Linux Audio

Check our new training course

Loading...
v4.6
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 116#include <net/dst_metadata.h>
 117#include <net/ip_tunnels.h>
 118
 119#include <linux/uaccess.h>
 120
 121#include <linux/netfilter_arp.h>
 122
 123/*
 124 *	Interface to generic neighbour cache.
 125 */
 126static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 127static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 128static int arp_constructor(struct neighbour *neigh);
 129static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 130static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 131static void parp_redo(struct sk_buff *skb);
 132
 133static const struct neigh_ops arp_generic_ops = {
 134	.family =		AF_INET,
 135	.solicit =		arp_solicit,
 136	.error_report =		arp_error_report,
 137	.output =		neigh_resolve_output,
 138	.connected_output =	neigh_connected_output,
 139};
 140
 141static const struct neigh_ops arp_hh_ops = {
 142	.family =		AF_INET,
 143	.solicit =		arp_solicit,
 144	.error_report =		arp_error_report,
 145	.output =		neigh_resolve_output,
 146	.connected_output =	neigh_resolve_output,
 147};
 148
 149static const struct neigh_ops arp_direct_ops = {
 150	.family =		AF_INET,
 151	.output =		neigh_direct_output,
 152	.connected_output =	neigh_direct_output,
 153};
 154
 
 
 
 
 
 
 
 
 155struct neigh_table arp_tbl = {
 156	.family		= AF_INET,
 157	.key_len	= 4,
 158	.protocol	= cpu_to_be16(ETH_P_IP),
 159	.hash		= arp_hash,
 160	.key_eq		= arp_key_eq,
 161	.constructor	= arp_constructor,
 162	.proxy_redo	= parp_redo,
 163	.id		= "arp_cache",
 164	.parms		= {
 165		.tbl			= &arp_tbl,
 
 
 
 166		.reachable_time		= 30 * HZ,
 167		.data	= {
 168			[NEIGH_VAR_MCAST_PROBES] = 3,
 169			[NEIGH_VAR_UCAST_PROBES] = 3,
 170			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 171			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 172			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 173			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 174			[NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
 175			[NEIGH_VAR_PROXY_QLEN] = 64,
 176			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 177			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 178			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 179		},
 180	},
 181	.gc_interval	= 30 * HZ,
 182	.gc_thresh1	= 128,
 183	.gc_thresh2	= 512,
 184	.gc_thresh3	= 1024,
 185};
 186EXPORT_SYMBOL(arp_tbl);
 187
 188int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 189{
 190	switch (dev->type) {
 191	case ARPHRD_ETHER:
 192	case ARPHRD_FDDI:
 193	case ARPHRD_IEEE802:
 194		ip_eth_mc_map(addr, haddr);
 195		return 0;
 196	case ARPHRD_INFINIBAND:
 197		ip_ib_mc_map(addr, dev->broadcast, haddr);
 198		return 0;
 199	case ARPHRD_IPGRE:
 200		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 201		return 0;
 202	default:
 203		if (dir) {
 204			memcpy(haddr, dev->broadcast, dev->addr_len);
 205			return 0;
 206		}
 207	}
 208	return -EINVAL;
 209}
 210
 211
 212static u32 arp_hash(const void *pkey,
 213		    const struct net_device *dev,
 214		    __u32 *hash_rnd)
 215{
 216	return arp_hashfn(pkey, dev, hash_rnd);
 217}
 218
 219static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 220{
 221	return neigh_key_eq32(neigh, pkey);
 222}
 223
 224static int arp_constructor(struct neighbour *neigh)
 225{
 226	__be32 addr = *(__be32 *)neigh->primary_key;
 227	struct net_device *dev = neigh->dev;
 228	struct in_device *in_dev;
 229	struct neigh_parms *parms;
 230
 231	rcu_read_lock();
 232	in_dev = __in_dev_get_rcu(dev);
 233	if (!in_dev) {
 234		rcu_read_unlock();
 235		return -EINVAL;
 236	}
 237
 238	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 239
 240	parms = in_dev->arp_parms;
 241	__neigh_parms_put(neigh->parms);
 242	neigh->parms = neigh_parms_clone(parms);
 243	rcu_read_unlock();
 244
 245	if (!dev->header_ops) {
 246		neigh->nud_state = NUD_NOARP;
 247		neigh->ops = &arp_direct_ops;
 248		neigh->output = neigh_direct_output;
 249	} else {
 250		/* Good devices (checked by reading texts, but only Ethernet is
 251		   tested)
 252
 253		   ARPHRD_ETHER: (ethernet, apfddi)
 254		   ARPHRD_FDDI: (fddi)
 255		   ARPHRD_IEEE802: (tr)
 256		   ARPHRD_METRICOM: (strip)
 257		   ARPHRD_ARCNET:
 258		   etc. etc. etc.
 259
 260		   ARPHRD_IPDDP will also work, if author repairs it.
 261		   I did not it, because this driver does not work even
 262		   in old paradigm.
 263		 */
 264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265		if (neigh->type == RTN_MULTICAST) {
 266			neigh->nud_state = NUD_NOARP;
 267			arp_mc_map(addr, neigh->ha, dev, 1);
 268		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 269			neigh->nud_state = NUD_NOARP;
 270			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 271		} else if (neigh->type == RTN_BROADCAST ||
 272			   (dev->flags & IFF_POINTOPOINT)) {
 273			neigh->nud_state = NUD_NOARP;
 274			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 275		}
 276
 277		if (dev->header_ops->cache)
 278			neigh->ops = &arp_hh_ops;
 279		else
 280			neigh->ops = &arp_generic_ops;
 281
 282		if (neigh->nud_state & NUD_VALID)
 283			neigh->output = neigh->ops->connected_output;
 284		else
 285			neigh->output = neigh->ops->output;
 286	}
 287	return 0;
 288}
 289
 290static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 291{
 292	dst_link_failure(skb);
 293	kfree_skb(skb);
 294}
 295
 296/* Create and send an arp packet. */
 297static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 298			 struct net_device *dev, __be32 src_ip,
 299			 const unsigned char *dest_hw,
 300			 const unsigned char *src_hw,
 301			 const unsigned char *target_hw,
 302			 struct dst_entry *dst)
 303{
 304	struct sk_buff *skb;
 305
 306	/* arp on this interface. */
 307	if (dev->flags & IFF_NOARP)
 308		return;
 309
 310	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 311			 dest_hw, src_hw, target_hw);
 312	if (!skb)
 313		return;
 314
 315	skb_dst_set(skb, dst_clone(dst));
 316	arp_xmit(skb);
 317}
 318
 319void arp_send(int type, int ptype, __be32 dest_ip,
 320	      struct net_device *dev, __be32 src_ip,
 321	      const unsigned char *dest_hw, const unsigned char *src_hw,
 322	      const unsigned char *target_hw)
 323{
 324	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 325		     target_hw, NULL);
 326}
 327EXPORT_SYMBOL(arp_send);
 328
 329static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 330{
 331	__be32 saddr = 0;
 332	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 333	struct net_device *dev = neigh->dev;
 334	__be32 target = *(__be32 *)neigh->primary_key;
 335	int probes = atomic_read(&neigh->probes);
 336	struct in_device *in_dev;
 337	struct dst_entry *dst = NULL;
 338
 339	rcu_read_lock();
 340	in_dev = __in_dev_get_rcu(dev);
 341	if (!in_dev) {
 342		rcu_read_unlock();
 343		return;
 344	}
 345	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 346	default:
 347	case 0:		/* By default announce any local IP */
 348		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 349					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 350			saddr = ip_hdr(skb)->saddr;
 351		break;
 352	case 1:		/* Restrict announcements of saddr in same subnet */
 353		if (!skb)
 354			break;
 355		saddr = ip_hdr(skb)->saddr;
 356		if (inet_addr_type_dev_table(dev_net(dev), dev,
 357					     saddr) == RTN_LOCAL) {
 358			/* saddr should be known to target */
 359			if (inet_addr_onlink(in_dev, target, saddr))
 360				break;
 361		}
 362		saddr = 0;
 363		break;
 364	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 365		break;
 366	}
 367	rcu_read_unlock();
 368
 369	if (!saddr)
 370		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 371
 372	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 373	if (probes < 0) {
 374		if (!(neigh->nud_state & NUD_VALID))
 375			pr_debug("trying to ucast probe in NUD_INVALID\n");
 376		neigh_ha_snapshot(dst_ha, neigh, dev);
 377		dst_hw = dst_ha;
 378	} else {
 379		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 380		if (probes < 0) {
 
 381			neigh_app_ns(neigh);
 
