i.e. completely fubar,
 565	 * so we need to use PIPE_NOTIFY instead.
 566	 *
 567	 * However, we also need to workaround the qword write
 568	 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
 569	 * memory before requesting an interrupt.
 570	 */
 571	ret = intel_ring_begin(ring, 32);
 572	if (ret)
 573		return ret;
 574
 575	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
 576			PIPE_CONTROL_WRITE_FLUSH |
 577			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
 578	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
 579	intel_ring_emit(ring, seqno);
 580	intel_ring_emit(ring, 0);
 581	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 582	scratch_addr += 128; /* write to separate cachelines */
 583	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 584	scratch_addr += 128;
 585	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 586	scratch_addr += 128;
 587	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 588	scratch_addr += 128;
 589	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 590	scratch_addr += 128;
 591	PIPE_CONTROL_FLUSH(ring, scratch_addr);
 592
 593	intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
 594			PIPE_CONTROL_WRITE_FLUSH |
 595			PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
 596			PIPE_CONTROL_NOTIFY);
 597	intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
 598	intel_ring_emit(ring, seqno);
 599	intel_ring_emit(ring, 0);
 600	intel_ring_advance(ring);
 601
 602	*result = seqno;
 603	return 0;
 604}
 605
 606static u32
 607gen6_ring_get_seqno(struct intel_ring_buffer *ring)
 608{
 609	struct drm_device *dev = ring->dev;
 610
 611	/* Workaround to force correct ordering between irq and seqno writes on
 612	 * ivb (and maybe also on snb) by reading from a CS register (like
 613	 * ACTHD) before reading the status page. */
 614	if (IS_GEN6(dev) || IS_GEN7(dev))
 615		intel_ring_get_active_head(ring);
 
 
 
 616	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
 617}
 618
 619static u32
 620ring_get_seqno(struct intel_ring_buffer *ring)
 621{
 622	return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
 623}
 624
 
 
 
 
 
 
 625static u32
 626pc_render_get_seqno(struct intel_ring_buffer *ring)
 
 
 
 
 
