Linux Audio

Check our new training course

Loading...
v4.6
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
 
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 116#include <net/dst_metadata.h>
 117#include <net/ip_tunnels.h>
 
 
 
 118
 
 119#include <linux/uaccess.h>
 120
 121#include <linux/netfilter_arp.h>
 122
 123/*
 124 *	Interface to generic neighbour cache.
 125 */
 126static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 127static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 128static int arp_constructor(struct neighbour *neigh);
 129static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 130static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 131static void parp_redo(struct sk_buff *skb);
 132
 133static const struct neigh_ops arp_generic_ops = {
 134	.family =		AF_INET,
 135	.solicit =		arp_solicit,
 136	.error_report =		arp_error_report,
 137	.output =		neigh_resolve_output,
 138	.connected_output =	neigh_connected_output,
 139};
 140
 141static const struct neigh_ops arp_hh_ops = {
 142	.family =		AF_INET,
 143	.solicit =		arp_solicit,
 144	.error_report =		arp_error_report,
 145	.output =		neigh_resolve_output,
 146	.connected_output =	neigh_resolve_output,
 147};
 148
 149static const struct neigh_ops arp_direct_ops = {
 150	.family =		AF_INET,
 151	.output =		neigh_direct_output,
 152	.connected_output =	neigh_direct_output,
 153};
 154
 
 
 
 
 
 
 
 
 155struct neigh_table arp_tbl = {
 156	.family		= AF_INET,
 
 157	.key_len	= 4,
 158	.protocol	= cpu_to_be16(ETH_P_IP),
 159	.hash		= arp_hash,
 160	.key_eq		= arp_key_eq,
 161	.constructor	= arp_constructor,
 162	.proxy_redo	= parp_redo,
 163	.id		= "arp_cache",
 164	.parms		= {
 165		.tbl			= &arp_tbl,
 
 
 
 166		.reachable_time		= 30 * HZ,
 167		.data	= {
 168			[NEIGH_VAR_MCAST_PROBES] = 3,
 169			[NEIGH_VAR_UCAST_PROBES] = 3,
 170			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 171			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 172			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 173			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 174			[NEIGH_VAR_QUEUE_LEN_BYTES] = 64 * 1024,
 175			[NEIGH_VAR_PROXY_QLEN] = 64,
 176			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 177			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 178			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 179		},
 180	},
 181	.gc_interval	= 30 * HZ,
 182	.gc_thresh1	= 128,
 183	.gc_thresh2	= 512,
 184	.gc_thresh3	= 1024,
 185};
 186EXPORT_SYMBOL(arp_tbl);
 187
 188int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 189{
 190	switch (dev->type) {
 191	case ARPHRD_ETHER:
 192	case ARPHRD_FDDI:
 193	case ARPHRD_IEEE802:
 194		ip_eth_mc_map(addr, haddr);
 195		return 0;
 
 
 
 196	case ARPHRD_INFINIBAND:
 197		ip_ib_mc_map(addr, dev->broadcast, haddr);
 198		return 0;
 199	case ARPHRD_IPGRE:
 200		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 201		return 0;
 202	default:
 203		if (dir) {
 204			memcpy(haddr, dev->broadcast, dev->addr_len);
 205			return 0;
 206		}
 207	}
 208	return -EINVAL;
 209}
 210
 211
 212static u32 arp_hash(const void *pkey,
 213		    const struct net_device *dev,
 214		    __u32 *hash_rnd)
 215{
 216	return arp_hashfn(pkey, dev, hash_rnd);
 217}
 218
 219static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 220{
 221	return neigh_key_eq32(neigh, pkey);
 222}
 223
 224static int arp_constructor(struct neighbour *neigh)
 225{
 226	__be32 addr = *(__be32 *)neigh->primary_key;
 227	struct net_device *dev = neigh->dev;
 228	struct in_device *in_dev;
 229	struct neigh_parms *parms;
 230
 231	rcu_read_lock();
 232	in_dev = __in_dev_get_rcu(dev);
 233	if (!in_dev) {
 234		rcu_read_unlock();
 235		return -EINVAL;
 236	}
 237
 238	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 239
 240	parms = in_dev->arp_parms;
 241	__neigh_parms_put(neigh->parms);
 242	neigh->parms = neigh_parms_clone(parms);
 243	rcu_read_unlock();
 244
 245	if (!dev->header_ops) {
 246		neigh->nud_state = NUD_NOARP;
 247		neigh->ops = &arp_direct_ops;
 248		neigh->output = neigh_direct_output;
 249	} else {
 250		/* Good devices (checked by reading texts, but only Ethernet is
 251		   tested)
 252
 253		   ARPHRD_ETHER: (ethernet, apfddi)
 254		   ARPHRD_FDDI: (fddi)
 255		   ARPHRD_IEEE802: (tr)
 256		   ARPHRD_METRICOM: (strip)
 257		   ARPHRD_ARCNET:
 258		   etc. etc. etc.
 259
 260		   ARPHRD_IPDDP will also work, if author repairs it.
 261		   I did not it, because this driver does not work even
 262		   in old paradigm.
 263		 */
 264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265		if (neigh->type == RTN_MULTICAST) {
 266			neigh->nud_state = NUD_NOARP;
 267			arp_mc_map(addr, neigh->ha, dev, 1);
 268		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 269			neigh->nud_state = NUD_NOARP;
 270			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 271		} else if (neigh->type == RTN_BROADCAST ||
 272			   (dev->flags & IFF_POINTOPOINT)) {
 273			neigh->nud_state = NUD_NOARP;
 274			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 275		}
 276
 277		if (dev->header_ops->cache)
 278			neigh->ops = &arp_hh_ops;
 279		else
 280			neigh->ops = &arp_generic_ops;
 281
 282		if (neigh->nud_state & NUD_VALID)
 283			neigh->output = neigh->ops->connected_output;
 284		else
 285			neigh->output = neigh->ops->output;
 286	}
 287	return 0;
 288}
 289
 290static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 291{
 292	dst_link_failure(skb);
 293	kfree_skb(skb);
 294}
 295
 296/* Create and send an arp packet. */
 297static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 298			 struct net_device *dev, __be32 src_ip,
 299			 const unsigned char *dest_hw,
 300			 const unsigned char *src_hw,
 301			 const unsigned char *target_hw,
 302			 struct dst_entry *dst)
 303{
 304	struct sk_buff *skb;
 305
 306	/* arp on this interface. */
 307	if (dev->flags & IFF_NOARP)
 308		return;
 309
 310	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 311			 dest_hw, src_hw, target_hw);
 312	if (!skb)
 313		return;
 314
 315	skb_dst_set(skb, dst_clone(dst));
 316	arp_xmit(skb);
 317}
 318
 319void arp_send(int type, int ptype, __be32 dest_ip,
 320	      struct net_device *dev, __be32 src_ip,
 321	      const unsigned char *dest_hw, const unsigned char *src_hw,
 322	      const unsigned char *target_hw)
 323{
 324	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 325		     target_hw, NULL);
 326}
 327EXPORT_SYMBOL(arp_send);
 328
 329static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 330{
 331	__be32 saddr = 0;
 332	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 333	struct net_device *dev = neigh->dev;
 334	__be32 target = *(__be32 *)neigh->primary_key;
 335	int probes = atomic_read(&neigh->probes);
 336	struct in_device *in_dev;
 337	struct dst_entry *dst = NULL;
 338
 339	rcu_read_lock();
 340	in_dev = __in_dev_get_rcu(dev);
 341	if (!in_dev) {
 342		rcu_read_unlock();
 343		return;
 344	}
 345	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 346	default:
 347	case 0:		/* By default announce any local IP */
 348		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 349					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 350			saddr = ip_hdr(skb)->saddr;
 351		break;
 352	case 1:		/* Restrict announcements of saddr in same subnet */
 353		if (!skb)
 354			break;
 355		saddr = ip_hdr(skb)->saddr;
 356		if (inet_addr_type_dev_table(dev_net(dev), dev,
 357					     saddr) == RTN_LOCAL) {
 358			/* saddr should be known to target */
 359			if (inet_addr_onlink(in_dev, target, saddr))
 360				break;
 361		}
 362		saddr = 0;
 363		break;
 364	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 365		break;
 366	}
 367	rcu_read_unlock();
 368
 369	if (!saddr)
 370		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 371
 372	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 373	if (probes < 0) {
 374		if (!(neigh->nud_state & NUD_VALID))
 375			pr_debug("trying to ucast probe in NUD_INVALID\n");
 376		neigh_ha_snapshot(dst_ha, neigh, dev);
 377		dst_hw = dst_ha;
 
 378	} else {
 379		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 380		if (probes < 0) {
 
 381			neigh_app_ns(neigh);
 