 382			return;
 383		}
 384	}
 385
 386	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 387		dst = skb_dst(skb);
 388	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 389		     dst_hw, dev->dev_addr, NULL, dst);
 390}
 391
 392static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 393{
 394	struct net *net = dev_net(in_dev->dev);
 395	int scope;
 396
 397	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 398	case 0:	/* Reply, the tip is already validated */
 399		return 0;
 400	case 1:	/* Reply only if tip is configured on the incoming interface */
 401		sip = 0;
 402		scope = RT_SCOPE_HOST;
 403		break;
 404	case 2:	/*
 405		 * Reply only if tip is configured on the incoming interface
 406		 * and is in same subnet as sip
 407		 */
 408		scope = RT_SCOPE_HOST;
 409		break;
 410	case 3:	/* Do not reply for scope host addresses */
 411		sip = 0;
 412		scope = RT_SCOPE_LINK;
 413		in_dev = NULL;
 414		break;
 415	case 4:	/* Reserved */
 416	case 5:
 417	case 6:
 418	case 7:
 419		return 0;
 420	case 8:	/* Do not reply */
 421		return 1;
 422	default:
 423		return 0;
 424	}
 425	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 426}
 427
 428static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 429{
 430	struct rtable *rt;
 431	int flag = 0;
 432	/*unsigned long now; */
 433	struct net *net = dev_net(dev);
 434
 435	rt = ip_route_output(net, sip, tip, 0, 0);
 436	if (IS_ERR(rt))
 437		return 1;
 438	if (rt->dst.dev != dev) {
 439		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 440		flag = 1;
 441	}
 442	ip_rt_put(rt);
 443	return flag;
 444}
 445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446/*
 447 * Check if we can use proxy ARP for this path
 448 */
 449static inline int arp_fwd_proxy(struct in_device *in_dev,
 450				struct net_device *dev,	struct rtable *rt)
 451{
 452	struct in_device *out_dev;
 453	int imi, omi = -1;
 454
 455	if (rt->dst.dev == dev)
 456		return 0;
 457
 458	if (!IN_DEV_PROXY_ARP(in_dev))
 459		return 0;
 460	imi = IN_DEV_MEDIUM_ID(in_dev);
 461	if (imi == 0)
 462		return 1;
 463	if (imi == -1)
 464		return 0;
 465
 466	/* place to check for proxy_arp for routes */
 467
 468	out_dev = __in_dev_get_rcu(rt->dst.dev);
 469	if (out_dev)
 470		omi = IN_DEV_MEDIUM_ID(out_dev);
 471
 472	return omi != imi && omi != -1;
 473}
 474
 475/*
 476 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 477 *
 478 * RFC3069 supports proxy arp replies back to the same interface.  This
 479 * is done to support (ethernet) switch features, like RFC 3069, where
 480 * the individual ports are not allowed to communicate with each
 481 * other, BUT they are allowed to talk to the upstream router.  As
 482 * described in RFC 3069, it is possible to allow these hosts to
 483 * communicate through the upstream router, by proxy_arp'ing.
 484 *
 485 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 486 *
 487 *  This technology is known by different names:
 488 *    In RFC 3069 it is called VLAN Aggregation.
 489 *    Cisco and Allied Telesyn call it Private VLAN.
 490 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 491 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 492 *
 493 */
 494static inline int arp_fwd_pvlan(struct in_device *in_dev,
 495				struct net_device *dev,	struct rtable *rt,
 496				__be32 sip, __be32 tip)
 497{
 498	/* Private VLAN is only concerned about the same ethernet segment */
 499	if (rt->dst.dev != dev)
 500		return 0;
 501
 502	/* Don't reply on self probes (often done by windowz boxes)*/
 503	if (sip == tip)
 504		return 0;
 505
 506	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 507		return 1;
 508	else
 509		return 0;
 510}
 511
 512/*
 513 *	Interface to link layer: send routine and receive handler.
 514 */
 515
 516/*
 517 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 518 *	message.
 519 */
 520struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 521			   struct net_device *dev, __be32 src_ip,
 522			   const unsigned char *dest_hw,
 523			   const unsigned char *src_hw,
 524			   const unsigned char *target_hw)
 525{
 526	struct sk_buff *skb;
 527	struct arphdr *arp;
 528	unsigned char *arp_ptr;
 529	int hlen = LL_RESERVED_SPACE(dev);
 530	int tlen = dev->needed_tailroom;
 531
 532	/*
 533	 *	Allocate a buffer
 534	 */
 535
 536	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 537	if (!skb)
 538		return NULL;
 539
 540	skb_reserve(skb, hlen);
 541	skb_reset_network_header(skb);
 542	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 543	skb->dev = dev;
 544	skb->protocol = htons(ETH_P_ARP);
 545	if (!src_hw)
 546		src_hw = dev->dev_addr;
 547	if (!dest_hw)
 548		dest_hw = dev->broadcast;
 549
 550	/*
 551	 *	Fill the device header for the ARP frame
 552	 */
 553	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 554		goto out;
 555
 556	/*
 557	 * Fill out the arp protocol part.
 558	 *
 559	 * The arp hardware type should match the device type, except for FDDI,
 560	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 561	 */
 562	/*
 563	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 564	 *	DIX code for the protocol. Make these device structure fields.
 565	 */
 566	switch (dev->type) {
 567	default:
 568		arp->ar_hrd = htons(dev->type);
 569		arp->ar_pro = htons(ETH_P_IP);
 570		break;
 571
 572#if IS_ENABLED(CONFIG_AX25)
 573	case ARPHRD_AX25:
 574		arp->ar_hrd = htons(ARPHRD_AX25);
 575		arp->ar_pro = htons(AX25_P_IP);
 576		break;
 577
 578#if IS_ENABLED(CONFIG_NETROM)
 579	case ARPHRD_NETROM:
 580		arp->ar_hrd = htons(ARPHRD_NETROM);
 581		arp->ar_pro = htons(AX25_P_IP);
 582		break;
 583#endif
 584#endif
 585
 586#if IS_ENABLED(CONFIG_FDDI)
 587	case ARPHRD_FDDI:
 588		arp->ar_hrd = htons(ARPHRD_ETHER);
 589		arp->ar_pro = htons(ETH_P_IP);
 590		break;
 591#endif
 592	}
 593
 594	arp->ar_hln = dev->addr_len;
 595	arp->ar_pln = 4;
 596	arp->ar_op = htons(type);
 597
 598	arp_ptr = (unsigned char *)(arp + 1);
 599
 600	memcpy(arp_ptr, src_hw, dev->addr_len);
 601	arp_ptr += dev->addr_len;
 602	memcpy(arp_ptr, &src_ip, 4);
 603	arp_ptr += 4;
 604
 605	switch (dev->type) {
 606#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 607	case ARPHRD_IEEE1394:
 608		break;
 609#endif
 610	default:
 611		if (target_hw)
 612			memcpy(arp_ptr, target_hw, dev->addr_len);
 613		else
 614			memset(arp_ptr, 0, dev->addr_len);
 615		arp_ptr += dev->addr_len;
 616	}
 617	memcpy(arp_ptr, &dest_ip, 4);
 618
 619	return skb;
 620
 621out:
 622	kfree_skb(skb);
 623	return NULL;
 624}
 625EXPORT_SYMBOL(arp_create);
 626
 627static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 628{
 629	return dev_queue_xmit(skb);
 630}
 631
 632/*
 633 *	Send an arp packet.
 634 */
 635void arp_xmit(struct sk_buff *skb)
 636{
 637	/* Send it off, maybe filter it using firewalling first.  */
 638	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 639		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 640		arp_xmit_finish);
 641}
 642EXPORT_SYMBOL(arp_xmit);
 643
 644/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645 *	Process an arp request.
 646 */
 647
 648static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 649{
 650	struct net_device *dev = skb->dev;
 651	struct in_device *in_dev = __in_dev_get_rcu(dev);
 652	struct arphdr *arp;
 653	unsigned char *arp_ptr;
 654	struct rtable *rt;
 655	unsigned char *sha;
 656	__be32 sip, tip;
 657	u16 dev_type = dev->type;
 658	int addr_type;
 659	struct neighbour *n;
 660	struct dst_entry *reply_dst = NULL;
 661	bool is_garp = false;
 662
 663	/* arp_rcv below verifies the ARP header and verifies the device
 664	 * is ARP'able.
 665	 */
 666
 667	if (!in_dev)
 668		goto out_free_skb;
 669
 670	arp = arp_hdr(skb);
 671
 672	switch (dev_type) {
 673	default:
 674		if (arp->ar_pro != htons(ETH_P_IP) ||
 675		    htons(dev_type) != arp->ar_hrd)
 676			goto out_free_skb;
 677		break;
 678	case ARPHRD_ETHER:
 679	case ARPHRD_FDDI:
 680	case ARPHRD_IEEE802:
 681		/*
 682		 * ETHERNET, and Fibre Channel (which are IEEE 802
 683		 * devices, according to RFC 2625) devices will accept ARP
 684		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 685		 * This is the case also of FDDI, where the RFC 1390 says that
 686		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 687		 * however, to be more robust, we'll accept both 1 (Ethernet)
 688		 * or 6 (IEEE 802.2)
 689		 */
 690		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 691		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 692		    arp->ar_pro != htons(ETH_P_IP))
 693			goto out_free_skb;
 694		break;
 695	case ARPHRD_AX25:
 696		if (arp->ar_pro != htons(AX25_P_IP) ||
 697		    arp->ar_hrd != htons(ARPHRD_AX25))
 698			goto out_free_skb;
 699		break;
 700	case ARPHRD_NETROM:
 701		if (arp->ar_pro != htons(AX25_P_IP) ||
 702		    arp->ar_hrd != htons(ARPHRD_NETROM))
 703			goto out_free_skb;
 704		break;
 705	}
 706
 707	/* Understand only these message types */
 708
 709	if (arp->ar_op != htons(ARPOP_REPLY) &&
 710	    arp->ar_op != htons(ARPOP_REQUEST))
 711		goto out_free_skb;
 712
 713/*
 714 *	Extract fields
 715 */
 716	arp_ptr = (unsigned char *)(arp + 1);
 717	sha	= arp_ptr;
 718	arp_ptr += dev->addr_len;
 719	memcpy(&sip, arp_ptr, 4);
 720	arp_ptr += 4;
 721	switch (dev_type) {
 722#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 723	case ARPHRD_IEEE1394:
 724		break;
 725#endif
 726	default:
 727		arp_ptr += dev->addr_len;
 728	}
 729	memcpy(&tip, arp_ptr, 4);
 730/*
 731 *	Check for bad requests for 127.x.x.x and requests for multicast
 732 *	addresses.  If this is one such, delete it.
 733 */
 734	if (ipv4_is_multicast(tip) ||
 735	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 736		goto out_free_skb;
 737
 738 /*
 739  *	For some 802.11 wireless deployments (and possibly other networks),
 740  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 741  *	and thus should not be accepted.
 742  */
 743	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 744		goto out_free_skb;
 745
 746/*
 747 *     Special case: We must set Frame Relay source Q.922 address
 748 */
 749	if (dev_type == ARPHRD_DLCI)
 750		sha = dev->broadcast;
 751
 752/*
 753 *  Process entry.  The idea here is we want to send a reply if it is a
 754 *  request for us or if it is a request for someone else that we hold
 755 *  a proxy for.  We want to add an entry to our cache if it is a reply
 756 *  to us or if it is a request for our address.
 757 *  (The assumption for this last is that if someone is requesting our
 758 *  address, they are probably intending to talk to us, so it saves time
 759 *  if we cache their address.  Their address is also probably not in
 760 *  our cache, since ours is not in their cache.)
 761 *
 762 *  Putting this another way, we only care about replies if they are to
 763 *  us, in which case we add them to the cache.  For requests, we care
 764 *  about those for us and those for our proxies.  We reply to both,
 765 *  and in the case of requests for us we add the requester to the arp
 766 *  cache.
 767 */
 768
 769	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 770		reply_dst = (struct dst_entry *)
 771			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 772						    GFP_ATOMIC);
 773
 774	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 775	if (sip == 0) {
 776		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 777		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 778		    !arp_ignore(in_dev, sip, tip))
 779			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 780				     sha, dev->dev_addr, sha, reply_dst);
 781		goto out_consume_skb;
 782	}
 783
 784	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 785	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 786
 787		rt = skb_rtable(skb);
 788		addr_type = rt->rt_type;
 789
 790		if (addr_type == RTN_LOCAL) {
 791			int dont_send;
 792
 793			dont_send = arp_ignore(in_dev, sip, tip);
 794			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 795				dont_send = arp_filter(sip, tip, dev);
 796			if (!dont_send) {
 797				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 798				if (n) {
 799					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 800						     sip, dev, tip, sha,
 801						     dev->dev_addr, sha,
 802						     reply_dst);
 803					neigh_release(n);
 804				}
 805			}
 806			goto out_consume_skb;
 807		} else if (IN_DEV_FORWARD(in_dev)) {
 808			if (addr_type == RTN_UNICAST  &&
 809			    (arp_fwd_proxy(in_dev, dev, rt) ||
 810			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 811			     (rt->dst.dev != dev &&
 812			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 813				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 814				if (n)
 815					neigh_release(n);
 816
 817				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 818				    skb->pkt_type == PACKET_HOST ||
 819				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 820					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 821						     sip, dev, tip, sha,
 822						     dev->dev_addr, sha,
 823						     reply_dst);
 824				} else {
 825					pneigh_enqueue(&arp_tbl,
 826						       in_dev->arp_parms, skb);
 827					goto out_free_dst;
 828				}
 829				goto out_consume_skb;
 830			}
 831		}
 832	}
 833
 834	/* Update our ARP tables */
 835
 836	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 837
 838	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 839		unsigned int addr_type = inet_addr_type_dev_table(net, dev, sip);
 840
 841		/* Unsolicited ARP is not accepted by default.
 842		   It is possible, that this option should be enabled for some
 843		   devices (strip is candidate)
 844		 */
 845		is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
 846			  addr_type == RTN_UNICAST;
 847
 848		if (!n &&
 849		    ((arp->ar_op == htons(ARPOP_REPLY)  &&
 850				addr_type == RTN_UNICAST) || is_garp))
 851			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 852	}
 853
 854	if (n) {
 855		int state = NUD_REACHABLE;
 856		int override;
 857
 858		/* If several different ARP replies follows back-to-back,
 859		   use the FIRST one. It is possible, if several proxy
 860		   agents are active. Taking the first reply prevents
 861		   arp trashing and chooses the fastest router.
 862		 */
 863		override = time_after(jiffies,
 864				      n->updated +
 865				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 866			   is_garp;
 867
 868		/* Broadcast replies and request packets
 869		   do not assert neighbour reachability.
 870		 */
 871		if (arp->ar_op != htons(ARPOP_REPLY) ||
 872		    skb->pkt_type != PACKET_HOST)
 873			state = NUD_STALE;
 874		neigh_update(n, sha, state,
 875			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 876		neigh_release(n);
 877	}
 878
 879out_consume_skb:
 880	consume_skb(skb);
 881
 882out_free_dst:
 883	dst_release(reply_dst);
 884	return NET_RX_SUCCESS;
 885
 886out_free_skb:
 887	kfree_skb(skb);
 888	return NET_RX_DROP;
 889}
 890
 891static void parp_redo(struct sk_buff *skb)
 892{
 893	arp_process(dev_net(skb->dev), NULL, skb);
 894}
 895
 896
 897/*
 898 *	Receive an arp request from the device layer.
 899 */
 900
 901static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 902		   struct packet_type *pt, struct net_device *orig_dev)
 903{
 904	const struct arphdr *arp;
 905
 906	/* do not tweak dropwatch on an ARP we will ignore */
 907	if (dev->flags & IFF_NOARP ||
 908	    skb->pkt_type == PACKET_OTHERHOST ||
 909	    skb->pkt_type == PACKET_LOOPBACK)
 910		goto consumeskb;
 911
 912	skb = skb_share_check(skb, GFP_ATOMIC);
 913	if (!skb)
 914		goto out_of_mem;
 915
 916	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 917	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 918		goto freeskb;
 919
 920	arp = arp_hdr(skb);
 921	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 
 
