Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
20#include <linux/slab.h>
21#include <linux/buffer_head.h>
22#include <linux/blkdev.h>
23#include <linux/random.h>
24#include <linux/iocontext.h>
25#include <linux/capability.h>
26#include <linux/ratelimit.h>
27#include <linux/kthread.h>
28#include <linux/raid/pq.h>
29#include <linux/semaphore.h>
30#include <asm/div64.h>
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
37#include "raid56.h"
38#include "async-thread.h"
39#include "check-integrity.h"
40#include "rcu-string.h"
41#include "math.h"
42#include "dev-replace.h"
43#include "sysfs.h"
44
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
121static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 struct btrfs_root *root,
123 struct btrfs_device *device);
124static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
125static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
126static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
127static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
128static void btrfs_close_one_device(struct btrfs_device *device);
129
130DEFINE_MUTEX(uuid_mutex);
131static LIST_HEAD(fs_uuids);
132struct list_head *btrfs_get_fs_uuids(void)
133{
134 return &fs_uuids;
135}
136
137static struct btrfs_fs_devices *__alloc_fs_devices(void)
138{
139 struct btrfs_fs_devices *fs_devs;
140
141 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
142 if (!fs_devs)
143 return ERR_PTR(-ENOMEM);
144
145 mutex_init(&fs_devs->device_list_mutex);
146
147 INIT_LIST_HEAD(&fs_devs->devices);
148 INIT_LIST_HEAD(&fs_devs->resized_devices);
149 INIT_LIST_HEAD(&fs_devs->alloc_list);
150 INIT_LIST_HEAD(&fs_devs->list);
151
152 return fs_devs;
153}
154
155/**
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
158 * generated.
159 *
160 * Return: a pointer to a new &struct btrfs_fs_devices on success;
161 * ERR_PTR() on error. Returned struct is not linked onto any lists and
162 * can be destroyed with kfree() right away.
163 */
164static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
165{
166 struct btrfs_fs_devices *fs_devs;
167
168 fs_devs = __alloc_fs_devices();
169 if (IS_ERR(fs_devs))
170 return fs_devs;
171
172 if (fsid)
173 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
174 else
175 generate_random_uuid(fs_devs->fsid);
176
177 return fs_devs;
178}
179
180static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
181{
182 struct btrfs_device *device;
183 WARN_ON(fs_devices->opened);
184 while (!list_empty(&fs_devices->devices)) {
185 device = list_entry(fs_devices->devices.next,
186 struct btrfs_device, dev_list);
187 list_del(&device->dev_list);
188 rcu_string_free(device->name);
189 kfree(device);
190 }
191 kfree(fs_devices);
192}
193
194static void btrfs_kobject_uevent(struct block_device *bdev,
195 enum kobject_action action)
196{
197 int ret;
198
199 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
200 if (ret)
201 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
202 action,
203 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
204 &disk_to_dev(bdev->bd_disk)->kobj);
205}
206
207void btrfs_cleanup_fs_uuids(void)
208{
209 struct btrfs_fs_devices *fs_devices;
210
211 while (!list_empty(&fs_uuids)) {
212 fs_devices = list_entry(fs_uuids.next,
213 struct btrfs_fs_devices, list);
214 list_del(&fs_devices->list);
215 free_fs_devices(fs_devices);
216 }
217}
218
219static struct btrfs_device *__alloc_device(void)
220{
221 struct btrfs_device *dev;
222
223 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
224 if (!dev)
225 return ERR_PTR(-ENOMEM);
226
227 INIT_LIST_HEAD(&dev->dev_list);
228 INIT_LIST_HEAD(&dev->dev_alloc_list);
229 INIT_LIST_HEAD(&dev->resized_list);
230
231 spin_lock_init(&dev->io_lock);
232
233 spin_lock_init(&dev->reada_lock);
234 atomic_set(&dev->reada_in_flight, 0);
235 atomic_set(&dev->dev_stats_ccnt, 0);
236 btrfs_device_data_ordered_init(dev);
237 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
238 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
239
240 return dev;
241}
242
243static noinline struct btrfs_device *__find_device(struct list_head *head,
244 u64 devid, u8 *uuid)
245{
246 struct btrfs_device *dev;
247
248 list_for_each_entry(dev, head, dev_list) {
249 if (dev->devid == devid &&
250 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
251 return dev;
252 }
253 }
254 return NULL;
255}
256
257static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
258{
259 struct btrfs_fs_devices *fs_devices;
260
261 list_for_each_entry(fs_devices, &fs_uuids, list) {
262 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
263 return fs_devices;
264 }
265 return NULL;
266}
267
268static int
269btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
270 int flush, struct block_device **bdev,
271 struct buffer_head **bh)
272{
273 int ret;
274
275 *bdev = blkdev_get_by_path(device_path, flags, holder);
276
277 if (IS_ERR(*bdev)) {
278 ret = PTR_ERR(*bdev);
279 goto error;
280 }
281
282 if (flush)
283 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
284 ret = set_blocksize(*bdev, 4096);
285 if (ret) {
286 blkdev_put(*bdev, flags);
287 goto error;
288 }
289 invalidate_bdev(*bdev);
290 *bh = btrfs_read_dev_super(*bdev);
291 if (IS_ERR(*bh)) {
292 ret = PTR_ERR(*bh);
293 blkdev_put(*bdev, flags);
294 goto error;
295 }
296
297 return 0;
298
299error:
300 *bdev = NULL;
301 *bh = NULL;
302 return ret;
303}
304
305static void requeue_list(struct btrfs_pending_bios *pending_bios,
306 struct bio *head, struct bio *tail)
307{
308
309 struct bio *old_head;
310
311 old_head = pending_bios->head;
312 pending_bios->head = head;
313 if (pending_bios->tail)
314 tail->bi_next = old_head;
315 else
316 pending_bios->tail = tail;
317}
318
319/*
320 * we try to collect pending bios for a device so we don't get a large
321 * number of procs sending bios down to the same device. This greatly
322 * improves the schedulers ability to collect and merge the bios.
323 *
324 * But, it also turns into a long list of bios to process and that is sure
325 * to eventually make the worker thread block. The solution here is to
326 * make some progress and then put this work struct back at the end of
327 * the list if the block device is congested. This way, multiple devices
328 * can make progress from a single worker thread.
329 */
330static noinline void run_scheduled_bios(struct btrfs_device *device)
331{
332 struct bio *pending;
333 struct backing_dev_info *bdi;
334 struct btrfs_fs_info *fs_info;
335 struct btrfs_pending_bios *pending_bios;
336 struct bio *tail;
337 struct bio *cur;
338 int again = 0;
339 unsigned long num_run;
340 unsigned long batch_run = 0;
341 unsigned long limit;
342 unsigned long last_waited = 0;
343 int force_reg = 0;
344 int sync_pending = 0;
345 struct blk_plug plug;
346
347 /*
348 * this function runs all the bios we've collected for
349 * a particular device. We don't want to wander off to
350 * another device without first sending all of these down.
351 * So, setup a plug here and finish it off before we return
352 */
353 blk_start_plug(&plug);
354
355 bdi = blk_get_backing_dev_info(device->bdev);
356 fs_info = device->dev_root->fs_info;
357 limit = btrfs_async_submit_limit(fs_info);
358 limit = limit * 2 / 3;
359
360loop:
361 spin_lock(&device->io_lock);
362
363loop_lock:
364 num_run = 0;
365
366 /* take all the bios off the list at once and process them
367 * later on (without the lock held). But, remember the
368 * tail and other pointers so the bios can be properly reinserted
369 * into the list if we hit congestion
370 */
371 if (!force_reg && device->pending_sync_bios.head) {
372 pending_bios = &device->pending_sync_bios;
373 force_reg = 1;
374 } else {
375 pending_bios = &device->pending_bios;
376 force_reg = 0;
377 }
378
379 pending = pending_bios->head;
380 tail = pending_bios->tail;
381 WARN_ON(pending && !tail);
382
383 /*
384 * if pending was null this time around, no bios need processing
385 * at all and we can stop. Otherwise it'll loop back up again
386 * and do an additional check so no bios are missed.
387 *
388 * device->running_pending is used to synchronize with the
389 * schedule_bio code.
390 */
391 if (device->pending_sync_bios.head == NULL &&
392 device->pending_bios.head == NULL) {
393 again = 0;
394 device->running_pending = 0;
395 } else {
396 again = 1;
397 device->running_pending = 1;
398 }
399
400 pending_bios->head = NULL;
401 pending_bios->tail = NULL;
402
403 spin_unlock(&device->io_lock);
404
405 while (pending) {
406
407 rmb();
408 /* we want to work on both lists, but do more bios on the
409 * sync list than the regular list
410 */
411 if ((num_run > 32 &&
412 pending_bios != &device->pending_sync_bios &&
413 device->pending_sync_bios.head) ||
414 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
415 device->pending_bios.head)) {
416 spin_lock(&device->io_lock);
417 requeue_list(pending_bios, pending, tail);
418 goto loop_lock;
419 }
420
421 cur = pending;
422 pending = pending->bi_next;
423 cur->bi_next = NULL;
424
425 /*
426 * atomic_dec_return implies a barrier for waitqueue_active
427 */
428 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
429 waitqueue_active(&fs_info->async_submit_wait))
430 wake_up(&fs_info->async_submit_wait);
431
432 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
433
434 /*
435 * if we're doing the sync list, record that our
436 * plug has some sync requests on it
437 *
438 * If we're doing the regular list and there are
439 * sync requests sitting around, unplug before
440 * we add more
441 */
442 if (pending_bios == &device->pending_sync_bios) {
443 sync_pending = 1;
444 } else if (sync_pending) {
445 blk_finish_plug(&plug);
446 blk_start_plug(&plug);
447 sync_pending = 0;
448 }
449
450 btrfsic_submit_bio(cur->bi_rw, cur);
451 num_run++;
452 batch_run++;
453
454 cond_resched();
455
456 /*
457 * we made progress, there is more work to do and the bdi
458 * is now congested. Back off and let other work structs
459 * run instead
460 */
461 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
462 fs_info->fs_devices->open_devices > 1) {
463 struct io_context *ioc;
464
465 ioc = current->io_context;
466
467 /*
468 * the main goal here is that we don't want to
469 * block if we're going to be able to submit
470 * more requests without blocking.
471 *
472 * This code does two great things, it pokes into
473 * the elevator code from a filesystem _and_
474 * it makes assumptions about how batching works.
475 */
476 if (ioc && ioc->nr_batch_requests > 0 &&
477 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
478 (last_waited == 0 ||
479 ioc->last_waited == last_waited)) {
480 /*
481 * we want to go through our batch of
482 * requests and stop. So, we copy out
483 * the ioc->last_waited time and test
484 * against it before looping
485 */
486 last_waited = ioc->last_waited;
487 cond_resched();
488 continue;
489 }
490 spin_lock(&device->io_lock);
491 requeue_list(pending_bios, pending, tail);
492 device->running_pending = 1;
493
494 spin_unlock(&device->io_lock);
495 btrfs_queue_work(fs_info->submit_workers,
496 &device->work);
497 goto done;
498 }
499 /* unplug every 64 requests just for good measure */
500 if (batch_run % 64 == 0) {
501 blk_finish_plug(&plug);
502 blk_start_plug(&plug);
503 sync_pending = 0;
504 }
505 }
506
507 cond_resched();
508 if (again)
509 goto loop;
510
511 spin_lock(&device->io_lock);
512 if (device->pending_bios.head || device->pending_sync_bios.head)
513 goto loop_lock;
514 spin_unlock(&device->io_lock);
515
516done:
517 blk_finish_plug(&plug);
518}
519
520static void pending_bios_fn(struct btrfs_work *work)
521{
522 struct btrfs_device *device;
523
524 device = container_of(work, struct btrfs_device, work);
525 run_scheduled_bios(device);
526}
527
528
529void btrfs_free_stale_device(struct btrfs_device *cur_dev)
530{
531 struct btrfs_fs_devices *fs_devs;
532 struct btrfs_device *dev;
533
534 if (!cur_dev->name)
535 return;
536
537 list_for_each_entry(fs_devs, &fs_uuids, list) {
538 int del = 1;
539
540 if (fs_devs->opened)
541 continue;
542 if (fs_devs->seeding)
543 continue;
544
545 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
546
547 if (dev == cur_dev)
548 continue;
549 if (!dev->name)
550 continue;
551
552 /*
553 * Todo: This won't be enough. What if the same device
554 * comes back (with new uuid and) with its mapper path?
555 * But for now, this does help as mostly an admin will
556 * either use mapper or non mapper path throughout.
557 */
558 rcu_read_lock();
559 del = strcmp(rcu_str_deref(dev->name),
560 rcu_str_deref(cur_dev->name));
561 rcu_read_unlock();
562 if (!del)
563 break;
564 }
565
566 if (!del) {
567 /* delete the stale device */
568 if (fs_devs->num_devices == 1) {
569 btrfs_sysfs_remove_fsid(fs_devs);
570 list_del(&fs_devs->list);
571 free_fs_devices(fs_devs);
572 } else {
573 fs_devs->num_devices--;
574 list_del(&dev->dev_list);
575 rcu_string_free(dev->name);
576 kfree(dev);
577 }
578 break;
579 }
580 }
581}
582
583/*
584 * Add new device to list of registered devices
585 *
586 * Returns:
587 * 1 - first time device is seen
588 * 0 - device already known
589 * < 0 - error
590 */
591static noinline int device_list_add(const char *path,
592 struct btrfs_super_block *disk_super,
593 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
594{
595 struct btrfs_device *device;
596 struct btrfs_fs_devices *fs_devices;
597 struct rcu_string *name;
598 int ret = 0;
599 u64 found_transid = btrfs_super_generation(disk_super);
600
601 fs_devices = find_fsid(disk_super->fsid);
602 if (!fs_devices) {
603 fs_devices = alloc_fs_devices(disk_super->fsid);
604 if (IS_ERR(fs_devices))
605 return PTR_ERR(fs_devices);
606
607 list_add(&fs_devices->list, &fs_uuids);
608
609 device = NULL;
610 } else {
611 device = __find_device(&fs_devices->devices, devid,
612 disk_super->dev_item.uuid);
613 }
614
615 if (!device) {
616 if (fs_devices->opened)
617 return -EBUSY;
618
619 device = btrfs_alloc_device(NULL, &devid,
620 disk_super->dev_item.uuid);
621 if (IS_ERR(device)) {
622 /* we can safely leave the fs_devices entry around */
623 return PTR_ERR(device);
624 }
625
626 name = rcu_string_strdup(path, GFP_NOFS);
627 if (!name) {
628 kfree(device);
629 return -ENOMEM;
630 }
631 rcu_assign_pointer(device->name, name);
632
633 mutex_lock(&fs_devices->device_list_mutex);
634 list_add_rcu(&device->dev_list, &fs_devices->devices);
635 fs_devices->num_devices++;
636 mutex_unlock(&fs_devices->device_list_mutex);
637
638 ret = 1;
639 device->fs_devices = fs_devices;
640 } else if (!device->name || strcmp(device->name->str, path)) {
641 /*
642 * When FS is already mounted.
643 * 1. If you are here and if the device->name is NULL that
644 * means this device was missing at time of FS mount.
645 * 2. If you are here and if the device->name is different
646 * from 'path' that means either
647 * a. The same device disappeared and reappeared with
648 * different name. or
649 * b. The missing-disk-which-was-replaced, has
650 * reappeared now.
651 *
652 * We must allow 1 and 2a above. But 2b would be a spurious
653 * and unintentional.
654 *
655 * Further in case of 1 and 2a above, the disk at 'path'
656 * would have missed some transaction when it was away and
657 * in case of 2a the stale bdev has to be updated as well.
658 * 2b must not be allowed at all time.
659 */
660
661 /*
662 * For now, we do allow update to btrfs_fs_device through the
663 * btrfs dev scan cli after FS has been mounted. We're still
664 * tracking a problem where systems fail mount by subvolume id
665 * when we reject replacement on a mounted FS.
666 */
667 if (!fs_devices->opened && found_transid < device->generation) {
668 /*
669 * That is if the FS is _not_ mounted and if you
670 * are here, that means there is more than one
671 * disk with same uuid and devid.We keep the one
672 * with larger generation number or the last-in if
673 * generation are equal.
674 */
675 return -EEXIST;
676 }
677
678 name = rcu_string_strdup(path, GFP_NOFS);
679 if (!name)
680 return -ENOMEM;
681 rcu_string_free(device->name);
682 rcu_assign_pointer(device->name, name);
683 if (device->missing) {
684 fs_devices->missing_devices--;
685 device->missing = 0;
686 }
687 }
688
689 /*
690 * Unmount does not free the btrfs_device struct but would zero
691 * generation along with most of the other members. So just update
692 * it back. We need it to pick the disk with largest generation
693 * (as above).
694 */
695 if (!fs_devices->opened)
696 device->generation = found_transid;
697
698 /*
699 * if there is new btrfs on an already registered device,
700 * then remove the stale device entry.
701 */
702 btrfs_free_stale_device(device);
703
704 *fs_devices_ret = fs_devices;
705
706 return ret;
707}
708
709static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
710{
711 struct btrfs_fs_devices *fs_devices;
712 struct btrfs_device *device;
713 struct btrfs_device *orig_dev;
714
715 fs_devices = alloc_fs_devices(orig->fsid);
716 if (IS_ERR(fs_devices))
717 return fs_devices;
718
719 mutex_lock(&orig->device_list_mutex);
720 fs_devices->total_devices = orig->total_devices;
721
722 /* We have held the volume lock, it is safe to get the devices. */
723 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
724 struct rcu_string *name;
725
726 device = btrfs_alloc_device(NULL, &orig_dev->devid,
727 orig_dev->uuid);
728 if (IS_ERR(device))
729 goto error;
730
731 /*
732 * This is ok to do without rcu read locked because we hold the
733 * uuid mutex so nothing we touch in here is going to disappear.
734 */
735 if (orig_dev->name) {
736 name = rcu_string_strdup(orig_dev->name->str,
737 GFP_KERNEL);
738 if (!name) {
739 kfree(device);
740 goto error;
741 }
742 rcu_assign_pointer(device->name, name);
743 }
744
745 list_add(&device->dev_list, &fs_devices->devices);
746 device->fs_devices = fs_devices;
747 fs_devices->num_devices++;
748 }
749 mutex_unlock(&orig->device_list_mutex);
750 return fs_devices;
751error:
752 mutex_unlock(&orig->device_list_mutex);
753 free_fs_devices(fs_devices);
754 return ERR_PTR(-ENOMEM);
755}
756
757void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
758{
759 struct btrfs_device *device, *next;
760 struct btrfs_device *latest_dev = NULL;
761
762 mutex_lock(&uuid_mutex);
763again:
764 /* This is the initialized path, it is safe to release the devices. */
765 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
766 if (device->in_fs_metadata) {
767 if (!device->is_tgtdev_for_dev_replace &&
768 (!latest_dev ||
769 device->generation > latest_dev->generation)) {
770 latest_dev = device;
771 }
772 continue;
773 }
774
775 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
776 /*
777 * In the first step, keep the device which has
778 * the correct fsid and the devid that is used
779 * for the dev_replace procedure.
780 * In the second step, the dev_replace state is
781 * read from the device tree and it is known
782 * whether the procedure is really active or
783 * not, which means whether this device is
784 * used or whether it should be removed.
785 */
786 if (step == 0 || device->is_tgtdev_for_dev_replace) {
787 continue;
788 }
789 }
790 if (device->bdev) {
791 blkdev_put(device->bdev, device->mode);
792 device->bdev = NULL;
793 fs_devices->open_devices--;
794 }
795 if (device->writeable) {
796 list_del_init(&device->dev_alloc_list);
797 device->writeable = 0;
798 if (!device->is_tgtdev_for_dev_replace)
799 fs_devices->rw_devices--;
800 }
801 list_del_init(&device->dev_list);
802 fs_devices->num_devices--;
803 rcu_string_free(device->name);
804 kfree(device);
805 }
806
807 if (fs_devices->seed) {
808 fs_devices = fs_devices->seed;
809 goto again;
810 }
811
812 fs_devices->latest_bdev = latest_dev->bdev;
813
814 mutex_unlock(&uuid_mutex);
815}
816
817static void __free_device(struct work_struct *work)
818{
819 struct btrfs_device *device;
820
821 device = container_of(work, struct btrfs_device, rcu_work);
822
823 if (device->bdev)
824 blkdev_put(device->bdev, device->mode);
825
826 rcu_string_free(device->name);
827 kfree(device);
828}
829
830static void free_device(struct rcu_head *head)
831{
832 struct btrfs_device *device;
833
834 device = container_of(head, struct btrfs_device, rcu);
835
836 INIT_WORK(&device->rcu_work, __free_device);
837 schedule_work(&device->rcu_work);
838}
839
840static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
841{
842 struct btrfs_device *device, *tmp;
843
844 if (--fs_devices->opened > 0)
845 return 0;
846
847 mutex_lock(&fs_devices->device_list_mutex);
848 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
849 btrfs_close_one_device(device);
850 }
851 mutex_unlock(&fs_devices->device_list_mutex);
852
853 WARN_ON(fs_devices->open_devices);
854 WARN_ON(fs_devices->rw_devices);
855 fs_devices->opened = 0;
856 fs_devices->seeding = 0;
857
858 return 0;
859}
860
861int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
862{
863 struct btrfs_fs_devices *seed_devices = NULL;
864 int ret;
865
866 mutex_lock(&uuid_mutex);
867 ret = __btrfs_close_devices(fs_devices);
868 if (!fs_devices->opened) {
869 seed_devices = fs_devices->seed;
870 fs_devices->seed = NULL;
871 }
872 mutex_unlock(&uuid_mutex);
873
874 while (seed_devices) {
875 fs_devices = seed_devices;
876 seed_devices = fs_devices->seed;
877 __btrfs_close_devices(fs_devices);
878 free_fs_devices(fs_devices);
879 }
880 /*
881 * Wait for rcu kworkers under __btrfs_close_devices
882 * to finish all blkdev_puts so device is really
883 * free when umount is done.
884 */
885 rcu_barrier();
886 return ret;
887}
888
889static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
890 fmode_t flags, void *holder)
891{
892 struct request_queue *q;
893 struct block_device *bdev;
894 struct list_head *head = &fs_devices->devices;
895 struct btrfs_device *device;
896 struct btrfs_device *latest_dev = NULL;
897 struct buffer_head *bh;
898 struct btrfs_super_block *disk_super;
899 u64 devid;
900 int seeding = 1;
901 int ret = 0;
902
903 flags |= FMODE_EXCL;
904
905 list_for_each_entry(device, head, dev_list) {
906 if (device->bdev)
907 continue;
908 if (!device->name)
909 continue;
910
911 /* Just open everything we can; ignore failures here */
912 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
913 &bdev, &bh))
914 continue;
915
916 disk_super = (struct btrfs_super_block *)bh->b_data;
917 devid = btrfs_stack_device_id(&disk_super->dev_item);
918 if (devid != device->devid)
919 goto error_brelse;
920
921 if (memcmp(device->uuid, disk_super->dev_item.uuid,
922 BTRFS_UUID_SIZE))
923 goto error_brelse;
924
925 device->generation = btrfs_super_generation(disk_super);
926 if (!latest_dev ||
927 device->generation > latest_dev->generation)
928 latest_dev = device;
929
930 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
931 device->writeable = 0;
932 } else {
933 device->writeable = !bdev_read_only(bdev);
934 seeding = 0;
935 }
936
937 q = bdev_get_queue(bdev);
938 if (blk_queue_discard(q))
939 device->can_discard = 1;
940
941 device->bdev = bdev;
942 device->in_fs_metadata = 0;
943 device->mode = flags;
944
945 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
946 fs_devices->rotating = 1;
947
948 fs_devices->open_devices++;
949 if (device->writeable &&
950 device->devid != BTRFS_DEV_REPLACE_DEVID) {
951 fs_devices->rw_devices++;
952 list_add(&device->dev_alloc_list,
953 &fs_devices->alloc_list);
954 }
955 brelse(bh);
956 continue;
957
958error_brelse:
959 brelse(bh);
960 blkdev_put(bdev, flags);
961 continue;
962 }
963 if (fs_devices->open_devices == 0) {
964 ret = -EINVAL;
965 goto out;
966 }
967 fs_devices->seeding = seeding;
968 fs_devices->opened = 1;
969 fs_devices->latest_bdev = latest_dev->bdev;
970 fs_devices->total_rw_bytes = 0;
971out:
972 return ret;
973}
974
975int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
976 fmode_t flags, void *holder)
977{
978 int ret;
979
980 mutex_lock(&uuid_mutex);
981 if (fs_devices->opened) {
982 fs_devices->opened++;
983 ret = 0;
984 } else {
985 ret = __btrfs_open_devices(fs_devices, flags, holder);
986 }
987 mutex_unlock(&uuid_mutex);
988 return ret;
989}
990
991/*
992 * Look for a btrfs signature on a device. This may be called out of the mount path
993 * and we are not allowed to call set_blocksize during the scan. The superblock
994 * is read via pagecache
995 */
996int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
997 struct btrfs_fs_devices **fs_devices_ret)
998{
999 struct btrfs_super_block *disk_super;
1000 struct block_device *bdev;
1001 struct page *page;
1002 void *p;
1003 int ret = -EINVAL;
1004 u64 devid;
1005 u64 transid;
1006 u64 total_devices;
1007 u64 bytenr;
1008 pgoff_t index;
1009
1010 /*
1011 * we would like to check all the supers, but that would make
1012 * a btrfs mount succeed after a mkfs from a different FS.
1013 * So, we need to add a special mount option to scan for
1014 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1015 */
1016 bytenr = btrfs_sb_offset(0);
1017 flags |= FMODE_EXCL;
1018 mutex_lock(&uuid_mutex);
1019
1020 bdev = blkdev_get_by_path(path, flags, holder);
1021
1022 if (IS_ERR(bdev)) {
1023 ret = PTR_ERR(bdev);
1024 goto error;
1025 }
1026
1027 /* make sure our super fits in the device */
1028 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1029 goto error_bdev_put;
1030
1031 /* make sure our super fits in the page */
1032 if (sizeof(*disk_super) > PAGE_SIZE)
1033 goto error_bdev_put;
1034
1035 /* make sure our super doesn't straddle pages on disk */
1036 index = bytenr >> PAGE_SHIFT;
1037 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1038 goto error_bdev_put;
1039
1040 /* pull in the page with our super */
1041 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1042 index, GFP_NOFS);
1043
1044 if (IS_ERR_OR_NULL(page))
1045 goto error_bdev_put;
1046
1047 p = kmap(page);
1048
1049 /* align our pointer to the offset of the super block */
1050 disk_super = p + (bytenr & ~PAGE_MASK);
1051
1052 if (btrfs_super_bytenr(disk_super) != bytenr ||
1053 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1054 goto error_unmap;
1055
1056 devid = btrfs_stack_device_id(&disk_super->dev_item);
1057 transid = btrfs_super_generation(disk_super);
1058 total_devices = btrfs_super_num_devices(disk_super);
1059
1060 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1061 if (ret > 0) {
1062 if (disk_super->label[0]) {
1063 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1064 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1065 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1066 } else {
1067 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1068 }
1069
1070 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1071 ret = 0;
1072 }
1073 if (!ret && fs_devices_ret)
1074 (*fs_devices_ret)->total_devices = total_devices;
1075
1076error_unmap:
1077 kunmap(page);
1078 put_page(page);
1079
1080error_bdev_put:
1081 blkdev_put(bdev, flags);
1082error:
1083 mutex_unlock(&uuid_mutex);
1084 return ret;
1085}
1086
1087/* helper to account the used device space in the range */
1088int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1089 u64 end, u64 *length)
1090{
1091 struct btrfs_key key;
1092 struct btrfs_root *root = device->dev_root;
1093 struct btrfs_dev_extent *dev_extent;
1094 struct btrfs_path *path;
1095 u64 extent_end;
1096 int ret;
1097 int slot;
1098 struct extent_buffer *l;
1099
1100 *length = 0;
1101
1102 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1103 return 0;
1104
1105 path = btrfs_alloc_path();
1106 if (!path)
1107 return -ENOMEM;
1108 path->reada = READA_FORWARD;
1109
1110 key.objectid = device->devid;
1111 key.offset = start;
1112 key.type = BTRFS_DEV_EXTENT_KEY;
1113
1114 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1115 if (ret < 0)
1116 goto out;
1117 if (ret > 0) {
1118 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1119 if (ret < 0)
1120 goto out;
1121 }
1122
1123 while (1) {
1124 l = path->nodes[0];
1125 slot = path->slots[0];
1126 if (slot >= btrfs_header_nritems(l)) {
1127 ret = btrfs_next_leaf(root, path);
1128 if (ret == 0)
1129 continue;
1130 if (ret < 0)
1131 goto out;
1132
1133 break;
1134 }
1135 btrfs_item_key_to_cpu(l, &key, slot);
1136
1137 if (key.objectid < device->devid)
1138 goto next;
1139
1140 if (key.objectid > device->devid)
1141 break;
1142
1143 if (key.type != BTRFS_DEV_EXTENT_KEY)
1144 goto next;
1145
1146 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1147 extent_end = key.offset + btrfs_dev_extent_length(l,
1148 dev_extent);
1149 if (key.offset <= start && extent_end > end) {
1150 *length = end - start + 1;
1151 break;
1152 } else if (key.offset <= start && extent_end > start)
1153 *length += extent_end - start;
1154 else if (key.offset > start && extent_end <= end)
1155 *length += extent_end - key.offset;
1156 else if (key.offset > start && key.offset <= end) {
1157 *length += end - key.offset + 1;
1158 break;
1159 } else if (key.offset > end)
1160 break;
1161
1162next:
1163 path->slots[0]++;
1164 }
1165 ret = 0;
1166out:
1167 btrfs_free_path(path);
1168 return ret;
1169}
1170
1171static int contains_pending_extent(struct btrfs_transaction *transaction,
1172 struct btrfs_device *device,
1173 u64 *start, u64 len)
1174{
1175 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1176 struct extent_map *em;
1177 struct list_head *search_list = &fs_info->pinned_chunks;
1178 int ret = 0;
1179 u64 physical_start = *start;
1180
1181 if (transaction)
1182 search_list = &transaction->pending_chunks;
1183again:
1184 list_for_each_entry(em, search_list, list) {
1185 struct map_lookup *map;
1186 int i;
1187
1188 map = em->map_lookup;
1189 for (i = 0; i < map->num_stripes; i++) {
1190 u64 end;
1191
1192 if (map->stripes[i].dev != device)
1193 continue;
1194 if (map->stripes[i].physical >= physical_start + len ||
1195 map->stripes[i].physical + em->orig_block_len <=
1196 physical_start)
1197 continue;
1198 /*
1199 * Make sure that while processing the pinned list we do
1200 * not override our *start with a lower value, because
1201 * we can have pinned chunks that fall within this
1202 * device hole and that have lower physical addresses
1203 * than the pending chunks we processed before. If we
1204 * do not take this special care we can end up getting
1205 * 2 pending chunks that start at the same physical
1206 * device offsets because the end offset of a pinned
1207 * chunk can be equal to the start offset of some
1208 * pending chunk.
1209 */
1210 end = map->stripes[i].physical + em->orig_block_len;
1211 if (end > *start) {
1212 *start = end;
1213 ret = 1;
1214 }
1215 }
1216 }
1217 if (search_list != &fs_info->pinned_chunks) {
1218 search_list = &fs_info->pinned_chunks;
1219 goto again;
1220 }
1221
1222 return ret;
1223}
1224
1225
1226/*
1227 * find_free_dev_extent_start - find free space in the specified device
1228 * @device: the device which we search the free space in
1229 * @num_bytes: the size of the free space that we need
1230 * @search_start: the position from which to begin the search
1231 * @start: store the start of the free space.
1232 * @len: the size of the free space. that we find, or the size
1233 * of the max free space if we don't find suitable free space
1234 *
1235 * this uses a pretty simple search, the expectation is that it is
1236 * called very infrequently and that a given device has a small number
1237 * of extents
1238 *
1239 * @start is used to store the start of the free space if we find. But if we
1240 * don't find suitable free space, it will be used to store the start position
1241 * of the max free space.
1242 *
1243 * @len is used to store the size of the free space that we find.
1244 * But if we don't find suitable free space, it is used to store the size of
1245 * the max free space.
1246 */
1247int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1248 struct btrfs_device *device, u64 num_bytes,
1249 u64 search_start, u64 *start, u64 *len)
1250{
1251 struct btrfs_key key;
1252 struct btrfs_root *root = device->dev_root;
1253 struct btrfs_dev_extent *dev_extent;
1254 struct btrfs_path *path;
1255 u64 hole_size;
1256 u64 max_hole_start;
1257 u64 max_hole_size;
1258 u64 extent_end;
1259 u64 search_end = device->total_bytes;
1260 int ret;
1261 int slot;
1262 struct extent_buffer *l;
1263 u64 min_search_start;
1264
1265 /*
1266 * We don't want to overwrite the superblock on the drive nor any area
1267 * used by the boot loader (grub for example), so we make sure to start
1268 * at an offset of at least 1MB.
1269 */
1270 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1271 search_start = max(search_start, min_search_start);
1272
1273 path = btrfs_alloc_path();
1274 if (!path)
1275 return -ENOMEM;
1276
1277 max_hole_start = search_start;
1278 max_hole_size = 0;
1279
1280again:
1281 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1282 ret = -ENOSPC;
1283 goto out;
1284 }
1285
1286 path->reada = READA_FORWARD;
1287 path->search_commit_root = 1;
1288 path->skip_locking = 1;
1289
1290 key.objectid = device->devid;
1291 key.offset = search_start;
1292 key.type = BTRFS_DEV_EXTENT_KEY;
1293
1294 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1295 if (ret < 0)
1296 goto out;
1297 if (ret > 0) {
1298 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1299 if (ret < 0)
1300 goto out;
1301 }
1302
1303 while (1) {
1304 l = path->nodes[0];
1305 slot = path->slots[0];
1306 if (slot >= btrfs_header_nritems(l)) {
1307 ret = btrfs_next_leaf(root, path);
1308 if (ret == 0)
1309 continue;
1310 if (ret < 0)
1311 goto out;
1312
1313 break;
1314 }
1315 btrfs_item_key_to_cpu(l, &key, slot);
1316
1317 if (key.objectid < device->devid)
1318 goto next;
1319
1320 if (key.objectid > device->devid)
1321 break;
1322
1323 if (key.type != BTRFS_DEV_EXTENT_KEY)
1324 goto next;
1325
1326 if (key.offset > search_start) {
1327 hole_size = key.offset - search_start;
1328
1329 /*
1330 * Have to check before we set max_hole_start, otherwise
1331 * we could end up sending back this offset anyway.
1332 */
1333 if (contains_pending_extent(transaction, device,
1334 &search_start,
1335 hole_size)) {
1336 if (key.offset >= search_start) {
1337 hole_size = key.offset - search_start;
1338 } else {
1339 WARN_ON_ONCE(1);
1340 hole_size = 0;
1341 }
1342 }
1343
1344 if (hole_size > max_hole_size) {
1345 max_hole_start = search_start;
1346 max_hole_size = hole_size;
1347 }
1348
1349 /*
1350 * If this free space is greater than which we need,
1351 * it must be the max free space that we have found
1352 * until now, so max_hole_start must point to the start
1353 * of this free space and the length of this free space
1354 * is stored in max_hole_size. Thus, we return
1355 * max_hole_start and max_hole_size and go back to the
1356 * caller.
1357 */
1358 if (hole_size >= num_bytes) {
1359 ret = 0;
1360 goto out;
1361 }
1362 }
1363
1364 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1365 extent_end = key.offset + btrfs_dev_extent_length(l,
1366 dev_extent);
1367 if (extent_end > search_start)
1368 search_start = extent_end;
1369next:
1370 path->slots[0]++;
1371 cond_resched();
1372 }
1373
1374 /*
1375 * At this point, search_start should be the end of
1376 * allocated dev extents, and when shrinking the device,
1377 * search_end may be smaller than search_start.
1378 */
1379 if (search_end > search_start) {
1380 hole_size = search_end - search_start;
1381
1382 if (contains_pending_extent(transaction, device, &search_start,
1383 hole_size)) {
1384 btrfs_release_path(path);
1385 goto again;
1386 }
1387
1388 if (hole_size > max_hole_size) {
1389 max_hole_start = search_start;
1390 max_hole_size = hole_size;
1391 }
1392 }
1393
1394 /* See above. */
1395 if (max_hole_size < num_bytes)
1396 ret = -ENOSPC;
1397 else
1398 ret = 0;
1399
1400out:
1401 btrfs_free_path(path);
1402 *start = max_hole_start;
1403 if (len)
1404 *len = max_hole_size;
1405 return ret;
1406}
1407
1408int find_free_dev_extent(struct btrfs_trans_handle *trans,
1409 struct btrfs_device *device, u64 num_bytes,
1410 u64 *start, u64 *len)
1411{
1412 /* FIXME use last free of some kind */
1413 return find_free_dev_extent_start(trans->transaction, device,
1414 num_bytes, 0, start, len);
1415}
1416
1417static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1418 struct btrfs_device *device,
1419 u64 start, u64 *dev_extent_len)
1420{
1421 int ret;
1422 struct btrfs_path *path;
1423 struct btrfs_root *root = device->dev_root;
1424 struct btrfs_key key;
1425 struct btrfs_key found_key;
1426 struct extent_buffer *leaf = NULL;
1427 struct btrfs_dev_extent *extent = NULL;
1428
1429 path = btrfs_alloc_path();
1430 if (!path)
1431 return -ENOMEM;
1432
1433 key.objectid = device->devid;
1434 key.offset = start;
1435 key.type = BTRFS_DEV_EXTENT_KEY;
1436again:
1437 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1438 if (ret > 0) {
1439 ret = btrfs_previous_item(root, path, key.objectid,
1440 BTRFS_DEV_EXTENT_KEY);
1441 if (ret)
1442 goto out;
1443 leaf = path->nodes[0];
1444 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1445 extent = btrfs_item_ptr(leaf, path->slots[0],
1446 struct btrfs_dev_extent);
1447 BUG_ON(found_key.offset > start || found_key.offset +
1448 btrfs_dev_extent_length(leaf, extent) < start);
1449 key = found_key;
1450 btrfs_release_path(path);
1451 goto again;
1452 } else if (ret == 0) {
1453 leaf = path->nodes[0];
1454 extent = btrfs_item_ptr(leaf, path->slots[0],
1455 struct btrfs_dev_extent);
1456 } else {
1457 btrfs_std_error(root->fs_info, ret, "Slot search failed");
1458 goto out;
1459 }
1460
1461 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1462
1463 ret = btrfs_del_item(trans, root, path);
1464 if (ret) {
1465 btrfs_std_error(root->fs_info, ret,
1466 "Failed to remove dev extent item");
1467 } else {
1468 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1469 }
1470out:
1471 btrfs_free_path(path);
1472 return ret;
1473}
1474
1475static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1476 struct btrfs_device *device,
1477 u64 chunk_tree, u64 chunk_objectid,
1478 u64 chunk_offset, u64 start, u64 num_bytes)
1479{
1480 int ret;
1481 struct btrfs_path *path;
1482 struct btrfs_root *root = device->dev_root;
1483 struct btrfs_dev_extent *extent;
1484 struct extent_buffer *leaf;
1485 struct btrfs_key key;
1486
1487 WARN_ON(!device->in_fs_metadata);
1488 WARN_ON(device->is_tgtdev_for_dev_replace);
1489 path = btrfs_alloc_path();
1490 if (!path)
1491 return -ENOMEM;
1492
1493 key.objectid = device->devid;
1494 key.offset = start;
1495 key.type = BTRFS_DEV_EXTENT_KEY;
1496 ret = btrfs_insert_empty_item(trans, root, path, &key,
1497 sizeof(*extent));
1498 if (ret)
1499 goto out;
1500
1501 leaf = path->nodes[0];
1502 extent = btrfs_item_ptr(leaf, path->slots[0],
1503 struct btrfs_dev_extent);
1504 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1505 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1506 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1507
1508 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1509 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1510
1511 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1512 btrfs_mark_buffer_dirty(leaf);
1513out:
1514 btrfs_free_path(path);
1515 return ret;
1516}
1517
1518static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1519{
1520 struct extent_map_tree *em_tree;
1521 struct extent_map *em;
1522 struct rb_node *n;
1523 u64 ret = 0;
1524
1525 em_tree = &fs_info->mapping_tree.map_tree;
1526 read_lock(&em_tree->lock);
1527 n = rb_last(&em_tree->map);
1528 if (n) {
1529 em = rb_entry(n, struct extent_map, rb_node);
1530 ret = em->start + em->len;
1531 }
1532 read_unlock(&em_tree->lock);
1533
1534 return ret;
1535}
1536
1537static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1538 u64 *devid_ret)
1539{
1540 int ret;
1541 struct btrfs_key key;
1542 struct btrfs_key found_key;
1543 struct btrfs_path *path;
1544
1545 path = btrfs_alloc_path();
1546 if (!path)
1547 return -ENOMEM;
1548
1549 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1550 key.type = BTRFS_DEV_ITEM_KEY;
1551 key.offset = (u64)-1;
1552
1553 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1554 if (ret < 0)
1555 goto error;
1556
1557 BUG_ON(ret == 0); /* Corruption */
1558
1559 ret = btrfs_previous_item(fs_info->chunk_root, path,
1560 BTRFS_DEV_ITEMS_OBJECTID,
1561 BTRFS_DEV_ITEM_KEY);
1562 if (ret) {
1563 *devid_ret = 1;
1564 } else {
1565 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1566 path->slots[0]);
1567 *devid_ret = found_key.offset + 1;
1568 }
1569 ret = 0;
1570error:
1571 btrfs_free_path(path);
1572 return ret;
1573}
1574
1575/*
1576 * the device information is stored in the chunk root
1577 * the btrfs_device struct should be fully filled in
1578 */
1579static int btrfs_add_device(struct btrfs_trans_handle *trans,
1580 struct btrfs_root *root,
1581 struct btrfs_device *device)
1582{
1583 int ret;
1584 struct btrfs_path *path;
1585 struct btrfs_dev_item *dev_item;
1586 struct extent_buffer *leaf;
1587 struct btrfs_key key;
1588 unsigned long ptr;
1589
1590 root = root->fs_info->chunk_root;
1591
1592 path = btrfs_alloc_path();
1593 if (!path)
1594 return -ENOMEM;
1595
1596 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1597 key.type = BTRFS_DEV_ITEM_KEY;
1598 key.offset = device->devid;
1599
1600 ret = btrfs_insert_empty_item(trans, root, path, &key,
1601 sizeof(*dev_item));
1602 if (ret)
1603 goto out;
1604
1605 leaf = path->nodes[0];
1606 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1607
1608 btrfs_set_device_id(leaf, dev_item, device->devid);
1609 btrfs_set_device_generation(leaf, dev_item, 0);
1610 btrfs_set_device_type(leaf, dev_item, device->type);
1611 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1612 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1613 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1614 btrfs_set_device_total_bytes(leaf, dev_item,
1615 btrfs_device_get_disk_total_bytes(device));
1616 btrfs_set_device_bytes_used(leaf, dev_item,
1617 btrfs_device_get_bytes_used(device));
1618 btrfs_set_device_group(leaf, dev_item, 0);
1619 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1620 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1621 btrfs_set_device_start_offset(leaf, dev_item, 0);
1622
1623 ptr = btrfs_device_uuid(dev_item);
1624 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1625 ptr = btrfs_device_fsid(dev_item);
1626 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1627 btrfs_mark_buffer_dirty(leaf);
1628
1629 ret = 0;
1630out:
1631 btrfs_free_path(path);
1632 return ret;
1633}
1634
1635/*
1636 * Function to update ctime/mtime for a given device path.
