Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/fs/ext2/balloc.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
  10 *  Big-endian to little-endian byte-swapping/bitmaps by
  11 *        David S. Miller (davem@caip.rutgers.edu), 1995
  12 */
  13
  14#include "ext2.h"
  15#include <linux/quotaops.h>
  16#include <linux/slab.h>
  17#include <linux/sched.h>
  18#include <linux/buffer_head.h>
  19#include <linux/capability.h>
  20
  21/*
  22 * balloc.c contains the blocks allocation and deallocation routines
  23 */
  24
  25/*
  26 * The free blocks are managed by bitmaps.  A file system contains several
  27 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
  28 * block for inodes, N blocks for the inode table and data blocks.
  29 *
  30 * The file system contains group descriptors which are located after the
  31 * super block.  Each descriptor contains the number of the bitmap block and
  32 * the free blocks count in the block.  The descriptors are loaded in memory
  33 * when a file system is mounted (see ext2_fill_super).
  34 */
  35
  36
  37#define in_range(b, first, len)	((b) >= (first) && (b) <= (first) + (len) - 1)
  38
  39struct ext2_group_desc * ext2_get_group_desc(struct super_block * sb,
  40					     unsigned int block_group,
  41					     struct buffer_head ** bh)
  42{
  43	unsigned long group_desc;
  44	unsigned long offset;
  45	struct ext2_group_desc * desc;
  46	struct ext2_sb_info *sbi = EXT2_SB(sb);
  47
  48	if (block_group >= sbi->s_groups_count) {
  49		ext2_error (sb, "ext2_get_group_desc",
  50			    "block_group >= groups_count - "
  51			    "block_group = %d, groups_count = %lu",
  52			    block_group, sbi->s_groups_count);
  53
  54		return NULL;
  55	}
  56
  57	group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(sb);
  58	offset = block_group & (EXT2_DESC_PER_BLOCK(sb) - 1);
  59	if (!sbi->s_group_desc[group_desc]) {
  60		ext2_error (sb, "ext2_get_group_desc",
  61			    "Group descriptor not loaded - "
  62			    "block_group = %d, group_desc = %lu, desc = %lu",
  63			     block_group, group_desc, offset);
  64		return NULL;
  65	}
  66
  67	desc = (struct ext2_group_desc *) sbi->s_group_desc[group_desc]->b_data;
  68	if (bh)
  69		*bh = sbi->s_group_desc[group_desc];
  70	return desc + offset;
  71}
  72
  73static int ext2_valid_block_bitmap(struct super_block *sb,
  74					struct ext2_group_desc *desc,
  75					unsigned int block_group,
  76					struct buffer_head *bh)
  77{
  78	ext2_grpblk_t offset;
  79	ext2_grpblk_t next_zero_bit;
  80	ext2_fsblk_t bitmap_blk;
  81	ext2_fsblk_t group_first_block;
  82
  83	group_first_block = ext2_group_first_block_no(sb, block_group);
  84
  85	/* check whether block bitmap block number is set */
  86	bitmap_blk = le32_to_cpu(desc->bg_block_bitmap);
  87	offset = bitmap_blk - group_first_block;
  88	if (!ext2_test_bit(offset, bh->b_data))
  89		/* bad block bitmap */
  90		goto err_out;
  91
  92	/* check whether the inode bitmap block number is set */
  93	bitmap_blk = le32_to_cpu(desc->bg_inode_bitmap);
  94	offset = bitmap_blk - group_first_block;
  95	if (!ext2_test_bit(offset, bh->b_data))
  96		/* bad block bitmap */
  97		goto err_out;
  98
  99	/* check whether the inode table block number is set */
 100	bitmap_blk = le32_to_cpu(desc->bg_inode_table);
 101	offset = bitmap_blk - group_first_block;
 102	next_zero_bit = ext2_find_next_zero_bit(bh->b_data,
 103				offset + EXT2_SB(sb)->s_itb_per_group,
 104				offset);
 105	if (next_zero_bit >= offset + EXT2_SB(sb)->s_itb_per_group)
 106		/* good bitmap for inode tables */
 107		return 1;
 108
 109err_out:
 110	ext2_error(sb, __func__,
 111			"Invalid block bitmap - "
 112			"block_group = %d, block = %lu",
 113			block_group, bitmap_blk);
 114	return 0;
 115}
 116
 117/*
 118 * Read the bitmap for a given block_group,and validate the
 119 * bits for block/inode/inode tables are set in the bitmaps
 120 *
 121 * Return buffer_head on success or NULL in case of failure.
 122 */
 123static struct buffer_head *
 124read_block_bitmap(struct super_block *sb, unsigned int block_group)
 125{
 126	struct ext2_group_desc * desc;
 127	struct buffer_head * bh = NULL;
 128	ext2_fsblk_t bitmap_blk;
 129
 130	desc = ext2_get_group_desc(sb, block_group, NULL);
 131	if (!desc)
 132		return NULL;
 133	bitmap_blk = le32_to_cpu(desc->bg_block_bitmap);
 134	bh = sb_getblk(sb, bitmap_blk);
 135	if (unlikely(!bh)) {
 136		ext2_error(sb, __func__,
 137			    "Cannot read block bitmap - "
 138			    "block_group = %d, block_bitmap = %u",
 139			    block_group, le32_to_cpu(desc->bg_block_bitmap));
 140		return NULL;
 141	}
 142	if (likely(bh_uptodate_or_lock(bh)))
 143		return bh;
 144
 145	if (bh_submit_read(bh) < 0) {
 146		brelse(bh);
 147		ext2_error(sb, __func__,
 148			    "Cannot read block bitmap - "
 149			    "block_group = %d, block_bitmap = %u",
 150			    block_group, le32_to_cpu(desc->bg_block_bitmap));
 151		return NULL;
 152	}
 153
 154	ext2_valid_block_bitmap(sb, desc, block_group, bh);
 155	/*
 156	 * file system mounted not to panic on error, continue with corrupt
 157	 * bitmap
 158	 */
 159	return bh;
 160}
 161
 
 
 
 
 
 
 
 
 
