Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
 
  18#include <linux/sched.h>
  19#include <linux/bio.h>
  20#include <linux/slab.h>
  21#include <linux/buffer_head.h>
  22#include <linux/blkdev.h>
  23#include <linux/random.h>
  24#include <linux/iocontext.h>
  25#include <linux/capability.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include <linux/raid/pq.h>
  29#include <linux/semaphore.h>
  30#include <asm/div64.h>
 
 
 
  31#include "ctree.h"
  32#include "extent_map.h"
  33#include "disk-io.h"
  34#include "transaction.h"
  35#include "print-tree.h"
  36#include "volumes.h"
  37#include "raid56.h"
  38#include "async-thread.h"
  39#include "check-integrity.h"
  40#include "rcu-string.h"
  41#include "math.h"
  42#include "dev-replace.h"
  43#include "sysfs.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  44
  45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  46	[BTRFS_RAID_RAID10] = {
  47		.sub_stripes	= 2,
  48		.dev_stripes	= 1,
  49		.devs_max	= 0,	/* 0 == as many as possible */
  50		.devs_min	= 4,
  51		.tolerated_failures = 1,
  52		.devs_increment	= 2,
  53		.ncopies	= 2,
 
 
 
 
  54	},
  55	[BTRFS_RAID_RAID1] = {
  56		.sub_stripes	= 1,
  57		.dev_stripes	= 1,
  58		.devs_max	= 2,
  59		.devs_min	= 2,
  60		.tolerated_failures = 1,
  61		.devs_increment	= 2,
  62		.ncopies	= 2,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63	},
  64	[BTRFS_RAID_DUP] = {
  65		.sub_stripes	= 1,
  66		.dev_stripes	= 2,
  67		.devs_max	= 1,
  68		.devs_min	= 1,
  69		.tolerated_failures = 0,
  70		.devs_increment	= 1,
  71		.ncopies	= 2,
 
 
 
 
  72	},
  73	[BTRFS_RAID_RAID0] = {
  74		.sub_stripes	= 1,
  75		.dev_stripes	= 1,
  76		.devs_max	= 0,
  77		.devs_min	= 2,
  78		.tolerated_failures = 0,
  79		.devs_increment	= 1,
  80		.ncopies	= 1,
 
 
 
 
  81	},
  82	[BTRFS_RAID_SINGLE] = {
  83		.sub_stripes	= 1,
  84		.dev_stripes	= 1,
  85		.devs_max	= 1,
  86		.devs_min	= 1,
  87		.tolerated_failures = 0,
  88		.devs_increment	= 1,
  89		.ncopies	= 1,
 
 
 
 
  90	},
  91	[BTRFS_RAID_RAID5] = {
  92		.sub_stripes	= 1,
  93		.dev_stripes	= 1,
  94		.devs_max	= 0,
  95		.devs_min	= 2,
  96		.tolerated_failures = 1,
  97		.devs_increment	= 1,
  98		.ncopies	= 2,
 
 
 
 
  99	},
 100	[BTRFS_RAID_RAID6] = {
 101		.sub_stripes	= 1,
 102		.dev_stripes	= 1,
 103		.devs_max	= 0,
 104		.devs_min	= 3,
 105		.tolerated_failures = 2,
 106		.devs_increment	= 1,
 107		.ncopies	= 3,
 
 
 
 
 108	},
 109};
 110
 111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
 112	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
 113	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
 114	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
 115	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
 116	[BTRFS_RAID_SINGLE] = 0,
 117	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
 118	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
 119};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120
 121static int init_first_rw_device(struct btrfs_trans_handle *trans,
 122				struct btrfs_root *root,
 123				struct btrfs_device *device);
 124static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
 125static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
 126static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 127static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 128static void btrfs_close_one_device(struct btrfs_device *device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129
 130DEFINE_MUTEX(uuid_mutex);
 131static LIST_HEAD(fs_uuids);
 132struct list_head *btrfs_get_fs_uuids(void)
 133{
 134	return &fs_uuids;
 135}
 136
 137static struct btrfs_fs_devices *__alloc_fs_devices(void)
 
 
 
 
 
 
 
 
 
 
 138{
 139	struct btrfs_fs_devices *fs_devs;
 140
 141	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 142	if (!fs_devs)
 143		return ERR_PTR(-ENOMEM);
 144
 145	mutex_init(&fs_devs->device_list_mutex);
 146
 147	INIT_LIST_HEAD(&fs_devs->devices);
 148	INIT_LIST_HEAD(&fs_devs->resized_devices);
 149	INIT_LIST_HEAD(&fs_devs->alloc_list);
 150	INIT_LIST_HEAD(&fs_devs->list);
 
 
 
 
 
 
 151
 152	return fs_devs;
 153}
 154
 155/**
 156 * alloc_fs_devices - allocate struct btrfs_fs_devices
 157 * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
 158 *		generated.
 159 *
 160 * Return: a pointer to a new &struct btrfs_fs_devices on success;
 161 * ERR_PTR() on error.  Returned struct is not linked onto any lists and
 162 * can be destroyed with kfree() right away.
 163 */
 164static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
 165{
 166	struct btrfs_fs_devices *fs_devs;
 167
 168	fs_devs = __alloc_fs_devices();
 169	if (IS_ERR(fs_devs))
 170		return fs_devs;
 171
 172	if (fsid)
 173		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 174	else
 175		generate_random_uuid(fs_devs->fsid);
 176
 177	return fs_devs;
 178}
 179
 180static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 181{
 182	struct btrfs_device *device;
 
 183	WARN_ON(fs_devices->opened);
 184	while (!list_empty(&fs_devices->devices)) {
 185		device = list_entry(fs_devices->devices.next,
 186				    struct btrfs_device, dev_list);
 187		list_del(&device->dev_list);
 188		rcu_string_free(device->name);
 189		kfree(device);
 190	}
 191	kfree(fs_devices);
 192}
 193
 194static void btrfs_kobject_uevent(struct block_device *bdev,
 195				 enum kobject_action action)
 196{
 197	int ret;
 198
 199	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
 200	if (ret)
 201		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
 202			action,
 203			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
 204			&disk_to_dev(bdev->bd_disk)->kobj);
 205}
 206
 207void btrfs_cleanup_fs_uuids(void)
 208{
 209	struct btrfs_fs_devices *fs_devices;
 210
 211	while (!list_empty(&fs_uuids)) {
 212		fs_devices = list_entry(fs_uuids.next,
 213					struct btrfs_fs_devices, list);
 214		list_del(&fs_devices->list);
 215		free_fs_devices(fs_devices);
 216	}
 217}
 218
 219static struct btrfs_device *__alloc_device(void)
 
 220{
 221	struct btrfs_device *dev;
 222
 223	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
 224	if (!dev)
 225		return ERR_PTR(-ENOMEM);
 226
 227	INIT_LIST_HEAD(&dev->dev_list);
 228	INIT_LIST_HEAD(&dev->dev_alloc_list);
 229	INIT_LIST_HEAD(&dev->resized_list);
 230
 231	spin_lock_init(&dev->io_lock);
 
 232
 233	spin_lock_init(&dev->reada_lock);
 234	atomic_set(&dev->reada_in_flight, 0);
 235	atomic_set(&dev->dev_stats_ccnt, 0);
 236	btrfs_device_data_ordered_init(dev);
 237	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 238	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
 239
 240	return dev;
 241}
 242
 243static noinline struct btrfs_device *__find_device(struct list_head *head,
 244						   u64 devid, u8 *uuid)
 245{
 246	struct btrfs_device *dev;
 247
 248	list_for_each_entry(dev, head, dev_list) {
 249		if (dev->devid == devid &&
 250		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
 251			return dev;
 252		}
 253	}
 254	return NULL;
 255}
 256
 257static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
 
 258{
 259	struct btrfs_fs_devices *fs_devices;
 260
 261	list_for_each_entry(fs_devices, &fs_uuids, list) {
 262		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
 
 
 
 263			return fs_devices;
 264	}
 265	return NULL;
 266}
 267
 268static int
 269btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
 270		      int flush, struct block_device **bdev,
 271		      struct buffer_head **bh)
 272{
 
 273	int ret;
 274
 275	*bdev = blkdev_get_by_path(device_path, flags, holder);
 276
 277	if (IS_ERR(*bdev)) {
 278		ret = PTR_ERR(*bdev);
 
 
 279		goto error;
 280	}
 
 281
 282	if (flush)
 283		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
 284	ret = set_blocksize(*bdev, 4096);
 285	if (ret) {
 286		blkdev_put(*bdev, flags);
 287		goto error;
 
 
 288	}
 289	invalidate_bdev(*bdev);
 290	*bh = btrfs_read_dev_super(*bdev);
 291	if (IS_ERR(*bh)) {
 292		ret = PTR_ERR(*bh);
 293		blkdev_put(*bdev, flags);
 294		goto error;
 295	}
 296
 297	return 0;
 298
 299error:
 300	*bdev = NULL;
 301	*bh = NULL;
 302	return ret;
 303}
 304
 305static void requeue_list(struct btrfs_pending_bios *pending_bios,
 306			struct bio *head, struct bio *tail)
 
 
 
 
 
 
 
 
 
 
 
 
 307{
 
 
 
 
 308
 309	struct bio *old_head;
 310
 311	old_head = pending_bios->head;
 312	pending_bios->head = head;
 313	if (pending_bios->tail)
 314		tail->bi_next = old_head;
 315	else
 316		pending_bios->tail = tail;
 317}
 318
 319/*
 320 * we try to collect pending bios for a device so we don't get a large
 321 * number of procs sending bios down to the same device.  This greatly
 322 * improves the schedulers ability to collect and merge the bios.
 323 *
 324 * But, it also turns into a long list of bios to process and that is sure
 325 * to eventually make the worker thread block.  The solution here is to
 326 * make some progress and then put this work struct back at the end of
 327 * the list if the block device is congested.  This way, multiple devices
 328 * can make progress from a single worker thread.
 329 */
 330static noinline void run_scheduled_bios(struct btrfs_device *device)
 331{
 332	struct bio *pending;
 333	struct backing_dev_info *bdi;
 334	struct btrfs_fs_info *fs_info;
 335	struct btrfs_pending_bios *pending_bios;
 336	struct bio *tail;
 337	struct bio *cur;
 338	int again = 0;
 339	unsigned long num_run;
 340	unsigned long batch_run = 0;
 341	unsigned long limit;
 342	unsigned long last_waited = 0;
 343	int force_reg = 0;
 344	int sync_pending = 0;
 345	struct blk_plug plug;
 346
 347	/*
 348	 * this function runs all the bios we've collected for
 349	 * a particular device.  We don't want to wander off to
 350	 * another device without first sending all of these down.
 351	 * So, setup a plug here and finish it off before we return
 352	 */
 353	blk_start_plug(&plug);
 354
 355	bdi = blk_get_backing_dev_info(device->bdev);
 356	fs_info = device->dev_root->fs_info;
 357	limit = btrfs_async_submit_limit(fs_info);
 358	limit = limit * 2 / 3;
 359
 360loop:
 361	spin_lock(&device->io_lock);
 
 
 362
 363loop_lock:
 364	num_run = 0;
 
 365
 366	/* take all the bios off the list at once and process them
 367	 * later on (without the lock held).  But, remember the
 368	 * tail and other pointers so the bios can be properly reinserted
 369	 * into the list if we hit congestion
 370	 */
 371	if (!force_reg && device->pending_sync_bios.head) {
 372		pending_bios = &device->pending_sync_bios;
 373		force_reg = 1;
 374	} else {
 375		pending_bios = &device->pending_bios;
 376		force_reg = 0;
 377	}
 378
 379	pending = pending_bios->head;
 380	tail = pending_bios->tail;
 381	WARN_ON(pending && !tail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382
 383	/*
 384	 * if pending was null this time around, no bios need processing
 385	 * at all and we can stop.  Otherwise it'll loop back up again
 386	 * and do an additional check so no bios are missed.
 387	 *
 388	 * device->running_pending is used to synchronize with the
 389	 * schedule_bio code.
 390	 */
 391	if (device->pending_sync_bios.head == NULL &&
 392	    device->pending_bios.head == NULL) {
 393		again = 0;
 394		device->running_pending = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395	} else {
 396		again = 1;
 397		device->running_pending = 1;
 
 
 
 
 
 
 398	}
 399
 400	pending_bios->head = NULL;
 401	pending_bios->tail = NULL;
 402
 403	spin_unlock(&device->io_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 404
 405	while (pending) {
 
 
 
 406
 407		rmb();
 408		/* we want to work on both lists, but do more bios on the
 409		 * sync list than the regular list
 410		 */
 411		if ((num_run > 32 &&
 412		    pending_bios != &device->pending_sync_bios &&
 413		    device->pending_sync_bios.head) ||
 414		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
 415		    device->pending_bios.head)) {
 416			spin_lock(&device->io_lock);
 417			requeue_list(pending_bios, pending, tail);
 418			goto loop_lock;
 419		}
 420
 421		cur = pending;
 422		pending = pending->bi_next;
 423		cur->bi_next = NULL;
 424
 425		/*
 426		 * atomic_dec_return implies a barrier for waitqueue_active
 427		 */
 428		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
 429		    waitqueue_active(&fs_info->async_submit_wait))
 430			wake_up(&fs_info->async_submit_wait);
 431
 432		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
 433
 434		/*
 435		 * if we're doing the sync list, record that our
 436		 * plug has some sync requests on it
 437		 *
 438		 * If we're doing the regular list and there are
 439		 * sync requests sitting around, unplug before
 440		 * we add more
 441		 */
 442		if (pending_bios == &device->pending_sync_bios) {
 443			sync_pending = 1;
 444		} else if (sync_pending) {
 445			blk_finish_plug(&plug);
 446			blk_start_plug(&plug);
 447			sync_pending = 0;
 448		}
 449
 450		btrfsic_submit_bio(cur->bi_rw, cur);
 451		num_run++;
 452		batch_run++;
 
 
 
 
 
 453
 454		cond_resched();
 
 455
 456		/*
 457		 * we made progress, there is more work to do and the bdi
 458		 * is now congested.  Back off and let other work structs
 459		 * run instead
 460		 */
 461		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
 462		    fs_info->fs_devices->open_devices > 1) {
 463			struct io_context *ioc;
 464
 465			ioc = current->io_context;
 
 
 466
 467			/*
 468			 * the main goal here is that we don't want to
 469			 * block if we're going to be able to submit
 470			 * more requests without blocking.
 471			 *
 472			 * This code does two great things, it pokes into
 473			 * the elevator code from a filesystem _and_
 474			 * it makes assumptions about how batching works.
 475			 */
 476			if (ioc && ioc->nr_batch_requests > 0 &&
 477			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
 478			    (last_waited == 0 ||
 479			     ioc->last_waited == last_waited)) {
 480				/*
 481				 * we want to go through our batch of
 482				 * requests and stop.  So, we copy out
 483				 * the ioc->last_waited time and test
 484				 * against it before looping
 485				 */
 486				last_waited = ioc->last_waited;
 487				cond_resched();
 488				continue;
 489			}
 490			spin_lock(&device->io_lock);
 491			requeue_list(pending_bios, pending, tail);
 492			device->running_pending = 1;
 493
 494			spin_unlock(&device->io_lock);
 495			btrfs_queue_work(fs_info->submit_workers,
 496					 &device->work);
 497			goto done;
 498		}
 499		/* unplug every 64 requests just for good measure */
 500		if (batch_run % 64 == 0) {
 501			blk_finish_plug(&plug);
 502			blk_start_plug(&plug);
 503			sync_pending = 0;
 504		}
 505	}
 506
 507	cond_resched();
 508	if (again)
 509		goto loop;
 510
 511	spin_lock(&device->io_lock);
 512	if (device->pending_bios.head || device->pending_sync_bios.head)
 513		goto loop_lock;
 514	spin_unlock(&device->io_lock);
 515
 516done:
 517	blk_finish_plug(&plug);
 
 
 
 
 
 518}
 519
 520static void pending_bios_fn(struct btrfs_work *work)
 521{
 522	struct btrfs_device *device;
 
 523
 524	device = container_of(work, struct btrfs_device, work);
 525	run_scheduled_bios(device);
 526}
 527
 528
 529void btrfs_free_stale_device(struct btrfs_device *cur_dev)
 
 
 
 
 
 
 
 
 530{
 531	struct btrfs_fs_devices *fs_devs;
 532	struct btrfs_device *dev;
 
 
 
 533
 534	if (!cur_dev->name)
 535		return;
 536
 537	list_for_each_entry(fs_devs, &fs_uuids, list) {
 538		int del = 1;
 
 539
 540		if (fs_devs->opened)
 541			continue;
 542		if (fs_devs->seeding)
 543			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544
 545		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
 
 
 
 
 
 546
 547			if (dev == cur_dev)
 548				continue;
 549			if (!dev->name)
 550				continue;
 551
 552			/*
 553			 * Todo: This won't be enough. What if the same device
 554			 * comes back (with new uuid and) with its mapper path?
 555			 * But for now, this does help as mostly an admin will
 556			 * either use mapper or non mapper path throughout.
 557			 */
 558			rcu_read_lock();
 559			del = strcmp(rcu_str_deref(dev->name),
 560						rcu_str_deref(cur_dev->name));
 561			rcu_read_unlock();
 562			if (!del)
 563				break;
 564		}
 565
 566		if (!del) {
 567			/* delete the stale device */
 568			if (fs_devs->num_devices == 1) {
 569				btrfs_sysfs_remove_fsid(fs_devs);
 570				list_del(&fs_devs->list);
 571				free_fs_devices(fs_devs);
 572			} else {
 573				fs_devs->num_devices--;
 574				list_del(&dev->dev_list);
 575				rcu_string_free(dev->name);
 576				kfree(dev);
 577			}
 578			break;
 579		}
 580	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581}
 582
 583/*
 584 * Add new device to list of registered devices
 585 *
 586 * Returns:
 587 * 1   - first time device is seen
 588 * 0   - device already known
 589 * < 0 - error
 590 */
 591static noinline int device_list_add(const char *path,
 592			   struct btrfs_super_block *disk_super,
 593			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
 594{
 595	struct btrfs_device *device;
 596	struct btrfs_fs_devices *fs_devices;
 597	struct rcu_string *name;
 598	int ret = 0;
 599	u64 found_transid = btrfs_super_generation(disk_super);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600
 601	fs_devices = find_fsid(disk_super->fsid);
 602	if (!fs_devices) {
 603		fs_devices = alloc_fs_devices(disk_super->fsid);
 604		if (IS_ERR(fs_devices))
 605			return PTR_ERR(fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 606
 607		list_add(&fs_devices->list, &fs_uuids);
 
 608
 609		device = NULL;
 610	} else {
 611		device = __find_device(&fs_devices->devices, devid,
 612				       disk_super->dev_item.uuid);
 
 
 
 
 
 
 
 
 
 
 
 
 613	}
 614
 615	if (!device) {
 616		if (fs_devices->opened)
 617			return -EBUSY;
 618
 
 
 
 
 
 
 
 
 
 
 
 619		device = btrfs_alloc_device(NULL, &devid,
 620					    disk_super->dev_item.uuid);
 
 621		if (IS_ERR(device)) {
 
 622			/* we can safely leave the fs_devices entry around */
 623			return PTR_ERR(device);
 624		}
 625
 626		name = rcu_string_strdup(path, GFP_NOFS);
 627		if (!name) {
 628			kfree(device);
 629			return -ENOMEM;
 630		}
 631		rcu_assign_pointer(device->name, name);
 632
 633		mutex_lock(&fs_devices->device_list_mutex);
 634		list_add_rcu(&device->dev_list, &fs_devices->devices);
 635		fs_devices->num_devices++;
 636		mutex_unlock(&fs_devices->device_list_mutex);
 637
 638		ret = 1;
 639		device->fs_devices = fs_devices;
 640	} else if (!device->name || strcmp(device->name->str, path)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641		/*
 642		 * When FS is already mounted.
 643		 * 1. If you are here and if the device->name is NULL that
 644		 *    means this device was missing at time of FS mount.
 645		 * 2. If you are here and if the device->name is different
 646		 *    from 'path' that means either
 647		 *      a. The same device disappeared and reappeared with
 648		 *         different name. or
 649		 *      b. The missing-disk-which-was-replaced, has
 650		 *         reappeared now.
 651		 *
 652		 * We must allow 1 and 2a above. But 2b would be a spurious
 653		 * and unintentional.
 654		 *
 655		 * Further in case of 1 and 2a above, the disk at 'path'
 656		 * would have missed some transaction when it was away and
 657		 * in case of 2a the stale bdev has to be updated as well.
 658		 * 2b must not be allowed at all time.
 659		 */
 660
 661		/*
 662		 * For now, we do allow update to btrfs_fs_device through the
 663		 * btrfs dev scan cli after FS has been mounted.  We're still
 664		 * tracking a problem where systems fail mount by subvolume id
 665		 * when we reject replacement on a mounted FS.
 666		 */
 667		if (!fs_devices->opened && found_transid < device->generation) {
 668			/*
 669			 * That is if the FS is _not_ mounted and if you
 670			 * are here, that means there is more than one
 671			 * disk with same uuid and devid.We keep the one
 672			 * with larger generation number or the last-in if
 673			 * generation are equal.
 674			 */
 675			return -EEXIST;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676		}
 677
 678		name = rcu_string_strdup(path, GFP_NOFS);
 679		if (!name)
 680			return -ENOMEM;
 
 
 681		rcu_string_free(device->name);
 682		rcu_assign_pointer(device->name, name);
 683		if (device->missing) {
 684			fs_devices->missing_devices--;
 685			device->missing = 0;
 686		}
 
 687	}
 688
 689	/*
 690	 * Unmount does not free the btrfs_device struct but would zero
 691	 * generation along with most of the other members. So just update
 692	 * it back. We need it to pick the disk with largest generation
 693	 * (as above).
 694	 */
 695	if (!fs_devices->opened)
 696		device->generation = found_transid;
 
 
 
 697
 698	/*
 699	 * if there is new btrfs on an already registered device,
 700	 * then remove the stale device entry.
 701	 */
 702	btrfs_free_stale_device(device);
 703
 704	*fs_devices_ret = fs_devices;
 705
 706	return ret;
 
 707}
 708
 709static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
 710{
 711	struct btrfs_fs_devices *fs_devices;
 712	struct btrfs_device *device;
 713	struct btrfs_device *orig_dev;
 
 
 
 714
 715	fs_devices = alloc_fs_devices(orig->fsid);
 716	if (IS_ERR(fs_devices))
 717		return fs_devices;
 718
 719	mutex_lock(&orig->device_list_mutex);
 720	fs_devices->total_devices = orig->total_devices;
 721
 722	/* We have held the volume lock, it is safe to get the devices. */
 723	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
 724		struct rcu_string *name;
 725
 726		device = btrfs_alloc_device(NULL, &orig_dev->devid,
 727					    orig_dev->uuid);
 728		if (IS_ERR(device))
 729			goto error;
 730
 731		/*
 732		 * This is ok to do without rcu read locked because we hold the
 733		 * uuid mutex so nothing we touch in here is going to disappear.
 734		 */
 735		if (orig_dev->name) {
 736			name = rcu_string_strdup(orig_dev->name->str,
 737					GFP_KERNEL);
 738			if (!name) {
 739				kfree(device);
 
 
 
 
 
 
 
 
 
 
 
 
 740				goto error;
 741			}
 742			rcu_assign_pointer(device->name, name);
 743		}
 744
 745		list_add(&device->dev_list, &fs_devices->devices);
 746		device->fs_devices = fs_devices;
 747		fs_devices->num_devices++;
 748	}
 749	mutex_unlock(&orig->device_list_mutex);
 750	return fs_devices;
 751error:
 752	mutex_unlock(&orig->device_list_mutex);
 753	free_fs_devices(fs_devices);
 754	return ERR_PTR(-ENOMEM);
 755}
 756
 757void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
 
 758{
 759	struct btrfs_device *device, *next;
 760	struct btrfs_device *latest_dev = NULL;
 761
 762	mutex_lock(&uuid_mutex);
 763again:
 764	/* This is the initialized path, it is safe to release the devices. */
 765	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
 766		if (device->in_fs_metadata) {
 767			if (!device->is_tgtdev_for_dev_replace &&
 768			    (!latest_dev ||
 769			     device->generation > latest_dev->generation)) {
 770				latest_dev = device;
 
 
 
 771			}
 772			continue;
 773		}
 774
 775		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
 776			/*
 777			 * In the first step, keep the device which has
 778			 * the correct fsid and the devid that is used
 779			 * for the dev_replace procedure.
 780			 * In the second step, the dev_replace state is
 781			 * read from the device tree and it is known
 782			 * whether the procedure is really active or
 783			 * not, which means whether this device is
 784			 * used or whether it should be removed.
 785			 */
 786			if (step == 0 || device->is_tgtdev_for_dev_replace) {
 787				continue;
 788			}
 789		}
 790		if (device->bdev) {
 791			blkdev_put(device->bdev, device->mode);
 792			device->bdev = NULL;
 
 793			fs_devices->open_devices--;
 794		}
 795		if (device->writeable) {
 796			list_del_init(&device->dev_alloc_list);
 797			device->writeable = 0;
 798			if (!device->is_tgtdev_for_dev_replace)
 799				fs_devices->rw_devices--;
 800		}
 801		list_del_init(&device->dev_list);
 802		fs_devices->num_devices--;
 803		rcu_string_free(device->name);
 804		kfree(device);
 805	}
 806
 807	if (fs_devices->seed) {
 808		fs_devices = fs_devices->seed;
 809		goto again;
 810	}
 811
 812	fs_devices->latest_bdev = latest_dev->bdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 813
 814	mutex_unlock(&uuid_mutex);
 815}
 816
 817static void __free_device(struct work_struct *work)
 818{
 819	struct btrfs_device *device;
 820
 821	device = container_of(work, struct btrfs_device, rcu_work);
 822
 823	if (device->bdev)
 824		blkdev_put(device->bdev, device->mode);
 
 
 825
 826	rcu_string_free(device->name);
 827	kfree(device);
 828}
 829
 830static void free_device(struct rcu_head *head)
 831{
 832	struct btrfs_device *device;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833
 834	device = container_of(head, struct btrfs_device, rcu);
 
 
 835
 836	INIT_WORK(&device->rcu_work, __free_device);
 837	schedule_work(&device->rcu_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 838}
 839
 840static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 841{
 842	struct btrfs_device *device, *tmp;
 843
 
 
 844	if (--fs_devices->opened > 0)
 845		return 0;
 846
 847	mutex_lock(&fs_devices->device_list_mutex);
 848	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
 849		btrfs_close_one_device(device);
 850	}
 851	mutex_unlock(&fs_devices->device_list_mutex);
 852
 853	WARN_ON(fs_devices->open_devices);
 854	WARN_ON(fs_devices->rw_devices);
 855	fs_devices->opened = 0;
 856	fs_devices->seeding = 0;
 857
 858	return 0;
 859}
 860
 861int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
 862{
 863	struct btrfs_fs_devices *seed_devices = NULL;
 864	int ret;
 865
 866	mutex_lock(&uuid_mutex);
 867	ret = __btrfs_close_devices(fs_devices);
 868	if (!fs_devices->opened) {
 869		seed_devices = fs_devices->seed;
 870		fs_devices->seed = NULL;
 
 
 
 
 
 
 
 
 
 
 871	}
 872	mutex_unlock(&uuid_mutex);
 873
 874	while (seed_devices) {
 875		fs_devices = seed_devices;
 876		seed_devices = fs_devices->seed;
 877		__btrfs_close_devices(fs_devices);
 878		free_fs_devices(fs_devices);
 879	}
 880	/*
 881	 * Wait for rcu kworkers under __btrfs_close_devices
 882	 * to finish all blkdev_puts so device is really
 883	 * free when umount is done.
 884	 */
 885	rcu_barrier();
 886	return ret;
 887}
 888
 889static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 890				fmode_t flags, void *holder)
 891{
 892	struct request_queue *q;
 893	struct block_device *bdev;
 894	struct list_head *head = &fs_devices->devices;
 895	struct btrfs_device *device;
 896	struct btrfs_device *latest_dev = NULL;
 897	struct buffer_head *bh;
 898	struct btrfs_super_block *disk_super;
 899	u64 devid;
 900	int seeding = 1;
 901	int ret = 0;
 902
 903	flags |= FMODE_EXCL;
 904
 905	list_for_each_entry(device, head, dev_list) {
 906		if (device->bdev)
 907			continue;
 908		if (!device->name)
 909			continue;
 910
 911		/* Just open everything we can; ignore failures here */
 912		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 913					    &bdev, &bh))
 914			continue;
 915
 916		disk_super = (struct btrfs_super_block *)bh->b_data;
 917		devid = btrfs_stack_device_id(&disk_super->dev_item);
 918		if (devid != device->devid)
 919			goto error_brelse;
 920
 921		if (memcmp(device->uuid, disk_super->dev_item.uuid,
 922			   BTRFS_UUID_SIZE))
 923			goto error_brelse;
 924
 925		device->generation = btrfs_super_generation(disk_super);
 926		if (!latest_dev ||
 927		    device->generation > latest_dev->generation)
 928			latest_dev = device;
 929
 930		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 931			device->writeable = 0;
 932		} else {
 933			device->writeable = !bdev_read_only(bdev);
 934			seeding = 0;
 935		}
 936
 937		q = bdev_get_queue(bdev);
 938		if (blk_queue_discard(q))
 939			device->can_discard = 1;
 940
 941		device->bdev = bdev;
 942		device->in_fs_metadata = 0;
 943		device->mode = flags;
 944
 945		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
 946			fs_devices->rotating = 1;
 947
 948		fs_devices->open_devices++;
 949		if (device->writeable &&
 950		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 951			fs_devices->rw_devices++;
 952			list_add(&device->dev_alloc_list,
 953				 &fs_devices->alloc_list);
 954		}
 955		brelse(bh);
 956		continue;
 957
 958error_brelse:
 959		brelse(bh);
 960		blkdev_put(bdev, flags);
 961		continue;
 962	}
 
 963	if (fs_devices->open_devices == 0) {
 964		ret = -EINVAL;
 965		goto out;
 
 966	}
 967	fs_devices->seeding = seeding;
 968	fs_devices->opened = 1;
 969	fs_devices->latest_bdev = latest_dev->bdev;
 970	fs_devices->total_rw_bytes = 0;
 971out:
 972	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 973}
 974
 975int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
 976		       fmode_t flags, void *holder)
 977{
 978	int ret;
 979
 980	mutex_lock(&uuid_mutex);
 
 
 
 
 
 
 
 
 981	if (fs_devices->opened) {
 982		fs_devices->opened++;
 983		ret = 0;
 984	} else {
 985		ret = __btrfs_open_devices(fs_devices, flags, holder);
 
 986	}
 987	mutex_unlock(&uuid_mutex);
 988	return ret;
 989}
 990
 991/*
 992 * Look for a btrfs signature on a device. This may be called out of the mount path
 993 * and we are not allowed to call set_blocksize during the scan. The superblock
 994 * is read via pagecache
 995 */
 996int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
 997			  struct btrfs_fs_devices **fs_devices_ret)
 
 
 998{
 999	struct btrfs_super_block *disk_super;
1000	struct block_device *bdev;
1001	struct page *page;
1002	void *p;
1003	int ret = -EINVAL;
1004	u64 devid;
1005	u64 transid;
1006	u64 total_devices;
1007	u64 bytenr;
1008	pgoff_t index;
1009
1010	/*
1011	 * we would like to check all the supers, but that would make
1012	 * a btrfs mount succeed after a mkfs from a different FS.
1013	 * So, we need to add a special mount option to scan for
1014	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1015	 */
1016	bytenr = btrfs_sb_offset(0);
1017	flags |= FMODE_EXCL;
1018	mutex_lock(&uuid_mutex);
1019
1020	bdev = blkdev_get_by_path(path, flags, holder);
1021
1022	if (IS_ERR(bdev)) {
1023		ret = PTR_ERR(bdev);
1024		goto error;
1025	}
1026
1027	/* make sure our super fits in the device */
1028	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1029		goto error_bdev_put;
1030
1031	/* make sure our super fits in the page */
1032	if (sizeof(*disk_super) > PAGE_SIZE)
1033		goto error_bdev_put;
1034
1035	/* make sure our super doesn't straddle pages on disk */
1036	index = bytenr >> PAGE_SHIFT;
1037	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1038		goto error_bdev_put;
1039
1040	/* pull in the page with our super */
1041	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1042				   index, GFP_NOFS);
1043
1044	if (IS_ERR_OR_NULL(page))
1045		goto error_bdev_put;
1046
1047	p = kmap(page);
1048
1049	/* align our pointer to the offset of the super block */
1050	disk_super = p + (bytenr & ~PAGE_MASK);
1051
1052	if (btrfs_super_bytenr(disk_super) != bytenr ||
1053	    btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1054		goto error_unmap;
 
 
1055
1056	devid = btrfs_stack_device_id(&disk_super->dev_item);
1057	transid = btrfs_super_generation(disk_super);
1058	total_devices = btrfs_super_num_devices(disk_super);
1059
1060	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1061	if (ret > 0) {
1062		if (disk_super->label[0]) {
1063			if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1064				disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1065			printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1066		} else {
1067			printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068		}
1069
1070		printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1071		ret = 0;
 
 
 
 
 
 
 
 
1072	}
1073	if (!ret && fs_devices_ret)
1074		(*fs_devices_ret)->total_devices = total_devices;
1075
1076error_unmap:
1077	kunmap(page);
1078	put_page(page);
1079
1080error_bdev_put:
1081	blkdev_put(bdev, flags);
1082error:
1083	mutex_unlock(&uuid_mutex);
1084	return ret;
1085}
1086
1087/* helper to account the used device space in the range */
1088int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1089				   u64 end, u64 *length)
 
 
 
 
 
 
 
 
1090{
1091	struct btrfs_key key;
1092	struct btrfs_root *root = device->dev_root;
1093	struct btrfs_dev_extent *dev_extent;
1094	struct btrfs_path *path;
1095	u64 extent_end;
 
 
1096	int ret;
1097	int slot;
1098	struct extent_buffer *l;
1099
1100	*length = 0;
1101
1102	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1103		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104
1105	path = btrfs_alloc_path();
1106	if (!path)
1107		return -ENOMEM;
1108	path->reada = READA_FORWARD;
 
 
 
 
 
 
 
1109
1110	key.objectid = device->devid;
1111	key.offset = start;
1112	key.type = BTRFS_DEV_EXTENT_KEY;
 
 
 
1113
1114	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1115	if (ret < 0)
1116		goto out;
1117	if (ret > 0) {
1118		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1119		if (ret < 0)
1120			goto out;
 
 
1121	}
1122
1123	while (1) {
1124		l = path->nodes[0];
1125		slot = path->slots[0];
1126		if (slot >= btrfs_header_nritems(l)) {
1127			ret = btrfs_next_leaf(root, path);
1128			if (ret == 0)
1129				continue;
1130			if (ret < 0)
1131				goto out;
1132
1133			break;
1134		}
1135		btrfs_item_key_to_cpu(l, &key, slot);
1136
1137		if (key.objectid < device->devid)
1138			goto next;
 
1139
1140		if (key.objectid > device->devid)
1141			break;
1142
1143		if (key.type != BTRFS_DEV_EXTENT_KEY)
1144			goto next;
 
 
 
 
 
 
1145
1146		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1147		extent_end = key.offset + btrfs_dev_extent_length(l,
1148								  dev_extent);
1149		if (key.offset <= start && extent_end > end) {
1150			*length = end - start + 1;
1151			break;
1152		} else if (key.offset <= start && extent_end > start)
1153			*length += extent_end - start;
1154		else if (key.offset > start && extent_end <= end)
1155			*length += extent_end - key.offset;
1156		else if (key.offset > start && key.offset <= end) {
1157			*length += end - key.offset + 1;
1158			break;
1159		} else if (key.offset > end)
1160			break;
1161
1162next:
1163		path->slots[0]++;
 
 
 
 
 
 
 
 
1164	}
1165	ret = 0;
1166out:
1167	btrfs_free_path(path);
1168	return ret;
1169}
1170
1171static int contains_pending_extent(struct btrfs_transaction *transaction,
1172				   struct btrfs_device *device,
1173				   u64 *start, u64 len)
1174{
1175	struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1176	struct extent_map *em;
1177	struct list_head *search_list = &fs_info->pinned_chunks;
1178	int ret = 0;
1179	u64 physical_start = *start;
 
 
 
 
 
 
 
1180
1181	if (transaction)
1182		search_list = &transaction->pending_chunks;
1183again:
1184	list_for_each_entry(em, search_list, list) {
1185		struct map_lookup *map;
1186		int i;
 
 
1187
1188		map = em->map_lookup;
1189		for (i = 0; i < map->num_stripes; i++) {
1190			u64 end;
1191
1192			if (map->stripes[i].dev != device)
1193				continue;
1194			if (map->stripes[i].physical >= physical_start + len ||
1195			    map->stripes[i].physical + em->orig_block_len <=
1196			    physical_start)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1197				continue;
1198			/*
1199			 * Make sure that while processing the pinned list we do
1200			 * not override our *start with a lower value, because
1201			 * we can have pinned chunks that fall within this
1202			 * device hole and that have lower physical addresses
1203			 * than the pending chunks we processed before. If we
1204			 * do not take this special care we can end up getting
1205			 * 2 pending chunks that start at the same physical
1206			 * device offsets because the end offset of a pinned
1207			 * chunk can be equal to the start offset of some
1208			 * pending chunk.
1209			 */
1210			end = map->stripes[i].physical + em->orig_block_len;
1211			if (end > *start) {
1212				*start = end;
1213				ret = 1;
1214			}
 
 
 
1215		}
1216	}
1217	if (search_list != &fs_info->pinned_chunks) {
1218		search_list = &fs_info->pinned_chunks;
1219		goto again;
1220	}
1221
1222	return ret;
1223}
1224
1225
1226/*
1227 * find_free_dev_extent_start - find free space in the specified device
 
1228 * @device:	  the device which we search the free space in
1229 * @num_bytes:	  the size of the free space that we need
1230 * @search_start: the position from which to begin the search
1231 * @start:	  store the start of the free space.
1232 * @len:	  the size of the free space. that we find, or the size
1233 *		  of the max free space if we don't find suitable free space
1234 *
1235 * this uses a pretty simple search, the expectation is that it is
1236 * called very infrequently and that a given device has a small number
1237 * of extents
1238 *
1239 * @start is used to store the start of the free space if we find. But if we
1240 * don't find suitable free space, it will be used to store the start position
1241 * of the max free space.
1242 *
1243 * @len is used to store the size of the free space that we find.
1244 * But if we don't find suitable free space, it is used to store the size of
1245 * the max free space.
 
 
 
 
 
 
1246 */
1247int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1248			       struct btrfs_device *device, u64 num_bytes,
1249			       u64 search_start, u64 *start, u64 *len)
1250{
 
 
1251	struct btrfs_key key;
1252	struct btrfs_root *root = device->dev_root;
1253	struct btrfs_dev_extent *dev_extent;
1254	struct btrfs_path *path;
 
1255	u64 hole_size;
1256	u64 max_hole_start;
1257	u64 max_hole_size;
1258	u64 extent_end;
1259	u64 search_end = device->total_bytes;
1260	int ret;
1261	int slot;
1262	struct extent_buffer *l;
1263	u64 min_search_start;
1264
1265	/*
1266	 * We don't want to overwrite the superblock on the drive nor any area
1267	 * used by the boot loader (grub for example), so we make sure to start
1268	 * at an offset of at least 1MB.
1269	 */
1270	min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1271	search_start = max(search_start, min_search_start);
1272
1273	path = btrfs_alloc_path();
1274	if (!path)
1275		return -ENOMEM;
1276
 
1277	max_hole_start = search_start;
1278	max_hole_size = 0;
1279
 
 
 
 
 
 
 
 
1280again:
1281	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
 
1282		ret = -ENOSPC;
1283		goto out;
1284	}
1285
1286	path->reada = READA_FORWARD;
1287	path->search_commit_root = 1;
1288	path->skip_locking = 1;
1289
1290	key.objectid = device->devid;
1291	key.offset = search_start;
1292	key.type = BTRFS_DEV_EXTENT_KEY;
1293
1294	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1295	if (ret < 0)
1296		goto out;
1297	if (ret > 0) {
1298		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1299		if (ret < 0)
1300			goto out;
1301	}
1302
1303	while (1) {
1304		l = path->nodes[0];
1305		slot = path->slots[0];
1306		if (slot >= btrfs_header_nritems(l)) {
1307			ret = btrfs_next_leaf(root, path);
1308			if (ret == 0)
1309				continue;
1310			if (ret < 0)
1311				goto out;
1312
1313			break;
1314		}
1315		btrfs_item_key_to_cpu(l, &key, slot);
1316
1317		if (key.objectid < device->devid)
1318			goto next;
1319
1320		if (key.objectid > device->devid)
1321			break;
1322
1323		if (key.type != BTRFS_DEV_EXTENT_KEY)
1324			goto next;
1325
 
 
 
1326		if (key.offset > search_start) {
1327			hole_size = key.offset - search_start;
1328
1329			/*
1330			 * Have to check before we set max_hole_start, otherwise
1331			 * we could end up sending back this offset anyway.
1332			 */
1333			if (contains_pending_extent(transaction, device,
1334						    &search_start,
1335						    hole_size)) {
1336				if (key.offset >= search_start) {
1337					hole_size = key.offset - search_start;
1338				} else {
1339					WARN_ON_ONCE(1);
1340					hole_size = 0;
1341				}
1342			}
1343
1344			if (hole_size > max_hole_size) {
1345				max_hole_start = search_start;
1346				max_hole_size = hole_size;
1347			}
1348
1349			/*
1350			 * If this free space is greater than which we need,
1351			 * it must be the max free space that we have found
1352			 * until now, so max_hole_start must point to the start
1353			 * of this free space and the length of this free space
1354			 * is stored in max_hole_size. Thus, we return
1355			 * max_hole_start and max_hole_size and go back to the
1356			 * caller.
1357			 */
1358			if (hole_size >= num_bytes) {
1359				ret = 0;
1360				goto out;
1361			}
1362		}
1363
1364		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1365		extent_end = key.offset + btrfs_dev_extent_length(l,
1366								  dev_extent);
1367		if (extent_end > search_start)
1368			search_start = extent_end;
1369next:
1370		path->slots[0]++;
1371		cond_resched();
1372	}
1373
1374	/*
1375	 * At this point, search_start should be the end of
1376	 * allocated dev extents, and when shrinking the device,
1377	 * search_end may be smaller than search_start.
1378	 */
1379	if (search_end > search_start) {
1380		hole_size = search_end - search_start;
1381
1382		if (contains_pending_extent(transaction, device, &search_start,
1383					    hole_size)) {
1384			btrfs_release_path(path);
1385			goto again;
1386		}
1387
1388		if (hole_size > max_hole_size) {
1389			max_hole_start = search_start;
1390			max_hole_size = hole_size;
1391		}
1392	}
1393
1394	/* See above. */
1395	if (max_hole_size < num_bytes)
1396		ret = -ENOSPC;
1397	else
1398		ret = 0;
1399
 
1400out:
1401	btrfs_free_path(path);
1402	*start = max_hole_start;
1403	if (len)
1404		*len = max_hole_size;
1405	return ret;
1406}
1407
1408int find_free_dev_extent(struct btrfs_trans_handle *trans,
1409			 struct btrfs_device *device, u64 num_bytes,
1410			 u64 *start, u64 *len)
1411{
1412	/* FIXME use last free of some kind */
1413	return find_free_dev_extent_start(trans->transaction, device,
1414					  num_bytes, 0, start, len);
1415}
1416
1417static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1418			  struct btrfs_device *device,
1419			  u64 start, u64 *dev_extent_len)
1420{
 
 
1421	int ret;
1422	struct btrfs_path *path;
1423	struct btrfs_root *root = device->dev_root;
1424	struct btrfs_key key;
1425	struct btrfs_key found_key;
1426	struct extent_buffer *leaf = NULL;
1427	struct btrfs_dev_extent *extent = NULL;
1428
1429	path = btrfs_alloc_path();
1430	if (!path)
1431		return -ENOMEM;
1432
1433	key.objectid = device->devid;
1434	key.offset = start;
1435	key.type = BTRFS_DEV_EXTENT_KEY;
1436again:
1437	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1438	if (ret > 0) {
1439		ret = btrfs_previous_item(root, path, key.objectid,
1440					  BTRFS_DEV_EXTENT_KEY);
1441		if (ret)
1442			goto out;
1443		leaf = path->nodes[0];
1444		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1445		extent = btrfs_item_ptr(leaf, path->slots[0],
1446					struct btrfs_dev_extent);
1447		BUG_ON(found_key.offset > start || found_key.offset +
1448		       btrfs_dev_extent_length(leaf, extent) < start);
1449		key = found_key;
1450		btrfs_release_path(path);
1451		goto again;
1452	} else if (ret == 0) {
1453		leaf = path->nodes[0];
1454		extent = btrfs_item_ptr(leaf, path->slots[0],
1455					struct btrfs_dev_extent);
1456	} else {
1457		btrfs_std_error(root->fs_info, ret, "Slot search failed");
1458		goto out;
1459	}
1460
1461	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1462
1463	ret = btrfs_del_item(trans, root, path);
1464	if (ret) {
1465		btrfs_std_error(root->fs_info, ret,
1466			    "Failed to remove dev extent item");
1467	} else {
1468		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1469	}
1470out:
1471	btrfs_free_path(path);
1472	return ret;
1473}
1474
1475static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1476				  struct btrfs_device *device,
1477				  u64 chunk_tree, u64 chunk_objectid,
1478				  u64 chunk_offset, u64 start, u64 num_bytes)
1479{
1480	int ret;
1481	struct btrfs_path *path;
1482	struct btrfs_root *root = device->dev_root;
1483	struct btrfs_dev_extent *extent;
1484	struct extent_buffer *leaf;
1485	struct btrfs_key key;
1486
1487	WARN_ON(!device->in_fs_metadata);
1488	WARN_ON(device->is_tgtdev_for_dev_replace);
1489	path = btrfs_alloc_path();
1490	if (!path)
1491		return -ENOMEM;
1492
1493	key.objectid = device->devid;
1494	key.offset = start;
1495	key.type = BTRFS_DEV_EXTENT_KEY;
1496	ret = btrfs_insert_empty_item(trans, root, path, &key,
1497				      sizeof(*extent));
1498	if (ret)
1499		goto out;
1500
1501	leaf = path->nodes[0];
1502	extent = btrfs_item_ptr(leaf, path->slots[0],
1503				struct btrfs_dev_extent);
1504	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1505	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1506	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1507
1508	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1509		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1510
1511	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1512	btrfs_mark_buffer_dirty(leaf);
1513out:
1514	btrfs_free_path(path);
1515	return ret;
1516}
1517
1518static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1519{
1520	struct extent_map_tree *em_tree;
1521	struct extent_map *em;
1522	struct rb_node *n;
1523	u64 ret = 0;
1524
1525	em_tree = &fs_info->mapping_tree.map_tree;
1526	read_lock(&em_tree->lock);
1527	n = rb_last(&em_tree->map);
1528	if (n) {
1529		em = rb_entry(n, struct extent_map, rb_node);
1530		ret = em->start + em->len;
 
 
1531	}
1532	read_unlock(&em_tree->lock);
1533
1534	return ret;
1535}
1536
1537static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1538				    u64 *devid_ret)
1539{
1540	int ret;
1541	struct btrfs_key key;
1542	struct btrfs_key found_key;
1543	struct btrfs_path *path;
1544
1545	path = btrfs_alloc_path();
1546	if (!path)
1547		return -ENOMEM;
1548
1549	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1550	key.type = BTRFS_DEV_ITEM_KEY;
1551	key.offset = (u64)-1;
1552
1553	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1554	if (ret < 0)
1555		goto error;
1556
1557	BUG_ON(ret == 0); /* Corruption */
 
 
 
 
 
1558
1559	ret = btrfs_previous_item(fs_info->chunk_root, path,
1560				  BTRFS_DEV_ITEMS_OBJECTID,
1561				  BTRFS_DEV_ITEM_KEY);
1562	if (ret) {
1563		*devid_ret = 1;
1564	} else {
1565		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1566				      path->slots[0]);
1567		*devid_ret = found_key.offset + 1;
1568	}
1569	ret = 0;
1570error:
1571	btrfs_free_path(path);
1572	return ret;
1573}
1574
1575/*
1576 * the device information is stored in the chunk root
1577 * the btrfs_device struct should be fully filled in
1578 */
1579static int btrfs_add_device(struct btrfs_trans_handle *trans,
1580			    struct btrfs_root *root,
1581			    struct btrfs_device *device)
1582{
1583	int ret;
1584	struct btrfs_path *path;
1585	struct btrfs_dev_item *dev_item;
1586	struct extent_buffer *leaf;
1587	struct btrfs_key key;
1588	unsigned long ptr;
1589
1590	root = root->fs_info->chunk_root;
1591
1592	path = btrfs_alloc_path();
1593	if (!path)
1594		return -ENOMEM;
1595
1596	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1597	key.type = BTRFS_DEV_ITEM_KEY;
1598	key.offset = device->devid;
1599
1600	ret = btrfs_insert_empty_item(trans, root, path, &key,
1601				      sizeof(*dev_item));
 
 
1602	if (ret)
1603		goto out;
1604
1605	leaf = path->nodes[0];
1606	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1607
1608	btrfs_set_device_id(leaf, dev_item, device->devid);
1609	btrfs_set_device_generation(leaf, dev_item, 0);
1610	btrfs_set_device_type(leaf, dev_item, device->type);
1611	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1612	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1613	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1614	btrfs_set_device_total_bytes(leaf, dev_item,
1615				     btrfs_device_get_disk_total_bytes(device));
1616	btrfs_set_device_bytes_used(leaf, dev_item,
1617				    btrfs_device_get_bytes_used(device));
1618	btrfs_set_device_group(leaf, dev_item, 0);
1619	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1620	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1621	btrfs_set_device_start_offset(leaf, dev_item, 0);
1622
1623	ptr = btrfs_device_uuid(dev_item);
1624	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1625	ptr = btrfs_device_fsid(dev_item);
1626	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1627	btrfs_mark_buffer_dirty(leaf);
 
1628
1629	ret = 0;
1630out:
1631	btrfs_free_path(path);
1632	return ret;
1633}
1634
1635/*
1636 * Function to update ctime/mtime for a given device path.
1637 * Mainly used for ctime/mtime based probe like libblkid.
 