1637 * Mainly used for ctime/mtime based probe like libblkid.
1638 */
1639static void update_dev_time(char *path_name)
1640{
1641 struct file *filp;
1642
1643 filp = filp_open(path_name, O_RDWR, 0);
1644 if (IS_ERR(filp))
1645 return;
1646 file_update_time(filp);
1647 filp_close(filp, NULL);
1648}
1649
1650static int btrfs_rm_dev_item(struct btrfs_root *root,
1651 struct btrfs_device *device)
1652{
1653 int ret;
1654 struct btrfs_path *path;
1655 struct btrfs_key key;
1656 struct btrfs_trans_handle *trans;
1657
1658 root = root->fs_info->chunk_root;
1659
1660 path = btrfs_alloc_path();
1661 if (!path)
1662 return -ENOMEM;
1663
1664 trans = btrfs_start_transaction(root, 0);
1665 if (IS_ERR(trans)) {
1666 btrfs_free_path(path);
1667 return PTR_ERR(trans);
1668 }
1669 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1670 key.type = BTRFS_DEV_ITEM_KEY;
1671 key.offset = device->devid;
1672
1673 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1674 if (ret < 0)
1675 goto out;
1676
1677 if (ret > 0) {
1678 ret = -ENOENT;
1679 goto out;
1680 }
1681
1682 ret = btrfs_del_item(trans, root, path);
1683 if (ret)
1684 goto out;
1685out:
1686 btrfs_free_path(path);
1687 btrfs_commit_transaction(trans, root);
1688 return ret;
1689}
1690
1691int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1692{
1693 struct btrfs_device *device;
1694 struct btrfs_device *next_device;
1695 struct block_device *bdev;
1696 struct buffer_head *bh = NULL;
1697 struct btrfs_super_block *disk_super;
1698 struct btrfs_fs_devices *cur_devices;
1699 u64 all_avail;
1700 u64 devid;
1701 u64 num_devices;
1702 u8 *dev_uuid;
1703 unsigned seq;
1704 int ret = 0;
1705 bool clear_super = false;
1706
1707 mutex_lock(&uuid_mutex);
1708
1709 do {
1710 seq = read_seqbegin(&root->fs_info->profiles_lock);
1711
1712 all_avail = root->fs_info->avail_data_alloc_bits |
1713 root->fs_info->avail_system_alloc_bits |
1714 root->fs_info->avail_metadata_alloc_bits;
1715 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1716
1717 num_devices = root->fs_info->fs_devices->num_devices;
1718 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1719 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1720 WARN_ON(num_devices < 1);
1721 num_devices--;
1722 }
1723 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1724
1725 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1726 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1727 goto out;
1728 }
1729
1730 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1731 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1732 goto out;
1733 }
1734
1735 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1736 root->fs_info->fs_devices->rw_devices <= 2) {
1737 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1738 goto out;
1739 }
1740 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1741 root->fs_info->fs_devices->rw_devices <= 3) {
1742 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1743 goto out;
1744 }
1745
1746 if (strcmp(device_path, "missing") == 0) {
1747 struct list_head *devices;
1748 struct btrfs_device *tmp;
1749
1750 device = NULL;
1751 devices = &root->fs_info->fs_devices->devices;
1752 /*
1753 * It is safe to read the devices since the volume_mutex
1754 * is held.
1755 */
1756 list_for_each_entry(tmp, devices, dev_list) {
1757 if (tmp->in_fs_metadata &&
1758 !tmp->is_tgtdev_for_dev_replace &&
1759 !tmp->bdev) {
1760 device = tmp;
1761 break;
1762 }
1763 }
1764 bdev = NULL;
1765 bh = NULL;
1766 disk_super = NULL;
1767 if (!device) {
1768 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1769 goto out;
1770 }
1771 } else {
1772 ret = btrfs_get_bdev_and_sb(device_path,
1773 FMODE_WRITE | FMODE_EXCL,
1774 root->fs_info->bdev_holder, 0,
1775 &bdev, &bh);
1776 if (ret)
1777 goto out;
1778 disk_super = (struct btrfs_super_block *)bh->b_data;
1779 devid = btrfs_stack_device_id(&disk_super->dev_item);
1780 dev_uuid = disk_super->dev_item.uuid;
1781 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1782 disk_super->fsid);
1783 if (!device) {
1784 ret = -ENOENT;
1785 goto error_brelse;
1786 }
1787 }
1788
1789 if (device->is_tgtdev_for_dev_replace) {
1790 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1791 goto error_brelse;
1792 }
1793
1794 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1795 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1796 goto error_brelse;
1797 }
1798
1799 if (device->writeable) {
1800 lock_chunks(root);
1801 list_del_init(&device->dev_alloc_list);
1802 device->fs_devices->rw_devices--;
1803 unlock_chunks(root);
1804 clear_super = true;
1805 }
1806
1807 mutex_unlock(&uuid_mutex);
1808 ret = btrfs_shrink_device(device, 0);
1809 mutex_lock(&uuid_mutex);
1810 if (ret)
1811 goto error_undo;
1812
1813 /*
1814 * TODO: the superblock still includes this device in its num_devices
1815 * counter although write_all_supers() is not locked out. This
1816 * could give a filesystem state which requires a degraded mount.
1817 */
1818 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1819 if (ret)
1820 goto error_undo;
1821
1822 device->in_fs_metadata = 0;
1823 btrfs_scrub_cancel_dev(root->fs_info, device);
1824
1825 /*
1826 * the device list mutex makes sure that we don't change
1827 * the device list while someone else is writing out all
1828 * the device supers. Whoever is writing all supers, should
1829 * lock the device list mutex before getting the number of
1830 * devices in the super block (super_copy). Conversely,
1831 * whoever updates the number of devices in the super block
1832 * (super_copy) should hold the device list mutex.
1833 */
1834
1835 cur_devices = device->fs_devices;
1836 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1837 list_del_rcu(&device->dev_list);
1838
1839 device->fs_devices->num_devices--;
1840 device->fs_devices->total_devices--;
1841
1842 if (device->missing)
1843 device->fs_devices->missing_devices--;
1844
1845 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1846 struct btrfs_device, dev_list);
1847 if (device->bdev == root->fs_info->sb->s_bdev)
1848 root->fs_info->sb->s_bdev = next_device->bdev;
1849 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1850 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1851
1852 if (device->bdev) {
1853 device->fs_devices->open_devices--;
1854 /* remove sysfs entry */
1855 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1856 }
1857
1858 call_rcu(&device->rcu, free_device);
1859
1860 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1861 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1862 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1863
1864 if (cur_devices->open_devices == 0) {
1865 struct btrfs_fs_devices *fs_devices;
1866 fs_devices = root->fs_info->fs_devices;
1867 while (fs_devices) {
1868 if (fs_devices->seed == cur_devices) {
1869 fs_devices->seed = cur_devices->seed;
1870 break;
1871 }
1872 fs_devices = fs_devices->seed;
1873 }
1874 cur_devices->seed = NULL;
1875 __btrfs_close_devices(cur_devices);
1876 free_fs_devices(cur_devices);
1877 }
1878
1879 root->fs_info->num_tolerated_disk_barrier_failures =
1880 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1881
1882 /*
1883 * at this point, the device is zero sized. We want to
1884 * remove it from the devices list and zero out the old super
1885 */
1886 if (clear_super && disk_super) {
1887 u64 bytenr;
1888 int i;
1889
1890 /* make sure this device isn't detected as part of
1891 * the FS anymore
1892 */
1893 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1894 set_buffer_dirty(bh);
1895 sync_dirty_buffer(bh);
1896
1897 /* clear the mirror copies of super block on the disk
1898 * being removed, 0th copy is been taken care above and
1899 * the below would take of the rest
1900 */
1901 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1902 bytenr = btrfs_sb_offset(i);
1903 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1904 i_size_read(bdev->bd_inode))
1905 break;
1906
1907 brelse(bh);
1908 bh = __bread(bdev, bytenr / 4096,
1909 BTRFS_SUPER_INFO_SIZE);
1910 if (!bh)
1911 continue;
1912
1913 disk_super = (struct btrfs_super_block *)bh->b_data;
1914
1915 if (btrfs_super_bytenr(disk_super) != bytenr ||
1916 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1917 continue;
1918 }
1919 memset(&disk_super->magic, 0,
1920 sizeof(disk_super->magic));
1921 set_buffer_dirty(bh);
1922 sync_dirty_buffer(bh);
1923 }
1924 }
1925
1926 ret = 0;
1927
1928 if (bdev) {
1929 /* Notify udev that device has changed */
1930 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1931
1932 /* Update ctime/mtime for device path for libblkid */
1933 update_dev_time(device_path);
1934 }
1935
1936error_brelse:
1937 brelse(bh);
1938 if (bdev)
1939 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1940out:
1941 mutex_unlock(&uuid_mutex);
1942 return ret;
1943error_undo:
1944 if (device->writeable) {
1945 lock_chunks(root);
1946 list_add(&device->dev_alloc_list,
1947 &root->fs_info->fs_devices->alloc_list);
1948 device->fs_devices->rw_devices++;
1949 unlock_chunks(root);
1950 }
1951 goto error_brelse;
1952}
1953
1954void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1955 struct btrfs_device *srcdev)
1956{
1957 struct btrfs_fs_devices *fs_devices;
1958
1959 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1960
1961 /*
1962 * in case of fs with no seed, srcdev->fs_devices will point
1963 * to fs_devices of fs_info. However when the dev being replaced is
1964 * a seed dev it will point to the seed's local fs_devices. In short
1965 * srcdev will have its correct fs_devices in both the cases.
1966 */
1967 fs_devices = srcdev->fs_devices;
1968
1969 list_del_rcu(&srcdev->dev_list);
1970 list_del_rcu(&srcdev->dev_alloc_list);
1971 fs_devices->num_devices--;
1972 if (srcdev->missing)
1973 fs_devices->missing_devices--;
1974
1975 if (srcdev->writeable) {
1976 fs_devices->rw_devices--;
1977 /* zero out the old super if it is writable */
1978 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1979 }
1980
1981 if (srcdev->bdev)
1982 fs_devices->open_devices--;
1983}
1984
1985void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1986 struct btrfs_device *srcdev)
1987{
1988 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1989
1990 call_rcu(&srcdev->rcu, free_device);
1991
1992 /*
1993 * unless fs_devices is seed fs, num_devices shouldn't go
1994 * zero
1995 */
1996 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1997
1998 /* if this is no devs we rather delete the fs_devices */
1999 if (!fs_devices->num_devices) {
2000 struct btrfs_fs_devices *tmp_fs_devices;
2001
2002 tmp_fs_devices = fs_info->fs_devices;
2003 while (tmp_fs_devices) {
2004 if (tmp_fs_devices->seed == fs_devices) {
2005 tmp_fs_devices->seed = fs_devices->seed;
2006 break;
2007 }
2008 tmp_fs_devices = tmp_fs_devices->seed;
2009 }
2010 fs_devices->seed = NULL;
2011 __btrfs_close_devices(fs_devices);
2012 free_fs_devices(fs_devices);
2013 }
2014}
2015
2016void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2017 struct btrfs_device *tgtdev)
2018{
2019 struct btrfs_device *next_device;
2020
2021 mutex_lock(&uuid_mutex);
2022 WARN_ON(!tgtdev);
2023 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2024
2025 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2026
2027 if (tgtdev->bdev) {
2028 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2029 fs_info->fs_devices->open_devices--;
2030 }
2031 fs_info->fs_devices->num_devices--;
2032
2033 next_device = list_entry(fs_info->fs_devices->devices.next,
2034 struct btrfs_device, dev_list);
2035 if (tgtdev->bdev == fs_info->sb->s_bdev)
2036 fs_info->sb->s_bdev = next_device->bdev;
2037 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2038 fs_info->fs_devices->latest_bdev = next_device->bdev;
2039 list_del_rcu(&tgtdev->dev_list);
2040
2041 call_rcu(&tgtdev->rcu, free_device);
2042
2043 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2044 mutex_unlock(&uuid_mutex);
2045}
2046
2047static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2048 struct btrfs_device **device)
2049{
2050 int ret = 0;
2051 struct btrfs_super_block *disk_super;
2052 u64 devid;
2053 u8 *dev_uuid;
2054 struct block_device *bdev;
2055 struct buffer_head *bh;
2056
2057 *device = NULL;
2058 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2059 root->fs_info->bdev_holder, 0, &bdev, &bh);
2060 if (ret)
2061 return ret;
2062 disk_super = (struct btrfs_super_block *)bh->b_data;
2063 devid = btrfs_stack_device_id(&disk_super->dev_item);
2064 dev_uuid = disk_super->dev_item.uuid;
2065 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2066 disk_super->fsid);
2067 brelse(bh);
2068 if (!*device)
2069 ret = -ENOENT;
2070 blkdev_put(bdev, FMODE_READ);
2071 return ret;
2072}
2073
2074int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2075 char *device_path,
2076 struct btrfs_device **device)
2077{
2078 *device = NULL;
2079 if (strcmp(device_path, "missing") == 0) {
2080 struct list_head *devices;
2081 struct btrfs_device *tmp;
2082
2083 devices = &root->fs_info->fs_devices->devices;
2084 /*
2085 * It is safe to read the devices since the volume_mutex
2086 * is held by the caller.
2087 */
2088 list_for_each_entry(tmp, devices, dev_list) {
2089 if (tmp->in_fs_metadata && !tmp->bdev) {
2090 *device = tmp;
2091 break;
2092 }
2093 }
2094
2095 if (!*device)
2096 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2097
2098 return 0;
2099 } else {
2100 return btrfs_find_device_by_path(root, device_path, device);
2101 }
2102}
2103
2104/*
2105 * does all the dirty work required for changing file system's UUID.
2106 */
2107static int btrfs_prepare_sprout(struct btrfs_root *root)
2108{
2109 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2110 struct btrfs_fs_devices *old_devices;
2111 struct btrfs_fs_devices *seed_devices;
2112 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2113 struct btrfs_device *device;
2114 u64 super_flags;
2115
2116 BUG_ON(!mutex_is_locked(&uuid_mutex));
2117 if (!fs_devices->seeding)
2118 return -EINVAL;
2119
2120 seed_devices = __alloc_fs_devices();
2121 if (IS_ERR(seed_devices))
2122 return PTR_ERR(seed_devices);
2123
2124 old_devices = clone_fs_devices(fs_devices);
2125 if (IS_ERR(old_devices)) {
2126 kfree(seed_devices);
2127 return PTR_ERR(old_devices);
2128 }
2129
2130 list_add(&old_devices->list, &fs_uuids);
2131
2132 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2133 seed_devices->opened = 1;
2134 INIT_LIST_HEAD(&seed_devices->devices);
2135 INIT_LIST_HEAD(&seed_devices->alloc_list);
2136 mutex_init(&seed_devices->device_list_mutex);
2137
2138 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2139 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2140 synchronize_rcu);
2141 list_for_each_entry(device, &seed_devices->devices, dev_list)
2142 device->fs_devices = seed_devices;
2143
2144 lock_chunks(root);
2145 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2146 unlock_chunks(root);
2147
2148 fs_devices->seeding = 0;
2149 fs_devices->num_devices = 0;
2150 fs_devices->open_devices = 0;
2151 fs_devices->missing_devices = 0;
2152 fs_devices->rotating = 0;
2153 fs_devices->seed = seed_devices;
2154
2155 generate_random_uuid(fs_devices->fsid);
2156 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2157 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2158 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2159
2160 super_flags = btrfs_super_flags(disk_super) &
2161 ~BTRFS_SUPER_FLAG_SEEDING;
2162 btrfs_set_super_flags(disk_super, super_flags);
2163
2164 return 0;
2165}
2166
2167/*
2168 * strore the expected generation for seed devices in device items.
2169 */
2170static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2171 struct btrfs_root *root)
2172{
2173 struct btrfs_path *path;
2174 struct extent_buffer *leaf;
2175 struct btrfs_dev_item *dev_item;
2176 struct btrfs_device *device;
2177 struct btrfs_key key;
2178 u8 fs_uuid[BTRFS_UUID_SIZE];
2179 u8 dev_uuid[BTRFS_UUID_SIZE];
2180 u64 devid;
2181 int ret;
2182
2183 path = btrfs_alloc_path();
2184 if (!path)
2185 return -ENOMEM;
2186
2187 root = root->fs_info->chunk_root;
2188 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2189 key.offset = 0;
2190 key.type = BTRFS_DEV_ITEM_KEY;
2191
2192 while (1) {
2193 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2194 if (ret < 0)
2195 goto error;
2196
2197 leaf = path->nodes[0];
2198next_slot:
2199 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2200 ret = btrfs_next_leaf(root, path);
2201 if (ret > 0)
2202 break;
2203 if (ret < 0)
2204 goto error;
2205 leaf = path->nodes[0];
2206 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2207 btrfs_release_path(path);
2208 continue;
2209 }
2210
2211 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2212 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2213 key.type != BTRFS_DEV_ITEM_KEY)
2214 break;
2215
2216 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2217 struct btrfs_dev_item);
2218 devid = btrfs_device_id(leaf, dev_item);
2219 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2220 BTRFS_UUID_SIZE);
2221 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2222 BTRFS_UUID_SIZE);
2223 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2224 fs_uuid);
2225 BUG_ON(!device); /* Logic error */
2226
2227 if (device->fs_devices->seeding) {
2228 btrfs_set_device_generation(leaf, dev_item,
2229 device->generation);
2230 btrfs_mark_buffer_dirty(leaf);
2231 }
2232
2233 path->slots[0]++;
2234 goto next_slot;
2235 }
2236 ret = 0;
2237error:
2238 btrfs_free_path(path);
2239 return ret;
2240}
2241
2242int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2243{
2244 struct request_queue *q;
2245 struct btrfs_trans_handle *trans;
2246 struct btrfs_device *device;
2247 struct block_device *bdev;
2248 struct list_head *devices;
2249 struct super_block *sb = root->fs_info->sb;
2250 struct rcu_string *name;
2251 u64 tmp;
2252 int seeding_dev = 0;
2253 int ret = 0;
2254
2255 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2256 return -EROFS;
2257
2258 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2259 root->fs_info->bdev_holder);
2260 if (IS_ERR(bdev))
2261 return PTR_ERR(bdev);
2262
2263 if (root->fs_info->fs_devices->seeding) {
2264 seeding_dev = 1;
2265 down_write(&sb->s_umount);
2266 mutex_lock(&uuid_mutex);
2267 }
2268
2269 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2270
2271 devices = &root->fs_info->fs_devices->devices;
2272
2273 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2274 list_for_each_entry(device, devices, dev_list) {
2275 if (device->bdev == bdev) {
2276 ret = -EEXIST;
2277 mutex_unlock(
2278 &root->fs_info->fs_devices->device_list_mutex);
2279 goto error;
2280 }
2281 }
2282 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2283
2284 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2285 if (IS_ERR(device)) {
2286 /* we can safely leave the fs_devices entry around */
2287 ret = PTR_ERR(device);
2288 goto error;
2289 }
2290
2291 name = rcu_string_strdup(device_path, GFP_KERNEL);
2292 if (!name) {
2293 kfree(device);
2294 ret = -ENOMEM;
2295 goto error;
2296 }
2297 rcu_assign_pointer(device->name, name);
2298
2299 trans = btrfs_start_transaction(root, 0);
2300 if (IS_ERR(trans)) {
2301 rcu_string_free(device->name);
2302 kfree(device);
2303 ret = PTR_ERR(trans);
2304 goto error;
2305 }
2306
2307 q = bdev_get_queue(bdev);
2308 if (blk_queue_discard(q))
2309 device->can_discard = 1;
2310 device->writeable = 1;
2311 device->generation = trans->transid;
2312 device->io_width = root->sectorsize;
2313 device->io_align = root->sectorsize;
2314 device->sector_size = root->sectorsize;
2315 device->total_bytes = i_size_read(bdev->bd_inode);
2316 device->disk_total_bytes = device->total_bytes;
2317 device->commit_total_bytes = device->total_bytes;
2318 device->dev_root = root->fs_info->dev_root;
2319 device->bdev = bdev;
2320 device->in_fs_metadata = 1;
2321 device->is_tgtdev_for_dev_replace = 0;
2322 device->mode = FMODE_EXCL;
2323 device->dev_stats_valid = 1;
2324 set_blocksize(device->bdev, 4096);
2325
2326 if (seeding_dev) {
2327 sb->s_flags &= ~MS_RDONLY;
2328 ret = btrfs_prepare_sprout(root);
2329 BUG_ON(ret); /* -ENOMEM */
2330 }
2331
2332 device->fs_devices = root->fs_info->fs_devices;
2333
2334 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2335 lock_chunks(root);
2336 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2337 list_add(&device->dev_alloc_list,
2338 &root->fs_info->fs_devices->alloc_list);
2339 root->fs_info->fs_devices->num_devices++;
2340 root->fs_info->fs_devices->open_devices++;
2341 root->fs_info->fs_devices->rw_devices++;
2342 root->fs_info->fs_devices->total_devices++;
2343 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2344
2345 spin_lock(&root->fs_info->free_chunk_lock);
2346 root->fs_info->free_chunk_space += device->total_bytes;
2347 spin_unlock(&root->fs_info->free_chunk_lock);
2348
2349 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2350 root->fs_info->fs_devices->rotating = 1;
2351
2352 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2353 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2354 tmp + device->total_bytes);
2355
2356 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2357 btrfs_set_super_num_devices(root->fs_info->super_copy,
2358 tmp + 1);
2359
2360 /* add sysfs device entry */
2361 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2362
2363 /*
2364 * we've got more storage, clear any full flags on the space
2365 * infos
2366 */
2367 btrfs_clear_space_info_full(root->fs_info);
2368
2369 unlock_chunks(root);
2370 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2371
2372 if (seeding_dev) {
2373 lock_chunks(root);
2374 ret = init_first_rw_device(trans, root, device);
2375 unlock_chunks(root);
2376 if (ret) {
2377 btrfs_abort_transaction(trans, root, ret);
2378 goto error_trans;
2379 }
2380 }
2381
2382 ret = btrfs_add_device(trans, root, device);
2383 if (ret) {
2384 btrfs_abort_transaction(trans, root, ret);
2385 goto error_trans;
2386 }
2387
2388 if (seeding_dev) {
2389 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2390
2391 ret = btrfs_finish_sprout(trans, root);
2392 if (ret) {
2393 btrfs_abort_transaction(trans, root, ret);
2394 goto error_trans;
2395 }
2396
2397 /* Sprouting would change fsid of the mounted root,
2398 * so rename the fsid on the sysfs
2399 */
2400 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2401 root->fs_info->fsid);
2402 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2403 fsid_buf))
2404 btrfs_warn(root->fs_info,
2405 "sysfs: failed to create fsid for sprout");
2406 }
2407
2408 root->fs_info->num_tolerated_disk_barrier_failures =
2409 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2410 ret = btrfs_commit_transaction(trans, root);
2411
2412 if (seeding_dev) {
2413 mutex_unlock(&uuid_mutex);
2414 up_write(&sb->s_umount);
2415
2416 if (ret) /* transaction commit */
2417 return ret;
2418
2419 ret = btrfs_relocate_sys_chunks(root);
2420 if (ret < 0)
2421 btrfs_std_error(root->fs_info, ret,
2422 "Failed to relocate sys chunks after "
2423 "device initialization. This can be fixed "
2424 "using the \"btrfs balance\" command.");
2425 trans = btrfs_attach_transaction(root);
2426 if (IS_ERR(trans)) {
2427 if (PTR_ERR(trans) == -ENOENT)
2428 return 0;
2429 return PTR_ERR(trans);
2430 }
2431 ret = btrfs_commit_transaction(trans, root);
2432 }
2433
2434 /* Update ctime/mtime for libblkid */
2435 update_dev_time(device_path);
2436 return ret;
2437
2438error_trans:
2439 btrfs_end_transaction(trans, root);
2440 rcu_string_free(device->name);
2441 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2442 kfree(device);
2443error:
2444 blkdev_put(bdev, FMODE_EXCL);
2445 if (seeding_dev) {
2446 mutex_unlock(&uuid_mutex);
2447 up_write(&sb->s_umount);
2448 }
2449 return ret;
2450}
2451
2452int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2453 struct btrfs_device *srcdev,
2454 struct btrfs_device **device_out)
2455{
2456 struct request_queue *q;
2457 struct btrfs_device *device;
2458 struct block_device *bdev;
2459 struct btrfs_fs_info *fs_info = root->fs_info;
2460 struct list_head *devices;
2461 struct rcu_string *name;
2462 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2463 int ret = 0;
2464
2465 *device_out = NULL;
2466 if (fs_info->fs_devices->seeding) {
2467 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2468 return -EINVAL;
2469 }
2470
2471 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2472 fs_info->bdev_holder);
2473 if (IS_ERR(bdev)) {
2474 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2475 return PTR_ERR(bdev);
2476 }
2477
2478 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2479
2480 devices = &fs_info->fs_devices->devices;
2481 list_for_each_entry(device, devices, dev_list) {
2482 if (device->bdev == bdev) {
2483 btrfs_err(fs_info, "target device is in the filesystem!");
2484 ret = -EEXIST;
2485 goto error;
2486 }
2487 }
2488
2489
2490 if (i_size_read(bdev->bd_inode) <
2491 btrfs_device_get_total_bytes(srcdev)) {
2492 btrfs_err(fs_info, "target device is smaller than source device!");
2493 ret = -EINVAL;
2494 goto error;
2495 }
2496
2497
2498 device = btrfs_alloc_device(NULL, &devid, NULL);
2499 if (IS_ERR(device)) {
2500 ret = PTR_ERR(device);
2501 goto error;
2502 }
2503
2504 name = rcu_string_strdup(device_path, GFP_NOFS);
2505 if (!name) {
2506 kfree(device);
2507 ret = -ENOMEM;
2508 goto error;
2509 }
2510 rcu_assign_pointer(device->name, name);
2511
2512 q = bdev_get_queue(bdev);
2513 if (blk_queue_discard(q))
2514 device->can_discard = 1;
2515 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2516 device->writeable = 1;
2517 device->generation = 0;
2518 device->io_width = root->sectorsize;
2519 device->io_align = root->sectorsize;
2520 device->sector_size = root->sectorsize;
2521 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2522 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2523 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2524 ASSERT(list_empty(&srcdev->resized_list));
2525 device->commit_total_bytes = srcdev->commit_total_bytes;
2526 device->commit_bytes_used = device->bytes_used;
2527 device->dev_root = fs_info->dev_root;
2528 device->bdev = bdev;
2529 device->in_fs_metadata = 1;
2530 device->is_tgtdev_for_dev_replace = 1;
2531 device->mode = FMODE_EXCL;
2532 device->dev_stats_valid = 1;
2533 set_blocksize(device->bdev, 4096);
2534 device->fs_devices = fs_info->fs_devices;
2535 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2536 fs_info->fs_devices->num_devices++;
2537 fs_info->fs_devices->open_devices++;
2538 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2539
2540 *device_out = device;
2541 return ret;
2542
2543error:
2544 blkdev_put(bdev, FMODE_EXCL);
2545 return ret;
2546}
2547
2548void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2549 struct btrfs_device *tgtdev)
2550{
2551 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2552 tgtdev->io_width = fs_info->dev_root->sectorsize;
2553 tgtdev->io_align = fs_info->dev_root->sectorsize;
2554 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2555 tgtdev->dev_root = fs_info->dev_root;
2556 tgtdev->in_fs_metadata = 1;
2557}
2558
2559static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2560 struct btrfs_device *device)
2561{
2562 int ret;
2563 struct btrfs_path *path;
2564 struct btrfs_root *root;
2565 struct btrfs_dev_item *dev_item;
2566 struct extent_buffer *leaf;
2567 struct btrfs_key key;
2568
2569 root = device->dev_root->fs_info->chunk_root;
2570
2571 path = btrfs_alloc_path();
2572 if (!path)
2573 return -ENOMEM;
2574
2575 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2576 key.type = BTRFS_DEV_ITEM_KEY;
2577 key.offset = device->devid;
2578
2579 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2580 if (ret < 0)
2581 goto out;
2582
2583 if (ret > 0) {
2584 ret = -ENOENT;
2585 goto out;
2586 }
2587
2588 leaf = path->nodes[0];
2589 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2590
2591 btrfs_set_device_id(leaf, dev_item, device->devid);
2592 btrfs_set_device_type(leaf, dev_item, device->type);
2593 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2594 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2595 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2596 btrfs_set_device_total_bytes(leaf, dev_item,
2597 btrfs_device_get_disk_total_bytes(device));
2598 btrfs_set_device_bytes_used(leaf, dev_item,
2599 btrfs_device_get_bytes_used(device));
2600 btrfs_mark_buffer_dirty(leaf);
2601
2602out:
2603 btrfs_free_path(path);
2604 return ret;
2605}
2606
2607int btrfs_grow_device(struct btrfs_trans_handle *trans,
2608 struct btrfs_device *device, u64 new_size)
2609{
2610 struct btrfs_super_block *super_copy =
2611 device->dev_root->fs_info->super_copy;
2612 struct btrfs_fs_devices *fs_devices;
2613 u64 old_total;
2614 u64 diff;
2615
2616 if (!device->writeable)
2617 return -EACCES;
2618
2619 lock_chunks(device->dev_root);
2620 old_total = btrfs_super_total_bytes(super_copy);
2621 diff = new_size - device->total_bytes;
2622
2623 if (new_size <= device->total_bytes ||
2624 device->is_tgtdev_for_dev_replace) {
2625 unlock_chunks(device->dev_root);
2626 return -EINVAL;
2627 }
2628
2629 fs_devices = device->dev_root->fs_info->fs_devices;
2630
2631 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2632 device->fs_devices->total_rw_bytes += diff;
2633
2634 btrfs_device_set_total_bytes(device, new_size);
2635 btrfs_device_set_disk_total_bytes(device, new_size);
2636 btrfs_clear_space_info_full(device->dev_root->fs_info);
2637 if (list_empty(&device->resized_list))
2638 list_add_tail(&device->resized_list,
2639 &fs_devices->resized_devices);
2640 unlock_chunks(device->dev_root);
2641
2642 return btrfs_update_device(trans, device);
2643}
2644
2645static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2646 struct btrfs_root *root, u64 chunk_objectid,
2647 u64 chunk_offset)
2648{
2649 int ret;
2650 struct btrfs_path *path;
2651 struct btrfs_key key;
2652
2653 root = root->fs_info->chunk_root;
2654 path = btrfs_alloc_path();
2655 if (!path)
2656 return -ENOMEM;
2657
2658 key.objectid = chunk_objectid;
2659 key.offset = chunk_offset;
2660 key.type = BTRFS_CHUNK_ITEM_KEY;
2661
2662 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2663 if (ret < 0)
2664 goto out;
2665 else if (ret > 0) { /* Logic error or corruption */
2666 btrfs_std_error(root->fs_info, -ENOENT,
2667 "Failed lookup while freeing chunk.");
2668 ret = -ENOENT;
2669 goto out;
2670 }
2671
2672 ret = btrfs_del_item(trans, root, path);
2673 if (ret < 0)
2674 btrfs_std_error(root->fs_info, ret,
2675 "Failed to delete chunk item.");
2676out:
2677 btrfs_free_path(path);
2678 return ret;
2679}
2680
2681static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2682 chunk_offset)
2683{
2684 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2685 struct btrfs_disk_key *disk_key;
2686 struct btrfs_chunk *chunk;
2687 u8 *ptr;
2688 int ret = 0;
2689 u32 num_stripes;
2690 u32 array_size;
2691 u32 len = 0;
2692 u32 cur;
2693 struct btrfs_key key;
2694
2695 lock_chunks(root);
2696 array_size = btrfs_super_sys_array_size(super_copy);
2697
2698 ptr = super_copy->sys_chunk_array;
2699 cur = 0;
2700
2701 while (cur < array_size) {
2702 disk_key = (struct btrfs_disk_key *)ptr;
2703 btrfs_disk_key_to_cpu(&key, disk_key);
2704
2705 len = sizeof(*disk_key);
2706
2707 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2708 chunk = (struct btrfs_chunk *)(ptr + len);
2709 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2710 len += btrfs_chunk_item_size(num_stripes);
2711 } else {
2712 ret = -EIO;
2713 break;
2714 }
2715 if (key.objectid == chunk_objectid &&
2716 key.offset == chunk_offset) {
2717 memmove(ptr, ptr + len, array_size - (cur + len));
2718 array_size -= len;
2719 btrfs_set_super_sys_array_size(super_copy, array_size);
2720 } else {
2721 ptr += len;
2722 cur += len;
2723 }
2724 }
2725 unlock_chunks(root);
2726 return ret;
2727}
2728
2729int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2730 struct btrfs_root *root, u64 chunk_offset)
2731{
2732 struct extent_map_tree *em_tree;
2733 struct extent_map *em;
2734 struct btrfs_root *extent_root = root->fs_info->extent_root;
2735 struct map_lookup *map;
2736 u64 dev_extent_len = 0;
2737 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2738 int i, ret = 0;
2739
2740 /* Just in case */
2741 root = root->fs_info->chunk_root;
2742 em_tree = &root->fs_info->mapping_tree.map_tree;
2743
2744 read_lock(&em_tree->lock);
2745 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2746 read_unlock(&em_tree->lock);
2747
2748 if (!em || em->start > chunk_offset ||
2749 em->start + em->len < chunk_offset) {
2750 /*
2751 * This is a logic error, but we don't want to just rely on the
2752 * user having built with ASSERT enabled, so if ASSERT doesn't
2753 * do anything we still error out.
2754 */
2755 ASSERT(0);
2756 if (em)
2757 free_extent_map(em);
2758 return -EINVAL;
2759 }
2760 map = em->map_lookup;
2761 lock_chunks(root->fs_info->chunk_root);
2762 check_system_chunk(trans, extent_root, map->type);
2763 unlock_chunks(root->fs_info->chunk_root);
2764
2765 for (i = 0; i < map->num_stripes; i++) {
2766 struct btrfs_device *device = map->stripes[i].dev;
2767 ret = btrfs_free_dev_extent(trans, device,
2768 map->stripes[i].physical,
2769 &dev_extent_len);
2770 if (ret) {
2771 btrfs_abort_transaction(trans, root, ret);
2772 goto out;
2773 }
2774
2775 if (device->bytes_used > 0) {
2776 lock_chunks(root);
2777 btrfs_device_set_bytes_used(device,
2778 device->bytes_used - dev_extent_len);
2779 spin_lock(&root->fs_info->free_chunk_lock);
2780 root->fs_info->free_chunk_space += dev_extent_len;
2781 spin_unlock(&root->fs_info->free_chunk_lock);
2782 btrfs_clear_space_info_full(root->fs_info);
2783 unlock_chunks(root);
2784 }
2785
2786 if (map->stripes[i].dev) {
2787 ret = btrfs_update_device(trans, map->stripes[i].dev);
2788 if (ret) {
2789 btrfs_abort_transaction(trans, root, ret);
2790 goto out;
2791 }
2792 }
2793 }
2794 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2795 if (ret) {
2796 btrfs_abort_transaction(trans, root, ret);
2797 goto out;
2798 }
2799
2800 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2801
2802 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2803 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2804 if (ret) {
2805 btrfs_abort_transaction(trans, root, ret);
2806 goto out;
2807 }
2808 }
2809
2810 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2811 if (ret) {
2812 btrfs_abort_transaction(trans, extent_root, ret);
2813 goto out;
2814 }
2815
2816out:
2817 /* once for us */
2818 free_extent_map(em);
2819 return ret;
2820}
2821
2822static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2823{
2824 struct btrfs_root *extent_root;
2825 struct btrfs_trans_handle *trans;
2826 int ret;
2827
2828 root = root->fs_info->chunk_root;
2829 extent_root = root->fs_info->extent_root;
2830
2831 /*
2832 * Prevent races with automatic removal of unused block groups.
2833 * After we relocate and before we remove the chunk with offset
2834 * chunk_offset, automatic removal of the block group can kick in,
2835 * resulting in a failure when calling btrfs_remove_chunk() below.
2836 *
2837 * Make sure to acquire this mutex before doing a tree search (dev
2838 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2839 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2840 * we release the path used to search the chunk/dev tree and before
2841 * the current task acquires this mutex and calls us.
2842 */
2843 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2844
2845 ret = btrfs_can_relocate(extent_root, chunk_offset);
2846 if (ret)
2847 return -ENOSPC;
2848
2849 /* step one, relocate all the extents inside this chunk */
2850 btrfs_scrub_pause(root);
2851 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2852 btrfs_scrub_continue(root);
2853 if (ret)
2854 return ret;
2855
2856 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2857 chunk_offset);
2858 if (IS_ERR(trans)) {
2859 ret = PTR_ERR(trans);
2860 btrfs_std_error(root->fs_info, ret, NULL);
2861 return ret;
2862 }
2863
2864 /*
2865 * step two, delete the device extents and the
2866 * chunk tree entries
2867 */
2868 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2869 btrfs_end_transaction(trans, root);
2870 return ret;
2871}
2872
2873static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2874{
2875 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2876 struct btrfs_path *path;
2877 struct extent_buffer *leaf;
2878 struct btrfs_chunk *chunk;
2879 struct btrfs_key key;
2880 struct btrfs_key found_key;
2881 u64 chunk_type;
2882 bool retried = false;
2883 int failed = 0;
2884 int ret;
2885
2886 path = btrfs_alloc_path();
2887 if (!path)
2888 return -ENOMEM;
2889
2890again:
2891 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2892 key.offset = (u64)-1;
2893 key.type = BTRFS_CHUNK_ITEM_KEY;
2894
2895 while (1) {
2896 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2897 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2898 if (ret < 0) {
2899 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2900 goto error;
2901 }
2902 BUG_ON(ret == 0); /* Corruption */
2903
2904 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2905 key.type);
2906 if (ret)
2907 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2908 if (ret < 0)
2909 goto error;
2910 if (ret > 0)
2911 break;
2912
2913 leaf = path->nodes[0];
2914 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2915
2916 chunk = btrfs_item_ptr(leaf, path->slots[0],
2917 struct btrfs_chunk);
2918 chunk_type = btrfs_chunk_type(leaf, chunk);
2919 btrfs_release_path(path);
2920
2921 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2922 ret = btrfs_relocate_chunk(chunk_root,
2923 found_key.offset);
2924 if (ret == -ENOSPC)
2925 failed++;
2926 else
2927 BUG_ON(ret);
2928 }
2929 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2930
2931 if (found_key.offset == 0)
2932 break;
2933 key.offset = found_key.offset - 1;
2934 }
2935 ret = 0;
2936 if (failed && !retried) {
2937 failed = 0;
2938 retried = true;
2939 goto again;
2940 } else if (WARN_ON(failed && retried)) {
2941 ret = -ENOSPC;
2942 }
2943error:
2944 btrfs_free_path(path);
2945 return ret;
2946}
2947
2948static int insert_balance_item(struct btrfs_root *root,
2949 struct btrfs_balance_control *bctl)
2950{
2951 struct btrfs_trans_handle *trans;
2952 struct btrfs_balance_item *item;
2953 struct btrfs_disk_balance_args disk_bargs;
2954 struct btrfs_path *path;
2955 struct extent_buffer *leaf;
2956 struct btrfs_key key;
2957 int ret, err;
2958
2959 path = btrfs_alloc_path();
2960 if (!path)
2961 return -ENOMEM;
2962
2963 trans = btrfs_start_transaction(root, 0);
2964 if (IS_ERR(trans)) {
2965 btrfs_free_path(path);
2966 return PTR_ERR(trans);
2967 }
2968
2969 key.objectid = BTRFS_BALANCE_OBJECTID;
2970 key.type = BTRFS_TEMPORARY_ITEM_KEY;
2971 key.offset = 0;
2972
2973 ret = btrfs_insert_empty_item(trans, root, path, &key,
2974 sizeof(*item));
2975 if (ret)
2976 goto out;
2977
2978 leaf = path->nodes[0];
2979 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2980
2981 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2982
2983 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2984 btrfs_set_balance_data(leaf, item, &disk_bargs);
2985 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2986 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2987 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2988 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2989
2990 btrfs_set_balance_flags(leaf, item, bctl->flags);
2991
2992 btrfs_mark_buffer_dirty(leaf);
2993out:
2994 btrfs_free_path(path);
2995 err = btrfs_commit_transaction(trans, root);
2996 if (err && !ret)
2997 ret = err;
2998 return ret;
2999}
3000
3001static int del_balance_item(struct btrfs_root *root)
3002{
3003 struct btrfs_trans_handle *trans;
3004 struct btrfs_path *path;
3005 struct btrfs_key key;
3006 int ret, err;
3007
3008 path = btrfs_alloc_path();
3009 if (!path)
3010 return -ENOMEM;
3011
3012 trans = btrfs_start_transaction(root, 0);
3013 if (IS_ERR(trans)) {
3014 btrfs_free_path(path);
3015 return PTR_ERR(trans);
3016 }
3017
3018 key.objectid = BTRFS_BALANCE_OBJECTID;
3019 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3020 key.offset = 0;
3021
3022 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3023 if (ret < 0)
3024 goto out;
3025 if (ret > 0) {
3026 ret = -ENOENT;
3027 goto out;
3028 }
3029
3030 ret = btrfs_del_item(trans, root, path);
3031out:
3032 btrfs_free_path(path);
3033 err = btrfs_commit_transaction(trans, root);
3034 if (err && !ret)
3035 ret = err;
3036 return ret;
3037}
3038
3039/*
3040 * This is a heuristic used to reduce the number of chunks balanced on
3041 * resume after balance was interrupted.
3042 */
3043static void update_balance_args(struct btrfs_balance_control *bctl)
3044{
3045 /*
3046 * Turn on soft mode for chunk types that were being converted.
3047 */
3048 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3049 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3050 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3051 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3052 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3053 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3054
3055 /*
3056 * Turn on usage filter if is not already used. The idea is
3057 * that chunks that we have already balanced should be
3058 * reasonably full. Don't do it for chunks that are being
3059 * converted - that will keep us from relocating unconverted
3060 * (albeit full) chunks.
3061 */
3062 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3063 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3064 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3065 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3066 bctl->data.usage = 90;
3067 }
3068 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3069 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3070 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3071 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3072 bctl->sys.usage = 90;
3073 }
3074 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3075 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3076 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3077 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3078 bctl->meta.usage = 90;
3079 }
3080}
3081
3082/*
3083 * Should be called with both balance and volume mutexes held to
3084 * serialize other volume operations (add_dev/rm_dev/resize) with
3085 * restriper. Same goes for unset_balance_control.
3086 */
3087static void set_balance_control(struct btrfs_balance_control *bctl)
3088{
3089 struct btrfs_fs_info *fs_info = bctl->fs_info;
3090
3091 BUG_ON(fs_info->balance_ctl);
3092
3093 spin_lock(&fs_info->balance_lock);
3094 fs_info->balance_ctl = bctl;
3095 spin_unlock(&fs_info->balance_lock);
3096}
3097
3098static void unset_balance_control(struct btrfs_fs_info *fs_info)
3099{
3100 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3101
3102 BUG_ON(!fs_info->balance_ctl);
3103
3104 spin_lock(&fs_info->balance_lock);
3105 fs_info->balance_ctl = NULL;
3106 spin_unlock(&fs_info->balance_lock);
3107
3108 kfree(bctl);
3109}
3110
3111/*
3112 * Balance filters. Return 1 if chunk should be filtered out
3113 * (should not be balanced).