 
 627{
 628	struct pipe_control *pc = ring->private;
 629	return pc->cpu_page[0];
 630}
 631
 632static bool
 633gen5_ring_get_irq(struct intel_ring_buffer *ring)
 634{
 635	struct drm_device *dev = ring->dev;
 636	drm_i915_private_t *dev_priv = dev->dev_private;
 637	unsigned long flags;
 638
 639	if (!dev->irq_enabled)
 640		return false;
 641
 642	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 643	if (ring->irq_refcount++ == 0) {
 644		dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
 645		I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 646		POSTING_READ(GTIMR);
 647	}
 648	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 649
 650	return true;
 651}
 652
 653static void
 654gen5_ring_put_irq(struct intel_ring_buffer *ring)
 655{
 656	struct drm_device *dev = ring->dev;
 657	drm_i915_private_t *dev_priv = dev->dev_private;
 658	unsigned long flags;
 659
 660	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 661	if (--ring->irq_refcount == 0) {
 662		dev_priv->gt_irq_mask |= ring->irq_enable_mask;
 663		I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 664		POSTING_READ(GTIMR);
 665	}
 666	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 667}
 668
 669static bool
 670i9xx_ring_get_irq(struct intel_ring_buffer *ring)
 671{
 672	struct drm_device *dev = ring->dev;
 673	drm_i915_private_t *dev_priv = dev->dev_private;
 674	unsigned long flags;
 675
 676	if (!dev->irq_enabled)
 677		return false;
 678
 679	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 680	if (ring->irq_refcount++ == 0) {
 681		dev_priv->irq_mask &= ~ring->irq_enable_mask;
 682		I915_WRITE(IMR, dev_priv->irq_mask);
 683		POSTING_READ(IMR);
 684	}
 685	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 686
 687	return true;
 688}
 689
 690static void
 691i9xx_ring_put_irq(struct intel_ring_buffer *ring)
 692{
 693	struct drm_device *dev = ring->dev;
 694	drm_i915_private_t *dev_priv = dev->dev_private;
 695	unsigned long flags;
 696
 697	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 698	if (--ring->irq_refcount == 0) {
 699		dev_priv->irq_mask |= ring->irq_enable_mask;
 700		I915_WRITE(IMR, dev_priv->irq_mask);
 701		POSTING_READ(IMR);
 702	}
 703	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 704}
 705
 706static bool
 707i8xx_ring_get_irq(struct intel_ring_buffer *ring)
 708{
 709	struct drm_device *dev = ring->dev;
 710	drm_i915_private_t *dev_priv = dev->dev_private;
 711	unsigned long flags;
 712
 713	if (!dev->irq_enabled)
 714		return false;
 715
 716	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 717	if (ring->irq_refcount++ == 0) {
 718		dev_priv->irq_mask &= ~ring->irq_enable_mask;
 719		I915_WRITE16(IMR, dev_priv->irq_mask);
 720		POSTING_READ16(IMR);
 721	}
 722	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 723
 724	return true;
 725}
 726
 727static void
 728i8xx_ring_put_irq(struct intel_ring_buffer *ring)
 729{
 730	struct drm_device *dev = ring->dev;
 731	drm_i915_private_t *dev_priv = dev->dev_private;
 732	unsigned long flags;
 733
 734	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 735	if (--ring->irq_refcount == 0) {
 736		dev_priv->irq_mask |= ring->irq_enable_mask;
 737		I915_WRITE16(IMR, dev_priv->irq_mask);
 738		POSTING_READ16(IMR);
 739	}
 740	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 741}
 742
 743void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
 744{
 745	struct drm_device *dev = ring->dev;
 746	drm_i915_private_t *dev_priv = ring->dev->dev_private;
 747	u32 mmio = 0;
 748
 749	/* The ring status page addresses are no longer next to the rest of
 750	 * the ring registers as of gen7.
 751	 */
 752	if (IS_GEN7(dev)) {
 753		switch (ring->id) {
 754		case RCS:
 755			mmio = RENDER_HWS_PGA_GEN7;
 756			break;
 757		case BCS:
 758			mmio = BLT_HWS_PGA_GEN7;
 759			break;
 760		case VCS:
 761			mmio = BSD_HWS_PGA_GEN7;
 762			break;
 763		}
 764	} else if (IS_GEN6(ring->dev)) {
 765		mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
 766	} else {
 767		mmio = RING_HWS_PGA(ring->mmio_base);
 768	}
 769
 770	I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
 771	POSTING_READ(mmio);
 772}
 773
 774static int
 775bsd_ring_flush(struct intel_ring_buffer *ring,
 776	       u32     invalidate_domains,
 777	       u32     flush_domains)
 778{
 
 779	int ret;
 780
 781	ret = intel_ring_begin(ring, 2);
 782	if (ret)
 783		return ret;
 784
 785	intel_ring_emit(ring, MI_FLUSH);
 786	intel_ring_emit(ring, MI_NOOP);
 787	intel_ring_advance(ring);
 788	return 0;
 789}
 790
 791static int
 792i9xx_add_request(struct intel_ring_buffer *ring,
 793		 u32 *result)
 794{
 795	u32 seqno;
 796	int ret;
 797
 798	ret = intel_ring_begin(ring, 4);
 799	if (ret)
 800		return ret;
 801
 802	seqno = i915_gem_next_request_seqno(ring);
 803
 804	intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
 805	intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
 806	intel_ring_emit(ring, seqno);
 807	intel_ring_emit(ring, MI_USER_INTERRUPT);
 808	intel_ring_advance(ring);
 809
 810	*result = seqno;
 811	return 0;
 812}
 813
 814static bool
 815gen6_ring_get_irq(struct intel_ring_buffer *ring)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816{
 817	struct drm_device *dev = ring->dev;
 818	drm_i915_private_t *dev_priv = dev->dev_private;
 819	unsigned long flags;
 820
 821	if (!dev->irq_enabled)
 822	       return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823
 824	/* It looks like we need to prevent the gt from suspending while waiting
 825	 * for an notifiy irq, otherwise irqs seem to get lost on at least the
 826	 * blt/bsd rings on ivb. */
 827	gen6_gt_force_wake_get(dev_priv);
 828
 829	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 830	if (ring->irq_refcount++ == 0) {
 831		I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
 832		dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
 833		I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 834		POSTING_READ(GTIMR);
 835	}
 836	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 837
 838	return true;
 839}
 840
 841static void
 842gen6_ring_put_irq(struct intel_ring_buffer *ring)
 843{
 844	struct drm_device *dev = ring->dev;
 845	drm_i915_private_t *dev_priv = dev->dev_private;
 846	unsigned long flags;
 847
 848	spin_lock_irqsave(&dev_priv->irq_lock, flags);
 849	if (--ring->irq_refcount == 0) {
 850		I915_WRITE_IMR(ring, ~0);
 851		dev_priv->gt_irq_mask |= ring->irq_enable_mask;
 852		I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 853		POSTING_READ(GTIMR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854	}
 855	spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
 856
 857	gen6_gt_force_wake_put(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 858}
 859
 860static int
 861i965_dispatch_execbuffer(struct intel_ring_buffer *ring, u32 offset, u32 length)
 