 
 
 922		goto freeskb;
 923
 
 
 
 
 924	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 925
 926	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 927		       dev_net(dev), NULL, skb, dev, NULL,
 928		       arp_process);
 929
 930consumeskb:
 931	consume_skb(skb);
 932	return NET_RX_SUCCESS;
 933freeskb:
 934	kfree_skb(skb);
 935out_of_mem:
 936	return NET_RX_DROP;
 937}
 938
 939/*
 940 *	User level interface (ioctl)
 941 */
 942
 943/*
 944 *	Set (create) an ARP cache entry.
 945 */
 946
 947static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 948{
 949	if (!dev) {
 950		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 951		return 0;
 952	}
 953	if (__in_dev_get_rtnl(dev)) {
 954		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 955		return 0;
 956	}
 957	return -ENXIO;
 958}
 959
 960static int arp_req_set_public(struct net *net, struct arpreq *r,
 961		struct net_device *dev)
 962{
 963	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 964	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
 965
 966	if (mask && mask != htonl(0xFFFFFFFF))
 967		return -EINVAL;
 968	if (!dev && (r->arp_flags & ATF_COM)) {
 969		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
 970				      r->arp_ha.sa_data);
 971		if (!dev)
 972			return -ENODEV;
 973	}
 974	if (mask) {
 975		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
 976			return -ENOBUFS;
 977		return 0;
 978	}
 979
 980	return arp_req_set_proxy(net, dev, 1);
 981}
 982
 983static int arp_req_set(struct net *net, struct arpreq *r,
 984		       struct net_device *dev)
 985{
 986	__be32 ip;
 987	struct neighbour *neigh;
 988	int err;
 989
 990	if (r->arp_flags & ATF_PUBL)
 991		return arp_req_set_public(net, r, dev);
 992
 993	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 994	if (r->arp_flags & ATF_PERM)
 995		r->arp_flags |= ATF_COM;
 996	if (!dev) {
 997		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
 998
 999		if (IS_ERR(rt))
1000			return PTR_ERR(rt);
1001		dev = rt->dst.dev;
1002		ip_rt_put(rt);
1003		if (!dev)
1004			return -EINVAL;
1005	}
1006	switch (dev->type) {
1007#if IS_ENABLED(CONFIG_FDDI)
1008	case ARPHRD_FDDI:
1009		/*
1010		 * According to RFC 1390, FDDI devices should accept ARP
1011		 * hardware types of 1 (Ethernet).  However, to be more
1012		 * robust, we'll accept hardware types of either 1 (Ethernet)
1013		 * or 6 (IEEE 802.2).
1014		 */
1015		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1016		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1017		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1018			return -EINVAL;
1019		break;
1020#endif
1021	default:
1022		if (r->arp_ha.sa_family != dev->type)
1023			return -EINVAL;
1024		break;
1025	}
1026
1027	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1028	err = PTR_ERR(neigh);
1029	if (!IS_ERR(neigh)) {
1030		unsigned int state = NUD_STALE;
1031		if (r->arp_flags & ATF_PERM)
1032			state = NUD_PERMANENT;
1033		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1034				   r->arp_ha.sa_data : NULL, state,
1035				   NEIGH_UPDATE_F_OVERRIDE |
1036				   NEIGH_UPDATE_F_ADMIN);
1037		neigh_release(neigh);
1038	}
1039	return err;
1040}
1041
1042static unsigned int arp_state_to_flags(struct neighbour *neigh)
1043{
1044	if (neigh->nud_state&NUD_PERMANENT)
1045		return ATF_PERM | ATF_COM;
1046	else if (neigh->nud_state&NUD_VALID)
1047		return ATF_COM;
1048	else
1049		return 0;
1050}
1051
1052/*
1053 *	Get an ARP cache entry.
1054 */
1055
1056static int arp_req_get(struct arpreq *r, struct net_device *dev)
1057{
1058	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1059	struct neighbour *neigh;
1060	int err = -ENXIO;
1061
1062	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1063	if (neigh) {
1064		if (!(neigh->nud_state & NUD_NOARP)) {
1065			read_lock_bh(&neigh->lock);
1066			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1067			r->arp_flags = arp_state_to_flags(neigh);
1068			read_unlock_bh(&neigh->lock);
1069			r->arp_ha.sa_family = dev->type;
1070			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1071			err = 0;
1072		}
1073		neigh_release(neigh);
 
1074	}
1075	return err;
1076}
1077
1078static int arp_invalidate(struct net_device *dev, __be32 ip)
1079{
1080	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1081	int err = -ENXIO;
1082
1083	if (neigh) {
1084		if (neigh->nud_state & ~NUD_NOARP)
1085			err = neigh_update(neigh, NULL, NUD_FAILED,
1086					   NEIGH_UPDATE_F_OVERRIDE|
1087					   NEIGH_UPDATE_F_ADMIN);
1088		neigh_release(neigh);
1089	}
1090
1091	return err;
1092}
 
