Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18#include <linux/sched.h>
19#include <linux/bio.h>
20#include <linux/slab.h>
21#include <linux/buffer_head.h>
22#include <linux/blkdev.h>
23#include <linux/random.h>
24#include <linux/iocontext.h>
25#include <linux/capability.h>
26#include <linux/ratelimit.h>
27#include <linux/kthread.h>
28#include <linux/raid/pq.h>
29#include <linux/semaphore.h>
30#include <asm/div64.h>
31#include "ctree.h"
32#include "extent_map.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "print-tree.h"
36#include "volumes.h"
37#include "raid56.h"
38#include "async-thread.h"
39#include "check-integrity.h"
40#include "rcu-string.h"
41#include "math.h"
42#include "dev-replace.h"
43#include "sysfs.h"
44
45const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109};
110
111const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119};
120
121static int init_first_rw_device(struct btrfs_trans_handle *trans,
122 struct btrfs_root *root,
123 struct btrfs_device *device);
124static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
125static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
126static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
127static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
128static void btrfs_close_one_device(struct btrfs_device *device);
129
130DEFINE_MUTEX(uuid_mutex);
131static LIST_HEAD(fs_uuids);
132struct list_head *btrfs_get_fs_uuids(void)
133{
134 return &fs_uuids;
135}
136
137static struct btrfs_fs_devices *__alloc_fs_devices(void)
138{
139 struct btrfs_fs_devices *fs_devs;
140
141 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
142 if (!fs_devs)
143 return ERR_PTR(-ENOMEM);
144
145 mutex_init(&fs_devs->device_list_mutex);
146
147 INIT_LIST_HEAD(&fs_devs->devices);
148 INIT_LIST_HEAD(&fs_devs->resized_devices);
149 INIT_LIST_HEAD(&fs_devs->alloc_list);
150 INIT_LIST_HEAD(&fs_devs->list);
151
152 return fs_devs;
153}
154
155/**
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
158 * generated.
159 *
160 * Return: a pointer to a new &struct btrfs_fs_devices on success;
161 * ERR_PTR() on error. Returned struct is not linked onto any lists and
162 * can be destroyed with kfree() right away.
163 */
164static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
165{
166 struct btrfs_fs_devices *fs_devs;
167
168 fs_devs = __alloc_fs_devices();
169 if (IS_ERR(fs_devs))
170 return fs_devs;
171
172 if (fsid)
173 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
174 else
175 generate_random_uuid(fs_devs->fsid);
176
177 return fs_devs;
178}
179
180static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
181{
182 struct btrfs_device *device;
183 WARN_ON(fs_devices->opened);
184 while (!list_empty(&fs_devices->devices)) {
185 device = list_entry(fs_devices->devices.next,
186 struct btrfs_device, dev_list);
187 list_del(&device->dev_list);
188 rcu_string_free(device->name);
189 kfree(device);
190 }
191 kfree(fs_devices);
192}
193
194static void btrfs_kobject_uevent(struct block_device *bdev,
195 enum kobject_action action)
196{
197 int ret;
198
199 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
200 if (ret)
201 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
202 action,
203 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
204 &disk_to_dev(bdev->bd_disk)->kobj);
205}
206
207void btrfs_cleanup_fs_uuids(void)
208{
209 struct btrfs_fs_devices *fs_devices;
210
211 while (!list_empty(&fs_uuids)) {
212 fs_devices = list_entry(fs_uuids.next,
213 struct btrfs_fs_devices, list);
214 list_del(&fs_devices->list);
215 free_fs_devices(fs_devices);
216 }
217}
218
219static struct btrfs_device *__alloc_device(void)
220{
221 struct btrfs_device *dev;
222
223 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
224 if (!dev)
225 return ERR_PTR(-ENOMEM);
226
227 INIT_LIST_HEAD(&dev->dev_list);
228 INIT_LIST_HEAD(&dev->dev_alloc_list);
229 INIT_LIST_HEAD(&dev->resized_list);
230
231 spin_lock_init(&dev->io_lock);
232
233 spin_lock_init(&dev->reada_lock);
234 atomic_set(&dev->reada_in_flight, 0);
235 atomic_set(&dev->dev_stats_ccnt, 0);
236 btrfs_device_data_ordered_init(dev);
237 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
238 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
239
240 return dev;
241}
242
243static noinline struct btrfs_device *__find_device(struct list_head *head,
244 u64 devid, u8 *uuid)
245{
246 struct btrfs_device *dev;
247
248 list_for_each_entry(dev, head, dev_list) {
249 if (dev->devid == devid &&
250 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
251 return dev;
252 }
253 }
254 return NULL;
255}
256
257static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
258{
259 struct btrfs_fs_devices *fs_devices;
260
261 list_for_each_entry(fs_devices, &fs_uuids, list) {
262 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
263 return fs_devices;
264 }
265 return NULL;
266}
267
268static int
269btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
270 int flush, struct block_device **bdev,
271 struct buffer_head **bh)
272{
273 int ret;
274
275 *bdev = blkdev_get_by_path(device_path, flags, holder);
276
277 if (IS_ERR(*bdev)) {
278 ret = PTR_ERR(*bdev);
279 goto error;
280 }
281
282 if (flush)
283 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
284 ret = set_blocksize(*bdev, 4096);
285 if (ret) {
286 blkdev_put(*bdev, flags);
287 goto error;
288 }
289 invalidate_bdev(*bdev);
290 *bh = btrfs_read_dev_super(*bdev);
291 if (IS_ERR(*bh)) {
292 ret = PTR_ERR(*bh);
293 blkdev_put(*bdev, flags);
294 goto error;
295 }
296
297 return 0;
298
299error:
300 *bdev = NULL;
301 *bh = NULL;
302 return ret;
303}
304
305static void requeue_list(struct btrfs_pending_bios *pending_bios,
306 struct bio *head, struct bio *tail)
307{
308
309 struct bio *old_head;
310
311 old_head = pending_bios->head;
312 pending_bios->head = head;
313 if (pending_bios->tail)
314 tail->bi_next = old_head;
315 else
316 pending_bios->tail = tail;
317}
318
319/*
320 * we try to collect pending bios for a device so we don't get a large
321 * number of procs sending bios down to the same device. This greatly
322 * improves the schedulers ability to collect and merge the bios.
323 *
324 * But, it also turns into a long list of bios to process and that is sure
325 * to eventually make the worker thread block. The solution here is to
326 * make some progress and then put this work struct back at the end of
327 * the list if the block device is congested. This way, multiple devices
328 * can make progress from a single worker thread.
329 */
330static noinline void run_scheduled_bios(struct btrfs_device *device)
331{
332 struct bio *pending;
333 struct backing_dev_info *bdi;
334 struct btrfs_fs_info *fs_info;
335 struct btrfs_pending_bios *pending_bios;
336 struct bio *tail;
337 struct bio *cur;
338 int again = 0;
339 unsigned long num_run;
340 unsigned long batch_run = 0;
341 unsigned long limit;
342 unsigned long last_waited = 0;
343 int force_reg = 0;
344 int sync_pending = 0;
345 struct blk_plug plug;
346
347 /*
348 * this function runs all the bios we've collected for
349 * a particular device. We don't want to wander off to
350 * another device without first sending all of these down.
351 * So, setup a plug here and finish it off before we return
352 */
353 blk_start_plug(&plug);
354
355 bdi = blk_get_backing_dev_info(device->bdev);
356 fs_info = device->dev_root->fs_info;
357 limit = btrfs_async_submit_limit(fs_info);
358 limit = limit * 2 / 3;
359
360loop:
361 spin_lock(&device->io_lock);
362
363loop_lock:
364 num_run = 0;
365
366 /* take all the bios off the list at once and process them
367 * later on (without the lock held). But, remember the
368 * tail and other pointers so the bios can be properly reinserted
369 * into the list if we hit congestion
370 */
371 if (!force_reg && device->pending_sync_bios.head) {
372 pending_bios = &device->pending_sync_bios;
373 force_reg = 1;
374 } else {
375 pending_bios = &device->pending_bios;
376 force_reg = 0;
377 }
378
379 pending = pending_bios->head;
380 tail = pending_bios->tail;
381 WARN_ON(pending && !tail);
382
383 /*
384 * if pending was null this time around, no bios need processing
385 * at all and we can stop. Otherwise it'll loop back up again
386 * and do an additional check so no bios are missed.
387 *
388 * device->running_pending is used to synchronize with the
389 * schedule_bio code.
390 */
391 if (device->pending_sync_bios.head == NULL &&
392 device->pending_bios.head == NULL) {
393 again = 0;
394 device->running_pending = 0;
395 } else {
396 again = 1;
397 device->running_pending = 1;
398 }
399
400 pending_bios->head = NULL;
401 pending_bios->tail = NULL;
402
403 spin_unlock(&device->io_lock);
404
405 while (pending) {
406
407 rmb();
408 /* we want to work on both lists, but do more bios on the
409 * sync list than the regular list
410 */
411 if ((num_run > 32 &&
412 pending_bios != &device->pending_sync_bios &&
413 device->pending_sync_bios.head) ||
414 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
415 device->pending_bios.head)) {
416 spin_lock(&device->io_lock);
417 requeue_list(pending_bios, pending, tail);
418 goto loop_lock;
419 }
420
421 cur = pending;
422 pending = pending->bi_next;
423 cur->bi_next = NULL;
424
425 /*
426 * atomic_dec_return implies a barrier for waitqueue_active
427 */
428 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
429 waitqueue_active(&fs_info->async_submit_wait))
430 wake_up(&fs_info->async_submit_wait);
431
432 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
433
434 /*
435 * if we're doing the sync list, record that our
436 * plug has some sync requests on it
437 *
438 * If we're doing the regular list and there are
439 * sync requests sitting around, unplug before
440 * we add more
441 */
442 if (pending_bios == &device->pending_sync_bios) {
443 sync_pending = 1;
444 } else if (sync_pending) {
445 blk_finish_plug(&plug);
446 blk_start_plug(&plug);
447 sync_pending = 0;
448 }
449
450 btrfsic_submit_bio(cur->bi_rw, cur);
451 num_run++;
452 batch_run++;
453
454 cond_resched();
455
456 /*
457 * we made progress, there is more work to do and the bdi
458 * is now congested. Back off and let other work structs
459 * run instead
460 */
461 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
462 fs_info->fs_devices->open_devices > 1) {
463 struct io_context *ioc;
464
465 ioc = current->io_context;
466
467 /*
468 * the main goal here is that we don't want to
469 * block if we're going to be able to submit
470 * more requests without blocking.
471 *
472 * This code does two great things, it pokes into
473 * the elevator code from a filesystem _and_
474 * it makes assumptions about how batching works.
475 */
476 if (ioc && ioc->nr_batch_requests > 0 &&
477 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
478 (last_waited == 0 ||
479 ioc->last_waited == last_waited)) {
480 /*
481 * we want to go through our batch of
482 * requests and stop. So, we copy out
483 * the ioc->last_waited time and test
484 * against it before looping
485 */
486 last_waited = ioc->last_waited;
487 cond_resched();
488 continue;
489 }
490 spin_lock(&device->io_lock);
491 requeue_list(pending_bios, pending, tail);
492 device->running_pending = 1;
493
494 spin_unlock(&device->io_lock);
495 btrfs_queue_work(fs_info->submit_workers,
496 &device->work);
497 goto done;
498 }
499 /* unplug every 64 requests just for good measure */
500 if (batch_run % 64 == 0) {
501 blk_finish_plug(&plug);
502 blk_start_plug(&plug);
503 sync_pending = 0;
504 }
505 }
506
507 cond_resched();
508 if (again)
509 goto loop;
510
511 spin_lock(&device->io_lock);
512 if (device->pending_bios.head || device->pending_sync_bios.head)
513 goto loop_lock;
514 spin_unlock(&device->io_lock);
515
516done:
517 blk_finish_plug(&plug);
518}
519
520static void pending_bios_fn(struct btrfs_work *work)
521{
522 struct btrfs_device *device;
523
524 device = container_of(work, struct btrfs_device, work);
525 run_scheduled_bios(device);
526}
527
528
529void btrfs_free_stale_device(struct btrfs_device *cur_dev)
530{
531 struct btrfs_fs_devices *fs_devs;
532 struct btrfs_device *dev;
533
534 if (!cur_dev->name)
535 return;
536
537 list_for_each_entry(fs_devs, &fs_uuids, list) {
538 int del = 1;
539
540 if (fs_devs->opened)
541 continue;
542 if (fs_devs->seeding)
543 continue;
544
545 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
546
547 if (dev == cur_dev)
548 continue;
549 if (!dev->name)
550 continue;
551
552 /*
553 * Todo: This won't be enough. What if the same device
554 * comes back (with new uuid and) with its mapper path?
555 * But for now, this does help as mostly an admin will
556 * either use mapper or non mapper path throughout.
557 */
558 rcu_read_lock();
559 del = strcmp(rcu_str_deref(dev->name),
560 rcu_str_deref(cur_dev->name));
561 rcu_read_unlock();
562 if (!del)
563 break;
564 }
565
566 if (!del) {
567 /* delete the stale device */
568 if (fs_devs->num_devices == 1) {
569 btrfs_sysfs_remove_fsid(fs_devs);
570 list_del(&fs_devs->list);
571 free_fs_devices(fs_devs);
572 } else {
573 fs_devs->num_devices--;
574 list_del(&dev->dev_list);
575 rcu_string_free(dev->name);
576 kfree(dev);
577 }
578 break;
579 }
580 }
581}
582
583/*
584 * Add new device to list of registered devices
585 *
586 * Returns:
587 * 1 - first time device is seen
588 * 0 - device already known
589 * < 0 - error
590 */
591static noinline int device_list_add(const char *path,
592 struct btrfs_super_block *disk_super,
593 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
594{
595 struct btrfs_device *device;
596 struct btrfs_fs_devices *fs_devices;
597 struct rcu_string *name;
598 int ret = 0;
599 u64 found_transid = btrfs_super_generation(disk_super);
600
601 fs_devices = find_fsid(disk_super->fsid);
602 if (!fs_devices) {
603 fs_devices = alloc_fs_devices(disk_super->fsid);
604 if (IS_ERR(fs_devices))
605 return PTR_ERR(fs_devices);
606
607 list_add(&fs_devices->list, &fs_uuids);
608
609 device = NULL;
610 } else {
611 device = __find_device(&fs_devices->devices, devid,
612 disk_super->dev_item.uuid);
613 }
614
615 if (!device) {
616 if (fs_devices->opened)
617 return -EBUSY;
618
619 device = btrfs_alloc_device(NULL, &devid,
620 disk_super->dev_item.uuid);
621 if (IS_ERR(device)) {
622 /* we can safely leave the fs_devices entry around */
623 return PTR_ERR(device);
624 }
625
626 name = rcu_string_strdup(path, GFP_NOFS);
627 if (!name) {
628 kfree(device);
629 return -ENOMEM;
630 }
631 rcu_assign_pointer(device->name, name);
632
633 mutex_lock(&fs_devices->device_list_mutex);
634 list_add_rcu(&device->dev_list, &fs_devices->devices);
635 fs_devices->num_devices++;
636 mutex_unlock(&fs_devices->device_list_mutex);
637
638 ret = 1;
639 device->fs_devices = fs_devices;
640 } else if (!device->name || strcmp(device->name->str, path)) {
641 /*
642 * When FS is already mounted.
643 * 1. If you are here and if the device->name is NULL that
644 * means this device was missing at time of FS mount.
645 * 2. If you are here and if the device->name is different
646 * from 'path' that means either
647 * a. The same device disappeared and reappeared with
648 * different name. or
649 * b. The missing-disk-which-was-replaced, has
650 * reappeared now.
651 *
652 * We must allow 1 and 2a above. But 2b would be a spurious
653 * and unintentional.
654 *
655 * Further in case of 1 and 2a above, the disk at 'path'
656 * would have missed some transaction when it was away and
657 * in case of 2a the stale bdev has to be updated as well.
658 * 2b must not be allowed at all time.
659 */
660
661 /*
662 * For now, we do allow update to btrfs_fs_device through the
663 * btrfs dev scan cli after FS has been mounted. We're still
664 * tracking a problem where systems fail mount by subvolume id
665 * when we reject replacement on a mounted FS.
666 */
667 if (!fs_devices->opened && found_transid < device->generation) {
668 /*
669 * That is if the FS is _not_ mounted and if you
670 * are here, that means there is more than one
671 * disk with same uuid and devid.We keep the one
672 * with larger generation number or the last-in if
673 * generation are equal.
674 */
675 return -EEXIST;
676 }
677
678 name = rcu_string_strdup(path, GFP_NOFS);
679 if (!name)
680 return -ENOMEM;
681 rcu_string_free(device->name);
682 rcu_assign_pointer(device->name, name);
683 if (device->missing) {
684 fs_devices->missing_devices--;
685 device->missing = 0;
686 }
687 }
688
689 /*
690 * Unmount does not free the btrfs_device struct but would zero
691 * generation along with most of the other members. So just update
692 * it back. We need it to pick the disk with largest generation
693 * (as above).
694 */
695 if (!fs_devices->opened)
696 device->generation = found_transid;
697
698 /*
699 * if there is new btrfs on an already registered device,
700 * then remove the stale device entry.
701 */
702 btrfs_free_stale_device(device);
703
704 *fs_devices_ret = fs_devices;
705
706 return ret;
707}
708
709static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
710{
711 struct btrfs_fs_devices *fs_devices;
712 struct btrfs_device *device;
713 struct btrfs_device *orig_dev;
714
715 fs_devices = alloc_fs_devices(orig->fsid);
716 if (IS_ERR(fs_devices))
717 return fs_devices;
718
719 mutex_lock(&orig->device_list_mutex);
720 fs_devices->total_devices = orig->total_devices;
721
722 /* We have held the volume lock, it is safe to get the devices. */
723 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
724 struct rcu_string *name;
725
726 device = btrfs_alloc_device(NULL, &orig_dev->devid,
727 orig_dev->uuid);
728 if (IS_ERR(device))
729 goto error;
730
731 /*
732 * This is ok to do without rcu read locked because we hold the
733 * uuid mutex so nothing we touch in here is going to disappear.
734 */
735 if (orig_dev->name) {
736 name = rcu_string_strdup(orig_dev->name->str,
737 GFP_KERNEL);
738 if (!name) {
739 kfree(device);
740 goto error;
741 }
742 rcu_assign_pointer(device->name, name);
743 }
744
745 list_add(&device->dev_list, &fs_devices->devices);
746 device->fs_devices = fs_devices;
747 fs_devices->num_devices++;
748 }
749 mutex_unlock(&orig->device_list_mutex);
750 return fs_devices;
751error:
752 mutex_unlock(&orig->device_list_mutex);
753 free_fs_devices(fs_devices);
754 return ERR_PTR(-ENOMEM);
755}
756
757void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
758{
759 struct btrfs_device *device, *next;
760 struct btrfs_device *latest_dev = NULL;
761
762 mutex_lock(&uuid_mutex);
763again:
764 /* This is the initialized path, it is safe to release the devices. */
765 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
766 if (device->in_fs_metadata) {
767 if (!device->is_tgtdev_for_dev_replace &&
768 (!latest_dev ||
769 device->generation > latest_dev->generation)) {
770 latest_dev = device;
771 }
772 continue;
773 }
774
775 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
776 /*
777 * In the first step, keep the device which has
778 * the correct fsid and the devid that is used
779 * for the dev_replace procedure.
780 * In the second step, the dev_replace state is
781 * read from the device tree and it is known
782 * whether the procedure is really active or
783 * not, which means whether this device is
784 * used or whether it should be removed.
785 */
786 if (step == 0 || device->is_tgtdev_for_dev_replace) {
787 continue;
788 }
789 }
790 if (device->bdev) {
791 blkdev_put(device->bdev, device->mode);
792 device->bdev = NULL;
793 fs_devices->open_devices--;
794 }
795 if (device->writeable) {
796 list_del_init(&device->dev_alloc_list);
797 device->writeable = 0;
798 if (!device->is_tgtdev_for_dev_replace)
799 fs_devices->rw_devices--;
800 }
801 list_del_init(&device->dev_list);
802 fs_devices->num_devices--;
803 rcu_string_free(device->name);
804 kfree(device);
805 }
806
807 if (fs_devices->seed) {
808 fs_devices = fs_devices->seed;
809 goto again;
810 }
811
812 fs_devices->latest_bdev = latest_dev->bdev;
813
814 mutex_unlock(&uuid_mutex);
815}
816
817static void __free_device(struct work_struct *work)
818{
819 struct btrfs_device *device;
820
821 device = container_of(work, struct btrfs_device, rcu_work);
822
823 if (device->bdev)
824 blkdev_put(device->bdev, device->mode);
825
826 rcu_string_free(device->name);
827 kfree(device);
828}
829
830static void free_device(struct rcu_head *head)
831{
832 struct btrfs_device *device;
833
834 device = container_of(head, struct btrfs_device, rcu);
835
836 INIT_WORK(&device->rcu_work, __free_device);
837 schedule_work(&device->rcu_work);
838}
839
840static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
841{
842 struct btrfs_device *device, *tmp;
843
844 if (--fs_devices->opened > 0)
845 return 0;
846
847 mutex_lock(&fs_devices->device_list_mutex);
848 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
849 btrfs_close_one_device(device);
850 }
851 mutex_unlock(&fs_devices->device_list_mutex);
852
853 WARN_ON(fs_devices->open_devices);
854 WARN_ON(fs_devices->rw_devices);
855 fs_devices->opened = 0;
856 fs_devices->seeding = 0;
857
858 return 0;
859}
860
861int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
862{
863 struct btrfs_fs_devices *seed_devices = NULL;
864 int ret;
865
866 mutex_lock(&uuid_mutex);
867 ret = __btrfs_close_devices(fs_devices);
868 if (!fs_devices->opened) {
869 seed_devices = fs_devices->seed;
870 fs_devices->seed = NULL;
871 }
872 mutex_unlock(&uuid_mutex);
873
874 while (seed_devices) {
875 fs_devices = seed_devices;
876 seed_devices = fs_devices->seed;
877 __btrfs_close_devices(fs_devices);
878 free_fs_devices(fs_devices);
879 }
880 /*
881 * Wait for rcu kworkers under __btrfs_close_devices
882 * to finish all blkdev_puts so device is really
883 * free when umount is done.
884 */
885 rcu_barrier();
886 return ret;
887}
888
889static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
890 fmode_t flags, void *holder)
891{
892 struct request_queue *q;
893 struct block_device *bdev;
894 struct list_head *head = &fs_devices->devices;
895 struct btrfs_device *device;
896 struct btrfs_device *latest_dev = NULL;
897 struct buffer_head *bh;
898 struct btrfs_super_block *disk_super;
899 u64 devid;
900 int seeding = 1;
901 int ret = 0;
902
903 flags |= FMODE_EXCL;
904
905 list_for_each_entry(device, head, dev_list) {
906 if (device->bdev)
907 continue;
908 if (!device->name)
909 continue;
910
911 /* Just open everything we can; ignore failures here */
912 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
913 &bdev, &bh))
914 continue;
915
916 disk_super = (struct btrfs_super_block *)bh->b_data;
917 devid = btrfs_stack_device_id(&disk_super->dev_item);
918 if (devid != device->devid)
919 goto error_brelse;
920
921 if (memcmp(device->uuid, disk_super->dev_item.uuid,
922 BTRFS_UUID_SIZE))
923 goto error_brelse;
924
925 device->generation = btrfs_super_generation(disk_super);
926 if (!latest_dev ||
927 device->generation > latest_dev->generation)
928 latest_dev = device;
929
930 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
931 device->writeable = 0;
932 } else {
933 device->writeable = !bdev_read_only(bdev);
934 seeding = 0;
935 }
936
937 q = bdev_get_queue(bdev);
938 if (blk_queue_discard(q))
939 device->can_discard = 1;
940
941 device->bdev = bdev;
942 device->in_fs_metadata = 0;
943 device->mode = flags;
944
945 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
946 fs_devices->rotating = 1;
947
948 fs_devices->open_devices++;
949 if (device->writeable &&
950 device->devid != BTRFS_DEV_REPLACE_DEVID) {
951 fs_devices->rw_devices++;
952 list_add(&device->dev_alloc_list,
953 &fs_devices->alloc_list);
954 }
955 brelse(bh);
956 continue;
957
958error_brelse:
959 brelse(bh);
960 blkdev_put(bdev, flags);
961 continue;
962 }
963 if (fs_devices->open_devices == 0) {
964 ret = -EINVAL;
965 goto out;
966 }
967 fs_devices->seeding = seeding;
968 fs_devices->opened = 1;
969 fs_devices->latest_bdev = latest_dev->bdev;
970 fs_devices->total_rw_bytes = 0;
971out:
972 return ret;
973}
974
975int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
976 fmode_t flags, void *holder)
977{
978 int ret;
979
980 mutex_lock(&uuid_mutex);
981 if (fs_devices->opened) {
982 fs_devices->opened++;
983 ret = 0;
984 } else {
985 ret = __btrfs_open_devices(fs_devices, flags, holder);
986 }
987 mutex_unlock(&uuid_mutex);
988 return ret;
989}
990
991/*
992 * Look for a btrfs signature on a device. This may be called out of the mount path
993 * and we are not allowed to call set_blocksize during the scan. The superblock
994 * is read via pagecache
995 */
996int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
997 struct btrfs_fs_devices **fs_devices_ret)
998{
999 struct btrfs_super_block *disk_super;
1000 struct block_device *bdev;
1001 struct page *page;
1002 void *p;
1003 int ret = -EINVAL;
1004 u64 devid;
1005 u64 transid;
1006 u64 total_devices;
1007 u64 bytenr;
1008 pgoff_t index;
1009
1010 /*
1011 * we would like to check all the supers, but that would make
1012 * a btrfs mount succeed after a mkfs from a different FS.
1013 * So, we need to add a special mount option to scan for
1014 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1015 */
1016 bytenr = btrfs_sb_offset(0);
1017 flags |= FMODE_EXCL;
1018 mutex_lock(&uuid_mutex);
1019
1020 bdev = blkdev_get_by_path(path, flags, holder);
1021
1022 if (IS_ERR(bdev)) {
1023 ret = PTR_ERR(bdev);
1024 goto error;
1025 }
1026
1027 /* make sure our super fits in the device */
1028 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1029 goto error_bdev_put;
1030
1031 /* make sure our super fits in the page */
1032 if (sizeof(*disk_super) > PAGE_SIZE)
1033 goto error_bdev_put;
1034
1035 /* make sure our super doesn't straddle pages on disk */
1036 index = bytenr >> PAGE_SHIFT;
1037 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1038 goto error_bdev_put;
1039
1040 /* pull in the page with our super */
1041 page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1042 index, GFP_NOFS);
1043
1044 if (IS_ERR_OR_NULL(page))
1045 goto error_bdev_put;
1046
1047 p = kmap(page);
1048
1049 /* align our pointer to the offset of the super block */
1050 disk_super = p + (bytenr & ~PAGE_MASK);
1051
1052 if (btrfs_super_bytenr(disk_super) != bytenr ||
1053 btrfs_super_magic(disk_super) != BTRFS_MAGIC)
1054 goto error_unmap;
1055
1056 devid = btrfs_stack_device_id(&disk_super->dev_item);
1057 transid = btrfs_super_generation(disk_super);
1058 total_devices = btrfs_super_num_devices(disk_super);
1059
1060 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1061 if (ret > 0) {
1062 if (disk_super->label[0]) {
1063 if (disk_super->label[BTRFS_LABEL_SIZE - 1])
1064 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
1065 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label);
1066 } else {
1067 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid);
1068 }
1069
1070 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
1071 ret = 0;
1072 }
1073 if (!ret && fs_devices_ret)
1074 (*fs_devices_ret)->total_devices = total_devices;
1075
1076error_unmap:
1077 kunmap(page);
1078 put_page(page);
1079
1080error_bdev_put:
1081 blkdev_put(bdev, flags);
1082error:
1083 mutex_unlock(&uuid_mutex);
1084 return ret;
1085}
1086
1087/* helper to account the used device space in the range */
1088int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1089 u64 end, u64 *length)
1090{
1091 struct btrfs_key key;
1092 struct btrfs_root *root = device->dev_root;
1093 struct btrfs_dev_extent *dev_extent;
1094 struct btrfs_path *path;
1095 u64 extent_end;
1096 int ret;
1097 int slot;
1098 struct extent_buffer *l;
1099
1100 *length = 0;
1101
1102 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1103 return 0;
1104
1105 path = btrfs_alloc_path();
1106 if (!path)
1107 return -ENOMEM;
1108 path->reada = READA_FORWARD;
1109
1110 key.objectid = device->devid;
1111 key.offset = start;
1112 key.type = BTRFS_DEV_EXTENT_KEY;
1113
1114 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1115 if (ret < 0)
1116 goto out;
1117 if (ret > 0) {
1118 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1119 if (ret < 0)
1120 goto out;
1121 }
1122
1123 while (1) {
1124 l = path->nodes[0];
1125 slot = path->slots[0];
1126 if (slot >= btrfs_header_nritems(l)) {
1127 ret = btrfs_next_leaf(root, path);
1128 if (ret == 0)
1129 continue;
1130 if (ret < 0)
1131 goto out;
1132
1133 break;
1134 }
1135 btrfs_item_key_to_cpu(l, &key, slot);
1136
1137 if (key.objectid < device->devid)
1138 goto next;
1139
1140 if (key.objectid > device->devid)
1141 break;
1142
1143 if (key.type != BTRFS_DEV_EXTENT_KEY)
1144 goto next;
1145
1146 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1147 extent_end = key.offset + btrfs_dev_extent_length(l,
1148 dev_extent);
1149 if (key.offset <= start && extent_end > end) {
1150 *length = end - start + 1;
1151 break;
1152 } else if (key.offset <= start && extent_end > start)
1153 *length += extent_end - start;
1154 else if (key.offset > start && extent_end <= end)
1155 *length += extent_end - key.offset;
1156 else if (key.offset > start && key.offset <= end) {
1157 *length += end - key.offset + 1;
1158 break;
1159 } else if (key.offset > end)
1160 break;
1161
1162next:
1163 path->slots[0]++;
1164 }
1165 ret = 0;
1166out:
1167 btrfs_free_path(path);
1168 return ret;
1169}
1170
1171static int contains_pending_extent(struct btrfs_transaction *transaction,
1172 struct btrfs_device *device,
1173 u64 *start, u64 len)
1174{
1175 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1176 struct extent_map *em;
1177 struct list_head *search_list = &fs_info->pinned_chunks;
1178 int ret = 0;
1179 u64 physical_start = *start;
1180
1181 if (transaction)
1182 search_list = &transaction->pending_chunks;
1183again:
1184 list_for_each_entry(em, search_list, list) {
1185 struct map_lookup *map;
1186 int i;
1187
1188 map = em->map_lookup;
1189 for (i = 0; i < map->num_stripes; i++) {
1190 u64 end;
1191
1192 if (map->stripes[i].dev != device)
1193 continue;
1194 if (map->stripes[i].physical >= physical_start + len ||
1195 map->stripes[i].physical + em->orig_block_len <=
1196 physical_start)
1197 continue;
1198 /*
1199 * Make sure that while processing the pinned list we do
1200 * not override our *start with a lower value, because
1201 * we can have pinned chunks that fall within this
1202 * device hole and that have lower physical addresses
1203 * than the pending chunks we processed before. If we
1204 * do not take this special care we can end up getting
1205 * 2 pending chunks that start at the same physical
1206 * device offsets because the end offset of a pinned
1207 * chunk can be equal to the start offset of some
1208 * pending chunk.
1209 */
1210 end = map->stripes[i].physical + em->orig_block_len;
1211 if (end > *start) {
1212 *start = end;
1213 ret = 1;
1214 }
1215 }
1216 }
1217 if (search_list != &fs_info->pinned_chunks) {
1218 search_list = &fs_info->pinned_chunks;
1219 goto again;
1220 }
1221
1222 return ret;
1223}
1224
1225
1226/*
1227 * find_free_dev_extent_start - find free space in the specified device
1228 * @device: the device which we search the free space in
1229 * @num_bytes: the size of the free space that we need
1230 * @search_start: the position from which to begin the search
1231 * @start: store the start of the free space.
1232 * @len: the size of the free space. that we find, or the size
1233 * of the max free space if we don't find suitable free space
1234 *
1235 * this uses a pretty simple search, the expectation is that it is
1236 * called very infrequently and that a given device has a small number
1237 * of extents
1238 *
1239 * @start is used to store the start of the free space if we find. But if we
1240 * don't find suitable free space, it will be used to store the start position
1241 * of the max free space.
1242 *
1243 * @len is used to store the size of the free space that we find.
1244 * But if we don't find suitable free space, it is used to store the size of
1245 * the max free space.
1246 */
1247int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1248 struct btrfs_device *device, u64 num_bytes,
1249 u64 search_start, u64 *start, u64 *len)
1250{
1251 struct btrfs_key key;
1252 struct btrfs_root *root = device->dev_root;
1253 struct btrfs_dev_extent *dev_extent;
1254 struct btrfs_path *path;
1255 u64 hole_size;
1256 u64 max_hole_start;
1257 u64 max_hole_size;
1258 u64 extent_end;
1259 u64 search_end = device->total_bytes;
1260 int ret;
1261 int slot;
1262 struct extent_buffer *l;
1263 u64 min_search_start;
1264
1265 /*
1266 * We don't want to overwrite the superblock on the drive nor any area
1267 * used by the boot loader (grub for example), so we make sure to start
1268 * at an offset of at least 1MB.
1269 */
1270 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1271 search_start = max(search_start, min_search_start);
1272
1273 path = btrfs_alloc_path();
1274 if (!path)
1275 return -ENOMEM;
1276
1277 max_hole_start = search_start;
1278 max_hole_size = 0;
1279
1280again:
1281 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1282 ret = -ENOSPC;
1283 goto out;
1284 }
1285
1286 path->reada = READA_FORWARD;
1287 path->search_commit_root = 1;
1288 path->skip_locking = 1;
1289
1290 key.objectid = device->devid;
1291 key.offset = search_start;
1292 key.type = BTRFS_DEV_EXTENT_KEY;
1293
1294 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1295 if (ret < 0)
1296 goto out;
1297 if (ret > 0) {
1298 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1299 if (ret < 0)
1300 goto out;
1301 }
1302
1303 while (1) {
1304 l = path->nodes[0];
1305 slot = path->slots[0];
1306 if (slot >= btrfs_header_nritems(l)) {
1307 ret = btrfs_next_leaf(root, path);
1308 if (ret == 0)
1309 continue;
1310 if (ret < 0)
1311 goto out;
1312
1313 break;
1314 }
1315 btrfs_item_key_to_cpu(l, &key, slot);
1316
1317 if (key.objectid < device->devid)
1318 goto next;
1319
1320 if (key.objectid > device->devid)
1321 break;
1322
1323 if (key.type != BTRFS_DEV_EXTENT_KEY)
1324 goto next;
1325
1326 if (key.offset > search_start) {
1327 hole_size = key.offset - search_start;
1328
1329 /*
1330 * Have to check before we set max_hole_start, otherwise
1331 * we could end up sending back this offset anyway.