3114 */
3115static int chunk_profiles_filter(u64 chunk_type,
3116 struct btrfs_balance_args *bargs)
3117{
3118 chunk_type = chunk_to_extended(chunk_type) &
3119 BTRFS_EXTENDED_PROFILE_MASK;
3120
3121 if (bargs->profiles & chunk_type)
3122 return 0;
3123
3124 return 1;
3125}
3126
3127static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3128 struct btrfs_balance_args *bargs)
3129{
3130 struct btrfs_block_group_cache *cache;
3131 u64 chunk_used;
3132 u64 user_thresh_min;
3133 u64 user_thresh_max;
3134 int ret = 1;
3135
3136 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3137 chunk_used = btrfs_block_group_used(&cache->item);
3138
3139 if (bargs->usage_min == 0)
3140 user_thresh_min = 0;
3141 else
3142 user_thresh_min = div_factor_fine(cache->key.offset,
3143 bargs->usage_min);
3144
3145 if (bargs->usage_max == 0)
3146 user_thresh_max = 1;
3147 else if (bargs->usage_max > 100)
3148 user_thresh_max = cache->key.offset;
3149 else
3150 user_thresh_max = div_factor_fine(cache->key.offset,
3151 bargs->usage_max);
3152
3153 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3154 ret = 0;
3155
3156 btrfs_put_block_group(cache);
3157 return ret;
3158}
3159
3160static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3161 u64 chunk_offset, struct btrfs_balance_args *bargs)
3162{
3163 struct btrfs_block_group_cache *cache;
3164 u64 chunk_used, user_thresh;
3165 int ret = 1;
3166
3167 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3168 chunk_used = btrfs_block_group_used(&cache->item);
3169
3170 if (bargs->usage_min == 0)
3171 user_thresh = 1;
3172 else if (bargs->usage > 100)
3173 user_thresh = cache->key.offset;
3174 else
3175 user_thresh = div_factor_fine(cache->key.offset,
3176 bargs->usage);
3177
3178 if (chunk_used < user_thresh)
3179 ret = 0;
3180
3181 btrfs_put_block_group(cache);
3182 return ret;
3183}
3184
3185static int chunk_devid_filter(struct extent_buffer *leaf,
3186 struct btrfs_chunk *chunk,
3187 struct btrfs_balance_args *bargs)
3188{
3189 struct btrfs_stripe *stripe;
3190 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3191 int i;
3192
3193 for (i = 0; i < num_stripes; i++) {
3194 stripe = btrfs_stripe_nr(chunk, i);
3195 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3196 return 0;
3197 }
3198
3199 return 1;
3200}
3201
3202/* [pstart, pend) */
3203static int chunk_drange_filter(struct extent_buffer *leaf,
3204 struct btrfs_chunk *chunk,
3205 u64 chunk_offset,
3206 struct btrfs_balance_args *bargs)
3207{
3208 struct btrfs_stripe *stripe;
3209 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3210 u64 stripe_offset;
3211 u64 stripe_length;
3212 int factor;
3213 int i;
3214
3215 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3216 return 0;
3217
3218 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3219 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3220 factor = num_stripes / 2;
3221 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3222 factor = num_stripes - 1;
3223 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3224 factor = num_stripes - 2;
3225 } else {
3226 factor = num_stripes;
3227 }
3228
3229 for (i = 0; i < num_stripes; i++) {
3230 stripe = btrfs_stripe_nr(chunk, i);
3231 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3232 continue;
3233
3234 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3235 stripe_length = btrfs_chunk_length(leaf, chunk);
3236 stripe_length = div_u64(stripe_length, factor);
3237
3238 if (stripe_offset < bargs->pend &&
3239 stripe_offset + stripe_length > bargs->pstart)
3240 return 0;
3241 }
3242
3243 return 1;
3244}
3245
3246/* [vstart, vend) */
3247static int chunk_vrange_filter(struct extent_buffer *leaf,
3248 struct btrfs_chunk *chunk,
3249 u64 chunk_offset,
3250 struct btrfs_balance_args *bargs)
3251{
3252 if (chunk_offset < bargs->vend &&
3253 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3254 /* at least part of the chunk is inside this vrange */
3255 return 0;
3256
3257 return 1;
3258}
3259
3260static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3261 struct btrfs_chunk *chunk,
3262 struct btrfs_balance_args *bargs)
3263{
3264 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3265
3266 if (bargs->stripes_min <= num_stripes
3267 && num_stripes <= bargs->stripes_max)
3268 return 0;
3269
3270 return 1;
3271}
3272
3273static int chunk_soft_convert_filter(u64 chunk_type,
3274 struct btrfs_balance_args *bargs)
3275{
3276 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3277 return 0;
3278
3279 chunk_type = chunk_to_extended(chunk_type) &
3280 BTRFS_EXTENDED_PROFILE_MASK;
3281
3282 if (bargs->target == chunk_type)
3283 return 1;
3284
3285 return 0;
3286}
3287
3288static int should_balance_chunk(struct btrfs_root *root,
3289 struct extent_buffer *leaf,
3290 struct btrfs_chunk *chunk, u64 chunk_offset)
3291{
3292 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3293 struct btrfs_balance_args *bargs = NULL;
3294 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3295
3296 /* type filter */
3297 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3298 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3299 return 0;
3300 }
3301
3302 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3303 bargs = &bctl->data;
3304 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3305 bargs = &bctl->sys;
3306 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3307 bargs = &bctl->meta;
3308
3309 /* profiles filter */
3310 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3311 chunk_profiles_filter(chunk_type, bargs)) {
3312 return 0;
3313 }
3314
3315 /* usage filter */
3316 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3317 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3318 return 0;
3319 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3320 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3321 return 0;
3322 }
3323
3324 /* devid filter */
3325 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3326 chunk_devid_filter(leaf, chunk, bargs)) {
3327 return 0;
3328 }
3329
3330 /* drange filter, makes sense only with devid filter */
3331 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3332 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3333 return 0;
3334 }
3335
3336 /* vrange filter */
3337 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3338 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3339 return 0;
3340 }
3341
3342 /* stripes filter */
3343 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3344 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3345 return 0;
3346 }
3347
3348 /* soft profile changing mode */
3349 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3350 chunk_soft_convert_filter(chunk_type, bargs)) {
3351 return 0;
3352 }
3353
3354 /*
3355 * limited by count, must be the last filter
3356 */
3357 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3358 if (bargs->limit == 0)
3359 return 0;
3360 else
3361 bargs->limit--;
3362 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3363 /*
3364 * Same logic as the 'limit' filter; the minimum cannot be
3365 * determined here because we do not have the global informatoin
3366 * about the count of all chunks that satisfy the filters.
3367 */
3368 if (bargs->limit_max == 0)
3369 return 0;
3370 else
3371 bargs->limit_max--;
3372 }
3373
3374 return 1;
3375}
3376
3377static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3378{
3379 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3380 struct btrfs_root *chunk_root = fs_info->chunk_root;
3381 struct btrfs_root *dev_root = fs_info->dev_root;
3382 struct list_head *devices;
3383 struct btrfs_device *device;
3384 u64 old_size;
3385 u64 size_to_free;
3386 u64 chunk_type;
3387 struct btrfs_chunk *chunk;
3388 struct btrfs_path *path;
3389 struct btrfs_key key;
3390 struct btrfs_key found_key;
3391 struct btrfs_trans_handle *trans;
3392 struct extent_buffer *leaf;
3393 int slot;
3394 int ret;
3395 int enospc_errors = 0;
3396 bool counting = true;
3397 /* The single value limit and min/max limits use the same bytes in the */
3398 u64 limit_data = bctl->data.limit;
3399 u64 limit_meta = bctl->meta.limit;
3400 u64 limit_sys = bctl->sys.limit;
3401 u32 count_data = 0;
3402 u32 count_meta = 0;
3403 u32 count_sys = 0;
3404 int chunk_reserved = 0;
3405
3406 /* step one make some room on all the devices */
3407 devices = &fs_info->fs_devices->devices;
3408 list_for_each_entry(device, devices, dev_list) {
3409 old_size = btrfs_device_get_total_bytes(device);
3410 size_to_free = div_factor(old_size, 1);
3411 size_to_free = min_t(u64, size_to_free, SZ_1M);
3412 if (!device->writeable ||
3413 btrfs_device_get_total_bytes(device) -
3414 btrfs_device_get_bytes_used(device) > size_to_free ||
3415 device->is_tgtdev_for_dev_replace)
3416 continue;
3417
3418 ret = btrfs_shrink_device(device, old_size - size_to_free);
3419 if (ret == -ENOSPC)
3420 break;
3421 BUG_ON(ret);
3422
3423 trans = btrfs_start_transaction(dev_root, 0);
3424 BUG_ON(IS_ERR(trans));
3425
3426 ret = btrfs_grow_device(trans, device, old_size);
3427 BUG_ON(ret);
3428
3429 btrfs_end_transaction(trans, dev_root);
3430 }
3431
3432 /* step two, relocate all the chunks */
3433 path = btrfs_alloc_path();
3434 if (!path) {
3435 ret = -ENOMEM;
3436 goto error;
3437 }
3438
3439 /* zero out stat counters */
3440 spin_lock(&fs_info->balance_lock);
3441 memset(&bctl->stat, 0, sizeof(bctl->stat));
3442 spin_unlock(&fs_info->balance_lock);
3443again:
3444 if (!counting) {
3445 /*
3446 * The single value limit and min/max limits use the same bytes
3447 * in the
3448 */
3449 bctl->data.limit = limit_data;
3450 bctl->meta.limit = limit_meta;
3451 bctl->sys.limit = limit_sys;
3452 }
3453 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3454 key.offset = (u64)-1;
3455 key.type = BTRFS_CHUNK_ITEM_KEY;
3456
3457 while (1) {
3458 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3459 atomic_read(&fs_info->balance_cancel_req)) {
3460 ret = -ECANCELED;
3461 goto error;
3462 }
3463
3464 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3465 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3466 if (ret < 0) {
3467 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3468 goto error;
3469 }
3470
3471 /*
3472 * this shouldn't happen, it means the last relocate
3473 * failed
3474 */
3475 if (ret == 0)
3476 BUG(); /* FIXME break ? */
3477
3478 ret = btrfs_previous_item(chunk_root, path, 0,
3479 BTRFS_CHUNK_ITEM_KEY);
3480 if (ret) {
3481 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3482 ret = 0;
3483 break;
3484 }
3485
3486 leaf = path->nodes[0];
3487 slot = path->slots[0];
3488 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3489
3490 if (found_key.objectid != key.objectid) {
3491 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3492 break;
3493 }
3494
3495 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3496 chunk_type = btrfs_chunk_type(leaf, chunk);
3497
3498 if (!counting) {
3499 spin_lock(&fs_info->balance_lock);
3500 bctl->stat.considered++;
3501 spin_unlock(&fs_info->balance_lock);
3502 }
3503
3504 ret = should_balance_chunk(chunk_root, leaf, chunk,
3505 found_key.offset);
3506
3507 btrfs_release_path(path);
3508 if (!ret) {
3509 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3510 goto loop;
3511 }
3512
3513 if (counting) {
3514 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3515 spin_lock(&fs_info->balance_lock);
3516 bctl->stat.expected++;
3517 spin_unlock(&fs_info->balance_lock);
3518
3519 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3520 count_data++;
3521 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3522 count_sys++;
3523 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3524 count_meta++;
3525
3526 goto loop;
3527 }
3528
3529 /*
3530 * Apply limit_min filter, no need to check if the LIMITS
3531 * filter is used, limit_min is 0 by default
3532 */
3533 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3534 count_data < bctl->data.limit_min)
3535 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3536 count_meta < bctl->meta.limit_min)
3537 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3538 count_sys < bctl->sys.limit_min)) {
3539 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3540 goto loop;
3541 }
3542
3543 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3544 trans = btrfs_start_transaction(chunk_root, 0);
3545 if (IS_ERR(trans)) {
3546 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3547 ret = PTR_ERR(trans);
3548 goto error;
3549 }
3550
3551 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3552 BTRFS_BLOCK_GROUP_DATA);
3553 btrfs_end_transaction(trans, chunk_root);
3554 if (ret < 0) {
3555 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3556 goto error;
3557 }
3558 chunk_reserved = 1;
3559 }
3560
3561 ret = btrfs_relocate_chunk(chunk_root,
3562 found_key.offset);
3563 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3564 if (ret && ret != -ENOSPC)
3565 goto error;
3566 if (ret == -ENOSPC) {
3567 enospc_errors++;
3568 } else {
3569 spin_lock(&fs_info->balance_lock);
3570 bctl->stat.completed++;
3571 spin_unlock(&fs_info->balance_lock);
3572 }
3573loop:
3574 if (found_key.offset == 0)
3575 break;
3576 key.offset = found_key.offset - 1;
3577 }
3578
3579 if (counting) {
3580 btrfs_release_path(path);
3581 counting = false;
3582 goto again;
3583 }
3584error:
3585 btrfs_free_path(path);
3586 if (enospc_errors) {
3587 btrfs_info(fs_info, "%d enospc errors during balance",
3588 enospc_errors);
3589 if (!ret)
3590 ret = -ENOSPC;
3591 }
3592
3593 return ret;
3594}
3595
3596/**
3597 * alloc_profile_is_valid - see if a given profile is valid and reduced
3598 * @flags: profile to validate
3599 * @extended: if true @flags is treated as an extended profile
3600 */
3601static int alloc_profile_is_valid(u64 flags, int extended)
3602{
3603 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3604 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3605
3606 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3607
3608 /* 1) check that all other bits are zeroed */
3609 if (flags & ~mask)
3610 return 0;
3611
3612 /* 2) see if profile is reduced */
3613 if (flags == 0)
3614 return !extended; /* "0" is valid for usual profiles */
3615
3616 /* true if exactly one bit set */
3617 return (flags & (flags - 1)) == 0;
3618}
3619
3620static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3621{
3622 /* cancel requested || normal exit path */
3623 return atomic_read(&fs_info->balance_cancel_req) ||
3624 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3625 atomic_read(&fs_info->balance_cancel_req) == 0);
3626}
3627
3628static void __cancel_balance(struct btrfs_fs_info *fs_info)
3629{
3630 int ret;
3631
3632 unset_balance_control(fs_info);
3633 ret = del_balance_item(fs_info->tree_root);
3634 if (ret)
3635 btrfs_std_error(fs_info, ret, NULL);
3636
3637 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3638}
3639
3640/* Non-zero return value signifies invalidity */
3641static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3642 u64 allowed)
3643{
3644 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3645 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3646 (bctl_arg->target & ~allowed)));
3647}
3648
3649/*
3650 * Should be called with both balance and volume mutexes held
3651 */
3652int btrfs_balance(struct btrfs_balance_control *bctl,
3653 struct btrfs_ioctl_balance_args *bargs)
3654{
3655 struct btrfs_fs_info *fs_info = bctl->fs_info;
3656 u64 allowed;
3657 int mixed = 0;
3658 int ret;
3659 u64 num_devices;
3660 unsigned seq;
3661
3662 if (btrfs_fs_closing(fs_info) ||
3663 atomic_read(&fs_info->balance_pause_req) ||
3664 atomic_read(&fs_info->balance_cancel_req)) {
3665 ret = -EINVAL;
3666 goto out;
3667 }
3668
3669 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3670 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3671 mixed = 1;
3672
3673 /*
3674 * In case of mixed groups both data and meta should be picked,
3675 * and identical options should be given for both of them.
3676 */
3677 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3678 if (mixed && (bctl->flags & allowed)) {
3679 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3680 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3681 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3682 btrfs_err(fs_info, "with mixed groups data and "
3683 "metadata balance options must be the same");
3684 ret = -EINVAL;
3685 goto out;
3686 }
3687 }
3688
3689 num_devices = fs_info->fs_devices->num_devices;
3690 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3691 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3692 BUG_ON(num_devices < 1);
3693 num_devices--;
3694 }
3695 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3696 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3697 if (num_devices == 1)
3698 allowed |= BTRFS_BLOCK_GROUP_DUP;
3699 else if (num_devices > 1)
3700 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3701 if (num_devices > 2)
3702 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3703 if (num_devices > 3)
3704 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3705 BTRFS_BLOCK_GROUP_RAID6);
3706 if (validate_convert_profile(&bctl->data, allowed)) {
3707 btrfs_err(fs_info, "unable to start balance with target "
3708 "data profile %llu",
3709 bctl->data.target);
3710 ret = -EINVAL;
3711 goto out;
3712 }
3713 if (validate_convert_profile(&bctl->meta, allowed)) {
3714 btrfs_err(fs_info,
3715 "unable to start balance with target metadata profile %llu",
3716 bctl->meta.target);
3717 ret = -EINVAL;
3718 goto out;
3719 }
3720 if (validate_convert_profile(&bctl->sys, allowed)) {
3721 btrfs_err(fs_info,
3722 "unable to start balance with target system profile %llu",
3723 bctl->sys.target);
3724 ret = -EINVAL;
3725 goto out;
3726 }
3727
3728 /* allow to reduce meta or sys integrity only if force set */
3729 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3730 BTRFS_BLOCK_GROUP_RAID10 |
3731 BTRFS_BLOCK_GROUP_RAID5 |
3732 BTRFS_BLOCK_GROUP_RAID6;
3733 do {
3734 seq = read_seqbegin(&fs_info->profiles_lock);
3735
3736 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3737 (fs_info->avail_system_alloc_bits & allowed) &&
3738 !(bctl->sys.target & allowed)) ||
3739 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3740 (fs_info->avail_metadata_alloc_bits & allowed) &&
3741 !(bctl->meta.target & allowed))) {
3742 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3743 btrfs_info(fs_info, "force reducing metadata integrity");
3744 } else {
3745 btrfs_err(fs_info, "balance will reduce metadata "
3746 "integrity, use force if you want this");
3747 ret = -EINVAL;
3748 goto out;
3749 }
3750 }
3751 } while (read_seqretry(&fs_info->profiles_lock, seq));
3752
3753 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3754 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3755 btrfs_warn(fs_info,
3756 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3757 bctl->meta.target, bctl->data.target);
3758 }
3759
3760 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3761 fs_info->num_tolerated_disk_barrier_failures = min(
3762 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3763 btrfs_get_num_tolerated_disk_barrier_failures(
3764 bctl->sys.target));
3765 }
3766
3767 ret = insert_balance_item(fs_info->tree_root, bctl);
3768 if (ret && ret != -EEXIST)
3769 goto out;
3770
3771 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3772 BUG_ON(ret == -EEXIST);
3773 set_balance_control(bctl);
3774 } else {
3775 BUG_ON(ret != -EEXIST);
3776 spin_lock(&fs_info->balance_lock);
3777 update_balance_args(bctl);
3778 spin_unlock(&fs_info->balance_lock);
3779 }
3780
3781 atomic_inc(&fs_info->balance_running);
3782 mutex_unlock(&fs_info->balance_mutex);
3783
3784 ret = __btrfs_balance(fs_info);
3785
3786 mutex_lock(&fs_info->balance_mutex);
3787 atomic_dec(&fs_info->balance_running);
3788
3789 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3790 fs_info->num_tolerated_disk_barrier_failures =
3791 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3792 }
3793
3794 if (bargs) {
3795 memset(bargs, 0, sizeof(*bargs));
3796 update_ioctl_balance_args(fs_info, 0, bargs);
3797 }
3798
3799 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3800 balance_need_close(fs_info)) {
3801 __cancel_balance(fs_info);
3802 }
3803
3804 wake_up(&fs_info->balance_wait_q);
3805
3806 return ret;
3807out:
3808 if (bctl->flags & BTRFS_BALANCE_RESUME)
3809 __cancel_balance(fs_info);
3810 else {
3811 kfree(bctl);
3812 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3813 }
3814 return ret;
3815}
3816
3817static int balance_kthread(void *data)
3818{
3819 struct btrfs_fs_info *fs_info = data;
3820 int ret = 0;
3821
3822 mutex_lock(&fs_info->volume_mutex);
3823 mutex_lock(&fs_info->balance_mutex);
3824
3825 if (fs_info->balance_ctl) {
3826 btrfs_info(fs_info, "continuing balance");
3827 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3828 }
3829
3830 mutex_unlock(&fs_info->balance_mutex);
3831 mutex_unlock(&fs_info->volume_mutex);
3832
3833 return ret;
3834}
3835
3836int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3837{
3838 struct task_struct *tsk;
3839
3840 spin_lock(&fs_info->balance_lock);
3841 if (!fs_info->balance_ctl) {
3842 spin_unlock(&fs_info->balance_lock);
3843 return 0;
3844 }
3845 spin_unlock(&fs_info->balance_lock);
3846
3847 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3848 btrfs_info(fs_info, "force skipping balance");
3849 return 0;
3850 }
3851
3852 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3853 return PTR_ERR_OR_ZERO(tsk);
3854}
3855
3856int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3857{
3858 struct btrfs_balance_control *bctl;
3859 struct btrfs_balance_item *item;
3860 struct btrfs_disk_balance_args disk_bargs;
3861 struct btrfs_path *path;
3862 struct extent_buffer *leaf;
3863 struct btrfs_key key;
3864 int ret;
3865
3866 path = btrfs_alloc_path();
3867 if (!path)
3868 return -ENOMEM;
3869
3870 key.objectid = BTRFS_BALANCE_OBJECTID;
3871 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3872 key.offset = 0;
3873
3874 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3875 if (ret < 0)
3876 goto out;
3877 if (ret > 0) { /* ret = -ENOENT; */
3878 ret = 0;
3879 goto out;
3880 }
3881
3882 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3883 if (!bctl) {
3884 ret = -ENOMEM;
3885 goto out;
3886 }
3887
3888 leaf = path->nodes[0];
3889 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3890
3891 bctl->fs_info = fs_info;
3892 bctl->flags = btrfs_balance_flags(leaf, item);
3893 bctl->flags |= BTRFS_BALANCE_RESUME;
3894
3895 btrfs_balance_data(leaf, item, &disk_bargs);
3896 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3897 btrfs_balance_meta(leaf, item, &disk_bargs);
3898 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3899 btrfs_balance_sys(leaf, item, &disk_bargs);
3900 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3901
3902 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3903
3904 mutex_lock(&fs_info->volume_mutex);
3905 mutex_lock(&fs_info->balance_mutex);
3906
3907 set_balance_control(bctl);
3908
3909 mutex_unlock(&fs_info->balance_mutex);
3910 mutex_unlock(&fs_info->volume_mutex);
3911out:
3912 btrfs_free_path(path);
3913 return ret;
3914}
3915
3916int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3917{
3918 int ret = 0;
3919
3920 mutex_lock(&fs_info->balance_mutex);
3921 if (!fs_info->balance_ctl) {
3922 mutex_unlock(&fs_info->balance_mutex);
3923 return -ENOTCONN;
3924 }
3925
3926 if (atomic_read(&fs_info->balance_running)) {
3927 atomic_inc(&fs_info->balance_pause_req);
3928 mutex_unlock(&fs_info->balance_mutex);
3929
3930 wait_event(fs_info->balance_wait_q,
3931 atomic_read(&fs_info->balance_running) == 0);
3932
3933 mutex_lock(&fs_info->balance_mutex);
3934 /* we are good with balance_ctl ripped off from under us */
3935 BUG_ON(atomic_read(&fs_info->balance_running));
3936 atomic_dec(&fs_info->balance_pause_req);
3937 } else {
3938 ret = -ENOTCONN;
3939 }
3940
3941 mutex_unlock(&fs_info->balance_mutex);
3942 return ret;
3943}
3944
3945int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3946{
3947 if (fs_info->sb->s_flags & MS_RDONLY)
3948 return -EROFS;
3949
3950 mutex_lock(&fs_info->balance_mutex);
3951 if (!fs_info->balance_ctl) {
3952 mutex_unlock(&fs_info->balance_mutex);
3953 return -ENOTCONN;
3954 }
3955
3956 atomic_inc(&fs_info->balance_cancel_req);
3957 /*
3958 * if we are running just wait and return, balance item is
3959 * deleted in btrfs_balance in this case
3960 */
3961 if (atomic_read(&fs_info->balance_running)) {
3962 mutex_unlock(&fs_info->balance_mutex);
3963 wait_event(fs_info->balance_wait_q,
3964 atomic_read(&fs_info->balance_running) == 0);
3965 mutex_lock(&fs_info->balance_mutex);
3966 } else {
3967 /* __cancel_balance needs volume_mutex */
3968 mutex_unlock(&fs_info->balance_mutex);
3969 mutex_lock(&fs_info->volume_mutex);
3970 mutex_lock(&fs_info->balance_mutex);
3971
3972 if (fs_info->balance_ctl)
3973 __cancel_balance(fs_info);
3974
3975 mutex_unlock(&fs_info->volume_mutex);
3976 }
3977
3978 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3979 atomic_dec(&fs_info->balance_cancel_req);
3980 mutex_unlock(&fs_info->balance_mutex);
3981 return 0;
3982}
3983
3984static int btrfs_uuid_scan_kthread(void *data)
3985{
3986 struct btrfs_fs_info *fs_info = data;
3987 struct btrfs_root *root = fs_info->tree_root;
3988 struct btrfs_key key;
3989 struct btrfs_key max_key;
3990 struct btrfs_path *path = NULL;
3991 int ret = 0;
3992 struct extent_buffer *eb;
3993 int slot;
3994 struct btrfs_root_item root_item;
3995 u32 item_size;
3996 struct btrfs_trans_handle *trans = NULL;
3997
3998 path = btrfs_alloc_path();
3999 if (!path) {
4000 ret = -ENOMEM;
4001 goto out;
4002 }
4003
4004 key.objectid = 0;
4005 key.type = BTRFS_ROOT_ITEM_KEY;
4006 key.offset = 0;
4007
4008 max_key.objectid = (u64)-1;
4009 max_key.type = BTRFS_ROOT_ITEM_KEY;
4010 max_key.offset = (u64)-1;
4011
4012 while (1) {
4013 ret = btrfs_search_forward(root, &key, path, 0);
4014 if (ret) {
4015 if (ret > 0)
4016 ret = 0;
4017 break;
4018 }
4019
4020 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4021 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4022 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4023 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4024 goto skip;
4025
4026 eb = path->nodes[0];
4027 slot = path->slots[0];
4028 item_size = btrfs_item_size_nr(eb, slot);
4029 if (item_size < sizeof(root_item))
4030 goto skip;
4031
4032 read_extent_buffer(eb, &root_item,
4033 btrfs_item_ptr_offset(eb, slot),
4034 (int)sizeof(root_item));
4035 if (btrfs_root_refs(&root_item) == 0)
4036 goto skip;
4037
4038 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4039 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4040 if (trans)
4041 goto update_tree;
4042
4043 btrfs_release_path(path);
4044 /*
4045 * 1 - subvol uuid item
4046 * 1 - received_subvol uuid item
4047 */
4048 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4049 if (IS_ERR(trans)) {
4050 ret = PTR_ERR(trans);
4051 break;
4052 }
4053 continue;
4054 } else {
4055 goto skip;
4056 }
4057update_tree:
4058 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4059 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4060 root_item.uuid,
4061 BTRFS_UUID_KEY_SUBVOL,
4062 key.objectid);
4063 if (ret < 0) {
4064 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4065 ret);
4066 break;
4067 }
4068 }
4069
4070 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4071 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4072 root_item.received_uuid,
4073 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4074 key.objectid);
4075 if (ret < 0) {
4076 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4077 ret);
4078 break;
4079 }
4080 }
4081
4082skip:
4083 if (trans) {
4084 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4085 trans = NULL;
4086 if (ret)
4087 break;
4088 }
4089
4090 btrfs_release_path(path);
4091 if (key.offset < (u64)-1) {
4092 key.offset++;
4093 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4094 key.offset = 0;
4095 key.type = BTRFS_ROOT_ITEM_KEY;
4096 } else if (key.objectid < (u64)-1) {
4097 key.offset = 0;
4098 key.type = BTRFS_ROOT_ITEM_KEY;
4099 key.objectid++;
4100 } else {
4101 break;
4102 }
4103 cond_resched();
4104 }
4105
4106out:
4107 btrfs_free_path(path);
4108 if (trans && !IS_ERR(trans))
4109 btrfs_end_transaction(trans, fs_info->uuid_root);
4110 if (ret)
4111 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4112 else
4113 fs_info->update_uuid_tree_gen = 1;
4114 up(&fs_info->uuid_tree_rescan_sem);
4115 return 0;
4116}
4117
4118/*
4119 * Callback for btrfs_uuid_tree_iterate().
4120 * returns:
4121 * 0 check succeeded, the entry is not outdated.
4122 * < 0 if an error occurred.
4123 * > 0 if the check failed, which means the caller shall remove the entry.
4124 */
4125static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4126 u8 *uuid, u8 type, u64 subid)
4127{
4128 struct btrfs_key key;
4129 int ret = 0;
4130 struct btrfs_root *subvol_root;
4131
4132 if (type != BTRFS_UUID_KEY_SUBVOL &&
4133 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4134 goto out;
4135
4136 key.objectid = subid;
4137 key.type = BTRFS_ROOT_ITEM_KEY;
4138 key.offset = (u64)-1;
4139 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4140 if (IS_ERR(subvol_root)) {
4141 ret = PTR_ERR(subvol_root);
4142 if (ret == -ENOENT)
4143 ret = 1;
4144 goto out;
4145 }
4146
4147 switch (type) {
4148 case BTRFS_UUID_KEY_SUBVOL:
4149 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4150 ret = 1;
4151 break;
4152 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4153 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4154 BTRFS_UUID_SIZE))
4155 ret = 1;
4156 break;
4157 }
4158
4159out:
4160 return ret;
4161}
4162
4163static int btrfs_uuid_rescan_kthread(void *data)
4164{
4165 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4166 int ret;
4167
4168 /*
4169 * 1st step is to iterate through the existing UUID tree and
4170 * to delete all entries that contain outdated data.
4171 * 2nd step is to add all missing entries to the UUID tree.
4172 */
4173 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4174 if (ret < 0) {
4175 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4176 up(&fs_info->uuid_tree_rescan_sem);
4177 return ret;
4178 }
4179 return btrfs_uuid_scan_kthread(data);
4180}
4181
4182int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4183{
4184 struct btrfs_trans_handle *trans;
4185 struct btrfs_root *tree_root = fs_info->tree_root;
4186 struct btrfs_root *uuid_root;
4187 struct task_struct *task;
4188 int ret;
4189
4190 /*
4191 * 1 - root node
4192 * 1 - root item
4193 */
4194 trans = btrfs_start_transaction(tree_root, 2);
4195 if (IS_ERR(trans))
4196 return PTR_ERR(trans);
4197
4198 uuid_root = btrfs_create_tree(trans, fs_info,
4199 BTRFS_UUID_TREE_OBJECTID);
4200 if (IS_ERR(uuid_root)) {
4201 ret = PTR_ERR(uuid_root);
4202 btrfs_abort_transaction(trans, tree_root, ret);
4203 return ret;
4204 }
4205
4206 fs_info->uuid_root = uuid_root;
4207
4208 ret = btrfs_commit_transaction(trans, tree_root);
4209 if (ret)
4210 return ret;
4211
4212 down(&fs_info->uuid_tree_rescan_sem);
4213 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4214 if (IS_ERR(task)) {
4215 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4216 btrfs_warn(fs_info, "failed to start uuid_scan task");
4217 up(&fs_info->uuid_tree_rescan_sem);
4218 return PTR_ERR(task);
4219 }
4220
4221 return 0;
4222}
4223
4224int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4225{
4226 struct task_struct *task;
4227
4228 down(&fs_info->uuid_tree_rescan_sem);
4229 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4230 if (IS_ERR(task)) {
4231 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4232 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4233 up(&fs_info->uuid_tree_rescan_sem);
4234 return PTR_ERR(task);
4235 }
4236
4237 return 0;
4238}
4239
4240/*
4241 * shrinking a device means finding all of the device extents past
4242 * the new size, and then following the back refs to the chunks.
4243 * The chunk relocation code actually frees the device extent
4244 */
4245int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4246{
4247 struct btrfs_trans_handle *trans;
4248 struct btrfs_root *root = device->dev_root;
4249 struct btrfs_dev_extent *dev_extent = NULL;
4250 struct btrfs_path *path;
4251 u64 length;
4252 u64 chunk_offset;
4253 int ret;
4254 int slot;
4255 int failed = 0;
4256 bool retried = false;
4257 bool checked_pending_chunks = false;
4258 struct extent_buffer *l;
4259 struct btrfs_key key;
4260 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4261 u64 old_total = btrfs_super_total_bytes(super_copy);
4262 u64 old_size = btrfs_device_get_total_bytes(device);
4263 u64 diff = old_size - new_size;
4264
4265 if (device->is_tgtdev_for_dev_replace)
4266 return -EINVAL;
4267
4268 path = btrfs_alloc_path();
4269 if (!path)
4270 return -ENOMEM;
4271
4272 path->reada = READA_FORWARD;
4273
4274 lock_chunks(root);
4275
4276 btrfs_device_set_total_bytes(device, new_size);
4277 if (device->writeable) {
4278 device->fs_devices->total_rw_bytes -= diff;
4279 spin_lock(&root->fs_info->free_chunk_lock);
4280 root->fs_info->free_chunk_space -= diff;
4281 spin_unlock(&root->fs_info->free_chunk_lock);
4282 }
4283 unlock_chunks(root);
4284
4285again:
4286 key.objectid = device->devid;
4287 key.offset = (u64)-1;
4288 key.type = BTRFS_DEV_EXTENT_KEY;
4289
4290 do {
4291 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4292 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4293 if (ret < 0) {
4294 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4295 goto done;
4296 }
4297
4298 ret = btrfs_previous_item(root, path, 0, key.type);
4299 if (ret)
4300 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4301 if (ret < 0)
4302 goto done;
4303 if (ret) {
4304 ret = 0;
4305 btrfs_release_path(path);
4306 break;
4307 }
4308
4309 l = path->nodes[0];
4310 slot = path->slots[0];
4311 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4312
4313 if (key.objectid != device->devid) {
4314 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4315 btrfs_release_path(path);
4316 break;
4317 }
4318
4319 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4320 length = btrfs_dev_extent_length(l, dev_extent);
4321
4322 if (key.offset + length <= new_size) {
4323 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4324 btrfs_release_path(path);
4325 break;
4326 }
4327
4328 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4329 btrfs_release_path(path);
4330
4331 ret = btrfs_relocate_chunk(root, chunk_offset);
4332 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4333 if (ret && ret != -ENOSPC)
4334 goto done;
4335 if (ret == -ENOSPC)
4336 failed++;
4337 } while (key.offset-- > 0);
4338
4339 if (failed && !retried) {
4340 failed = 0;
4341 retried = true;
4342 goto again;
4343 } else if (failed && retried) {
4344 ret = -ENOSPC;
4345 goto done;
4346 }
4347
4348 /* Shrinking succeeded, else we would be at "done". */
4349 trans = btrfs_start_transaction(root, 0);
4350 if (IS_ERR(trans)) {
4351 ret = PTR_ERR(trans);
4352 goto done;
4353 }
4354
4355 lock_chunks(root);
4356
4357 /*
4358 * We checked in the above loop all device extents that were already in
4359 * the device tree. However before we have updated the device's
4360 * total_bytes to the new size, we might have had chunk allocations that
4361 * have not complete yet (new block groups attached to transaction
4362 * handles), and therefore their device extents were not yet in the
4363 * device tree and we missed them in the loop above. So if we have any
4364 * pending chunk using a device extent that overlaps the device range
4365 * that we can not use anymore, commit the current transaction and
4366 * repeat the search on the device tree - this way we guarantee we will
4367 * not have chunks using device extents that end beyond 'new_size'.
4368 */
4369 if (!checked_pending_chunks) {
4370 u64 start = new_size;
4371 u64 len = old_size - new_size;
4372
4373 if (contains_pending_extent(trans->transaction, device,
4374 &start, len)) {
4375 unlock_chunks(root);
4376 checked_pending_chunks = true;
4377 failed = 0;
4378 retried = false;
4379 ret = btrfs_commit_transaction(trans, root);
4380 if (ret)
4381 goto done;
4382 goto again;
4383 }
4384 }
4385
4386 btrfs_device_set_disk_total_bytes(device, new_size);
4387 if (list_empty(&device->resized_list))
4388 list_add_tail(&device->resized_list,
4389 &root->fs_info->fs_devices->resized_devices);
4390
4391 WARN_ON(diff > old_total);
4392 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4393 unlock_chunks(root);
4394
4395 /* Now btrfs_update_device() will change the on-disk size. */
4396 ret = btrfs_update_device(trans, device);
4397 btrfs_end_transaction(trans, root);
4398done:
4399 btrfs_free_path(path);
4400 if (ret) {
4401 lock_chunks(root);
4402 btrfs_device_set_total_bytes(device, old_size);
4403 if (device->writeable)
4404 device->fs_devices->total_rw_bytes += diff;
4405 spin_lock(&root->fs_info->free_chunk_lock);
4406 root->fs_info->free_chunk_space += diff;
4407 spin_unlock(&root->fs_info->free_chunk_lock);
4408 unlock_chunks(root);
4409 }
4410 return ret;
4411}
4412
4413static int btrfs_add_system_chunk(struct btrfs_root *root,
4414 struct btrfs_key *key,
4415 struct btrfs_chunk *chunk, int item_size)
4416{
4417 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4418 struct btrfs_disk_key disk_key;
4419 u32 array_size;
4420 u8 *ptr;
4421
4422 lock_chunks(root);
4423 array_size = btrfs_super_sys_array_size(super_copy);
4424 if (array_size + item_size + sizeof(disk_key)
4425 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4426 unlock_chunks(root);
4427 return -EFBIG;
4428 }
4429
4430 ptr = super_copy->sys_chunk_array + array_size;
4431 btrfs_cpu_key_to_disk(&disk_key, key);
4432 memcpy(ptr, &disk_key, sizeof(disk_key));
4433 ptr += sizeof(disk_key);
4434 memcpy(ptr, chunk, item_size);
4435 item_size += sizeof(disk_key);
4436 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4437 unlock_chunks(root);
4438
4439 return 0;
4440}
4441
4442/*
4443 * sort the devices in descending order by max_avail, total_avail
4444 */
4445static int btrfs_cmp_device_info(const void *a, const void *b)
4446{
4447 const struct btrfs_device_info *di_a = a;
4448 const struct btrfs_device_info *di_b = b;
4449
4450 if (di_a->max_avail > di_b->max_avail)
4451 return -1;
4452 if (di_a->max_avail < di_b->max_avail)
4453 return 1;
4454 if (di_a->total_avail > di_b->total_avail)
4455 return -1;
4456 if (di_a->total_avail < di_b->total_avail)
4457 return 1;
4458 return 0;
4459}
4460
4461static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4462{
4463 /* TODO allow them to set a preferred stripe size */
4464 return SZ_64K;
4465}
4466
4467static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4468{
4469 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4470 return;
4471
4472 btrfs_set_fs_incompat(info, RAID56);
4473}
4474
4475#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4476 - sizeof(struct btrfs_item) \
4477 - sizeof(struct btrfs_chunk)) \
4478 / sizeof(struct btrfs_stripe) + 1)
4479
4480#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4481 - 2 * sizeof(struct btrfs_disk_key) \
4482 - 2 * sizeof(struct btrfs_chunk)) \
4483 / sizeof(struct btrfs_stripe) + 1)
4484
4485static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4486 struct btrfs_root *extent_root, u64 start,
4487 u64 type)
4488{
4489 struct btrfs_fs_info *info = extent_root->fs_info;
4490 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4491 struct list_head *cur;
4492 struct map_lookup *map = NULL;
4493 struct extent_map_tree *em_tree;
4494 struct extent_map *em;
4495 struct btrfs_device_info *devices_info = NULL;
4496 u64 total_avail;
4497 int num_stripes; /* total number of stripes to allocate */
4498 int data_stripes; /* number of stripes that count for
4499 block group size */
4500 int sub_stripes; /* sub_stripes info for map */
4501 int dev_stripes; /* stripes per dev */
4502 int devs_max; /* max devs to use */
4503 int devs_min; /* min devs needed */
4504 int devs_increment; /* ndevs has to be a multiple of this */
4505 int ncopies; /* how many copies to data has */
4506 int ret;
4507 u64 max_stripe_size;
4508 u64 max_chunk_size;
4509 u64 stripe_size;
4510 u64 num_bytes;
4511 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4512 int ndevs;
4513 int i;
4514 int j;
4515 int index;
4516
4517 BUG_ON(!alloc_profile_is_valid(type, 0));
4518
4519 if (list_empty(&fs_devices->alloc_list))
4520 return -ENOSPC;
4521
4522 index = __get_raid_index(type);
4523
4524 sub_stripes = btrfs_raid_array[index].sub_stripes;
4525 dev_stripes = btrfs_raid_array[index].dev_stripes;
4526 devs_max = btrfs_raid_array[index].devs_max;
4527 devs_min = btrfs_raid_array[index].devs_min;
4528 devs_increment = btrfs_raid_array[index].devs_increment;
4529 ncopies = btrfs_raid_array[index].ncopies;
4530
4531 if (type & BTRFS_BLOCK_GROUP_DATA) {
4532 max_stripe_size = SZ_1G;
4533 max_chunk_size = 10 * max_stripe_size;
4534 if (!devs_max)
4535 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4536 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4537 /* for larger filesystems, use larger metadata chunks */
4538 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4539 max_stripe_size = SZ_1G;
4540 else
4541 max_stripe_size = SZ_256M;
4542 max_chunk_size = max_stripe_size;
4543 if (!devs_max)
4544 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4545 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4546 max_stripe_size = SZ_32M;
4547 max_chunk_size = 2 * max_stripe_size;
4548 if (!devs_max)
4549 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4550 } else {
4551 btrfs_err(info, "invalid chunk type 0x%llx requested",
4552 type);
4553 BUG_ON(1);
4554 }
4555
4556 /* we don't want a chunk larger than 10% of writeable space */
4557 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4558 max_chunk_size);
4559
4560 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4561 GFP_NOFS);
4562 if (!devices_info)
4563 return -ENOMEM;
4564
4565 cur = fs_devices->alloc_list.next;
4566
4567 /*
4568 * in the first pass through the devices list, we gather information
4569 * about the available holes on each device.
4570 */
4571 ndevs = 0;
4572 while (cur != &fs_devices->alloc_list) {
4573 struct btrfs_device *device;
4574 u64 max_avail;
4575 u64 dev_offset;
4576
4577 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4578
4579 cur = cur->next;
4580
4581 if (!device->writeable) {
4582 WARN(1, KERN_ERR
4583 "BTRFS: read-only device in alloc_list\n");
4584 continue;
4585 }
4586
4587 if (!device->in_fs_metadata ||
4588 device->is_tgtdev_for_dev_replace)
4589 continue;
4590
4591 if (device->total_bytes > device->bytes_used)
4592 total_avail = device->total_bytes - device->bytes_used;
4593 else
4594 total_avail = 0;
4595
4596 /* If there is no space on this device, skip it. */
4597 if (total_avail == 0)
4598 continue;
4599
4600 ret = find_free_dev_extent(trans, device,
4601 max_stripe_size * dev_stripes,
4602 &dev_offset, &max_avail);
4603 if (ret && ret != -ENOSPC)
4604 goto error;
4605
4606 if (ret == 0)
4607 max_avail = max_stripe_size * dev_stripes;
4608
4609 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4610 continue;
4611
4612 if (ndevs == fs_devices->rw_devices) {
4613 WARN(1, "%s: found more than %llu devices\n",
4614 __func__, fs_devices->rw_devices);
4615 break;
4616 }
4617 devices_info[ndevs].dev_offset = dev_offset;
4618 devices_info[ndevs].max_avail = max_avail;
4619 devices_info[ndevs].total_avail = total_avail;
4620 devices_info[ndevs].dev = device;
4621 ++ndevs;
4622 }
4623
4624 /*
4625 * now sort the devices by hole size / available space
4626 */
4627 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4628 btrfs_cmp_device_info, NULL);
4629
4630 /* round down to number of usable stripes */
4631 ndevs -= ndevs % devs_increment;
4632
4633 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4634 ret = -ENOSPC;
4635 goto error;
4636 }
4637
4638 if (devs_max && ndevs > devs_max)
4639 ndevs = devs_max;
4640 /*
4641 * the primary goal is to maximize the number of stripes, so use as many
4642 * devices as possible, even if the stripes are not maximum sized.