 162static void group_adjust_blocks(struct super_block *sb, int group_no,
 163	struct ext2_group_desc *desc, struct buffer_head *bh, int count)
 164{
 165	if (count) {
 166		struct ext2_sb_info *sbi = EXT2_SB(sb);
 167		unsigned free_blocks;
 168
 169		spin_lock(sb_bgl_lock(sbi, group_no));
 170		free_blocks = le16_to_cpu(desc->bg_free_blocks_count);
 171		desc->bg_free_blocks_count = cpu_to_le16(free_blocks + count);
 172		spin_unlock(sb_bgl_lock(sbi, group_no));
 173		mark_buffer_dirty(bh);
 174	}
 175}
 176
 177/*
 178 * The reservation window structure operations
 179 * --------------------------------------------
 180 * Operations include:
 181 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
 182 *
 183 * We use a red-black tree to represent per-filesystem reservation
 184 * windows.
 185 *
 186 */
 187
 188/**
 189 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
 190 * @rb_root:		root of per-filesystem reservation rb tree
 191 * @verbose:		verbose mode
 192 * @fn:			function which wishes to dump the reservation map
 193 *
 194 * If verbose is turned on, it will print the whole block reservation
 195 * windows(start, end). Otherwise, it will only print out the "bad" windows,
 196 * those windows that overlap with their immediate neighbors.
 197 */
 198#if 1
 199static void __rsv_window_dump(struct rb_root *root, int verbose,
 200			      const char *fn)
 201{
 202	struct rb_node *n;
 203	struct ext2_reserve_window_node *rsv, *prev;
 204	int bad;
 205
 206restart:
 207	n = rb_first(root);
 208	bad = 0;
 209	prev = NULL;
 210
 211	printk("Block Allocation Reservation Windows Map (%s):\n", fn);
 212	while (n) {
 213		rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
 214		if (verbose)
 215			printk("reservation window 0x%p "
 216				"start: %lu, end: %lu\n",
 217				rsv, rsv->rsv_start, rsv->rsv_end);
 218		if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
 219			printk("Bad reservation %p (start >= end)\n",
 220			       rsv);
 221			bad = 1;
 222		}
 223		if (prev && prev->rsv_end >= rsv->rsv_start) {
 224			printk("Bad reservation %p (prev->end >= start)\n",
 225			       rsv);
 226			bad = 1;
 227		}
 228		if (bad) {
 229			if (!verbose) {
 230				printk("Restarting reservation walk in verbose mode\n");
 231				verbose = 1;
 232				goto restart;
 233			}
 234		}
 235		n = rb_next(n);
 236		prev = rsv;
 237	}
 238	printk("Window map complete.\n");
 239	BUG_ON(bad);
 240}
 241#define rsv_window_dump(root, verbose) \
 242	__rsv_window_dump((root), (verbose), __func__)
 243#else
 244#define rsv_window_dump(root, verbose) do {} while (0)
 245#endif
 246
 247/**
 248 * goal_in_my_reservation()
 249 * @rsv:		inode's reservation window
 250 * @grp_goal:		given goal block relative to the allocation block group
 251 * @group:		the current allocation block group
 252 * @sb:			filesystem super block
 253 *
 254 * Test if the given goal block (group relative) is within the file's
 255 * own block reservation window range.
 256 *
 257 * If the reservation window is outside the goal allocation group, return 0;
 258 * grp_goal (given goal block) could be -1, which means no specific
 259 * goal block. In this case, always return 1.
 260 * If the goal block is within the reservation window, return 1;
 261 * otherwise, return 0;
 262 */
 263static int
 264goal_in_my_reservation(struct ext2_reserve_window *rsv, ext2_grpblk_t grp_goal,
 265			unsigned int group, struct super_block * sb)
 266{
 267	ext2_fsblk_t group_first_block, group_last_block;
 268
 269	group_first_block = ext2_group_first_block_no(sb, group);
 270	group_last_block = group_first_block + EXT2_BLOCKS_PER_GROUP(sb) - 1;
 271
 272	if ((rsv->_rsv_start > group_last_block) ||
 273	    (rsv->_rsv_end < group_first_block))
 274		return 0;
 275	if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
 276		|| (grp_goal + group_first_block > rsv->_rsv_end)))
 277		return 0;
 278	return 1;
 279}
 280
 281/**
 282 * search_reserve_window()
 283 * @rb_root:		root of reservation tree
 284 * @goal:		target allocation block
 285 *
 286 * Find the reserved window which includes the goal, or the previous one
 287 * if the goal is not in any window.
 288 * Returns NULL if there are no windows or if all windows start after the goal.
 289 */
 290static struct ext2_reserve_window_node *
 291search_reserve_window(struct rb_root *root, ext2_fsblk_t goal)
 292{
 293	struct rb_node *n = root->rb_node;
 294	struct ext2_reserve_window_node *rsv;
 295
 296	if (!n)
 297		return NULL;
 298
 299	do {
 300		rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
 301
 302		if (goal < rsv->rsv_start)
 303			n = n->rb_left;
 304		else if (goal > rsv->rsv_end)
 305			n = n->rb_right;
 306		else
 307			return rsv;
 308	} while (n);
 309	/*
 310	 * We've fallen off the end of the tree: the goal wasn't inside
 311	 * any particular node.  OK, the previous node must be to one
 312	 * side of the interval containing the goal.  If it's the RHS,
 313	 * we need to back up one.
 314	 */
 315	if (rsv->rsv_start > goal) {
 316		n = rb_prev(&rsv->rsv_node);
 317		rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
 318	}
 319	return rsv;
 320}
 321
 322/*
 323 * ext2_rsv_window_add() -- Insert a window to the block reservation rb tree.
 324 * @sb:			super block
 325 * @rsv:		reservation window to add
 326 *
 327 * Must be called with rsv_lock held.
 328 */
 329void ext2_rsv_window_add(struct super_block *sb,
 330		    struct ext2_reserve_window_node *rsv)
 331{
 332	struct rb_root *root = &EXT2_SB(sb)->s_rsv_window_root;
 333	struct rb_node *node = &rsv->rsv_node;
 334	ext2_fsblk_t start = rsv->rsv_start;
 335
 336	struct rb_node ** p = &root->rb_node;
 337	struct rb_node * parent = NULL;
 338	struct ext2_reserve_window_node *this;
 339
 340	while (*p)
 341	{
 342		parent = *p;
 343		this = rb_entry(parent, struct ext2_reserve_window_node, rsv_node);
 344
 345		if (start < this->rsv_start)
 346			p = &(*p)->rb_left;
 347		else if (start > this->rsv_end)
 348			p = &(*p)->rb_right;
 349		else {
 350			rsv_window_dump(root, 1);
 351			BUG();
 352		}
 353	}
 354
 355	rb_link_node(node, parent, p);
 356	rb_insert_color(node, root);
 357}
 358
 359/**
 360 * rsv_window_remove() -- unlink a window from the reservation rb tree
 361 * @sb:			super block
 362 * @rsv:		reservation window to remove
 363 *
 364 * Mark the block reservation window as not allocated, and unlink it
 365 * from the filesystem reservation window rb tree. Must be called with
 366 * rsv_lock held.
 367 */
 368static void rsv_window_remove(struct super_block *sb,
 369			      struct ext2_reserve_window_node *rsv)
 370{
 371	rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 372	rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 373	rsv->rsv_alloc_hit = 0;
 374	rb_erase(&rsv->rsv_node, &EXT2_SB(sb)->s_rsv_window_root);
 375}
 376
 377/*
 378 * rsv_is_empty() -- Check if the reservation window is allocated.
 379 * @rsv:		given reservation window to check
 380 *
 381 * returns 1 if the end block is EXT2_RESERVE_WINDOW_NOT_ALLOCATED.
 382 */
 383static inline int rsv_is_empty(struct ext2_reserve_window *rsv)
 384{
 385	/* a valid reservation end block could not be 0 */
 386	return (rsv->_rsv_end == EXT2_RESERVE_WINDOW_NOT_ALLOCATED);
 387}
 388
 389/**
 390 * ext2_init_block_alloc_info()
 391 * @inode:		file inode structure
 392 *
 393 * Allocate and initialize the  reservation window structure, and
 394 * link the window to the ext2 inode structure at last
 395 *
 396 * The reservation window structure is only dynamically allocated
 397 * and linked to ext2 inode the first time the open file
 398 * needs a new block. So, before every ext2_new_block(s) call, for
 399 * regular files, we should check whether the reservation window
 400 * structure exists or not. In the latter case, this function is called.
 401 * Fail to do so will result in block reservation being turned off for that
 402 * open file.
 403 *
 404 * This function is called from ext2_get_blocks_handle(), also called
 405 * when setting the reservation window size through ioctl before the file
 406 * is open for write (needs block allocation).
 407 *
 408 * Needs truncate_mutex protection prior to calling this function.
 409 */
 410void ext2_init_block_alloc_info(struct inode *inode)
 411{
 412	struct ext2_inode_info *ei = EXT2_I(inode);
 413	struct ext2_block_alloc_info *block_i;
 414	struct super_block *sb = inode->i_sb;
 415
 416	block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
 417	if (block_i) {
 418		struct ext2_reserve_window_node *rsv = &block_i->rsv_window_node;
 419
 420		rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 421		rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 422
 423	 	/*
 424		 * if filesystem is mounted with NORESERVATION, the goal
 425		 * reservation window size is set to zero to indicate
 426		 * block reservation is off
 427		 */
 428		if (!test_opt(sb, RESERVATION))
 429			rsv->rsv_goal_size = 0;
 430		else
 431			rsv->rsv_goal_size = EXT2_DEFAULT_RESERVE_BLOCKS;
 432		rsv->rsv_alloc_hit = 0;
 433		block_i->last_alloc_logical_block = 0;
 434		block_i->last_alloc_physical_block = 0;
 435	}
 436	ei->i_block_alloc_info = block_i;
 437}
 438
 439/**
 440 * ext2_discard_reservation()
 441 * @inode:		inode
 442 *
 443 * Discard(free) block reservation window on last file close, or truncate
 444 * or at last iput().
 445 *
 446 * It is being called in three cases:
 447 * 	ext2_release_file(): last writer closes the file
 448 * 	ext2_clear_inode(): last iput(), when nobody links to this file.
 449 * 	ext2_truncate(): when the block indirect map is about to change.
 450 */
 451void ext2_discard_reservation(struct inode *inode)
 452{
 453	struct ext2_inode_info *ei = EXT2_I(inode);
 454	struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info;
 455	struct ext2_reserve_window_node *rsv;
 456	spinlock_t *rsv_lock = &EXT2_SB(inode->i_sb)->s_rsv_window_lock;
 457
 458	if (!block_i)
 459		return;
 460
 461	rsv = &block_i->rsv_window_node;
 462	if (!rsv_is_empty(&rsv->rsv_window)) {
 463		spin_lock(rsv_lock);
 464		if (!rsv_is_empty(&rsv->rsv_window))
 465			rsv_window_remove(inode->i_sb, rsv);
 466		spin_unlock(rsv_lock);
 467	}
 468}
 469
 470/**
 471 * ext2_free_blocks() -- Free given blocks and update quota and i_blocks
 472 * @inode:		inode
 473 * @block:		start physical block to free
 474 * @count:		number of blocks to free
 475 */
 476void ext2_free_blocks (struct inode * inode, unsigned long block,
 477		       unsigned long count)
 478{
 479	struct buffer_head *bitmap_bh = NULL;
 480	struct buffer_head * bh2;
 481	unsigned long block_group;
 482	unsigned long bit;
 483	unsigned long i;
 484	unsigned long overflow;
 485	struct super_block * sb = inode->i_sb;
 486	struct ext2_sb_info * sbi = EXT2_SB(sb);
 487	struct ext2_group_desc * desc;
 488	struct ext2_super_block * es = sbi->s_es;
 489	unsigned freed = 0, group_freed;
 490
 491	if (block < le32_to_cpu(es->s_first_data_block) ||
 492	    block + count < block ||
 493	    block + count > le32_to_cpu(es->s_blocks_count)) {
 494		ext2_error (sb, "ext2_free_blocks",
 495			    "Freeing blocks not in datazone - "
 496			    "block = %lu, count = %lu", block, count);
 497		goto error_return;
 498	}
 499
 500	ext2_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1);
 501
 502do_more:
 503	overflow = 0;
 504	block_group = (block - le32_to_cpu(es->s_first_data_block)) /
 505		      EXT2_BLOCKS_PER_GROUP(sb);
 506	bit = (block - le32_to_cpu(es->s_first_data_block)) %
 507		      EXT2_BLOCKS_PER_GROUP(sb);
 508	/*
 509	 * Check to see if we are freeing blocks across a group
 510	 * boundary.
 511	 */
 512	if (bit + count > EXT2_BLOCKS_PER_GROUP(sb)) {
 513		overflow = bit + count - EXT2_BLOCKS_PER_GROUP(sb);
 514		count -= overflow;
 515	}
 516	brelse(bitmap_bh);
 517	bitmap_bh = read_block_bitmap(sb, block_group);
 518	if (!bitmap_bh)
 519		goto error_return;
 520
 521	desc = ext2_get_group_desc (sb, block_group, &bh2);
 522	if (!desc)
 523		goto error_return;
 524
 525	if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) ||
 526	    in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) ||
 527	    in_range (block, le32_to_cpu(desc->bg_inode_table),
 528		      sbi->s_itb_per_group) ||
 529	    in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table),
 530		      sbi->s_itb_per_group)) {
 531		ext2_error (sb, "ext2_free_blocks",
 532			    "Freeing blocks in system zones - "
 533			    "Block = %lu, count = %lu",
 534			    block, count);
 535		goto error_return;
 536	}
 537
 538	for (i = 0, group_freed = 0; i < count; i++) {
 539		if (!ext2_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
 540						bit + i, bitmap_bh->b_data)) {
 541			ext2_error(sb, __func__,
 542				"bit already cleared for block %lu", block + i);
 543		} else {
 544			group_freed++;
 545		}
 546	}
 547
 548	mark_buffer_dirty(bitmap_bh);
 549	if (sb->s_flags & MS_SYNCHRONOUS)
 550		sync_dirty_buffer(bitmap_bh);
 551
 552	group_adjust_blocks(sb, block_group, desc, bh2, group_freed);
 553	freed += group_freed;
 554
 555	if (overflow) {
 556		block += count;
 557		count = overflow;
 558		goto do_more;
 559	}
 560error_return:
 561	brelse(bitmap_bh);
 562	if (freed) {
 563		percpu_counter_add(&sbi->s_freeblocks_counter, freed);
 564		dquot_free_block_nodirty(inode, freed);
 565		mark_inode_dirty(inode);
 566	}
 567}
 568
 569/**
 570 * bitmap_search_next_usable_block()
 571 * @start:		the starting block (group relative) of the search
 572 * @bh:			bufferhead contains the block group bitmap
 573 * @maxblocks:		the ending block (group relative) of the reservation
 574 *
 575 * The bitmap search --- search forward through the actual bitmap on disk until
 576 * we find a bit free.
 577 */
 578static ext2_grpblk_t
 579bitmap_search_next_usable_block(ext2_grpblk_t start, struct buffer_head *bh,
 580					ext2_grpblk_t maxblocks)
 581{
 582	ext2_grpblk_t next;
 583
 584	next = ext2_find_next_zero_bit(bh->b_data, maxblocks, start);
 585	if (next >= maxblocks)
 586		return -1;
 587	return next;
 588}
 589
 590/**
 591 * find_next_usable_block()
 592 * @start:		the starting block (group relative) to find next
 593 * 			allocatable block in bitmap.
 594 * @bh:			bufferhead contains the block group bitmap
 595 * @maxblocks:		the ending block (group relative) for the search
 596 *
 597 * Find an allocatable block in a bitmap.  We perform the "most
 598 * appropriate allocation" algorithm of looking for a free block near
 599 * the initial goal; then for a free byte somewhere in the bitmap;
 600 * then for any free bit in the bitmap.
 601 */
 602static ext2_grpblk_t
 603find_next_usable_block(int start, struct buffer_head *bh, int maxblocks)
 604{
 605	ext2_grpblk_t here, next;
 606	char *p, *r;
 607
 608	if (start > 0) {
 609		/*
 610		 * The goal was occupied; search forward for a free 
 611		 * block within the next XX blocks.
 612		 *
 613		 * end_goal is more or less random, but it has to be
 614		 * less than EXT2_BLOCKS_PER_GROUP. Aligning up to the
 615		 * next 64-bit boundary is simple..
 616		 */
 617		ext2_grpblk_t end_goal = (start + 63) & ~63;
 618		if (end_goal > maxblocks)
 619			end_goal = maxblocks;
 620		here = ext2_find_next_zero_bit(bh->b_data, end_goal, start);
 621		if (here < end_goal)
 622			return here;
 623		ext2_debug("Bit not found near goal\n");
 624	}
 625
 626	here = start;
 627	if (here < 0)
 628		here = 0;
 629
 630	p = ((char *)bh->b_data) + (here >> 3);
 631	r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
 632	next = (r - ((char *)bh->b_data)) << 3;
 633
 634	if (next < maxblocks && next >= here)
 635		return next;
 636
 637	here = bitmap_search_next_usable_block(here, bh, maxblocks);
 638	return here;
 639}
 640
 641/**
 642 * ext2_try_to_allocate()
 643 * @sb:			superblock
 644 * @group:		given allocation block group
 645 * @bitmap_bh:		bufferhead holds the block bitmap
 646 * @grp_goal:		given target block within the group
 647 * @count:		target number of blocks to allocate
 648 * @my_rsv:		reservation window
 649 *
 650 * Attempt to allocate blocks within a give range. Set the range of allocation
 651 * first, then find the first free bit(s) from the bitmap (within the range),
 652 * and at last, allocate the blocks by claiming the found free bit as allocated.
 653 *
 654 * To set the range of this allocation:
 655 * 	if there is a reservation window, only try to allocate block(s)
 656 * 	from the file's own reservation window;
 657 * 	Otherwise, the allocation range starts from the give goal block,
 658 * 	ends at the block group's last block.
 659 *
 660 * If we failed to allocate the desired block then we may end up crossing to a
 661 * new bitmap.
 662 */
 663static int
 664ext2_try_to_allocate(struct super_block *sb, int group,
 665			struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal,
 666			unsigned long *count,
 667			struct ext2_reserve_window *my_rsv)
 668{
 669	ext2_fsblk_t group_first_block;
 670       	ext2_grpblk_t start, end;
 671	unsigned long num = 0;
 672
 673	/* we do allocation within the reservation window if we have a window */
 674	if (my_rsv) {
 675		group_first_block = ext2_group_first_block_no(sb, group);
 676		if (my_rsv->_rsv_start >= group_first_block)
 677			start = my_rsv->_rsv_start - group_first_block;
 678		else
 679			/* reservation window cross group boundary */
 680			start = 0;
 681		end = my_rsv->_rsv_end - group_first_block + 1;
 682		if (end > EXT2_BLOCKS_PER_GROUP(sb))
 683			/* reservation window crosses group boundary */
 684			end = EXT2_BLOCKS_PER_GROUP(sb);
 685		if ((start <= grp_goal) && (grp_goal < end))
 686			start = grp_goal;
 687		else
 688			grp_goal = -1;
 689	} else {
 690		if (grp_goal > 0)
 691			start = grp_goal;
 692		else
 693			start = 0;
 694		end = EXT2_BLOCKS_PER_GROUP(sb);
 695	}
 696
 697	BUG_ON(start > EXT2_BLOCKS_PER_GROUP(sb));
 698
 699repeat:
 700	if (grp_goal < 0) {
 701		grp_goal = find_next_usable_block(start, bitmap_bh, end);
 702		if (grp_goal < 0)
 703			goto fail_access;
 704		if (!my_rsv) {
 705			int i;
 706
 707			for (i = 0; i < 7 && grp_goal > start &&
 708					!ext2_test_bit(grp_goal - 1,
 709					     		bitmap_bh->b_data);
 710			     		i++, grp_goal--)
 711				;
 712		}
 713	}
 714	start = grp_goal;
 715
 716	if (ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), grp_goal,
 717			       				bitmap_bh->b_data)) {
 718		/*
 719		 * The block was allocated by another thread, or it was
 720		 * allocated and then freed by another thread