1332 */
1333 if (contains_pending_extent(transaction, device,
1334 &search_start,
1335 hole_size)) {
1336 if (key.offset >= search_start) {
1337 hole_size = key.offset - search_start;
1338 } else {
1339 WARN_ON_ONCE(1);
1340 hole_size = 0;
1341 }
1342 }
1343
1344 if (hole_size > max_hole_size) {
1345 max_hole_start = search_start;
1346 max_hole_size = hole_size;
1347 }
1348
1349 /*
1350 * If this free space is greater than which we need,
1351 * it must be the max free space that we have found
1352 * until now, so max_hole_start must point to the start
1353 * of this free space and the length of this free space
1354 * is stored in max_hole_size. Thus, we return
1355 * max_hole_start and max_hole_size and go back to the
1356 * caller.
1357 */
1358 if (hole_size >= num_bytes) {
1359 ret = 0;
1360 goto out;
1361 }
1362 }
1363
1364 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1365 extent_end = key.offset + btrfs_dev_extent_length(l,
1366 dev_extent);
1367 if (extent_end > search_start)
1368 search_start = extent_end;
1369next:
1370 path->slots[0]++;
1371 cond_resched();
1372 }
1373
1374 /*
1375 * At this point, search_start should be the end of
1376 * allocated dev extents, and when shrinking the device,
1377 * search_end may be smaller than search_start.
1378 */
1379 if (search_end > search_start) {
1380 hole_size = search_end - search_start;
1381
1382 if (contains_pending_extent(transaction, device, &search_start,
1383 hole_size)) {
1384 btrfs_release_path(path);
1385 goto again;
1386 }
1387
1388 if (hole_size > max_hole_size) {
1389 max_hole_start = search_start;
1390 max_hole_size = hole_size;
1391 }
1392 }
1393
1394 /* See above. */
1395 if (max_hole_size < num_bytes)
1396 ret = -ENOSPC;
1397 else
1398 ret = 0;
1399
1400out:
1401 btrfs_free_path(path);
1402 *start = max_hole_start;
1403 if (len)
1404 *len = max_hole_size;
1405 return ret;
1406}
1407
1408int find_free_dev_extent(struct btrfs_trans_handle *trans,
1409 struct btrfs_device *device, u64 num_bytes,
1410 u64 *start, u64 *len)
1411{
1412 /* FIXME use last free of some kind */
1413 return find_free_dev_extent_start(trans->transaction, device,
1414 num_bytes, 0, start, len);
1415}
1416
1417static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1418 struct btrfs_device *device,
1419 u64 start, u64 *dev_extent_len)
1420{
1421 int ret;
1422 struct btrfs_path *path;
1423 struct btrfs_root *root = device->dev_root;
1424 struct btrfs_key key;
1425 struct btrfs_key found_key;
1426 struct extent_buffer *leaf = NULL;
1427 struct btrfs_dev_extent *extent = NULL;
1428
1429 path = btrfs_alloc_path();
1430 if (!path)
1431 return -ENOMEM;
1432
1433 key.objectid = device->devid;
1434 key.offset = start;
1435 key.type = BTRFS_DEV_EXTENT_KEY;
1436again:
1437 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1438 if (ret > 0) {
1439 ret = btrfs_previous_item(root, path, key.objectid,
1440 BTRFS_DEV_EXTENT_KEY);
1441 if (ret)
1442 goto out;
1443 leaf = path->nodes[0];
1444 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1445 extent = btrfs_item_ptr(leaf, path->slots[0],
1446 struct btrfs_dev_extent);
1447 BUG_ON(found_key.offset > start || found_key.offset +
1448 btrfs_dev_extent_length(leaf, extent) < start);
1449 key = found_key;
1450 btrfs_release_path(path);
1451 goto again;
1452 } else if (ret == 0) {
1453 leaf = path->nodes[0];
1454 extent = btrfs_item_ptr(leaf, path->slots[0],
1455 struct btrfs_dev_extent);
1456 } else {
1457 btrfs_std_error(root->fs_info, ret, "Slot search failed");
1458 goto out;
1459 }
1460
1461 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1462
1463 ret = btrfs_del_item(trans, root, path);
1464 if (ret) {
1465 btrfs_std_error(root->fs_info, ret,
1466 "Failed to remove dev extent item");
1467 } else {
1468 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1469 }
1470out:
1471 btrfs_free_path(path);
1472 return ret;
1473}
1474
1475static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1476 struct btrfs_device *device,
1477 u64 chunk_tree, u64 chunk_objectid,
1478 u64 chunk_offset, u64 start, u64 num_bytes)
1479{
1480 int ret;
1481 struct btrfs_path *path;
1482 struct btrfs_root *root = device->dev_root;
1483 struct btrfs_dev_extent *extent;
1484 struct extent_buffer *leaf;
1485 struct btrfs_key key;
1486
1487 WARN_ON(!device->in_fs_metadata);
1488 WARN_ON(device->is_tgtdev_for_dev_replace);
1489 path = btrfs_alloc_path();
1490 if (!path)
1491 return -ENOMEM;
1492
1493 key.objectid = device->devid;
1494 key.offset = start;
1495 key.type = BTRFS_DEV_EXTENT_KEY;
1496 ret = btrfs_insert_empty_item(trans, root, path, &key,
1497 sizeof(*extent));
1498 if (ret)
1499 goto out;
1500
1501 leaf = path->nodes[0];
1502 extent = btrfs_item_ptr(leaf, path->slots[0],
1503 struct btrfs_dev_extent);
1504 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1505 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1506 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1507
1508 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1509 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1510
1511 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1512 btrfs_mark_buffer_dirty(leaf);
1513out:
1514 btrfs_free_path(path);
1515 return ret;
1516}
1517
1518static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1519{
1520 struct extent_map_tree *em_tree;
1521 struct extent_map *em;
1522 struct rb_node *n;
1523 u64 ret = 0;
1524
1525 em_tree = &fs_info->mapping_tree.map_tree;
1526 read_lock(&em_tree->lock);
1527 n = rb_last(&em_tree->map);
1528 if (n) {
1529 em = rb_entry(n, struct extent_map, rb_node);
1530 ret = em->start + em->len;
1531 }
1532 read_unlock(&em_tree->lock);
1533
1534 return ret;
1535}
1536
1537static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1538 u64 *devid_ret)
1539{
1540 int ret;
1541 struct btrfs_key key;
1542 struct btrfs_key found_key;
1543 struct btrfs_path *path;
1544
1545 path = btrfs_alloc_path();
1546 if (!path)
1547 return -ENOMEM;
1548
1549 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1550 key.type = BTRFS_DEV_ITEM_KEY;
1551 key.offset = (u64)-1;
1552
1553 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1554 if (ret < 0)
1555 goto error;
1556
1557 BUG_ON(ret == 0); /* Corruption */
1558
1559 ret = btrfs_previous_item(fs_info->chunk_root, path,
1560 BTRFS_DEV_ITEMS_OBJECTID,
1561 BTRFS_DEV_ITEM_KEY);
1562 if (ret) {
1563 *devid_ret = 1;
1564 } else {
1565 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1566 path->slots[0]);
1567 *devid_ret = found_key.offset + 1;
1568 }
1569 ret = 0;
1570error:
1571 btrfs_free_path(path);
1572 return ret;
1573}
1574
1575/*
1576 * the device information is stored in the chunk root
1577 * the btrfs_device struct should be fully filled in
1578 */
1579static int btrfs_add_device(struct btrfs_trans_handle *trans,
1580 struct btrfs_root *root,
1581 struct btrfs_device *device)
1582{
1583 int ret;
1584 struct btrfs_path *path;
1585 struct btrfs_dev_item *dev_item;
1586 struct extent_buffer *leaf;
1587 struct btrfs_key key;
1588 unsigned long ptr;
1589
1590 root = root->fs_info->chunk_root;
1591
1592 path = btrfs_alloc_path();
1593 if (!path)
1594 return -ENOMEM;
1595
1596 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1597 key.type = BTRFS_DEV_ITEM_KEY;
1598 key.offset = device->devid;
1599
1600 ret = btrfs_insert_empty_item(trans, root, path, &key,
1601 sizeof(*dev_item));
1602 if (ret)
1603 goto out;
1604
1605 leaf = path->nodes[0];
1606 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1607
1608 btrfs_set_device_id(leaf, dev_item, device->devid);
1609 btrfs_set_device_generation(leaf, dev_item, 0);
1610 btrfs_set_device_type(leaf, dev_item, device->type);
1611 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1612 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1613 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1614 btrfs_set_device_total_bytes(leaf, dev_item,
1615 btrfs_device_get_disk_total_bytes(device));
1616 btrfs_set_device_bytes_used(leaf, dev_item,
1617 btrfs_device_get_bytes_used(device));
1618 btrfs_set_device_group(leaf, dev_item, 0);
1619 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1620 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1621 btrfs_set_device_start_offset(leaf, dev_item, 0);
1622
1623 ptr = btrfs_device_uuid(dev_item);
1624 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1625 ptr = btrfs_device_fsid(dev_item);
1626 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1627 btrfs_mark_buffer_dirty(leaf);
1628
1629 ret = 0;
1630out:
1631 btrfs_free_path(path);
1632 return ret;
1633}
1634
1635/*
1636 * Function to update ctime/mtime for a given device path.
1637 * Mainly used for ctime/mtime based probe like libblkid.
1638 */
1639static void update_dev_time(char *path_name)
1640{
1641 struct file *filp;
1642
1643 filp = filp_open(path_name, O_RDWR, 0);
1644 if (IS_ERR(filp))
1645 return;
1646 file_update_time(filp);
1647 filp_close(filp, NULL);
1648}
1649
1650static int btrfs_rm_dev_item(struct btrfs_root *root,
1651 struct btrfs_device *device)
1652{
1653 int ret;
1654 struct btrfs_path *path;
1655 struct btrfs_key key;
1656 struct btrfs_trans_handle *trans;
1657
1658 root = root->fs_info->chunk_root;
1659
1660 path = btrfs_alloc_path();
1661 if (!path)
1662 return -ENOMEM;
1663
1664 trans = btrfs_start_transaction(root, 0);
1665 if (IS_ERR(trans)) {
1666 btrfs_free_path(path);
1667 return PTR_ERR(trans);
1668 }
1669 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1670 key.type = BTRFS_DEV_ITEM_KEY;
1671 key.offset = device->devid;
1672
1673 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1674 if (ret < 0)
1675 goto out;
1676
1677 if (ret > 0) {
1678 ret = -ENOENT;
1679 goto out;
1680 }
1681
1682 ret = btrfs_del_item(trans, root, path);
1683 if (ret)
1684 goto out;
1685out:
1686 btrfs_free_path(path);
1687 btrfs_commit_transaction(trans, root);
1688 return ret;
1689}
1690
1691int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1692{
1693 struct btrfs_device *device;
1694 struct btrfs_device *next_device;
1695 struct block_device *bdev;
1696 struct buffer_head *bh = NULL;
1697 struct btrfs_super_block *disk_super;
1698 struct btrfs_fs_devices *cur_devices;
1699 u64 all_avail;
1700 u64 devid;
1701 u64 num_devices;
1702 u8 *dev_uuid;
1703 unsigned seq;
1704 int ret = 0;
1705 bool clear_super = false;
1706
1707 mutex_lock(&uuid_mutex);
1708
1709 do {
1710 seq = read_seqbegin(&root->fs_info->profiles_lock);
1711
1712 all_avail = root->fs_info->avail_data_alloc_bits |
1713 root->fs_info->avail_system_alloc_bits |
1714 root->fs_info->avail_metadata_alloc_bits;
1715 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
1716
1717 num_devices = root->fs_info->fs_devices->num_devices;
1718 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1719 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1720 WARN_ON(num_devices < 1);
1721 num_devices--;
1722 }
1723 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1724
1725 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1726 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1727 goto out;
1728 }
1729
1730 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1731 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1732 goto out;
1733 }
1734
1735 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1736 root->fs_info->fs_devices->rw_devices <= 2) {
1737 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1738 goto out;
1739 }
1740 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1741 root->fs_info->fs_devices->rw_devices <= 3) {
1742 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1743 goto out;
1744 }
1745
1746 if (strcmp(device_path, "missing") == 0) {
1747 struct list_head *devices;
1748 struct btrfs_device *tmp;
1749
1750 device = NULL;
1751 devices = &root->fs_info->fs_devices->devices;
1752 /*
1753 * It is safe to read the devices since the volume_mutex
1754 * is held.
1755 */
1756 list_for_each_entry(tmp, devices, dev_list) {
1757 if (tmp->in_fs_metadata &&
1758 !tmp->is_tgtdev_for_dev_replace &&
1759 !tmp->bdev) {
1760 device = tmp;
1761 break;
1762 }
1763 }
1764 bdev = NULL;
1765 bh = NULL;
1766 disk_super = NULL;
1767 if (!device) {
1768 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1769 goto out;
1770 }
1771 } else {
1772 ret = btrfs_get_bdev_and_sb(device_path,
1773 FMODE_WRITE | FMODE_EXCL,
1774 root->fs_info->bdev_holder, 0,
1775 &bdev, &bh);
1776 if (ret)
1777 goto out;
1778 disk_super = (struct btrfs_super_block *)bh->b_data;
1779 devid = btrfs_stack_device_id(&disk_super->dev_item);
1780 dev_uuid = disk_super->dev_item.uuid;
1781 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1782 disk_super->fsid);
1783 if (!device) {
1784 ret = -ENOENT;
1785 goto error_brelse;
1786 }
1787 }
1788
1789 if (device->is_tgtdev_for_dev_replace) {
1790 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1791 goto error_brelse;
1792 }
1793
1794 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1795 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1796 goto error_brelse;
1797 }
1798
1799 if (device->writeable) {
1800 lock_chunks(root);
1801 list_del_init(&device->dev_alloc_list);
1802 device->fs_devices->rw_devices--;
1803 unlock_chunks(root);
1804 clear_super = true;
1805 }
1806
1807 mutex_unlock(&uuid_mutex);
1808 ret = btrfs_shrink_device(device, 0);
1809 mutex_lock(&uuid_mutex);
1810 if (ret)
1811 goto error_undo;
1812
1813 /*
1814 * TODO: the superblock still includes this device in its num_devices
1815 * counter although write_all_supers() is not locked out. This
1816 * could give a filesystem state which requires a degraded mount.
1817 */
1818 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1819 if (ret)
1820 goto error_undo;
1821
1822 device->in_fs_metadata = 0;
1823 btrfs_scrub_cancel_dev(root->fs_info, device);
1824
1825 /*
1826 * the device list mutex makes sure that we don't change
1827 * the device list while someone else is writing out all
1828 * the device supers. Whoever is writing all supers, should
1829 * lock the device list mutex before getting the number of
1830 * devices in the super block (super_copy). Conversely,
1831 * whoever updates the number of devices in the super block
1832 * (super_copy) should hold the device list mutex.
1833 */
1834
1835 cur_devices = device->fs_devices;
1836 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1837 list_del_rcu(&device->dev_list);
1838
1839 device->fs_devices->num_devices--;
1840 device->fs_devices->total_devices--;
1841
1842 if (device->missing)
1843 device->fs_devices->missing_devices--;
1844
1845 next_device = list_entry(root->fs_info->fs_devices->devices.next,
1846 struct btrfs_device, dev_list);
1847 if (device->bdev == root->fs_info->sb->s_bdev)
1848 root->fs_info->sb->s_bdev = next_device->bdev;
1849 if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1850 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1851
1852 if (device->bdev) {
1853 device->fs_devices->open_devices--;
1854 /* remove sysfs entry */
1855 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1856 }
1857
1858 call_rcu(&device->rcu, free_device);
1859
1860 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1861 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1862 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1863
1864 if (cur_devices->open_devices == 0) {
1865 struct btrfs_fs_devices *fs_devices;
1866 fs_devices = root->fs_info->fs_devices;
1867 while (fs_devices) {
1868 if (fs_devices->seed == cur_devices) {
1869 fs_devices->seed = cur_devices->seed;
1870 break;
1871 }
1872 fs_devices = fs_devices->seed;
1873 }
1874 cur_devices->seed = NULL;
1875 __btrfs_close_devices(cur_devices);
1876 free_fs_devices(cur_devices);
1877 }
1878
1879 root->fs_info->num_tolerated_disk_barrier_failures =
1880 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1881
1882 /*
1883 * at this point, the device is zero sized. We want to
1884 * remove it from the devices list and zero out the old super
1885 */
1886 if (clear_super && disk_super) {
1887 u64 bytenr;
1888 int i;
1889
1890 /* make sure this device isn't detected as part of
1891 * the FS anymore
1892 */
1893 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1894 set_buffer_dirty(bh);
1895 sync_dirty_buffer(bh);
1896
1897 /* clear the mirror copies of super block on the disk
1898 * being removed, 0th copy is been taken care above and
1899 * the below would take of the rest
1900 */
1901 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1902 bytenr = btrfs_sb_offset(i);
1903 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
1904 i_size_read(bdev->bd_inode))
1905 break;
1906
1907 brelse(bh);
1908 bh = __bread(bdev, bytenr / 4096,
1909 BTRFS_SUPER_INFO_SIZE);
1910 if (!bh)
1911 continue;
1912
1913 disk_super = (struct btrfs_super_block *)bh->b_data;
1914
1915 if (btrfs_super_bytenr(disk_super) != bytenr ||
1916 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1917 continue;
1918 }
1919 memset(&disk_super->magic, 0,
1920 sizeof(disk_super->magic));
1921 set_buffer_dirty(bh);
1922 sync_dirty_buffer(bh);
1923 }
1924 }
1925
1926 ret = 0;
1927
1928 if (bdev) {
1929 /* Notify udev that device has changed */
1930 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1931
1932 /* Update ctime/mtime for device path for libblkid */
1933 update_dev_time(device_path);
1934 }
1935
1936error_brelse:
1937 brelse(bh);
1938 if (bdev)
1939 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1940out:
1941 mutex_unlock(&uuid_mutex);
1942 return ret;
1943error_undo:
1944 if (device->writeable) {
1945 lock_chunks(root);
1946 list_add(&device->dev_alloc_list,
1947 &root->fs_info->fs_devices->alloc_list);
1948 device->fs_devices->rw_devices++;
1949 unlock_chunks(root);
1950 }
1951 goto error_brelse;
1952}
1953
1954void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1955 struct btrfs_device *srcdev)
1956{
1957 struct btrfs_fs_devices *fs_devices;
1958
1959 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1960
1961 /*
1962 * in case of fs with no seed, srcdev->fs_devices will point
1963 * to fs_devices of fs_info. However when the dev being replaced is
1964 * a seed dev it will point to the seed's local fs_devices. In short
1965 * srcdev will have its correct fs_devices in both the cases.
1966 */
1967 fs_devices = srcdev->fs_devices;
1968
1969 list_del_rcu(&srcdev->dev_list);
1970 list_del_rcu(&srcdev->dev_alloc_list);
1971 fs_devices->num_devices--;
1972 if (srcdev->missing)
1973 fs_devices->missing_devices--;
1974
1975 if (srcdev->writeable) {
1976 fs_devices->rw_devices--;
1977 /* zero out the old super if it is writable */
1978 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
1979 }
1980
1981 if (srcdev->bdev)
1982 fs_devices->open_devices--;
1983}
1984
1985void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
1986 struct btrfs_device *srcdev)
1987{
1988 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
1989
1990 call_rcu(&srcdev->rcu, free_device);
1991
1992 /*
1993 * unless fs_devices is seed fs, num_devices shouldn't go
1994 * zero
1995 */
1996 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
1997
1998 /* if this is no devs we rather delete the fs_devices */
1999 if (!fs_devices->num_devices) {
2000 struct btrfs_fs_devices *tmp_fs_devices;
2001
2002 tmp_fs_devices = fs_info->fs_devices;
2003 while (tmp_fs_devices) {
2004 if (tmp_fs_devices->seed == fs_devices) {
2005 tmp_fs_devices->seed = fs_devices->seed;
2006 break;
2007 }
2008 tmp_fs_devices = tmp_fs_devices->seed;
2009 }
2010 fs_devices->seed = NULL;
2011 __btrfs_close_devices(fs_devices);
2012 free_fs_devices(fs_devices);
2013 }
2014}
2015
2016void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2017 struct btrfs_device *tgtdev)
2018{
2019 struct btrfs_device *next_device;
2020
2021 mutex_lock(&uuid_mutex);
2022 WARN_ON(!tgtdev);
2023 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2024
2025 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2026
2027 if (tgtdev->bdev) {
2028 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2029 fs_info->fs_devices->open_devices--;
2030 }
2031 fs_info->fs_devices->num_devices--;
2032
2033 next_device = list_entry(fs_info->fs_devices->devices.next,
2034 struct btrfs_device, dev_list);
2035 if (tgtdev->bdev == fs_info->sb->s_bdev)
2036 fs_info->sb->s_bdev = next_device->bdev;
2037 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
2038 fs_info->fs_devices->latest_bdev = next_device->bdev;
2039 list_del_rcu(&tgtdev->dev_list);
2040
2041 call_rcu(&tgtdev->rcu, free_device);
2042
2043 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2044 mutex_unlock(&uuid_mutex);
2045}
2046
2047static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2048 struct btrfs_device **device)
2049{
2050 int ret = 0;
2051 struct btrfs_super_block *disk_super;
2052 u64 devid;
2053 u8 *dev_uuid;
2054 struct block_device *bdev;
2055 struct buffer_head *bh;
2056
2057 *device = NULL;
2058 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2059 root->fs_info->bdev_holder, 0, &bdev, &bh);
2060 if (ret)
2061 return ret;
2062 disk_super = (struct btrfs_super_block *)bh->b_data;
2063 devid = btrfs_stack_device_id(&disk_super->dev_item);
2064 dev_uuid = disk_super->dev_item.uuid;
2065 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2066 disk_super->fsid);
2067 brelse(bh);
2068 if (!*device)
2069 ret = -ENOENT;
2070 blkdev_put(bdev, FMODE_READ);
2071 return ret;
2072}
2073
2074int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2075 char *device_path,
2076 struct btrfs_device **device)
2077{
2078 *device = NULL;
2079 if (strcmp(device_path, "missing") == 0) {
2080 struct list_head *devices;
2081 struct btrfs_device *tmp;
2082
2083 devices = &root->fs_info->fs_devices->devices;
2084 /*
2085 * It is safe to read the devices since the volume_mutex
2086 * is held by the caller.
2087 */
2088 list_for_each_entry(tmp, devices, dev_list) {
2089 if (tmp->in_fs_metadata && !tmp->bdev) {
2090 *device = tmp;
2091 break;
2092 }
2093 }
2094
2095 if (!*device)
2096 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2097
2098 return 0;
2099 } else {
2100 return btrfs_find_device_by_path(root, device_path, device);
2101 }
2102}
2103
2104/*
2105 * does all the dirty work required for changing file system's UUID.
2106 */
2107static int btrfs_prepare_sprout(struct btrfs_root *root)
2108{
2109 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2110 struct btrfs_fs_devices *old_devices;
2111 struct btrfs_fs_devices *seed_devices;
2112 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2113 struct btrfs_device *device;
2114 u64 super_flags;
2115
2116 BUG_ON(!mutex_is_locked(&uuid_mutex));
2117 if (!fs_devices->seeding)
2118 return -EINVAL;
2119
2120 seed_devices = __alloc_fs_devices();
2121 if (IS_ERR(seed_devices))
2122 return PTR_ERR(seed_devices);
2123
2124 old_devices = clone_fs_devices(fs_devices);
2125 if (IS_ERR(old_devices)) {
2126 kfree(seed_devices);
2127 return PTR_ERR(old_devices);
2128 }
2129
2130 list_add(&old_devices->list, &fs_uuids);
2131
2132 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2133 seed_devices->opened = 1;
2134 INIT_LIST_HEAD(&seed_devices->devices);
2135 INIT_LIST_HEAD(&seed_devices->alloc_list);
2136 mutex_init(&seed_devices->device_list_mutex);
2137
2138 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2139 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2140 synchronize_rcu);
2141 list_for_each_entry(device, &seed_devices->devices, dev_list)
2142 device->fs_devices = seed_devices;
2143
2144 lock_chunks(root);
2145 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2146 unlock_chunks(root);
2147
2148 fs_devices->seeding = 0;
2149 fs_devices->num_devices = 0;
2150 fs_devices->open_devices = 0;
2151 fs_devices->missing_devices = 0;
2152 fs_devices->rotating = 0;
2153 fs_devices->seed = seed_devices;
2154
2155 generate_random_uuid(fs_devices->fsid);
2156 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2157 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2158 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2159
2160 super_flags = btrfs_super_flags(disk_super) &
2161 ~BTRFS_SUPER_FLAG_SEEDING;
2162 btrfs_set_super_flags(disk_super, super_flags);
2163
2164 return 0;
2165}
2166
2167/*
2168 * strore the expected generation for seed devices in device items.