 382			return;
 383		}
 384	}
 385
 386	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 387		dst = skb_dst(skb);
 388	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 389		     dst_hw, dev->dev_addr, NULL, dst);
 390}
 391
 392static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 393{
 394	struct net *net = dev_net(in_dev->dev);
 395	int scope;
 396
 397	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 398	case 0:	/* Reply, the tip is already validated */
 399		return 0;
 400	case 1:	/* Reply only if tip is configured on the incoming interface */
 401		sip = 0;
 402		scope = RT_SCOPE_HOST;
 403		break;
 404	case 2:	/*
 405		 * Reply only if tip is configured on the incoming interface
 406		 * and is in same subnet as sip
 407		 */
 408		scope = RT_SCOPE_HOST;
 409		break;
 410	case 3:	/* Do not reply for scope host addresses */
 411		sip = 0;
 412		scope = RT_SCOPE_LINK;
 413		in_dev = NULL;
 414		break;
 415	case 4:	/* Reserved */
 416	case 5:
 417	case 6:
 418	case 7:
 419		return 0;
 420	case 8:	/* Do not reply */
 421		return 1;
 422	default:
 423		return 0;
 424	}
 425	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 426}
 427
 428static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 429{
 430	struct rtable *rt;
 431	int flag = 0;
 432	/*unsigned long now; */
 433	struct net *net = dev_net(dev);
 434
 435	rt = ip_route_output(net, sip, tip, 0, 0);
 436	if (IS_ERR(rt))
 437		return 1;
 438	if (rt->dst.dev != dev) {
 439		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 440		flag = 1;
 441	}
 442	ip_rt_put(rt);
 443	return flag;
 444}
 445
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446/*
 447 * Check if we can use proxy ARP for this path
 448 */
 449static inline int arp_fwd_proxy(struct in_device *in_dev,
 450				struct net_device *dev,	struct rtable *rt)
 451{
 452	struct in_device *out_dev;
 453	int imi, omi = -1;
 454
 455	if (rt->dst.dev == dev)
 456		return 0;
 457
 458	if (!IN_DEV_PROXY_ARP(in_dev))
 459		return 0;
 460	imi = IN_DEV_MEDIUM_ID(in_dev);
 461	if (imi == 0)
 462		return 1;
 463	if (imi == -1)
 464		return 0;
 465
 466	/* place to check for proxy_arp for routes */
 467
 468	out_dev = __in_dev_get_rcu(rt->dst.dev);
 469	if (out_dev)
 470		omi = IN_DEV_MEDIUM_ID(out_dev);
 471
 472	return omi != imi && omi != -1;
 473}
 474
 475/*
 476 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 477 *
 478 * RFC3069 supports proxy arp replies back to the same interface.  This
 479 * is done to support (ethernet) switch features, like RFC 3069, where
 480 * the individual ports are not allowed to communicate with each
 481 * other, BUT they are allowed to talk to the upstream router.  As
 482 * described in RFC 3069, it is possible to allow these hosts to
 483 * communicate through the upstream router, by proxy_arp'ing.
 484 *
 485 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 486 *
 487 *  This technology is known by different names:
 488 *    In RFC 3069 it is called VLAN Aggregation.
 489 *    Cisco and Allied Telesyn call it Private VLAN.
 490 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 491 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 492 *
 493 */
 494static inline int arp_fwd_pvlan(struct in_device *in_dev,
 495				struct net_device *dev,	struct rtable *rt,
 496				__be32 sip, __be32 tip)
 497{
 498	/* Private VLAN is only concerned about the same ethernet segment */
 499	if (rt->dst.dev != dev)
 500		return 0;
 501
 502	/* Don't reply on self probes (often done by windowz boxes)*/
 503	if (sip == tip)
 504		return 0;
 505
 506	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 507		return 1;
 508	else
 509		return 0;
 510}
 511
 512/*
 513 *	Interface to link layer: send routine and receive handler.
 514 */
 515
 516/*
 517 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 518 *	message.
 519 */
 520struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 521			   struct net_device *dev, __be32 src_ip,
 522			   const unsigned char *dest_hw,
 523			   const unsigned char *src_hw,
 524			   const unsigned char *target_hw)
 525{
 526	struct sk_buff *skb;
 527	struct arphdr *arp;
 528	unsigned char *arp_ptr;
 529	int hlen = LL_RESERVED_SPACE(dev);
 530	int tlen = dev->needed_tailroom;
 531
 532	/*
 533	 *	Allocate a buffer
 534	 */
 535
 536	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 537	if (!skb)
 538		return NULL;
 539
 540	skb_reserve(skb, hlen);
 541	skb_reset_network_header(skb);
 542	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 543	skb->dev = dev;
 544	skb->protocol = htons(ETH_P_ARP);
 545	if (!src_hw)
 546		src_hw = dev->dev_addr;
 547	if (!dest_hw)
 548		dest_hw = dev->broadcast;
 549
 550	/*
 551	 *	Fill the device header for the ARP frame
 552	 */
 553	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 554		goto out;
 555
 556	/*
 557	 * Fill out the arp protocol part.
 558	 *
 559	 * The arp hardware type should match the device type, except for FDDI,
 560	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 561	 */
 562	/*
 563	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 564	 *	DIX code for the protocol. Make these device structure fields.
 565	 */
 566	switch (dev->type) {
 567	default:
 568		arp->ar_hrd = htons(dev->type);
 569		arp->ar_pro = htons(ETH_P_IP);
 570		break;
 571
 572#if IS_ENABLED(CONFIG_AX25)
 573	case ARPHRD_AX25:
 574		arp->ar_hrd = htons(ARPHRD_AX25);
 575		arp->ar_pro = htons(AX25_P_IP);
 576		break;
 577
 578#if IS_ENABLED(CONFIG_NETROM)
 579	case ARPHRD_NETROM:
 580		arp->ar_hrd = htons(ARPHRD_NETROM);
 581		arp->ar_pro = htons(AX25_P_IP);
 582		break;
 583#endif
 584#endif
 585
 586#if IS_ENABLED(CONFIG_FDDI)
 587	case ARPHRD_FDDI:
 588		arp->ar_hrd = htons(ARPHRD_ETHER);
 589		arp->ar_pro = htons(ETH_P_IP);
 590		break;
 591#endif
 
 
 
 
 
 
 592	}
 593
 594	arp->ar_hln = dev->addr_len;
 595	arp->ar_pln = 4;
 596	arp->ar_op = htons(type);
 597
 598	arp_ptr = (unsigned char *)(arp + 1);
 599
 600	memcpy(arp_ptr, src_hw, dev->addr_len);
 601	arp_ptr += dev->addr_len;
 602	memcpy(arp_ptr, &src_ip, 4);
 603	arp_ptr += 4;
 604
 605	switch (dev->type) {
 606#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 607	case ARPHRD_IEEE1394:
 608		break;
 609#endif
 610	default:
 611		if (target_hw)
 612			memcpy(arp_ptr, target_hw, dev->addr_len);
 613		else
 614			memset(arp_ptr, 0, dev->addr_len);
 615		arp_ptr += dev->addr_len;
 616	}
 617	memcpy(arp_ptr, &dest_ip, 4);
 618
 619	return skb;
 620
 621out:
 622	kfree_skb(skb);
 623	return NULL;
 624}
 625EXPORT_SYMBOL(arp_create);
 626
 627static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 628{
 629	return dev_queue_xmit(skb);
 630}
 631
 632/*
 633 *	Send an arp packet.
 634 */
 635void arp_xmit(struct sk_buff *skb)
 636{
 637	/* Send it off, maybe filter it using firewalling first.  */
 638	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 639		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 640		arp_xmit_finish);
 641}
 642EXPORT_SYMBOL(arp_xmit);
 643
 644/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645 *	Process an arp request.
 646 */
 647
 648static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 649{
 650	struct net_device *dev = skb->dev;
 651	struct in_device *in_dev = __in_dev_get_rcu(dev);
 652	struct arphdr *arp;
 653	unsigned char *arp_ptr;
 654	struct rtable *rt;
 655	unsigned char *sha;
 656	__be32 sip, tip;
 657	u16 dev_type = dev->type;
 658	int addr_type;
 659	struct neighbour *n;
 660	struct dst_entry *reply_dst = NULL;
 661	bool is_garp = false;
 662
 663	/* arp_rcv below verifies the ARP header and verifies the device
 664	 * is ARP'able.
 665	 */
 666
 667	if (!in_dev)
 668		goto out_free_skb;
 669
 670	arp = arp_hdr(skb);
 671
 672	switch (dev_type) {
 673	default:
 674		if (arp->ar_pro != htons(ETH_P_IP) ||
 675		    htons(dev_type) != arp->ar_hrd)
 676			goto out_free_skb;
 677		break;
 678	case ARPHRD_ETHER:
 