 721		 */
 722		start++;
 723		grp_goal++;
 724		if (start >= end)
 725			goto fail_access;
 726		goto repeat;
 727	}
 728	num++;
 729	grp_goal++;
 730	while (num < *count && grp_goal < end
 731		&& !ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group),
 732					grp_goal, bitmap_bh->b_data)) {
 733		num++;
 734		grp_goal++;
 735	}
 736	*count = num;
 737	return grp_goal - num;
 738fail_access:
 739	*count = num;
 740	return -1;
 741}
 742
 743/**
 744 * 	find_next_reservable_window():
 745 *		find a reservable space within the given range.
 746 *		It does not allocate the reservation window for now:
 747 *		alloc_new_reservation() will do the work later.
 748 *
 749 * 	@search_head: the head of the searching list;
 750 *		This is not necessarily the list head of the whole filesystem
 751 *
 752 *		We have both head and start_block to assist the search
 753 *		for the reservable space. The list starts from head,
 754 *		but we will shift to the place where start_block is,
 755 *		then start from there, when looking for a reservable space.
 756 *
 757 * 	@size: the target new reservation window size
 758 *
 759 * 	@group_first_block: the first block we consider to start
 760 *			the real search from
 761 *
 762 * 	@last_block:
 763 *		the maximum block number that our goal reservable space
 764 *		could start from. This is normally the last block in this
 765 *		group. The search will end when we found the start of next
 766 *		possible reservable space is out of this boundary.
 767 *		This could handle the cross boundary reservation window
 768 *		request.
 769 *
 770 * 	basically we search from the given range, rather than the whole
 771 * 	reservation double linked list, (start_block, last_block)
 772 * 	to find a free region that is of my size and has not
 773 * 	been reserved.
 774 *
 775 */
 776static int find_next_reservable_window(
 777				struct ext2_reserve_window_node *search_head,
 778				struct ext2_reserve_window_node *my_rsv,
 779				struct super_block * sb,
 780				ext2_fsblk_t start_block,
 781				ext2_fsblk_t last_block)
 782{
 783	struct rb_node *next;
 784	struct ext2_reserve_window_node *rsv, *prev;
 785	ext2_fsblk_t cur;
 786	int size = my_rsv->rsv_goal_size;
 787
 788	/* TODO: make the start of the reservation window byte-aligned */
 789	/* cur = *start_block & ~7;*/
 790	cur = start_block;
 791	rsv = search_head;
 792	if (!rsv)
 793		return -1;
 794
 795	while (1) {
 796		if (cur <= rsv->rsv_end)
 797			cur = rsv->rsv_end + 1;
 798
 799		/* TODO?
 800		 * in the case we could not find a reservable space
 801		 * that is what is expected, during the re-search, we could
 802		 * remember what's the largest reservable space we could have
 803		 * and return that one.
 804		 *
 805		 * For now it will fail if we could not find the reservable
 806		 * space with expected-size (or more)...
 807		 */
 808		if (cur > last_block)
 809			return -1;		/* fail */
 810
 811		prev = rsv;
 812		next = rb_next(&rsv->rsv_node);
 813		rsv = rb_entry(next,struct ext2_reserve_window_node,rsv_node);
 814
 815		/*
 816		 * Reached the last reservation, we can just append to the
 817		 * previous one.
 818		 */
 819		if (!next)
 820			break;
 821
 822		if (cur + size <= rsv->rsv_start) {
 823			/*
 824			 * Found a reserveable space big enough.  We could
 825			 * have a reservation across the group boundary here
 826		 	 */
 827			break;
 828		}
 829	}
 830	/*
 831	 * we come here either :
 832	 * when we reach the end of the whole list,
 833	 * and there is empty reservable space after last entry in the list.
 834	 * append it to the end of the list.
 835	 *
 836	 * or we found one reservable space in the middle of the list,
 837	 * return the reservation window that we could append to.
 838	 * succeed.
 839	 */
 840
 841	if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
 842		rsv_window_remove(sb, my_rsv);
 843
 844	/*
 845	 * Let's book the whole available window for now.  We will check the
 846	 * disk bitmap later and then, if there are free blocks then we adjust
 847	 * the window size if it's larger than requested.
 848	 * Otherwise, we will remove this node from the tree next time
 849	 * call find_next_reservable_window.
 850	 */
 851	my_rsv->rsv_start = cur;
 852	my_rsv->rsv_end = cur + size - 1;
 853	my_rsv->rsv_alloc_hit = 0;
 854
 855	if (prev != my_rsv)
 856		ext2_rsv_window_add(sb, my_rsv);
 857
 858	return 0;
 859}
 860
 861/**
 862 * 	alloc_new_reservation()--allocate a new reservation window
 863 *
 864 *		To make a new reservation, we search part of the filesystem
 865 *		reservation list (the list that inside the group). We try to
 866 *		allocate a new reservation window near the allocation goal,
 867 *		or the beginning of the group, if there is no goal.
 868 *
 869 *		We first find a reservable space after the goal, then from
 870 *		there, we check the bitmap for the first free block after
 871 *		it. If there is no free block until the end of group, then the
 872 *		whole group is full, we failed. Otherwise, check if the free
 873 *		block is inside the expected reservable space, if so, we
 874 *		succeed.
 875 *		If the first free block is outside the reservable space, then
 876 *		start from the first free block, we search for next available
 877 *		space, and go on.
 878 *
 879 *	on succeed, a new reservation will be found and inserted into the list
 880 *	It contains at least one free block, and it does not overlap with other
 881 *	reservation windows.
 882 *
 883 *	failed: we failed to find a reservation window in this group
 884 *
 885 *	@rsv: the reservation
 886 *
 887 *	@grp_goal: The goal (group-relative).  It is where the search for a
 888 *		free reservable space should start from.
 889 *		if we have a goal(goal >0 ), then start from there,
 890 *		no goal(goal = -1), we start from the first block
 891 *		of the group.
 892 *
 893 *	@sb: the super block
 894 *	@group: the group we are trying to allocate in
 895 *	@bitmap_bh: the block group block bitmap
 896 *
 897 */
 898static int alloc_new_reservation(struct ext2_reserve_window_node *my_rsv,
 899		ext2_grpblk_t grp_goal, struct super_block *sb,
 900		unsigned int group, struct buffer_head *bitmap_bh)
 901{
 902	struct ext2_reserve_window_node *search_head;
 903	ext2_fsblk_t group_first_block, group_end_block, start_block;
 904	ext2_grpblk_t first_free_block;
 905	struct rb_root *fs_rsv_root = &EXT2_SB(sb)->s_rsv_window_root;
 906	unsigned long size;
 907	int ret;
 908	spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock;
 909
 910	group_first_block = ext2_group_first_block_no(sb, group);
 911	group_end_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1);
 912
 913	if (grp_goal < 0)
 914		start_block = group_first_block;
 915	else
 916		start_block = grp_goal + group_first_block;
 917
 918	size = my_rsv->rsv_goal_size;
 919
 920	if (!rsv_is_empty(&my_rsv->rsv_window)) {
 921		/*
 922		 * if the old reservation is cross group boundary
 923		 * and if the goal is inside the old reservation window,
 924		 * we will come here when we just failed to allocate from
 925		 * the first part of the window. We still have another part
 926		 * that belongs to the next group. In this case, there is no
 927		 * point to discard our window and try to allocate a new one
 928		 * in this group(which will fail). we should
 929		 * keep the reservation window, just simply move on.
 930		 *
 931		 * Maybe we could shift the start block of the reservation
 932		 * window to the first block of next group.
 933		 */
 934
 935		if ((my_rsv->rsv_start <= group_end_block) &&
 936				(my_rsv->rsv_end > group_end_block) &&
 937				(start_block >= my_rsv->rsv_start))
 938			return -1;
 939
 940		if ((my_rsv->rsv_alloc_hit >
 941		     (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
 942			/*
 943			 * if the previously allocation hit ratio is
 944			 * greater than 1/2, then we double the size of
 945			 * the reservation window the next time,
 946			 * otherwise we keep the same size window
 947			 */
 948			size = size * 2;
 949			if (size > EXT2_MAX_RESERVE_BLOCKS)
 950				size = EXT2_MAX_RESERVE_BLOCKS;
 951			my_rsv->rsv_goal_size= size;
 952		}
 953	}
 954
 955	spin_lock(rsv_lock);
 956	/*
 957	 * shift the search start to the window near the goal block
 958	 */
 959	search_head = search_reserve_window(fs_rsv_root, start_block);
 960
 961	/*
 962	 * find_next_reservable_window() simply finds a reservable window
 963	 * inside the given range(start_block, group_end_block).
 964	 *
 965	 * To make sure the reservation window has a free bit inside it, we
 966	 * need to check the bitmap after we found a reservable window.
 967	 */
 968retry:
 969	ret = find_next_reservable_window(search_head, my_rsv, sb,
 970						start_block, group_end_block);
 971
 972	if (ret == -1) {
 973		if (!rsv_is_empty(&my_rsv->rsv_window))
 974			rsv_window_remove(sb, my_rsv);
 975		spin_unlock(rsv_lock);
 976		return -1;
 977	}
 978
 979	/*
 980	 * On success, find_next_reservable_window() returns the
 981	 * reservation window where there is a reservable space after it.
 982	 * Before we reserve this reservable space, we need
 983	 * to make sure there is at least a free block inside this region.
 984	 *
 985	 * Search the first free bit on the block bitmap.  Search starts from
 986	 * the start block of the reservable space we just found.
 987	 */
 988	spin_unlock(rsv_lock);
 989	first_free_block = bitmap_search_next_usable_block(
 990			my_rsv->rsv_start - group_first_block,
 991			bitmap_bh, group_end_block - group_first_block + 1);
 992
 993	if (first_free_block < 0) {
 994		/*
 995		 * no free block left on the bitmap, no point
 996		 * to reserve the space. return failed.
 997		 */
 998		spin_lock(rsv_lock);
 999		if (!rsv_is_empty(&my_rsv->rsv_window))
1000			rsv_window_remove(sb, my_rsv);
1001		spin_unlock(rsv_lock);
1002		return -1;		/* failed */
1003	}
1004
1005	start_block = first_free_block + group_first_block;
1006	/*
1007	 * check if the first free block is within the
1008	 * free space we just reserved
1009	 */
1010	if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1011		return 0;		/* success */
1012	/*
1013	 * if the first free bit we found is out of the reservable space
1014	 * continue search for next reservable space,
1015	 * start from where the free block is,
1016	 * we also shift the list head to where we stopped last time
1017	 */
1018	search_head = my_rsv;
1019	spin_lock(rsv_lock);
1020	goto retry;
1021}
1022
1023/**
1024 * try_to_extend_reservation()
1025 * @my_rsv:		given reservation window
1026 * @sb:			super block
1027 * @size:		the delta to extend
1028 *
1029 * Attempt to expand the reservation window large enough to have
1030 * required number of free blocks
1031 *
1032 * Since ext2_try_to_allocate() will always allocate blocks within
1033 * the reservation window range, if the window size is too small,
1034 * multiple blocks allocation has to stop at the end of the reservation
1035 * window. To make this more efficient, given the total number of
1036 * blocks needed and the current size of the window, we try to
1037 * expand the reservation window size if necessary on a best-effort
1038 * basis before ext2_new_blocks() tries to allocate blocks.
1039 */
1040static void try_to_extend_reservation(struct ext2_reserve_window_node *my_rsv,
1041			struct super_block *sb, int size)
1042{
1043	struct ext2_reserve_window_node *next_rsv;
1044	struct rb_node *next;
1045	spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock;
1046
1047	if (!spin_trylock(rsv_lock))
1048		return;
1049
1050	next = rb_next(&my_rsv->rsv_node);
1051
1052	if (!next)
1053		my_rsv->rsv_end += size;
1054	else {
1055		next_rsv = rb_entry(next, struct ext2_reserve_window_node, rsv_node);
1056
1057		if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1058			my_rsv->rsv_end += size;
1059		else
1060			my_rsv->rsv_end = next_rsv->rsv_start - 1;
1061	}
1062	spin_unlock(rsv_lock);
1063}
1064
1065/**
1066 * ext2_try_to_allocate_with_rsv()
1067 * @sb:			superblock
1068 * @group:		given allocation block group
1069 * @bitmap_bh:		bufferhead holds the block bitmap
1070 * @grp_goal:		given target block within the group
1071 * @count:		target number of blocks to allocate
1072 * @my_rsv:		reservation window
1073 *
1074 * This is the main function used to allocate a new block and its reservation
1075 * window.
1076 *
1077 * Each time when a new block allocation is need, first try to allocate from
1078 * its own reservation.  If it does not have a reservation window, instead of
1079 * looking for a free bit on bitmap first, then look up the reservation list to
1080 * see if it is inside somebody else's reservation window, we try to allocate a
1081 * reservation window for it starting from the goal first. Then do the block
1082 * allocation within the reservation window.
1083 *
1084 * This will avoid keeping on searching the reservation list again and
1085 * again when somebody is looking for a free block (without
1086 * reservation), and there are lots of free blocks, but they are all
1087 * being reserved.
1088 *
1089 * We use a red-black tree for the per-filesystem reservation list.
1090 */
1091static ext2_grpblk_t
1092ext2_try_to_allocate_with_rsv(struct super_block *sb, unsigned int group,
1093			struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal,
1094			struct ext2_reserve_window_node * my_rsv,
1095			unsigned long *count)
1096{
1097	ext2_fsblk_t group_first_block, group_last_block;
1098	ext2_grpblk_t ret = 0;
1099	unsigned long num = *count;
1100
1101	/*
1102	 * we don't deal with reservation when
1103	 * filesystem is mounted without reservation
1104	 * or the file is not a regular file
1105	 * or last attempt to allocate a block with reservation turned on failed
1106	 */
1107	if (my_rsv == NULL) {
1108		return ext2_try_to_allocate(sb, group, bitmap_bh,
1109						grp_goal, count, NULL);
1110	}
1111	/*
1112	 * grp_goal is a group relative block number (if there is a goal)
1113	 * 0 <= grp_goal < EXT2_BLOCKS_PER_GROUP(sb)
1114	 * first block is a filesystem wide block number
1115	 * first block is the block number of the first block in this group
1116	 */
1117	group_first_block = ext2_group_first_block_no(sb, group);
1118	group_last_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1);
1119
1120	/*
1121	 * Basically we will allocate a new block from inode's reservation
1122	 * window.
1123	 *
1124	 * We need to allocate a new reservation window, if:
1125	 * a) inode does not have a reservation window; or
1126	 * b) last attempt to allocate a block from existing reservation
1127	 *    failed; or
1128	 * c) we come here with a goal and with a reservation window
1129	 *
1130	 * We do not need to allocate a new reservation window if we come here
1131	 * at the beginning with a goal and the goal is inside the window, or
1132	 * we don't have a goal but already have a reservation window.
1133	 * then we could go to allocate from the reservation window directly.
1134	 */
1135	while (1) {
1136		if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1137			!goal_in_my_reservation(&my_rsv->rsv_window,
1138						grp_goal, group, sb)) {
1139			if (my_rsv->rsv_goal_size < *count)
1140				my_rsv->rsv_goal_size = *count;
1141			ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1142							group, bitmap_bh);
1143			if (ret < 0)
1144				break;			/* failed */
1145
1146			if (!goal_in_my_reservation(&my_rsv->rsv_window,
1147							grp_goal, group, sb))
1148				grp_goal = -1;
1149		} else if (grp_goal >= 0) {
1150			int curr = my_rsv->rsv_end -
1151					(grp_goal + group_first_block) + 1;
1152
1153			if (curr < *count)
1154				try_to_extend_reservation(my_rsv, sb,
1155							*count - curr);
1156		}
1157
1158		if ((my_rsv->rsv_start > group_last_block) ||
1159				(my_rsv->rsv_end < group_first_block)) {
1160			rsv_window_dump(&EXT2_SB(sb)->s_rsv_window_root, 1);
1161			BUG();
1162		}
1163		ret = ext2_try_to_allocate(sb, group, bitmap_bh, grp_goal,
1164					   &num, &my_rsv->rsv_window);
1165		if (ret >= 0) {
1166			my_rsv->rsv_alloc_hit += num;
1167			*count = num;
1168			break;				/* succeed */
1169		}
1170		num = *count;
1171	}
1172	return ret;
1173}
1174
1175/**
1176 * ext2_has_free_blocks()
1177 * @sbi:		in-core super block structure.
1178 *
1179 * Check if filesystem has at least 1 free block available for allocation.
1180 */
1181static int ext2_has_free_blocks(struct ext2_sb_info *sbi)
1182{
1183	ext2_fsblk_t free_blocks, root_blocks;
1184
1185	free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1186	root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count);
1187	if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1188		!uid_eq(sbi->s_resuid, current_fsuid()) &&
1189		(gid_eq(sbi->s_resgid, GLOBAL_ROOT_GID) ||
1190		 !in_group_p (sbi->s_resgid))) {
1191		return 0;
1192	}
1193	return 1;
1194}
1195
1196/*
1197 * ext2_new_blocks() -- core block(s) allocation function
1198 * @inode:		file inode
1199 * @goal:		given target block(filesystem wide)
1200 * @count:		target number of blocks to allocate
1201 * @errp:		error code
1202 *
1203 * ext2_new_blocks uses a goal block to assist allocation.  If the goal is
1204 * free, or there is a free block within 32 blocks of the goal, that block
1205 * is allocated.  Otherwise a forward search is made for a free block; within 
1206 * each block group the search first looks for an entire free byte in the block
1207 * bitmap, and then for any free bit if that fails.
1208 * This function also updates quota and i_blocks field.
1209 */
1210ext2_fsblk_t ext2_new_blocks(struct inode *inode, ext2_fsblk_t goal,
1211		    unsigned long *count, int *errp)
1212{
1213	struct buffer_head *bitmap_bh = NULL;
1214	struct buffer_head *gdp_bh;
1215	int group_no;
1216	int goal_group;
1217	ext2_grpblk_t grp_target_blk;	/* blockgroup relative goal block */
1218	ext2_grpblk_t grp_alloc_blk;	/* blockgroup-relative allocated block*/
1219	ext2_fsblk_t ret_block;		/* filesyetem-wide allocated block */
1220	int bgi;			/* blockgroup iteration index */
1221	int performed_allocation = 0;
1222	ext2_grpblk_t free_blocks;	/* number of free blocks in a group */
1223	struct super_block *sb;
1224	struct ext2_group_desc *gdp;
1225	struct ext2_super_block *es;
1226	struct ext2_sb_info *sbi;
1227	struct ext2_reserve_window_node *my_rsv = NULL;
1228	struct ext2_block_alloc_info *block_i;
1229	unsigned short windowsz = 0;
1230	unsigned long ngroups;
1231	unsigned long num = *count;
1232	int ret;
1233
1234	*errp = -ENOSPC;
1235	sb = inode->i_sb;
 