 
 862{
 
 863	int ret;
 864
 865	ret = intel_ring_begin(ring, 2);
 866	if (ret)
 867		return ret;
 868
 869	intel_ring_emit(ring,
 870			MI_BATCH_BUFFER_START |
 871			MI_BATCH_GTT |
 872			MI_BATCH_NON_SECURE_I965);
 
 873	intel_ring_emit(ring, offset);
 874	intel_ring_advance(ring);
 875
 876	return 0;
 877}
 878
 
 
 
 
 879static int
 880i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
 881				u32 offset, u32 len)
 
 882{
 
 
 883	int ret;
 884
 885	ret = intel_ring_begin(ring, 4);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886	if (ret)
 887		return ret;
 888
 889	intel_ring_emit(ring, MI_BATCH_BUFFER);
 890	intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
 891	intel_ring_emit(ring, offset + len - 8);
 892	intel_ring_emit(ring, 0);
 893	intel_ring_advance(ring);
 894
 895	return 0;
 896}
 897
 898static int
 899i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
 900				u32 offset, u32 len)
 
 901{
 
 902	int ret;
 903
 904	ret = intel_ring_begin(ring, 2);
 905	if (ret)
 906		return ret;
 907
 908	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
 909	intel_ring_emit(ring, offset | MI_BATCH_NON_SECURE);
 
 910	intel_ring_advance(ring);
 911
 912	return 0;
 913}
 914
 915static void cleanup_status_page(struct intel_ring_buffer *ring)
 
 
 
 
 
 
 
 
 
 
 
 916{
 917	struct drm_i915_gem_object *obj;
 918
 919	obj = ring->status_page.obj;
 920	if (obj == NULL)
 921		return;
 922
 923	kunmap(obj->pages[0]);
 924	i915_gem_object_unpin(obj);
 925	drm_gem_object_unreference(&obj->base);
 926	ring->status_page.obj = NULL;
 927}
 928
 929static int init_status_page(struct intel_ring_buffer *ring)
 930{
 931	struct drm_device *dev = ring->dev;
 932	struct drm_i915_gem_object *obj;
 933	int ret;
 934
 935	obj = i915_gem_alloc_object(dev, 4096);
 936	if (obj == NULL) {
 937		DRM_ERROR("Failed to allocate status page\n");
 938		ret = -ENOMEM;
 939		goto err;
 940	}
 
 
 
 
 
 
 
 
 941
 942	i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943
 944	ret = i915_gem_object_pin(obj, 4096, true);
 945	if (ret != 0) {
 946		goto err_unref;
 947	}
 948
 949	ring->status_page.gfx_addr = obj->gtt_offset;
 950	ring->status_page.page_addr = kmap(obj->pages[0]);
 951	if (ring->status_page.page_addr == NULL) {
 952		goto err_unpin;
 953	}
 954	ring->status_page.obj = obj;
 955	memset(ring->status_page.page_addr, 0, PAGE_SIZE);
 956
 957	intel_ring_setup_status_page(ring);
 958	DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
 959			ring->name, ring->status_page.gfx_addr);
 960
 961	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962
 963err_unpin:
 964	i915_gem_object_unpin(obj);
 965err_unref:
 966	drm_gem_object_unreference(&obj->base);
 967err:
 968	return ret;
 969}
 970
 971static int intel_init_ring_buffer(struct drm_device *dev,
 972				  struct intel_ring_buffer *ring)
 973{
 974	struct drm_i915_gem_object *obj;
 