2169 */
2170static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2171 struct btrfs_root *root)
2172{
2173 struct btrfs_path *path;
2174 struct extent_buffer *leaf;
2175 struct btrfs_dev_item *dev_item;
2176 struct btrfs_device *device;
2177 struct btrfs_key key;
2178 u8 fs_uuid[BTRFS_UUID_SIZE];
2179 u8 dev_uuid[BTRFS_UUID_SIZE];
2180 u64 devid;
2181 int ret;
2182
2183 path = btrfs_alloc_path();
2184 if (!path)
2185 return -ENOMEM;
2186
2187 root = root->fs_info->chunk_root;
2188 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2189 key.offset = 0;
2190 key.type = BTRFS_DEV_ITEM_KEY;
2191
2192 while (1) {
2193 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2194 if (ret < 0)
2195 goto error;
2196
2197 leaf = path->nodes[0];
2198next_slot:
2199 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2200 ret = btrfs_next_leaf(root, path);
2201 if (ret > 0)
2202 break;
2203 if (ret < 0)
2204 goto error;
2205 leaf = path->nodes[0];
2206 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2207 btrfs_release_path(path);
2208 continue;
2209 }
2210
2211 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2212 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2213 key.type != BTRFS_DEV_ITEM_KEY)
2214 break;
2215
2216 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2217 struct btrfs_dev_item);
2218 devid = btrfs_device_id(leaf, dev_item);
2219 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2220 BTRFS_UUID_SIZE);
2221 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2222 BTRFS_UUID_SIZE);
2223 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2224 fs_uuid);
2225 BUG_ON(!device); /* Logic error */
2226
2227 if (device->fs_devices->seeding) {
2228 btrfs_set_device_generation(leaf, dev_item,
2229 device->generation);
2230 btrfs_mark_buffer_dirty(leaf);
2231 }
2232
2233 path->slots[0]++;
2234 goto next_slot;
2235 }
2236 ret = 0;
2237error:
2238 btrfs_free_path(path);
2239 return ret;
2240}
2241
2242int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2243{
2244 struct request_queue *q;
2245 struct btrfs_trans_handle *trans;
2246 struct btrfs_device *device;
2247 struct block_device *bdev;
2248 struct list_head *devices;
2249 struct super_block *sb = root->fs_info->sb;
2250 struct rcu_string *name;
2251 u64 tmp;
2252 int seeding_dev = 0;
2253 int ret = 0;
2254
2255 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2256 return -EROFS;
2257
2258 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2259 root->fs_info->bdev_holder);
2260 if (IS_ERR(bdev))
2261 return PTR_ERR(bdev);
2262
2263 if (root->fs_info->fs_devices->seeding) {
2264 seeding_dev = 1;
2265 down_write(&sb->s_umount);
2266 mutex_lock(&uuid_mutex);
2267 }
2268
2269 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2270
2271 devices = &root->fs_info->fs_devices->devices;
2272
2273 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2274 list_for_each_entry(device, devices, dev_list) {
2275 if (device->bdev == bdev) {
2276 ret = -EEXIST;
2277 mutex_unlock(
2278 &root->fs_info->fs_devices->device_list_mutex);
2279 goto error;
2280 }
2281 }
2282 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2283
2284 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2285 if (IS_ERR(device)) {
2286 /* we can safely leave the fs_devices entry around */
2287 ret = PTR_ERR(device);
2288 goto error;
2289 }
2290
2291 name = rcu_string_strdup(device_path, GFP_KERNEL);
2292 if (!name) {
2293 kfree(device);
2294 ret = -ENOMEM;
2295 goto error;
2296 }
2297 rcu_assign_pointer(device->name, name);
2298
2299 trans = btrfs_start_transaction(root, 0);
2300 if (IS_ERR(trans)) {
2301 rcu_string_free(device->name);
2302 kfree(device);
2303 ret = PTR_ERR(trans);
2304 goto error;
2305 }
2306
2307 q = bdev_get_queue(bdev);
2308 if (blk_queue_discard(q))
2309 device->can_discard = 1;
2310 device->writeable = 1;
2311 device->generation = trans->transid;
2312 device->io_width = root->sectorsize;
2313 device->io_align = root->sectorsize;
2314 device->sector_size = root->sectorsize;
2315 device->total_bytes = i_size_read(bdev->bd_inode);
2316 device->disk_total_bytes = device->total_bytes;
2317 device->commit_total_bytes = device->total_bytes;
2318 device->dev_root = root->fs_info->dev_root;
2319 device->bdev = bdev;
2320 device->in_fs_metadata = 1;
2321 device->is_tgtdev_for_dev_replace = 0;
2322 device->mode = FMODE_EXCL;
2323 device->dev_stats_valid = 1;
2324 set_blocksize(device->bdev, 4096);
2325
2326 if (seeding_dev) {
2327 sb->s_flags &= ~MS_RDONLY;
2328 ret = btrfs_prepare_sprout(root);
2329 BUG_ON(ret); /* -ENOMEM */
2330 }
2331
2332 device->fs_devices = root->fs_info->fs_devices;
2333
2334 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2335 lock_chunks(root);
2336 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2337 list_add(&device->dev_alloc_list,
2338 &root->fs_info->fs_devices->alloc_list);
2339 root->fs_info->fs_devices->num_devices++;
2340 root->fs_info->fs_devices->open_devices++;
2341 root->fs_info->fs_devices->rw_devices++;
2342 root->fs_info->fs_devices->total_devices++;
2343 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2344
2345 spin_lock(&root->fs_info->free_chunk_lock);
2346 root->fs_info->free_chunk_space += device->total_bytes;
2347 spin_unlock(&root->fs_info->free_chunk_lock);
2348
2349 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2350 root->fs_info->fs_devices->rotating = 1;
2351
2352 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2353 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2354 tmp + device->total_bytes);
2355
2356 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2357 btrfs_set_super_num_devices(root->fs_info->super_copy,
2358 tmp + 1);
2359
2360 /* add sysfs device entry */
2361 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2362
2363 /*
2364 * we've got more storage, clear any full flags on the space
2365 * infos
2366 */
2367 btrfs_clear_space_info_full(root->fs_info);
2368
2369 unlock_chunks(root);
2370 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2371
2372 if (seeding_dev) {
2373 lock_chunks(root);
2374 ret = init_first_rw_device(trans, root, device);
2375 unlock_chunks(root);
2376 if (ret) {
2377 btrfs_abort_transaction(trans, root, ret);
2378 goto error_trans;
2379 }
2380 }
2381
2382 ret = btrfs_add_device(trans, root, device);
2383 if (ret) {
2384 btrfs_abort_transaction(trans, root, ret);
2385 goto error_trans;
2386 }
2387
2388 if (seeding_dev) {
2389 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2390
2391 ret = btrfs_finish_sprout(trans, root);
2392 if (ret) {
2393 btrfs_abort_transaction(trans, root, ret);
2394 goto error_trans;
2395 }
2396
2397 /* Sprouting would change fsid of the mounted root,
2398 * so rename the fsid on the sysfs
2399 */
2400 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2401 root->fs_info->fsid);
2402 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2403 fsid_buf))
2404 btrfs_warn(root->fs_info,
2405 "sysfs: failed to create fsid for sprout");
2406 }
2407
2408 root->fs_info->num_tolerated_disk_barrier_failures =
2409 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2410 ret = btrfs_commit_transaction(trans, root);
2411
2412 if (seeding_dev) {
2413 mutex_unlock(&uuid_mutex);
2414 up_write(&sb->s_umount);
2415
2416 if (ret) /* transaction commit */
2417 return ret;
2418
2419 ret = btrfs_relocate_sys_chunks(root);
2420 if (ret < 0)
2421 btrfs_std_error(root->fs_info, ret,
2422 "Failed to relocate sys chunks after "
2423 "device initialization. This can be fixed "
2424 "using the \"btrfs balance\" command.");
2425 trans = btrfs_attach_transaction(root);
2426 if (IS_ERR(trans)) {
2427 if (PTR_ERR(trans) == -ENOENT)
2428 return 0;
2429 return PTR_ERR(trans);
2430 }
2431 ret = btrfs_commit_transaction(trans, root);
2432 }
2433
2434 /* Update ctime/mtime for libblkid */
2435 update_dev_time(device_path);
2436 return ret;
2437
2438error_trans:
2439 btrfs_end_transaction(trans, root);
2440 rcu_string_free(device->name);
2441 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2442 kfree(device);
2443error:
2444 blkdev_put(bdev, FMODE_EXCL);
2445 if (seeding_dev) {
2446 mutex_unlock(&uuid_mutex);
2447 up_write(&sb->s_umount);
2448 }
2449 return ret;
2450}
2451
2452int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2453 struct btrfs_device *srcdev,
2454 struct btrfs_device **device_out)
2455{
2456 struct request_queue *q;
2457 struct btrfs_device *device;
2458 struct block_device *bdev;
2459 struct btrfs_fs_info *fs_info = root->fs_info;
2460 struct list_head *devices;
2461 struct rcu_string *name;
2462 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2463 int ret = 0;
2464
2465 *device_out = NULL;
2466 if (fs_info->fs_devices->seeding) {
2467 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2468 return -EINVAL;
2469 }
2470
2471 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2472 fs_info->bdev_holder);
2473 if (IS_ERR(bdev)) {
2474 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2475 return PTR_ERR(bdev);
2476 }
2477
2478 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2479
2480 devices = &fs_info->fs_devices->devices;
2481 list_for_each_entry(device, devices, dev_list) {
2482 if (device->bdev == bdev) {
2483 btrfs_err(fs_info, "target device is in the filesystem!");
2484 ret = -EEXIST;
2485 goto error;
2486 }
2487 }
2488
2489
2490 if (i_size_read(bdev->bd_inode) <
2491 btrfs_device_get_total_bytes(srcdev)) {
2492 btrfs_err(fs_info, "target device is smaller than source device!");
2493 ret = -EINVAL;
2494 goto error;
2495 }
2496
2497
2498 device = btrfs_alloc_device(NULL, &devid, NULL);
2499 if (IS_ERR(device)) {
2500 ret = PTR_ERR(device);
2501 goto error;
2502 }
2503
2504 name = rcu_string_strdup(device_path, GFP_NOFS);
2505 if (!name) {
2506 kfree(device);
2507 ret = -ENOMEM;
2508 goto error;
2509 }
2510 rcu_assign_pointer(device->name, name);
2511
2512 q = bdev_get_queue(bdev);
2513 if (blk_queue_discard(q))
2514 device->can_discard = 1;
2515 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2516 device->writeable = 1;
2517 device->generation = 0;
2518 device->io_width = root->sectorsize;
2519 device->io_align = root->sectorsize;
2520 device->sector_size = root->sectorsize;
2521 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2522 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2523 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2524 ASSERT(list_empty(&srcdev->resized_list));
2525 device->commit_total_bytes = srcdev->commit_total_bytes;
2526 device->commit_bytes_used = device->bytes_used;
2527 device->dev_root = fs_info->dev_root;
2528 device->bdev = bdev;
2529 device->in_fs_metadata = 1;
2530 device->is_tgtdev_for_dev_replace = 1;
2531 device->mode = FMODE_EXCL;
2532 device->dev_stats_valid = 1;
2533 set_blocksize(device->bdev, 4096);
2534 device->fs_devices = fs_info->fs_devices;
2535 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2536 fs_info->fs_devices->num_devices++;
2537 fs_info->fs_devices->open_devices++;
2538 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2539
2540 *device_out = device;
2541 return ret;
2542
2543error:
2544 blkdev_put(bdev, FMODE_EXCL);
2545 return ret;
2546}
2547
2548void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2549 struct btrfs_device *tgtdev)
2550{
2551 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2552 tgtdev->io_width = fs_info->dev_root->sectorsize;
2553 tgtdev->io_align = fs_info->dev_root->sectorsize;
2554 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2555 tgtdev->dev_root = fs_info->dev_root;
2556 tgtdev->in_fs_metadata = 1;
2557}
2558
2559static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2560 struct btrfs_device *device)
2561{
2562 int ret;
2563 struct btrfs_path *path;
2564 struct btrfs_root *root;
2565 struct btrfs_dev_item *dev_item;
2566 struct extent_buffer *leaf;
2567 struct btrfs_key key;
2568
2569 root = device->dev_root->fs_info->chunk_root;
2570
2571 path = btrfs_alloc_path();
2572 if (!path)
2573 return -ENOMEM;
2574
2575 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2576 key.type = BTRFS_DEV_ITEM_KEY;
2577 key.offset = device->devid;
2578
2579 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2580 if (ret < 0)
2581 goto out;
2582
2583 if (ret > 0) {
2584 ret = -ENOENT;
2585 goto out;
2586 }
2587
2588 leaf = path->nodes[0];
2589 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2590
2591 btrfs_set_device_id(leaf, dev_item, device->devid);
2592 btrfs_set_device_type(leaf, dev_item, device->type);
2593 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2594 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2595 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2596 btrfs_set_device_total_bytes(leaf, dev_item,
2597 btrfs_device_get_disk_total_bytes(device));
2598 btrfs_set_device_bytes_used(leaf, dev_item,
2599 btrfs_device_get_bytes_used(device));
2600 btrfs_mark_buffer_dirty(leaf);
2601
2602out:
2603 btrfs_free_path(path);
2604 return ret;
2605}
2606
2607int btrfs_grow_device(struct btrfs_trans_handle *trans,
2608 struct btrfs_device *device, u64 new_size)
2609{
2610 struct btrfs_super_block *super_copy =
2611 device->dev_root->fs_info->super_copy;
2612 struct btrfs_fs_devices *fs_devices;
2613 u64 old_total;
2614 u64 diff;
2615
2616 if (!device->writeable)
2617 return -EACCES;
2618
2619 lock_chunks(device->dev_root);
2620 old_total = btrfs_super_total_bytes(super_copy);
2621 diff = new_size - device->total_bytes;
2622
2623 if (new_size <= device->total_bytes ||
2624 device->is_tgtdev_for_dev_replace) {
2625 unlock_chunks(device->dev_root);
2626 return -EINVAL;
2627 }
2628
2629 fs_devices = device->dev_root->fs_info->fs_devices;
2630
2631 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2632 device->fs_devices->total_rw_bytes += diff;
2633
2634 btrfs_device_set_total_bytes(device, new_size);
2635 btrfs_device_set_disk_total_bytes(device, new_size);
2636 btrfs_clear_space_info_full(device->dev_root->fs_info);
2637 if (list_empty(&device->resized_list))
2638 list_add_tail(&device->resized_list,
2639 &fs_devices->resized_devices);
2640 unlock_chunks(device->dev_root);
2641
2642 return btrfs_update_device(trans, device);
2643}
2644
2645static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2646 struct btrfs_root *root, u64 chunk_objectid,
2647 u64 chunk_offset)
2648{
2649 int ret;
2650 struct btrfs_path *path;
2651 struct btrfs_key key;
2652
2653 root = root->fs_info->chunk_root;
2654 path = btrfs_alloc_path();
2655 if (!path)
2656 return -ENOMEM;
2657
2658 key.objectid = chunk_objectid;
2659 key.offset = chunk_offset;
2660 key.type = BTRFS_CHUNK_ITEM_KEY;
2661
2662 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2663 if (ret < 0)
2664 goto out;
2665 else if (ret > 0) { /* Logic error or corruption */
2666 btrfs_std_error(root->fs_info, -ENOENT,
2667 "Failed lookup while freeing chunk.");
2668 ret = -ENOENT;
2669 goto out;
2670 }
2671
2672 ret = btrfs_del_item(trans, root, path);
2673 if (ret < 0)
2674 btrfs_std_error(root->fs_info, ret,
2675 "Failed to delete chunk item.");
2676out:
2677 btrfs_free_path(path);
2678 return ret;
2679}
2680
2681static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2682 chunk_offset)
2683{
2684 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2685 struct btrfs_disk_key *disk_key;
2686 struct btrfs_chunk *chunk;
2687 u8 *ptr;
2688 int ret = 0;
2689 u32 num_stripes;
2690 u32 array_size;
2691 u32 len = 0;
2692 u32 cur;
2693 struct btrfs_key key;
2694
2695 lock_chunks(root);
2696 array_size = btrfs_super_sys_array_size(super_copy);
2697
2698 ptr = super_copy->sys_chunk_array;
2699 cur = 0;
2700
2701 while (cur < array_size) {
2702 disk_key = (struct btrfs_disk_key *)ptr;
2703 btrfs_disk_key_to_cpu(&key, disk_key);
2704
2705 len = sizeof(*disk_key);
2706
2707 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2708 chunk = (struct btrfs_chunk *)(ptr + len);
2709 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2710 len += btrfs_chunk_item_size(num_stripes);
2711 } else {
2712 ret = -EIO;
2713 break;
2714 }
2715 if (key.objectid == chunk_objectid &&
2716 key.offset == chunk_offset) {
2717 memmove(ptr, ptr + len, array_size - (cur + len));
2718 array_size -= len;
2719 btrfs_set_super_sys_array_size(super_copy, array_size);
2720 } else {
2721 ptr += len;
2722 cur += len;
2723 }
2724 }
2725 unlock_chunks(root);
2726 return ret;
2727}
2728
2729int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2730 struct btrfs_root *root, u64 chunk_offset)
2731{
2732 struct extent_map_tree *em_tree;
2733 struct extent_map *em;
2734 struct btrfs_root *extent_root = root->fs_info->extent_root;
2735 struct map_lookup *map;
2736 u64 dev_extent_len = 0;
2737 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2738 int i, ret = 0;
2739
2740 /* Just in case */
2741 root = root->fs_info->chunk_root;
2742 em_tree = &root->fs_info->mapping_tree.map_tree;
2743
2744 read_lock(&em_tree->lock);
2745 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2746 read_unlock(&em_tree->lock);
2747
2748 if (!em || em->start > chunk_offset ||
2749 em->start + em->len < chunk_offset) {
2750 /*
2751 * This is a logic error, but we don't want to just rely on the
2752 * user having built with ASSERT enabled, so if ASSERT doesn't
2753 * do anything we still error out.
2754 */
2755 ASSERT(0);
2756 if (em)
2757 free_extent_map(em);
2758 return -EINVAL;
2759 }
2760 map = em->map_lookup;
2761 lock_chunks(root->fs_info->chunk_root);
2762 check_system_chunk(trans, extent_root, map->type);
2763 unlock_chunks(root->fs_info->chunk_root);
2764
2765 for (i = 0; i < map->num_stripes; i++) {
2766 struct btrfs_device *device = map->stripes[i].dev;
2767 ret = btrfs_free_dev_extent(trans, device,
2768 map->stripes[i].physical,
2769 &dev_extent_len);
2770 if (ret) {
2771 btrfs_abort_transaction(trans, root, ret);
2772 goto out;
2773 }
2774
2775 if (device->bytes_used > 0) {
2776 lock_chunks(root);
2777 btrfs_device_set_bytes_used(device,
2778 device->bytes_used - dev_extent_len);
2779 spin_lock(&root->fs_info->free_chunk_lock);
2780 root->fs_info->free_chunk_space += dev_extent_len;
2781 spin_unlock(&root->fs_info->free_chunk_lock);
2782 btrfs_clear_space_info_full(root->fs_info);
2783 unlock_chunks(root);
2784 }
2785
2786 if (map->stripes[i].dev) {
2787 ret = btrfs_update_device(trans, map->stripes[i].dev);
2788 if (ret) {
2789 btrfs_abort_transaction(trans, root, ret);
2790 goto out;
2791 }
2792 }
2793 }
2794 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2795 if (ret) {
2796 btrfs_abort_transaction(trans, root, ret);
2797 goto out;
2798 }
2799
2800 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2801
2802 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2803 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2804 if (ret) {
2805 btrfs_abort_transaction(trans, root, ret);
2806 goto out;
2807 }
2808 }
2809
2810 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2811 if (ret) {
2812 btrfs_abort_transaction(trans, extent_root, ret);
2813 goto out;
2814 }
2815
2816out:
2817 /* once for us */
2818 free_extent_map(em);
2819 return ret;
2820}
2821
2822static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2823{
2824 struct btrfs_root *extent_root;
2825 struct btrfs_trans_handle *trans;
2826 int ret;
2827
2828 root = root->fs_info->chunk_root;
2829 extent_root = root->fs_info->extent_root;
2830
2831 /*
2832 * Prevent races with automatic removal of unused block groups.
2833 * After we relocate and before we remove the chunk with offset
2834 * chunk_offset, automatic removal of the block group can kick in,
2835 * resulting in a failure when calling btrfs_remove_chunk() below.
2836 *
2837 * Make sure to acquire this mutex before doing a tree search (dev
2838 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2839 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2840 * we release the path used to search the chunk/dev tree and before
2841 * the current task acquires this mutex and calls us.
2842 */
2843 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2844
2845 ret = btrfs_can_relocate(extent_root, chunk_offset);
2846 if (ret)
2847 return -ENOSPC;
2848
2849 /* step one, relocate all the extents inside this chunk */
2850 btrfs_scrub_pause(root);
2851 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2852 btrfs_scrub_continue(root);
2853 if (ret)
2854 return ret;
2855
2856 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2857 chunk_offset);
2858 if (IS_ERR(trans)) {
2859 ret = PTR_ERR(trans);
2860 btrfs_std_error(root->fs_info, ret, NULL);
2861 return ret;
2862 }
2863
2864 /*
2865 * step two, delete the device extents and the
2866 * chunk tree entries
2867 */
2868 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2869 btrfs_end_transaction(trans, root);
2870 return ret;
2871}
2872
2873static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2874{
2875 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2876 struct btrfs_path *path;
2877 struct extent_buffer *leaf;
2878 struct btrfs_chunk *chunk;
2879 struct btrfs_key key;
2880 struct btrfs_key found_key;
2881 u64 chunk_type;
2882 bool retried = false;
2883 int failed = 0;
2884 int ret;
2885
2886 path = btrfs_alloc_path();
2887 if (!path)
2888 return -ENOMEM;
2889
2890again:
2891 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2892 key.offset = (u64)-1;
2893 key.type = BTRFS_CHUNK_ITEM_KEY;
2894
2895 while (1) {
2896 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2897 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2898 if (ret < 0) {
2899 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2900 goto error;
2901 }
2902 BUG_ON(ret == 0); /* Corruption */
2903
2904 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2905 key.type);
2906 if (ret)
2907 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2908 if (ret < 0)
2909 goto error;
2910 if (ret > 0)
2911 break;
2912
2913 leaf = path->nodes[0];
2914 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2915
2916 chunk = btrfs_item_ptr(leaf, path->slots[0],
2917 struct btrfs_chunk);
2918 chunk_type = btrfs_chunk_type(leaf, chunk);
2919 btrfs_release_path(path);
2920
2921 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2922 ret = btrfs_relocate_chunk(chunk_root,
2923 found_key.offset);
2924 if (ret == -ENOSPC)
2925 failed++;
2926 else
2927 BUG_ON(ret);
2928 }
2929 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2930
2931 if (found_key.offset == 0)
2932 break;
2933 key.offset = found_key.offset - 1;
2934 }
2935 ret = 0;
2936 if (failed && !retried) {
2937 failed = 0;
2938 retried = true;
2939 goto again;
2940 } else if (WARN_ON(failed && retried)) {
2941 ret = -ENOSPC;
2942 }
2943error:
2944 btrfs_free_path(path);
2945 return ret;
2946}
2947
2948static int insert_balance_item(struct btrfs_root *root,
2949 struct btrfs_balance_control *bctl)
2950{
2951 struct btrfs_trans_handle *trans;
2952 struct btrfs_balance_item *item;
2953 struct btrfs_disk_balance_args disk_bargs;
2954 struct btrfs_path *path;
2955 struct extent_buffer *leaf;
2956 struct btrfs_key key;
2957 int ret, err;
2958
2959 path = btrfs_alloc_path();
2960 if (!path)
2961 return -ENOMEM;
2962
2963 trans = btrfs_start_transaction(root, 0);
2964 if (IS_ERR(trans)) {
2965 btrfs_free_path(path);
2966 return PTR_ERR(trans);
2967 }
2968
2969 key.objectid = BTRFS_BALANCE_OBJECTID;
2970 key.type = BTRFS_TEMPORARY_ITEM_KEY;
2971 key.offset = 0;
2972
2973 ret = btrfs_insert_empty_item(trans, root, path, &key,
2974 sizeof(*item));
2975 if (ret)
2976 goto out;
2977
2978 leaf = path->nodes[0];
2979 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2980
2981 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2982
2983 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2984 btrfs_set_balance_data(leaf, item, &disk_bargs);
2985 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2986 btrfs_set_balance_meta(leaf, item, &disk_bargs);
2987 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2988 btrfs_set_balance_sys(leaf, item, &disk_bargs);
2989
2990 btrfs_set_balance_flags(leaf, item, bctl->flags);
2991
2992 btrfs_mark_buffer_dirty(leaf);
2993out:
2994 btrfs_free_path(path);
2995 err = btrfs_commit_transaction(trans, root);
2996 if (err && !ret)
2997 ret = err;
2998 return ret;
2999}
3000
3001static int del_balance_item(struct btrfs_root *root)
3002{
3003 struct btrfs_trans_handle *trans;
3004 struct btrfs_path *path;
3005 struct btrfs_key key;
3006 int ret, err;
3007
3008 path = btrfs_alloc_path();
3009 if (!path)
3010 return -ENOMEM;
3011
3012 trans = btrfs_start_transaction(root, 0);
3013 if (IS_ERR(trans)) {
3014 btrfs_free_path(path);
3015 return PTR_ERR(trans);
3016 }
3017
3018 key.objectid = BTRFS_BALANCE_OBJECTID;
3019 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3020 key.offset = 0;
3021
3022 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3023 if (ret < 0)
3024 goto out;
3025 if (ret > 0) {
3026 ret = -ENOENT;
3027 goto out;
3028 }
3029
3030 ret = btrfs_del_item(trans, root, path);
3031out:
3032 btrfs_free_path(path);
3033 err = btrfs_commit_transaction(trans, root);
3034 if (err && !ret)
3035 ret = err;
3036 return ret;
3037}
3038
3039/*
3040 * This is a heuristic used to reduce the number of chunks balanced on
3041 * resume after balance was interrupted.
3042 */
3043static void update_balance_args(struct btrfs_balance_control *bctl)
3044{
3045 /*
3046 * Turn on soft mode for chunk types that were being converted.
3047 */
3048 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3049 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3050 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3051 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3052 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3053 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3054
3055 /*
3056 * Turn on usage filter if is not already used. The idea is
3057 * that chunks that we have already balanced should be
3058 * reasonably full. Don't do it for chunks that are being
3059 * converted - that will keep us from relocating unconverted
3060 * (albeit full) chunks.
3061 */
3062 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3063 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3064 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3065 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3066 bctl->data.usage = 90;
3067 }
3068 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3069 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3070 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3071 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3072 bctl->sys.usage = 90;
3073 }
3074 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3075 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3076 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3077 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3078 bctl->meta.usage = 90;
3079 }
3080}
3081
3082/*
3083 * Should be called with both balance and volume mutexes held to
3084 * serialize other volume operations (add_dev/rm_dev/resize) with
3085 * restriper. Same goes for unset_balance_control.
3086 */
3087static void set_balance_control(struct btrfs_balance_control *bctl)
3088{
3089 struct btrfs_fs_info *fs_info = bctl->fs_info;
3090
3091 BUG_ON(fs_info->balance_ctl);
3092
3093 spin_lock(&fs_info->balance_lock);
3094 fs_info->balance_ctl = bctl;
3095 spin_unlock(&fs_info->balance_lock);
3096}
3097
3098static void unset_balance_control(struct btrfs_fs_info *fs_info)
3099{
3100 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3101
3102 BUG_ON(!fs_info->balance_ctl);
3103
3104 spin_lock(&fs_info->balance_lock);
3105 fs_info->balance_ctl = NULL;
3106 spin_unlock(&fs_info->balance_lock);
3107
3108 kfree(bctl);
3109}
3110
3111/*
3112 * Balance filters. Return 1 if chunk should be filtered out
3113 * (should not be balanced).
3114 */
3115static int chunk_profiles_filter(u64 chunk_type,
3116 struct btrfs_balance_args *bargs)
3117{
3118 chunk_type = chunk_to_extended(chunk_type) &
3119 BTRFS_EXTENDED_PROFILE_MASK;
3120
3121 if (bargs->profiles & chunk_type)
3122 return 0;
3123
3124 return 1;
3125}
3126
3127static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3128 struct btrfs_balance_args *bargs)
3129{
3130 struct btrfs_block_group_cache *cache;
3131 u64 chunk_used;
3132 u64 user_thresh_min;
3133 u64 user_thresh_max;
3134 int ret = 1;
3135
3136 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3137 chunk_used = btrfs_block_group_used(&cache->item);
3138
3139 if (bargs->usage_min == 0)
3140 user_thresh_min = 0;
3141 else
3142 user_thresh_min = div_factor_fine(cache->key.offset,
3143 bargs->usage_min);
3144
3145 if (bargs->usage_max == 0)
3146 user_thresh_max = 1;
3147 else if (bargs->usage_max > 100)
3148 user_thresh_max = cache->key.offset;
3149 else
3150 user_thresh_max = div_factor_fine(cache->key.offset,
3151 bargs->usage_max);
3152
3153 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3154 ret = 0;
3155
3156 btrfs_put_block_group(cache);
3157 return ret;
3158}
3159
3160static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3161 u64 chunk_offset, struct btrfs_balance_args *bargs)
3162{
3163 struct btrfs_block_group_cache *cache;
3164 u64 chunk_used, user_thresh;
3165 int ret = 1;
3166
3167 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3168 chunk_used = btrfs_block_group_used(&cache->item);
3169
3170 if (bargs->usage_min == 0)
3171 user_thresh = 1;
3172 else if (bargs->usage > 100)
3173 user_thresh = cache->key.offset;
3174 else
3175 user_thresh = div_factor_fine(cache->key.offset,
3176 bargs->usage);
3177
3178 if (chunk_used < user_thresh)
3179 ret = 0;
3180
3181 btrfs_put_block_group(cache);
3182 return ret;
3183}
3184
3185static int chunk_devid_filter(struct extent_buffer *leaf,
3186 struct btrfs_chunk *chunk,
3187 struct btrfs_balance_args *bargs)
3188{
3189 struct btrfs_stripe *stripe;
3190 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3191 int i;
3192
3193 for (i = 0; i < num_stripes; i++) {
3194 stripe = btrfs_stripe_nr(chunk, i);
3195 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3196 return 0;
3197 }
3198
3199 return 1;
3200}
3201
3202/* [pstart, pend) */
3203static int chunk_drange_filter(struct extent_buffer *leaf,
3204 struct btrfs_chunk *chunk,
3205 u64 chunk_offset,
3206 struct btrfs_balance_args *bargs)
3207{
3208 struct btrfs_stripe *stripe;
3209 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3210 u64 stripe_offset;
3211 u64 stripe_length;
3212 int factor;
3213 int i;
3214
3215 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3216 return 0;
3217
3218 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3219 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3220 factor = num_stripes / 2;
3221 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3222 factor = num_stripes - 1;
3223 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3224 factor = num_stripes - 2;
3225 } else {
3226 factor = num_stripes;
3227 }
3228
3229 for (i = 0; i < num_stripes; i++) {
3230 stripe = btrfs_stripe_nr(chunk, i);
3231 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3232 continue;
3233
3234 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3235 stripe_length = btrfs_chunk_length(leaf, chunk);
3236 stripe_length = div_u64(stripe_length, factor);
3237
3238 if (stripe_offset < bargs->pend &&
3239 stripe_offset + stripe_length > bargs->pstart)
3240 return 0;
3241 }
3242
3243 return 1;
3244}
3245
3246/* [vstart, vend) */
3247static int chunk_vrange_filter(struct extent_buffer *leaf,
3248 struct btrfs_chunk *chunk,
3249 u64 chunk_offset,
3250 struct btrfs_balance_args *bargs)
3251{
3252 if (chunk_offset < bargs->vend &&
3253 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3254 /* at least part of the chunk is inside this vrange */
3255 return 0;
3256
3257 return 1;
3258}
3259
3260static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3261 struct btrfs_chunk *chunk,
3262 struct btrfs_balance_args *bargs)
3263{
3264 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3265
3266 if (bargs->stripes_min <= num_stripes
3267 && num_stripes <= bargs->stripes_max)
3268 return 0;
3269
3270 return 1;
3271}
3272
3273static int chunk_soft_convert_filter(u64 chunk_type,
3274 struct btrfs_balance_args *bargs)
3275{
3276 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3277 return 0;
3278
3279 chunk_type = chunk_to_extended(chunk_type) &
3280 BTRFS_EXTENDED_PROFILE_MASK;
3281
3282 if (bargs->target == chunk_type)
3283 return 1;
3284
3285 return 0;
3286}
3287
3288static int should_balance_chunk(struct btrfs_root *root,
3289 struct extent_buffer *leaf,
3290 struct btrfs_chunk *chunk, u64 chunk_offset)
3291{
3292 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3293 struct btrfs_balance_args *bargs = NULL;
3294 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3295
3296 /* type filter */
3297 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3298 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3299 return 0;
3300 }
3301
3302 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3303 bargs = &bctl->data;
3304 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3305 bargs = &bctl->sys;
3306 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3307 bargs = &bctl->meta;
3308
3309 /* profiles filter */
3310 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3311 chunk_profiles_filter(chunk_type, bargs)) {
3312 return 0;
3313 }
3314
3315 /* usage filter */
3316 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3317 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3318 return 0;
3319 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3320 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3321 return 0;
3322 }
3323
3324 /* devid filter */
3325 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3326 chunk_devid_filter(leaf, chunk, bargs)) {
3327 return 0;
3328 }
3329
3330 /* drange filter, makes sense only with devid filter */
3331 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3332 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3333 return 0;
3334 }
3335
3336 /* vrange filter */
3337 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3338 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3339 return 0;
3340 }
3341
3342 /* stripes filter */
3343 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3344 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3345 return 0;
3346 }
3347
3348 /* soft profile changing mode */
3349 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3350 chunk_soft_convert_filter(chunk_type, bargs)) {
3351 return 0;
3352 }
3353
3354 /*
3355 * limited by count, must be the last filter
3356 */
3357 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3358 if (bargs->limit == 0)
3359 return 0;
3360 else
3361 bargs->limit--;
3362 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3363 /*
3364 * Same logic as the 'limit' filter; the minimum cannot be
3365 * determined here because we do not have the global informatoin
3366 * about the count of all chunks that satisfy the filters.
3367 */
3368 if (bargs->limit_max == 0)
3369 return 0;
3370 else
3371 bargs->limit_max--;
3372 }
3373
3374 return 1;
3375}
3376
3377static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3378{
3379 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3380 struct btrfs_root *chunk_root = fs_info->chunk_root;
3381 struct btrfs_root *dev_root = fs_info->dev_root;
3382 struct list_head *devices;
3383 struct btrfs_device *device;
3384 u64 old_size;
3385 u64 size_to_free;
3386 u64 chunk_type;
3387 struct btrfs_chunk *chunk;
3388 struct btrfs_path *path;
3389 struct btrfs_key key;
3390 struct btrfs_key found_key;
3391 struct btrfs_trans_handle *trans;
3392 struct extent_buffer *leaf;
3393 int slot;
3394 int ret;
3395 int enospc_errors = 0;
3396 bool counting = true;
3397 /* The single value limit and min/max limits use the same bytes in the */
3398 u64 limit_data = bctl->data.limit;
3399 u64 limit_meta = bctl->meta.limit;
3400 u64 limit_sys = bctl->sys.limit;
3401 u32 count_data = 0;
3402 u32 count_meta = 0;
3403 u32 count_sys = 0;
3404 int chunk_reserved = 0;
3405
3406 /* step one make some room on all the devices */
3407 devices = &fs_info->fs_devices->devices;
3408 list_for_each_entry(device, devices, dev_list) {
3409 old_size = btrfs_device_get_total_bytes(device);
3410 size_to_free = div_factor(old_size, 1);
3411 size_to_free = min_t(u64, size_to_free, SZ_1M);
3412 if (!device->writeable ||
3413 btrfs_device_get_total_bytes(device) -
3414 btrfs_device_get_bytes_used(device) > size_to_free ||
3415 device->is_tgtdev_for_dev_replace)
3416 continue;
3417
3418 ret = btrfs_shrink_device(device, old_size - size_to_free);
3419 if (ret == -ENOSPC)
3420 break;
3421 BUG_ON(ret);
3422
3423 trans = btrfs_start_transaction(dev_root, 0);
3424 BUG_ON(IS_ERR(trans));
3425
3426 ret = btrfs_grow_device(trans, device, old_size);
3427 BUG_ON(ret);
3428
3429 btrfs_end_transaction(trans, dev_root);
3430 }
3431
3432 /* step two, relocate all the chunks */
3433 path = btrfs_alloc_path();
3434 if (!path) {
3435 ret = -ENOMEM;
3436 goto error;
3437 }
3438
3439 /* zero out stat counters */
3440 spin_lock(&fs_info->balance_lock);
3441 memset(&bctl->stat, 0, sizeof(bctl->stat));
3442 spin_unlock(&fs_info->balance_lock);
3443again:
3444 if (!counting) {
3445 /*
3446 * The single value limit and min/max limits use the same bytes
3447 * in the
3448 */
3449 bctl->data.limit = limit_data;
3450 bctl->meta.limit = limit_meta;
3451 bctl->sys.limit = limit_sys;
3452 }
3453 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3454 key.offset = (u64)-1;
3455 key.type = BTRFS_CHUNK_ITEM_KEY;
3456
3457 while (1) {
3458 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3459 atomic_read(&fs_info->balance_cancel_req)) {
3460 ret = -ECANCELED;
3461 goto error;
3462 }
3463
3464 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3465 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3466 if (ret < 0) {
3467 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3468 goto error;
3469 }
3470
3471 /*
3472 * this shouldn't happen, it means the last relocate
3473 * failed
3474 */
3475 if (ret == 0)
3476 BUG(); /* FIXME break ? */
3477
3478 ret = btrfs_previous_item(chunk_root, path, 0,
3479 BTRFS_CHUNK_ITEM_KEY);
3480 if (ret) {
3481 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3482 ret = 0;
3483 break;
3484 }
3485
3486 leaf = path->nodes[0];
3487 slot = path->slots[0];
3488 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3489
3490 if (found_key.objectid != key.objectid) {
3491 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3492 break;
3493 }
3494
3495 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3496 chunk_type = btrfs_chunk_type(leaf, chunk);
3497
3498 if (!counting) {
3499 spin_lock(&fs_info->balance_lock);
3500 bctl->stat.considered++;
3501 spin_unlock(&fs_info->balance_lock);
3502 }
3503
3504 ret = should_balance_chunk(chunk_root, leaf, chunk,
3505 found_key.offset);
3506
3507 btrfs_release_path(path);
3508 if (!ret) {
3509 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3510 goto loop;
3511 }
3512
3513 if (counting) {
3514 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3515 spin_lock(&fs_info->balance_lock);
3516 bctl->stat.expected++;
3517 spin_unlock(&fs_info->balance_lock);
3518
3519 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3520 count_data++;
3521 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3522 count_sys++;
3523 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3524 count_meta++;
3525
3526 goto loop;
3527 }
3528
3529 /*
3530 * Apply limit_min filter, no need to check if the LIMITS
3531 * filter is used, limit_min is 0 by default
3532 */
3533 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3534 count_data < bctl->data.limit_min)
3535 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3536 count_meta < bctl->meta.limit_min)
3537 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3538 count_sys < bctl->sys.limit_min)) {
3539 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3540 goto loop;
3541 }
3542
3543 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) && !chunk_reserved) {
3544 trans = btrfs_start_transaction(chunk_root, 0);
3545 if (IS_ERR(trans)) {
3546 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3547 ret = PTR_ERR(trans);
3548 goto error;
3549 }
3550
3551 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3552 BTRFS_BLOCK_GROUP_DATA);
3553 btrfs_end_transaction(trans, chunk_root);
3554 if (ret < 0) {
3555 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3556 goto error;
3557 }
3558 chunk_reserved = 1;
3559 }
3560
3561 ret = btrfs_relocate_chunk(chunk_root,
3562 found_key.offset);
3563 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3564 if (ret && ret != -ENOSPC)
3565 goto error;
3566 if (ret == -ENOSPC) {
3567 enospc_errors++;
3568 } else {
3569 spin_lock(&fs_info->balance_lock);
3570 bctl->stat.completed++;
3571 spin_unlock(&fs_info->balance_lock);
3572 }
3573loop:
3574 if (found_key.offset == 0)
3575 break;
3576 key.offset = found_key.offset - 1;
3577 }
3578
3579 if (counting) {
3580 btrfs_release_path(path);
3581 counting = false;
3582 goto again;
3583 }
3584error:
3585 btrfs_free_path(path);
3586 if (enospc_errors) {
3587 btrfs_info(fs_info, "%d enospc errors during balance",
3588 enospc_errors);
3589 if (!ret)
3590 ret = -ENOSPC;
3591 }
3592
3593 return ret;
3594}
3595
3596/**
3597 * alloc_profile_is_valid - see if a given profile is valid and reduced
3598 * @flags: profile to validate
3599 * @extended: if true @flags is treated as an extended profile
3600 */
3601static int alloc_profile_is_valid(u64 flags, int extended)
3602{
3603 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3604 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3605
3606 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3607
3608 /* 1) check that all other bits are zeroed */
3609 if (flags & ~mask)
3610 return 0;
3611
3612 /* 2) see if profile is reduced */
3613 if (flags == 0)
3614 return !extended; /* "0" is valid for usual profiles */
3615
3616 /* true if exactly one bit set */
3617 return (flags & (flags - 1)) == 0;
3618}
3619
3620static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3621{
3622 /* cancel requested || normal exit path */
3623 return atomic_read(&fs_info->balance_cancel_req) ||
3624 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3625 atomic_read(&fs_info->balance_cancel_req) == 0);
3626}
3627
3628static void __cancel_balance(struct btrfs_fs_info *fs_info)
3629{
3630 int ret;
3631
3632 unset_balance_control(fs_info);
3633 ret = del_balance_item(fs_info->tree_root);
3634 if (ret)
3635 btrfs_std_error(fs_info, ret, NULL);
3636
3637 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3638}
3639
3640/* Non-zero return value signifies invalidity */
3641static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3642 u64 allowed)
3643{
3644 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3645 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3646 (bctl_arg->target & ~allowed)));
3647}
3648
3649/*
3650 * Should be called with both balance and volume mutexes held
3651 */
3652int btrfs_balance(struct btrfs_balance_control *bctl,
3653 struct btrfs_ioctl_balance_args *bargs)
3654{
3655 struct btrfs_fs_info *fs_info = bctl->fs_info;
3656 u64 allowed;
3657 int mixed = 0;
3658 int ret;
3659 u64 num_devices;
3660 unsigned seq;
3661
3662 if (btrfs_fs_closing(fs_info) ||
3663 atomic_read(&fs_info->balance_pause_req) ||
3664 atomic_read(&fs_info->balance_cancel_req)) {
3665 ret = -EINVAL;
3666 goto out;
3667 }
3668
3669 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3670 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3671 mixed = 1;
3672
3673 /*
3674 * In case of mixed groups both data and meta should be picked,
3675 * and identical options should be given for both of them.