4643 */
4644 stripe_size = devices_info[ndevs-1].max_avail;
4645 num_stripes = ndevs * dev_stripes;
4646
4647 /*
4648 * this will have to be fixed for RAID1 and RAID10 over
4649 * more drives
4650 */
4651 data_stripes = num_stripes / ncopies;
4652
4653 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4654 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4655 btrfs_super_stripesize(info->super_copy));
4656 data_stripes = num_stripes - 1;
4657 }
4658 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4659 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4660 btrfs_super_stripesize(info->super_copy));
4661 data_stripes = num_stripes - 2;
4662 }
4663
4664 /*
4665 * Use the number of data stripes to figure out how big this chunk
4666 * is really going to be in terms of logical address space,
4667 * and compare that answer with the max chunk size
4668 */
4669 if (stripe_size * data_stripes > max_chunk_size) {
4670 u64 mask = (1ULL << 24) - 1;
4671
4672 stripe_size = div_u64(max_chunk_size, data_stripes);
4673
4674 /* bump the answer up to a 16MB boundary */
4675 stripe_size = (stripe_size + mask) & ~mask;
4676
4677 /* but don't go higher than the limits we found
4678 * while searching for free extents
4679 */
4680 if (stripe_size > devices_info[ndevs-1].max_avail)
4681 stripe_size = devices_info[ndevs-1].max_avail;
4682 }
4683
4684 stripe_size = div_u64(stripe_size, dev_stripes);
4685
4686 /* align to BTRFS_STRIPE_LEN */
4687 stripe_size = div_u64(stripe_size, raid_stripe_len);
4688 stripe_size *= raid_stripe_len;
4689
4690 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4691 if (!map) {
4692 ret = -ENOMEM;
4693 goto error;
4694 }
4695 map->num_stripes = num_stripes;
4696
4697 for (i = 0; i < ndevs; ++i) {
4698 for (j = 0; j < dev_stripes; ++j) {
4699 int s = i * dev_stripes + j;
4700 map->stripes[s].dev = devices_info[i].dev;
4701 map->stripes[s].physical = devices_info[i].dev_offset +
4702 j * stripe_size;
4703 }
4704 }
4705 map->sector_size = extent_root->sectorsize;
4706 map->stripe_len = raid_stripe_len;
4707 map->io_align = raid_stripe_len;
4708 map->io_width = raid_stripe_len;
4709 map->type = type;
4710 map->sub_stripes = sub_stripes;
4711
4712 num_bytes = stripe_size * data_stripes;
4713
4714 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4715
4716 em = alloc_extent_map();
4717 if (!em) {
4718 kfree(map);
4719 ret = -ENOMEM;
4720 goto error;
4721 }
4722 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4723 em->map_lookup = map;
4724 em->start = start;
4725 em->len = num_bytes;
4726 em->block_start = 0;
4727 em->block_len = em->len;
4728 em->orig_block_len = stripe_size;
4729
4730 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4731 write_lock(&em_tree->lock);
4732 ret = add_extent_mapping(em_tree, em, 0);
4733 if (!ret) {
4734 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4735 atomic_inc(&em->refs);
4736 }
4737 write_unlock(&em_tree->lock);
4738 if (ret) {
4739 free_extent_map(em);
4740 goto error;
4741 }
4742
4743 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4744 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4745 start, num_bytes);
4746 if (ret)
4747 goto error_del_extent;
4748
4749 for (i = 0; i < map->num_stripes; i++) {
4750 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4751 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4752 }
4753
4754 spin_lock(&extent_root->fs_info->free_chunk_lock);
4755 extent_root->fs_info->free_chunk_space -= (stripe_size *
4756 map->num_stripes);
4757 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4758
4759 free_extent_map(em);
4760 check_raid56_incompat_flag(extent_root->fs_info, type);
4761
4762 kfree(devices_info);
4763 return 0;
4764
4765error_del_extent:
4766 write_lock(&em_tree->lock);
4767 remove_extent_mapping(em_tree, em);
4768 write_unlock(&em_tree->lock);
4769
4770 /* One for our allocation */
4771 free_extent_map(em);
4772 /* One for the tree reference */
4773 free_extent_map(em);
4774 /* One for the pending_chunks list reference */
4775 free_extent_map(em);
4776error:
4777 kfree(devices_info);
4778 return ret;
4779}
4780
4781int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4782 struct btrfs_root *extent_root,
4783 u64 chunk_offset, u64 chunk_size)
4784{
4785 struct btrfs_key key;
4786 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4787 struct btrfs_device *device;
4788 struct btrfs_chunk *chunk;
4789 struct btrfs_stripe *stripe;
4790 struct extent_map_tree *em_tree;
4791 struct extent_map *em;
4792 struct map_lookup *map;
4793 size_t item_size;
4794 u64 dev_offset;
4795 u64 stripe_size;
4796 int i = 0;
4797 int ret = 0;
4798
4799 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4800 read_lock(&em_tree->lock);
4801 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4802 read_unlock(&em_tree->lock);
4803
4804 if (!em) {
4805 btrfs_crit(extent_root->fs_info, "unable to find logical "
4806 "%Lu len %Lu", chunk_offset, chunk_size);
4807 return -EINVAL;
4808 }
4809
4810 if (em->start != chunk_offset || em->len != chunk_size) {
4811 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4812 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4813 chunk_size, em->start, em->len);
4814 free_extent_map(em);
4815 return -EINVAL;
4816 }
4817
4818 map = em->map_lookup;
4819 item_size = btrfs_chunk_item_size(map->num_stripes);
4820 stripe_size = em->orig_block_len;
4821
4822 chunk = kzalloc(item_size, GFP_NOFS);
4823 if (!chunk) {
4824 ret = -ENOMEM;
4825 goto out;
4826 }
4827
4828 /*
4829 * Take the device list mutex to prevent races with the final phase of
4830 * a device replace operation that replaces the device object associated
4831 * with the map's stripes, because the device object's id can change
4832 * at any time during that final phase of the device replace operation
4833 * (dev-replace.c:btrfs_dev_replace_finishing()).
4834 */
4835 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4836 for (i = 0; i < map->num_stripes; i++) {
4837 device = map->stripes[i].dev;
4838 dev_offset = map->stripes[i].physical;
4839
4840 ret = btrfs_update_device(trans, device);
4841 if (ret)
4842 break;
4843 ret = btrfs_alloc_dev_extent(trans, device,
4844 chunk_root->root_key.objectid,
4845 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4846 chunk_offset, dev_offset,
4847 stripe_size);
4848 if (ret)
4849 break;
4850 }
4851 if (ret) {
4852 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4853 goto out;
4854 }
4855
4856 stripe = &chunk->stripe;
4857 for (i = 0; i < map->num_stripes; i++) {
4858 device = map->stripes[i].dev;
4859 dev_offset = map->stripes[i].physical;
4860
4861 btrfs_set_stack_stripe_devid(stripe, device->devid);
4862 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4863 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4864 stripe++;
4865 }
4866 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4867
4868 btrfs_set_stack_chunk_length(chunk, chunk_size);
4869 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4870 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4871 btrfs_set_stack_chunk_type(chunk, map->type);
4872 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4873 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4874 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4875 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4876 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4877
4878 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4879 key.type = BTRFS_CHUNK_ITEM_KEY;
4880 key.offset = chunk_offset;
4881
4882 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4883 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4884 /*
4885 * TODO: Cleanup of inserted chunk root in case of
4886 * failure.
4887 */
4888 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4889 item_size);
4890 }
4891
4892out:
4893 kfree(chunk);
4894 free_extent_map(em);
4895 return ret;
4896}
4897
4898/*
4899 * Chunk allocation falls into two parts. The first part does works
4900 * that make the new allocated chunk useable, but not do any operation
4901 * that modifies the chunk tree. The second part does the works that
4902 * require modifying the chunk tree. This division is important for the
4903 * bootstrap process of adding storage to a seed btrfs.
4904 */
4905int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4906 struct btrfs_root *extent_root, u64 type)
4907{
4908 u64 chunk_offset;
4909
4910 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4911 chunk_offset = find_next_chunk(extent_root->fs_info);
4912 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4913}
4914
4915static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4916 struct btrfs_root *root,
4917 struct btrfs_device *device)
4918{
4919 u64 chunk_offset;
4920 u64 sys_chunk_offset;
4921 u64 alloc_profile;
4922 struct btrfs_fs_info *fs_info = root->fs_info;
4923 struct btrfs_root *extent_root = fs_info->extent_root;
4924 int ret;
4925
4926 chunk_offset = find_next_chunk(fs_info);
4927 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4928 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4929 alloc_profile);
4930 if (ret)
4931 return ret;
4932
4933 sys_chunk_offset = find_next_chunk(root->fs_info);
4934 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4935 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4936 alloc_profile);
4937 return ret;
4938}
4939
4940static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4941{
4942 int max_errors;
4943
4944 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4945 BTRFS_BLOCK_GROUP_RAID10 |
4946 BTRFS_BLOCK_GROUP_RAID5 |
4947 BTRFS_BLOCK_GROUP_DUP)) {
4948 max_errors = 1;
4949 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4950 max_errors = 2;
4951 } else {
4952 max_errors = 0;
4953 }
4954
4955 return max_errors;
4956}
4957
4958int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4959{
4960 struct extent_map *em;
4961 struct map_lookup *map;
4962 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4963 int readonly = 0;
4964 int miss_ndevs = 0;
4965 int i;
4966
4967 read_lock(&map_tree->map_tree.lock);
4968 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4969 read_unlock(&map_tree->map_tree.lock);
4970 if (!em)
4971 return 1;
4972
4973 map = em->map_lookup;
4974 for (i = 0; i < map->num_stripes; i++) {
4975 if (map->stripes[i].dev->missing) {
4976 miss_ndevs++;
4977 continue;
4978 }
4979
4980 if (!map->stripes[i].dev->writeable) {
4981 readonly = 1;
4982 goto end;
4983 }
4984 }
4985
4986 /*
4987 * If the number of missing devices is larger than max errors,
4988 * we can not write the data into that chunk successfully, so
4989 * set it readonly.
4990 */
4991 if (miss_ndevs > btrfs_chunk_max_errors(map))
4992 readonly = 1;
4993end:
4994 free_extent_map(em);
4995 return readonly;
4996}
4997
4998void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4999{
5000 extent_map_tree_init(&tree->map_tree);
5001}
5002
5003void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5004{
5005 struct extent_map *em;
5006
5007 while (1) {
5008 write_lock(&tree->map_tree.lock);
5009 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5010 if (em)
5011 remove_extent_mapping(&tree->map_tree, em);
5012 write_unlock(&tree->map_tree.lock);
5013 if (!em)
5014 break;
5015 /* once for us */
5016 free_extent_map(em);
5017 /* once for the tree */
5018 free_extent_map(em);
5019 }
5020}
5021
5022int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5023{
5024 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5025 struct extent_map *em;
5026 struct map_lookup *map;
5027 struct extent_map_tree *em_tree = &map_tree->map_tree;
5028 int ret;
5029
5030 read_lock(&em_tree->lock);
5031 em = lookup_extent_mapping(em_tree, logical, len);
5032 read_unlock(&em_tree->lock);
5033
5034 /*
5035 * We could return errors for these cases, but that could get ugly and
5036 * we'd probably do the same thing which is just not do anything else
5037 * and exit, so return 1 so the callers don't try to use other copies.
5038 */
5039 if (!em) {
5040 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5041 logical+len);
5042 return 1;
5043 }
5044
5045 if (em->start > logical || em->start + em->len < logical) {
5046 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5047 "%Lu-%Lu", logical, logical+len, em->start,
5048 em->start + em->len);
5049 free_extent_map(em);
5050 return 1;
5051 }
5052
5053 map = em->map_lookup;
5054 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5055 ret = map->num_stripes;
5056 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5057 ret = map->sub_stripes;
5058 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5059 ret = 2;
5060 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5061 ret = 3;
5062 else
5063 ret = 1;
5064 free_extent_map(em);
5065
5066 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5067 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5068 ret++;
5069 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5070
5071 return ret;
5072}
5073
5074unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5075 struct btrfs_mapping_tree *map_tree,
5076 u64 logical)
5077{
5078 struct extent_map *em;
5079 struct map_lookup *map;
5080 struct extent_map_tree *em_tree = &map_tree->map_tree;
5081 unsigned long len = root->sectorsize;
5082
5083 read_lock(&em_tree->lock);
5084 em = lookup_extent_mapping(em_tree, logical, len);
5085 read_unlock(&em_tree->lock);
5086 BUG_ON(!em);
5087
5088 BUG_ON(em->start > logical || em->start + em->len < logical);
5089 map = em->map_lookup;
5090 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5091 len = map->stripe_len * nr_data_stripes(map);
5092 free_extent_map(em);
5093 return len;
5094}
5095
5096int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5097 u64 logical, u64 len, int mirror_num)
5098{
5099 struct extent_map *em;
5100 struct map_lookup *map;
5101 struct extent_map_tree *em_tree = &map_tree->map_tree;
5102 int ret = 0;
5103
5104 read_lock(&em_tree->lock);
5105 em = lookup_extent_mapping(em_tree, logical, len);
5106 read_unlock(&em_tree->lock);
5107 BUG_ON(!em);
5108
5109 BUG_ON(em->start > logical || em->start + em->len < logical);
5110 map = em->map_lookup;
5111 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5112 ret = 1;
5113 free_extent_map(em);
5114 return ret;
5115}
5116
5117static int find_live_mirror(struct btrfs_fs_info *fs_info,
5118 struct map_lookup *map, int first, int num,
5119 int optimal, int dev_replace_is_ongoing)
5120{
5121 int i;
5122 int tolerance;
5123 struct btrfs_device *srcdev;
5124
5125 if (dev_replace_is_ongoing &&
5126 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5127 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5128 srcdev = fs_info->dev_replace.srcdev;
5129 else
5130 srcdev = NULL;
5131
5132 /*
5133 * try to avoid the drive that is the source drive for a
5134 * dev-replace procedure, only choose it if no other non-missing
5135 * mirror is available
5136 */
5137 for (tolerance = 0; tolerance < 2; tolerance++) {
5138 if (map->stripes[optimal].dev->bdev &&
5139 (tolerance || map->stripes[optimal].dev != srcdev))
5140 return optimal;
5141 for (i = first; i < first + num; i++) {
5142 if (map->stripes[i].dev->bdev &&
5143 (tolerance || map->stripes[i].dev != srcdev))
5144 return i;
5145 }
5146 }
5147
5148 /* we couldn't find one that doesn't fail. Just return something
5149 * and the io error handling code will clean up eventually
5150 */
5151 return optimal;
5152}
5153
5154static inline int parity_smaller(u64 a, u64 b)
5155{
5156 return a > b;
5157}
5158
5159/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5160static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5161{
5162 struct btrfs_bio_stripe s;
5163 int i;
5164 u64 l;
5165 int again = 1;
5166
5167 while (again) {
5168 again = 0;
5169 for (i = 0; i < num_stripes - 1; i++) {
5170 if (parity_smaller(bbio->raid_map[i],
5171 bbio->raid_map[i+1])) {
5172 s = bbio->stripes[i];
5173 l = bbio->raid_map[i];
5174 bbio->stripes[i] = bbio->stripes[i+1];
5175 bbio->raid_map[i] = bbio->raid_map[i+1];
5176 bbio->stripes[i+1] = s;
5177 bbio->raid_map[i+1] = l;
5178
5179 again = 1;
5180 }
5181 }
5182 }
5183}
5184
5185static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5186{
5187 struct btrfs_bio *bbio = kzalloc(
5188 /* the size of the btrfs_bio */
5189 sizeof(struct btrfs_bio) +
5190 /* plus the variable array for the stripes */
5191 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5192 /* plus the variable array for the tgt dev */
5193 sizeof(int) * (real_stripes) +
5194 /*
5195 * plus the raid_map, which includes both the tgt dev
5196 * and the stripes
5197 */
5198 sizeof(u64) * (total_stripes),
5199 GFP_NOFS|__GFP_NOFAIL);
5200
5201 atomic_set(&bbio->error, 0);
5202 atomic_set(&bbio->refs, 1);
5203
5204 return bbio;
5205}
5206
5207void btrfs_get_bbio(struct btrfs_bio *bbio)
5208{
5209 WARN_ON(!atomic_read(&bbio->refs));
5210 atomic_inc(&bbio->refs);
5211}
5212
5213void btrfs_put_bbio(struct btrfs_bio *bbio)
5214{
5215 if (!bbio)
5216 return;
5217 if (atomic_dec_and_test(&bbio->refs))
5218 kfree(bbio);
5219}
5220
5221static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5222 u64 logical, u64 *length,
5223 struct btrfs_bio **bbio_ret,
5224 int mirror_num, int need_raid_map)
5225{
5226 struct extent_map *em;
5227 struct map_lookup *map;
5228 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5229 struct extent_map_tree *em_tree = &map_tree->map_tree;
5230 u64 offset;
5231 u64 stripe_offset;
5232 u64 stripe_end_offset;
5233 u64 stripe_nr;
5234 u64 stripe_nr_orig;
5235 u64 stripe_nr_end;
5236 u64 stripe_len;
5237 u32 stripe_index;
5238 int i;
5239 int ret = 0;
5240 int num_stripes;
5241 int max_errors = 0;
5242 int tgtdev_indexes = 0;
5243 struct btrfs_bio *bbio = NULL;
5244 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5245 int dev_replace_is_ongoing = 0;
5246 int num_alloc_stripes;
5247 int patch_the_first_stripe_for_dev_replace = 0;
5248 u64 physical_to_patch_in_first_stripe = 0;
5249 u64 raid56_full_stripe_start = (u64)-1;
5250
5251 read_lock(&em_tree->lock);
5252 em = lookup_extent_mapping(em_tree, logical, *length);
5253 read_unlock(&em_tree->lock);
5254
5255 if (!em) {
5256 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5257 logical, *length);
5258 return -EINVAL;
5259 }
5260
5261 if (em->start > logical || em->start + em->len < logical) {
5262 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5263 "found %Lu-%Lu", logical, em->start,
5264 em->start + em->len);
5265 free_extent_map(em);
5266 return -EINVAL;
5267 }
5268
5269 map = em->map_lookup;
5270 offset = logical - em->start;
5271
5272 stripe_len = map->stripe_len;
5273 stripe_nr = offset;
5274 /*
5275 * stripe_nr counts the total number of stripes we have to stride
5276 * to get to this block
5277 */
5278 stripe_nr = div64_u64(stripe_nr, stripe_len);
5279
5280 stripe_offset = stripe_nr * stripe_len;
5281 BUG_ON(offset < stripe_offset);
5282
5283 /* stripe_offset is the offset of this block in its stripe*/
5284 stripe_offset = offset - stripe_offset;
5285
5286 /* if we're here for raid56, we need to know the stripe aligned start */
5287 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5288 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5289 raid56_full_stripe_start = offset;
5290
5291 /* allow a write of a full stripe, but make sure we don't
5292 * allow straddling of stripes
5293 */
5294 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5295 full_stripe_len);
5296 raid56_full_stripe_start *= full_stripe_len;
5297 }
5298
5299 if (rw & REQ_DISCARD) {
5300 /* we don't discard raid56 yet */
5301 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5302 ret = -EOPNOTSUPP;
5303 goto out;
5304 }
5305 *length = min_t(u64, em->len - offset, *length);
5306 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5307 u64 max_len;
5308 /* For writes to RAID[56], allow a full stripeset across all disks.
5309 For other RAID types and for RAID[56] reads, just allow a single
5310 stripe (on a single disk). */
5311 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5312 (rw & REQ_WRITE)) {
5313 max_len = stripe_len * nr_data_stripes(map) -
5314 (offset - raid56_full_stripe_start);
5315 } else {
5316 /* we limit the length of each bio to what fits in a stripe */
5317 max_len = stripe_len - stripe_offset;
5318 }
5319 *length = min_t(u64, em->len - offset, max_len);
5320 } else {
5321 *length = em->len - offset;
5322 }
5323
5324 /* This is for when we're called from btrfs_merge_bio_hook() and all
5325 it cares about is the length */
5326 if (!bbio_ret)
5327 goto out;
5328
5329 btrfs_dev_replace_lock(dev_replace, 0);
5330 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5331 if (!dev_replace_is_ongoing)
5332 btrfs_dev_replace_unlock(dev_replace, 0);
5333 else
5334 btrfs_dev_replace_set_lock_blocking(dev_replace);
5335
5336 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5337 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5338 dev_replace->tgtdev != NULL) {
5339 /*
5340 * in dev-replace case, for repair case (that's the only
5341 * case where the mirror is selected explicitly when
5342 * calling btrfs_map_block), blocks left of the left cursor
5343 * can also be read from the target drive.
5344 * For REQ_GET_READ_MIRRORS, the target drive is added as
5345 * the last one to the array of stripes. For READ, it also
5346 * needs to be supported using the same mirror number.
5347 * If the requested block is not left of the left cursor,
5348 * EIO is returned. This can happen because btrfs_num_copies()
5349 * returns one more in the dev-replace case.
5350 */
5351 u64 tmp_length = *length;
5352 struct btrfs_bio *tmp_bbio = NULL;
5353 int tmp_num_stripes;
5354 u64 srcdev_devid = dev_replace->srcdev->devid;
5355 int index_srcdev = 0;
5356 int found = 0;
5357 u64 physical_of_found = 0;
5358
5359 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5360 logical, &tmp_length, &tmp_bbio, 0, 0);
5361 if (ret) {
5362 WARN_ON(tmp_bbio != NULL);
5363 goto out;
5364 }
5365
5366 tmp_num_stripes = tmp_bbio->num_stripes;
5367 if (mirror_num > tmp_num_stripes) {
5368 /*
5369 * REQ_GET_READ_MIRRORS does not contain this
5370 * mirror, that means that the requested area
5371 * is not left of the left cursor
5372 */
5373 ret = -EIO;
5374 btrfs_put_bbio(tmp_bbio);
5375 goto out;
5376 }
5377
5378 /*
5379 * process the rest of the function using the mirror_num
5380 * of the source drive. Therefore look it up first.
5381 * At the end, patch the device pointer to the one of the
5382 * target drive.
5383 */
5384 for (i = 0; i < tmp_num_stripes; i++) {
5385 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5386 continue;
5387
5388 /*
5389 * In case of DUP, in order to keep it simple, only add
5390 * the mirror with the lowest physical address
5391 */
5392 if (found &&
5393 physical_of_found <= tmp_bbio->stripes[i].physical)
5394 continue;
5395
5396 index_srcdev = i;
5397 found = 1;
5398 physical_of_found = tmp_bbio->stripes[i].physical;
5399 }
5400
5401 btrfs_put_bbio(tmp_bbio);
5402
5403 if (!found) {
5404 WARN_ON(1);
5405 ret = -EIO;
5406 goto out;
5407 }
5408
5409 mirror_num = index_srcdev + 1;
5410 patch_the_first_stripe_for_dev_replace = 1;
5411 physical_to_patch_in_first_stripe = physical_of_found;
5412 } else if (mirror_num > map->num_stripes) {
5413 mirror_num = 0;
5414 }
5415
5416 num_stripes = 1;
5417 stripe_index = 0;
5418 stripe_nr_orig = stripe_nr;
5419 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5420 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5421 stripe_end_offset = stripe_nr_end * map->stripe_len -
5422 (offset + *length);
5423
5424 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5425 if (rw & REQ_DISCARD)
5426 num_stripes = min_t(u64, map->num_stripes,
5427 stripe_nr_end - stripe_nr_orig);
5428 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5429 &stripe_index);
5430 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5431 mirror_num = 1;
5432 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5433 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5434 num_stripes = map->num_stripes;
5435 else if (mirror_num)
5436 stripe_index = mirror_num - 1;
5437 else {
5438 stripe_index = find_live_mirror(fs_info, map, 0,
5439 map->num_stripes,
5440 current->pid % map->num_stripes,
5441 dev_replace_is_ongoing);
5442 mirror_num = stripe_index + 1;
5443 }
5444
5445 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5446 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5447 num_stripes = map->num_stripes;
5448 } else if (mirror_num) {
5449 stripe_index = mirror_num - 1;
5450 } else {
5451 mirror_num = 1;
5452 }
5453
5454 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5455 u32 factor = map->num_stripes / map->sub_stripes;
5456
5457 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5458 stripe_index *= map->sub_stripes;
5459
5460 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5461 num_stripes = map->sub_stripes;
5462 else if (rw & REQ_DISCARD)
5463 num_stripes = min_t(u64, map->sub_stripes *
5464 (stripe_nr_end - stripe_nr_orig),
5465 map->num_stripes);
5466 else if (mirror_num)
5467 stripe_index += mirror_num - 1;
5468 else {
5469 int old_stripe_index = stripe_index;
5470 stripe_index = find_live_mirror(fs_info, map,
5471 stripe_index,
5472 map->sub_stripes, stripe_index +
5473 current->pid % map->sub_stripes,
5474 dev_replace_is_ongoing);
5475 mirror_num = stripe_index - old_stripe_index + 1;
5476 }
5477
5478 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5479 if (need_raid_map &&
5480 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5481 mirror_num > 1)) {
5482 /* push stripe_nr back to the start of the full stripe */
5483 stripe_nr = div_u64(raid56_full_stripe_start,
5484 stripe_len * nr_data_stripes(map));
5485
5486 /* RAID[56] write or recovery. Return all stripes */
5487 num_stripes = map->num_stripes;
5488 max_errors = nr_parity_stripes(map);
5489
5490 *length = map->stripe_len;
5491 stripe_index = 0;
5492 stripe_offset = 0;
5493 } else {
5494 /*
5495 * Mirror #0 or #1 means the original data block.
5496 * Mirror #2 is RAID5 parity block.
5497 * Mirror #3 is RAID6 Q block.
5498 */
5499 stripe_nr = div_u64_rem(stripe_nr,
5500 nr_data_stripes(map), &stripe_index);
5501 if (mirror_num > 1)
5502 stripe_index = nr_data_stripes(map) +
5503 mirror_num - 2;
5504
5505 /* We distribute the parity blocks across stripes */
5506 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5507 &stripe_index);
5508 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5509 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5510 mirror_num = 1;
5511 }
5512 } else {
5513 /*
5514 * after this, stripe_nr is the number of stripes on this
5515 * device we have to walk to find the data, and stripe_index is
5516 * the number of our device in the stripe array
5517 */
5518 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5519 &stripe_index);
5520 mirror_num = stripe_index + 1;
5521 }
5522 BUG_ON(stripe_index >= map->num_stripes);
5523
5524 num_alloc_stripes = num_stripes;
5525 if (dev_replace_is_ongoing) {
5526 if (rw & (REQ_WRITE | REQ_DISCARD))
5527 num_alloc_stripes <<= 1;
5528 if (rw & REQ_GET_READ_MIRRORS)
5529 num_alloc_stripes++;
5530 tgtdev_indexes = num_stripes;
5531 }
5532
5533 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5534 if (!bbio) {
5535 ret = -ENOMEM;
5536 goto out;
5537 }
5538 if (dev_replace_is_ongoing)
5539 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5540
5541 /* build raid_map */
5542 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5543 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5544 mirror_num > 1)) {
5545 u64 tmp;
5546 unsigned rot;
5547
5548 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5549 sizeof(struct btrfs_bio_stripe) *
5550 num_alloc_stripes +
5551 sizeof(int) * tgtdev_indexes);
5552
5553 /* Work out the disk rotation on this stripe-set */
5554 div_u64_rem(stripe_nr, num_stripes, &rot);
5555
5556 /* Fill in the logical address of each stripe */
5557 tmp = stripe_nr * nr_data_stripes(map);
5558 for (i = 0; i < nr_data_stripes(map); i++)
5559 bbio->raid_map[(i+rot) % num_stripes] =
5560 em->start + (tmp + i) * map->stripe_len;
5561
5562 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5563 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5564 bbio->raid_map[(i+rot+1) % num_stripes] =
5565 RAID6_Q_STRIPE;
5566 }
5567
5568 if (rw & REQ_DISCARD) {
5569 u32 factor = 0;
5570 u32 sub_stripes = 0;
5571 u64 stripes_per_dev = 0;
5572 u32 remaining_stripes = 0;
5573 u32 last_stripe = 0;
5574
5575 if (map->type &
5576 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5577 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5578 sub_stripes = 1;
5579 else
5580 sub_stripes = map->sub_stripes;
5581
5582 factor = map->num_stripes / sub_stripes;
5583 stripes_per_dev = div_u64_rem(stripe_nr_end -
5584 stripe_nr_orig,
5585 factor,
5586 &remaining_stripes);
5587 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5588 last_stripe *= sub_stripes;
5589 }
5590
5591 for (i = 0; i < num_stripes; i++) {
5592 bbio->stripes[i].physical =
5593 map->stripes[stripe_index].physical +
5594 stripe_offset + stripe_nr * map->stripe_len;
5595 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5596
5597 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5598 BTRFS_BLOCK_GROUP_RAID10)) {
5599 bbio->stripes[i].length = stripes_per_dev *
5600 map->stripe_len;
5601
5602 if (i / sub_stripes < remaining_stripes)
5603 bbio->stripes[i].length +=
5604 map->stripe_len;
5605
5606 /*
5607 * Special for the first stripe and
5608 * the last stripe:
5609 *
5610 * |-------|...|-------|
5611 * |----------|
5612 * off end_off
5613 */
5614 if (i < sub_stripes)
5615 bbio->stripes[i].length -=
5616 stripe_offset;
5617
5618 if (stripe_index >= last_stripe &&
5619 stripe_index <= (last_stripe +
5620 sub_stripes - 1))
5621 bbio->stripes[i].length -=
5622 stripe_end_offset;
5623
5624 if (i == sub_stripes - 1)
5625 stripe_offset = 0;
5626 } else
5627 bbio->stripes[i].length = *length;
5628
5629 stripe_index++;
5630 if (stripe_index == map->num_stripes) {
5631 /* This could only happen for RAID0/10 */
5632 stripe_index = 0;
5633 stripe_nr++;
5634 }
5635 }
5636 } else {
5637 for (i = 0; i < num_stripes; i++) {
5638 bbio->stripes[i].physical =
5639 map->stripes[stripe_index].physical +
5640 stripe_offset +
5641 stripe_nr * map->stripe_len;
5642 bbio->stripes[i].dev =
5643 map->stripes[stripe_index].dev;
5644 stripe_index++;
5645 }
5646 }
5647
5648 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5649 max_errors = btrfs_chunk_max_errors(map);
5650
5651 if (bbio->raid_map)
5652 sort_parity_stripes(bbio, num_stripes);
5653
5654 tgtdev_indexes = 0;
5655 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5656 dev_replace->tgtdev != NULL) {
5657 int index_where_to_add;
5658 u64 srcdev_devid = dev_replace->srcdev->devid;
5659
5660 /*
5661 * duplicate the write operations while the dev replace
5662 * procedure is running. Since the copying of the old disk
5663 * to the new disk takes place at run time while the
5664 * filesystem is mounted writable, the regular write
5665 * operations to the old disk have to be duplicated to go
5666 * to the new disk as well.
5667 * Note that device->missing is handled by the caller, and
5668 * that the write to the old disk is already set up in the
5669 * stripes array.
5670 */
5671 index_where_to_add = num_stripes;
5672 for (i = 0; i < num_stripes; i++) {
5673 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5674 /* write to new disk, too */
5675 struct btrfs_bio_stripe *new =
5676 bbio->stripes + index_where_to_add;
5677 struct btrfs_bio_stripe *old =
5678 bbio->stripes + i;
5679
5680 new->physical = old->physical;
5681 new->length = old->length;
5682 new->dev = dev_replace->tgtdev;
5683 bbio->tgtdev_map[i] = index_where_to_add;
5684 index_where_to_add++;
5685 max_errors++;
5686 tgtdev_indexes++;
5687 }
5688 }
5689 num_stripes = index_where_to_add;
5690 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5691 dev_replace->tgtdev != NULL) {
5692 u64 srcdev_devid = dev_replace->srcdev->devid;
5693 int index_srcdev = 0;
5694 int found = 0;
5695 u64 physical_of_found = 0;
5696
5697 /*
5698 * During the dev-replace procedure, the target drive can
5699 * also be used to read data in case it is needed to repair
5700 * a corrupt block elsewhere. This is possible if the
5701 * requested area is left of the left cursor. In this area,
5702 * the target drive is a full copy of the source drive.
5703 */
5704 for (i = 0; i < num_stripes; i++) {
5705 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5706 /*
5707 * In case of DUP, in order to keep it
5708 * simple, only add the mirror with the
5709 * lowest physical address
5710 */
5711 if (found &&
5712 physical_of_found <=
5713 bbio->stripes[i].physical)
5714 continue;
5715 index_srcdev = i;
5716 found = 1;
5717 physical_of_found = bbio->stripes[i].physical;
5718 }
5719 }
5720 if (found) {
5721 if (physical_of_found + map->stripe_len <=
5722 dev_replace->cursor_left) {
5723 struct btrfs_bio_stripe *tgtdev_stripe =
5724 bbio->stripes + num_stripes;
5725
5726 tgtdev_stripe->physical = physical_of_found;
5727 tgtdev_stripe->length =
5728 bbio->stripes[index_srcdev].length;
5729 tgtdev_stripe->dev = dev_replace->tgtdev;
5730 bbio->tgtdev_map[index_srcdev] = num_stripes;
5731
5732 tgtdev_indexes++;
5733 num_stripes++;
5734 }
5735 }
5736 }
5737
5738 *bbio_ret = bbio;
5739 bbio->map_type = map->type;
5740 bbio->num_stripes = num_stripes;
5741 bbio->max_errors = max_errors;
5742 bbio->mirror_num = mirror_num;
5743 bbio->num_tgtdevs = tgtdev_indexes;
5744
5745 /*
5746 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5747 * mirror_num == num_stripes + 1 && dev_replace target drive is
5748 * available as a mirror
5749 */
5750 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5751 WARN_ON(num_stripes > 1);
5752 bbio->stripes[0].dev = dev_replace->tgtdev;
5753 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5754 bbio->mirror_num = map->num_stripes + 1;
5755 }
5756out:
5757 if (dev_replace_is_ongoing) {
5758 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5759 btrfs_dev_replace_unlock(dev_replace, 0);
5760 }
5761 free_extent_map(em);
5762 return ret;
5763}
5764
5765int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5766 u64 logical, u64 *length,
5767 struct btrfs_bio **bbio_ret, int mirror_num)
5768{
5769 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5770 mirror_num, 0);
5771}
5772
5773/* For Scrub/replace */
5774int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5775 u64 logical, u64 *length,
5776 struct btrfs_bio **bbio_ret, int mirror_num,
5777 int need_raid_map)
5778{
5779 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5780 mirror_num, need_raid_map);
5781}
5782
5783int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5784 u64 chunk_start, u64 physical, u64 devid,
5785 u64 **logical, int *naddrs, int *stripe_len)
5786{
5787 struct extent_map_tree *em_tree = &map_tree->map_tree;
5788 struct extent_map *em;
5789 struct map_lookup *map;
5790 u64 *buf;
5791 u64 bytenr;
5792 u64 length;
5793 u64 stripe_nr;
5794 u64 rmap_len;
5795 int i, j, nr = 0;
5796
5797 read_lock(&em_tree->lock);
5798 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5799 read_unlock(&em_tree->lock);
5800
5801 if (!em) {
5802 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5803 chunk_start);
5804 return -EIO;
5805 }
5806
5807 if (em->start != chunk_start) {
5808 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5809 em->start, chunk_start);
5810 free_extent_map(em);
5811 return -EIO;
5812 }
5813 map = em->map_lookup;
5814
5815 length = em->len;
5816 rmap_len = map->stripe_len;
5817
5818 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5819 length = div_u64(length, map->num_stripes / map->sub_stripes);
5820 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5821 length = div_u64(length, map->num_stripes);
5822 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5823 length = div_u64(length, nr_data_stripes(map));
5824 rmap_len = map->stripe_len * nr_data_stripes(map);
5825 }
5826
5827 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5828 BUG_ON(!buf); /* -ENOMEM */
5829
5830 for (i = 0; i < map->num_stripes; i++) {
5831 if (devid && map->stripes[i].dev->devid != devid)
5832 continue;
5833 if (map->stripes[i].physical > physical ||
5834 map->stripes[i].physical + length <= physical)
5835 continue;
5836
5837 stripe_nr = physical - map->stripes[i].physical;
5838 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5839
5840 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5841 stripe_nr = stripe_nr * map->num_stripes + i;
5842 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5843 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5844 stripe_nr = stripe_nr * map->num_stripes + i;
5845 } /* else if RAID[56], multiply by nr_data_stripes().
5846 * Alternatively, just use rmap_len below instead of
5847 * map->stripe_len */
5848
5849 bytenr = chunk_start + stripe_nr * rmap_len;
5850 WARN_ON(nr >= map->num_stripes);
5851 for (j = 0; j < nr; j++) {
5852 if (buf[j] == bytenr)
5853 break;
5854 }
5855 if (j == nr) {
5856 WARN_ON(nr >= map->num_stripes);
5857 buf[nr++] = bytenr;
5858 }
5859 }
5860
5861 *logical = buf;
5862 *naddrs = nr;
5863 *stripe_len = rmap_len;
5864
5865 free_extent_map(em);
5866 return 0;
5867}
5868
5869static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5870{
5871 bio->bi_private = bbio->private;
5872 bio->bi_end_io = bbio->end_io;
5873 bio_endio(bio);
5874
5875 btrfs_put_bbio(bbio);
5876}
5877
5878static void btrfs_end_bio(struct bio *bio)
5879{
5880 struct btrfs_bio *bbio = bio->bi_private;
5881 int is_orig_bio = 0;
5882
5883 if (bio->bi_error) {
5884 atomic_inc(&bbio->error);
5885 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5886 unsigned int stripe_index =
5887 btrfs_io_bio(bio)->stripe_index;
5888 struct btrfs_device *dev;
5889
5890 BUG_ON(stripe_index >= bbio->num_stripes);
5891 dev = bbio->stripes[stripe_index].dev;
5892 if (dev->bdev) {
5893 if (bio->bi_rw & WRITE)
5894 btrfs_dev_stat_inc(dev,
5895 BTRFS_DEV_STAT_WRITE_ERRS);
5896 else
5897 btrfs_dev_stat_inc(dev,
5898 BTRFS_DEV_STAT_READ_ERRS);
5899 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5900 btrfs_dev_stat_inc(dev,
5901 BTRFS_DEV_STAT_FLUSH_ERRS);
5902 btrfs_dev_stat_print_on_error(dev);
5903 }
5904 }
5905 }
5906
5907 if (bio == bbio->orig_bio)
5908 is_orig_bio = 1;
5909
5910 btrfs_bio_counter_dec(bbio->fs_info);
5911
5912 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5913 if (!is_orig_bio) {
5914 bio_put(bio);
5915 bio = bbio->orig_bio;
5916 }
5917
5918 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5919 /* only send an error to the higher layers if it is
5920 * beyond the tolerance of the btrfs bio
5921 */
5922 if (atomic_read(&bbio->error) > bbio->max_errors) {
5923 bio->bi_error = -EIO;
5924 } else {
5925 /*
5926 * this bio is actually up to date, we didn't
5927 * go over the max number of errors
5928 */
5929 bio->bi_error = 0;
5930 }
5931
5932 btrfs_end_bbio(bbio, bio);
5933 } else if (!is_orig_bio) {
5934 bio_put(bio);
5935 }
5936}
5937
5938/*
5939 * see run_scheduled_bios for a description of why bios are collected for
5940 * async submit.
5941 *
5942 * This will add one bio to the pending list for a device and make sure
5943 * the work struct is scheduled.