 
1638 */
1639static void update_dev_time(char *path_name)
1640{
1641	struct file *filp;
 
1642
1643	filp = filp_open(path_name, O_RDWR, 0);
1644	if (IS_ERR(filp))
1645		return;
1646	file_update_time(filp);
1647	filp_close(filp, NULL);
 
1648}
1649
1650static int btrfs_rm_dev_item(struct btrfs_root *root,
1651			     struct btrfs_device *device)
1652{
 
1653	int ret;
1654	struct btrfs_path *path;
1655	struct btrfs_key key;
1656	struct btrfs_trans_handle *trans;
1657
1658	root = root->fs_info->chunk_root;
1659
1660	path = btrfs_alloc_path();
1661	if (!path)
1662		return -ENOMEM;
1663
1664	trans = btrfs_start_transaction(root, 0);
1665	if (IS_ERR(trans)) {
1666		btrfs_free_path(path);
1667		return PTR_ERR(trans);
1668	}
1669	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1670	key.type = BTRFS_DEV_ITEM_KEY;
1671	key.offset = device->devid;
1672
 
1673	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1674	if (ret < 0)
1675		goto out;
1676
1677	if (ret > 0) {
1678		ret = -ENOENT;
1679		goto out;
1680	}
1681
1682	ret = btrfs_del_item(trans, root, path);
1683	if (ret)
1684		goto out;
1685out:
1686	btrfs_free_path(path);
1687	btrfs_commit_transaction(trans, root);
1688	return ret;
1689}
1690
1691int btrfs_rm_device(struct btrfs_root *root, char *device_path)
 
 
 
 
 
 
1692{
1693	struct btrfs_device *device;
1694	struct btrfs_device *next_device;
1695	struct block_device *bdev;
1696	struct buffer_head *bh = NULL;
1697	struct btrfs_super_block *disk_super;
1698	struct btrfs_fs_devices *cur_devices;
1699	u64 all_avail;
1700	u64 devid;
1701	u64 num_devices;
1702	u8 *dev_uuid;
1703	unsigned seq;
1704	int ret = 0;
1705	bool clear_super = false;
1706
1707	mutex_lock(&uuid_mutex);
1708
1709	do {
1710		seq = read_seqbegin(&root->fs_info->profiles_lock);
1711
1712		all_avail = root->fs_info->avail_data_alloc_bits |
1713			    root->fs_info->avail_system_alloc_bits |
1714			    root->fs_info->avail_metadata_alloc_bits;
1715	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
1716
1717	num_devices = root->fs_info->fs_devices->num_devices;
1718	btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1719	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1720		WARN_ON(num_devices < 1);
1721		num_devices--;
 
1722	}
1723	btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1724
1725	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1726		ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1727		goto out;
 
 
 
 
 
 
 
 
 
 
1728	}
1729
1730	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1731		ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1732		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1733	}
 
1734
1735	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1736	    root->fs_info->fs_devices->rw_devices <= 2) {
1737		ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1738		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1739	}
1740	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1741	    root->fs_info->fs_devices->rw_devices <= 3) {
1742		ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1743		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744	}
1745
1746	if (strcmp(device_path, "missing") == 0) {
1747		struct list_head *devices;
1748		struct btrfs_device *tmp;
 
 
 
1749
1750		device = NULL;
1751		devices = &root->fs_info->fs_devices->devices;
1752		/*
1753		 * It is safe to read the devices since the volume_mutex
1754		 * is held.
1755		 */
1756		list_for_each_entry(tmp, devices, dev_list) {
1757			if (tmp->in_fs_metadata &&
1758			    !tmp->is_tgtdev_for_dev_replace &&
1759			    !tmp->bdev) {
1760				device = tmp;
1761				break;
1762			}
1763		}
1764		bdev = NULL;
1765		bh = NULL;
1766		disk_super = NULL;
1767		if (!device) {
1768			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1769			goto out;
1770		}
1771	} else {
1772		ret = btrfs_get_bdev_and_sb(device_path,
1773					    FMODE_WRITE | FMODE_EXCL,
1774					    root->fs_info->bdev_holder, 0,
1775					    &bdev, &bh);
1776		if (ret)
1777			goto out;
1778		disk_super = (struct btrfs_super_block *)bh->b_data;
1779		devid = btrfs_stack_device_id(&disk_super->dev_item);
1780		dev_uuid = disk_super->dev_item.uuid;
1781		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1782					   disk_super->fsid);
1783		if (!device) {
1784			ret = -ENOENT;
1785			goto error_brelse;
1786		}
1787	}
1788
1789	if (device->is_tgtdev_for_dev_replace) {
1790		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1791		goto error_brelse;
1792	}
 
 
 
 
 
 
 
 
 
1793
1794	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1795		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1796		goto error_brelse;
1797	}
1798
1799	if (device->writeable) {
1800		lock_chunks(root);
1801		list_del_init(&device->dev_alloc_list);
1802		device->fs_devices->rw_devices--;
1803		unlock_chunks(root);
1804		clear_super = true;
1805	}
1806
1807	mutex_unlock(&uuid_mutex);
1808	ret = btrfs_shrink_device(device, 0);
1809	mutex_lock(&uuid_mutex);
1810	if (ret)
1811		goto error_undo;
1812
1813	/*
1814	 * TODO: the superblock still includes this device in its num_devices
1815	 * counter although write_all_supers() is not locked out. This
1816	 * could give a filesystem state which requires a degraded mount.
1817	 */
1818	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1819	if (ret)
1820		goto error_undo;
 
 
 
 
 
 
 
 
 
 
 
 
1821
1822	device->in_fs_metadata = 0;
1823	btrfs_scrub_cancel_dev(root->fs_info, device);
1824
1825	/*
1826	 * the device list mutex makes sure that we don't change
1827	 * the device list while someone else is writing out all
1828	 * the device supers. Whoever is writing all supers, should
1829	 * lock the device list mutex before getting the number of
1830	 * devices in the super block (super_copy). Conversely,
1831	 * whoever updates the number of devices in the super block
1832	 * (super_copy) should hold the device list mutex.
1833	 */
1834
 
 
 
 
 
1835	cur_devices = device->fs_devices;
1836	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1837	list_del_rcu(&device->dev_list);
1838
1839	device->fs_devices->num_devices--;
1840	device->fs_devices->total_devices--;
 
 
 
1841
1842	if (device->missing)
1843		device->fs_devices->missing_devices--;
1844
1845	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1846				 struct btrfs_device, dev_list);
1847	if (device->bdev == root->fs_info->sb->s_bdev)
1848		root->fs_info->sb->s_bdev = next_device->bdev;
1849	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1850		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1851
1852	if (device->bdev) {
1853		device->fs_devices->open_devices--;
1854		/* remove sysfs entry */
1855		btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1856	}
1857
1858	call_rcu(&device->rcu, free_device);
1859
1860	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1861	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1862	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1863
1864	if (cur_devices->open_devices == 0) {
1865		struct btrfs_fs_devices *fs_devices;
1866		fs_devices = root->fs_info->fs_devices;
1867		while (fs_devices) {
1868			if (fs_devices->seed == cur_devices) {
1869				fs_devices->seed = cur_devices->seed;
1870				break;
1871			}
1872			fs_devices = fs_devices->seed;
1873		}
1874		cur_devices->seed = NULL;
1875		__btrfs_close_devices(cur_devices);
1876		free_fs_devices(cur_devices);
1877	}
1878
1879	root->fs_info->num_tolerated_disk_barrier_failures =
1880		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1881
1882	/*
1883	 * at this point, the device is zero sized.  We want to
1884	 * remove it from the devices list and zero out the old super
 
 
 
 
 
 
1885	 */
1886	if (clear_super && disk_super) {
1887		u64 bytenr;
1888		int i;
1889
1890		/* make sure this device isn't detected as part of
1891		 * the FS anymore
1892		 */
1893		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1894		set_buffer_dirty(bh);
1895		sync_dirty_buffer(bh);
1896
1897		/* clear the mirror copies of super block on the disk
1898		 * being removed, 0th copy is been taken care above and
1899		 * the below would take of the rest
1900		 */
1901		for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1902			bytenr = btrfs_sb_offset(i);
1903			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1904					i_size_read(bdev->bd_inode))
1905				break;
1906
1907			brelse(bh);
1908			bh = __bread(bdev, bytenr / 4096,
1909					BTRFS_SUPER_INFO_SIZE);
1910			if (!bh)
1911				continue;
1912
1913			disk_super = (struct btrfs_super_block *)bh->b_data;
1914
1915			if (btrfs_super_bytenr(disk_super) != bytenr ||
1916				btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1917				continue;
1918			}
1919			memset(&disk_super->magic, 0,
1920						sizeof(disk_super->magic));
1921			set_buffer_dirty(bh);
1922			sync_dirty_buffer(bh);
1923		}
1924	}
1925
1926	ret = 0;
 
 
1927
1928	if (bdev) {
1929		/* Notify udev that device has changed */
1930		btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1931
1932		/* Update ctime/mtime for device path for libblkid */
1933		update_dev_time(device_path);
 
 
 
 
 
 
1934	}
1935
1936error_brelse:
1937	brelse(bh);
1938	if (bdev)
1939		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1940out:
1941	mutex_unlock(&uuid_mutex);
1942	return ret;
 
1943error_undo:
1944	if (device->writeable) {
1945		lock_chunks(root);
1946		list_add(&device->dev_alloc_list,
1947			 &root->fs_info->fs_devices->alloc_list);
1948		device->fs_devices->rw_devices++;
1949		unlock_chunks(root);
1950	}
1951	goto error_brelse;
1952}
1953
1954void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1955					struct btrfs_device *srcdev)
1956{
1957	struct btrfs_fs_devices *fs_devices;
1958
1959	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1960
1961	/*
1962	 * in case of fs with no seed, srcdev->fs_devices will point
1963	 * to fs_devices of fs_info. However when the dev being replaced is
1964	 * a seed dev it will point to the seed's local fs_devices. In short
1965	 * srcdev will have its correct fs_devices in both the cases.
1966	 */
1967	fs_devices = srcdev->fs_devices;
1968
1969	list_del_rcu(&srcdev->dev_list);
1970	list_del_rcu(&srcdev->dev_alloc_list);
1971	fs_devices->num_devices--;
1972	if (srcdev->missing)
1973		fs_devices->missing_devices--;
1974
1975	if (srcdev->writeable) {
1976		fs_devices->rw_devices--;
1977		/* zero out the old super if it is writable */
1978		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1979	}
1980
1981	if (srcdev->bdev)
1982		fs_devices->open_devices--;
1983}
1984
1985void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1986				      struct btrfs_device *srcdev)
1987{
1988	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1989
1990	call_rcu(&srcdev->rcu, free_device);
1991
1992	/*
1993	 * unless fs_devices is seed fs, num_devices shouldn't go
1994	 * zero
1995	 */
1996	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1997
1998	/* if this is no devs we rather delete the fs_devices */
1999	if (!fs_devices->num_devices) {
2000		struct btrfs_fs_devices *tmp_fs_devices;
 
 
 
 
 
 
2001
2002		tmp_fs_devices = fs_info->fs_devices;
2003		while (tmp_fs_devices) {
2004			if (tmp_fs_devices->seed == fs_devices) {
2005				tmp_fs_devices->seed = fs_devices->seed;
2006				break;
2007			}
2008			tmp_fs_devices = tmp_fs_devices->seed;
2009		}
2010		fs_devices->seed = NULL;
2011		__btrfs_close_devices(fs_devices);
2012		free_fs_devices(fs_devices);
2013	}
 
2014}
2015
2016void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2017				      struct btrfs_device *tgtdev)
2018{
2019	struct btrfs_device *next_device;
2020
2021	mutex_lock(&uuid_mutex);
2022	WARN_ON(!tgtdev);
2023	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2024
2025	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2026
2027	if (tgtdev->bdev) {
2028		btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2029		fs_info->fs_devices->open_devices--;
2030	}
2031	fs_info->fs_devices->num_devices--;
 
2032
2033	next_device = list_entry(fs_info->fs_devices->devices.next,
2034				 struct btrfs_device, dev_list);
2035	if (tgtdev->bdev == fs_info->sb->s_bdev)
2036		fs_info->sb->s_bdev = next_device->bdev;
2037	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2038		fs_info->fs_devices->latest_bdev = next_device->bdev;
2039	list_del_rcu(&tgtdev->dev_list);
2040
2041	call_rcu(&tgtdev->rcu, free_device);
2042
2043	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2044	mutex_unlock(&uuid_mutex);
 
 
 
2045}
2046
2047static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2048				     struct btrfs_device **device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049{
2050	int ret = 0;
2051	struct btrfs_super_block *disk_super;
2052	u64 devid;
2053	u8 *dev_uuid;
2054	struct block_device *bdev;
2055	struct buffer_head *bh;
2056
2057	*device = NULL;
2058	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2059				    root->fs_info->bdev_holder, 0, &bdev, &bh);
2060	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2061		return ret;
2062	disk_super = (struct btrfs_super_block *)bh->b_data;
2063	devid = btrfs_stack_device_id(&disk_super->dev_item);
2064	dev_uuid = disk_super->dev_item.uuid;
2065	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2066				    disk_super->fsid);
2067	brelse(bh);
2068	if (!*device)
2069		ret = -ENOENT;
2070	blkdev_put(bdev, FMODE_READ);
2071	return ret;
 
2072}
2073
2074int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2075					 char *device_path,
2076					 struct btrfs_device **device)
 
 
 
2077{
2078	*device = NULL;
2079	if (strcmp(device_path, "missing") == 0) {
2080		struct list_head *devices;
2081		struct btrfs_device *tmp;
2082
2083		devices = &root->fs_info->fs_devices->devices;
2084		/*
2085		 * It is safe to read the devices since the volume_mutex
2086		 * is held by the caller.
2087		 */
2088		list_for_each_entry(tmp, devices, dev_list) {
2089			if (tmp->in_fs_metadata && !tmp->bdev) {
2090				*device = tmp;
2091				break;
2092			}
2093		}
2094
2095		if (!*device)
2096			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
 
 
 
 
 
2097
2098		return 0;
2099	} else {
2100		return btrfs_find_device_by_path(root, device_path, device);
 
 
 
2101	}
 
 
 
 
 
 
 
 
 
2102}
2103
2104/*
2105 * does all the dirty work required for changing file system's UUID.
2106 */
2107static int btrfs_prepare_sprout(struct btrfs_root *root)
2108{
2109	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2110	struct btrfs_fs_devices *old_devices;
2111	struct btrfs_fs_devices *seed_devices;
2112	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2113	struct btrfs_device *device;
2114	u64 super_flags;
2115
2116	BUG_ON(!mutex_is_locked(&uuid_mutex));
2117	if (!fs_devices->seeding)
2118		return -EINVAL;
2119
2120	seed_devices = __alloc_fs_devices();
 
 
 
 
2121	if (IS_ERR(seed_devices))
2122		return PTR_ERR(seed_devices);
2123
 
 
 
 
 
 
2124	old_devices = clone_fs_devices(fs_devices);
2125	if (IS_ERR(old_devices)) {
2126		kfree(seed_devices);
2127		return PTR_ERR(old_devices);
2128	}
2129
2130	list_add(&old_devices->list, &fs_uuids);
2131
2132	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2133	seed_devices->opened = 1;
2134	INIT_LIST_HEAD(&seed_devices->devices);
2135	INIT_LIST_HEAD(&seed_devices->alloc_list);
2136	mutex_init(&seed_devices->device_list_mutex);
2137
2138	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2140			      synchronize_rcu);
2141	list_for_each_entry(device, &seed_devices->devices, dev_list)
2142		device->fs_devices = seed_devices;
2143
2144	lock_chunks(root);
2145	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2146	unlock_chunks(root);
2147
2148	fs_devices->seeding = 0;
2149	fs_devices->num_devices = 0;
2150	fs_devices->open_devices = 0;
2151	fs_devices->missing_devices = 0;
2152	fs_devices->rotating = 0;
2153	fs_devices->seed = seed_devices;
2154
2155	generate_random_uuid(fs_devices->fsid);
2156	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2157	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2158	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2159
2160	super_flags = btrfs_super_flags(disk_super) &
2161		      ~BTRFS_SUPER_FLAG_SEEDING;
2162	btrfs_set_super_flags(disk_super, super_flags);
2163
2164	return 0;
2165}
2166
2167/*
2168 * strore the expected generation for seed devices in device items.
2169 */
2170static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2171			       struct btrfs_root *root)
2172{
 
 
 
2173	struct btrfs_path *path;
2174	struct extent_buffer *leaf;
2175	struct btrfs_dev_item *dev_item;
2176	struct btrfs_device *device;
2177	struct btrfs_key key;
2178	u8 fs_uuid[BTRFS_UUID_SIZE];
2179	u8 dev_uuid[BTRFS_UUID_SIZE];
2180	u64 devid;
2181	int ret;
2182
2183	path = btrfs_alloc_path();
2184	if (!path)
2185		return -ENOMEM;
2186
2187	root = root->fs_info->chunk_root;
2188	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2189	key.offset = 0;
2190	key.type = BTRFS_DEV_ITEM_KEY;
2191
2192	while (1) {
 
2193		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 
2194		if (ret < 0)
2195			goto error;
2196
2197		leaf = path->nodes[0];
2198next_slot:
2199		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2200			ret = btrfs_next_leaf(root, path);
2201			if (ret > 0)
2202				break;
2203			if (ret < 0)
2204				goto error;
2205			leaf = path->nodes[0];
2206			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2207			btrfs_release_path(path);
2208			continue;
2209		}
2210
2211		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2212		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2213		    key.type != BTRFS_DEV_ITEM_KEY)
2214			break;
2215
2216		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2217					  struct btrfs_dev_item);
2218		devid = btrfs_device_id(leaf, dev_item);
2219		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2220				   BTRFS_UUID_SIZE);
2221		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2222				   BTRFS_UUID_SIZE);
2223		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2224					   fs_uuid);
 
2225		BUG_ON(!device); /* Logic error */
2226
2227		if (device->fs_devices->seeding) {
2228			btrfs_set_device_generation(leaf, dev_item,
2229						    device->generation);
2230			btrfs_mark_buffer_dirty(leaf);
2231		}
2232
2233		path->slots[0]++;
2234		goto next_slot;
2235	}
2236	ret = 0;
2237error:
2238	btrfs_free_path(path);
2239	return ret;
2240}
2241
2242int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2243{
2244	struct request_queue *q;
2245	struct btrfs_trans_handle *trans;
2246	struct btrfs_device *device;
2247	struct block_device *bdev;
2248	struct list_head *devices;
2249	struct super_block *sb = root->fs_info->sb;
2250	struct rcu_string *name;
2251	u64 tmp;
2252	int seeding_dev = 0;
2253	int ret = 0;
 
 
2254
2255	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2256		return -EROFS;
2257
2258	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2259				  root->fs_info->bdev_holder);
2260	if (IS_ERR(bdev))
2261		return PTR_ERR(bdev);
2262
2263	if (root->fs_info->fs_devices->seeding) {
2264		seeding_dev = 1;
 
 
 
 
 
2265		down_write(&sb->s_umount);
2266		mutex_lock(&uuid_mutex);
 
2267	}
2268
2269	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2270
2271	devices = &root->fs_info->fs_devices->devices;
2272
2273	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2274	list_for_each_entry(device, devices, dev_list) {
2275		if (device->bdev == bdev) {
2276			ret = -EEXIST;
2277			mutex_unlock(
2278				&root->fs_info->fs_devices->device_list_mutex);
2279			goto error;
2280		}
2281	}
2282	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2283
2284	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2285	if (IS_ERR(device)) {
2286		/* we can safely leave the fs_devices entry around */
2287		ret = PTR_ERR(device);
2288		goto error;
2289	}
2290
2291	name = rcu_string_strdup(device_path, GFP_KERNEL);
2292	if (!name) {
2293		kfree(device);
2294		ret = -ENOMEM;
2295		goto error;
2296	}
2297	rcu_assign_pointer(device->name, name);
 
 
 
2298
2299	trans = btrfs_start_transaction(root, 0);
2300	if (IS_ERR(trans)) {
2301		rcu_string_free(device->name);
2302		kfree(device);
2303		ret = PTR_ERR(trans);
2304		goto error;
2305	}
2306
2307	q = bdev_get_queue(bdev);
2308	if (blk_queue_discard(q))
2309		device->can_discard = 1;
2310	device->writeable = 1;
2311	device->generation = trans->transid;
2312	device->io_width = root->sectorsize;
2313	device->io_align = root->sectorsize;
2314	device->sector_size = root->sectorsize;
2315	device->total_bytes = i_size_read(bdev->bd_inode);
 
2316	device->disk_total_bytes = device->total_bytes;
2317	device->commit_total_bytes = device->total_bytes;
2318	device->dev_root = root->fs_info->dev_root;
2319	device->bdev = bdev;
2320	device->in_fs_metadata = 1;
2321	device->is_tgtdev_for_dev_replace = 0;
2322	device->mode = FMODE_EXCL;
2323	device->dev_stats_valid = 1;
2324	set_blocksize(device->bdev, 4096);
 
 
 
 
 
 
 
 
 
 
2325
 
2326	if (seeding_dev) {
2327		sb->s_flags &= ~MS_RDONLY;
2328		ret = btrfs_prepare_sprout(root);
2329		BUG_ON(ret); /* -ENOMEM */
2330	}
2331
2332	device->fs_devices = root->fs_info->fs_devices;
2333
2334	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2335	lock_chunks(root);
2336	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2337	list_add(&device->dev_alloc_list,
2338		 &root->fs_info->fs_devices->alloc_list);
2339	root->fs_info->fs_devices->num_devices++;
2340	root->fs_info->fs_devices->open_devices++;
2341	root->fs_info->fs_devices->rw_devices++;
2342	root->fs_info->fs_devices->total_devices++;
2343	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2344
2345	spin_lock(&root->fs_info->free_chunk_lock);
2346	root->fs_info->free_chunk_space += device->total_bytes;
2347	spin_unlock(&root->fs_info->free_chunk_lock);
2348
2349	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2350		root->fs_info->fs_devices->rotating = 1;
2351
2352	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2353	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2354				    tmp + device->total_bytes);
2355
2356	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2357	btrfs_set_super_num_devices(root->fs_info->super_copy,
2358				    tmp + 1);
2359
2360	/* add sysfs device entry */
2361	btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2362
2363	/*
2364	 * we've got more storage, clear any full flags on the space
2365	 * infos
2366	 */
2367	btrfs_clear_space_info_full(root->fs_info);
 
 
 
 
 
2368
2369	unlock_chunks(root);
2370	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2371
2372	if (seeding_dev) {
2373		lock_chunks(root);
2374		ret = init_first_rw_device(trans, root, device);
2375		unlock_chunks(root);
2376		if (ret) {
2377			btrfs_abort_transaction(trans, root, ret);
2378			goto error_trans;
2379		}
2380	}
2381
2382	ret = btrfs_add_device(trans, root, device);
2383	if (ret) {
2384		btrfs_abort_transaction(trans, root, ret);
2385		goto error_trans;
2386	}
2387
2388	if (seeding_dev) {
2389		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2390
2391		ret = btrfs_finish_sprout(trans, root);
2392		if (ret) {
2393			btrfs_abort_transaction(trans, root, ret);
2394			goto error_trans;
2395		}
2396
2397		/* Sprouting would change fsid of the mounted root,
2398		 * so rename the fsid on the sysfs
 
2399		 */
2400		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2401						root->fs_info->fsid);
2402		if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2403								fsid_buf))
2404			btrfs_warn(root->fs_info,
2405				"sysfs: failed to create fsid for sprout");
2406	}
2407
2408	root->fs_info->num_tolerated_disk_barrier_failures =
2409		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2410	ret = btrfs_commit_transaction(trans, root);
2411
2412	if (seeding_dev) {
2413		mutex_unlock(&uuid_mutex);
2414		up_write(&sb->s_umount);
 
2415
2416		if (ret) /* transaction commit */
2417			return ret;
2418
2419		ret = btrfs_relocate_sys_chunks(root);
2420		if (ret < 0)
2421			btrfs_std_error(root->fs_info, ret,
2422				    "Failed to relocate sys chunks after "
2423				    "device initialization. This can be fixed "
2424				    "using the \"btrfs balance\" command.");
2425		trans = btrfs_attach_transaction(root);
2426		if (IS_ERR(trans)) {
2427			if (PTR_ERR(trans) == -ENOENT)
2428				return 0;
2429			return PTR_ERR(trans);
 
 
2430		}
2431		ret = btrfs_commit_transaction(trans, root);
2432	}
2433
2434	/* Update ctime/mtime for libblkid */
 
 
 
 
 
 
 
 
 
2435	update_dev_time(device_path);
 
2436	return ret;
2437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2438error_trans:
2439	btrfs_end_transaction(trans, root);
2440	rcu_string_free(device->name);
2441	btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2442	kfree(device);
 
 
2443error:
2444	blkdev_put(bdev, FMODE_EXCL);
2445	if (seeding_dev) {
2446		mutex_unlock(&uuid_mutex);
2447		up_write(&sb->s_umount);
2448	}
2449	return ret;
2450}
2451
2452int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2453				  struct btrfs_device *srcdev,
2454				  struct btrfs_device **device_out)
2455{
2456	struct request_queue *q;
2457	struct btrfs_device *device;
2458	struct block_device *bdev;
2459	struct btrfs_fs_info *fs_info = root->fs_info;
2460	struct list_head *devices;
2461	struct rcu_string *name;
2462	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2463	int ret = 0;
2464
2465	*device_out = NULL;
2466	if (fs_info->fs_devices->seeding) {
2467		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2468		return -EINVAL;
2469	}
2470
2471	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2472				  fs_info->bdev_holder);
2473	if (IS_ERR(bdev)) {
2474		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2475		return PTR_ERR(bdev);
2476	}
2477
2478	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2479
2480	devices = &fs_info->fs_devices->devices;
2481	list_for_each_entry(device, devices, dev_list) {
2482		if (device->bdev == bdev) {
2483			btrfs_err(fs_info, "target device is in the filesystem!");
2484			ret = -EEXIST;
2485			goto error;
2486		}
2487	}
2488
2489
2490	if (i_size_read(bdev->bd_inode) <
2491	    btrfs_device_get_total_bytes(srcdev)) {
2492		btrfs_err(fs_info, "target device is smaller than source device!");
2493		ret = -EINVAL;
2494		goto error;
2495	}
2496
2497
2498	device = btrfs_alloc_device(NULL, &devid, NULL);
2499	if (IS_ERR(device)) {
2500		ret = PTR_ERR(device);
2501		goto error;
2502	}
2503
2504	name = rcu_string_strdup(device_path, GFP_NOFS);
2505	if (!name) {
2506		kfree(device);
2507		ret = -ENOMEM;
2508		goto error;
2509	}
2510	rcu_assign_pointer(device->name, name);
2511
2512	q = bdev_get_queue(bdev);
2513	if (blk_queue_discard(q))
2514		device->can_discard = 1;
2515	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2516	device->writeable = 1;
2517	device->generation = 0;
2518	device->io_width = root->sectorsize;
2519	device->io_align = root->sectorsize;
2520	device->sector_size = root->sectorsize;
2521	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2522	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2523	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2524	ASSERT(list_empty(&srcdev->resized_list));
2525	device->commit_total_bytes = srcdev->commit_total_bytes;
2526	device->commit_bytes_used = device->bytes_used;
2527	device->dev_root = fs_info->dev_root;
2528	device->bdev = bdev;
2529	device->in_fs_metadata = 1;
2530	device->is_tgtdev_for_dev_replace = 1;
2531	device->mode = FMODE_EXCL;
2532	device->dev_stats_valid = 1;
2533	set_blocksize(device->bdev, 4096);
2534	device->fs_devices = fs_info->fs_devices;
2535	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2536	fs_info->fs_devices->num_devices++;
2537	fs_info->fs_devices->open_devices++;
2538	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2539
2540	*device_out = device;
2541	return ret;
2542
2543error:
2544	blkdev_put(bdev, FMODE_EXCL);
2545	return ret;
2546}
2547
2548void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2549					      struct btrfs_device *tgtdev)
2550{
2551	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2552	tgtdev->io_width = fs_info->dev_root->sectorsize;
2553	tgtdev->io_align = fs_info->dev_root->sectorsize;
2554	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2555	tgtdev->dev_root = fs_info->dev_root;
2556	tgtdev->in_fs_metadata = 1;
2557}
2558
2559static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2560					struct btrfs_device *device)
2561{
2562	int ret;
2563	struct btrfs_path *path;
2564	struct btrfs_root *root;
2565	struct btrfs_dev_item *dev_item;
2566	struct extent_buffer *leaf;
2567	struct btrfs_key key;
2568
2569	root = device->dev_root->fs_info->chunk_root;
2570
2571	path = btrfs_alloc_path();
2572	if (!path)
2573		return -ENOMEM;
2574
2575	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2576	key.type = BTRFS_DEV_ITEM_KEY;
2577	key.offset = device->devid;
2578
2579	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2580	if (ret < 0)
2581		goto out;
2582
2583	if (ret > 0) {
2584		ret = -ENOENT;
2585		goto out;
2586	}
2587
2588	leaf = path->nodes[0];
2589	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2590
2591	btrfs_set_device_id(leaf, dev_item, device->devid);
2592	btrfs_set_device_type(leaf, dev_item, device->type);
2593	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2594	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2595	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2596	btrfs_set_device_total_bytes(leaf, dev_item,
2597				     btrfs_device_get_disk_total_bytes(device));
2598	btrfs_set_device_bytes_used(leaf, dev_item,
2599				    btrfs_device_get_bytes_used(device));
2600	btrfs_mark_buffer_dirty(leaf);
2601
2602out:
2603	btrfs_free_path(path);
2604	return ret;
2605}
2606
2607int btrfs_grow_device(struct btrfs_trans_handle *trans,
2608		      struct btrfs_device *device, u64 new_size)
2609{
2610	struct btrfs_super_block *super_copy =
2611		device->dev_root->fs_info->super_copy;
2612	struct btrfs_fs_devices *fs_devices;
2613	u64 old_total;
2614	u64 diff;
 
2615
2616	if (!device->writeable)
2617		return -EACCES;
2618
2619	lock_chunks(device->dev_root);
 
 
2620	old_total = btrfs_super_total_bytes(super_copy);
2621	diff = new_size - device->total_bytes;
2622
2623	if (new_size <= device->total_bytes ||
2624	    device->is_tgtdev_for_dev_replace) {
2625		unlock_chunks(device->dev_root);
2626		return -EINVAL;
2627	}
2628
2629	fs_devices = device->dev_root->fs_info->fs_devices;
2630
2631	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2632	device->fs_devices->total_rw_bytes += diff;
 
2633
2634	btrfs_device_set_total_bytes(device, new_size);
2635	btrfs_device_set_disk_total_bytes(device, new_size);
2636	btrfs_clear_space_info_full(device->dev_root->fs_info);
2637	if (list_empty(&device->resized_list))
2638		list_add_tail(&device->resized_list,
2639			      &fs_devices->resized_devices);
2640	unlock_chunks(device->dev_root);
2641
2642	return btrfs_update_device(trans, device);
 
 
 
 
2643}
2644
2645static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2646			    struct btrfs_root *root, u64 chunk_objectid,
2647			    u64 chunk_offset)
2648{
 
 
2649	int ret;
2650	struct btrfs_path *path;
2651	struct btrfs_key key;
2652
2653	root = root->fs_info->chunk_root;
2654	path = btrfs_alloc_path();
2655	if (!path)
2656		return -ENOMEM;
2657
2658	key.objectid = chunk_objectid;
2659	key.offset = chunk_offset;
2660	key.type = BTRFS_CHUNK_ITEM_KEY;
2661
2662	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2663	if (ret < 0)
2664		goto out;
2665	else if (ret > 0) { /* Logic error or corruption */
2666		btrfs_std_error(root->fs_info, -ENOENT,
2667			    "Failed lookup while freeing chunk.");
2668		ret = -ENOENT;
 
2669		goto out;
2670	}
2671
2672	ret = btrfs_del_item(trans, root, path);
2673	if (ret < 0)
2674		btrfs_std_error(root->fs_info, ret,
2675			    "Failed to delete chunk item.");
 
 
2676out:
2677	btrfs_free_path(path);
2678	return ret;
2679}
2680
2681static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2682			chunk_offset)
2683{
2684	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2685	struct btrfs_disk_key *disk_key;
2686	struct btrfs_chunk *chunk;
2687	u8 *ptr;
2688	int ret = 0;
2689	u32 num_stripes;
2690	u32 array_size;
2691	u32 len = 0;
2692	u32 cur;
2693	struct btrfs_key key;
2694
2695	lock_chunks(root);
2696	array_size = btrfs_super_sys_array_size(super_copy);
2697
2698	ptr = super_copy->sys_chunk_array;
2699	cur = 0;
2700
2701	while (cur < array_size) {
2702		disk_key = (struct btrfs_disk_key *)ptr;
2703		btrfs_disk_key_to_cpu(&key, disk_key);
2704
2705		len = sizeof(*disk_key);
2706
2707		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2708			chunk = (struct btrfs_chunk *)(ptr + len);
2709			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2710			len += btrfs_chunk_item_size(num_stripes);
2711		} else {
2712			ret = -EIO;
2713			break;
2714		}
2715		if (key.objectid == chunk_objectid &&
2716		    key.offset == chunk_offset) {
2717			memmove(ptr, ptr + len, array_size - (cur + len));
2718			array_size -= len;
2719			btrfs_set_super_sys_array_size(super_copy, array_size);
2720		} else {
2721			ptr += len;
2722			cur += len;
2723		}
2724	}
2725	unlock_chunks(root);
2726	return ret;
2727}
2728
2729int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2730		       struct btrfs_root *root, u64 chunk_offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2731{
2732	struct extent_map_tree *em_tree;
2733	struct extent_map *em;
2734	struct btrfs_root *extent_root = root->fs_info->extent_root;
2735	struct map_lookup *map;
2736	u64 dev_extent_len = 0;
2737	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2738	int i, ret = 0;
 
2739
2740	/* Just in case */
2741	root = root->fs_info->chunk_root;
2742	em_tree = &root->fs_info->mapping_tree.map_tree;
2743
2744	read_lock(&em_tree->lock);
2745	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2746	read_unlock(&em_tree->lock);
2747
2748	if (!em || em->start > chunk_offset ||
2749	    em->start + em->len < chunk_offset) {
2750		/*
2751		 * This is a logic error, but we don't want to just rely on the
2752		 * user having built with ASSERT enabled, so if ASSERT doesn't
2753		 * do anything we still error out.
2754		 */
2755		ASSERT(0);
2756		if (em)
2757			free_extent_map(em);
2758		return -EINVAL;
2759	}
2760	map = em->map_lookup;
2761	lock_chunks(root->fs_info->chunk_root);
2762	check_system_chunk(trans, extent_root, map->type);
2763	unlock_chunks(root->fs_info->chunk_root);
2764
 
 
 
 
 
 
 
 
 
 
 
2765	for (i = 0; i < map->num_stripes; i++) {
2766		struct btrfs_device *device = map->stripes[i].dev;
2767		ret = btrfs_free_dev_extent(trans, device,
2768					    map->stripes[i].physical,
2769					    &dev_extent_len);
2770		if (ret) {
2771			btrfs_abort_transaction(trans, root, ret);
 
2772			goto out;
2773		}
2774
2775		if (device->bytes_used > 0) {
2776			lock_chunks(root);
2777			btrfs_device_set_bytes_used(device,
2778					device->bytes_used - dev_extent_len);
2779			spin_lock(&root->fs_info->free_chunk_lock);
2780			root->fs_info->free_chunk_space += dev_extent_len;
2781			spin_unlock(&root->fs_info->free_chunk_lock);
2782			btrfs_clear_space_info_full(root->fs_info);
2783			unlock_chunks(root);
2784		}
 
 
2785
2786		if (map->stripes[i].dev) {
2787			ret = btrfs_update_device(trans, map->stripes[i].dev);
2788			if (ret) {
2789				btrfs_abort_transaction(trans, root, ret);
2790				goto out;
2791			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2792		}
2793	}
2794	ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2795	if (ret) {
2796		btrfs_abort_transaction(trans, root, ret);
 
 
 
 
 
 
 
 
 
 
2797		goto out;
2798	}
2799
2800	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2801
2802	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2803		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2804		if (ret) {
2805			btrfs_abort_transaction(trans, root, ret);
2806			goto out;
2807		}
2808	}
2809
2810	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
 
 
 
 
 
 
 
 
 
2811	if (ret) {
2812		btrfs_abort_transaction(trans, extent_root, ret);
2813		goto out;
2814	}
2815
2816out:
 
 
 
 
2817	/* once for us */
2818	free_extent_map(em);
2819	return ret;
2820}
2821
2822static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2823{
2824	struct btrfs_root *extent_root;
2825	struct btrfs_trans_handle *trans;
 
 
2826	int ret;
2827
2828	root = root->fs_info->chunk_root;
2829	extent_root = root->fs_info->extent_root;
 
 
 
2830
2831	/*
2832	 * Prevent races with automatic removal of unused block groups.
2833	 * After we relocate and before we remove the chunk with offset
2834	 * chunk_offset, automatic removal of the block group can kick in,
2835	 * resulting in a failure when calling btrfs_remove_chunk() below.
2836	 *
2837	 * Make sure to acquire this mutex before doing a tree search (dev
2838	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2839	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2840	 * we release the path used to search the chunk/dev tree and before
2841	 * the current task acquires this mutex and calls us.
2842	 */
2843	ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2844
2845	ret = btrfs_can_relocate(extent_root, chunk_offset);
2846	if (ret)
2847		return -ENOSPC;
2848
2849	/* step one, relocate all the extents inside this chunk */
2850	btrfs_scrub_pause(root);
2851	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2852	btrfs_scrub_continue(root);
2853	if (ret)
 
 
 
 
 
 
2854		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2855
2856	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2857						     chunk_offset);
2858	if (IS_ERR(trans)) {
2859		ret = PTR_ERR(trans);
2860		btrfs_std_error(root->fs_info, ret, NULL);
2861		return ret;
2862	}
2863
2864	/*
2865	 * step two, delete the device extents and the
2866	 * chunk tree entries
2867	 */
2868	ret = btrfs_remove_chunk(trans, root, chunk_offset);
2869	btrfs_end_transaction(trans, root);
2870	return ret;
2871}
2872
2873static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2874{
2875	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2876	struct btrfs_path *path;
2877	struct extent_buffer *leaf;
2878	struct btrfs_chunk *chunk;
2879	struct btrfs_key key;
2880	struct btrfs_key found_key;
2881	u64 chunk_type;
2882	bool retried = false;
2883	int failed = 0;
2884	int ret;
2885
2886	path = btrfs_alloc_path();
2887	if (!path)
2888		return -ENOMEM;
2889
2890again:
2891	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2892	key.offset = (u64)-1;
2893	key.type = BTRFS_CHUNK_ITEM_KEY;
2894
2895	while (1) {
2896		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2897		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2898		if (ret < 0) {
2899			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
2900			goto error;
2901		}
2902		BUG_ON(ret == 0); /* Corruption */
2903
2904		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2905					  key.type);
2906		if (ret)
2907			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2908		if (ret < 0)
2909			goto error;
2910		if (ret > 0)
2911			break;
2912
2913		leaf = path->nodes[0];
2914		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2915
2916		chunk = btrfs_item_ptr(leaf, path->slots[0],
2917				       struct btrfs_chunk);
2918		chunk_type = btrfs_chunk_type(leaf, chunk);
2919		btrfs_release_path(path);
2920
2921		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2922			ret = btrfs_relocate_chunk(chunk_root,
2923						   found_key.offset);
2924			if (ret == -ENOSPC)
2925				failed++;
2926			else
2927				BUG_ON(ret);
2928		}
2929		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2930
2931		if (found_key.offset == 0)
2932			break;
2933		key.offset = found_key.offset - 1;
2934	}
2935	ret = 0;
2936	if (failed && !retried) {
2937		failed = 0;
2938		retried = true;
2939		goto again;
2940	} else if (WARN_ON(failed && retried)) {
2941		ret = -ENOSPC;
2942	}
2943error:
2944	btrfs_free_path(path);
2945	return ret;
2946}
2947
2948static int insert_balance_item(struct btrfs_root *root,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2949			       struct btrfs_balance_control *bctl)
2950{
 
2951	struct btrfs_trans_handle *trans;
2952	struct btrfs_balance_item *item;
2953	struct btrfs_disk_balance_args disk_bargs;
2954	struct btrfs_path *path;
2955	struct extent_buffer *leaf;
2956	struct btrfs_key key;
2957	int ret, err;
2958
2959	path = btrfs_alloc_path();
2960	if (!path)
2961		return -ENOMEM;
2962
2963	trans = btrfs_start_transaction(root, 0);
2964	if (IS_ERR(trans)) {
2965		btrfs_free_path(path);
2966		return PTR_ERR(trans);
2967	}
2968
2969	key.objectid = BTRFS_BALANCE_OBJECTID;
2970	key.type = BTRFS_TEMPORARY_ITEM_KEY;
2971	key.offset = 0;
2972
2973	ret = btrfs_insert_empty_item(trans, root, path, &key,
2974				      sizeof(*item));
2975	if (ret)
2976		goto out;
2977
2978	leaf = path->nodes[0];
2979	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2980
2981	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2982
2983	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2984	btrfs_set_balance_data(leaf, item, &disk_bargs);
2985	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2986	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2987	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2988	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2989
2990	btrfs_set_balance_flags(leaf, item, bctl->flags);
2991
2992	btrfs_mark_buffer_dirty(leaf);
2993out:
2994	btrfs_free_path(path);
2995	err = btrfs_commit_transaction(trans, root);
2996	if (err && !ret)
2997		ret = err;
2998	return ret;
2999}
3000
3001static int del_balance_item(struct btrfs_root *root)
3002{
 
3003	struct btrfs_trans_handle *trans;
3004	struct btrfs_path *path;
3005	struct btrfs_key key;
3006	int ret, err;
3007
3008	path = btrfs_alloc_path();
3009	if (!path)
3010		return -ENOMEM;
3011
3012	trans = btrfs_start_transaction(root, 0);
3013	if (IS_ERR(trans)) {
3014		btrfs_free_path(path);
3015		return PTR_ERR(trans);
3016	}
3017
3018	key.objectid = BTRFS_BALANCE_OBJECTID;
3019	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3020	key.offset = 0;
3021
3022	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3023	if (ret < 0)
3024		goto out;
3025	if (ret > 0) {
3026		ret = -ENOENT;
3027		goto out;
3028	}
3029
3030	ret = btrfs_del_item(trans, root, path);
3031out:
3032	btrfs_free_path(path);
3033	err = btrfs_commit_transaction(trans, root);
3034	if (err && !ret)
3035		ret = err;
3036	return ret;
3037}
3038
3039/*
3040 * This is a heuristic used to reduce the number of chunks balanced on
3041 * resume after balance was interrupted.
3042 */
3043static void update_balance_args(struct btrfs_balance_control *bctl)
3044{
3045	/*
3046	 * Turn on soft mode for chunk types that were being converted.
3047	 */
3048	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3049		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3050	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3051		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3052	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3053		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3054
3055	/*
3056	 * Turn on usage filter if is not already used.  The idea is
3057	 * that chunks that we have already balanced should be
3058	 * reasonably full.  Don't do it for chunks that are being
3059	 * converted - that will keep us from relocating unconverted
3060	 * (albeit full) chunks.
3061	 */
3062	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3063	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3064	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3065		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3066		bctl->data.usage = 90;
3067	}
3068	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3069	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3070	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3071		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3072		bctl->sys.usage = 90;
3073	}
3074	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3075	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3076	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3077		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3078		bctl->meta.usage = 90;
3079	}
3080}
3081
3082/*
3083 * Should be called with both balance and volume mutexes held to
3084 * serialize other volume operations (add_dev/rm_dev/resize) with
3085 * restriper.  Same goes for unset_balance_control.
3086 */
3087static void set_balance_control(struct btrfs_balance_control *bctl)
3088{
3089	struct btrfs_fs_info *fs_info = bctl->fs_info;
3090
3091	BUG_ON(fs_info->balance_ctl);
3092
3093	spin_lock(&fs_info->balance_lock);
3094	fs_info->balance_ctl = bctl;
3095	spin_unlock(&fs_info->balance_lock);
3096}
3097
3098static void unset_balance_control(struct btrfs_fs_info *fs_info)
3099{
3100	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
 
3101
3102	BUG_ON(!fs_info->balance_ctl);
3103
3104	spin_lock(&fs_info->balance_lock);
3105	fs_info->balance_ctl = NULL;
3106	spin_unlock(&fs_info->balance_lock);
3107
3108	kfree(bctl);
 
 
 
3109}
3110
3111/*
3112 * Balance filters.  Return 1 if chunk should be filtered out
3113 * (should not be balanced).
3114 */
3115static int chunk_profiles_filter(u64 chunk_type,
3116				 struct btrfs_balance_args *bargs)
3117{
3118	chunk_type = chunk_to_extended(chunk_type) &
3119				BTRFS_EXTENDED_PROFILE_MASK;
3120
3121	if (bargs->profiles & chunk_type)
3122		return 0;
3123
3124	return 1;
3125}
3126
3127static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3128			      struct btrfs_balance_args *bargs)
3129{
3130	struct btrfs_block_group_cache *cache;
3131	u64 chunk_used;
3132	u64 user_thresh_min;
3133	u64 user_thresh_max;
3134	int ret = 1;
3135
3136	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3137	chunk_used = btrfs_block_group_used(&cache->item);
3138
3139	if (bargs->usage_min == 0)
3140		user_thresh_min = 0;
3141	else
3142		user_thresh_min = div_factor_fine(cache->key.offset,
3143					bargs->usage_min);
3144
3145	if (bargs->usage_max == 0)
3146		user_thresh_max = 1;
3147	else if (bargs->usage_max > 100)
3148		user_thresh_max = cache->key.offset;
3149	else
3150		user_thresh_max = div_factor_fine(cache->key.offset,
3151					bargs->usage_max);
3152
3153	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3154		ret = 0;
3155
3156	btrfs_put_block_group(cache);
3157	return ret;
3158}
3159
3160static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3161		u64 chunk_offset, struct btrfs_balance_args *bargs)
3162{
3163	struct btrfs_block_group_cache *cache;
3164	u64 chunk_used, user_thresh;
3165	int ret = 1;
3166
3167	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3168	chunk_used = btrfs_block_group_used(&cache->item);
3169
3170	if (bargs->usage_min == 0)
3171		user_thresh = 1;
3172	else if (bargs->usage > 100)
3173		user_thresh = cache->key.offset;
3174	else
3175		user_thresh = div_factor_fine(cache->key.offset,
3176					      bargs->usage);
3177
3178	if (chunk_used < user_thresh)
3179		ret = 0;
3180
3181	btrfs_put_block_group(cache);
3182	return ret;
3183}
3184
3185static int chunk_devid_filter(struct extent_buffer *leaf,
3186			      struct btrfs_chunk *chunk,
3187			      struct btrfs_balance_args *bargs)
3188{
3189	struct btrfs_stripe *stripe;
3190	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3191	int i;
3192
3193	for (i = 0; i < num_stripes; i++) {
3194		stripe = btrfs_stripe_nr(chunk, i);
3195		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3196			return 0;
3197	}
3198
3199	return 1;
3200}
3201
 
 
 
 
 
 
 
 
 
3202/* [pstart, pend) */
3203static int chunk_drange_filter(struct extent_buffer *leaf,
3204			       struct btrfs_chunk *chunk,
3205			       u64 chunk_offset,
3206			       struct btrfs_balance_args *bargs)
3207{
3208	struct btrfs_stripe *stripe;
3209	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3210	u64 stripe_offset;
3211	u64 stripe_length;
 
3212	int factor;
3213	int i;
3214
3215	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3216		return 0;
3217
3218	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3219	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3220		factor = num_stripes / 2;
3221	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3222		factor = num_stripes - 1;
3223	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3224		factor = num_stripes - 2;
3225	} else {
3226		factor = num_stripes;
3227	}
3228
3229	for (i = 0; i < num_stripes; i++) {
3230		stripe = btrfs_stripe_nr(chunk, i);
3231		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3232			continue;
3233
3234		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3235		stripe_length = btrfs_chunk_length(leaf, chunk);
3236		stripe_length = div_u64(stripe_length, factor);
3237
3238		if (stripe_offset < bargs->pend &&
3239		    stripe_offset + stripe_length > bargs->pstart)
3240			return 0;
3241	}
3242
3243	return 1;
3244}
3245
3246/* [vstart, vend) */
3247static int chunk_vrange_filter(struct extent_buffer *leaf,
3248			       struct btrfs_chunk *chunk,
3249			       u64 chunk_offset,
3250			       struct btrfs_balance_args *bargs)
3251{
3252	if (chunk_offset < bargs->vend &&
3253	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3254		/* at least part of the chunk is inside this vrange */
3255		return 0;
3256
3257	return 1;
3258}
3259
3260static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3261			       struct btrfs_chunk *chunk,
3262			       struct btrfs_balance_args *bargs)
3263{
3264	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3265
3266	if (bargs->stripes_min <= num_stripes
3267			&& num_stripes <= bargs->stripes_max)
3268		return 0;
3269
3270	return 1;
3271}
3272
3273static int chunk_soft_convert_filter(u64 chunk_type,
3274				     struct btrfs_balance_args *bargs)
3275{
3276	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3277		return 0;
3278
3279	chunk_type = chunk_to_extended(chunk_type) &
3280				BTRFS_EXTENDED_PROFILE_MASK;
3281
3282	if (bargs->target == chunk_type)
3283		return 1;
3284
3285	return 0;
3286}
3287
3288static int should_balance_chunk(struct btrfs_root *root,
3289				struct extent_buffer *leaf,
3290				struct btrfs_chunk *chunk, u64 chunk_offset)
3291{
3292	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
 
3293	struct btrfs_balance_args *bargs = NULL;
3294	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3295
3296	/* type filter */
3297	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3298	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3299		return 0;
3300	}
3301
3302	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3303		bargs = &bctl->data;
3304	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3305		bargs = &bctl->sys;
3306	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3307		bargs = &bctl->meta;
3308
3309	/* profiles filter */
3310	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3311	    chunk_profiles_filter(chunk_type, bargs)) {
3312		return 0;
3313	}
3314
3315	/* usage filter */
3316	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3317	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3318		return 0;
3319	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3320	    chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3321		return 0;
3322	}
3323
3324	/* devid filter */
3325	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3326	    chunk_devid_filter(leaf, chunk, bargs)) {
3327		return 0;
3328	}
3329
3330	/* drange filter, makes sense only with devid filter */
3331	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3332	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3333		return 0;
3334	}
3335
3336	/* vrange filter */
3337	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3338	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3339		return 0;
3340	}
3341
3342	/* stripes filter */
3343	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3344	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3345		return 0;
3346	}
3347
3348	/* soft profile changing mode */
3349	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3350	    chunk_soft_convert_filter(chunk_type, bargs)) {
3351		return 0;
3352	}
3353
3354	/*
3355	 * limited by count, must be the last filter
3356	 */
3357	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3358		if (bargs->limit == 0)
3359			return 0;
3360		else
3361			bargs->limit--;
3362	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3363		/*
3364		 * Same logic as the 'limit' filter; the minimum cannot be
3365		 * determined here because we do not have the global informatoin
3366		 * about the count of all chunks that satisfy the filters.
3367		 */
3368		if (bargs->limit_max == 0)
3369			return 0;
3370		else
3371			bargs->limit_max--;
3372	}
3373
3374	return 1;
3375}
3376
3377static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3378{
3379	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3380	struct btrfs_root *chunk_root = fs_info->chunk_root;
3381	struct btrfs_root *dev_root = fs_info->dev_root;
3382	struct list_head *devices;
3383	struct btrfs_device *device;
3384	u64 old_size;
3385	u64 size_to_free;
3386	u64 chunk_type;
3387	struct btrfs_chunk *chunk;
3388	struct btrfs_path *path;
3389	struct btrfs_key key;
3390	struct btrfs_key found_key;
3391	struct btrfs_trans_handle *trans;
3392	struct extent_buffer *leaf;
3393	int slot;
3394	int ret;
3395	int enospc_errors = 0;
3396	bool counting = true;
3397	/* The single value limit and min/max limits use the same bytes in the */
3398	u64 limit_data = bctl->data.limit;
3399	u64 limit_meta = bctl->meta.limit;
3400	u64 limit_sys = bctl->sys.limit;
3401	u32 count_data = 0;
3402	u32 count_meta = 0;
3403	u32 count_sys = 0;
3404	int chunk_reserved = 0;
3405
3406	/* step one make some room on all the devices */
3407	devices = &fs_info->fs_devices->devices;
3408	list_for_each_entry(device, devices, dev_list) {
3409		old_size = btrfs_device_get_total_bytes(device);
3410		size_to_free = div_factor(old_size, 1);
3411		size_to_free = min_t(u64, size_to_free, SZ_1M);
3412		if (!device->writeable ||
3413		    btrfs_device_get_total_bytes(device) -
3414		    btrfs_device_get_bytes_used(device) > size_to_free ||
3415		    device->is_tgtdev_for_dev_replace)
3416			continue;
3417
3418		ret = btrfs_shrink_device(device, old_size - size_to_free);
3419		if (ret == -ENOSPC)
3420			break;
3421		BUG_ON(ret);
3422
3423		trans = btrfs_start_transaction(dev_root, 0);
3424		BUG_ON(IS_ERR(trans));
3425
3426		ret = btrfs_grow_device(trans, device, old_size);
3427		BUG_ON(ret);
3428
3429		btrfs_end_transaction(trans, dev_root);
3430	}
3431
3432	/* step two, relocate all the chunks */
3433	path = btrfs_alloc_path();
3434	if (!path) {
3435		ret = -ENOMEM;
3436		goto error;
3437	}
3438
3439	/* zero out stat counters */
3440	spin_lock(&fs_info->balance_lock);
3441	memset(&bctl->stat, 0, sizeof(bctl->stat));
3442	spin_unlock(&fs_info->balance_lock);
3443again:
3444	if (!counting) {
3445		/*
3446		 * The single value limit and min/max limits use the same bytes
3447		 * in the
3448		 */
3449		bctl->data.limit = limit_data;
3450		bctl->meta.limit = limit_meta;
3451		bctl->sys.limit = limit_sys;
3452	}
3453	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3454	key.offset = (u64)-1;
3455	key.type = BTRFS_CHUNK_ITEM_KEY;
3456
3457	while (1) {
3458		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3459		    atomic_read(&fs_info->balance_cancel_req)) {
3460			ret = -ECANCELED;
3461			goto error;
3462		}
3463
3464		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3465		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3466		if (ret < 0) {
3467			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3468			goto error;
3469		}
3470
3471		/*
3472		 * this shouldn't happen, it means the last relocate
3473		 * failed
3474		 */
3475		if (ret == 0)
3476			BUG(); /* FIXME break ? */
3477
3478		ret = btrfs_previous_item(chunk_root, path, 0,
3479					  BTRFS_CHUNK_ITEM_KEY);
3480		if (ret) {
3481			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3482			ret = 0;
3483			break;
3484		}
3485
3486		leaf = path->nodes[0];
3487		slot = path->slots[0];
3488		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3489
3490		if (found_key.objectid != key.objectid) {
3491			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3492			break;
3493		}
3494
3495		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3496		chunk_type = btrfs_chunk_type(leaf, chunk);
3497
3498		if (!counting) {
3499			spin_lock(&fs_info->balance_lock);
3500			bctl->stat.considered++;
3501			spin_unlock(&fs_info->balance_lock);
3502		}
3503
3504		ret = should_balance_chunk(chunk_root, leaf, chunk,
3505					   found_key.offset);
3506
3507		btrfs_release_path(path);
3508		if (!ret) {
3509			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3510			goto loop;
3511		}
3512
3513		if (counting) {
3514			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3515			spin_lock(&fs_info->balance_lock);
3516			bctl->stat.expected++;
3517			spin_unlock(&fs_info->balance_lock);
3518
3519			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3520				count_data++;
3521			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3522				count_sys++;
3523			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3524				count_meta++;
3525
3526			goto loop;
3527		}
3528
3529		/*
3530		 * Apply limit_min filter, no need to check if the LIMITS
3531		 * filter is used, limit_min is 0 by default
3532		 */
3533		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3534					count_data < bctl->data.limit_min)
3535				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3536					count_meta < bctl->meta.limit_min)
3537				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3538					count_sys < bctl->sys.limit_min)) {
3539			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3540			goto loop;
3541		}
3542
3543		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3544			trans = btrfs_start_transaction(chunk_root, 0);
3545			if (IS_ERR(trans)) {
3546				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3547				ret = PTR_ERR(trans);
3548				goto error;
3549			}
3550
3551			ret = btrfs_force_chunk_alloc(trans, chunk_root,
3552						      BTRFS_BLOCK_GROUP_DATA);
3553			btrfs_end_transaction(trans, chunk_root);
3554			if (ret < 0) {
3555				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3556				goto error;
 
 
3557			}
3558			chunk_reserved = 1;
3559		}
3560
3561		ret = btrfs_relocate_chunk(chunk_root,
3562					   found_key.offset);
3563		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3564		if (ret && ret != -ENOSPC)
3565			goto error;
3566		if (ret == -ENOSPC) {
3567			enospc_errors++;
 
 
 
 
 
 
 
3568		} else {
3569			spin_lock(&fs_info->balance_lock);
3570			bctl->stat.completed++;
3571			spin_unlock(&fs_info->balance_lock);
3572		}
3573loop:
3574		if (found_key.offset == 0)
3575			break;
3576		key.offset = found_key.offset - 1;
3577	}
3578
3579	if (counting) {
3580		btrfs_release_path(path);
3581		counting = false;
3582		goto again;
3583	}
3584error:
3585	btrfs_free_path(path);
3586	if (enospc_errors) {
3587		btrfs_info(fs_info, "%d enospc errors during balance",
3588		       enospc_errors);
3589		if (!ret)
3590			ret = -ENOSPC;
3591	}
3592
3593	return ret;
3594}
3595
3596/**
3597 * alloc_profile_is_valid - see if a given profile is valid and reduced
3598 * @flags: profile to validate
3599 * @extended: if true @flags is treated as an extended profile
 
3600 */
3601static int alloc_profile_is_valid(u64 flags, int extended)
3602{
3603	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3604			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3605
3606	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3607
3608	/* 1) check that all other bits are zeroed */
3609	if (flags & ~mask)
3610		return 0;
3611
3612	/* 2) see if profile is reduced */
3613	if (flags == 0)
3614		return !extended; /* "0" is valid for usual profiles */
3615
3616	/* true if exactly one bit set */
3617	return (flags & (flags - 1)) == 0;
3618}
3619
3620static inline int balance_need_close(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
3621{
3622	/* cancel requested || normal exit path */
3623	return atomic_read(&fs_info->balance_cancel_req) ||
3624		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3625		 atomic_read(&fs_info->balance_cancel_req) == 0);
 
 
 
 
 
 
 
3626}
3627
3628static void __cancel_balance(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
3629{
3630	int ret;
 
 
 
 
3631
3632	unset_balance_control(fs_info);
3633	ret = del_balance_item(fs_info->tree_root);
3634	if (ret)
3635		btrfs_std_error(fs_info, ret, NULL);
3636
3637	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3638}
3639
3640/* Non-zero return value signifies invalidity */
3641static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3642		u64 allowed)
3643{
3644	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3645		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3646		 (bctl_arg->target & ~allowed)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3647}
3648
3649/*
3650 * Should be called with both balance and volume mutexes held
3651 */
3652int btrfs_balance(struct btrfs_balance_control *bctl,
 
3653		  struct btrfs_ioctl_balance_args *bargs)
3654{
3655	struct btrfs_fs_info *fs_info = bctl->fs_info;
3656	u64 allowed;
3657	int mixed = 0;
3658	int ret;
3659	u64 num_devices;
3660	unsigned seq;
 
 
 
3661
3662	if (btrfs_fs_closing(fs_info) ||
3663	    atomic_read(&fs_info->balance_pause_req) ||
3664	    atomic_read(&fs_info->balance_cancel_req)) {
3665		ret = -EINVAL;
3666		goto out;
3667	}
3668
3669	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3670	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3671		mixed = 1;
3672
3673	/*
3674	 * In case of mixed groups both data and meta should be picked,
3675	 * and identical options should be given for both of them.
3676	 */
3677	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3678	if (mixed && (bctl->flags & allowed)) {
3679		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3680		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3681		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3682			btrfs_err(fs_info, "with mixed groups data and "
3683				   "metadata balance options must be the same");
3684			ret = -EINVAL;
3685			goto out;
3686		}
3687	}
3688
3689	num_devices = fs_info->fs_devices->num_devices;
3690	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3691	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3692		BUG_ON(num_devices < 1);
3693		num_devices--;
3694	}
3695	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
 
 
 
 
3696	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3697	if (num_devices == 1)
3698		allowed |= BTRFS_BLOCK_GROUP_DUP;
3699	else if (num_devices > 1)
3700		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3701	if (num_devices > 2)
3702		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3703	if (num_devices > 3)
3704		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3705			    BTRFS_BLOCK_GROUP_RAID6);
3706	if (validate_convert_profile(&bctl->data, allowed)) {
3707		btrfs_err(fs_info, "unable to start balance with target "
3708			   "data profile %llu",
3709		       bctl->data.target);
3710		ret = -EINVAL;
3711		goto out;
3712	}
3713	if (validate_convert_profile(&bctl->meta, allowed)) {
3714		btrfs_err(fs_info,
3715			   "unable to start balance with target metadata profile %llu",
3716		       bctl->meta.target);
3717		ret = -EINVAL;
3718		goto out;
3719	}
3720	if (validate_convert_profile(&bctl->sys, allowed)) {
3721		btrfs_err(fs_info,
3722			   "unable to start balance with target system profile %llu",
3723		       bctl->sys.target);
3724		ret = -EINVAL;
3725		goto out;
3726	}
3727
3728	/* allow to reduce meta or sys integrity only if force set */
3729	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3730			BTRFS_BLOCK_GROUP_RAID10 |
3731			BTRFS_BLOCK_GROUP_RAID5 |
3732			BTRFS_BLOCK_GROUP_RAID6;
 
 
 
 
 
3733	do {
3734		seq = read_seqbegin(&fs_info->profiles_lock);
3735
3736		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3737		     (fs_info->avail_system_alloc_bits & allowed) &&
3738		     !(bctl->sys.target & allowed)) ||
3739		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3740		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3741		     !(bctl->meta.target & allowed))) {
3742			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3743				btrfs_info(fs_info, "force reducing metadata integrity");
3744			} else {
3745				btrfs_err(fs_info, "balance will reduce metadata "
3746					   "integrity, use force if you want this");
3747				ret = -EINVAL;
3748				goto out;
3749			}
3750		}
3751	} while (read_seqretry(&fs_info->profiles_lock, seq));
3752
3753	if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3754		btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3755		btrfs_warn(fs_info,
3756	"metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3757			bctl->meta.target, bctl->data.target);
 
 
 
 
 
3758	}
3759
3760	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3761		fs_info->num_tolerated_disk_barrier_failures = min(
3762			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3763			btrfs_get_num_tolerated_disk_barrier_failures(
3764				bctl->sys.target));
 
3765	}
3766
3767	ret = insert_balance_item(fs_info->tree_root, bctl);
3768	if (ret && ret != -EEXIST)
3769		goto out;
3770
3771	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3772		BUG_ON(ret == -EEXIST);
3773		set_balance_control(bctl);
 
 
 
3774	} else {
3775		BUG_ON(ret != -EEXIST);
3776		spin_lock(&fs_info->balance_lock);
3777		update_balance_args(bctl);
3778		spin_unlock(&fs_info->balance_lock);
3779	}
3780
3781	atomic_inc(&fs_info->balance_running);
 
 
3782	mutex_unlock(&fs_info->balance_mutex);
3783
3784	ret = __btrfs_balance(fs_info);
3785
3786	mutex_lock(&fs_info->balance_mutex);
3787	atomic_dec(&fs_info->balance_running);
3788
3789	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3790		fs_info->num_tolerated_disk_barrier_failures =
3791			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3792	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3793
3794	if (bargs) {
3795		memset(bargs, 0, sizeof(*bargs));
3796		update_ioctl_balance_args(fs_info, 0, bargs);
3797	}
3798
3799	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3800	    balance_need_close(fs_info)) {
3801		__cancel_balance(fs_info);
 
3802	}
3803
3804	wake_up(&fs_info->balance_wait_q);
3805
3806	return ret;
3807out:
3808	if (bctl->flags & BTRFS_BALANCE_RESUME)
3809		__cancel_balance(fs_info);
3810	else {
3811		kfree(bctl);
3812		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3813	}
3814	return ret;
3815}
3816
3817static int balance_kthread(void *data)
3818{
3819	struct btrfs_fs_info *fs_info = data;
3820	int ret = 0;
3821
3822	mutex_lock(&fs_info->volume_mutex);
3823	mutex_lock(&fs_info->balance_mutex);
3824
3825	if (fs_info->balance_ctl) {
3826		btrfs_info(fs_info, "continuing balance");
3827		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3828	}
3829
3830	mutex_unlock(&fs_info->balance_mutex);
3831	mutex_unlock(&fs_info->volume_mutex);
3832
3833	return ret;
3834}
3835
3836int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3837{
3838	struct task_struct *tsk;
3839
3840	spin_lock(&fs_info->balance_lock);
3841	if (!fs_info->balance_ctl) {
3842		spin_unlock(&fs_info->balance_lock);
3843		return 0;
3844	}
3845	spin_unlock(&fs_info->balance_lock);
3846
3847	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3848		btrfs_info(fs_info, "force skipping balance");
3849		return 0;
3850	}
3851
 
 
 
 
 
 
 
 
 
 
 
 
 
3852	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3853	return PTR_ERR_OR_ZERO(tsk);
3854}
3855
3856int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3857{
3858	struct btrfs_balance_control *bctl;
3859	struct btrfs_balance_item *item;
3860	struct btrfs_disk_balance_args disk_bargs;
3861	struct btrfs_path *path;
3862	struct extent_buffer *leaf;
3863	struct btrfs_key key;
3864	int ret;
3865
3866	path = btrfs_alloc_path();
3867	if (!path)
3868		return -ENOMEM;
3869
3870	key.objectid = BTRFS_BALANCE_OBJECTID;
3871	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3872	key.offset = 0;
3873
3874	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3875	if (ret < 0)
3876		goto out;
3877	if (ret > 0) { /* ret = -ENOENT; */
3878		ret = 0;
3879		goto out;
3880	}
3881
3882	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3883	if (!bctl) {
3884		ret = -ENOMEM;
3885		goto out;
3886	}
3887
3888	leaf = path->nodes[0];
3889	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3890
3891	bctl->fs_info = fs_info;
3892	bctl->flags = btrfs_balance_flags(leaf, item);
3893	bctl->flags |= BTRFS_BALANCE_RESUME;
3894
3895	btrfs_balance_data(leaf, item, &disk_bargs);
3896	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3897	btrfs_balance_meta(leaf, item, &disk_bargs);
3898	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3899	btrfs_balance_sys(leaf, item, &disk_bargs);
3900	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3901
3902	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3903
3904	mutex_lock(&fs_info->volume_mutex);
3905	mutex_lock(&fs_info->balance_mutex);
 
 
 
 
 
 
 
 
 
3906
3907	set_balance_control(bctl);
3908
 
 
 
 
 