3676 */
3677 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3678 if (mixed && (bctl->flags & allowed)) {
3679 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3680 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3681 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3682 btrfs_err(fs_info, "with mixed groups data and "
3683 "metadata balance options must be the same");
3684 ret = -EINVAL;
3685 goto out;
3686 }
3687 }
3688
3689 num_devices = fs_info->fs_devices->num_devices;
3690 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3691 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3692 BUG_ON(num_devices < 1);
3693 num_devices--;
3694 }
3695 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3696 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3697 if (num_devices == 1)
3698 allowed |= BTRFS_BLOCK_GROUP_DUP;
3699 else if (num_devices > 1)
3700 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3701 if (num_devices > 2)
3702 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3703 if (num_devices > 3)
3704 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3705 BTRFS_BLOCK_GROUP_RAID6);
3706 if (validate_convert_profile(&bctl->data, allowed)) {
3707 btrfs_err(fs_info, "unable to start balance with target "
3708 "data profile %llu",
3709 bctl->data.target);
3710 ret = -EINVAL;
3711 goto out;
3712 }
3713 if (validate_convert_profile(&bctl->meta, allowed)) {
3714 btrfs_err(fs_info,
3715 "unable to start balance with target metadata profile %llu",
3716 bctl->meta.target);
3717 ret = -EINVAL;
3718 goto out;
3719 }
3720 if (validate_convert_profile(&bctl->sys, allowed)) {
3721 btrfs_err(fs_info,
3722 "unable to start balance with target system profile %llu",
3723 bctl->sys.target);
3724 ret = -EINVAL;
3725 goto out;
3726 }
3727
3728 /* allow to reduce meta or sys integrity only if force set */
3729 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3730 BTRFS_BLOCK_GROUP_RAID10 |
3731 BTRFS_BLOCK_GROUP_RAID5 |
3732 BTRFS_BLOCK_GROUP_RAID6;
3733 do {
3734 seq = read_seqbegin(&fs_info->profiles_lock);
3735
3736 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3737 (fs_info->avail_system_alloc_bits & allowed) &&
3738 !(bctl->sys.target & allowed)) ||
3739 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3740 (fs_info->avail_metadata_alloc_bits & allowed) &&
3741 !(bctl->meta.target & allowed))) {
3742 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3743 btrfs_info(fs_info, "force reducing metadata integrity");
3744 } else {
3745 btrfs_err(fs_info, "balance will reduce metadata "
3746 "integrity, use force if you want this");
3747 ret = -EINVAL;
3748 goto out;
3749 }
3750 }
3751 } while (read_seqretry(&fs_info->profiles_lock, seq));
3752
3753 if (btrfs_get_num_tolerated_disk_barrier_failures(bctl->meta.target) <
3754 btrfs_get_num_tolerated_disk_barrier_failures(bctl->data.target)) {
3755 btrfs_warn(fs_info,
3756 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3757 bctl->meta.target, bctl->data.target);
3758 }
3759
3760 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3761 fs_info->num_tolerated_disk_barrier_failures = min(
3762 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3763 btrfs_get_num_tolerated_disk_barrier_failures(
3764 bctl->sys.target));
3765 }
3766
3767 ret = insert_balance_item(fs_info->tree_root, bctl);
3768 if (ret && ret != -EEXIST)
3769 goto out;
3770
3771 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3772 BUG_ON(ret == -EEXIST);
3773 set_balance_control(bctl);
3774 } else {
3775 BUG_ON(ret != -EEXIST);
3776 spin_lock(&fs_info->balance_lock);
3777 update_balance_args(bctl);
3778 spin_unlock(&fs_info->balance_lock);
3779 }
3780
3781 atomic_inc(&fs_info->balance_running);
3782 mutex_unlock(&fs_info->balance_mutex);
3783
3784 ret = __btrfs_balance(fs_info);
3785
3786 mutex_lock(&fs_info->balance_mutex);
3787 atomic_dec(&fs_info->balance_running);
3788
3789 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3790 fs_info->num_tolerated_disk_barrier_failures =
3791 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3792 }
3793
3794 if (bargs) {
3795 memset(bargs, 0, sizeof(*bargs));
3796 update_ioctl_balance_args(fs_info, 0, bargs);
3797 }
3798
3799 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3800 balance_need_close(fs_info)) {
3801 __cancel_balance(fs_info);
3802 }
3803
3804 wake_up(&fs_info->balance_wait_q);
3805
3806 return ret;
3807out:
3808 if (bctl->flags & BTRFS_BALANCE_RESUME)
3809 __cancel_balance(fs_info);
3810 else {
3811 kfree(bctl);
3812 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3813 }
3814 return ret;
3815}
3816
3817static int balance_kthread(void *data)
3818{
3819 struct btrfs_fs_info *fs_info = data;
3820 int ret = 0;
3821
3822 mutex_lock(&fs_info->volume_mutex);
3823 mutex_lock(&fs_info->balance_mutex);
3824
3825 if (fs_info->balance_ctl) {
3826 btrfs_info(fs_info, "continuing balance");
3827 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3828 }
3829
3830 mutex_unlock(&fs_info->balance_mutex);
3831 mutex_unlock(&fs_info->volume_mutex);
3832
3833 return ret;
3834}
3835
3836int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3837{
3838 struct task_struct *tsk;
3839
3840 spin_lock(&fs_info->balance_lock);
3841 if (!fs_info->balance_ctl) {
3842 spin_unlock(&fs_info->balance_lock);
3843 return 0;
3844 }
3845 spin_unlock(&fs_info->balance_lock);
3846
3847 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3848 btrfs_info(fs_info, "force skipping balance");
3849 return 0;
3850 }
3851
3852 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3853 return PTR_ERR_OR_ZERO(tsk);
3854}
3855
3856int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3857{
3858 struct btrfs_balance_control *bctl;
3859 struct btrfs_balance_item *item;
3860 struct btrfs_disk_balance_args disk_bargs;
3861 struct btrfs_path *path;
3862 struct extent_buffer *leaf;
3863 struct btrfs_key key;
3864 int ret;
3865
3866 path = btrfs_alloc_path();
3867 if (!path)
3868 return -ENOMEM;
3869
3870 key.objectid = BTRFS_BALANCE_OBJECTID;
3871 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3872 key.offset = 0;
3873
3874 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3875 if (ret < 0)
3876 goto out;
3877 if (ret > 0) { /* ret = -ENOENT; */
3878 ret = 0;
3879 goto out;
3880 }
3881
3882 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3883 if (!bctl) {
3884 ret = -ENOMEM;
3885 goto out;
3886 }
3887
3888 leaf = path->nodes[0];
3889 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3890
3891 bctl->fs_info = fs_info;
3892 bctl->flags = btrfs_balance_flags(leaf, item);
3893 bctl->flags |= BTRFS_BALANCE_RESUME;
3894
3895 btrfs_balance_data(leaf, item, &disk_bargs);
3896 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3897 btrfs_balance_meta(leaf, item, &disk_bargs);
3898 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3899 btrfs_balance_sys(leaf, item, &disk_bargs);
3900 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3901
3902 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3903
3904 mutex_lock(&fs_info->volume_mutex);
3905 mutex_lock(&fs_info->balance_mutex);
3906
3907 set_balance_control(bctl);
3908
3909 mutex_unlock(&fs_info->balance_mutex);
3910 mutex_unlock(&fs_info->volume_mutex);
3911out:
3912 btrfs_free_path(path);
3913 return ret;
3914}
3915
3916int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3917{
3918 int ret = 0;
3919
3920 mutex_lock(&fs_info->balance_mutex);
3921 if (!fs_info->balance_ctl) {
3922 mutex_unlock(&fs_info->balance_mutex);
3923 return -ENOTCONN;
3924 }
3925
3926 if (atomic_read(&fs_info->balance_running)) {
3927 atomic_inc(&fs_info->balance_pause_req);
3928 mutex_unlock(&fs_info->balance_mutex);
3929
3930 wait_event(fs_info->balance_wait_q,
3931 atomic_read(&fs_info->balance_running) == 0);
3932
3933 mutex_lock(&fs_info->balance_mutex);
3934 /* we are good with balance_ctl ripped off from under us */
3935 BUG_ON(atomic_read(&fs_info->balance_running));
3936 atomic_dec(&fs_info->balance_pause_req);
3937 } else {
3938 ret = -ENOTCONN;
3939 }
3940
3941 mutex_unlock(&fs_info->balance_mutex);
3942 return ret;
3943}
3944
3945int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3946{
3947 if (fs_info->sb->s_flags & MS_RDONLY)
3948 return -EROFS;
3949
3950 mutex_lock(&fs_info->balance_mutex);
3951 if (!fs_info->balance_ctl) {
3952 mutex_unlock(&fs_info->balance_mutex);
3953 return -ENOTCONN;
3954 }
3955
3956 atomic_inc(&fs_info->balance_cancel_req);
3957 /*
3958 * if we are running just wait and return, balance item is
3959 * deleted in btrfs_balance in this case
3960 */
3961 if (atomic_read(&fs_info->balance_running)) {
3962 mutex_unlock(&fs_info->balance_mutex);
3963 wait_event(fs_info->balance_wait_q,
3964 atomic_read(&fs_info->balance_running) == 0);
3965 mutex_lock(&fs_info->balance_mutex);
3966 } else {
3967 /* __cancel_balance needs volume_mutex */
3968 mutex_unlock(&fs_info->balance_mutex);
3969 mutex_lock(&fs_info->volume_mutex);
3970 mutex_lock(&fs_info->balance_mutex);
3971
3972 if (fs_info->balance_ctl)
3973 __cancel_balance(fs_info);
3974
3975 mutex_unlock(&fs_info->volume_mutex);
3976 }
3977
3978 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3979 atomic_dec(&fs_info->balance_cancel_req);
3980 mutex_unlock(&fs_info->balance_mutex);
3981 return 0;
3982}
3983
3984static int btrfs_uuid_scan_kthread(void *data)
3985{
3986 struct btrfs_fs_info *fs_info = data;
3987 struct btrfs_root *root = fs_info->tree_root;
3988 struct btrfs_key key;
3989 struct btrfs_key max_key;
3990 struct btrfs_path *path = NULL;
3991 int ret = 0;
3992 struct extent_buffer *eb;
3993 int slot;
3994 struct btrfs_root_item root_item;
3995 u32 item_size;
3996 struct btrfs_trans_handle *trans = NULL;
3997
3998 path = btrfs_alloc_path();
3999 if (!path) {
4000 ret = -ENOMEM;
4001 goto out;
4002 }
4003
4004 key.objectid = 0;
4005 key.type = BTRFS_ROOT_ITEM_KEY;
4006 key.offset = 0;
4007
4008 max_key.objectid = (u64)-1;
4009 max_key.type = BTRFS_ROOT_ITEM_KEY;
4010 max_key.offset = (u64)-1;
4011
4012 while (1) {
4013 ret = btrfs_search_forward(root, &key, path, 0);
4014 if (ret) {
4015 if (ret > 0)
4016 ret = 0;
4017 break;
4018 }
4019
4020 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4021 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4022 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4023 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4024 goto skip;
4025
4026 eb = path->nodes[0];
4027 slot = path->slots[0];
4028 item_size = btrfs_item_size_nr(eb, slot);
4029 if (item_size < sizeof(root_item))
4030 goto skip;
4031
4032 read_extent_buffer(eb, &root_item,
4033 btrfs_item_ptr_offset(eb, slot),
4034 (int)sizeof(root_item));
4035 if (btrfs_root_refs(&root_item) == 0)
4036 goto skip;
4037
4038 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4039 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4040 if (trans)
4041 goto update_tree;
4042
4043 btrfs_release_path(path);
4044 /*
4045 * 1 - subvol uuid item
4046 * 1 - received_subvol uuid item
4047 */
4048 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4049 if (IS_ERR(trans)) {
4050 ret = PTR_ERR(trans);
4051 break;
4052 }
4053 continue;
4054 } else {
4055 goto skip;
4056 }
4057update_tree:
4058 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4059 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4060 root_item.uuid,
4061 BTRFS_UUID_KEY_SUBVOL,
4062 key.objectid);
4063 if (ret < 0) {
4064 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4065 ret);
4066 break;
4067 }
4068 }
4069
4070 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4071 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4072 root_item.received_uuid,
4073 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4074 key.objectid);
4075 if (ret < 0) {
4076 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4077 ret);
4078 break;
4079 }
4080 }
4081
4082skip:
4083 if (trans) {
4084 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4085 trans = NULL;
4086 if (ret)
4087 break;
4088 }
4089
4090 btrfs_release_path(path);
4091 if (key.offset < (u64)-1) {
4092 key.offset++;
4093 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4094 key.offset = 0;
4095 key.type = BTRFS_ROOT_ITEM_KEY;
4096 } else if (key.objectid < (u64)-1) {
4097 key.offset = 0;
4098 key.type = BTRFS_ROOT_ITEM_KEY;
4099 key.objectid++;
4100 } else {
4101 break;
4102 }
4103 cond_resched();
4104 }
4105
4106out:
4107 btrfs_free_path(path);
4108 if (trans && !IS_ERR(trans))
4109 btrfs_end_transaction(trans, fs_info->uuid_root);
4110 if (ret)
4111 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4112 else
4113 fs_info->update_uuid_tree_gen = 1;
4114 up(&fs_info->uuid_tree_rescan_sem);
4115 return 0;
4116}
4117
4118/*
4119 * Callback for btrfs_uuid_tree_iterate().
4120 * returns:
4121 * 0 check succeeded, the entry is not outdated.
4122 * < 0 if an error occurred.
4123 * > 0 if the check failed, which means the caller shall remove the entry.
4124 */
4125static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4126 u8 *uuid, u8 type, u64 subid)
4127{
4128 struct btrfs_key key;
4129 int ret = 0;
4130 struct btrfs_root *subvol_root;
4131
4132 if (type != BTRFS_UUID_KEY_SUBVOL &&
4133 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4134 goto out;
4135
4136 key.objectid = subid;
4137 key.type = BTRFS_ROOT_ITEM_KEY;
4138 key.offset = (u64)-1;
4139 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4140 if (IS_ERR(subvol_root)) {
4141 ret = PTR_ERR(subvol_root);
4142 if (ret == -ENOENT)
4143 ret = 1;
4144 goto out;
4145 }
4146
4147 switch (type) {
4148 case BTRFS_UUID_KEY_SUBVOL:
4149 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4150 ret = 1;
4151 break;
4152 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4153 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4154 BTRFS_UUID_SIZE))
4155 ret = 1;
4156 break;
4157 }
4158
4159out:
4160 return ret;
4161}
4162
4163static int btrfs_uuid_rescan_kthread(void *data)
4164{
4165 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4166 int ret;
4167
4168 /*
4169 * 1st step is to iterate through the existing UUID tree and
4170 * to delete all entries that contain outdated data.
4171 * 2nd step is to add all missing entries to the UUID tree.
4172 */
4173 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4174 if (ret < 0) {
4175 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4176 up(&fs_info->uuid_tree_rescan_sem);
4177 return ret;
4178 }
4179 return btrfs_uuid_scan_kthread(data);
4180}
4181
4182int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4183{
4184 struct btrfs_trans_handle *trans;
4185 struct btrfs_root *tree_root = fs_info->tree_root;
4186 struct btrfs_root *uuid_root;
4187 struct task_struct *task;
4188 int ret;
4189
4190 /*
4191 * 1 - root node
4192 * 1 - root item
4193 */
4194 trans = btrfs_start_transaction(tree_root, 2);
4195 if (IS_ERR(trans))
4196 return PTR_ERR(trans);
4197
4198 uuid_root = btrfs_create_tree(trans, fs_info,
4199 BTRFS_UUID_TREE_OBJECTID);
4200 if (IS_ERR(uuid_root)) {
4201 ret = PTR_ERR(uuid_root);
4202 btrfs_abort_transaction(trans, tree_root, ret);
4203 return ret;
4204 }
4205
4206 fs_info->uuid_root = uuid_root;
4207
4208 ret = btrfs_commit_transaction(trans, tree_root);
4209 if (ret)
4210 return ret;
4211
4212 down(&fs_info->uuid_tree_rescan_sem);
4213 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4214 if (IS_ERR(task)) {
4215 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4216 btrfs_warn(fs_info, "failed to start uuid_scan task");
4217 up(&fs_info->uuid_tree_rescan_sem);
4218 return PTR_ERR(task);
4219 }
4220
4221 return 0;
4222}
4223
4224int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4225{
4226 struct task_struct *task;
4227
4228 down(&fs_info->uuid_tree_rescan_sem);
4229 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4230 if (IS_ERR(task)) {
4231 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4232 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4233 up(&fs_info->uuid_tree_rescan_sem);
4234 return PTR_ERR(task);
4235 }
4236
4237 return 0;
4238}
4239
4240/*
4241 * shrinking a device means finding all of the device extents past
4242 * the new size, and then following the back refs to the chunks.
4243 * The chunk relocation code actually frees the device extent
4244 */
4245int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4246{
4247 struct btrfs_trans_handle *trans;
4248 struct btrfs_root *root = device->dev_root;
4249 struct btrfs_dev_extent *dev_extent = NULL;
4250 struct btrfs_path *path;
4251 u64 length;
4252 u64 chunk_offset;
4253 int ret;
4254 int slot;
4255 int failed = 0;
4256 bool retried = false;
4257 bool checked_pending_chunks = false;
4258 struct extent_buffer *l;
4259 struct btrfs_key key;
4260 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4261 u64 old_total = btrfs_super_total_bytes(super_copy);
4262 u64 old_size = btrfs_device_get_total_bytes(device);
4263 u64 diff = old_size - new_size;
4264
4265 if (device->is_tgtdev_for_dev_replace)
4266 return -EINVAL;
4267
4268 path = btrfs_alloc_path();
4269 if (!path)
4270 return -ENOMEM;
4271
4272 path->reada = READA_FORWARD;
4273
4274 lock_chunks(root);
4275
4276 btrfs_device_set_total_bytes(device, new_size);
4277 if (device->writeable) {
4278 device->fs_devices->total_rw_bytes -= diff;
4279 spin_lock(&root->fs_info->free_chunk_lock);
4280 root->fs_info->free_chunk_space -= diff;
4281 spin_unlock(&root->fs_info->free_chunk_lock);
4282 }
4283 unlock_chunks(root);
4284
4285again:
4286 key.objectid = device->devid;
4287 key.offset = (u64)-1;
4288 key.type = BTRFS_DEV_EXTENT_KEY;
4289
4290 do {
4291 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4292 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4293 if (ret < 0) {
4294 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4295 goto done;
4296 }
4297
4298 ret = btrfs_previous_item(root, path, 0, key.type);
4299 if (ret)
4300 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4301 if (ret < 0)
4302 goto done;
4303 if (ret) {
4304 ret = 0;
4305 btrfs_release_path(path);
4306 break;
4307 }
4308
4309 l = path->nodes[0];
4310 slot = path->slots[0];
4311 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4312
4313 if (key.objectid != device->devid) {
4314 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4315 btrfs_release_path(path);
4316 break;
4317 }
4318
4319 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4320 length = btrfs_dev_extent_length(l, dev_extent);
4321
4322 if (key.offset + length <= new_size) {
4323 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4324 btrfs_release_path(path);
4325 break;
4326 }
4327
4328 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4329 btrfs_release_path(path);
4330
4331 ret = btrfs_relocate_chunk(root, chunk_offset);
4332 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4333 if (ret && ret != -ENOSPC)
4334 goto done;
4335 if (ret == -ENOSPC)
4336 failed++;
4337 } while (key.offset-- > 0);
4338
4339 if (failed && !retried) {
4340 failed = 0;
4341 retried = true;
4342 goto again;
4343 } else if (failed && retried) {
4344 ret = -ENOSPC;
4345 goto done;
4346 }
4347
4348 /* Shrinking succeeded, else we would be at "done". */
4349 trans = btrfs_start_transaction(root, 0);
4350 if (IS_ERR(trans)) {
4351 ret = PTR_ERR(trans);
4352 goto done;
4353 }
4354
4355 lock_chunks(root);
4356
4357 /*
4358 * We checked in the above loop all device extents that were already in
4359 * the device tree. However before we have updated the device's
4360 * total_bytes to the new size, we might have had chunk allocations that
4361 * have not complete yet (new block groups attached to transaction
4362 * handles), and therefore their device extents were not yet in the
4363 * device tree and we missed them in the loop above. So if we have any
4364 * pending chunk using a device extent that overlaps the device range
4365 * that we can not use anymore, commit the current transaction and
4366 * repeat the search on the device tree - this way we guarantee we will
4367 * not have chunks using device extents that end beyond 'new_size'.
4368 */
4369 if (!checked_pending_chunks) {
4370 u64 start = new_size;
4371 u64 len = old_size - new_size;
4372
4373 if (contains_pending_extent(trans->transaction, device,
4374 &start, len)) {
4375 unlock_chunks(root);
4376 checked_pending_chunks = true;
4377 failed = 0;
4378 retried = false;
4379 ret = btrfs_commit_transaction(trans, root);
4380 if (ret)
4381 goto done;
4382 goto again;
4383 }
4384 }
4385
4386 btrfs_device_set_disk_total_bytes(device, new_size);
4387 if (list_empty(&device->resized_list))
4388 list_add_tail(&device->resized_list,
4389 &root->fs_info->fs_devices->resized_devices);
4390
4391 WARN_ON(diff > old_total);
4392 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4393 unlock_chunks(root);
4394
4395 /* Now btrfs_update_device() will change the on-disk size. */
4396 ret = btrfs_update_device(trans, device);
4397 btrfs_end_transaction(trans, root);
4398done:
4399 btrfs_free_path(path);
4400 if (ret) {
4401 lock_chunks(root);
4402 btrfs_device_set_total_bytes(device, old_size);
4403 if (device->writeable)
4404 device->fs_devices->total_rw_bytes += diff;
4405 spin_lock(&root->fs_info->free_chunk_lock);
4406 root->fs_info->free_chunk_space += diff;
4407 spin_unlock(&root->fs_info->free_chunk_lock);
4408 unlock_chunks(root);
4409 }
4410 return ret;
4411}
4412
4413static int btrfs_add_system_chunk(struct btrfs_root *root,
4414 struct btrfs_key *key,
4415 struct btrfs_chunk *chunk, int item_size)
4416{
4417 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4418 struct btrfs_disk_key disk_key;
4419 u32 array_size;
4420 u8 *ptr;
4421
4422 lock_chunks(root);
4423 array_size = btrfs_super_sys_array_size(super_copy);
4424 if (array_size + item_size + sizeof(disk_key)
4425 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4426 unlock_chunks(root);
4427 return -EFBIG;
4428 }
4429
4430 ptr = super_copy->sys_chunk_array + array_size;
4431 btrfs_cpu_key_to_disk(&disk_key, key);
4432 memcpy(ptr, &disk_key, sizeof(disk_key));
4433 ptr += sizeof(disk_key);
4434 memcpy(ptr, chunk, item_size);
4435 item_size += sizeof(disk_key);
4436 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4437 unlock_chunks(root);
4438
4439 return 0;
4440}
4441
4442/*
4443 * sort the devices in descending order by max_avail, total_avail
4444 */
4445static int btrfs_cmp_device_info(const void *a, const void *b)
4446{
4447 const struct btrfs_device_info *di_a = a;
4448 const struct btrfs_device_info *di_b = b;
4449
4450 if (di_a->max_avail > di_b->max_avail)
4451 return -1;
4452 if (di_a->max_avail < di_b->max_avail)
4453 return 1;
4454 if (di_a->total_avail > di_b->total_avail)
4455 return -1;
4456 if (di_a->total_avail < di_b->total_avail)
4457 return 1;
4458 return 0;
4459}
4460
4461static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4462{
4463 /* TODO allow them to set a preferred stripe size */
4464 return SZ_64K;
4465}
4466
4467static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4468{
4469 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4470 return;
4471
4472 btrfs_set_fs_incompat(info, RAID56);
4473}
4474
4475#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
4476 - sizeof(struct btrfs_item) \
4477 - sizeof(struct btrfs_chunk)) \
4478 / sizeof(struct btrfs_stripe) + 1)
4479
4480#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4481 - 2 * sizeof(struct btrfs_disk_key) \
4482 - 2 * sizeof(struct btrfs_chunk)) \
4483 / sizeof(struct btrfs_stripe) + 1)
4484
4485static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4486 struct btrfs_root *extent_root, u64 start,
4487 u64 type)
4488{
4489 struct btrfs_fs_info *info = extent_root->fs_info;
4490 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4491 struct list_head *cur;
4492 struct map_lookup *map = NULL;
4493 struct extent_map_tree *em_tree;
4494 struct extent_map *em;
4495 struct btrfs_device_info *devices_info = NULL;
4496 u64 total_avail;
4497 int num_stripes; /* total number of stripes to allocate */
4498 int data_stripes; /* number of stripes that count for
4499 block group size */
4500 int sub_stripes; /* sub_stripes info for map */
4501 int dev_stripes; /* stripes per dev */
4502 int devs_max; /* max devs to use */
4503 int devs_min; /* min devs needed */
4504 int devs_increment; /* ndevs has to be a multiple of this */
4505 int ncopies; /* how many copies to data has */
4506 int ret;
4507 u64 max_stripe_size;
4508 u64 max_chunk_size;
4509 u64 stripe_size;
4510 u64 num_bytes;
4511 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4512 int ndevs;
4513 int i;
4514 int j;
4515 int index;
4516
4517 BUG_ON(!alloc_profile_is_valid(type, 0));
4518
4519 if (list_empty(&fs_devices->alloc_list))
4520 return -ENOSPC;
4521
4522 index = __get_raid_index(type);
4523
4524 sub_stripes = btrfs_raid_array[index].sub_stripes;
4525 dev_stripes = btrfs_raid_array[index].dev_stripes;
4526 devs_max = btrfs_raid_array[index].devs_max;
4527 devs_min = btrfs_raid_array[index].devs_min;
4528 devs_increment = btrfs_raid_array[index].devs_increment;
4529 ncopies = btrfs_raid_array[index].ncopies;
4530
4531 if (type & BTRFS_BLOCK_GROUP_DATA) {
4532 max_stripe_size = SZ_1G;
4533 max_chunk_size = 10 * max_stripe_size;
4534 if (!devs_max)
4535 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4536 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4537 /* for larger filesystems, use larger metadata chunks */
4538 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4539 max_stripe_size = SZ_1G;
4540 else
4541 max_stripe_size = SZ_256M;
4542 max_chunk_size = max_stripe_size;
4543 if (!devs_max)
4544 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4545 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4546 max_stripe_size = SZ_32M;
4547 max_chunk_size = 2 * max_stripe_size;
4548 if (!devs_max)
4549 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4550 } else {
4551 btrfs_err(info, "invalid chunk type 0x%llx requested",
4552 type);
4553 BUG_ON(1);
4554 }
4555
4556 /* we don't want a chunk larger than 10% of writeable space */
4557 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4558 max_chunk_size);
4559
4560 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4561 GFP_NOFS);
4562 if (!devices_info)
4563 return -ENOMEM;
4564
4565 cur = fs_devices->alloc_list.next;
4566
4567 /*
4568 * in the first pass through the devices list, we gather information
4569 * about the available holes on each device.
4570 */
4571 ndevs = 0;
4572 while (cur != &fs_devices->alloc_list) {
4573 struct btrfs_device *device;
4574 u64 max_avail;
4575 u64 dev_offset;
4576
4577 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4578
4579 cur = cur->next;
4580
4581 if (!device->writeable) {
4582 WARN(1, KERN_ERR
4583 "BTRFS: read-only device in alloc_list\n");
4584 continue;
4585 }
4586
4587 if (!device->in_fs_metadata ||
4588 device->is_tgtdev_for_dev_replace)
4589 continue;
4590
4591 if (device->total_bytes > device->bytes_used)
4592 total_avail = device->total_bytes - device->bytes_used;
4593 else
4594 total_avail = 0;
4595
4596 /* If there is no space on this device, skip it. */
4597 if (total_avail == 0)
4598 continue;
4599
4600 ret = find_free_dev_extent(trans, device,
4601 max_stripe_size * dev_stripes,
4602 &dev_offset, &max_avail);
4603 if (ret && ret != -ENOSPC)
4604 goto error;
4605
4606 if (ret == 0)
4607 max_avail = max_stripe_size * dev_stripes;
4608
4609 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4610 continue;
4611
4612 if (ndevs == fs_devices->rw_devices) {
4613 WARN(1, "%s: found more than %llu devices\n",
4614 __func__, fs_devices->rw_devices);
4615 break;
4616 }
4617 devices_info[ndevs].dev_offset = dev_offset;
4618 devices_info[ndevs].max_avail = max_avail;
4619 devices_info[ndevs].total_avail = total_avail;
4620 devices_info[ndevs].dev = device;
4621 ++ndevs;
4622 }
4623
4624 /*
4625 * now sort the devices by hole size / available space
4626 */
4627 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4628 btrfs_cmp_device_info, NULL);
4629
4630 /* round down to number of usable stripes */
4631 ndevs -= ndevs % devs_increment;
4632
4633 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4634 ret = -ENOSPC;
4635 goto error;
4636 }
4637
4638 if (devs_max && ndevs > devs_max)
4639 ndevs = devs_max;
4640 /*
4641 * the primary goal is to maximize the number of stripes, so use as many
4642 * devices as possible, even if the stripes are not maximum sized.
4643 */
4644 stripe_size = devices_info[ndevs-1].max_avail;
4645 num_stripes = ndevs * dev_stripes;
4646
4647 /*
4648 * this will have to be fixed for RAID1 and RAID10 over
4649 * more drives
4650 */
4651 data_stripes = num_stripes / ncopies;
4652
4653 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4654 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4655 btrfs_super_stripesize(info->super_copy));
4656 data_stripes = num_stripes - 1;
4657 }
4658 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4659 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4660 btrfs_super_stripesize(info->super_copy));
4661 data_stripes = num_stripes - 2;
4662 }
4663
4664 /*
4665 * Use the number of data stripes to figure out how big this chunk
4666 * is really going to be in terms of logical address space,
4667 * and compare that answer with the max chunk size
4668 */
4669 if (stripe_size * data_stripes > max_chunk_size) {
4670 u64 mask = (1ULL << 24) - 1;
4671
4672 stripe_size = div_u64(max_chunk_size, data_stripes);
4673
4674 /* bump the answer up to a 16MB boundary */
4675 stripe_size = (stripe_size + mask) & ~mask;
4676
4677 /* but don't go higher than the limits we found
4678 * while searching for free extents
4679 */
4680 if (stripe_size > devices_info[ndevs-1].max_avail)
4681 stripe_size = devices_info[ndevs-1].max_avail;
4682 }
4683
4684 stripe_size = div_u64(stripe_size, dev_stripes);
4685
4686 /* align to BTRFS_STRIPE_LEN */
4687 stripe_size = div_u64(stripe_size, raid_stripe_len);
4688 stripe_size *= raid_stripe_len;
4689
4690 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4691 if (!map) {
4692 ret = -ENOMEM;
4693 goto error;
4694 }
4695 map->num_stripes = num_stripes;
4696
4697 for (i = 0; i < ndevs; ++i) {
4698 for (j = 0; j < dev_stripes; ++j) {
4699 int s = i * dev_stripes + j;
4700 map->stripes[s].dev = devices_info[i].dev;
4701 map->stripes[s].physical = devices_info[i].dev_offset +
4702 j * stripe_size;
4703 }
4704 }
4705 map->sector_size = extent_root->sectorsize;
4706 map->stripe_len = raid_stripe_len;
4707 map->io_align = raid_stripe_len;
4708 map->io_width = raid_stripe_len;
4709 map->type = type;
4710 map->sub_stripes = sub_stripes;
4711
4712 num_bytes = stripe_size * data_stripes;
4713
4714 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4715
4716 em = alloc_extent_map();
4717 if (!em) {
4718 kfree(map);
4719 ret = -ENOMEM;
4720 goto error;
4721 }
4722 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4723 em->map_lookup = map;
4724 em->start = start;
4725 em->len = num_bytes;
4726 em->block_start = 0;
4727 em->block_len = em->len;
4728 em->orig_block_len = stripe_size;
4729
4730 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4731 write_lock(&em_tree->lock);
4732 ret = add_extent_mapping(em_tree, em, 0);
4733 if (!ret) {
4734 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4735 atomic_inc(&em->refs);
4736 }
4737 write_unlock(&em_tree->lock);
4738 if (ret) {
4739 free_extent_map(em);
4740 goto error;
4741 }
4742
4743 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4744 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4745 start, num_bytes);
4746 if (ret)
4747 goto error_del_extent;
4748
4749 for (i = 0; i < map->num_stripes; i++) {
4750 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4751 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4752 }
4753
4754 spin_lock(&extent_root->fs_info->free_chunk_lock);
4755 extent_root->fs_info->free_chunk_space -= (stripe_size *
4756 map->num_stripes);
4757 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4758
4759 free_extent_map(em);
4760 check_raid56_incompat_flag(extent_root->fs_info, type);
4761
4762 kfree(devices_info);
4763 return 0;
4764
4765error_del_extent:
4766 write_lock(&em_tree->lock);
4767 remove_extent_mapping(em_tree, em);
4768 write_unlock(&em_tree->lock);
4769
4770 /* One for our allocation */
4771 free_extent_map(em);
4772 /* One for the tree reference */
4773 free_extent_map(em);
4774 /* One for the pending_chunks list reference */
4775 free_extent_map(em);
4776error:
4777 kfree(devices_info);
4778 return ret;
4779}
4780
4781int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4782 struct btrfs_root *extent_root,
4783 u64 chunk_offset, u64 chunk_size)
4784{
4785 struct btrfs_key key;
4786 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4787 struct btrfs_device *device;
4788 struct btrfs_chunk *chunk;
4789 struct btrfs_stripe *stripe;
4790 struct extent_map_tree *em_tree;
4791 struct extent_map *em;
4792 struct map_lookup *map;
4793 size_t item_size;
4794 u64 dev_offset;
4795 u64 stripe_size;
4796 int i = 0;
4797 int ret = 0;
4798
4799 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4800 read_lock(&em_tree->lock);
4801 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4802 read_unlock(&em_tree->lock);
4803
4804 if (!em) {
4805 btrfs_crit(extent_root->fs_info, "unable to find logical "
4806 "%Lu len %Lu", chunk_offset, chunk_size);
4807 return -EINVAL;
4808 }
4809
4810 if (em->start != chunk_offset || em->len != chunk_size) {
4811 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4812 " %Lu-%Lu, found %Lu-%Lu", chunk_offset,
4813 chunk_size, em->start, em->len);
4814 free_extent_map(em);
4815 return -EINVAL;
4816 }
4817
4818 map = em->map_lookup;
4819 item_size = btrfs_chunk_item_size(map->num_stripes);
4820 stripe_size = em->orig_block_len;
4821
4822 chunk = kzalloc(item_size, GFP_NOFS);
4823 if (!chunk) {
4824 ret = -ENOMEM;
4825 goto out;
4826 }
4827
4828 /*
4829 * Take the device list mutex to prevent races with the final phase of
4830 * a device replace operation that replaces the device object associated
4831 * with the map's stripes, because the device object's id can change
4832 * at any time during that final phase of the device replace operation
4833 * (dev-replace.c:btrfs_dev_replace_finishing()).