 679	case ARPHRD_FDDI:
 680	case ARPHRD_IEEE802:
 681		/*
 682		 * ETHERNET, and Fibre Channel (which are IEEE 802
 683		 * devices, according to RFC 2625) devices will accept ARP
 684		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 685		 * This is the case also of FDDI, where the RFC 1390 says that
 686		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 687		 * however, to be more robust, we'll accept both 1 (Ethernet)
 688		 * or 6 (IEEE 802.2)
 689		 */
 690		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 691		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 692		    arp->ar_pro != htons(ETH_P_IP))
 693			goto out_free_skb;
 694		break;
 695	case ARPHRD_AX25:
 696		if (arp->ar_pro != htons(AX25_P_IP) ||
 697		    arp->ar_hrd != htons(ARPHRD_AX25))
 698			goto out_free_skb;
 699		break;
 700	case ARPHRD_NETROM:
 701		if (arp->ar_pro != htons(AX25_P_IP) ||
 702		    arp->ar_hrd != htons(ARPHRD_NETROM))
 703			goto out_free_skb;
 704		break;
 705	}
 706
 707	/* Understand only these message types */
 708
 709	if (arp->ar_op != htons(ARPOP_REPLY) &&
 710	    arp->ar_op != htons(ARPOP_REQUEST))
 711		goto out_free_skb;
 712
 713/*
 714 *	Extract fields
 715 */
 716	arp_ptr = (unsigned char *)(arp + 1);
 717	sha	= arp_ptr;
 718	arp_ptr += dev->addr_len;
 719	memcpy(&sip, arp_ptr, 4);
 720	arp_ptr += 4;
 721	switch (dev_type) {
 722#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 723	case ARPHRD_IEEE1394:
 724		break;
 725#endif
 726	default:
 727		arp_ptr += dev->addr_len;
 728	}
 729	memcpy(&tip, arp_ptr, 4);
 730/*
 731 *	Check for bad requests for 127.x.x.x and requests for multicast
 732 *	addresses.  If this is one such, delete it.
 733 */
 734	if (ipv4_is_multicast(tip) ||
 735	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 736		goto out_free_skb;
 737
 738 /*
 739  *	For some 802.11 wireless deployments (and possibly other networks),
 740  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 741  *	and thus should not be accepted.
 742  */
 743	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 744		goto out_free_skb;
 745
 746/*
 747 *     Special case: We must set Frame Relay source Q.922 address
 748 */
 749	if (dev_type == ARPHRD_DLCI)
 750		sha = dev->broadcast;
 751
 752/*
 753 *  Process entry.  The idea here is we want to send a reply if it is a
 754 *  request for us or if it is a request for someone else that we hold
 755 *  a proxy for.  We want to add an entry to our cache if it is a reply
 756 *  to us or if it is a request for our address.
 757 *  (The assumption for this last is that if someone is requesting our
 758 *  address, they are probably intending to talk to us, so it saves time
 759 *  if we cache their address.  Their address is also probably not in
 760 *  our cache, since ours is not in their cache.)
 761 *
 762 *  Putting this another way, we only care about replies if they are to
 763 *  us, in which case we add them to the cache.  For requests, we care
 764 *  about those for us and those for our proxies.  We reply to both,
 765 *  and in the case of requests for us we add the requester to the arp
 766 *  cache.
 767 */
 768
 769	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 770		reply_dst = (struct dst_entry *)
 771			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 772						    GFP_ATOMIC);
 773
 774	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 775	if (sip == 0) {
 776		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 777		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 778		    !arp_ignore(in_dev, sip, tip))
 779			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 780				     sha, dev->dev_addr, sha, reply_dst);
 781		goto out_consume_skb;
 782	}
 783
 784	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 785	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 786
 787		rt = skb_rtable(skb);
 788		addr_type = rt->rt_type;
 789
 790		if (addr_type == RTN_LOCAL) {
 791			int dont_send;
 792
 793			dont_send = arp_ignore(in_dev, sip, tip);
 794			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 795				dont_send = arp_filter(sip, tip, dev);
 796			if (!dont_send) {
 797				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 798				if (n) {
 799					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 800						     sip, dev, tip, sha,
 801						     dev->dev_addr, sha,
 802						     reply_dst);
 803					neigh_release(n);
 804				}
 805			}
 806			goto out_consume_skb;
 807		} else if (IN_DEV_FORWARD(in_dev)) {
 808			if (addr_type == RTN_UNICAST  &&
 809			    (arp_fwd_proxy(in_dev, dev, rt) ||
 810			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 811			     (rt->dst.dev != dev &&
 812			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 813				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 814				if (n)
 815					neigh_release(n);
 816
 817				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 818				    skb->pkt_type == PACKET_HOST ||
 819				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 820					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 821						     sip, dev, tip, sha,
 822						     dev->dev_addr, sha,
 823						     reply_dst);
 824				} else {
 825					pneigh_enqueue(&arp_tbl,
 826						       in_dev->arp_parms, skb);
 827					goto out_free_dst;
 828				}
 829				goto out_consume_skb;
 830			}
 831		}
 832	}
 833
 834	/* Update our ARP tables */
 835
 836	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 837
 838	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 839		unsigned int addr_type = inet_addr_type_dev_table(net, dev, sip);
 840
 841		/* Unsolicited ARP is not accepted by default.
 842		   It is possible, that this option should be enabled for some
 843		   devices (strip is candidate)
 844		 */
 845		is_garp = arp->ar_op == htons(ARPOP_REQUEST) && tip == sip &&
 846			  addr_type == RTN_UNICAST;
 847
 848		if (!n &&
 849		    ((arp->ar_op == htons(ARPOP_REPLY)  &&
 850				addr_type == RTN_UNICAST) || is_garp))
 851			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 852	}
 853
 854	if (n) {
 855		int state = NUD_REACHABLE;
 856		int override;
 857
 858		/* If several different ARP replies follows back-to-back,
 859		   use the FIRST one. It is possible, if several proxy
 860		   agents are active. Taking the first reply prevents
 861		   arp trashing and chooses the fastest router.
 862		 */
 863		override = time_after(jiffies,
 864				      n->updated +
 865				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 866			   is_garp;
 867
 868		/* Broadcast replies and request packets
 869		   do not assert neighbour reachability.
 870		 */
 871		if (arp->ar_op != htons(ARPOP_REPLY) ||
 872		    skb->pkt_type != PACKET_HOST)
 873			state = NUD_STALE;
 874		neigh_update(n, sha, state,
 875			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 876		neigh_release(n);
 877	}
 878
 879out_consume_skb:
 880	consume_skb(skb);
 881
 882out_free_dst:
 883	dst_release(reply_dst);
 884	return NET_RX_SUCCESS;
 885
 886out_free_skb:
 887	kfree_skb(skb);
 888	return NET_RX_DROP;
 889}
 890
 891static void parp_redo(struct sk_buff *skb)
 892{
 893	arp_process(dev_net(skb->dev), NULL, skb);
 894}
 895
 896
 897/*
 898 *	Receive an arp request from the device layer.
 899 */
 900
 901static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 902		   struct packet_type *pt, struct net_device *orig_dev)
 903{
 904	const struct arphdr *arp;
 905
 906	/* do not tweak dropwatch on an ARP we will ignore */
 907	if (dev->flags & IFF_NOARP ||
 908	    skb->pkt_type == PACKET_OTHERHOST ||
 909	    skb->pkt_type == PACKET_LOOPBACK)
 910		goto consumeskb;
 911
 912	skb = skb_share_check(skb, GFP_ATOMIC);
 913	if (!skb)
 914		goto out_of_mem;
 915
 916	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 917	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 918		goto freeskb;
 919
 920	arp = arp_hdr(skb);
 921	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 
 
 
 
 922		goto freeskb;
 923
 
 
 
 
 924	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 925
 926	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 927		       dev_net(dev), NULL, skb, dev, NULL,
 928		       arp_process);
 929
 930consumeskb:
 931	consume_skb(skb);
 932	return NET_RX_SUCCESS;
 933freeskb:
 934	kfree_skb(skb);
 935out_of_mem:
 936	return NET_RX_DROP;
 937}
 938
 939/*
 940 *	User level interface (ioctl)
 941 */
 942
 943/*
 944 *	Set (create) an ARP cache entry.
 945 */
 946
 947static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 948{
 949	if (!dev) {
 950		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 951		return 0;
 952	}
 953	if (__in_dev_get_rtnl(dev)) {
 954		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 955		return 0;
 956	}
 957	return -ENXIO;
 958}
 959
 960static int arp_req_set_public(struct net *net, struct arpreq *r,
 961		struct net_device *dev)
 962{
 963	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 964	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
 965
 966	if (mask && mask != htonl(0xFFFFFFFF))
 967		return -EINVAL;
 968	if (!dev && (r->arp_flags & ATF_COM)) {
 969		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
 970				      r->arp_ha.sa_data);
 971		if (!dev)
 972			return -ENODEV;
 973	}
 974	if (mask) {
 975		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
 976			return -ENOBUFS;
 977		return 0;
 978	}
 979
 980	return arp_req_set_proxy(net, dev, 1);
 981}
 982
 983static int arp_req_set(struct net *net, struct arpreq *r,
 984		       struct net_device *dev)
 985{
 986	__be32 ip;
 987	struct neighbour *neigh;
 988	int err;
 989
 990	if (r->arp_flags & ATF_PUBL)
 991		return arp_req_set_public(net, r, dev);
 992
 993	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 994	if (r->arp_flags & ATF_PERM)
 995		r->arp_flags |= ATF_COM;
 996	if (!dev) {
 997		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
 998
 999		if (IS_ERR(rt))
1000			return PTR_ERR(rt);
1001		dev = rt->dst.dev;
1002		ip_rt_put(rt);
1003		if (!dev)
1004			return -EINVAL;
1005	}
1006	switch (dev->type) {
1007#if IS_ENABLED(CONFIG_FDDI)
1008	case ARPHRD_FDDI:
1009		/*
1010		 * According to RFC 1390, FDDI devices should accept ARP
1011		 * hardware types of 1 (Ethernet).  However, to be more
1012		 * robust, we'll accept hardware types of either 1 (Ethernet)
1013		 * or 6 (IEEE 802.2).
1014		 */
1015		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1016		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1017		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1018			return -EINVAL;
1019		break;
1020#endif
1021	default:
1022		if (r->arp_ha.sa_family != dev->type)
1023			return -EINVAL;
1024		break;
1025	}
1026
1027	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1028	err = PTR_ERR(neigh);
1029	if (!IS_ERR(neigh)) {
1030		unsigned int state = NUD_STALE;
1031		if (r->arp_flags & ATF_PERM)
1032			state = NUD_PERMANENT;
1033		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1034				   r->arp_ha.sa_data : NULL, state,
1035				   NEIGH_UPDATE_F_OVERRIDE |
1036				   NEIGH_UPDATE_F_ADMIN);
1037		neigh_release(neigh);
1038	}
1039	return err;
1040}
1041
1042static unsigned int arp_state_to_flags(struct neighbour *neigh)
1043{
1044	if (neigh->nud_state&NUD_PERMANENT)
1045		return ATF_PERM | ATF_COM;
1046	else if (neigh->nud_state&NUD_VALID)
1047		return ATF_COM;
1048	else
1049		return 0;
1050}
1051
1052/*
1053 *	Get an ARP cache entry.
1054 */
1055
1056static int arp_req_get(struct arpreq *r, struct net_device *dev)
1057{
1058	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1059	struct neighbour *neigh;
1060	int err = -ENXIO;
1061
1062	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1063	if (neigh) {
1064		if (!(neigh->nud_state & NUD_NOARP)) {
1065			read_lock_bh(&neigh->lock);
1066			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1067			r->arp_flags = arp_state_to_flags(neigh);
1068			read_unlock_bh(&neigh->lock);
1069			r->arp_ha.sa_family = dev->type;
1070			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1071			err = 0;
1072		}
1073		neigh_release(neigh);
 
1074	}
1075	return err;
1076}
1077
1078static int arp_invalidate(struct net_device *dev, __be32 ip)
1079{
1080	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1081	int err = -ENXIO;
1082
1083	if (neigh) {
1084		if (neigh->nud_state & ~NUD_NOARP)
1085			err = neigh_update(neigh, NULL, NUD_FAILED,
1086					   NEIGH_UPDATE_F_OVERRIDE|
1087					   NEIGH_UPDATE_F_ADMIN);
1088		neigh_release(neigh);
1089	}
1090
1091	return err;
1092}
 