3909	mutex_unlock(&fs_info->balance_mutex);
3910	mutex_unlock(&fs_info->volume_mutex);
3911out:
3912	btrfs_free_path(path);
3913	return ret;
3914}
3915
3916int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3917{
3918	int ret = 0;
3919
3920	mutex_lock(&fs_info->balance_mutex);
3921	if (!fs_info->balance_ctl) {
3922		mutex_unlock(&fs_info->balance_mutex);
3923		return -ENOTCONN;
3924	}
3925
3926	if (atomic_read(&fs_info->balance_running)) {
3927		atomic_inc(&fs_info->balance_pause_req);
3928		mutex_unlock(&fs_info->balance_mutex);
3929
3930		wait_event(fs_info->balance_wait_q,
3931			   atomic_read(&fs_info->balance_running) == 0);
3932
3933		mutex_lock(&fs_info->balance_mutex);
3934		/* we are good with balance_ctl ripped off from under us */
3935		BUG_ON(atomic_read(&fs_info->balance_running));
3936		atomic_dec(&fs_info->balance_pause_req);
3937	} else {
3938		ret = -ENOTCONN;
3939	}
3940
3941	mutex_unlock(&fs_info->balance_mutex);
3942	return ret;
3943}
3944
3945int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3946{
3947	if (fs_info->sb->s_flags & MS_RDONLY)
3948		return -EROFS;
3949
3950	mutex_lock(&fs_info->balance_mutex);
3951	if (!fs_info->balance_ctl) {
3952		mutex_unlock(&fs_info->balance_mutex);
3953		return -ENOTCONN;
3954	}
3955
 
 
 
 
 
 
 
 
 
 
3956	atomic_inc(&fs_info->balance_cancel_req);
3957	/*
3958	 * if we are running just wait and return, balance item is
3959	 * deleted in btrfs_balance in this case
3960	 */
3961	if (atomic_read(&fs_info->balance_running)) {
3962		mutex_unlock(&fs_info->balance_mutex);
3963		wait_event(fs_info->balance_wait_q,
3964			   atomic_read(&fs_info->balance_running) == 0);
3965		mutex_lock(&fs_info->balance_mutex);
3966	} else {
3967		/* __cancel_balance needs volume_mutex */
3968		mutex_unlock(&fs_info->balance_mutex);
3969		mutex_lock(&fs_info->volume_mutex);
 
 
 
3970		mutex_lock(&fs_info->balance_mutex);
3971
3972		if (fs_info->balance_ctl)
3973			__cancel_balance(fs_info);
3974
3975		mutex_unlock(&fs_info->volume_mutex);
 
3976	}
3977
3978	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3979	atomic_dec(&fs_info->balance_cancel_req);
3980	mutex_unlock(&fs_info->balance_mutex);
3981	return 0;
3982}
3983
3984static int btrfs_uuid_scan_kthread(void *data)
3985{
3986	struct btrfs_fs_info *fs_info = data;
3987	struct btrfs_root *root = fs_info->tree_root;
3988	struct btrfs_key key;
3989	struct btrfs_key max_key;
3990	struct btrfs_path *path = NULL;
3991	int ret = 0;
3992	struct extent_buffer *eb;
3993	int slot;
3994	struct btrfs_root_item root_item;
3995	u32 item_size;
3996	struct btrfs_trans_handle *trans = NULL;
3997
3998	path = btrfs_alloc_path();
3999	if (!path) {
4000		ret = -ENOMEM;
4001		goto out;
4002	}
4003
4004	key.objectid = 0;
4005	key.type = BTRFS_ROOT_ITEM_KEY;
4006	key.offset = 0;
4007
4008	max_key.objectid = (u64)-1;
4009	max_key.type = BTRFS_ROOT_ITEM_KEY;
4010	max_key.offset = (u64)-1;
4011
4012	while (1) {
4013		ret = btrfs_search_forward(root, &key, path, 0);
4014		if (ret) {
4015			if (ret > 0)
4016				ret = 0;
4017			break;
4018		}
4019
4020		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4021		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4022		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4023		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4024			goto skip;
4025
4026		eb = path->nodes[0];
4027		slot = path->slots[0];
4028		item_size = btrfs_item_size_nr(eb, slot);
4029		if (item_size < sizeof(root_item))
4030			goto skip;
4031
4032		read_extent_buffer(eb, &root_item,
4033				   btrfs_item_ptr_offset(eb, slot),
4034				   (int)sizeof(root_item));
4035		if (btrfs_root_refs(&root_item) == 0)
4036			goto skip;
4037
4038		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4039		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4040			if (trans)
4041				goto update_tree;
4042
4043			btrfs_release_path(path);
4044			/*
4045			 * 1 - subvol uuid item
4046			 * 1 - received_subvol uuid item
4047			 */
4048			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4049			if (IS_ERR(trans)) {
4050				ret = PTR_ERR(trans);
4051				break;
4052			}
4053			continue;
4054		} else {
4055			goto skip;
4056		}
4057update_tree:
4058		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4059			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4060						  root_item.uuid,
4061						  BTRFS_UUID_KEY_SUBVOL,
4062						  key.objectid);
4063			if (ret < 0) {
4064				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4065					ret);
4066				break;
4067			}
4068		}
4069
4070		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4071			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4072						  root_item.received_uuid,
4073						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4074						  key.objectid);
4075			if (ret < 0) {
4076				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4077					ret);
4078				break;
4079			}
4080		}
4081
4082skip:
4083		if (trans) {
4084			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4085			trans = NULL;
4086			if (ret)
4087				break;
4088		}
4089
4090		btrfs_release_path(path);
4091		if (key.offset < (u64)-1) {
4092			key.offset++;
4093		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4094			key.offset = 0;
4095			key.type = BTRFS_ROOT_ITEM_KEY;
4096		} else if (key.objectid < (u64)-1) {
4097			key.offset = 0;
4098			key.type = BTRFS_ROOT_ITEM_KEY;
4099			key.objectid++;
4100		} else {
4101			break;
4102		}
4103		cond_resched();
4104	}
4105
4106out:
4107	btrfs_free_path(path);
4108	if (trans && !IS_ERR(trans))
4109		btrfs_end_transaction(trans, fs_info->uuid_root);
4110	if (ret)
4111		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4112	else
4113		fs_info->update_uuid_tree_gen = 1;
4114	up(&fs_info->uuid_tree_rescan_sem);
4115	return 0;
4116}
4117
4118/*
4119 * Callback for btrfs_uuid_tree_iterate().
4120 * returns:
4121 * 0	check succeeded, the entry is not outdated.
4122 * < 0	if an error occurred.
4123 * > 0	if the check failed, which means the caller shall remove the entry.
4124 */
4125static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4126				       u8 *uuid, u8 type, u64 subid)
4127{
4128	struct btrfs_key key;
4129	int ret = 0;
4130	struct btrfs_root *subvol_root;
4131
4132	if (type != BTRFS_UUID_KEY_SUBVOL &&
4133	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4134		goto out;
4135
4136	key.objectid = subid;
4137	key.type = BTRFS_ROOT_ITEM_KEY;
4138	key.offset = (u64)-1;
4139	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4140	if (IS_ERR(subvol_root)) {
4141		ret = PTR_ERR(subvol_root);
4142		if (ret == -ENOENT)
4143			ret = 1;
4144		goto out;
4145	}
4146
4147	switch (type) {
4148	case BTRFS_UUID_KEY_SUBVOL:
4149		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4150			ret = 1;
4151		break;
4152	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4153		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4154			   BTRFS_UUID_SIZE))
4155			ret = 1;
4156		break;
4157	}
4158
4159out:
4160	return ret;
4161}
4162
4163static int btrfs_uuid_rescan_kthread(void *data)
4164{
4165	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4166	int ret;
4167
4168	/*
4169	 * 1st step is to iterate through the existing UUID tree and
4170	 * to delete all entries that contain outdated data.
4171	 * 2nd step is to add all missing entries to the UUID tree.
4172	 */
4173	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4174	if (ret < 0) {
4175		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4176		up(&fs_info->uuid_tree_rescan_sem);
4177		return ret;
4178	}
4179	return btrfs_uuid_scan_kthread(data);
4180}
4181
4182int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4183{
4184	struct btrfs_trans_handle *trans;
4185	struct btrfs_root *tree_root = fs_info->tree_root;
4186	struct btrfs_root *uuid_root;
4187	struct task_struct *task;
4188	int ret;
4189
4190	/*
4191	 * 1 - root node
4192	 * 1 - root item
4193	 */
4194	trans = btrfs_start_transaction(tree_root, 2);
4195	if (IS_ERR(trans))
4196		return PTR_ERR(trans);
4197
4198	uuid_root = btrfs_create_tree(trans, fs_info,
4199				      BTRFS_UUID_TREE_OBJECTID);
4200	if (IS_ERR(uuid_root)) {
4201		ret = PTR_ERR(uuid_root);
4202		btrfs_abort_transaction(trans, tree_root, ret);
4203		return ret;
4204	}
4205
4206	fs_info->uuid_root = uuid_root;
4207
4208	ret = btrfs_commit_transaction(trans, tree_root);
4209	if (ret)
4210		return ret;
4211
4212	down(&fs_info->uuid_tree_rescan_sem);
4213	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4214	if (IS_ERR(task)) {
4215		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4216		btrfs_warn(fs_info, "failed to start uuid_scan task");
4217		up(&fs_info->uuid_tree_rescan_sem);
4218		return PTR_ERR(task);
4219	}
4220
4221	return 0;
4222}
4223
4224int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4225{
4226	struct task_struct *task;
4227
4228	down(&fs_info->uuid_tree_rescan_sem);
4229	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4230	if (IS_ERR(task)) {
4231		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4232		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4233		up(&fs_info->uuid_tree_rescan_sem);
4234		return PTR_ERR(task);
4235	}
4236
4237	return 0;
4238}
4239
4240/*
4241 * shrinking a device means finding all of the device extents past
4242 * the new size, and then following the back refs to the chunks.
4243 * The chunk relocation code actually frees the device extent
4244 */
4245int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4246{
 
 
4247	struct btrfs_trans_handle *trans;
4248	struct btrfs_root *root = device->dev_root;
4249	struct btrfs_dev_extent *dev_extent = NULL;
4250	struct btrfs_path *path;
4251	u64 length;
4252	u64 chunk_offset;
4253	int ret;
4254	int slot;
4255	int failed = 0;
4256	bool retried = false;
4257	bool checked_pending_chunks = false;
4258	struct extent_buffer *l;
4259	struct btrfs_key key;
4260	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4261	u64 old_total = btrfs_super_total_bytes(super_copy);
4262	u64 old_size = btrfs_device_get_total_bytes(device);
4263	u64 diff = old_size - new_size;
 
 
4264
4265	if (device->is_tgtdev_for_dev_replace)
 
 
 
 
4266		return -EINVAL;
4267
4268	path = btrfs_alloc_path();
4269	if (!path)
4270		return -ENOMEM;
4271
4272	path->reada = READA_FORWARD;
4273
4274	lock_chunks(root);
 
 
 
 
 
 
4275
4276	btrfs_device_set_total_bytes(device, new_size);
4277	if (device->writeable) {
4278		device->fs_devices->total_rw_bytes -= diff;
4279		spin_lock(&root->fs_info->free_chunk_lock);
4280		root->fs_info->free_chunk_space -= diff;
4281		spin_unlock(&root->fs_info->free_chunk_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4282	}
4283	unlock_chunks(root);
4284
4285again:
4286	key.objectid = device->devid;
4287	key.offset = (u64)-1;
4288	key.type = BTRFS_DEV_EXTENT_KEY;
4289
4290	do {
4291		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4292		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4293		if (ret < 0) {
4294			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4295			goto done;
4296		}
4297
4298		ret = btrfs_previous_item(root, path, 0, key.type);
4299		if (ret)
4300			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4301		if (ret < 0)
4302			goto done;
4303		if (ret) {
 
 
 
4304			ret = 0;
4305			btrfs_release_path(path);
4306			break;
4307		}
4308
4309		l = path->nodes[0];
4310		slot = path->slots[0];
4311		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4312
4313		if (key.objectid != device->devid) {
4314			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4315			btrfs_release_path(path);
4316			break;
4317		}
4318
4319		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4320		length = btrfs_dev_extent_length(l, dev_extent);
4321
4322		if (key.offset + length <= new_size) {
4323			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4324			btrfs_release_path(path);
4325			break;
4326		}
4327
4328		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4329		btrfs_release_path(path);
4330
4331		ret = btrfs_relocate_chunk(root, chunk_offset);
4332		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4333		if (ret && ret != -ENOSPC)
 
 
 
 
 
 
4334			goto done;
4335		if (ret == -ENOSPC)
 
 
 
 
4336			failed++;
 
 
 
 
 
 
 
 
4337	} while (key.offset-- > 0);
4338
4339	if (failed && !retried) {
4340		failed = 0;
4341		retried = true;
4342		goto again;
4343	} else if (failed && retried) {
4344		ret = -ENOSPC;
4345		goto done;
4346	}
4347
4348	/* Shrinking succeeded, else we would be at "done". */
4349	trans = btrfs_start_transaction(root, 0);
4350	if (IS_ERR(trans)) {
4351		ret = PTR_ERR(trans);
4352		goto done;
4353	}
4354
4355	lock_chunks(root);
4356
4357	/*
4358	 * We checked in the above loop all device extents that were already in
4359	 * the device tree. However before we have updated the device's
4360	 * total_bytes to the new size, we might have had chunk allocations that
4361	 * have not complete yet (new block groups attached to transaction
4362	 * handles), and therefore their device extents were not yet in the
4363	 * device tree and we missed them in the loop above. So if we have any
4364	 * pending chunk using a device extent that overlaps the device range
4365	 * that we can not use anymore, commit the current transaction and
4366	 * repeat the search on the device tree - this way we guarantee we will
4367	 * not have chunks using device extents that end beyond 'new_size'.
4368	 */
4369	if (!checked_pending_chunks) {
4370		u64 start = new_size;
4371		u64 len = old_size - new_size;
4372
4373		if (contains_pending_extent(trans->transaction, device,
4374					    &start, len)) {
4375			unlock_chunks(root);
4376			checked_pending_chunks = true;
4377			failed = 0;
4378			retried = false;
4379			ret = btrfs_commit_transaction(trans, root);
4380			if (ret)
4381				goto done;
4382			goto again;
4383		}
4384	}
4385
4386	btrfs_device_set_disk_total_bytes(device, new_size);
4387	if (list_empty(&device->resized_list))
4388		list_add_tail(&device->resized_list,
4389			      &root->fs_info->fs_devices->resized_devices);
4390
4391	WARN_ON(diff > old_total);
4392	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4393	unlock_chunks(root);
 
4394
 
4395	/* Now btrfs_update_device() will change the on-disk size. */
4396	ret = btrfs_update_device(trans, device);
4397	btrfs_end_transaction(trans, root);
 
 
 
 
 
 
4398done:
4399	btrfs_free_path(path);
4400	if (ret) {
4401		lock_chunks(root);
4402		btrfs_device_set_total_bytes(device, old_size);
4403		if (device->writeable)
4404			device->fs_devices->total_rw_bytes += diff;
4405		spin_lock(&root->fs_info->free_chunk_lock);
4406		root->fs_info->free_chunk_space += diff;
4407		spin_unlock(&root->fs_info->free_chunk_lock);
4408		unlock_chunks(root);
4409	}
4410	return ret;
4411}
4412
4413static int btrfs_add_system_chunk(struct btrfs_root *root,
4414			   struct btrfs_key *key,
4415			   struct btrfs_chunk *chunk, int item_size)
4416{
4417	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4418	struct btrfs_disk_key disk_key;
4419	u32 array_size;
4420	u8 *ptr;
4421
4422	lock_chunks(root);
 
4423	array_size = btrfs_super_sys_array_size(super_copy);
4424	if (array_size + item_size + sizeof(disk_key)
4425			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4426		unlock_chunks(root);
4427		return -EFBIG;
4428	}
4429
4430	ptr = super_copy->sys_chunk_array + array_size;
4431	btrfs_cpu_key_to_disk(&disk_key, key);
4432	memcpy(ptr, &disk_key, sizeof(disk_key));
4433	ptr += sizeof(disk_key);
4434	memcpy(ptr, chunk, item_size);
4435	item_size += sizeof(disk_key);
4436	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4437	unlock_chunks(root);
4438
4439	return 0;
4440}
4441
4442/*
4443 * sort the devices in descending order by max_avail, total_avail
4444 */
4445static int btrfs_cmp_device_info(const void *a, const void *b)
4446{
4447	const struct btrfs_device_info *di_a = a;
4448	const struct btrfs_device_info *di_b = b;
4449
4450	if (di_a->max_avail > di_b->max_avail)
4451		return -1;
4452	if (di_a->max_avail < di_b->max_avail)
4453		return 1;
4454	if (di_a->total_avail > di_b->total_avail)
4455		return -1;
4456	if (di_a->total_avail < di_b->total_avail)
4457		return 1;
4458	return 0;
4459}
4460
4461static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4462{
4463	/* TODO allow them to set a preferred stripe size */
4464	return SZ_64K;
4465}
4466
4467static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4468{
4469	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4470		return;
4471
4472	btrfs_set_fs_incompat(info, RAID56);
4473}
4474
4475#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r)		\
4476			- sizeof(struct btrfs_item)		\
4477			- sizeof(struct btrfs_chunk))		\
4478			/ sizeof(struct btrfs_stripe) + 1)
4479
4480#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4481				- 2 * sizeof(struct btrfs_disk_key)	\
4482				- 2 * sizeof(struct btrfs_chunk))	\
4483				/ sizeof(struct btrfs_stripe) + 1)
4484
4485static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4486			       struct btrfs_root *extent_root, u64 start,
4487			       u64 type)
4488{
4489	struct btrfs_fs_info *info = extent_root->fs_info;
4490	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4491	struct list_head *cur;
4492	struct map_lookup *map = NULL;
4493	struct extent_map_tree *em_tree;
4494	struct extent_map *em;
4495	struct btrfs_device_info *devices_info = NULL;
4496	u64 total_avail;
4497	int num_stripes;	/* total number of stripes to allocate */
4498	int data_stripes;	/* number of stripes that count for
4499				   block group size */
4500	int sub_stripes;	/* sub_stripes info for map */
4501	int dev_stripes;	/* stripes per dev */
4502	int devs_max;		/* max devs to use */
4503	int devs_min;		/* min devs needed */
4504	int devs_increment;	/* ndevs has to be a multiple of this */
4505	int ncopies;		/* how many copies to data has */
4506	int ret;
 
 
 
 
 
 
 
 
 
 
 
4507	u64 max_stripe_size;
4508	u64 max_chunk_size;
 
4509	u64 stripe_size;
4510	u64 num_bytes;
4511	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4512	int ndevs;
4513	int i;
4514	int j;
4515	int index;
4516
4517	BUG_ON(!alloc_profile_is_valid(type, 0));
 
 
 
 
4518
4519	if (list_empty(&fs_devices->alloc_list))
4520		return -ENOSPC;
 
 
 
4521
4522	index = __get_raid_index(type);
 
 
 
 
 
 
 
4523
4524	sub_stripes = btrfs_raid_array[index].sub_stripes;
4525	dev_stripes = btrfs_raid_array[index].dev_stripes;
4526	devs_max = btrfs_raid_array[index].devs_max;
4527	devs_min = btrfs_raid_array[index].devs_min;
4528	devs_increment = btrfs_raid_array[index].devs_increment;
4529	ncopies = btrfs_raid_array[index].ncopies;
 
 
 
 
4530
 
4531	if (type & BTRFS_BLOCK_GROUP_DATA) {
4532		max_stripe_size = SZ_1G;
4533		max_chunk_size = 10 * max_stripe_size;
4534		if (!devs_max)
4535			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4536	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4537		/* for larger filesystems, use larger metadata chunks */
4538		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4539			max_stripe_size = SZ_1G;
4540		else
4541			max_stripe_size = SZ_256M;
4542		max_chunk_size = max_stripe_size;
4543		if (!devs_max)
4544			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4545	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4546		max_stripe_size = SZ_32M;
4547		max_chunk_size = 2 * max_stripe_size;
4548		if (!devs_max)
4549			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4550	} else {
4551		btrfs_err(info, "invalid chunk type 0x%llx requested",
4552		       type);
4553		BUG_ON(1);
4554	}
4555
4556	/* we don't want a chunk larger than 10% of writeable space */
4557	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4558			     max_chunk_size);
4559
4560	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4561			       GFP_NOFS);
4562	if (!devices_info)
4563		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4564
4565	cur = fs_devices->alloc_list.next;
 
 
 
 
 
 
 
 
 
 
 
4566
4567	/*
4568	 * in the first pass through the devices list, we gather information
4569	 * about the available holes on each device.
4570	 */
4571	ndevs = 0;
4572	while (cur != &fs_devices->alloc_list) {
4573		struct btrfs_device *device;
4574		u64 max_avail;
4575		u64 dev_offset;
4576
4577		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4578
4579		cur = cur->next;
4580
4581		if (!device->writeable) {
4582			WARN(1, KERN_ERR
4583			       "BTRFS: read-only device in alloc_list\n");
4584			continue;
4585		}
4586
4587		if (!device->in_fs_metadata ||
4588		    device->is_tgtdev_for_dev_replace)
 
4589			continue;
4590
4591		if (device->total_bytes > device->bytes_used)
4592			total_avail = device->total_bytes - device->bytes_used;
4593		else
4594			total_avail = 0;
4595
4596		/* If there is no space on this device, skip it. */
4597		if (total_avail == 0)
4598			continue;
4599
4600		ret = find_free_dev_extent(trans, device,
4601					   max_stripe_size * dev_stripes,
4602					   &dev_offset, &max_avail);
4603		if (ret && ret != -ENOSPC)
4604			goto error;
4605
4606		if (ret == 0)
4607			max_avail = max_stripe_size * dev_stripes;
4608
4609		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
 
 
 
 
 
4610			continue;
 
4611
4612		if (ndevs == fs_devices->rw_devices) {
4613			WARN(1, "%s: found more than %llu devices\n",
4614			     __func__, fs_devices->rw_devices);
4615			break;
4616		}
4617		devices_info[ndevs].dev_offset = dev_offset;
4618		devices_info[ndevs].max_avail = max_avail;
4619		devices_info[ndevs].total_avail = total_avail;
4620		devices_info[ndevs].dev = device;
4621		++ndevs;
4622	}
 
4623
4624	/*
4625	 * now sort the devices by hole size / available space
4626	 */
4627	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4628	     btrfs_cmp_device_info, NULL);
4629
4630	/* round down to number of usable stripes */
4631	ndevs -= ndevs % devs_increment;
4632
4633	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4634		ret = -ENOSPC;
4635		goto error;
4636	}
 
4637
4638	if (devs_max && ndevs > devs_max)
4639		ndevs = devs_max;
4640	/*
4641	 * the primary goal is to maximize the number of stripes, so use as many
4642	 * devices as possible, even if the stripes are not maximum sized.
 
 
 
4643	 */
4644	stripe_size = devices_info[ndevs-1].max_avail;
4645	num_stripes = ndevs * dev_stripes;
 
 
 
 
4646
4647	/*
4648	 * this will have to be fixed for RAID1 and RAID10 over
4649	 * more drives
 
 
4650	 */
4651	data_stripes = num_stripes / ncopies;
4652
4653	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4654		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4655				 btrfs_super_stripesize(info->super_copy));
4656		data_stripes = num_stripes - 1;
4657	}
4658	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4659		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4660				 btrfs_super_stripesize(info->super_copy));
4661		data_stripes = num_stripes - 2;
4662	}
4663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4664	/*
4665	 * Use the number of data stripes to figure out how big this chunk
4666	 * is really going to be in terms of logical address space,
4667	 * and compare that answer with the max chunk size
4668	 */
4669	if (stripe_size * data_stripes > max_chunk_size) {
4670		u64 mask = (1ULL << 24) - 1;
4671
4672		stripe_size = div_u64(max_chunk_size, data_stripes);
 
 
 
 
 
 
 
 
 
 
 
 
4673
4674		/* bump the answer up to a 16MB boundary */
4675		stripe_size = (stripe_size + mask) & ~mask;
4676
4677		/* but don't go higher than the limits we found
4678		 * while searching for free extents
4679		 */
4680		if (stripe_size > devices_info[ndevs-1].max_avail)
4681			stripe_size = devices_info[ndevs-1].max_avail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4682	}
4683
4684	stripe_size = div_u64(stripe_size, dev_stripes);
4685
4686	/* align to BTRFS_STRIPE_LEN */
4687	stripe_size = div_u64(stripe_size, raid_stripe_len);
4688	stripe_size *= raid_stripe_len;
 
 
 
 
 
 
4689
4690	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4691	if (!map) {
4692		ret = -ENOMEM;
4693		goto error;
 
 
 
 
 
4694	}
4695	map->num_stripes = num_stripes;
 
 
 
 
 
 
4696
4697	for (i = 0; i < ndevs; ++i) {
4698		for (j = 0; j < dev_stripes; ++j) {
4699			int s = i * dev_stripes + j;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4700			map->stripes[s].dev = devices_info[i].dev;
4701			map->stripes[s].physical = devices_info[i].dev_offset +
4702						   j * stripe_size;
4703		}
4704	}
4705	map->sector_size = extent_root->sectorsize;
4706	map->stripe_len = raid_stripe_len;
4707	map->io_align = raid_stripe_len;
4708	map->io_width = raid_stripe_len;
4709	map->type = type;
4710	map->sub_stripes = sub_stripes;
4711
4712	num_bytes = stripe_size * data_stripes;
4713
4714	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
 
 
 
 
4715
4716	em = alloc_extent_map();
4717	if (!em) {
4718		kfree(map);
4719		ret = -ENOMEM;
4720		goto error;
4721	}
4722	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4723	em->map_lookup = map;
4724	em->start = start;
4725	em->len = num_bytes;
4726	em->block_start = 0;
4727	em->block_len = em->len;
4728	em->orig_block_len = stripe_size;
4729
4730	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4731	write_lock(&em_tree->lock);
4732	ret = add_extent_mapping(em_tree, em, 0);
4733	if (!ret) {
4734		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4735		atomic_inc(&em->refs);
4736	}
4737	write_unlock(&em_tree->lock);
4738	if (ret) {
4739		free_extent_map(em);
4740		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4741	}
4742
4743	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4744				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4745				     start, num_bytes);
4746	if (ret)
4747		goto error_del_extent;
4748
4749	for (i = 0; i < map->num_stripes; i++) {
4750		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4751		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
 
4752	}
4753
4754	spin_lock(&extent_root->fs_info->free_chunk_lock);
4755	extent_root->fs_info->free_chunk_space -= (stripe_size *
4756						   map->num_stripes);
4757	spin_unlock(&extent_root->fs_info->free_chunk_lock);
 
 
 
 
4758
4759	free_extent_map(em);
4760	check_raid56_incompat_flag(extent_root->fs_info, type);
 
 
 
4761
4762	kfree(devices_info);
4763	return 0;
 
 
 
4764
4765error_del_extent:
4766	write_lock(&em_tree->lock);
4767	remove_extent_mapping(em_tree, em);
4768	write_unlock(&em_tree->lock);
4769
4770	/* One for our allocation */
4771	free_extent_map(em);
4772	/* One for the tree reference */
4773	free_extent_map(em);
4774	/* One for the pending_chunks list reference */
4775	free_extent_map(em);
4776error:
4777	kfree(devices_info);
4778	return ret;
4779}
4780
4781int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4782				struct btrfs_root *extent_root,
4783				u64 chunk_offset, u64 chunk_size)
 
 
 
 
 
 
 
4784{
 
 
4785	struct btrfs_key key;
4786	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4787	struct btrfs_device *device;
4788	struct btrfs_chunk *chunk;
4789	struct btrfs_stripe *stripe;
4790	struct extent_map_tree *em_tree;
4791	struct extent_map *em;
4792	struct map_lookup *map;
4793	size_t item_size;
4794	u64 dev_offset;
4795	u64 stripe_size;
4796	int i = 0;
4797	int ret = 0;
4798
4799	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4800	read_lock(&em_tree->lock);
4801	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4802	read_unlock(&em_tree->lock);
4803
4804	if (!em) {
4805		btrfs_crit(extent_root->fs_info, "unable to find logical "
4806			   "%Lu len %Lu", chunk_offset, chunk_size);
4807		return -EINVAL;
4808	}
4809
4810	if (em->start != chunk_offset || em->len != chunk_size) {
4811		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4812			  " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4813			  chunk_size, em->start, em->len);
4814		free_extent_map(em);
4815		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4816	}
4817
4818	map = em->map_lookup;
4819	item_size = btrfs_chunk_item_size(map->num_stripes);
4820	stripe_size = em->orig_block_len;
4821
4822	chunk = kzalloc(item_size, GFP_NOFS);
4823	if (!chunk) {
4824		ret = -ENOMEM;
 
4825		goto out;
4826	}
4827
4828	/*
4829	 * Take the device list mutex to prevent races with the final phase of
4830	 * a device replace operation that replaces the device object associated
4831	 * with the map's stripes, because the device object's id can change
4832	 * at any time during that final phase of the device replace operation
4833	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4834	 */
4835	mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4836	for (i = 0; i < map->num_stripes; i++) {
4837		device = map->stripes[i].dev;
4838		dev_offset = map->stripes[i].physical;
4839
4840		ret = btrfs_update_device(trans, device);
4841		if (ret)
4842			break;
4843		ret = btrfs_alloc_dev_extent(trans, device,
4844					     chunk_root->root_key.objectid,
4845					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4846					     chunk_offset, dev_offset,
4847					     stripe_size);
4848		if (ret)
4849			break;
4850	}
4851	if (ret) {
4852		mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4853		goto out;
4854	}
4855
4856	stripe = &chunk->stripe;
4857	for (i = 0; i < map->num_stripes; i++) {
4858		device = map->stripes[i].dev;
4859		dev_offset = map->stripes[i].physical;
4860
4861		btrfs_set_stack_stripe_devid(stripe, device->devid);
4862		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4863		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4864		stripe++;
4865	}
4866	mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4867
4868	btrfs_set_stack_chunk_length(chunk, chunk_size);
4869	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4870	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4871	btrfs_set_stack_chunk_type(chunk, map->type);
4872	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4873	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4874	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4875	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4876	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4877
4878	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4879	key.type = BTRFS_CHUNK_ITEM_KEY;
4880	key.offset = chunk_offset;
4881
4882	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4883	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4884		/*
4885		 * TODO: Cleanup of inserted chunk root in case of
4886		 * failure.
4887		 */
4888		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4889					     item_size);
 
 
4890	}
4891
4892out:
4893	kfree(chunk);
4894	free_extent_map(em);
4895	return ret;
4896}
4897
4898/*
4899 * Chunk allocation falls into two parts. The first part does works
4900 * that make the new allocated chunk useable, but not do any operation
4901 * that modifies the chunk tree. The second part does the works that
4902 * require modifying the chunk tree. This division is important for the
4903 * bootstrap process of adding storage to a seed btrfs.
4904 */
4905int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4906		      struct btrfs_root *extent_root, u64 type)
4907{
4908	u64 chunk_offset;
4909
4910	ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4911	chunk_offset = find_next_chunk(extent_root->fs_info);
4912	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4913}
4914
4915static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4916					 struct btrfs_root *root,
4917					 struct btrfs_device *device)
4918{
4919	u64 chunk_offset;
4920	u64 sys_chunk_offset;
4921	u64 alloc_profile;
4922	struct btrfs_fs_info *fs_info = root->fs_info;
4923	struct btrfs_root *extent_root = fs_info->extent_root;
4924	int ret;
4925
4926	chunk_offset = find_next_chunk(fs_info);
4927	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4928	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4929				  alloc_profile);
4930	if (ret)
4931		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4932
4933	sys_chunk_offset = find_next_chunk(root->fs_info);
4934	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4935	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4936				  alloc_profile);
4937	return ret;
 
 
 
 
 
 
4938}
4939
4940static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4941{
4942	int max_errors;
4943
4944	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4945			 BTRFS_BLOCK_GROUP_RAID10 |
4946			 BTRFS_BLOCK_GROUP_RAID5 |
4947			 BTRFS_BLOCK_GROUP_DUP)) {
4948		max_errors = 1;
4949	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4950		max_errors = 2;
4951	} else {
4952		max_errors = 0;
4953	}
4954
4955	return max_errors;
4956}
4957
4958int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4959{
4960	struct extent_map *em;
4961	struct map_lookup *map;
4962	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4963	int readonly = 0;
4964	int miss_ndevs = 0;
4965	int i;
 
4966
4967	read_lock(&map_tree->map_tree.lock);
4968	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4969	read_unlock(&map_tree->map_tree.lock);
4970	if (!em)
4971		return 1;
4972
4973	map = em->map_lookup;
4974	for (i = 0; i < map->num_stripes; i++) {
4975		if (map->stripes[i].dev->missing) {
 
4976			miss_ndevs++;
4977			continue;
4978		}
4979
4980		if (!map->stripes[i].dev->writeable) {
4981			readonly = 1;
4982			goto end;
4983		}
4984	}
4985
4986	/*
4987	 * If the number of missing devices is larger than max errors,
4988	 * we can not write the data into that chunk successfully, so
4989	 * set it readonly.
4990	 */
4991	if (miss_ndevs > btrfs_chunk_max_errors(map))
4992		readonly = 1;
4993end:
4994	free_extent_map(em);
4995	return readonly;
4996}
4997
4998void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4999{
5000	extent_map_tree_init(&tree->map_tree);
5001}
5002
5003void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5004{
5005	struct extent_map *em;
 
 
 
5006
5007	while (1) {
5008		write_lock(&tree->map_tree.lock);
5009		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5010		if (em)
5011			remove_extent_mapping(&tree->map_tree, em);
5012		write_unlock(&tree->map_tree.lock);
5013		if (!em)
5014			break;
5015		/* once for us */
5016		free_extent_map(em);
5017		/* once for the tree */
5018		free_extent_map(em);
5019	}
 
5020}
5021
5022int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5023{
5024	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5025	struct extent_map *em;
5026	struct map_lookup *map;
5027	struct extent_map_tree *em_tree = &map_tree->map_tree;
5028	int ret;
5029
5030	read_lock(&em_tree->lock);
5031	em = lookup_extent_mapping(em_tree, logical, len);
5032	read_unlock(&em_tree->lock);
5033
5034	/*
5035	 * We could return errors for these cases, but that could get ugly and
5036	 * we'd probably do the same thing which is just not do anything else
5037	 * and exit, so return 1 so the callers don't try to use other copies.
 
 
5038	 */
5039	if (!em) {
5040		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5041			    logical+len);
5042		return 1;
5043	}
5044
5045	if (em->start > logical || em->start + em->len < logical) {
5046		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5047			    "%Lu-%Lu", logical, logical+len, em->start,
5048			    em->start + em->len);
5049		free_extent_map(em);
5050		return 1;
5051	}
5052
5053	map = em->map_lookup;
5054	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5055		ret = map->num_stripes;
5056	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5057		ret = map->sub_stripes;
5058	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5059		ret = 2;
5060	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5061		ret = 3;
5062	else
5063		ret = 1;
5064	free_extent_map(em);
5065
5066	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5067	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5068		ret++;
5069	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
 
 
 
 
 
5070
 
 
5071	return ret;
5072}
5073
5074unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5075				    struct btrfs_mapping_tree *map_tree,
5076				    u64 logical)
5077{
5078	struct extent_map *em;
5079	struct map_lookup *map;
5080	struct extent_map_tree *em_tree = &map_tree->map_tree;
5081	unsigned long len = root->sectorsize;
5082
5083	read_lock(&em_tree->lock);
5084	em = lookup_extent_mapping(em_tree, logical, len);
5085	read_unlock(&em_tree->lock);
5086	BUG_ON(!em);
5087
5088	BUG_ON(em->start > logical || em->start + em->len < logical);
5089	map = em->map_lookup;
5090	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5091		len = map->stripe_len * nr_data_stripes(map);
5092	free_extent_map(em);
5093	return len;
5094}
5095
5096int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5097			   u64 logical, u64 len, int mirror_num)
5098{
5099	struct extent_map *em;
5100	struct map_lookup *map;
5101	struct extent_map_tree *em_tree = &map_tree->map_tree;
5102	int ret = 0;
5103
5104	read_lock(&em_tree->lock);
5105	em = lookup_extent_mapping(em_tree, logical, len);
5106	read_unlock(&em_tree->lock);
5107	BUG_ON(!em);
5108
5109	BUG_ON(em->start > logical || em->start + em->len < logical);
5110	map = em->map_lookup;
5111	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5112		ret = 1;
5113	free_extent_map(em);
5114	return ret;
5115}
5116
5117static int find_live_mirror(struct btrfs_fs_info *fs_info,
5118			    struct map_lookup *map, int first, int num,
5119			    int optimal, int dev_replace_is_ongoing)
5120{
 
5121	int i;
 
 
5122	int tolerance;
5123	struct btrfs_device *srcdev;
5124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5125	if (dev_replace_is_ongoing &&
5126	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5127	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5128		srcdev = fs_info->dev_replace.srcdev;
5129	else
5130		srcdev = NULL;
5131
5132	/*
5133	 * try to avoid the drive that is the source drive for a
5134	 * dev-replace procedure, only choose it if no other non-missing
5135	 * mirror is available
5136	 */
5137	for (tolerance = 0; tolerance < 2; tolerance++) {
5138		if (map->stripes[optimal].dev->bdev &&
5139		    (tolerance || map->stripes[optimal].dev != srcdev))
5140			return optimal;
5141		for (i = first; i < first + num; i++) {
5142			if (map->stripes[i].dev->bdev &&
5143			    (tolerance || map->stripes[i].dev != srcdev))
5144				return i;
5145		}
5146	}
5147
5148	/* we couldn't find one that doesn't fail.  Just return something
5149	 * and the io error handling code will clean up eventually
5150	 */
5151	return optimal;
5152}
5153
5154static inline int parity_smaller(u64 a, u64 b)
 
 
5155{
5156	return a > b;
5157}
5158
5159/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5160static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5161{
5162	struct btrfs_bio_stripe s;
5163	int i;
5164	u64 l;
5165	int again = 1;
5166
5167	while (again) {
5168		again = 0;
5169		for (i = 0; i < num_stripes - 1; i++) {
5170			if (parity_smaller(bbio->raid_map[i],
5171					   bbio->raid_map[i+1])) {
5172				s = bbio->stripes[i];
5173				l = bbio->raid_map[i];
5174				bbio->stripes[i] = bbio->stripes[i+1];
5175				bbio->raid_map[i] = bbio->raid_map[i+1];
5176				bbio->stripes[i+1] = s;
5177				bbio->raid_map[i+1] = l;
5178
5179				again = 1;
5180			}
5181		}
5182	}
5183}
5184
5185static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5186{
5187	struct btrfs_bio *bbio = kzalloc(
5188		 /* the size of the btrfs_bio */
5189		sizeof(struct btrfs_bio) +
5190		/* plus the variable array for the stripes */
5191		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5192		/* plus the variable array for the tgt dev */
5193		sizeof(int) * (real_stripes) +
5194		/*
5195		 * plus the raid_map, which includes both the tgt dev
5196		 * and the stripes
5197		 */
5198		sizeof(u64) * (total_stripes),
5199		GFP_NOFS|__GFP_NOFAIL);
5200
5201	atomic_set(&bbio->error, 0);
5202	atomic_set(&bbio->refs, 1);
 
 
5203
5204	return bbio;
5205}
5206
5207void btrfs_get_bbio(struct btrfs_bio *bbio)
5208{
5209	WARN_ON(!atomic_read(&bbio->refs));
5210	atomic_inc(&bbio->refs);
5211}
5212
5213void btrfs_put_bbio(struct btrfs_bio *bbio)
5214{
5215	if (!bbio)
5216		return;
5217	if (atomic_dec_and_test(&bbio->refs))
5218		kfree(bbio);
5219}
5220
5221static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5222			     u64 logical, u64 *length,
5223			     struct btrfs_bio **bbio_ret,
5224			     int mirror_num, int need_raid_map)
5225{
5226	struct extent_map *em;
5227	struct map_lookup *map;
5228	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5229	struct extent_map_tree *em_tree = &map_tree->map_tree;
 
 
5230	u64 offset;
5231	u64 stripe_offset;
 
 
5232	u64 stripe_end_offset;
5233	u64 stripe_nr;
5234	u64 stripe_nr_orig;
5235	u64 stripe_nr_end;
5236	u64 stripe_len;
5237	u32 stripe_index;
 
 
 
 
 
 
5238	int i;
5239	int ret = 0;
5240	int num_stripes;
5241	int max_errors = 0;
5242	int tgtdev_indexes = 0;
5243	struct btrfs_bio *bbio = NULL;
5244	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5245	int dev_replace_is_ongoing = 0;
5246	int num_alloc_stripes;
5247	int patch_the_first_stripe_for_dev_replace = 0;
5248	u64 physical_to_patch_in_first_stripe = 0;
5249	u64 raid56_full_stripe_start = (u64)-1;
5250
5251	read_lock(&em_tree->lock);
5252	em = lookup_extent_mapping(em_tree, logical, *length);
5253	read_unlock(&em_tree->lock);
5254
5255	if (!em) {
5256		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5257			logical, *length);
5258		return -EINVAL;
5259	}
5260
5261	if (em->start > logical || em->start + em->len < logical) {
5262		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5263			   "found %Lu-%Lu", logical, em->start,
5264			   em->start + em->len);
5265		free_extent_map(em);
5266		return -EINVAL;
 
 
5267	}
5268
5269	map = em->map_lookup;
5270	offset = logical - em->start;
 
5271
5272	stripe_len = map->stripe_len;
5273	stripe_nr = offset;
5274	/*
5275	 * stripe_nr counts the total number of stripes we have to stride
5276	 * to get to this block
5277	 */
5278	stripe_nr = div64_u64(stripe_nr, stripe_len);
5279
5280	stripe_offset = stripe_nr * stripe_len;
5281	BUG_ON(offset < stripe_offset);
5282
5283	/* stripe_offset is the offset of this block in its stripe*/
5284	stripe_offset = offset - stripe_offset;
5285
5286	/* if we're here for raid56, we need to know the stripe aligned start */
5287	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5288		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5289		raid56_full_stripe_start = offset;
5290
5291		/* allow a write of a full stripe, but make sure we don't
5292		 * allow straddling of stripes
5293		 */
5294		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5295				full_stripe_len);
5296		raid56_full_stripe_start *= full_stripe_len;
5297	}
 
 
 
 
 
 
5298
5299	if (rw & REQ_DISCARD) {
5300		/* we don't discard raid56 yet */
5301		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5302			ret = -EOPNOTSUPP;
5303			goto out;
5304		}
5305		*length = min_t(u64, em->len - offset, *length);
5306	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5307		u64 max_len;
5308		/* For writes to RAID[56], allow a full stripeset across all disks.
5309		   For other RAID types and for RAID[56] reads, just allow a single
5310		   stripe (on a single disk). */
5311		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5312		    (rw & REQ_WRITE)) {
5313			max_len = stripe_len * nr_data_stripes(map) -
5314				(offset - raid56_full_stripe_start);
5315		} else {
5316			/* we limit the length of each bio to what fits in a stripe */
5317			max_len = stripe_len - stripe_offset;
5318		}
5319		*length = min_t(u64, em->len - offset, max_len);
5320	} else {
5321		*length = em->len - offset;
 
5322	}
5323
5324	/* This is for when we're called from btrfs_merge_bio_hook() and all
5325	   it cares about is the length */
5326	if (!bbio_ret)
5327		goto out;
 
5328
5329	btrfs_dev_replace_lock(dev_replace, 0);
5330	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5331	if (!dev_replace_is_ongoing)
5332		btrfs_dev_replace_unlock(dev_replace, 0);
5333	else
5334		btrfs_dev_replace_set_lock_blocking(dev_replace);
5335
5336	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5337	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5338	    dev_replace->tgtdev != NULL) {
5339		/*
5340		 * in dev-replace case, for repair case (that's the only
5341		 * case where the mirror is selected explicitly when
5342		 * calling btrfs_map_block), blocks left of the left cursor
5343		 * can also be read from the target drive.
5344		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5345		 * the last one to the array of stripes. For READ, it also
5346		 * needs to be supported using the same mirror number.
5347		 * If the requested block is not left of the left cursor,
5348		 * EIO is returned. This can happen because btrfs_num_copies()
5349		 * returns one more in the dev-replace case.
5350		 */
5351		u64 tmp_length = *length;
5352		struct btrfs_bio *tmp_bbio = NULL;
5353		int tmp_num_stripes;
5354		u64 srcdev_devid = dev_replace->srcdev->devid;
5355		int index_srcdev = 0;
5356		int found = 0;
5357		u64 physical_of_found = 0;
5358
5359		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5360			     logical, &tmp_length, &tmp_bbio, 0, 0);
5361		if (ret) {
5362			WARN_ON(tmp_bbio != NULL);
5363			goto out;
5364		}
5365
5366		tmp_num_stripes = tmp_bbio->num_stripes;
5367		if (mirror_num > tmp_num_stripes) {
5368			/*
5369			 * REQ_GET_READ_MIRRORS does not contain this
5370			 * mirror, that means that the requested area
5371			 * is not left of the left cursor
 
 
 
5372			 */
5373			ret = -EIO;
5374			btrfs_put_bbio(tmp_bbio);
5375			goto out;
5376		}
5377
5378		/*
5379		 * process the rest of the function using the mirror_num
5380		 * of the source drive. Therefore look it up first.
5381		 * At the end, patch the device pointer to the one of the
5382		 * target drive.
5383		 */
5384		for (i = 0; i < tmp_num_stripes; i++) {
5385			if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5386				continue;
5387
5388			/*
5389			 * In case of DUP, in order to keep it simple, only add
5390			 * the mirror with the lowest physical address
5391			 */
5392			if (found &&
5393			    physical_of_found <= tmp_bbio->stripes[i].physical)
5394				continue;
5395
5396			index_srcdev = i;
5397			found = 1;
5398			physical_of_found = tmp_bbio->stripes[i].physical;
 
5399		}
 
5400
5401		btrfs_put_bbio(tmp_bbio);
 
 
 
 
 
5402
5403		if (!found) {
5404			WARN_ON(1);
5405			ret = -EIO;
5406			goto out;
5407		}
5408
5409		mirror_num = index_srcdev + 1;
5410		patch_the_first_stripe_for_dev_replace = 1;
5411		physical_to_patch_in_first_stripe = physical_of_found;
5412	} else if (mirror_num > map->num_stripes) {
5413		mirror_num = 0;
5414	}
5415
5416	num_stripes = 1;
5417	stripe_index = 0;
5418	stripe_nr_orig = stripe_nr;
5419	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5420	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5421	stripe_end_offset = stripe_nr_end * map->stripe_len -
5422			    (offset + *length);
5423
5424	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5425		if (rw & REQ_DISCARD)
5426			num_stripes = min_t(u64, map->num_stripes,
5427					    stripe_nr_end - stripe_nr_orig);
5428		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5429				&stripe_index);
5430		if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5431			mirror_num = 1;
5432	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5433		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5434			num_stripes = map->num_stripes;
5435		else if (mirror_num)
5436			stripe_index = mirror_num - 1;
5437		else {
5438			stripe_index = find_live_mirror(fs_info, map, 0,
5439					    map->num_stripes,
5440					    current->pid % map->num_stripes,
5441					    dev_replace_is_ongoing);
5442			mirror_num = stripe_index + 1;
5443		}
5444
5445	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5446		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5447			num_stripes = map->num_stripes;
5448		} else if (mirror_num) {
5449			stripe_index = mirror_num - 1;
5450		} else {
5451			mirror_num = 1;
5452		}
5453
5454	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5455		u32 factor = map->num_stripes / map->sub_stripes;
5456
5457		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5458		stripe_index *= map->sub_stripes;
 
5459
5460		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5461			num_stripes = map->sub_stripes;
5462		else if (rw & REQ_DISCARD)
5463			num_stripes = min_t(u64, map->sub_stripes *
5464					    (stripe_nr_end - stripe_nr_orig),
5465					    map->num_stripes);
5466		else if (mirror_num)
5467			stripe_index += mirror_num - 1;
5468		else {
5469			int old_stripe_index = stripe_index;
5470			stripe_index = find_live_mirror(fs_info, map,
5471					      stripe_index,
5472					      map->sub_stripes, stripe_index +
5473					      current->pid % map->sub_stripes,
5474					      dev_replace_is_ongoing);
5475			mirror_num = stripe_index - old_stripe_index + 1;
5476		}
5477
5478	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5479		if (need_raid_map &&
5480		    ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5481		     mirror_num > 1)) {
5482			/* push stripe_nr back to the start of the full stripe */
5483			stripe_nr = div_u64(raid56_full_stripe_start,
5484					stripe_len * nr_data_stripes(map));
5485
5486			/* RAID[56] write or recovery. Return all stripes */
5487			num_stripes = map->num_stripes;
5488			max_errors = nr_parity_stripes(map);
5489
5490			*length = map->stripe_len;
5491			stripe_index = 0;
5492			stripe_offset = 0;
5493		} else {
5494			/*
5495			 * Mirror #0 or #1 means the original data block.
5496			 * Mirror #2 is RAID5 parity block.
5497			 * Mirror #3 is RAID6 Q block.
5498			 */
5499			stripe_nr = div_u64_rem(stripe_nr,
5500					nr_data_stripes(map), &stripe_index);
5501			if (mirror_num > 1)
5502				stripe_index = nr_data_stripes(map) +
5503						mirror_num - 2;
5504
5505			/* We distribute the parity blocks across stripes */
5506			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5507					&stripe_index);
5508			if (!(rw & (REQ_WRITE | REQ_DISCARD |
5509				    REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5510				mirror_num = 1;
5511		}
5512	} else {
5513		/*
5514		 * after this, stripe_nr is the number of stripes on this
5515		 * device we have to walk to find the data, and stripe_index is
5516		 * the number of our device in the stripe array
5517		 */
5518		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5519				&stripe_index);
5520		mirror_num = stripe_index + 1;
5521	}
5522	BUG_ON(stripe_index >= map->num_stripes);
5523
5524	num_alloc_stripes = num_stripes;
5525	if (dev_replace_is_ongoing) {
5526		if (rw & (REQ_WRITE | REQ_DISCARD))
5527			num_alloc_stripes <<= 1;
5528		if (rw & REQ_GET_READ_MIRRORS)
5529			num_alloc_stripes++;
5530		tgtdev_indexes = num_stripes;
5531	}
5532
5533	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5534	if (!bbio) {
5535		ret = -ENOMEM;
5536		goto out;
5537	}
5538	if (dev_replace_is_ongoing)
5539		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
 
 
 
 
 
 
5540
5541	/* build raid_map */
5542	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5543	    need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5544	    mirror_num > 1)) {
5545		u64 tmp;
5546		unsigned rot;
5547
5548		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5549				 sizeof(struct btrfs_bio_stripe) *
5550				 num_alloc_stripes +
5551				 sizeof(int) * tgtdev_indexes);
5552
5553		/* Work out the disk rotation on this stripe-set */
5554		div_u64_rem(stripe_nr, num_stripes, &rot);
5555
5556		/* Fill in the logical address of each stripe */
5557		tmp = stripe_nr * nr_data_stripes(map);
5558		for (i = 0; i < nr_data_stripes(map); i++)
5559			bbio->raid_map[(i+rot) % num_stripes] =
5560				em->start + (tmp + i) * map->stripe_len;
5561
5562		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5563		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5564			bbio->raid_map[(i+rot+1) % num_stripes] =
5565				RAID6_Q_STRIPE;
5566	}
5567
5568	if (rw & REQ_DISCARD) {
5569		u32 factor = 0;
5570		u32 sub_stripes = 0;
5571		u64 stripes_per_dev = 0;
5572		u32 remaining_stripes = 0;
5573		u32 last_stripe = 0;
5574
5575		if (map->type &
5576		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5577			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5578				sub_stripes = 1;
5579			else
5580				sub_stripes = map->sub_stripes;
5581
5582			factor = map->num_stripes / sub_stripes;
5583			stripes_per_dev = div_u64_rem(stripe_nr_end -
5584						      stripe_nr_orig,
5585						      factor,
5586						      &remaining_stripes);
5587			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5588			last_stripe *= sub_stripes;
5589		}
5590
5591		for (i = 0; i < num_stripes; i++) {
5592			bbio->stripes[i].physical =
5593				map->stripes[stripe_index].physical +
5594				stripe_offset + stripe_nr * map->stripe_len;
5595			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
 
 
 
 
 
5596
5597			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5598					 BTRFS_BLOCK_GROUP_RAID10)) {
5599				bbio->stripes[i].length = stripes_per_dev *
5600							  map->stripe_len;
5601
5602				if (i / sub_stripes < remaining_stripes)
5603					bbio->stripes[i].length +=
5604						map->stripe_len;
5605
5606				/*
5607				 * Special for the first stripe and
5608				 * the last stripe:
5609				 *
5610				 * |-------|...|-------|
5611				 *     |----------|
5612				 *    off     end_off
5613				 */
5614				if (i < sub_stripes)
5615					bbio->stripes[i].length -=
5616						stripe_offset;
5617
5618				if (stripe_index >= last_stripe &&
5619				    stripe_index <= (last_stripe +
5620						     sub_stripes - 1))
5621					bbio->stripes[i].length -=
5622						stripe_end_offset;
5623
5624				if (i == sub_stripes - 1)
5625					stripe_offset = 0;
5626			} else
5627				bbio->stripes[i].length = *length;
5628
5629			stripe_index++;
5630			if (stripe_index == map->num_stripes) {
5631				/* This could only happen for RAID0/10 */
5632				stripe_index = 0;
5633				stripe_nr++;
5634			}
5635		}
5636	} else {
5637		for (i = 0; i < num_stripes; i++) {
5638			bbio->stripes[i].physical =
5639				map->stripes[stripe_index].physical +
5640				stripe_offset +
5641				stripe_nr * map->stripe_len;
5642			bbio->stripes[i].dev =
5643				map->stripes[stripe_index].dev;
5644			stripe_index++;
5645		}
5646	}
5647
5648	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5649		max_errors = btrfs_chunk_max_errors(map);
 
 
5650
5651	if (bbio->raid_map)
5652		sort_parity_stripes(bbio, num_stripes);
 
 
 
 
 
 
 
 
5653
5654	tgtdev_indexes = 0;
5655	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5656	    dev_replace->tgtdev != NULL) {
5657		int index_where_to_add;
5658		u64 srcdev_devid = dev_replace->srcdev->devid;
5659
5660		/*
5661		 * duplicate the write operations while the dev replace
5662		 * procedure is running. Since the copying of the old disk
5663		 * to the new disk takes place at run time while the
5664		 * filesystem is mounted writable, the regular write
5665		 * operations to the old disk have to be duplicated to go
5666		 * to the new disk as well.
5667		 * Note that device->missing is handled by the caller, and
5668		 * that the write to the old disk is already set up in the
5669		 * stripes array.
5670		 */
5671		index_where_to_add = num_stripes;
5672		for (i = 0; i < num_stripes; i++) {
5673			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5674				/* write to new disk, too */
5675				struct btrfs_bio_stripe *new =
5676					bbio->stripes + index_where_to_add;
5677				struct btrfs_bio_stripe *old =
5678					bbio->stripes + i;
5679
5680				new->physical = old->physical;
5681				new->length = old->length;
5682				new->dev = dev_replace->tgtdev;
5683				bbio->tgtdev_map[i] = index_where_to_add;
5684				index_where_to_add++;
5685				max_errors++;
5686				tgtdev_indexes++;
5687			}
5688		}
5689		num_stripes = index_where_to_add;
5690	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5691		   dev_replace->tgtdev != NULL) {
5692		u64 srcdev_devid = dev_replace->srcdev->devid;
5693		int index_srcdev = 0;
5694		int found = 0;
5695		u64 physical_of_found = 0;
5696
 
 
5697		/*
5698		 * During the dev-replace procedure, the target drive can
5699		 * also be used to read data in case it is needed to repair
5700		 * a corrupt block elsewhere. This is possible if the
5701		 * requested area is left of the left cursor. In this area,
5702		 * the target drive is a full copy of the source drive.
5703		 */
5704		for (i = 0; i < num_stripes; i++) {
5705			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5706				/*
5707				 * In case of DUP, in order to keep it
5708				 * simple, only add the mirror with the
5709				 * lowest physical address
5710				 */
5711				if (found &&
5712				    physical_of_found <=
5713				     bbio->stripes[i].physical)
5714					continue;
5715				index_srcdev = i;
5716				found = 1;
5717				physical_of_found = bbio->stripes[i].physical;
5718			}
5719		}
5720		if (found) {
5721			if (physical_of_found + map->stripe_len <=
5722			    dev_replace->cursor_left) {
5723				struct btrfs_bio_stripe *tgtdev_stripe =
5724					bbio->stripes + num_stripes;
5725
5726				tgtdev_stripe->physical = physical_of_found;
5727				tgtdev_stripe->length =
5728					bbio->stripes[index_srcdev].length;
5729				tgtdev_stripe->dev = dev_replace->tgtdev;
5730				bbio->tgtdev_map[index_srcdev] = num_stripes;
5731
5732				tgtdev_indexes++;
5733				num_stripes++;
5734			}
5735		}
5736	}
5737
5738	*bbio_ret = bbio;
5739	bbio->map_type = map->type;
5740	bbio->num_stripes = num_stripes;
5741	bbio->max_errors = max_errors;
5742	bbio->mirror_num = mirror_num;
5743	bbio->num_tgtdevs = tgtdev_indexes;
5744
5745	/*
5746	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5747	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5748	 * available as a mirror
5749	 */
5750	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5751		WARN_ON(num_stripes > 1);
5752		bbio->stripes[0].dev = dev_replace->tgtdev;
5753		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5754		bbio->mirror_num = map->num_stripes + 1;
5755	}
5756out:
5757	if (dev_replace_is_ongoing) {
5758		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5759		btrfs_dev_replace_unlock(dev_replace, 0);
5760	}
5761	free_extent_map(em);
5762	return ret;
 
5763}
5764
5765int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5766		      u64 logical, u64 *length,
5767		      struct btrfs_bio **bbio_ret, int mirror_num)
 
 
5768{
5769	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5770				 mirror_num, 0);
 
 
 
 
 
 
 
 
 
 
 
5771}
5772
5773/* For Scrub/replace */
5774int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5775		     u64 logical, u64 *length,
5776		     struct btrfs_bio **bbio_ret, int mirror_num,
5777		     int need_raid_map)
5778{
5779	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5780				 mirror_num, need_raid_map);
 
 
5781}
5782
5783int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5784		     u64 chunk_start, u64 physical, u64 devid,
5785		     u64 **logical, int *naddrs, int *stripe_len)
 
5786{
5787	struct extent_map_tree *em_tree = &map_tree->map_tree;
5788	struct extent_map *em;
5789	struct map_lookup *map;
5790	u64 *buf;
5791	u64 bytenr;
5792	u64 length;
5793	u64 stripe_nr;
5794	u64 rmap_len;
5795	int i, j, nr = 0;
5796
5797	read_lock(&em_tree->lock);
5798	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5799	read_unlock(&em_tree->lock);
5800
5801	if (!em) {
5802		printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5803		       chunk_start);
5804		return -EIO;
5805	}
5806
5807	if (em->start != chunk_start) {
5808		printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5809		       em->start, chunk_start);
5810		free_extent_map(em);
5811		return -EIO;
5812	}
5813	map = em->map_lookup;
5814
5815	length = em->len;
5816	rmap_len = map->stripe_len;
 
 
5817
5818	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5819		length = div_u64(length, map->num_stripes / map->sub_stripes);
5820	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5821		length = div_u64(length, map->num_stripes);
5822	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5823		length = div_u64(length, nr_data_stripes(map));
5824		rmap_len = map->stripe_len * nr_data_stripes(map);
 
 
 
 
5825	}
5826
5827	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5828	BUG_ON(!buf); /* -ENOMEM */
 
 
5829
5830	for (i = 0; i < map->num_stripes; i++) {
5831		if (devid && map->stripes[i].dev->devid != devid)
5832			continue;
5833		if (map->stripes[i].physical > physical ||
5834		    map->stripes[i].physical + length <= physical)
5835			continue;
5836
5837		stripe_nr = physical - map->stripes[i].physical;
5838		stripe_nr = div_u64(stripe_nr, map->stripe_len);
 
 
 
 
 
5839
5840		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5841			stripe_nr = stripe_nr * map->num_stripes + i;
5842			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5843		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5844			stripe_nr = stripe_nr * map->num_stripes + i;
5845		} /* else if RAID[56], multiply by nr_data_stripes().
5846		   * Alternatively, just use rmap_len below instead of
5847		   * map->stripe_len */
5848
5849		bytenr = chunk_start + stripe_nr * rmap_len;
5850		WARN_ON(nr >= map->num_stripes);
5851		for (j = 0; j < nr; j++) {
5852			if (buf[j] == bytenr)
5853				break;
5854		}
5855		if (j == nr) {
5856			WARN_ON(nr >= map->num_stripes);
5857			buf[nr++] = bytenr;
5858		}
5859	}
5860
5861	*logical = buf;
5862	*naddrs = nr;
5863	*stripe_len = rmap_len;
 
5864
5865	free_extent_map(em);
5866	return 0;
 
 
 
5867}
5868
5869static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
 
 
5870{
5871	bio->bi_private = bbio->private;
5872	bio->bi_end_io = bbio->end_io;
5873	bio_endio(bio);
5874
5875	btrfs_put_bbio(bbio);
5876}
5877
5878static void btrfs_end_bio(struct bio *bio)
5879{
5880	struct btrfs_bio *bbio = bio->bi_private;
5881	int is_orig_bio = 0;
5882
5883	if (bio->bi_error) {
5884		atomic_inc(&bbio->error);
5885		if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5886			unsigned int stripe_index =
5887				btrfs_io_bio(bio)->stripe_index;
5888			struct btrfs_device *dev;
5889
5890			BUG_ON(stripe_index >= bbio->num_stripes);
5891			dev = bbio->stripes[stripe_index].dev;
5892			if (dev->bdev) {
5893				if (bio->bi_rw & WRITE)
5894					btrfs_dev_stat_inc(dev,
5895						BTRFS_DEV_STAT_WRITE_ERRS);
5896				else
5897					btrfs_dev_stat_inc(dev,
5898						BTRFS_DEV_STAT_READ_ERRS);
5899				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5900					btrfs_dev_stat_inc(dev,
5901						BTRFS_DEV_STAT_FLUSH_ERRS);
5902				btrfs_dev_stat_print_on_error(dev);
5903			}
5904		}
5905	}
5906
5907	if (bio == bbio->orig_bio)
5908		is_orig_bio = 1;
 
 
 
 
 
 
 
 
 
5909
5910	btrfs_bio_counter_dec(bbio->fs_info);
 
 
5911
5912	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5913		if (!is_orig_bio) {
5914			bio_put(bio);
5915			bio = bbio->orig_bio;
5916		}
 
 
 
5917
5918		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5919		/* only send an error to the higher layers if it is
5920		 * beyond the tolerance of the btrfs bio
5921		 */
5922		if (atomic_read(&bbio->error) > bbio->max_errors) {
5923			bio->bi_error = -EIO;
5924		} else {
5925			/*
5926			 * this bio is actually up to date, we didn't
5927			 * go over the max number of errors
5928			 */
5929			bio->bi_error = 0;
5930		}
5931
5932		btrfs_end_bbio(bbio, bio);
5933	} else if (!is_orig_bio) {
5934		bio_put(bio);
5935	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5936}
5937
5938/*
5939 * see run_scheduled_bios for a description of why bios are collected for
5940 * async submit.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5941 *
5942 * This will add one bio to the pending list for a device and make sure
5943 * the work struct is scheduled.
 