 
 
 
1236
1237	/*
1238	 * Check quota for allocation of this block.
1239	 */
1240	ret = dquot_alloc_block(inode, num);
1241	if (ret) {
1242		*errp = ret;
1243		return 0;
1244	}
1245
1246	sbi = EXT2_SB(sb);
1247	es = EXT2_SB(sb)->s_es;
1248	ext2_debug("goal=%lu.\n", goal);
1249	/*
1250	 * Allocate a block from reservation only when
1251	 * filesystem is mounted with reservation(default,-o reservation), and
1252	 * it's a regular file, and
1253	 * the desired window size is greater than 0 (One could use ioctl
1254	 * command EXT2_IOC_SETRSVSZ to set the window size to 0 to turn off
1255	 * reservation on that particular file)
1256	 */
1257	block_i = EXT2_I(inode)->i_block_alloc_info;
1258	if (block_i) {
1259		windowsz = block_i->rsv_window_node.rsv_goal_size;
1260		if (windowsz > 0)
1261			my_rsv = &block_i->rsv_window_node;
1262	}
1263
1264	if (!ext2_has_free_blocks(sbi)) {
1265		*errp = -ENOSPC;
1266		goto out;
1267	}
1268
1269	/*
1270	 * First, test whether the goal block is free.
1271	 */
1272	if (goal < le32_to_cpu(es->s_first_data_block) ||
1273	    goal >= le32_to_cpu(es->s_blocks_count))
1274		goal = le32_to_cpu(es->s_first_data_block);
1275	group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
1276			EXT2_BLOCKS_PER_GROUP(sb);
1277	goal_group = group_no;
1278retry_alloc:
1279	gdp = ext2_get_group_desc(sb, group_no, &gdp_bh);
1280	if (!gdp)
1281		goto io_error;
1282
1283	free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1284	/*
1285	 * if there is not enough free blocks to make a new resevation
1286	 * turn off reservation for this allocation
1287	 */
1288	if (my_rsv && (free_blocks < windowsz)
1289		&& (free_blocks > 0)
1290		&& (rsv_is_empty(&my_rsv->rsv_window)))
1291		my_rsv = NULL;
1292
1293	if (free_blocks > 0) {
1294		grp_target_blk = ((goal - le32_to_cpu(es->s_first_data_block)) %
1295				EXT2_BLOCKS_PER_GROUP(sb));
1296		bitmap_bh = read_block_bitmap(sb, group_no);
1297		if (!bitmap_bh)
1298			goto io_error;
1299		grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no,
1300					bitmap_bh, grp_target_blk,
1301					my_rsv, &num);
1302		if (grp_alloc_blk >= 0)
1303			goto allocated;
1304	}
1305
1306	ngroups = EXT2_SB(sb)->s_groups_count;
1307	smp_rmb();
1308
1309	/*
1310	 * Now search the rest of the groups.  We assume that
1311	 * group_no and gdp correctly point to the last group visited.
1312	 */
1313	for (bgi = 0; bgi < ngroups; bgi++) {
1314		group_no++;
1315		if (group_no >= ngroups)
1316			group_no = 0;
1317		gdp = ext2_get_group_desc(sb, group_no, &gdp_bh);
1318		if (!gdp)
1319			goto io_error;
1320
1321		free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1322		/*
1323		 * skip this group (and avoid loading bitmap) if there
1324		 * are no free blocks
1325		 */
1326		if (!free_blocks)
1327			continue;
1328		/*
1329		 * skip this group if the number of
1330		 * free blocks is less than half of the reservation
1331		 * window size.
1332		 */
1333		if (my_rsv && (free_blocks <= (windowsz/2)))
1334			continue;
1335
1336		brelse(bitmap_bh);
1337		bitmap_bh = read_block_bitmap(sb, group_no);
1338		if (!bitmap_bh)
1339			goto io_error;
1340		/*
1341		 * try to allocate block(s) from this group, without a goal(-1).
1342		 */
1343		grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no,
1344					bitmap_bh, -1, my_rsv, &num);
1345		if (grp_alloc_blk >= 0)
1346			goto allocated;
1347	}
1348	/*
1349	 * We may end up a bogus earlier ENOSPC error due to
1350	 * filesystem is "full" of reservations, but
1351	 * there maybe indeed free blocks available on disk
1352	 * In this case, we just forget about the reservations
1353	 * just do block allocation as without reservations.
1354	 */
1355	if (my_rsv) {
1356		my_rsv = NULL;
1357		windowsz = 0;
1358		group_no = goal_group;
1359		goto retry_alloc;
1360	}
1361	/* No space left on the device */
1362	*errp = -ENOSPC;
1363	goto out;
1364
1365allocated:
1366
1367	ext2_debug("using block group %d(%d)\n",
1368			group_no, gdp->bg_free_blocks_count);
1369
1370	ret_block = grp_alloc_blk + ext2_group_first_block_no(sb, group_no);
1371
1372	if (in_range(le32_to_cpu(gdp->bg_block_bitmap), ret_block, num) ||
1373	    in_range(le32_to_cpu(gdp->bg_inode_bitmap), ret_block, num) ||
1374	    in_range(ret_block, le32_to_cpu(gdp->bg_inode_table),
1375		      EXT2_SB(sb)->s_itb_per_group) ||
1376	    in_range(ret_block + num - 1, le32_to_cpu(gdp->bg_inode_table),
1377		      EXT2_SB(sb)->s_itb_per_group)) {
1378		ext2_error(sb, "ext2_new_blocks",
1379			    "Allocating block in system zone - "
1380			    "blocks from "E2FSBLK", length %lu",
1381			    ret_block, num);
1382		/*
1383		 * ext2_try_to_allocate marked the blocks we allocated as in
1384		 * use.  So we may want to selectively mark some of the blocks
1385		 * as free
1386		 */
1387		goto retry_alloc;
1388	}
1389
1390	performed_allocation = 1;
1391
1392	if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) {
1393		ext2_error(sb, "ext2_new_blocks",
1394			    "block("E2FSBLK") >= blocks count(%d) - "
1395			    "block_group = %d, es == %p ", ret_block,
1396			le32_to_cpu(es->s_blocks_count), group_no, es);
1397		goto out;
1398	}
1399
1400	group_adjust_blocks(sb, group_no, gdp, gdp_bh, -num);
1401	percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1402
1403	mark_buffer_dirty(bitmap_bh);
1404	if (sb->s_flags & MS_SYNCHRONOUS)
1405		sync_dirty_buffer(bitmap_bh);
1406
1407	*errp = 0;
1408	brelse(bitmap_bh);
1409	if (num < *count) {
1410		dquot_free_block_nodirty(inode, *count-num);
1411		mark_inode_dirty(inode);
1412		*count = num;
1413	}
1414	return ret_block;
1415
1416io_error:
1417	*errp = -EIO;
1418out:
1419	/*
1420	 * Undo the block allocation
1421	 */
1422	if (!performed_allocation) {
1423		dquot_free_block_nodirty(inode, *count);
1424		mark_inode_dirty(inode);
1425	}
1426	brelse(bitmap_bh);
1427	return 0;
1428}
1429
1430ext2_fsblk_t ext2_new_block(struct inode *inode, unsigned long goal, int *errp)
1431{
1432	unsigned long count = 1;
1433
1434	return ext2_new_blocks(inode, goal, &count, errp);
1435}
1436
1437#ifdef EXT2FS_DEBUG
1438
1439unsigned long ext2_count_free(struct buffer_head *map, unsigned int numchars)
 
 
1440{
1441	return numchars * BITS_PER_BYTE - memweight(map->b_data, numchars);
 
 
 
 
 
 
 