1093
1094static int arp_req_delete_public(struct net *net, struct arpreq *r,
1095		struct net_device *dev)
1096{
1097	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1098	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1099
1100	if (mask == htonl(0xFFFFFFFF))
1101		return pneigh_delete(&arp_tbl, net, &ip, dev);
1102
1103	if (mask)
1104		return -EINVAL;
1105
1106	return arp_req_set_proxy(net, dev, 0);
1107}
1108
1109static int arp_req_delete(struct net *net, struct arpreq *r,
1110			  struct net_device *dev)
1111{
1112	__be32 ip;
1113
1114	if (r->arp_flags & ATF_PUBL)
1115		return arp_req_delete_public(net, r, dev);
1116
1117	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1118	if (!dev) {
1119		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1120		if (IS_ERR(rt))
1121			return PTR_ERR(rt);
1122		dev = rt->dst.dev;
1123		ip_rt_put(rt);
1124		if (!dev)
1125			return -EINVAL;
1126	}
1127	return arp_invalidate(dev, ip);
1128}
1129
1130/*
1131 *	Handle an ARP layer I/O control request.
1132 */
1133
1134int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1135{
1136	int err;
1137	struct arpreq r;
1138	struct net_device *dev = NULL;
1139
1140	switch (cmd) {
1141	case SIOCDARP:
1142	case SIOCSARP:
1143		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1144			return -EPERM;
1145	case SIOCGARP:
1146		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1147		if (err)
1148			return -EFAULT;
1149		break;
1150	default:
1151		return -EINVAL;
1152	}
1153
1154	if (r.arp_pa.sa_family != AF_INET)
1155		return -EPFNOSUPPORT;
1156
1157	if (!(r.arp_flags & ATF_PUBL) &&
1158	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1159		return -EINVAL;
1160	if (!(r.arp_flags & ATF_NETMASK))
1161		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1162							   htonl(0xFFFFFFFFUL);
1163	rtnl_lock();
1164	if (r.arp_dev[0]) {
1165		err = -ENODEV;
1166		dev = __dev_get_by_name(net, r.arp_dev);
1167		if (!dev)
1168			goto out;
1169
1170		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1171		if (!r.arp_ha.sa_family)
1172			r.arp_ha.sa_family = dev->type;
1173		err = -EINVAL;
1174		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1175			goto out;
1176	} else if (cmd == SIOCGARP) {
1177		err = -ENODEV;
1178		goto out;
1179	}
1180
1181	switch (cmd) {
1182	case SIOCDARP:
1183		err = arp_req_delete(net, &r, dev);
1184		break;
1185	case SIOCSARP:
1186		err = arp_req_set(net, &r, dev);
1187		break;
1188	case SIOCGARP:
1189		err = arp_req_get(&r, dev);
1190		break;
1191	}
1192out:
1193	rtnl_unlock();
1194	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1195		err = -EFAULT;
1196	return err;
1197}
1198
1199static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1200			    void *ptr)
1201{
1202	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1203	struct netdev_notifier_change_info *change_info;
1204
1205	switch (event) {
1206	case NETDEV_CHANGEADDR:
1207		neigh_changeaddr(&arp_tbl, dev);
1208		rt_cache_flush(dev_net(dev));
1209		break;
1210	case NETDEV_CHANGE:
1211		change_info = ptr;
1212		if (change_info->flags_changed & IFF_NOARP)
1213			neigh_changeaddr(&arp_tbl, dev);
1214		break;
1215	default:
1216		break;
1217	}
1218
1219	return NOTIFY_DONE;
1220}
1221
1222static struct notifier_block arp_netdev_notifier = {
1223	.notifier_call = arp_netdev_event,
1224};
1225
1226/* Note, that it is not on notifier chain.
1227   It is necessary, that this routine was called after route cache will be
1228   flushed.
1229 */
1230void arp_ifdown(struct net_device *dev)
1231{
1232	neigh_ifdown(&arp_tbl, dev);
1233}
1234
1235
1236/*
1237 *	Called once on startup.
1238 */
1239
1240static struct packet_type arp_packet_type __read_mostly = {
1241	.type =	cpu_to_be16(ETH_P_ARP),
1242	.func =	arp_rcv,
1243};
1244
1245static int arp_proc_init(void);
1246
1247void __init arp_init(void)
1248{
1249	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1250
1251	dev_add_pack(&arp_packet_type);
1252	arp_proc_init();
1253#ifdef CONFIG_SYSCTL
1254	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1255#endif
1256	register_netdevice_notifier(&arp_netdev_notifier);
1257}
1258
1259#ifdef CONFIG_PROC_FS
1260#if IS_ENABLED(CONFIG_AX25)
1261
1262/* ------------------------------------------------------------------------ */
1263/*
1264 *	ax25 -> ASCII conversion
1265 */
1266static char *ax2asc2(ax25_address *a, char *buf)
1267{
1268	char c, *s;
1269	int n;
1270
1271	for (n = 0, s = buf; n < 6; n++) {
1272		c = (a->ax25_call[n] >> 1) & 0x7F;
1273
1274		if (c != ' ')
1275			*s++ = c;
1276	}
1277
1278	*s++ = '-';
1279	n = (a->ax25_call[6] >> 1) & 0x0F;
1280	if (n > 9) {
1281		*s++ = '1';
1282		n -= 10;
1283	}
1284
1285	*s++ = n + '0';
1286	*s++ = '\0';
1287
1288	if (*buf == '\0' || *buf == '-')
1289		return "*";
1290
1291	return buf;
1292}
1293#endif /* CONFIG_AX25 */
1294
1295#define HBUFFERLEN 30
1296
1297static void arp_format_neigh_entry(struct seq_file *seq,
1298				   struct neighbour *n)
1299{
1300	char hbuffer[HBUFFERLEN];
1301	int k, j;
1302	char tbuf[16];
1303	struct net_device *dev = n->dev;
1304	int hatype = dev->type;
1305
1306	read_lock(&n->lock);
1307	/* Convert hardware address to XX:XX:XX:XX ... form. */
1308#if IS_ENABLED(CONFIG_AX25)
1309	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1310		ax2asc2((ax25_address *)n->ha, hbuffer);
1311	else {
1312#endif
1313	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1314		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1315		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1316		hbuffer[k++] = ':';
1317	}
1318	if (k != 0)
1319		--k;
1320	hbuffer[k] = 0;
1321#if IS_ENABLED(CONFIG_AX25)
1322	}
1323#endif
1324	sprintf(tbuf, "%pI4", n->primary_key);
1325	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1326		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1327	read_unlock(&n->lock);
1328}
1329
1330static void arp_format_pneigh_entry(struct seq_file *seq,
1331				    struct pneigh_entry *n)
1332{
1333	struct net_device *dev = n->dev;
1334	int hatype = dev ? dev->type : 0;
1335	char tbuf[16];
1336
1337	sprintf(tbuf, "%pI4", n->key);
1338	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1339		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1340		   dev ? dev->name : "*");
1341}
1342
1343static int arp_seq_show(struct seq_file *seq, void *v)
1344{
1345	if (v == SEQ_START_TOKEN) {
1346		seq_puts(seq, "IP address       HW type     Flags       "
1347			      "HW address            Mask     Device\n");
1348	} else {
1349		struct neigh_seq_state *state = seq->private;
1350
1351		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1352			arp_format_pneigh_entry(seq, v);
1353		else
1354			arp_format_neigh_entry(seq, v);
1355	}
1356
1357	return 0;
1358}
1359
1360static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1361{
1362	/* Don't want to confuse "arp -a" w/ magic entries,
1363	 * so we tell the generic iterator to skip NUD_NOARP.
1364	 */
1365	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1366}
1367
1368/* ------------------------------------------------------------------------ */
1369
1370static const struct seq_operations arp_seq_ops = {
1371	.start	= arp_seq_start,
1372	.next	= neigh_seq_next,
1373	.stop	= neigh_seq_stop,
1374	.show	= arp_seq_show,
1375};
1376
1377static int arp_seq_open(struct inode *inode, struct file *file)
1378{
1379	return seq_open_net(inode, file, &arp_seq_ops,
1380			    sizeof(struct neigh_seq_state));
1381}
1382
1383static const struct file_operations arp_seq_fops = {
1384	.owner		= THIS_MODULE,
1385	.open           = arp_seq_open,
1386	.read           = seq_read,
1387	.llseek         = seq_lseek,
1388	.release	= seq_release_net,
1389};
1390
1391
1392static int __net_init arp_net_init(struct net *net)
1393{
1394	if (!proc_create("arp", S_IRUGO, net->proc_net, &arp_seq_fops))
1395		return -ENOMEM;
1396	return 0;
1397}
1398
1399static void __net_exit arp_net_exit(struct net *net)
1400{
1401	remove_proc_entry("arp", net->proc_net);
1402}
1403
1404static struct pernet_operations arp_net_ops = {
1405	.init = arp_net_init,
1406	.exit = arp_net_exit,
1407};
1408
1409static int __init arp_proc_init(void)
1410{
1411	return register_pernet_subsys(&arp_net_ops);
1412}
1413
1414#else /* CONFIG_PROC_FS */
1415
1416static int __init arp_proc_init(void)
1417{
1418	return 0;
1419}
1420
1421#endif /* CONFIG_PROC_FS */
v3.1
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
 
 
  76#include <linux/module.h>
  77#include <linux/types.h>
  78#include <linux/string.h>
  79#include <linux/kernel.h>
  80#include <linux/capability.h>
  81#include <linux/socket.h>
  82#include <linux/sockios.h>
  83#include <linux/errno.h>
  84#include <linux/in.h>
  85#include <linux/mm.h>
  86#include <linux/inet.h>
  87#include <linux/inetdevice.h>
  88#include <linux/netdevice.h>
  89#include <linux/etherdevice.h>
  90#include <linux/fddidevice.h>
  91#include <linux/if_arp.h>
  92#include <linux/trdevice.h>
  93#include <linux/skbuff.h>
  94#include <linux/proc_fs.h>
  95#include <linux/seq_file.h>
  96#include <linux/stat.h>
  97#include <linux/init.h>
  98#include <linux/net.h>
  99#include <linux/rcupdate.h>
 100#include <linux/slab.h>
 101#ifdef CONFIG_SYSCTL
 102#include <linux/sysctl.h>
 103#endif
 104
 105#include <net/net_namespace.h>
 106#include <net/ip.h>
 107#include <net/icmp.h>
 108#include <net/route.h>
 109#include <net/protocol.h>
 110#include <net/tcp.h>
 111#include <net/sock.h>
 112#include <net/arp.h>
 113#include <net/ax25.h>
 114#include <net/netrom.h>
 115#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
 116#include <net/atmclip.h>
 117struct neigh_table *clip_tbl_hook;
 118EXPORT_SYMBOL(clip_tbl_hook);
 119#endif
 120
 121#include <asm/system.h>
 122#include <linux/uaccess.h>
 123
 124#include <linux/netfilter_arp.h>
 125
 126/*
 127 *	Interface to generic neighbour cache.
 128 */
 129static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
 