 
 
 975	int ret;
 976
 977	ring->dev = dev;
 978	INIT_LIST_HEAD(&ring->active_list);
 979	INIT_LIST_HEAD(&ring->request_list);
 980	INIT_LIST_HEAD(&ring->gpu_write_list);
 981	ring->size = 32 * PAGE_SIZE;
 982
 983	init_waitqueue_head(&ring->irq_queue);
 
 
 
 
 984
 985	if (I915_NEED_GFX_HWS(dev)) {
 986		ret = init_status_page(ring);
 
 
 
 
 
 
 987		if (ret)
 988			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989	}
 990
 991	obj = i915_gem_alloc_object(dev, ring->size);
 992	if (obj == NULL) {
 993		DRM_ERROR("Failed to allocate ringbuffer\n");
 994		ret = -ENOMEM;
 995		goto err_hws;
 996	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 997
 998	ring->obj = obj;
 999
1000	ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
1001	if (ret)
1002		goto err_unref;
1003
1004	ret = i915_gem_object_set_to_gtt_domain(obj, true);
1005	if (ret)
1006		goto err_unpin;
 
 
1007
1008	ring->virtual_start = ioremap_wc(dev->agp->base + obj->gtt_offset,
1009					 ring->size);
1010	if (ring->virtual_start == NULL) {
1011		DRM_ERROR("Failed to map ringbuffer.\n");
1012		ret = -EINVAL;
1013		goto err_unpin;
1014	}
1015
1016	ret = ring->init(ring);
1017	if (ret)
1018		goto err_unmap;
1019
 
1020	/* Workaround an erratum on the i830 which causes a hang if
1021	 * the TAIL pointer points to within the last 2 cachelines
1022	 * of the buffer.
1023	 */
1024	ring->effective_size = ring->size;
1025	if (IS_I830(ring->dev) || IS_845G(ring->dev))
1026		ring->effective_size -= 128;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027
1028	return 0;
1029
1030err_unmap:
1031	iounmap(ring->virtual_start);
1032err_unpin:
1033	i915_gem_object_unpin(obj);
1034err_unref:
1035	drm_gem_object_unreference(&obj->base);
1036	ring->obj = NULL;
1037err_hws:
1038	cleanup_status_page(ring);
1039	return ret;
1040}
1041
1042void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1043{
1044	struct drm_i915_private *dev_priv;
1045	int ret;
1046
1047	if (ring->obj == NULL)
1048		return;
1049
1050	/* Disable the ring buffer. The ring must be idle at this point */
1051	dev_priv = ring->dev->dev_private;
1052	ret = intel_wait_ring_idle(ring);
1053	if (ret)
1054		DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1055			  ring->name, ret);
1056
1057	I915_WRITE_CTL(ring, 0);
1058
1059	iounmap(ring->virtual_start);
1060
1061	i915_gem_object_unpin(ring->obj);
1062	drm_gem_object_unreference(&ring->obj->base);
1063	ring->obj = NULL;
 
 
 
 
 
1064
1065	if (ring->cleanup)
1066		ring->cleanup(ring);
1067
1068	cleanup_status_page(ring);
 
 
 
 
 
 
 
 
 
1069}
1070
1071static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1072{
1073	uint32_t __iomem *virt;
1074	int rem = ring->size - ring->tail;
 
 
 
 
 
 
 
 
1075
1076	if (ring->space < rem) {
1077		int ret = intel_wait_ring_buffer(ring, rem);
1078		if (ret)
1079			return ret;
 
1080	}
1081
1082	virt = ring->virtual_start + ring->tail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083	rem /= 4;
1084	while (rem--)
1085		iowrite32(MI_NOOP, virt++);
1086
1087	ring->tail = 0;
1088	ring->space = ring_space(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
1089
 
 
 
 
 
 
 
 
 
 
1090	return 0;
1091}
1092
1093static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1094{
1095	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1096	bool was_interruptible;
1097	int ret;
 