4834 */
4835 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4836 for (i = 0; i < map->num_stripes; i++) {
4837 device = map->stripes[i].dev;
4838 dev_offset = map->stripes[i].physical;
4839
4840 ret = btrfs_update_device(trans, device);
4841 if (ret)
4842 break;
4843 ret = btrfs_alloc_dev_extent(trans, device,
4844 chunk_root->root_key.objectid,
4845 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4846 chunk_offset, dev_offset,
4847 stripe_size);
4848 if (ret)
4849 break;
4850 }
4851 if (ret) {
4852 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4853 goto out;
4854 }
4855
4856 stripe = &chunk->stripe;
4857 for (i = 0; i < map->num_stripes; i++) {
4858 device = map->stripes[i].dev;
4859 dev_offset = map->stripes[i].physical;
4860
4861 btrfs_set_stack_stripe_devid(stripe, device->devid);
4862 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4863 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4864 stripe++;
4865 }
4866 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4867
4868 btrfs_set_stack_chunk_length(chunk, chunk_size);
4869 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4870 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4871 btrfs_set_stack_chunk_type(chunk, map->type);
4872 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4873 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4874 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4875 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4876 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4877
4878 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4879 key.type = BTRFS_CHUNK_ITEM_KEY;
4880 key.offset = chunk_offset;
4881
4882 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4883 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4884 /*
4885 * TODO: Cleanup of inserted chunk root in case of
4886 * failure.
4887 */
4888 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4889 item_size);
4890 }
4891
4892out:
4893 kfree(chunk);
4894 free_extent_map(em);
4895 return ret;
4896}
4897
4898/*
4899 * Chunk allocation falls into two parts. The first part does works
4900 * that make the new allocated chunk useable, but not do any operation
4901 * that modifies the chunk tree. The second part does the works that
4902 * require modifying the chunk tree. This division is important for the
4903 * bootstrap process of adding storage to a seed btrfs.
4904 */
4905int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4906 struct btrfs_root *extent_root, u64 type)
4907{
4908 u64 chunk_offset;
4909
4910 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
4911 chunk_offset = find_next_chunk(extent_root->fs_info);
4912 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4913}
4914
4915static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4916 struct btrfs_root *root,
4917 struct btrfs_device *device)
4918{
4919 u64 chunk_offset;
4920 u64 sys_chunk_offset;
4921 u64 alloc_profile;
4922 struct btrfs_fs_info *fs_info = root->fs_info;
4923 struct btrfs_root *extent_root = fs_info->extent_root;
4924 int ret;
4925
4926 chunk_offset = find_next_chunk(fs_info);
4927 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4928 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4929 alloc_profile);
4930 if (ret)
4931 return ret;
4932
4933 sys_chunk_offset = find_next_chunk(root->fs_info);
4934 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4935 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4936 alloc_profile);
4937 return ret;
4938}
4939
4940static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4941{
4942 int max_errors;
4943
4944 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4945 BTRFS_BLOCK_GROUP_RAID10 |
4946 BTRFS_BLOCK_GROUP_RAID5 |
4947 BTRFS_BLOCK_GROUP_DUP)) {
4948 max_errors = 1;
4949 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4950 max_errors = 2;
4951 } else {
4952 max_errors = 0;
4953 }
4954
4955 return max_errors;
4956}
4957
4958int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4959{
4960 struct extent_map *em;
4961 struct map_lookup *map;
4962 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4963 int readonly = 0;
4964 int miss_ndevs = 0;
4965 int i;
4966
4967 read_lock(&map_tree->map_tree.lock);
4968 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4969 read_unlock(&map_tree->map_tree.lock);
4970 if (!em)
4971 return 1;
4972
4973 map = em->map_lookup;
4974 for (i = 0; i < map->num_stripes; i++) {
4975 if (map->stripes[i].dev->missing) {
4976 miss_ndevs++;
4977 continue;
4978 }
4979
4980 if (!map->stripes[i].dev->writeable) {
4981 readonly = 1;
4982 goto end;
4983 }
4984 }
4985
4986 /*
4987 * If the number of missing devices is larger than max errors,
4988 * we can not write the data into that chunk successfully, so
4989 * set it readonly.
4990 */
4991 if (miss_ndevs > btrfs_chunk_max_errors(map))
4992 readonly = 1;
4993end:
4994 free_extent_map(em);
4995 return readonly;
4996}
4997
4998void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4999{
5000 extent_map_tree_init(&tree->map_tree);
5001}
5002
5003void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5004{
5005 struct extent_map *em;
5006
5007 while (1) {
5008 write_lock(&tree->map_tree.lock);
5009 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5010 if (em)
5011 remove_extent_mapping(&tree->map_tree, em);
5012 write_unlock(&tree->map_tree.lock);
5013 if (!em)
5014 break;
5015 /* once for us */
5016 free_extent_map(em);
5017 /* once for the tree */
5018 free_extent_map(em);
5019 }
5020}
5021
5022int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5023{
5024 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5025 struct extent_map *em;
5026 struct map_lookup *map;
5027 struct extent_map_tree *em_tree = &map_tree->map_tree;
5028 int ret;
5029
5030 read_lock(&em_tree->lock);
5031 em = lookup_extent_mapping(em_tree, logical, len);
5032 read_unlock(&em_tree->lock);
5033
5034 /*
5035 * We could return errors for these cases, but that could get ugly and
5036 * we'd probably do the same thing which is just not do anything else
5037 * and exit, so return 1 so the callers don't try to use other copies.
5038 */
5039 if (!em) {
5040 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5041 logical+len);
5042 return 1;
5043 }
5044
5045 if (em->start > logical || em->start + em->len < logical) {
5046 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
5047 "%Lu-%Lu", logical, logical+len, em->start,
5048 em->start + em->len);
5049 free_extent_map(em);
5050 return 1;
5051 }
5052
5053 map = em->map_lookup;
5054 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5055 ret = map->num_stripes;
5056 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5057 ret = map->sub_stripes;
5058 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5059 ret = 2;
5060 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5061 ret = 3;
5062 else
5063 ret = 1;
5064 free_extent_map(em);
5065
5066 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5067 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5068 ret++;
5069 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5070
5071 return ret;
5072}
5073
5074unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5075 struct btrfs_mapping_tree *map_tree,
5076 u64 logical)
5077{
5078 struct extent_map *em;
5079 struct map_lookup *map;
5080 struct extent_map_tree *em_tree = &map_tree->map_tree;
5081 unsigned long len = root->sectorsize;
5082
5083 read_lock(&em_tree->lock);
5084 em = lookup_extent_mapping(em_tree, logical, len);
5085 read_unlock(&em_tree->lock);
5086 BUG_ON(!em);
5087
5088 BUG_ON(em->start > logical || em->start + em->len < logical);
5089 map = em->map_lookup;
5090 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5091 len = map->stripe_len * nr_data_stripes(map);
5092 free_extent_map(em);
5093 return len;
5094}
5095
5096int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5097 u64 logical, u64 len, int mirror_num)
5098{
5099 struct extent_map *em;
5100 struct map_lookup *map;
5101 struct extent_map_tree *em_tree = &map_tree->map_tree;
5102 int ret = 0;
5103
5104 read_lock(&em_tree->lock);
5105 em = lookup_extent_mapping(em_tree, logical, len);
5106 read_unlock(&em_tree->lock);
5107 BUG_ON(!em);
5108
5109 BUG_ON(em->start > logical || em->start + em->len < logical);
5110 map = em->map_lookup;
5111 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5112 ret = 1;
5113 free_extent_map(em);
5114 return ret;
5115}
5116
5117static int find_live_mirror(struct btrfs_fs_info *fs_info,
5118 struct map_lookup *map, int first, int num,
5119 int optimal, int dev_replace_is_ongoing)
5120{
5121 int i;
5122 int tolerance;
5123 struct btrfs_device *srcdev;
5124
5125 if (dev_replace_is_ongoing &&
5126 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5127 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5128 srcdev = fs_info->dev_replace.srcdev;
5129 else
5130 srcdev = NULL;
5131
5132 /*
5133 * try to avoid the drive that is the source drive for a
5134 * dev-replace procedure, only choose it if no other non-missing
5135 * mirror is available
5136 */
5137 for (tolerance = 0; tolerance < 2; tolerance++) {
5138 if (map->stripes[optimal].dev->bdev &&
5139 (tolerance || map->stripes[optimal].dev != srcdev))
5140 return optimal;
5141 for (i = first; i < first + num; i++) {
5142 if (map->stripes[i].dev->bdev &&
5143 (tolerance || map->stripes[i].dev != srcdev))
5144 return i;
5145 }
5146 }
5147
5148 /* we couldn't find one that doesn't fail. Just return something
5149 * and the io error handling code will clean up eventually
5150 */
5151 return optimal;
5152}
5153
5154static inline int parity_smaller(u64 a, u64 b)
5155{
5156 return a > b;
5157}
5158
5159/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5160static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5161{
5162 struct btrfs_bio_stripe s;
5163 int i;
5164 u64 l;
5165 int again = 1;
5166
5167 while (again) {
5168 again = 0;
5169 for (i = 0; i < num_stripes - 1; i++) {
5170 if (parity_smaller(bbio->raid_map[i],
5171 bbio->raid_map[i+1])) {
5172 s = bbio->stripes[i];
5173 l = bbio->raid_map[i];
5174 bbio->stripes[i] = bbio->stripes[i+1];
5175 bbio->raid_map[i] = bbio->raid_map[i+1];
5176 bbio->stripes[i+1] = s;
5177 bbio->raid_map[i+1] = l;
5178
5179 again = 1;
5180 }
5181 }
5182 }
5183}
5184
5185static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5186{
5187 struct btrfs_bio *bbio = kzalloc(
5188 /* the size of the btrfs_bio */
5189 sizeof(struct btrfs_bio) +
5190 /* plus the variable array for the stripes */
5191 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5192 /* plus the variable array for the tgt dev */
5193 sizeof(int) * (real_stripes) +
5194 /*
5195 * plus the raid_map, which includes both the tgt dev
5196 * and the stripes
5197 */
5198 sizeof(u64) * (total_stripes),
5199 GFP_NOFS|__GFP_NOFAIL);
5200
5201 atomic_set(&bbio->error, 0);
5202 atomic_set(&bbio->refs, 1);
5203
5204 return bbio;
5205}
5206
5207void btrfs_get_bbio(struct btrfs_bio *bbio)
5208{
5209 WARN_ON(!atomic_read(&bbio->refs));
5210 atomic_inc(&bbio->refs);
5211}
5212
5213void btrfs_put_bbio(struct btrfs_bio *bbio)
5214{
5215 if (!bbio)
5216 return;
5217 if (atomic_dec_and_test(&bbio->refs))
5218 kfree(bbio);
5219}
5220
5221static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5222 u64 logical, u64 *length,
5223 struct btrfs_bio **bbio_ret,
5224 int mirror_num, int need_raid_map)
5225{
5226 struct extent_map *em;
5227 struct map_lookup *map;
5228 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5229 struct extent_map_tree *em_tree = &map_tree->map_tree;
5230 u64 offset;
5231 u64 stripe_offset;
5232 u64 stripe_end_offset;
5233 u64 stripe_nr;
5234 u64 stripe_nr_orig;
5235 u64 stripe_nr_end;
5236 u64 stripe_len;
5237 u32 stripe_index;
5238 int i;
5239 int ret = 0;
5240 int num_stripes;
5241 int max_errors = 0;
5242 int tgtdev_indexes = 0;
5243 struct btrfs_bio *bbio = NULL;
5244 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5245 int dev_replace_is_ongoing = 0;
5246 int num_alloc_stripes;
5247 int patch_the_first_stripe_for_dev_replace = 0;
5248 u64 physical_to_patch_in_first_stripe = 0;
5249 u64 raid56_full_stripe_start = (u64)-1;
5250
5251 read_lock(&em_tree->lock);
5252 em = lookup_extent_mapping(em_tree, logical, *length);
5253 read_unlock(&em_tree->lock);
5254
5255 if (!em) {
5256 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5257 logical, *length);
5258 return -EINVAL;
5259 }
5260
5261 if (em->start > logical || em->start + em->len < logical) {
5262 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
5263 "found %Lu-%Lu", logical, em->start,
5264 em->start + em->len);
5265 free_extent_map(em);
5266 return -EINVAL;
5267 }
5268
5269 map = em->map_lookup;
5270 offset = logical - em->start;
5271
5272 stripe_len = map->stripe_len;
5273 stripe_nr = offset;
5274 /*
5275 * stripe_nr counts the total number of stripes we have to stride
5276 * to get to this block
5277 */
5278 stripe_nr = div64_u64(stripe_nr, stripe_len);
5279
5280 stripe_offset = stripe_nr * stripe_len;
5281 BUG_ON(offset < stripe_offset);
5282
5283 /* stripe_offset is the offset of this block in its stripe*/
5284 stripe_offset = offset - stripe_offset;
5285
5286 /* if we're here for raid56, we need to know the stripe aligned start */
5287 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5288 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5289 raid56_full_stripe_start = offset;
5290
5291 /* allow a write of a full stripe, but make sure we don't
5292 * allow straddling of stripes
5293 */
5294 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5295 full_stripe_len);
5296 raid56_full_stripe_start *= full_stripe_len;
5297 }
5298
5299 if (rw & REQ_DISCARD) {
5300 /* we don't discard raid56 yet */
5301 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5302 ret = -EOPNOTSUPP;
5303 goto out;
5304 }
5305 *length = min_t(u64, em->len - offset, *length);
5306 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5307 u64 max_len;
5308 /* For writes to RAID[56], allow a full stripeset across all disks.
5309 For other RAID types and for RAID[56] reads, just allow a single
5310 stripe (on a single disk). */
5311 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5312 (rw & REQ_WRITE)) {
5313 max_len = stripe_len * nr_data_stripes(map) -
5314 (offset - raid56_full_stripe_start);
5315 } else {
5316 /* we limit the length of each bio to what fits in a stripe */
5317 max_len = stripe_len - stripe_offset;
5318 }
5319 *length = min_t(u64, em->len - offset, max_len);
5320 } else {
5321 *length = em->len - offset;
5322 }
5323
5324 /* This is for when we're called from btrfs_merge_bio_hook() and all
5325 it cares about is the length */
5326 if (!bbio_ret)
5327 goto out;
5328
5329 btrfs_dev_replace_lock(dev_replace, 0);
5330 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5331 if (!dev_replace_is_ongoing)
5332 btrfs_dev_replace_unlock(dev_replace, 0);
5333 else
5334 btrfs_dev_replace_set_lock_blocking(dev_replace);
5335
5336 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5337 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
5338 dev_replace->tgtdev != NULL) {
5339 /*
5340 * in dev-replace case, for repair case (that's the only
5341 * case where the mirror is selected explicitly when
5342 * calling btrfs_map_block), blocks left of the left cursor
5343 * can also be read from the target drive.
5344 * For REQ_GET_READ_MIRRORS, the target drive is added as
5345 * the last one to the array of stripes. For READ, it also
5346 * needs to be supported using the same mirror number.
5347 * If the requested block is not left of the left cursor,
5348 * EIO is returned. This can happen because btrfs_num_copies()
5349 * returns one more in the dev-replace case.
5350 */
5351 u64 tmp_length = *length;
5352 struct btrfs_bio *tmp_bbio = NULL;
5353 int tmp_num_stripes;
5354 u64 srcdev_devid = dev_replace->srcdev->devid;
5355 int index_srcdev = 0;
5356 int found = 0;
5357 u64 physical_of_found = 0;
5358
5359 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5360 logical, &tmp_length, &tmp_bbio, 0, 0);
5361 if (ret) {
5362 WARN_ON(tmp_bbio != NULL);
5363 goto out;
5364 }
5365
5366 tmp_num_stripes = tmp_bbio->num_stripes;
5367 if (mirror_num > tmp_num_stripes) {
5368 /*
5369 * REQ_GET_READ_MIRRORS does not contain this
5370 * mirror, that means that the requested area
5371 * is not left of the left cursor
5372 */
5373 ret = -EIO;
5374 btrfs_put_bbio(tmp_bbio);
5375 goto out;
5376 }
5377
5378 /*
5379 * process the rest of the function using the mirror_num
5380 * of the source drive. Therefore look it up first.
5381 * At the end, patch the device pointer to the one of the
5382 * target drive.
5383 */
5384 for (i = 0; i < tmp_num_stripes; i++) {
5385 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5386 continue;
5387
5388 /*
5389 * In case of DUP, in order to keep it simple, only add
5390 * the mirror with the lowest physical address
5391 */
5392 if (found &&
5393 physical_of_found <= tmp_bbio->stripes[i].physical)
5394 continue;
5395
5396 index_srcdev = i;
5397 found = 1;
5398 physical_of_found = tmp_bbio->stripes[i].physical;
5399 }
5400
5401 btrfs_put_bbio(tmp_bbio);
5402
5403 if (!found) {
5404 WARN_ON(1);
5405 ret = -EIO;
5406 goto out;
5407 }
5408
5409 mirror_num = index_srcdev + 1;
5410 patch_the_first_stripe_for_dev_replace = 1;
5411 physical_to_patch_in_first_stripe = physical_of_found;
5412 } else if (mirror_num > map->num_stripes) {
5413 mirror_num = 0;
5414 }
5415
5416 num_stripes = 1;
5417 stripe_index = 0;
5418 stripe_nr_orig = stripe_nr;
5419 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5420 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5421 stripe_end_offset = stripe_nr_end * map->stripe_len -
5422 (offset + *length);
5423
5424 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5425 if (rw & REQ_DISCARD)
5426 num_stripes = min_t(u64, map->num_stripes,
5427 stripe_nr_end - stripe_nr_orig);
5428 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5429 &stripe_index);
5430 if (!(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)))
5431 mirror_num = 1;
5432 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5433 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
5434 num_stripes = map->num_stripes;
5435 else if (mirror_num)
5436 stripe_index = mirror_num - 1;
5437 else {
5438 stripe_index = find_live_mirror(fs_info, map, 0,
5439 map->num_stripes,
5440 current->pid % map->num_stripes,
5441 dev_replace_is_ongoing);
5442 mirror_num = stripe_index + 1;
5443 }
5444
5445 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5446 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
5447 num_stripes = map->num_stripes;
5448 } else if (mirror_num) {
5449 stripe_index = mirror_num - 1;
5450 } else {
5451 mirror_num = 1;
5452 }
5453
5454 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5455 u32 factor = map->num_stripes / map->sub_stripes;
5456
5457 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5458 stripe_index *= map->sub_stripes;
5459
5460 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5461 num_stripes = map->sub_stripes;
5462 else if (rw & REQ_DISCARD)
5463 num_stripes = min_t(u64, map->sub_stripes *
5464 (stripe_nr_end - stripe_nr_orig),
5465 map->num_stripes);
5466 else if (mirror_num)
5467 stripe_index += mirror_num - 1;
5468 else {
5469 int old_stripe_index = stripe_index;
5470 stripe_index = find_live_mirror(fs_info, map,
5471 stripe_index,
5472 map->sub_stripes, stripe_index +
5473 current->pid % map->sub_stripes,
5474 dev_replace_is_ongoing);
5475 mirror_num = stripe_index - old_stripe_index + 1;
5476 }
5477
5478 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5479 if (need_raid_map &&
5480 ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5481 mirror_num > 1)) {
5482 /* push stripe_nr back to the start of the full stripe */
5483 stripe_nr = div_u64(raid56_full_stripe_start,
5484 stripe_len * nr_data_stripes(map));
5485
5486 /* RAID[56] write or recovery. Return all stripes */
5487 num_stripes = map->num_stripes;
5488 max_errors = nr_parity_stripes(map);
5489
5490 *length = map->stripe_len;
5491 stripe_index = 0;
5492 stripe_offset = 0;
5493 } else {
5494 /*
5495 * Mirror #0 or #1 means the original data block.
5496 * Mirror #2 is RAID5 parity block.
5497 * Mirror #3 is RAID6 Q block.
5498 */
5499 stripe_nr = div_u64_rem(stripe_nr,
5500 nr_data_stripes(map), &stripe_index);
5501 if (mirror_num > 1)
5502 stripe_index = nr_data_stripes(map) +
5503 mirror_num - 2;
5504
5505 /* We distribute the parity blocks across stripes */
5506 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5507 &stripe_index);
5508 if (!(rw & (REQ_WRITE | REQ_DISCARD |
5509 REQ_GET_READ_MIRRORS)) && mirror_num <= 1)
5510 mirror_num = 1;
5511 }
5512 } else {
5513 /*
5514 * after this, stripe_nr is the number of stripes on this
5515 * device we have to walk to find the data, and stripe_index is
5516 * the number of our device in the stripe array
5517 */
5518 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5519 &stripe_index);
5520 mirror_num = stripe_index + 1;
5521 }
5522 BUG_ON(stripe_index >= map->num_stripes);
5523
5524 num_alloc_stripes = num_stripes;
5525 if (dev_replace_is_ongoing) {
5526 if (rw & (REQ_WRITE | REQ_DISCARD))
5527 num_alloc_stripes <<= 1;
5528 if (rw & REQ_GET_READ_MIRRORS)
5529 num_alloc_stripes++;
5530 tgtdev_indexes = num_stripes;
5531 }
5532
5533 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5534 if (!bbio) {
5535 ret = -ENOMEM;
5536 goto out;
5537 }
5538 if (dev_replace_is_ongoing)
5539 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5540
5541 /* build raid_map */
5542 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5543 need_raid_map && ((rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) ||
5544 mirror_num > 1)) {
5545 u64 tmp;
5546 unsigned rot;
5547
5548 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5549 sizeof(struct btrfs_bio_stripe) *
5550 num_alloc_stripes +
5551 sizeof(int) * tgtdev_indexes);
5552
5553 /* Work out the disk rotation on this stripe-set */
5554 div_u64_rem(stripe_nr, num_stripes, &rot);
5555
5556 /* Fill in the logical address of each stripe */
5557 tmp = stripe_nr * nr_data_stripes(map);
5558 for (i = 0; i < nr_data_stripes(map); i++)
5559 bbio->raid_map[(i+rot) % num_stripes] =
5560 em->start + (tmp + i) * map->stripe_len;
5561
5562 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5563 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5564 bbio->raid_map[(i+rot+1) % num_stripes] =
5565 RAID6_Q_STRIPE;
5566 }
5567
5568 if (rw & REQ_DISCARD) {
5569 u32 factor = 0;
5570 u32 sub_stripes = 0;
5571 u64 stripes_per_dev = 0;
5572 u32 remaining_stripes = 0;
5573 u32 last_stripe = 0;
5574
5575 if (map->type &
5576 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5577 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5578 sub_stripes = 1;
5579 else
5580 sub_stripes = map->sub_stripes;
5581
5582 factor = map->num_stripes / sub_stripes;
5583 stripes_per_dev = div_u64_rem(stripe_nr_end -
5584 stripe_nr_orig,
5585 factor,
5586 &remaining_stripes);
5587 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5588 last_stripe *= sub_stripes;
5589 }
5590
5591 for (i = 0; i < num_stripes; i++) {
5592 bbio->stripes[i].physical =
5593 map->stripes[stripe_index].physical +
5594 stripe_offset + stripe_nr * map->stripe_len;
5595 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5596
5597 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5598 BTRFS_BLOCK_GROUP_RAID10)) {
5599 bbio->stripes[i].length = stripes_per_dev *
5600 map->stripe_len;
5601
5602 if (i / sub_stripes < remaining_stripes)
5603 bbio->stripes[i].length +=
5604 map->stripe_len;
5605
5606 /*
5607 * Special for the first stripe and
5608 * the last stripe:
5609 *
5610 * |-------|...|-------|
5611 * |----------|
5612 * off end_off
5613 */
5614 if (i < sub_stripes)
5615 bbio->stripes[i].length -=
5616 stripe_offset;
5617
5618 if (stripe_index >= last_stripe &&
5619 stripe_index <= (last_stripe +
5620 sub_stripes - 1))
5621 bbio->stripes[i].length -=
5622 stripe_end_offset;
5623
5624 if (i == sub_stripes - 1)
5625 stripe_offset = 0;
5626 } else
5627 bbio->stripes[i].length = *length;
5628
5629 stripe_index++;
5630 if (stripe_index == map->num_stripes) {
5631 /* This could only happen for RAID0/10 */
5632 stripe_index = 0;
5633 stripe_nr++;
5634 }
5635 }
5636 } else {
5637 for (i = 0; i < num_stripes; i++) {
5638 bbio->stripes[i].physical =
5639 map->stripes[stripe_index].physical +
5640 stripe_offset +
5641 stripe_nr * map->stripe_len;
5642 bbio->stripes[i].dev =
5643 map->stripes[stripe_index].dev;
5644 stripe_index++;
5645 }
5646 }
5647
5648 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
5649 max_errors = btrfs_chunk_max_errors(map);
5650
5651 if (bbio->raid_map)
5652 sort_parity_stripes(bbio, num_stripes);
5653
5654 tgtdev_indexes = 0;
5655 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5656 dev_replace->tgtdev != NULL) {
5657 int index_where_to_add;
5658 u64 srcdev_devid = dev_replace->srcdev->devid;
5659
5660 /*
5661 * duplicate the write operations while the dev replace
5662 * procedure is running. Since the copying of the old disk
5663 * to the new disk takes place at run time while the
5664 * filesystem is mounted writable, the regular write
5665 * operations to the old disk have to be duplicated to go
5666 * to the new disk as well.
5667 * Note that device->missing is handled by the caller, and
5668 * that the write to the old disk is already set up in the
5669 * stripes array.
5670 */
5671 index_where_to_add = num_stripes;
5672 for (i = 0; i < num_stripes; i++) {
5673 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5674 /* write to new disk, too */
5675 struct btrfs_bio_stripe *new =
5676 bbio->stripes + index_where_to_add;
5677 struct btrfs_bio_stripe *old =
5678 bbio->stripes + i;
5679
5680 new->physical = old->physical;
5681 new->length = old->length;
5682 new->dev = dev_replace->tgtdev;
5683 bbio->tgtdev_map[i] = index_where_to_add;
5684 index_where_to_add++;
5685 max_errors++;
5686 tgtdev_indexes++;
5687 }
5688 }
5689 num_stripes = index_where_to_add;
5690 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5691 dev_replace->tgtdev != NULL) {
5692 u64 srcdev_devid = dev_replace->srcdev->devid;
5693 int index_srcdev = 0;
5694 int found = 0;
5695 u64 physical_of_found = 0;
5696
5697 /*
5698 * During the dev-replace procedure, the target drive can
5699 * also be used to read data in case it is needed to repair
5700 * a corrupt block elsewhere. This is possible if the
5701 * requested area is left of the left cursor. In this area,
5702 * the target drive is a full copy of the source drive.
5703 */
5704 for (i = 0; i < num_stripes; i++) {
5705 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5706 /*
5707 * In case of DUP, in order to keep it
5708 * simple, only add the mirror with the
5709 * lowest physical address
5710 */
5711 if (found &&
5712 physical_of_found <=
5713 bbio->stripes[i].physical)
5714 continue;
5715 index_srcdev = i;
5716 found = 1;
5717 physical_of_found = bbio->stripes[i].physical;
5718 }
5719 }
5720 if (found) {
5721 if (physical_of_found + map->stripe_len <=
5722 dev_replace->cursor_left) {
5723 struct btrfs_bio_stripe *tgtdev_stripe =
5724 bbio->stripes + num_stripes;
5725
5726 tgtdev_stripe->physical = physical_of_found;
5727 tgtdev_stripe->length =
5728 bbio->stripes[index_srcdev].length;
5729 tgtdev_stripe->dev = dev_replace->tgtdev;
5730 bbio->tgtdev_map[index_srcdev] = num_stripes;
5731
5732 tgtdev_indexes++;
5733 num_stripes++;
5734 }
5735 }
5736 }
5737
5738 *bbio_ret = bbio;
5739 bbio->map_type = map->type;
5740 bbio->num_stripes = num_stripes;
5741 bbio->max_errors = max_errors;
5742 bbio->mirror_num = mirror_num;
5743 bbio->num_tgtdevs = tgtdev_indexes;
5744
5745 /*
5746 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5747 * mirror_num == num_stripes + 1 && dev_replace target drive is
5748 * available as a mirror
5749 */
5750 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5751 WARN_ON(num_stripes > 1);
5752 bbio->stripes[0].dev = dev_replace->tgtdev;
5753 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5754 bbio->mirror_num = map->num_stripes + 1;
5755 }
5756out:
5757 if (dev_replace_is_ongoing) {
5758 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5759 btrfs_dev_replace_unlock(dev_replace, 0);
5760 }
5761 free_extent_map(em);
5762 return ret;
5763}
5764
5765int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5766 u64 logical, u64 *length,
5767 struct btrfs_bio **bbio_ret, int mirror_num)
5768{
5769 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5770 mirror_num, 0);
5771}
5772
5773/* For Scrub/replace */
5774int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int rw,
5775 u64 logical, u64 *length,
5776 struct btrfs_bio **bbio_ret, int mirror_num,
5777 int need_raid_map)
5778{
5779 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5780 mirror_num, need_raid_map);
5781}
5782
5783int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5784 u64 chunk_start, u64 physical, u64 devid,
5785 u64 **logical, int *naddrs, int *stripe_len)
5786{
5787 struct extent_map_tree *em_tree = &map_tree->map_tree;
5788 struct extent_map *em;
5789 struct map_lookup *map;
5790 u64 *buf;
5791 u64 bytenr;
5792 u64 length;
5793 u64 stripe_nr;
5794 u64 rmap_len;
5795 int i, j, nr = 0;
5796
5797 read_lock(&em_tree->lock);
5798 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5799 read_unlock(&em_tree->lock);
5800
5801 if (!em) {
5802 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n",
5803 chunk_start);
5804 return -EIO;
5805 }
5806
5807 if (em->start != chunk_start) {
5808 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n",
5809 em->start, chunk_start);
5810 free_extent_map(em);
5811 return -EIO;
5812 }
5813 map = em->map_lookup;
5814
5815 length = em->len;
5816 rmap_len = map->stripe_len;
5817
5818 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5819 length = div_u64(length, map->num_stripes / map->sub_stripes);
5820 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5821 length = div_u64(length, map->num_stripes);
5822 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5823 length = div_u64(length, nr_data_stripes(map));
5824 rmap_len = map->stripe_len * nr_data_stripes(map);
5825 }
5826
5827 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5828 BUG_ON(!buf); /* -ENOMEM */
5829
5830 for (i = 0; i < map->num_stripes; i++) {
5831 if (devid && map->stripes[i].dev->devid != devid)
5832 continue;
5833 if (map->stripes[i].physical > physical ||
5834 map->stripes[i].physical + length <= physical)
5835 continue;
5836
5837 stripe_nr = physical - map->stripes[i].physical;
5838 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5839
5840 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5841 stripe_nr = stripe_nr * map->num_stripes + i;
5842 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5843 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5844 stripe_nr = stripe_nr * map->num_stripes + i;
5845 } /* else if RAID[56], multiply by nr_data_stripes().
5846 * Alternatively, just use rmap_len below instead of
5847 * map->stripe_len */
5848
5849 bytenr = chunk_start + stripe_nr * rmap_len;
5850 WARN_ON(nr >= map->num_stripes);
5851 for (j = 0; j < nr; j++) {
5852 if (buf[j] == bytenr)
5853 break;
5854 }
5855 if (j == nr) {
5856 WARN_ON(nr >= map->num_stripes);
5857 buf[nr++] = bytenr;
5858 }
5859 }
5860
5861 *logical = buf;
5862 *naddrs = nr;
5863 *stripe_len = rmap_len;
5864
5865 free_extent_map(em);
5866 return 0;
5867}
5868
5869static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5870{
5871 bio->bi_private = bbio->private;
5872 bio->bi_end_io = bbio->end_io;
5873 bio_endio(bio);
5874
5875 btrfs_put_bbio(bbio);
5876}
5877
5878static void btrfs_end_bio(struct bio *bio)
5879{
5880 struct btrfs_bio *bbio = bio->bi_private;
5881 int is_orig_bio = 0;
5882
5883 if (bio->bi_error) {
5884 atomic_inc(&bbio->error);
5885 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
5886 unsigned int stripe_index =
5887 btrfs_io_bio(bio)->stripe_index;
5888 struct btrfs_device *dev;
5889
5890 BUG_ON(stripe_index >= bbio->num_stripes);
5891 dev = bbio->stripes[stripe_index].dev;
5892 if (dev->bdev) {
5893 if (bio->bi_rw & WRITE)
5894 btrfs_dev_stat_inc(dev,
5895 BTRFS_DEV_STAT_WRITE_ERRS);
5896 else
5897 btrfs_dev_stat_inc(dev,
5898 BTRFS_DEV_STAT_READ_ERRS);
5899 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5900 btrfs_dev_stat_inc(dev,
5901 BTRFS_DEV_STAT_FLUSH_ERRS);
5902 btrfs_dev_stat_print_on_error(dev);
5903 }
5904 }
5905 }
5906
5907 if (bio == bbio->orig_bio)
5908 is_orig_bio = 1;
5909
5910 btrfs_bio_counter_dec(bbio->fs_info);
5911
5912 if (atomic_dec_and_test(&bbio->stripes_pending)) {
5913 if (!is_orig_bio) {
5914 bio_put(bio);
5915 bio = bbio->orig_bio;
5916 }
5917
5918 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5919 /* only send an error to the higher layers if it is
5920 * beyond the tolerance of the btrfs bio
5921 */
5922 if (atomic_read(&bbio->error) > bbio->max_errors) {
5923 bio->bi_error = -EIO;
5924 } else {
5925 /*
5926 * this bio is actually up to date, we didn't
5927 * go over the max number of errors
5928 */
5929 bio->bi_error = 0;
5930 }
5931
5932 btrfs_end_bbio(bbio, bio);
5933 } else if (!is_orig_bio) {
5934 bio_put(bio);
5935 }
5936}
5937
5938/*
5939 * see run_scheduled_bios for a description of why bios are collected for
5940 * async submit.