5944 */
5945static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5946					struct btrfs_device *device,
5947					int rw, struct bio *bio)
5948{
5949	int should_queue = 1;
5950	struct btrfs_pending_bios *pending_bios;
5951
5952	if (device->missing || !device->bdev) {
5953		bio_io_error(bio);
5954		return;
5955	}
5956
5957	/* don't bother with additional async steps for reads, right now */
5958	if (!(rw & REQ_WRITE)) {
5959		bio_get(bio);
5960		btrfsic_submit_bio(rw, bio);
5961		bio_put(bio);
5962		return;
5963	}
5964
5965	/*
5966	 * nr_async_bios allows us to reliably return congestion to the
5967	 * higher layers.  Otherwise, the async bio makes it appear we have
5968	 * made progress against dirty pages when we've really just put it
5969	 * on a queue for later
5970	 */
5971	atomic_inc(&root->fs_info->nr_async_bios);
5972	WARN_ON(bio->bi_next);
5973	bio->bi_next = NULL;
5974	bio->bi_rw |= rw;
5975
5976	spin_lock(&device->io_lock);
5977	if (bio->bi_rw & REQ_SYNC)
5978		pending_bios = &device->pending_sync_bios;
5979	else
5980		pending_bios = &device->pending_bios;
5981
5982	if (pending_bios->tail)
5983		pending_bios->tail->bi_next = bio;
5984
5985	pending_bios->tail = bio;
5986	if (!pending_bios->head)
5987		pending_bios->head = bio;
5988	if (device->running_pending)
5989		should_queue = 0;
 
 
 
5990
5991	spin_unlock(&device->io_lock);
 
 
5992
5993	if (should_queue)
5994		btrfs_queue_work(root->fs_info->submit_workers,
5995				 &device->work);
5996}
5997
5998static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5999			      struct bio *bio, u64 physical, int dev_nr,
6000			      int rw, int async)
6001{
6002	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6003
6004	bio->bi_private = bbio;
6005	btrfs_io_bio(bio)->stripe_index = dev_nr;
6006	bio->bi_end_io = btrfs_end_bio;
6007	bio->bi_iter.bi_sector = physical >> 9;
6008#ifdef DEBUG
6009	{
6010		struct rcu_string *name;
6011
6012		rcu_read_lock();
6013		name = rcu_dereference(dev->name);
6014		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6015			 "(%s id %llu), size=%u\n", rw,
6016			 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6017			 name->str, dev->devid, bio->bi_iter.bi_size);
6018		rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6019	}
6020#endif
6021	bio->bi_bdev = dev->bdev;
6022
6023	btrfs_bio_counter_inc_noblocked(root->fs_info);
 
 
 
 
 
 
 
 
 
 
6024
6025	if (async)
6026		btrfs_schedule_bio(root, dev, rw, bio);
6027	else
6028		btrfsic_submit_bio(rw, bio);
6029}
 
 
 
 
 
 
 
 
6030
6031static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6032{
6033	atomic_inc(&bbio->error);
6034	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6035		/* Shoud be the original bio. */
6036		WARN_ON(bio != bbio->orig_bio);
6037
6038		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6039		bio->bi_iter.bi_sector = logical >> 9;
6040		bio->bi_error = -EIO;
6041		btrfs_end_bbio(bbio, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6042	}
6043}
6044
6045int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
6046		  int mirror_num, int async_submit)
6047{
6048	struct btrfs_device *dev;
6049	struct bio *first_bio = bio;
6050	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6051	u64 length = 0;
6052	u64 map_length;
6053	int ret;
6054	int dev_nr;
6055	int total_devs;
6056	struct btrfs_bio *bbio = NULL;
6057
6058	length = bio->bi_iter.bi_size;
6059	map_length = length;
6060
6061	btrfs_bio_counter_inc_blocked(root->fs_info);
6062	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
6063			      mirror_num, 1);
6064	if (ret) {
6065		btrfs_bio_counter_dec(root->fs_info);
6066		return ret;
 
6067	}
6068
6069	total_devs = bbio->num_stripes;
6070	bbio->orig_bio = first_bio;
6071	bbio->private = first_bio->bi_private;
6072	bbio->end_io = first_bio->bi_end_io;
6073	bbio->fs_info = root->fs_info;
6074	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6075
6076	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6077	    ((rw & WRITE) || (mirror_num > 1))) {
6078		/* In this case, map_length has been set to the length of
6079		   a single stripe; not the whole write */
6080		if (rw & WRITE) {
6081			ret = raid56_parity_write(root, bio, bbio, map_length);
6082		} else {
6083			ret = raid56_parity_recover(root, bio, bbio, map_length,
6084						    mirror_num, 1);
6085		}
6086
6087		btrfs_bio_counter_dec(root->fs_info);
6088		return ret;
 
6089	}
6090
6091	if (map_length < length) {
6092		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6093			logical, length, map_length);
6094		BUG();
 
 
 
 
 
 
6095	}
 
 
 
6096
6097	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6098		dev = bbio->stripes[dev_nr].dev;
6099		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6100			bbio_error(bbio, first_bio, logical);
6101			continue;
6102		}
 
 
 
6103
6104		if (dev_nr < total_devs - 1) {
6105			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6106			BUG_ON(!bio); /* -ENOMEM */
6107		} else
6108			bio = first_bio;
6109
6110		submit_stripe_bio(root, bbio, bio,
6111				  bbio->stripes[dev_nr].physical, dev_nr, rw,
6112				  async_submit);
6113	}
6114	btrfs_bio_counter_dec(root->fs_info);
6115	return 0;
 
 
 
 
6116}
6117
6118struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6119				       u8 *uuid, u8 *fsid)
 
 
 
 
 
 
 
6120{
6121	struct btrfs_device *device;
6122	struct btrfs_fs_devices *cur_devices;
 
 
 
 
 
 
 
6123
6124	cur_devices = fs_info->fs_devices;
6125	while (cur_devices) {
6126		if (!fsid ||
6127		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6128			device = __find_device(&cur_devices->devices,
6129					       devid, uuid);
6130			if (device)
6131				return device;
6132		}
6133		cur_devices = cur_devices->seed;
6134	}
 
6135	return NULL;
6136}
6137
6138static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6139					    struct btrfs_fs_devices *fs_devices,
6140					    u64 devid, u8 *dev_uuid)
6141{
6142	struct btrfs_device *device;
 
 
 
 
 
 
 
 
6143
6144	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
 
 
6145	if (IS_ERR(device))
6146		return NULL;
6147
6148	list_add(&device->dev_list, &fs_devices->devices);
6149	device->fs_devices = fs_devices;
6150	fs_devices->num_devices++;
6151
6152	device->missing = 1;
6153	fs_devices->missing_devices++;
6154
6155	return device;
6156}
6157
6158/**
6159 * btrfs_alloc_device - allocate struct btrfs_device
 
6160 * @fs_info:	used only for generating a new devid, can be NULL if
6161 *		devid is provided (i.e. @devid != NULL).
6162 * @devid:	a pointer to devid for this device.  If NULL a new devid
6163 *		is generated.
6164 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6165 *		is generated.
 
6166 *
6167 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6168 * on error.  Returned struct is not linked onto any lists and can be
6169 * destroyed with kfree() right away.
6170 */
6171struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6172					const u64 *devid,
6173					const u8 *uuid)
6174{
6175	struct btrfs_device *dev;
6176	u64 tmp;
6177
6178	if (WARN_ON(!devid && !fs_info))
6179		return ERR_PTR(-EINVAL);
6180
6181	dev = __alloc_device();
6182	if (IS_ERR(dev))
6183		return dev;
 
 
 
 
 
 
 
 
6184
6185	if (devid)
6186		tmp = *devid;
6187	else {
6188		int ret;
6189
6190		ret = find_next_devid(fs_info, &tmp);
6191		if (ret) {
6192			kfree(dev);
6193			return ERR_PTR(ret);
6194		}
6195	}
6196	dev->devid = tmp;
6197
6198	if (uuid)
6199		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6200	else
6201		generate_random_uuid(dev->uuid);
6202
6203	btrfs_init_work(&dev->work, btrfs_submit_helper,
6204			pending_bios_fn, NULL, NULL);
 
 
 
 
 
 
 
 
6205
6206	return dev;
6207}
6208
6209static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6210			  struct extent_buffer *leaf,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6211			  struct btrfs_chunk *chunk)
6212{
6213	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6214	struct map_lookup *map;
6215	struct extent_map *em;
6216	u64 logical;
6217	u64 length;
6218	u64 stripe_len;
6219	u64 devid;
 
6220	u8 uuid[BTRFS_UUID_SIZE];
 
6221	int num_stripes;
6222	int ret;
6223	int i;
6224
6225	logical = key->offset;
6226	length = btrfs_chunk_length(leaf, chunk);
6227	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
 
6228	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6229	/* Validation check */
6230	if (!num_stripes) {
6231		btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6232			  num_stripes);
6233		return -EIO;
6234	}
6235	if (!IS_ALIGNED(logical, root->sectorsize)) {
6236		btrfs_err(root->fs_info,
6237			  "invalid chunk logical %llu", logical);
6238		return -EIO;
6239	}
6240	if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6241		btrfs_err(root->fs_info,
6242			"invalid chunk length %llu", length);
6243		return -EIO;
6244	}
6245	if (!is_power_of_2(stripe_len)) {
6246		btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6247			  stripe_len);
6248		return -EIO;
6249	}
6250	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6251	    btrfs_chunk_type(leaf, chunk)) {
6252		btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6253			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6254			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6255			  btrfs_chunk_type(leaf, chunk));
6256		return -EIO;
6257	}
6258
6259	read_lock(&map_tree->map_tree.lock);
6260	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6261	read_unlock(&map_tree->map_tree.lock);
6262
6263	/* already mapped? */
6264	if (em && em->start <= logical && em->start + em->len > logical) {
6265		free_extent_map(em);
6266		return 0;
6267	} else if (em) {
6268		free_extent_map(em);
6269	}
6270
6271	em = alloc_extent_map();
6272	if (!em)
6273		return -ENOMEM;
6274	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6275	if (!map) {
6276		free_extent_map(em);
6277		return -ENOMEM;
6278	}
6279
6280	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6281	em->map_lookup = map;
6282	em->start = logical;
6283	em->len = length;
6284	em->orig_start = 0;
6285	em->block_start = 0;
6286	em->block_len = em->len;
6287
 
 
6288	map->num_stripes = num_stripes;
6289	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6290	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6291	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6292	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6293	map->type = btrfs_chunk_type(leaf, chunk);
6294	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
 
 
 
 
 
 
 
 
6295	for (i = 0; i < num_stripes; i++) {
6296		map->stripes[i].physical =
6297			btrfs_stripe_offset_nr(leaf, chunk, i);
6298		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
 
6299		read_extent_buffer(leaf, uuid, (unsigned long)
6300				   btrfs_stripe_dev_uuid_nr(chunk, i),
6301				   BTRFS_UUID_SIZE);
6302		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6303							uuid, NULL);
6304		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6305			free_extent_map(em);
6306			return -EIO;
6307		}
6308		if (!map->stripes[i].dev) {
6309			map->stripes[i].dev =
6310				add_missing_dev(root, root->fs_info->fs_devices,
6311						devid, uuid);
6312			if (!map->stripes[i].dev) {
6313				free_extent_map(em);
6314				return -EIO;
6315			}
6316			btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6317						devid, uuid);
6318		}
6319		map->stripes[i].dev->in_fs_metadata = 1;
 
 
6320	}
6321
6322	write_lock(&map_tree->map_tree.lock);
6323	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6324	write_unlock(&map_tree->map_tree.lock);
6325	BUG_ON(ret); /* Tree corruption */
6326	free_extent_map(em);
 
 
6327
6328	return 0;
6329}
6330
6331static void fill_device_from_item(struct extent_buffer *leaf,
6332				 struct btrfs_dev_item *dev_item,
6333				 struct btrfs_device *device)
6334{
6335	unsigned long ptr;
6336
6337	device->devid = btrfs_device_id(leaf, dev_item);
6338	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6339	device->total_bytes = device->disk_total_bytes;
6340	device->commit_total_bytes = device->disk_total_bytes;
6341	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6342	device->commit_bytes_used = device->bytes_used;
6343	device->type = btrfs_device_type(leaf, dev_item);
6344	device->io_align = btrfs_device_io_align(leaf, dev_item);
6345	device->io_width = btrfs_device_io_width(leaf, dev_item);
6346	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6347	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6348	device->is_tgtdev_for_dev_replace = 0;
6349
6350	ptr = btrfs_device_uuid(dev_item);
6351	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6352}
6353
6354static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6355						  u8 *fsid)
6356{
6357	struct btrfs_fs_devices *fs_devices;
6358	int ret;
6359
6360	BUG_ON(!mutex_is_locked(&uuid_mutex));
 
6361
6362	fs_devices = root->fs_info->fs_devices->seed;
6363	while (fs_devices) {
6364		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6365			return fs_devices;
6366
6367		fs_devices = fs_devices->seed;
6368	}
6369
6370	fs_devices = find_fsid(fsid);
6371	if (!fs_devices) {
6372		if (!btrfs_test_opt(root, DEGRADED))
6373			return ERR_PTR(-ENOENT);
6374
6375		fs_devices = alloc_fs_devices(fsid);
6376		if (IS_ERR(fs_devices))
6377			return fs_devices;
6378
6379		fs_devices->seeding = 1;
6380		fs_devices->opened = 1;
6381		return fs_devices;
6382	}
6383
 
 
 
 
6384	fs_devices = clone_fs_devices(fs_devices);
6385	if (IS_ERR(fs_devices))
6386		return fs_devices;
6387
6388	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6389				   root->fs_info->bdev_holder);
6390	if (ret) {
6391		free_fs_devices(fs_devices);
6392		fs_devices = ERR_PTR(ret);
6393		goto out;
6394	}
6395
6396	if (!fs_devices->seeding) {
6397		__btrfs_close_devices(fs_devices);
6398		free_fs_devices(fs_devices);
6399		fs_devices = ERR_PTR(-EINVAL);
6400		goto out;
6401	}
6402
6403	fs_devices->seed = root->fs_info->fs_devices->seed;
6404	root->fs_info->fs_devices->seed = fs_devices;
6405out:
6406	return fs_devices;
6407}
6408
6409static int read_one_dev(struct btrfs_root *root,
6410			struct extent_buffer *leaf,
6411			struct btrfs_dev_item *dev_item)
6412{
6413	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 
 
6414	struct btrfs_device *device;
6415	u64 devid;
6416	int ret;
6417	u8 fs_uuid[BTRFS_UUID_SIZE];
6418	u8 dev_uuid[BTRFS_UUID_SIZE];
6419
6420	devid = btrfs_device_id(leaf, dev_item);
 
6421	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6422			   BTRFS_UUID_SIZE);
6423	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6424			   BTRFS_UUID_SIZE);
 
 
6425
6426	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6427		fs_devices = open_seed_devices(root, fs_uuid);
6428		if (IS_ERR(fs_devices))
6429			return PTR_ERR(fs_devices);
6430	}
6431
6432	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6433	if (!device) {
6434		if (!btrfs_test_opt(root, DEGRADED))
6435			return -EIO;
 
 
 
6436
6437		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6438		if (!device)
6439			return -ENOMEM;
6440		btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6441				devid, dev_uuid);
 
 
 
6442	} else {
6443		if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6444			return -EIO;
 
 
 
 
 
 
 
6445
6446		if(!device->bdev && !device->missing) {
 
6447			/*
6448			 * this happens when a device that was properly setup
6449			 * in the device info lists suddenly goes bad.
6450			 * device->bdev is NULL, and so we have to set
6451			 * device->missing to one here
6452			 */
6453			device->fs_devices->missing_devices++;
6454			device->missing = 1;
6455		}
6456
6457		/* Move the device to its own fs_devices */
6458		if (device->fs_devices != fs_devices) {
6459			ASSERT(device->missing);
 
6460
6461			list_move(&device->dev_list, &fs_devices->devices);
6462			device->fs_devices->num_devices--;
6463			fs_devices->num_devices++;
6464
6465			device->fs_devices->missing_devices--;
6466			fs_devices->missing_devices++;
6467
6468			device->fs_devices = fs_devices;
6469		}
6470	}
6471
6472	if (device->fs_devices != root->fs_info->fs_devices) {
6473		BUG_ON(device->writeable);
6474		if (device->generation !=
6475		    btrfs_device_generation(leaf, dev_item))
6476			return -EINVAL;
6477	}
6478
6479	fill_device_from_item(leaf, dev_item, device);
6480	device->in_fs_metadata = 1;
6481	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
 
 
 
 
 
 
 
 
 
 
 
6482		device->fs_devices->total_rw_bytes += device->total_bytes;
6483		spin_lock(&root->fs_info->free_chunk_lock);
6484		root->fs_info->free_chunk_space += device->total_bytes -
6485			device->bytes_used;
6486		spin_unlock(&root->fs_info->free_chunk_lock);
6487	}
6488	ret = 0;
6489	return ret;
6490}
6491
6492int btrfs_read_sys_array(struct btrfs_root *root)
6493{
6494	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6495	struct extent_buffer *sb;
6496	struct btrfs_disk_key *disk_key;
6497	struct btrfs_chunk *chunk;
6498	u8 *array_ptr;
6499	unsigned long sb_array_offset;
6500	int ret = 0;
6501	u32 num_stripes;
6502	u32 array_size;
6503	u32 len = 0;
6504	u32 cur_offset;
 
6505	struct btrfs_key key;
6506
6507	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
 
6508	/*
6509	 * This will create extent buffer of nodesize, superblock size is
6510	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6511	 * overallocate but we can keep it as-is, only the first page is used.
6512	 */
6513	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6514	if (!sb)
6515		return -ENOMEM;
6516	set_extent_buffer_uptodate(sb);
6517	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6518	/*
6519	 * The sb extent buffer is artifical and just used to read the system array.
6520	 * set_extent_buffer_uptodate() call does not properly mark all it's
6521	 * pages up-to-date when the page is larger: extent does not cover the
6522	 * whole page and consequently check_page_uptodate does not find all
6523	 * the page's extents up-to-date (the hole beyond sb),
6524	 * write_extent_buffer then triggers a WARN_ON.
6525	 *
6526	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6527	 * but sb spans only this function. Add an explicit SetPageUptodate call
6528	 * to silence the warning eg. on PowerPC 64.
6529	 */
6530	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6531		SetPageUptodate(sb->pages[0]);
6532
6533	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6534	array_size = btrfs_super_sys_array_size(super_copy);
6535
6536	array_ptr = super_copy->sys_chunk_array;
6537	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6538	cur_offset = 0;
6539
6540	while (cur_offset < array_size) {
6541		disk_key = (struct btrfs_disk_key *)array_ptr;
6542		len = sizeof(*disk_key);
6543		if (cur_offset + len > array_size)
6544			goto out_short_read;
6545
6546		btrfs_disk_key_to_cpu(&key, disk_key);
6547
6548		array_ptr += len;
6549		sb_array_offset += len;
6550		cur_offset += len;
6551
6552		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6553			chunk = (struct btrfs_chunk *)sb_array_offset;
6554			/*
6555			 * At least one btrfs_chunk with one stripe must be
6556			 * present, exact stripe count check comes afterwards
6557			 */
6558			len = btrfs_chunk_item_size(1);
6559			if (cur_offset + len > array_size)
6560				goto out_short_read;
6561
6562			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6563			if (!num_stripes) {
6564				printk(KERN_ERR
6565	    "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6566					num_stripes, cur_offset);
6567				ret = -EIO;
6568				break;
6569			}
6570
6571			len = btrfs_chunk_item_size(num_stripes);
6572			if (cur_offset + len > array_size)
6573				goto out_short_read;
 
 
 
 
 
6574
6575			ret = read_one_chunk(root, &key, sb, chunk);
6576			if (ret)
6577				break;
6578		} else {
6579			printk(KERN_ERR
6580		"BTRFS: unexpected item type %u in sys_array at offset %u\n",
6581				(u32)key.type, cur_offset);
 
 
 
 
 
 
 
6582			ret = -EIO;
6583			break;
6584		}
 
 
 
 
 
 
 
 
 
6585		array_ptr += len;
6586		sb_array_offset += len;
6587		cur_offset += len;
6588	}
6589	free_extent_buffer(sb);
 
6590	return ret;
6591
6592out_short_read:
6593	printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6594			len, cur_offset);
6595	free_extent_buffer(sb);
 
6596	return -EIO;
6597}
6598
6599int btrfs_read_chunk_tree(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6600{
 
6601	struct btrfs_path *path;
6602	struct extent_buffer *leaf;
6603	struct btrfs_key key;
6604	struct btrfs_key found_key;
6605	int ret;
6606	int slot;
6607
6608	root = root->fs_info->chunk_root;
 
6609
6610	path = btrfs_alloc_path();
6611	if (!path)
6612		return -ENOMEM;
6613
 
 
 
 
6614	mutex_lock(&uuid_mutex);
6615	lock_chunks(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6616
6617	/*
6618	 * Read all device items, and then all the chunk items. All
6619	 * device items are found before any chunk item (their object id
6620	 * is smaller than the lowest possible object id for a chunk
6621	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6622	 */
6623	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6624	key.offset = 0;
6625	key.type = 0;
6626	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6627	if (ret < 0)
6628		goto error;
6629	while (1) {
6630		leaf = path->nodes[0];
6631		slot = path->slots[0];
6632		if (slot >= btrfs_header_nritems(leaf)) {
6633			ret = btrfs_next_leaf(root, path);
6634			if (ret == 0)
6635				continue;
6636			if (ret < 0)
6637				goto error;
6638			break;
6639		}
6640		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6641		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6642			struct btrfs_dev_item *dev_item;
6643			dev_item = btrfs_item_ptr(leaf, slot,
6644						  struct btrfs_dev_item);
6645			ret = read_one_dev(root, leaf, dev_item);
6646			if (ret)
6647				goto error;
 
6648		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6649			struct btrfs_chunk *chunk;
 
 
 
 
 
 
 
 
 
6650			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6651			ret = read_one_chunk(root, &found_key, leaf, chunk);
6652			if (ret)
6653				goto error;
6654		}
6655		path->slots[0]++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6656	}
6657	ret = 0;
6658error:
6659	unlock_chunks(root);
6660	mutex_unlock(&uuid_mutex);
6661
6662	btrfs_free_path(path);
6663	return ret;
6664}
6665
6666void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6667{
6668	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6669	struct btrfs_device *device;
 
6670
6671	while (fs_devices) {
6672		mutex_lock(&fs_devices->device_list_mutex);
6673		list_for_each_entry(device, &fs_devices->devices, dev_list)
6674			device->dev_root = fs_info->dev_root;
6675		mutex_unlock(&fs_devices->device_list_mutex);
6676
6677		fs_devices = fs_devices->seed;
 
 
 
 
 
 
 
 
6678	}
 
 
 
6679}
6680
6681static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
 
 
6682{
6683	int i;
6684
6685	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6686		btrfs_dev_stat_reset(dev, i);
 
 
 
6687}
6688
6689int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
 
 
6690{
6691	struct btrfs_key key;
6692	struct btrfs_key found_key;
6693	struct btrfs_root *dev_root = fs_info->dev_root;
6694	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 
 
 
 
 
 
6695	struct extent_buffer *eb;
6696	int slot;
6697	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6698	struct btrfs_device *device;
6699	struct btrfs_path *path = NULL;
6700	int i;
6701
6702	path = btrfs_alloc_path();
6703	if (!path) {
6704		ret = -ENOMEM;
6705		goto out;
6706	}
6707
6708	mutex_lock(&fs_devices->device_list_mutex);
6709	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6710		int item_size;
6711		struct btrfs_dev_stats_item *ptr;
6712
6713		key.objectid = BTRFS_DEV_STATS_OBJECTID;
6714		key.type = BTRFS_PERSISTENT_ITEM_KEY;
6715		key.offset = device->devid;
6716		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6717		if (ret) {
6718			__btrfs_reset_dev_stats(device);
6719			device->dev_stats_valid = 1;
6720			btrfs_release_path(path);
6721			continue;
6722		}
6723		slot = path->slots[0];
6724		eb = path->nodes[0];
6725		btrfs_item_key_to_cpu(eb, &found_key, slot);
6726		item_size = btrfs_item_size_nr(eb, slot);
6727
6728		ptr = btrfs_item_ptr(eb, slot,
6729				     struct btrfs_dev_stats_item);
6730
6731		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6732			if (item_size >= (1 + i) * sizeof(__le64))
6733				btrfs_dev_stat_set(device, i,
6734					btrfs_dev_stats_value(eb, ptr, i));
6735			else
6736				btrfs_dev_stat_reset(device, i);
6737		}
6738
6739		device->dev_stats_valid = 1;
6740		btrfs_dev_stat_print_on_load(device);
6741		btrfs_release_path(path);
6742	}
 
6743	mutex_unlock(&fs_devices->device_list_mutex);
6744
6745out:
6746	btrfs_free_path(path);
6747	return ret < 0 ? ret : 0;
6748}
6749
6750static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6751				struct btrfs_root *dev_root,
6752				struct btrfs_device *device)
6753{
 
 
6754	struct btrfs_path *path;
6755	struct btrfs_key key;
6756	struct extent_buffer *eb;
6757	struct btrfs_dev_stats_item *ptr;
6758	int ret;
6759	int i;
6760
6761	key.objectid = BTRFS_DEV_STATS_OBJECTID;
6762	key.type = BTRFS_PERSISTENT_ITEM_KEY;
6763	key.offset = device->devid;
6764
6765	path = btrfs_alloc_path();
6766	BUG_ON(!path);
 
6767	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6768	if (ret < 0) {
6769		btrfs_warn_in_rcu(dev_root->fs_info,
6770			"error %d while searching for dev_stats item for device %s",
6771			      ret, rcu_str_deref(device->name));
6772		goto out;
6773	}
6774
6775	if (ret == 0 &&
6776	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6777		/* need to delete old one and insert a new one */
6778		ret = btrfs_del_item(trans, dev_root, path);
6779		if (ret != 0) {
6780			btrfs_warn_in_rcu(dev_root->fs_info,
6781				"delete too small dev_stats item for device %s failed %d",
6782				      rcu_str_deref(device->name), ret);
6783			goto out;
6784		}
6785		ret = 1;
6786	}
6787
6788	if (ret == 1) {
6789		/* need to insert a new item */
6790		btrfs_release_path(path);
6791		ret = btrfs_insert_empty_item(trans, dev_root, path,
6792					      &key, sizeof(*ptr));
6793		if (ret < 0) {
6794			btrfs_warn_in_rcu(dev_root->fs_info,
6795				"insert dev_stats item for device %s failed %d",
6796				rcu_str_deref(device->name), ret);
6797			goto out;
6798		}
6799	}
6800
6801	eb = path->nodes[0];
6802	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6803	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6804		btrfs_set_dev_stats_value(eb, ptr, i,
6805					  btrfs_dev_stat_read(device, i));
6806	btrfs_mark_buffer_dirty(eb);
6807
6808out:
6809	btrfs_free_path(path);
6810	return ret;
6811}
6812
6813/*
6814 * called from commit_transaction. Writes all changed device stats to disk.
6815 */
6816int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6817			struct btrfs_fs_info *fs_info)
6818{
6819	struct btrfs_root *dev_root = fs_info->dev_root;
6820	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6821	struct btrfs_device *device;
6822	int stats_cnt;
6823	int ret = 0;
6824
6825	mutex_lock(&fs_devices->device_list_mutex);
6826	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6827		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
 
6828			continue;
6829
6830		stats_cnt = atomic_read(&device->dev_stats_ccnt);
6831		ret = update_dev_stat_item(trans, dev_root, device);
 
 
 
 
 
 
 
 
 
 
 
 
 
6832		if (!ret)
6833			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6834	}
6835	mutex_unlock(&fs_devices->device_list_mutex);
6836
6837	return ret;
6838}
6839
6840void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6841{
6842	btrfs_dev_stat_inc(dev, index);
6843	btrfs_dev_stat_print_on_error(dev);
6844}
6845
6846static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6847{
6848	if (!dev->dev_stats_valid)
6849		return;
6850	btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6851		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6852			   rcu_str_deref(dev->name),
6853			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6854			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6855			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6856			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6857			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6858}
6859
6860static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6861{
6862	int i;
6863
6864	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6865		if (btrfs_dev_stat_read(dev, i) != 0)
6866			break;
6867	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6868		return; /* all values == 0, suppress message */
6869
6870	btrfs_info_in_rcu(dev->dev_root->fs_info,
6871		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6872	       rcu_str_deref(dev->name),
6873	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6874	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6875	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6876	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6877	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6878}
6879
6880int btrfs_get_dev_stats(struct btrfs_root *root,
6881			struct btrfs_ioctl_get_dev_stats *stats)
6882{
 
6883	struct btrfs_device *dev;
6884	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6885	int i;
6886
6887	mutex_lock(&fs_devices->device_list_mutex);
6888	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
 
6889	mutex_unlock(&fs_devices->device_list_mutex);
6890
6891	if (!dev) {
6892		btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6893		return -ENODEV;
6894	} else if (!dev->dev_stats_valid) {
6895		btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6896		return -ENODEV;
6897	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6898		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6899			if (stats->nr_items > i)
6900				stats->values[i] =
6901					btrfs_dev_stat_read_and_reset(dev, i);
6902			else
6903				btrfs_dev_stat_reset(dev, i);
6904		}
 
 
6905	} else {
6906		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6907			if (stats->nr_items > i)
6908				stats->values[i] = btrfs_dev_stat_read(dev, i);
6909	}
6910	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6911		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6912	return 0;
6913}
6914
6915void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
 
 
 
 
 
 
 
6916{
6917	struct buffer_head *bh;
6918	struct btrfs_super_block *disk_super;
6919	int copy_num;
6920
6921	if (!bdev)
 
 
6922		return;
6923
6924	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6925		copy_num++) {
 
 
 
 
 
 
 
 
 
 
 
 
6926
6927		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6928			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6929
6930		disk_super = (struct btrfs_super_block *)bh->b_data;
 
 
 
 
 
 
 
6931
6932		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6933		set_buffer_dirty(bh);
6934		sync_dirty_buffer(bh);
6935		brelse(bh);
 
 
 
 
6936	}
6937
6938	/* Notify udev that device has changed */
6939	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
 
 
 
 
 
 
 
6940
6941	/* Update ctime/mtime for device path for libblkid */
6942	update_dev_time(device_path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6943}
6944
6945/*
6946 * Update the size of all devices, which is used for writing out the
6947 * super blocks.
 
 
 
6948 */
6949void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6950{
6951	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6952	struct btrfs_device *curr, *next;
 
 
 
 
6953
6954	if (list_empty(&fs_devices->resized_devices))
6955		return;
 
 
 
 
 
 
 
 
 
 
6956
6957	mutex_lock(&fs_devices->device_list_mutex);
6958	lock_chunks(fs_info->dev_root);
6959	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6960				 resized_list) {
6961		list_del_init(&curr->resized_list);
6962		curr->commit_total_bytes = curr->disk_total_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6963	}
6964	unlock_chunks(fs_info->dev_root);
6965	mutex_unlock(&fs_devices->device_list_mutex);
6966}
 
 
 
 
 
6967
6968/* Must be invoked during the transaction commit */
6969void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6970					struct btrfs_transaction *transaction)
6971{
6972	struct extent_map *em;
6973	struct map_lookup *map;
6974	struct btrfs_device *dev;
6975	int i;
6976
6977	if (list_empty(&transaction->pending_chunks))
6978		return;
 
 
 
 
 
 
 
 
 
 
6979
6980	/* In order to kick the device replace finish process */
6981	lock_chunks(root);
6982	list_for_each_entry(em, &transaction->pending_chunks, list) {
6983		map = em->map_lookup;
 
 
6984
6985		for (i = 0; i < map->num_stripes; i++) {
6986			dev = map->stripes[i].dev;
6987			dev->commit_bytes_used = dev->bytes_used;
 
 
 
6988		}
6989	}
6990	unlock_chunks(root);
 
 
 
 
 
6991}
6992
6993void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
 
 
 
 
6994{
6995	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6996	while (fs_devices) {
6997		fs_devices->fs_info = fs_info;
6998		fs_devices = fs_devices->seed;
 
 
 
 
 
 
 
 
 
6999	}
 
 
7000}
7001
7002void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7003{
7004	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7005	while (fs_devices) {
7006		fs_devices->fs_info = NULL;
7007		fs_devices = fs_devices->seed;
 
 
 
 
 
 
 
 
 
 
 
7008	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7009}
7010
7011static void btrfs_close_one_device(struct btrfs_device *device)
7012{
7013	struct btrfs_fs_devices *fs_devices = device->fs_devices;
7014	struct btrfs_device *new_device;
7015	struct rcu_string *name;
7016
7017	if (device->bdev)
7018		fs_devices->open_devices--;
7019
7020	if (device->writeable &&
7021	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
7022		list_del_init(&device->dev_alloc_list);
7023		fs_devices->rw_devices--;
 
 
 
 
 
 
 
7024	}
7025
7026	if (device->missing)
7027		fs_devices->missing_devices--;
 
 
 
 
 
 
 
 
 
 
7028
7029	new_device = btrfs_alloc_device(NULL, &device->devid,
7030					device->uuid);
7031	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7032
7033	/* Safe because we are under uuid_mutex */
7034	if (device->name) {
7035		name = rcu_string_strdup(device->name->str, GFP_NOFS);
7036		BUG_ON(!name); /* -ENOMEM */
7037		rcu_assign_pointer(new_device->name, name);
7038	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7039
7040	list_replace_rcu(&device->dev_list, &new_device->dev_list);
7041	new_device->fs_devices = device->fs_devices;
 
 
 
 
 
 
 
 
 
7042
7043	call_rcu(&device->rcu, free_device);
 
 
 
 
 
 
 
 
 
 
 
 
7044}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/sched/mm.h>
   8#include <linux/slab.h>
 
 
 
 
 
   9#include <linux/ratelimit.h>
  10#include <linux/kthread.h>
 
  11#include <linux/semaphore.h>
  12#include <linux/uuid.h>
  13#include <linux/list_sort.h>
  14#include <linux/namei.h>
  15#include "misc.h"
  16#include "ctree.h"
 
  17#include "disk-io.h"
  18#include "transaction.h"
 
  19#include "volumes.h"
  20#include "raid56.h"
 
 
  21#include "rcu-string.h"
 
  22#include "dev-replace.h"
  23#include "sysfs.h"
  24#include "tree-checker.h"
  25#include "space-info.h"
  26#include "block-group.h"
  27#include "discard.h"
  28#include "zoned.h"
  29#include "fs.h"
  30#include "accessors.h"
  31#include "uuid-tree.h"
  32#include "ioctl.h"
  33#include "relocation.h"
  34#include "scrub.h"
  35#include "super.h"
  36#include "raid-stripe-tree.h"
  37
  38#define BTRFS_BLOCK_GROUP_STRIPE_MASK	(BTRFS_BLOCK_GROUP_RAID0 | \
  39					 BTRFS_BLOCK_GROUP_RAID10 | \
  40					 BTRFS_BLOCK_GROUP_RAID56_MASK)
  41
  42struct btrfs_io_geometry {
  43	u32 stripe_index;
  44	u32 stripe_nr;
  45	int mirror_num;
  46	int num_stripes;
  47	u64 stripe_offset;
  48	u64 raid56_full_stripe_start;
  49	int max_errors;
  50	enum btrfs_map_op op;
  51};
  52
  53const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
  54	[BTRFS_RAID_RAID10] = {
  55		.sub_stripes	= 2,
  56		.dev_stripes	= 1,
  57		.devs_max	= 0,	/* 0 == as many as possible */
  58		.devs_min	= 2,
  59		.tolerated_failures = 1,
  60		.devs_increment	= 2,
  61		.ncopies	= 2,
  62		.nparity        = 0,
  63		.raid_name	= "raid10",
  64		.bg_flag	= BTRFS_BLOCK_GROUP_RAID10,
  65		.mindev_error	= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
  66	},
  67	[BTRFS_RAID_RAID1] = {
  68		.sub_stripes	= 1,
  69		.dev_stripes	= 1,
  70		.devs_max	= 2,
  71		.devs_min	= 2,
  72		.tolerated_failures = 1,
  73		.devs_increment	= 2,
  74		.ncopies	= 2,
  75		.nparity        = 0,
  76		.raid_name	= "raid1",
  77		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1,
  78		.mindev_error	= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
  79	},
  80	[BTRFS_RAID_RAID1C3] = {
  81		.sub_stripes	= 1,
  82		.dev_stripes	= 1,
  83		.devs_max	= 3,
  84		.devs_min	= 3,
  85		.tolerated_failures = 2,
  86		.devs_increment	= 3,
  87		.ncopies	= 3,
  88		.nparity        = 0,
  89		.raid_name	= "raid1c3",
  90		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C3,
  91		.mindev_error	= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
  92	},
  93	[BTRFS_RAID_RAID1C4] = {
  94		.sub_stripes	= 1,
  95		.dev_stripes	= 1,
  96		.devs_max	= 4,
  97		.devs_min	= 4,
  98		.tolerated_failures = 3,
  99		.devs_increment	= 4,
 100		.ncopies	= 4,
 101		.nparity        = 0,
 102		.raid_name	= "raid1c4",
 103		.bg_flag	= BTRFS_BLOCK_GROUP_RAID1C4,
 104		.mindev_error	= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
 105	},
 106	[BTRFS_RAID_DUP] = {
 107		.sub_stripes	= 1,
 108		.dev_stripes	= 2,
 109		.devs_max	= 1,
 110		.devs_min	= 1,
 111		.tolerated_failures = 0,
 112		.devs_increment	= 1,
 113		.ncopies	= 2,
 114		.nparity        = 0,
 115		.raid_name	= "dup",
 116		.bg_flag	= BTRFS_BLOCK_GROUP_DUP,
 117		.mindev_error	= 0,
 118	},
 119	[BTRFS_RAID_RAID0] = {
 120		.sub_stripes	= 1,
 121		.dev_stripes	= 1,
 122		.devs_max	= 0,
 123		.devs_min	= 1,
 124		.tolerated_failures = 0,
 125		.devs_increment	= 1,
 126		.ncopies	= 1,
 127		.nparity        = 0,
 128		.raid_name	= "raid0",
 129		.bg_flag	= BTRFS_BLOCK_GROUP_RAID0,
 130		.mindev_error	= 0,
 131	},
 132	[BTRFS_RAID_SINGLE] = {
 133		.sub_stripes	= 1,
 134		.dev_stripes	= 1,
 135		.devs_max	= 1,
 136		.devs_min	= 1,
 137		.tolerated_failures = 0,
 138		.devs_increment	= 1,
 139		.ncopies	= 1,
 140		.nparity        = 0,
 141		.raid_name	= "single",
 142		.bg_flag	= 0,
 143		.mindev_error	= 0,
 144	},
 145	[BTRFS_RAID_RAID5] = {
 146		.sub_stripes	= 1,
 147		.dev_stripes	= 1,
 148		.devs_max	= 0,
 149		.devs_min	= 2,
 150		.tolerated_failures = 1,
 151		.devs_increment	= 1,
 152		.ncopies	= 1,
 153		.nparity        = 1,
 154		.raid_name	= "raid5",
 155		.bg_flag	= BTRFS_BLOCK_GROUP_RAID5,
 156		.mindev_error	= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
 157	},
 158	[BTRFS_RAID_RAID6] = {
 159		.sub_stripes	= 1,
 160		.dev_stripes	= 1,
 161		.devs_max	= 0,
 162		.devs_min	= 3,
 163		.tolerated_failures = 2,
 164		.devs_increment	= 1,
 165		.ncopies	= 1,
 166		.nparity        = 2,
 167		.raid_name	= "raid6",
 168		.bg_flag	= BTRFS_BLOCK_GROUP_RAID6,
 169		.mindev_error	= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
 170	},
 171};
 172
 173/*
 174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
 175 * can be used as index to access btrfs_raid_array[].
 176 */
 177enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
 178{
 179	const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
 180
 181	if (!profile)
 182		return BTRFS_RAID_SINGLE;
 183
 184	return BTRFS_BG_FLAG_TO_INDEX(profile);
 185}
 186
 187const char *btrfs_bg_type_to_raid_name(u64 flags)
 188{
 189	const int index = btrfs_bg_flags_to_raid_index(flags);
 190
 191	if (index >= BTRFS_NR_RAID_TYPES)
 192		return NULL;
 193
 194	return btrfs_raid_array[index].raid_name;
 195}
 196
 197int btrfs_nr_parity_stripes(u64 type)
 198{
 199	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
 200
 201	return btrfs_raid_array[index].nparity;
 202}
 203
 204/*
 205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
 206 * bytes including terminating null byte.
 207 */
 208void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
 209{
 210	int i;
 211	int ret;
 212	char *bp = buf;
 213	u64 flags = bg_flags;
 214	u32 size_bp = size_buf;
 215
 216	if (!flags) {
 217		strcpy(bp, "NONE");
 218		return;
 219	}
 220
 221#define DESCRIBE_FLAG(flag, desc)						\
 222	do {								\
 223		if (flags & (flag)) {					\
 224			ret = snprintf(bp, size_bp, "%s|", (desc));	\
 225			if (ret < 0 || ret >= size_bp)			\
 226				goto out_overflow;			\
 227			size_bp -= ret;					\
 228			bp += ret;					\
 229			flags &= ~(flag);				\
 230		}							\
 231	} while (0)
 232
 233	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
 234	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
 235	DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
 236
 237	DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
 238	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
 239		DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
 240			      btrfs_raid_array[i].raid_name);
 241#undef DESCRIBE_FLAG
 242
 243	if (flags) {
 244		ret = snprintf(bp, size_bp, "0x%llx|", flags);
 245		size_bp -= ret;
 246	}
 247
 248	if (size_bp < size_buf)
 249		buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
 250
 251	/*
 252	 * The text is trimmed, it's up to the caller to provide sufficiently
 253	 * large buffer
 254	 */
 255out_overflow:;
 256}
 257
 258static int init_first_rw_device(struct btrfs_trans_handle *trans);
 259static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
 260static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
 261
 262/*
 263 * Device locking
 264 * ==============
 265 *
 266 * There are several mutexes that protect manipulation of devices and low-level
 267 * structures like chunks but not block groups, extents or files
 268 *
 269 * uuid_mutex (global lock)
 270 * ------------------------
 271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
 272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
 273 * device) or requested by the device= mount option
 274 *
 275 * the mutex can be very coarse and can cover long-running operations
 276 *
 277 * protects: updates to fs_devices counters like missing devices, rw devices,
 278 * seeding, structure cloning, opening/closing devices at mount/umount time
 279 *
 280 * global::fs_devs - add, remove, updates to the global list
 281 *
 282 * does not protect: manipulation of the fs_devices::devices list in general
 283 * but in mount context it could be used to exclude list modifications by eg.
 284 * scan ioctl
 285 *
 286 * btrfs_device::name - renames (write side), read is RCU
 287 *
 288 * fs_devices::device_list_mutex (per-fs, with RCU)
 289 * ------------------------------------------------
 290 * protects updates to fs_devices::devices, ie. adding and deleting
 291 *
 292 * simple list traversal with read-only actions can be done with RCU protection
 293 *
 294 * may be used to exclude some operations from running concurrently without any
 295 * modifications to the list (see write_all_supers)
 296 *
 297 * Is not required at mount and close times, because our device list is
 298 * protected by the uuid_mutex at that point.
 299 *
 300 * balance_mutex
 301 * -------------
 302 * protects balance structures (status, state) and context accessed from
 303 * several places (internally, ioctl)
 304 *
 305 * chunk_mutex
 306 * -----------
 307 * protects chunks, adding or removing during allocation, trim or when a new
 308 * device is added/removed. Additionally it also protects post_commit_list of
 309 * individual devices, since they can be added to the transaction's
 310 * post_commit_list only with chunk_mutex held.
 311 *
 312 * cleaner_mutex
 313 * -------------
 314 * a big lock that is held by the cleaner thread and prevents running subvolume
 315 * cleaning together with relocation or delayed iputs
 316 *
 317 *
 318 * Lock nesting
 319 * ============
 320 *
 321 * uuid_mutex
 322 *   device_list_mutex
 323 *     chunk_mutex
 324 *   balance_mutex
 325 *
 326 *
 327 * Exclusive operations
 328 * ====================
 329 *
 330 * Maintains the exclusivity of the following operations that apply to the
 331 * whole filesystem and cannot run in parallel.
 332 *
 333 * - Balance (*)
 334 * - Device add
 335 * - Device remove
 336 * - Device replace (*)
 337 * - Resize
 338 *
 339 * The device operations (as above) can be in one of the following states:
 340 *
 341 * - Running state
 342 * - Paused state
 343 * - Completed state
 344 *
 345 * Only device operations marked with (*) can go into the Paused state for the
 346 * following reasons:
 347 *
 348 * - ioctl (only Balance can be Paused through ioctl)
 349 * - filesystem remounted as read-only
 350 * - filesystem unmounted and mounted as read-only
 351 * - system power-cycle and filesystem mounted as read-only
 352 * - filesystem or device errors leading to forced read-only
 353 *
 354 * The status of exclusive operation is set and cleared atomically.
 355 * During the course of Paused state, fs_info::exclusive_operation remains set.
 356 * A device operation in Paused or Running state can be canceled or resumed
 357 * either by ioctl (Balance only) or when remounted as read-write.
 358 * The exclusive status is cleared when the device operation is canceled or
 359 * completed.
 360 */
 361
 362DEFINE_MUTEX(uuid_mutex);
 363static LIST_HEAD(fs_uuids);
 364struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
 365{
 366	return &fs_uuids;
 367}
 368
 369/*
 370 * Allocate new btrfs_fs_devices structure identified by a fsid.
 371 *
 372 * @fsid:    if not NULL, copy the UUID to fs_devices::fsid and to
 373 *           fs_devices::metadata_fsid
 374 *
 375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
 376 * The returned struct is not linked onto any lists and can be destroyed with
 377 * kfree() right away.
 378 */
 379static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
 380{
 381	struct btrfs_fs_devices *fs_devs;
 382
 383	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
 384	if (!fs_devs)
 385		return ERR_PTR(-ENOMEM);
 386
 387	mutex_init(&fs_devs->device_list_mutex);
 388
 389	INIT_LIST_HEAD(&fs_devs->devices);
 
 390	INIT_LIST_HEAD(&fs_devs->alloc_list);
 391	INIT_LIST_HEAD(&fs_devs->fs_list);
 392	INIT_LIST_HEAD(&fs_devs->seed_list);
 393
 394	if (fsid) {
 395		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
 396		memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
 397	}
 398
 399	return fs_devs;
 400}
 401
 402static void btrfs_free_device(struct btrfs_device *device)
 
 
 
 
 
 
 
 
 
 403{
 404	WARN_ON(!list_empty(&device->post_commit_list));
 405	rcu_string_free(device->name);
 406	extent_io_tree_release(&device->alloc_state);
 407	btrfs_destroy_dev_zone_info(device);
 408	kfree(device);
 
 
 
 
 
 
 
 409}
 410
 411static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
 412{
 413	struct btrfs_device *device;
 414
 415	WARN_ON(fs_devices->opened);
 416	while (!list_empty(&fs_devices->devices)) {
 417		device = list_entry(fs_devices->devices.next,
 418				    struct btrfs_device, dev_list);
 419		list_del(&device->dev_list);
 420		btrfs_free_device(device);
 
 421	}
 422	kfree(fs_devices);
 423}
 424
 425void __exit btrfs_cleanup_fs_uuids(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 426{
 427	struct btrfs_fs_devices *fs_devices;
 428
 429	while (!list_empty(&fs_uuids)) {
 430		fs_devices = list_entry(fs_uuids.next,
 431					struct btrfs_fs_devices, fs_list);
 432		list_del(&fs_devices->fs_list);
 433		free_fs_devices(fs_devices);
 434	}
 435}
 436
 437static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
 438				  const u8 *fsid, const u8 *metadata_fsid)
 439{
 440	if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
 441		return false;
 
 
 
 442
 443	if (!metadata_fsid)
 444		return true;
 
 445
 446	if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
 447		return false;
 448
 449	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450}
 451
 452static noinline struct btrfs_fs_devices *find_fsid(
 453		const u8 *fsid, const u8 *metadata_fsid)
 454{
 455	struct btrfs_fs_devices *fs_devices;
 456
 457	ASSERT(fsid);
 458
 459	/* Handle non-split brain cases */
 460	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
 461		if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
 462			return fs_devices;
 463	}
 464	return NULL;
 465}
 466
 467static int
 468btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
 469		      int flush, struct file **bdev_file,
 470		      struct btrfs_super_block **disk_super)
 471{
 472	struct block_device *bdev;
 473	int ret;
 474
 475	*bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
 476
 477	if (IS_ERR(*bdev_file)) {
 478		ret = PTR_ERR(*bdev_file);
 479		btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
 480			  device_path, flags, ret);
 481		goto error;
 482	}
 483	bdev = file_bdev(*bdev_file);
 484
 485	if (flush)
 486		sync_blockdev(bdev);
 487	if (holder) {
 488		ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
 489		if (ret) {
 490			fput(*bdev_file);
 491			goto error;
 492		}
 493	}
 494	invalidate_bdev(bdev);
 495	*disk_super = btrfs_read_dev_super(bdev);
 496	if (IS_ERR(*disk_super)) {
 497		ret = PTR_ERR(*disk_super);
 498		fput(*bdev_file);
 499		goto error;
 500	}
 501
 502	return 0;
 503
 504error:
 505	*disk_super = NULL;
 506	*bdev_file = NULL;
 507	return ret;
 508}
 509
 510/*
 511 *  Search and remove all stale devices (which are not mounted).  When both
 512 *  inputs are NULL, it will search and release all stale devices.
 513 *
 514 *  @devt:         Optional. When provided will it release all unmounted devices
 515 *                 matching this devt only.
 516 *  @skip_device:  Optional. Will skip this device when searching for the stale
 517 *                 devices.
 518 *
 519 *  Return:	0 for success or if @devt is 0.
 520 *		-EBUSY if @devt is a mounted device.
 521 *		-ENOENT if @devt does not match any device in the list.
 522 */
 523static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
 524{
 525	struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
 526	struct btrfs_device *device, *tmp_device;
 527	int ret;
 528	bool freed = false;
 529
 530	lockdep_assert_held(&uuid_mutex);
 531
 532	/* Return good status if there is no instance of devt. */
 533	ret = 0;
 534	list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
 
 
 
 
 535
 536		mutex_lock(&fs_devices->device_list_mutex);
 537		list_for_each_entry_safe(device, tmp_device,
 538					 &fs_devices->devices, dev_list) {
 539			if (skip_device && skip_device == device)
 540				continue;
 541			if (devt && devt != device->devt)
 542				continue;
 543			if (fs_devices->opened) {
 544				if (devt)
 545					ret = -EBUSY;
 546				break;
 547			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548
 549			/* delete the stale device */
 550			fs_devices->num_devices--;
 551			list_del(&device->dev_list);
 552			btrfs_free_device(device);
 553
 554			freed = true;
 555		}
 556		mutex_unlock(&fs_devices->device_list_mutex);
 557
 558		if (fs_devices->num_devices == 0) {
 559			btrfs_sysfs_remove_fsid(fs_devices);
 560			list_del(&fs_devices->fs_list);
 561			free_fs_devices(fs_devices);
 562		}
 
 
 
 
 
 
 563	}
 564
 565	/* If there is at least one freed device return 0. */
 566	if (freed)
 567		return 0;
 568
 569	return ret;
 570}
 571
 572static struct btrfs_fs_devices *find_fsid_by_device(
 573					struct btrfs_super_block *disk_super,
 574					dev_t devt, bool *same_fsid_diff_dev)
 575{
 576	struct btrfs_fs_devices *fsid_fs_devices;
 577	struct btrfs_fs_devices *devt_fs_devices;
 578	const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 579					BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 580	bool found_by_devt = false;
 581
 582	/* Find the fs_device by the usual method, if found use it. */
 583	fsid_fs_devices = find_fsid(disk_super->fsid,
 584		    has_metadata_uuid ? disk_super->metadata_uuid : NULL);
 585
 586	/* The temp_fsid feature is supported only with single device filesystem. */
 587	if (btrfs_super_num_devices(disk_super) != 1)
 588		return fsid_fs_devices;
 589
 590	/*
 591	 * A seed device is an integral component of the sprout device, which
 592	 * functions as a multi-device filesystem. So, temp-fsid feature is
 593	 * not supported.
 