5944 */
5945static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5946 struct btrfs_device *device,
5947 int rw, struct bio *bio)
5948{
5949 int should_queue = 1;
5950 struct btrfs_pending_bios *pending_bios;
5951
5952 if (device->missing || !device->bdev) {
5953 bio_io_error(bio);
5954 return;
5955 }
5956
5957 /* don't bother with additional async steps for reads, right now */
5958 if (!(rw & REQ_WRITE)) {
5959 bio_get(bio);
5960 btrfsic_submit_bio(rw, bio);
5961 bio_put(bio);
5962 return;
5963 }
5964
5965 /*
5966 * nr_async_bios allows us to reliably return congestion to the
5967 * higher layers. Otherwise, the async bio makes it appear we have
5968 * made progress against dirty pages when we've really just put it
5969 * on a queue for later
5970 */
5971 atomic_inc(&root->fs_info->nr_async_bios);
5972 WARN_ON(bio->bi_next);
5973 bio->bi_next = NULL;
5974 bio->bi_rw |= rw;
5975
5976 spin_lock(&device->io_lock);
5977 if (bio->bi_rw & REQ_SYNC)
5978 pending_bios = &device->pending_sync_bios;
5979 else
5980 pending_bios = &device->pending_bios;
5981
5982 if (pending_bios->tail)
5983 pending_bios->tail->bi_next = bio;
5984
5985 pending_bios->tail = bio;
5986 if (!pending_bios->head)
5987 pending_bios->head = bio;
5988 if (device->running_pending)
5989 should_queue = 0;
5990
5991 spin_unlock(&device->io_lock);
5992
5993 if (should_queue)
5994 btrfs_queue_work(root->fs_info->submit_workers,
5995 &device->work);
5996}
5997
5998static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5999 struct bio *bio, u64 physical, int dev_nr,
6000 int rw, int async)
6001{
6002 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6003
6004 bio->bi_private = bbio;
6005 btrfs_io_bio(bio)->stripe_index = dev_nr;
6006 bio->bi_end_io = btrfs_end_bio;
6007 bio->bi_iter.bi_sector = physical >> 9;
6008#ifdef DEBUG
6009 {
6010 struct rcu_string *name;
6011
6012 rcu_read_lock();
6013 name = rcu_dereference(dev->name);
6014 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6015 "(%s id %llu), size=%u\n", rw,
6016 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6017 name->str, dev->devid, bio->bi_iter.bi_size);
6018 rcu_read_unlock();
6019 }
6020#endif
6021 bio->bi_bdev = dev->bdev;
6022
6023 btrfs_bio_counter_inc_noblocked(root->fs_info);
6024
6025 if (async)
6026 btrfs_schedule_bio(root, dev, rw, bio);
6027 else
6028 btrfsic_submit_bio(rw, bio);
6029}
6030
6031static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6032{
6033 atomic_inc(&bbio->error);
6034 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6035 /* Shoud be the original bio. */
6036 WARN_ON(bio != bbio->orig_bio);
6037
6038 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6039 bio->bi_iter.bi_sector = logical >> 9;
6040 bio->bi_error = -EIO;
6041 btrfs_end_bbio(bbio, bio);
6042 }
6043}
6044
6045int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
6046 int mirror_num, int async_submit)
6047{
6048 struct btrfs_device *dev;
6049 struct bio *first_bio = bio;
6050 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6051 u64 length = 0;
6052 u64 map_length;
6053 int ret;
6054 int dev_nr;
6055 int total_devs;
6056 struct btrfs_bio *bbio = NULL;
6057
6058 length = bio->bi_iter.bi_size;
6059 map_length = length;
6060
6061 btrfs_bio_counter_inc_blocked(root->fs_info);
6062 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
6063 mirror_num, 1);
6064 if (ret) {
6065 btrfs_bio_counter_dec(root->fs_info);
6066 return ret;
6067 }
6068
6069 total_devs = bbio->num_stripes;
6070 bbio->orig_bio = first_bio;
6071 bbio->private = first_bio->bi_private;
6072 bbio->end_io = first_bio->bi_end_io;
6073 bbio->fs_info = root->fs_info;
6074 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6075
6076 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6077 ((rw & WRITE) || (mirror_num > 1))) {
6078 /* In this case, map_length has been set to the length of
6079 a single stripe; not the whole write */
6080 if (rw & WRITE) {
6081 ret = raid56_parity_write(root, bio, bbio, map_length);
6082 } else {
6083 ret = raid56_parity_recover(root, bio, bbio, map_length,
6084 mirror_num, 1);
6085 }
6086
6087 btrfs_bio_counter_dec(root->fs_info);
6088 return ret;
6089 }
6090
6091 if (map_length < length) {
6092 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6093 logical, length, map_length);
6094 BUG();
6095 }
6096
6097 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6098 dev = bbio->stripes[dev_nr].dev;
6099 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6100 bbio_error(bbio, first_bio, logical);
6101 continue;
6102 }
6103
6104 if (dev_nr < total_devs - 1) {
6105 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6106 BUG_ON(!bio); /* -ENOMEM */
6107 } else
6108 bio = first_bio;
6109
6110 submit_stripe_bio(root, bbio, bio,
6111 bbio->stripes[dev_nr].physical, dev_nr, rw,
6112 async_submit);
6113 }
6114 btrfs_bio_counter_dec(root->fs_info);
6115 return 0;
6116}
6117
6118struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6119 u8 *uuid, u8 *fsid)
6120{
6121 struct btrfs_device *device;
6122 struct btrfs_fs_devices *cur_devices;
6123
6124 cur_devices = fs_info->fs_devices;
6125 while (cur_devices) {
6126 if (!fsid ||
6127 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6128 device = __find_device(&cur_devices->devices,
6129 devid, uuid);
6130 if (device)
6131 return device;
6132 }
6133 cur_devices = cur_devices->seed;
6134 }
6135 return NULL;
6136}
6137
6138static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6139 struct btrfs_fs_devices *fs_devices,
6140 u64 devid, u8 *dev_uuid)
6141{
6142 struct btrfs_device *device;
6143
6144 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6145 if (IS_ERR(device))
6146 return NULL;
6147
6148 list_add(&device->dev_list, &fs_devices->devices);
6149 device->fs_devices = fs_devices;
6150 fs_devices->num_devices++;
6151
6152 device->missing = 1;
6153 fs_devices->missing_devices++;
6154
6155 return device;
6156}
6157
6158/**
6159 * btrfs_alloc_device - allocate struct btrfs_device
6160 * @fs_info: used only for generating a new devid, can be NULL if
6161 * devid is provided (i.e. @devid != NULL).
6162 * @devid: a pointer to devid for this device. If NULL a new devid
6163 * is generated.
6164 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6165 * is generated.
6166 *
6167 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6168 * on error. Returned struct is not linked onto any lists and can be
6169 * destroyed with kfree() right away.
6170 */
6171struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6172 const u64 *devid,
6173 const u8 *uuid)
6174{
6175 struct btrfs_device *dev;
6176 u64 tmp;
6177
6178 if (WARN_ON(!devid && !fs_info))
6179 return ERR_PTR(-EINVAL);
6180
6181 dev = __alloc_device();
6182 if (IS_ERR(dev))
6183 return dev;
6184
6185 if (devid)
6186 tmp = *devid;
6187 else {
6188 int ret;
6189
6190 ret = find_next_devid(fs_info, &tmp);
6191 if (ret) {
6192 kfree(dev);
6193 return ERR_PTR(ret);
6194 }
6195 }
6196 dev->devid = tmp;
6197
6198 if (uuid)
6199 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6200 else
6201 generate_random_uuid(dev->uuid);
6202
6203 btrfs_init_work(&dev->work, btrfs_submit_helper,
6204 pending_bios_fn, NULL, NULL);
6205
6206 return dev;
6207}
6208
6209static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6210 struct extent_buffer *leaf,
6211 struct btrfs_chunk *chunk)
6212{
6213 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6214 struct map_lookup *map;
6215 struct extent_map *em;
6216 u64 logical;
6217 u64 length;
6218 u64 stripe_len;
6219 u64 devid;
6220 u8 uuid[BTRFS_UUID_SIZE];
6221 int num_stripes;
6222 int ret;
6223 int i;
6224
6225 logical = key->offset;
6226 length = btrfs_chunk_length(leaf, chunk);
6227 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6228 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6229 /* Validation check */
6230 if (!num_stripes) {
6231 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6232 num_stripes);
6233 return -EIO;
6234 }
6235 if (!IS_ALIGNED(logical, root->sectorsize)) {
6236 btrfs_err(root->fs_info,
6237 "invalid chunk logical %llu", logical);
6238 return -EIO;
6239 }
6240 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6241 btrfs_err(root->fs_info,
6242 "invalid chunk length %llu", length);
6243 return -EIO;
6244 }
6245 if (!is_power_of_2(stripe_len)) {
6246 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6247 stripe_len);
6248 return -EIO;
6249 }
6250 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6251 btrfs_chunk_type(leaf, chunk)) {
6252 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6253 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6254 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6255 btrfs_chunk_type(leaf, chunk));
6256 return -EIO;
6257 }
6258
6259 read_lock(&map_tree->map_tree.lock);
6260 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6261 read_unlock(&map_tree->map_tree.lock);
6262
6263 /* already mapped? */
6264 if (em && em->start <= logical && em->start + em->len > logical) {
6265 free_extent_map(em);
6266 return 0;
6267 } else if (em) {
6268 free_extent_map(em);
6269 }
6270
6271 em = alloc_extent_map();
6272 if (!em)
6273 return -ENOMEM;
6274 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6275 if (!map) {
6276 free_extent_map(em);
6277 return -ENOMEM;
6278 }
6279
6280 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6281 em->map_lookup = map;
6282 em->start = logical;
6283 em->len = length;
6284 em->orig_start = 0;
6285 em->block_start = 0;
6286 em->block_len = em->len;
6287
6288 map->num_stripes = num_stripes;
6289 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6290 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6291 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6292 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6293 map->type = btrfs_chunk_type(leaf, chunk);
6294 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6295 for (i = 0; i < num_stripes; i++) {
6296 map->stripes[i].physical =
6297 btrfs_stripe_offset_nr(leaf, chunk, i);
6298 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6299 read_extent_buffer(leaf, uuid, (unsigned long)
6300 btrfs_stripe_dev_uuid_nr(chunk, i),
6301 BTRFS_UUID_SIZE);
6302 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6303 uuid, NULL);
6304 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6305 free_extent_map(em);
6306 return -EIO;
6307 }
6308 if (!map->stripes[i].dev) {
6309 map->stripes[i].dev =
6310 add_missing_dev(root, root->fs_info->fs_devices,
6311 devid, uuid);
6312 if (!map->stripes[i].dev) {
6313 free_extent_map(em);
6314 return -EIO;
6315 }
6316 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6317 devid, uuid);
6318 }
6319 map->stripes[i].dev->in_fs_metadata = 1;
6320 }
6321
6322 write_lock(&map_tree->map_tree.lock);
6323 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6324 write_unlock(&map_tree->map_tree.lock);
6325 BUG_ON(ret); /* Tree corruption */
6326 free_extent_map(em);
6327
6328 return 0;
6329}
6330
6331static void fill_device_from_item(struct extent_buffer *leaf,
6332 struct btrfs_dev_item *dev_item,
6333 struct btrfs_device *device)
6334{
6335 unsigned long ptr;
6336
6337 device->devid = btrfs_device_id(leaf, dev_item);
6338 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6339 device->total_bytes = device->disk_total_bytes;
6340 device->commit_total_bytes = device->disk_total_bytes;
6341 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6342 device->commit_bytes_used = device->bytes_used;
6343 device->type = btrfs_device_type(leaf, dev_item);
6344 device->io_align = btrfs_device_io_align(leaf, dev_item);
6345 device->io_width = btrfs_device_io_width(leaf, dev_item);
6346 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6347 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6348 device->is_tgtdev_for_dev_replace = 0;
6349
6350 ptr = btrfs_device_uuid(dev_item);
6351 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6352}
6353
6354static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6355 u8 *fsid)
6356{
6357 struct btrfs_fs_devices *fs_devices;
6358 int ret;
6359
6360 BUG_ON(!mutex_is_locked(&uuid_mutex));
6361
6362 fs_devices = root->fs_info->fs_devices->seed;
6363 while (fs_devices) {
6364 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6365 return fs_devices;
6366
6367 fs_devices = fs_devices->seed;
6368 }
6369
6370 fs_devices = find_fsid(fsid);
6371 if (!fs_devices) {
6372 if (!btrfs_test_opt(root, DEGRADED))
6373 return ERR_PTR(-ENOENT);
6374
6375 fs_devices = alloc_fs_devices(fsid);
6376 if (IS_ERR(fs_devices))
6377 return fs_devices;
6378
6379 fs_devices->seeding = 1;
6380 fs_devices->opened = 1;
6381 return fs_devices;
6382 }
6383
6384 fs_devices = clone_fs_devices(fs_devices);
6385 if (IS_ERR(fs_devices))
6386 return fs_devices;
6387
6388 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6389 root->fs_info->bdev_holder);
6390 if (ret) {
6391 free_fs_devices(fs_devices);
6392 fs_devices = ERR_PTR(ret);
6393 goto out;
6394 }
6395
6396 if (!fs_devices->seeding) {
6397 __btrfs_close_devices(fs_devices);
6398 free_fs_devices(fs_devices);
6399 fs_devices = ERR_PTR(-EINVAL);
6400 goto out;
6401 }
6402
6403 fs_devices->seed = root->fs_info->fs_devices->seed;
6404 root->fs_info->fs_devices->seed = fs_devices;
6405out:
6406 return fs_devices;
6407}
6408
6409static int read_one_dev(struct btrfs_root *root,
6410 struct extent_buffer *leaf,
6411 struct btrfs_dev_item *dev_item)
6412{
6413 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6414 struct btrfs_device *device;
6415 u64 devid;
6416 int ret;
6417 u8 fs_uuid[BTRFS_UUID_SIZE];
6418 u8 dev_uuid[BTRFS_UUID_SIZE];
6419
6420 devid = btrfs_device_id(leaf, dev_item);
6421 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6422 BTRFS_UUID_SIZE);
6423 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6424 BTRFS_UUID_SIZE);
6425
6426 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6427 fs_devices = open_seed_devices(root, fs_uuid);
6428 if (IS_ERR(fs_devices))
6429 return PTR_ERR(fs_devices);
6430 }
6431
6432 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6433 if (!device) {
6434 if (!btrfs_test_opt(root, DEGRADED))
6435 return -EIO;
6436
6437 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6438 if (!device)
6439 return -ENOMEM;
6440 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6441 devid, dev_uuid);
6442 } else {
6443 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6444 return -EIO;
6445
6446 if(!device->bdev && !device->missing) {
6447 /*
6448 * this happens when a device that was properly setup
6449 * in the device info lists suddenly goes bad.
6450 * device->bdev is NULL, and so we have to set
6451 * device->missing to one here
6452 */
6453 device->fs_devices->missing_devices++;
6454 device->missing = 1;
6455 }
6456
6457 /* Move the device to its own fs_devices */
6458 if (device->fs_devices != fs_devices) {
6459 ASSERT(device->missing);
6460
6461 list_move(&device->dev_list, &fs_devices->devices);
6462 device->fs_devices->num_devices--;
6463 fs_devices->num_devices++;
6464
6465 device->fs_devices->missing_devices--;
6466 fs_devices->missing_devices++;
6467
6468 device->fs_devices = fs_devices;
6469 }
6470 }
6471
6472 if (device->fs_devices != root->fs_info->fs_devices) {
6473 BUG_ON(device->writeable);
6474 if (device->generation !=
6475 btrfs_device_generation(leaf, dev_item))
6476 return -EINVAL;
6477 }
6478
6479 fill_device_from_item(leaf, dev_item, device);
6480 device->in_fs_metadata = 1;
6481 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6482 device->fs_devices->total_rw_bytes += device->total_bytes;
6483 spin_lock(&root->fs_info->free_chunk_lock);
6484 root->fs_info->free_chunk_space += device->total_bytes -
6485 device->bytes_used;
6486 spin_unlock(&root->fs_info->free_chunk_lock);
6487 }
6488 ret = 0;
6489 return ret;
6490}
6491
6492int btrfs_read_sys_array(struct btrfs_root *root)
6493{
6494 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6495 struct extent_buffer *sb;
6496 struct btrfs_disk_key *disk_key;
6497 struct btrfs_chunk *chunk;
6498 u8 *array_ptr;
6499 unsigned long sb_array_offset;
6500 int ret = 0;
6501 u32 num_stripes;
6502 u32 array_size;
6503 u32 len = 0;
6504 u32 cur_offset;
6505 struct btrfs_key key;
6506
6507 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6508 /*
6509 * This will create extent buffer of nodesize, superblock size is
6510 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6511 * overallocate but we can keep it as-is, only the first page is used.
6512 */
6513 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6514 if (!sb)
6515 return -ENOMEM;
6516 set_extent_buffer_uptodate(sb);
6517 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6518 /*
6519 * The sb extent buffer is artifical and just used to read the system array.
6520 * set_extent_buffer_uptodate() call does not properly mark all it's
6521 * pages up-to-date when the page is larger: extent does not cover the
6522 * whole page and consequently check_page_uptodate does not find all
6523 * the page's extents up-to-date (the hole beyond sb),
6524 * write_extent_buffer then triggers a WARN_ON.
6525 *
6526 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6527 * but sb spans only this function. Add an explicit SetPageUptodate call
6528 * to silence the warning eg. on PowerPC 64.
6529 */
6530 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6531 SetPageUptodate(sb->pages[0]);
6532
6533 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6534 array_size = btrfs_super_sys_array_size(super_copy);
6535
6536 array_ptr = super_copy->sys_chunk_array;
6537 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6538 cur_offset = 0;
6539
6540 while (cur_offset < array_size) {
6541 disk_key = (struct btrfs_disk_key *)array_ptr;
6542 len = sizeof(*disk_key);
6543 if (cur_offset + len > array_size)
6544 goto out_short_read;
6545
6546 btrfs_disk_key_to_cpu(&key, disk_key);
6547
6548 array_ptr += len;
6549 sb_array_offset += len;
6550 cur_offset += len;
6551
6552 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6553 chunk = (struct btrfs_chunk *)sb_array_offset;
6554 /*
6555 * At least one btrfs_chunk with one stripe must be
6556 * present, exact stripe count check comes afterwards
6557 */
6558 len = btrfs_chunk_item_size(1);
6559 if (cur_offset + len > array_size)
6560 goto out_short_read;
6561
6562 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6563 if (!num_stripes) {
6564 printk(KERN_ERR
6565 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6566 num_stripes, cur_offset);
6567 ret = -EIO;
6568 break;
6569 }
6570
6571 len = btrfs_chunk_item_size(num_stripes);
6572 if (cur_offset + len > array_size)
6573 goto out_short_read;
6574
6575 ret = read_one_chunk(root, &key, sb, chunk);
6576 if (ret)
6577 break;
6578 } else {
6579 printk(KERN_ERR
6580 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6581 (u32)key.type, cur_offset);
6582 ret = -EIO;
6583 break;
6584 }
6585 array_ptr += len;
6586 sb_array_offset += len;
6587 cur_offset += len;
6588 }
6589 free_extent_buffer(sb);
6590 return ret;
6591
6592out_short_read:
6593 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6594 len, cur_offset);
6595 free_extent_buffer(sb);
6596 return -EIO;
6597}
6598
6599int btrfs_read_chunk_tree(struct btrfs_root *root)
6600{
6601 struct btrfs_path *path;
6602 struct extent_buffer *leaf;
6603 struct btrfs_key key;
6604 struct btrfs_key found_key;
6605 int ret;
6606 int slot;
6607
6608 root = root->fs_info->chunk_root;
6609
6610 path = btrfs_alloc_path();
6611 if (!path)
6612 return -ENOMEM;
6613
6614 mutex_lock(&uuid_mutex);
6615 lock_chunks(root);
6616
6617 /*
6618 * Read all device items, and then all the chunk items. All
6619 * device items are found before any chunk item (their object id
6620 * is smaller than the lowest possible object id for a chunk
6621 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6622 */
6623 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6624 key.offset = 0;
6625 key.type = 0;
6626 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6627 if (ret < 0)
6628 goto error;
6629 while (1) {
6630 leaf = path->nodes[0];
6631 slot = path->slots[0];
6632 if (slot >= btrfs_header_nritems(leaf)) {
6633 ret = btrfs_next_leaf(root, path);
6634 if (ret == 0)
6635 continue;
6636 if (ret < 0)
6637 goto error;
6638 break;
6639 }
6640 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6641 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6642 struct btrfs_dev_item *dev_item;
6643 dev_item = btrfs_item_ptr(leaf, slot,
6644 struct btrfs_dev_item);
6645 ret = read_one_dev(root, leaf, dev_item);
6646 if (ret)
6647 goto error;
6648 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6649 struct btrfs_chunk *chunk;
6650 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6651 ret = read_one_chunk(root, &found_key, leaf, chunk);
6652 if (ret)
6653 goto error;
6654 }
6655 path->slots[0]++;
6656 }
6657 ret = 0;
6658error:
6659 unlock_chunks(root);
6660 mutex_unlock(&uuid_mutex);
6661
6662 btrfs_free_path(path);
6663 return ret;
6664}
6665
6666void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6667{
6668 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6669 struct btrfs_device *device;
6670
6671 while (fs_devices) {
6672 mutex_lock(&fs_devices->device_list_mutex);
6673 list_for_each_entry(device, &fs_devices->devices, dev_list)
6674 device->dev_root = fs_info->dev_root;
6675 mutex_unlock(&fs_devices->device_list_mutex);
6676
6677 fs_devices = fs_devices->seed;
6678 }
6679}
6680
6681static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6682{
6683 int i;
6684
6685 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6686 btrfs_dev_stat_reset(dev, i);
6687}
6688
6689int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6690{
6691 struct btrfs_key key;
6692 struct btrfs_key found_key;
6693 struct btrfs_root *dev_root = fs_info->dev_root;
6694 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6695 struct extent_buffer *eb;
6696 int slot;
6697 int ret = 0;
6698 struct btrfs_device *device;
6699 struct btrfs_path *path = NULL;
6700 int i;
6701
6702 path = btrfs_alloc_path();
6703 if (!path) {
6704 ret = -ENOMEM;
6705 goto out;
6706 }
6707
6708 mutex_lock(&fs_devices->device_list_mutex);
6709 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6710 int item_size;
6711 struct btrfs_dev_stats_item *ptr;
6712
6713 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6714 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6715 key.offset = device->devid;
6716 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6717 if (ret) {
6718 __btrfs_reset_dev_stats(device);
6719 device->dev_stats_valid = 1;
6720 btrfs_release_path(path);
6721 continue;
6722 }
6723 slot = path->slots[0];
6724 eb = path->nodes[0];
6725 btrfs_item_key_to_cpu(eb, &found_key, slot);
6726 item_size = btrfs_item_size_nr(eb, slot);
6727
6728 ptr = btrfs_item_ptr(eb, slot,
6729 struct btrfs_dev_stats_item);
6730
6731 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6732 if (item_size >= (1 + i) * sizeof(__le64))
6733 btrfs_dev_stat_set(device, i,
6734 btrfs_dev_stats_value(eb, ptr, i));
6735 else
6736 btrfs_dev_stat_reset(device, i);
6737 }
6738
6739 device->dev_stats_valid = 1;
6740 btrfs_dev_stat_print_on_load(device);
6741 btrfs_release_path(path);
6742 }
6743 mutex_unlock(&fs_devices->device_list_mutex);
6744
6745out:
6746 btrfs_free_path(path);
6747 return ret < 0 ? ret : 0;
6748}
6749
6750static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6751 struct btrfs_root *dev_root,
6752 struct btrfs_device *device)
6753{
6754 struct btrfs_path *path;
6755 struct btrfs_key key;
6756 struct extent_buffer *eb;
6757 struct btrfs_dev_stats_item *ptr;
6758 int ret;
6759 int i;
6760
6761 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6762 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6763 key.offset = device->devid;
6764
6765 path = btrfs_alloc_path();
6766 BUG_ON(!path);
6767 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6768 if (ret < 0) {
6769 btrfs_warn_in_rcu(dev_root->fs_info,
6770 "error %d while searching for dev_stats item for device %s",
6771 ret, rcu_str_deref(device->name));
6772 goto out;
6773 }
6774
6775 if (ret == 0 &&
6776 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6777 /* need to delete old one and insert a new one */
6778 ret = btrfs_del_item(trans, dev_root, path);
6779 if (ret != 0) {
6780 btrfs_warn_in_rcu(dev_root->fs_info,
6781 "delete too small dev_stats item for device %s failed %d",
6782 rcu_str_deref(device->name), ret);
6783 goto out;
6784 }
6785 ret = 1;
6786 }
6787
6788 if (ret == 1) {
6789 /* need to insert a new item */
6790 btrfs_release_path(path);
6791 ret = btrfs_insert_empty_item(trans, dev_root, path,
6792 &key, sizeof(*ptr));
6793 if (ret < 0) {
6794 btrfs_warn_in_rcu(dev_root->fs_info,
6795 "insert dev_stats item for device %s failed %d",
6796 rcu_str_deref(device->name), ret);
6797 goto out;
6798 }
6799 }
6800
6801 eb = path->nodes[0];
6802 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6803 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6804 btrfs_set_dev_stats_value(eb, ptr, i,
6805 btrfs_dev_stat_read(device, i));
6806 btrfs_mark_buffer_dirty(eb);
6807
6808out:
6809 btrfs_free_path(path);
6810 return ret;
6811}
6812
6813/*
6814 * called from commit_transaction. Writes all changed device stats to disk.
6815 */
6816int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6817 struct btrfs_fs_info *fs_info)
6818{
6819 struct btrfs_root *dev_root = fs_info->dev_root;
6820 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6821 struct btrfs_device *device;
6822 int stats_cnt;
6823 int ret = 0;
6824
6825 mutex_lock(&fs_devices->device_list_mutex);
6826 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6827 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6828 continue;
6829
6830 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6831 ret = update_dev_stat_item(trans, dev_root, device);
6832 if (!ret)
6833 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6834 }
6835 mutex_unlock(&fs_devices->device_list_mutex);
6836
6837 return ret;
6838}
6839
6840void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6841{
6842 btrfs_dev_stat_inc(dev, index);
6843 btrfs_dev_stat_print_on_error(dev);
6844}
6845
6846static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6847{
6848 if (!dev->dev_stats_valid)
6849 return;
6850 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6851 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6852 rcu_str_deref(dev->name),
6853 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6854 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6855 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6856 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6857 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6858}
6859
6860static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6861{
6862 int i;
6863
6864 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6865 if (btrfs_dev_stat_read(dev, i) != 0)
6866 break;
6867 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6868 return; /* all values == 0, suppress message */
6869
6870 btrfs_info_in_rcu(dev->dev_root->fs_info,
6871 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6872 rcu_str_deref(dev->name),
6873 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6874 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6875 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6876 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6877 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6878}
6879
6880int btrfs_get_dev_stats(struct btrfs_root *root,
6881 struct btrfs_ioctl_get_dev_stats *stats)
6882{
6883 struct btrfs_device *dev;
6884 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6885 int i;
6886
6887 mutex_lock(&fs_devices->device_list_mutex);
6888 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6889 mutex_unlock(&fs_devices->device_list_mutex);
6890
6891 if (!dev) {
6892 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6893 return -ENODEV;
6894 } else if (!dev->dev_stats_valid) {
6895 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6896 return -ENODEV;
6897 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6898 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6899 if (stats->nr_items > i)
6900 stats->values[i] =
6901 btrfs_dev_stat_read_and_reset(dev, i);
6902 else
6903 btrfs_dev_stat_reset(dev, i);
6904 }
6905 } else {
6906 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6907 if (stats->nr_items > i)
6908 stats->values[i] = btrfs_dev_stat_read(dev, i);
6909 }
6910 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6911 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6912 return 0;
6913}
6914
6915void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
6916{
6917 struct buffer_head *bh;
6918 struct btrfs_super_block *disk_super;
6919 int copy_num;
6920
6921 if (!bdev)
6922 return;
6923
6924 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6925 copy_num++) {
6926
6927 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6928 continue;
6929
6930 disk_super = (struct btrfs_super_block *)bh->b_data;
6931
6932 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6933 set_buffer_dirty(bh);
6934 sync_dirty_buffer(bh);
6935 brelse(bh);
6936 }
6937
6938 /* Notify udev that device has changed */
6939 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6940
6941 /* Update ctime/mtime for device path for libblkid */
6942 update_dev_time(device_path);
6943}
6944
6945/*
6946 * Update the size of all devices, which is used for writing out the
6947 * super blocks.
6948 */
6949void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6950{
6951 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6952 struct btrfs_device *curr, *next;
6953
6954 if (list_empty(&fs_devices->resized_devices))
6955 return;
6956
6957 mutex_lock(&fs_devices->device_list_mutex);
6958 lock_chunks(fs_info->dev_root);
6959 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6960 resized_list) {
6961 list_del_init(&curr->resized_list);
6962 curr->commit_total_bytes = curr->disk_total_bytes;
6963 }
6964 unlock_chunks(fs_info->dev_root);
6965 mutex_unlock(&fs_devices->device_list_mutex);
6966}
6967
6968/* Must be invoked during the transaction commit */
6969void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6970 struct btrfs_transaction *transaction)
6971{
6972 struct extent_map *em;
6973 struct map_lookup *map;
6974 struct btrfs_device *dev;
6975 int i;
6976
6977 if (list_empty(&transaction->pending_chunks))
6978 return;
6979
6980 /* In order to kick the device replace finish process */
6981 lock_chunks(root);
6982 list_for_each_entry(em, &transaction->pending_chunks, list) {
6983 map = em->map_lookup;
6984
6985 for (i = 0; i < map->num_stripes; i++) {
6986 dev = map->stripes[i].dev;
6987 dev->commit_bytes_used = dev->bytes_used;
6988 }
6989 }
6990 unlock_chunks(root);
6991}
6992
6993void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6994{
6995 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6996 while (fs_devices) {
6997 fs_devices->fs_info = fs_info;
6998 fs_devices = fs_devices->seed;
6999 }
7000}
7001
7002void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7003{
7004 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7005 while (fs_devices) {
7006 fs_devices->fs_info = NULL;
7007 fs_devices = fs_devices->seed;
7008 }
7009}
7010
7011static void btrfs_close_one_device(struct btrfs_device *device)
7012{
7013 struct btrfs_fs_devices *fs_devices = device->fs_devices;
7014 struct btrfs_device *new_device;
7015 struct rcu_string *name;
7016
7017 if (device->bdev)
7018 fs_devices->open_devices--;
7019
7020 if (device->writeable &&
7021 device->devid != BTRFS_DEV_REPLACE_DEVID) {
7022 list_del_init(&device->dev_alloc_list);
7023 fs_devices->rw_devices--;
7024 }
7025
7026 if (device->missing)
7027 fs_devices->missing_devices--;
7028
7029 new_device = btrfs_alloc_device(NULL, &device->devid,
7030 device->uuid);
7031 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7032
7033 /* Safe because we are under uuid_mutex */
7034 if (device->name) {
7035 name = rcu_string_strdup(device->name->str, GFP_NOFS);
7036 BUG_ON(!name); /* -ENOMEM */
7037 rcu_assign_pointer(new_device->name, name);
7038 }
7039
7040 list_replace_rcu(&device->dev_list, &new_device->dev_list);
7041 new_device->fs_devices = device->fs_devices;
7042
7043 call_rcu(&device->rcu, free_device);
7044}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
20#include <linux/slab.h>
21#include <linux/buffer_head.h>
22#include <linux/blkdev.h>
23#include <linux/random.h>
24#include <linux/iocontext.h>
25#include <linux/capability.h>
26#include <linux/ratelimit.h>
27#include <linux/kthread.h>
28#include <asm/div64.h>
29#include "compat.h"
30#include "ctree.h"
31#include "extent_map.h"
32#include "disk-io.h"
33#include "transaction.h"
34#include "print-tree.h"
35#include "volumes.h"
36#include "async-thread.h"
37#include "check-integrity.h"
38#include "rcu-string.h"
39
40static int init_first_rw_device(struct btrfs_trans_handle *trans,
41 struct btrfs_root *root,
42 struct btrfs_device *device);
43static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
44static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
45static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
46
47static DEFINE_MUTEX(uuid_mutex);
48static LIST_HEAD(fs_uuids);
49
50static void lock_chunks(struct btrfs_root *root)
51{
52 mutex_lock(&root->fs_info->chunk_mutex);
53}
54
55static void unlock_chunks(struct btrfs_root *root)
56{
57 mutex_unlock(&root->fs_info->chunk_mutex);
58}
59
60static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
61{
62 struct btrfs_device *device;
63 WARN_ON(fs_devices->opened);
64 while (!list_empty(&fs_devices->devices)) {
65 device = list_entry(fs_devices->devices.next,
66 struct btrfs_device, dev_list);
67 list_del(&device->dev_list);
68 rcu_string_free(device->name);
69 kfree(device);
70 }
71 kfree(fs_devices);
72}
73
74void btrfs_cleanup_fs_uuids(void)
75{
76 struct btrfs_fs_devices *fs_devices;
77
78 while (!list_empty(&fs_uuids)) {
79 fs_devices = list_entry(fs_uuids.next,
80 struct btrfs_fs_devices, list);
81 list_del(&fs_devices->list);
82 free_fs_devices(fs_devices);
83 }
84}
85
86static noinline struct btrfs_device *__find_device(struct list_head *head,
87 u64 devid, u8 *uuid)
88{
89 struct btrfs_device *dev;
90
91 list_for_each_entry(dev, head, dev_list) {
92 if (dev->devid == devid &&
93 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
94 return dev;
95 }
96 }
97 return NULL;
98}
99
100static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
101{
102 struct btrfs_fs_devices *fs_devices;
103
104 list_for_each_entry(fs_devices, &fs_uuids, list) {
105 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
106 return fs_devices;
107 }
108 return NULL;
109}
110
111static void requeue_list(struct btrfs_pending_bios *pending_bios,
112 struct bio *head, struct bio *tail)
113{
114
115 struct bio *old_head;
116
117 old_head = pending_bios->head;
118 pending_bios->head = head;
119 if (pending_bios->tail)
120 tail->bi_next = old_head;
121 else
122 pending_bios->tail = tail;
123}
124
125/*
126 * we try to collect pending bios for a device so we don't get a large
127 * number of procs sending bios down to the same device. This greatly
128 * improves the schedulers ability to collect and merge the bios.
129 *
130 * But, it also turns into a long list of bios to process and that is sure
131 * to eventually make the worker thread block. The solution here is to
132 * make some progress and then put this work struct back at the end of
133 * the list if the block device is congested. This way, multiple devices
134 * can make progress from a single worker thread.
135 */
136static noinline void run_scheduled_bios(struct btrfs_device *device)
137{
138 struct bio *pending;
139 struct backing_dev_info *bdi;
140 struct btrfs_fs_info *fs_info;
141 struct btrfs_pending_bios *pending_bios;
142 struct bio *tail;
143 struct bio *cur;
144 int again = 0;
145 unsigned long num_run;
146 unsigned long batch_run = 0;
147 unsigned long limit;
148 unsigned long last_waited = 0;
149 int force_reg = 0;
150 int sync_pending = 0;
151 struct blk_plug plug;
152
153 /*
154 * this function runs all the bios we've collected for
155 * a particular device. We don't want to wander off to
156 * another device without first sending all of these down.
157 * So, setup a plug here and finish it off before we return
158 */
159 blk_start_plug(&plug);
160
161 bdi = blk_get_backing_dev_info(device->bdev);
162 fs_info = device->dev_root->fs_info;
163 limit = btrfs_async_submit_limit(fs_info);
164 limit = limit * 2 / 3;
165
166loop:
167 spin_lock(&device->io_lock);
168
169loop_lock:
170 num_run = 0;
171
172 /* take all the bios off the list at once and process them
173 * later on (without the lock held). But, remember the
174 * tail and other pointers so the bios can be properly reinserted
175 * into the list if we hit congestion
176 */
177 if (!force_reg && device->pending_sync_bios.head) {
178 pending_bios = &device->pending_sync_bios;
179 force_reg = 1;
180 } else {
181 pending_bios = &device->pending_bios;
182 force_reg = 0;
183 }
184
185 pending = pending_bios->head;
186 tail = pending_bios->tail;
187 WARN_ON(pending && !tail);
188
189 /*
190 * if pending was null this time around, no bios need processing
191 * at all and we can stop. Otherwise it'll loop back up again
192 * and do an additional check so no bios are missed.
193 *
194 * device->running_pending is used to synchronize with the
195 * schedule_bio code.
196 */
197 if (device->pending_sync_bios.head == NULL &&
198 device->pending_bios.head == NULL) {
199 again = 0;
200 device->running_pending = 0;
201 } else {
202 again = 1;
203 device->running_pending = 1;
204 }
205
206 pending_bios->head = NULL;
207 pending_bios->tail = NULL;
208
209 spin_unlock(&device->io_lock);
210
211 while (pending) {
212
213 rmb();
214 /* we want to work on both lists, but do more bios on the
215 * sync list than the regular list
216 */
217 if ((num_run > 32 &&
218 pending_bios != &device->pending_sync_bios &&
219 device->pending_sync_bios.head) ||
220 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
221 device->pending_bios.head)) {
222 spin_lock(&device->io_lock);
223 requeue_list(pending_bios, pending, tail);
224 goto loop_lock;
225 }
226
227 cur = pending;
228 pending = pending->bi_next;
229 cur->bi_next = NULL;
230 atomic_dec(&fs_info->nr_async_bios);
231
232 if (atomic_read(&fs_info->nr_async_bios) < limit &&
233 waitqueue_active(&fs_info->async_submit_wait))
234 wake_up(&fs_info->async_submit_wait);
235
236 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
237
238 /*
239 * if we're doing the sync list, record that our
240 * plug has some sync requests on it
241 *
242 * If we're doing the regular list and there are
243 * sync requests sitting around, unplug before
244 * we add more
245 */
246 if (pending_bios == &device->pending_sync_bios) {
247 sync_pending = 1;
248 } else if (sync_pending) {
249 blk_finish_plug(&plug);
250 blk_start_plug(&plug);
251 sync_pending = 0;
252 }
253
254 btrfsic_submit_bio(cur->bi_rw, cur);
255 num_run++;
256 batch_run++;
257 if (need_resched())
258 cond_resched();
259
260 /*
261 * we made progress, there is more work to do and the bdi
262 * is now congested. Back off and let other work structs
263 * run instead
264 */
265 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
266 fs_info->fs_devices->open_devices > 1) {
267 struct io_context *ioc;
268
269 ioc = current->io_context;
270
271 /*
272 * the main goal here is that we don't want to
273 * block if we're going to be able to submit
274 * more requests without blocking.
275 *
276 * This code does two great things, it pokes into
277 * the elevator code from a filesystem _and_
278 * it makes assumptions about how batching works.
279 */
280 if (ioc && ioc->nr_batch_requests > 0 &&
281 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
282 (last_waited == 0 ||
283 ioc->last_waited == last_waited)) {
284 /*
285 * we want to go through our batch of
286 * requests and stop. So, we copy out
287 * the ioc->last_waited time and test
288 * against it before looping
289 */
290 last_waited = ioc->last_waited;
291 if (need_resched())
292 cond_resched();
293 continue;
294 }
295 spin_lock(&device->io_lock);
296 requeue_list(pending_bios, pending, tail);
297 device->running_pending = 1;
298
299 spin_unlock(&device->io_lock);
300 btrfs_requeue_work(&device->work);
301 goto done;
302 }
303 /* unplug every 64 requests just for good measure */
304 if (batch_run % 64 == 0) {
305 blk_finish_plug(&plug);
306 blk_start_plug(&plug);
307 sync_pending = 0;
308 }
309 }
310
311 cond_resched();
312 if (again)
313 goto loop;
314
315 spin_lock(&device->io_lock);
316 if (device->pending_bios.head || device->pending_sync_bios.head)
317 goto loop_lock;
318 spin_unlock(&device->io_lock);
319
320done:
321 blk_finish_plug(&plug);
322}
323
324static void pending_bios_fn(struct btrfs_work *work)
325{
326 struct btrfs_device *device;
327
328 device = container_of(work, struct btrfs_device, work);
329 run_scheduled_bios(device);
330}
331
332static noinline int device_list_add(const char *path,
333 struct btrfs_super_block *disk_super,
334 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
335{
336 struct btrfs_device *device;
337 struct btrfs_fs_devices *fs_devices;
338 struct rcu_string *name;
339 u64 found_transid = btrfs_super_generation(disk_super);
340
341 fs_devices = find_fsid(disk_super->fsid);
342 if (!fs_devices) {
343 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
344 if (!fs_devices)
345 return -ENOMEM;
346 INIT_LIST_HEAD(&fs_devices->devices);
347 INIT_LIST_HEAD(&fs_devices->alloc_list);
348 list_add(&fs_devices->list, &fs_uuids);
349 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
350 fs_devices->latest_devid = devid;
351 fs_devices->latest_trans = found_transid;
352 mutex_init(&fs_devices->device_list_mutex);
353 device = NULL;
354 } else {
355 device = __find_device(&fs_devices->devices, devid,
356 disk_super->dev_item.uuid);
357 }
358 if (!device) {
359 if (fs_devices->opened)
360 return -EBUSY;
361
362 device = kzalloc(sizeof(*device), GFP_NOFS);
363 if (!device) {
364 /* we can safely leave the fs_devices entry around */
365 return -ENOMEM;
366 }
367 device->devid = devid;
368 device->dev_stats_valid = 0;
369 device->work.func = pending_bios_fn;
370 memcpy(device->uuid, disk_super->dev_item.uuid,
371 BTRFS_UUID_SIZE);
372 spin_lock_init(&device->io_lock);
373
374 name = rcu_string_strdup(path, GFP_NOFS);
375 if (!name) {
376 kfree(device);
377 return -ENOMEM;
378 }
379 rcu_assign_pointer(device->name, name);
380 INIT_LIST_HEAD(&device->dev_alloc_list);
381
382 /* init readahead state */
383 spin_lock_init(&device->reada_lock);
384 device->reada_curr_zone = NULL;
385 atomic_set(&device->reada_in_flight, 0);
386 device->reada_next = 0;
387 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
388 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
389
390 mutex_lock(&fs_devices->device_list_mutex);
391 list_add_rcu(&device->dev_list, &fs_devices->devices);
392 mutex_unlock(&fs_devices->device_list_mutex);
393
394 device->fs_devices = fs_devices;
395 fs_devices->num_devices++;
396 } else if (!device->name || strcmp(device->name->str, path)) {
397 name = rcu_string_strdup(path, GFP_NOFS);
398 if (!name)
399 return -ENOMEM;
400 rcu_string_free(device->name);
401 rcu_assign_pointer(device->name, name);
402 if (device->missing) {
403 fs_devices->missing_devices--;
404 device->missing = 0;
405 }
406 }
407
408 if (found_transid > fs_devices->latest_trans) {
409 fs_devices->latest_devid = devid;
410 fs_devices->latest_trans = found_transid;
411 }
412 *fs_devices_ret = fs_devices;
413 return 0;
414}
415
416static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
417{
418 struct btrfs_fs_devices *fs_devices;
419 struct btrfs_device *device;
420 struct btrfs_device *orig_dev;
421
422 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
423 if (!fs_devices)
424 return ERR_PTR(-ENOMEM);
425
426 INIT_LIST_HEAD(&fs_devices->devices);
427 INIT_LIST_HEAD(&fs_devices->alloc_list);
428 INIT_LIST_HEAD(&fs_devices->list);
429 mutex_init(&fs_devices->device_list_mutex);
430 fs_devices->latest_devid = orig->latest_devid;
431 fs_devices->latest_trans = orig->latest_trans;
432 memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
433
434 /* We have held the volume lock, it is safe to get the devices. */
435 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
436 struct rcu_string *name;
437
438 device = kzalloc(sizeof(*device), GFP_NOFS);
439 if (!device)
440 goto error;
441
442 /*
443 * This is ok to do without rcu read locked because we hold the
444 * uuid mutex so nothing we touch in here is going to disappear.