1093
1094static int arp_req_delete_public(struct net *net, struct arpreq *r,
1095		struct net_device *dev)
1096{
1097	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1098	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1099
1100	if (mask == htonl(0xFFFFFFFF))
1101		return pneigh_delete(&arp_tbl, net, &ip, dev);
1102
1103	if (mask)
1104		return -EINVAL;
1105
1106	return arp_req_set_proxy(net, dev, 0);
1107}
1108
1109static int arp_req_delete(struct net *net, struct arpreq *r,
1110			  struct net_device *dev)
1111{
1112	__be32 ip;
1113
1114	if (r->arp_flags & ATF_PUBL)
1115		return arp_req_delete_public(net, r, dev);
1116
1117	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1118	if (!dev) {
1119		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1120		if (IS_ERR(rt))
1121			return PTR_ERR(rt);
1122		dev = rt->dst.dev;
1123		ip_rt_put(rt);
1124		if (!dev)
1125			return -EINVAL;
1126	}
1127	return arp_invalidate(dev, ip);
1128}
1129
1130/*
1131 *	Handle an ARP layer I/O control request.
1132 */
1133
1134int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1135{
1136	int err;
1137	struct arpreq r;
1138	struct net_device *dev = NULL;
1139
1140	switch (cmd) {
1141	case SIOCDARP:
1142	case SIOCSARP:
1143		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1144			return -EPERM;
1145	case SIOCGARP:
1146		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1147		if (err)
1148			return -EFAULT;
1149		break;
1150	default:
1151		return -EINVAL;
1152	}
1153
1154	if (r.arp_pa.sa_family != AF_INET)
1155		return -EPFNOSUPPORT;
1156
1157	if (!(r.arp_flags & ATF_PUBL) &&
1158	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1159		return -EINVAL;
1160	if (!(r.arp_flags & ATF_NETMASK))
1161		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1162							   htonl(0xFFFFFFFFUL);
1163	rtnl_lock();
1164	if (r.arp_dev[0]) {
1165		err = -ENODEV;
1166		dev = __dev_get_by_name(net, r.arp_dev);
1167		if (!dev)
1168			goto out;
1169
1170		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1171		if (!r.arp_ha.sa_family)
1172			r.arp_ha.sa_family = dev->type;
1173		err = -EINVAL;
1174		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1175			goto out;
1176	} else if (cmd == SIOCGARP) {
1177		err = -ENODEV;
1178		goto out;
1179	}
1180
1181	switch (cmd) {
1182	case SIOCDARP:
1183		err = arp_req_delete(net, &r, dev);
1184		break;
1185	case SIOCSARP:
1186		err = arp_req_set(net, &r, dev);
1187		break;
1188	case SIOCGARP:
1189		err = arp_req_get(&r, dev);
1190		break;
1191	}
1192out:
1193	rtnl_unlock();
1194	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1195		err = -EFAULT;
1196	return err;
1197}
1198
1199static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1200			    void *ptr)
1201{
1202	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1203	struct netdev_notifier_change_info *change_info;
1204
1205	switch (event) {
1206	case NETDEV_CHANGEADDR:
1207		neigh_changeaddr(&arp_tbl, dev);
1208		rt_cache_flush(dev_net(dev));
1209		break;
1210	case NETDEV_CHANGE:
1211		change_info = ptr;
1212		if (change_info->flags_changed & IFF_NOARP)
1213			neigh_changeaddr(&arp_tbl, dev);
1214		break;
1215	default:
1216		break;
1217	}
1218
1219	return NOTIFY_DONE;
1220}
1221
1222static struct notifier_block arp_netdev_notifier = {
1223	.notifier_call = arp_netdev_event,
1224};
1225
1226/* Note, that it is not on notifier chain.
1227   It is necessary, that this routine was called after route cache will be
1228   flushed.
1229 */
1230void arp_ifdown(struct net_device *dev)
1231{
1232	neigh_ifdown(&arp_tbl, dev);
1233}
1234
1235
1236/*
1237 *	Called once on startup.
1238 */
1239
1240static struct packet_type arp_packet_type __read_mostly = {
1241	.type =	cpu_to_be16(ETH_P_ARP),
1242	.func =	arp_rcv,
1243};
1244
1245static int arp_proc_init(void);
1246
1247void __init arp_init(void)
1248{
1249	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1250
1251	dev_add_pack(&arp_packet_type);
1252	arp_proc_init();
1253#ifdef CONFIG_SYSCTL
1254	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1255#endif
1256	register_netdevice_notifier(&arp_netdev_notifier);
1257}
1258
1259#ifdef CONFIG_PROC_FS
1260#if IS_ENABLED(CONFIG_AX25)
1261
1262/* ------------------------------------------------------------------------ */
1263/*
1264 *	ax25 -> ASCII conversion
1265 */
1266static char *ax2asc2(ax25_address *a, char *buf)
1267{
1268	char c, *s;
1269	int n;
1270
1271	for (n = 0, s = buf; n < 6; n++) {
1272		c = (a->ax25_call[n] >> 1) & 0x7F;
1273
1274		if (c != ' ')
1275			*s++ = c;
1276	}
1277
1278	*s++ = '-';
1279	n = (a->ax25_call[6] >> 1) & 0x0F;
1280	if (n > 9) {
1281		*s++ = '1';
1282		n -= 10;
1283	}
1284
1285	*s++ = n + '0';
1286	*s++ = '\0';
1287
1288	if (*buf == '\0' || *buf == '-')
1289		return "*";
1290
1291	return buf;
1292}
1293#endif /* CONFIG_AX25 */
1294
1295#define HBUFFERLEN 30
1296
1297static void arp_format_neigh_entry(struct seq_file *seq,
1298				   struct neighbour *n)
1299{
1300	char hbuffer[HBUFFERLEN];
1301	int k, j;
1302	char tbuf[16];
1303	struct net_device *dev = n->dev;
1304	int hatype = dev->type;
1305
1306	read_lock(&n->lock);
1307	/* Convert hardware address to XX:XX:XX:XX ... form. */
1308#if IS_ENABLED(CONFIG_AX25)
1309	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1310		ax2asc2((ax25_address *)n->ha, hbuffer);
1311	else {
1312#endif
1313	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1314		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1315		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1316		hbuffer[k++] = ':';
1317	}
1318	if (k != 0)
1319		--k;
1320	hbuffer[k] = 0;
1321#if IS_ENABLED(CONFIG_AX25)
1322	}
1323#endif
1324	sprintf(tbuf, "%pI4", n->primary_key);
1325	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1326		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1327	read_unlock(&n->lock);
1328}
1329
1330static void arp_format_pneigh_entry(struct seq_file *seq,
1331				    struct pneigh_entry *n)
1332{
1333	struct net_device *dev = n->dev;
1334	int hatype = dev ? dev->type : 0;
1335	char tbuf[16];
1336
1337	sprintf(tbuf, "%pI4", n->key);
1338	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1339		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1340		   dev ? dev->name : "*");
1341}
1342
1343static int arp_seq_show(struct seq_file *seq, void *v)
1344{
1345	if (v == SEQ_START_TOKEN) {
1346		seq_puts(seq, "IP address       HW type     Flags       "
1347			      "HW address            Mask     Device\n");
1348	} else {
1349		struct neigh_seq_state *state = seq->private;
1350
1351		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1352			arp_format_pneigh_entry(seq, v);
1353		else
1354			arp_format_neigh_entry(seq, v);
1355	}
1356
1357	return 0;
1358}
1359
1360static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1361{
1362	/* Don't want to confuse "arp -a" w/ magic entries,
1363	 * so we tell the generic iterator to skip NUD_NOARP.
1364	 */
1365	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1366}
1367
1368/* ------------------------------------------------------------------------ */
1369
1370static const struct seq_operations arp_seq_ops = {
1371	.start	= arp_seq_start,
1372	.next	= neigh_seq_next,
1373	.stop	= neigh_seq_stop,
1374	.show	= arp_seq_show,
1375};
1376
1377static int arp_seq_open(struct inode *inode, struct file *file)
1378{
1379	return seq_open_net(inode, file, &arp_seq_ops,
1380			    sizeof(struct neigh_seq_state));
1381}
1382
1383static const struct file_operations arp_seq_fops = {
1384	.owner		= THIS_MODULE,
1385	.open           = arp_seq_open,
1386	.read           = seq_read,
1387	.llseek         = seq_lseek,
1388	.release	= seq_release_net,
1389};
1390
1391
1392static int __net_init arp_net_init(struct net *net)
1393{
1394	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1395		return -ENOMEM;
1396	return 0;
1397}
1398
1399static void __net_exit arp_net_exit(struct net *net)
1400{
1401	remove_proc_entry("arp", net->proc_net);
1402}
1403
1404static struct pernet_operations arp_net_ops = {
1405	.init = arp_net_init,
1406	.exit = arp_net_exit,
1407};
1408
1409static int __init arp_proc_init(void)
1410{
1411	return register_pernet_subsys(&arp_net_ops);
1412}
1413
1414#else /* CONFIG_PROC_FS */
1415
1416static int __init arp_proc_init(void)
1417{
1418	return 0;
1419}
1420
1421#endif /* CONFIG_PROC_FS */
v3.5.6
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 
 