 
 
 594	 */
 595	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
 596		return fsid_fs_devices;
 597
 598	/* Try to find a fs_devices by matching devt. */
 599	list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
 600		struct btrfs_device *device;
 601
 602		list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
 603			if (device->devt == devt) {
 604				found_by_devt = true;
 605				break;
 606			}
 607		}
 608		if (found_by_devt)
 609			break;
 610	}
 611
 612	if (found_by_devt) {
 613		/* Existing device. */
 614		if (fsid_fs_devices == NULL) {
 615			if (devt_fs_devices->opened == 0) {
 616				/* Stale device. */
 617				return NULL;
 618			} else {
 619				/* temp_fsid is mounting a subvol. */
 620				return devt_fs_devices;
 621			}
 622		} else {
 623			/* Regular or temp_fsid device mounting a subvol. */
 624			return devt_fs_devices;
 625		}
 626	} else {
 627		/* New device. */
 628		if (fsid_fs_devices == NULL) {
 629			return NULL;
 630		} else {
 631			/* sb::fsid is already used create a new temp_fsid. */
 632			*same_fsid_diff_dev = true;
 633			return NULL;
 634		}
 635	}
 636
 637	/* Not reached. */
 638}
 639
 640/*
 641 * This is only used on mount, and we are protected from competing things
 642 * messing with our fs_devices by the uuid_mutex, thus we do not need the
 643 * fs_devices->device_list_mutex here.
 644 */
 645static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
 646			struct btrfs_device *device, blk_mode_t flags,
 647			void *holder)
 648{
 649	struct file *bdev_file;
 650	struct btrfs_super_block *disk_super;
 651	u64 devid;
 652	int ret;
 653
 654	if (device->bdev)
 655		return -EINVAL;
 656	if (!device->name)
 657		return -EINVAL;
 658
 659	ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
 660				    &bdev_file, &disk_super);
 661	if (ret)
 662		return ret;
 
 
 
 
 
 
 
 
 
 663
 664	devid = btrfs_stack_device_id(&disk_super->dev_item);
 665	if (devid != device->devid)
 666		goto error_free_page;
 667
 668	if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
 669		goto error_free_page;
 
 
 
 
 670
 671	device->generation = btrfs_super_generation(disk_super);
 672
 673	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
 674		if (btrfs_super_incompat_flags(disk_super) &
 675		    BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
 676			pr_err(
 677		"BTRFS: Invalid seeding and uuid-changed device detected\n");
 678			goto error_free_page;
 
 
 
 
 
 
 
 
 679		}
 680
 681		clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 682		fs_devices->seeding = true;
 683	} else {
 684		if (bdev_read_only(file_bdev(bdev_file)))
 685			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 686		else
 687			set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 688	}
 689
 690	if (!bdev_nonrot(file_bdev(bdev_file)))
 691		fs_devices->rotating = true;
 692
 693	if (bdev_max_discard_sectors(file_bdev(bdev_file)))
 694		fs_devices->discardable = true;
 
 
 
 
 
 
 695
 696	device->bdev_file = bdev_file;
 697	device->bdev = file_bdev(bdev_file);
 698	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
 699
 700	if (device->devt != device->bdev->bd_dev) {
 701		btrfs_warn(NULL,
 702			   "device %s maj:min changed from %d:%d to %d:%d",
 703			   device->name->str, MAJOR(device->devt),
 704			   MINOR(device->devt), MAJOR(device->bdev->bd_dev),
 705			   MINOR(device->bdev->bd_dev));
 706
 707		device->devt = device->bdev->bd_dev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708	}
 709
 710	fs_devices->open_devices++;
 711	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
 712	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
 713		fs_devices->rw_devices++;
 714		list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
 715	}
 716	btrfs_release_disk_super(disk_super);
 
 717
 718	return 0;
 719
 720error_free_page:
 721	btrfs_release_disk_super(disk_super);
 722	fput(bdev_file);
 723
 724	return -EINVAL;
 725}
 726
 727const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
 728{
 729	bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
 730				  BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 731
 732	return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
 
 733}
 734
 735/*
 736 * We can have very weird soft links passed in.
 737 * One example is "/proc/self/fd/<fd>", which can be a soft link to
 738 * a block device.
 739 *
 740 * But it's never a good idea to use those weird names.
 741 * Here we check if the path (not following symlinks) is a good one inside
 742 * "/dev/".
 743 */
 744static bool is_good_dev_path(const char *dev_path)
 745{
 746	struct path path = { .mnt = NULL, .dentry = NULL };
 747	char *path_buf = NULL;
 748	char *resolved_path;
 749	bool is_good = false;
 750	int ret;
 751
 752	if (!dev_path)
 753		goto out;
 754
 755	path_buf = kmalloc(PATH_MAX, GFP_KERNEL);
 756	if (!path_buf)
 757		goto out;
 758
 759	/*
 760	 * Do not follow soft link, just check if the original path is inside
 761	 * "/dev/".
 762	 */
 763	ret = kern_path(dev_path, 0, &path);
 764	if (ret)
 765		goto out;
 766	resolved_path = d_path(&path, path_buf, PATH_MAX);
 767	if (IS_ERR(resolved_path))
 768		goto out;
 769	if (strncmp(resolved_path, "/dev/", strlen("/dev/")))
 770		goto out;
 771	is_good = true;
 772out:
 773	kfree(path_buf);
 774	path_put(&path);
 775	return is_good;
 776}
 777
 778static int get_canonical_dev_path(const char *dev_path, char *canonical)
 779{
 780	struct path path = { .mnt = NULL, .dentry = NULL };
 781	char *path_buf = NULL;
 782	char *resolved_path;
 783	int ret;
 784
 785	if (!dev_path) {
 786		ret = -EINVAL;
 787		goto out;
 788	}
 789
 790	path_buf = kmalloc(PATH_MAX, GFP_KERNEL);
 791	if (!path_buf) {
 792		ret = -ENOMEM;
 793		goto out;
 794	}
 
 
 
 
 
 
 
 
 795
 796	ret = kern_path(dev_path, LOOKUP_FOLLOW, &path);
 797	if (ret)
 798		goto out;
 799	resolved_path = d_path(&path, path_buf, PATH_MAX);
 800	if (IS_ERR(resolved_path)) {
 801		ret = PTR_ERR(resolved_path);
 802		goto out;
 
 
 
 
 
 
 
 803	}
 804	ret = strscpy(canonical, resolved_path, PATH_MAX);
 805out:
 806	kfree(path_buf);
 807	path_put(&path);
 808	return ret;
 809}
 810
 811static bool is_same_device(struct btrfs_device *device, const char *new_path)
 812{
 813	struct path old = { .mnt = NULL, .dentry = NULL };
 814	struct path new = { .mnt = NULL, .dentry = NULL };
 815	char *old_path = NULL;
 816	bool is_same = false;
 817	int ret;
 818
 819	if (!device->name)
 820		goto out;
 821
 822	old_path = kzalloc(PATH_MAX, GFP_NOFS);
 823	if (!old_path)
 824		goto out;
 825
 826	rcu_read_lock();
 827	ret = strscpy(old_path, rcu_str_deref(device->name), PATH_MAX);
 828	rcu_read_unlock();
 829	if (ret < 0)
 830		goto out;
 831
 832	ret = kern_path(old_path, LOOKUP_FOLLOW, &old);
 833	if (ret)
 834		goto out;
 835	ret = kern_path(new_path, LOOKUP_FOLLOW, &new);
 836	if (ret)
 837		goto out;
 838	if (path_equal(&old, &new))
 839		is_same = true;
 840out:
 841	kfree(old_path);
 842	path_put(&old);
 843	path_put(&new);
 844	return is_same;
 845}
 846
 847/*
 848 * Add new device to list of registered devices
 849 *
 850 * Returns:
 851 * device pointer which was just added or updated when successful
 852 * error pointer when failed
 
 853 */
 854static noinline struct btrfs_device *device_list_add(const char *path,
 855			   struct btrfs_super_block *disk_super,
 856			   bool *new_device_added)
 857{
 858	struct btrfs_device *device;
 859	struct btrfs_fs_devices *fs_devices = NULL;
 860	struct rcu_string *name;
 
 861	u64 found_transid = btrfs_super_generation(disk_super);
 862	u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
 863	dev_t path_devt;
 864	int error;
 865	bool same_fsid_diff_dev = false;
 866	bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
 867		BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
 868
 869	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
 870		btrfs_err(NULL,
 871"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
 872			  path);
 873		return ERR_PTR(-EAGAIN);
 874	}
 875
 876	error = lookup_bdev(path, &path_devt);
 877	if (error) {
 878		btrfs_err(NULL, "failed to lookup block device for path %s: %d",
 879			  path, error);
 880		return ERR_PTR(error);
 881	}
 882
 883	fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
 884
 
 885	if (!fs_devices) {
 886		fs_devices = alloc_fs_devices(disk_super->fsid);
 887		if (IS_ERR(fs_devices))
 888			return ERR_CAST(fs_devices);
 889
 890		if (has_metadata_uuid)
 891			memcpy(fs_devices->metadata_uuid,
 892			       disk_super->metadata_uuid, BTRFS_FSID_SIZE);
 893
 894		if (same_fsid_diff_dev) {
 895			generate_random_uuid(fs_devices->fsid);
 896			fs_devices->temp_fsid = true;
 897		pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
 898				path, MAJOR(path_devt), MINOR(path_devt),
 899				fs_devices->fsid);
 900		}
 901
 902		mutex_lock(&fs_devices->device_list_mutex);
 903		list_add(&fs_devices->fs_list, &fs_uuids);
 904
 905		device = NULL;
 906	} else {
 907		struct btrfs_dev_lookup_args args = {
 908			.devid = devid,
 909			.uuid = disk_super->dev_item.uuid,
 910		};
 911
 912		mutex_lock(&fs_devices->device_list_mutex);
 913		device = btrfs_find_device(fs_devices, &args);
 914
 915		if (found_transid > fs_devices->latest_generation) {
 916			memcpy(fs_devices->fsid, disk_super->fsid,
 917					BTRFS_FSID_SIZE);
 918			memcpy(fs_devices->metadata_uuid,
 919			       btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
 920		}
 921	}
 922
 923	if (!device) {
 924		unsigned int nofs_flag;
 
 925
 926		if (fs_devices->opened) {
 927			btrfs_err(NULL,
 928"device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
 929				  path, MAJOR(path_devt), MINOR(path_devt),
 930				  fs_devices->fsid, current->comm,
 931				  task_pid_nr(current));
 932			mutex_unlock(&fs_devices->device_list_mutex);
 933			return ERR_PTR(-EBUSY);
 934		}
 935
 936		nofs_flag = memalloc_nofs_save();
 937		device = btrfs_alloc_device(NULL, &devid,
 938					    disk_super->dev_item.uuid, path);
 939		memalloc_nofs_restore(nofs_flag);
 940		if (IS_ERR(device)) {
 941			mutex_unlock(&fs_devices->device_list_mutex);
 942			/* we can safely leave the fs_devices entry around */
 943			return device;
 944		}
 945
 946		device->devt = path_devt;
 
 
 
 
 
 947
 
 948		list_add_rcu(&device->dev_list, &fs_devices->devices);
 949		fs_devices->num_devices++;
 
 950
 
 951		device->fs_devices = fs_devices;
 952		*new_device_added = true;
 953
 954		if (disk_super->label[0])
 955			pr_info(
 956"BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
 957				disk_super->label, devid, found_transid, path,
 958				MAJOR(path_devt), MINOR(path_devt),
 959				current->comm, task_pid_nr(current));
 960		else
 961			pr_info(
 962"BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
 963				disk_super->fsid, devid, found_transid, path,
 964				MAJOR(path_devt), MINOR(path_devt),
 965				current->comm, task_pid_nr(current));
 966
 967	} else if (!device->name || !is_same_device(device, path)) {
 968		/*
 969		 * When FS is already mounted.
 970		 * 1. If you are here and if the device->name is NULL that
 971		 *    means this device was missing at time of FS mount.
 972		 * 2. If you are here and if the device->name is different
 973		 *    from 'path' that means either
 974		 *      a. The same device disappeared and reappeared with
 975		 *         different name. or
 976		 *      b. The missing-disk-which-was-replaced, has
 977		 *         reappeared now.
 978		 *
 979		 * We must allow 1 and 2a above. But 2b would be a spurious
 980		 * and unintentional.
 981		 *
 982		 * Further in case of 1 and 2a above, the disk at 'path'
 983		 * would have missed some transaction when it was away and
 984		 * in case of 2a the stale bdev has to be updated as well.
 985		 * 2b must not be allowed at all time.
 986		 */
 987
 988		/*
 989		 * For now, we do allow update to btrfs_fs_device through the
 990		 * btrfs dev scan cli after FS has been mounted.  We're still
 991		 * tracking a problem where systems fail mount by subvolume id
 992		 * when we reject replacement on a mounted FS.
 993		 */
 994		if (!fs_devices->opened && found_transid < device->generation) {
 995			/*
 996			 * That is if the FS is _not_ mounted and if you
 997			 * are here, that means there is more than one
 998			 * disk with same uuid and devid.We keep the one
 999			 * with larger generation number or the last-in if
1000			 * generation are equal.
1001			 */
1002			mutex_unlock(&fs_devices->device_list_mutex);
1003			btrfs_err(NULL,
1004"device %s already registered with a higher generation, found %llu expect %llu",
1005				  path, found_transid, device->generation);
1006			return ERR_PTR(-EEXIST);
1007		}
1008
1009		/*
1010		 * We are going to replace the device path for a given devid,
1011		 * make sure it's the same device if the device is mounted
1012		 *
1013		 * NOTE: the device->fs_info may not be reliable here so pass
1014		 * in a NULL to message helpers instead. This avoids a possible
1015		 * use-after-free when the fs_info and fs_info->sb are already
1016		 * torn down.
1017		 */
1018		if (device->bdev) {
1019			if (device->devt != path_devt) {
1020				mutex_unlock(&fs_devices->device_list_mutex);
1021				btrfs_warn_in_rcu(NULL,
1022	"duplicate device %s devid %llu generation %llu scanned by %s (%d)",
1023						  path, devid, found_transid,
1024						  current->comm,
1025						  task_pid_nr(current));
1026				return ERR_PTR(-EEXIST);
1027			}
1028			btrfs_info_in_rcu(NULL,
1029	"devid %llu device path %s changed to %s scanned by %s (%d)",
1030					  devid, btrfs_dev_name(device),
1031					  path, current->comm,
1032					  task_pid_nr(current));
1033		}
1034
1035		name = rcu_string_strdup(path, GFP_NOFS);
1036		if (!name) {
1037			mutex_unlock(&fs_devices->device_list_mutex);
1038			return ERR_PTR(-ENOMEM);
1039		}
1040		rcu_string_free(device->name);
1041		rcu_assign_pointer(device->name, name);
1042		if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1043			fs_devices->missing_devices--;
1044			clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1045		}
1046		device->devt = path_devt;
1047	}
1048
1049	/*
1050	 * Unmount does not free the btrfs_device struct but would zero
1051	 * generation along with most of the other members. So just update
1052	 * it back. We need it to pick the disk with largest generation
1053	 * (as above).
1054	 */
1055	if (!fs_devices->opened) {
1056		device->generation = found_transid;
1057		fs_devices->latest_generation = max_t(u64, found_transid,
1058						fs_devices->latest_generation);
1059	}
1060
1061	fs_devices->total_devices = btrfs_super_num_devices(disk_super);
 
 
 
 
 
 
1062
1063	mutex_unlock(&fs_devices->device_list_mutex);
1064	return device;
1065}
1066
1067static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1068{
1069	struct btrfs_fs_devices *fs_devices;
1070	struct btrfs_device *device;
1071	struct btrfs_device *orig_dev;
1072	int ret = 0;
1073
1074	lockdep_assert_held(&uuid_mutex);
1075
1076	fs_devices = alloc_fs_devices(orig->fsid);
1077	if (IS_ERR(fs_devices))
1078		return fs_devices;
1079
 
1080	fs_devices->total_devices = orig->total_devices;
1081
 
1082	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1083		const char *dev_path = NULL;
 
 
 
 
 
1084
1085		/*
1086		 * This is ok to do without RCU read locked because we hold the
1087		 * uuid mutex so nothing we touch in here is going to disappear.
1088		 */
1089		if (orig_dev->name)
1090			dev_path = orig_dev->name->str;
1091
1092		device = btrfs_alloc_device(NULL, &orig_dev->devid,
1093					    orig_dev->uuid, dev_path);
1094		if (IS_ERR(device)) {
1095			ret = PTR_ERR(device);
1096			goto error;
1097		}
1098
1099		if (orig_dev->zone_info) {
1100			struct btrfs_zoned_device_info *zone_info;
1101
1102			zone_info = btrfs_clone_dev_zone_info(orig_dev);
1103			if (!zone_info) {
1104				btrfs_free_device(device);
1105				ret = -ENOMEM;
1106				goto error;
1107			}
1108			device->zone_info = zone_info;
1109		}
1110
1111		list_add(&device->dev_list, &fs_devices->devices);
1112		device->fs_devices = fs_devices;
1113		fs_devices->num_devices++;
1114	}
 
1115	return fs_devices;
1116error:
 
1117	free_fs_devices(fs_devices);
1118	return ERR_PTR(ret);
1119}
1120
1121static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1122				      struct btrfs_device **latest_dev)
1123{
1124	struct btrfs_device *device, *next;
 
1125
 
 
1126	/* This is the initialized path, it is safe to release the devices. */
1127	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1128		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1129			if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1130				      &device->dev_state) &&
1131			    !test_bit(BTRFS_DEV_STATE_MISSING,
1132				      &device->dev_state) &&
1133			    (!*latest_dev ||
1134			     device->generation > (*latest_dev)->generation)) {
1135				*latest_dev = device;
1136			}
1137			continue;
1138		}
1139
1140		/*
1141		 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1142		 * in btrfs_init_dev_replace() so just continue.
1143		 */
1144		if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1145			continue;
1146
1147		if (device->bdev_file) {
1148			fput(device->bdev_file);
 
 
 
 
 
 
 
 
1149			device->bdev = NULL;
1150			device->bdev_file = NULL;
1151			fs_devices->open_devices--;
1152		}
1153		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1154			list_del_init(&device->dev_alloc_list);
1155			clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1156			fs_devices->rw_devices--;
 
1157		}
1158		list_del_init(&device->dev_list);
1159		fs_devices->num_devices--;
1160		btrfs_free_device(device);
 
1161	}
1162
1163}
 
 
 
1164
1165/*
1166 * After we have read the system tree and know devids belonging to this
1167 * filesystem, remove the device which does not belong there.
1168 */
1169void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1170{
1171	struct btrfs_device *latest_dev = NULL;
1172	struct btrfs_fs_devices *seed_dev;
1173
1174	mutex_lock(&uuid_mutex);
1175	__btrfs_free_extra_devids(fs_devices, &latest_dev);
1176
1177	list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1178		__btrfs_free_extra_devids(seed_dev, &latest_dev);
1179
1180	fs_devices->latest_dev = latest_dev;
1181
1182	mutex_unlock(&uuid_mutex);
1183}
1184
1185static void btrfs_close_bdev(struct btrfs_device *device)
1186{
1187	if (!device->bdev)
1188		return;
 
1189
1190	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1191		sync_blockdev(device->bdev);
1192		invalidate_bdev(device->bdev);
1193	}
1194
1195	fput(device->bdev_file);
 
1196}
1197
1198static void btrfs_close_one_device(struct btrfs_device *device)
1199{
1200	struct btrfs_fs_devices *fs_devices = device->fs_devices;
1201
1202	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1203	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1204		list_del_init(&device->dev_alloc_list);
1205		fs_devices->rw_devices--;
1206	}
1207
1208	if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1209		clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1210
1211	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1212		clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1213		fs_devices->missing_devices--;
1214	}
1215
1216	btrfs_close_bdev(device);
1217	if (device->bdev) {
1218		fs_devices->open_devices--;
1219		device->bdev = NULL;
1220		device->bdev_file = NULL;
1221	}
1222	clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1223	btrfs_destroy_dev_zone_info(device);
1224
1225	device->fs_info = NULL;
1226	atomic_set(&device->dev_stats_ccnt, 0);
1227	extent_io_tree_release(&device->alloc_state);
1228
1229	/*
1230	 * Reset the flush error record. We might have a transient flush error
1231	 * in this mount, and if so we aborted the current transaction and set
1232	 * the fs to an error state, guaranteeing no super blocks can be further
1233	 * committed. However that error might be transient and if we unmount the
1234	 * filesystem and mount it again, we should allow the mount to succeed
1235	 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1236	 * filesystem again we still get flush errors, then we will again abort
1237	 * any transaction and set the error state, guaranteeing no commits of
1238	 * unsafe super blocks.
1239	 */
1240	device->last_flush_error = 0;
1241
1242	/* Verify the device is back in a pristine state  */
1243	WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1244	WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1245	WARN_ON(!list_empty(&device->dev_alloc_list));
1246	WARN_ON(!list_empty(&device->post_commit_list));
1247}
1248
1249static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1250{
1251	struct btrfs_device *device, *tmp;
1252
1253	lockdep_assert_held(&uuid_mutex);
1254
1255	if (--fs_devices->opened > 0)
1256		return;
1257
1258	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
 
1259		btrfs_close_one_device(device);
 
 
1260
1261	WARN_ON(fs_devices->open_devices);
1262	WARN_ON(fs_devices->rw_devices);
1263	fs_devices->opened = 0;
1264	fs_devices->seeding = false;
1265	fs_devices->fs_info = NULL;
 
1266}
1267
1268void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1269{
1270	LIST_HEAD(list);
1271	struct btrfs_fs_devices *tmp;
1272
1273	mutex_lock(&uuid_mutex);
1274	close_fs_devices(fs_devices);
1275	if (!fs_devices->opened) {
1276		list_splice_init(&fs_devices->seed_list, &list);
1277
1278		/*
1279		 * If the struct btrfs_fs_devices is not assembled with any
1280		 * other device, it can be re-initialized during the next mount
1281		 * without the needing device-scan step. Therefore, it can be
1282		 * fully freed.
1283		 */
1284		if (fs_devices->num_devices == 1) {
1285			list_del(&fs_devices->fs_list);
1286			free_fs_devices(fs_devices);
1287		}
1288	}
 
1289
1290
1291	list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1292		close_fs_devices(fs_devices);
1293		list_del(&fs_devices->seed_list);
1294		free_fs_devices(fs_devices);
1295	}
1296	mutex_unlock(&uuid_mutex);
 
 
 
 
 
 
1297}
1298
1299static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1300				blk_mode_t flags, void *holder)
1301{
 
 
 
1302	struct btrfs_device *device;
1303	struct btrfs_device *latest_dev = NULL;
1304	struct btrfs_device *tmp_device;
 
 
 
1305	int ret = 0;
1306
1307	list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1308				 dev_list) {
1309		int ret2;
1310
1311		ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1312		if (ret2 == 0 &&
1313		    (!latest_dev || device->generation > latest_dev->generation)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1314			latest_dev = device;
1315		} else if (ret2 == -ENODATA) {
1316			fs_devices->num_devices--;
1317			list_del(&device->dev_list);
1318			btrfs_free_device(device);
 
 
1319		}
1320		if (ret == 0 && ret2 != 0)
1321			ret = ret2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1322	}
1323
1324	if (fs_devices->open_devices == 0) {
1325		if (ret)
1326			return ret;
1327		return -EINVAL;
1328	}
1329
1330	fs_devices->opened = 1;
1331	fs_devices->latest_dev = latest_dev;
1332	fs_devices->total_rw_bytes = 0;
1333	fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1334	fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1335
1336	return 0;
1337}
1338
1339static int devid_cmp(void *priv, const struct list_head *a,
1340		     const struct list_head *b)
1341{
1342	const struct btrfs_device *dev1, *dev2;
1343
1344	dev1 = list_entry(a, struct btrfs_device, dev_list);
1345	dev2 = list_entry(b, struct btrfs_device, dev_list);
1346
1347	if (dev1->devid < dev2->devid)
1348		return -1;
1349	else if (dev1->devid > dev2->devid)
1350		return 1;
1351	return 0;
1352}
1353
1354int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1355		       blk_mode_t flags, void *holder)
1356{
1357	int ret;
1358
1359	lockdep_assert_held(&uuid_mutex);
1360	/*
1361	 * The device_list_mutex cannot be taken here in case opening the
1362	 * underlying device takes further locks like open_mutex.
1363	 *
1364	 * We also don't need the lock here as this is called during mount and
1365	 * exclusion is provided by uuid_mutex
1366	 */
1367
1368	if (fs_devices->opened) {
1369		fs_devices->opened++;
1370		ret = 0;
1371	} else {
1372		list_sort(NULL, &fs_devices->devices, devid_cmp);
1373		ret = open_fs_devices(fs_devices, flags, holder);
1374	}
1375
1376	return ret;
1377}
1378
1379void btrfs_release_disk_super(struct btrfs_super_block *super)
1380{
1381	struct page *page = virt_to_page(super);
1382
1383	put_page(page);
1384}
1385
1386static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1387						       u64 bytenr, u64 bytenr_orig)
1388{
1389	struct btrfs_super_block *disk_super;
 
1390	struct page *page;
1391	void *p;
 
 
 
 
 
1392	pgoff_t index;
1393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394	/* make sure our super fits in the device */
1395	if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1396		return ERR_PTR(-EINVAL);
1397
1398	/* make sure our super fits in the page */
1399	if (sizeof(*disk_super) > PAGE_SIZE)
1400		return ERR_PTR(-EINVAL);
1401
1402	/* make sure our super doesn't straddle pages on disk */
1403	index = bytenr >> PAGE_SHIFT;
1404	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1405		return ERR_PTR(-EINVAL);
1406
1407	/* pull in the page with our super */
1408	page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL);
 
1409
1410	if (IS_ERR(page))
1411		return ERR_CAST(page);
1412
1413	p = page_address(page);
1414
1415	/* align our pointer to the offset of the super block */
1416	disk_super = p + offset_in_page(bytenr);
1417
1418	if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1419	    btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1420		btrfs_release_disk_super(p);
1421		return ERR_PTR(-EINVAL);
1422	}
1423
1424	if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1425		disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
 
1426
1427	return disk_super;
1428}
1429
1430int btrfs_forget_devices(dev_t devt)
1431{
1432	int ret;
1433
1434	mutex_lock(&uuid_mutex);
1435	ret = btrfs_free_stale_devices(devt, NULL);
1436	mutex_unlock(&uuid_mutex);
1437
1438	return ret;
1439}
1440
1441static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1442				    const char *path, dev_t devt,
1443				    bool mount_arg_dev)
1444{
1445	struct btrfs_fs_devices *fs_devices;
1446
1447	/*
1448	 * Do not skip device registration for mounted devices with matching
1449	 * maj:min but different paths. Booting without initrd relies on
1450	 * /dev/root initially, later replaced with the actual root device.
1451	 * A successful scan ensures grub2-probe selects the correct device.
1452	 */
1453	list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1454		struct btrfs_device *device;
1455
1456		mutex_lock(&fs_devices->device_list_mutex);
1457
1458		if (!fs_devices->opened) {
1459			mutex_unlock(&fs_devices->device_list_mutex);
1460			continue;
1461		}
1462
1463		list_for_each_entry(device, &fs_devices->devices, dev_list) {
1464			if (device->bdev && (device->bdev->bd_dev == devt) &&
1465			    strcmp(device->name->str, path) != 0) {
1466				mutex_unlock(&fs_devices->device_list_mutex);
1467
1468				/* Do not skip registration. */
1469				return false;
1470			}
1471		}
1472		mutex_unlock(&fs_devices->device_list_mutex);
1473	}
 
 
1474
1475	if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1476	    !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1477		return true;
1478
1479	return false;
 
 
 
 
1480}
1481
1482/*
1483 * Look for a btrfs signature on a device. This may be called out of the mount path
1484 * and we are not allowed to call set_blocksize during the scan. The superblock
1485 * is read via pagecache.
1486 *
1487 * With @mount_arg_dev it's a scan during mount time that will always register
1488 * the device or return an error. Multi-device and seeding devices are registered
1489 * in both cases.
1490 */
1491struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1492					   bool mount_arg_dev)
1493{
1494	struct btrfs_super_block *disk_super;
1495	bool new_device_added = false;
1496	struct btrfs_device *device = NULL;
1497	struct file *bdev_file;
1498	char *canonical_path = NULL;
1499	u64 bytenr;
1500	dev_t devt;
1501	int ret;
 
 
1502
1503	lockdep_assert_held(&uuid_mutex);
1504
1505	if (!is_good_dev_path(path)) {
1506		canonical_path = kmalloc(PATH_MAX, GFP_KERNEL);
1507		if (canonical_path) {
1508			ret = get_canonical_dev_path(path, canonical_path);
1509			if (ret < 0) {
1510				kfree(canonical_path);
1511				canonical_path = NULL;
1512			}
1513		}
1514	}
1515	/*
1516	 * Avoid an exclusive open here, as the systemd-udev may initiate the
1517	 * device scan which may race with the user's mount or mkfs command,
1518	 * resulting in failure.
1519	 * Since the device scan is solely for reading purposes, there is no
1520	 * need for an exclusive open. Additionally, the devices are read again
1521	 * during the mount process. It is ok to get some inconsistent
1522	 * values temporarily, as the device paths of the fsid are the only
1523	 * required information for assembling the volume.
1524	 */
1525	bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1526	if (IS_ERR(bdev_file))
1527		return ERR_CAST(bdev_file);
1528
1529	/*
1530	 * We would like to check all the super blocks, but doing so would
1531	 * allow a mount to succeed after a mkfs from a different filesystem.
1532	 * Currently, recovery from a bad primary btrfs superblock is done
1533	 * using the userspace command 'btrfs check --super'.
1534	 */
1535	ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1536	if (ret) {
1537		device = ERR_PTR(ret);
1538		goto error_bdev_put;
1539	}
1540
1541	disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1542					   btrfs_sb_offset(0));
1543	if (IS_ERR(disk_super)) {
1544		device = ERR_CAST(disk_super);
1545		goto error_bdev_put;
1546	}
1547
1548	devt = file_bdev(bdev_file)->bd_dev;
1549	if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1550		pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1551			  path, MAJOR(devt), MINOR(devt));
1552
1553		btrfs_free_stale_devices(devt, NULL);
1554
1555		device = NULL;
1556		goto free_disk_super;
1557	}
1558
1559	device = device_list_add(canonical_path ? : path, disk_super,
1560				 &new_device_added);
1561	if (!IS_ERR(device) && new_device_added)
1562		btrfs_free_stale_devices(device->devt, device);
 
 
 
 
 
1563
1564free_disk_super:
1565	btrfs_release_disk_super(disk_super);
 
1566
1567error_bdev_put:
1568	fput(bdev_file);
1569	kfree(canonical_path);
1570
1571	return device;
1572}
1573
1574/*
1575 * Try to find a chunk that intersects [start, start + len] range and when one
1576 * such is found, record the end of it in *start
1577 */
1578static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1579				    u64 len)
1580{
1581	u64 physical_start, physical_end;
1582
1583	lockdep_assert_held(&device->fs_info->chunk_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584
1585	if (find_first_extent_bit(&device->alloc_state, *start,
1586				  &physical_start, &physical_end,
1587				  CHUNK_ALLOCATED, NULL)) {
1588
1589		if (in_range(physical_start, *start, len) ||
1590		    in_range(*start, physical_start,
1591			     physical_end + 1 - physical_start)) {
1592			*start = physical_end + 1;
1593			return true;
1594		}
1595	}
1596	return false;
 
 
 
1597}
1598
1599static u64 dev_extent_search_start(struct btrfs_device *device)
1600{
1601	switch (device->fs_devices->chunk_alloc_policy) {
1602	case BTRFS_CHUNK_ALLOC_REGULAR:
1603		return BTRFS_DEVICE_RANGE_RESERVED;
1604	case BTRFS_CHUNK_ALLOC_ZONED:
1605		/*
1606		 * We don't care about the starting region like regular
1607		 * allocator, because we anyway use/reserve the first two zones
1608		 * for superblock logging.
1609		 */
1610		return 0;
1611	default:
1612		BUG();
1613	}
1614}
1615
1616static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1617					u64 *hole_start, u64 *hole_size,
1618					u64 num_bytes)
1619{
1620	u64 zone_size = device->zone_info->zone_size;
1621	u64 pos;
1622	int ret;
1623	bool changed = false;
1624
1625	ASSERT(IS_ALIGNED(*hole_start, zone_size));
 
 
1626
1627	while (*hole_size > 0) {
1628		pos = btrfs_find_allocatable_zones(device, *hole_start,
1629						   *hole_start + *hole_size,
1630						   num_bytes);
1631		if (pos != *hole_start) {
1632			*hole_size = *hole_start + *hole_size - pos;
1633			*hole_start = pos;
1634			changed = true;
1635			if (*hole_size < num_bytes)
1636				break;
1637		}
1638
1639		ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1640
1641		/* Range is ensured to be empty */
1642		if (!ret)
1643			return changed;
1644
1645		/* Given hole range was invalid (outside of device) */
1646		if (ret == -ERANGE) {
1647			*hole_start += *hole_size;
1648			*hole_size = 0;
1649			return true;
1650		}
1651
1652		*hole_start += zone_size;
1653		*hole_size -= zone_size;
1654		changed = true;
1655	}
1656
1657	return changed;
1658}
1659
1660/*
1661 * Check if specified hole is suitable for allocation.
1662 *
1663 * @device:	the device which we have the hole
1664 * @hole_start: starting position of the hole
1665 * @hole_size:	the size of the hole
1666 * @num_bytes:	the size of the free space that we need
1667 *
1668 * This function may modify @hole_start and @hole_size to reflect the suitable
1669 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1670 */
1671static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1672				  u64 *hole_size, u64 num_bytes)
1673{
1674	bool changed = false;
1675	u64 hole_end = *hole_start + *hole_size;
1676
1677	for (;;) {
1678		/*
1679		 * Check before we set max_hole_start, otherwise we could end up
1680		 * sending back this offset anyway.
1681		 */
1682		if (contains_pending_extent(device, hole_start, *hole_size)) {
1683			if (hole_end >= *hole_start)
1684				*hole_size = hole_end - *hole_start;
1685			else
1686				*hole_size = 0;
1687			changed = true;
1688		}
1689
1690		switch (device->fs_devices->chunk_alloc_policy) {
1691		case BTRFS_CHUNK_ALLOC_REGULAR:
1692			/* No extra check */
1693			break;
1694		case BTRFS_CHUNK_ALLOC_ZONED:
1695			if (dev_extent_hole_check_zoned(device, hole_start,
1696							hole_size, num_bytes)) {
1697				changed = true;
1698				/*
1699				 * The changed hole can contain pending extent.
1700				 * Loop again to check that.
1701				 */
1702				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1703			}
1704			break;
1705		default:
1706			BUG();
1707		}
1708
1709		break;
 
 
1710	}
1711
1712	return changed;
1713}
1714
 
1715/*
1716 * Find free space in the specified device.
1717 *
1718 * @device:	  the device which we search the free space in
1719 * @num_bytes:	  the size of the free space that we need
1720 * @search_start: the position from which to begin the search
1721 * @start:	  store the start of the free space.
1722 * @len:	  the size of the free space. that we find, or the size
1723 *		  of the max free space if we don't find suitable free space
1724 *
1725 * This does a pretty simple search, the expectation is that it is called very
1726 * infrequently and that a given device has a small number of extents.
 
1727 *
1728 * @start is used to store the start of the free space if we find. But if we
1729 * don't find suitable free space, it will be used to store the start position
1730 * of the max free space.
1731 *
1732 * @len is used to store the size of the free space that we find.
1733 * But if we don't find suitable free space, it is used to store the size of
1734 * the max free space.
1735 *
1736 * NOTE: This function will search *commit* root of device tree, and does extra
1737 * check to ensure dev extents are not double allocated.
1738 * This makes the function safe to allocate dev extents but may not report
1739 * correct usable device space, as device extent freed in current transaction
1740 * is not reported as available.
1741 */
1742static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1743				u64 *start, u64 *len)
 
1744{
1745	struct btrfs_fs_info *fs_info = device->fs_info;
1746	struct btrfs_root *root = fs_info->dev_root;
1747	struct btrfs_key key;
 
1748	struct btrfs_dev_extent *dev_extent;
1749	struct btrfs_path *path;
1750	u64 search_start;
1751	u64 hole_size;
1752	u64 max_hole_start;
1753	u64 max_hole_size = 0;
1754	u64 extent_end;
1755	u64 search_end = device->total_bytes;
1756	int ret;
1757	int slot;
1758	struct extent_buffer *l;
 
 
 
 
 
 
 
 
 
 
 
 
 
1759
1760	search_start = dev_extent_search_start(device);
1761	max_hole_start = search_start;
 
1762
1763	WARN_ON(device->zone_info &&
1764		!IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1765
1766	path = btrfs_alloc_path();
1767	if (!path) {
1768		ret = -ENOMEM;
1769		goto out;
1770	}
1771again:
1772	if (search_start >= search_end ||
1773		test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1774		ret = -ENOSPC;
1775		goto out;
1776	}
1777
1778	path->reada = READA_FORWARD;
1779	path->search_commit_root = 1;
1780	path->skip_locking = 1;
1781
1782	key.objectid = device->devid;
1783	key.offset = search_start;
1784	key.type = BTRFS_DEV_EXTENT_KEY;
1785
1786	ret = btrfs_search_backwards(root, &key, path);
1787	if (ret < 0)
1788		goto out;
 
 
 
 
 
1789
1790	while (search_start < search_end) {
1791		l = path->nodes[0];
1792		slot = path->slots[0];
1793		if (slot >= btrfs_header_nritems(l)) {
1794			ret = btrfs_next_leaf(root, path);
1795			if (ret == 0)
1796				continue;
1797			if (ret < 0)
1798				goto out;
1799
1800			break;
1801		}
1802		btrfs_item_key_to_cpu(l, &key, slot);
1803
1804		if (key.objectid < device->devid)
1805			goto next;
1806
1807		if (key.objectid > device->devid)
1808			break;
1809
1810		if (key.type != BTRFS_DEV_EXTENT_KEY)
1811			goto next;
1812
1813		if (key.offset > search_end)
1814			break;
1815
1816		if (key.offset > search_start) {
1817			hole_size = key.offset - search_start;
1818			dev_extent_hole_check(device, &search_start, &hole_size,
1819					      num_bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
1820
1821			if (hole_size > max_hole_size) {
1822				max_hole_start = search_start;
1823				max_hole_size = hole_size;
1824			}
1825
1826			/*
1827			 * If this free space is greater than which we need,
1828			 * it must be the max free space that we have found
1829			 * until now, so max_hole_start must point to the start
1830			 * of this free space and the length of this free space
1831			 * is stored in max_hole_size. Thus, we return
1832			 * max_hole_start and max_hole_size and go back to the
1833			 * caller.
1834			 */
1835			if (hole_size >= num_bytes) {
1836				ret = 0;
1837				goto out;
1838			}
1839		}
1840
1841		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1842		extent_end = key.offset + btrfs_dev_extent_length(l,
1843								  dev_extent);
1844		if (extent_end > search_start)
1845			search_start = extent_end;
1846next:
1847		path->slots[0]++;
1848		cond_resched();
1849	}
1850
1851	/*
1852	 * At this point, search_start should be the end of
1853	 * allocated dev extents, and when shrinking the device,
1854	 * search_end may be smaller than search_start.
1855	 */
1856	if (search_end > search_start) {
1857		hole_size = search_end - search_start;
1858		if (dev_extent_hole_check(device, &search_start, &hole_size,
1859					  num_bytes)) {
 
1860			btrfs_release_path(path);
1861			goto again;
1862		}
1863
1864		if (hole_size > max_hole_size) {
1865			max_hole_start = search_start;
1866			max_hole_size = hole_size;
1867		}
1868	}
1869
1870	/* See above. */
1871	if (max_hole_size < num_bytes)
1872		ret = -ENOSPC;
1873	else
1874		ret = 0;
1875
1876	ASSERT(max_hole_start + max_hole_size <= search_end);
1877out:
1878	btrfs_free_path(path);
1879	*start = max_hole_start;
1880	if (len)
1881		*len = max_hole_size;
1882	return ret;
1883}
1884
 
 
 
 
 
 
 
 
 
1885static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1886			  struct btrfs_device *device,
1887			  u64 start, u64 *dev_extent_len)
1888{
1889	struct btrfs_fs_info *fs_info = device->fs_info;
1890	struct btrfs_root *root = fs_info->dev_root;
1891	int ret;
1892	struct btrfs_path *path;
 
1893	struct btrfs_key key;
1894	struct btrfs_key found_key;
1895	struct extent_buffer *leaf = NULL;
1896	struct btrfs_dev_extent *extent = NULL;
1897
1898	path = btrfs_alloc_path();
1899	if (!path)
1900		return -ENOMEM;
1901
1902	key.objectid = device->devid;
1903	key.offset = start;
1904	key.type = BTRFS_DEV_EXTENT_KEY;
1905again:
1906	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1907	if (ret > 0) {
1908		ret = btrfs_previous_item(root, path, key.objectid,
1909					  BTRFS_DEV_EXTENT_KEY);
1910		if (ret)
1911			goto out;
1912		leaf = path->nodes[0];
1913		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1914		extent = btrfs_item_ptr(leaf, path->slots[0],
1915					struct btrfs_dev_extent);
1916		BUG_ON(found_key.offset > start || found_key.offset +
1917		       btrfs_dev_extent_length(leaf, extent) < start);
1918		key = found_key;
1919		btrfs_release_path(path);
1920		goto again;
1921	} else if (ret == 0) {
1922		leaf = path->nodes[0];
1923		extent = btrfs_item_ptr(leaf, path->slots[0],
1924					struct btrfs_dev_extent);
1925	} else {
 
1926		goto out;
1927	}
1928
1929	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1930
1931	ret = btrfs_del_item(trans, root, path);
1932	if (ret == 0)
 
 
 
1933		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934out:
1935	btrfs_free_path(path);
1936	return ret;
1937}
1938
1939static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1940{
 
 
1941	struct rb_node *n;
1942	u64 ret = 0;
1943
1944	read_lock(&fs_info->mapping_tree_lock);
1945	n = rb_last(&fs_info->mapping_tree.rb_root);
 
1946	if (n) {
1947		struct btrfs_chunk_map *map;
1948
1949		map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1950		ret = map->start + map->chunk_len;
1951	}
1952	read_unlock(&fs_info->mapping_tree_lock);
1953
1954	return ret;
1955}
1956
1957static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1958				    u64 *devid_ret)
1959{
1960	int ret;
1961	struct btrfs_key key;
1962	struct btrfs_key found_key;
1963	struct btrfs_path *path;
1964
1965	path = btrfs_alloc_path();
1966	if (!path)
1967		return -ENOMEM;
1968
1969	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1970	key.type = BTRFS_DEV_ITEM_KEY;
1971	key.offset = (u64)-1;
1972
1973	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1974	if (ret < 0)
1975		goto error;
1976
1977	if (ret == 0) {
1978		/* Corruption */
1979		btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1980		ret = -EUCLEAN;
1981		goto error;
1982	}
1983
1984	ret = btrfs_previous_item(fs_info->chunk_root, path,
1985				  BTRFS_DEV_ITEMS_OBJECTID,
1986				  BTRFS_DEV_ITEM_KEY);
1987	if (ret) {
1988		*devid_ret = 1;
1989	} else {
1990		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1991				      path->slots[0]);
1992		*devid_ret = found_key.offset + 1;
1993	}
1994	ret = 0;
1995error:
1996	btrfs_free_path(path);
1997	return ret;
1998}
1999
2000/*
2001 * the device information is stored in the chunk root
2002 * the btrfs_device struct should be fully filled in
2003 */
2004static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
 
2005			    struct btrfs_device *device)
2006{
2007	int ret;
2008	struct btrfs_path *path;
2009	struct btrfs_dev_item *dev_item;
2010	struct extent_buffer *leaf;
2011	struct btrfs_key key;
2012	unsigned long ptr;
2013
 
 
2014	path = btrfs_alloc_path();
2015	if (!path)
2016		return -ENOMEM;
2017
2018	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2019	key.type = BTRFS_DEV_ITEM_KEY;
2020	key.offset = device->devid;
2021
2022	btrfs_reserve_chunk_metadata(trans, true);
2023	ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
2024				      &key, sizeof(*dev_item));
2025	btrfs_trans_release_chunk_metadata(trans);
2026	if (ret)
2027		goto out;
2028
2029	leaf = path->nodes[0];
2030	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2031
2032	btrfs_set_device_id(leaf, dev_item, device->devid);
2033	btrfs_set_device_generation(leaf, dev_item, 0);
2034	btrfs_set_device_type(leaf, dev_item, device->type);
2035	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2036	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2037	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2038	btrfs_set_device_total_bytes(leaf, dev_item,
2039				     btrfs_device_get_disk_total_bytes(device));
2040	btrfs_set_device_bytes_used(leaf, dev_item,
2041				    btrfs_device_get_bytes_used(device));
2042	btrfs_set_device_group(leaf, dev_item, 0);
2043	btrfs_set_device_seek_speed(leaf, dev_item, 0);
2044	btrfs_set_device_bandwidth(leaf, dev_item, 0);
2045	btrfs_set_device_start_offset(leaf, dev_item, 0);
2046
2047	ptr = btrfs_device_uuid(dev_item);
2048	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2049	ptr = btrfs_device_fsid(dev_item);
2050	write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
2051			    ptr, BTRFS_FSID_SIZE);
2052	btrfs_mark_buffer_dirty(trans, leaf);
2053
2054	ret = 0;
2055out:
2056	btrfs_free_path(path);
2057	return ret;
2058}
2059
2060/*
2061 * Function to update ctime/mtime for a given device path.
2062 * Mainly used for ctime/mtime based probe like libblkid.
2063 *
2064 * We don't care about errors here, this is just to be kind to userspace.
2065 */
2066static void update_dev_time(const char *device_path)
2067{
2068	struct path path;
2069	int ret;
2070
2071	ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
2072	if (ret)
2073		return;
2074
2075	inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
2076	path_put(&path);
2077}
2078
2079static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
2080			     struct btrfs_device *device)
2081{
2082	struct btrfs_root *root = device->fs_info->chunk_root;
2083	int ret;
2084	struct btrfs_path *path;
2085	struct btrfs_key key;
 
 
 
2086
2087	path = btrfs_alloc_path();
2088	if (!path)
2089		return -ENOMEM;
2090
 
 
 
 
 
2091	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2092	key.type = BTRFS_DEV_ITEM_KEY;
2093	key.offset = device->devid;
2094
2095	btrfs_reserve_chunk_metadata(trans, false);
2096	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2097	btrfs_trans_release_chunk_metadata(trans);
2098	if (ret) {
2099		if (ret > 0)
2100			ret = -ENOENT;
 
2101		goto out;
2102	}
2103
2104	ret = btrfs_del_item(trans, root, path);
 
 
2105out:
2106	btrfs_free_path(path);
 
2107	return ret;
2108}
2109
2110/*
2111 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2112 * filesystem. It's up to the caller to adjust that number regarding eg. device
2113 * replace.
2114 */
2115static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2116		u64 num_devices)
2117{
 
 
 
 
 
 
2118	u64 all_avail;
 
 
 
2119	unsigned seq;
2120	int i;
 
 
 
2121
2122	do {
2123		seq = read_seqbegin(&fs_info->profiles_lock);
2124
2125		all_avail = fs_info->avail_data_alloc_bits |
2126			    fs_info->avail_system_alloc_bits |
2127			    fs_info->avail_metadata_alloc_bits;
2128	} while (read_seqretry(&fs_info->profiles_lock, seq));
2129
2130	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2131		if (!(all_avail & btrfs_raid_array[i].bg_flag))
2132			continue;
2133
2134		if (num_devices < btrfs_raid_array[i].devs_min)
2135			return btrfs_raid_array[i].mindev_error;
2136	}
 
2137
2138	return 0;
2139}
2140
2141static struct btrfs_device * btrfs_find_next_active_device(
2142		struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2143{
2144	struct btrfs_device *next_device;
2145
2146	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2147		if (next_device != device &&
2148		    !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2149		    && next_device->bdev)
2150			return next_device;
2151	}
2152
2153	return NULL;
2154}
2155
2156/*
2157 * Helper function to check if the given device is part of s_bdev / latest_dev
2158 * and replace it with the provided or the next active device, in the context
2159 * where this function called, there should be always be another device (or
2160 * this_dev) which is active.
2161 */
2162void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2163					    struct btrfs_device *next_device)
2164{
2165	struct btrfs_fs_info *fs_info = device->fs_info;
2166
2167	if (!next_device)
2168		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2169							    device);
2170	ASSERT(next_device);
2171
2172	if (fs_info->sb->s_bdev &&
2173			(fs_info->sb->s_bdev == device->bdev))
2174		fs_info->sb->s_bdev = next_device->bdev;
2175
2176	if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2177		fs_info->fs_devices->latest_dev = next_device;
2178}
2179
2180/*
2181 * Return btrfs_fs_devices::num_devices excluding the device that's being
2182 * currently replaced.
2183 */
2184static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2185{
2186	u64 num_devices = fs_info->fs_devices->num_devices;
2187
2188	down_read(&fs_info->dev_replace.rwsem);
2189	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2190		ASSERT(num_devices > 1);
2191		num_devices--;
2192	}
2193	up_read(&fs_info->dev_replace.rwsem);
2194
2195	return num_devices;
2196}
2197
2198static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2199				     struct block_device *bdev, int copy_num)
2200{
2201	struct btrfs_super_block *disk_super;
2202	const size_t len = sizeof(disk_super->magic);
2203	const u64 bytenr = btrfs_sb_offset(copy_num);
2204	int ret;
2205
2206	disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2207	if (IS_ERR(disk_super))
2208		return;
2209
2210	memset(&disk_super->magic, 0, len);
2211	folio_mark_dirty(virt_to_folio(disk_super));
2212	btrfs_release_disk_super(disk_super);
2213
2214	ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2215	if (ret)
2216		btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2217			copy_num, ret);
2218}
2219
2220void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2221{
2222	int copy_num;
2223	struct block_device *bdev = device->bdev;
2224
2225	if (!bdev)
2226		return;
2227
2228	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2229		if (bdev_is_zoned(bdev))
2230			btrfs_reset_sb_log_zones(bdev, copy_num);
2231		else
2232			btrfs_scratch_superblock(fs_info, bdev, copy_num);
2233	}
2234
2235	/* Notify udev that device has changed */
2236	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2237
2238	/* Update ctime/mtime for device path for libblkid */
2239	update_dev_time(device->name->str);
2240}
2241
2242int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2243		    struct btrfs_dev_lookup_args *args,
2244		    struct file **bdev_file)
2245{
2246	struct btrfs_trans_handle *trans;
2247	struct btrfs_device *device;
2248	struct btrfs_fs_devices *cur_devices;
2249	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2250	u64 num_devices;
2251	int ret = 0;
2252
2253	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2254		btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2255		return -EINVAL;
2256	}
2257
2258	/*
2259	 * The device list in fs_devices is accessed without locks (neither
2260	 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2261	 * filesystem and another device rm cannot run.
2262	 */
2263	num_devices = btrfs_num_devices(fs_info);
2264
2265	ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2266	if (ret)
2267		return ret;
2268
2269	device = btrfs_find_device(fs_info->fs_devices, args);
2270	if (!device) {
2271		if (args->missing)
 
 
 
 
 
 
 
 
 
 
 
2272			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2273		else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2274			ret = -ENOENT;
2275		return ret;
 
2276	}
2277
2278	if (btrfs_pinned_by_swapfile(fs_info, device)) {
2279		btrfs_warn_in_rcu(fs_info,
2280		  "cannot remove device %s (devid %llu) due to active swapfile",
2281				  btrfs_dev_name(device), device->devid);
2282		return -ETXTBSY;
2283	}
2284
2285	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2286		return BTRFS_ERROR_DEV_TGT_REPLACE;
2287
2288	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2289	    fs_info->fs_devices->rw_devices == 1)
2290		return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2291
2292	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2293		mutex_lock(&fs_info->chunk_mutex);
 
 
 
 
 
2294		list_del_init(&device->dev_alloc_list);
2295		device->fs_devices->rw_devices--;
2296		mutex_unlock(&fs_info->chunk_mutex);
 
2297	}
2298
 
2299	ret = btrfs_shrink_device(device, 0);
 
2300	if (ret)
2301		goto error_undo;
2302
2303	trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2304	if (IS_ERR(trans)) {
2305		ret = PTR_ERR(trans);
 
 
 
 
2306		goto error_undo;
2307	}
2308
2309	ret = btrfs_rm_dev_item(trans, device);
2310	if (ret) {
2311		/* Any error in dev item removal is critical */
2312		btrfs_crit(fs_info,
2313			   "failed to remove device item for devid %llu: %d",
2314			   device->devid, ret);
2315		btrfs_abort_transaction(trans, ret);
2316		btrfs_end_transaction(trans);
2317		return ret;
2318	}
2319
2320	clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2321	btrfs_scrub_cancel_dev(device);
2322
2323	/*
2324	 * the device list mutex makes sure that we don't change
2325	 * the device list while someone else is writing out all
2326	 * the device supers. Whoever is writing all supers, should
2327	 * lock the device list mutex before getting the number of
2328	 * devices in the super block (super_copy). Conversely,
2329	 * whoever updates the number of devices in the super block
2330	 * (super_copy) should hold the device list mutex.
2331	 */
2332
2333	/*
2334	 * In normal cases the cur_devices == fs_devices. But in case
2335	 * of deleting a seed device, the cur_devices should point to
2336	 * its own fs_devices listed under the fs_devices->seed_list.
2337	 */
2338	cur_devices = device->fs_devices;
2339	mutex_lock(&fs_devices->device_list_mutex);
2340	list_del_rcu(&device->dev_list);
2341
2342	cur_devices->num_devices--;
2343	cur_devices->total_devices--;
2344	/* Update total_devices of the parent fs_devices if it's seed */
2345	if (cur_devices != fs_devices)
2346		fs_devices->total_devices--;
2347
2348	if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2349		cur_devices->missing_devices--;
2350
2351	btrfs_assign_next_active_device(device, NULL);
 
 
 
 
 
2352
2353	if (device->bdev_file) {
2354		cur_devices->open_devices--;
2355		/* remove sysfs entry */
2356		btrfs_sysfs_remove_device(device);
2357	}
2358
2359	num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2360	btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2361	mutex_unlock(&fs_devices->device_list_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2362
2363	/*
2364	 * At this point, the device is zero sized and detached from the
2365	 * devices list.  All that's left is to zero out the old supers and
2366	 * free the device.
2367	 *
2368	 * We cannot call btrfs_close_bdev() here because we're holding the sb
2369	 * write lock, and fput() on the block device will pull in the
2370	 * ->open_mutex on the block device and it's dependencies.  Instead
2371	 *  just flush the device and let the caller do the final bdev_release.
2372	 */
2373	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2374		btrfs_scratch_superblocks(fs_info, device);
2375		if (device->bdev) {
2376			sync_blockdev(device->bdev);
2377			invalidate_bdev(device->bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2378		}
2379	}
2380
2381	*bdev_file = device->bdev_file;
2382	synchronize_rcu();
2383	btrfs_free_device(device);
2384
2385	/*
2386	 * This can happen if cur_devices is the private seed devices list.  We
2387	 * cannot call close_fs_devices() here because it expects the uuid_mutex
2388	 * to be held, but in fact we don't need that for the private
2389	 * seed_devices, we can simply decrement cur_devices->opened and then
2390	 * remove it from our list and free the fs_devices.
2391	 */
2392	if (cur_devices->num_devices == 0) {
2393		list_del_init(&cur_devices->seed_list);
2394		ASSERT(cur_devices->opened == 1);
2395		cur_devices->opened--;
2396		free_fs_devices(cur_devices);
2397	}
2398
2399	ret = btrfs_commit_transaction(trans);
2400
 
 
 
 
2401	return ret;
2402
2403error_undo:
2404	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2405		mutex_lock(&fs_info->chunk_mutex);
2406		list_add(&device->dev_alloc_list,
2407			 &fs_devices->alloc_list);
2408		device->fs_devices->rw_devices++;
2409		mutex_unlock(&fs_info->chunk_mutex);
2410	}
2411	return ret;
2412}
2413
2414void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
 
2415{
2416	struct btrfs_fs_devices *fs_devices;
2417
2418	lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2419
2420	/*
2421	 * in case of fs with no seed, srcdev->fs_devices will point
2422	 * to fs_devices of fs_info. However when the dev being replaced is
2423	 * a seed dev it will point to the seed's local fs_devices. In short
2424	 * srcdev will have its correct fs_devices in both the cases.
2425	 */
2426	fs_devices = srcdev->fs_devices;
2427
2428	list_del_rcu(&srcdev->dev_list);
2429	list_del(&srcdev->dev_alloc_list);
2430	fs_devices->num_devices--;
2431	if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2432		fs_devices->missing_devices--;
2433
2434	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2435		fs_devices->rw_devices--;
 
 
 
2436
2437	if (srcdev->bdev)
2438		fs_devices->open_devices--;
2439}
2440
2441void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
 
2442{
2443	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2444
2445	mutex_lock(&uuid_mutex);
2446
2447	btrfs_close_bdev(srcdev);
2448	synchronize_rcu();
2449	btrfs_free_device(srcdev);
 
 
2450
2451	/* if this is no devs we rather delete the fs_devices */
2452	if (!fs_devices->num_devices) {
2453		/*
2454		 * On a mounted FS, num_devices can't be zero unless it's a
2455		 * seed. In case of a seed device being replaced, the replace
2456		 * target added to the sprout FS, so there will be no more
2457		 * device left under the seed FS.
2458		 */
2459		ASSERT(fs_devices->seeding);
2460
2461		list_del_init(&fs_devices->seed_list);
2462		close_fs_devices(fs_devices);
 
 
 
 
 
 
 
 
2463		free_fs_devices(fs_devices);
2464	}
2465	mutex_unlock(&uuid_mutex);
2466}
2467
2468void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
 
2469{
2470	struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2471
2472	mutex_lock(&fs_devices->device_list_mutex);
 
 
2473
2474	btrfs_sysfs_remove_device(tgtdev);
2475
2476	if (tgtdev->bdev)
2477		fs_devices->open_devices--;
2478
2479	fs_devices->num_devices--;
2480
2481	btrfs_assign_next_active_device(tgtdev, NULL);
2482
 
 
 
 
 
 
2483	list_del_rcu(&tgtdev->dev_list);
2484
2485	mutex_unlock(&fs_devices->device_list_mutex);
2486
2487	btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2488
2489	btrfs_close_bdev(tgtdev);
2490	synchronize_rcu();
2491	btrfs_free_device(tgtdev);
2492}
2493
2494/*
2495 * Populate args from device at path.
2496 *
2497 * @fs_info:	the filesystem
2498 * @args:	the args to populate
2499 * @path:	the path to the device
2500 *
2501 * This will read the super block of the device at @path and populate @args with
2502 * the devid, fsid, and uuid.  This is meant to be used for ioctls that need to
2503 * lookup a device to operate on, but need to do it before we take any locks.
2504 * This properly handles the special case of "missing" that a user may pass in,
2505 * and does some basic sanity checks.  The caller must make sure that @path is
2506 * properly NUL terminated before calling in, and must call
2507 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2508 * uuid buffers.
2509 *
2510 * Return: 0 for success, -errno for failure
2511 */
2512int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2513				 struct btrfs_dev_lookup_args *args,
2514				 const char *path)
2515{
 
2516	struct btrfs_super_block *disk_super;
2517	struct file *bdev_file;
2518	int ret;
 
 
2519
2520	if (!path || !path[0])
2521		return -EINVAL;
2522	if (!strcmp(path, "missing")) {
2523		args->missing = true;
2524		return 0;
2525	}
2526
2527	args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2528	args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2529	if (!args->uuid || !args->fsid) {
2530		btrfs_put_dev_args_from_path(args);
2531		return -ENOMEM;
2532	}
2533
2534	ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2535				    &bdev_file, &disk_super);
2536	if (ret) {
2537		btrfs_put_dev_args_from_path(args);
2538		return ret;
2539	}
2540
2541	args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2542	memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2543	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2544		memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2545	else
2546		memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2547	btrfs_release_disk_super(disk_super);
2548	fput(bdev_file);
2549	return 0;
2550}
2551
2552/*
2553 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2554 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2555 * that don't need to be freed.
2556 */
2557void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2558{
2559	kfree(args->uuid);
2560	kfree(args->fsid);
2561	args->uuid = NULL;
2562	args->fsid = NULL;
2563}
 
 
 
 
 
 
 
 
 
 
 
2564
2565struct btrfs_device *btrfs_find_device_by_devspec(
2566		struct btrfs_fs_info *fs_info, u64 devid,
2567		const char *device_path)
2568{
2569	BTRFS_DEV_LOOKUP_ARGS(args);
2570	struct btrfs_device *device;
2571	int ret;
2572
2573	if (devid) {
2574		args.devid = devid;
2575		device = btrfs_find_device(fs_info->fs_devices, &args);
2576		if (!device)
2577			return ERR_PTR(-ENOENT);
2578		return device;
2579	}
2580
2581	ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2582	if (ret)
2583		return ERR_PTR(ret);
2584	device = btrfs_find_device(fs_info->fs_devices, &args);
2585	btrfs_put_dev_args_from_path(&args);
2586	if (!device)
2587		return ERR_PTR(-ENOENT);
2588	return device;
2589}
2590
2591static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
 