5941 *
5942 * This will add one bio to the pending list for a device and make sure
5943 * the work struct is scheduled.
5944 */
5945static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5946 struct btrfs_device *device,
5947 int rw, struct bio *bio)
5948{
5949 int should_queue = 1;
5950 struct btrfs_pending_bios *pending_bios;
5951
5952 if (device->missing || !device->bdev) {
5953 bio_io_error(bio);
5954 return;
5955 }
5956
5957 /* don't bother with additional async steps for reads, right now */
5958 if (!(rw & REQ_WRITE)) {
5959 bio_get(bio);
5960 btrfsic_submit_bio(rw, bio);
5961 bio_put(bio);
5962 return;
5963 }
5964
5965 /*
5966 * nr_async_bios allows us to reliably return congestion to the
5967 * higher layers. Otherwise, the async bio makes it appear we have
5968 * made progress against dirty pages when we've really just put it
5969 * on a queue for later
5970 */
5971 atomic_inc(&root->fs_info->nr_async_bios);
5972 WARN_ON(bio->bi_next);
5973 bio->bi_next = NULL;
5974 bio->bi_rw |= rw;
5975
5976 spin_lock(&device->io_lock);
5977 if (bio->bi_rw & REQ_SYNC)
5978 pending_bios = &device->pending_sync_bios;
5979 else
5980 pending_bios = &device->pending_bios;
5981
5982 if (pending_bios->tail)
5983 pending_bios->tail->bi_next = bio;
5984
5985 pending_bios->tail = bio;
5986 if (!pending_bios->head)
5987 pending_bios->head = bio;
5988 if (device->running_pending)
5989 should_queue = 0;
5990
5991 spin_unlock(&device->io_lock);
5992
5993 if (should_queue)
5994 btrfs_queue_work(root->fs_info->submit_workers,
5995 &device->work);
5996}
5997
5998static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5999 struct bio *bio, u64 physical, int dev_nr,
6000 int rw, int async)
6001{
6002 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6003
6004 bio->bi_private = bbio;
6005 btrfs_io_bio(bio)->stripe_index = dev_nr;
6006 bio->bi_end_io = btrfs_end_bio;
6007 bio->bi_iter.bi_sector = physical >> 9;
6008#ifdef DEBUG
6009 {
6010 struct rcu_string *name;
6011
6012 rcu_read_lock();
6013 name = rcu_dereference(dev->name);
6014 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
6015 "(%s id %llu), size=%u\n", rw,
6016 (u64)bio->bi_iter.bi_sector, (u_long)dev->bdev->bd_dev,
6017 name->str, dev->devid, bio->bi_iter.bi_size);
6018 rcu_read_unlock();
6019 }
6020#endif
6021 bio->bi_bdev = dev->bdev;
6022
6023 btrfs_bio_counter_inc_noblocked(root->fs_info);
6024
6025 if (async)
6026 btrfs_schedule_bio(root, dev, rw, bio);
6027 else
6028 btrfsic_submit_bio(rw, bio);
6029}
6030
6031static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6032{
6033 atomic_inc(&bbio->error);
6034 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6035 /* Shoud be the original bio. */
6036 WARN_ON(bio != bbio->orig_bio);
6037
6038 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6039 bio->bi_iter.bi_sector = logical >> 9;
6040 bio->bi_error = -EIO;
6041 btrfs_end_bbio(bbio, bio);
6042 }
6043}
6044
6045int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
6046 int mirror_num, int async_submit)
6047{
6048 struct btrfs_device *dev;
6049 struct bio *first_bio = bio;
6050 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6051 u64 length = 0;
6052 u64 map_length;
6053 int ret;
6054 int dev_nr;
6055 int total_devs;
6056 struct btrfs_bio *bbio = NULL;
6057
6058 length = bio->bi_iter.bi_size;
6059 map_length = length;
6060
6061 btrfs_bio_counter_inc_blocked(root->fs_info);
6062 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
6063 mirror_num, 1);
6064 if (ret) {
6065 btrfs_bio_counter_dec(root->fs_info);
6066 return ret;
6067 }
6068
6069 total_devs = bbio->num_stripes;
6070 bbio->orig_bio = first_bio;
6071 bbio->private = first_bio->bi_private;
6072 bbio->end_io = first_bio->bi_end_io;
6073 bbio->fs_info = root->fs_info;
6074 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6075
6076 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6077 ((rw & WRITE) || (mirror_num > 1))) {
6078 /* In this case, map_length has been set to the length of
6079 a single stripe; not the whole write */
6080 if (rw & WRITE) {
6081 ret = raid56_parity_write(root, bio, bbio, map_length);
6082 } else {
6083 ret = raid56_parity_recover(root, bio, bbio, map_length,
6084 mirror_num, 1);
6085 }
6086
6087 btrfs_bio_counter_dec(root->fs_info);
6088 return ret;
6089 }
6090
6091 if (map_length < length) {
6092 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
6093 logical, length, map_length);
6094 BUG();
6095 }
6096
6097 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6098 dev = bbio->stripes[dev_nr].dev;
6099 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
6100 bbio_error(bbio, first_bio, logical);
6101 continue;
6102 }
6103
6104 if (dev_nr < total_devs - 1) {
6105 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6106 BUG_ON(!bio); /* -ENOMEM */
6107 } else
6108 bio = first_bio;
6109
6110 submit_stripe_bio(root, bbio, bio,
6111 bbio->stripes[dev_nr].physical, dev_nr, rw,
6112 async_submit);
6113 }
6114 btrfs_bio_counter_dec(root->fs_info);
6115 return 0;
6116}
6117
6118struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6119 u8 *uuid, u8 *fsid)
6120{
6121 struct btrfs_device *device;
6122 struct btrfs_fs_devices *cur_devices;
6123
6124 cur_devices = fs_info->fs_devices;
6125 while (cur_devices) {
6126 if (!fsid ||
6127 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6128 device = __find_device(&cur_devices->devices,
6129 devid, uuid);
6130 if (device)
6131 return device;
6132 }
6133 cur_devices = cur_devices->seed;
6134 }
6135 return NULL;
6136}
6137
6138static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6139 struct btrfs_fs_devices *fs_devices,
6140 u64 devid, u8 *dev_uuid)
6141{
6142 struct btrfs_device *device;
6143
6144 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6145 if (IS_ERR(device))
6146 return NULL;
6147
6148 list_add(&device->dev_list, &fs_devices->devices);
6149 device->fs_devices = fs_devices;
6150 fs_devices->num_devices++;
6151
6152 device->missing = 1;
6153 fs_devices->missing_devices++;
6154
6155 return device;
6156}
6157
6158/**
6159 * btrfs_alloc_device - allocate struct btrfs_device
6160 * @fs_info: used only for generating a new devid, can be NULL if
6161 * devid is provided (i.e. @devid != NULL).
6162 * @devid: a pointer to devid for this device. If NULL a new devid
6163 * is generated.
6164 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6165 * is generated.
6166 *
6167 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6168 * on error. Returned struct is not linked onto any lists and can be
6169 * destroyed with kfree() right away.
6170 */
6171struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6172 const u64 *devid,
6173 const u8 *uuid)
6174{
6175 struct btrfs_device *dev;
6176 u64 tmp;
6177
6178 if (WARN_ON(!devid && !fs_info))
6179 return ERR_PTR(-EINVAL);
6180
6181 dev = __alloc_device();
6182 if (IS_ERR(dev))
6183 return dev;
6184
6185 if (devid)
6186 tmp = *devid;
6187 else {
6188 int ret;
6189
6190 ret = find_next_devid(fs_info, &tmp);
6191 if (ret) {
6192 kfree(dev);
6193 return ERR_PTR(ret);
6194 }
6195 }
6196 dev->devid = tmp;
6197
6198 if (uuid)
6199 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6200 else
6201 generate_random_uuid(dev->uuid);
6202
6203 btrfs_init_work(&dev->work, btrfs_submit_helper,
6204 pending_bios_fn, NULL, NULL);
6205
6206 return dev;
6207}
6208
6209static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6210 struct extent_buffer *leaf,
6211 struct btrfs_chunk *chunk)
6212{
6213 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6214 struct map_lookup *map;
6215 struct extent_map *em;
6216 u64 logical;
6217 u64 length;
6218 u64 stripe_len;
6219 u64 devid;
6220 u8 uuid[BTRFS_UUID_SIZE];
6221 int num_stripes;
6222 int ret;
6223 int i;
6224
6225 logical = key->offset;
6226 length = btrfs_chunk_length(leaf, chunk);
6227 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6228 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6229 /* Validation check */
6230 if (!num_stripes) {
6231 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6232 num_stripes);
6233 return -EIO;
6234 }
6235 if (!IS_ALIGNED(logical, root->sectorsize)) {
6236 btrfs_err(root->fs_info,
6237 "invalid chunk logical %llu", logical);
6238 return -EIO;
6239 }
6240 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6241 btrfs_err(root->fs_info,
6242 "invalid chunk length %llu", length);
6243 return -EIO;
6244 }
6245 if (!is_power_of_2(stripe_len)) {
6246 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6247 stripe_len);
6248 return -EIO;
6249 }
6250 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6251 btrfs_chunk_type(leaf, chunk)) {
6252 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6253 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6254 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6255 btrfs_chunk_type(leaf, chunk));
6256 return -EIO;
6257 }
6258
6259 read_lock(&map_tree->map_tree.lock);
6260 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6261 read_unlock(&map_tree->map_tree.lock);
6262
6263 /* already mapped? */
6264 if (em && em->start <= logical && em->start + em->len > logical) {
6265 free_extent_map(em);
6266 return 0;
6267 } else if (em) {
6268 free_extent_map(em);
6269 }
6270
6271 em = alloc_extent_map();
6272 if (!em)
6273 return -ENOMEM;
6274 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6275 if (!map) {
6276 free_extent_map(em);
6277 return -ENOMEM;
6278 }
6279
6280 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6281 em->map_lookup = map;
6282 em->start = logical;
6283 em->len = length;
6284 em->orig_start = 0;
6285 em->block_start = 0;
6286 em->block_len = em->len;
6287
6288 map->num_stripes = num_stripes;
6289 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6290 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6291 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6292 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6293 map->type = btrfs_chunk_type(leaf, chunk);
6294 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6295 for (i = 0; i < num_stripes; i++) {
6296 map->stripes[i].physical =
6297 btrfs_stripe_offset_nr(leaf, chunk, i);
6298 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6299 read_extent_buffer(leaf, uuid, (unsigned long)
6300 btrfs_stripe_dev_uuid_nr(chunk, i),
6301 BTRFS_UUID_SIZE);
6302 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6303 uuid, NULL);
6304 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
6305 free_extent_map(em);
6306 return -EIO;
6307 }
6308 if (!map->stripes[i].dev) {
6309 map->stripes[i].dev =
6310 add_missing_dev(root, root->fs_info->fs_devices,
6311 devid, uuid);
6312 if (!map->stripes[i].dev) {
6313 free_extent_map(em);
6314 return -EIO;
6315 }
6316 btrfs_warn(root->fs_info, "devid %llu uuid %pU is missing",
6317 devid, uuid);
6318 }
6319 map->stripes[i].dev->in_fs_metadata = 1;
6320 }
6321
6322 write_lock(&map_tree->map_tree.lock);
6323 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6324 write_unlock(&map_tree->map_tree.lock);
6325 BUG_ON(ret); /* Tree corruption */
6326 free_extent_map(em);
6327
6328 return 0;
6329}
6330
6331static void fill_device_from_item(struct extent_buffer *leaf,
6332 struct btrfs_dev_item *dev_item,
6333 struct btrfs_device *device)
6334{
6335 unsigned long ptr;
6336
6337 device->devid = btrfs_device_id(leaf, dev_item);
6338 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6339 device->total_bytes = device->disk_total_bytes;
6340 device->commit_total_bytes = device->disk_total_bytes;
6341 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6342 device->commit_bytes_used = device->bytes_used;
6343 device->type = btrfs_device_type(leaf, dev_item);
6344 device->io_align = btrfs_device_io_align(leaf, dev_item);
6345 device->io_width = btrfs_device_io_width(leaf, dev_item);
6346 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6347 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6348 device->is_tgtdev_for_dev_replace = 0;
6349
6350 ptr = btrfs_device_uuid(dev_item);
6351 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6352}
6353
6354static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6355 u8 *fsid)
6356{
6357 struct btrfs_fs_devices *fs_devices;
6358 int ret;
6359
6360 BUG_ON(!mutex_is_locked(&uuid_mutex));
6361
6362 fs_devices = root->fs_info->fs_devices->seed;
6363 while (fs_devices) {
6364 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6365 return fs_devices;
6366
6367 fs_devices = fs_devices->seed;
6368 }
6369
6370 fs_devices = find_fsid(fsid);
6371 if (!fs_devices) {
6372 if (!btrfs_test_opt(root, DEGRADED))
6373 return ERR_PTR(-ENOENT);
6374
6375 fs_devices = alloc_fs_devices(fsid);
6376 if (IS_ERR(fs_devices))
6377 return fs_devices;
6378
6379 fs_devices->seeding = 1;
6380 fs_devices->opened = 1;
6381 return fs_devices;
6382 }
6383
6384 fs_devices = clone_fs_devices(fs_devices);
6385 if (IS_ERR(fs_devices))
6386 return fs_devices;
6387
6388 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6389 root->fs_info->bdev_holder);
6390 if (ret) {
6391 free_fs_devices(fs_devices);
6392 fs_devices = ERR_PTR(ret);
6393 goto out;
6394 }
6395
6396 if (!fs_devices->seeding) {
6397 __btrfs_close_devices(fs_devices);
6398 free_fs_devices(fs_devices);
6399 fs_devices = ERR_PTR(-EINVAL);
6400 goto out;
6401 }
6402
6403 fs_devices->seed = root->fs_info->fs_devices->seed;
6404 root->fs_info->fs_devices->seed = fs_devices;
6405out:
6406 return fs_devices;
6407}
6408
6409static int read_one_dev(struct btrfs_root *root,
6410 struct extent_buffer *leaf,
6411 struct btrfs_dev_item *dev_item)
6412{
6413 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6414 struct btrfs_device *device;
6415 u64 devid;
6416 int ret;
6417 u8 fs_uuid[BTRFS_UUID_SIZE];
6418 u8 dev_uuid[BTRFS_UUID_SIZE];
6419
6420 devid = btrfs_device_id(leaf, dev_item);
6421 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6422 BTRFS_UUID_SIZE);
6423 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6424 BTRFS_UUID_SIZE);
6425
6426 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6427 fs_devices = open_seed_devices(root, fs_uuid);
6428 if (IS_ERR(fs_devices))
6429 return PTR_ERR(fs_devices);
6430 }
6431
6432 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6433 if (!device) {
6434 if (!btrfs_test_opt(root, DEGRADED))
6435 return -EIO;
6436
6437 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6438 if (!device)
6439 return -ENOMEM;
6440 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6441 devid, dev_uuid);
6442 } else {
6443 if (!device->bdev && !btrfs_test_opt(root, DEGRADED))
6444 return -EIO;
6445
6446 if(!device->bdev && !device->missing) {
6447 /*
6448 * this happens when a device that was properly setup
6449 * in the device info lists suddenly goes bad.
6450 * device->bdev is NULL, and so we have to set
6451 * device->missing to one here
6452 */
6453 device->fs_devices->missing_devices++;
6454 device->missing = 1;
6455 }
6456
6457 /* Move the device to its own fs_devices */
6458 if (device->fs_devices != fs_devices) {
6459 ASSERT(device->missing);
6460
6461 list_move(&device->dev_list, &fs_devices->devices);
6462 device->fs_devices->num_devices--;
6463 fs_devices->num_devices++;
6464
6465 device->fs_devices->missing_devices--;
6466 fs_devices->missing_devices++;
6467
6468 device->fs_devices = fs_devices;
6469 }
6470 }
6471
6472 if (device->fs_devices != root->fs_info->fs_devices) {
6473 BUG_ON(device->writeable);
6474 if (device->generation !=
6475 btrfs_device_generation(leaf, dev_item))
6476 return -EINVAL;
6477 }
6478
6479 fill_device_from_item(leaf, dev_item, device);
6480 device->in_fs_metadata = 1;
6481 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6482 device->fs_devices->total_rw_bytes += device->total_bytes;
6483 spin_lock(&root->fs_info->free_chunk_lock);
6484 root->fs_info->free_chunk_space += device->total_bytes -
6485 device->bytes_used;
6486 spin_unlock(&root->fs_info->free_chunk_lock);
6487 }
6488 ret = 0;
6489 return ret;
6490}
6491
6492int btrfs_read_sys_array(struct btrfs_root *root)
6493{
6494 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
6495 struct extent_buffer *sb;
6496 struct btrfs_disk_key *disk_key;
6497 struct btrfs_chunk *chunk;
6498 u8 *array_ptr;
6499 unsigned long sb_array_offset;
6500 int ret = 0;
6501 u32 num_stripes;
6502 u32 array_size;
6503 u32 len = 0;
6504 u32 cur_offset;
6505 struct btrfs_key key;
6506
6507 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6508 /*
6509 * This will create extent buffer of nodesize, superblock size is
6510 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6511 * overallocate but we can keep it as-is, only the first page is used.
6512 */
6513 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6514 if (!sb)
6515 return -ENOMEM;
6516 set_extent_buffer_uptodate(sb);
6517 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6518 /*
6519 * The sb extent buffer is artifical and just used to read the system array.
6520 * set_extent_buffer_uptodate() call does not properly mark all it's
6521 * pages up-to-date when the page is larger: extent does not cover the
6522 * whole page and consequently check_page_uptodate does not find all
6523 * the page's extents up-to-date (the hole beyond sb),
6524 * write_extent_buffer then triggers a WARN_ON.
6525 *
6526 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6527 * but sb spans only this function. Add an explicit SetPageUptodate call
6528 * to silence the warning eg. on PowerPC 64.
6529 */
6530 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6531 SetPageUptodate(sb->pages[0]);
6532
6533 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6534 array_size = btrfs_super_sys_array_size(super_copy);
6535
6536 array_ptr = super_copy->sys_chunk_array;
6537 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6538 cur_offset = 0;
6539
6540 while (cur_offset < array_size) {
6541 disk_key = (struct btrfs_disk_key *)array_ptr;
6542 len = sizeof(*disk_key);
6543 if (cur_offset + len > array_size)
6544 goto out_short_read;
6545
6546 btrfs_disk_key_to_cpu(&key, disk_key);
6547
6548 array_ptr += len;
6549 sb_array_offset += len;
6550 cur_offset += len;
6551
6552 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6553 chunk = (struct btrfs_chunk *)sb_array_offset;
6554 /*
6555 * At least one btrfs_chunk with one stripe must be
6556 * present, exact stripe count check comes afterwards
6557 */
6558 len = btrfs_chunk_item_size(1);
6559 if (cur_offset + len > array_size)
6560 goto out_short_read;
6561
6562 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6563 if (!num_stripes) {
6564 printk(KERN_ERR
6565 "BTRFS: invalid number of stripes %u in sys_array at offset %u\n",
6566 num_stripes, cur_offset);
6567 ret = -EIO;
6568 break;
6569 }
6570
6571 len = btrfs_chunk_item_size(num_stripes);
6572 if (cur_offset + len > array_size)
6573 goto out_short_read;
6574
6575 ret = read_one_chunk(root, &key, sb, chunk);
6576 if (ret)
6577 break;
6578 } else {
6579 printk(KERN_ERR
6580 "BTRFS: unexpected item type %u in sys_array at offset %u\n",
6581 (u32)key.type, cur_offset);
6582 ret = -EIO;
6583 break;
6584 }
6585 array_ptr += len;
6586 sb_array_offset += len;
6587 cur_offset += len;
6588 }
6589 free_extent_buffer(sb);
6590 return ret;
6591
6592out_short_read:
6593 printk(KERN_ERR "BTRFS: sys_array too short to read %u bytes at offset %u\n",
6594 len, cur_offset);
6595 free_extent_buffer(sb);
6596 return -EIO;
6597}
6598
6599int btrfs_read_chunk_tree(struct btrfs_root *root)
6600{
6601 struct btrfs_path *path;
6602 struct extent_buffer *leaf;
6603 struct btrfs_key key;
6604 struct btrfs_key found_key;
6605 int ret;
6606 int slot;
6607
6608 root = root->fs_info->chunk_root;
6609
6610 path = btrfs_alloc_path();
6611 if (!path)
6612 return -ENOMEM;
6613
6614 mutex_lock(&uuid_mutex);
6615 lock_chunks(root);
6616
6617 /*
6618 * Read all device items, and then all the chunk items. All
6619 * device items are found before any chunk item (their object id
6620 * is smaller than the lowest possible object id for a chunk
6621 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6622 */
6623 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6624 key.offset = 0;
6625 key.type = 0;
6626 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6627 if (ret < 0)
6628 goto error;
6629 while (1) {
6630 leaf = path->nodes[0];
6631 slot = path->slots[0];
6632 if (slot >= btrfs_header_nritems(leaf)) {
6633 ret = btrfs_next_leaf(root, path);
6634 if (ret == 0)
6635 continue;
6636 if (ret < 0)
6637 goto error;
6638 break;
6639 }
6640 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6641 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6642 struct btrfs_dev_item *dev_item;
6643 dev_item = btrfs_item_ptr(leaf, slot,
6644 struct btrfs_dev_item);
6645 ret = read_one_dev(root, leaf, dev_item);
6646 if (ret)
6647 goto error;
6648 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6649 struct btrfs_chunk *chunk;
6650 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6651 ret = read_one_chunk(root, &found_key, leaf, chunk);
6652 if (ret)
6653 goto error;
6654 }
6655 path->slots[0]++;
6656 }
6657 ret = 0;
6658error:
6659 unlock_chunks(root);
6660 mutex_unlock(&uuid_mutex);
6661
6662 btrfs_free_path(path);
6663 return ret;
6664}
6665
6666void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6667{
6668 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6669 struct btrfs_device *device;
6670
6671 while (fs_devices) {
6672 mutex_lock(&fs_devices->device_list_mutex);
6673 list_for_each_entry(device, &fs_devices->devices, dev_list)
6674 device->dev_root = fs_info->dev_root;
6675 mutex_unlock(&fs_devices->device_list_mutex);
6676
6677 fs_devices = fs_devices->seed;
6678 }
6679}
6680
6681static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6682{
6683 int i;
6684
6685 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6686 btrfs_dev_stat_reset(dev, i);
6687}
6688
6689int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6690{
6691 struct btrfs_key key;
6692 struct btrfs_key found_key;
6693 struct btrfs_root *dev_root = fs_info->dev_root;
6694 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6695 struct extent_buffer *eb;
6696 int slot;
6697 int ret = 0;
6698 struct btrfs_device *device;
6699 struct btrfs_path *path = NULL;
6700 int i;
6701
6702 path = btrfs_alloc_path();
6703 if (!path) {
6704 ret = -ENOMEM;
6705 goto out;
6706 }
6707
6708 mutex_lock(&fs_devices->device_list_mutex);
6709 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6710 int item_size;
6711 struct btrfs_dev_stats_item *ptr;
6712
6713 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6714 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6715 key.offset = device->devid;
6716 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6717 if (ret) {
6718 __btrfs_reset_dev_stats(device);
6719 device->dev_stats_valid = 1;
6720 btrfs_release_path(path);
6721 continue;
6722 }
6723 slot = path->slots[0];
6724 eb = path->nodes[0];
6725 btrfs_item_key_to_cpu(eb, &found_key, slot);
6726 item_size = btrfs_item_size_nr(eb, slot);
6727
6728 ptr = btrfs_item_ptr(eb, slot,
6729 struct btrfs_dev_stats_item);
6730
6731 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6732 if (item_size >= (1 + i) * sizeof(__le64))
6733 btrfs_dev_stat_set(device, i,
6734 btrfs_dev_stats_value(eb, ptr, i));
6735 else
6736 btrfs_dev_stat_reset(device, i);
6737 }
6738
6739 device->dev_stats_valid = 1;
6740 btrfs_dev_stat_print_on_load(device);
6741 btrfs_release_path(path);
6742 }
6743 mutex_unlock(&fs_devices->device_list_mutex);
6744
6745out:
6746 btrfs_free_path(path);
6747 return ret < 0 ? ret : 0;
6748}
6749
6750static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6751 struct btrfs_root *dev_root,
6752 struct btrfs_device *device)
6753{
6754 struct btrfs_path *path;
6755 struct btrfs_key key;
6756 struct extent_buffer *eb;
6757 struct btrfs_dev_stats_item *ptr;
6758 int ret;
6759 int i;
6760
6761 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6762 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6763 key.offset = device->devid;
6764
6765 path = btrfs_alloc_path();
6766 BUG_ON(!path);
6767 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6768 if (ret < 0) {
6769 btrfs_warn_in_rcu(dev_root->fs_info,
6770 "error %d while searching for dev_stats item for device %s",
6771 ret, rcu_str_deref(device->name));
6772 goto out;
6773 }
6774
6775 if (ret == 0 &&
6776 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6777 /* need to delete old one and insert a new one */
6778 ret = btrfs_del_item(trans, dev_root, path);
6779 if (ret != 0) {
6780 btrfs_warn_in_rcu(dev_root->fs_info,
6781 "delete too small dev_stats item for device %s failed %d",
6782 rcu_str_deref(device->name), ret);
6783 goto out;
6784 }
6785 ret = 1;
6786 }
6787
6788 if (ret == 1) {
6789 /* need to insert a new item */
6790 btrfs_release_path(path);
6791 ret = btrfs_insert_empty_item(trans, dev_root, path,
6792 &key, sizeof(*ptr));
6793 if (ret < 0) {
6794 btrfs_warn_in_rcu(dev_root->fs_info,
6795 "insert dev_stats item for device %s failed %d",
6796 rcu_str_deref(device->name), ret);
6797 goto out;
6798 }
6799 }
6800
6801 eb = path->nodes[0];
6802 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6803 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6804 btrfs_set_dev_stats_value(eb, ptr, i,
6805 btrfs_dev_stat_read(device, i));
6806 btrfs_mark_buffer_dirty(eb);
6807
6808out:
6809 btrfs_free_path(path);
6810 return ret;
6811}
6812
6813/*
6814 * called from commit_transaction. Writes all changed device stats to disk.
6815 */
6816int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6817 struct btrfs_fs_info *fs_info)
6818{
6819 struct btrfs_root *dev_root = fs_info->dev_root;
6820 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6821 struct btrfs_device *device;
6822 int stats_cnt;
6823 int ret = 0;
6824
6825 mutex_lock(&fs_devices->device_list_mutex);
6826 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6827 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
6828 continue;
6829
6830 stats_cnt = atomic_read(&device->dev_stats_ccnt);
6831 ret = update_dev_stat_item(trans, dev_root, device);
6832 if (!ret)
6833 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
6834 }
6835 mutex_unlock(&fs_devices->device_list_mutex);
6836
6837 return ret;
6838}
6839
6840void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6841{
6842 btrfs_dev_stat_inc(dev, index);
6843 btrfs_dev_stat_print_on_error(dev);
6844}
6845
6846static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6847{
6848 if (!dev->dev_stats_valid)
6849 return;
6850 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
6851 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6852 rcu_str_deref(dev->name),
6853 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6854 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6855 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6856 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6857 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6858}
6859
6860static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6861{
6862 int i;
6863
6864 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6865 if (btrfs_dev_stat_read(dev, i) != 0)
6866 break;
6867 if (i == BTRFS_DEV_STAT_VALUES_MAX)
6868 return; /* all values == 0, suppress message */
6869
6870 btrfs_info_in_rcu(dev->dev_root->fs_info,
6871 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
6872 rcu_str_deref(dev->name),
6873 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6874 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6875 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6876 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6877 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6878}
6879
6880int btrfs_get_dev_stats(struct btrfs_root *root,
6881 struct btrfs_ioctl_get_dev_stats *stats)
6882{
6883 struct btrfs_device *dev;
6884 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6885 int i;
6886
6887 mutex_lock(&fs_devices->device_list_mutex);
6888 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6889 mutex_unlock(&fs_devices->device_list_mutex);
6890
6891 if (!dev) {
6892 btrfs_warn(root->fs_info, "get dev_stats failed, device not found");
6893 return -ENODEV;
6894 } else if (!dev->dev_stats_valid) {
6895 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid");
6896 return -ENODEV;
6897 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6898 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6899 if (stats->nr_items > i)
6900 stats->values[i] =
6901 btrfs_dev_stat_read_and_reset(dev, i);
6902 else
6903 btrfs_dev_stat_reset(dev, i);
6904 }
6905 } else {
6906 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6907 if (stats->nr_items > i)
6908 stats->values[i] = btrfs_dev_stat_read(dev, i);
6909 }
6910 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6911 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6912 return 0;
6913}
6914
6915void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
6916{
6917 struct buffer_head *bh;
6918 struct btrfs_super_block *disk_super;
6919 int copy_num;
6920
6921 if (!bdev)
6922 return;
6923
6924 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
6925 copy_num++) {
6926
6927 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
6928 continue;
6929
6930 disk_super = (struct btrfs_super_block *)bh->b_data;
6931
6932 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6933 set_buffer_dirty(bh);
6934 sync_dirty_buffer(bh);
6935 brelse(bh);
6936 }
6937
6938 /* Notify udev that device has changed */
6939 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
6940
6941 /* Update ctime/mtime for device path for libblkid */
6942 update_dev_time(device_path);
6943}
6944
6945/*
6946 * Update the size of all devices, which is used for writing out the
6947 * super blocks.