445 */
446 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
447 if (!name) {
448 kfree(device);
449 goto error;
450 }
451 rcu_assign_pointer(device->name, name);
452
453 device->devid = orig_dev->devid;
454 device->work.func = pending_bios_fn;
455 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
456 spin_lock_init(&device->io_lock);
457 INIT_LIST_HEAD(&device->dev_list);
458 INIT_LIST_HEAD(&device->dev_alloc_list);
459
460 list_add(&device->dev_list, &fs_devices->devices);
461 device->fs_devices = fs_devices;
462 fs_devices->num_devices++;
463 }
464 return fs_devices;
465error:
466 free_fs_devices(fs_devices);
467 return ERR_PTR(-ENOMEM);
468}
469
470void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
471{
472 struct btrfs_device *device, *next;
473
474 struct block_device *latest_bdev = NULL;
475 u64 latest_devid = 0;
476 u64 latest_transid = 0;
477
478 mutex_lock(&uuid_mutex);
479again:
480 /* This is the initialized path, it is safe to release the devices. */
481 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
482 if (device->in_fs_metadata) {
483 if (!latest_transid ||
484 device->generation > latest_transid) {
485 latest_devid = device->devid;
486 latest_transid = device->generation;
487 latest_bdev = device->bdev;
488 }
489 continue;
490 }
491
492 if (device->bdev) {
493 blkdev_put(device->bdev, device->mode);
494 device->bdev = NULL;
495 fs_devices->open_devices--;
496 }
497 if (device->writeable) {
498 list_del_init(&device->dev_alloc_list);
499 device->writeable = 0;
500 fs_devices->rw_devices--;
501 }
502 list_del_init(&device->dev_list);
503 fs_devices->num_devices--;
504 rcu_string_free(device->name);
505 kfree(device);
506 }
507
508 if (fs_devices->seed) {
509 fs_devices = fs_devices->seed;
510 goto again;
511 }
512
513 fs_devices->latest_bdev = latest_bdev;
514 fs_devices->latest_devid = latest_devid;
515 fs_devices->latest_trans = latest_transid;
516
517 mutex_unlock(&uuid_mutex);
518}
519
520static void __free_device(struct work_struct *work)
521{
522 struct btrfs_device *device;
523
524 device = container_of(work, struct btrfs_device, rcu_work);
525
526 if (device->bdev)
527 blkdev_put(device->bdev, device->mode);
528
529 rcu_string_free(device->name);
530 kfree(device);
531}
532
533static void free_device(struct rcu_head *head)
534{
535 struct btrfs_device *device;
536
537 device = container_of(head, struct btrfs_device, rcu);
538
539 INIT_WORK(&device->rcu_work, __free_device);
540 schedule_work(&device->rcu_work);
541}
542
543static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
544{
545 struct btrfs_device *device;
546
547 if (--fs_devices->opened > 0)
548 return 0;
549
550 mutex_lock(&fs_devices->device_list_mutex);
551 list_for_each_entry(device, &fs_devices->devices, dev_list) {
552 struct btrfs_device *new_device;
553 struct rcu_string *name;
554
555 if (device->bdev)
556 fs_devices->open_devices--;
557
558 if (device->writeable) {
559 list_del_init(&device->dev_alloc_list);
560 fs_devices->rw_devices--;
561 }
562
563 if (device->can_discard)
564 fs_devices->num_can_discard--;
565
566 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
567 BUG_ON(!new_device); /* -ENOMEM */
568 memcpy(new_device, device, sizeof(*new_device));
569
570 /* Safe because we are under uuid_mutex */
571 name = rcu_string_strdup(device->name->str, GFP_NOFS);
572 BUG_ON(device->name && !name); /* -ENOMEM */
573 rcu_assign_pointer(new_device->name, name);
574 new_device->bdev = NULL;
575 new_device->writeable = 0;
576 new_device->in_fs_metadata = 0;
577 new_device->can_discard = 0;
578 list_replace_rcu(&device->dev_list, &new_device->dev_list);
579
580 call_rcu(&device->rcu, free_device);
581 }
582 mutex_unlock(&fs_devices->device_list_mutex);
583
584 WARN_ON(fs_devices->open_devices);
585 WARN_ON(fs_devices->rw_devices);
586 fs_devices->opened = 0;
587 fs_devices->seeding = 0;
588
589 return 0;
590}
591
592int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
593{
594 struct btrfs_fs_devices *seed_devices = NULL;
595 int ret;
596
597 mutex_lock(&uuid_mutex);
598 ret = __btrfs_close_devices(fs_devices);
599 if (!fs_devices->opened) {
600 seed_devices = fs_devices->seed;
601 fs_devices->seed = NULL;
602 }
603 mutex_unlock(&uuid_mutex);
604
605 while (seed_devices) {
606 fs_devices = seed_devices;
607 seed_devices = fs_devices->seed;
608 __btrfs_close_devices(fs_devices);
609 free_fs_devices(fs_devices);
610 }
611 return ret;
612}
613
614static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
615 fmode_t flags, void *holder)
616{
617 struct request_queue *q;
618 struct block_device *bdev;
619 struct list_head *head = &fs_devices->devices;
620 struct btrfs_device *device;
621 struct block_device *latest_bdev = NULL;
622 struct buffer_head *bh;
623 struct btrfs_super_block *disk_super;
624 u64 latest_devid = 0;
625 u64 latest_transid = 0;
626 u64 devid;
627 int seeding = 1;
628 int ret = 0;
629
630 flags |= FMODE_EXCL;
631
632 list_for_each_entry(device, head, dev_list) {
633 if (device->bdev)
634 continue;
635 if (!device->name)
636 continue;
637
638 bdev = blkdev_get_by_path(device->name->str, flags, holder);
639 if (IS_ERR(bdev)) {
640 printk(KERN_INFO "open %s failed\n", device->name->str);
641 goto error;
642 }
643 filemap_write_and_wait(bdev->bd_inode->i_mapping);
644 invalidate_bdev(bdev);
645 set_blocksize(bdev, 4096);
646
647 bh = btrfs_read_dev_super(bdev);
648 if (!bh)
649 goto error_close;
650
651 disk_super = (struct btrfs_super_block *)bh->b_data;
652 devid = btrfs_stack_device_id(&disk_super->dev_item);
653 if (devid != device->devid)
654 goto error_brelse;
655
656 if (memcmp(device->uuid, disk_super->dev_item.uuid,
657 BTRFS_UUID_SIZE))
658 goto error_brelse;
659
660 device->generation = btrfs_super_generation(disk_super);
661 if (!latest_transid || device->generation > latest_transid) {
662 latest_devid = devid;
663 latest_transid = device->generation;
664 latest_bdev = bdev;
665 }
666
667 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
668 device->writeable = 0;
669 } else {
670 device->writeable = !bdev_read_only(bdev);
671 seeding = 0;
672 }
673
674 q = bdev_get_queue(bdev);
675 if (blk_queue_discard(q)) {
676 device->can_discard = 1;
677 fs_devices->num_can_discard++;
678 }
679
680 device->bdev = bdev;
681 device->in_fs_metadata = 0;
682 device->mode = flags;
683
684 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
685 fs_devices->rotating = 1;
686
687 fs_devices->open_devices++;
688 if (device->writeable) {
689 fs_devices->rw_devices++;
690 list_add(&device->dev_alloc_list,
691 &fs_devices->alloc_list);
692 }
693 brelse(bh);
694 continue;
695
696error_brelse:
697 brelse(bh);
698error_close:
699 blkdev_put(bdev, flags);
700error:
701 continue;
702 }
703 if (fs_devices->open_devices == 0) {
704 ret = -EINVAL;
705 goto out;
706 }
707 fs_devices->seeding = seeding;
708 fs_devices->opened = 1;
709 fs_devices->latest_bdev = latest_bdev;
710 fs_devices->latest_devid = latest_devid;
711 fs_devices->latest_trans = latest_transid;
712 fs_devices->total_rw_bytes = 0;
713out:
714 return ret;
715}
716
717int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
718 fmode_t flags, void *holder)
719{
720 int ret;
721
722 mutex_lock(&uuid_mutex);
723 if (fs_devices->opened) {
724 fs_devices->opened++;
725 ret = 0;
726 } else {
727 ret = __btrfs_open_devices(fs_devices, flags, holder);
728 }
729 mutex_unlock(&uuid_mutex);
730 return ret;
731}
732
733int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
734 struct btrfs_fs_devices **fs_devices_ret)
735{
736 struct btrfs_super_block *disk_super;
737 struct block_device *bdev;
738 struct buffer_head *bh;
739 int ret;
740 u64 devid;
741 u64 transid;
742
743 flags |= FMODE_EXCL;
744 bdev = blkdev_get_by_path(path, flags, holder);
745
746 if (IS_ERR(bdev)) {
747 ret = PTR_ERR(bdev);
748 goto error;
749 }
750
751 mutex_lock(&uuid_mutex);
752 ret = set_blocksize(bdev, 4096);
753 if (ret)
754 goto error_close;
755 bh = btrfs_read_dev_super(bdev);
756 if (!bh) {
757 ret = -EINVAL;
758 goto error_close;
759 }
760 disk_super = (struct btrfs_super_block *)bh->b_data;
761 devid = btrfs_stack_device_id(&disk_super->dev_item);
762 transid = btrfs_super_generation(disk_super);
763 if (disk_super->label[0])
764 printk(KERN_INFO "device label %s ", disk_super->label);
765 else
766 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
767 printk(KERN_CONT "devid %llu transid %llu %s\n",
768 (unsigned long long)devid, (unsigned long long)transid, path);
769 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
770
771 brelse(bh);
772error_close:
773 mutex_unlock(&uuid_mutex);
774 blkdev_put(bdev, flags);
775error:
776 return ret;
777}
778
779/* helper to account the used device space in the range */
780int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
781 u64 end, u64 *length)
782{
783 struct btrfs_key key;
784 struct btrfs_root *root = device->dev_root;
785 struct btrfs_dev_extent *dev_extent;
786 struct btrfs_path *path;
787 u64 extent_end;
788 int ret;
789 int slot;
790 struct extent_buffer *l;
791
792 *length = 0;
793
794 if (start >= device->total_bytes)
795 return 0;
796
797 path = btrfs_alloc_path();
798 if (!path)
799 return -ENOMEM;
800 path->reada = 2;
801
802 key.objectid = device->devid;
803 key.offset = start;
804 key.type = BTRFS_DEV_EXTENT_KEY;
805
806 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
807 if (ret < 0)
808 goto out;
809 if (ret > 0) {
810 ret = btrfs_previous_item(root, path, key.objectid, key.type);
811 if (ret < 0)
812 goto out;
813 }
814
815 while (1) {
816 l = path->nodes[0];
817 slot = path->slots[0];
818 if (slot >= btrfs_header_nritems(l)) {
819 ret = btrfs_next_leaf(root, path);
820 if (ret == 0)
821 continue;
822 if (ret < 0)
823 goto out;
824
825 break;
826 }
827 btrfs_item_key_to_cpu(l, &key, slot);
828
829 if (key.objectid < device->devid)
830 goto next;
831
832 if (key.objectid > device->devid)
833 break;
834
835 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
836 goto next;
837
838 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
839 extent_end = key.offset + btrfs_dev_extent_length(l,
840 dev_extent);
841 if (key.offset <= start && extent_end > end) {
842 *length = end - start + 1;
843 break;
844 } else if (key.offset <= start && extent_end > start)
845 *length += extent_end - start;
846 else if (key.offset > start && extent_end <= end)
847 *length += extent_end - key.offset;
848 else if (key.offset > start && key.offset <= end) {
849 *length += end - key.offset + 1;
850 break;
851 } else if (key.offset > end)
852 break;
853
854next:
855 path->slots[0]++;
856 }
857 ret = 0;
858out:
859 btrfs_free_path(path);
860 return ret;
861}
862
863/*
864 * find_free_dev_extent - find free space in the specified device
865 * @device: the device which we search the free space in
866 * @num_bytes: the size of the free space that we need
867 * @start: store the start of the free space.
868 * @len: the size of the free space. that we find, or the size of the max
869 * free space if we don't find suitable free space
870 *
871 * this uses a pretty simple search, the expectation is that it is
872 * called very infrequently and that a given device has a small number
873 * of extents
874 *
875 * @start is used to store the start of the free space if we find. But if we
876 * don't find suitable free space, it will be used to store the start position
877 * of the max free space.
878 *
879 * @len is used to store the size of the free space that we find.
880 * But if we don't find suitable free space, it is used to store the size of
881 * the max free space.
882 */
883int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
884 u64 *start, u64 *len)
885{
886 struct btrfs_key key;
887 struct btrfs_root *root = device->dev_root;
888 struct btrfs_dev_extent *dev_extent;
889 struct btrfs_path *path;
890 u64 hole_size;
891 u64 max_hole_start;
892 u64 max_hole_size;
893 u64 extent_end;
894 u64 search_start;
895 u64 search_end = device->total_bytes;
896 int ret;
897 int slot;
898 struct extent_buffer *l;
899
900 /* FIXME use last free of some kind */
901
902 /* we don't want to overwrite the superblock on the drive,
903 * so we make sure to start at an offset of at least 1MB
904 */
905 search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
906
907 max_hole_start = search_start;
908 max_hole_size = 0;
909 hole_size = 0;
910
911 if (search_start >= search_end) {
912 ret = -ENOSPC;
913 goto error;
914 }
915
916 path = btrfs_alloc_path();
917 if (!path) {
918 ret = -ENOMEM;
919 goto error;
920 }
921 path->reada = 2;
922
923 key.objectid = device->devid;
924 key.offset = search_start;
925 key.type = BTRFS_DEV_EXTENT_KEY;
926
927 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
928 if (ret < 0)
929 goto out;
930 if (ret > 0) {
931 ret = btrfs_previous_item(root, path, key.objectid, key.type);
932 if (ret < 0)
933 goto out;
934 }
935
936 while (1) {
937 l = path->nodes[0];
938 slot = path->slots[0];
939 if (slot >= btrfs_header_nritems(l)) {
940 ret = btrfs_next_leaf(root, path);
941 if (ret == 0)
942 continue;
943 if (ret < 0)
944 goto out;
945
946 break;
947 }
948 btrfs_item_key_to_cpu(l, &key, slot);
949
950 if (key.objectid < device->devid)
951 goto next;
952
953 if (key.objectid > device->devid)
954 break;
955
956 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
957 goto next;
958
959 if (key.offset > search_start) {
960 hole_size = key.offset - search_start;
961
962 if (hole_size > max_hole_size) {
963 max_hole_start = search_start;
964 max_hole_size = hole_size;
965 }
966
967 /*
968 * If this free space is greater than which we need,
969 * it must be the max free space that we have found
970 * until now, so max_hole_start must point to the start
971 * of this free space and the length of this free space
972 * is stored in max_hole_size. Thus, we return
973 * max_hole_start and max_hole_size and go back to the
974 * caller.
975 */
976 if (hole_size >= num_bytes) {
977 ret = 0;
978 goto out;
979 }
980 }
981
982 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
983 extent_end = key.offset + btrfs_dev_extent_length(l,
984 dev_extent);
985 if (extent_end > search_start)
986 search_start = extent_end;
987next:
988 path->slots[0]++;
989 cond_resched();
990 }
991
992 /*
993 * At this point, search_start should be the end of
994 * allocated dev extents, and when shrinking the device,
995 * search_end may be smaller than search_start.
996 */
997 if (search_end > search_start)
998 hole_size = search_end - search_start;
999
1000 if (hole_size > max_hole_size) {
1001 max_hole_start = search_start;
1002 max_hole_size = hole_size;
1003 }
1004
1005 /* See above. */
1006 if (hole_size < num_bytes)
1007 ret = -ENOSPC;
1008 else
1009 ret = 0;
1010
1011out:
1012 btrfs_free_path(path);
1013error:
1014 *start = max_hole_start;
1015 if (len)
1016 *len = max_hole_size;
1017 return ret;
1018}
1019
1020static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1021 struct btrfs_device *device,
1022 u64 start)
1023{
1024 int ret;
1025 struct btrfs_path *path;
1026 struct btrfs_root *root = device->dev_root;
1027 struct btrfs_key key;
1028 struct btrfs_key found_key;
1029 struct extent_buffer *leaf = NULL;
1030 struct btrfs_dev_extent *extent = NULL;
1031
1032 path = btrfs_alloc_path();
1033 if (!path)
1034 return -ENOMEM;
1035
1036 key.objectid = device->devid;
1037 key.offset = start;
1038 key.type = BTRFS_DEV_EXTENT_KEY;
1039again:
1040 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1041 if (ret > 0) {
1042 ret = btrfs_previous_item(root, path, key.objectid,
1043 BTRFS_DEV_EXTENT_KEY);
1044 if (ret)
1045 goto out;
1046 leaf = path->nodes[0];
1047 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1048 extent = btrfs_item_ptr(leaf, path->slots[0],
1049 struct btrfs_dev_extent);
1050 BUG_ON(found_key.offset > start || found_key.offset +
1051 btrfs_dev_extent_length(leaf, extent) < start);
1052 key = found_key;
1053 btrfs_release_path(path);
1054 goto again;
1055 } else if (ret == 0) {
1056 leaf = path->nodes[0];
1057 extent = btrfs_item_ptr(leaf, path->slots[0],
1058 struct btrfs_dev_extent);
1059 } else {
1060 btrfs_error(root->fs_info, ret, "Slot search failed");
1061 goto out;
1062 }
1063
1064 if (device->bytes_used > 0) {
1065 u64 len = btrfs_dev_extent_length(leaf, extent);
1066 device->bytes_used -= len;
1067 spin_lock(&root->fs_info->free_chunk_lock);
1068 root->fs_info->free_chunk_space += len;
1069 spin_unlock(&root->fs_info->free_chunk_lock);
1070 }
1071 ret = btrfs_del_item(trans, root, path);
1072 if (ret) {
1073 btrfs_error(root->fs_info, ret,
1074 "Failed to remove dev extent item");
1075 }
1076out:
1077 btrfs_free_path(path);
1078 return ret;
1079}
1080
1081int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1082 struct btrfs_device *device,
1083 u64 chunk_tree, u64 chunk_objectid,
1084 u64 chunk_offset, u64 start, u64 num_bytes)
1085{
1086 int ret;
1087 struct btrfs_path *path;
1088 struct btrfs_root *root = device->dev_root;
1089 struct btrfs_dev_extent *extent;
1090 struct extent_buffer *leaf;
1091 struct btrfs_key key;
1092
1093 WARN_ON(!device->in_fs_metadata);
1094 path = btrfs_alloc_path();
1095 if (!path)
1096 return -ENOMEM;
1097
1098 key.objectid = device->devid;
1099 key.offset = start;
1100 key.type = BTRFS_DEV_EXTENT_KEY;
1101 ret = btrfs_insert_empty_item(trans, root, path, &key,
1102 sizeof(*extent));
1103 if (ret)
1104 goto out;
1105
1106 leaf = path->nodes[0];
1107 extent = btrfs_item_ptr(leaf, path->slots[0],
1108 struct btrfs_dev_extent);
1109 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1110 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1111 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1112
1113 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1114 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1115 BTRFS_UUID_SIZE);
1116
1117 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1118 btrfs_mark_buffer_dirty(leaf);
1119out:
1120 btrfs_free_path(path);
1121 return ret;
1122}
1123
1124static noinline int find_next_chunk(struct btrfs_root *root,
1125 u64 objectid, u64 *offset)
1126{
1127 struct btrfs_path *path;
1128 int ret;
1129 struct btrfs_key key;
1130 struct btrfs_chunk *chunk;
1131 struct btrfs_key found_key;
1132
1133 path = btrfs_alloc_path();
1134 if (!path)
1135 return -ENOMEM;
1136
1137 key.objectid = objectid;
1138 key.offset = (u64)-1;
1139 key.type = BTRFS_CHUNK_ITEM_KEY;
1140
1141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1142 if (ret < 0)
1143 goto error;
1144
1145 BUG_ON(ret == 0); /* Corruption */
1146
1147 ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1148 if (ret) {
1149 *offset = 0;
1150 } else {
1151 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1152 path->slots[0]);
1153 if (found_key.objectid != objectid)
1154 *offset = 0;
1155 else {
1156 chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1157 struct btrfs_chunk);
1158 *offset = found_key.offset +
1159 btrfs_chunk_length(path->nodes[0], chunk);
1160 }
1161 }
1162 ret = 0;
1163error:
1164 btrfs_free_path(path);
1165 return ret;
1166}
1167
1168static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1169{
1170 int ret;
1171 struct btrfs_key key;
1172 struct btrfs_key found_key;
1173 struct btrfs_path *path;
1174
1175 root = root->fs_info->chunk_root;
1176
1177 path = btrfs_alloc_path();
1178 if (!path)
1179 return -ENOMEM;
1180
1181 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1182 key.type = BTRFS_DEV_ITEM_KEY;
1183 key.offset = (u64)-1;
1184
1185 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1186 if (ret < 0)
1187 goto error;
1188
1189 BUG_ON(ret == 0); /* Corruption */
1190
1191 ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1192 BTRFS_DEV_ITEM_KEY);
1193 if (ret) {
1194 *objectid = 1;
1195 } else {
1196 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1197 path->slots[0]);
1198 *objectid = found_key.offset + 1;
1199 }
1200 ret = 0;
1201error:
1202 btrfs_free_path(path);
1203 return ret;
1204}
1205
1206/*
1207 * the device information is stored in the chunk root
1208 * the btrfs_device struct should be fully filled in
1209 */
1210int btrfs_add_device(struct btrfs_trans_handle *trans,
1211 struct btrfs_root *root,
1212 struct btrfs_device *device)
1213{
1214 int ret;
1215 struct btrfs_path *path;
1216 struct btrfs_dev_item *dev_item;
1217 struct extent_buffer *leaf;
1218 struct btrfs_key key;
1219 unsigned long ptr;
1220
1221 root = root->fs_info->chunk_root;
1222
1223 path = btrfs_alloc_path();
1224 if (!path)
1225 return -ENOMEM;
1226
1227 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1228 key.type = BTRFS_DEV_ITEM_KEY;
1229 key.offset = device->devid;
1230
1231 ret = btrfs_insert_empty_item(trans, root, path, &key,
1232 sizeof(*dev_item));
1233 if (ret)
1234 goto out;
1235
1236 leaf = path->nodes[0];
1237 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1238
1239 btrfs_set_device_id(leaf, dev_item, device->devid);
1240 btrfs_set_device_generation(leaf, dev_item, 0);
1241 btrfs_set_device_type(leaf, dev_item, device->type);
1242 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1243 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1244 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1245 btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1246 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1247 btrfs_set_device_group(leaf, dev_item, 0);
1248 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1249 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1250 btrfs_set_device_start_offset(leaf, dev_item, 0);
1251
1252 ptr = (unsigned long)btrfs_device_uuid(dev_item);
1253 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1254 ptr = (unsigned long)btrfs_device_fsid(dev_item);
1255 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1256 btrfs_mark_buffer_dirty(leaf);
1257
1258 ret = 0;
1259out:
1260 btrfs_free_path(path);
1261 return ret;
1262}
1263
1264static int btrfs_rm_dev_item(struct btrfs_root *root,
1265 struct btrfs_device *device)
1266{
1267 int ret;
1268 struct btrfs_path *path;
1269 struct btrfs_key key;
1270 struct btrfs_trans_handle *trans;
1271
1272 root = root->fs_info->chunk_root;
1273
1274 path = btrfs_alloc_path();
1275 if (!path)
1276 return -ENOMEM;
1277
1278 trans = btrfs_start_transaction(root, 0);
1279 if (IS_ERR(trans)) {
1280 btrfs_free_path(path);
1281 return PTR_ERR(trans);
1282 }
1283 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1284 key.type = BTRFS_DEV_ITEM_KEY;
1285 key.offset = device->devid;
1286 lock_chunks(root);
1287
1288 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1289 if (ret < 0)
1290 goto out;
1291
1292 if (ret > 0) {
1293 ret = -ENOENT;
1294 goto out;
1295 }
1296
1297 ret = btrfs_del_item(trans, root, path);
1298 if (ret)
1299 goto out;
1300out:
1301 btrfs_free_path(path);
1302 unlock_chunks(root);
1303 btrfs_commit_transaction(trans, root);
1304 return ret;
1305}
1306
1307int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1308{
1309 struct btrfs_device *device;
1310 struct btrfs_device *next_device;
1311 struct block_device *bdev;
1312 struct buffer_head *bh = NULL;
1313 struct btrfs_super_block *disk_super;
1314 struct btrfs_fs_devices *cur_devices;
1315 u64 all_avail;
1316 u64 devid;
1317 u64 num_devices;
1318 u8 *dev_uuid;
1319 int ret = 0;
1320 bool clear_super = false;
1321
1322 mutex_lock(&uuid_mutex);
1323
1324 all_avail = root->fs_info->avail_data_alloc_bits |
1325 root->fs_info->avail_system_alloc_bits |
1326 root->fs_info->avail_metadata_alloc_bits;
1327
1328 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1329 root->fs_info->fs_devices->num_devices <= 4) {
1330 printk(KERN_ERR "btrfs: unable to go below four devices "
1331 "on raid10\n");
1332 ret = -EINVAL;
1333 goto out;
1334 }
1335
1336 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1337 root->fs_info->fs_devices->num_devices <= 2) {
1338 printk(KERN_ERR "btrfs: unable to go below two "
1339 "devices on raid1\n");
1340 ret = -EINVAL;
1341 goto out;
1342 }
1343
1344 if (strcmp(device_path, "missing") == 0) {
1345 struct list_head *devices;
1346 struct btrfs_device *tmp;
1347
1348 device = NULL;
1349 devices = &root->fs_info->fs_devices->devices;
1350 /*
1351 * It is safe to read the devices since the volume_mutex
1352 * is held.
1353 */
1354 list_for_each_entry(tmp, devices, dev_list) {
1355 if (tmp->in_fs_metadata && !tmp->bdev) {
1356 device = tmp;
1357 break;
1358 }
1359 }
1360 bdev = NULL;
1361 bh = NULL;
1362 disk_super = NULL;
1363 if (!device) {
1364 printk(KERN_ERR "btrfs: no missing devices found to "
1365 "remove\n");
1366 goto out;
1367 }
1368 } else {
1369 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1370 root->fs_info->bdev_holder);
1371 if (IS_ERR(bdev)) {
1372 ret = PTR_ERR(bdev);
1373 goto out;
1374 }
1375
1376 set_blocksize(bdev, 4096);
1377 invalidate_bdev(bdev);
1378 bh = btrfs_read_dev_super(bdev);
1379 if (!bh) {
1380 ret = -EINVAL;
1381 goto error_close;
1382 }
1383 disk_super = (struct btrfs_super_block *)bh->b_data;
1384 devid = btrfs_stack_device_id(&disk_super->dev_item);
1385 dev_uuid = disk_super->dev_item.uuid;
1386 device = btrfs_find_device(root, devid, dev_uuid,
1387 disk_super->fsid);
1388 if (!device) {
1389 ret = -ENOENT;
1390 goto error_brelse;
1391 }
1392 }
1393
1394 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1395 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1396 "device\n");
1397 ret = -EINVAL;
1398 goto error_brelse;
1399 }
1400
1401 if (device->writeable) {
1402 lock_chunks(root);
1403 list_del_init(&device->dev_alloc_list);
1404 unlock_chunks(root);
1405 root->fs_info->fs_devices->rw_devices--;
1406 clear_super = true;
1407 }
1408
1409 ret = btrfs_shrink_device(device, 0);
1410 if (ret)
1411 goto error_undo;
1412
1413 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1414 if (ret)
1415 goto error_undo;
1416
1417 spin_lock(&root->fs_info->free_chunk_lock);
1418 root->fs_info->free_chunk_space = device->total_bytes -
1419 device->bytes_used;
1420 spin_unlock(&root->fs_info->free_chunk_lock);
1421
1422 device->in_fs_metadata = 0;
1423 btrfs_scrub_cancel_dev(root, device);
1424
1425 /*
1426 * the device list mutex makes sure that we don't change
1427 * the device list while someone else is writing out all
1428 * the device supers.
1429 */
1430
1431 cur_devices = device->fs_devices;
1432 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1433 list_del_rcu(&device->dev_list);
1434
1435 device->fs_devices->num_devices--;
1436
1437 if (device->missing)
1438 root->fs_info->fs_devices->missing_devices--;
1439
1440 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1441 struct btrfs_device, dev_list);
1442 if (device->bdev == root->fs_info->sb->s_bdev)
1443 root->fs_info->sb->s_bdev = next_device->bdev;
1444 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1445 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1446
1447 if (device->bdev)
1448 device->fs_devices->open_devices--;
1449
1450 call_rcu(&device->rcu, free_device);
1451 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1452
1453 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1454 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1455
1456 if (cur_devices->open_devices == 0) {
1457 struct btrfs_fs_devices *fs_devices;
1458 fs_devices = root->fs_info->fs_devices;
1459 while (fs_devices) {
1460 if (fs_devices->seed == cur_devices)
1461 break;
1462 fs_devices = fs_devices->seed;
1463 }
1464 fs_devices->seed = cur_devices->seed;
1465 cur_devices->seed = NULL;
1466 lock_chunks(root);
1467 __btrfs_close_devices(cur_devices);
1468 unlock_chunks(root);
1469 free_fs_devices(cur_devices);
1470 }
1471
1472 /*
1473 * at this point, the device is zero sized. We want to
1474 * remove it from the devices list and zero out the old super
1475 */
1476 if (clear_super) {
1477 /* make sure this device isn't detected as part of
1478 * the FS anymore
1479 */
1480 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1481 set_buffer_dirty(bh);
1482 sync_dirty_buffer(bh);
1483 }
1484
1485 ret = 0;
1486
1487error_brelse:
1488 brelse(bh);
1489error_close:
1490 if (bdev)
1491 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1492out:
1493 mutex_unlock(&uuid_mutex);
1494 return ret;
1495error_undo:
1496 if (device->writeable) {
1497 lock_chunks(root);
1498 list_add(&device->dev_alloc_list,
1499 &root->fs_info->fs_devices->alloc_list);
1500 unlock_chunks(root);
1501 root->fs_info->fs_devices->rw_devices++;
1502 }
1503 goto error_brelse;
1504}
1505
1506/*
1507 * does all the dirty work required for changing file system's UUID.
1508 */
1509static int btrfs_prepare_sprout(struct btrfs_root *root)
1510{
1511 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1512 struct btrfs_fs_devices *old_devices;
1513 struct btrfs_fs_devices *seed_devices;
1514 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1515 struct btrfs_device *device;
1516 u64 super_flags;
1517
1518 BUG_ON(!mutex_is_locked(&uuid_mutex));
1519 if (!fs_devices->seeding)
1520 return -EINVAL;
1521
1522 seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1523 if (!seed_devices)
1524 return -ENOMEM;
1525
1526 old_devices = clone_fs_devices(fs_devices);
1527 if (IS_ERR(old_devices)) {
1528 kfree(seed_devices);
1529 return PTR_ERR(old_devices);
1530 }
1531
1532 list_add(&old_devices->list, &fs_uuids);
1533
1534 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1535 seed_devices->opened = 1;
1536 INIT_LIST_HEAD(&seed_devices->devices);
1537 INIT_LIST_HEAD(&seed_devices->alloc_list);
1538 mutex_init(&seed_devices->device_list_mutex);
1539
1540 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1541 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1542 synchronize_rcu);
1543 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1544
1545 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1546 list_for_each_entry(device, &seed_devices->devices, dev_list) {
1547 device->fs_devices = seed_devices;
1548 }
1549
1550 fs_devices->seeding = 0;
1551 fs_devices->num_devices = 0;
1552 fs_devices->open_devices = 0;
1553 fs_devices->seed = seed_devices;
1554
1555 generate_random_uuid(fs_devices->fsid);
1556 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1557 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1558 super_flags = btrfs_super_flags(disk_super) &
1559 ~BTRFS_SUPER_FLAG_SEEDING;
1560 btrfs_set_super_flags(disk_super, super_flags);
1561
1562 return 0;
1563}
1564
1565/*
1566 * strore the expected generation for seed devices in device items.
1567 */
1568static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1569 struct btrfs_root *root)
1570{
1571 struct btrfs_path *path;
1572 struct extent_buffer *leaf;
1573 struct btrfs_dev_item *dev_item;
1574 struct btrfs_device *device;
1575 struct btrfs_key key;
1576 u8 fs_uuid[BTRFS_UUID_SIZE];
1577 u8 dev_uuid[BTRFS_UUID_SIZE];
1578 u64 devid;
1579 int ret;
1580
1581 path = btrfs_alloc_path();
1582 if (!path)
1583 return -ENOMEM;
1584
1585 root = root->fs_info->chunk_root;
1586 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1587 key.offset = 0;
1588 key.type = BTRFS_DEV_ITEM_KEY;
1589
1590 while (1) {
1591 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1592 if (ret < 0)
1593 goto error;
1594
1595 leaf = path->nodes[0];
1596next_slot:
1597 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1598 ret = btrfs_next_leaf(root, path);
1599 if (ret > 0)
1600 break;
1601 if (ret < 0)
1602 goto error;
1603 leaf = path->nodes[0];
1604 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1605 btrfs_release_path(path);
1606 continue;
1607 }
1608
1609 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1610 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1611 key.type != BTRFS_DEV_ITEM_KEY)
1612 break;
1613
1614 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1615 struct btrfs_dev_item);
1616 devid = btrfs_device_id(leaf, dev_item);
1617 read_extent_buffer(leaf, dev_uuid,
1618 (unsigned long)btrfs_device_uuid(dev_item),
1619 BTRFS_UUID_SIZE);
1620 read_extent_buffer(leaf, fs_uuid,
1621 (unsigned long)btrfs_device_fsid(dev_item),
1622 BTRFS_UUID_SIZE);
1623 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1624 BUG_ON(!device); /* Logic error */
1625
1626 if (device->fs_devices->seeding) {
1627 btrfs_set_device_generation(leaf, dev_item,
1628 device->generation);
1629 btrfs_mark_buffer_dirty(leaf);
1630 }
1631
1632 path->slots[0]++;
1633 goto next_slot;
1634 }
1635 ret = 0;
1636error:
1637 btrfs_free_path(path);
1638 return ret;
1639}
1640
1641int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1642{
1643 struct request_queue *q;
1644 struct btrfs_trans_handle *trans;
1645 struct btrfs_device *device;
1646 struct block_device *bdev;
1647 struct list_head *devices;
1648 struct super_block *sb = root->fs_info->sb;
1649 struct rcu_string *name;
1650 u64 total_bytes;
1651 int seeding_dev = 0;
1652 int ret = 0;
1653
1654 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1655 return -EROFS;
1656
1657 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1658 root->fs_info->bdev_holder);
1659 if (IS_ERR(bdev))
1660 return PTR_ERR(bdev);
1661
1662 if (root->fs_info->fs_devices->seeding) {
1663 seeding_dev = 1;
1664 down_write(&sb->s_umount);
1665 mutex_lock(&uuid_mutex);
1666 }
1667
1668 filemap_write_and_wait(bdev->bd_inode->i_mapping);
1669
1670 devices = &root->fs_info->fs_devices->devices;
1671 /*
1672 * we have the volume lock, so we don't need the extra
1673 * device list mutex while reading the list here.
1674 */
1675 list_for_each_entry(device, devices, dev_list) {
1676 if (device->bdev == bdev) {
1677 ret = -EEXIST;
1678 goto error;
1679 }
1680 }
1681
1682 device = kzalloc(sizeof(*device), GFP_NOFS);
1683 if (!device) {
1684 /* we can safely leave the fs_devices entry around */
1685 ret = -ENOMEM;
1686 goto error;
1687 }
1688
1689 name = rcu_string_strdup(device_path, GFP_NOFS);
1690 if (!name) {
1691 kfree(device);
1692 ret = -ENOMEM;
1693 goto error;
1694 }
1695 rcu_assign_pointer(device->name, name);
1696
1697 ret = find_next_devid(root, &device->devid);
1698 if (ret) {
1699 rcu_string_free(device->name);
1700 kfree(device);
1701 goto error;
1702 }
1703
1704 trans = btrfs_start_transaction(root, 0);
1705 if (IS_ERR(trans)) {
1706 rcu_string_free(device->name);
1707 kfree(device);
1708 ret = PTR_ERR(trans);
1709 goto error;
1710 }
1711
1712 lock_chunks(root);
1713
1714 q = bdev_get_queue(bdev);
1715 if (blk_queue_discard(q))
1716 device->can_discard = 1;
1717 device->writeable = 1;
1718 device->work.func = pending_bios_fn;
1719 generate_random_uuid(device->uuid);
1720 spin_lock_init(&device->io_lock);
1721 device->generation = trans->transid;
1722 device->io_width = root->sectorsize;
1723 device->io_align = root->sectorsize;
1724 device->sector_size = root->sectorsize;
1725 device->total_bytes = i_size_read(bdev->bd_inode);
1726 device->disk_total_bytes = device->total_bytes;
1727 device->dev_root = root->fs_info->dev_root;
1728 device->bdev = bdev;
1729 device->in_fs_metadata = 1;
1730 device->mode = FMODE_EXCL;
1731 set_blocksize(device->bdev, 4096);
1732
1733 if (seeding_dev) {
1734 sb->s_flags &= ~MS_RDONLY;
1735 ret = btrfs_prepare_sprout(root);
1736 BUG_ON(ret); /* -ENOMEM */
1737 }
1738
1739 device->fs_devices = root->fs_info->fs_devices;
1740
1741 /*
1742 * we don't want write_supers to jump in here with our device
1743 * half setup
1744 */
1745 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1746 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1747 list_add(&device->dev_alloc_list,
1748 &root->fs_info->fs_devices->alloc_list);
1749 root->fs_info->fs_devices->num_devices++;
1750 root->fs_info->fs_devices->open_devices++;
1751 root->fs_info->fs_devices->rw_devices++;
1752 if (device->can_discard)
1753 root->fs_info->fs_devices->num_can_discard++;
1754 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1755
1756 spin_lock(&root->fs_info->free_chunk_lock);
1757 root->fs_info->free_chunk_space += device->total_bytes;
1758 spin_unlock(&root->fs_info->free_chunk_lock);
1759
1760 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1761 root->fs_info->fs_devices->rotating = 1;
1762
1763 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1764 btrfs_set_super_total_bytes(root->fs_info->super_copy,
1765 total_bytes + device->total_bytes);
1766
1767 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1768 btrfs_set_super_num_devices(root->fs_info->super_copy,
1769 total_bytes + 1);
1770 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1771
1772 if (seeding_dev) {
1773 ret = init_first_rw_device(trans, root, device);
1774 if (ret)
1775 goto error_trans;
1776 ret = btrfs_finish_sprout(trans, root);
1777 if (ret)
1778 goto error_trans;
1779 } else {
1780 ret = btrfs_add_device(trans, root, device);
1781 if (ret)
1782 goto error_trans;
1783 }
1784
1785 /*
1786 * we've got more storage, clear any full flags on the space
1787 * infos
1788 */
1789 btrfs_clear_space_info_full(root->fs_info);
1790
1791 unlock_chunks(root);
1792 ret = btrfs_commit_transaction(trans, root);
1793
1794 if (seeding_dev) {
1795 mutex_unlock(&uuid_mutex);
1796 up_write(&sb->s_umount);
1797
1798 if (ret) /* transaction commit */
1799 return ret;
1800
1801 ret = btrfs_relocate_sys_chunks(root);
1802 if (ret < 0)
1803 btrfs_error(root->fs_info, ret,
1804 "Failed to relocate sys chunks after "
1805 "device initialization. This can be fixed "
1806 "using the \"btrfs balance\" command.");
1807 }
1808
1809 return ret;
1810
1811error_trans:
1812 unlock_chunks(root);
1813 btrfs_abort_transaction(trans, root, ret);
1814 btrfs_end_transaction(trans, root);
1815 rcu_string_free(device->name);
1816 kfree(device);
1817error:
1818 blkdev_put(bdev, FMODE_EXCL);
1819 if (seeding_dev) {
1820 mutex_unlock(&uuid_mutex);
1821 up_write(&sb->s_umount);
1822 }
1823 return ret;
1824}
1825
1826static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1827 struct btrfs_device *device)
1828{
1829 int ret;
1830 struct btrfs_path *path;
1831 struct btrfs_root *root;
1832 struct btrfs_dev_item *dev_item;
1833 struct extent_buffer *leaf;
1834 struct btrfs_key key;
1835
1836 root = device->dev_root->fs_info->chunk_root;
1837
1838 path = btrfs_alloc_path();
1839 if (!path)
1840 return -ENOMEM;
1841
1842 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1843 key.type = BTRFS_DEV_ITEM_KEY;
1844 key.offset = device->devid;
1845
1846 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1847 if (ret < 0)
1848 goto out;
1849
1850 if (ret > 0) {
1851 ret = -ENOENT;
1852 goto out;
1853 }
1854
1855 leaf = path->nodes[0];
1856 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1857
1858 btrfs_set_device_id(leaf, dev_item, device->devid);
1859 btrfs_set_device_type(leaf, dev_item, device->type);
1860 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1861 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1862 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1863 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1864 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1865 btrfs_mark_buffer_dirty(leaf);
1866
1867out:
1868 btrfs_free_path(path);
1869 return ret;
1870}
1871
1872static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1873 struct btrfs_device *device, u64 new_size)
1874{
1875 struct btrfs_super_block *super_copy =
1876 device->dev_root->fs_info->super_copy;
1877 u64 old_total = btrfs_super_total_bytes(super_copy);
1878 u64 diff = new_size - device->total_bytes;
1879
1880 if (!device->writeable)
1881 return -EACCES;
1882 if (new_size <= device->total_bytes)
1883 return -EINVAL;
1884
1885 btrfs_set_super_total_bytes(super_copy, old_total + diff);
1886 device->fs_devices->total_rw_bytes += diff;
1887
1888 device->total_bytes = new_size;
1889 device->disk_total_bytes = new_size;
1890 btrfs_clear_space_info_full(device->dev_root->fs_info);
1891
1892 return btrfs_update_device(trans, device);
1893}
1894
1895int btrfs_grow_device(struct btrfs_trans_handle *trans,
1896 struct btrfs_device *device, u64 new_size)
1897{
1898 int ret;
1899 lock_chunks(device->dev_root);
1900 ret = __btrfs_grow_device(trans, device, new_size);
1901 unlock_chunks(device->dev_root);
1902 return ret;
1903}
1904
1905static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1906 struct btrfs_root *root,
1907 u64 chunk_tree, u64 chunk_objectid,
1908 u64 chunk_offset)
1909{
1910 int ret;
1911 struct btrfs_path *path;
1912 struct btrfs_key key;
1913
1914 root = root->fs_info->chunk_root;
1915 path = btrfs_alloc_path();
1916 if (!path)
1917 return -ENOMEM;
1918
1919 key.objectid = chunk_objectid;
1920 key.offset = chunk_offset;
1921 key.type = BTRFS_CHUNK_ITEM_KEY;
1922
1923 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1924 if (ret < 0)
1925 goto out;
1926 else if (ret > 0) { /* Logic error or corruption */
1927 btrfs_error(root->fs_info, -ENOENT,
1928 "Failed lookup while freeing chunk.");
1929 ret = -ENOENT;
1930 goto out;
1931 }
1932
1933 ret = btrfs_del_item(trans, root, path);
1934 if (ret < 0)
1935 btrfs_error(root->fs_info, ret,
1936 "Failed to delete chunk item.");
1937out:
1938 btrfs_free_path(path);
1939 return ret;
1940}
1941
1942static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1943 chunk_offset)
1944{
1945 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1946 struct btrfs_disk_key *disk_key;
1947 struct btrfs_chunk *chunk;
1948 u8 *ptr;
1949 int ret = 0;
1950 u32 num_stripes;
1951 u32 array_size;
1952 u32 len = 0;
1953 u32 cur;
1954 struct btrfs_key key;
1955
1956 array_size = btrfs_super_sys_array_size(super_copy);
1957
1958 ptr = super_copy->sys_chunk_array;
1959 cur = 0;
1960
1961 while (cur < array_size) {
1962 disk_key = (struct btrfs_disk_key *)ptr;
1963 btrfs_disk_key_to_cpu(&key, disk_key);
1964
1965 len = sizeof(*disk_key);
1966
1967 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1968 chunk = (struct btrfs_chunk *)(ptr + len);
1969 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1970 len += btrfs_chunk_item_size(num_stripes);
1971 } else {
1972 ret = -EIO;
1973 break;
1974 }
1975 if (key.objectid == chunk_objectid &&
1976 key.offset == chunk_offset) {
1977 memmove(ptr, ptr + len, array_size - (cur + len));
1978 array_size -= len;
1979 btrfs_set_super_sys_array_size(super_copy, array_size);
1980 } else {
1981 ptr += len;
1982 cur += len;
1983 }
1984 }
1985 return ret;
1986}
1987
1988static int btrfs_relocate_chunk(struct btrfs_root *root,
1989 u64 chunk_tree, u64 chunk_objectid,
1990 u64 chunk_offset)
1991{
1992 struct extent_map_tree *em_tree;
1993 struct btrfs_root *extent_root;
1994 struct btrfs_trans_handle *trans;
1995 struct extent_map *em;
1996 struct map_lookup *map;
1997 int ret;
1998 int i;
1999
2000 root = root->fs_info->chunk_root;
2001 extent_root = root->fs_info->extent_root;
2002 em_tree = &root->fs_info->mapping_tree.map_tree;
2003
2004 ret = btrfs_can_relocate(extent_root, chunk_offset);
2005 if (ret)
2006 return -ENOSPC;
2007
2008 /* step one, relocate all the extents inside this chunk */
2009 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2010 if (ret)
2011 return ret;
2012
2013 trans = btrfs_start_transaction(root, 0);
2014 BUG_ON(IS_ERR(trans));
2015
2016 lock_chunks(root);
2017
2018 /*
2019 * step two, delete the device extents and the
2020 * chunk tree entries
2021 */
2022 read_lock(&em_tree->lock);
2023 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2024 read_unlock(&em_tree->lock);
2025
2026 BUG_ON(!em || em->start > chunk_offset ||
2027 em->start + em->len < chunk_offset);
2028 map = (struct map_lookup *)em->bdev;
2029
2030 for (i = 0; i < map->num_stripes; i++) {
2031 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2032 map->stripes[i].physical);
2033 BUG_ON(ret);
2034
2035 if (map->stripes[i].dev) {
2036 ret = btrfs_update_device(trans, map->stripes[i].dev);
2037 BUG_ON(ret);
2038 }
2039 }
2040 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2041 chunk_offset);
2042
2043 BUG_ON(ret);
2044
2045 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2046
2047 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2048 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2049 BUG_ON(ret);
2050 }
2051
2052 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2053 BUG_ON(ret);
2054
2055 write_lock(&em_tree->lock);
2056 remove_extent_mapping(em_tree, em);
2057 write_unlock(&em_tree->lock);
2058
2059 kfree(map);
2060 em->bdev = NULL;
2061
2062 /* once for the tree */
2063 free_extent_map(em);
2064 /* once for us */
2065 free_extent_map(em);
2066
2067 unlock_chunks(root);
2068 btrfs_end_transaction(trans, root);
2069 return 0;
2070}
2071
2072static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2073{
2074 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2075 struct btrfs_path *path;
2076 struct extent_buffer *leaf;
2077 struct btrfs_chunk *chunk;
2078 struct btrfs_key key;
2079 struct btrfs_key found_key;
2080 u64 chunk_tree = chunk_root->root_key.objectid;
2081 u64 chunk_type;
2082 bool retried = false;
2083 int failed = 0;
2084 int ret;
2085
2086 path = btrfs_alloc_path();
2087 if (!path)
2088 return -ENOMEM;
2089
2090again:
2091 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2092 key.offset = (u64)-1;
2093 key.type = BTRFS_CHUNK_ITEM_KEY;
2094
2095 while (1) {
2096 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2097 if (ret < 0)
2098 goto error;
2099 BUG_ON(ret == 0); /* Corruption */
2100
2101 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2102 key.type);
2103 if (ret < 0)
2104 goto error;
2105 if (ret > 0)
2106 break;
2107
2108 leaf = path->nodes[0];
2109 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2110
2111 chunk = btrfs_item_ptr(leaf, path->slots[0],
2112 struct btrfs_chunk);
2113 chunk_type = btrfs_chunk_type(leaf, chunk);
2114 btrfs_release_path(path);
2115
2116 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2117 ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2118 found_key.objectid,
2119 found_key.offset);
2120 if (ret == -ENOSPC)
2121 failed++;
2122 else if (ret)
2123 BUG();
2124 }
2125
2126 if (found_key.offset == 0)
2127 break;
2128 key.offset = found_key.offset - 1;
2129 }
2130 ret = 0;
2131 if (failed && !retried) {
2132 failed = 0;
2133 retried = true;
2134 goto again;
2135 } else if (failed && retried) {
2136 WARN_ON(1);
2137 ret = -ENOSPC;
2138 }
2139error:
2140 btrfs_free_path(path);
2141 return ret;
2142}
2143
2144static int insert_balance_item(struct btrfs_root *root,
2145 struct btrfs_balance_control *bctl)
2146{
2147 struct btrfs_trans_handle *trans;
2148 struct btrfs_balance_item *item;
2149 struct btrfs_disk_balance_args disk_bargs;
2150 struct btrfs_path *path;
2151 struct extent_buffer *leaf;
2152 struct btrfs_key key;
2153 int ret, err;
2154
2155 path = btrfs_alloc_path();
2156 if (!path)
2157 return -ENOMEM;
2158
2159 trans = btrfs_start_transaction(root, 0);
2160 if (IS_ERR(trans)) {
2161 btrfs_free_path(path);
2162 return PTR_ERR(trans);
2163 }
2164
2165 key.objectid = BTRFS_BALANCE_OBJECTID;
2166 key.type = BTRFS_BALANCE_ITEM_KEY;
2167 key.offset = 0;
2168
2169 ret = btrfs_insert_empty_item(trans, root, path, &key,
2170 sizeof(*item));
2171 if (ret)
2172 goto out;
2173
2174 leaf = path->nodes[0];
2175 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2176
2177 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2178
2179 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2180 btrfs_set_balance_data(leaf, item, &disk_bargs);
2181 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2182 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2183 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2184 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2185
2186 btrfs_set_balance_flags(leaf, item, bctl->flags);
2187
2188 btrfs_mark_buffer_dirty(leaf);
2189out:
2190 btrfs_free_path(path);
2191 err = btrfs_commit_transaction(trans, root);
2192 if (err && !ret)
2193 ret = err;
2194 return ret;
2195}
2196
2197static int del_balance_item(struct btrfs_root *root)
2198{
2199 struct btrfs_trans_handle *trans;
2200 struct btrfs_path *path;
2201 struct btrfs_key key;
2202 int ret, err;
2203
2204 path = btrfs_alloc_path();
2205 if (!path)
2206 return -ENOMEM;
2207
2208 trans = btrfs_start_transaction(root, 0);
2209 if (IS_ERR(trans)) {
2210 btrfs_free_path(path);
2211 return PTR_ERR(trans);
2212 }
2213
2214 key.objectid = BTRFS_BALANCE_OBJECTID;
2215 key.type = BTRFS_BALANCE_ITEM_KEY;
2216 key.offset = 0;
2217
2218 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2219 if (ret < 0)
2220 goto out;
2221 if (ret > 0) {
2222 ret = -ENOENT;
2223 goto out;
2224 }
2225
2226 ret = btrfs_del_item(trans, root, path);
2227out:
2228 btrfs_free_path(path);
2229 err = btrfs_commit_transaction(trans, root);
2230 if (err && !ret)
2231 ret = err;
2232 return ret;
2233}
2234
2235/*
2236 * This is a heuristic used to reduce the number of chunks balanced on
2237 * resume after balance was interrupted.