 
 
2592{
2593	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2594	struct btrfs_fs_devices *old_devices;
2595	struct btrfs_fs_devices *seed_devices;
 
 
 
2596
2597	lockdep_assert_held(&uuid_mutex);
2598	if (!fs_devices->seeding)
2599		return ERR_PTR(-EINVAL);
2600
2601	/*
2602	 * Private copy of the seed devices, anchored at
2603	 * fs_info->fs_devices->seed_list
2604	 */
2605	seed_devices = alloc_fs_devices(NULL);
2606	if (IS_ERR(seed_devices))
2607		return seed_devices;
2608
2609	/*
2610	 * It's necessary to retain a copy of the original seed fs_devices in
2611	 * fs_uuids so that filesystems which have been seeded can successfully
2612	 * reference the seed device from open_seed_devices. This also supports
2613	 * multiple fs seed.
2614	 */
2615	old_devices = clone_fs_devices(fs_devices);
2616	if (IS_ERR(old_devices)) {
2617		kfree(seed_devices);
2618		return old_devices;
2619	}
2620
2621	list_add(&old_devices->fs_list, &fs_uuids);
2622
2623	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2624	seed_devices->opened = 1;
2625	INIT_LIST_HEAD(&seed_devices->devices);
2626	INIT_LIST_HEAD(&seed_devices->alloc_list);
2627	mutex_init(&seed_devices->device_list_mutex);
2628
2629	return seed_devices;
2630}
2631
2632/*
2633 * Splice seed devices into the sprout fs_devices.
2634 * Generate a new fsid for the sprouted read-write filesystem.
2635 */
2636static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2637			       struct btrfs_fs_devices *seed_devices)
2638{
2639	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2640	struct btrfs_super_block *disk_super = fs_info->super_copy;
2641	struct btrfs_device *device;
2642	u64 super_flags;
2643
2644	/*
2645	 * We are updating the fsid, the thread leading to device_list_add()
2646	 * could race, so uuid_mutex is needed.
2647	 */
2648	lockdep_assert_held(&uuid_mutex);
2649
2650	/*
2651	 * The threads listed below may traverse dev_list but can do that without
2652	 * device_list_mutex:
2653	 * - All device ops and balance - as we are in btrfs_exclop_start.
2654	 * - Various dev_list readers - are using RCU.
2655	 * - btrfs_ioctl_fitrim() - is using RCU.
2656	 *
2657	 * For-read threads as below are using device_list_mutex:
2658	 * - Readonly scrub btrfs_scrub_dev()
2659	 * - Readonly scrub btrfs_scrub_progress()
2660	 * - btrfs_get_dev_stats()
2661	 */
2662	lockdep_assert_held(&fs_devices->device_list_mutex);
2663
2664	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2665			      synchronize_rcu);
2666	list_for_each_entry(device, &seed_devices->devices, dev_list)
2667		device->fs_devices = seed_devices;
2668
2669	fs_devices->seeding = false;
 
 
 
 
2670	fs_devices->num_devices = 0;
2671	fs_devices->open_devices = 0;
2672	fs_devices->missing_devices = 0;
2673	fs_devices->rotating = false;
2674	list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2675
2676	generate_random_uuid(fs_devices->fsid);
2677	memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2678	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
 
2679
2680	super_flags = btrfs_super_flags(disk_super) &
2681		      ~BTRFS_SUPER_FLAG_SEEDING;
2682	btrfs_set_super_flags(disk_super, super_flags);
 
 
2683}
2684
2685/*
2686 * Store the expected generation for seed devices in device items.
2687 */
2688static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
 
2689{
2690	BTRFS_DEV_LOOKUP_ARGS(args);
2691	struct btrfs_fs_info *fs_info = trans->fs_info;
2692	struct btrfs_root *root = fs_info->chunk_root;
2693	struct btrfs_path *path;
2694	struct extent_buffer *leaf;
2695	struct btrfs_dev_item *dev_item;
2696	struct btrfs_device *device;
2697	struct btrfs_key key;
2698	u8 fs_uuid[BTRFS_FSID_SIZE];
2699	u8 dev_uuid[BTRFS_UUID_SIZE];
 
2700	int ret;
2701
2702	path = btrfs_alloc_path();
2703	if (!path)
2704		return -ENOMEM;
2705
 
2706	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2707	key.offset = 0;
2708	key.type = BTRFS_DEV_ITEM_KEY;
2709
2710	while (1) {
2711		btrfs_reserve_chunk_metadata(trans, false);
2712		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2713		btrfs_trans_release_chunk_metadata(trans);
2714		if (ret < 0)
2715			goto error;
2716
2717		leaf = path->nodes[0];
2718next_slot:
2719		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2720			ret = btrfs_next_leaf(root, path);
2721			if (ret > 0)
2722				break;
2723			if (ret < 0)
2724				goto error;
2725			leaf = path->nodes[0];
2726			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2727			btrfs_release_path(path);
2728			continue;
2729		}
2730
2731		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2732		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2733		    key.type != BTRFS_DEV_ITEM_KEY)
2734			break;
2735
2736		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2737					  struct btrfs_dev_item);
2738		args.devid = btrfs_device_id(leaf, dev_item);
2739		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2740				   BTRFS_UUID_SIZE);
2741		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2742				   BTRFS_FSID_SIZE);
2743		args.uuid = dev_uuid;
2744		args.fsid = fs_uuid;
2745		device = btrfs_find_device(fs_info->fs_devices, &args);
2746		BUG_ON(!device); /* Logic error */
2747
2748		if (device->fs_devices->seeding) {
2749			btrfs_set_device_generation(leaf, dev_item,
2750						    device->generation);
2751			btrfs_mark_buffer_dirty(trans, leaf);
2752		}
2753
2754		path->slots[0]++;
2755		goto next_slot;
2756	}
2757	ret = 0;
2758error:
2759	btrfs_free_path(path);
2760	return ret;
2761}
2762
2763int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2764{
2765	struct btrfs_root *root = fs_info->dev_root;
2766	struct btrfs_trans_handle *trans;
2767	struct btrfs_device *device;
2768	struct file *bdev_file;
2769	struct super_block *sb = fs_info->sb;
2770	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2771	struct btrfs_fs_devices *seed_devices = NULL;
2772	u64 orig_super_total_bytes;
2773	u64 orig_super_num_devices;
2774	int ret = 0;
2775	bool seeding_dev = false;
2776	bool locked = false;
2777
2778	if (sb_rdonly(sb) && !fs_devices->seeding)
2779		return -EROFS;
2780
2781	bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2782					fs_info->bdev_holder, NULL);
2783	if (IS_ERR(bdev_file))
2784		return PTR_ERR(bdev_file);
2785
2786	if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2787		ret = -EINVAL;
2788		goto error;
2789	}
2790
2791	if (fs_devices->seeding) {
2792		seeding_dev = true;
2793		down_write(&sb->s_umount);
2794		mutex_lock(&uuid_mutex);
2795		locked = true;
2796	}
2797
2798	sync_blockdev(file_bdev(bdev_file));
2799
2800	rcu_read_lock();
2801	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2802		if (device->bdev == file_bdev(bdev_file)) {
 
 
2803			ret = -EEXIST;
2804			rcu_read_unlock();
 
2805			goto error;
2806		}
2807	}
2808	rcu_read_unlock();
2809
2810	device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2811	if (IS_ERR(device)) {
2812		/* we can safely leave the fs_devices entry around */
2813		ret = PTR_ERR(device);
2814		goto error;
2815	}
2816
2817	device->fs_info = fs_info;
2818	device->bdev_file = bdev_file;
2819	device->bdev = file_bdev(bdev_file);
2820	ret = lookup_bdev(device_path, &device->devt);
2821	if (ret)
2822		goto error_free_device;
2823
2824	ret = btrfs_get_dev_zone_info(device, false);
2825	if (ret)
2826		goto error_free_device;
2827
2828	trans = btrfs_start_transaction(root, 0);
2829	if (IS_ERR(trans)) {
 
 
2830		ret = PTR_ERR(trans);
2831		goto error_free_zone;
2832	}
2833
2834	set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
 
 
 
2835	device->generation = trans->transid;
2836	device->io_width = fs_info->sectorsize;
2837	device->io_align = fs_info->sectorsize;
2838	device->sector_size = fs_info->sectorsize;
2839	device->total_bytes =
2840		round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2841	device->disk_total_bytes = device->total_bytes;
2842	device->commit_total_bytes = device->total_bytes;
2843	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2844	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
 
 
 
2845	device->dev_stats_valid = 1;
2846	set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2847
2848	if (seeding_dev) {
2849		/* GFP_KERNEL allocation must not be under device_list_mutex */
2850		seed_devices = btrfs_init_sprout(fs_info);
2851		if (IS_ERR(seed_devices)) {
2852			ret = PTR_ERR(seed_devices);
2853			btrfs_abort_transaction(trans, ret);
2854			goto error_trans;
2855		}
2856	}
2857
2858	mutex_lock(&fs_devices->device_list_mutex);
2859	if (seeding_dev) {
2860		btrfs_setup_sprout(fs_info, seed_devices);
2861		btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2862						device);
2863	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864
2865	device->fs_devices = fs_devices;
2866
2867	mutex_lock(&fs_info->chunk_mutex);
2868	list_add_rcu(&device->dev_list, &fs_devices->devices);
2869	list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2870	fs_devices->num_devices++;
2871	fs_devices->open_devices++;
2872	fs_devices->rw_devices++;
2873	fs_devices->total_devices++;
2874	fs_devices->total_rw_bytes += device->total_bytes;
2875
2876	atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2877
2878	if (!bdev_nonrot(device->bdev))
2879		fs_devices->rotating = true;
2880
2881	orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2882	btrfs_set_super_total_bytes(fs_info->super_copy,
2883		round_down(orig_super_total_bytes + device->total_bytes,
2884			   fs_info->sectorsize));
2885
2886	orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2887	btrfs_set_super_num_devices(fs_info->super_copy,
2888				    orig_super_num_devices + 1);
2889
2890	/*
2891	 * we've got more storage, clear any full flags on the space
2892	 * infos
2893	 */
2894	btrfs_clear_space_info_full(fs_info);
2895
2896	mutex_unlock(&fs_info->chunk_mutex);
2897
2898	/* Add sysfs device entry */
2899	btrfs_sysfs_add_device(device);
2900
2901	mutex_unlock(&fs_devices->device_list_mutex);
 
2902
2903	if (seeding_dev) {
2904		mutex_lock(&fs_info->chunk_mutex);
2905		ret = init_first_rw_device(trans);
2906		mutex_unlock(&fs_info->chunk_mutex);
2907		if (ret) {
2908			btrfs_abort_transaction(trans, ret);
2909			goto error_sysfs;
2910		}
2911	}
2912
2913	ret = btrfs_add_dev_item(trans, device);
2914	if (ret) {
2915		btrfs_abort_transaction(trans, ret);
2916		goto error_sysfs;
2917	}
2918
2919	if (seeding_dev) {
2920		ret = btrfs_finish_sprout(trans);
 
 
2921		if (ret) {
2922			btrfs_abort_transaction(trans, ret);
2923			goto error_sysfs;
2924		}
2925
2926		/*
2927		 * fs_devices now represents the newly sprouted filesystem and
2928		 * its fsid has been changed by btrfs_sprout_splice().
2929		 */
2930		btrfs_sysfs_update_sprout_fsid(fs_devices);
 
 
 
 
 
2931	}
2932
2933	ret = btrfs_commit_transaction(trans);
 
 
2934
2935	if (seeding_dev) {
2936		mutex_unlock(&uuid_mutex);
2937		up_write(&sb->s_umount);
2938		locked = false;
2939
2940		if (ret) /* transaction commit */
2941			return ret;
2942
2943		ret = btrfs_relocate_sys_chunks(fs_info);
2944		if (ret < 0)
2945			btrfs_handle_fs_error(fs_info, ret,
2946				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
 
 
2947		trans = btrfs_attach_transaction(root);
2948		if (IS_ERR(trans)) {
2949			if (PTR_ERR(trans) == -ENOENT)
2950				return 0;
2951			ret = PTR_ERR(trans);
2952			trans = NULL;
2953			goto error_sysfs;
2954		}
2955		ret = btrfs_commit_transaction(trans);
2956	}
2957
2958	/*
2959	 * Now that we have written a new super block to this device, check all
2960	 * other fs_devices list if device_path alienates any other scanned
2961	 * device.
2962	 * We can ignore the return value as it typically returns -EINVAL and
2963	 * only succeeds if the device was an alien.
2964	 */
2965	btrfs_forget_devices(device->devt);
2966
2967	/* Update ctime/mtime for blkid or udev */
2968	update_dev_time(device_path);
2969
2970	return ret;
2971
2972error_sysfs:
2973	btrfs_sysfs_remove_device(device);
2974	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2975	mutex_lock(&fs_info->chunk_mutex);
2976	list_del_rcu(&device->dev_list);
2977	list_del(&device->dev_alloc_list);
2978	fs_info->fs_devices->num_devices--;
2979	fs_info->fs_devices->open_devices--;
2980	fs_info->fs_devices->rw_devices--;
2981	fs_info->fs_devices->total_devices--;
2982	fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2983	atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2984	btrfs_set_super_total_bytes(fs_info->super_copy,
2985				    orig_super_total_bytes);
2986	btrfs_set_super_num_devices(fs_info->super_copy,
2987				    orig_super_num_devices);
2988	mutex_unlock(&fs_info->chunk_mutex);
2989	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2990error_trans:
2991	if (trans)
2992		btrfs_end_transaction(trans);
2993error_free_zone:
2994	btrfs_destroy_dev_zone_info(device);
2995error_free_device:
2996	btrfs_free_device(device);
2997error:
2998	fput(bdev_file);
2999	if (locked) {
3000		mutex_unlock(&uuid_mutex);
3001		up_write(&sb->s_umount);
3002	}
3003	return ret;
3004}
3005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3006static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
3007					struct btrfs_device *device)
3008{
3009	int ret;
3010	struct btrfs_path *path;
3011	struct btrfs_root *root = device->fs_info->chunk_root;
3012	struct btrfs_dev_item *dev_item;
3013	struct extent_buffer *leaf;
3014	struct btrfs_key key;
3015
 
 
3016	path = btrfs_alloc_path();
3017	if (!path)
3018		return -ENOMEM;
3019
3020	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3021	key.type = BTRFS_DEV_ITEM_KEY;
3022	key.offset = device->devid;
3023
3024	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3025	if (ret < 0)
3026		goto out;
3027
3028	if (ret > 0) {
3029		ret = -ENOENT;
3030		goto out;
3031	}
3032
3033	leaf = path->nodes[0];
3034	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
3035
3036	btrfs_set_device_id(leaf, dev_item, device->devid);
3037	btrfs_set_device_type(leaf, dev_item, device->type);
3038	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
3039	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
3040	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
3041	btrfs_set_device_total_bytes(leaf, dev_item,
3042				     btrfs_device_get_disk_total_bytes(device));
3043	btrfs_set_device_bytes_used(leaf, dev_item,
3044				    btrfs_device_get_bytes_used(device));
3045	btrfs_mark_buffer_dirty(trans, leaf);
3046
3047out:
3048	btrfs_free_path(path);
3049	return ret;
3050}
3051
3052int btrfs_grow_device(struct btrfs_trans_handle *trans,
3053		      struct btrfs_device *device, u64 new_size)
3054{
3055	struct btrfs_fs_info *fs_info = device->fs_info;
3056	struct btrfs_super_block *super_copy = fs_info->super_copy;
 
3057	u64 old_total;
3058	u64 diff;
3059	int ret;
3060
3061	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
3062		return -EACCES;
3063
3064	new_size = round_down(new_size, fs_info->sectorsize);
3065
3066	mutex_lock(&fs_info->chunk_mutex);
3067	old_total = btrfs_super_total_bytes(super_copy);
3068	diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
3069
3070	if (new_size <= device->total_bytes ||
3071	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
3072		mutex_unlock(&fs_info->chunk_mutex);
3073		return -EINVAL;
3074	}
3075
3076	btrfs_set_super_total_bytes(super_copy,
3077			round_down(old_total + diff, fs_info->sectorsize));
 
3078	device->fs_devices->total_rw_bytes += diff;
3079	atomic64_add(diff, &fs_info->free_chunk_space);
3080
3081	btrfs_device_set_total_bytes(device, new_size);
3082	btrfs_device_set_disk_total_bytes(device, new_size);
3083	btrfs_clear_space_info_full(device->fs_info);
3084	if (list_empty(&device->post_commit_list))
3085		list_add_tail(&device->post_commit_list,
3086			      &trans->transaction->dev_update_list);
3087	mutex_unlock(&fs_info->chunk_mutex);
3088
3089	btrfs_reserve_chunk_metadata(trans, false);
3090	ret = btrfs_update_device(trans, device);
3091	btrfs_trans_release_chunk_metadata(trans);
3092
3093	return ret;
3094}
3095
3096static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
 
 
3097{
3098	struct btrfs_fs_info *fs_info = trans->fs_info;
3099	struct btrfs_root *root = fs_info->chunk_root;
3100	int ret;
3101	struct btrfs_path *path;
3102	struct btrfs_key key;
3103
 
3104	path = btrfs_alloc_path();
3105	if (!path)
3106		return -ENOMEM;
3107
3108	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3109	key.offset = chunk_offset;
3110	key.type = BTRFS_CHUNK_ITEM_KEY;
3111
3112	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3113	if (ret < 0)
3114		goto out;
3115	else if (ret > 0) { /* Logic error or corruption */
3116		btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
3117			  chunk_offset);
3118		btrfs_abort_transaction(trans, -ENOENT);
3119		ret = -EUCLEAN;
3120		goto out;
3121	}
3122
3123	ret = btrfs_del_item(trans, root, path);
3124	if (ret < 0) {
3125		btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3126		btrfs_abort_transaction(trans, ret);
3127		goto out;
3128	}
3129out:
3130	btrfs_free_path(path);
3131	return ret;
3132}
3133
3134static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
 
3135{
3136	struct btrfs_super_block *super_copy = fs_info->super_copy;
3137	struct btrfs_disk_key *disk_key;
3138	struct btrfs_chunk *chunk;
3139	u8 *ptr;
3140	int ret = 0;
3141	u32 num_stripes;
3142	u32 array_size;
3143	u32 len = 0;
3144	u32 cur;
3145	struct btrfs_key key;
3146
3147	lockdep_assert_held(&fs_info->chunk_mutex);
3148	array_size = btrfs_super_sys_array_size(super_copy);
3149
3150	ptr = super_copy->sys_chunk_array;
3151	cur = 0;
3152
3153	while (cur < array_size) {
3154		disk_key = (struct btrfs_disk_key *)ptr;
3155		btrfs_disk_key_to_cpu(&key, disk_key);
3156
3157		len = sizeof(*disk_key);
3158
3159		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3160			chunk = (struct btrfs_chunk *)(ptr + len);
3161			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3162			len += btrfs_chunk_item_size(num_stripes);
3163		} else {
3164			ret = -EIO;
3165			break;
3166		}
3167		if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3168		    key.offset == chunk_offset) {
3169			memmove(ptr, ptr + len, array_size - (cur + len));
3170			array_size -= len;
3171			btrfs_set_super_sys_array_size(super_copy, array_size);
3172		} else {
3173			ptr += len;
3174			cur += len;
3175		}
3176	}
 
3177	return ret;
3178}
3179
3180struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3181						    u64 logical, u64 length)
3182{
3183	struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3184	struct rb_node *prev = NULL;
3185	struct rb_node *orig_prev;
3186	struct btrfs_chunk_map *map;
3187	struct btrfs_chunk_map *prev_map = NULL;
3188
3189	while (node) {
3190		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3191		prev = node;
3192		prev_map = map;
3193
3194		if (logical < map->start) {
3195			node = node->rb_left;
3196		} else if (logical >= map->start + map->chunk_len) {
3197			node = node->rb_right;
3198		} else {
3199			refcount_inc(&map->refs);
3200			return map;
3201		}
3202	}
3203
3204	if (!prev)
3205		return NULL;
3206
3207	orig_prev = prev;
3208	while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3209		prev = rb_next(prev);
3210		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3211	}
3212
3213	if (!prev) {
3214		prev = orig_prev;
3215		prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3216		while (prev && logical < prev_map->start) {
3217			prev = rb_prev(prev);
3218			prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3219		}
3220	}
3221
3222	if (prev) {
3223		u64 end = logical + length;
3224
3225		/*
3226		 * Caller can pass a U64_MAX length when it wants to get any
3227		 * chunk starting at an offset of 'logical' or higher, so deal
3228		 * with underflow by resetting the end offset to U64_MAX.
3229		 */
3230		if (end < logical)
3231			end = U64_MAX;
3232
3233		if (end > prev_map->start &&
3234		    logical < prev_map->start + prev_map->chunk_len) {
3235			refcount_inc(&prev_map->refs);
3236			return prev_map;
3237		}
3238	}
3239
3240	return NULL;
3241}
3242
3243struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3244					     u64 logical, u64 length)
3245{
3246	struct btrfs_chunk_map *map;
3247
3248	read_lock(&fs_info->mapping_tree_lock);
3249	map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3250	read_unlock(&fs_info->mapping_tree_lock);
3251
3252	return map;
3253}
3254
3255/*
3256 * Find the mapping containing the given logical extent.
3257 *
3258 * @logical: Logical block offset in bytes.
3259 * @length: Length of extent in bytes.
3260 *
3261 * Return: Chunk mapping or ERR_PTR.
3262 */
3263struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3264					    u64 logical, u64 length)
3265{
3266	struct btrfs_chunk_map *map;
3267
3268	map = btrfs_find_chunk_map(fs_info, logical, length);
3269
3270	if (unlikely(!map)) {
3271		btrfs_crit(fs_info,
3272			   "unable to find chunk map for logical %llu length %llu",
3273			   logical, length);
3274		return ERR_PTR(-EINVAL);
3275	}
3276
3277	if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3278		btrfs_crit(fs_info,
3279			   "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3280			   logical, logical + length, map->start,
3281			   map->start + map->chunk_len);
3282		btrfs_free_chunk_map(map);
3283		return ERR_PTR(-EINVAL);
3284	}
3285
3286	/* Callers are responsible for dropping the reference. */
3287	return map;
3288}
3289
3290static int remove_chunk_item(struct btrfs_trans_handle *trans,
3291			     struct btrfs_chunk_map *map, u64 chunk_offset)
3292{
3293	int i;
3294
3295	/*
3296	 * Removing chunk items and updating the device items in the chunks btree
3297	 * requires holding the chunk_mutex.
3298	 * See the comment at btrfs_chunk_alloc() for the details.
3299	 */
3300	lockdep_assert_held(&trans->fs_info->chunk_mutex);
3301
3302	for (i = 0; i < map->num_stripes; i++) {
3303		int ret;
3304
3305		ret = btrfs_update_device(trans, map->stripes[i].dev);
3306		if (ret)
3307			return ret;
3308	}
3309
3310	return btrfs_free_chunk(trans, chunk_offset);
3311}
3312
3313int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3314{
3315	struct btrfs_fs_info *fs_info = trans->fs_info;
3316	struct btrfs_chunk_map *map;
 
 
3317	u64 dev_extent_len = 0;
 
3318	int i, ret = 0;
3319	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3320
3321	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3322	if (IS_ERR(map)) {
 
 
 
 
 
 
 
 
3323		/*
3324		 * This is a logic error, but we don't want to just rely on the
3325		 * user having built with ASSERT enabled, so if ASSERT doesn't
3326		 * do anything we still error out.
3327		 */
3328		ASSERT(0);
3329		return PTR_ERR(map);
 
 
3330	}
 
 
 
 
3331
3332	/*
3333	 * First delete the device extent items from the devices btree.
3334	 * We take the device_list_mutex to avoid racing with the finishing phase
3335	 * of a device replace operation. See the comment below before acquiring
3336	 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3337	 * because that can result in a deadlock when deleting the device extent
3338	 * items from the devices btree - COWing an extent buffer from the btree
3339	 * may result in allocating a new metadata chunk, which would attempt to
3340	 * lock again fs_info->chunk_mutex.
3341	 */
3342	mutex_lock(&fs_devices->device_list_mutex);
3343	for (i = 0; i < map->num_stripes; i++) {
3344		struct btrfs_device *device = map->stripes[i].dev;
3345		ret = btrfs_free_dev_extent(trans, device,
3346					    map->stripes[i].physical,
3347					    &dev_extent_len);
3348		if (ret) {
3349			mutex_unlock(&fs_devices->device_list_mutex);
3350			btrfs_abort_transaction(trans, ret);
3351			goto out;
3352		}
3353
3354		if (device->bytes_used > 0) {
3355			mutex_lock(&fs_info->chunk_mutex);
3356			btrfs_device_set_bytes_used(device,
3357					device->bytes_used - dev_extent_len);
3358			atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3359			btrfs_clear_space_info_full(fs_info);
3360			mutex_unlock(&fs_info->chunk_mutex);
 
 
3361		}
3362	}
3363	mutex_unlock(&fs_devices->device_list_mutex);
3364
3365	/*
3366	 * We acquire fs_info->chunk_mutex for 2 reasons:
3367	 *
3368	 * 1) Just like with the first phase of the chunk allocation, we must
3369	 *    reserve system space, do all chunk btree updates and deletions, and
3370	 *    update the system chunk array in the superblock while holding this
3371	 *    mutex. This is for similar reasons as explained on the comment at
3372	 *    the top of btrfs_chunk_alloc();
3373	 *
3374	 * 2) Prevent races with the final phase of a device replace operation
3375	 *    that replaces the device object associated with the map's stripes,
3376	 *    because the device object's id can change at any time during that
3377	 *    final phase of the device replace operation
3378	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3379	 *    replaced device and then see it with an ID of
3380	 *    BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3381	 *    the device item, which does not exists on the chunk btree.
3382	 *    The finishing phase of device replace acquires both the
3383	 *    device_list_mutex and the chunk_mutex, in that order, so we are
3384	 *    safe by just acquiring the chunk_mutex.
3385	 */
3386	trans->removing_chunk = true;
3387	mutex_lock(&fs_info->chunk_mutex);
3388
3389	check_system_chunk(trans, map->type);
3390
3391	ret = remove_chunk_item(trans, map, chunk_offset);
3392	/*
3393	 * Normally we should not get -ENOSPC since we reserved space before
3394	 * through the call to check_system_chunk().
3395	 *
3396	 * Despite our system space_info having enough free space, we may not
3397	 * be able to allocate extents from its block groups, because all have
3398	 * an incompatible profile, which will force us to allocate a new system
3399	 * block group with the right profile, or right after we called
3400	 * check_system_space() above, a scrub turned the only system block group
3401	 * with enough free space into RO mode.
3402	 * This is explained with more detail at do_chunk_alloc().
3403	 *
3404	 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3405	 */
3406	if (ret == -ENOSPC) {
3407		const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3408		struct btrfs_block_group *sys_bg;
3409
3410		sys_bg = btrfs_create_chunk(trans, sys_flags);
3411		if (IS_ERR(sys_bg)) {
3412			ret = PTR_ERR(sys_bg);
3413			btrfs_abort_transaction(trans, ret);
3414			goto out;
3415		}
3416
3417		ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3418		if (ret) {
3419			btrfs_abort_transaction(trans, ret);
3420			goto out;
3421		}
3422
3423		ret = remove_chunk_item(trans, map, chunk_offset);
3424		if (ret) {
3425			btrfs_abort_transaction(trans, ret);
3426			goto out;
3427		}
3428	} else if (ret) {
3429		btrfs_abort_transaction(trans, ret);
3430		goto out;
3431	}
3432
3433	trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3434
3435	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3436		ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3437		if (ret) {
3438			btrfs_abort_transaction(trans, ret);
3439			goto out;
3440		}
3441	}
3442
3443	mutex_unlock(&fs_info->chunk_mutex);
3444	trans->removing_chunk = false;
3445
3446	/*
3447	 * We are done with chunk btree updates and deletions, so release the
3448	 * system space we previously reserved (with check_system_chunk()).
3449	 */
3450	btrfs_trans_release_chunk_metadata(trans);
3451
3452	ret = btrfs_remove_block_group(trans, map);
3453	if (ret) {
3454		btrfs_abort_transaction(trans, ret);
3455		goto out;
3456	}
3457
3458out:
3459	if (trans->removing_chunk) {
3460		mutex_unlock(&fs_info->chunk_mutex);
3461		trans->removing_chunk = false;
3462	}
3463	/* once for us */
3464	btrfs_free_chunk_map(map);
3465	return ret;
3466}
3467
3468int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3469{
3470	struct btrfs_root *root = fs_info->chunk_root;
3471	struct btrfs_trans_handle *trans;
3472	struct btrfs_block_group *block_group;
3473	u64 length;
3474	int ret;
3475
3476	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3477		btrfs_err(fs_info,
3478			  "relocate: not supported on extent tree v2 yet");
3479		return -EINVAL;
3480	}
3481
3482	/*
3483	 * Prevent races with automatic removal of unused block groups.
3484	 * After we relocate and before we remove the chunk with offset
3485	 * chunk_offset, automatic removal of the block group can kick in,
3486	 * resulting in a failure when calling btrfs_remove_chunk() below.
3487	 *
3488	 * Make sure to acquire this mutex before doing a tree search (dev
3489	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3490	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3491	 * we release the path used to search the chunk/dev tree and before
3492	 * the current task acquires this mutex and calls us.
3493	 */
3494	lockdep_assert_held(&fs_info->reclaim_bgs_lock);
 
 
 
 
3495
3496	/* step one, relocate all the extents inside this chunk */
3497	btrfs_scrub_pause(fs_info);
3498	ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3499	btrfs_scrub_continue(fs_info);
3500	if (ret) {
3501		/*
3502		 * If we had a transaction abort, stop all running scrubs.
3503		 * See transaction.c:cleanup_transaction() why we do it here.
3504		 */
3505		if (BTRFS_FS_ERROR(fs_info))
3506			btrfs_scrub_cancel(fs_info);
3507		return ret;
3508	}
3509
3510	block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3511	if (!block_group)
3512		return -ENOENT;
3513	btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3514	length = block_group->length;
3515	btrfs_put_block_group(block_group);
3516
3517	/*
3518	 * On a zoned file system, discard the whole block group, this will
3519	 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3520	 * resetting the zone fails, don't treat it as a fatal problem from the
3521	 * filesystem's point of view.
3522	 */
3523	if (btrfs_is_zoned(fs_info)) {
3524		ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3525		if (ret)
3526			btrfs_info(fs_info,
3527				"failed to reset zone %llu after relocation",
3528				chunk_offset);
3529	}
3530
3531	trans = btrfs_start_trans_remove_block_group(root->fs_info,
3532						     chunk_offset);
3533	if (IS_ERR(trans)) {
3534		ret = PTR_ERR(trans);
3535		btrfs_handle_fs_error(root->fs_info, ret, NULL);
3536		return ret;
3537	}
3538
3539	/*
3540	 * step two, delete the device extents and the
3541	 * chunk tree entries
3542	 */
3543	ret = btrfs_remove_chunk(trans, chunk_offset);
3544	btrfs_end_transaction(trans);
3545	return ret;
3546}
3547
3548static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3549{
3550	struct btrfs_root *chunk_root = fs_info->chunk_root;
3551	struct btrfs_path *path;
3552	struct extent_buffer *leaf;
3553	struct btrfs_chunk *chunk;
3554	struct btrfs_key key;
3555	struct btrfs_key found_key;
3556	u64 chunk_type;
3557	bool retried = false;
3558	int failed = 0;
3559	int ret;
3560
3561	path = btrfs_alloc_path();
3562	if (!path)
3563		return -ENOMEM;
3564
3565again:
3566	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3567	key.offset = (u64)-1;
3568	key.type = BTRFS_CHUNK_ITEM_KEY;
3569
3570	while (1) {
3571		mutex_lock(&fs_info->reclaim_bgs_lock);
3572		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3573		if (ret < 0) {
3574			mutex_unlock(&fs_info->reclaim_bgs_lock);
3575			goto error;
3576		}
3577		if (ret == 0) {
3578			/*
3579			 * On the first search we would find chunk tree with
3580			 * offset -1, which is not possible. On subsequent
3581			 * loops this would find an existing item on an invalid
3582			 * offset (one less than the previous one, wrong
3583			 * alignment and size).
3584			 */
3585			ret = -EUCLEAN;
3586			mutex_unlock(&fs_info->reclaim_bgs_lock);
3587			goto error;
3588		}
 
3589
3590		ret = btrfs_previous_item(chunk_root, path, key.objectid,
3591					  key.type);
3592		if (ret)
3593			mutex_unlock(&fs_info->reclaim_bgs_lock);
3594		if (ret < 0)
3595			goto error;
3596		if (ret > 0)
3597			break;
3598
3599		leaf = path->nodes[0];
3600		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3601
3602		chunk = btrfs_item_ptr(leaf, path->slots[0],
3603				       struct btrfs_chunk);
3604		chunk_type = btrfs_chunk_type(leaf, chunk);
3605		btrfs_release_path(path);
3606
3607		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3608			ret = btrfs_relocate_chunk(fs_info, found_key.offset);
 
3609			if (ret == -ENOSPC)
3610				failed++;
3611			else
3612				BUG_ON(ret);
3613		}
3614		mutex_unlock(&fs_info->reclaim_bgs_lock);
3615
3616		if (found_key.offset == 0)
3617			break;
3618		key.offset = found_key.offset - 1;
3619	}
3620	ret = 0;
3621	if (failed && !retried) {
3622		failed = 0;
3623		retried = true;
3624		goto again;
3625	} else if (WARN_ON(failed && retried)) {
3626		ret = -ENOSPC;
3627	}
3628error:
3629	btrfs_free_path(path);
3630	return ret;
3631}
3632
3633/*
3634 * return 1 : allocate a data chunk successfully,
3635 * return <0: errors during allocating a data chunk,
3636 * return 0 : no need to allocate a data chunk.
3637 */
3638static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3639				      u64 chunk_offset)
3640{
3641	struct btrfs_block_group *cache;
3642	u64 bytes_used;
3643	u64 chunk_type;
3644
3645	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3646	ASSERT(cache);
3647	chunk_type = cache->flags;
3648	btrfs_put_block_group(cache);
3649
3650	if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3651		return 0;
3652
3653	spin_lock(&fs_info->data_sinfo->lock);
3654	bytes_used = fs_info->data_sinfo->bytes_used;
3655	spin_unlock(&fs_info->data_sinfo->lock);
3656
3657	if (!bytes_used) {
3658		struct btrfs_trans_handle *trans;
3659		int ret;
3660
3661		trans =	btrfs_join_transaction(fs_info->tree_root);
3662		if (IS_ERR(trans))
3663			return PTR_ERR(trans);
3664
3665		ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3666		btrfs_end_transaction(trans);
3667		if (ret < 0)
3668			return ret;
3669		return 1;
3670	}
3671
3672	return 0;
3673}
3674
3675static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3676					   const struct btrfs_disk_balance_args *disk)
3677{
3678	memset(cpu, 0, sizeof(*cpu));
3679
3680	cpu->profiles = le64_to_cpu(disk->profiles);
3681	cpu->usage = le64_to_cpu(disk->usage);
3682	cpu->devid = le64_to_cpu(disk->devid);
3683	cpu->pstart = le64_to_cpu(disk->pstart);
3684	cpu->pend = le64_to_cpu(disk->pend);
3685	cpu->vstart = le64_to_cpu(disk->vstart);
3686	cpu->vend = le64_to_cpu(disk->vend);
3687	cpu->target = le64_to_cpu(disk->target);
3688	cpu->flags = le64_to_cpu(disk->flags);
3689	cpu->limit = le64_to_cpu(disk->limit);
3690	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3691	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3692}
3693
3694static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3695					   const struct btrfs_balance_args *cpu)
3696{
3697	memset(disk, 0, sizeof(*disk));
3698
3699	disk->profiles = cpu_to_le64(cpu->profiles);
3700	disk->usage = cpu_to_le64(cpu->usage);
3701	disk->devid = cpu_to_le64(cpu->devid);
3702	disk->pstart = cpu_to_le64(cpu->pstart);
3703	disk->pend = cpu_to_le64(cpu->pend);
3704	disk->vstart = cpu_to_le64(cpu->vstart);
3705	disk->vend = cpu_to_le64(cpu->vend);
3706	disk->target = cpu_to_le64(cpu->target);
3707	disk->flags = cpu_to_le64(cpu->flags);
3708	disk->limit = cpu_to_le64(cpu->limit);
3709	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3710	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3711}
3712
3713static int insert_balance_item(struct btrfs_fs_info *fs_info,
3714			       struct btrfs_balance_control *bctl)
3715{
3716	struct btrfs_root *root = fs_info->tree_root;
3717	struct btrfs_trans_handle *trans;
3718	struct btrfs_balance_item *item;
3719	struct btrfs_disk_balance_args disk_bargs;
3720	struct btrfs_path *path;
3721	struct extent_buffer *leaf;
3722	struct btrfs_key key;
3723	int ret, err;
3724
3725	path = btrfs_alloc_path();
3726	if (!path)
3727		return -ENOMEM;
3728
3729	trans = btrfs_start_transaction(root, 0);
3730	if (IS_ERR(trans)) {
3731		btrfs_free_path(path);
3732		return PTR_ERR(trans);
3733	}
3734
3735	key.objectid = BTRFS_BALANCE_OBJECTID;
3736	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3737	key.offset = 0;
3738
3739	ret = btrfs_insert_empty_item(trans, root, path, &key,
3740				      sizeof(*item));
3741	if (ret)
3742		goto out;
3743
3744	leaf = path->nodes[0];
3745	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3746
3747	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3748
3749	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3750	btrfs_set_balance_data(leaf, item, &disk_bargs);
3751	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3752	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3753	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3754	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3755
3756	btrfs_set_balance_flags(leaf, item, bctl->flags);
3757
3758	btrfs_mark_buffer_dirty(trans, leaf);
3759out:
3760	btrfs_free_path(path);
3761	err = btrfs_commit_transaction(trans);
3762	if (err && !ret)
3763		ret = err;
3764	return ret;
3765}
3766
3767static int del_balance_item(struct btrfs_fs_info *fs_info)
3768{
3769	struct btrfs_root *root = fs_info->tree_root;
3770	struct btrfs_trans_handle *trans;
3771	struct btrfs_path *path;
3772	struct btrfs_key key;
3773	int ret, err;
3774
3775	path = btrfs_alloc_path();
3776	if (!path)
3777		return -ENOMEM;
3778
3779	trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3780	if (IS_ERR(trans)) {
3781		btrfs_free_path(path);
3782		return PTR_ERR(trans);
3783	}
3784
3785	key.objectid = BTRFS_BALANCE_OBJECTID;
3786	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3787	key.offset = 0;
3788
3789	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3790	if (ret < 0)
3791		goto out;
3792	if (ret > 0) {
3793		ret = -ENOENT;
3794		goto out;
3795	}
3796
3797	ret = btrfs_del_item(trans, root, path);
3798out:
3799	btrfs_free_path(path);
3800	err = btrfs_commit_transaction(trans);
3801	if (err && !ret)
3802		ret = err;
3803	return ret;
3804}
3805
3806/*
3807 * This is a heuristic used to reduce the number of chunks balanced on
3808 * resume after balance was interrupted.
3809 */
3810static void update_balance_args(struct btrfs_balance_control *bctl)
3811{
3812	/*
3813	 * Turn on soft mode for chunk types that were being converted.
3814	 */
3815	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3816		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3817	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3818		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3819	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3820		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3821
3822	/*
3823	 * Turn on usage filter if is not already used.  The idea is
3824	 * that chunks that we have already balanced should be
3825	 * reasonably full.  Don't do it for chunks that are being
3826	 * converted - that will keep us from relocating unconverted
3827	 * (albeit full) chunks.
3828	 */
3829	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3830	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3831	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3832		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3833		bctl->data.usage = 90;
3834	}
3835	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3836	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3837	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3838		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3839		bctl->sys.usage = 90;
3840	}
3841	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3842	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3843	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3844		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3845		bctl->meta.usage = 90;
3846	}
3847}
3848
3849/*
3850 * Clear the balance status in fs_info and delete the balance item from disk.
 
 
3851 */
3852static void reset_balance_state(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
3853{
3854	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3855	int ret;
3856
3857	ASSERT(fs_info->balance_ctl);
3858
3859	spin_lock(&fs_info->balance_lock);
3860	fs_info->balance_ctl = NULL;
3861	spin_unlock(&fs_info->balance_lock);
3862
3863	kfree(bctl);
3864	ret = del_balance_item(fs_info);
3865	if (ret)
3866		btrfs_handle_fs_error(fs_info, ret, NULL);
3867}
3868
3869/*
3870 * Balance filters.  Return 1 if chunk should be filtered out
3871 * (should not be balanced).
3872 */
3873static int chunk_profiles_filter(u64 chunk_type,
3874				 struct btrfs_balance_args *bargs)
3875{
3876	chunk_type = chunk_to_extended(chunk_type) &
3877				BTRFS_EXTENDED_PROFILE_MASK;
3878
3879	if (bargs->profiles & chunk_type)
3880		return 0;
3881
3882	return 1;
3883}
3884
3885static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3886			      struct btrfs_balance_args *bargs)
3887{
3888	struct btrfs_block_group *cache;
3889	u64 chunk_used;
3890	u64 user_thresh_min;
3891	u64 user_thresh_max;
3892	int ret = 1;
3893
3894	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3895	chunk_used = cache->used;
3896
3897	if (bargs->usage_min == 0)
3898		user_thresh_min = 0;
3899	else
3900		user_thresh_min = mult_perc(cache->length, bargs->usage_min);
 
3901
3902	if (bargs->usage_max == 0)
3903		user_thresh_max = 1;
3904	else if (bargs->usage_max > 100)
3905		user_thresh_max = cache->length;
3906	else
3907		user_thresh_max = mult_perc(cache->length, bargs->usage_max);
 
3908
3909	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3910		ret = 0;
3911
3912	btrfs_put_block_group(cache);
3913	return ret;
3914}
3915
3916static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3917		u64 chunk_offset, struct btrfs_balance_args *bargs)
3918{
3919	struct btrfs_block_group *cache;
3920	u64 chunk_used, user_thresh;
3921	int ret = 1;
3922
3923	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3924	chunk_used = cache->used;
3925
3926	if (bargs->usage_min == 0)
3927		user_thresh = 1;
3928	else if (bargs->usage > 100)
3929		user_thresh = cache->length;
3930	else
3931		user_thresh = mult_perc(cache->length, bargs->usage);
 
3932
3933	if (chunk_used < user_thresh)
3934		ret = 0;
3935
3936	btrfs_put_block_group(cache);
3937	return ret;
3938}
3939
3940static int chunk_devid_filter(struct extent_buffer *leaf,
3941			      struct btrfs_chunk *chunk,
3942			      struct btrfs_balance_args *bargs)
3943{
3944	struct btrfs_stripe *stripe;
3945	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3946	int i;
3947
3948	for (i = 0; i < num_stripes; i++) {
3949		stripe = btrfs_stripe_nr(chunk, i);
3950		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3951			return 0;
3952	}
3953
3954	return 1;
3955}
3956
3957static u64 calc_data_stripes(u64 type, int num_stripes)
3958{
3959	const int index = btrfs_bg_flags_to_raid_index(type);
3960	const int ncopies = btrfs_raid_array[index].ncopies;
3961	const int nparity = btrfs_raid_array[index].nparity;
3962
3963	return (num_stripes - nparity) / ncopies;
3964}
3965
3966/* [pstart, pend) */
3967static int chunk_drange_filter(struct extent_buffer *leaf,
3968			       struct btrfs_chunk *chunk,
 
3969			       struct btrfs_balance_args *bargs)
3970{
3971	struct btrfs_stripe *stripe;
3972	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3973	u64 stripe_offset;
3974	u64 stripe_length;
3975	u64 type;
3976	int factor;
3977	int i;
3978
3979	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3980		return 0;
3981
3982	type = btrfs_chunk_type(leaf, chunk);
3983	factor = calc_data_stripes(type, num_stripes);
 
 
 
 
 
 
 
 
3984
3985	for (i = 0; i < num_stripes; i++) {
3986		stripe = btrfs_stripe_nr(chunk, i);
3987		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3988			continue;
3989
3990		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3991		stripe_length = btrfs_chunk_length(leaf, chunk);
3992		stripe_length = div_u64(stripe_length, factor);
3993
3994		if (stripe_offset < bargs->pend &&
3995		    stripe_offset + stripe_length > bargs->pstart)
3996			return 0;
3997	}
3998
3999	return 1;
4000}
4001
4002/* [vstart, vend) */
4003static int chunk_vrange_filter(struct extent_buffer *leaf,
4004			       struct btrfs_chunk *chunk,
4005			       u64 chunk_offset,
4006			       struct btrfs_balance_args *bargs)
4007{
4008	if (chunk_offset < bargs->vend &&
4009	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
4010		/* at least part of the chunk is inside this vrange */
4011		return 0;
4012
4013	return 1;
4014}
4015
4016static int chunk_stripes_range_filter(struct extent_buffer *leaf,
4017			       struct btrfs_chunk *chunk,
4018			       struct btrfs_balance_args *bargs)
4019{
4020	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4021
4022	if (bargs->stripes_min <= num_stripes
4023			&& num_stripes <= bargs->stripes_max)
4024		return 0;
4025
4026	return 1;
4027}
4028
4029static int chunk_soft_convert_filter(u64 chunk_type,
4030				     struct btrfs_balance_args *bargs)
4031{
4032	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4033		return 0;
4034
4035	chunk_type = chunk_to_extended(chunk_type) &
4036				BTRFS_EXTENDED_PROFILE_MASK;
4037
4038	if (bargs->target == chunk_type)
4039		return 1;
4040
4041	return 0;
4042}
4043
4044static int should_balance_chunk(struct extent_buffer *leaf,
 
4045				struct btrfs_chunk *chunk, u64 chunk_offset)
4046{
4047	struct btrfs_fs_info *fs_info = leaf->fs_info;
4048	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4049	struct btrfs_balance_args *bargs = NULL;
4050	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
4051
4052	/* type filter */
4053	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
4054	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
4055		return 0;
4056	}
4057
4058	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4059		bargs = &bctl->data;
4060	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4061		bargs = &bctl->sys;
4062	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4063		bargs = &bctl->meta;
4064
4065	/* profiles filter */
4066	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
4067	    chunk_profiles_filter(chunk_type, bargs)) {
4068		return 0;
4069	}
4070
4071	/* usage filter */
4072	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
4073	    chunk_usage_filter(fs_info, chunk_offset, bargs)) {
4074		return 0;
4075	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
4076	    chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
4077		return 0;
4078	}
4079
4080	/* devid filter */
4081	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
4082	    chunk_devid_filter(leaf, chunk, bargs)) {
4083		return 0;
4084	}
4085
4086	/* drange filter, makes sense only with devid filter */
4087	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
4088	    chunk_drange_filter(leaf, chunk, bargs)) {
4089		return 0;
4090	}
4091
4092	/* vrange filter */
4093	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
4094	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
4095		return 0;
4096	}
4097
4098	/* stripes filter */
4099	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
4100	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
4101		return 0;
4102	}
4103
4104	/* soft profile changing mode */
4105	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
4106	    chunk_soft_convert_filter(chunk_type, bargs)) {
4107		return 0;
4108	}
4109
4110	/*
4111	 * limited by count, must be the last filter
4112	 */
4113	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
4114		if (bargs->limit == 0)
4115			return 0;
4116		else
4117			bargs->limit--;
4118	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
4119		/*
4120		 * Same logic as the 'limit' filter; the minimum cannot be
4121		 * determined here because we do not have the global information
4122		 * about the count of all chunks that satisfy the filters.
4123		 */
4124		if (bargs->limit_max == 0)
4125			return 0;
4126		else
4127			bargs->limit_max--;
4128	}
4129
4130	return 1;
4131}
4132
4133static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4134{
4135	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4136	struct btrfs_root *chunk_root = fs_info->chunk_root;
 
 
 
 
 
4137	u64 chunk_type;
4138	struct btrfs_chunk *chunk;
4139	struct btrfs_path *path = NULL;
4140	struct btrfs_key key;
4141	struct btrfs_key found_key;
 
4142	struct extent_buffer *leaf;
4143	int slot;
4144	int ret;
4145	int enospc_errors = 0;
4146	bool counting = true;
4147	/* The single value limit and min/max limits use the same bytes in the */
4148	u64 limit_data = bctl->data.limit;
4149	u64 limit_meta = bctl->meta.limit;
4150	u64 limit_sys = bctl->sys.limit;
4151	u32 count_data = 0;
4152	u32 count_meta = 0;
4153	u32 count_sys = 0;
4154	int chunk_reserved = 0;
4155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4156	path = btrfs_alloc_path();
4157	if (!path) {
4158		ret = -ENOMEM;
4159		goto error;
4160	}
4161
4162	/* zero out stat counters */
4163	spin_lock(&fs_info->balance_lock);
4164	memset(&bctl->stat, 0, sizeof(bctl->stat));
4165	spin_unlock(&fs_info->balance_lock);
4166again:
4167	if (!counting) {
4168		/*
4169		 * The single value limit and min/max limits use the same bytes
4170		 * in the
4171		 */
4172		bctl->data.limit = limit_data;
4173		bctl->meta.limit = limit_meta;
4174		bctl->sys.limit = limit_sys;
4175	}
4176	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4177	key.offset = (u64)-1;
4178	key.type = BTRFS_CHUNK_ITEM_KEY;
4179
4180	while (1) {
4181		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4182		    atomic_read(&fs_info->balance_cancel_req)) {
4183			ret = -ECANCELED;
4184			goto error;
4185		}
4186
4187		mutex_lock(&fs_info->reclaim_bgs_lock);
4188		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4189		if (ret < 0) {
4190			mutex_unlock(&fs_info->reclaim_bgs_lock);
4191			goto error;
4192		}
4193
4194		/*
4195		 * this shouldn't happen, it means the last relocate
4196		 * failed
4197		 */
4198		if (ret == 0)
4199			BUG(); /* FIXME break ? */
4200
4201		ret = btrfs_previous_item(chunk_root, path, 0,
4202					  BTRFS_CHUNK_ITEM_KEY);
4203		if (ret) {
4204			mutex_unlock(&fs_info->reclaim_bgs_lock);
4205			ret = 0;
4206			break;
4207		}
4208
4209		leaf = path->nodes[0];
4210		slot = path->slots[0];
4211		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4212
4213		if (found_key.objectid != key.objectid) {
4214			mutex_unlock(&fs_info->reclaim_bgs_lock);
4215			break;
4216		}
4217
4218		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4219		chunk_type = btrfs_chunk_type(leaf, chunk);
4220
4221		if (!counting) {
4222			spin_lock(&fs_info->balance_lock);
4223			bctl->stat.considered++;
4224			spin_unlock(&fs_info->balance_lock);
4225		}
4226
4227		ret = should_balance_chunk(leaf, chunk, found_key.offset);
 
4228
4229		btrfs_release_path(path);
4230		if (!ret) {
4231			mutex_unlock(&fs_info->reclaim_bgs_lock);
4232			goto loop;
4233		}
4234
4235		if (counting) {
4236			mutex_unlock(&fs_info->reclaim_bgs_lock);
4237			spin_lock(&fs_info->balance_lock);
4238			bctl->stat.expected++;
4239			spin_unlock(&fs_info->balance_lock);
4240
4241			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4242				count_data++;
4243			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4244				count_sys++;
4245			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4246				count_meta++;
4247
4248			goto loop;
4249		}
4250
4251		/*
4252		 * Apply limit_min filter, no need to check if the LIMITS
4253		 * filter is used, limit_min is 0 by default
4254		 */
4255		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4256					count_data < bctl->data.limit_min)
4257				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4258					count_meta < bctl->meta.limit_min)
4259				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4260					count_sys < bctl->sys.limit_min)) {
4261			mutex_unlock(&fs_info->reclaim_bgs_lock);
4262			goto loop;
4263		}
4264
4265		if (!chunk_reserved) {
4266			/*
4267			 * We may be relocating the only data chunk we have,
4268			 * which could potentially end up with losing data's
4269			 * raid profile, so lets allocate an empty one in
4270			 * advance.
4271			 */
4272			ret = btrfs_may_alloc_data_chunk(fs_info,
4273							 found_key.offset);
 
 
4274			if (ret < 0) {
4275				mutex_unlock(&fs_info->reclaim_bgs_lock);
4276				goto error;
4277			} else if (ret == 1) {
4278				chunk_reserved = 1;
4279			}
 
4280		}
4281
4282		ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4283		mutex_unlock(&fs_info->reclaim_bgs_lock);
 
 
 
4284		if (ret == -ENOSPC) {
4285			enospc_errors++;
4286		} else if (ret == -ETXTBSY) {
4287			btrfs_info(fs_info,
4288	   "skipping relocation of block group %llu due to active swapfile",
4289				   found_key.offset);
4290			ret = 0;
4291		} else if (ret) {
4292			goto error;
4293		} else {
4294			spin_lock(&fs_info->balance_lock);
4295			bctl->stat.completed++;
4296			spin_unlock(&fs_info->balance_lock);
4297		}
4298loop:
4299		if (found_key.offset == 0)
4300			break;
4301		key.offset = found_key.offset - 1;
4302	}
4303
4304	if (counting) {
4305		btrfs_release_path(path);
4306		counting = false;
4307		goto again;
4308	}
4309error:
4310	btrfs_free_path(path);
4311	if (enospc_errors) {
4312		btrfs_info(fs_info, "%d enospc errors during balance",
4313			   enospc_errors);
4314		if (!ret)
4315			ret = -ENOSPC;
4316	}
4317
4318	return ret;
4319}
4320
4321/*
4322 * See if a given profile is valid and reduced.
4323 *
4324 * @flags:     profile to validate
4325 * @extended:  if true @flags is treated as an extended profile
4326 */
4327static int alloc_profile_is_valid(u64 flags, int extended)
4328{
4329	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4330			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
4331
4332	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4333
4334	/* 1) check that all other bits are zeroed */
4335	if (flags & ~mask)
4336		return 0;
4337
4338	/* 2) see if profile is reduced */
4339	if (flags == 0)
4340		return !extended; /* "0" is valid for usual profiles */
4341
4342	return has_single_bit_set(flags);
 
4343}
4344
4345/*
4346 * Validate target profile against allowed profiles and return true if it's OK.
4347 * Otherwise print the error message and return false.
4348 */
4349static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4350		const struct btrfs_balance_args *bargs,
4351		u64 allowed, const char *type)
4352{
4353	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4354		return true;
4355
4356	/* Profile is valid and does not have bits outside of the allowed set */
4357	if (alloc_profile_is_valid(bargs->target, 1) &&
4358	    (bargs->target & ~allowed) == 0)
4359		return true;
4360
4361	btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4362			type, btrfs_bg_type_to_raid_name(bargs->target));
4363	return false;
4364}
4365
4366/*
4367 * Fill @buf with textual description of balance filter flags @bargs, up to
4368 * @size_buf including the terminating null. The output may be trimmed if it
4369 * does not fit into the provided buffer.
4370 */
4371static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4372				 u32 size_buf)
4373{
4374	int ret;
4375	u32 size_bp = size_buf;
4376	char *bp = buf;
4377	u64 flags = bargs->flags;
4378	char tmp_buf[128] = {'\0'};
4379
4380	if (!flags)
4381		return;
 
 
4382
4383#define CHECK_APPEND_NOARG(a)						\
4384	do {								\
4385		ret = snprintf(bp, size_bp, (a));			\
4386		if (ret < 0 || ret >= size_bp)				\
4387			goto out_overflow;				\
4388		size_bp -= ret;						\
4389		bp += ret;						\
4390	} while (0)
4391
4392#define CHECK_APPEND_1ARG(a, v1)					\
4393	do {								\
4394		ret = snprintf(bp, size_bp, (a), (v1));			\
4395		if (ret < 0 || ret >= size_bp)				\
4396			goto out_overflow;				\
4397		size_bp -= ret;						\
4398		bp += ret;						\
4399	} while (0)
4400
4401#define CHECK_APPEND_2ARG(a, v1, v2)					\
4402	do {								\
4403		ret = snprintf(bp, size_bp, (a), (v1), (v2));		\
4404		if (ret < 0 || ret >= size_bp)				\
4405			goto out_overflow;				\
4406		size_bp -= ret;						\
4407		bp += ret;						\
4408	} while (0)
4409
4410	if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4411		CHECK_APPEND_1ARG("convert=%s,",
4412				  btrfs_bg_type_to_raid_name(bargs->target));
4413
4414	if (flags & BTRFS_BALANCE_ARGS_SOFT)
4415		CHECK_APPEND_NOARG("soft,");
4416
4417	if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4418		btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4419					    sizeof(tmp_buf));
4420		CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4421	}
4422
4423	if (flags & BTRFS_BALANCE_ARGS_USAGE)
4424		CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4425
4426	if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4427		CHECK_APPEND_2ARG("usage=%u..%u,",
4428				  bargs->usage_min, bargs->usage_max);
4429
4430	if (flags & BTRFS_BALANCE_ARGS_DEVID)
4431		CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4432
4433	if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4434		CHECK_APPEND_2ARG("drange=%llu..%llu,",
4435				  bargs->pstart, bargs->pend);
4436
4437	if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4438		CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4439				  bargs->vstart, bargs->vend);
4440
4441	if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4442		CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4443
4444	if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4445		CHECK_APPEND_2ARG("limit=%u..%u,",
4446				bargs->limit_min, bargs->limit_max);
4447
4448	if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4449		CHECK_APPEND_2ARG("stripes=%u..%u,",
4450				  bargs->stripes_min, bargs->stripes_max);
4451
4452#undef CHECK_APPEND_2ARG
4453#undef CHECK_APPEND_1ARG
4454#undef CHECK_APPEND_NOARG
4455
4456out_overflow:
4457
4458	if (size_bp < size_buf)
4459		buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4460	else
4461		buf[0] = '\0';
4462}
4463
4464static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
 