 116
 117#include <linux/uaccess.h>
 118
 119#include <linux/netfilter_arp.h>
 120
 121/*
 122 *	Interface to generic neighbour cache.
 123 */
 124static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 
 125static int arp_constructor(struct neighbour *neigh);
 126static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 127static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 128static void parp_redo(struct sk_buff *skb);
 129
 130static const struct neigh_ops arp_generic_ops = {
 131	.family =		AF_INET,
 132	.solicit =		arp_solicit,
 133	.error_report =		arp_error_report,
 134	.output =		neigh_resolve_output,
 135	.connected_output =	neigh_connected_output,
 136};
 137
 138static const struct neigh_ops arp_hh_ops = {
 139	.family =		AF_INET,
 140	.solicit =		arp_solicit,
 141	.error_report =		arp_error_report,
 142	.output =		neigh_resolve_output,
 143	.connected_output =	neigh_resolve_output,
 144};
 145
 146static const struct neigh_ops arp_direct_ops = {
 147	.family =		AF_INET,
 148	.output =		neigh_direct_output,
 149	.connected_output =	neigh_direct_output,
 150};
 151
 152static const struct neigh_ops arp_broken_ops = {
 153	.family =		AF_INET,
 154	.solicit =		arp_solicit,
 155	.error_report =		arp_error_report,
 156	.output =		neigh_compat_output,
 157	.connected_output =	neigh_compat_output,
 158};
 159
 160struct neigh_table arp_tbl = {
 161	.family		= AF_INET,
 162	.key_len	= 4,
 
 163	.hash		= arp_hash,
 
 164	.constructor	= arp_constructor,
 165	.proxy_redo	= parp_redo,
 166	.id		= "arp_cache",
 167	.parms		= {
 168		.tbl			= &arp_tbl,
 169		.base_reachable_time	= 30 * HZ,
 170		.retrans_time		= 1 * HZ,
 171		.gc_staletime		= 60 * HZ,
 172		.reachable_time		= 30 * HZ,
 173		.delay_probe_time	= 5 * HZ,
 174		.queue_len_bytes	= 64*1024,
 175		.ucast_probes		= 3,
 176		.mcast_probes		= 3,
 177		.anycast_delay		= 1 * HZ,
 178		.proxy_delay		= (8 * HZ) / 10,
 179		.proxy_qlen		= 64,
 180		.locktime		= 1 * HZ,
 
 
 
 
 
 181	},
 182	.gc_interval	= 30 * HZ,
 183	.gc_thresh1	= 128,
 184	.gc_thresh2	= 512,
 185	.gc_thresh3	= 1024,
 186};
 187EXPORT_SYMBOL(arp_tbl);
 188
 189int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 190{
 191	switch (dev->type) {
 192	case ARPHRD_ETHER:
 193	case ARPHRD_FDDI:
 194	case ARPHRD_IEEE802:
 195		ip_eth_mc_map(addr, haddr);
 196		return 0;
 197	case ARPHRD_INFINIBAND:
 198		ip_ib_mc_map(addr, dev->broadcast, haddr);
 199		return 0;
 200	case ARPHRD_IPGRE:
 201		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 202		return 0;
 203	default:
 204		if (dir) {
 205			memcpy(haddr, dev->broadcast, dev->addr_len);
 206			return 0;
 207		}
 208	}
 209	return -EINVAL;
 210}
 211
 212
 213static u32 arp_hash(const void *pkey,
 214		    const struct net_device *dev,
 215		    __u32 *hash_rnd)
 216{
 217	return arp_hashfn(*(u32 *)pkey, dev, *hash_rnd);
 
 
 
 
 
 218}
 219
 220static int arp_constructor(struct neighbour *neigh)
 221{
 222	__be32 addr = *(__be32 *)neigh->primary_key;
 223	struct net_device *dev = neigh->dev;
 224	struct in_device *in_dev;
 225	struct neigh_parms *parms;
 226
 227	rcu_read_lock();
 228	in_dev = __in_dev_get_rcu(dev);
 229	if (in_dev == NULL) {
 230		rcu_read_unlock();
 231		return -EINVAL;
 232	}
 233
 234	neigh->type = inet_addr_type(dev_net(dev), addr);
 235
 236	parms = in_dev->arp_parms;
 237	__neigh_parms_put(neigh->parms);
 238	neigh->parms = neigh_parms_clone(parms);
 239	rcu_read_unlock();
 240
 241	if (!dev->header_ops) {
 242		neigh->nud_state = NUD_NOARP;
 243		neigh->ops = &arp_direct_ops;
 244		neigh->output = neigh_direct_output;
 245	} else {
 246		/* Good devices (checked by reading texts, but only Ethernet is
 247		   tested)
 248
 249		   ARPHRD_ETHER: (ethernet, apfddi)
 250		   ARPHRD_FDDI: (fddi)
 251		   ARPHRD_IEEE802: (tr)
 252		   ARPHRD_METRICOM: (strip)
 253		   ARPHRD_ARCNET:
 254		   etc. etc. etc.
 255
 256		   ARPHRD_IPDDP will also work, if author repairs it.
 257		   I did not it, because this driver does not work even
 258		   in old paradigm.
 259		 */
 260
 261#if 1
 262		/* So... these "amateur" devices are hopeless.
 263		   The only thing, that I can say now:
 264		   It is very sad that we need to keep ugly obsolete
 265		   code to make them happy.
 266
 267		   They should be moved to more reasonable state, now
 268		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 269		   Besides that, they are sort of out of date
 270		   (a lot of redundant clones/copies, useless in 2.1),
 271		   I wonder why people believe that they work.
 272		 */
 273		switch (dev->type) {
 274		default:
 275			break;
 276		case ARPHRD_ROSE:
 277#if IS_ENABLED(CONFIG_AX25)
 278		case ARPHRD_AX25:
 279#if IS_ENABLED(CONFIG_NETROM)
 280		case ARPHRD_NETROM:
 281#endif
 282			neigh->ops = &arp_broken_ops;
 283			neigh->output = neigh->ops->output;
 284			return 0;
 285#else
 286			break;
 287#endif
 288		}
 289#endif
 290		if (neigh->type == RTN_MULTICAST) {
 291			neigh->nud_state = NUD_NOARP;
 292			arp_mc_map(addr, neigh->ha, dev, 1);
 293		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 294			neigh->nud_state = NUD_NOARP;
 295			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 296		} else if (neigh->type == RTN_BROADCAST ||
 297			   (dev->flags & IFF_POINTOPOINT)) {
 298			neigh->nud_state = NUD_NOARP;
 299			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 300		}
 301
 302		if (dev->header_ops->cache)
 303			neigh->ops = &arp_hh_ops;
 304		else
 305			neigh->ops = &arp_generic_ops;
 306
 307		if (neigh->nud_state & NUD_VALID)
 308			neigh->output = neigh->ops->connected_output;
 309		else
 310			neigh->output = neigh->ops->output;
 311	}
 312	return 0;
 313}
 314
 315static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 316{
 317	dst_link_failure(skb);
 318	kfree_skb(skb);
 319}
 320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 322{
 323	__be32 saddr = 0;
 324	u8  *dst_ha = NULL;
 325	struct net_device *dev = neigh->dev;
 326	__be32 target = *(__be32 *)neigh->primary_key;
 327	int probes = atomic_read(&neigh->probes);
 328	struct in_device *in_dev;
 
 329
 330	rcu_read_lock();
 331	in_dev = __in_dev_get_rcu(dev);
 332	if (!in_dev) {
 333		rcu_read_unlock();
 334		return;
 335	}
 336	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 337	default:
 338	case 0:		/* By default announce any local IP */
 339		if (skb && inet_addr_type(dev_net(dev),
 340					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 341			saddr = ip_hdr(skb)->saddr;
 342		break;
 343	case 1:		/* Restrict announcements of saddr in same subnet */
 344		if (!skb)
 345			break;
 346		saddr = ip_hdr(skb)->saddr;
 347		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 
 348			/* saddr should be known to target */
 349			if (inet_addr_onlink(in_dev, target, saddr))
 350				break;
 351		}
 352		saddr = 0;
 353		break;
 354	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 355		break;
 356	}
 357	rcu_read_unlock();
 358
 359	if (!saddr)
 360		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 361
 362	probes -= neigh->parms->ucast_probes;
 363	if (probes < 0) {
 364		if (!(neigh->nud_state & NUD_VALID))
 365			pr_debug("trying to ucast probe in NUD_INVALID\n");
 366		dst_ha = neigh->ha;
 367		read_lock_bh(&neigh->lock);
 368	} else {
 369		probes -= neigh->parms->app_probes;
 370		if (probes < 0) {
 371#ifdef CONFIG_ARPD
 372			neigh_app_ns(neigh);
 373#endif
 374			return;
 375		}
 376	}
 377
 378	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 379		 dst_ha, dev->dev_addr, NULL);
 380	if (dst_ha)
 381		read_unlock_bh(&neigh->lock);
 382}
 383
 384static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 385{
 
 386	int scope;
 387
 388	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 389	case 0:	/* Reply, the tip is already validated */
 390		return 0;
 391	case 1:	/* Reply only if tip is configured on the incoming interface */
 392		sip = 0;
 393		scope = RT_SCOPE_HOST;
 394		break;
 395	case 2:	/*
 396		 * Reply only if tip is configured on the incoming interface
 397		 * and is in same subnet as sip
 398		 */
 399		scope = RT_SCOPE_HOST;
 400		break;
 401	case 3:	/* Do not reply for scope host addresses */
 402		sip = 0;
 403		scope = RT_SCOPE_LINK;
 