2238 */
2239static void update_balance_args(struct btrfs_balance_control *bctl)
2240{
2241 /*
2242 * Turn on soft mode for chunk types that were being converted.
2243 */
2244 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2245 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2246 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2247 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2248 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2249 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2250
2251 /*
2252 * Turn on usage filter if is not already used. The idea is
2253 * that chunks that we have already balanced should be
2254 * reasonably full. Don't do it for chunks that are being
2255 * converted - that will keep us from relocating unconverted
2256 * (albeit full) chunks.
2257 */
2258 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2259 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2260 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2261 bctl->data.usage = 90;
2262 }
2263 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2264 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2265 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2266 bctl->sys.usage = 90;
2267 }
2268 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2269 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2270 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2271 bctl->meta.usage = 90;
2272 }
2273}
2274
2275/*
2276 * Should be called with both balance and volume mutexes held to
2277 * serialize other volume operations (add_dev/rm_dev/resize) with
2278 * restriper. Same goes for unset_balance_control.
2279 */
2280static void set_balance_control(struct btrfs_balance_control *bctl)
2281{
2282 struct btrfs_fs_info *fs_info = bctl->fs_info;
2283
2284 BUG_ON(fs_info->balance_ctl);
2285
2286 spin_lock(&fs_info->balance_lock);
2287 fs_info->balance_ctl = bctl;
2288 spin_unlock(&fs_info->balance_lock);
2289}
2290
2291static void unset_balance_control(struct btrfs_fs_info *fs_info)
2292{
2293 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2294
2295 BUG_ON(!fs_info->balance_ctl);
2296
2297 spin_lock(&fs_info->balance_lock);
2298 fs_info->balance_ctl = NULL;
2299 spin_unlock(&fs_info->balance_lock);
2300
2301 kfree(bctl);
2302}
2303
2304/*
2305 * Balance filters. Return 1 if chunk should be filtered out
2306 * (should not be balanced).
2307 */
2308static int chunk_profiles_filter(u64 chunk_type,
2309 struct btrfs_balance_args *bargs)
2310{
2311 chunk_type = chunk_to_extended(chunk_type) &
2312 BTRFS_EXTENDED_PROFILE_MASK;
2313
2314 if (bargs->profiles & chunk_type)
2315 return 0;
2316
2317 return 1;
2318}
2319
2320static u64 div_factor_fine(u64 num, int factor)
2321{
2322 if (factor <= 0)
2323 return 0;
2324 if (factor >= 100)
2325 return num;
2326
2327 num *= factor;
2328 do_div(num, 100);
2329 return num;
2330}
2331
2332static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2333 struct btrfs_balance_args *bargs)
2334{
2335 struct btrfs_block_group_cache *cache;
2336 u64 chunk_used, user_thresh;
2337 int ret = 1;
2338
2339 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2340 chunk_used = btrfs_block_group_used(&cache->item);
2341
2342 user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2343 if (chunk_used < user_thresh)
2344 ret = 0;
2345
2346 btrfs_put_block_group(cache);
2347 return ret;
2348}
2349
2350static int chunk_devid_filter(struct extent_buffer *leaf,
2351 struct btrfs_chunk *chunk,
2352 struct btrfs_balance_args *bargs)
2353{
2354 struct btrfs_stripe *stripe;
2355 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2356 int i;
2357
2358 for (i = 0; i < num_stripes; i++) {
2359 stripe = btrfs_stripe_nr(chunk, i);
2360 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2361 return 0;
2362 }
2363
2364 return 1;
2365}
2366
2367/* [pstart, pend) */
2368static int chunk_drange_filter(struct extent_buffer *leaf,
2369 struct btrfs_chunk *chunk,
2370 u64 chunk_offset,
2371 struct btrfs_balance_args *bargs)
2372{
2373 struct btrfs_stripe *stripe;
2374 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2375 u64 stripe_offset;
2376 u64 stripe_length;
2377 int factor;
2378 int i;
2379
2380 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2381 return 0;
2382
2383 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2384 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2385 factor = 2;
2386 else
2387 factor = 1;
2388 factor = num_stripes / factor;
2389
2390 for (i = 0; i < num_stripes; i++) {
2391 stripe = btrfs_stripe_nr(chunk, i);
2392 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2393 continue;
2394
2395 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2396 stripe_length = btrfs_chunk_length(leaf, chunk);
2397 do_div(stripe_length, factor);
2398
2399 if (stripe_offset < bargs->pend &&
2400 stripe_offset + stripe_length > bargs->pstart)
2401 return 0;
2402 }
2403
2404 return 1;
2405}
2406
2407/* [vstart, vend) */
2408static int chunk_vrange_filter(struct extent_buffer *leaf,
2409 struct btrfs_chunk *chunk,
2410 u64 chunk_offset,
2411 struct btrfs_balance_args *bargs)
2412{
2413 if (chunk_offset < bargs->vend &&
2414 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2415 /* at least part of the chunk is inside this vrange */
2416 return 0;
2417
2418 return 1;
2419}
2420
2421static int chunk_soft_convert_filter(u64 chunk_type,
2422 struct btrfs_balance_args *bargs)
2423{
2424 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2425 return 0;
2426
2427 chunk_type = chunk_to_extended(chunk_type) &
2428 BTRFS_EXTENDED_PROFILE_MASK;
2429
2430 if (bargs->target == chunk_type)
2431 return 1;
2432
2433 return 0;
2434}
2435
2436static int should_balance_chunk(struct btrfs_root *root,
2437 struct extent_buffer *leaf,
2438 struct btrfs_chunk *chunk, u64 chunk_offset)
2439{
2440 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2441 struct btrfs_balance_args *bargs = NULL;
2442 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2443
2444 /* type filter */
2445 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2446 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2447 return 0;
2448 }
2449
2450 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2451 bargs = &bctl->data;
2452 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2453 bargs = &bctl->sys;
2454 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2455 bargs = &bctl->meta;
2456
2457 /* profiles filter */
2458 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2459 chunk_profiles_filter(chunk_type, bargs)) {
2460 return 0;
2461 }
2462
2463 /* usage filter */
2464 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2465 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2466 return 0;
2467 }
2468
2469 /* devid filter */
2470 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2471 chunk_devid_filter(leaf, chunk, bargs)) {
2472 return 0;
2473 }
2474
2475 /* drange filter, makes sense only with devid filter */
2476 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2477 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2478 return 0;
2479 }
2480
2481 /* vrange filter */
2482 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2483 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2484 return 0;
2485 }
2486
2487 /* soft profile changing mode */
2488 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2489 chunk_soft_convert_filter(chunk_type, bargs)) {
2490 return 0;
2491 }
2492
2493 return 1;
2494}
2495
2496static u64 div_factor(u64 num, int factor)
2497{
2498 if (factor == 10)
2499 return num;
2500 num *= factor;
2501 do_div(num, 10);
2502 return num;
2503}
2504
2505static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2506{
2507 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2508 struct btrfs_root *chunk_root = fs_info->chunk_root;
2509 struct btrfs_root *dev_root = fs_info->dev_root;
2510 struct list_head *devices;
2511 struct btrfs_device *device;
2512 u64 old_size;
2513 u64 size_to_free;
2514 struct btrfs_chunk *chunk;
2515 struct btrfs_path *path;
2516 struct btrfs_key key;
2517 struct btrfs_key found_key;
2518 struct btrfs_trans_handle *trans;
2519 struct extent_buffer *leaf;
2520 int slot;
2521 int ret;
2522 int enospc_errors = 0;
2523 bool counting = true;
2524
2525 /* step one make some room on all the devices */
2526 devices = &fs_info->fs_devices->devices;
2527 list_for_each_entry(device, devices, dev_list) {
2528 old_size = device->total_bytes;
2529 size_to_free = div_factor(old_size, 1);
2530 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2531 if (!device->writeable ||
2532 device->total_bytes - device->bytes_used > size_to_free)
2533 continue;
2534
2535 ret = btrfs_shrink_device(device, old_size - size_to_free);
2536 if (ret == -ENOSPC)
2537 break;
2538 BUG_ON(ret);
2539
2540 trans = btrfs_start_transaction(dev_root, 0);
2541 BUG_ON(IS_ERR(trans));
2542
2543 ret = btrfs_grow_device(trans, device, old_size);
2544 BUG_ON(ret);
2545
2546 btrfs_end_transaction(trans, dev_root);
2547 }
2548
2549 /* step two, relocate all the chunks */
2550 path = btrfs_alloc_path();
2551 if (!path) {
2552 ret = -ENOMEM;
2553 goto error;
2554 }
2555
2556 /* zero out stat counters */
2557 spin_lock(&fs_info->balance_lock);
2558 memset(&bctl->stat, 0, sizeof(bctl->stat));
2559 spin_unlock(&fs_info->balance_lock);
2560again:
2561 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2562 key.offset = (u64)-1;
2563 key.type = BTRFS_CHUNK_ITEM_KEY;
2564
2565 while (1) {
2566 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2567 atomic_read(&fs_info->balance_cancel_req)) {
2568 ret = -ECANCELED;
2569 goto error;
2570 }
2571
2572 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2573 if (ret < 0)
2574 goto error;
2575
2576 /*
2577 * this shouldn't happen, it means the last relocate
2578 * failed
2579 */
2580 if (ret == 0)
2581 BUG(); /* FIXME break ? */
2582
2583 ret = btrfs_previous_item(chunk_root, path, 0,
2584 BTRFS_CHUNK_ITEM_KEY);
2585 if (ret) {
2586 ret = 0;
2587 break;
2588 }
2589
2590 leaf = path->nodes[0];
2591 slot = path->slots[0];
2592 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2593
2594 if (found_key.objectid != key.objectid)
2595 break;
2596
2597 /* chunk zero is special */
2598 if (found_key.offset == 0)
2599 break;
2600
2601 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2602
2603 if (!counting) {
2604 spin_lock(&fs_info->balance_lock);
2605 bctl->stat.considered++;
2606 spin_unlock(&fs_info->balance_lock);
2607 }
2608
2609 ret = should_balance_chunk(chunk_root, leaf, chunk,
2610 found_key.offset);
2611 btrfs_release_path(path);
2612 if (!ret)
2613 goto loop;
2614
2615 if (counting) {
2616 spin_lock(&fs_info->balance_lock);
2617 bctl->stat.expected++;
2618 spin_unlock(&fs_info->balance_lock);
2619 goto loop;
2620 }
2621
2622 ret = btrfs_relocate_chunk(chunk_root,
2623 chunk_root->root_key.objectid,
2624 found_key.objectid,
2625 found_key.offset);
2626 if (ret && ret != -ENOSPC)
2627 goto error;
2628 if (ret == -ENOSPC) {
2629 enospc_errors++;
2630 } else {
2631 spin_lock(&fs_info->balance_lock);
2632 bctl->stat.completed++;
2633 spin_unlock(&fs_info->balance_lock);
2634 }
2635loop:
2636 key.offset = found_key.offset - 1;
2637 }
2638
2639 if (counting) {
2640 btrfs_release_path(path);
2641 counting = false;
2642 goto again;
2643 }
2644error:
2645 btrfs_free_path(path);
2646 if (enospc_errors) {
2647 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2648 enospc_errors);
2649 if (!ret)
2650 ret = -ENOSPC;
2651 }
2652
2653 return ret;
2654}
2655
2656/**
2657 * alloc_profile_is_valid - see if a given profile is valid and reduced
2658 * @flags: profile to validate
2659 * @extended: if true @flags is treated as an extended profile
2660 */
2661static int alloc_profile_is_valid(u64 flags, int extended)
2662{
2663 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
2664 BTRFS_BLOCK_GROUP_PROFILE_MASK);
2665
2666 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
2667
2668 /* 1) check that all other bits are zeroed */
2669 if (flags & ~mask)
2670 return 0;
2671
2672 /* 2) see if profile is reduced */
2673 if (flags == 0)
2674 return !extended; /* "0" is valid for usual profiles */
2675
2676 /* true if exactly one bit set */
2677 return (flags & (flags - 1)) == 0;
2678}
2679
2680static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2681{
2682 /* cancel requested || normal exit path */
2683 return atomic_read(&fs_info->balance_cancel_req) ||
2684 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2685 atomic_read(&fs_info->balance_cancel_req) == 0);
2686}
2687
2688static void __cancel_balance(struct btrfs_fs_info *fs_info)
2689{
2690 int ret;
2691
2692 unset_balance_control(fs_info);
2693 ret = del_balance_item(fs_info->tree_root);
2694 BUG_ON(ret);
2695}
2696
2697void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
2698 struct btrfs_ioctl_balance_args *bargs);
2699
2700/*
2701 * Should be called with both balance and volume mutexes held
2702 */
2703int btrfs_balance(struct btrfs_balance_control *bctl,
2704 struct btrfs_ioctl_balance_args *bargs)
2705{
2706 struct btrfs_fs_info *fs_info = bctl->fs_info;
2707 u64 allowed;
2708 int mixed = 0;
2709 int ret;
2710
2711 if (btrfs_fs_closing(fs_info) ||
2712 atomic_read(&fs_info->balance_pause_req) ||
2713 atomic_read(&fs_info->balance_cancel_req)) {
2714 ret = -EINVAL;
2715 goto out;
2716 }
2717
2718 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2719 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
2720 mixed = 1;
2721
2722 /*
2723 * In case of mixed groups both data and meta should be picked,
2724 * and identical options should be given for both of them.
2725 */
2726 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
2727 if (mixed && (bctl->flags & allowed)) {
2728 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2729 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2730 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2731 printk(KERN_ERR "btrfs: with mixed groups data and "
2732 "metadata balance options must be the same\n");
2733 ret = -EINVAL;
2734 goto out;
2735 }
2736 }
2737
2738 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2739 if (fs_info->fs_devices->num_devices == 1)
2740 allowed |= BTRFS_BLOCK_GROUP_DUP;
2741 else if (fs_info->fs_devices->num_devices < 4)
2742 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2743 else
2744 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2745 BTRFS_BLOCK_GROUP_RAID10);
2746
2747 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2748 (!alloc_profile_is_valid(bctl->data.target, 1) ||
2749 (bctl->data.target & ~allowed))) {
2750 printk(KERN_ERR "btrfs: unable to start balance with target "
2751 "data profile %llu\n",
2752 (unsigned long long)bctl->data.target);
2753 ret = -EINVAL;
2754 goto out;
2755 }
2756 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2757 (!alloc_profile_is_valid(bctl->meta.target, 1) ||
2758 (bctl->meta.target & ~allowed))) {
2759 printk(KERN_ERR "btrfs: unable to start balance with target "
2760 "metadata profile %llu\n",
2761 (unsigned long long)bctl->meta.target);
2762 ret = -EINVAL;
2763 goto out;
2764 }
2765 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2766 (!alloc_profile_is_valid(bctl->sys.target, 1) ||
2767 (bctl->sys.target & ~allowed))) {
2768 printk(KERN_ERR "btrfs: unable to start balance with target "
2769 "system profile %llu\n",
2770 (unsigned long long)bctl->sys.target);
2771 ret = -EINVAL;
2772 goto out;
2773 }
2774
2775 /* allow dup'ed data chunks only in mixed mode */
2776 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2777 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
2778 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2779 ret = -EINVAL;
2780 goto out;
2781 }
2782
2783 /* allow to reduce meta or sys integrity only if force set */
2784 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2785 BTRFS_BLOCK_GROUP_RAID10;
2786 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2787 (fs_info->avail_system_alloc_bits & allowed) &&
2788 !(bctl->sys.target & allowed)) ||
2789 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2790 (fs_info->avail_metadata_alloc_bits & allowed) &&
2791 !(bctl->meta.target & allowed))) {
2792 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2793 printk(KERN_INFO "btrfs: force reducing metadata "
2794 "integrity\n");
2795 } else {
2796 printk(KERN_ERR "btrfs: balance will reduce metadata "
2797 "integrity, use force if you want this\n");
2798 ret = -EINVAL;
2799 goto out;
2800 }
2801 }
2802
2803 ret = insert_balance_item(fs_info->tree_root, bctl);
2804 if (ret && ret != -EEXIST)
2805 goto out;
2806
2807 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2808 BUG_ON(ret == -EEXIST);
2809 set_balance_control(bctl);
2810 } else {
2811 BUG_ON(ret != -EEXIST);
2812 spin_lock(&fs_info->balance_lock);
2813 update_balance_args(bctl);
2814 spin_unlock(&fs_info->balance_lock);
2815 }
2816
2817 atomic_inc(&fs_info->balance_running);
2818 mutex_unlock(&fs_info->balance_mutex);
2819
2820 ret = __btrfs_balance(fs_info);
2821
2822 mutex_lock(&fs_info->balance_mutex);
2823 atomic_dec(&fs_info->balance_running);
2824
2825 if (bargs) {
2826 memset(bargs, 0, sizeof(*bargs));
2827 update_ioctl_balance_args(fs_info, 0, bargs);
2828 }
2829
2830 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2831 balance_need_close(fs_info)) {
2832 __cancel_balance(fs_info);
2833 }
2834
2835 wake_up(&fs_info->balance_wait_q);
2836
2837 return ret;
2838out:
2839 if (bctl->flags & BTRFS_BALANCE_RESUME)
2840 __cancel_balance(fs_info);
2841 else
2842 kfree(bctl);
2843 return ret;
2844}
2845
2846static int balance_kthread(void *data)
2847{
2848 struct btrfs_fs_info *fs_info = data;
2849 int ret = 0;
2850
2851 mutex_lock(&fs_info->volume_mutex);
2852 mutex_lock(&fs_info->balance_mutex);
2853
2854 if (fs_info->balance_ctl) {
2855 printk(KERN_INFO "btrfs: continuing balance\n");
2856 ret = btrfs_balance(fs_info->balance_ctl, NULL);
2857 }
2858
2859 mutex_unlock(&fs_info->balance_mutex);
2860 mutex_unlock(&fs_info->volume_mutex);
2861
2862 return ret;
2863}
2864
2865int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
2866{
2867 struct task_struct *tsk;
2868
2869 spin_lock(&fs_info->balance_lock);
2870 if (!fs_info->balance_ctl) {
2871 spin_unlock(&fs_info->balance_lock);
2872 return 0;
2873 }
2874 spin_unlock(&fs_info->balance_lock);
2875
2876 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2877 printk(KERN_INFO "btrfs: force skipping balance\n");
2878 return 0;
2879 }
2880
2881 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
2882 if (IS_ERR(tsk))
2883 return PTR_ERR(tsk);
2884
2885 return 0;
2886}
2887
2888int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
2889{
2890 struct btrfs_balance_control *bctl;
2891 struct btrfs_balance_item *item;
2892 struct btrfs_disk_balance_args disk_bargs;
2893 struct btrfs_path *path;
2894 struct extent_buffer *leaf;
2895 struct btrfs_key key;
2896 int ret;
2897
2898 path = btrfs_alloc_path();
2899 if (!path)
2900 return -ENOMEM;
2901
2902 key.objectid = BTRFS_BALANCE_OBJECTID;
2903 key.type = BTRFS_BALANCE_ITEM_KEY;
2904 key.offset = 0;
2905
2906 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2907 if (ret < 0)
2908 goto out;
2909 if (ret > 0) { /* ret = -ENOENT; */
2910 ret = 0;
2911 goto out;
2912 }
2913
2914 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2915 if (!bctl) {
2916 ret = -ENOMEM;
2917 goto out;
2918 }
2919
2920 leaf = path->nodes[0];
2921 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2922
2923 bctl->fs_info = fs_info;
2924 bctl->flags = btrfs_balance_flags(leaf, item);
2925 bctl->flags |= BTRFS_BALANCE_RESUME;
2926
2927 btrfs_balance_data(leaf, item, &disk_bargs);
2928 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2929 btrfs_balance_meta(leaf, item, &disk_bargs);
2930 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2931 btrfs_balance_sys(leaf, item, &disk_bargs);
2932 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2933
2934 mutex_lock(&fs_info->volume_mutex);
2935 mutex_lock(&fs_info->balance_mutex);
2936
2937 set_balance_control(bctl);
2938
2939 mutex_unlock(&fs_info->balance_mutex);
2940 mutex_unlock(&fs_info->volume_mutex);
2941out:
2942 btrfs_free_path(path);
2943 return ret;
2944}
2945
2946int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2947{
2948 int ret = 0;
2949
2950 mutex_lock(&fs_info->balance_mutex);
2951 if (!fs_info->balance_ctl) {
2952 mutex_unlock(&fs_info->balance_mutex);
2953 return -ENOTCONN;
2954 }
2955
2956 if (atomic_read(&fs_info->balance_running)) {
2957 atomic_inc(&fs_info->balance_pause_req);
2958 mutex_unlock(&fs_info->balance_mutex);
2959
2960 wait_event(fs_info->balance_wait_q,
2961 atomic_read(&fs_info->balance_running) == 0);
2962
2963 mutex_lock(&fs_info->balance_mutex);
2964 /* we are good with balance_ctl ripped off from under us */
2965 BUG_ON(atomic_read(&fs_info->balance_running));
2966 atomic_dec(&fs_info->balance_pause_req);
2967 } else {
2968 ret = -ENOTCONN;
2969 }
2970
2971 mutex_unlock(&fs_info->balance_mutex);
2972 return ret;
2973}
2974
2975int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2976{
2977 mutex_lock(&fs_info->balance_mutex);
2978 if (!fs_info->balance_ctl) {
2979 mutex_unlock(&fs_info->balance_mutex);
2980 return -ENOTCONN;
2981 }
2982
2983 atomic_inc(&fs_info->balance_cancel_req);
2984 /*
2985 * if we are running just wait and return, balance item is
2986 * deleted in btrfs_balance in this case
2987 */
2988 if (atomic_read(&fs_info->balance_running)) {
2989 mutex_unlock(&fs_info->balance_mutex);
2990 wait_event(fs_info->balance_wait_q,
2991 atomic_read(&fs_info->balance_running) == 0);
2992 mutex_lock(&fs_info->balance_mutex);
2993 } else {
2994 /* __cancel_balance needs volume_mutex */
2995 mutex_unlock(&fs_info->balance_mutex);
2996 mutex_lock(&fs_info->volume_mutex);
2997 mutex_lock(&fs_info->balance_mutex);
2998
2999 if (fs_info->balance_ctl)
3000 __cancel_balance(fs_info);
3001
3002 mutex_unlock(&fs_info->volume_mutex);
3003 }
3004
3005 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3006 atomic_dec(&fs_info->balance_cancel_req);
3007 mutex_unlock(&fs_info->balance_mutex);
3008 return 0;
3009}
3010
3011/*
3012 * shrinking a device means finding all of the device extents past
3013 * the new size, and then following the back refs to the chunks.
3014 * The chunk relocation code actually frees the device extent
3015 */
3016int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3017{
3018 struct btrfs_trans_handle *trans;
3019 struct btrfs_root *root = device->dev_root;
3020 struct btrfs_dev_extent *dev_extent = NULL;
3021 struct btrfs_path *path;
3022 u64 length;
3023 u64 chunk_tree;
3024 u64 chunk_objectid;
3025 u64 chunk_offset;
3026 int ret;
3027 int slot;
3028 int failed = 0;
3029 bool retried = false;
3030 struct extent_buffer *l;
3031 struct btrfs_key key;
3032 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3033 u64 old_total = btrfs_super_total_bytes(super_copy);
3034 u64 old_size = device->total_bytes;
3035 u64 diff = device->total_bytes - new_size;
3036
3037 if (new_size >= device->total_bytes)
3038 return -EINVAL;
3039
3040 path = btrfs_alloc_path();
3041 if (!path)
3042 return -ENOMEM;
3043
3044 path->reada = 2;
3045
3046 lock_chunks(root);
3047
3048 device->total_bytes = new_size;
3049 if (device->writeable) {
3050 device->fs_devices->total_rw_bytes -= diff;
3051 spin_lock(&root->fs_info->free_chunk_lock);
3052 root->fs_info->free_chunk_space -= diff;
3053 spin_unlock(&root->fs_info->free_chunk_lock);
3054 }
3055 unlock_chunks(root);
3056
3057again:
3058 key.objectid = device->devid;
3059 key.offset = (u64)-1;
3060 key.type = BTRFS_DEV_EXTENT_KEY;
3061
3062 do {
3063 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3064 if (ret < 0)
3065 goto done;
3066
3067 ret = btrfs_previous_item(root, path, 0, key.type);
3068 if (ret < 0)
3069 goto done;
3070 if (ret) {
3071 ret = 0;
3072 btrfs_release_path(path);
3073 break;
3074 }
3075
3076 l = path->nodes[0];
3077 slot = path->slots[0];
3078 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3079
3080 if (key.objectid != device->devid) {
3081 btrfs_release_path(path);
3082 break;
3083 }
3084
3085 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3086 length = btrfs_dev_extent_length(l, dev_extent);
3087
3088 if (key.offset + length <= new_size) {
3089 btrfs_release_path(path);
3090 break;
3091 }
3092
3093 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3094 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3095 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3096 btrfs_release_path(path);
3097
3098 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3099 chunk_offset);
3100 if (ret && ret != -ENOSPC)
3101 goto done;
3102 if (ret == -ENOSPC)
3103 failed++;
3104 } while (key.offset-- > 0);
3105
3106 if (failed && !retried) {
3107 failed = 0;
3108 retried = true;
3109 goto again;
3110 } else if (failed && retried) {
3111 ret = -ENOSPC;
3112 lock_chunks(root);
3113
3114 device->total_bytes = old_size;
3115 if (device->writeable)
3116 device->fs_devices->total_rw_bytes += diff;
3117 spin_lock(&root->fs_info->free_chunk_lock);
3118 root->fs_info->free_chunk_space += diff;
3119 spin_unlock(&root->fs_info->free_chunk_lock);
3120 unlock_chunks(root);
3121 goto done;
3122 }
3123
3124 /* Shrinking succeeded, else we would be at "done". */
3125 trans = btrfs_start_transaction(root, 0);
3126 if (IS_ERR(trans)) {
3127 ret = PTR_ERR(trans);
3128 goto done;
3129 }
3130
3131 lock_chunks(root);
3132
3133 device->disk_total_bytes = new_size;
3134 /* Now btrfs_update_device() will change the on-disk size. */
3135 ret = btrfs_update_device(trans, device);
3136 if (ret) {
3137 unlock_chunks(root);
3138 btrfs_end_transaction(trans, root);
3139 goto done;
3140 }
3141 WARN_ON(diff > old_total);
3142 btrfs_set_super_total_bytes(super_copy, old_total - diff);
3143 unlock_chunks(root);
3144 btrfs_end_transaction(trans, root);
3145done:
3146 btrfs_free_path(path);
3147 return ret;
3148}
3149
3150static int btrfs_add_system_chunk(struct btrfs_root *root,
3151 struct btrfs_key *key,
3152 struct btrfs_chunk *chunk, int item_size)
3153{
3154 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3155 struct btrfs_disk_key disk_key;
3156 u32 array_size;
3157 u8 *ptr;
3158
3159 array_size = btrfs_super_sys_array_size(super_copy);
3160 if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3161 return -EFBIG;
3162
3163 ptr = super_copy->sys_chunk_array + array_size;
3164 btrfs_cpu_key_to_disk(&disk_key, key);
3165 memcpy(ptr, &disk_key, sizeof(disk_key));
3166 ptr += sizeof(disk_key);
3167 memcpy(ptr, chunk, item_size);
3168 item_size += sizeof(disk_key);
3169 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3170 return 0;
3171}
3172
3173/*
3174 * sort the devices in descending order by max_avail, total_avail
3175 */
3176static int btrfs_cmp_device_info(const void *a, const void *b)
3177{
3178 const struct btrfs_device_info *di_a = a;
3179 const struct btrfs_device_info *di_b = b;
3180
3181 if (di_a->max_avail > di_b->max_avail)
3182 return -1;
3183 if (di_a->max_avail < di_b->max_avail)
3184 return 1;
3185 if (di_a->total_avail > di_b->total_avail)
3186 return -1;
3187 if (di_a->total_avail < di_b->total_avail)
3188 return 1;
3189 return 0;
3190}
3191
3192static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3193 struct btrfs_root *extent_root,
3194 struct map_lookup **map_ret,
3195 u64 *num_bytes_out, u64 *stripe_size_out,
3196 u64 start, u64 type)
3197{
3198 struct btrfs_fs_info *info = extent_root->fs_info;
3199 struct btrfs_fs_devices *fs_devices = info->fs_devices;
3200 struct list_head *cur;
3201 struct map_lookup *map = NULL;
3202 struct extent_map_tree *em_tree;
3203 struct extent_map *em;
3204 struct btrfs_device_info *devices_info = NULL;
3205 u64 total_avail;
3206 int num_stripes; /* total number of stripes to allocate */
3207 int sub_stripes; /* sub_stripes info for map */
3208 int dev_stripes; /* stripes per dev */
3209 int devs_max; /* max devs to use */
3210 int devs_min; /* min devs needed */
3211 int devs_increment; /* ndevs has to be a multiple of this */
3212 int ncopies; /* how many copies to data has */
3213 int ret;
3214 u64 max_stripe_size;
3215 u64 max_chunk_size;
3216 u64 stripe_size;
3217 u64 num_bytes;
3218 int ndevs;
3219 int i;
3220 int j;
3221
3222 BUG_ON(!alloc_profile_is_valid(type, 0));
3223
3224 if (list_empty(&fs_devices->alloc_list))
3225 return -ENOSPC;
3226
3227 sub_stripes = 1;
3228 dev_stripes = 1;
3229 devs_increment = 1;
3230 ncopies = 1;
3231 devs_max = 0; /* 0 == as many as possible */
3232 devs_min = 1;
3233
3234 /*
3235 * define the properties of each RAID type.
3236 * FIXME: move this to a global table and use it in all RAID
3237 * calculation code
3238 */
3239 if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3240 dev_stripes = 2;
3241 ncopies = 2;
3242 devs_max = 1;
3243 } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3244 devs_min = 2;
3245 } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3246 devs_increment = 2;
3247 ncopies = 2;
3248 devs_max = 2;
3249 devs_min = 2;
3250 } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3251 sub_stripes = 2;
3252 devs_increment = 2;
3253 ncopies = 2;
3254 devs_min = 4;
3255 } else {
3256 devs_max = 1;
3257 }
3258
3259 if (type & BTRFS_BLOCK_GROUP_DATA) {
3260 max_stripe_size = 1024 * 1024 * 1024;
3261 max_chunk_size = 10 * max_stripe_size;
3262 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3263 /* for larger filesystems, use larger metadata chunks */
3264 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3265 max_stripe_size = 1024 * 1024 * 1024;
3266 else
3267 max_stripe_size = 256 * 1024 * 1024;
3268 max_chunk_size = max_stripe_size;
3269 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3270 max_stripe_size = 32 * 1024 * 1024;
3271 max_chunk_size = 2 * max_stripe_size;
3272 } else {
3273 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3274 type);
3275 BUG_ON(1);
3276 }
3277
3278 /* we don't want a chunk larger than 10% of writeable space */
3279 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3280 max_chunk_size);
3281
3282 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3283 GFP_NOFS);
3284 if (!devices_info)
3285 return -ENOMEM;
3286
3287 cur = fs_devices->alloc_list.next;
3288
3289 /*
3290 * in the first pass through the devices list, we gather information
3291 * about the available holes on each device.
3292 */
3293 ndevs = 0;
3294 while (cur != &fs_devices->alloc_list) {
3295 struct btrfs_device *device;
3296 u64 max_avail;
3297 u64 dev_offset;
3298
3299 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3300
3301 cur = cur->next;
3302
3303 if (!device->writeable) {
3304 printk(KERN_ERR
3305 "btrfs: read-only device in alloc_list\n");
3306 WARN_ON(1);
3307 continue;
3308 }
3309
3310 if (!device->in_fs_metadata)
3311 continue;
3312
3313 if (device->total_bytes > device->bytes_used)
3314 total_avail = device->total_bytes - device->bytes_used;
3315 else
3316 total_avail = 0;
3317
3318 /* If there is no space on this device, skip it. */
3319 if (total_avail == 0)
3320 continue;
3321
3322 ret = find_free_dev_extent(device,
3323 max_stripe_size * dev_stripes,
3324 &dev_offset, &max_avail);
3325 if (ret && ret != -ENOSPC)
3326 goto error;
3327
3328 if (ret == 0)
3329 max_avail = max_stripe_size * dev_stripes;
3330
3331 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3332 continue;
3333
3334 devices_info[ndevs].dev_offset = dev_offset;
3335 devices_info[ndevs].max_avail = max_avail;
3336 devices_info[ndevs].total_avail = total_avail;
3337 devices_info[ndevs].dev = device;
3338 ++ndevs;
3339 }
3340
3341 /*
3342 * now sort the devices by hole size / available space
3343 */
3344 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3345 btrfs_cmp_device_info, NULL);
3346
3347 /* round down to number of usable stripes */
3348 ndevs -= ndevs % devs_increment;
3349
3350 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3351 ret = -ENOSPC;
3352 goto error;
3353 }
3354
3355 if (devs_max && ndevs > devs_max)
3356 ndevs = devs_max;
3357 /*
3358 * the primary goal is to maximize the number of stripes, so use as many
3359 * devices as possible, even if the stripes are not maximum sized.
3360 */
3361 stripe_size = devices_info[ndevs-1].max_avail;
3362 num_stripes = ndevs * dev_stripes;
3363
3364 if (stripe_size * ndevs > max_chunk_size * ncopies) {
3365 stripe_size = max_chunk_size * ncopies;
3366 do_div(stripe_size, ndevs);
3367 }
3368
3369 do_div(stripe_size, dev_stripes);
3370
3371 /* align to BTRFS_STRIPE_LEN */
3372 do_div(stripe_size, BTRFS_STRIPE_LEN);
3373 stripe_size *= BTRFS_STRIPE_LEN;
3374
3375 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3376 if (!map) {
3377 ret = -ENOMEM;
3378 goto error;
3379 }
3380 map->num_stripes = num_stripes;
3381
3382 for (i = 0; i < ndevs; ++i) {
3383 for (j = 0; j < dev_stripes; ++j) {
3384 int s = i * dev_stripes + j;
3385 map->stripes[s].dev = devices_info[i].dev;
3386 map->stripes[s].physical = devices_info[i].dev_offset +
3387 j * stripe_size;
3388 }
3389 }
3390 map->sector_size = extent_root->sectorsize;
3391 map->stripe_len = BTRFS_STRIPE_LEN;
3392 map->io_align = BTRFS_STRIPE_LEN;
3393 map->io_width = BTRFS_STRIPE_LEN;
3394 map->type = type;
3395 map->sub_stripes = sub_stripes;
3396
3397 *map_ret = map;
3398 num_bytes = stripe_size * (num_stripes / ncopies);
3399
3400 *stripe_size_out = stripe_size;
3401 *num_bytes_out = num_bytes;
3402
3403 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
3404
3405 em = alloc_extent_map();
3406 if (!em) {
3407 ret = -ENOMEM;
3408 goto error;
3409 }
3410 em->bdev = (struct block_device *)map;
3411 em->start = start;
3412 em->len = num_bytes;
3413 em->block_start = 0;
3414 em->block_len = em->len;
3415
3416 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3417 write_lock(&em_tree->lock);
3418 ret = add_extent_mapping(em_tree, em);
3419 write_unlock(&em_tree->lock);
3420 free_extent_map(em);
3421 if (ret)
3422 goto error;
3423
3424 ret = btrfs_make_block_group(trans, extent_root, 0, type,
3425 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3426 start, num_bytes);
3427 if (ret)
3428 goto error;
3429
3430 for (i = 0; i < map->num_stripes; ++i) {
3431 struct btrfs_device *device;
3432 u64 dev_offset;
3433
3434 device = map->stripes[i].dev;
3435 dev_offset = map->stripes[i].physical;
3436
3437 ret = btrfs_alloc_dev_extent(trans, device,
3438 info->chunk_root->root_key.objectid,
3439 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3440 start, dev_offset, stripe_size);
3441 if (ret) {
3442 btrfs_abort_transaction(trans, extent_root, ret);
3443 goto error;
3444 }
3445 }
3446
3447 kfree(devices_info);
3448 return 0;
3449
3450error:
3451 kfree(map);
3452 kfree(devices_info);
3453 return ret;
3454}
3455
3456static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3457 struct btrfs_root *extent_root,
3458 struct map_lookup *map, u64 chunk_offset,
3459 u64 chunk_size, u64 stripe_size)
3460{
3461 u64 dev_offset;
3462 struct btrfs_key key;
3463 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3464 struct btrfs_device *device;
3465 struct btrfs_chunk *chunk;
3466 struct btrfs_stripe *stripe;
3467 size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3468 int index = 0;
3469 int ret;
3470
3471 chunk = kzalloc(item_size, GFP_NOFS);
3472 if (!chunk)
3473 return -ENOMEM;
3474
3475 index = 0;
3476 while (index < map->num_stripes) {
3477 device = map->stripes[index].dev;
3478 device->bytes_used += stripe_size;
3479 ret = btrfs_update_device(trans, device);
3480 if (ret)
3481 goto out_free;
3482 index++;
3483 }
3484
3485 spin_lock(&extent_root->fs_info->free_chunk_lock);
3486 extent_root->fs_info->free_chunk_space -= (stripe_size *
3487 map->num_stripes);
3488 spin_unlock(&extent_root->fs_info->free_chunk_lock);
3489
3490 index = 0;
3491 stripe = &chunk->stripe;
3492 while (index < map->num_stripes) {
3493 device = map->stripes[index].dev;
3494 dev_offset = map->stripes[index].physical;
3495
3496 btrfs_set_stack_stripe_devid(stripe, device->devid);
3497 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3498 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
3499 stripe++;
3500 index++;
3501 }
3502
3503 btrfs_set_stack_chunk_length(chunk, chunk_size);
3504 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
3505 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3506 btrfs_set_stack_chunk_type(chunk, map->type);
3507 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3508 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3509 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
3510 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
3511 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
3512
3513 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3514 key.type = BTRFS_CHUNK_ITEM_KEY;
3515 key.offset = chunk_offset;
3516
3517 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
3518
3519 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3520 /*
3521 * TODO: Cleanup of inserted chunk root in case of
3522 * failure.