 
 
 
 
 
 
 
 
1098
1099	/* XXX As we have not yet audited all the paths to check that
1100	 * they are ready for ERESTARTSYS from intel_ring_begin, do not
1101	 * allow us to be interruptible by a signal.
1102	 */
1103	was_interruptible = dev_priv->mm.interruptible;
1104	dev_priv->mm.interruptible = false;
1105
1106	ret = i915_wait_request(ring, seqno);
 
1107
1108	dev_priv->mm.interruptible = was_interruptible;
1109	if (!ret)
1110		i915_gem_retire_requests_ring(ring);
1111
1112	return ret;
 
1113}
1114
1115static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1116{
1117	struct drm_i915_gem_request *request;
1118	u32 seqno = 0;
1119	int ret;
1120
1121	i915_gem_retire_requests_ring(ring);
 
 
1122
1123	if (ring->last_retired_head != -1) {
1124		ring->head = ring->last_retired_head;
1125		ring->last_retired_head = -1;
1126		ring->space = ring_space(ring);
1127		if (ring->space >= n)
1128			return 0;
 
 
 
 
 
 
 
 
 
 
 
1129	}
1130
1131	list_for_each_entry(request, &ring->request_list, list) {
1132		int space;
 
1133
1134		if (request->tail == -1)
1135			continue;
 
 
 
 
 
1136
1137		space = request->tail - (ring->tail + 8);
1138		if (space < 0)
1139			space += ring->size;
1140		if (space >= n) {
1141			seqno = request->seqno;
1142			break;
1143		}
1144
1145		/* Consume this request in case we need more space than
1146		 * is available and so need to prevent a race between
1147		 * updating last_retired_head and direct reads of
1148		 * I915_RING_HEAD. It also provides a nice sanity check.
1149		 */
1150		request->tail = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1151	}
1152
1153	if (seqno == 0)
1154		return -ENOSPC;
 
 
1155
1156	ret = intel_ring_wait_seqno(ring, seqno);
1157	if (ret)
1158		return ret;
1159
1160	if (WARN_ON(ring->last_retired_head == -1))
1161		return -ENOSPC;
1162
1163	ring->head = ring->last_retired_head;
1164	ring->last_retired_head = -1;
1165	ring->space = ring_space(ring);
1166	if (WARN_ON(ring->space < n))
1167		return -ENOSPC;
1168
1169	return 0;
1170}
1171
1172int intel_wait_ring_buffer(struct intel_ring_buffer *ring, int n)
 
1173{
1174	struct drm_device *dev = ring->dev;
1175	struct drm_i915_private *dev_priv = dev->dev_private;
1176	unsigned long end;
1177	int ret;
1178
1179	ret = intel_ring_wait_request(ring, n);
1180	if (ret != -ENOSPC)
 
 
 
 
 
1181		return ret;
1182
1183	trace_i915_ring_wait_begin(ring);
1184	/* With GEM the hangcheck timer should kick us out of the loop,
1185	 * leaving it early runs the risk of corrupting GEM state (due
1186	 * to running on almost untested codepaths). But on resume
1187	 * timers don't work yet, so prevent a complete hang in that
1188	 * case by choosing an insanely large timeout. */
1189	end = jiffies + 60 * HZ;
1190
1191	do {
1192		ring->head = I915_READ_HEAD(ring);
1193		ring->space = ring_space(ring);
1194		if (ring->space >= n) {
1195			trace_i915_ring_wait_end(ring);
1196			return 0;
1197		}
1198
1199		if (dev->primary->master) {
1200			struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1201			if (master_priv->sarea_priv)
1202				master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1203		}
1204
1205		msleep(1);
1206		if (atomic_read(&dev_priv->mm.wedged))
1207			return -EAGAIN;
1208	} while (!time_after(jiffies, end));
1209	trace_i915_ring_wait_end(ring);
1210	return -EBUSY;
1211}
1212
1213int intel_ring_begin(struct intel_ring_buffer *ring,
1214		     int num_dwords)
1215{
1216	struct drm_i915_private *dev_priv = ring->dev->dev_private;
1217	int n = 4*num_dwords;
1218	int ret;
1219
1220	if (unlikely(atomic_read(&dev_priv->mm.wedged)))
1221		return -EIO;
 