 404		break;
 405	case 4:	/* Reserved */
 406	case 5:
 407	case 6:
 408	case 7:
 409		return 0;
 410	case 8:	/* Do not reply */
 411		return 1;
 412	default:
 413		return 0;
 414	}
 415	return !inet_confirm_addr(in_dev, sip, tip, scope);
 416}
 417
 418static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 419{
 420	struct rtable *rt;
 421	int flag = 0;
 422	/*unsigned long now; */
 423	struct net *net = dev_net(dev);
 424
 425	rt = ip_route_output(net, sip, tip, 0, 0);
 426	if (IS_ERR(rt))
 427		return 1;
 428	if (rt->dst.dev != dev) {
 429		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 430		flag = 1;
 431	}
 432	ip_rt_put(rt);
 433	return flag;
 434}
 435
 436/* OBSOLETE FUNCTIONS */
 437
 438/*
 439 *	Find an arp mapping in the cache. If not found, post a request.
 440 *
 441 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 442 *	even if it exists. It is supposed that skb->dev was mangled
 443 *	by a virtual device (eql, shaper). Nobody but broken devices
 444 *	is allowed to use this function, it is scheduled to be removed. --ANK
 445 */
 446
 447static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 448			      __be32 paddr, struct net_device *dev)
 449{
 450	switch (addr_hint) {
 451	case RTN_LOCAL:
 452		pr_debug("arp called for own IP address\n");
 453		memcpy(haddr, dev->dev_addr, dev->addr_len);
 454		return 1;
 455	case RTN_MULTICAST:
 456		arp_mc_map(paddr, haddr, dev, 1);
 457		return 1;
 458	case RTN_BROADCAST:
 459		memcpy(haddr, dev->broadcast, dev->addr_len);
 460		return 1;
 461	}
 462	return 0;
 463}
 464
 465
 466int arp_find(unsigned char *haddr, struct sk_buff *skb)
 467{
 468	struct net_device *dev = skb->dev;
 469	__be32 paddr;
 470	struct neighbour *n;
 471
 472	if (!skb_dst(skb)) {
 473		pr_debug("arp_find is called with dst==NULL\n");
 474		kfree_skb(skb);
 475		return 1;
 476	}
 477
 478	paddr = skb_rtable(skb)->rt_gateway;
 479
 480	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 481			       paddr, dev))
 482		return 0;
 483
 484	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 485
 486	if (n) {
 487		n->used = jiffies;
 488		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 489			neigh_ha_snapshot(haddr, n, dev);
 490			neigh_release(n);
 491			return 0;
 492		}
 493		neigh_release(n);
 494	} else
 495		kfree_skb(skb);
 496	return 1;
 497}
 498EXPORT_SYMBOL(arp_find);
 499
 500/* END OF OBSOLETE FUNCTIONS */
 501
 502/*
 503 * Check if we can use proxy ARP for this path
 504 */
 505static inline int arp_fwd_proxy(struct in_device *in_dev,
 506				struct net_device *dev,	struct rtable *rt)
 507{
 508	struct in_device *out_dev;
 509	int imi, omi = -1;
 510
 511	if (rt->dst.dev == dev)
 512		return 0;
 513
 514	if (!IN_DEV_PROXY_ARP(in_dev))
 515		return 0;
 516	imi = IN_DEV_MEDIUM_ID(in_dev);
 517	if (imi == 0)
 518		return 1;
 519	if (imi == -1)
 520		return 0;
 521
 522	/* place to check for proxy_arp for routes */
 523
 524	out_dev = __in_dev_get_rcu(rt->dst.dev);
 525	if (out_dev)
 526		omi = IN_DEV_MEDIUM_ID(out_dev);
 527
 528	return omi != imi && omi != -1;
 529}
 530
 531/*
 532 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 533 *
 534 * RFC3069 supports proxy arp replies back to the same interface.  This
 535 * is done to support (ethernet) switch features, like RFC 3069, where
 536 * the individual ports are not allowed to communicate with each
 537 * other, BUT they are allowed to talk to the upstream router.  As
 538 * described in RFC 3069, it is possible to allow these hosts to
 539 * communicate through the upstream router, by proxy_arp'ing.
 540 *
 541 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 542 *
 543 *  This technology is known by different names:
 544 *    In RFC 3069 it is called VLAN Aggregation.
 545 *    Cisco and Allied Telesyn call it Private VLAN.
 546 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 547 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 548 *
 549 */
 550static inline int arp_fwd_pvlan(struct in_device *in_dev,
 551				struct net_device *dev,	struct rtable *rt,
 552				__be32 sip, __be32 tip)
 553{
 554	/* Private VLAN is only concerned about the same ethernet segment */
 555	if (rt->dst.dev != dev)
 556		return 0;
 557
 558	/* Don't reply on self probes (often done by windowz boxes)*/
 559	if (sip == tip)
 560		return 0;
 561
 562	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 563		return 1;
 564	else
 565		return 0;
 566}
 567
 568/*
 569 *	Interface to link layer: send routine and receive handler.
 570 */
 571
 572/*
 573 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 574 *	message.
 575 */
 576struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 577			   struct net_device *dev, __be32 src_ip,
 578			   const unsigned char *dest_hw,
 579			   const unsigned char *src_hw,
 580			   const unsigned char *target_hw)
 581{
 582	struct sk_buff *skb;
 583	struct arphdr *arp;
 584	unsigned char *arp_ptr;
 585	int hlen = LL_RESERVED_SPACE(dev);
 586	int tlen = dev->needed_tailroom;
 587
 588	/*
 589	 *	Allocate a buffer
 590	 */
 591
 592	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 593	if (skb == NULL)
 594		return NULL;
 595
 596	skb_reserve(skb, hlen);
 597	skb_reset_network_header(skb);
 598	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 599	skb->dev = dev;
 600	skb->protocol = htons(ETH_P_ARP);
 601	if (src_hw == NULL)
 602		src_hw = dev->dev_addr;
 603	if (dest_hw == NULL)
 604		dest_hw = dev->broadcast;
 605
 606	/*
 607	 *	Fill the device header for the ARP frame
 608	 */
 609	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 610		goto out;
 611
 612	/*
 613	 * Fill out the arp protocol part.
 614	 *
 615	 * The arp hardware type should match the device type, except for FDDI,
 616	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 617	 */
 618	/*
 619	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 620	 *	DIX code for the protocol. Make these device structure fields.
 621	 */
 622	switch (dev->type) {
 623	default:
 624		arp->ar_hrd = htons(dev->type);
 625		arp->ar_pro = htons(ETH_P_IP);
 626		break;
 627
 628#if IS_ENABLED(CONFIG_AX25)
 629	case ARPHRD_AX25:
 630		arp->ar_hrd = htons(ARPHRD_AX25);
 631		arp->ar_pro = htons(AX25_P_IP);
 632		break;
 633
 634#if IS_ENABLED(CONFIG_NETROM)
 635	case ARPHRD_NETROM:
 636		arp->ar_hrd = htons(ARPHRD_NETROM);
 637		arp->ar_pro = htons(AX25_P_IP);
 638		break;
 639#endif
 640#endif
 641
 642#if IS_ENABLED(CONFIG_FDDI)
 643	case ARPHRD_FDDI:
 644		arp->ar_hrd = htons(ARPHRD_ETHER);
 645		arp->ar_pro = htons(ETH_P_IP);
 646		break;
 647#endif
 648	}
 649
 650	arp->ar_hln = dev->addr_len;
 651	arp->ar_pln = 4;
 652	arp->ar_op = htons(type);
 653
 654	arp_ptr = (unsigned char *)(arp + 1);
 655
 656	memcpy(arp_ptr, src_hw, dev->addr_len);
 657	arp_ptr += dev->addr_len;
 658	memcpy(arp_ptr, &src_ip, 4);
 659	arp_ptr += 4;
 660	if (target_hw != NULL)
 661		memcpy(arp_ptr, target_hw, dev->addr_len);
 662	else
 663		memset(arp_ptr, 0, dev->addr_len);
 664	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 665	memcpy(arp_ptr, &dest_ip, 4);
 666
 667	return skb;
 668
 669out:
 670	kfree_skb(skb);
 671	return NULL;
 672}
 673EXPORT_SYMBOL(arp_create);
 674
 
 
 
 
 
 675/*
 676 *	Send an arp packet.
 677 */
 678void arp_xmit(struct sk_buff *skb)
 679{
 680	/* Send it off, maybe filter it using firewalling first.  */
 681	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 
 
 682}
 683EXPORT_SYMBOL(arp_xmit);
 684
 685/*
 686 *	Create and send an arp packet.
 687 */
 688void arp_send(int type, int ptype, __be32 dest_ip,
 689	      struct net_device *dev, __be32 src_ip,
 690	      const unsigned char *dest_hw, const unsigned char *src_hw,
 691	      const unsigned char *target_hw)
 692{
 693	struct sk_buff *skb;
 694
 695	/*
 696	 *	No arp on this interface.
 697	 */
 698
 699	if (dev->flags&IFF_NOARP)
 700		return;
 701
 702	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 703			 dest_hw, src_hw, target_hw);
 704	if (skb == NULL)
 705		return;
 706
 707	arp_xmit(skb);
 708}
 709EXPORT_SYMBOL(arp_send);
 710
 711/*
 712 *	Process an arp request.
 713 */
 714
 715static int arp_process(struct sk_buff *skb)
 716{
 717	struct net_device *dev = skb->dev;
 718	struct in_device *in_dev = __in_dev_get_rcu(dev);
 719	struct arphdr *arp;
 720	unsigned char *arp_ptr;
 721	struct rtable *rt;
 722	unsigned char *sha;
 723	__be32 sip, tip;
 724	u16 dev_type = dev->type;
 725	int addr_type;
 726	struct neighbour *n;
 727	struct net *net = dev_net(dev);
 