 130static int arp_constructor(struct neighbour *neigh);
 131static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 132static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 133static void parp_redo(struct sk_buff *skb);
 134
 135static const struct neigh_ops arp_generic_ops = {
 136	.family =		AF_INET,
 137	.solicit =		arp_solicit,
 138	.error_report =		arp_error_report,
 139	.output =		neigh_resolve_output,
 140	.connected_output =	neigh_connected_output,
 141};
 142
 143static const struct neigh_ops arp_hh_ops = {
 144	.family =		AF_INET,
 145	.solicit =		arp_solicit,
 146	.error_report =		arp_error_report,
 147	.output =		neigh_resolve_output,
 148	.connected_output =	neigh_resolve_output,
 149};
 150
 151static const struct neigh_ops arp_direct_ops = {
 152	.family =		AF_INET,
 153	.output =		neigh_direct_output,
 154	.connected_output =	neigh_direct_output,
 155};
 156
 157static const struct neigh_ops arp_broken_ops = {
 158	.family =		AF_INET,
 159	.solicit =		arp_solicit,
 160	.error_report =		arp_error_report,
 161	.output =		neigh_compat_output,
 162	.connected_output =	neigh_compat_output,
 163};
 164
 165struct neigh_table arp_tbl = {
 166	.family		= AF_INET,
 167	.entry_size	= sizeof(struct neighbour) + 4,
 168	.key_len	= 4,
 
 169	.hash		= arp_hash,
 
 170	.constructor	= arp_constructor,
 171	.proxy_redo	= parp_redo,
 172	.id		= "arp_cache",
 173	.parms		= {
 174		.tbl			= &arp_tbl,
 175		.base_reachable_time	= 30 * HZ,
 176		.retrans_time		= 1 * HZ,
 177		.gc_staletime		= 60 * HZ,
 178		.reachable_time		= 30 * HZ,
 179		.delay_probe_time	= 5 * HZ,
 180		.queue_len		= 3,
 181		.ucast_probes		= 3,
 182		.mcast_probes		= 3,
 183		.anycast_delay		= 1 * HZ,
 184		.proxy_delay		= (8 * HZ) / 10,
 185		.proxy_qlen		= 64,
 186		.locktime		= 1 * HZ,
 
 
 
 
 
 187	},
 188	.gc_interval	= 30 * HZ,
 189	.gc_thresh1	= 128,
 190	.gc_thresh2	= 512,
 191	.gc_thresh3	= 1024,
 192};
 193EXPORT_SYMBOL(arp_tbl);
 194
 195int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 196{
 197	switch (dev->type) {
 198	case ARPHRD_ETHER:
 199	case ARPHRD_FDDI:
 200	case ARPHRD_IEEE802:
 201		ip_eth_mc_map(addr, haddr);
 202		return 0;
 203	case ARPHRD_IEEE802_TR:
 204		ip_tr_mc_map(addr, haddr);
 205		return 0;
 206	case ARPHRD_INFINIBAND:
 207		ip_ib_mc_map(addr, dev->broadcast, haddr);
 208		return 0;
 209	case ARPHRD_IPGRE:
 210		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 211		return 0;
 212	default:
 213		if (dir) {
 214			memcpy(haddr, dev->broadcast, dev->addr_len);
 215			return 0;
 216		}
 217	}
 218	return -EINVAL;
 219}
 220
 221
 222static u32 arp_hash(const void *pkey,
 223		    const struct net_device *dev,
 224		    __u32 hash_rnd)
 225{
 226	return arp_hashfn(*(u32 *)pkey, dev, hash_rnd);
 
 
 
 
 
 227}
 228
 229static int arp_constructor(struct neighbour *neigh)
 230{
 231	__be32 addr = *(__be32 *)neigh->primary_key;
 232	struct net_device *dev = neigh->dev;
 233	struct in_device *in_dev;
 234	struct neigh_parms *parms;
 235
 236	rcu_read_lock();
 237	in_dev = __in_dev_get_rcu(dev);
 238	if (in_dev == NULL) {
 239		rcu_read_unlock();
 240		return -EINVAL;
 241	}
 242
 243	neigh->type = inet_addr_type(dev_net(dev), addr);
 244
 245	parms = in_dev->arp_parms;
 246	__neigh_parms_put(neigh->parms);
 247	neigh->parms = neigh_parms_clone(parms);
 248	rcu_read_unlock();
 249
 250	if (!dev->header_ops) {
 251		neigh->nud_state = NUD_NOARP;
 252		neigh->ops = &arp_direct_ops;
 253		neigh->output = neigh_direct_output;
 254	} else {
 255		/* Good devices (checked by reading texts, but only Ethernet is
 256		   tested)
 257
 258		   ARPHRD_ETHER: (ethernet, apfddi)
 259		   ARPHRD_FDDI: (fddi)
 260		   ARPHRD_IEEE802: (tr)
 261		   ARPHRD_METRICOM: (strip)
 262		   ARPHRD_ARCNET:
 263		   etc. etc. etc.
 264
 265		   ARPHRD_IPDDP will also work, if author repairs it.
 266		   I did not it, because this driver does not work even
 267		   in old paradigm.
 268		 */
 269
 270#if 1
 271		/* So... these "amateur" devices are hopeless.
 272		   The only thing, that I can say now:
 273		   It is very sad that we need to keep ugly obsolete
 274		   code to make them happy.
 275
 276		   They should be moved to more reasonable state, now
 277		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 278		   Besides that, they are sort of out of date
 279		   (a lot of redundant clones/copies, useless in 2.1),
 280		   I wonder why people believe that they work.
 281		 */
 282		switch (dev->type) {
 283		default:
 284			break;
 285		case ARPHRD_ROSE:
 286#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 287		case ARPHRD_AX25:
 288#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 289		case ARPHRD_NETROM:
 290#endif
 291			neigh->ops = &arp_broken_ops;
 292			neigh->output = neigh->ops->output;
 293			return 0;
 294#else
 295			break;
 296#endif
 297		}
 298#endif
 299		if (neigh->type == RTN_MULTICAST) {
 300			neigh->nud_state = NUD_NOARP;
 301			arp_mc_map(addr, neigh->ha, dev, 1);
 302		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 303			neigh->nud_state = NUD_NOARP;
 304			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 305		} else if (neigh->type == RTN_BROADCAST ||
 306			   (dev->flags & IFF_POINTOPOINT)) {
 307			neigh->nud_state = NUD_NOARP;
 308			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 309		}
 310
 311		if (dev->header_ops->cache)
 312			neigh->ops = &arp_hh_ops;
 313		else
 314			neigh->ops = &arp_generic_ops;
 315
 316		if (neigh->nud_state & NUD_VALID)
 317			neigh->output = neigh->ops->connected_output;
 318		else
 319			neigh->output = neigh->ops->output;
 320	}
 321	return 0;
 322}
 323
 324static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 325{
 326	dst_link_failure(skb);
 327	kfree_skb(skb);
 328}
 329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 331{
 332	__be32 saddr = 0;
 333	u8  *dst_ha = NULL;
 334	struct net_device *dev = neigh->dev;
 335	__be32 target = *(__be32 *)neigh->primary_key;
 336	int probes = atomic_read(&neigh->probes);
 337	struct in_device *in_dev;
 
 338
 339	rcu_read_lock();
 340	in_dev = __in_dev_get_rcu(dev);
 341	if (!in_dev) {
 342		rcu_read_unlock();
 343		return;
 344	}
 345	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 346	default:
 347	case 0:		/* By default announce any local IP */
 348		if (skb && inet_addr_type(dev_net(dev),
 349					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 350			saddr = ip_hdr(skb)->saddr;
 351		break;
 352	case 1:		/* Restrict announcements of saddr in same subnet */
 353		if (!skb)
 354			break;
 355		saddr = ip_hdr(skb)->saddr;
 356		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 
 357			/* saddr should be known to target */
 358			if (inet_addr_onlink(in_dev, target, saddr))
 359				break;
 360		}
 361		saddr = 0;
 362		break;
 363	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 364		break;
 365	}
 366	rcu_read_unlock();
 367
 368	if (!saddr)
 369		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 370
 371	probes -= neigh->parms->ucast_probes;
 372	if (probes < 0) {
 373		if (!(neigh->nud_state & NUD_VALID))
 374			printk(KERN_DEBUG
 375			       "trying to ucast probe in NUD_INVALID\n");
 376		dst_ha = neigh->ha;
 377		read_lock_bh(&neigh->lock);
 378	} else {
 379		probes -= neigh->parms->app_probes;
 380		if (probes < 0) {
 381#ifdef CONFIG_ARPD
 382			neigh_app_ns(neigh);
 383#endif
 384			return;
 385		}
 386	}
 387
 388	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 389		 dst_ha, dev->dev_addr, NULL);
 390	if (dst_ha)
 391		read_unlock_bh(&neigh->lock);
 392}
 393
 394static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 395{
 
 396	int scope;
 397
 398	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 399	case 0:	/* Reply, the tip is already validated */
 400		return 0;
 401	case 1:	/* Reply only if tip is configured on the incoming interface */
 402		sip = 0;
 403		scope = RT_SCOPE_HOST;
 404		break;
 405	case 2:	/*
 406		 * Reply only if tip is configured on the incoming interface
 407		 * and is in same subnet as sip
 408		 */
 409		scope = RT_SCOPE_HOST;
 410		break;
 411	case 3:	/* Do not reply for scope host addresses */
 412		sip = 0;
 413		scope = RT_SCOPE_LINK;
 