 
 
 
 
1222
1223	if (unlikely(ring->tail + n > ring->effective_size)) {
1224		ret = intel_wrap_ring_buffer(ring);
1225		if (unlikely(ret))
1226			return ret;
1227	}
1228
1229	if (unlikely(ring->space < n)) {
1230		ret = intel_wait_ring_buffer(ring, n);
1231		if (unlikely(ret))
1232			return ret;
1233	}
1234
1235	ring->space -= n;
1236	return 0;
1237}
1238
1239void intel_ring_advance(struct intel_ring_buffer *ring)
1240{
1241	struct drm_i915_private *dev_priv = ring->dev->dev_private;
 
 
 
 
 
 
 
 
1242
1243	ring->tail &= ring->size - 1;
1244	if (dev_priv->stop_rings & intel_ring_flag(ring))
1245		return;
1246	ring->write_tail(ring, ring->tail);
1247}
1248
1249
1250static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1251				     u32 value)
1252{
1253	drm_i915_private_t *dev_priv = ring->dev->dev_private;
1254
1255       /* Every tail move must follow the sequence below */
 
 
 
 
1256	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1257		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1258		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_DISABLE);
1259	I915_WRITE(GEN6_BSD_RNCID, 0x0);
 
1260
 
1261	if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1262		GEN6_BSD_SLEEP_PSMI_CONTROL_IDLE_INDICATOR) == 0,
1263		50))
1264	DRM_ERROR("timed out waiting for IDLE Indicator\n");
1265
 
1266	I915_WRITE_TAIL(ring, value);
 
 
 
 
 
1267	I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1268		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_MODIFY_MASK |
1269		GEN6_BSD_SLEEP_PSMI_CONTROL_RC_ILDL_MESSAGE_ENABLE);
1270}
1271
1272static int gen6_ring_flush(struct intel_ring_buffer *ring,
1273			   u32 invalidate, u32 flush)
1274{
 
1275	uint32_t cmd;
1276	int ret;
1277
1278	ret = intel_ring_begin(ring, 4);
1279	if (ret)
1280		return ret;
1281
1282	cmd = MI_FLUSH_DW;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283	if (invalidate & I915_GEM_GPU_DOMAINS)
1284		cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
 
1285	intel_ring_emit(ring, cmd);
1286	intel_ring_emit(ring, 0);
1287	intel_ring_emit(ring, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288	intel_ring_emit(ring, MI_NOOP);
1289	intel_ring_advance(ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1290	return 0;
1291}
1292
1293static int
1294gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1295			      u32 offset, u32 len)
 
1296{
 
1297	int ret;
1298
1299	ret = intel_ring_begin(ring, 2);
1300	if (ret)
1301		return ret;
1302
1303	intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_NON_SECURE_I965);
 
 
 
1304	/* bit0-7 is the length on GEN6+ */
1305	intel_ring_emit(ring, offset);
1306	intel_ring_advance(ring);
1307
1308	return 0;
1309}
1310
1311/* Blitter support (SandyBridge+) */
1312
1313static int blt_ring_flush(struct intel_ring_buffer *ring,
1314			  u32 invalidate, u32 flush)
1315{
 
 
1316	uint32_t cmd;
1317	int ret;
1318
1319	ret = intel_ring_begin(ring, 4);
1320	if (ret)
1321		return ret;
1322
1323	cmd = MI_FLUSH_DW;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324	if (invalidate & I915_GEM_DOMAIN_RENDER)
1325		cmd |= MI_INVALIDATE_TLB;
1326	intel_ring_emit(ring, cmd);
1327	intel_ring_emit(ring, 0);
1328	intel_ring_emit(ring, 0);
1329	intel_ring_emit(ring, MI_NOOP);
 
 
 
 
 
1330	intel_ring_advance(ring);
 
1331	return 0;
1332}
1333
1334int intel_init_render_ring_buffer(struct drm_device *dev)
1335{
1336	drm_i915_private_t *dev_priv = dev->dev_private;
1337	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
 
 
1338
1339	ring->name = "render ring";
1340	ring->id = RCS;
 