 728
 729	/* arp_rcv below verifies the ARP header and verifies the device
 730	 * is ARP'able.
 731	 */
 732
 733	if (in_dev == NULL)
 734		goto out;
 735
 736	arp = arp_hdr(skb);
 737
 738	switch (dev_type) {
 739	default:
 740		if (arp->ar_pro != htons(ETH_P_IP) ||
 741		    htons(dev_type) != arp->ar_hrd)
 742			goto out;
 743		break;
 744	case ARPHRD_ETHER:
 745	case ARPHRD_FDDI:
 746	case ARPHRD_IEEE802:
 747		/*
 748		 * ETHERNET, and Fibre Channel (which are IEEE 802
 749		 * devices, according to RFC 2625) devices will accept ARP
 750		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 751		 * This is the case also of FDDI, where the RFC 1390 says that
 752		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 753		 * however, to be more robust, we'll accept both 1 (Ethernet)
 754		 * or 6 (IEEE 802.2)
 755		 */
 756		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 757		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 758		    arp->ar_pro != htons(ETH_P_IP))
 759			goto out;
 760		break;
 761	case ARPHRD_AX25:
 762		if (arp->ar_pro != htons(AX25_P_IP) ||
 763		    arp->ar_hrd != htons(ARPHRD_AX25))
 764			goto out;
 765		break;
 766	case ARPHRD_NETROM:
 767		if (arp->ar_pro != htons(AX25_P_IP) ||
 768		    arp->ar_hrd != htons(ARPHRD_NETROM))
 769			goto out;
 770		break;
 771	}
 772
 773	/* Understand only these message types */
 774
 775	if (arp->ar_op != htons(ARPOP_REPLY) &&
 776	    arp->ar_op != htons(ARPOP_REQUEST))
 777		goto out;
 778
 779/*
 780 *	Extract fields
 781 */
 782	arp_ptr = (unsigned char *)(arp + 1);
 783	sha	= arp_ptr;
 784	arp_ptr += dev->addr_len;
 785	memcpy(&sip, arp_ptr, 4);
 786	arp_ptr += 4;
 787	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 788	memcpy(&tip, arp_ptr, 4);
 789/*
 790 *	Check for bad requests for 127.x.x.x and requests for multicast
 791 *	addresses.  If this is one such, delete it.
 792 */
 793	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
 794		goto out;
 
 
 
 
 
 
 
 
 
 795
 796/*
 797 *     Special case: We must set Frame Relay source Q.922 address
 798 */
 799	if (dev_type == ARPHRD_DLCI)
 800		sha = dev->broadcast;
 801
 802/*
 803 *  Process entry.  The idea here is we want to send a reply if it is a
 804 *  request for us or if it is a request for someone else that we hold
 805 *  a proxy for.  We want to add an entry to our cache if it is a reply
 806 *  to us or if it is a request for our address.
 807 *  (The assumption for this last is that if someone is requesting our
 808 *  address, they are probably intending to talk to us, so it saves time
 809 *  if we cache their address.  Their address is also probably not in
 810 *  our cache, since ours is not in their cache.)
 811 *
 812 *  Putting this another way, we only care about replies if they are to
 813 *  us, in which case we add them to the cache.  For requests, we care
 814 *  about those for us and those for our proxies.  We reply to both,
 815 *  and in the case of requests for us we add the requester to the arp
 816 *  cache.
 817 */
 818
 
 
 
 
 
 819	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 820	if (sip == 0) {
 821		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 822		    inet_addr_type(net, tip) == RTN_LOCAL &&
 823		    !arp_ignore(in_dev, sip, tip))
 824			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 825				 dev->dev_addr, sha);
 826		goto out;
 827	}
 828
 829	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 830	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 831
 832		rt = skb_rtable(skb);
 833		addr_type = rt->rt_type;
 834
 835		if (addr_type == RTN_LOCAL) {
 836			int dont_send;
 837
 838			dont_send = arp_ignore(in_dev, sip, tip);
 839			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 840				dont_send = arp_filter(sip, tip, dev);
 841			if (!dont_send) {
 842				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 843				if (n) {
 844					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 845						 dev, tip, sha, dev->dev_addr,
 846						 sha);
 
 847					neigh_release(n);
 848				}
 849			}
 850			goto out;
 851		} else if (IN_DEV_FORWARD(in_dev)) {
 852			if (addr_type == RTN_UNICAST  &&
 853			    (arp_fwd_proxy(in_dev, dev, rt) ||
 854			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 855			     (rt->dst.dev != dev &&
 856			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 857				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 858				if (n)
 859					neigh_release(n);
 860
 861				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 862				    skb->pkt_type == PACKET_HOST ||
 863				    in_dev->arp_parms->proxy_delay == 0) {
 864					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 865						 dev, tip, sha, dev->dev_addr,
 866						 sha);
 
 867				} else {
 868					pneigh_enqueue(&arp_tbl,
 869						       in_dev->arp_parms, skb);
 870					return 0;
 871				}
 872				goto out;
 873			}
 874		}
 875	}
 876
 877	/* Update our ARP tables */
 878
 879	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 880
 881	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 
 
 882		/* Unsolicited ARP is not accepted by default.
 883		   It is possible, that this option should be enabled for some
 884		   devices (strip is candidate)
 885		 */
 886		if (n == NULL &&
 887		    (arp->ar_op == htons(ARPOP_REPLY) ||
 888		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
 889		    inet_addr_type(net, sip) == RTN_UNICAST)
 
 
 890			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 891	}
 892
 893	if (n) {
 894		int state = NUD_REACHABLE;
 895		int override;
 896
 897		/* If several different ARP replies follows back-to-back,
 898		   use the FIRST one. It is possible, if several proxy
 899		   agents are active. Taking the first reply prevents
 900		   arp trashing and chooses the fastest router.
 901		 */
 902		override = time_after(jiffies, n->updated + n->parms->locktime);
 
 
 
 903
 904		/* Broadcast replies and request packets
 905		   do not assert neighbour reachability.
 906		 */
 907		if (arp->ar_op != htons(ARPOP_REPLY) ||
 908		    skb->pkt_type != PACKET_HOST)
 909			state = NUD_STALE;
 910		neigh_update(n, sha, state,
 911			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 912		neigh_release(n);
 913	}
 914
 915out:
 916	consume_skb(skb);
 917	return 0;
 
 
 
 
 
 
 
 918}
 919
 920static void parp_redo(struct sk_buff *skb)
 921{
 922	arp_process(skb);
 923}
 924
 925
 926/*
 927 *	Receive an arp request from the device layer.
 928 */
 929
 930static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 931		   struct packet_type *pt, struct net_device *orig_dev)
 932{
 933	struct arphdr *arp;
 
 
 
 
 
 
 
 
 
 
 934
 935	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 936	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 937		goto freeskb;
 938
 939	arp = arp_hdr(skb);
 940	if (arp->ar_hln != dev->addr_len ||
 941	    dev->flags & IFF_NOARP ||
 942	    skb->pkt_type == PACKET_OTHERHOST ||
 943	    skb->pkt_type == PACKET_LOOPBACK ||
 944	    arp->ar_pln != 4)
 945		goto freeskb;
 946
 947	skb = skb_share_check(skb, GFP_ATOMIC);
 948	if (skb == NULL)
 949		goto out_of_mem;
 950
 951	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 952
 953	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 
 
 954
 
 
 
 955freeskb:
 956	kfree_skb(skb);
 957out_of_mem:
 958	return 0;
 959}
 960
 961/*
 962 *	User level interface (ioctl)
 963 */
 964
 965/*
 966 *	Set (create) an ARP cache entry.
 967 */
 968
 969static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 970{
 971	if (dev == NULL) {
 972		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 973		return 0;
 974	}
 975	if (__in_dev_get_rtnl(dev)) {
 976		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 977		return 0;
 978	}
 979	return -ENXIO;
 980}
 981
 982static int arp_req_set_public(struct net *net, struct arpreq *r,
 983		struct net_device *dev)
 984{
 985	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 986	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
 987
 988	if (mask && mask != htonl(0xFFFFFFFF))
 989		return -EINVAL;
 990	if (!dev && (r->arp_flags & ATF_COM)) {
 991		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
 992				      r->arp_ha.sa_data);
 993		if (!dev)
 994			return -ENODEV;
 995	}
 996	if (mask) {
 997		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
 998			return -ENOBUFS;
 999		return 0;
1000	}
1001
1002	return arp_req_set_proxy(net, dev, 1);
1003}
1004
1005static int arp_req_set(struct net *net, struct arpreq *r,
1006		       struct net_device *dev)
1007{
1008	__be32 ip;
1009	struct neighbour *neigh;
1010	int err;
1011
1012	if (r->arp_flags & ATF_PUBL)
1013		return arp_req_set_public(net, r, dev);
1014
1015	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1016	if (r->arp_flags & ATF_PERM)
1017		r->arp_flags |= ATF_COM;
1018	if (dev == NULL) {
1019		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1020
1021		if (IS_ERR(rt))
1022			return PTR_ERR(rt);
1023		dev = rt->dst.dev;
1024		ip_rt_put(rt);
1025		if (!dev)
1026			return -EINVAL;
1027	}
1028	switch (dev->type) {
1029#if IS_ENABLED(CONFIG_FDDI)
1030	case ARPHRD_FDDI:
1031		/*
1032		 * According to RFC 1390, FDDI devices should accept ARP
1033		 * hardware types of 1 (Ethernet).  However, to be more
1034		 * robust, we'll accept hardware types of either 1 (Ethernet)
1035		 * or 6 (IEEE 802.2).
1036		 */
1037		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1038		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1039		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1040			return -EINVAL;
1041		break;
1042#endif
1043	default:
1044		if (r->arp_ha.sa_family != dev->type)
1045			return -EINVAL;
1046		break;
1047	}
1048
1049	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1050	err = PTR_ERR(neigh);
1051	if (!IS_ERR(neigh)) {
1052		unsigned int state = NUD_STALE;
1053		if (r->arp_flags & ATF_PERM)
1054			state = NUD_PERMANENT;
1055		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1056				   r->arp_ha.sa_data : NULL, state,
1057				   NEIGH_UPDATE_F_OVERRIDE |
1058				   NEIGH_UPDATE_F_ADMIN);
1059		neigh_release(neigh);
1060	}
1061	return err;
1062}
1063
1064static unsigned int arp_state_to_flags(struct neighbour *neigh)
1065{
1066	if (neigh->nud_state&NUD_PERMANENT)
1067		return ATF_PERM | ATF_COM;
1068	else if (neigh->nud_state&NUD_VALID)
1069		return ATF_COM;
1070	else
1071		return 0;
1072}
1073
1074/*
1075 *	Get an ARP cache entry.
1076 */
1077
1078static int arp_req_get(struct arpreq *r, struct net_device *dev)
1079{
1080	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1081	struct neighbour *neigh;
1082	int err = -ENXIO;
1083
1084	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1085	if (neigh) {
1086		read_lock_bh(&neigh->lock);
1087		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1088		r->arp_flags = arp_state_to_flags(neigh);
1089		read_unlock_bh(&neigh->lock);
1090		r->arp_ha.sa_family = dev->type;
1091		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
 