 414		break;
 415	case 4:	/* Reserved */
 416	case 5:
 417	case 6:
 418	case 7:
 419		return 0;
 420	case 8:	/* Do not reply */
 421		return 1;
 422	default:
 423		return 0;
 424	}
 425	return !inet_confirm_addr(in_dev, sip, tip, scope);
 426}
 427
 428static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 429{
 430	struct rtable *rt;
 431	int flag = 0;
 432	/*unsigned long now; */
 433	struct net *net = dev_net(dev);
 434
 435	rt = ip_route_output(net, sip, tip, 0, 0);
 436	if (IS_ERR(rt))
 437		return 1;
 438	if (rt->dst.dev != dev) {
 439		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 440		flag = 1;
 441	}
 442	ip_rt_put(rt);
 443	return flag;
 444}
 445
 446/* OBSOLETE FUNCTIONS */
 447
 448/*
 449 *	Find an arp mapping in the cache. If not found, post a request.
 450 *
 451 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 452 *	even if it exists. It is supposed that skb->dev was mangled
 453 *	by a virtual device (eql, shaper). Nobody but broken devices
 454 *	is allowed to use this function, it is scheduled to be removed. --ANK
 455 */
 456
 457static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 458			      __be32 paddr, struct net_device *dev)
 459{
 460	switch (addr_hint) {
 461	case RTN_LOCAL:
 462		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
 463		memcpy(haddr, dev->dev_addr, dev->addr_len);
 464		return 1;
 465	case RTN_MULTICAST:
 466		arp_mc_map(paddr, haddr, dev, 1);
 467		return 1;
 468	case RTN_BROADCAST:
 469		memcpy(haddr, dev->broadcast, dev->addr_len);
 470		return 1;
 471	}
 472	return 0;
 473}
 474
 475
 476int arp_find(unsigned char *haddr, struct sk_buff *skb)
 477{
 478	struct net_device *dev = skb->dev;
 479	__be32 paddr;
 480	struct neighbour *n;
 481
 482	if (!skb_dst(skb)) {
 483		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
 484		kfree_skb(skb);
 485		return 1;
 486	}
 487
 488	paddr = skb_rtable(skb)->rt_gateway;
 489
 490	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 491			       paddr, dev))
 492		return 0;
 493
 494	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 495
 496	if (n) {
 497		n->used = jiffies;
 498		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 499			neigh_ha_snapshot(haddr, n, dev);
 500			neigh_release(n);
 501			return 0;
 502		}
 503		neigh_release(n);
 504	} else
 505		kfree_skb(skb);
 506	return 1;
 507}
 508EXPORT_SYMBOL(arp_find);
 509
 510/* END OF OBSOLETE FUNCTIONS */
 511
 512/*
 513 * Check if we can use proxy ARP for this path
 514 */
 515static inline int arp_fwd_proxy(struct in_device *in_dev,
 516				struct net_device *dev,	struct rtable *rt)
 517{
 518	struct in_device *out_dev;
 519	int imi, omi = -1;
 520
 521	if (rt->dst.dev == dev)
 522		return 0;
 523
 524	if (!IN_DEV_PROXY_ARP(in_dev))
 525		return 0;
 526	imi = IN_DEV_MEDIUM_ID(in_dev);
 527	if (imi == 0)
 528		return 1;
 529	if (imi == -1)
 530		return 0;
 531
 532	/* place to check for proxy_arp for routes */
 533
 534	out_dev = __in_dev_get_rcu(rt->dst.dev);
 535	if (out_dev)
 536		omi = IN_DEV_MEDIUM_ID(out_dev);
 537
 538	return omi != imi && omi != -1;
 539}
 540
 541/*
 542 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 543 *
 544 * RFC3069 supports proxy arp replies back to the same interface.  This
 545 * is done to support (ethernet) switch features, like RFC 3069, where
 546 * the individual ports are not allowed to communicate with each
 547 * other, BUT they are allowed to talk to the upstream router.  As
 548 * described in RFC 3069, it is possible to allow these hosts to
 549 * communicate through the upstream router, by proxy_arp'ing.
 550 *
 551 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 552 *
 553 *  This technology is known by different names:
 554 *    In RFC 3069 it is called VLAN Aggregation.
 555 *    Cisco and Allied Telesyn call it Private VLAN.
 556 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 557 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 558 *
 559 */
 560static inline int arp_fwd_pvlan(struct in_device *in_dev,
 561				struct net_device *dev,	struct rtable *rt,
 562				__be32 sip, __be32 tip)
 563{
 564	/* Private VLAN is only concerned about the same ethernet segment */
 565	if (rt->dst.dev != dev)
 566		return 0;
 567
 568	/* Don't reply on self probes (often done by windowz boxes)*/
 569	if (sip == tip)
 570		return 0;
 571
 572	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 573		return 1;
 574	else
 575		return 0;
 576}
 577
 578/*
 579 *	Interface to link layer: send routine and receive handler.
 580 */
 581
 582/*
 583 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 584 *	message.
 585 */
 586struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 587			   struct net_device *dev, __be32 src_ip,
 588			   const unsigned char *dest_hw,
 589			   const unsigned char *src_hw,
 590			   const unsigned char *target_hw)
 591{
 592	struct sk_buff *skb;
 593	struct arphdr *arp;
 594	unsigned char *arp_ptr;
 
 
 595
 596	/*
 597	 *	Allocate a buffer
 598	 */
 599
 600	skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
 601	if (skb == NULL)
 602		return NULL;
 603
 604	skb_reserve(skb, LL_RESERVED_SPACE(dev));
 605	skb_reset_network_header(skb);
 606	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 607	skb->dev = dev;
 608	skb->protocol = htons(ETH_P_ARP);
 609	if (src_hw == NULL)
 610		src_hw = dev->dev_addr;
 611	if (dest_hw == NULL)
 612		dest_hw = dev->broadcast;
 613
 614	/*
 615	 *	Fill the device header for the ARP frame
 616	 */
 617	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 618		goto out;
 619
 620	/*
 621	 * Fill out the arp protocol part.
 622	 *
 623	 * The arp hardware type should match the device type, except for FDDI,
 624	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 625	 */
 626	/*
 627	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 628	 *	DIX code for the protocol. Make these device structure fields.
 629	 */
 630	switch (dev->type) {
 631	default:
 632		arp->ar_hrd = htons(dev->type);
 633		arp->ar_pro = htons(ETH_P_IP);
 634		break;
 635
 636#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 637	case ARPHRD_AX25:
 638		arp->ar_hrd = htons(ARPHRD_AX25);
 639		arp->ar_pro = htons(AX25_P_IP);
 640		break;
 641
 642#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 643	case ARPHRD_NETROM:
 644		arp->ar_hrd = htons(ARPHRD_NETROM);
 645		arp->ar_pro = htons(AX25_P_IP);
 646		break;
 647#endif
 648#endif
 649
 650#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
 651	case ARPHRD_FDDI:
 652		arp->ar_hrd = htons(ARPHRD_ETHER);
 653		arp->ar_pro = htons(ETH_P_IP);
 654		break;
 655#endif
 656#if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
 657	case ARPHRD_IEEE802_TR:
 658		arp->ar_hrd = htons(ARPHRD_IEEE802);
 659		arp->ar_pro = htons(ETH_P_IP);
 660		break;
 661#endif
 662	}
 663
 664	arp->ar_hln = dev->addr_len;
 665	arp->ar_pln = 4;
 666	arp->ar_op = htons(type);
 667
 668	arp_ptr = (unsigned char *)(arp + 1);
 669
 670	memcpy(arp_ptr, src_hw, dev->addr_len);
 671	arp_ptr += dev->addr_len;
 672	memcpy(arp_ptr, &src_ip, 4);
 673	arp_ptr += 4;
 674	if (target_hw != NULL)
 675		memcpy(arp_ptr, target_hw, dev->addr_len);
 676	else
 677		memset(arp_ptr, 0, dev->addr_len);
 678	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 679	memcpy(arp_ptr, &dest_ip, 4);
 680
 681	return skb;
 682
 683out:
 684	kfree_skb(skb);
 685	return NULL;
 686}
 687EXPORT_SYMBOL(arp_create);
 688
 
 
 
 
 
 689/*
 690 *	Send an arp packet.
 691 */
 692void arp_xmit(struct sk_buff *skb)
 693{
 694	/* Send it off, maybe filter it using firewalling first.  */
 695	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 
 
 696}
 697EXPORT_SYMBOL(arp_xmit);
 698
 699/*
 700 *	Create and send an arp packet.
 701 */
 702void arp_send(int type, int ptype, __be32 dest_ip,
 703	      struct net_device *dev, __be32 src_ip,
 704	      const unsigned char *dest_hw, const unsigned char *src_hw,
 705	      const unsigned char *target_hw)
 706{
 707	struct sk_buff *skb;
 708
 709	/*
 710	 *	No arp on this interface.
 711	 */
 712
 713	if (dev->flags&IFF_NOARP)
 714		return;
 715
 716	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 717			 dest_hw, src_hw, target_hw);
 718	if (skb == NULL)
 719		return;
 720
 721	arp_xmit(skb);
 722}
 723EXPORT_SYMBOL(arp_send);
 724
 725/*
 726 *	Process an arp request.
 727 */
 728
 729static int arp_process(struct sk_buff *skb)
 730{
 731	struct net_device *dev = skb->dev;
 732	struct in_device *in_dev = __in_dev_get_rcu(dev);
 733	struct arphdr *arp;
 734	unsigned char *arp_ptr;
 735	struct rtable *rt;
 736	unsigned char *sha;
 737	__be32 sip, tip;
 738	u16 dev_type = dev->type;
 739	int addr_type;
 740	struct neighbour *n;
 741	struct net *net = dev_net(dev);
 