6948 */
6949void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
6950{
6951 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6952 struct btrfs_device *curr, *next;
6953
6954 if (list_empty(&fs_devices->resized_devices))
6955 return;
6956
6957 mutex_lock(&fs_devices->device_list_mutex);
6958 lock_chunks(fs_info->dev_root);
6959 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
6960 resized_list) {
6961 list_del_init(&curr->resized_list);
6962 curr->commit_total_bytes = curr->disk_total_bytes;
6963 }
6964 unlock_chunks(fs_info->dev_root);
6965 mutex_unlock(&fs_devices->device_list_mutex);
6966}
6967
6968/* Must be invoked during the transaction commit */
6969void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
6970 struct btrfs_transaction *transaction)
6971{
6972 struct extent_map *em;
6973 struct map_lookup *map;
6974 struct btrfs_device *dev;
6975 int i;
6976
6977 if (list_empty(&transaction->pending_chunks))
6978 return;
6979
6980 /* In order to kick the device replace finish process */
6981 lock_chunks(root);
6982 list_for_each_entry(em, &transaction->pending_chunks, list) {
6983 map = em->map_lookup;
6984
6985 for (i = 0; i < map->num_stripes; i++) {
6986 dev = map->stripes[i].dev;
6987 dev->commit_bytes_used = dev->bytes_used;
6988 }
6989 }
6990 unlock_chunks(root);
6991}
6992
6993void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
6994{
6995 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6996 while (fs_devices) {
6997 fs_devices->fs_info = fs_info;
6998 fs_devices = fs_devices->seed;
6999 }
7000}
7001
7002void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7003{
7004 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7005 while (fs_devices) {
7006 fs_devices->fs_info = NULL;
7007 fs_devices = fs_devices->seed;
7008 }
7009}
7010
7011static void btrfs_close_one_device(struct btrfs_device *device)
7012{
7013 struct btrfs_fs_devices *fs_devices = device->fs_devices;
7014 struct btrfs_device *new_device;
7015 struct rcu_string *name;
7016
7017 if (device->bdev)
7018 fs_devices->open_devices--;
7019
7020 if (device->writeable &&
7021 device->devid != BTRFS_DEV_REPLACE_DEVID) {
7022 list_del_init(&device->dev_alloc_list);
7023 fs_devices->rw_devices--;
7024 }
7025
7026 if (device->missing)
7027 fs_devices->missing_devices--;
7028
7029 new_device = btrfs_alloc_device(NULL, &device->devid,
7030 device->uuid);
7031 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
7032
7033 /* Safe because we are under uuid_mutex */
7034 if (device->name) {
7035 name = rcu_string_strdup(device->name->str, GFP_NOFS);
7036 BUG_ON(!name); /* -ENOMEM */
7037 rcu_assign_pointer(new_device->name, name);
7038 }
7039
7040 list_replace_rcu(&device->dev_list, &new_device->dev_list);
7041 new_device->fs_devices = device->fs_devices;
7042
7043 call_rcu(&device->rcu, free_device);
7044}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "volumes.h"
20#include "raid56.h"
21#include "rcu-string.h"
22#include "dev-replace.h"
23#include "sysfs.h"
24#include "tree-checker.h"
25#include "space-info.h"
26#include "block-group.h"
27#include "discard.h"
28#include "zoned.h"
29#include "fs.h"
30#include "accessors.h"
31#include "uuid-tree.h"
32#include "ioctl.h"
33#include "relocation.h"
34#include "scrub.h"
35#include "super.h"
36#include "raid-stripe-tree.h"
37
38#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
39 BTRFS_BLOCK_GROUP_RAID10 | \
40 BTRFS_BLOCK_GROUP_RAID56_MASK)
41
42struct btrfs_io_geometry {
43 u32 stripe_index;
44 u32 stripe_nr;
45 int mirror_num;
46 int num_stripes;
47 u64 stripe_offset;
48 u64 raid56_full_stripe_start;
49 int max_errors;
50 enum btrfs_map_op op;
51};
52
53const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 [BTRFS_RAID_RAID10] = {
55 .sub_stripes = 2,
56 .dev_stripes = 1,
57 .devs_max = 0, /* 0 == as many as possible */
58 .devs_min = 2,
59 .tolerated_failures = 1,
60 .devs_increment = 2,
61 .ncopies = 2,
62 .nparity = 0,
63 .raid_name = "raid10",
64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 },
67 [BTRFS_RAID_RAID1] = {
68 .sub_stripes = 1,
69 .dev_stripes = 1,
70 .devs_max = 2,
71 .devs_min = 2,
72 .tolerated_failures = 1,
73 .devs_increment = 2,
74 .ncopies = 2,
75 .nparity = 0,
76 .raid_name = "raid1",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 },
80 [BTRFS_RAID_RAID1C3] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 3,
84 .devs_min = 3,
85 .tolerated_failures = 2,
86 .devs_increment = 3,
87 .ncopies = 3,
88 .nparity = 0,
89 .raid_name = "raid1c3",
90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 },
93 [BTRFS_RAID_RAID1C4] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 4,
97 .devs_min = 4,
98 .tolerated_failures = 3,
99 .devs_increment = 4,
100 .ncopies = 4,
101 .nparity = 0,
102 .raid_name = "raid1c4",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 },
106 [BTRFS_RAID_DUP] = {
107 .sub_stripes = 1,
108 .dev_stripes = 2,
109 .devs_max = 1,
110 .devs_min = 1,
111 .tolerated_failures = 0,
112 .devs_increment = 1,
113 .ncopies = 2,
114 .nparity = 0,
115 .raid_name = "dup",
116 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
117 .mindev_error = 0,
118 },
119 [BTRFS_RAID_RAID0] = {
120 .sub_stripes = 1,
121 .dev_stripes = 1,
122 .devs_max = 0,
123 .devs_min = 1,
124 .tolerated_failures = 0,
125 .devs_increment = 1,
126 .ncopies = 1,
127 .nparity = 0,
128 .raid_name = "raid0",
129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
130 .mindev_error = 0,
131 },
132 [BTRFS_RAID_SINGLE] = {
133 .sub_stripes = 1,
134 .dev_stripes = 1,
135 .devs_max = 1,
136 .devs_min = 1,
137 .tolerated_failures = 0,
138 .devs_increment = 1,
139 .ncopies = 1,
140 .nparity = 0,
141 .raid_name = "single",
142 .bg_flag = 0,
143 .mindev_error = 0,
144 },
145 [BTRFS_RAID_RAID5] = {
146 .sub_stripes = 1,
147 .dev_stripes = 1,
148 .devs_max = 0,
149 .devs_min = 2,
150 .tolerated_failures = 1,
151 .devs_increment = 1,
152 .ncopies = 1,
153 .nparity = 1,
154 .raid_name = "raid5",
155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 },
158 [BTRFS_RAID_RAID6] = {
159 .sub_stripes = 1,
160 .dev_stripes = 1,
161 .devs_max = 0,
162 .devs_min = 3,
163 .tolerated_failures = 2,
164 .devs_increment = 1,
165 .ncopies = 1,
166 .nparity = 2,
167 .raid_name = "raid6",
168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 },
171};
172
173/*
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
176 */
177enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178{
179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180
181 if (!profile)
182 return BTRFS_RAID_SINGLE;
183
184 return BTRFS_BG_FLAG_TO_INDEX(profile);
185}
186
187const char *btrfs_bg_type_to_raid_name(u64 flags)
188{
189 const int index = btrfs_bg_flags_to_raid_index(flags);
190
191 if (index >= BTRFS_NR_RAID_TYPES)
192 return NULL;
193
194 return btrfs_raid_array[index].raid_name;
195}
196
197int btrfs_nr_parity_stripes(u64 type)
198{
199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200
201 return btrfs_raid_array[index].nparity;
202}
203
204/*
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
207 */
208void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209{
210 int i;
211 int ret;
212 char *bp = buf;
213 u64 flags = bg_flags;
214 u32 size_bp = size_buf;
215
216 if (!flags) {
217 strcpy(bp, "NONE");
218 return;
219 }
220
221#define DESCRIBE_FLAG(flag, desc) \
222 do { \
223 if (flags & (flag)) { \
224 ret = snprintf(bp, size_bp, "%s|", (desc)); \
225 if (ret < 0 || ret >= size_bp) \
226 goto out_overflow; \
227 size_bp -= ret; \
228 bp += ret; \
229 flags &= ~(flag); \
230 } \
231 } while (0)
232
233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236
237 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 btrfs_raid_array[i].raid_name);
241#undef DESCRIBE_FLAG
242
243 if (flags) {
244 ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 size_bp -= ret;
246 }
247
248 if (size_bp < size_buf)
249 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250
251 /*
252 * The text is trimmed, it's up to the caller to provide sufficiently
253 * large buffer
254 */
255out_overflow:;
256}
257
258static int init_first_rw_device(struct btrfs_trans_handle *trans);
259static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261
262/*
263 * Device locking
264 * ==============
265 *
266 * There are several mutexes that protect manipulation of devices and low-level
267 * structures like chunks but not block groups, extents or files
268 *
269 * uuid_mutex (global lock)
270 * ------------------------
271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273 * device) or requested by the device= mount option
274 *
275 * the mutex can be very coarse and can cover long-running operations
276 *
277 * protects: updates to fs_devices counters like missing devices, rw devices,
278 * seeding, structure cloning, opening/closing devices at mount/umount time
279 *
280 * global::fs_devs - add, remove, updates to the global list
281 *
282 * does not protect: manipulation of the fs_devices::devices list in general
283 * but in mount context it could be used to exclude list modifications by eg.
284 * scan ioctl
285 *
286 * btrfs_device::name - renames (write side), read is RCU
287 *
288 * fs_devices::device_list_mutex (per-fs, with RCU)
289 * ------------------------------------------------
290 * protects updates to fs_devices::devices, ie. adding and deleting
291 *
292 * simple list traversal with read-only actions can be done with RCU protection
293 *
294 * may be used to exclude some operations from running concurrently without any
295 * modifications to the list (see write_all_supers)
296 *
297 * Is not required at mount and close times, because our device list is
298 * protected by the uuid_mutex at that point.
299 *
300 * balance_mutex
301 * -------------
302 * protects balance structures (status, state) and context accessed from
303 * several places (internally, ioctl)
304 *
305 * chunk_mutex
306 * -----------
307 * protects chunks, adding or removing during allocation, trim or when a new
308 * device is added/removed. Additionally it also protects post_commit_list of
309 * individual devices, since they can be added to the transaction's
310 * post_commit_list only with chunk_mutex held.
311 *
312 * cleaner_mutex
313 * -------------
314 * a big lock that is held by the cleaner thread and prevents running subvolume
315 * cleaning together with relocation or delayed iputs
316 *
317 *
318 * Lock nesting
319 * ============
320 *
321 * uuid_mutex
322 * device_list_mutex
323 * chunk_mutex
324 * balance_mutex
325 *
326 *
327 * Exclusive operations
328 * ====================
329 *
330 * Maintains the exclusivity of the following operations that apply to the
331 * whole filesystem and cannot run in parallel.
332 *
333 * - Balance (*)
334 * - Device add
335 * - Device remove
336 * - Device replace (*)
337 * - Resize
338 *
339 * The device operations (as above) can be in one of the following states:
340 *
341 * - Running state
342 * - Paused state
343 * - Completed state
344 *
345 * Only device operations marked with (*) can go into the Paused state for the
346 * following reasons:
347 *
348 * - ioctl (only Balance can be Paused through ioctl)
349 * - filesystem remounted as read-only
350 * - filesystem unmounted and mounted as read-only
351 * - system power-cycle and filesystem mounted as read-only
352 * - filesystem or device errors leading to forced read-only
353 *
354 * The status of exclusive operation is set and cleared atomically.
355 * During the course of Paused state, fs_info::exclusive_operation remains set.
356 * A device operation in Paused or Running state can be canceled or resumed
357 * either by ioctl (Balance only) or when remounted as read-write.
358 * The exclusive status is cleared when the device operation is canceled or
359 * completed.
360 */
361
362DEFINE_MUTEX(uuid_mutex);
363static LIST_HEAD(fs_uuids);
364struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365{
366 return &fs_uuids;
367}
368
369/*
370 * Allocate new btrfs_fs_devices structure identified by a fsid.
371 *
372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
373 * fs_devices::metadata_fsid
374 *
375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376 * The returned struct is not linked onto any lists and can be destroyed with
377 * kfree() right away.
378 */
379static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380{
381 struct btrfs_fs_devices *fs_devs;
382
383 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 if (!fs_devs)
385 return ERR_PTR(-ENOMEM);
386
387 mutex_init(&fs_devs->device_list_mutex);
388
389 INIT_LIST_HEAD(&fs_devs->devices);
390 INIT_LIST_HEAD(&fs_devs->alloc_list);
391 INIT_LIST_HEAD(&fs_devs->fs_list);
392 INIT_LIST_HEAD(&fs_devs->seed_list);
393
394 if (fsid) {
395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 }
398
399 return fs_devs;
400}
401
402static void btrfs_free_device(struct btrfs_device *device)
403{
404 WARN_ON(!list_empty(&device->post_commit_list));
405 rcu_string_free(device->name);
406 extent_io_tree_release(&device->alloc_state);
407 btrfs_destroy_dev_zone_info(device);
408 kfree(device);
409}
410
411static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412{
413 struct btrfs_device *device;
414
415 WARN_ON(fs_devices->opened);
416 while (!list_empty(&fs_devices->devices)) {
417 device = list_entry(fs_devices->devices.next,
418 struct btrfs_device, dev_list);
419 list_del(&device->dev_list);
420 btrfs_free_device(device);
421 }
422 kfree(fs_devices);
423}
424
425void __exit btrfs_cleanup_fs_uuids(void)
426{
427 struct btrfs_fs_devices *fs_devices;
428
429 while (!list_empty(&fs_uuids)) {
430 fs_devices = list_entry(fs_uuids.next,
431 struct btrfs_fs_devices, fs_list);
432 list_del(&fs_devices->fs_list);
433 free_fs_devices(fs_devices);
434 }
435}
436
437static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 const u8 *fsid, const u8 *metadata_fsid)
439{
440 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 return false;
442
443 if (!metadata_fsid)
444 return true;
445
446 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 return false;
448
449 return true;
450}
451
452static noinline struct btrfs_fs_devices *find_fsid(
453 const u8 *fsid, const u8 *metadata_fsid)
454{
455 struct btrfs_fs_devices *fs_devices;
456
457 ASSERT(fsid);
458
459 /* Handle non-split brain cases */
460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 return fs_devices;
463 }
464 return NULL;
465}
466
467static int
468btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 int flush, struct file **bdev_file,
470 struct btrfs_super_block **disk_super)
471{
472 struct block_device *bdev;
473 int ret;
474
475 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476
477 if (IS_ERR(*bdev_file)) {
478 ret = PTR_ERR(*bdev_file);
479 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
480 device_path, flags, ret);
481 goto error;
482 }
483 bdev = file_bdev(*bdev_file);
484
485 if (flush)
486 sync_blockdev(bdev);
487 if (holder) {
488 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
489 if (ret) {
490 fput(*bdev_file);
491 goto error;
492 }
493 }
494 invalidate_bdev(bdev);
495 *disk_super = btrfs_read_dev_super(bdev);
496 if (IS_ERR(*disk_super)) {
497 ret = PTR_ERR(*disk_super);
498 fput(*bdev_file);
499 goto error;
500 }
501
502 return 0;
503
504error:
505 *disk_super = NULL;
506 *bdev_file = NULL;
507 return ret;
508}
509
510/*
511 * Search and remove all stale devices (which are not mounted). When both
512 * inputs are NULL, it will search and release all stale devices.
513 *
514 * @devt: Optional. When provided will it release all unmounted devices
515 * matching this devt only.
516 * @skip_device: Optional. Will skip this device when searching for the stale
517 * devices.
518 *
519 * Return: 0 for success or if @devt is 0.
520 * -EBUSY if @devt is a mounted device.
521 * -ENOENT if @devt does not match any device in the list.
522 */
523static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
524{
525 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
526 struct btrfs_device *device, *tmp_device;
527 int ret;
528 bool freed = false;
529
530 lockdep_assert_held(&uuid_mutex);
531
532 /* Return good status if there is no instance of devt. */
533 ret = 0;
534 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
535
536 mutex_lock(&fs_devices->device_list_mutex);
537 list_for_each_entry_safe(device, tmp_device,
538 &fs_devices->devices, dev_list) {
539 if (skip_device && skip_device == device)
540 continue;
541 if (devt && devt != device->devt)
542 continue;
543 if (fs_devices->opened) {
544 if (devt)
545 ret = -EBUSY;
546 break;
547 }
548
549 /* delete the stale device */
550 fs_devices->num_devices--;
551 list_del(&device->dev_list);
552 btrfs_free_device(device);
553
554 freed = true;
555 }
556 mutex_unlock(&fs_devices->device_list_mutex);
557
558 if (fs_devices->num_devices == 0) {
559 btrfs_sysfs_remove_fsid(fs_devices);
560 list_del(&fs_devices->fs_list);
561 free_fs_devices(fs_devices);
562 }
563 }
564
565 /* If there is at least one freed device return 0. */
566 if (freed)
567 return 0;
568
569 return ret;
570}
571
572static struct btrfs_fs_devices *find_fsid_by_device(
573 struct btrfs_super_block *disk_super,
574 dev_t devt, bool *same_fsid_diff_dev)
575{
576 struct btrfs_fs_devices *fsid_fs_devices;
577 struct btrfs_fs_devices *devt_fs_devices;
578 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
579 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
580 bool found_by_devt = false;
581
582 /* Find the fs_device by the usual method, if found use it. */
583 fsid_fs_devices = find_fsid(disk_super->fsid,
584 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
585
586 /* The temp_fsid feature is supported only with single device filesystem. */
587 if (btrfs_super_num_devices(disk_super) != 1)
588 return fsid_fs_devices;
589
590 /*
591 * A seed device is an integral component of the sprout device, which
592 * functions as a multi-device filesystem. So, temp-fsid feature is
593 * not supported.
594 */
595 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
596 return fsid_fs_devices;
597
598 /* Try to find a fs_devices by matching devt. */
599 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
600 struct btrfs_device *device;
601
602 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
603 if (device->devt == devt) {
604 found_by_devt = true;
605 break;
606 }
607 }
608 if (found_by_devt)
609 break;
610 }
611
612 if (found_by_devt) {
613 /* Existing device. */
614 if (fsid_fs_devices == NULL) {
615 if (devt_fs_devices->opened == 0) {
616 /* Stale device. */
617 return NULL;
618 } else {
619 /* temp_fsid is mounting a subvol. */
620 return devt_fs_devices;
621 }
622 } else {
623 /* Regular or temp_fsid device mounting a subvol. */
624 return devt_fs_devices;
625 }
626 } else {
627 /* New device. */
628 if (fsid_fs_devices == NULL) {
629 return NULL;
630 } else {
631 /* sb::fsid is already used create a new temp_fsid. */
632 *same_fsid_diff_dev = true;
633 return NULL;
634 }
635 }
636
637 /* Not reached. */
638}
639
640/*
641 * This is only used on mount, and we are protected from competing things
642 * messing with our fs_devices by the uuid_mutex, thus we do not need the
643 * fs_devices->device_list_mutex here.
644 */
645static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
646 struct btrfs_device *device, blk_mode_t flags,
647 void *holder)
648{
649 struct file *bdev_file;
650 struct btrfs_super_block *disk_super;
651 u64 devid;
652 int ret;
653
654 if (device->bdev)
655 return -EINVAL;
656 if (!device->name)
657 return -EINVAL;
658
659 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
660 &bdev_file, &disk_super);
661 if (ret)
662 return ret;
663
664 devid = btrfs_stack_device_id(&disk_super->dev_item);
665 if (devid != device->devid)
666 goto error_free_page;
667
668 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
669 goto error_free_page;
670
671 device->generation = btrfs_super_generation(disk_super);
672
673 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
674 if (btrfs_super_incompat_flags(disk_super) &
675 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
676 pr_err(
677 "BTRFS: Invalid seeding and uuid-changed device detected\n");
678 goto error_free_page;
679 }
680
681 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
682 fs_devices->seeding = true;
683 } else {
684 if (bdev_read_only(file_bdev(bdev_file)))
685 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
686 else
687 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
688 }
689
690 if (!bdev_nonrot(file_bdev(bdev_file)))
691 fs_devices->rotating = true;
692
693 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
694 fs_devices->discardable = true;
695
696 device->bdev_file = bdev_file;
697 device->bdev = file_bdev(bdev_file);
698 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
699
700 if (device->devt != device->bdev->bd_dev) {
701 btrfs_warn(NULL,
702 "device %s maj:min changed from %d:%d to %d:%d",
703 device->name->str, MAJOR(device->devt),
704 MINOR(device->devt), MAJOR(device->bdev->bd_dev),
705 MINOR(device->bdev->bd_dev));
706
707 device->devt = device->bdev->bd_dev;
708 }
709
710 fs_devices->open_devices++;
711 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
712 device->devid != BTRFS_DEV_REPLACE_DEVID) {
713 fs_devices->rw_devices++;
714 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
715 }
716 btrfs_release_disk_super(disk_super);
717
718 return 0;
719
720error_free_page:
721 btrfs_release_disk_super(disk_super);
722 fput(bdev_file);
723
724 return -EINVAL;
725}
726
727const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
728{
729 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
730 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
731
732 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
733}
734
735/*
736 * We can have very weird soft links passed in.
737 * One example is "/proc/self/fd/<fd>", which can be a soft link to
738 * a block device.
739 *
740 * But it's never a good idea to use those weird names.
741 * Here we check if the path (not following symlinks) is a good one inside
742 * "/dev/".
743 */
744static bool is_good_dev_path(const char *dev_path)
745{
746 struct path path = { .mnt = NULL, .dentry = NULL };
747 char *path_buf = NULL;
748 char *resolved_path;
749 bool is_good = false;
750 int ret;
751
752 if (!dev_path)
753 goto out;
754
755 path_buf = kmalloc(PATH_MAX, GFP_KERNEL);
756 if (!path_buf)
757 goto out;
758
759 /*
760 * Do not follow soft link, just check if the original path is inside
761 * "/dev/".
762 */
763 ret = kern_path(dev_path, 0, &path);
764 if (ret)
765 goto out;
766 resolved_path = d_path(&path, path_buf, PATH_MAX);
767 if (IS_ERR(resolved_path))
768 goto out;
769 if (strncmp(resolved_path, "/dev/", strlen("/dev/")))
770 goto out;
771 is_good = true;
772out:
773 kfree(path_buf);
774 path_put(&path);
775 return is_good;
776}
777
778static int get_canonical_dev_path(const char *dev_path, char *canonical)
779{
780 struct path path = { .mnt = NULL, .dentry = NULL };
781 char *path_buf = NULL;
782 char *resolved_path;
783 int ret;
784
785 if (!dev_path) {
786 ret = -EINVAL;
787 goto out;
788 }
789
790 path_buf = kmalloc(PATH_MAX, GFP_KERNEL);
791 if (!path_buf) {
792 ret = -ENOMEM;
793 goto out;
794 }
795
796 ret = kern_path(dev_path, LOOKUP_FOLLOW, &path);
797 if (ret)
798 goto out;
799 resolved_path = d_path(&path, path_buf, PATH_MAX);
800 if (IS_ERR(resolved_path)) {
801 ret = PTR_ERR(resolved_path);
802 goto out;
803 }
804 ret = strscpy(canonical, resolved_path, PATH_MAX);
805out:
806 kfree(path_buf);
807 path_put(&path);
808 return ret;
809}
810
811static bool is_same_device(struct btrfs_device *device, const char *new_path)
812{
813 struct path old = { .mnt = NULL, .dentry = NULL };
814 struct path new = { .mnt = NULL, .dentry = NULL };
815 char *old_path = NULL;
816 bool is_same = false;
817 int ret;
818
819 if (!device->name)
820 goto out;
821
822 old_path = kzalloc(PATH_MAX, GFP_NOFS);
823 if (!old_path)
824 goto out;
825
826 rcu_read_lock();
827 ret = strscpy(old_path, rcu_str_deref(device->name), PATH_MAX);
828 rcu_read_unlock();
829 if (ret < 0)
830 goto out;
831
832 ret = kern_path(old_path, LOOKUP_FOLLOW, &old);
833 if (ret)
834 goto out;
835 ret = kern_path(new_path, LOOKUP_FOLLOW, &new);
836 if (ret)
837 goto out;
838 if (path_equal(&old, &new))
839 is_same = true;
840out:
841 kfree(old_path);
842 path_put(&old);
843 path_put(&new);
844 return is_same;
845}
846
847/*
848 * Add new device to list of registered devices
849 *
850 * Returns:
851 * device pointer which was just added or updated when successful
852 * error pointer when failed
853 */
854static noinline struct btrfs_device *device_list_add(const char *path,
855 struct btrfs_super_block *disk_super,
856 bool *new_device_added)
857{
858 struct btrfs_device *device;
859 struct btrfs_fs_devices *fs_devices = NULL;
860 struct rcu_string *name;
861 u64 found_transid = btrfs_super_generation(disk_super);
862 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
863 dev_t path_devt;
864 int error;
865 bool same_fsid_diff_dev = false;
866 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
867 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
868
869 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
870 btrfs_err(NULL,
871"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
872 path);
873 return ERR_PTR(-EAGAIN);
874 }
875
876 error = lookup_bdev(path, &path_devt);
877 if (error) {
878 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
879 path, error);
880 return ERR_PTR(error);
881 }
882
883 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
884
885 if (!fs_devices) {
886 fs_devices = alloc_fs_devices(disk_super->fsid);
887 if (IS_ERR(fs_devices))
888 return ERR_CAST(fs_devices);
889
890 if (has_metadata_uuid)
891 memcpy(fs_devices->metadata_uuid,
892 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
893
894 if (same_fsid_diff_dev) {
895 generate_random_uuid(fs_devices->fsid);
896 fs_devices->temp_fsid = true;
897 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
898 path, MAJOR(path_devt), MINOR(path_devt),
899 fs_devices->fsid);
900 }
901
902 mutex_lock(&fs_devices->device_list_mutex);
903 list_add(&fs_devices->fs_list, &fs_uuids);
904
905 device = NULL;
906 } else {
907 struct btrfs_dev_lookup_args args = {
908 .devid = devid,
909 .uuid = disk_super->dev_item.uuid,
910 };
911
912 mutex_lock(&fs_devices->device_list_mutex);
913 device = btrfs_find_device(fs_devices, &args);
914
915 if (found_transid > fs_devices->latest_generation) {
916 memcpy(fs_devices->fsid, disk_super->fsid,
917 BTRFS_FSID_SIZE);
918 memcpy(fs_devices->metadata_uuid,
919 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
920 }
921 }
922
923 if (!device) {
924 unsigned int nofs_flag;
925
926 if (fs_devices->opened) {
927 btrfs_err(NULL,
928"device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
929 path, MAJOR(path_devt), MINOR(path_devt),
930 fs_devices->fsid, current->comm,
931 task_pid_nr(current));
932 mutex_unlock(&fs_devices->device_list_mutex);
933 return ERR_PTR(-EBUSY);
934 }
935
936 nofs_flag = memalloc_nofs_save();
937 device = btrfs_alloc_device(NULL, &devid,
938 disk_super->dev_item.uuid, path);
939 memalloc_nofs_restore(nofs_flag);
940 if (IS_ERR(device)) {
941 mutex_unlock(&fs_devices->device_list_mutex);
942 /* we can safely leave the fs_devices entry around */
943 return device;
944 }
945
946 device->devt = path_devt;
947
948 list_add_rcu(&device->dev_list, &fs_devices->devices);
949 fs_devices->num_devices++;
950
951 device->fs_devices = fs_devices;
952 *new_device_added = true;
953
954 if (disk_super->label[0])
955 pr_info(
956"BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
957 disk_super->label, devid, found_transid, path,
958 MAJOR(path_devt), MINOR(path_devt),
959 current->comm, task_pid_nr(current));
960 else
961 pr_info(
962"BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
963 disk_super->fsid, devid, found_transid, path,
964 MAJOR(path_devt), MINOR(path_devt),
965 current->comm, task_pid_nr(current));
966
967 } else if (!device->name || !is_same_device(device, path)) {
968 /*
969 * When FS is already mounted.
970 * 1. If you are here and if the device->name is NULL that
971 * means this device was missing at time of FS mount.
972 * 2. If you are here and if the device->name is different
973 * from 'path' that means either
974 * a. The same device disappeared and reappeared with
975 * different name. or
976 * b. The missing-disk-which-was-replaced, has
977 * reappeared now.
978 *
979 * We must allow 1 and 2a above. But 2b would be a spurious
980 * and unintentional.
981 *
982 * Further in case of 1 and 2a above, the disk at 'path'
983 * would have missed some transaction when it was away and
984 * in case of 2a the stale bdev has to be updated as well.
985 * 2b must not be allowed at all time.
986 */
987
988 /*
989 * For now, we do allow update to btrfs_fs_device through the
990 * btrfs dev scan cli after FS has been mounted. We're still
991 * tracking a problem where systems fail mount by subvolume id
992 * when we reject replacement on a mounted FS.
993 */
994 if (!fs_devices->opened && found_transid < device->generation) {
995 /*
996 * That is if the FS is _not_ mounted and if you
997 * are here, that means there is more than one
998 * disk with same uuid and devid.We keep the one
999 * with larger generation number or the last-in if
1000 * generation are equal.
1001 */
1002 mutex_unlock(&fs_devices->device_list_mutex);
1003 btrfs_err(NULL,
1004"device %s already registered with a higher generation, found %llu expect %llu",
1005 path, found_transid, device->generation);
1006 return ERR_PTR(-EEXIST);
1007 }
1008
1009 /*
1010 * We are going to replace the device path for a given devid,
1011 * make sure it's the same device if the device is mounted
1012 *
1013 * NOTE: the device->fs_info may not be reliable here so pass
1014 * in a NULL to message helpers instead. This avoids a possible
1015 * use-after-free when the fs_info and fs_info->sb are already
1016 * torn down.
1017 */
1018 if (device->bdev) {
1019 if (device->devt != path_devt) {
1020 mutex_unlock(&fs_devices->device_list_mutex);
1021 btrfs_warn_in_rcu(NULL,
1022 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
1023 path, devid, found_transid,
1024 current->comm,
1025 task_pid_nr(current));
1026 return ERR_PTR(-EEXIST);
1027 }
1028 btrfs_info_in_rcu(NULL,
1029 "devid %llu device path %s changed to %s scanned by %s (%d)",
1030 devid, btrfs_dev_name(device),
1031 path, current->comm,
1032 task_pid_nr(current));
1033 }
1034
1035 name = rcu_string_strdup(path, GFP_NOFS);
1036 if (!name) {
1037 mutex_unlock(&fs_devices->device_list_mutex);
1038 return ERR_PTR(-ENOMEM);
1039 }
1040 rcu_string_free(device->name);
1041 rcu_assign_pointer(device->name, name);
1042 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1043 fs_devices->missing_devices--;
1044 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1045 }
1046 device->devt = path_devt;
1047 }
1048
1049 /*
1050 * Unmount does not free the btrfs_device struct but would zero
1051 * generation along with most of the other members. So just update
1052 * it back. We need it to pick the disk with largest generation
1053 * (as above).
1054 */
1055 if (!fs_devices->opened) {
1056 device->generation = found_transid;
1057 fs_devices->latest_generation = max_t(u64, found_transid,
1058 fs_devices->latest_generation);
1059 }
1060
1061 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1062
1063 mutex_unlock(&fs_devices->device_list_mutex);
1064 return device;
1065}
1066
1067static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1068{
1069 struct btrfs_fs_devices *fs_devices;
1070 struct btrfs_device *device;
1071 struct btrfs_device *orig_dev;
1072 int ret = 0;
1073
1074 lockdep_assert_held(&uuid_mutex);
1075
1076 fs_devices = alloc_fs_devices(orig->fsid);
1077 if (IS_ERR(fs_devices))
1078 return fs_devices;
1079
1080 fs_devices->total_devices = orig->total_devices;
1081
1082 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1083 const char *dev_path = NULL;
1084
1085 /*
1086 * This is ok to do without RCU read locked because we hold the
1087 * uuid mutex so nothing we touch in here is going to disappear.
1088 */
1089 if (orig_dev->name)
1090 dev_path = orig_dev->name->str;
1091
1092 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1093 orig_dev->uuid, dev_path);
1094 if (IS_ERR(device)) {
1095 ret = PTR_ERR(device);
1096 goto error;
1097 }
1098
1099 if (orig_dev->zone_info) {
1100 struct btrfs_zoned_device_info *zone_info;
1101
1102 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1103 if (!zone_info) {
1104 btrfs_free_device(device);
1105 ret = -ENOMEM;
1106 goto error;
1107 }
1108 device->zone_info = zone_info;
1109 }
1110
1111 list_add(&device->dev_list, &fs_devices->devices);
1112 device->fs_devices = fs_devices;
1113 fs_devices->num_devices++;
1114 }
1115 return fs_devices;
1116error:
1117 free_fs_devices(fs_devices);
1118 return ERR_PTR(ret);
1119}
1120
1121static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1122 struct btrfs_device **latest_dev)
1123{
1124 struct btrfs_device *device, *next;
1125
1126 /* This is the initialized path, it is safe to release the devices. */
1127 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1128 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1129 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1130 &device->dev_state) &&
1131 !test_bit(BTRFS_DEV_STATE_MISSING,
1132 &device->dev_state) &&
1133 (!*latest_dev ||
1134 device->generation > (*latest_dev)->generation)) {
1135 *latest_dev = device;
1136 }
1137 continue;
1138 }
1139
1140 /*
1141 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1142 * in btrfs_init_dev_replace() so just continue.
1143 */
1144 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1145 continue;
1146
1147 if (device->bdev_file) {
1148 fput(device->bdev_file);
1149 device->bdev = NULL;
1150 device->bdev_file = NULL;
1151 fs_devices->open_devices--;
1152 }
1153 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1154 list_del_init(&device->dev_alloc_list);
1155 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1156 fs_devices->rw_devices--;
1157 }
1158 list_del_init(&device->dev_list);
1159 fs_devices->num_devices--;
1160 btrfs_free_device(device);
1161 }
1162
1163}
1164
1165/*
1166 * After we have read the system tree and know devids belonging to this
1167 * filesystem, remove the device which does not belong there.
1168 */
1169void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1170{
1171 struct btrfs_device *latest_dev = NULL;
1172 struct btrfs_fs_devices *seed_dev;
1173
1174 mutex_lock(&uuid_mutex);
1175 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1176
1177 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1178 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1179
1180 fs_devices->latest_dev = latest_dev;
1181
1182 mutex_unlock(&uuid_mutex);
1183}
1184
1185static void btrfs_close_bdev(struct btrfs_device *device)
1186{
1187 if (!device->bdev)
1188 return;
1189
1190 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1191 sync_blockdev(device->bdev);
1192 invalidate_bdev(device->bdev);
1193 }
1194
1195 fput(device->bdev_file);
1196}
1197
1198static void btrfs_close_one_device(struct btrfs_device *device)
1199{
1200 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1201
1202 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1203 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1204 list_del_init(&device->dev_alloc_list);
1205 fs_devices->rw_devices--;
1206 }
1207
1208 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1209 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1210
1211 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1212 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1213 fs_devices->missing_devices--;
1214 }
1215
1216 btrfs_close_bdev(device);
1217 if (device->bdev) {
1218 fs_devices->open_devices--;
1219 device->bdev = NULL;
1220 device->bdev_file = NULL;
1221 }
1222 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1223 btrfs_destroy_dev_zone_info(device);
1224
1225 device->fs_info = NULL;
1226 atomic_set(&device->dev_stats_ccnt, 0);
1227 extent_io_tree_release(&device->alloc_state);
1228
1229 /*
1230 * Reset the flush error record. We might have a transient flush error
1231 * in this mount, and if so we aborted the current transaction and set
1232 * the fs to an error state, guaranteeing no super blocks can be further
1233 * committed. However that error might be transient and if we unmount the
1234 * filesystem and mount it again, we should allow the mount to succeed
1235 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1236 * filesystem again we still get flush errors, then we will again abort
1237 * any transaction and set the error state, guaranteeing no commits of
1238 * unsafe super blocks.
1239 */
1240 device->last_flush_error = 0;
1241
1242 /* Verify the device is back in a pristine state */
1243 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1244 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1245 WARN_ON(!list_empty(&device->dev_alloc_list));
1246 WARN_ON(!list_empty(&device->post_commit_list));
1247}
1248
1249static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1250{
1251 struct btrfs_device *device, *tmp;
1252
1253 lockdep_assert_held(&uuid_mutex);
1254
1255 if (--fs_devices->opened > 0)
1256 return;
1257
1258 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1259 btrfs_close_one_device(device);
1260
1261 WARN_ON(fs_devices->open_devices);
1262 WARN_ON(fs_devices->rw_devices);
1263 fs_devices->opened = 0;
1264 fs_devices->seeding = false;
1265 fs_devices->fs_info = NULL;
1266}
1267
1268void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1269{
1270 LIST_HEAD(list);
1271 struct btrfs_fs_devices *tmp;
1272
1273 mutex_lock(&uuid_mutex);
1274 close_fs_devices(fs_devices);
1275 if (!fs_devices->opened) {
1276 list_splice_init(&fs_devices->seed_list, &list);
1277
1278 /*
1279 * If the struct btrfs_fs_devices is not assembled with any
1280 * other device, it can be re-initialized during the next mount
1281 * without the needing device-scan step. Therefore, it can be
1282 * fully freed.
1283 */
1284 if (fs_devices->num_devices == 1) {
1285 list_del(&fs_devices->fs_list);
1286 free_fs_devices(fs_devices);
1287 }
1288 }
1289
1290
1291 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1292 close_fs_devices(fs_devices);
1293 list_del(&fs_devices->seed_list);
1294 free_fs_devices(fs_devices);
1295 }
1296 mutex_unlock(&uuid_mutex);
1297}
1298
1299static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1300 blk_mode_t flags, void *holder)
1301{
1302 struct btrfs_device *device;
1303 struct btrfs_device *latest_dev = NULL;
1304 struct btrfs_device *tmp_device;
1305 int ret = 0;
1306
1307 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1308 dev_list) {
1309 int ret2;
1310
1311 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1312 if (ret2 == 0 &&
1313 (!latest_dev || device->generation > latest_dev->generation)) {
1314 latest_dev = device;
1315 } else if (ret2 == -ENODATA) {
1316 fs_devices->num_devices--;
1317 list_del(&device->dev_list);
1318 btrfs_free_device(device);
1319 }
1320 if (ret == 0 && ret2 != 0)
1321 ret = ret2;
1322 }
1323
1324 if (fs_devices->open_devices == 0) {
1325 if (ret)
1326 return ret;
1327 return -EINVAL;
1328 }
1329
1330 fs_devices->opened = 1;
1331 fs_devices->latest_dev = latest_dev;
1332 fs_devices->total_rw_bytes = 0;
1333 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1334 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1335
1336 return 0;
1337}
1338
1339static int devid_cmp(void *priv, const struct list_head *a,
1340 const struct list_head *b)
1341{
1342 const struct btrfs_device *dev1, *dev2;
1343
1344 dev1 = list_entry(a, struct btrfs_device, dev_list);
1345 dev2 = list_entry(b, struct btrfs_device, dev_list);
1346
1347 if (dev1->devid < dev2->devid)
1348 return -1;
1349 else if (dev1->devid > dev2->devid)
1350 return 1;
1351 return 0;
1352}
1353
1354int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1355 blk_mode_t flags, void *holder)
1356{
1357 int ret;
1358
1359 lockdep_assert_held(&uuid_mutex);
1360 /*
1361 * The device_list_mutex cannot be taken here in case opening the
1362 * underlying device takes further locks like open_mutex.