3523 */
3524 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
3525 item_size);
3526 }
3527
3528out_free:
3529 kfree(chunk);
3530 return ret;
3531}
3532
3533/*
3534 * Chunk allocation falls into two parts. The first part does works
3535 * that make the new allocated chunk useable, but not do any operation
3536 * that modifies the chunk tree. The second part does the works that
3537 * require modifying the chunk tree. This division is important for the
3538 * bootstrap process of adding storage to a seed btrfs.
3539 */
3540int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3541 struct btrfs_root *extent_root, u64 type)
3542{
3543 u64 chunk_offset;
3544 u64 chunk_size;
3545 u64 stripe_size;
3546 struct map_lookup *map;
3547 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3548 int ret;
3549
3550 ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3551 &chunk_offset);
3552 if (ret)
3553 return ret;
3554
3555 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3556 &stripe_size, chunk_offset, type);
3557 if (ret)
3558 return ret;
3559
3560 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3561 chunk_size, stripe_size);
3562 if (ret)
3563 return ret;
3564 return 0;
3565}
3566
3567static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
3568 struct btrfs_root *root,
3569 struct btrfs_device *device)
3570{
3571 u64 chunk_offset;
3572 u64 sys_chunk_offset;
3573 u64 chunk_size;
3574 u64 sys_chunk_size;
3575 u64 stripe_size;
3576 u64 sys_stripe_size;
3577 u64 alloc_profile;
3578 struct map_lookup *map;
3579 struct map_lookup *sys_map;
3580 struct btrfs_fs_info *fs_info = root->fs_info;
3581 struct btrfs_root *extent_root = fs_info->extent_root;
3582 int ret;
3583
3584 ret = find_next_chunk(fs_info->chunk_root,
3585 BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
3586 if (ret)
3587 return ret;
3588
3589 alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
3590 fs_info->avail_metadata_alloc_bits;
3591 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3592
3593 ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3594 &stripe_size, chunk_offset, alloc_profile);
3595 if (ret)
3596 return ret;
3597
3598 sys_chunk_offset = chunk_offset + chunk_size;
3599
3600 alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
3601 fs_info->avail_system_alloc_bits;
3602 alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3603
3604 ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3605 &sys_chunk_size, &sys_stripe_size,
3606 sys_chunk_offset, alloc_profile);
3607 if (ret)
3608 goto abort;
3609
3610 ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3611 if (ret)
3612 goto abort;
3613
3614 /*
3615 * Modifying chunk tree needs allocating new blocks from both
3616 * system block group and metadata block group. So we only can
3617 * do operations require modifying the chunk tree after both
3618 * block groups were created.
3619 */
3620 ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3621 chunk_size, stripe_size);
3622 if (ret)
3623 goto abort;
3624
3625 ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3626 sys_chunk_offset, sys_chunk_size,
3627 sys_stripe_size);
3628 if (ret)
3629 goto abort;
3630
3631 return 0;
3632
3633abort:
3634 btrfs_abort_transaction(trans, root, ret);
3635 return ret;
3636}
3637
3638int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3639{
3640 struct extent_map *em;
3641 struct map_lookup *map;
3642 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3643 int readonly = 0;
3644 int i;
3645
3646 read_lock(&map_tree->map_tree.lock);
3647 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3648 read_unlock(&map_tree->map_tree.lock);
3649 if (!em)
3650 return 1;
3651
3652 if (btrfs_test_opt(root, DEGRADED)) {
3653 free_extent_map(em);
3654 return 0;
3655 }
3656
3657 map = (struct map_lookup *)em->bdev;
3658 for (i = 0; i < map->num_stripes; i++) {
3659 if (!map->stripes[i].dev->writeable) {
3660 readonly = 1;
3661 break;
3662 }
3663 }
3664 free_extent_map(em);
3665 return readonly;
3666}
3667
3668void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3669{
3670 extent_map_tree_init(&tree->map_tree);
3671}
3672
3673void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3674{
3675 struct extent_map *em;
3676
3677 while (1) {
3678 write_lock(&tree->map_tree.lock);
3679 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3680 if (em)
3681 remove_extent_mapping(&tree->map_tree, em);
3682 write_unlock(&tree->map_tree.lock);
3683 if (!em)
3684 break;
3685 kfree(em->bdev);
3686 /* once for us */
3687 free_extent_map(em);
3688 /* once for the tree */
3689 free_extent_map(em);
3690 }
3691}
3692
3693int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3694{
3695 struct extent_map *em;
3696 struct map_lookup *map;
3697 struct extent_map_tree *em_tree = &map_tree->map_tree;
3698 int ret;
3699
3700 read_lock(&em_tree->lock);
3701 em = lookup_extent_mapping(em_tree, logical, len);
3702 read_unlock(&em_tree->lock);
3703 BUG_ON(!em);
3704
3705 BUG_ON(em->start > logical || em->start + em->len < logical);
3706 map = (struct map_lookup *)em->bdev;
3707 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3708 ret = map->num_stripes;
3709 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3710 ret = map->sub_stripes;
3711 else
3712 ret = 1;
3713 free_extent_map(em);
3714 return ret;
3715}
3716
3717static int find_live_mirror(struct map_lookup *map, int first, int num,
3718 int optimal)
3719{
3720 int i;
3721 if (map->stripes[optimal].dev->bdev)
3722 return optimal;
3723 for (i = first; i < first + num; i++) {
3724 if (map->stripes[i].dev->bdev)
3725 return i;
3726 }
3727 /* we couldn't find one that doesn't fail. Just return something
3728 * and the io error handling code will clean up eventually
3729 */
3730 return optimal;
3731}
3732
3733static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3734 u64 logical, u64 *length,
3735 struct btrfs_bio **bbio_ret,
3736 int mirror_num)
3737{
3738 struct extent_map *em;
3739 struct map_lookup *map;
3740 struct extent_map_tree *em_tree = &map_tree->map_tree;
3741 u64 offset;
3742 u64 stripe_offset;
3743 u64 stripe_end_offset;
3744 u64 stripe_nr;
3745 u64 stripe_nr_orig;
3746 u64 stripe_nr_end;
3747 int stripe_index;
3748 int i;
3749 int ret = 0;
3750 int num_stripes;
3751 int max_errors = 0;
3752 struct btrfs_bio *bbio = NULL;
3753
3754 read_lock(&em_tree->lock);
3755 em = lookup_extent_mapping(em_tree, logical, *length);
3756 read_unlock(&em_tree->lock);
3757
3758 if (!em) {
3759 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3760 (unsigned long long)logical,
3761 (unsigned long long)*length);
3762 BUG();
3763 }
3764
3765 BUG_ON(em->start > logical || em->start + em->len < logical);
3766 map = (struct map_lookup *)em->bdev;
3767 offset = logical - em->start;
3768
3769 if (mirror_num > map->num_stripes)
3770 mirror_num = 0;
3771
3772 stripe_nr = offset;
3773 /*
3774 * stripe_nr counts the total number of stripes we have to stride
3775 * to get to this block
3776 */
3777 do_div(stripe_nr, map->stripe_len);
3778
3779 stripe_offset = stripe_nr * map->stripe_len;
3780 BUG_ON(offset < stripe_offset);
3781
3782 /* stripe_offset is the offset of this block in its stripe*/
3783 stripe_offset = offset - stripe_offset;
3784
3785 if (rw & REQ_DISCARD)
3786 *length = min_t(u64, em->len - offset, *length);
3787 else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
3788 /* we limit the length of each bio to what fits in a stripe */
3789 *length = min_t(u64, em->len - offset,
3790 map->stripe_len - stripe_offset);
3791 } else {
3792 *length = em->len - offset;
3793 }
3794
3795 if (!bbio_ret)
3796 goto out;
3797
3798 num_stripes = 1;
3799 stripe_index = 0;
3800 stripe_nr_orig = stripe_nr;
3801 stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3802 (~(map->stripe_len - 1));
3803 do_div(stripe_nr_end, map->stripe_len);
3804 stripe_end_offset = stripe_nr_end * map->stripe_len -
3805 (offset + *length);
3806 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3807 if (rw & REQ_DISCARD)
3808 num_stripes = min_t(u64, map->num_stripes,
3809 stripe_nr_end - stripe_nr_orig);
3810 stripe_index = do_div(stripe_nr, map->num_stripes);
3811 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3812 if (rw & (REQ_WRITE | REQ_DISCARD))
3813 num_stripes = map->num_stripes;
3814 else if (mirror_num)
3815 stripe_index = mirror_num - 1;
3816 else {
3817 stripe_index = find_live_mirror(map, 0,
3818 map->num_stripes,
3819 current->pid % map->num_stripes);
3820 mirror_num = stripe_index + 1;
3821 }
3822
3823 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3824 if (rw & (REQ_WRITE | REQ_DISCARD)) {
3825 num_stripes = map->num_stripes;
3826 } else if (mirror_num) {
3827 stripe_index = mirror_num - 1;
3828 } else {
3829 mirror_num = 1;
3830 }
3831
3832 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3833 int factor = map->num_stripes / map->sub_stripes;
3834
3835 stripe_index = do_div(stripe_nr, factor);
3836 stripe_index *= map->sub_stripes;
3837
3838 if (rw & REQ_WRITE)
3839 num_stripes = map->sub_stripes;
3840 else if (rw & REQ_DISCARD)
3841 num_stripes = min_t(u64, map->sub_stripes *
3842 (stripe_nr_end - stripe_nr_orig),
3843 map->num_stripes);
3844 else if (mirror_num)
3845 stripe_index += mirror_num - 1;
3846 else {
3847 int old_stripe_index = stripe_index;
3848 stripe_index = find_live_mirror(map, stripe_index,
3849 map->sub_stripes, stripe_index +
3850 current->pid % map->sub_stripes);
3851 mirror_num = stripe_index - old_stripe_index + 1;
3852 }
3853 } else {
3854 /*
3855 * after this do_div call, stripe_nr is the number of stripes
3856 * on this device we have to walk to find the data, and
3857 * stripe_index is the number of our device in the stripe array
3858 */
3859 stripe_index = do_div(stripe_nr, map->num_stripes);
3860 mirror_num = stripe_index + 1;
3861 }
3862 BUG_ON(stripe_index >= map->num_stripes);
3863
3864 bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3865 if (!bbio) {
3866 ret = -ENOMEM;
3867 goto out;
3868 }
3869 atomic_set(&bbio->error, 0);
3870
3871 if (rw & REQ_DISCARD) {
3872 int factor = 0;
3873 int sub_stripes = 0;
3874 u64 stripes_per_dev = 0;
3875 u32 remaining_stripes = 0;
3876 u32 last_stripe = 0;
3877
3878 if (map->type &
3879 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3880 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3881 sub_stripes = 1;
3882 else
3883 sub_stripes = map->sub_stripes;
3884
3885 factor = map->num_stripes / sub_stripes;
3886 stripes_per_dev = div_u64_rem(stripe_nr_end -
3887 stripe_nr_orig,
3888 factor,
3889 &remaining_stripes);
3890 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
3891 last_stripe *= sub_stripes;
3892 }
3893
3894 for (i = 0; i < num_stripes; i++) {
3895 bbio->stripes[i].physical =
3896 map->stripes[stripe_index].physical +
3897 stripe_offset + stripe_nr * map->stripe_len;
3898 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
3899
3900 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3901 BTRFS_BLOCK_GROUP_RAID10)) {
3902 bbio->stripes[i].length = stripes_per_dev *
3903 map->stripe_len;
3904
3905 if (i / sub_stripes < remaining_stripes)
3906 bbio->stripes[i].length +=
3907 map->stripe_len;
3908
3909 /*
3910 * Special for the first stripe and
3911 * the last stripe:
3912 *
3913 * |-------|...|-------|
3914 * |----------|
3915 * off end_off
3916 */
3917 if (i < sub_stripes)
3918 bbio->stripes[i].length -=
3919 stripe_offset;
3920
3921 if (stripe_index >= last_stripe &&
3922 stripe_index <= (last_stripe +
3923 sub_stripes - 1))
3924 bbio->stripes[i].length -=
3925 stripe_end_offset;
3926
3927 if (i == sub_stripes - 1)
3928 stripe_offset = 0;
3929 } else
3930 bbio->stripes[i].length = *length;
3931
3932 stripe_index++;
3933 if (stripe_index == map->num_stripes) {
3934 /* This could only happen for RAID0/10 */
3935 stripe_index = 0;
3936 stripe_nr++;
3937 }
3938 }
3939 } else {
3940 for (i = 0; i < num_stripes; i++) {
3941 bbio->stripes[i].physical =
3942 map->stripes[stripe_index].physical +
3943 stripe_offset +
3944 stripe_nr * map->stripe_len;
3945 bbio->stripes[i].dev =
3946 map->stripes[stripe_index].dev;
3947 stripe_index++;
3948 }
3949 }
3950
3951 if (rw & REQ_WRITE) {
3952 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3953 BTRFS_BLOCK_GROUP_RAID10 |
3954 BTRFS_BLOCK_GROUP_DUP)) {
3955 max_errors = 1;
3956 }
3957 }
3958
3959 *bbio_ret = bbio;
3960 bbio->num_stripes = num_stripes;
3961 bbio->max_errors = max_errors;
3962 bbio->mirror_num = mirror_num;
3963out:
3964 free_extent_map(em);
3965 return ret;
3966}
3967
3968int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3969 u64 logical, u64 *length,
3970 struct btrfs_bio **bbio_ret, int mirror_num)
3971{
3972 return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
3973 mirror_num);
3974}
3975
3976int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3977 u64 chunk_start, u64 physical, u64 devid,
3978 u64 **logical, int *naddrs, int *stripe_len)
3979{
3980 struct extent_map_tree *em_tree = &map_tree->map_tree;
3981 struct extent_map *em;
3982 struct map_lookup *map;
3983 u64 *buf;
3984 u64 bytenr;
3985 u64 length;
3986 u64 stripe_nr;
3987 int i, j, nr = 0;
3988
3989 read_lock(&em_tree->lock);
3990 em = lookup_extent_mapping(em_tree, chunk_start, 1);
3991 read_unlock(&em_tree->lock);
3992
3993 BUG_ON(!em || em->start != chunk_start);
3994 map = (struct map_lookup *)em->bdev;
3995
3996 length = em->len;
3997 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3998 do_div(length, map->num_stripes / map->sub_stripes);
3999 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4000 do_div(length, map->num_stripes);
4001
4002 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
4003 BUG_ON(!buf); /* -ENOMEM */
4004
4005 for (i = 0; i < map->num_stripes; i++) {
4006 if (devid && map->stripes[i].dev->devid != devid)
4007 continue;
4008 if (map->stripes[i].physical > physical ||
4009 map->stripes[i].physical + length <= physical)
4010 continue;
4011
4012 stripe_nr = physical - map->stripes[i].physical;
4013 do_div(stripe_nr, map->stripe_len);
4014
4015 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4016 stripe_nr = stripe_nr * map->num_stripes + i;
4017 do_div(stripe_nr, map->sub_stripes);
4018 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4019 stripe_nr = stripe_nr * map->num_stripes + i;
4020 }
4021 bytenr = chunk_start + stripe_nr * map->stripe_len;
4022 WARN_ON(nr >= map->num_stripes);
4023 for (j = 0; j < nr; j++) {
4024 if (buf[j] == bytenr)
4025 break;
4026 }
4027 if (j == nr) {
4028 WARN_ON(nr >= map->num_stripes);
4029 buf[nr++] = bytenr;
4030 }
4031 }
4032
4033 *logical = buf;
4034 *naddrs = nr;
4035 *stripe_len = map->stripe_len;
4036
4037 free_extent_map(em);
4038 return 0;
4039}
4040
4041static void *merge_stripe_index_into_bio_private(void *bi_private,
4042 unsigned int stripe_index)
4043{
4044 /*
4045 * with single, dup, RAID0, RAID1 and RAID10, stripe_index is
4046 * at most 1.
4047 * The alternative solution (instead of stealing bits from the
4048 * pointer) would be to allocate an intermediate structure
4049 * that contains the old private pointer plus the stripe_index.
4050 */
4051 BUG_ON((((uintptr_t)bi_private) & 3) != 0);
4052 BUG_ON(stripe_index > 3);
4053 return (void *)(((uintptr_t)bi_private) | stripe_index);
4054}
4055
4056static struct btrfs_bio *extract_bbio_from_bio_private(void *bi_private)
4057{
4058 return (struct btrfs_bio *)(((uintptr_t)bi_private) & ~((uintptr_t)3));
4059}
4060
4061static unsigned int extract_stripe_index_from_bio_private(void *bi_private)
4062{
4063 return (unsigned int)((uintptr_t)bi_private) & 3;
4064}
4065
4066static void btrfs_end_bio(struct bio *bio, int err)
4067{
4068 struct btrfs_bio *bbio = extract_bbio_from_bio_private(bio->bi_private);
4069 int is_orig_bio = 0;
4070
4071 if (err) {
4072 atomic_inc(&bbio->error);
4073 if (err == -EIO || err == -EREMOTEIO) {
4074 unsigned int stripe_index =
4075 extract_stripe_index_from_bio_private(
4076 bio->bi_private);
4077 struct btrfs_device *dev;
4078
4079 BUG_ON(stripe_index >= bbio->num_stripes);
4080 dev = bbio->stripes[stripe_index].dev;
4081 if (dev->bdev) {
4082 if (bio->bi_rw & WRITE)
4083 btrfs_dev_stat_inc(dev,
4084 BTRFS_DEV_STAT_WRITE_ERRS);
4085 else
4086 btrfs_dev_stat_inc(dev,
4087 BTRFS_DEV_STAT_READ_ERRS);
4088 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
4089 btrfs_dev_stat_inc(dev,
4090 BTRFS_DEV_STAT_FLUSH_ERRS);
4091 btrfs_dev_stat_print_on_error(dev);
4092 }
4093 }
4094 }
4095
4096 if (bio == bbio->orig_bio)
4097 is_orig_bio = 1;
4098
4099 if (atomic_dec_and_test(&bbio->stripes_pending)) {
4100 if (!is_orig_bio) {
4101 bio_put(bio);
4102 bio = bbio->orig_bio;
4103 }
4104 bio->bi_private = bbio->private;
4105 bio->bi_end_io = bbio->end_io;
4106 bio->bi_bdev = (struct block_device *)
4107 (unsigned long)bbio->mirror_num;
4108 /* only send an error to the higher layers if it is
4109 * beyond the tolerance of the multi-bio
4110 */
4111 if (atomic_read(&bbio->error) > bbio->max_errors) {
4112 err = -EIO;
4113 } else {
4114 /*
4115 * this bio is actually up to date, we didn't
4116 * go over the max number of errors
4117 */
4118 set_bit(BIO_UPTODATE, &bio->bi_flags);
4119 err = 0;
4120 }
4121 kfree(bbio);
4122
4123 bio_endio(bio, err);
4124 } else if (!is_orig_bio) {
4125 bio_put(bio);
4126 }
4127}
4128
4129struct async_sched {
4130 struct bio *bio;
4131 int rw;
4132 struct btrfs_fs_info *info;
4133 struct btrfs_work work;
4134};
4135
4136/*
4137 * see run_scheduled_bios for a description of why bios are collected for
4138 * async submit.
4139 *
4140 * This will add one bio to the pending list for a device and make sure
4141 * the work struct is scheduled.
4142 */
4143static noinline void schedule_bio(struct btrfs_root *root,
4144 struct btrfs_device *device,
4145 int rw, struct bio *bio)
4146{
4147 int should_queue = 1;
4148 struct btrfs_pending_bios *pending_bios;
4149
4150 /* don't bother with additional async steps for reads, right now */
4151 if (!(rw & REQ_WRITE)) {
4152 bio_get(bio);
4153 btrfsic_submit_bio(rw, bio);
4154 bio_put(bio);
4155 return;
4156 }
4157
4158 /*
4159 * nr_async_bios allows us to reliably return congestion to the
4160 * higher layers. Otherwise, the async bio makes it appear we have
4161 * made progress against dirty pages when we've really just put it
4162 * on a queue for later
4163 */
4164 atomic_inc(&root->fs_info->nr_async_bios);
4165 WARN_ON(bio->bi_next);
4166 bio->bi_next = NULL;
4167 bio->bi_rw |= rw;
4168
4169 spin_lock(&device->io_lock);
4170 if (bio->bi_rw & REQ_SYNC)
4171 pending_bios = &device->pending_sync_bios;
4172 else
4173 pending_bios = &device->pending_bios;
4174
4175 if (pending_bios->tail)
4176 pending_bios->tail->bi_next = bio;
4177
4178 pending_bios->tail = bio;
4179 if (!pending_bios->head)
4180 pending_bios->head = bio;
4181 if (device->running_pending)
4182 should_queue = 0;
4183
4184 spin_unlock(&device->io_lock);
4185
4186 if (should_queue)
4187 btrfs_queue_worker(&root->fs_info->submit_workers,
4188 &device->work);
4189}
4190
4191int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
4192 int mirror_num, int async_submit)
4193{
4194 struct btrfs_mapping_tree *map_tree;
4195 struct btrfs_device *dev;
4196 struct bio *first_bio = bio;
4197 u64 logical = (u64)bio->bi_sector << 9;
4198 u64 length = 0;
4199 u64 map_length;
4200 int ret;
4201 int dev_nr = 0;
4202 int total_devs = 1;
4203 struct btrfs_bio *bbio = NULL;
4204
4205 length = bio->bi_size;
4206 map_tree = &root->fs_info->mapping_tree;
4207 map_length = length;
4208
4209 ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
4210 mirror_num);
4211 if (ret) /* -ENOMEM */
4212 return ret;
4213
4214 total_devs = bbio->num_stripes;
4215 if (map_length < length) {
4216 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4217 "len %llu\n", (unsigned long long)logical,
4218 (unsigned long long)length,
4219 (unsigned long long)map_length);
4220 BUG();
4221 }
4222
4223 bbio->orig_bio = first_bio;
4224 bbio->private = first_bio->bi_private;
4225 bbio->end_io = first_bio->bi_end_io;
4226 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
4227
4228 while (dev_nr < total_devs) {
4229 if (dev_nr < total_devs - 1) {
4230 bio = bio_clone(first_bio, GFP_NOFS);
4231 BUG_ON(!bio); /* -ENOMEM */
4232 } else {
4233 bio = first_bio;
4234 }
4235 bio->bi_private = bbio;
4236 bio->bi_private = merge_stripe_index_into_bio_private(
4237 bio->bi_private, (unsigned int)dev_nr);
4238 bio->bi_end_io = btrfs_end_bio;
4239 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4240 dev = bbio->stripes[dev_nr].dev;
4241 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
4242#ifdef DEBUG
4243 struct rcu_string *name;
4244
4245 rcu_read_lock();
4246 name = rcu_dereference(dev->name);
4247 pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4248 "(%s id %llu), size=%u\n", rw,
4249 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4250 name->str, dev->devid, bio->bi_size);
4251 rcu_read_unlock();
4252#endif
4253 bio->bi_bdev = dev->bdev;
4254 if (async_submit)
4255 schedule_bio(root, dev, rw, bio);
4256 else
4257 btrfsic_submit_bio(rw, bio);
4258 } else {
4259 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4260 bio->bi_sector = logical >> 9;
4261 bio_endio(bio, -EIO);
4262 }
4263 dev_nr++;
4264 }
4265 return 0;
4266}
4267
4268struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
4269 u8 *uuid, u8 *fsid)
4270{
4271 struct btrfs_device *device;
4272 struct btrfs_fs_devices *cur_devices;
4273
4274 cur_devices = root->fs_info->fs_devices;
4275 while (cur_devices) {
4276 if (!fsid ||
4277 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4278 device = __find_device(&cur_devices->devices,
4279 devid, uuid);
4280 if (device)
4281 return device;
4282 }
4283 cur_devices = cur_devices->seed;
4284 }
4285 return NULL;
4286}
4287
4288static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4289 u64 devid, u8 *dev_uuid)
4290{
4291 struct btrfs_device *device;
4292 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4293
4294 device = kzalloc(sizeof(*device), GFP_NOFS);
4295 if (!device)
4296 return NULL;
4297 list_add(&device->dev_list,
4298 &fs_devices->devices);
4299 device->dev_root = root->fs_info->dev_root;
4300 device->devid = devid;
4301 device->work.func = pending_bios_fn;
4302 device->fs_devices = fs_devices;
4303 device->missing = 1;
4304 fs_devices->num_devices++;
4305 fs_devices->missing_devices++;
4306 spin_lock_init(&device->io_lock);
4307 INIT_LIST_HEAD(&device->dev_alloc_list);
4308 memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4309 return device;
4310}
4311
4312static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4313 struct extent_buffer *leaf,
4314 struct btrfs_chunk *chunk)
4315{
4316 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4317 struct map_lookup *map;
4318 struct extent_map *em;
4319 u64 logical;
4320 u64 length;
4321 u64 devid;
4322 u8 uuid[BTRFS_UUID_SIZE];
4323 int num_stripes;
4324 int ret;
4325 int i;
4326
4327 logical = key->offset;
4328 length = btrfs_chunk_length(leaf, chunk);
4329
4330 read_lock(&map_tree->map_tree.lock);
4331 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
4332 read_unlock(&map_tree->map_tree.lock);
4333
4334 /* already mapped? */
4335 if (em && em->start <= logical && em->start + em->len > logical) {
4336 free_extent_map(em);
4337 return 0;
4338 } else if (em) {
4339 free_extent_map(em);
4340 }
4341
4342 em = alloc_extent_map();
4343 if (!em)
4344 return -ENOMEM;
4345 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4346 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4347 if (!map) {
4348 free_extent_map(em);
4349 return -ENOMEM;
4350 }
4351
4352 em->bdev = (struct block_device *)map;
4353 em->start = logical;
4354 em->len = length;
4355 em->block_start = 0;
4356 em->block_len = em->len;
4357
4358 map->num_stripes = num_stripes;
4359 map->io_width = btrfs_chunk_io_width(leaf, chunk);
4360 map->io_align = btrfs_chunk_io_align(leaf, chunk);
4361 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4362 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4363 map->type = btrfs_chunk_type(leaf, chunk);
4364 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
4365 for (i = 0; i < num_stripes; i++) {
4366 map->stripes[i].physical =
4367 btrfs_stripe_offset_nr(leaf, chunk, i);
4368 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
4369 read_extent_buffer(leaf, uuid, (unsigned long)
4370 btrfs_stripe_dev_uuid_nr(chunk, i),
4371 BTRFS_UUID_SIZE);
4372 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4373 NULL);
4374 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
4375 kfree(map);
4376 free_extent_map(em);
4377 return -EIO;
4378 }
4379 if (!map->stripes[i].dev) {
4380 map->stripes[i].dev =
4381 add_missing_dev(root, devid, uuid);
4382 if (!map->stripes[i].dev) {
4383 kfree(map);
4384 free_extent_map(em);
4385 return -EIO;
4386 }
4387 }
4388 map->stripes[i].dev->in_fs_metadata = 1;
4389 }
4390
4391 write_lock(&map_tree->map_tree.lock);
4392 ret = add_extent_mapping(&map_tree->map_tree, em);
4393 write_unlock(&map_tree->map_tree.lock);
4394 BUG_ON(ret); /* Tree corruption */
4395 free_extent_map(em);
4396
4397 return 0;
4398}
4399
4400static void fill_device_from_item(struct extent_buffer *leaf,
4401 struct btrfs_dev_item *dev_item,
4402 struct btrfs_device *device)
4403{
4404 unsigned long ptr;
4405
4406 device->devid = btrfs_device_id(leaf, dev_item);
4407 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4408 device->total_bytes = device->disk_total_bytes;
4409 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4410 device->type = btrfs_device_type(leaf, dev_item);
4411 device->io_align = btrfs_device_io_align(leaf, dev_item);
4412 device->io_width = btrfs_device_io_width(leaf, dev_item);
4413 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
4414
4415 ptr = (unsigned long)btrfs_device_uuid(dev_item);
4416 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
4417}
4418
4419static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4420{
4421 struct btrfs_fs_devices *fs_devices;
4422 int ret;
4423
4424 BUG_ON(!mutex_is_locked(&uuid_mutex));
4425
4426 fs_devices = root->fs_info->fs_devices->seed;
4427 while (fs_devices) {
4428 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4429 ret = 0;
4430 goto out;
4431 }
4432 fs_devices = fs_devices->seed;
4433 }
4434
4435 fs_devices = find_fsid(fsid);
4436 if (!fs_devices) {
4437 ret = -ENOENT;
4438 goto out;
4439 }
4440
4441 fs_devices = clone_fs_devices(fs_devices);
4442 if (IS_ERR(fs_devices)) {
4443 ret = PTR_ERR(fs_devices);
4444 goto out;
4445 }
4446
4447 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
4448 root->fs_info->bdev_holder);
4449 if (ret) {
4450 free_fs_devices(fs_devices);
4451 goto out;
4452 }
4453
4454 if (!fs_devices->seeding) {
4455 __btrfs_close_devices(fs_devices);
4456 free_fs_devices(fs_devices);
4457 ret = -EINVAL;
4458 goto out;
4459 }
4460
4461 fs_devices->seed = root->fs_info->fs_devices->seed;
4462 root->fs_info->fs_devices->seed = fs_devices;
4463out:
4464 return ret;
4465}
4466
4467static int read_one_dev(struct btrfs_root *root,
4468 struct extent_buffer *leaf,
4469 struct btrfs_dev_item *dev_item)
4470{
4471 struct btrfs_device *device;
4472 u64 devid;
4473 int ret;
4474 u8 fs_uuid[BTRFS_UUID_SIZE];
4475 u8 dev_uuid[BTRFS_UUID_SIZE];
4476
4477 devid = btrfs_device_id(leaf, dev_item);
4478 read_extent_buffer(leaf, dev_uuid,
4479 (unsigned long)btrfs_device_uuid(dev_item),
4480 BTRFS_UUID_SIZE);
4481 read_extent_buffer(leaf, fs_uuid,
4482 (unsigned long)btrfs_device_fsid(dev_item),
4483 BTRFS_UUID_SIZE);
4484
4485 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4486 ret = open_seed_devices(root, fs_uuid);
4487 if (ret && !btrfs_test_opt(root, DEGRADED))
4488 return ret;
4489 }
4490
4491 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4492 if (!device || !device->bdev) {
4493 if (!btrfs_test_opt(root, DEGRADED))
4494 return -EIO;
4495
4496 if (!device) {
4497 printk(KERN_WARNING "warning devid %llu missing\n",
4498 (unsigned long long)devid);
4499 device = add_missing_dev(root, devid, dev_uuid);
4500 if (!device)
4501 return -ENOMEM;
4502 } else if (!device->missing) {
4503 /*
4504 * this happens when a device that was properly setup
4505 * in the device info lists suddenly goes bad.
4506 * device->bdev is NULL, and so we have to set
4507 * device->missing to one here
4508 */
4509 root->fs_info->fs_devices->missing_devices++;
4510 device->missing = 1;
4511 }
4512 }
4513
4514 if (device->fs_devices != root->fs_info->fs_devices) {
4515 BUG_ON(device->writeable);
4516 if (device->generation !=
4517 btrfs_device_generation(leaf, dev_item))
4518 return -EINVAL;
4519 }
4520
4521 fill_device_from_item(leaf, dev_item, device);
4522 device->dev_root = root->fs_info->dev_root;
4523 device->in_fs_metadata = 1;
4524 if (device->writeable) {
4525 device->fs_devices->total_rw_bytes += device->total_bytes;
4526 spin_lock(&root->fs_info->free_chunk_lock);
4527 root->fs_info->free_chunk_space += device->total_bytes -
4528 device->bytes_used;
4529 spin_unlock(&root->fs_info->free_chunk_lock);
4530 }
4531 ret = 0;
4532 return ret;
4533}
4534
4535int btrfs_read_sys_array(struct btrfs_root *root)
4536{
4537 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4538 struct extent_buffer *sb;
4539 struct btrfs_disk_key *disk_key;
4540 struct btrfs_chunk *chunk;
4541 u8 *ptr;
4542 unsigned long sb_ptr;
4543 int ret = 0;
4544 u32 num_stripes;
4545 u32 array_size;
4546 u32 len = 0;
4547 u32 cur;
4548 struct btrfs_key key;
4549
4550 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
4551 BTRFS_SUPER_INFO_SIZE);
4552 if (!sb)
4553 return -ENOMEM;
4554 btrfs_set_buffer_uptodate(sb);
4555 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
4556 /*
4557 * The sb extent buffer is artifical and just used to read the system array.
4558 * btrfs_set_buffer_uptodate() call does not properly mark all it's
4559 * pages up-to-date when the page is larger: extent does not cover the
4560 * whole page and consequently check_page_uptodate does not find all
4561 * the page's extents up-to-date (the hole beyond sb),
4562 * write_extent_buffer then triggers a WARN_ON.
4563 *
4564 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4565 * but sb spans only this function. Add an explicit SetPageUptodate call
4566 * to silence the warning eg. on PowerPC 64.
4567 */
4568 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
4569 SetPageUptodate(sb->pages[0]);
4570
4571 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
4572 array_size = btrfs_super_sys_array_size(super_copy);
4573
4574 ptr = super_copy->sys_chunk_array;
4575 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4576 cur = 0;
4577
4578 while (cur < array_size) {
4579 disk_key = (struct btrfs_disk_key *)ptr;
4580 btrfs_disk_key_to_cpu(&key, disk_key);
4581
4582 len = sizeof(*disk_key); ptr += len;
4583 sb_ptr += len;
4584 cur += len;
4585
4586 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
4587 chunk = (struct btrfs_chunk *)sb_ptr;
4588 ret = read_one_chunk(root, &key, sb, chunk);
4589 if (ret)
4590 break;
4591 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4592 len = btrfs_chunk_item_size(num_stripes);
4593 } else {
4594 ret = -EIO;
4595 break;
4596 }
4597 ptr += len;
4598 sb_ptr += len;
4599 cur += len;
4600 }
4601 free_extent_buffer(sb);
4602 return ret;
4603}
4604
4605int btrfs_read_chunk_tree(struct btrfs_root *root)
4606{
4607 struct btrfs_path *path;
4608 struct extent_buffer *leaf;
4609 struct btrfs_key key;
4610 struct btrfs_key found_key;
4611 int ret;
4612 int slot;
4613
4614 root = root->fs_info->chunk_root;
4615
4616 path = btrfs_alloc_path();
4617 if (!path)
4618 return -ENOMEM;
4619
4620 mutex_lock(&uuid_mutex);
4621 lock_chunks(root);
4622
4623 /* first we search for all of the device items, and then we
4624 * read in all of the chunk items. This way we can create chunk
4625 * mappings that reference all of the devices that are afound
4626 */
4627 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4628 key.offset = 0;
4629 key.type = 0;
4630again:
4631 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4632 if (ret < 0)
4633 goto error;
4634 while (1) {
4635 leaf = path->nodes[0];
4636 slot = path->slots[0];
4637 if (slot >= btrfs_header_nritems(leaf)) {
4638 ret = btrfs_next_leaf(root, path);
4639 if (ret == 0)
4640 continue;
4641 if (ret < 0)
4642 goto error;
4643 break;
4644 }
4645 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4646 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4647 if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4648 break;
4649 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4650 struct btrfs_dev_item *dev_item;
4651 dev_item = btrfs_item_ptr(leaf, slot,
4652 struct btrfs_dev_item);
4653 ret = read_one_dev(root, leaf, dev_item);
4654 if (ret)
4655 goto error;
4656 }
4657 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4658 struct btrfs_chunk *chunk;
4659 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4660 ret = read_one_chunk(root, &found_key, leaf, chunk);
4661 if (ret)
4662 goto error;
4663 }
4664 path->slots[0]++;
4665 }
4666 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4667 key.objectid = 0;
4668 btrfs_release_path(path);
4669 goto again;
4670 }
4671 ret = 0;
4672error:
4673 unlock_chunks(root);
4674 mutex_unlock(&uuid_mutex);
4675
4676 btrfs_free_path(path);
4677 return ret;
4678}
4679
4680static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
4681{
4682 int i;
4683
4684 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4685 btrfs_dev_stat_reset(dev, i);
4686}
4687
4688int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
4689{
4690 struct btrfs_key key;
4691 struct btrfs_key found_key;
4692 struct btrfs_root *dev_root = fs_info->dev_root;
4693 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4694 struct extent_buffer *eb;
4695 int slot;
4696 int ret = 0;
4697 struct btrfs_device *device;
4698 struct btrfs_path *path = NULL;
4699 int i;
4700
4701 path = btrfs_alloc_path();
4702 if (!path) {
4703 ret = -ENOMEM;
4704 goto out;
4705 }
4706
4707 mutex_lock(&fs_devices->device_list_mutex);
4708 list_for_each_entry(device, &fs_devices->devices, dev_list) {
4709 int item_size;
4710 struct btrfs_dev_stats_item *ptr;
4711
4712 key.objectid = 0;
4713 key.type = BTRFS_DEV_STATS_KEY;
4714 key.offset = device->devid;
4715 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
4716 if (ret) {
4717 printk_in_rcu(KERN_WARNING "btrfs: no dev_stats entry found for device %s (devid %llu) (OK on first mount after mkfs)\n",
4718 rcu_str_deref(device->name),
4719 (unsigned long long)device->devid);
4720 __btrfs_reset_dev_stats(device);
4721 device->dev_stats_valid = 1;
4722 btrfs_release_path(path);
4723 continue;
4724 }
4725 slot = path->slots[0];
4726 eb = path->nodes[0];
4727 btrfs_item_key_to_cpu(eb, &found_key, slot);
4728 item_size = btrfs_item_size_nr(eb, slot);
4729
4730 ptr = btrfs_item_ptr(eb, slot,
4731 struct btrfs_dev_stats_item);
4732
4733 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4734 if (item_size >= (1 + i) * sizeof(__le64))
4735 btrfs_dev_stat_set(device, i,
4736 btrfs_dev_stats_value(eb, ptr, i));
4737 else
4738 btrfs_dev_stat_reset(device, i);
4739 }
4740
4741 device->dev_stats_valid = 1;
4742 btrfs_dev_stat_print_on_load(device);
4743 btrfs_release_path(path);
4744 }
4745 mutex_unlock(&fs_devices->device_list_mutex);
4746
4747out:
4748 btrfs_free_path(path);
4749 return ret < 0 ? ret : 0;
4750}
4751
4752static int update_dev_stat_item(struct btrfs_trans_handle *trans,
4753 struct btrfs_root *dev_root,
4754 struct btrfs_device *device)
4755{
4756 struct btrfs_path *path;
4757 struct btrfs_key key;
4758 struct extent_buffer *eb;
4759 struct btrfs_dev_stats_item *ptr;
4760 int ret;
4761 int i;
4762
4763 key.objectid = 0;
4764 key.type = BTRFS_DEV_STATS_KEY;
4765 key.offset = device->devid;
4766
4767 path = btrfs_alloc_path();
4768 BUG_ON(!path);
4769 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
4770 if (ret < 0) {
4771 printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
4772 ret, rcu_str_deref(device->name));
4773 goto out;
4774 }
4775
4776 if (ret == 0 &&
4777 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
4778 /* need to delete old one and insert a new one */
4779 ret = btrfs_del_item(trans, dev_root, path);
4780 if (ret != 0) {
4781 printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
4782 rcu_str_deref(device->name), ret);
4783 goto out;
4784 }
4785 ret = 1;
4786 }
4787
4788 if (ret == 1) {
4789 /* need to insert a new item */
4790 btrfs_release_path(path);
4791 ret = btrfs_insert_empty_item(trans, dev_root, path,
4792 &key, sizeof(*ptr));
4793 if (ret < 0) {
4794 printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
4795 rcu_str_deref(device->name), ret);
4796 goto out;
4797 }
4798 }
4799
4800 eb = path->nodes[0];
4801 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
4802 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4803 btrfs_set_dev_stats_value(eb, ptr, i,
4804 btrfs_dev_stat_read(device, i));
4805 btrfs_mark_buffer_dirty(eb);
4806
4807out:
4808 btrfs_free_path(path);
4809 return ret;
4810}
4811
4812/*
4813 * called from commit_transaction. Writes all changed device stats to disk.
4814 */
4815int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
4816 struct btrfs_fs_info *fs_info)
4817{
4818 struct btrfs_root *dev_root = fs_info->dev_root;
4819 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
4820 struct btrfs_device *device;
4821 int ret = 0;
4822
4823 mutex_lock(&fs_devices->device_list_mutex);
4824 list_for_each_entry(device, &fs_devices->devices, dev_list) {
4825 if (!device->dev_stats_valid || !device->dev_stats_dirty)
4826 continue;
4827
4828 ret = update_dev_stat_item(trans, dev_root, device);
4829 if (!ret)
4830 device->dev_stats_dirty = 0;
4831 }
4832 mutex_unlock(&fs_devices->device_list_mutex);
4833
4834 return ret;
4835}
4836
4837void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
4838{
4839 btrfs_dev_stat_inc(dev, index);
4840 btrfs_dev_stat_print_on_error(dev);
4841}
4842
4843void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
4844{
4845 if (!dev->dev_stats_valid)
4846 return;
4847 printk_ratelimited_in_rcu(KERN_ERR
4848 "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4849 rcu_str_deref(dev->name),
4850 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4851 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4852 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4853 btrfs_dev_stat_read(dev,
4854 BTRFS_DEV_STAT_CORRUPTION_ERRS),
4855 btrfs_dev_stat_read(dev,
4856 BTRFS_DEV_STAT_GENERATION_ERRS));
4857}
4858
4859static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
4860{
4861 printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
4862 rcu_str_deref(dev->name),
4863 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
4864 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
4865 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
4866 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
4867 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
4868}
4869
4870int btrfs_get_dev_stats(struct btrfs_root *root,
4871 struct btrfs_ioctl_get_dev_stats *stats,
4872 int reset_after_read)
4873{
4874 struct btrfs_device *dev;
4875 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4876 int i;
4877
4878 mutex_lock(&fs_devices->device_list_mutex);
4879 dev = btrfs_find_device(root, stats->devid, NULL, NULL);
4880 mutex_unlock(&fs_devices->device_list_mutex);
4881
4882 if (!dev) {
4883 printk(KERN_WARNING
4884 "btrfs: get dev_stats failed, device not found\n");
4885 return -ENODEV;
4886 } else if (!dev->dev_stats_valid) {
4887 printk(KERN_WARNING
4888 "btrfs: get dev_stats failed, not yet valid\n");
4889 return -ENODEV;
4890 } else if (reset_after_read) {
4891 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
4892 if (stats->nr_items > i)
4893 stats->values[i] =
4894 btrfs_dev_stat_read_and_reset(dev, i);
4895 else
4896 btrfs_dev_stat_reset(dev, i);
4897 }
4898 } else {
4899 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
4900 if (stats->nr_items > i)
4901 stats->values[i] = btrfs_dev_stat_read(dev, i);
4902 }
4903 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
4904 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
4905 return 0;
4906}