 
4465{
4466	u32 size_buf = 1024;
4467	char tmp_buf[192] = {'\0'};
4468	char *buf;
4469	char *bp;
4470	u32 size_bp = size_buf;
4471	int ret;
4472	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4473
4474	buf = kzalloc(size_buf, GFP_KERNEL);
4475	if (!buf)
4476		return;
4477
4478	bp = buf;
4479
4480#define CHECK_APPEND_1ARG(a, v1)					\
4481	do {								\
4482		ret = snprintf(bp, size_bp, (a), (v1));			\
4483		if (ret < 0 || ret >= size_bp)				\
4484			goto out_overflow;				\
4485		size_bp -= ret;						\
4486		bp += ret;						\
4487	} while (0)
4488
4489	if (bctl->flags & BTRFS_BALANCE_FORCE)
4490		CHECK_APPEND_1ARG("%s", "-f ");
4491
4492	if (bctl->flags & BTRFS_BALANCE_DATA) {
4493		describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4494		CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4495	}
4496
4497	if (bctl->flags & BTRFS_BALANCE_METADATA) {
4498		describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4499		CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4500	}
4501
4502	if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4503		describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4504		CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4505	}
4506
4507#undef CHECK_APPEND_1ARG
4508
4509out_overflow:
4510
4511	if (size_bp < size_buf)
4512		buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4513	btrfs_info(fs_info, "balance: %s %s",
4514		   (bctl->flags & BTRFS_BALANCE_RESUME) ?
4515		   "resume" : "start", buf);
4516
4517	kfree(buf);
4518}
4519
4520/*
4521 * Should be called with balance mutexe held
4522 */
4523int btrfs_balance(struct btrfs_fs_info *fs_info,
4524		  struct btrfs_balance_control *bctl,
4525		  struct btrfs_ioctl_balance_args *bargs)
4526{
4527	u64 meta_target, data_target;
4528	u64 allowed;
4529	int mixed = 0;
4530	int ret;
4531	u64 num_devices;
4532	unsigned seq;
4533	bool reducing_redundancy;
4534	bool paused = false;
4535	int i;
4536
4537	if (btrfs_fs_closing(fs_info) ||
4538	    atomic_read(&fs_info->balance_pause_req) ||
4539	    btrfs_should_cancel_balance(fs_info)) {
4540		ret = -EINVAL;
4541		goto out;
4542	}
4543
4544	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4545	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4546		mixed = 1;
4547
4548	/*
4549	 * In case of mixed groups both data and meta should be picked,
4550	 * and identical options should be given for both of them.
4551	 */
4552	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4553	if (mixed && (bctl->flags & allowed)) {
4554		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4555		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4556		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4557			btrfs_err(fs_info,
4558	  "balance: mixed groups data and metadata options must be the same");
4559			ret = -EINVAL;
4560			goto out;
4561		}
4562	}
4563
4564	/*
4565	 * rw_devices will not change at the moment, device add/delete/replace
4566	 * are exclusive
4567	 */
4568	num_devices = fs_info->fs_devices->rw_devices;
4569
4570	/*
4571	 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4572	 * special bit for it, to make it easier to distinguish.  Thus we need
4573	 * to set it manually, or balance would refuse the profile.
4574	 */
4575	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4576	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4577		if (num_devices >= btrfs_raid_array[i].devs_min)
4578			allowed |= btrfs_raid_array[i].bg_flag;
4579
4580	if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4581	    !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4582	    !validate_convert_profile(fs_info, &bctl->sys,  allowed, "system")) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4583		ret = -EINVAL;
4584		goto out;
4585	}
4586
4587	/*
4588	 * Allow to reduce metadata or system integrity only if force set for
4589	 * profiles with redundancy (copies, parity)
4590	 */
4591	allowed = 0;
4592	for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4593		if (btrfs_raid_array[i].ncopies >= 2 ||
4594		    btrfs_raid_array[i].tolerated_failures >= 1)
4595			allowed |= btrfs_raid_array[i].bg_flag;
4596	}
4597	do {
4598		seq = read_seqbegin(&fs_info->profiles_lock);
4599
4600		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4601		     (fs_info->avail_system_alloc_bits & allowed) &&
4602		     !(bctl->sys.target & allowed)) ||
4603		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4604		     (fs_info->avail_metadata_alloc_bits & allowed) &&
4605		     !(bctl->meta.target & allowed)))
4606			reducing_redundancy = true;
4607		else
4608			reducing_redundancy = false;
4609
4610		/* if we're not converting, the target field is uninitialized */
4611		meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4612			bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4613		data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4614			bctl->data.target : fs_info->avail_data_alloc_bits;
4615	} while (read_seqretry(&fs_info->profiles_lock, seq));
4616
4617	if (reducing_redundancy) {
4618		if (bctl->flags & BTRFS_BALANCE_FORCE) {
4619			btrfs_info(fs_info,
4620			   "balance: force reducing metadata redundancy");
4621		} else {
4622			btrfs_err(fs_info,
4623	"balance: reduces metadata redundancy, use --force if you want this");
4624			ret = -EINVAL;
4625			goto out;
4626		}
4627	}
4628
4629	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4630		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4631		btrfs_warn(fs_info,
4632	"balance: metadata profile %s has lower redundancy than data profile %s",
4633				btrfs_bg_type_to_raid_name(meta_target),
4634				btrfs_bg_type_to_raid_name(data_target));
4635	}
4636
4637	ret = insert_balance_item(fs_info, bctl);
4638	if (ret && ret != -EEXIST)
4639		goto out;
4640
4641	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4642		BUG_ON(ret == -EEXIST);
4643		BUG_ON(fs_info->balance_ctl);
4644		spin_lock(&fs_info->balance_lock);
4645		fs_info->balance_ctl = bctl;
4646		spin_unlock(&fs_info->balance_lock);
4647	} else {
4648		BUG_ON(ret != -EEXIST);
4649		spin_lock(&fs_info->balance_lock);
4650		update_balance_args(bctl);
4651		spin_unlock(&fs_info->balance_lock);
4652	}
4653
4654	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4655	set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4656	describe_balance_start_or_resume(fs_info);
4657	mutex_unlock(&fs_info->balance_mutex);
4658
4659	ret = __btrfs_balance(fs_info);
4660
4661	mutex_lock(&fs_info->balance_mutex);
4662	if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4663		btrfs_info(fs_info, "balance: paused");
4664		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4665		paused = true;
 
4666	}
4667	/*
4668	 * Balance can be canceled by:
4669	 *
4670	 * - Regular cancel request
4671	 *   Then ret == -ECANCELED and balance_cancel_req > 0
4672	 *
4673	 * - Fatal signal to "btrfs" process
4674	 *   Either the signal caught by wait_reserve_ticket() and callers
4675	 *   got -EINTR, or caught by btrfs_should_cancel_balance() and
4676	 *   got -ECANCELED.
4677	 *   Either way, in this case balance_cancel_req = 0, and
4678	 *   ret == -EINTR or ret == -ECANCELED.
4679	 *
4680	 * So here we only check the return value to catch canceled balance.
4681	 */
4682	else if (ret == -ECANCELED || ret == -EINTR)
4683		btrfs_info(fs_info, "balance: canceled");
4684	else
4685		btrfs_info(fs_info, "balance: ended with status: %d", ret);
4686
4687	clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4688
4689	if (bargs) {
4690		memset(bargs, 0, sizeof(*bargs));
4691		btrfs_update_ioctl_balance_args(fs_info, bargs);
4692	}
4693
4694	/* We didn't pause, we can clean everything up. */
4695	if (!paused) {
4696		reset_balance_state(fs_info);
4697		btrfs_exclop_finish(fs_info);
4698	}
4699
4700	wake_up(&fs_info->balance_wait_q);
4701
4702	return ret;
4703out:
4704	if (bctl->flags & BTRFS_BALANCE_RESUME)
4705		reset_balance_state(fs_info);
4706	else
4707		kfree(bctl);
4708	btrfs_exclop_finish(fs_info);
4709
4710	return ret;
4711}
4712
4713static int balance_kthread(void *data)
4714{
4715	struct btrfs_fs_info *fs_info = data;
4716	int ret = 0;
4717
4718	sb_start_write(fs_info->sb);
4719	mutex_lock(&fs_info->balance_mutex);
4720	if (fs_info->balance_ctl)
4721		ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
 
 
 
 
4722	mutex_unlock(&fs_info->balance_mutex);
4723	sb_end_write(fs_info->sb);
4724
4725	return ret;
4726}
4727
4728int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4729{
4730	struct task_struct *tsk;
4731
4732	mutex_lock(&fs_info->balance_mutex);
4733	if (!fs_info->balance_ctl) {
4734		mutex_unlock(&fs_info->balance_mutex);
4735		return 0;
4736	}
4737	mutex_unlock(&fs_info->balance_mutex);
4738
4739	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4740		btrfs_info(fs_info, "balance: resume skipped");
4741		return 0;
4742	}
4743
4744	spin_lock(&fs_info->super_lock);
4745	ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4746	fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4747	spin_unlock(&fs_info->super_lock);
4748	/*
4749	 * A ro->rw remount sequence should continue with the paused balance
4750	 * regardless of who pauses it, system or the user as of now, so set
4751	 * the resume flag.
4752	 */
4753	spin_lock(&fs_info->balance_lock);
4754	fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4755	spin_unlock(&fs_info->balance_lock);
4756
4757	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4758	return PTR_ERR_OR_ZERO(tsk);
4759}
4760
4761int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4762{
4763	struct btrfs_balance_control *bctl;
4764	struct btrfs_balance_item *item;
4765	struct btrfs_disk_balance_args disk_bargs;
4766	struct btrfs_path *path;
4767	struct extent_buffer *leaf;
4768	struct btrfs_key key;
4769	int ret;
4770
4771	path = btrfs_alloc_path();
4772	if (!path)
4773		return -ENOMEM;
4774
4775	key.objectid = BTRFS_BALANCE_OBJECTID;
4776	key.type = BTRFS_TEMPORARY_ITEM_KEY;
4777	key.offset = 0;
4778
4779	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4780	if (ret < 0)
4781		goto out;
4782	if (ret > 0) { /* ret = -ENOENT; */
4783		ret = 0;
4784		goto out;
4785	}
4786
4787	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4788	if (!bctl) {
4789		ret = -ENOMEM;
4790		goto out;
4791	}
4792
4793	leaf = path->nodes[0];
4794	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4795
 
4796	bctl->flags = btrfs_balance_flags(leaf, item);
4797	bctl->flags |= BTRFS_BALANCE_RESUME;
4798
4799	btrfs_balance_data(leaf, item, &disk_bargs);
4800	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4801	btrfs_balance_meta(leaf, item, &disk_bargs);
4802	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4803	btrfs_balance_sys(leaf, item, &disk_bargs);
4804	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4805
4806	/*
4807	 * This should never happen, as the paused balance state is recovered
4808	 * during mount without any chance of other exclusive ops to collide.
4809	 *
4810	 * This gives the exclusive op status to balance and keeps in paused
4811	 * state until user intervention (cancel or umount). If the ownership
4812	 * cannot be assigned, show a message but do not fail. The balance
4813	 * is in a paused state and must have fs_info::balance_ctl properly
4814	 * set up.
4815	 */
4816	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4817		btrfs_warn(fs_info,
4818	"balance: cannot set exclusive op status, resume manually");
4819
4820	btrfs_release_path(path);
4821
4822	mutex_lock(&fs_info->balance_mutex);
4823	BUG_ON(fs_info->balance_ctl);
4824	spin_lock(&fs_info->balance_lock);
4825	fs_info->balance_ctl = bctl;
4826	spin_unlock(&fs_info->balance_lock);
4827	mutex_unlock(&fs_info->balance_mutex);
 
4828out:
4829	btrfs_free_path(path);
4830	return ret;
4831}
4832
4833int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4834{
4835	int ret = 0;
4836
4837	mutex_lock(&fs_info->balance_mutex);
4838	if (!fs_info->balance_ctl) {
4839		mutex_unlock(&fs_info->balance_mutex);
4840		return -ENOTCONN;
4841	}
4842
4843	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4844		atomic_inc(&fs_info->balance_pause_req);
4845		mutex_unlock(&fs_info->balance_mutex);
4846
4847		wait_event(fs_info->balance_wait_q,
4848			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4849
4850		mutex_lock(&fs_info->balance_mutex);
4851		/* we are good with balance_ctl ripped off from under us */
4852		BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4853		atomic_dec(&fs_info->balance_pause_req);
4854	} else {
4855		ret = -ENOTCONN;
4856	}
4857
4858	mutex_unlock(&fs_info->balance_mutex);
4859	return ret;
4860}
4861
4862int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4863{
 
 
 
4864	mutex_lock(&fs_info->balance_mutex);
4865	if (!fs_info->balance_ctl) {
4866		mutex_unlock(&fs_info->balance_mutex);
4867		return -ENOTCONN;
4868	}
4869
4870	/*
4871	 * A paused balance with the item stored on disk can be resumed at
4872	 * mount time if the mount is read-write. Otherwise it's still paused
4873	 * and we must not allow cancelling as it deletes the item.
4874	 */
4875	if (sb_rdonly(fs_info->sb)) {
4876		mutex_unlock(&fs_info->balance_mutex);
4877		return -EROFS;
4878	}
4879
4880	atomic_inc(&fs_info->balance_cancel_req);
4881	/*
4882	 * if we are running just wait and return, balance item is
4883	 * deleted in btrfs_balance in this case
4884	 */
4885	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4886		mutex_unlock(&fs_info->balance_mutex);
4887		wait_event(fs_info->balance_wait_q,
4888			   !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4889		mutex_lock(&fs_info->balance_mutex);
4890	} else {
 
4891		mutex_unlock(&fs_info->balance_mutex);
4892		/*
4893		 * Lock released to allow other waiters to continue, we'll
4894		 * reexamine the status again.
4895		 */
4896		mutex_lock(&fs_info->balance_mutex);
4897
4898		if (fs_info->balance_ctl) {
4899			reset_balance_state(fs_info);
4900			btrfs_exclop_finish(fs_info);
4901			btrfs_info(fs_info, "balance: canceled");
4902		}
4903	}
4904
4905	ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4906	atomic_dec(&fs_info->balance_cancel_req);
4907	mutex_unlock(&fs_info->balance_mutex);
4908	return 0;
4909}
4910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4911/*
4912 * shrinking a device means finding all of the device extents past
4913 * the new size, and then following the back refs to the chunks.
4914 * The chunk relocation code actually frees the device extent
4915 */
4916int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4917{
4918	struct btrfs_fs_info *fs_info = device->fs_info;
4919	struct btrfs_root *root = fs_info->dev_root;
4920	struct btrfs_trans_handle *trans;
 
4921	struct btrfs_dev_extent *dev_extent = NULL;
4922	struct btrfs_path *path;
4923	u64 length;
4924	u64 chunk_offset;
4925	int ret;
4926	int slot;
4927	int failed = 0;
4928	bool retried = false;
 
4929	struct extent_buffer *l;
4930	struct btrfs_key key;
4931	struct btrfs_super_block *super_copy = fs_info->super_copy;
4932	u64 old_total = btrfs_super_total_bytes(super_copy);
4933	u64 old_size = btrfs_device_get_total_bytes(device);
4934	u64 diff;
4935	u64 start;
4936	u64 free_diff = 0;
4937
4938	new_size = round_down(new_size, fs_info->sectorsize);
4939	start = new_size;
4940	diff = round_down(old_size - new_size, fs_info->sectorsize);
4941
4942	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4943		return -EINVAL;
4944
4945	path = btrfs_alloc_path();
4946	if (!path)
4947		return -ENOMEM;
4948
4949	path->reada = READA_BACK;
4950
4951	trans = btrfs_start_transaction(root, 0);
4952	if (IS_ERR(trans)) {
4953		btrfs_free_path(path);
4954		return PTR_ERR(trans);
4955	}
4956
4957	mutex_lock(&fs_info->chunk_mutex);
4958
4959	btrfs_device_set_total_bytes(device, new_size);
4960	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4961		device->fs_devices->total_rw_bytes -= diff;
4962
4963		/*
4964		 * The new free_chunk_space is new_size - used, so we have to
4965		 * subtract the delta of the old free_chunk_space which included
4966		 * old_size - used.  If used > new_size then just subtract this
4967		 * entire device's free space.
4968		 */
4969		if (device->bytes_used < new_size)
4970			free_diff = (old_size - device->bytes_used) -
4971				    (new_size - device->bytes_used);
4972		else
4973			free_diff = old_size - device->bytes_used;
4974		atomic64_sub(free_diff, &fs_info->free_chunk_space);
4975	}
4976
4977	/*
4978	 * Once the device's size has been set to the new size, ensure all
4979	 * in-memory chunks are synced to disk so that the loop below sees them
4980	 * and relocates them accordingly.
4981	 */
4982	if (contains_pending_extent(device, &start, diff)) {
4983		mutex_unlock(&fs_info->chunk_mutex);
4984		ret = btrfs_commit_transaction(trans);
4985		if (ret)
4986			goto done;
4987	} else {
4988		mutex_unlock(&fs_info->chunk_mutex);
4989		btrfs_end_transaction(trans);
4990	}
 
4991
4992again:
4993	key.objectid = device->devid;
4994	key.offset = (u64)-1;
4995	key.type = BTRFS_DEV_EXTENT_KEY;
4996
4997	do {
4998		mutex_lock(&fs_info->reclaim_bgs_lock);
4999		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5000		if (ret < 0) {
5001			mutex_unlock(&fs_info->reclaim_bgs_lock);
5002			goto done;
5003		}
5004
5005		ret = btrfs_previous_item(root, path, 0, key.type);
 
 
 
 
5006		if (ret) {
5007			mutex_unlock(&fs_info->reclaim_bgs_lock);
5008			if (ret < 0)
5009				goto done;
5010			ret = 0;
5011			btrfs_release_path(path);
5012			break;
5013		}
5014
5015		l = path->nodes[0];
5016		slot = path->slots[0];
5017		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5018
5019		if (key.objectid != device->devid) {
5020			mutex_unlock(&fs_info->reclaim_bgs_lock);
5021			btrfs_release_path(path);
5022			break;
5023		}
5024
5025		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5026		length = btrfs_dev_extent_length(l, dev_extent);
5027
5028		if (key.offset + length <= new_size) {
5029			mutex_unlock(&fs_info->reclaim_bgs_lock);
5030			btrfs_release_path(path);
5031			break;
5032		}
5033
5034		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5035		btrfs_release_path(path);
5036
5037		/*
5038		 * We may be relocating the only data chunk we have,
5039		 * which could potentially end up with losing data's
5040		 * raid profile, so lets allocate an empty one in
5041		 * advance.
5042		 */
5043		ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5044		if (ret < 0) {
5045			mutex_unlock(&fs_info->reclaim_bgs_lock);
5046			goto done;
5047		}
5048
5049		ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5050		mutex_unlock(&fs_info->reclaim_bgs_lock);
5051		if (ret == -ENOSPC) {
5052			failed++;
5053		} else if (ret) {
5054			if (ret == -ETXTBSY) {
5055				btrfs_warn(fs_info,
5056		   "could not shrink block group %llu due to active swapfile",
5057					   chunk_offset);
5058			}
5059			goto done;
5060		}
5061	} while (key.offset-- > 0);
5062
5063	if (failed && !retried) {
5064		failed = 0;
5065		retried = true;
5066		goto again;
5067	} else if (failed && retried) {
5068		ret = -ENOSPC;
5069		goto done;
5070	}
5071
5072	/* Shrinking succeeded, else we would be at "done". */
5073	trans = btrfs_start_transaction(root, 0);
5074	if (IS_ERR(trans)) {
5075		ret = PTR_ERR(trans);
5076		goto done;
5077	}
5078
5079	mutex_lock(&fs_info->chunk_mutex);
5080	/* Clear all state bits beyond the shrunk device size */
5081	clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5082			  CHUNK_STATE_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5083
5084	btrfs_device_set_disk_total_bytes(device, new_size);
5085	if (list_empty(&device->post_commit_list))
5086		list_add_tail(&device->post_commit_list,
5087			      &trans->transaction->dev_update_list);
5088
5089	WARN_ON(diff > old_total);
5090	btrfs_set_super_total_bytes(super_copy,
5091			round_down(old_total - diff, fs_info->sectorsize));
5092	mutex_unlock(&fs_info->chunk_mutex);
5093
5094	btrfs_reserve_chunk_metadata(trans, false);
5095	/* Now btrfs_update_device() will change the on-disk size. */
5096	ret = btrfs_update_device(trans, device);
5097	btrfs_trans_release_chunk_metadata(trans);
5098	if (ret < 0) {
5099		btrfs_abort_transaction(trans, ret);
5100		btrfs_end_transaction(trans);
5101	} else {
5102		ret = btrfs_commit_transaction(trans);
5103	}
5104done:
5105	btrfs_free_path(path);
5106	if (ret) {
5107		mutex_lock(&fs_info->chunk_mutex);
5108		btrfs_device_set_total_bytes(device, old_size);
5109		if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5110			device->fs_devices->total_rw_bytes += diff;
5111			atomic64_add(free_diff, &fs_info->free_chunk_space);
5112		}
5113		mutex_unlock(&fs_info->chunk_mutex);
 
5114	}
5115	return ret;
5116}
5117
5118static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5119			   struct btrfs_key *key,
5120			   struct btrfs_chunk *chunk, int item_size)
5121{
5122	struct btrfs_super_block *super_copy = fs_info->super_copy;
5123	struct btrfs_disk_key disk_key;
5124	u32 array_size;
5125	u8 *ptr;
5126
5127	lockdep_assert_held(&fs_info->chunk_mutex);
5128
5129	array_size = btrfs_super_sys_array_size(super_copy);
5130	if (array_size + item_size + sizeof(disk_key)
5131			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
 
5132		return -EFBIG;
 
5133
5134	ptr = super_copy->sys_chunk_array + array_size;
5135	btrfs_cpu_key_to_disk(&disk_key, key);
5136	memcpy(ptr, &disk_key, sizeof(disk_key));
5137	ptr += sizeof(disk_key);
5138	memcpy(ptr, chunk, item_size);
5139	item_size += sizeof(disk_key);
5140	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
 
5141
5142	return 0;
5143}
5144
5145/*
5146 * sort the devices in descending order by max_avail, total_avail
5147 */
5148static int btrfs_cmp_device_info(const void *a, const void *b)
5149{
5150	const struct btrfs_device_info *di_a = a;
5151	const struct btrfs_device_info *di_b = b;
5152
5153	if (di_a->max_avail > di_b->max_avail)
5154		return -1;
5155	if (di_a->max_avail < di_b->max_avail)
5156		return 1;
5157	if (di_a->total_avail > di_b->total_avail)
5158		return -1;
5159	if (di_a->total_avail < di_b->total_avail)
5160		return 1;
5161	return 0;
5162}
5163
 
 
 
 
 
 
5164static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5165{
5166	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5167		return;
5168
5169	btrfs_set_fs_incompat(info, RAID56);
5170}
5171
5172static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
 
 
 
 
 
 
 
 
 
 
 
 
5173{
5174	if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5175		return;
5176
5177	btrfs_set_fs_incompat(info, RAID1C34);
5178}
5179
5180/*
5181 * Structure used internally for btrfs_create_chunk() function.
5182 * Wraps needed parameters.
5183 */
5184struct alloc_chunk_ctl {
5185	u64 start;
5186	u64 type;
5187	/* Total number of stripes to allocate */
5188	int num_stripes;
5189	/* sub_stripes info for map */
5190	int sub_stripes;
5191	/* Stripes per device */
5192	int dev_stripes;
5193	/* Maximum number of devices to use */
5194	int devs_max;
5195	/* Minimum number of devices to use */
5196	int devs_min;
5197	/* ndevs has to be a multiple of this */
5198	int devs_increment;
5199	/* Number of copies */
5200	int ncopies;
5201	/* Number of stripes worth of bytes to store parity information */
5202	int nparity;
5203	u64 max_stripe_size;
5204	u64 max_chunk_size;
5205	u64 dev_extent_min;
5206	u64 stripe_size;
5207	u64 chunk_size;
 
5208	int ndevs;
5209};
 
 
5210
5211static void init_alloc_chunk_ctl_policy_regular(
5212				struct btrfs_fs_devices *fs_devices,
5213				struct alloc_chunk_ctl *ctl)
5214{
5215	struct btrfs_space_info *space_info;
5216
5217	space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5218	ASSERT(space_info);
5219
5220	ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5221	ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5222
5223	if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5224		ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5225
5226	/* We don't want a chunk larger than 10% of writable space */
5227	ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5228				  ctl->max_chunk_size);
5229	ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5230}
5231
5232static void init_alloc_chunk_ctl_policy_zoned(
5233				      struct btrfs_fs_devices *fs_devices,
5234				      struct alloc_chunk_ctl *ctl)
5235{
5236	u64 zone_size = fs_devices->fs_info->zone_size;
5237	u64 limit;
5238	int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5239	int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5240	u64 min_chunk_size = min_data_stripes * zone_size;
5241	u64 type = ctl->type;
5242
5243	ctl->max_stripe_size = zone_size;
5244	if (type & BTRFS_BLOCK_GROUP_DATA) {
5245		ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5246						 zone_size);
 
 
5247	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5248		ctl->max_chunk_size = ctl->max_stripe_size;
 
 
 
 
 
 
 
5249	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5250		ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5251		ctl->devs_max = min_t(int, ctl->devs_max,
5252				      BTRFS_MAX_DEVS_SYS_CHUNK);
 
5253	} else {
5254		BUG();
 
 
5255	}
5256
5257	/* We don't want a chunk larger than 10% of writable space */
5258	limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5259			       zone_size),
5260		    min_chunk_size);
5261	ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5262	ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5263}
5264
5265static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5266				 struct alloc_chunk_ctl *ctl)
5267{
5268	int index = btrfs_bg_flags_to_raid_index(ctl->type);
5269
5270	ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5271	ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5272	ctl->devs_max = btrfs_raid_array[index].devs_max;
5273	if (!ctl->devs_max)
5274		ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5275	ctl->devs_min = btrfs_raid_array[index].devs_min;
5276	ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5277	ctl->ncopies = btrfs_raid_array[index].ncopies;
5278	ctl->nparity = btrfs_raid_array[index].nparity;
5279	ctl->ndevs = 0;
5280
5281	switch (fs_devices->chunk_alloc_policy) {
5282	case BTRFS_CHUNK_ALLOC_REGULAR:
5283		init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5284		break;
5285	case BTRFS_CHUNK_ALLOC_ZONED:
5286		init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5287		break;
5288	default:
5289		BUG();
5290	}
5291}
5292
5293static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5294			      struct alloc_chunk_ctl *ctl,
5295			      struct btrfs_device_info *devices_info)
5296{
5297	struct btrfs_fs_info *info = fs_devices->fs_info;
5298	struct btrfs_device *device;
5299	u64 total_avail;
5300	u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5301	int ret;
5302	int ndevs = 0;
5303	u64 max_avail;
5304	u64 dev_offset;
5305
5306	/*
5307	 * in the first pass through the devices list, we gather information
5308	 * about the available holes on each device.
5309	 */
5310	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5311		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
 
 
 
 
 
 
 
 
 
5312			WARN(1, KERN_ERR
5313			       "BTRFS: read-only device in alloc_list\n");
5314			continue;
5315		}
5316
5317		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5318					&device->dev_state) ||
5319		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5320			continue;
5321
5322		if (device->total_bytes > device->bytes_used)
5323			total_avail = device->total_bytes - device->bytes_used;
5324		else
5325			total_avail = 0;
5326
5327		/* If there is no space on this device, skip it. */
5328		if (total_avail < ctl->dev_extent_min)
5329			continue;
5330
5331		ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5332					   &max_avail);
 
5333		if (ret && ret != -ENOSPC)
5334			return ret;
5335
5336		if (ret == 0)
5337			max_avail = dev_extent_want;
5338
5339		if (max_avail < ctl->dev_extent_min) {
5340			if (btrfs_test_opt(info, ENOSPC_DEBUG))
5341				btrfs_debug(info,
5342			"%s: devid %llu has no free space, have=%llu want=%llu",
5343					    __func__, device->devid, max_avail,
5344					    ctl->dev_extent_min);
5345			continue;
5346		}
5347
5348		if (ndevs == fs_devices->rw_devices) {
5349			WARN(1, "%s: found more than %llu devices\n",
5350			     __func__, fs_devices->rw_devices);
5351			break;
5352		}
5353		devices_info[ndevs].dev_offset = dev_offset;
5354		devices_info[ndevs].max_avail = max_avail;
5355		devices_info[ndevs].total_avail = total_avail;
5356		devices_info[ndevs].dev = device;
5357		++ndevs;
5358	}
5359	ctl->ndevs = ndevs;
5360
5361	/*
5362	 * now sort the devices by hole size / available space
5363	 */
5364	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5365	     btrfs_cmp_device_info, NULL);
5366
5367	return 0;
5368}
5369
5370static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5371				      struct btrfs_device_info *devices_info)
5372{
5373	/* Number of stripes that count for block group size */
5374	int data_stripes;
5375
 
 
5376	/*
5377	 * The primary goal is to maximize the number of stripes, so use as
5378	 * many devices as possible, even if the stripes are not maximum sized.
5379	 *
5380	 * The DUP profile stores more than one stripe per device, the
5381	 * max_avail is the total size so we have to adjust.
5382	 */
5383	ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5384				   ctl->dev_stripes);
5385	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5386
5387	/* This will have to be fixed for RAID1 and RAID10 over more drives */
5388	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5389
5390	/*
5391	 * Use the number of data stripes to figure out how big this chunk is
5392	 * really going to be in terms of logical address space, and compare
5393	 * that answer with the max chunk size. If it's higher, we try to
5394	 * reduce stripe_size.
5395	 */
5396	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5397		/*
5398		 * Reduce stripe_size, round it up to a 16MB boundary again and
5399		 * then use it, unless it ends up being even bigger than the
5400		 * previous value we had already.
5401		 */
5402		ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5403							data_stripes), SZ_16M),
5404				       ctl->stripe_size);
 
 
5405	}
5406
5407	/* Stripe size should not go beyond 1G. */
5408	ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5409
5410	/* Align to BTRFS_STRIPE_LEN */
5411	ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5412	ctl->chunk_size = ctl->stripe_size * data_stripes;
5413
5414	return 0;
5415}
5416
5417static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5418				    struct btrfs_device_info *devices_info)
5419{
5420	u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5421	/* Number of stripes that count for block group size */
5422	int data_stripes;
5423
5424	/*
5425	 * It should hold because:
5426	 *    dev_extent_min == dev_extent_want == zone_size * dev_stripes
 
5427	 */
5428	ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
 
5429
5430	ctl->stripe_size = zone_size;
5431	ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5432	data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5433
5434	/* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */
5435	if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5436		ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5437					     ctl->stripe_size) + ctl->nparity,
5438				     ctl->dev_stripes);
5439		ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5440		data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5441		ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5442	}
5443
5444	ctl->chunk_size = ctl->stripe_size * data_stripes;
 
5445
5446	return 0;
5447}
5448
5449static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5450			      struct alloc_chunk_ctl *ctl,
5451			      struct btrfs_device_info *devices_info)
5452{
5453	struct btrfs_fs_info *info = fs_devices->fs_info;
5454
5455	/*
5456	 * Round down to number of usable stripes, devs_increment can be any
5457	 * number so we can't use round_down() that requires power of 2, while
5458	 * rounddown is safe.
5459	 */
5460	ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5461
5462	if (ctl->ndevs < ctl->devs_min) {
5463		if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5464			btrfs_debug(info,
5465	"%s: not enough devices with free space: have=%d minimum required=%d",
5466				    __func__, ctl->ndevs, ctl->devs_min);
5467		}
5468		return -ENOSPC;
5469	}
5470
5471	ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5472
5473	switch (fs_devices->chunk_alloc_policy) {
5474	case BTRFS_CHUNK_ALLOC_REGULAR:
5475		return decide_stripe_size_regular(ctl, devices_info);
5476	case BTRFS_CHUNK_ALLOC_ZONED:
5477		return decide_stripe_size_zoned(ctl, devices_info);
5478	default:
5479		BUG();
5480	}
5481}
5482
5483static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5484{
5485	for (int i = 0; i < map->num_stripes; i++) {
5486		struct btrfs_io_stripe *stripe = &map->stripes[i];
5487		struct btrfs_device *device = stripe->dev;
5488
5489		set_extent_bit(&device->alloc_state, stripe->physical,
5490			       stripe->physical + map->stripe_size - 1,
5491			       bits | EXTENT_NOWAIT, NULL);
5492	}
5493}
5494
5495static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5496{
5497	for (int i = 0; i < map->num_stripes; i++) {
5498		struct btrfs_io_stripe *stripe = &map->stripes[i];
5499		struct btrfs_device *device = stripe->dev;
5500
5501		__clear_extent_bit(&device->alloc_state, stripe->physical,
5502				   stripe->physical + map->stripe_size - 1,
5503				   bits | EXTENT_NOWAIT,
5504				   NULL, NULL);
5505	}
5506}
5507
5508void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5509{
5510	write_lock(&fs_info->mapping_tree_lock);
5511	rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5512	RB_CLEAR_NODE(&map->rb_node);
5513	chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5514	write_unlock(&fs_info->mapping_tree_lock);
5515
5516	/* Once for the tree reference. */
5517	btrfs_free_chunk_map(map);
5518}
5519
5520EXPORT_FOR_TESTS
5521int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5522{
5523	struct rb_node **p;
5524	struct rb_node *parent = NULL;
5525	bool leftmost = true;
5526
5527	write_lock(&fs_info->mapping_tree_lock);
5528	p = &fs_info->mapping_tree.rb_root.rb_node;
5529	while (*p) {
5530		struct btrfs_chunk_map *entry;
5531
5532		parent = *p;
5533		entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5534
5535		if (map->start < entry->start) {
5536			p = &(*p)->rb_left;
5537		} else if (map->start > entry->start) {
5538			p = &(*p)->rb_right;
5539			leftmost = false;
5540		} else {
5541			write_unlock(&fs_info->mapping_tree_lock);
5542			return -EEXIST;
5543		}
5544	}
5545	rb_link_node(&map->rb_node, parent, p);
5546	rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5547	chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5548	chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5549	write_unlock(&fs_info->mapping_tree_lock);
5550
5551	return 0;
5552}
5553
5554EXPORT_FOR_TESTS
5555struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5556{
5557	struct btrfs_chunk_map *map;
5558
5559	map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5560	if (!map)
5561		return NULL;
5562
5563	refcount_set(&map->refs, 1);
5564	RB_CLEAR_NODE(&map->rb_node);
5565
5566	return map;
5567}
5568
5569static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5570			struct alloc_chunk_ctl *ctl,
5571			struct btrfs_device_info *devices_info)
5572{
5573	struct btrfs_fs_info *info = trans->fs_info;
5574	struct btrfs_chunk_map *map;
5575	struct btrfs_block_group *block_group;
5576	u64 start = ctl->start;
5577	u64 type = ctl->type;
5578	int ret;
5579
5580	map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5581	if (!map)
5582		return ERR_PTR(-ENOMEM);
5583
5584	map->start = start;
5585	map->chunk_len = ctl->chunk_size;
5586	map->stripe_size = ctl->stripe_size;
5587	map->type = type;
5588	map->io_align = BTRFS_STRIPE_LEN;
5589	map->io_width = BTRFS_STRIPE_LEN;
5590	map->sub_stripes = ctl->sub_stripes;
5591	map->num_stripes = ctl->num_stripes;
5592
5593	for (int i = 0; i < ctl->ndevs; i++) {
5594		for (int j = 0; j < ctl->dev_stripes; j++) {
5595			int s = i * ctl->dev_stripes + j;
5596			map->stripes[s].dev = devices_info[i].dev;
5597			map->stripes[s].physical = devices_info[i].dev_offset +
5598						   j * ctl->stripe_size;
5599		}
5600	}
 
 
 
 
 
 
5601
5602	trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5603
5604	ret = btrfs_add_chunk_map(info, map);
5605	if (ret) {
5606		btrfs_free_chunk_map(map);
5607		return ERR_PTR(ret);
5608	}
5609
5610	block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5611	if (IS_ERR(block_group)) {
5612		btrfs_remove_chunk_map(info, map);
5613		return block_group;
 
5614	}
5615
5616	for (int i = 0; i < map->num_stripes; i++) {
5617		struct btrfs_device *dev = map->stripes[i].dev;
5618
5619		btrfs_device_set_bytes_used(dev,
5620					    dev->bytes_used + ctl->stripe_size);
5621		if (list_empty(&dev->post_commit_list))
5622			list_add_tail(&dev->post_commit_list,
5623				      &trans->transaction->dev_update_list);
 
 
 
 
 
5624	}
5625
5626	atomic64_sub(ctl->stripe_size * map->num_stripes,
5627		     &info->free_chunk_space);
5628
5629	check_raid56_incompat_flag(info, type);
5630	check_raid1c34_incompat_flag(info, type);
5631
5632	return block_group;
5633}
5634
5635struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5636					    u64 type)
5637{
5638	struct btrfs_fs_info *info = trans->fs_info;
5639	struct btrfs_fs_devices *fs_devices = info->fs_devices;
5640	struct btrfs_device_info *devices_info = NULL;
5641	struct alloc_chunk_ctl ctl;
5642	struct btrfs_block_group *block_group;
5643	int ret;
5644
5645	lockdep_assert_held(&info->chunk_mutex);
5646
5647	if (!alloc_profile_is_valid(type, 0)) {
5648		ASSERT(0);
5649		return ERR_PTR(-EINVAL);
5650	}
5651
5652	if (list_empty(&fs_devices->alloc_list)) {
5653		if (btrfs_test_opt(info, ENOSPC_DEBUG))
5654			btrfs_debug(info, "%s: no writable device", __func__);
5655		return ERR_PTR(-ENOSPC);
5656	}
5657
5658	if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5659		btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5660		ASSERT(0);
5661		return ERR_PTR(-EINVAL);
5662	}
5663
5664	ctl.start = find_next_chunk(info);
5665	ctl.type = type;
5666	init_alloc_chunk_ctl(fs_devices, &ctl);
5667
5668	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5669			       GFP_NOFS);
5670	if (!devices_info)
5671		return ERR_PTR(-ENOMEM);
5672
5673	ret = gather_device_info(fs_devices, &ctl, devices_info);
5674	if (ret < 0) {
5675		block_group = ERR_PTR(ret);
5676		goto out;
5677	}
5678
5679	ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5680	if (ret < 0) {
5681		block_group = ERR_PTR(ret);
5682		goto out;
5683	}
5684
5685	block_group = create_chunk(trans, &ctl, devices_info);
5686
5687out:
 
 
 
 
 
 
 
 
 
5688	kfree(devices_info);
5689	return block_group;
5690}
5691
5692/*
5693 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5694 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5695 * chunks.
5696 *
5697 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5698 * phases.
5699 */
5700int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5701				     struct btrfs_block_group *bg)
5702{
5703	struct btrfs_fs_info *fs_info = trans->fs_info;
5704	struct btrfs_root *chunk_root = fs_info->chunk_root;
5705	struct btrfs_key key;
 
 
5706	struct btrfs_chunk *chunk;
5707	struct btrfs_stripe *stripe;
5708	struct btrfs_chunk_map *map;
 
 
5709	size_t item_size;
5710	int i;
5711	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
5712
5713	/*
5714	 * We take the chunk_mutex for 2 reasons:
5715	 *
5716	 * 1) Updates and insertions in the chunk btree must be done while holding
5717	 *    the chunk_mutex, as well as updating the system chunk array in the
5718	 *    superblock. See the comment on top of btrfs_chunk_alloc() for the
5719	 *    details;
5720	 *
5721	 * 2) To prevent races with the final phase of a device replace operation
5722	 *    that replaces the device object associated with the map's stripes,
5723	 *    because the device object's id can change at any time during that
5724	 *    final phase of the device replace operation
5725	 *    (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5726	 *    replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5727	 *    which would cause a failure when updating the device item, which does
5728	 *    not exists, or persisting a stripe of the chunk item with such ID.
5729	 *    Here we can't use the device_list_mutex because our caller already
5730	 *    has locked the chunk_mutex, and the final phase of device replace
5731	 *    acquires both mutexes - first the device_list_mutex and then the
5732	 *    chunk_mutex. Using any of those two mutexes protects us from a
5733	 *    concurrent device replace.
5734	 */
5735	lockdep_assert_held(&fs_info->chunk_mutex);
5736
5737	map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5738	if (IS_ERR(map)) {
5739		ret = PTR_ERR(map);
5740		btrfs_abort_transaction(trans, ret);
5741		return ret;
5742	}
5743
 
5744	item_size = btrfs_chunk_item_size(map->num_stripes);
 
5745
5746	chunk = kzalloc(item_size, GFP_NOFS);
5747	if (!chunk) {
5748		ret = -ENOMEM;
5749		btrfs_abort_transaction(trans, ret);
5750		goto out;
5751	}
5752
 
 
 
 
 
 
 
 
5753	for (i = 0; i < map->num_stripes; i++) {
5754		struct btrfs_device *device = map->stripes[i].dev;
 
5755
5756		ret = btrfs_update_device(trans, device);
5757		if (ret)
5758			goto out;
 
 
 
 
 
 
 
 
 
 
 
5759	}
5760
5761	stripe = &chunk->stripe;
5762	for (i = 0; i < map->num_stripes; i++) {
5763		struct btrfs_device *device = map->stripes[i].dev;
5764		const u64 dev_offset = map->stripes[i].physical;
5765
5766		btrfs_set_stack_stripe_devid(stripe, device->devid);
5767		btrfs_set_stack_stripe_offset(stripe, dev_offset);
5768		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5769		stripe++;
5770	}
 
5771
5772	btrfs_set_stack_chunk_length(chunk, bg->length);
5773	btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5774	btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5775	btrfs_set_stack_chunk_type(chunk, map->type);
5776	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5777	btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5778	btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5779	btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5780	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5781
5782	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5783	key.type = BTRFS_CHUNK_ITEM_KEY;
5784	key.offset = bg->start;
5785
5786	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5787	if (ret)
5788		goto out;
5789
5790	set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5791
5792	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5793		ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5794		if (ret)
5795			goto out;
5796	}
5797
5798out:
5799	kfree(chunk);
5800	btrfs_free_chunk_map(map);
5801	return ret;
5802}
5803
5804static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5805{
5806	struct btrfs_fs_info *fs_info = trans->fs_info;
 
5807	u64 alloc_profile;
5808	struct btrfs_block_group *meta_bg;
5809	struct btrfs_block_group *sys_bg;
 
5810
5811	/*
5812	 * When adding a new device for sprouting, the seed device is read-only
5813	 * so we must first allocate a metadata and a system chunk. But before
5814	 * adding the block group items to the extent, device and chunk btrees,
5815	 * we must first:
5816	 *
5817	 * 1) Create both chunks without doing any changes to the btrees, as
5818	 *    otherwise we would get -ENOSPC since the block groups from the
5819	 *    seed device are read-only;
5820	 *
5821	 * 2) Add the device item for the new sprout device - finishing the setup
5822	 *    of a new block group requires updating the device item in the chunk
5823	 *    btree, so it must exist when we attempt to do it. The previous step
5824	 *    ensures this does not fail with -ENOSPC.
5825	 *
5826	 * After that we can add the block group items to their btrees:
5827	 * update existing device item in the chunk btree, add a new block group
5828	 * item to the extent btree, add a new chunk item to the chunk btree and
5829	 * finally add the new device extent items to the devices btree.
5830	 */
5831
5832	alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5833	meta_bg = btrfs_create_chunk(trans, alloc_profile);
5834	if (IS_ERR(meta_bg))
5835		return PTR_ERR(meta_bg);
5836
5837	alloc_profile = btrfs_system_alloc_profile(fs_info);
5838	sys_bg = btrfs_create_chunk(trans, alloc_profile);
5839	if (IS_ERR(sys_bg))
5840		return PTR_ERR(sys_bg);
5841
5842	return 0;
5843}
5844
5845static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5846{
5847	const int index = btrfs_bg_flags_to_raid_index(map->type);
 
 
 
 
 
 
 
 
 
 
 
5848
5849	return btrfs_raid_array[index].tolerated_failures;
5850}
5851
5852bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5853{
5854	struct btrfs_chunk_map *map;
 
 
 
5855	int miss_ndevs = 0;
5856	int i;
5857	bool ret = true;
5858
5859	map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5860	if (IS_ERR(map))
5861		return false;
 
 
5862
 
5863	for (i = 0; i < map->num_stripes; i++) {
5864		if (test_bit(BTRFS_DEV_STATE_MISSING,
5865					&map->stripes[i].dev->dev_state)) {
5866			miss_ndevs++;
5867			continue;
5868		}
5869		if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5870					&map->stripes[i].dev->dev_state)) {
5871			ret = false;
5872			goto end;
5873		}
5874	}
5875
5876	/*
5877	 * If the number of missing devices is larger than max errors, we can
5878	 * not write the data into that chunk successfully.
 
5879	 */
5880	if (miss_ndevs > btrfs_chunk_max_errors(map))
5881		ret = false;
5882end:
5883	btrfs_free_chunk_map(map);
5884	return ret;
 
 
 
 
 
5885}
5886
5887void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5888{
5889	write_lock(&fs_info->mapping_tree_lock);
5890	while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5891		struct btrfs_chunk_map *map;
5892		struct rb_node *node;
5893
5894		node = rb_first_cached(&fs_info->mapping_tree);
5895		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5896		rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5897		RB_CLEAR_NODE(&map->rb_node);
5898		chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5899		/* Once for the tree ref. */
5900		btrfs_free_chunk_map(map);
5901		cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
 
 
 
 
5902	}
5903	write_unlock(&fs_info->mapping_tree_lock);
5904}
5905
5906static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5907{
5908	enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
 
 
 
 
5909
5910	if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5911		return 2;
 
5912
5913	/*
5914	 * There could be two corrupted data stripes, we need to loop retry in
5915	 * order to rebuild the correct data.
5916	 *
5917	 * Fail a stripe at a time on every retry except the stripe under
5918	 * reconstruction.
5919	 */
5920	if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5921		return map->num_stripes;
 
 
 
5922
5923	/* Non-RAID56, use their ncopies from btrfs_raid_array. */
5924	return btrfs_raid_array[index].ncopies;
5925}
 
 
 
 
5926
5927int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5928{
5929	struct btrfs_chunk_map *map;
5930	int ret;
 
 
 
 
 
 
 
 
5931
5932	map = btrfs_get_chunk_map(fs_info, logical, len);
5933	if (IS_ERR(map))
5934		/*
5935		 * We could return errors for these cases, but that could get
5936		 * ugly and we'd probably do the same thing which is just not do
5937		 * anything else and exit, so return 1 so the callers don't try
5938		 * to use other copies.
5939		 */
5940		return 1;
5941
5942	ret = btrfs_chunk_map_num_copies(map);
5943	btrfs_free_chunk_map(map);
5944	return ret;
5945}
5946
5947unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
 
5948				    u64 logical)
5949{
5950	struct btrfs_chunk_map *map;
5951	unsigned long len = fs_info->sectorsize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5952
5953	if (!btrfs_fs_incompat(fs_info, RAID56))
5954		return len;
 
 
 
 
 
5955
5956	map = btrfs_get_chunk_map(fs_info, logical, len);
5957
5958	if (!WARN_ON(IS_ERR(map))) {
5959		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5960			len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5961		btrfs_free_chunk_map(map);
5962	}
5963	return len;
 
 
 
5964}
5965
5966static int find_live_mirror(struct btrfs_fs_info *fs_info,
5967			    struct btrfs_chunk_map *map, int first,
5968			    int dev_replace_is_ongoing)
5969{
5970	const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
5971	int i;
5972	int num_stripes;
5973	int preferred_mirror;
5974	int tolerance;
5975	struct btrfs_device *srcdev;
5976
5977	ASSERT((map->type &
5978		 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5979
5980	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5981		num_stripes = map->sub_stripes;
5982	else
5983		num_stripes = map->num_stripes;
5984
5985	switch (policy) {
5986	default:
5987		/* Shouldn't happen, just warn and use pid instead of failing */
5988		btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
5989			      policy);
5990		WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
5991		fallthrough;
5992	case BTRFS_READ_POLICY_PID:
5993		preferred_mirror = first + (current->pid % num_stripes);
5994		break;
5995	}
5996
5997	if (dev_replace_is_ongoing &&
5998	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5999	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6000		srcdev = fs_info->dev_replace.srcdev;
6001	else
6002		srcdev = NULL;
6003
6004	/*
6005	 * try to avoid the drive that is the source drive for a
6006	 * dev-replace procedure, only choose it if no other non-missing
6007	 * mirror is available
6008	 */
6009	for (tolerance = 0; tolerance < 2; tolerance++) {
6010		if (map->stripes[preferred_mirror].dev->bdev &&
6011		    (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6012			return preferred_mirror;
6013		for (i = first; i < first + num_stripes; i++) {
6014			if (map->stripes[i].dev->bdev &&
6015			    (tolerance || map->stripes[i].dev != srcdev))
6016				return i;
6017		}
6018	}
6019
6020	/* we couldn't find one that doesn't fail.  Just return something
6021	 * and the io error handling code will clean up eventually
6022	 */
6023	return preferred_mirror;
6024}
6025
6026EXPORT_FOR_TESTS
6027struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6028						u64 logical, u16 total_stripes)
6029{
6030	struct btrfs_io_context *bioc;
 
6031
6032	bioc = kzalloc(
6033		 /* The size of btrfs_io_context */
6034		sizeof(struct btrfs_io_context) +
6035		/* Plus the variable array for the stripes */
6036		sizeof(struct btrfs_io_stripe) * (total_stripes),
6037		GFP_NOFS);
 
6038
6039	if (!bioc)
6040		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6041
6042	refcount_set(&bioc->refs, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6043
6044	bioc->fs_info = fs_info;
6045	bioc->replace_stripe_src = -1;
6046	bioc->full_stripe_logical = (u64)-1;
6047	bioc->logical = logical;
6048
6049	return bioc;
6050}
6051
6052void btrfs_get_bioc(struct btrfs_io_context *bioc)
6053{
6054	WARN_ON(!refcount_read(&bioc->refs));
6055	refcount_inc(&bioc->refs);
6056}
6057
6058void btrfs_put_bioc(struct btrfs_io_context *bioc)
6059{
6060	if (!bioc)
6061		return;
6062	if (refcount_dec_and_test(&bioc->refs))
6063		kfree(bioc);
6064}
6065
6066/*
6067 * Please note that, discard won't be sent to target device of device
6068 * replace.
6069 */
6070struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6071					       u64 logical, u64 *length_ret,
6072					       u32 *num_stripes)
6073{
6074	struct btrfs_chunk_map *map;
6075	struct btrfs_discard_stripe *stripes;
6076	u64 length = *length_ret;
6077	u64 offset;
6078	u32 stripe_nr;
6079	u32 stripe_nr_end;
6080	u32 stripe_cnt;
6081	u64 stripe_end_offset;
6082	u64 stripe_offset;
 
 
 
6083	u32 stripe_index;
6084	u32 factor = 0;
6085	u32 sub_stripes = 0;
6086	u32 stripes_per_dev = 0;
6087	u32 remaining_stripes = 0;
6088	u32 last_stripe = 0;
6089	int ret;
6090	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6091
6092	map = btrfs_get_chunk_map(fs_info, logical, length);
6093	if (IS_ERR(map))
6094		return ERR_CAST(map);
6095
6096	/* we don't discard raid56 yet */
6097	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6098		ret = -EOPNOTSUPP;
6099		goto out_free_map;
6100	}
6101
6102	offset = logical - map->start;
6103	length = min_t(u64, map->start + map->chunk_len - logical, length);
6104	*length_ret = length;
6105
 
 
6106	/*
6107	 * stripe_nr counts the total number of stripes we have to stride
6108	 * to get to this block
6109	 */
6110	stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
 
 
 
6111
6112	/* stripe_offset is the offset of this block in its stripe */
6113	stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6114
6115	stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6116			BTRFS_STRIPE_LEN_SHIFT;
6117	stripe_cnt = stripe_nr_end - stripe_nr;
6118	stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6119			    (offset + length);
6120	/*
6121	 * after this, stripe_nr is the number of stripes on this
6122	 * device we have to walk to find the data, and stripe_index is
6123	 * the number of our device in the stripe array
6124	 */
6125	*num_stripes = 1;
6126	stripe_index = 0;
6127	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6128			 BTRFS_BLOCK_GROUP_RAID10)) {
6129		if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6130			sub_stripes = 1;
6131		else
6132			sub_stripes = map->sub_stripes;
6133
6134		factor = map->num_stripes / sub_stripes;
6135		*num_stripes = min_t(u64, map->num_stripes,
6136				    sub_stripes * stripe_cnt);
6137		stripe_index = stripe_nr % factor;
6138		stripe_nr /= factor;
6139		stripe_index *= sub_stripes;
6140
6141		remaining_stripes = stripe_cnt % factor;
6142		stripes_per_dev = stripe_cnt / factor;
6143		last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6144	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6145				BTRFS_BLOCK_GROUP_DUP)) {
6146		*num_stripes = map->num_stripes;
 
 
 
 
 
 
 
 
6147	} else {
6148		stripe_index = stripe_nr % map->num_stripes;
6149		stripe_nr /= map->num_stripes;
6150	}
6151
6152	stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6153	if (!stripes) {
6154		ret = -ENOMEM;
6155		goto out_free_map;
6156	}
6157
6158	for (i = 0; i < *num_stripes; i++) {
6159		stripes[i].physical =
6160			map->stripes[stripe_index].physical +
6161			stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6162		stripes[i].dev = map->stripes[stripe_index].dev;
 
6163
6164		if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6165				 BTRFS_BLOCK_GROUP_RAID10)) {
6166			stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6167
6168			if (i / sub_stripes < remaining_stripes)
6169				stripes[i].length += BTRFS_STRIPE_LEN;
 
 
 
 
6170
 
 
6171			/*
6172			 * Special for the first stripe and
6173			 * the last stripe:
6174			 *
6175			 * |-------|...|-------|
6176			 *     |----------|
6177			 *    off     end_off
6178			 */
6179			if (i < sub_stripes)
6180				stripes[i].length -= stripe_offset;
 
 
6181
6182			if (stripe_index >= last_stripe &&
6183			    stripe_index <= (last_stripe +
6184					     sub_stripes - 1))
6185				stripes[i].length -= stripe_end_offset;
 
 
 
 
 
6186
6187			if (i == sub_stripes - 1)
6188				stripe_offset = 0;
6189		} else {
6190			stripes[i].length = length;
6191		}
 
 
6192
6193		stripe_index++;
6194		if (stripe_index == map->num_stripes) {
6195			stripe_index = 0;
6196			stripe_nr++;
6197		}
6198	}
6199
6200	btrfs_free_chunk_map(map);
6201	return stripes;
6202out_free_map:
6203	btrfs_free_chunk_map(map);
6204	return ERR_PTR(ret);
6205}
6206
6207static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6208{
6209	struct btrfs_block_group *cache;
6210	bool ret;
 
6211
6212	/* Non zoned filesystem does not use "to_copy" flag */
6213	if (!btrfs_is_zoned(fs_info))
6214		return false;
 
 
 
6215
6216	cache = btrfs_lookup_block_group(fs_info, logical);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6217
6218	ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
 
6219
6220	btrfs_put_block_group(cache);
6221	return ret;
6222}
6223
6224static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6225				      struct btrfs_dev_replace *dev_replace,
6226				      u64 logical,
6227				      struct btrfs_io_geometry *io_geom)
6228{
6229	u64 srcdev_devid = dev_replace->srcdev->devid;
6230	/*
6231	 * At this stage, num_stripes is still the real number of stripes,
6232	 * excluding the duplicated stripes.
6233	 */
6234	int num_stripes = io_geom->num_stripes;
6235	int max_errors = io_geom->max_errors;
6236	int nr_extra_stripes = 0;
6237	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6238
6239	/*
6240	 * A block group which has "to_copy" set will eventually be copied by
6241	 * the dev-replace process. We can avoid cloning IO here.
6242	 */
6243	if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6244		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6245
6246	/*
6247	 * Duplicate the write operations while the dev-replace procedure is
6248	 * running. Since the copying of the old disk to the new disk takes
6249	 * place at run time while the filesystem is mounted writable, the
6250	 * regular write operations to the old disk have to be duplicated to go
6251	 * to the new disk as well.
6252	 *
6253	 * Note that device->missing is handled by the caller, and that the
6254	 * write to the old disk is already set up in the stripes array.
6255	 */
6256	for (i = 0; i < num_stripes; i++) {
6257		struct btrfs_io_stripe *old = &bioc->stripes[i];
6258		struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6259
6260		if (old->dev->devid != srcdev_devid)
6261			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6262
6263		new->physical = old->physical;
6264		new->dev = dev_replace->tgtdev;
6265		if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6266			bioc->replace_stripe_src = i;
6267		nr_extra_stripes++;
6268	}
 
 
6269
6270	/* We can only have at most 2 extra nr_stripes (for DUP). */
6271	ASSERT(nr_extra_stripes <= 2);
6272	/*
6273	 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6274	 * replace.
6275	 * If we have 2 extra stripes, only choose the one with smaller physical.
6276	 */
6277	if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6278		struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6279		struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6280
6281		/* Only DUP can have two extra stripes. */
6282		ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
 
 
 
 
 
 
6283
6284		/*
6285		 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6286		 * The extra stripe would still be there, but won't be accessed.
6287		 */
6288		if (first->physical > second->physical) {
6289			swap(second->physical, first->physical);
6290			swap(second->dev, first->dev);
6291			nr_extra_stripes--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6292		}
6293	}
6294
6295	io_geom->num_stripes = num_stripes + nr_extra_stripes;
6296	io_geom->max_errors = max_errors + nr_extra_stripes;
6297	bioc->replace_nr_stripes = nr_extra_stripes;
6298}
6299
6300static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6301			    struct btrfs_io_geometry *io_geom)
6302{
6303	/*
6304	 * Stripe_nr is the stripe where this block falls.  stripe_offset is
6305	 * the offset of this block in its stripe.
6306	 */
6307	io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6308	io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6309	ASSERT(io_geom->stripe_offset < U32_MAX);
6310
6311	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6312		unsigned long full_stripe_len =
6313			btrfs_stripe_nr_to_offset(nr_data_stripes(map));
 
 
6314
6315		/*
6316		 * For full stripe start, we use previously calculated
6317		 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6318		 * STRIPE_LEN.
6319		 *
6320		 * By this we can avoid u64 division completely.  And we have
6321		 * to go rounddown(), not round_down(), as nr_data_stripes is
6322		 * not ensured to be power of 2.
 
 
6323		 */
6324		io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6325			rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6326
6327		ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6328		ASSERT(io_geom->raid56_full_stripe_start <= offset);
6329		/*
6330		 * For writes to RAID56, allow to write a full stripe set, but
6331		 * no straddling of stripe sets.
 