1341	ring->mmio_base = RENDER_RING_BASE;
1342
1343	if (INTEL_INFO(dev)->gen >= 6) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1344		ring->add_request = gen6_add_request;
1345		ring->flush = gen6_render_ring_flush;
 
 
1346		ring->irq_get = gen6_ring_get_irq;
1347		ring->irq_put = gen6_ring_put_irq;
1348		ring->irq_enable_mask = GT_USER_INTERRUPT;
1349		ring->get_seqno = gen6_ring_get_seqno;
1350		ring->sync_to = gen6_ring_sync;
1351		ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_INVALID;
1352		ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_RV;
1353		ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_RB;
1354		ring->signal_mbox[0] = GEN6_VRSYNC;
1355		ring->signal_mbox[1] = GEN6_BRSYNC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1356	} else if (IS_GEN5(dev)) {
1357		ring->add_request = pc_render_add_request;
1358		ring->flush = gen4_render_ring_flush;
1359		ring->get_seqno = pc_render_get_seqno;
 
1360		ring->irq_get = gen5_ring_get_irq;
1361		ring->irq_put = gen5_ring_put_irq;
1362		ring->irq_enable_mask = GT_USER_INTERRUPT | GT_PIPE_NOTIFY;
 
1363	} else {
1364		ring->add_request = i9xx_add_request;
1365		if (INTEL_INFO(dev)->gen < 4)
1366			ring->flush = gen2_render_ring_flush;
1367		else
1368			ring->flush = gen4_render_ring_flush;
1369		ring->get_seqno = ring_get_seqno;
 
1370		if (IS_GEN2(dev)) {
1371			ring->irq_get = i8xx_ring_get_irq;
1372			ring->irq_put = i8xx_ring_put_irq;
1373		} else {
1374			ring->irq_get = i9xx_ring_get_irq;
1375			ring->irq_put = i9xx_ring_put_irq;
1376		}
1377		ring->irq_enable_mask = I915_USER_INTERRUPT;
1378	}
1379	ring->write_tail = ring_write_tail;
1380	if (INTEL_INFO(dev)->gen >= 6)
 
 
 
 
 
1381		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1382	else if (INTEL_INFO(dev)->gen >= 4)
1383		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1384	else if (IS_I830(dev) || IS_845G(dev))
1385		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1386	else
1387		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1388	ring->init = init_render_ring;
1389	ring->cleanup = render_ring_cleanup;
1390
 
 
 
 
 
 
 
1391
1392	if (!I915_NEED_GFX_HWS(dev)) {
1393		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1394		memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1395	}
1396
1397	return intel_init_ring_buffer(dev, ring);
1398}
1399
1400int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1401{
1402	drm_i915_private_t *dev_priv = dev->dev_private;
1403	struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1404
1405	ring->name = "render ring";
1406	ring->id = RCS;
1407	ring->mmio_base = RENDER_RING_BASE;
1408
1409	if (INTEL_INFO(dev)->gen >= 6) {
1410		/* non-kms not supported on gen6+ */
1411		return -ENODEV;
1412	}
1413
1414	/* Note: gem is not supported on gen5/ilk without kms (the corresponding
1415	 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1416	 * the special gen5 functions. */
1417	ring->add_request = i9xx_add_request;
1418	if (INTEL_INFO(dev)->gen < 4)
1419		ring->flush = gen2_render_ring_flush;
1420	else
1421		ring->flush = gen4_render_ring_flush;
1422	ring->get_seqno = ring_get_seqno;
1423	if (IS_GEN2(dev)) {
1424		ring->irq_get = i8xx_ring_get_irq;
1425		ring->irq_put = i8xx_ring_put_irq;
1426	} else {
1427		ring->irq_get = i9xx_ring_get_irq;
1428		ring->irq_put = i9xx_ring_put_irq;
1429	}
1430	ring->irq_enable_mask = I915_USER_INTERRUPT;
1431	ring->write_tail = ring_write_tail;
1432	if (INTEL_INFO(dev)->gen >= 4)
1433		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1434	else if (IS_I830(dev) || IS_845G(dev))
1435		ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1436	else
1437		ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1438	ring->init = init_render_ring;
1439	ring->cleanup = render_ring_cleanup;
1440
1441	if (!I915_NEED_GFX_HWS(dev))
1442		ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1443
1444	ring->dev = dev;
1445	INIT_LIST_HEAD(&ring->active_list);
1446	INIT_LIST_HEAD(&ring->request_list);
1447	INIT_LIST_HEAD(&ring->gpu_write_list);
1448
1449	ring->size = size;
1450	ring->effective_size = ring->size;
1451	if (IS_I830(ring->dev))
1452		ring->effective_size -= 128;
1453
1454	ring->virtual_start = ioremap_wc(start, size);
1455	if (ring->virtual_start == NULL) {
1456		DRM_ERROR("can not ioremap virtual address for"
1457			  " ring buffer\n");
1458		return -ENOMEM;
1459	}
1460
1461	return 0;
1462}
1463
1464int intel_init_bsd_ring_buffer(struct drm_device *dev)
1465{
1466	drm_i915_private_t *dev_priv = dev->dev_private;
1467	struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1468
1469	ring->name = "bsd ring";
1470	ring->id = VCS;
 