 742
 743	/* arp_rcv below verifies the ARP header and verifies the device
 744	 * is ARP'able.
 745	 */
 746
 747	if (in_dev == NULL)
 748		goto out;
 749
 750	arp = arp_hdr(skb);
 751
 752	switch (dev_type) {
 753	default:
 754		if (arp->ar_pro != htons(ETH_P_IP) ||
 755		    htons(dev_type) != arp->ar_hrd)
 756			goto out;
 757		break;
 758	case ARPHRD_ETHER:
 759	case ARPHRD_IEEE802_TR:
 760	case ARPHRD_FDDI:
 761	case ARPHRD_IEEE802:
 762		/*
 763		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
 764		 * devices, according to RFC 2625) devices will accept ARP
 765		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 766		 * This is the case also of FDDI, where the RFC 1390 says that
 767		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 768		 * however, to be more robust, we'll accept both 1 (Ethernet)
 769		 * or 6 (IEEE 802.2)
 770		 */
 771		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 772		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 773		    arp->ar_pro != htons(ETH_P_IP))
 774			goto out;
 775		break;
 776	case ARPHRD_AX25:
 777		if (arp->ar_pro != htons(AX25_P_IP) ||
 778		    arp->ar_hrd != htons(ARPHRD_AX25))
 779			goto out;
 780		break;
 781	case ARPHRD_NETROM:
 782		if (arp->ar_pro != htons(AX25_P_IP) ||
 783		    arp->ar_hrd != htons(ARPHRD_NETROM))
 784			goto out;
 785		break;
 786	}
 787
 788	/* Understand only these message types */
 789
 790	if (arp->ar_op != htons(ARPOP_REPLY) &&
 791	    arp->ar_op != htons(ARPOP_REQUEST))
 792		goto out;
 793
 794/*
 795 *	Extract fields
 796 */
 797	arp_ptr = (unsigned char *)(arp + 1);
 798	sha	= arp_ptr;
 799	arp_ptr += dev->addr_len;
 800	memcpy(&sip, arp_ptr, 4);
 801	arp_ptr += 4;
 802	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 803	memcpy(&tip, arp_ptr, 4);
 804/*
 805 *	Check for bad requests for 127.x.x.x and requests for multicast
 806 *	addresses.  If this is one such, delete it.
 807 */
 808	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
 809		goto out;
 
 
 
 
 
 
 
 
 
 810
 811/*
 812 *     Special case: We must set Frame Relay source Q.922 address
 813 */
 814	if (dev_type == ARPHRD_DLCI)
 815		sha = dev->broadcast;
 816
 817/*
 818 *  Process entry.  The idea here is we want to send a reply if it is a
 819 *  request for us or if it is a request for someone else that we hold
 820 *  a proxy for.  We want to add an entry to our cache if it is a reply
 821 *  to us or if it is a request for our address.
 822 *  (The assumption for this last is that if someone is requesting our
 823 *  address, they are probably intending to talk to us, so it saves time
 824 *  if we cache their address.  Their address is also probably not in
 825 *  our cache, since ours is not in their cache.)
 826 *
 827 *  Putting this another way, we only care about replies if they are to
 828 *  us, in which case we add them to the cache.  For requests, we care
 829 *  about those for us and those for our proxies.  We reply to both,
 830 *  and in the case of requests for us we add the requester to the arp
 831 *  cache.
 832 */
 833
 
 
 
 
 
 834	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 835	if (sip == 0) {
 836		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 837		    inet_addr_type(net, tip) == RTN_LOCAL &&
 838		    !arp_ignore(in_dev, sip, tip))
 839			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 840				 dev->dev_addr, sha);
 841		goto out;
 842	}
 843
 844	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 845	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 846
 847		rt = skb_rtable(skb);
 848		addr_type = rt->rt_type;
 849
 850		if (addr_type == RTN_LOCAL) {
 851			int dont_send;
 852
 853			dont_send = arp_ignore(in_dev, sip, tip);
 854			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 855				dont_send = arp_filter(sip, tip, dev);
 856			if (!dont_send) {
 857				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 858				if (n) {
 859					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 860						 dev, tip, sha, dev->dev_addr,
 861						 sha);
 
 862					neigh_release(n);
 863				}
 864			}
 865			goto out;
 866		} else if (IN_DEV_FORWARD(in_dev)) {
 867			if (addr_type == RTN_UNICAST  &&
 868			    (arp_fwd_proxy(in_dev, dev, rt) ||
 869			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 870			     pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
 
 871				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 872				if (n)
 873					neigh_release(n);
 874
 875				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 876				    skb->pkt_type == PACKET_HOST ||
 877				    in_dev->arp_parms->proxy_delay == 0) {
 878					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 879						 dev, tip, sha, dev->dev_addr,
 880						 sha);
 
 881				} else {
 882					pneigh_enqueue(&arp_tbl,
 883						       in_dev->arp_parms, skb);
 884					return 0;
 885				}
 886				goto out;
 887			}
 888		}
 889	}
 890
 891	/* Update our ARP tables */
 892
 893	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 894
 895	if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
 
 
 896		/* Unsolicited ARP is not accepted by default.
 897		   It is possible, that this option should be enabled for some
 898		   devices (strip is candidate)
 899		 */
 900		if (n == NULL &&
 901		    (arp->ar_op == htons(ARPOP_REPLY) ||
 902		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
 903		    inet_addr_type(net, sip) == RTN_UNICAST)
 
 
 904			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 905	}
 906
 907	if (n) {
 908		int state = NUD_REACHABLE;
 909		int override;
 910
 911		/* If several different ARP replies follows back-to-back,
 912		   use the FIRST one. It is possible, if several proxy
 913		   agents are active. Taking the first reply prevents
 914		   arp trashing and chooses the fastest router.
 915		 */
 916		override = time_after(jiffies, n->updated + n->parms->locktime);
 
 
 
 917
 918		/* Broadcast replies and request packets
 919		   do not assert neighbour reachability.
 920		 */
 921		if (arp->ar_op != htons(ARPOP_REPLY) ||
 922		    skb->pkt_type != PACKET_HOST)
 923			state = NUD_STALE;
 924		neigh_update(n, sha, state,
 925			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 926		neigh_release(n);
 927	}
 928
 929out:
 930	consume_skb(skb);
 931	return 0;
 
 
 
 
 
 
 
 932}
 933
 934static void parp_redo(struct sk_buff *skb)
 935{
 936	arp_process(skb);
 937}
 938
 939
 940/*
 941 *	Receive an arp request from the device layer.
 942 */
 943
 944static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 945		   struct packet_type *pt, struct net_device *orig_dev)
 946{
 947	struct arphdr *arp;
 
 
 
 
 
 
 
 
 
 
 948
 949	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 950	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 951		goto freeskb;
 952
 953	arp = arp_hdr(skb);
 954	if (arp->ar_hln != dev->addr_len ||
 955	    dev->flags & IFF_NOARP ||
 956	    skb->pkt_type == PACKET_OTHERHOST ||
 957	    skb->pkt_type == PACKET_LOOPBACK ||
 958	    arp->ar_pln != 4)
 959		goto freeskb;
 960
 961	skb = skb_share_check(skb, GFP_ATOMIC);
 962	if (skb == NULL)
 963		goto out_of_mem;
 964
 965	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 966
 967	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 
 
 968
 
 
 
 969freeskb:
 970	kfree_skb(skb);
 971out_of_mem:
 972	return 0;
 973}
 974
 975/*
 976 *	User level interface (ioctl)
 977 */
 978
 979/*
 980 *	Set (create) an ARP cache entry.
 981 */
 982
 983static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 984{
 985	if (dev == NULL) {
 986		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 987		return 0;
 988	}
 989	if (__in_dev_get_rtnl(dev)) {
 990		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 991		return 0;
 992	}
 993	return -ENXIO;
 994}
 995
 996static int arp_req_set_public(struct net *net, struct arpreq *r,
 997		struct net_device *dev)
 998{
 999	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1000	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1001
1002	if (mask && mask != htonl(0xFFFFFFFF))
1003		return -EINVAL;
1004	if (!dev && (r->arp_flags & ATF_COM)) {
1005		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1006				      r->arp_ha.sa_data);
1007		if (!dev)
1008			return -ENODEV;
1009	}
1010	if (mask) {
1011		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1012			return -ENOBUFS;
1013		return 0;
1014	}
1015
1016	return arp_req_set_proxy(net, dev, 1);
1017}
1018
1019static int arp_req_set(struct net *net, struct arpreq *r,
1020		       struct net_device *dev)
1021{
1022	__be32 ip;
1023	struct neighbour *neigh;
1024	int err;
1025
1026	if (r->arp_flags & ATF_PUBL)
1027		return arp_req_set_public(net, r, dev);
1028
1029	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1030	if (r->arp_flags & ATF_PERM)
1031		r->arp_flags |= ATF_COM;
1032	if (dev == NULL) {
1033		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1034
1035		if (IS_ERR(rt))
1036			return PTR_ERR(rt);
1037		dev = rt->dst.dev;
1038		ip_rt_put(rt);
1039		if (!dev)
1040			return -EINVAL;
1041	}
1042	switch (dev->type) {
1043#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1044	case ARPHRD_FDDI:
1045		/*
1046		 * According to RFC 1390, FDDI devices should accept ARP
1047		 * hardware types of 1 (Ethernet).  However, to be more
1048		 * robust, we'll accept hardware types of either 1 (Ethernet)
1049		 * or 6 (IEEE 802.2).
1050		 */
1051		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1052		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1053		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1054			return -EINVAL;
1055		break;
1056#endif
1057	default:
1058		if (r->arp_ha.sa_family != dev->type)
1059			return -EINVAL;
1060		break;
1061	}
1062
1063	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1064	err = PTR_ERR(neigh);
1065	if (!IS_ERR(neigh)) {
1066		unsigned state = NUD_STALE;
1067		if (r->arp_flags & ATF_PERM)
1068			state = NUD_PERMANENT;
1069		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1070				   r->arp_ha.sa_data : NULL, state,
1071				   NEIGH_UPDATE_F_OVERRIDE |
1072				   NEIGH_UPDATE_F_ADMIN);
1073		neigh_release(neigh);
1074	}
1075	return err;
1076}
1077
1078static unsigned arp_state_to_flags(struct neighbour *neigh)
1079{
1080	if (neigh->nud_state&NUD_PERMANENT)
1081		return ATF_PERM | ATF_COM;
1082	else if (neigh->nud_state&NUD_VALID)
1083		return ATF_COM;
1084	else
1085		return 0;
1086}
1087
1088/*
1089 *	Get an ARP cache entry.
1090 */
1091
1092static int arp_req_get(struct arpreq *r, struct net_device *dev)
1093{
1094	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1095	struct neighbour *neigh;
1096	int err = -ENXIO;
1097
1098	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1099	if (neigh) {
1100		read_lock_bh(&neigh->lock);
1101		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102		r->arp_flags = arp_state_to_flags(neigh);
1103		read_unlock_bh(&neigh->lock);
1104		r->arp_ha.sa_family = dev->type;
1105		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
 