 
1442}
1443
1444#endif  /*  EXT2FS_DEBUG  */
1445
1446unsigned long ext2_count_free_blocks (struct super_block * sb)
1447{
1448	struct ext2_group_desc * desc;
1449	unsigned long desc_count = 0;
1450	int i;
1451#ifdef EXT2FS_DEBUG
1452	unsigned long bitmap_count, x;
1453	struct ext2_super_block *es;
1454
1455	es = EXT2_SB(sb)->s_es;
1456	desc_count = 0;
1457	bitmap_count = 0;
1458	desc = NULL;
1459	for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) {
1460		struct buffer_head *bitmap_bh;
1461		desc = ext2_get_group_desc (sb, i, NULL);
1462		if (!desc)
1463			continue;
1464		desc_count += le16_to_cpu(desc->bg_free_blocks_count);
1465		bitmap_bh = read_block_bitmap(sb, i);
1466		if (!bitmap_bh)
1467			continue;
1468		
1469		x = ext2_count_free(bitmap_bh, sb->s_blocksize);
1470		printk ("group %d: stored = %d, counted = %lu\n",
1471			i, le16_to_cpu(desc->bg_free_blocks_count), x);
1472		bitmap_count += x;
1473		brelse(bitmap_bh);
1474	}
1475	printk("ext2_count_free_blocks: stored = %lu, computed = %lu, %lu\n",
1476		(long)le32_to_cpu(es->s_free_blocks_count),
1477		desc_count, bitmap_count);
1478	return bitmap_count;
1479#else
1480        for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) {
1481                desc = ext2_get_group_desc (sb, i, NULL);
1482                if (!desc)
1483                        continue;
1484                desc_count += le16_to_cpu(desc->bg_free_blocks_count);
1485	}
1486	return desc_count;
1487#endif
1488}
1489
1490static inline int test_root(int a, int b)
1491{
1492	int num = b;
1493
1494	while (a > num)
1495		num *= b;
1496	return num == a;
1497}
1498
1499static int ext2_group_sparse(int group)
1500{
1501	if (group <= 1)
1502		return 1;
1503	return (test_root(group, 3) || test_root(group, 5) ||
1504		test_root(group, 7));
1505}
1506
1507/**
1508 *	ext2_bg_has_super - number of blocks used by the superblock in group
1509 *	@sb: superblock for filesystem
1510 *	@group: group number to check
1511 *
1512 *	Return the number of blocks used by the superblock (primary or backup)
1513 *	in this group.  Currently this will be only 0 or 1.
1514 */
1515int ext2_bg_has_super(struct super_block *sb, int group)
1516{
1517	if (EXT2_HAS_RO_COMPAT_FEATURE(sb,EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER)&&
1518	    !ext2_group_sparse(group))
1519		return 0;
1520	return 1;
1521}
1522
1523/**
1524 *	ext2_bg_num_gdb - number of blocks used by the group table in group
1525 *	@sb: superblock for filesystem
1526 *	@group: group number to check
1527 *
1528 *	Return the number of blocks used by the group descriptor table
1529 *	(primary or backup) in this group.  In the future there may be a
1530 *	different number of descriptor blocks in each group.
1531 */
1532unsigned long ext2_bg_num_gdb(struct super_block *sb, int group)
1533{
1534	return ext2_bg_has_super(sb, group) ? EXT2_SB(sb)->s_gdb_count : 0;
1535}
1536
v3.5.6
   1/*
   2 *  linux/fs/ext2/balloc.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
  10 *  Big-endian to little-endian byte-swapping/bitmaps by
  11 *        David S. Miller (davem@caip.rutgers.edu), 1995
  12 */
  13
  14#include "ext2.h"
  15#include <linux/quotaops.h>
  16#include <linux/slab.h>
  17#include <linux/sched.h>
  18#include <linux/buffer_head.h>
  19#include <linux/capability.h>
  20
  21/*
  22 * balloc.c contains the blocks allocation and deallocation routines
  23 */
  24
  25/*
  26 * The free blocks are managed by bitmaps.  A file system contains several
  27 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
  28 * block for inodes, N blocks for the inode table and data blocks.
  29 *
  30 * The file system contains group descriptors which are located after the
  31 * super block.  Each descriptor contains the number of the bitmap block and
  32 * the free blocks count in the block.  The descriptors are loaded in memory
  33 * when a file system is mounted (see ext2_fill_super).
  34 */
  35
  36
  37#define in_range(b, first, len)	((b) >= (first) && (b) <= (first) + (len) - 1)
  38
  39struct ext2_group_desc * ext2_get_group_desc(struct super_block * sb,
  40					     unsigned int block_group,
  41					     struct buffer_head ** bh)
  42{
  43	unsigned long group_desc;
  44	unsigned long offset;
  45	struct ext2_group_desc * desc;
  46	struct ext2_sb_info *sbi = EXT2_SB(sb);
  47
  48	if (block_group >= sbi->s_groups_count) {
  49		ext2_error (sb, "ext2_get_group_desc",
  50			    "block_group >= groups_count - "
  51			    "block_group = %d, groups_count = %lu",
  52			    block_group, sbi->s_groups_count);
  53
  54		return NULL;
  55	}
  56
  57	group_desc = block_group >> EXT2_DESC_PER_BLOCK_BITS(sb);
  58	offset = block_group & (EXT2_DESC_PER_BLOCK(sb) - 1);
  59	if (!sbi->s_group_desc[group_desc]) {
  60		ext2_error (sb, "ext2_get_group_desc",
  61			    "Group descriptor not loaded - "
  62			    "block_group = %d, group_desc = %lu, desc = %lu",
  63			     block_group, group_desc, offset);
  64		return NULL;
  65	}
  66
  67	desc = (struct ext2_group_desc *) sbi->s_group_desc[group_desc]->b_data;
  68	if (bh)
  69		*bh = sbi->s_group_desc[group_desc];
  70	return desc + offset;
  71}
  72
  73static int ext2_valid_block_bitmap(struct super_block *sb,
  74					struct ext2_group_desc *desc,
  75					unsigned int block_group,
  76					struct buffer_head *bh)
  77{
  78	ext2_grpblk_t offset;
  79	ext2_grpblk_t next_zero_bit;
  80	ext2_fsblk_t bitmap_blk;
  81	ext2_fsblk_t group_first_block;
  82
  83	group_first_block = ext2_group_first_block_no(sb, block_group);
  84
  85	/* check whether block bitmap block number is set */
  86	bitmap_blk = le32_to_cpu(desc->bg_block_bitmap);
  87	offset = bitmap_blk - group_first_block;
  88	if (!ext2_test_bit(offset, bh->b_data))
  89		/* bad block bitmap */
  90		goto err_out;
  91
  92	/* check whether the inode bitmap block number is set */
  93	bitmap_blk = le32_to_cpu(desc->bg_inode_bitmap);
  94	offset = bitmap_blk - group_first_block;
  95	if (!ext2_test_bit(offset, bh->b_data))
  96		/* bad block bitmap */
  97		goto err_out;
  98
  99	/* check whether the inode table block number is set */
 100	bitmap_blk = le32_to_cpu(desc->bg_inode_table);
 101	offset = bitmap_blk - group_first_block;
 102	next_zero_bit = ext2_find_next_zero_bit(bh->b_data,
 103				offset + EXT2_SB(sb)->s_itb_per_group,
 104				offset);
 105	if (next_zero_bit >= offset + EXT2_SB(sb)->s_itb_per_group)
 106		/* good bitmap for inode tables */
 107		return 1;
 108
 109err_out:
 110	ext2_error(sb, __func__,
 111			"Invalid block bitmap - "
 112			"block_group = %d, block = %lu",
 113			block_group, bitmap_blk);
 114	return 0;
 115}
 116
 117/*
 118 * Read the bitmap for a given block_group,and validate the
 119 * bits for block/inode/inode tables are set in the bitmaps
 120 *
 121 * Return buffer_head on success or NULL in case of failure.
 122 */
 123static struct buffer_head *
 124read_block_bitmap(struct super_block *sb, unsigned int block_group)
 125{
 126	struct ext2_group_desc * desc;
 127	struct buffer_head * bh = NULL;
 128	ext2_fsblk_t bitmap_blk;
 129
 130	desc = ext2_get_group_desc(sb, block_group, NULL);
 131	if (!desc)
 132		return NULL;
 133	bitmap_blk = le32_to_cpu(desc->bg_block_bitmap);
 134	bh = sb_getblk(sb, bitmap_blk);
 135	if (unlikely(!bh)) {
 136		ext2_error(sb, __func__,
 137			    "Cannot read block bitmap - "
 138			    "block_group = %d, block_bitmap = %u",
 139			    block_group, le32_to_cpu(desc->bg_block_bitmap));
 140		return NULL;
 141	}
 142	if (likely(bh_uptodate_or_lock(bh)))
 143		return bh;
 144
 145	if (bh_submit_read(bh) < 0) {
 146		brelse(bh);
 147		ext2_error(sb, __func__,
 148			    "Cannot read block bitmap - "
 149			    "block_group = %d, block_bitmap = %u",
 150			    block_group, le32_to_cpu(desc->bg_block_bitmap));
 151		return NULL;
 152	}
 153
 154	ext2_valid_block_bitmap(sb, desc, block_group, bh);
 155	/*
 156	 * file system mounted not to panic on error, continue with corrupt
 157	 * bitmap
 158	 */
 159	return bh;
 160}
 161
 162static void release_blocks(struct super_block *sb, int count)
 163{
 164	if (count) {
 165		struct ext2_sb_info *sbi = EXT2_SB(sb);
 166
 167		percpu_counter_add(&sbi->s_freeblocks_counter, count);
 168	}
 169}
 170
 171static void group_adjust_blocks(struct super_block *sb, int group_no,
 172	struct ext2_group_desc *desc, struct buffer_head *bh, int count)
 173{
 174	if (count) {
 175		struct ext2_sb_info *sbi = EXT2_SB(sb);
 176		unsigned free_blocks;
 177
 178		spin_lock(sb_bgl_lock(sbi, group_no));
 179		free_blocks = le16_to_cpu(desc->bg_free_blocks_count);
 180		desc->bg_free_blocks_count = cpu_to_le16(free_blocks + count);
 181		spin_unlock(sb_bgl_lock(sbi, group_no));
 182		mark_buffer_dirty(bh);
 183	}
 184}
 185
 186/*
 187 * The reservation window structure operations
 188 * --------------------------------------------
 189 * Operations include:
 190 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
 191 *
 192 * We use a red-black tree to represent per-filesystem reservation
 193 * windows.
 194 *
 195 */
 196
 197/**
 198 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
 199 * @rb_root:		root of per-filesystem reservation rb tree
 200 * @verbose:		verbose mode
 201 * @fn:			function which wishes to dump the reservation map
 202 *
 203 * If verbose is turned on, it will print the whole block reservation
 204 * windows(start, end). Otherwise, it will only print out the "bad" windows,
 205 * those windows that overlap with their immediate neighbors.
 206 */
 207#if 1
 208static void __rsv_window_dump(struct rb_root *root, int verbose,
 209			      const char *fn)
 210{
 211	struct rb_node *n;
 212	struct ext2_reserve_window_node *rsv, *prev;
 213	int bad;
 214
 215restart:
 216	n = rb_first(root);
 217	bad = 0;
 218	prev = NULL;
 219
 220	printk("Block Allocation Reservation Windows Map (%s):\n", fn);
 221	while (n) {
 222		rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
 223		if (verbose)
 224			printk("reservation window 0x%p "
 225				"start: %lu, end: %lu\n",
 226				rsv, rsv->rsv_start, rsv->rsv_end);
 227		if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
 228			printk("Bad reservation %p (start >= end)\n",
 229			       rsv);
 230			bad = 1;
 231		}
 232		if (prev && prev->rsv_end >= rsv->rsv_start) {
 233			printk("Bad reservation %p (prev->end >= start)\n",
 234			       rsv);
 235			bad = 1;
 236		}
 237		if (bad) {
 238			if (!verbose) {
 239				printk("Restarting reservation walk in verbose mode\n");
 240				verbose = 1;
 241				goto restart;
 242			}
 243		}
 244		n = rb_next(n);
 245		prev = rsv;
 246	}
 247	printk("Window map complete.\n");
 248	BUG_ON(bad);
 249}
 250#define rsv_window_dump(root, verbose) \
 251	__rsv_window_dump((root), (verbose), __func__)
 252#else
 253#define rsv_window_dump(root, verbose) do {} while (0)
 254#endif
 255
 256/**
 257 * goal_in_my_reservation()
 258 * @rsv:		inode's reservation window
 259 * @grp_goal:		given goal block relative to the allocation block group
 260 * @group:		the current allocation block group
 261 * @sb:			filesystem super block
 262 *
 263 * Test if the given goal block (group relative) is within the file's
 264 * own block reservation window range.
 265 *
 266 * If the reservation window is outside the goal allocation group, return 0;
 267 * grp_goal (given goal block) could be -1, which means no specific
 268 * goal block. In this case, always return 1.
 269 * If the goal block is within the reservation window, return 1;
 270 * otherwise, return 0;
 271 */
 272static int
 273goal_in_my_reservation(struct ext2_reserve_window *rsv, ext2_grpblk_t grp_goal,
 274			unsigned int group, struct super_block * sb)
 275{
 276	ext2_fsblk_t group_first_block, group_last_block;
 277
 278	group_first_block = ext2_group_first_block_no(sb, group);
 279	group_last_block = group_first_block + EXT2_BLOCKS_PER_GROUP(sb) - 1;
 280
 281	if ((rsv->_rsv_start > group_last_block) ||
 282	    (rsv->_rsv_end < group_first_block))
 283		return 0;
 284	if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
 285		|| (grp_goal + group_first_block > rsv->_rsv_end)))
 286		return 0;
 287	return 1;
 288}
 289
 290/**
 291 * search_reserve_window()
 292 * @rb_root:		root of reservation tree
 293 * @goal:		target allocation block
 294 *
 295 * Find the reserved window which includes the goal, or the previous one
 296 * if the goal is not in any window.
 297 * Returns NULL if there are no windows or if all windows start after the goal.
 298 */
 299static struct ext2_reserve_window_node *
 300search_reserve_window(struct rb_root *root, ext2_fsblk_t goal)
 301{
 302	struct rb_node *n = root->rb_node;
 303	struct ext2_reserve_window_node *rsv;
 304
 305	if (!n)
 306		return NULL;
 307
 308	do {
 309		rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
 310
 311		if (goal < rsv->rsv_start)
 312			n = n->rb_left;
 313		else if (goal > rsv->rsv_end)
 314			n = n->rb_right;
 315		else
 316			return rsv;
 317	} while (n);
 318	/*
 319	 * We've fallen off the end of the tree: the goal wasn't inside
 320	 * any particular node.  OK, the previous node must be to one
 321	 * side of the interval containing the goal.  If it's the RHS,
 322	 * we need to back up one.
 323	 */
 324	if (rsv->rsv_start > goal) {
 325		n = rb_prev(&rsv->rsv_node);
 326		rsv = rb_entry(n, struct ext2_reserve_window_node, rsv_node);
 327	}
 328	return rsv;
 329}
 330
 331/*
 332 * ext2_rsv_window_add() -- Insert a window to the block reservation rb tree.
 333 * @sb:			super block
 334 * @rsv:		reservation window to add
 335 *
 336 * Must be called with rsv_lock held.
 337 */
 338void ext2_rsv_window_add(struct super_block *sb,
 339		    struct ext2_reserve_window_node *rsv)
 340{
 341	struct rb_root *root = &EXT2_SB(sb)->s_rsv_window_root;
 342	struct rb_node *node = &rsv->rsv_node;
 343	ext2_fsblk_t start = rsv->rsv_start;
 344
 345	struct rb_node ** p = &root->rb_node;
 346	struct rb_node * parent = NULL;
 347	struct ext2_reserve_window_node *this;
 348
 349	while (*p)
 350	{
 351		parent = *p;
 352		this = rb_entry(parent, struct ext2_reserve_window_node, rsv_node);
 353
 354		if (start < this->rsv_start)
 355			p = &(*p)->rb_left;
 356		else if (start > this->rsv_end)
 357			p = &(*p)->rb_right;
 358		else {
 359			rsv_window_dump(root, 1);
 360			BUG();
 361		}
 362	}
 363
 364	rb_link_node(node, parent, p);
 365	rb_insert_color(node, root);
 366}
 367
 368/**
 369 * rsv_window_remove() -- unlink a window from the reservation rb tree
 370 * @sb:			super block
 371 * @rsv:		reservation window to remove
 372 *
 373 * Mark the block reservation window as not allocated, and unlink it
 374 * from the filesystem reservation window rb tree. Must be called with
 375 * rsv_lock held.
 376 */
 377static void rsv_window_remove(struct super_block *sb,
 378			      struct ext2_reserve_window_node *rsv)
 379{
 380	rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 381	rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 382	rsv->rsv_alloc_hit = 0;
 383	rb_erase(&rsv->rsv_node, &EXT2_SB(sb)->s_rsv_window_root);
 384}
 385
 386/*
 387 * rsv_is_empty() -- Check if the reservation window is allocated.
 388 * @rsv:		given reservation window to check
 389 *
 390 * returns 1 if the end block is EXT2_RESERVE_WINDOW_NOT_ALLOCATED.
 391 */
 392static inline int rsv_is_empty(struct ext2_reserve_window *rsv)
 393{
 394	/* a valid reservation end block could not be 0 */
 395	return (rsv->_rsv_end == EXT2_RESERVE_WINDOW_NOT_ALLOCATED);
 396}
 397
 398/**
 399 * ext2_init_block_alloc_info()
 400 * @inode:		file inode structure
 401 *
 402 * Allocate and initialize the  reservation window structure, and
 403 * link the window to the ext2 inode structure at last
 404 *
 405 * The reservation window structure is only dynamically allocated
 406 * and linked to ext2 inode the first time the open file
 407 * needs a new block. So, before every ext2_new_block(s) call, for
 408 * regular files, we should check whether the reservation window
 409 * structure exists or not. In the latter case, this function is called.
 410 * Fail to do so will result in block reservation being turned off for that
 411 * open file.
 412 *
 413 * This function is called from ext2_get_blocks_handle(), also called
 414 * when setting the reservation window size through ioctl before the file
 415 * is open for write (needs block allocation).
 416 *
 417 * Needs truncate_mutex protection prior to calling this function.
 418 */
 419void ext2_init_block_alloc_info(struct inode *inode)
 420{
 421	struct ext2_inode_info *ei = EXT2_I(inode);
 422	struct ext2_block_alloc_info *block_i;
 423	struct super_block *sb = inode->i_sb;
 424
 425	block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
 426	if (block_i) {
 427		struct ext2_reserve_window_node *rsv = &block_i->rsv_window_node;
 428
 429		rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 430		rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
 431
 432	 	/*
 433		 * if filesystem is mounted with NORESERVATION, the goal
 434		 * reservation window size is set to zero to indicate
 435		 * block reservation is off
 436		 */
 437		if (!test_opt(sb, RESERVATION))
 438			rsv->rsv_goal_size = 0;
 439		else
 440			rsv->rsv_goal_size = EXT2_DEFAULT_RESERVE_BLOCKS;
 441		rsv->rsv_alloc_hit = 0;
 442		block_i->last_alloc_logical_block = 0;
 443		block_i->last_alloc_physical_block = 0;
 444	}
 445	ei->i_block_alloc_info = block_i;
 446}
 447
 448/**
 449 * ext2_discard_reservation()
 450 * @inode:		inode
 451 *
 452 * Discard(free) block reservation window on last file close, or truncate
 453 * or at last iput().
 454 *
 455 * It is being called in three cases:
 456 * 	ext2_release_file(): last writer closes the file
 457 * 	ext2_clear_inode(): last iput(), when nobody links to this file.
 458 * 	ext2_truncate(): when the block indirect map is about to change.
 459 */
 460void ext2_discard_reservation(struct inode *inode)
 461{
 462	struct ext2_inode_info *ei = EXT2_I(inode);
 463	struct ext2_block_alloc_info *block_i = ei->i_block_alloc_info;
 464	struct ext2_reserve_window_node *rsv;
 465	spinlock_t *rsv_lock = &EXT2_SB(inode->i_sb)->s_rsv_window_lock;
 466
 467	if (!block_i)
 468		return;
 469
 470	rsv = &block_i->rsv_window_node;
 471	if (!rsv_is_empty(&rsv->rsv_window)) {
 472		spin_lock(rsv_lock);
 473		if (!rsv_is_empty(&rsv->rsv_window))
 474			rsv_window_remove(inode->i_sb, rsv);
 475		spin_unlock(rsv_lock);
 476	}
 477}
 478
 479/**
 480 * ext2_free_blocks() -- Free given blocks and update quota and i_blocks
 481 * @inode:		inode
 482 * @block:		start physcial block to free
 483 * @count:		number of blocks to free
 484 */
 485void ext2_free_blocks (struct inode * inode, unsigned long block,
 486		       unsigned long count)
 487{
 488	struct buffer_head *bitmap_bh = NULL;
 489	struct buffer_head * bh2;
 490	unsigned long block_group;
 491	unsigned long bit;
 492	unsigned long i;
 493	unsigned long overflow;
 494	struct super_block * sb = inode->i_sb;
 495	struct ext2_sb_info * sbi = EXT2_SB(sb);
 496	struct ext2_group_desc * desc;
 497	struct ext2_super_block * es = sbi->s_es;
 498	unsigned freed = 0, group_freed;
 499
 500	if (block < le32_to_cpu(es->s_first_data_block) ||
 501	    block + count < block ||
 502	    block + count > le32_to_cpu(es->s_blocks_count)) {
 503		ext2_error (sb, "ext2_free_blocks",
 504			    "Freeing blocks not in datazone - "
 505			    "block = %lu, count = %lu", block, count);
 506		goto error_return;
 507	}
 508
 509	ext2_debug ("freeing block(s) %lu-%lu\n", block, block + count - 1);
 510
 511do_more:
 512	overflow = 0;
 513	block_group = (block - le32_to_cpu(es->s_first_data_block)) /
 514		      EXT2_BLOCKS_PER_GROUP(sb);
 515	bit = (block - le32_to_cpu(es->s_first_data_block)) %
 516		      EXT2_BLOCKS_PER_GROUP(sb);
 517	/*
 518	 * Check to see if we are freeing blocks across a group
 519	 * boundary.
 520	 */
 521	if (bit + count > EXT2_BLOCKS_PER_GROUP(sb)) {
 522		overflow = bit + count - EXT2_BLOCKS_PER_GROUP(sb);
 523		count -= overflow;
 524	}
 525	brelse(bitmap_bh);
 526	bitmap_bh = read_block_bitmap(sb, block_group);
 527	if (!bitmap_bh)
 528		goto error_return;
 529
 530	desc = ext2_get_group_desc (sb, block_group, &bh2);
 531	if (!desc)
 532		goto error_return;
 533
 534	if (in_range (le32_to_cpu(desc->bg_block_bitmap), block, count) ||
 535	    in_range (le32_to_cpu(desc->bg_inode_bitmap), block, count) ||
 536	    in_range (block, le32_to_cpu(desc->bg_inode_table),
 537		      sbi->s_itb_per_group) ||
 538	    in_range (block + count - 1, le32_to_cpu(desc->bg_inode_table),
 539		      sbi->s_itb_per_group)) {
 540		ext2_error (sb, "ext2_free_blocks",
 541			    "Freeing blocks in system zones - "
 542			    "Block = %lu, count = %lu",
 543			    block, count);
 544		goto error_return;
 545	}
 546
 547	for (i = 0, group_freed = 0; i < count; i++) {
 548		if (!ext2_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
 549						bit + i, bitmap_bh->b_data)) {
 550			ext2_error(sb, __func__,
 551				"bit already cleared for block %lu", block + i);
 552		} else {
 553			group_freed++;
 554		}
 555	}
 556
 557	mark_buffer_dirty(bitmap_bh);
 558	if (sb->s_flags & MS_SYNCHRONOUS)
 559		sync_dirty_buffer(bitmap_bh);
 560
 561	group_adjust_blocks(sb, block_group, desc, bh2, group_freed);
 562	freed += group_freed;
 563
 564	if (overflow) {
 565		block += count;
 566		count = overflow;
 567		goto do_more;
 568	}
 569error_return:
 570	brelse(bitmap_bh);
 571	release_blocks(sb, freed);
 572	dquot_free_block_nodirty(inode, freed);
 