1471
1472	ring->write_tail = ring_write_tail;
1473	if (IS_GEN6(dev) || IS_GEN7(dev)) {
1474		ring->mmio_base = GEN6_BSD_RING_BASE;
1475		/* gen6 bsd needs a special wa for tail updates */
1476		if (IS_GEN6(dev))
1477			ring->write_tail = gen6_bsd_ring_write_tail;
1478		ring->flush = gen6_ring_flush;
1479		ring->add_request = gen6_add_request;
1480		ring->get_seqno = gen6_ring_get_seqno;
1481		ring->irq_enable_mask = GEN6_BSD_USER_INTERRUPT;
1482		ring->irq_get = gen6_ring_get_irq;
1483		ring->irq_put = gen6_ring_put_irq;
1484		ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1485		ring->sync_to = gen6_ring_sync;
1486		ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_VR;
1487		ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_INVALID;
1488		ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_VB;
1489		ring->signal_mbox[0] = GEN6_RVSYNC;
1490		ring->signal_mbox[1] = GEN6_BVSYNC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491	} else {
1492		ring->mmio_base = BSD_RING_BASE;
1493		ring->flush = bsd_ring_flush;
1494		ring->add_request = i9xx_add_request;
1495		ring->get_seqno = ring_get_seqno;
 
1496		if (IS_GEN5(dev)) {
1497			ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1498			ring->irq_get = gen5_ring_get_irq;
1499			ring->irq_put = gen5_ring_put_irq;
1500		} else {
1501			ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1502			ring->irq_get = i9xx_ring_get_irq;
1503			ring->irq_put = i9xx_ring_put_irq;
1504		}
1505		ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1506	}
1507	ring->init = init_ring_common;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509
1510	return intel_init_ring_buffer(dev, ring);
1511}
1512
1513int intel_init_blt_ring_buffer(struct drm_device *dev)
1514{
1515	drm_i915_private_t *dev_priv = dev->dev_private;
1516	struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1517
1518	ring->name = "blitter ring";
1519	ring->id = BCS;
 
1520
1521	ring->mmio_base = BLT_RING_BASE;
1522	ring->write_tail = ring_write_tail;
1523	ring->flush = blt_ring_flush;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524	ring->add_request = gen6_add_request;
1525	ring->get_seqno = gen6_ring_get_seqno;
1526	ring->irq_enable_mask = GEN6_BLITTER_USER_INTERRUPT;
1527	ring->irq_get = gen6_ring_get_irq;
1528	ring->irq_put = gen6_ring_put_irq;
1529	ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1530	ring->sync_to = gen6_ring_sync;
1531	ring->semaphore_register[0] = MI_SEMAPHORE_SYNC_BR;
1532	ring->semaphore_register[1] = MI_SEMAPHORE_SYNC_BV;
1533	ring->semaphore_register[2] = MI_SEMAPHORE_SYNC_INVALID;
1534	ring->signal_mbox[0] = GEN6_RBSYNC;
1535	ring->signal_mbox[1] = GEN6_VBSYNC;
1536	ring->init = init_ring_common;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537
1538	return intel_init_ring_buffer(dev, ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1539}