 
 
1106		neigh_release(neigh);
1107		err = 0;
1108	}
1109	return err;
1110}
1111
1112int arp_invalidate(struct net_device *dev, __be32 ip)
1113{
1114	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1115	int err = -ENXIO;
1116
1117	if (neigh) {
1118		if (neigh->nud_state & ~NUD_NOARP)
1119			err = neigh_update(neigh, NULL, NUD_FAILED,
1120					   NEIGH_UPDATE_F_OVERRIDE|
1121					   NEIGH_UPDATE_F_ADMIN);
1122		neigh_release(neigh);
1123	}
1124
1125	return err;
1126}
1127EXPORT_SYMBOL(arp_invalidate);
1128
1129static int arp_req_delete_public(struct net *net, struct arpreq *r,
1130		struct net_device *dev)
1131{
1132	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1133	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1134
1135	if (mask == htonl(0xFFFFFFFF))
1136		return pneigh_delete(&arp_tbl, net, &ip, dev);
1137
1138	if (mask)
1139		return -EINVAL;
1140
1141	return arp_req_set_proxy(net, dev, 0);
1142}
1143
1144static int arp_req_delete(struct net *net, struct arpreq *r,
1145			  struct net_device *dev)
1146{
1147	__be32 ip;
1148
1149	if (r->arp_flags & ATF_PUBL)
1150		return arp_req_delete_public(net, r, dev);
1151
1152	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1153	if (dev == NULL) {
1154		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1155		if (IS_ERR(rt))
1156			return PTR_ERR(rt);
1157		dev = rt->dst.dev;
1158		ip_rt_put(rt);
1159		if (!dev)
1160			return -EINVAL;
1161	}
1162	return arp_invalidate(dev, ip);
1163}
1164
1165/*
1166 *	Handle an ARP layer I/O control request.
1167 */
1168
1169int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1170{
1171	int err;
1172	struct arpreq r;
1173	struct net_device *dev = NULL;
1174
1175	switch (cmd) {
1176	case SIOCDARP:
1177	case SIOCSARP:
1178		if (!capable(CAP_NET_ADMIN))
1179			return -EPERM;
1180	case SIOCGARP:
1181		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1182		if (err)
1183			return -EFAULT;
1184		break;
1185	default:
1186		return -EINVAL;
1187	}
1188
1189	if (r.arp_pa.sa_family != AF_INET)
1190		return -EPFNOSUPPORT;
1191
1192	if (!(r.arp_flags & ATF_PUBL) &&
1193	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1194		return -EINVAL;
1195	if (!(r.arp_flags & ATF_NETMASK))
1196		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1197							   htonl(0xFFFFFFFFUL);
1198	rtnl_lock();
1199	if (r.arp_dev[0]) {
1200		err = -ENODEV;
1201		dev = __dev_get_by_name(net, r.arp_dev);
1202		if (dev == NULL)
1203			goto out;
1204
1205		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1206		if (!r.arp_ha.sa_family)
1207			r.arp_ha.sa_family = dev->type;
1208		err = -EINVAL;
1209		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1210			goto out;
1211	} else if (cmd == SIOCGARP) {
1212		err = -ENODEV;
1213		goto out;
1214	}
1215
1216	switch (cmd) {
1217	case SIOCDARP:
1218		err = arp_req_delete(net, &r, dev);
1219		break;
1220	case SIOCSARP:
1221		err = arp_req_set(net, &r, dev);
1222		break;
1223	case SIOCGARP:
1224		err = arp_req_get(&r, dev);
1225		break;
1226	}
1227out:
1228	rtnl_unlock();
1229	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1230		err = -EFAULT;
1231	return err;
1232}
1233
1234static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1235			    void *ptr)
1236{
1237	struct net_device *dev = ptr;
 
1238
1239	switch (event) {
1240	case NETDEV_CHANGEADDR:
1241		neigh_changeaddr(&arp_tbl, dev);
1242		rt_cache_flush(dev_net(dev), 0);
 
 
 
 
 
1243		break;
1244	default:
1245		break;
1246	}
1247
1248	return NOTIFY_DONE;
1249}
1250
1251static struct notifier_block arp_netdev_notifier = {
1252	.notifier_call = arp_netdev_event,
1253};
1254
1255/* Note, that it is not on notifier chain.
1256   It is necessary, that this routine was called after route cache will be
1257   flushed.
1258 */
1259void arp_ifdown(struct net_device *dev)
1260{
1261	neigh_ifdown(&arp_tbl, dev);
1262}
1263
1264
1265/*
1266 *	Called once on startup.
1267 */
1268
1269static struct packet_type arp_packet_type __read_mostly = {
1270	.type =	cpu_to_be16(ETH_P_ARP),
1271	.func =	arp_rcv,
1272};
1273
1274static int arp_proc_init(void);
1275
1276void __init arp_init(void)
1277{
1278	neigh_table_init(&arp_tbl);
1279
1280	dev_add_pack(&arp_packet_type);
1281	arp_proc_init();
1282#ifdef CONFIG_SYSCTL
1283	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1284#endif
1285	register_netdevice_notifier(&arp_netdev_notifier);
1286}
1287
1288#ifdef CONFIG_PROC_FS
1289#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1290
1291/* ------------------------------------------------------------------------ */
1292/*
1293 *	ax25 -> ASCII conversion
1294 */
1295static char *ax2asc2(ax25_address *a, char *buf)
1296{
1297	char c, *s;
1298	int n;
1299
1300	for (n = 0, s = buf; n < 6; n++) {
1301		c = (a->ax25_call[n] >> 1) & 0x7F;
1302
1303		if (c != ' ')
1304			*s++ = c;
1305	}
1306
1307	*s++ = '-';
1308	n = (a->ax25_call[6] >> 1) & 0x0F;
1309	if (n > 9) {
1310		*s++ = '1';
1311		n -= 10;
1312	}
1313
1314	*s++ = n + '0';
1315	*s++ = '\0';
1316
1317	if (*buf == '\0' || *buf == '-')
1318		return "*";
1319
1320	return buf;
1321}
1322#endif /* CONFIG_AX25 */
1323
1324#define HBUFFERLEN 30
1325
1326static void arp_format_neigh_entry(struct seq_file *seq,
1327				   struct neighbour *n)
1328{
1329	char hbuffer[HBUFFERLEN];
1330	int k, j;
1331	char tbuf[16];
1332	struct net_device *dev = n->dev;
1333	int hatype = dev->type;
1334
1335	read_lock(&n->lock);
1336	/* Convert hardware address to XX:XX:XX:XX ... form. */
1337#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1338	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1339		ax2asc2((ax25_address *)n->ha, hbuffer);
1340	else {
1341#endif
1342	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1343		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1344		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1345		hbuffer[k++] = ':';
1346	}
1347	if (k != 0)
1348		--k;
1349	hbuffer[k] = 0;
1350#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1351	}
1352#endif
1353	sprintf(tbuf, "%pI4", n->primary_key);
1354	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1355		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1356	read_unlock(&n->lock);
1357}
1358
1359static void arp_format_pneigh_entry(struct seq_file *seq,
1360				    struct pneigh_entry *n)
1361{
1362	struct net_device *dev = n->dev;
1363	int hatype = dev ? dev->type : 0;
1364	char tbuf[16];
1365
1366	sprintf(tbuf, "%pI4", n->key);
1367	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1368		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1369		   dev ? dev->name : "*");
1370}
1371
1372static int arp_seq_show(struct seq_file *seq, void *v)
1373{
1374	if (v == SEQ_START_TOKEN) {
1375		seq_puts(seq, "IP address       HW type     Flags       "
1376			      "HW address            Mask     Device\n");
1377	} else {
1378		struct neigh_seq_state *state = seq->private;
1379
1380		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1381			arp_format_pneigh_entry(seq, v);
1382		else
1383			arp_format_neigh_entry(seq, v);
1384	}
1385
1386	return 0;
1387}
1388
1389static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1390{
1391	/* Don't want to confuse "arp -a" w/ magic entries,
1392	 * so we tell the generic iterator to skip NUD_NOARP.
1393	 */
1394	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1395}
1396
1397/* ------------------------------------------------------------------------ */
1398
1399static const struct seq_operations arp_seq_ops = {
1400	.start	= arp_seq_start,
1401	.next	= neigh_seq_next,
1402	.stop	= neigh_seq_stop,
1403	.show	= arp_seq_show,
1404};
1405
1406static int arp_seq_open(struct inode *inode, struct file *file)
1407{
1408	return seq_open_net(inode, file, &arp_seq_ops,
1409			    sizeof(struct neigh_seq_state));
1410}
1411
1412static const struct file_operations arp_seq_fops = {
1413	.owner		= THIS_MODULE,
1414	.open           = arp_seq_open,
1415	.read           = seq_read,
1416	.llseek         = seq_lseek,
1417	.release	= seq_release_net,
1418};
1419
1420
1421static int __net_init arp_net_init(struct net *net)
1422{
1423	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1424		return -ENOMEM;
1425	return 0;
1426}
1427
1428static void __net_exit arp_net_exit(struct net *net)
1429{
1430	proc_net_remove(net, "arp");
1431}
1432
1433static struct pernet_operations arp_net_ops = {
1434	.init = arp_net_init,
1435	.exit = arp_net_exit,
1436};
1437
1438static int __init arp_proc_init(void)
1439{
1440	return register_pernet_subsys(&arp_net_ops);
1441}
1442
1443#else /* CONFIG_PROC_FS */
1444
1445static int __init arp_proc_init(void)
1446{
1447	return 0;
1448}
1449
1450#endif /* CONFIG_PROC_FS */