 
 
 573}
 574
 575/**
 576 * bitmap_search_next_usable_block()
 577 * @start:		the starting block (group relative) of the search
 578 * @bh:			bufferhead contains the block group bitmap
 579 * @maxblocks:		the ending block (group relative) of the reservation
 580 *
 581 * The bitmap search --- search forward through the actual bitmap on disk until
 582 * we find a bit free.
 583 */
 584static ext2_grpblk_t
 585bitmap_search_next_usable_block(ext2_grpblk_t start, struct buffer_head *bh,
 586					ext2_grpblk_t maxblocks)
 587{
 588	ext2_grpblk_t next;
 589
 590	next = ext2_find_next_zero_bit(bh->b_data, maxblocks, start);
 591	if (next >= maxblocks)
 592		return -1;
 593	return next;
 594}
 595
 596/**
 597 * find_next_usable_block()
 598 * @start:		the starting block (group relative) to find next
 599 * 			allocatable block in bitmap.
 600 * @bh:			bufferhead contains the block group bitmap
 601 * @maxblocks:		the ending block (group relative) for the search
 602 *
 603 * Find an allocatable block in a bitmap.  We perform the "most
 604 * appropriate allocation" algorithm of looking for a free block near
 605 * the initial goal; then for a free byte somewhere in the bitmap;
 606 * then for any free bit in the bitmap.
 607 */
 608static ext2_grpblk_t
 609find_next_usable_block(int start, struct buffer_head *bh, int maxblocks)
 610{
 611	ext2_grpblk_t here, next;
 612	char *p, *r;
 613
 614	if (start > 0) {
 615		/*
 616		 * The goal was occupied; search forward for a free 
 617		 * block within the next XX blocks.
 618		 *
 619		 * end_goal is more or less random, but it has to be
 620		 * less than EXT2_BLOCKS_PER_GROUP. Aligning up to the
 621		 * next 64-bit boundary is simple..
 622		 */
 623		ext2_grpblk_t end_goal = (start + 63) & ~63;
 624		if (end_goal > maxblocks)
 625			end_goal = maxblocks;
 626		here = ext2_find_next_zero_bit(bh->b_data, end_goal, start);
 627		if (here < end_goal)
 628			return here;
 629		ext2_debug("Bit not found near goal\n");
 630	}
 631
 632	here = start;
 633	if (here < 0)
 634		here = 0;
 635
 636	p = ((char *)bh->b_data) + (here >> 3);
 637	r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
 638	next = (r - ((char *)bh->b_data)) << 3;
 639
 640	if (next < maxblocks && next >= here)
 641		return next;
 642
 643	here = bitmap_search_next_usable_block(here, bh, maxblocks);
 644	return here;
 645}
 646
 647/**
 648 * ext2_try_to_allocate()
 649 * @sb:			superblock
 650 * @group:		given allocation block group
 651 * @bitmap_bh:		bufferhead holds the block bitmap
 652 * @grp_goal:		given target block within the group
 653 * @count:		target number of blocks to allocate
 654 * @my_rsv:		reservation window
 655 *
 656 * Attempt to allocate blocks within a give range. Set the range of allocation
 657 * first, then find the first free bit(s) from the bitmap (within the range),
 658 * and at last, allocate the blocks by claiming the found free bit as allocated.
 659 *
 660 * To set the range of this allocation:
 661 * 	if there is a reservation window, only try to allocate block(s)
 662 * 	from the file's own reservation window;
 663 * 	Otherwise, the allocation range starts from the give goal block,
 664 * 	ends at the block group's last block.
 665 *
 666 * If we failed to allocate the desired block then we may end up crossing to a
 667 * new bitmap.
 668 */
 669static int
 670ext2_try_to_allocate(struct super_block *sb, int group,
 671			struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal,
 672			unsigned long *count,
 673			struct ext2_reserve_window *my_rsv)
 674{
 675	ext2_fsblk_t group_first_block;
 676       	ext2_grpblk_t start, end;
 677	unsigned long num = 0;
 678
 679	/* we do allocation within the reservation window if we have a window */
 680	if (my_rsv) {
 681		group_first_block = ext2_group_first_block_no(sb, group);
 682		if (my_rsv->_rsv_start >= group_first_block)
 683			start = my_rsv->_rsv_start - group_first_block;
 684		else
 685			/* reservation window cross group boundary */
 686			start = 0;
 687		end = my_rsv->_rsv_end - group_first_block + 1;
 688		if (end > EXT2_BLOCKS_PER_GROUP(sb))
 689			/* reservation window crosses group boundary */
 690			end = EXT2_BLOCKS_PER_GROUP(sb);
 691		if ((start <= grp_goal) && (grp_goal < end))
 692			start = grp_goal;
 693		else
 694			grp_goal = -1;
 695	} else {
 696		if (grp_goal > 0)
 697			start = grp_goal;
 698		else
 699			start = 0;
 700		end = EXT2_BLOCKS_PER_GROUP(sb);
 701	}
 702
 703	BUG_ON(start > EXT2_BLOCKS_PER_GROUP(sb));
 704
 705repeat:
 706	if (grp_goal < 0) {
 707		grp_goal = find_next_usable_block(start, bitmap_bh, end);
 708		if (grp_goal < 0)
 709			goto fail_access;
 710		if (!my_rsv) {
 711			int i;
 712
 713			for (i = 0; i < 7 && grp_goal > start &&
 714					!ext2_test_bit(grp_goal - 1,
 715					     		bitmap_bh->b_data);
 716			     		i++, grp_goal--)
 717				;
 718		}
 719	}
 720	start = grp_goal;
 721
 722	if (ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group), grp_goal,
 723			       				bitmap_bh->b_data)) {
 724		/*
 725		 * The block was allocated by another thread, or it was
 726		 * allocated and then freed by another thread
 727		 */
 728		start++;
 729		grp_goal++;
 730		if (start >= end)
 731			goto fail_access;
 732		goto repeat;
 733	}
 734	num++;
 735	grp_goal++;
 736	while (num < *count && grp_goal < end
 737		&& !ext2_set_bit_atomic(sb_bgl_lock(EXT2_SB(sb), group),
 738					grp_goal, bitmap_bh->b_data)) {
 739		num++;
 740		grp_goal++;
 741	}
 742	*count = num;
 743	return grp_goal - num;
 744fail_access:
 745	*count = num;
 746	return -1;
 747}
 748
 749/**
 750 * 	find_next_reservable_window():
 751 *		find a reservable space within the given range.
 752 *		It does not allocate the reservation window for now:
 753 *		alloc_new_reservation() will do the work later.
 754 *
 755 * 	@search_head: the head of the searching list;
 756 *		This is not necessarily the list head of the whole filesystem
 757 *
 758 *		We have both head and start_block to assist the search
 759 *		for the reservable space. The list starts from head,
 760 *		but we will shift to the place where start_block is,
 761 *		then start from there, when looking for a reservable space.
 762 *
 763 * 	@size: the target new reservation window size
 764 *
 765 * 	@group_first_block: the first block we consider to start
 766 *			the real search from
 767 *
 768 * 	@last_block:
 769 *		the maximum block number that our goal reservable space
 770 *		could start from. This is normally the last block in this
 771 *		group. The search will end when we found the start of next
 772 *		possible reservable space is out of this boundary.
 773 *		This could handle the cross boundary reservation window
 774 *		request.
 775 *
 776 * 	basically we search from the given range, rather than the whole
 777 * 	reservation double linked list, (start_block, last_block)
 778 * 	to find a free region that is of my size and has not
 779 * 	been reserved.
 780 *
 781 */
 782static int find_next_reservable_window(
 783				struct ext2_reserve_window_node *search_head,
 784				struct ext2_reserve_window_node *my_rsv,
 785				struct super_block * sb,
 786				ext2_fsblk_t start_block,
 787				ext2_fsblk_t last_block)
 788{
 789	struct rb_node *next;
 790	struct ext2_reserve_window_node *rsv, *prev;
 791	ext2_fsblk_t cur;
 792	int size = my_rsv->rsv_goal_size;
 793
 794	/* TODO: make the start of the reservation window byte-aligned */
 795	/* cur = *start_block & ~7;*/
 796	cur = start_block;
 797	rsv = search_head;
 798	if (!rsv)
 799		return -1;
 800
 801	while (1) {
 802		if (cur <= rsv->rsv_end)
 803			cur = rsv->rsv_end + 1;
 804
 805		/* TODO?
 806		 * in the case we could not find a reservable space
 807		 * that is what is expected, during the re-search, we could
 808		 * remember what's the largest reservable space we could have
 809		 * and return that one.
 810		 *
 811		 * For now it will fail if we could not find the reservable
 812		 * space with expected-size (or more)...
 813		 */
 814		if (cur > last_block)
 815			return -1;		/* fail */
 816
 817		prev = rsv;
 818		next = rb_next(&rsv->rsv_node);
 819		rsv = rb_entry(next,struct ext2_reserve_window_node,rsv_node);
 820
 821		/*
 822		 * Reached the last reservation, we can just append to the
 823		 * previous one.
 824		 */
 825		if (!next)
 826			break;
 827
 828		if (cur + size <= rsv->rsv_start) {
 829			/*
 830			 * Found a reserveable space big enough.  We could
 831			 * have a reservation across the group boundary here
 832		 	 */
 833			break;
 834		}
 835	}
 836	/*
 837	 * we come here either :
 838	 * when we reach the end of the whole list,
 839	 * and there is empty reservable space after last entry in the list.
 840	 * append it to the end of the list.
 841	 *
 842	 * or we found one reservable space in the middle of the list,
 843	 * return the reservation window that we could append to.
 844	 * succeed.
 845	 */
 846
 847	if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
 848		rsv_window_remove(sb, my_rsv);
 849
 850	/*
 851	 * Let's book the whole available window for now.  We will check the
 852	 * disk bitmap later and then, if there are free blocks then we adjust
 853	 * the window size if it's larger than requested.
 854	 * Otherwise, we will remove this node from the tree next time
 855	 * call find_next_reservable_window.
 856	 */
 857	my_rsv->rsv_start = cur;
 858	my_rsv->rsv_end = cur + size - 1;
 859	my_rsv->rsv_alloc_hit = 0;
 860
 861	if (prev != my_rsv)
 862		ext2_rsv_window_add(sb, my_rsv);
 863
 864	return 0;
 865}
 866
 867/**
 868 * 	alloc_new_reservation()--allocate a new reservation window
 869 *
 870 *		To make a new reservation, we search part of the filesystem
 871 *		reservation list (the list that inside the group). We try to
 872 *		allocate a new reservation window near the allocation goal,
 873 *		or the beginning of the group, if there is no goal.
 874 *
 875 *		We first find a reservable space after the goal, then from
 876 *		there, we check the bitmap for the first free block after
 877 *		it. If there is no free block until the end of group, then the
 878 *		whole group is full, we failed. Otherwise, check if the free
 879 *		block is inside the expected reservable space, if so, we
 880 *		succeed.
 881 *		If the first free block is outside the reservable space, then
 882 *		start from the first free block, we search for next available
 883 *		space, and go on.
 884 *
 885 *	on succeed, a new reservation will be found and inserted into the list
 886 *	It contains at least one free block, and it does not overlap with other
 887 *	reservation windows.
 888 *
 889 *	failed: we failed to find a reservation window in this group
 890 *
 891 *	@rsv: the reservation
 892 *
 893 *	@grp_goal: The goal (group-relative).  It is where the search for a
 894 *		free reservable space should start from.
 895 *		if we have a goal(goal >0 ), then start from there,
 896 *		no goal(goal = -1), we start from the first block
 897 *		of the group.
 898 *
 899 *	@sb: the super block
 900 *	@group: the group we are trying to allocate in
 901 *	@bitmap_bh: the block group block bitmap
 902 *
 903 */
 904static int alloc_new_reservation(struct ext2_reserve_window_node *my_rsv,
 905		ext2_grpblk_t grp_goal, struct super_block *sb,
 906		unsigned int group, struct buffer_head *bitmap_bh)
 907{
 908	struct ext2_reserve_window_node *search_head;
 909	ext2_fsblk_t group_first_block, group_end_block, start_block;
 910	ext2_grpblk_t first_free_block;
 911	struct rb_root *fs_rsv_root = &EXT2_SB(sb)->s_rsv_window_root;
 912	unsigned long size;
 913	int ret;
 914	spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock;
 915
 916	group_first_block = ext2_group_first_block_no(sb, group);
 917	group_end_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1);
 918
 919	if (grp_goal < 0)
 920		start_block = group_first_block;
 921	else
 922		start_block = grp_goal + group_first_block;
 923
 924	size = my_rsv->rsv_goal_size;
 925
 926	if (!rsv_is_empty(&my_rsv->rsv_window)) {
 927		/*
 928		 * if the old reservation is cross group boundary
 929		 * and if the goal is inside the old reservation window,
 930		 * we will come here when we just failed to allocate from
 931		 * the first part of the window. We still have another part
 932		 * that belongs to the next group. In this case, there is no
 933		 * point to discard our window and try to allocate a new one
 934		 * in this group(which will fail). we should
 935		 * keep the reservation window, just simply move on.
 936		 *
 937		 * Maybe we could shift the start block of the reservation
 938		 * window to the first block of next group.
 939		 */
 940
 941		if ((my_rsv->rsv_start <= group_end_block) &&
 942				(my_rsv->rsv_end > group_end_block) &&
 943				(start_block >= my_rsv->rsv_start))
 944			return -1;
 945
 946		if ((my_rsv->rsv_alloc_hit >
 947		     (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
 948			/*
 949			 * if the previously allocation hit ratio is
 950			 * greater than 1/2, then we double the size of
 951			 * the reservation window the next time,
 952			 * otherwise we keep the same size window
 953			 */
 954			size = size * 2;
 955			if (size > EXT2_MAX_RESERVE_BLOCKS)
 956				size = EXT2_MAX_RESERVE_BLOCKS;
 957			my_rsv->rsv_goal_size= size;
 958		}
 959	}
 960
 961	spin_lock(rsv_lock);
 962	/*
 963	 * shift the search start to the window near the goal block
 964	 */
 965	search_head = search_reserve_window(fs_rsv_root, start_block);
 966
 967	/*
 968	 * find_next_reservable_window() simply finds a reservable window
 969	 * inside the given range(start_block, group_end_block).
 970	 *
 971	 * To make sure the reservation window has a free bit inside it, we
 972	 * need to check the bitmap after we found a reservable window.
 973	 */
 974retry:
 975	ret = find_next_reservable_window(search_head, my_rsv, sb,
 976						start_block, group_end_block);
 977
 978	if (ret == -1) {
 979		if (!rsv_is_empty(&my_rsv->rsv_window))
 980			rsv_window_remove(sb, my_rsv);
 981		spin_unlock(rsv_lock);
 982		return -1;
 983	}
 984
 985	/*
 986	 * On success, find_next_reservable_window() returns the
 987	 * reservation window where there is a reservable space after it.
 988	 * Before we reserve this reservable space, we need
 989	 * to make sure there is at least a free block inside this region.
 990	 *
 991	 * Search the first free bit on the block bitmap.  Search starts from
 992	 * the start block of the reservable space we just found.
 993	 */
 994	spin_unlock(rsv_lock);
 995	first_free_block = bitmap_search_next_usable_block(
 996			my_rsv->rsv_start - group_first_block,