 
 
1092		neigh_release(neigh);
1093		err = 0;
1094	}
1095	return err;
1096}
1097
1098int arp_invalidate(struct net_device *dev, __be32 ip)
1099{
1100	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1101	int err = -ENXIO;
1102
1103	if (neigh) {
1104		if (neigh->nud_state & ~NUD_NOARP)
1105			err = neigh_update(neigh, NULL, NUD_FAILED,
1106					   NEIGH_UPDATE_F_OVERRIDE|
1107					   NEIGH_UPDATE_F_ADMIN);
1108		neigh_release(neigh);
1109	}
1110
1111	return err;
1112}
1113EXPORT_SYMBOL(arp_invalidate);
1114
1115static int arp_req_delete_public(struct net *net, struct arpreq *r,
1116		struct net_device *dev)
1117{
1118	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1119	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1120
1121	if (mask == htonl(0xFFFFFFFF))
1122		return pneigh_delete(&arp_tbl, net, &ip, dev);
1123
1124	if (mask)
1125		return -EINVAL;
1126
1127	return arp_req_set_proxy(net, dev, 0);
1128}
1129
1130static int arp_req_delete(struct net *net, struct arpreq *r,
1131			  struct net_device *dev)
1132{
1133	__be32 ip;
1134
1135	if (r->arp_flags & ATF_PUBL)
1136		return arp_req_delete_public(net, r, dev);
1137
1138	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1139	if (dev == NULL) {
1140		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1141		if (IS_ERR(rt))
1142			return PTR_ERR(rt);
1143		dev = rt->dst.dev;
1144		ip_rt_put(rt);
1145		if (!dev)
1146			return -EINVAL;
1147	}
1148	return arp_invalidate(dev, ip);
1149}
1150
1151/*
1152 *	Handle an ARP layer I/O control request.
1153 */
1154
1155int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1156{
1157	int err;
1158	struct arpreq r;
1159	struct net_device *dev = NULL;
1160
1161	switch (cmd) {
1162	case SIOCDARP:
1163	case SIOCSARP:
1164		if (!capable(CAP_NET_ADMIN))
1165			return -EPERM;
1166	case SIOCGARP:
1167		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1168		if (err)
1169			return -EFAULT;
1170		break;
1171	default:
1172		return -EINVAL;
1173	}
1174
1175	if (r.arp_pa.sa_family != AF_INET)
1176		return -EPFNOSUPPORT;
1177
1178	if (!(r.arp_flags & ATF_PUBL) &&
1179	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1180		return -EINVAL;
1181	if (!(r.arp_flags & ATF_NETMASK))
1182		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1183							   htonl(0xFFFFFFFFUL);
1184	rtnl_lock();
1185	if (r.arp_dev[0]) {
1186		err = -ENODEV;
1187		dev = __dev_get_by_name(net, r.arp_dev);
1188		if (dev == NULL)
1189			goto out;
1190
1191		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1192		if (!r.arp_ha.sa_family)
1193			r.arp_ha.sa_family = dev->type;
1194		err = -EINVAL;
1195		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1196			goto out;
1197	} else if (cmd == SIOCGARP) {
1198		err = -ENODEV;
1199		goto out;
1200	}
1201
1202	switch (cmd) {
1203	case SIOCDARP:
1204		err = arp_req_delete(net, &r, dev);
1205		break;
1206	case SIOCSARP:
1207		err = arp_req_set(net, &r, dev);
1208		break;
1209	case SIOCGARP:
1210		err = arp_req_get(&r, dev);
1211		break;
1212	}
1213out:
1214	rtnl_unlock();
1215	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1216		err = -EFAULT;
1217	return err;
1218}
1219
1220static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1221			    void *ptr)
1222{
1223	struct net_device *dev = ptr;
 
1224
1225	switch (event) {
1226	case NETDEV_CHANGEADDR:
1227		neigh_changeaddr(&arp_tbl, dev);
1228		rt_cache_flush(dev_net(dev), 0);
 
 
 
 
 
1229		break;
1230	default:
1231		break;
1232	}
1233
1234	return NOTIFY_DONE;
1235}
1236
1237static struct notifier_block arp_netdev_notifier = {
1238	.notifier_call = arp_netdev_event,
1239};
1240
1241/* Note, that it is not on notifier chain.
1242   It is necessary, that this routine was called after route cache will be
1243   flushed.
1244 */
1245void arp_ifdown(struct net_device *dev)
1246{
1247	neigh_ifdown(&arp_tbl, dev);
1248}
1249
1250
1251/*
1252 *	Called once on startup.
1253 */
1254
1255static struct packet_type arp_packet_type __read_mostly = {
1256	.type =	cpu_to_be16(ETH_P_ARP),
1257	.func =	arp_rcv,
1258};
1259
1260static int arp_proc_init(void);
1261
1262void __init arp_init(void)
1263{
1264	neigh_table_init(&arp_tbl);
1265
1266	dev_add_pack(&arp_packet_type);
1267	arp_proc_init();
1268#ifdef CONFIG_SYSCTL
1269	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1270#endif
1271	register_netdevice_notifier(&arp_netdev_notifier);
1272}
1273
1274#ifdef CONFIG_PROC_FS
1275#if IS_ENABLED(CONFIG_AX25)
1276
1277/* ------------------------------------------------------------------------ */
1278/*
1279 *	ax25 -> ASCII conversion
1280 */
1281static char *ax2asc2(ax25_address *a, char *buf)
1282{
1283	char c, *s;
1284	int n;
1285
1286	for (n = 0, s = buf; n < 6; n++) {
1287		c = (a->ax25_call[n] >> 1) & 0x7F;
1288
1289		if (c != ' ')
1290			*s++ = c;
1291	}
1292
1293	*s++ = '-';
1294	n = (a->ax25_call[6] >> 1) & 0x0F;
1295	if (n > 9) {
1296		*s++ = '1';
1297		n -= 10;
1298	}
1299
1300	*s++ = n + '0';
1301	*s++ = '\0';
1302
1303	if (*buf == '\0' || *buf == '-')
1304		return "*";
1305
1306	return buf;
1307}
1308#endif /* CONFIG_AX25 */
1309
1310#define HBUFFERLEN 30
1311
1312static void arp_format_neigh_entry(struct seq_file *seq,
1313				   struct neighbour *n)
1314{
1315	char hbuffer[HBUFFERLEN];
1316	int k, j;
1317	char tbuf[16];
1318	struct net_device *dev = n->dev;
1319	int hatype = dev->type;
1320
1321	read_lock(&n->lock);
1322	/* Convert hardware address to XX:XX:XX:XX ... form. */
1323#if IS_ENABLED(CONFIG_AX25)
1324	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1325		ax2asc2((ax25_address *)n->ha, hbuffer);
1326	else {
1327#endif
1328	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1329		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1330		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1331		hbuffer[k++] = ':';
1332	}
1333	if (k != 0)
1334		--k;
1335	hbuffer[k] = 0;
1336#if IS_ENABLED(CONFIG_AX25)
1337	}
1338#endif
1339	sprintf(tbuf, "%pI4", n->primary_key);
1340	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1341		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1342	read_unlock(&n->lock);
1343}
1344
1345static void arp_format_pneigh_entry(struct seq_file *seq,
1346				    struct pneigh_entry *n)
1347{
1348	struct net_device *dev = n->dev;
1349	int hatype = dev ? dev->type : 0;
1350	char tbuf[16];
1351
1352	sprintf(tbuf, "%pI4", n->key);
1353	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1354		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1355		   dev ? dev->name : "*");
1356}
1357
1358static int arp_seq_show(struct seq_file *seq, void *v)
1359{
1360	if (v == SEQ_START_TOKEN) {
1361		seq_puts(seq, "IP address       HW type     Flags       "
1362			      "HW address            Mask     Device\n");
1363	} else {
1364		struct neigh_seq_state *state = seq->private;
1365
1366		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1367			arp_format_pneigh_entry(seq, v);
1368		else
1369			arp_format_neigh_entry(seq, v);
1370	}
1371
1372	return 0;
1373}
1374
1375static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1376{
1377	/* Don't want to confuse "arp -a" w/ magic entries,
1378	 * so we tell the generic iterator to skip NUD_NOARP.
1379	 */
1380	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1381}
1382
1383/* ------------------------------------------------------------------------ */
1384
1385static const struct seq_operations arp_seq_ops = {
1386	.start	= arp_seq_start,
1387	.next	= neigh_seq_next,
1388	.stop	= neigh_seq_stop,
1389	.show	= arp_seq_show,
1390};
1391
1392static int arp_seq_open(struct inode *inode, struct file *file)
1393{
1394	return seq_open_net(inode, file, &arp_seq_ops,
1395			    sizeof(struct neigh_seq_state));
1396}
1397
1398static const struct file_operations arp_seq_fops = {
1399	.owner		= THIS_MODULE,
1400	.open           = arp_seq_open,
1401	.read           = seq_read,
1402	.llseek         = seq_lseek,
1403	.release	= seq_release_net,
1404};
1405
1406
1407static int __net_init arp_net_init(struct net *net)
1408{
1409	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1410		return -ENOMEM;
1411	return 0;
1412}
1413
1414static void __net_exit arp_net_exit(struct net *net)
1415{
1416	proc_net_remove(net, "arp");
1417}
1418
1419static struct pernet_operations arp_net_ops = {
1420	.init = arp_net_init,
1421	.exit = arp_net_exit,
1422};
1423
1424static int __init arp_proc_init(void)
1425{
1426	return register_pernet_subsys(&arp_net_ops);
1427}
1428
1429#else /* CONFIG_PROC_FS */
1430
1431static int __init arp_proc_init(void)
1432{
1433	return 0;
1434}
1435
1436#endif /* CONFIG_PROC_FS */