 
 
6332		 */
6333		if (io_geom->op == BTRFS_MAP_WRITE)
6334			return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6335	}
6336
6337	/*
6338	 * For other RAID types and for RAID56 reads, allow a single stripe (on
6339	 * a single disk).
6340	 */
6341	if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6342		return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6343	return U64_MAX;
6344}
6345
6346static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6347			 u64 *length, struct btrfs_io_stripe *dst,
6348			 struct btrfs_chunk_map *map,
6349			 struct btrfs_io_geometry *io_geom)
6350{
6351	dst->dev = map->stripes[io_geom->stripe_index].dev;
6352
6353	if (io_geom->op == BTRFS_MAP_READ &&
6354	    btrfs_need_stripe_tree_update(fs_info, map->type))
6355		return btrfs_get_raid_extent_offset(fs_info, logical, length,
6356						    map->type,
6357						    io_geom->stripe_index, dst);
6358
6359	dst->physical = map->stripes[io_geom->stripe_index].physical +
6360			io_geom->stripe_offset +
6361			btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6362	return 0;
6363}
6364
6365static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6366				const struct btrfs_io_stripe *smap,
6367				const struct btrfs_chunk_map *map,
6368				int num_alloc_stripes,
6369				enum btrfs_map_op op, int mirror_num)
6370{
6371	if (!smap)
6372		return false;
6373
6374	if (num_alloc_stripes != 1)
6375		return false;
6376
6377	if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6378		return false;
6379
6380	if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6381		return false;
6382
6383	return true;
6384}
6385
6386static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6387			     struct btrfs_io_geometry *io_geom)
 
 
 
6388{
6389	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6390	io_geom->stripe_nr /= map->num_stripes;
6391	if (io_geom->op == BTRFS_MAP_READ)
6392		io_geom->mirror_num = 1;
6393}
6394
6395static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6396			     struct btrfs_chunk_map *map,
6397			     struct btrfs_io_geometry *io_geom,
6398			     bool dev_replace_is_ongoing)
6399{
6400	if (io_geom->op != BTRFS_MAP_READ) {
6401		io_geom->num_stripes = map->num_stripes;
6402		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6403	}
 
6404
6405	if (io_geom->mirror_num) {
6406		io_geom->stripe_index = io_geom->mirror_num - 1;
6407		return;
6408	}
6409
6410	io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6411						 dev_replace_is_ongoing);
6412	io_geom->mirror_num = io_geom->stripe_index + 1;
6413}
6414
6415static void map_blocks_dup(const struct btrfs_chunk_map *map,
6416			   struct btrfs_io_geometry *io_geom)
6417{
6418	if (io_geom->op != BTRFS_MAP_READ) {
6419		io_geom->num_stripes = map->num_stripes;
6420		return;
6421	}
6422
6423	if (io_geom->mirror_num) {
6424		io_geom->stripe_index = io_geom->mirror_num - 1;
6425		return;
6426	}
6427
6428	io_geom->mirror_num = 1;
6429}
 
 
 
 
6430
6431static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6432			      struct btrfs_chunk_map *map,
6433			      struct btrfs_io_geometry *io_geom,
6434			      bool dev_replace_is_ongoing)
6435{
6436	u32 factor = map->num_stripes / map->sub_stripes;
6437	int old_stripe_index;
6438
6439	io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6440	io_geom->stripe_nr /= factor;
6441
6442	if (io_geom->op != BTRFS_MAP_READ) {
6443		io_geom->num_stripes = map->sub_stripes;
6444		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
6445	}
6446
6447	if (io_geom->mirror_num) {
6448		io_geom->stripe_index += io_geom->mirror_num - 1;
6449		return;
6450	}
6451
6452	old_stripe_index = io_geom->stripe_index;
6453	io_geom->stripe_index = find_live_mirror(fs_info, map,
6454						 io_geom->stripe_index,
6455						 dev_replace_is_ongoing);
6456	io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6457}
6458
6459static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6460				    struct btrfs_io_geometry *io_geom,
6461				    u64 logical, u64 *length)
6462{
6463	int data_stripes = nr_data_stripes(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6464
6465	/*
6466	 * Needs full stripe mapping.
6467	 *
6468	 * Push stripe_nr back to the start of the full stripe For those cases
6469	 * needing a full stripe, @stripe_nr is the full stripe number.
6470	 *
6471	 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6472	 * that can be expensive.  Here we just divide @stripe_nr with
6473	 * @data_stripes.
6474	 */
6475	io_geom->stripe_nr /= data_stripes;
6476
6477	/* RAID[56] write or recovery. Return all stripes */
6478	io_geom->num_stripes = map->num_stripes;
6479	io_geom->max_errors = btrfs_chunk_max_errors(map);
6480
6481	/* Return the length to the full stripe end. */
6482	*length = min(logical + *length,
6483		      io_geom->raid56_full_stripe_start + map->start +
6484		      btrfs_stripe_nr_to_offset(data_stripes)) -
6485		logical;
6486	io_geom->stripe_index = 0;
6487	io_geom->stripe_offset = 0;
6488}
6489
6490static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6491				   struct btrfs_io_geometry *io_geom)
6492{
6493	int data_stripes = nr_data_stripes(map);
 
 
 
 
 
 
 
 
 
6494
6495	ASSERT(io_geom->mirror_num <= 1);
6496	/* Just grab the data stripe directly. */
6497	io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6498	io_geom->stripe_nr /= data_stripes;
6499
6500	/* We distribute the parity blocks across stripes. */
6501	io_geom->stripe_index =
6502		(io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6503
6504	if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6505		io_geom->mirror_num = 1;
6506}
6507
6508static void map_blocks_single(const struct btrfs_chunk_map *map,
6509			      struct btrfs_io_geometry *io_geom)
6510{
6511	io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6512	io_geom->stripe_nr /= map->num_stripes;
6513	io_geom->mirror_num = io_geom->stripe_index + 1;
6514}
6515
6516/*
6517 * Map one logical range to one or more physical ranges.
6518 *
6519 * @length:		(Mandatory) mapped length of this run.
6520 *			One logical range can be split into different segments
6521 *			due to factors like zones and RAID0/5/6/10 stripe
6522 *			boundaries.
6523 *
6524 * @bioc_ret:		(Mandatory) returned btrfs_io_context structure.
6525 *			which has one or more physical ranges (btrfs_io_stripe)
6526 *			recorded inside.
6527 *			Caller should call btrfs_put_bioc() to free it after use.
6528 *
6529 * @smap:		(Optional) single physical range optimization.
6530 *			If the map request can be fulfilled by one single
6531 *			physical range, and this is parameter is not NULL,
6532 *			then @bioc_ret would be NULL, and @smap would be
6533 *			updated.
6534 *
6535 * @mirror_num_ret:	(Mandatory) returned mirror number if the original
6536 *			value is 0.
6537 *
6538 *			Mirror number 0 means to choose any live mirrors.
6539 *
6540 *			For non-RAID56 profiles, non-zero mirror_num means
6541 *			the Nth mirror. (e.g. mirror_num 1 means the first
6542 *			copy).
6543 *
6544 *			For RAID56 profile, mirror 1 means rebuild from P and
6545 *			the remaining data stripes.
6546 *
6547 *			For RAID6 profile, mirror > 2 means mark another
6548 *			data/P stripe error and rebuild from the remaining
6549 *			stripes..
6550 */
6551int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6552		    u64 logical, u64 *length,
6553		    struct btrfs_io_context **bioc_ret,
6554		    struct btrfs_io_stripe *smap, int *mirror_num_ret)
6555{
6556	struct btrfs_chunk_map *map;
6557	struct btrfs_io_geometry io_geom = { 0 };
6558	u64 map_offset;
6559	int ret = 0;
6560	int num_copies;
6561	struct btrfs_io_context *bioc = NULL;
6562	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6563	int dev_replace_is_ongoing = 0;
6564	u16 num_alloc_stripes;
6565	u64 max_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6566
6567	ASSERT(bioc_ret);
 
6568
6569	io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6570	io_geom.num_stripes = 1;
6571	io_geom.stripe_index = 0;
6572	io_geom.op = op;
6573
6574	map = btrfs_get_chunk_map(fs_info, logical, *length);
6575	if (IS_ERR(map))
6576		return PTR_ERR(map);
6577
6578	num_copies = btrfs_chunk_map_num_copies(map);
6579	if (io_geom.mirror_num > num_copies)
6580		return -EINVAL;
6581
6582	map_offset = logical - map->start;
6583	io_geom.raid56_full_stripe_start = (u64)-1;
6584	max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6585	*length = min_t(u64, map->chunk_len - map_offset, max_len);
6586
6587	if (dev_replace->replace_task != current)
6588		down_read(&dev_replace->rwsem);
 
 
 
6589
6590	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6591	/*
6592	 * Hold the semaphore for read during the whole operation, write is
6593	 * requested at commit time but must wait.
6594	 */
6595	if (!dev_replace_is_ongoing && dev_replace->replace_task != current)
6596		up_read(&dev_replace->rwsem);
6597
6598	switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6599	case BTRFS_BLOCK_GROUP_RAID0:
6600		map_blocks_raid0(map, &io_geom);
6601		break;
6602	case BTRFS_BLOCK_GROUP_RAID1:
6603	case BTRFS_BLOCK_GROUP_RAID1C3:
6604	case BTRFS_BLOCK_GROUP_RAID1C4:
6605		map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6606		break;
6607	case BTRFS_BLOCK_GROUP_DUP:
6608		map_blocks_dup(map, &io_geom);
6609		break;
6610	case BTRFS_BLOCK_GROUP_RAID10:
6611		map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6612		break;
6613	case BTRFS_BLOCK_GROUP_RAID5:
6614	case BTRFS_BLOCK_GROUP_RAID6:
6615		if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6616			map_blocks_raid56_write(map, &io_geom, logical, length);
6617		else
6618			map_blocks_raid56_read(map, &io_geom);
6619		break;
6620	default:
6621		/*
6622		 * After this, stripe_nr is the number of stripes on this
6623		 * device we have to walk to find the data, and stripe_index is
6624		 * the number of our device in the stripe array
6625		 */
6626		map_blocks_single(map, &io_geom);
6627		break;
6628	}
6629	if (io_geom.stripe_index >= map->num_stripes) {
6630		btrfs_crit(fs_info,
6631			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6632			   io_geom.stripe_index, map->num_stripes);
6633		ret = -EINVAL;
6634		goto out;
6635	}
 
 
6636
6637	num_alloc_stripes = io_geom.num_stripes;
6638	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6639	    op != BTRFS_MAP_READ)
6640		/*
6641		 * For replace case, we need to add extra stripes for extra
6642		 * duplicated stripes.
6643		 *
6644		 * For both WRITE and GET_READ_MIRRORS, we may have at most
6645		 * 2 more stripes (DUP types, otherwise 1).
6646		 */
6647		num_alloc_stripes += 2;
6648
6649	/*
6650	 * If this I/O maps to a single device, try to return the device and
6651	 * physical block information on the stack instead of allocating an
6652	 * I/O context structure.
6653	 */
6654	if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6655				io_geom.mirror_num)) {
6656		ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6657		if (mirror_num_ret)
6658			*mirror_num_ret = io_geom.mirror_num;
6659		*bioc_ret = NULL;
6660		goto out;
6661	}
6662
6663	bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6664	if (!bioc) {
6665		ret = -ENOMEM;
6666		goto out;
6667	}
6668	bioc->map_type = map->type;
6669
6670	/*
6671	 * For RAID56 full map, we need to make sure the stripes[] follows the
6672	 * rule that data stripes are all ordered, then followed with P and Q
6673	 * (if we have).
6674	 *
6675	 * It's still mostly the same as other profiles, just with extra rotation.
6676	 */
6677	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6678	    (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6679		/*
6680		 * For RAID56 @stripe_nr is already the number of full stripes
6681		 * before us, which is also the rotation value (needs to modulo
6682		 * with num_stripes).
6683		 *
6684		 * In this case, we just add @stripe_nr with @i, then do the
6685		 * modulo, to reduce one modulo call.
6686		 */
6687		bioc->full_stripe_logical = map->start +
6688			btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6689						  nr_data_stripes(map));
6690		for (int i = 0; i < io_geom.num_stripes; i++) {
6691			struct btrfs_io_stripe *dst = &bioc->stripes[i];
6692			u32 stripe_index;
6693
6694			stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6695			dst->dev = map->stripes[stripe_index].dev;
6696			dst->physical =
6697				map->stripes[stripe_index].physical +
6698				io_geom.stripe_offset +
6699				btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6700		}
6701	} else {
6702		/*
6703		 * For all other non-RAID56 profiles, just copy the target
6704		 * stripe into the bioc.
6705		 */
6706		for (int i = 0; i < io_geom.num_stripes; i++) {
6707			ret = set_io_stripe(fs_info, logical, length,
6708					    &bioc->stripes[i], map, &io_geom);
6709			if (ret < 0)
6710				break;
6711			io_geom.stripe_index++;
6712		}
6713	}
 
6714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6715	if (ret) {
6716		*bioc_ret = NULL;
6717		btrfs_put_bioc(bioc);
6718		goto out;
6719	}
6720
6721	if (op != BTRFS_MAP_READ)
6722		io_geom.max_errors = btrfs_chunk_max_errors(map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6723
6724	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6725	    op != BTRFS_MAP_READ) {
6726		handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6727	}
6728
6729	*bioc_ret = bioc;
6730	bioc->num_stripes = io_geom.num_stripes;
6731	bioc->max_errors = io_geom.max_errors;
6732	bioc->mirror_num = io_geom.mirror_num;
6733
6734out:
6735	if (dev_replace_is_ongoing && dev_replace->replace_task != current) {
6736		lockdep_assert_held(&dev_replace->rwsem);
6737		/* Unlock and let waiting writers proceed */
6738		up_read(&dev_replace->rwsem);
6739	}
6740	btrfs_free_chunk_map(map);
6741	return ret;
6742}
6743
6744static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6745				      const struct btrfs_fs_devices *fs_devices)
6746{
6747	if (args->fsid == NULL)
6748		return true;
6749	if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6750		return true;
6751	return false;
6752}
6753
6754static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6755				  const struct btrfs_device *device)
6756{
6757	if (args->missing) {
6758		if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6759		    !device->bdev)
6760			return true;
6761		return false;
 
6762	}
6763
6764	if (device->devid != args->devid)
6765		return false;
6766	if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6767		return false;
6768	return true;
6769}
6770
6771/*
6772 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6773 * return NULL.
6774 *
6775 * If devid and uuid are both specified, the match must be exact, otherwise
6776 * only devid is used.
6777 */
6778struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6779				       const struct btrfs_dev_lookup_args *args)
6780{
6781	struct btrfs_device *device;
6782	struct btrfs_fs_devices *seed_devs;
6783
6784	if (dev_args_match_fs_devices(args, fs_devices)) {
6785		list_for_each_entry(device, &fs_devices->devices, dev_list) {
6786			if (dev_args_match_device(args, device))
6787				return device;
6788		}
6789	}
6790
6791	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6792		if (!dev_args_match_fs_devices(args, seed_devs))
6793			continue;
6794		list_for_each_entry(device, &seed_devs->devices, dev_list) {
6795			if (dev_args_match_device(args, device))
 
 
6796				return device;
6797		}
 
6798	}
6799
6800	return NULL;
6801}
6802
6803static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
 
6804					    u64 devid, u8 *dev_uuid)
6805{
6806	struct btrfs_device *device;
6807	unsigned int nofs_flag;
6808
6809	/*
6810	 * We call this under the chunk_mutex, so we want to use NOFS for this
6811	 * allocation, however we don't want to change btrfs_alloc_device() to
6812	 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6813	 * places.
6814	 */
6815
6816	nofs_flag = memalloc_nofs_save();
6817	device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6818	memalloc_nofs_restore(nofs_flag);
6819	if (IS_ERR(device))
6820		return device;
6821
6822	list_add(&device->dev_list, &fs_devices->devices);
6823	device->fs_devices = fs_devices;
6824	fs_devices->num_devices++;
6825
6826	set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6827	fs_devices->missing_devices++;
6828
6829	return device;
6830}
6831
6832/*
6833 * Allocate new device struct, set up devid and UUID.
6834 *
6835 * @fs_info:	used only for generating a new devid, can be NULL if
6836 *		devid is provided (i.e. @devid != NULL).
6837 * @devid:	a pointer to devid for this device.  If NULL a new devid
6838 *		is generated.
6839 * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6840 *		is generated.
6841 * @path:	a pointer to device path if available, NULL otherwise.
6842 *
6843 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6844 * on error.  Returned struct is not linked onto any lists and must be
6845 * destroyed with btrfs_free_device.
6846 */
6847struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6848					const u64 *devid, const u8 *uuid,
6849					const char *path)
6850{
6851	struct btrfs_device *dev;
6852	u64 tmp;
6853
6854	if (WARN_ON(!devid && !fs_info))
6855		return ERR_PTR(-EINVAL);
6856
6857	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6858	if (!dev)
6859		return ERR_PTR(-ENOMEM);
6860
6861	INIT_LIST_HEAD(&dev->dev_list);
6862	INIT_LIST_HEAD(&dev->dev_alloc_list);
6863	INIT_LIST_HEAD(&dev->post_commit_list);
6864
6865	atomic_set(&dev->dev_stats_ccnt, 0);
6866	btrfs_device_data_ordered_init(dev);
6867	extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6868
6869	if (devid)
6870		tmp = *devid;
6871	else {
6872		int ret;
6873
6874		ret = find_next_devid(fs_info, &tmp);
6875		if (ret) {
6876			btrfs_free_device(dev);
6877			return ERR_PTR(ret);
6878		}
6879	}
6880	dev->devid = tmp;
6881
6882	if (uuid)
6883		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6884	else
6885		generate_random_uuid(dev->uuid);
6886
6887	if (path) {
6888		struct rcu_string *name;
6889
6890		name = rcu_string_strdup(path, GFP_KERNEL);
6891		if (!name) {
6892			btrfs_free_device(dev);
6893			return ERR_PTR(-ENOMEM);
6894		}
6895		rcu_assign_pointer(dev->name, name);
6896	}
6897
6898	return dev;
6899}
6900
6901static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6902					u64 devid, u8 *uuid, bool error)
6903{
6904	if (error)
6905		btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6906			      devid, uuid);
6907	else
6908		btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6909			      devid, uuid);
6910}
6911
6912u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6913{
6914	const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6915
6916	return div_u64(map->chunk_len, data_stripes);
6917}
6918
6919#if BITS_PER_LONG == 32
6920/*
6921 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6922 * can't be accessed on 32bit systems.
6923 *
6924 * This function do mount time check to reject the fs if it already has
6925 * metadata chunk beyond that limit.
6926 */
6927static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6928				  u64 logical, u64 length, u64 type)
6929{
6930	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6931		return 0;
6932
6933	if (logical + length < MAX_LFS_FILESIZE)
6934		return 0;
6935
6936	btrfs_err_32bit_limit(fs_info);
6937	return -EOVERFLOW;
6938}
6939
6940/*
6941 * This is to give early warning for any metadata chunk reaching
6942 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6943 * Although we can still access the metadata, it's not going to be possible
6944 * once the limit is reached.
6945 */
6946static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6947				  u64 logical, u64 length, u64 type)
6948{
6949	if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6950		return;
6951
6952	if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6953		return;
6954
6955	btrfs_warn_32bit_limit(fs_info);
6956}
6957#endif
6958
6959static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6960						  u64 devid, u8 *uuid)
6961{
6962	struct btrfs_device *dev;
6963
6964	if (!btrfs_test_opt(fs_info, DEGRADED)) {
6965		btrfs_report_missing_device(fs_info, devid, uuid, true);
6966		return ERR_PTR(-ENOENT);
6967	}
6968
6969	dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6970	if (IS_ERR(dev)) {
6971		btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6972			  devid, PTR_ERR(dev));
6973		return dev;
6974	}
6975	btrfs_report_missing_device(fs_info, devid, uuid, false);
6976
6977	return dev;
6978}
6979
6980static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6981			  struct btrfs_chunk *chunk)
6982{
6983	BTRFS_DEV_LOOKUP_ARGS(args);
6984	struct btrfs_fs_info *fs_info = leaf->fs_info;
6985	struct btrfs_chunk_map *map;
6986	u64 logical;
6987	u64 length;
 
6988	u64 devid;
6989	u64 type;
6990	u8 uuid[BTRFS_UUID_SIZE];
6991	int index;
6992	int num_stripes;
6993	int ret;
6994	int i;
6995
6996	logical = key->offset;
6997	length = btrfs_chunk_length(leaf, chunk);
6998	type = btrfs_chunk_type(leaf, chunk);
6999	index = btrfs_bg_flags_to_raid_index(type);
7000	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7001
7002#if BITS_PER_LONG == 32
7003	ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7004	if (ret < 0)
7005		return ret;
7006	warn_32bit_meta_chunk(fs_info, logical, length, type);
7007#endif
7008
7009	/*
7010	 * Only need to verify chunk item if we're reading from sys chunk array,
7011	 * as chunk item in tree block is already verified by tree-checker.
7012	 */
7013	if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7014		ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7015		if (ret)
7016			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
7017	}
7018
7019	map = btrfs_find_chunk_map(fs_info, logical, 1);
 
 
7020
7021	/* already mapped? */
7022	if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7023		btrfs_free_chunk_map(map);
7024		return 0;
7025	} else if (map) {
7026		btrfs_free_chunk_map(map);
7027	}
7028
7029	map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7030	if (!map)
7031		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
7032
7033	map->start = logical;
7034	map->chunk_len = length;
7035	map->num_stripes = num_stripes;
7036	map->io_width = btrfs_chunk_io_width(leaf, chunk);
7037	map->io_align = btrfs_chunk_io_align(leaf, chunk);
7038	map->type = type;
7039	/*
7040	 * We can't use the sub_stripes value, as for profiles other than
7041	 * RAID10, they may have 0 as sub_stripes for filesystems created by
7042	 * older mkfs (<v5.4).
7043	 * In that case, it can cause divide-by-zero errors later.
7044	 * Since currently sub_stripes is fixed for each profile, let's
7045	 * use the trusted value instead.
7046	 */
7047	map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7048	map->verified_stripes = 0;
7049	map->stripe_size = btrfs_calc_stripe_length(map);
7050	for (i = 0; i < num_stripes; i++) {
7051		map->stripes[i].physical =
7052			btrfs_stripe_offset_nr(leaf, chunk, i);
7053		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7054		args.devid = devid;
7055		read_extent_buffer(leaf, uuid, (unsigned long)
7056				   btrfs_stripe_dev_uuid_nr(chunk, i),
7057				   BTRFS_UUID_SIZE);
7058		args.uuid = uuid;
7059		map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
 
 
 
 
7060		if (!map->stripes[i].dev) {
7061			map->stripes[i].dev = handle_missing_device(fs_info,
7062								    devid, uuid);
7063			if (IS_ERR(map->stripes[i].dev)) {
7064				ret = PTR_ERR(map->stripes[i].dev);
7065				btrfs_free_chunk_map(map);
7066				return ret;
7067			}
 
 
7068		}
7069
7070		set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7071				&(map->stripes[i].dev->dev_state));
7072	}
7073
7074	ret = btrfs_add_chunk_map(fs_info, map);
7075	if (ret < 0) {
7076		btrfs_err(fs_info,
7077			  "failed to add chunk map, start=%llu len=%llu: %d",
7078			  map->start, map->chunk_len, ret);
7079		btrfs_free_chunk_map(map);
7080	}
7081
7082	return ret;
7083}
7084
7085static void fill_device_from_item(struct extent_buffer *leaf,
7086				 struct btrfs_dev_item *dev_item,
7087				 struct btrfs_device *device)
7088{
7089	unsigned long ptr;
7090
7091	device->devid = btrfs_device_id(leaf, dev_item);
7092	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7093	device->total_bytes = device->disk_total_bytes;
7094	device->commit_total_bytes = device->disk_total_bytes;
7095	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7096	device->commit_bytes_used = device->bytes_used;
7097	device->type = btrfs_device_type(leaf, dev_item);
7098	device->io_align = btrfs_device_io_align(leaf, dev_item);
7099	device->io_width = btrfs_device_io_width(leaf, dev_item);
7100	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7101	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7102	clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7103
7104	ptr = btrfs_device_uuid(dev_item);
7105	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7106}
7107
7108static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7109						  u8 *fsid)
7110{
7111	struct btrfs_fs_devices *fs_devices;
7112	int ret;
7113
7114	lockdep_assert_held(&uuid_mutex);
7115	ASSERT(fsid);
7116
7117	/* This will match only for multi-device seed fs */
7118	list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7119		if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7120			return fs_devices;
7121
 
 
7122
7123	fs_devices = find_fsid(fsid, NULL);
7124	if (!fs_devices) {
7125		if (!btrfs_test_opt(fs_info, DEGRADED))
7126			return ERR_PTR(-ENOENT);
7127
7128		fs_devices = alloc_fs_devices(fsid);
7129		if (IS_ERR(fs_devices))
7130			return fs_devices;
7131
7132		fs_devices->seeding = true;
7133		fs_devices->opened = 1;
7134		return fs_devices;
7135	}
7136
7137	/*
7138	 * Upon first call for a seed fs fsid, just create a private copy of the
7139	 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7140	 */
7141	fs_devices = clone_fs_devices(fs_devices);
7142	if (IS_ERR(fs_devices))
7143		return fs_devices;
7144
7145	ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
 
7146	if (ret) {
7147		free_fs_devices(fs_devices);
7148		return ERR_PTR(ret);
 
7149	}
7150
7151	if (!fs_devices->seeding) {
7152		close_fs_devices(fs_devices);
7153		free_fs_devices(fs_devices);
7154		return ERR_PTR(-EINVAL);
 
7155	}
7156
7157	list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7158
 
7159	return fs_devices;
7160}
7161
7162static int read_one_dev(struct extent_buffer *leaf,
 
7163			struct btrfs_dev_item *dev_item)
7164{
7165	BTRFS_DEV_LOOKUP_ARGS(args);
7166	struct btrfs_fs_info *fs_info = leaf->fs_info;
7167	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7168	struct btrfs_device *device;
7169	u64 devid;
7170	int ret;
7171	u8 fs_uuid[BTRFS_FSID_SIZE];
7172	u8 dev_uuid[BTRFS_UUID_SIZE];
7173
7174	devid = btrfs_device_id(leaf, dev_item);
7175	args.devid = devid;
7176	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7177			   BTRFS_UUID_SIZE);
7178	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7179			   BTRFS_FSID_SIZE);
7180	args.uuid = dev_uuid;
7181	args.fsid = fs_uuid;
7182
7183	if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7184		fs_devices = open_seed_devices(fs_info, fs_uuid);
7185		if (IS_ERR(fs_devices))
7186			return PTR_ERR(fs_devices);
7187	}
7188
7189	device = btrfs_find_device(fs_info->fs_devices, &args);
7190	if (!device) {
7191		if (!btrfs_test_opt(fs_info, DEGRADED)) {
7192			btrfs_report_missing_device(fs_info, devid,
7193							dev_uuid, true);
7194			return -ENOENT;
7195		}
7196
7197		device = add_missing_dev(fs_devices, devid, dev_uuid);
7198		if (IS_ERR(device)) {
7199			btrfs_err(fs_info,
7200				"failed to add missing dev %llu: %ld",
7201				devid, PTR_ERR(device));
7202			return PTR_ERR(device);
7203		}
7204		btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7205	} else {
7206		if (!device->bdev) {
7207			if (!btrfs_test_opt(fs_info, DEGRADED)) {
7208				btrfs_report_missing_device(fs_info,
7209						devid, dev_uuid, true);
7210				return -ENOENT;
7211			}
7212			btrfs_report_missing_device(fs_info, devid,
7213							dev_uuid, false);
7214		}
7215
7216		if (!device->bdev &&
7217		    !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7218			/*
7219			 * this happens when a device that was properly setup
7220			 * in the device info lists suddenly goes bad.
7221			 * device->bdev is NULL, and so we have to set
7222			 * device->missing to one here
7223			 */
7224			device->fs_devices->missing_devices++;
7225			set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7226		}
7227
7228		/* Move the device to its own fs_devices */
7229		if (device->fs_devices != fs_devices) {
7230			ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7231							&device->dev_state));
7232
7233			list_move(&device->dev_list, &fs_devices->devices);
7234			device->fs_devices->num_devices--;
7235			fs_devices->num_devices++;
7236
7237			device->fs_devices->missing_devices--;
7238			fs_devices->missing_devices++;
7239
7240			device->fs_devices = fs_devices;
7241		}
7242	}
7243
7244	if (device->fs_devices != fs_info->fs_devices) {
7245		BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7246		if (device->generation !=
7247		    btrfs_device_generation(leaf, dev_item))
7248			return -EINVAL;
7249	}
7250
7251	fill_device_from_item(leaf, dev_item, device);
7252	if (device->bdev) {
7253		u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7254
7255		if (device->total_bytes > max_total_bytes) {
7256			btrfs_err(fs_info,
7257			"device total_bytes should be at most %llu but found %llu",
7258				  max_total_bytes, device->total_bytes);
7259			return -EINVAL;
7260		}
7261	}
7262	set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7263	if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7264	   !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7265		device->fs_devices->total_rw_bytes += device->total_bytes;
7266		atomic64_add(device->total_bytes - device->bytes_used,
7267				&fs_info->free_chunk_space);
 
 
7268	}
7269	ret = 0;
7270	return ret;
7271}
7272
7273int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7274{
7275	struct btrfs_super_block *super_copy = fs_info->super_copy;
7276	struct extent_buffer *sb;
7277	struct btrfs_disk_key *disk_key;
7278	struct btrfs_chunk *chunk;
7279	u8 *array_ptr;
7280	unsigned long sb_array_offset;
7281	int ret = 0;
7282	u32 num_stripes;
7283	u32 array_size;
7284	u32 len = 0;
7285	u32 cur_offset;
7286	u64 type;
7287	struct btrfs_key key;
7288
7289	ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7290
7291	/*
7292	 * We allocated a dummy extent, just to use extent buffer accessors.
7293	 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7294	 * that's fine, we will not go beyond system chunk array anyway.
7295	 */
7296	sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7297	if (!sb)
7298		return -ENOMEM;
7299	set_extent_buffer_uptodate(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7300
7301	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7302	array_size = btrfs_super_sys_array_size(super_copy);
7303
7304	array_ptr = super_copy->sys_chunk_array;
7305	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7306	cur_offset = 0;
7307
7308	while (cur_offset < array_size) {
7309		disk_key = (struct btrfs_disk_key *)array_ptr;
7310		len = sizeof(*disk_key);
7311		if (cur_offset + len > array_size)
7312			goto out_short_read;
7313
7314		btrfs_disk_key_to_cpu(&key, disk_key);
7315
7316		array_ptr += len;
7317		sb_array_offset += len;
7318		cur_offset += len;
7319
7320		if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7321			btrfs_err(fs_info,
7322			    "unexpected item type %u in sys_array at offset %u",
7323				  (u32)key.type, cur_offset);
7324			ret = -EIO;
7325			break;
7326		}
 
 
 
 
 
 
 
 
 
 
 
7327
7328		chunk = (struct btrfs_chunk *)sb_array_offset;
7329		/*
7330		 * At least one btrfs_chunk with one stripe must be present,
7331		 * exact stripe count check comes afterwards
7332		 */
7333		len = btrfs_chunk_item_size(1);
7334		if (cur_offset + len > array_size)
7335			goto out_short_read;
7336
7337		num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7338		if (!num_stripes) {
7339			btrfs_err(fs_info,
7340			"invalid number of stripes %u in sys_array at offset %u",
7341				  num_stripes, cur_offset);
7342			ret = -EIO;
7343			break;
7344		}
7345
7346		type = btrfs_chunk_type(sb, chunk);
7347		if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7348			btrfs_err(fs_info,
7349			"invalid chunk type %llu in sys_array at offset %u",
7350				  type, cur_offset);
7351			ret = -EIO;
7352			break;
7353		}
7354
7355		len = btrfs_chunk_item_size(num_stripes);
7356		if (cur_offset + len > array_size)
7357			goto out_short_read;
7358
7359		ret = read_one_chunk(&key, sb, chunk);
7360		if (ret)
7361			break;
7362
7363		array_ptr += len;
7364		sb_array_offset += len;
7365		cur_offset += len;
7366	}
7367	clear_extent_buffer_uptodate(sb);
7368	free_extent_buffer_stale(sb);
7369	return ret;
7370
7371out_short_read:
7372	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7373			len, cur_offset);
7374	clear_extent_buffer_uptodate(sb);
7375	free_extent_buffer_stale(sb);
7376	return -EIO;
7377}
7378
7379/*
7380 * Check if all chunks in the fs are OK for read-write degraded mount
7381 *
7382 * If the @failing_dev is specified, it's accounted as missing.
7383 *
7384 * Return true if all chunks meet the minimal RW mount requirements.
7385 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7386 */
7387bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7388					struct btrfs_device *failing_dev)
7389{
7390	struct btrfs_chunk_map *map;
7391	u64 next_start;
7392	bool ret = true;
7393
7394	map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7395	/* No chunk at all? Return false anyway */
7396	if (!map) {
7397		ret = false;
7398		goto out;
7399	}
7400	while (map) {
7401		int missing = 0;
7402		int max_tolerated;
7403		int i;
7404
7405		max_tolerated =
7406			btrfs_get_num_tolerated_disk_barrier_failures(
7407					map->type);
7408		for (i = 0; i < map->num_stripes; i++) {
7409			struct btrfs_device *dev = map->stripes[i].dev;
7410
7411			if (!dev || !dev->bdev ||
7412			    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7413			    dev->last_flush_error)
7414				missing++;
7415			else if (failing_dev && failing_dev == dev)
7416				missing++;
7417		}
7418		if (missing > max_tolerated) {
7419			if (!failing_dev)
7420				btrfs_warn(fs_info,
7421	"chunk %llu missing %d devices, max tolerance is %d for writable mount",
7422				   map->start, missing, max_tolerated);
7423			btrfs_free_chunk_map(map);
7424			ret = false;
7425			goto out;
7426		}
7427		next_start = map->start + map->chunk_len;
7428		btrfs_free_chunk_map(map);
7429
7430		map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7431	}
7432out:
7433	return ret;
7434}
7435
7436static void readahead_tree_node_children(struct extent_buffer *node)
7437{
7438	int i;
7439	const int nr_items = btrfs_header_nritems(node);
7440
7441	for (i = 0; i < nr_items; i++)
7442		btrfs_readahead_node_child(node, i);
7443}
7444
7445int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7446{
7447	struct btrfs_root *root = fs_info->chunk_root;
7448	struct btrfs_path *path;
7449	struct extent_buffer *leaf;
7450	struct btrfs_key key;
7451	struct btrfs_key found_key;
7452	int ret;
7453	int slot;
7454	int iter_ret = 0;
7455	u64 total_dev = 0;
7456	u64 last_ra_node = 0;
7457
7458	path = btrfs_alloc_path();
7459	if (!path)
7460		return -ENOMEM;
7461
7462	/*
7463	 * uuid_mutex is needed only if we are mounting a sprout FS
7464	 * otherwise we don't need it.
7465	 */
7466	mutex_lock(&uuid_mutex);
7467
7468	/*
7469	 * It is possible for mount and umount to race in such a way that
7470	 * we execute this code path, but open_fs_devices failed to clear
7471	 * total_rw_bytes. We certainly want it cleared before reading the
7472	 * device items, so clear it here.
7473	 */
7474	fs_info->fs_devices->total_rw_bytes = 0;
7475
7476	/*
7477	 * Lockdep complains about possible circular locking dependency between
7478	 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7479	 * used for freeze procection of a fs (struct super_block.s_writers),
7480	 * which we take when starting a transaction, and extent buffers of the
7481	 * chunk tree if we call read_one_dev() while holding a lock on an
7482	 * extent buffer of the chunk tree. Since we are mounting the filesystem
7483	 * and at this point there can't be any concurrent task modifying the
7484	 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7485	 */
7486	ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7487	path->skip_locking = 1;
7488
7489	/*
7490	 * Read all device items, and then all the chunk items. All
7491	 * device items are found before any chunk item (their object id
7492	 * is smaller than the lowest possible object id for a chunk
7493	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7494	 */
7495	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7496	key.offset = 0;
7497	key.type = 0;
7498	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7499		struct extent_buffer *node = path->nodes[1];
7500
 
7501		leaf = path->nodes[0];
7502		slot = path->slots[0];
7503
7504		if (node) {
7505			if (last_ra_node != node->start) {
7506				readahead_tree_node_children(node);
7507				last_ra_node = node->start;
7508			}
 
7509		}
 
7510		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7511			struct btrfs_dev_item *dev_item;
7512			dev_item = btrfs_item_ptr(leaf, slot,
7513						  struct btrfs_dev_item);
7514			ret = read_one_dev(leaf, dev_item);
7515			if (ret)
7516				goto error;
7517			total_dev++;
7518		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7519			struct btrfs_chunk *chunk;
7520
7521			/*
7522			 * We are only called at mount time, so no need to take
7523			 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7524			 * we always lock first fs_info->chunk_mutex before
7525			 * acquiring any locks on the chunk tree. This is a
7526			 * requirement for chunk allocation, see the comment on
7527			 * top of btrfs_chunk_alloc() for details.
7528			 */
7529			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7530			ret = read_one_chunk(&found_key, leaf, chunk);
7531			if (ret)
7532				goto error;
7533		}
7534	}
7535	/* Catch error found during iteration */
7536	if (iter_ret < 0) {
7537		ret = iter_ret;
7538		goto error;
7539	}
7540
7541	/*
7542	 * After loading chunk tree, we've got all device information,
7543	 * do another round of validation checks.
7544	 */
7545	if (total_dev != fs_info->fs_devices->total_devices) {
7546		btrfs_warn(fs_info,
7547"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7548			  btrfs_super_num_devices(fs_info->super_copy),
7549			  total_dev);
7550		fs_info->fs_devices->total_devices = total_dev;
7551		btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7552	}
7553	if (btrfs_super_total_bytes(fs_info->super_copy) <
7554	    fs_info->fs_devices->total_rw_bytes) {
7555		btrfs_err(fs_info,
7556	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7557			  btrfs_super_total_bytes(fs_info->super_copy),
7558			  fs_info->fs_devices->total_rw_bytes);
7559		ret = -EINVAL;
7560		goto error;
7561	}
7562	ret = 0;
7563error:
 
7564	mutex_unlock(&uuid_mutex);
7565
7566	btrfs_free_path(path);
7567	return ret;
7568}
7569
7570int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7571{
7572	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7573	struct btrfs_device *device;
7574	int ret = 0;
7575
7576	fs_devices->fs_info = fs_info;
7577
7578	mutex_lock(&fs_devices->device_list_mutex);
7579	list_for_each_entry(device, &fs_devices->devices, dev_list)
7580		device->fs_info = fs_info;
7581
7582	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7583		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7584			device->fs_info = fs_info;
7585			ret = btrfs_get_dev_zone_info(device, false);
7586			if (ret)
7587				break;
7588		}
7589
7590		seed_devs->fs_info = fs_info;
7591	}
7592	mutex_unlock(&fs_devices->device_list_mutex);
7593
7594	return ret;
7595}
7596
7597static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7598				 const struct btrfs_dev_stats_item *ptr,
7599				 int index)
7600{
7601	u64 val;
7602
7603	read_extent_buffer(eb, &val,
7604			   offsetof(struct btrfs_dev_stats_item, values) +
7605			    ((unsigned long)ptr) + (index * sizeof(u64)),
7606			   sizeof(val));
7607	return val;
7608}
7609
7610static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7611				      struct btrfs_dev_stats_item *ptr,
7612				      int index, u64 val)
7613{
7614	write_extent_buffer(eb, &val,
7615			    offsetof(struct btrfs_dev_stats_item, values) +
7616			     ((unsigned long)ptr) + (index * sizeof(u64)),
7617			    sizeof(val));
7618}
7619
7620static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7621				       struct btrfs_path *path)
7622{
7623	struct btrfs_dev_stats_item *ptr;
7624	struct extent_buffer *eb;
7625	struct btrfs_key key;
7626	int item_size;
7627	int i, ret, slot;
7628
7629	if (!device->fs_info->dev_root)
7630		return 0;
7631
7632	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7633	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7634	key.offset = device->devid;
7635	ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7636	if (ret) {
7637		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7638			btrfs_dev_stat_set(device, i, 0);
7639		device->dev_stats_valid = 1;
7640		btrfs_release_path(path);
7641		return ret < 0 ? ret : 0;
7642	}
7643	slot = path->slots[0];
7644	eb = path->nodes[0];
7645	item_size = btrfs_item_size(eb, slot);
7646
7647	ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7648
7649	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7650		if (item_size >= (1 + i) * sizeof(__le64))
7651			btrfs_dev_stat_set(device, i,
7652					   btrfs_dev_stats_value(eb, ptr, i));
7653		else
7654			btrfs_dev_stat_set(device, i, 0);
7655	}
7656
7657	device->dev_stats_valid = 1;
7658	btrfs_dev_stat_print_on_load(device);
7659	btrfs_release_path(path);
7660
7661	return 0;
7662}
7663
7664int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7665{
7666	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7667	struct btrfs_device *device;
7668	struct btrfs_path *path = NULL;
7669	int ret = 0;
7670
7671	path = btrfs_alloc_path();
7672	if (!path)
7673		return -ENOMEM;
 
 
7674
7675	mutex_lock(&fs_devices->device_list_mutex);
7676	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7677		ret = btrfs_device_init_dev_stats(device, path);
7678		if (ret)
7679			goto out;
7680	}
7681	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7682		list_for_each_entry(device, &seed_devs->devices, dev_list) {
7683			ret = btrfs_device_init_dev_stats(device, path);
7684			if (ret)
7685				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7686		}
 
 
 
 
7687	}
7688out:
7689	mutex_unlock(&fs_devices->device_list_mutex);
7690
 
7691	btrfs_free_path(path);
7692	return ret;
7693}
7694
7695static int update_dev_stat_item(struct btrfs_trans_handle *trans,
 
7696				struct btrfs_device *device)
7697{
7698	struct btrfs_fs_info *fs_info = trans->fs_info;
7699	struct btrfs_root *dev_root = fs_info->dev_root;
7700	struct btrfs_path *path;
7701	struct btrfs_key key;
7702	struct extent_buffer *eb;
7703	struct btrfs_dev_stats_item *ptr;
7704	int ret;
7705	int i;
7706
7707	key.objectid = BTRFS_DEV_STATS_OBJECTID;
7708	key.type = BTRFS_PERSISTENT_ITEM_KEY;
7709	key.offset = device->devid;
7710
7711	path = btrfs_alloc_path();
7712	if (!path)
7713		return -ENOMEM;
7714	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7715	if (ret < 0) {
7716		btrfs_warn_in_rcu(fs_info,
7717			"error %d while searching for dev_stats item for device %s",
7718				  ret, btrfs_dev_name(device));
7719		goto out;
7720	}
7721
7722	if (ret == 0 &&
7723	    btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7724		/* need to delete old one and insert a new one */
7725		ret = btrfs_del_item(trans, dev_root, path);
7726		if (ret != 0) {
7727			btrfs_warn_in_rcu(fs_info,
7728				"delete too small dev_stats item for device %s failed %d",
7729					  btrfs_dev_name(device), ret);
7730			goto out;
7731		}
7732		ret = 1;
7733	}
7734
7735	if (ret == 1) {
7736		/* need to insert a new item */
7737		btrfs_release_path(path);
7738		ret = btrfs_insert_empty_item(trans, dev_root, path,
7739					      &key, sizeof(*ptr));
7740		if (ret < 0) {
7741			btrfs_warn_in_rcu(fs_info,
7742				"insert dev_stats item for device %s failed %d",
7743				btrfs_dev_name(device), ret);
7744			goto out;
7745		}
7746	}
7747
7748	eb = path->nodes[0];
7749	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7750	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7751		btrfs_set_dev_stats_value(eb, ptr, i,
7752					  btrfs_dev_stat_read(device, i));
7753	btrfs_mark_buffer_dirty(trans, eb);
7754
7755out:
7756	btrfs_free_path(path);
7757	return ret;
7758}
7759
7760/*
7761 * called from commit_transaction. Writes all changed device stats to disk.
7762 */
7763int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
 
7764{
7765	struct btrfs_fs_info *fs_info = trans->fs_info;
7766	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7767	struct btrfs_device *device;
7768	int stats_cnt;
7769	int ret = 0;
7770
7771	mutex_lock(&fs_devices->device_list_mutex);
7772	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7773		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7774		if (!device->dev_stats_valid || stats_cnt == 0)
7775			continue;
7776
7777
7778		/*
7779		 * There is a LOAD-LOAD control dependency between the value of
7780		 * dev_stats_ccnt and updating the on-disk values which requires
7781		 * reading the in-memory counters. Such control dependencies
7782		 * require explicit read memory barriers.
7783		 *
7784		 * This memory barriers pairs with smp_mb__before_atomic in
7785		 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7786		 * barrier implied by atomic_xchg in
7787		 * btrfs_dev_stats_read_and_reset
7788		 */
7789		smp_rmb();
7790
7791		ret = update_dev_stat_item(trans, device);
7792		if (!ret)
7793			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7794	}
7795	mutex_unlock(&fs_devices->device_list_mutex);
7796
7797	return ret;
7798}
7799
7800void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7801{
7802	btrfs_dev_stat_inc(dev, index);
 
 
7803
 
 
7804	if (!dev->dev_stats_valid)
7805		return;
7806	btrfs_err_rl_in_rcu(dev->fs_info,
7807		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7808			   btrfs_dev_name(dev),
7809			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7810			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7811			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7812			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7813			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7814}
7815
7816static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7817{
7818	int i;
7819
7820	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7821		if (btrfs_dev_stat_read(dev, i) != 0)
7822			break;
7823	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7824		return; /* all values == 0, suppress message */
7825
7826	btrfs_info_in_rcu(dev->fs_info,
7827		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7828	       btrfs_dev_name(dev),
7829	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7830	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7831	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7832	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7833	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7834}
7835
7836int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7837			struct btrfs_ioctl_get_dev_stats *stats)
7838{
7839	BTRFS_DEV_LOOKUP_ARGS(args);
7840	struct btrfs_device *dev;
7841	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7842	int i;
7843
7844	mutex_lock(&fs_devices->device_list_mutex);
7845	args.devid = stats->devid;
7846	dev = btrfs_find_device(fs_info->fs_devices, &args);
7847	mutex_unlock(&fs_devices->device_list_mutex);
7848
7849	if (!dev) {
7850		btrfs_warn(fs_info, "get dev_stats failed, device not found");
7851		return -ENODEV;
7852	} else if (!dev->dev_stats_valid) {
7853		btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7854		return -ENODEV;
7855	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7856		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7857			if (stats->nr_items > i)
7858				stats->values[i] =
7859					btrfs_dev_stat_read_and_reset(dev, i);
7860			else
7861				btrfs_dev_stat_set(dev, i, 0);
7862		}
7863		btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7864			   current->comm, task_pid_nr(current));
7865	} else {
7866		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7867			if (stats->nr_items > i)
7868				stats->values[i] = btrfs_dev_stat_read(dev, i);
7869	}
7870	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7871		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7872	return 0;
7873}
7874
7875/*
7876 * Update the size and bytes used for each device where it changed.  This is
7877 * delayed since we would otherwise get errors while writing out the
7878 * superblocks.
7879 *
7880 * Must be invoked during transaction commit.
7881 */
7882void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7883{
7884	struct btrfs_device *curr, *next;
 
 
7885
7886	ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7887
7888	if (list_empty(&trans->dev_update_list))
7889		return;
7890
7891	/*
7892	 * We don't need the device_list_mutex here.  This list is owned by the
7893	 * transaction and the transaction must complete before the device is
7894	 * released.
7895	 */
7896	mutex_lock(&trans->fs_info->chunk_mutex);
7897	list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7898				 post_commit_list) {
7899		list_del_init(&curr->post_commit_list);
7900		curr->commit_total_bytes = curr->disk_total_bytes;
7901		curr->commit_bytes_used = curr->bytes_used;
7902	}
7903	mutex_unlock(&trans->fs_info->chunk_mutex);
7904}
7905
7906/*
7907 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7908 */
7909int btrfs_bg_type_to_factor(u64 flags)
7910{
7911	const int index = btrfs_bg_flags_to_raid_index(flags);
7912
7913	return btrfs_raid_array[index].ncopies;
7914}
7915
7916
7917
7918static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7919				 u64 chunk_offset, u64 devid,
7920				 u64 physical_offset, u64 physical_len)
7921{
7922	struct btrfs_dev_lookup_args args = { .devid = devid };
7923	struct btrfs_chunk_map *map;
7924	struct btrfs_device *dev;
7925	u64 stripe_len;
7926	bool found = false;
7927	int ret = 0;
7928	int i;
7929
7930	map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7931	if (!map) {
7932		btrfs_err(fs_info,
7933"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7934			  physical_offset, devid);
7935		ret = -EUCLEAN;
7936		goto out;
7937	}
7938
7939	stripe_len = btrfs_calc_stripe_length(map);
7940	if (physical_len != stripe_len) {
7941		btrfs_err(fs_info,
7942"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7943			  physical_offset, devid, map->start, physical_len,
7944			  stripe_len);
7945		ret = -EUCLEAN;
7946		goto out;
7947	}
7948
7949	/*
7950	 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7951	 * space. Although kernel can handle it without problem, better to warn
7952	 * the users.
7953	 */
7954	if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7955		btrfs_warn(fs_info,
7956		"devid %llu physical %llu len %llu inside the reserved space",
7957			   devid, physical_offset, physical_len);
7958
7959	for (i = 0; i < map->num_stripes; i++) {
7960		if (map->stripes[i].dev->devid == devid &&
7961		    map->stripes[i].physical == physical_offset) {
7962			found = true;
7963			if (map->verified_stripes >= map->num_stripes) {
7964				btrfs_err(fs_info,
7965				"too many dev extents for chunk %llu found",
7966					  map->start);
7967				ret = -EUCLEAN;
7968				goto out;
7969			}
7970			map->verified_stripes++;
7971			break;
7972		}
7973	}
7974	if (!found) {
7975		btrfs_err(fs_info,
7976	"dev extent physical offset %llu devid %llu has no corresponding chunk",
7977			physical_offset, devid);
7978		ret = -EUCLEAN;
7979	}
7980
7981	/* Make sure no dev extent is beyond device boundary */
7982	dev = btrfs_find_device(fs_info->fs_devices, &args);
7983	if (!dev) {
7984		btrfs_err(fs_info, "failed to find devid %llu", devid);
7985		ret = -EUCLEAN;
7986		goto out;
7987	}
7988
7989	if (physical_offset + physical_len > dev->disk_total_bytes) {
7990		btrfs_err(fs_info,
7991"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7992			  devid, physical_offset, physical_len,
7993			  dev->disk_total_bytes);
7994		ret = -EUCLEAN;
7995		goto out;
7996	}
7997
7998	if (dev->zone_info) {
7999		u64 zone_size = dev->zone_info->zone_size;
8000
8001		if (!IS_ALIGNED(physical_offset, zone_size) ||
8002		    !IS_ALIGNED(physical_len, zone_size)) {
8003			btrfs_err(fs_info,
8004"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8005				  devid, physical_offset, physical_len);
8006			ret = -EUCLEAN;
8007			goto out;
8008		}
8009	}
8010
8011out:
8012	btrfs_free_chunk_map(map);
8013	return ret;
8014}
8015
8016static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8017{
8018	struct rb_node *node;
8019	int ret = 0;
8020
8021	read_lock(&fs_info->mapping_tree_lock);
8022	for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8023		struct btrfs_chunk_map *map;
8024
8025		map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8026		if (map->num_stripes != map->verified_stripes) {
8027			btrfs_err(fs_info,
8028			"chunk %llu has missing dev extent, have %d expect %d",
8029				  map->start, map->verified_stripes, map->num_stripes);
8030			ret = -EUCLEAN;
8031			goto out;
8032		}
8033	}
8034out:
8035	read_unlock(&fs_info->mapping_tree_lock);
8036	return ret;
8037}
8038
8039/*
8040 * Ensure that all dev extents are mapped to correct chunk, otherwise
8041 * later chunk allocation/free would cause unexpected behavior.
8042 *
8043 * NOTE: This will iterate through the whole device tree, which should be of
8044 * the same size level as the chunk tree.  This slightly increases mount time.
8045 */
8046int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8047{
8048	struct btrfs_path *path;
8049	struct btrfs_root *root = fs_info->dev_root;
8050	struct btrfs_key key;
8051	u64 prev_devid = 0;
8052	u64 prev_dev_ext_end = 0;
8053	int ret = 0;
8054
8055	/*
8056	 * We don't have a dev_root because we mounted with ignorebadroots and
8057	 * failed to load the root, so we want to skip the verification in this
8058	 * case for sure.
8059	 *
8060	 * However if the dev root is fine, but the tree itself is corrupted
8061	 * we'd still fail to mount.  This verification is only to make sure
8062	 * writes can happen safely, so instead just bypass this check
8063	 * completely in the case of IGNOREBADROOTS.
8064	 */
8065	if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8066		return 0;
8067
8068	key.objectid = 1;
8069	key.type = BTRFS_DEV_EXTENT_KEY;
8070	key.offset = 0;
8071
8072	path = btrfs_alloc_path();
8073	if (!path)
8074		return -ENOMEM;
8075
8076	path->reada = READA_FORWARD;
8077	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8078	if (ret < 0)
8079		goto out;
8080
8081	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8082		ret = btrfs_next_leaf(root, path);
8083		if (ret < 0)
8084			goto out;
8085		/* No dev extents at all? Not good */
8086		if (ret > 0) {
8087			ret = -EUCLEAN;
8088			goto out;
8089		}
8090	}
8091	while (1) {
8092		struct extent_buffer *leaf = path->nodes[0];
8093		struct btrfs_dev_extent *dext;
8094		int slot = path->slots[0];
8095		u64 chunk_offset;
8096		u64 physical_offset;
8097		u64 physical_len;
8098		u64 devid;
8099
8100		btrfs_item_key_to_cpu(leaf, &key, slot);
8101		if (key.type != BTRFS_DEV_EXTENT_KEY)
8102			break;
8103		devid = key.objectid;
8104		physical_offset = key.offset;
 
 
 
8105
8106		dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8107		chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8108		physical_len = btrfs_dev_extent_length(leaf, dext);
8109
8110		/* Check if this dev extent overlaps with the previous one */
8111		if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8112			btrfs_err(fs_info,
8113"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8114				  devid, physical_offset, prev_dev_ext_end);
8115			ret = -EUCLEAN;
8116			goto out;
8117		}
8118
8119		ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8120					    physical_offset, physical_len);
8121		if (ret < 0)
8122			goto out;
8123		prev_devid = devid;
8124		prev_dev_ext_end = physical_offset + physical_len;
8125
8126		ret = btrfs_next_item(root, path);
8127		if (ret < 0)
8128			goto out;
8129		if (ret > 0) {
8130			ret = 0;
8131			break;
8132		}
8133	}
8134
8135	/* Ensure all chunks have corresponding dev extents */
8136	ret = verify_chunk_dev_extent_mapping(fs_info);
8137out:
8138	btrfs_free_path(path);
8139	return ret;
8140}
8141
8142/*
8143 * Check whether the given block group or device is pinned by any inode being
8144 * used as a swapfile.
8145 */
8146bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8147{
8148	struct btrfs_swapfile_pin *sp;
8149	struct rb_node *node;
8150
8151	spin_lock(&fs_info->swapfile_pins_lock);
8152	node = fs_info->swapfile_pins.rb_node;
8153	while (node) {
8154		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8155		if (ptr < sp->ptr)
8156			node = node->rb_left;
8157		else if (ptr > sp->ptr)
8158			node = node->rb_right;
8159		else
8160			break;
8161	}
8162	spin_unlock(&fs_info->swapfile_pins_lock);
8163	return node != NULL;
8164}
8165
8166static int relocating_repair_kthread(void *data)
8167{
8168	struct btrfs_block_group *cache = data;
8169	struct btrfs_fs_info *fs_info = cache->fs_info;
8170	u64 target;
8171	int ret = 0;
8172
8173	target = cache->start;
8174	btrfs_put_block_group(cache);
8175
8176	sb_start_write(fs_info->sb);
8177	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8178		btrfs_info(fs_info,
8179			   "zoned: skip relocating block group %llu to repair: EBUSY",
8180			   target);
8181		sb_end_write(fs_info->sb);
8182		return -EBUSY;
8183	}
8184
8185	mutex_lock(&fs_info->reclaim_bgs_lock);
8186
8187	/* Ensure block group still exists */
8188	cache = btrfs_lookup_block_group(fs_info, target);
8189	if (!cache)
8190		goto out;
8191
8192	if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8193		goto out;
8194
8195	ret = btrfs_may_alloc_data_chunk(fs_info, target);
8196	if (ret < 0)
8197		goto out;
8198
8199	btrfs_info(fs_info,
8200		   "zoned: relocating block group %llu to repair IO failure",
8201		   target);
8202	ret = btrfs_relocate_chunk(fs_info, target);
8203
8204out:
8205	if (cache)
8206		btrfs_put_block_group(cache);
8207	mutex_unlock(&fs_info->reclaim_bgs_lock);
8208	btrfs_exclop_finish(fs_info);
8209	sb_end_write(fs_info->sb);
8210
8211	return ret;
8212}
8213
8214bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8215{
8216	struct btrfs_block_group *cache;
 
 
8217
8218	if (!btrfs_is_zoned(fs_info))
8219		return false;
8220
8221	/* Do not attempt to repair in degraded state */
8222	if (btrfs_test_opt(fs_info, DEGRADED))
8223		return true;
8224
8225	cache = btrfs_lookup_block_group(fs_info, logical);
8226	if (!cache)
8227		return true;
8228
8229	if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8230		btrfs_put_block_group(cache);
8231		return true;
8232	}
8233
8234	kthread_run(relocating_repair_kthread, cache,
8235		    "btrfs-relocating-repair");
8236
8237	return true;
8238}
8239
8240static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8241				    struct btrfs_io_stripe *smap,
8242				    u64 logical)
8243{
8244	int data_stripes = nr_bioc_data_stripes(bioc);
8245	int i;
8246
8247	for (i = 0; i < data_stripes; i++) {
8248		u64 stripe_start = bioc->full_stripe_logical +
8249				   btrfs_stripe_nr_to_offset(i);
8250
8251		if (logical >= stripe_start &&
8252		    logical < stripe_start + BTRFS_STRIPE_LEN)
8253			break;
 
 
8254	}
8255	ASSERT(i < data_stripes);
8256	smap->dev = bioc->stripes[i].dev;
8257	smap->physical = bioc->stripes[i].physical +
8258			((logical - bioc->full_stripe_logical) &
8259			 BTRFS_STRIPE_LEN_MASK);
8260}
8261
8262/*
8263 * Map a repair write into a single device.
8264 *
8265 * A repair write is triggered by read time repair or scrub, which would only
8266 * update the contents of a single device.
8267 * Not update any other mirrors nor go through RMW path.
8268 *
8269 * Callers should ensure:
8270 *
8271 * - Call btrfs_bio_counter_inc_blocked() first
8272 * - The range does not cross stripe boundary
8273 * - Has a valid @mirror_num passed in.
8274 */
8275int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8276			   struct btrfs_io_stripe *smap, u64 logical,
8277			   u32 length, int mirror_num)
8278{
8279	struct btrfs_io_context *bioc = NULL;
8280	u64 map_length = length;
8281	int mirror_ret = mirror_num;
8282	int ret;
8283
8284	ASSERT(mirror_num > 0);
8285
8286	ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8287			      &bioc, smap, &mirror_ret);
8288	if (ret < 0)
8289		return ret;
8290
8291	/* The map range should not cross stripe boundary. */
8292	ASSERT(map_length >= length);
8293
8294	/* Already mapped to single stripe. */
8295	if (!bioc)
8296		goto out;
8297
8298	/* Map the RAID56 multi-stripe writes to a single one. */
8299	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8300		map_raid56_repair_block(bioc, smap, logical);
8301		goto out;
8302	}
8303
8304	ASSERT(mirror_num <= bioc->num_stripes);
8305	smap->dev = bioc->stripes[mirror_num - 1].dev;
8306	smap->physical = bioc->stripes[mirror_num - 1].physical;
8307out:
8308	btrfs_put_bioc(bioc);
8309	ASSERT(smap->dev);
8310	return 0;
8311}