 997			bitmap_bh, group_end_block - group_first_block + 1);
 998
 999	if (first_free_block < 0) {
1000		/*
1001		 * no free block left on the bitmap, no point
1002		 * to reserve the space. return failed.
1003		 */
1004		spin_lock(rsv_lock);
1005		if (!rsv_is_empty(&my_rsv->rsv_window))
1006			rsv_window_remove(sb, my_rsv);
1007		spin_unlock(rsv_lock);
1008		return -1;		/* failed */
1009	}
1010
1011	start_block = first_free_block + group_first_block;
1012	/*
1013	 * check if the first free block is within the
1014	 * free space we just reserved
1015	 */
1016	if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1017		return 0;		/* success */
1018	/*
1019	 * if the first free bit we found is out of the reservable space
1020	 * continue search for next reservable space,
1021	 * start from where the free block is,
1022	 * we also shift the list head to where we stopped last time
1023	 */
1024	search_head = my_rsv;
1025	spin_lock(rsv_lock);
1026	goto retry;
1027}
1028
1029/**
1030 * try_to_extend_reservation()
1031 * @my_rsv:		given reservation window
1032 * @sb:			super block
1033 * @size:		the delta to extend
1034 *
1035 * Attempt to expand the reservation window large enough to have
1036 * required number of free blocks
1037 *
1038 * Since ext2_try_to_allocate() will always allocate blocks within
1039 * the reservation window range, if the window size is too small,
1040 * multiple blocks allocation has to stop at the end of the reservation
1041 * window. To make this more efficient, given the total number of
1042 * blocks needed and the current size of the window, we try to
1043 * expand the reservation window size if necessary on a best-effort
1044 * basis before ext2_new_blocks() tries to allocate blocks.
1045 */
1046static void try_to_extend_reservation(struct ext2_reserve_window_node *my_rsv,
1047			struct super_block *sb, int size)
1048{
1049	struct ext2_reserve_window_node *next_rsv;
1050	struct rb_node *next;
1051	spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock;
1052
1053	if (!spin_trylock(rsv_lock))
1054		return;
1055
1056	next = rb_next(&my_rsv->rsv_node);
1057
1058	if (!next)
1059		my_rsv->rsv_end += size;
1060	else {
1061		next_rsv = rb_entry(next, struct ext2_reserve_window_node, rsv_node);
1062
1063		if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1064			my_rsv->rsv_end += size;
1065		else
1066			my_rsv->rsv_end = next_rsv->rsv_start - 1;
1067	}
1068	spin_unlock(rsv_lock);
1069}
1070
1071/**
1072 * ext2_try_to_allocate_with_rsv()
1073 * @sb:			superblock
1074 * @group:		given allocation block group
1075 * @bitmap_bh:		bufferhead holds the block bitmap
1076 * @grp_goal:		given target block within the group
1077 * @count:		target number of blocks to allocate
1078 * @my_rsv:		reservation window
1079 *
1080 * This is the main function used to allocate a new block and its reservation
1081 * window.
1082 *
1083 * Each time when a new block allocation is need, first try to allocate from
1084 * its own reservation.  If it does not have a reservation window, instead of
1085 * looking for a free bit on bitmap first, then look up the reservation list to
1086 * see if it is inside somebody else's reservation window, we try to allocate a
1087 * reservation window for it starting from the goal first. Then do the block
1088 * allocation within the reservation window.
1089 *
1090 * This will avoid keeping on searching the reservation list again and
1091 * again when somebody is looking for a free block (without
1092 * reservation), and there are lots of free blocks, but they are all
1093 * being reserved.
1094 *
1095 * We use a red-black tree for the per-filesystem reservation list.
1096 */
1097static ext2_grpblk_t
1098ext2_try_to_allocate_with_rsv(struct super_block *sb, unsigned int group,
1099			struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal,
1100			struct ext2_reserve_window_node * my_rsv,
1101			unsigned long *count)
1102{
1103	ext2_fsblk_t group_first_block, group_last_block;
1104	ext2_grpblk_t ret = 0;
1105	unsigned long num = *count;
1106
1107	/*
1108	 * we don't deal with reservation when
1109	 * filesystem is mounted without reservation
1110	 * or the file is not a regular file
1111	 * or last attempt to allocate a block with reservation turned on failed
1112	 */
1113	if (my_rsv == NULL) {
1114		return ext2_try_to_allocate(sb, group, bitmap_bh,
1115						grp_goal, count, NULL);
1116	}
1117	/*
1118	 * grp_goal is a group relative block number (if there is a goal)
1119	 * 0 <= grp_goal < EXT2_BLOCKS_PER_GROUP(sb)
1120	 * first block is a filesystem wide block number
1121	 * first block is the block number of the first block in this group
1122	 */
1123	group_first_block = ext2_group_first_block_no(sb, group);
1124	group_last_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1);
1125
1126	/*
1127	 * Basically we will allocate a new block from inode's reservation
1128	 * window.
1129	 *
1130	 * We need to allocate a new reservation window, if:
1131	 * a) inode does not have a reservation window; or
1132	 * b) last attempt to allocate a block from existing reservation
1133	 *    failed; or
1134	 * c) we come here with a goal and with a reservation window
1135	 *
1136	 * We do not need to allocate a new reservation window if we come here
1137	 * at the beginning with a goal and the goal is inside the window, or
1138	 * we don't have a goal but already have a reservation window.
1139	 * then we could go to allocate from the reservation window directly.
1140	 */
1141	while (1) {
1142		if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1143			!goal_in_my_reservation(&my_rsv->rsv_window,
1144						grp_goal, group, sb)) {
1145			if (my_rsv->rsv_goal_size < *count)
1146				my_rsv->rsv_goal_size = *count;
1147			ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1148							group, bitmap_bh);
1149			if (ret < 0)
1150				break;			/* failed */
1151
1152			if (!goal_in_my_reservation(&my_rsv->rsv_window,
1153							grp_goal, group, sb))
1154				grp_goal = -1;
1155		} else if (grp_goal >= 0) {
1156			int curr = my_rsv->rsv_end -
1157					(grp_goal + group_first_block) + 1;
1158
1159			if (curr < *count)
1160				try_to_extend_reservation(my_rsv, sb,
1161							*count - curr);
1162		}
1163
1164		if ((my_rsv->rsv_start > group_last_block) ||
1165				(my_rsv->rsv_end < group_first_block)) {
1166			rsv_window_dump(&EXT2_SB(sb)->s_rsv_window_root, 1);
1167			BUG();
1168		}
1169		ret = ext2_try_to_allocate(sb, group, bitmap_bh, grp_goal,
1170					   &num, &my_rsv->rsv_window);
1171		if (ret >= 0) {
1172			my_rsv->rsv_alloc_hit += num;
1173			*count = num;
1174			break;				/* succeed */
1175		}
1176		num = *count;
1177	}
1178	return ret;
1179}
1180
1181/**
1182 * ext2_has_free_blocks()
1183 * @sbi:		in-core super block structure.
1184 *
1185 * Check if filesystem has at least 1 free block available for allocation.
1186 */
1187static int ext2_has_free_blocks(struct ext2_sb_info *sbi)
1188{
1189	ext2_fsblk_t free_blocks, root_blocks;
1190
1191	free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1192	root_blocks = le32_to_cpu(sbi->s_es->s_r_blocks_count);
1193	if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1194		!uid_eq(sbi->s_resuid, current_fsuid()) &&
1195		(gid_eq(sbi->s_resgid, GLOBAL_ROOT_GID) ||
1196		 !in_group_p (sbi->s_resgid))) {
1197		return 0;
1198	}
1199	return 1;
1200}
1201
1202/*
1203 * ext2_new_blocks() -- core block(s) allocation function
1204 * @inode:		file inode
1205 * @goal:		given target block(filesystem wide)
1206 * @count:		target number of blocks to allocate
1207 * @errp:		error code
1208 *
1209 * ext2_new_blocks uses a goal block to assist allocation.  If the goal is
1210 * free, or there is a free block within 32 blocks of the goal, that block
1211 * is allocated.  Otherwise a forward search is made for a free block; within 
1212 * each block group the search first looks for an entire free byte in the block
1213 * bitmap, and then for any free bit if that fails.
1214 * This function also updates quota and i_blocks field.
1215 */
1216ext2_fsblk_t ext2_new_blocks(struct inode *inode, ext2_fsblk_t goal,
1217		    unsigned long *count, int *errp)
1218{
1219	struct buffer_head *bitmap_bh = NULL;
1220	struct buffer_head *gdp_bh;
1221	int group_no;
1222	int goal_group;
1223	ext2_grpblk_t grp_target_blk;	/* blockgroup relative goal block */
1224	ext2_grpblk_t grp_alloc_blk;	/* blockgroup-relative allocated block*/
1225	ext2_fsblk_t ret_block;		/* filesyetem-wide allocated block */
1226	int bgi;			/* blockgroup iteration index */
1227	int performed_allocation = 0;
1228	ext2_grpblk_t free_blocks;	/* number of free blocks in a group */
1229	struct super_block *sb;
1230	struct ext2_group_desc *gdp;
1231	struct ext2_super_block *es;
1232	struct ext2_sb_info *sbi;
1233	struct ext2_reserve_window_node *my_rsv = NULL;
1234	struct ext2_block_alloc_info *block_i;
1235	unsigned short windowsz = 0;
1236	unsigned long ngroups;
1237	unsigned long num = *count;
1238	int ret;
1239
1240	*errp = -ENOSPC;
1241	sb = inode->i_sb;
1242	if (!sb) {
1243		printk("ext2_new_blocks: nonexistent device");
1244		return 0;
1245	}
1246
1247	/*
1248	 * Check quota for allocation of this block.
1249	 */
1250	ret = dquot_alloc_block(inode, num);
1251	if (ret) {
1252		*errp = ret;
1253		return 0;
1254	}
1255
1256	sbi = EXT2_SB(sb);
1257	es = EXT2_SB(sb)->s_es;
1258	ext2_debug("goal=%lu.\n", goal);
1259	/*
1260	 * Allocate a block from reservation only when
1261	 * filesystem is mounted with reservation(default,-o reservation), and
1262	 * it's a regular file, and
1263	 * the desired window size is greater than 0 (One could use ioctl
1264	 * command EXT2_IOC_SETRSVSZ to set the window size to 0 to turn off
1265	 * reservation on that particular file)
1266	 */
1267	block_i = EXT2_I(inode)->i_block_alloc_info;
1268	if (block_i) {
1269		windowsz = block_i->rsv_window_node.rsv_goal_size;
1270		if (windowsz > 0)
1271			my_rsv = &block_i->rsv_window_node;
1272	}
1273
1274	if (!ext2_has_free_blocks(sbi)) {
1275		*errp = -ENOSPC;
1276		goto out;
1277	}
1278
1279	/*
1280	 * First, test whether the goal block is free.
1281	 */
1282	if (goal < le32_to_cpu(es->s_first_data_block) ||
1283	    goal >= le32_to_cpu(es->s_blocks_count))
1284		goal = le32_to_cpu(es->s_first_data_block);
1285	group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
1286			EXT2_BLOCKS_PER_GROUP(sb);
1287	goal_group = group_no;
1288retry_alloc:
1289	gdp = ext2_get_group_desc(sb, group_no, &gdp_bh);
1290	if (!gdp)
1291		goto io_error;
1292
1293	free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1294	/*
1295	 * if there is not enough free blocks to make a new resevation
1296	 * turn off reservation for this allocation
1297	 */
1298	if (my_rsv && (free_blocks < windowsz)
1299		&& (free_blocks > 0)
1300		&& (rsv_is_empty(&my_rsv->rsv_window)))
1301		my_rsv = NULL;
1302
1303	if (free_blocks > 0) {
1304		grp_target_blk = ((goal - le32_to_cpu(es->s_first_data_block)) %
1305				EXT2_BLOCKS_PER_GROUP(sb));
1306		bitmap_bh = read_block_bitmap(sb, group_no);
1307		if (!bitmap_bh)
1308			goto io_error;
1309		grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no,
1310					bitmap_bh, grp_target_blk,
1311					my_rsv, &num);
1312		if (grp_alloc_blk >= 0)
1313			goto allocated;
1314	}
1315
1316	ngroups = EXT2_SB(sb)->s_groups_count;
1317	smp_rmb();
1318
1319	/*
1320	 * Now search the rest of the groups.  We assume that
1321	 * group_no and gdp correctly point to the last group visited.
1322	 */
1323	for (bgi = 0; bgi < ngroups; bgi++) {
1324		group_no++;
1325		if (group_no >= ngroups)
1326			group_no = 0;
1327		gdp = ext2_get_group_desc(sb, group_no, &gdp_bh);
1328		if (!gdp)
1329			goto io_error;
1330
1331		free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1332		/*
1333		 * skip this group (and avoid loading bitmap) if there
1334		 * are no free blocks
1335		 */
1336		if (!free_blocks)
1337			continue;
1338		/*
1339		 * skip this group if the number of
1340		 * free blocks is less than half of the reservation
1341		 * window size.
1342		 */
1343		if (my_rsv && (free_blocks <= (windowsz/2)))
1344			continue;
1345
1346		brelse(bitmap_bh);
1347		bitmap_bh = read_block_bitmap(sb, group_no);
1348		if (!bitmap_bh)
1349			goto io_error;
1350		/*
1351		 * try to allocate block(s) from this group, without a goal(-1).
1352		 */
1353		grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no,
1354					bitmap_bh, -1, my_rsv, &num);
1355		if (grp_alloc_blk >= 0)
1356			goto allocated;
1357	}
1358	/*
1359	 * We may end up a bogus earlier ENOSPC error due to
1360	 * filesystem is "full" of reservations, but
1361	 * there maybe indeed free blocks available on disk
1362	 * In this case, we just forget about the reservations
1363	 * just do block allocation as without reservations.
1364	 */
1365	if (my_rsv) {
1366		my_rsv = NULL;
1367		windowsz = 0;
1368		group_no = goal_group;
1369		goto retry_alloc;
1370	}
1371	/* No space left on the device */
1372	*errp = -ENOSPC;
1373	goto out;
1374
1375allocated:
1376
1377	ext2_debug("using block group %d(%d)\n",
1378			group_no, gdp->bg_free_blocks_count);
1379
1380	ret_block = grp_alloc_blk + ext2_group_first_block_no(sb, group_no);
1381
1382	if (in_range(le32_to_cpu(gdp->bg_block_bitmap), ret_block, num) ||
1383	    in_range(le32_to_cpu(gdp->bg_inode_bitmap), ret_block, num) ||
1384	    in_range(ret_block, le32_to_cpu(gdp->bg_inode_table),
1385		      EXT2_SB(sb)->s_itb_per_group) ||
1386	    in_range(ret_block + num - 1, le32_to_cpu(gdp->bg_inode_table),
1387		      EXT2_SB(sb)->s_itb_per_group)) {
1388		ext2_error(sb, "ext2_new_blocks",
1389			    "Allocating block in system zone - "
1390			    "blocks from "E2FSBLK", length %lu",
1391			    ret_block, num);
1392		/*
1393		 * ext2_try_to_allocate marked the blocks we allocated as in
1394		 * use.  So we may want to selectively mark some of the blocks
1395		 * as free
1396		 */
1397		goto retry_alloc;
1398	}
1399
1400	performed_allocation = 1;
1401
1402	if (ret_block + num - 1 >= le32_to_cpu(es->s_blocks_count)) {
1403		ext2_error(sb, "ext2_new_blocks",
1404			    "block("E2FSBLK") >= blocks count(%d) - "
1405			    "block_group = %d, es == %p ", ret_block,
1406			le32_to_cpu(es->s_blocks_count), group_no, es);
1407		goto out;
1408	}
1409
1410	group_adjust_blocks(sb, group_no, gdp, gdp_bh, -num);
1411	percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1412
1413	mark_buffer_dirty(bitmap_bh);
1414	if (sb->s_flags & MS_SYNCHRONOUS)
1415		sync_dirty_buffer(bitmap_bh);
1416
1417	*errp = 0;
1418	brelse(bitmap_bh);
1419	dquot_free_block_nodirty(inode, *count-num);
1420	mark_inode_dirty(inode);
1421	*count = num;
 
 
1422	return ret_block;
1423
1424io_error:
1425	*errp = -EIO;
1426out:
1427	/*
1428	 * Undo the block allocation
1429	 */
1430	if (!performed_allocation) {
1431		dquot_free_block_nodirty(inode, *count);
1432		mark_inode_dirty(inode);
1433	}
1434	brelse(bitmap_bh);
1435	return 0;
1436}
1437
1438ext2_fsblk_t ext2_new_block(struct inode *inode, unsigned long goal, int *errp)
1439{
1440	unsigned long count = 1;
1441
1442	return ext2_new_blocks(inode, goal, &count, errp);
1443}
1444
1445#ifdef EXT2FS_DEBUG
1446
1447static const int nibblemap[] = {4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0};
1448
1449unsigned long ext2_count_free (struct buffer_head * map, unsigned int numchars)
1450{
1451	unsigned int i;
1452	unsigned long sum = 0;
1453
1454	if (!map)
1455		return (0);
1456	for (i = 0; i < numchars; i++)
1457		sum += nibblemap[map->b_data[i] & 0xf] +
1458			nibblemap[(map->b_data[i] >> 4) & 0xf];
1459	return (sum);
1460}
1461
1462#endif  /*  EXT2FS_DEBUG  */
1463
1464unsigned long ext2_count_free_blocks (struct super_block * sb)
1465{
1466	struct ext2_group_desc * desc;
1467	unsigned long desc_count = 0;
1468	int i;
1469#ifdef EXT2FS_DEBUG
1470	unsigned long bitmap_count, x;
1471	struct ext2_super_block *es;
1472
1473	es = EXT2_SB(sb)->s_es;
1474	desc_count = 0;
1475	bitmap_count = 0;
1476	desc = NULL;
1477	for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) {
1478		struct buffer_head *bitmap_bh;
1479		desc = ext2_get_group_desc (sb, i, NULL);
1480		if (!desc)
1481			continue;
1482		desc_count += le16_to_cpu(desc->bg_free_blocks_count);
1483		bitmap_bh = read_block_bitmap(sb, i);
1484		if (!bitmap_bh)
1485			continue;
1486		
1487		x = ext2_count_free(bitmap_bh, sb->s_blocksize);
1488		printk ("group %d: stored = %d, counted = %lu\n",
1489			i, le16_to_cpu(desc->bg_free_blocks_count), x);
1490		bitmap_count += x;
1491		brelse(bitmap_bh);
1492	}
1493	printk("ext2_count_free_blocks: stored = %lu, computed = %lu, %lu\n",
1494		(long)le32_to_cpu(es->s_free_blocks_count),
1495		desc_count, bitmap_count);
1496	return bitmap_count;
1497#else
1498        for (i = 0; i < EXT2_SB(sb)->s_groups_count; i++) {
1499                desc = ext2_get_group_desc (sb, i, NULL);
1500                if (!desc)
1501                        continue;
1502                desc_count += le16_to_cpu(desc->bg_free_blocks_count);
1503	}
1504	return desc_count;
1505#endif
1506}
1507
1508static inline int test_root(int a, int b)
1509{
1510	int num = b;
1511
1512	while (a > num)
1513		num *= b;
1514	return num == a;
1515}
1516
1517static int ext2_group_sparse(int group)
1518{
1519	if (group <= 1)
1520		return 1;
1521	return (test_root(group, 3) || test_root(group, 5) ||
1522		test_root(group, 7));
1523}
1524
1525/**
1526 *	ext2_bg_has_super - number of blocks used by the superblock in group
1527 *	@sb: superblock for filesystem
1528 *	@group: group number to check
1529 *
1530 *	Return the number of blocks used by the superblock (primary or backup)
1531 *	in this group.  Currently this will be only 0 or 1.
1532 */
1533int ext2_bg_has_super(struct super_block *sb, int group)
1534{
1535	if (EXT2_HAS_RO_COMPAT_FEATURE(sb,EXT2_FEATURE_RO_COMPAT_SPARSE_SUPER)&&
1536	    !ext2_group_sparse(group))
1537		return 0;
1538	return 1;
1539}
1540
1541/**
1542 *	ext2_bg_num_gdb - number of blocks used by the group table in group
1543 *	@sb: superblock for filesystem
1544 *	@group: group number to check
1545 *
1546 *	Return the number of blocks used by the group descriptor table
1547 *	(primary or backup) in this group.  In the future there may be a
1548 *	different number of descriptor blocks in each group.
1549 */
1550unsigned long ext2_bg_num_gdb(struct super_block *sb, int group)
1551{
1552	return ext2_bg_has_super(sb, group) ? EXT2_SB(sb)->s_gdb_count : 0;
1553}
1554