1363 *
1364 * We also don't need the lock here as this is called during mount and
1365 * exclusion is provided by uuid_mutex
1366 */
1367
1368 if (fs_devices->opened) {
1369 fs_devices->opened++;
1370 ret = 0;
1371 } else {
1372 list_sort(NULL, &fs_devices->devices, devid_cmp);
1373 ret = open_fs_devices(fs_devices, flags, holder);
1374 }
1375
1376 return ret;
1377}
1378
1379void btrfs_release_disk_super(struct btrfs_super_block *super)
1380{
1381 struct page *page = virt_to_page(super);
1382
1383 put_page(page);
1384}
1385
1386static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1387 u64 bytenr, u64 bytenr_orig)
1388{
1389 struct btrfs_super_block *disk_super;
1390 struct page *page;
1391 void *p;
1392 pgoff_t index;
1393
1394 /* make sure our super fits in the device */
1395 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1396 return ERR_PTR(-EINVAL);
1397
1398 /* make sure our super fits in the page */
1399 if (sizeof(*disk_super) > PAGE_SIZE)
1400 return ERR_PTR(-EINVAL);
1401
1402 /* make sure our super doesn't straddle pages on disk */
1403 index = bytenr >> PAGE_SHIFT;
1404 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1405 return ERR_PTR(-EINVAL);
1406
1407 /* pull in the page with our super */
1408 page = read_cache_page_gfp(bdev->bd_mapping, index, GFP_KERNEL);
1409
1410 if (IS_ERR(page))
1411 return ERR_CAST(page);
1412
1413 p = page_address(page);
1414
1415 /* align our pointer to the offset of the super block */
1416 disk_super = p + offset_in_page(bytenr);
1417
1418 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1419 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1420 btrfs_release_disk_super(p);
1421 return ERR_PTR(-EINVAL);
1422 }
1423
1424 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1425 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1426
1427 return disk_super;
1428}
1429
1430int btrfs_forget_devices(dev_t devt)
1431{
1432 int ret;
1433
1434 mutex_lock(&uuid_mutex);
1435 ret = btrfs_free_stale_devices(devt, NULL);
1436 mutex_unlock(&uuid_mutex);
1437
1438 return ret;
1439}
1440
1441static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1442 const char *path, dev_t devt,
1443 bool mount_arg_dev)
1444{
1445 struct btrfs_fs_devices *fs_devices;
1446
1447 /*
1448 * Do not skip device registration for mounted devices with matching
1449 * maj:min but different paths. Booting without initrd relies on
1450 * /dev/root initially, later replaced with the actual root device.
1451 * A successful scan ensures grub2-probe selects the correct device.
1452 */
1453 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1454 struct btrfs_device *device;
1455
1456 mutex_lock(&fs_devices->device_list_mutex);
1457
1458 if (!fs_devices->opened) {
1459 mutex_unlock(&fs_devices->device_list_mutex);
1460 continue;
1461 }
1462
1463 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1464 if (device->bdev && (device->bdev->bd_dev == devt) &&
1465 strcmp(device->name->str, path) != 0) {
1466 mutex_unlock(&fs_devices->device_list_mutex);
1467
1468 /* Do not skip registration. */
1469 return false;
1470 }
1471 }
1472 mutex_unlock(&fs_devices->device_list_mutex);
1473 }
1474
1475 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1476 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1477 return true;
1478
1479 return false;
1480}
1481
1482/*
1483 * Look for a btrfs signature on a device. This may be called out of the mount path
1484 * and we are not allowed to call set_blocksize during the scan. The superblock
1485 * is read via pagecache.
1486 *
1487 * With @mount_arg_dev it's a scan during mount time that will always register
1488 * the device or return an error. Multi-device and seeding devices are registered
1489 * in both cases.
1490 */
1491struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1492 bool mount_arg_dev)
1493{
1494 struct btrfs_super_block *disk_super;
1495 bool new_device_added = false;
1496 struct btrfs_device *device = NULL;
1497 struct file *bdev_file;
1498 char *canonical_path = NULL;
1499 u64 bytenr;
1500 dev_t devt;
1501 int ret;
1502
1503 lockdep_assert_held(&uuid_mutex);
1504
1505 if (!is_good_dev_path(path)) {
1506 canonical_path = kmalloc(PATH_MAX, GFP_KERNEL);
1507 if (canonical_path) {
1508 ret = get_canonical_dev_path(path, canonical_path);
1509 if (ret < 0) {
1510 kfree(canonical_path);
1511 canonical_path = NULL;
1512 }
1513 }
1514 }
1515 /*
1516 * Avoid an exclusive open here, as the systemd-udev may initiate the
1517 * device scan which may race with the user's mount or mkfs command,
1518 * resulting in failure.
1519 * Since the device scan is solely for reading purposes, there is no
1520 * need for an exclusive open. Additionally, the devices are read again
1521 * during the mount process. It is ok to get some inconsistent
1522 * values temporarily, as the device paths of the fsid are the only
1523 * required information for assembling the volume.
1524 */
1525 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1526 if (IS_ERR(bdev_file))
1527 return ERR_CAST(bdev_file);
1528
1529 /*
1530 * We would like to check all the super blocks, but doing so would
1531 * allow a mount to succeed after a mkfs from a different filesystem.
1532 * Currently, recovery from a bad primary btrfs superblock is done
1533 * using the userspace command 'btrfs check --super'.
1534 */
1535 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1536 if (ret) {
1537 device = ERR_PTR(ret);
1538 goto error_bdev_put;
1539 }
1540
1541 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1542 btrfs_sb_offset(0));
1543 if (IS_ERR(disk_super)) {
1544 device = ERR_CAST(disk_super);
1545 goto error_bdev_put;
1546 }
1547
1548 devt = file_bdev(bdev_file)->bd_dev;
1549 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1550 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1551 path, MAJOR(devt), MINOR(devt));
1552
1553 btrfs_free_stale_devices(devt, NULL);
1554
1555 device = NULL;
1556 goto free_disk_super;
1557 }
1558
1559 device = device_list_add(canonical_path ? : path, disk_super,
1560 &new_device_added);
1561 if (!IS_ERR(device) && new_device_added)
1562 btrfs_free_stale_devices(device->devt, device);
1563
1564free_disk_super:
1565 btrfs_release_disk_super(disk_super);
1566
1567error_bdev_put:
1568 fput(bdev_file);
1569 kfree(canonical_path);
1570
1571 return device;
1572}
1573
1574/*
1575 * Try to find a chunk that intersects [start, start + len] range and when one
1576 * such is found, record the end of it in *start
1577 */
1578static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1579 u64 len)
1580{
1581 u64 physical_start, physical_end;
1582
1583 lockdep_assert_held(&device->fs_info->chunk_mutex);
1584
1585 if (find_first_extent_bit(&device->alloc_state, *start,
1586 &physical_start, &physical_end,
1587 CHUNK_ALLOCATED, NULL)) {
1588
1589 if (in_range(physical_start, *start, len) ||
1590 in_range(*start, physical_start,
1591 physical_end + 1 - physical_start)) {
1592 *start = physical_end + 1;
1593 return true;
1594 }
1595 }
1596 return false;
1597}
1598
1599static u64 dev_extent_search_start(struct btrfs_device *device)
1600{
1601 switch (device->fs_devices->chunk_alloc_policy) {
1602 case BTRFS_CHUNK_ALLOC_REGULAR:
1603 return BTRFS_DEVICE_RANGE_RESERVED;
1604 case BTRFS_CHUNK_ALLOC_ZONED:
1605 /*
1606 * We don't care about the starting region like regular
1607 * allocator, because we anyway use/reserve the first two zones
1608 * for superblock logging.
1609 */
1610 return 0;
1611 default:
1612 BUG();
1613 }
1614}
1615
1616static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1617 u64 *hole_start, u64 *hole_size,
1618 u64 num_bytes)
1619{
1620 u64 zone_size = device->zone_info->zone_size;
1621 u64 pos;
1622 int ret;
1623 bool changed = false;
1624
1625 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1626
1627 while (*hole_size > 0) {
1628 pos = btrfs_find_allocatable_zones(device, *hole_start,
1629 *hole_start + *hole_size,
1630 num_bytes);
1631 if (pos != *hole_start) {
1632 *hole_size = *hole_start + *hole_size - pos;
1633 *hole_start = pos;
1634 changed = true;
1635 if (*hole_size < num_bytes)
1636 break;
1637 }
1638
1639 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1640
1641 /* Range is ensured to be empty */
1642 if (!ret)
1643 return changed;
1644
1645 /* Given hole range was invalid (outside of device) */
1646 if (ret == -ERANGE) {
1647 *hole_start += *hole_size;
1648 *hole_size = 0;
1649 return true;
1650 }
1651
1652 *hole_start += zone_size;
1653 *hole_size -= zone_size;
1654 changed = true;
1655 }
1656
1657 return changed;
1658}
1659
1660/*
1661 * Check if specified hole is suitable for allocation.
1662 *
1663 * @device: the device which we have the hole
1664 * @hole_start: starting position of the hole
1665 * @hole_size: the size of the hole
1666 * @num_bytes: the size of the free space that we need
1667 *
1668 * This function may modify @hole_start and @hole_size to reflect the suitable
1669 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1670 */
1671static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1672 u64 *hole_size, u64 num_bytes)
1673{
1674 bool changed = false;
1675 u64 hole_end = *hole_start + *hole_size;
1676
1677 for (;;) {
1678 /*
1679 * Check before we set max_hole_start, otherwise we could end up
1680 * sending back this offset anyway.
1681 */
1682 if (contains_pending_extent(device, hole_start, *hole_size)) {
1683 if (hole_end >= *hole_start)
1684 *hole_size = hole_end - *hole_start;
1685 else
1686 *hole_size = 0;
1687 changed = true;
1688 }
1689
1690 switch (device->fs_devices->chunk_alloc_policy) {
1691 case BTRFS_CHUNK_ALLOC_REGULAR:
1692 /* No extra check */
1693 break;
1694 case BTRFS_CHUNK_ALLOC_ZONED:
1695 if (dev_extent_hole_check_zoned(device, hole_start,
1696 hole_size, num_bytes)) {
1697 changed = true;
1698 /*
1699 * The changed hole can contain pending extent.
1700 * Loop again to check that.
1701 */
1702 continue;
1703 }
1704 break;
1705 default:
1706 BUG();
1707 }
1708
1709 break;
1710 }
1711
1712 return changed;
1713}
1714
1715/*
1716 * Find free space in the specified device.
1717 *
1718 * @device: the device which we search the free space in
1719 * @num_bytes: the size of the free space that we need
1720 * @search_start: the position from which to begin the search
1721 * @start: store the start of the free space.
1722 * @len: the size of the free space. that we find, or the size
1723 * of the max free space if we don't find suitable free space
1724 *
1725 * This does a pretty simple search, the expectation is that it is called very
1726 * infrequently and that a given device has a small number of extents.
1727 *
1728 * @start is used to store the start of the free space if we find. But if we
1729 * don't find suitable free space, it will be used to store the start position
1730 * of the max free space.
1731 *
1732 * @len is used to store the size of the free space that we find.
1733 * But if we don't find suitable free space, it is used to store the size of
1734 * the max free space.
1735 *
1736 * NOTE: This function will search *commit* root of device tree, and does extra
1737 * check to ensure dev extents are not double allocated.
1738 * This makes the function safe to allocate dev extents but may not report
1739 * correct usable device space, as device extent freed in current transaction
1740 * is not reported as available.
1741 */
1742static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1743 u64 *start, u64 *len)
1744{
1745 struct btrfs_fs_info *fs_info = device->fs_info;
1746 struct btrfs_root *root = fs_info->dev_root;
1747 struct btrfs_key key;
1748 struct btrfs_dev_extent *dev_extent;
1749 struct btrfs_path *path;
1750 u64 search_start;
1751 u64 hole_size;
1752 u64 max_hole_start;
1753 u64 max_hole_size = 0;
1754 u64 extent_end;
1755 u64 search_end = device->total_bytes;
1756 int ret;
1757 int slot;
1758 struct extent_buffer *l;
1759
1760 search_start = dev_extent_search_start(device);
1761 max_hole_start = search_start;
1762
1763 WARN_ON(device->zone_info &&
1764 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1765
1766 path = btrfs_alloc_path();
1767 if (!path) {
1768 ret = -ENOMEM;
1769 goto out;
1770 }
1771again:
1772 if (search_start >= search_end ||
1773 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1774 ret = -ENOSPC;
1775 goto out;
1776 }
1777
1778 path->reada = READA_FORWARD;
1779 path->search_commit_root = 1;
1780 path->skip_locking = 1;
1781
1782 key.objectid = device->devid;
1783 key.offset = search_start;
1784 key.type = BTRFS_DEV_EXTENT_KEY;
1785
1786 ret = btrfs_search_backwards(root, &key, path);
1787 if (ret < 0)
1788 goto out;
1789
1790 while (search_start < search_end) {
1791 l = path->nodes[0];
1792 slot = path->slots[0];
1793 if (slot >= btrfs_header_nritems(l)) {
1794 ret = btrfs_next_leaf(root, path);
1795 if (ret == 0)
1796 continue;
1797 if (ret < 0)
1798 goto out;
1799
1800 break;
1801 }
1802 btrfs_item_key_to_cpu(l, &key, slot);
1803
1804 if (key.objectid < device->devid)
1805 goto next;
1806
1807 if (key.objectid > device->devid)
1808 break;
1809
1810 if (key.type != BTRFS_DEV_EXTENT_KEY)
1811 goto next;
1812
1813 if (key.offset > search_end)
1814 break;
1815
1816 if (key.offset > search_start) {
1817 hole_size = key.offset - search_start;
1818 dev_extent_hole_check(device, &search_start, &hole_size,
1819 num_bytes);
1820
1821 if (hole_size > max_hole_size) {
1822 max_hole_start = search_start;
1823 max_hole_size = hole_size;
1824 }
1825
1826 /*
1827 * If this free space is greater than which we need,
1828 * it must be the max free space that we have found
1829 * until now, so max_hole_start must point to the start
1830 * of this free space and the length of this free space
1831 * is stored in max_hole_size. Thus, we return
1832 * max_hole_start and max_hole_size and go back to the
1833 * caller.
1834 */
1835 if (hole_size >= num_bytes) {
1836 ret = 0;
1837 goto out;
1838 }
1839 }
1840
1841 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1842 extent_end = key.offset + btrfs_dev_extent_length(l,
1843 dev_extent);
1844 if (extent_end > search_start)
1845 search_start = extent_end;
1846next:
1847 path->slots[0]++;
1848 cond_resched();
1849 }
1850
1851 /*
1852 * At this point, search_start should be the end of
1853 * allocated dev extents, and when shrinking the device,
1854 * search_end may be smaller than search_start.
1855 */
1856 if (search_end > search_start) {
1857 hole_size = search_end - search_start;
1858 if (dev_extent_hole_check(device, &search_start, &hole_size,
1859 num_bytes)) {
1860 btrfs_release_path(path);
1861 goto again;
1862 }
1863
1864 if (hole_size > max_hole_size) {
1865 max_hole_start = search_start;
1866 max_hole_size = hole_size;
1867 }
1868 }
1869
1870 /* See above. */
1871 if (max_hole_size < num_bytes)
1872 ret = -ENOSPC;
1873 else
1874 ret = 0;
1875
1876 ASSERT(max_hole_start + max_hole_size <= search_end);
1877out:
1878 btrfs_free_path(path);
1879 *start = max_hole_start;
1880 if (len)
1881 *len = max_hole_size;
1882 return ret;
1883}
1884
1885static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1886 struct btrfs_device *device,
1887 u64 start, u64 *dev_extent_len)
1888{
1889 struct btrfs_fs_info *fs_info = device->fs_info;
1890 struct btrfs_root *root = fs_info->dev_root;
1891 int ret;
1892 struct btrfs_path *path;
1893 struct btrfs_key key;
1894 struct btrfs_key found_key;
1895 struct extent_buffer *leaf = NULL;
1896 struct btrfs_dev_extent *extent = NULL;
1897
1898 path = btrfs_alloc_path();
1899 if (!path)
1900 return -ENOMEM;
1901
1902 key.objectid = device->devid;
1903 key.offset = start;
1904 key.type = BTRFS_DEV_EXTENT_KEY;
1905again:
1906 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1907 if (ret > 0) {
1908 ret = btrfs_previous_item(root, path, key.objectid,
1909 BTRFS_DEV_EXTENT_KEY);
1910 if (ret)
1911 goto out;
1912 leaf = path->nodes[0];
1913 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1914 extent = btrfs_item_ptr(leaf, path->slots[0],
1915 struct btrfs_dev_extent);
1916 BUG_ON(found_key.offset > start || found_key.offset +
1917 btrfs_dev_extent_length(leaf, extent) < start);
1918 key = found_key;
1919 btrfs_release_path(path);
1920 goto again;
1921 } else if (ret == 0) {
1922 leaf = path->nodes[0];
1923 extent = btrfs_item_ptr(leaf, path->slots[0],
1924 struct btrfs_dev_extent);
1925 } else {
1926 goto out;
1927 }
1928
1929 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1930
1931 ret = btrfs_del_item(trans, root, path);
1932 if (ret == 0)
1933 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1934out:
1935 btrfs_free_path(path);
1936 return ret;
1937}
1938
1939static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1940{
1941 struct rb_node *n;
1942 u64 ret = 0;
1943
1944 read_lock(&fs_info->mapping_tree_lock);
1945 n = rb_last(&fs_info->mapping_tree.rb_root);
1946 if (n) {
1947 struct btrfs_chunk_map *map;
1948
1949 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1950 ret = map->start + map->chunk_len;
1951 }
1952 read_unlock(&fs_info->mapping_tree_lock);
1953
1954 return ret;
1955}
1956
1957static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1958 u64 *devid_ret)
1959{
1960 int ret;
1961 struct btrfs_key key;
1962 struct btrfs_key found_key;
1963 struct btrfs_path *path;
1964
1965 path = btrfs_alloc_path();
1966 if (!path)
1967 return -ENOMEM;
1968
1969 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1970 key.type = BTRFS_DEV_ITEM_KEY;
1971 key.offset = (u64)-1;
1972
1973 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1974 if (ret < 0)
1975 goto error;
1976
1977 if (ret == 0) {
1978 /* Corruption */
1979 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1980 ret = -EUCLEAN;
1981 goto error;
1982 }
1983
1984 ret = btrfs_previous_item(fs_info->chunk_root, path,
1985 BTRFS_DEV_ITEMS_OBJECTID,
1986 BTRFS_DEV_ITEM_KEY);
1987 if (ret) {
1988 *devid_ret = 1;
1989 } else {
1990 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1991 path->slots[0]);
1992 *devid_ret = found_key.offset + 1;
1993 }
1994 ret = 0;
1995error:
1996 btrfs_free_path(path);
1997 return ret;
1998}
1999
2000/*
2001 * the device information is stored in the chunk root
2002 * the btrfs_device struct should be fully filled in
2003 */
2004static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
2005 struct btrfs_device *device)
2006{
2007 int ret;
2008 struct btrfs_path *path;
2009 struct btrfs_dev_item *dev_item;
2010 struct extent_buffer *leaf;
2011 struct btrfs_key key;
2012 unsigned long ptr;
2013
2014 path = btrfs_alloc_path();
2015 if (!path)
2016 return -ENOMEM;
2017
2018 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2019 key.type = BTRFS_DEV_ITEM_KEY;
2020 key.offset = device->devid;
2021
2022 btrfs_reserve_chunk_metadata(trans, true);
2023 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
2024 &key, sizeof(*dev_item));
2025 btrfs_trans_release_chunk_metadata(trans);
2026 if (ret)
2027 goto out;
2028
2029 leaf = path->nodes[0];
2030 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2031
2032 btrfs_set_device_id(leaf, dev_item, device->devid);
2033 btrfs_set_device_generation(leaf, dev_item, 0);
2034 btrfs_set_device_type(leaf, dev_item, device->type);
2035 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2036 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2037 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2038 btrfs_set_device_total_bytes(leaf, dev_item,
2039 btrfs_device_get_disk_total_bytes(device));
2040 btrfs_set_device_bytes_used(leaf, dev_item,
2041 btrfs_device_get_bytes_used(device));
2042 btrfs_set_device_group(leaf, dev_item, 0);
2043 btrfs_set_device_seek_speed(leaf, dev_item, 0);
2044 btrfs_set_device_bandwidth(leaf, dev_item, 0);
2045 btrfs_set_device_start_offset(leaf, dev_item, 0);
2046
2047 ptr = btrfs_device_uuid(dev_item);
2048 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
2049 ptr = btrfs_device_fsid(dev_item);
2050 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
2051 ptr, BTRFS_FSID_SIZE);
2052 btrfs_mark_buffer_dirty(trans, leaf);
2053
2054 ret = 0;
2055out:
2056 btrfs_free_path(path);
2057 return ret;
2058}
2059
2060/*
2061 * Function to update ctime/mtime for a given device path.
2062 * Mainly used for ctime/mtime based probe like libblkid.
2063 *
2064 * We don't care about errors here, this is just to be kind to userspace.
2065 */
2066static void update_dev_time(const char *device_path)
2067{
2068 struct path path;
2069 int ret;
2070
2071 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
2072 if (ret)
2073 return;
2074
2075 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
2076 path_put(&path);
2077}
2078
2079static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
2080 struct btrfs_device *device)
2081{
2082 struct btrfs_root *root = device->fs_info->chunk_root;
2083 int ret;
2084 struct btrfs_path *path;
2085 struct btrfs_key key;
2086
2087 path = btrfs_alloc_path();
2088 if (!path)
2089 return -ENOMEM;
2090
2091 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2092 key.type = BTRFS_DEV_ITEM_KEY;
2093 key.offset = device->devid;
2094
2095 btrfs_reserve_chunk_metadata(trans, false);
2096 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2097 btrfs_trans_release_chunk_metadata(trans);
2098 if (ret) {
2099 if (ret > 0)
2100 ret = -ENOENT;
2101 goto out;
2102 }
2103
2104 ret = btrfs_del_item(trans, root, path);
2105out:
2106 btrfs_free_path(path);
2107 return ret;
2108}
2109
2110/*
2111 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2112 * filesystem. It's up to the caller to adjust that number regarding eg. device
2113 * replace.
2114 */
2115static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2116 u64 num_devices)
2117{
2118 u64 all_avail;
2119 unsigned seq;
2120 int i;
2121
2122 do {
2123 seq = read_seqbegin(&fs_info->profiles_lock);
2124
2125 all_avail = fs_info->avail_data_alloc_bits |
2126 fs_info->avail_system_alloc_bits |
2127 fs_info->avail_metadata_alloc_bits;
2128 } while (read_seqretry(&fs_info->profiles_lock, seq));
2129
2130 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2131 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2132 continue;
2133
2134 if (num_devices < btrfs_raid_array[i].devs_min)
2135 return btrfs_raid_array[i].mindev_error;
2136 }
2137
2138 return 0;
2139}
2140
2141static struct btrfs_device * btrfs_find_next_active_device(
2142 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2143{
2144 struct btrfs_device *next_device;
2145
2146 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2147 if (next_device != device &&
2148 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2149 && next_device->bdev)
2150 return next_device;
2151 }
2152
2153 return NULL;
2154}
2155
2156/*
2157 * Helper function to check if the given device is part of s_bdev / latest_dev
2158 * and replace it with the provided or the next active device, in the context
2159 * where this function called, there should be always be another device (or
2160 * this_dev) which is active.
2161 */
2162void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2163 struct btrfs_device *next_device)
2164{
2165 struct btrfs_fs_info *fs_info = device->fs_info;
2166
2167 if (!next_device)
2168 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2169 device);
2170 ASSERT(next_device);
2171
2172 if (fs_info->sb->s_bdev &&
2173 (fs_info->sb->s_bdev == device->bdev))
2174 fs_info->sb->s_bdev = next_device->bdev;
2175
2176 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2177 fs_info->fs_devices->latest_dev = next_device;
2178}
2179
2180/*
2181 * Return btrfs_fs_devices::num_devices excluding the device that's being
2182 * currently replaced.
2183 */
2184static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2185{
2186 u64 num_devices = fs_info->fs_devices->num_devices;
2187
2188 down_read(&fs_info->dev_replace.rwsem);
2189 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2190 ASSERT(num_devices > 1);
2191 num_devices--;
2192 }
2193 up_read(&fs_info->dev_replace.rwsem);
2194
2195 return num_devices;
2196}
2197
2198static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2199 struct block_device *bdev, int copy_num)
2200{
2201 struct btrfs_super_block *disk_super;
2202 const size_t len = sizeof(disk_super->magic);
2203 const u64 bytenr = btrfs_sb_offset(copy_num);
2204 int ret;
2205
2206 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2207 if (IS_ERR(disk_super))
2208 return;
2209
2210 memset(&disk_super->magic, 0, len);
2211 folio_mark_dirty(virt_to_folio(disk_super));
2212 btrfs_release_disk_super(disk_super);
2213
2214 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2215 if (ret)
2216 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2217 copy_num, ret);
2218}
2219
2220void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2221{
2222 int copy_num;
2223 struct block_device *bdev = device->bdev;
2224
2225 if (!bdev)
2226 return;
2227
2228 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2229 if (bdev_is_zoned(bdev))
2230 btrfs_reset_sb_log_zones(bdev, copy_num);
2231 else
2232 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2233 }
2234
2235 /* Notify udev that device has changed */
2236 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2237
2238 /* Update ctime/mtime for device path for libblkid */
2239 update_dev_time(device->name->str);
2240}
2241
2242int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2243 struct btrfs_dev_lookup_args *args,
2244 struct file **bdev_file)
2245{
2246 struct btrfs_trans_handle *trans;
2247 struct btrfs_device *device;
2248 struct btrfs_fs_devices *cur_devices;
2249 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2250 u64 num_devices;
2251 int ret = 0;
2252
2253 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2254 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2255 return -EINVAL;
2256 }
2257
2258 /*
2259 * The device list in fs_devices is accessed without locks (neither
2260 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2261 * filesystem and another device rm cannot run.
2262 */
2263 num_devices = btrfs_num_devices(fs_info);
2264
2265 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2266 if (ret)
2267 return ret;
2268
2269 device = btrfs_find_device(fs_info->fs_devices, args);
2270 if (!device) {
2271 if (args->missing)
2272 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2273 else
2274 ret = -ENOENT;
2275 return ret;
2276 }
2277
2278 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2279 btrfs_warn_in_rcu(fs_info,
2280 "cannot remove device %s (devid %llu) due to active swapfile",
2281 btrfs_dev_name(device), device->devid);
2282 return -ETXTBSY;
2283 }
2284
2285 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2286 return BTRFS_ERROR_DEV_TGT_REPLACE;
2287
2288 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2289 fs_info->fs_devices->rw_devices == 1)
2290 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2291
2292 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2293 mutex_lock(&fs_info->chunk_mutex);
2294 list_del_init(&device->dev_alloc_list);
2295 device->fs_devices->rw_devices--;
2296 mutex_unlock(&fs_info->chunk_mutex);
2297 }
2298
2299 ret = btrfs_shrink_device(device, 0);
2300 if (ret)
2301 goto error_undo;
2302
2303 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2304 if (IS_ERR(trans)) {
2305 ret = PTR_ERR(trans);
2306 goto error_undo;
2307 }
2308
2309 ret = btrfs_rm_dev_item(trans, device);
2310 if (ret) {
2311 /* Any error in dev item removal is critical */
2312 btrfs_crit(fs_info,
2313 "failed to remove device item for devid %llu: %d",
2314 device->devid, ret);
2315 btrfs_abort_transaction(trans, ret);
2316 btrfs_end_transaction(trans);
2317 return ret;
2318 }
2319
2320 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2321 btrfs_scrub_cancel_dev(device);
2322
2323 /*
2324 * the device list mutex makes sure that we don't change
2325 * the device list while someone else is writing out all
2326 * the device supers. Whoever is writing all supers, should
2327 * lock the device list mutex before getting the number of
2328 * devices in the super block (super_copy). Conversely,
2329 * whoever updates the number of devices in the super block
2330 * (super_copy) should hold the device list mutex.
2331 */
2332
2333 /*
2334 * In normal cases the cur_devices == fs_devices. But in case
2335 * of deleting a seed device, the cur_devices should point to
2336 * its own fs_devices listed under the fs_devices->seed_list.
2337 */
2338 cur_devices = device->fs_devices;
2339 mutex_lock(&fs_devices->device_list_mutex);
2340 list_del_rcu(&device->dev_list);
2341
2342 cur_devices->num_devices--;
2343 cur_devices->total_devices--;
2344 /* Update total_devices of the parent fs_devices if it's seed */
2345 if (cur_devices != fs_devices)
2346 fs_devices->total_devices--;
2347
2348 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2349 cur_devices->missing_devices--;
2350
2351 btrfs_assign_next_active_device(device, NULL);
2352
2353 if (device->bdev_file) {
2354 cur_devices->open_devices--;
2355 /* remove sysfs entry */
2356 btrfs_sysfs_remove_device(device);
2357 }
2358
2359 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2360 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2361 mutex_unlock(&fs_devices->device_list_mutex);
2362
2363 /*
2364 * At this point, the device is zero sized and detached from the
2365 * devices list. All that's left is to zero out the old supers and
2366 * free the device.
2367 *
2368 * We cannot call btrfs_close_bdev() here because we're holding the sb
2369 * write lock, and fput() on the block device will pull in the
2370 * ->open_mutex on the block device and it's dependencies. Instead
2371 * just flush the device and let the caller do the final bdev_release.
2372 */
2373 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2374 btrfs_scratch_superblocks(fs_info, device);
2375 if (device->bdev) {
2376 sync_blockdev(device->bdev);
2377 invalidate_bdev(device->bdev);
2378 }
2379 }
2380
2381 *bdev_file = device->bdev_file;
2382 synchronize_rcu();
2383 btrfs_free_device(device);
2384
2385 /*
2386 * This can happen if cur_devices is the private seed devices list. We
2387 * cannot call close_fs_devices() here because it expects the uuid_mutex
2388 * to be held, but in fact we don't need that for the private
2389 * seed_devices, we can simply decrement cur_devices->opened and then
2390 * remove it from our list and free the fs_devices.
2391 */
2392 if (cur_devices->num_devices == 0) {
2393 list_del_init(&cur_devices->seed_list);
2394 ASSERT(cur_devices->opened == 1);
2395 cur_devices->opened--;
2396 free_fs_devices(cur_devices);
2397 }
2398
2399 ret = btrfs_commit_transaction(trans);
2400
2401 return ret;
2402
2403error_undo:
2404 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2405 mutex_lock(&fs_info->chunk_mutex);
2406 list_add(&device->dev_alloc_list,
2407 &fs_devices->alloc_list);
2408 device->fs_devices->rw_devices++;
2409 mutex_unlock(&fs_info->chunk_mutex);
2410 }
2411 return ret;
2412}
2413
2414void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2415{
2416 struct btrfs_fs_devices *fs_devices;
2417
2418 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2419
2420 /*
2421 * in case of fs with no seed, srcdev->fs_devices will point
2422 * to fs_devices of fs_info. However when the dev being replaced is
2423 * a seed dev it will point to the seed's local fs_devices. In short
2424 * srcdev will have its correct fs_devices in both the cases.
2425 */
2426 fs_devices = srcdev->fs_devices;
2427
2428 list_del_rcu(&srcdev->dev_list);
2429 list_del(&srcdev->dev_alloc_list);
2430 fs_devices->num_devices--;
2431 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2432 fs_devices->missing_devices--;
2433
2434 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2435 fs_devices->rw_devices--;
2436
2437 if (srcdev->bdev)
2438 fs_devices->open_devices--;
2439}
2440
2441void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2442{
2443 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2444
2445 mutex_lock(&uuid_mutex);
2446
2447 btrfs_close_bdev(srcdev);
2448 synchronize_rcu();
2449 btrfs_free_device(srcdev);
2450
2451 /* if this is no devs we rather delete the fs_devices */
2452 if (!fs_devices->num_devices) {
2453 /*
2454 * On a mounted FS, num_devices can't be zero unless it's a
2455 * seed. In case of a seed device being replaced, the replace
2456 * target added to the sprout FS, so there will be no more
2457 * device left under the seed FS.
2458 */
2459 ASSERT(fs_devices->seeding);
2460
2461 list_del_init(&fs_devices->seed_list);
2462 close_fs_devices(fs_devices);
2463 free_fs_devices(fs_devices);
2464 }
2465 mutex_unlock(&uuid_mutex);
2466}
2467
2468void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2469{
2470 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2471
2472 mutex_lock(&fs_devices->device_list_mutex);
2473
2474 btrfs_sysfs_remove_device(tgtdev);
2475
2476 if (tgtdev->bdev)
2477 fs_devices->open_devices--;
2478
2479 fs_devices->num_devices--;
2480
2481 btrfs_assign_next_active_device(tgtdev, NULL);
2482
2483 list_del_rcu(&tgtdev->dev_list);
2484
2485 mutex_unlock(&fs_devices->device_list_mutex);
2486
2487 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2488
2489 btrfs_close_bdev(tgtdev);
2490 synchronize_rcu();
2491 btrfs_free_device(tgtdev);
2492}
2493
2494/*
2495 * Populate args from device at path.
2496 *
2497 * @fs_info: the filesystem
2498 * @args: the args to populate
2499 * @path: the path to the device
2500 *
2501 * This will read the super block of the device at @path and populate @args with
2502 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2503 * lookup a device to operate on, but need to do it before we take any locks.
2504 * This properly handles the special case of "missing" that a user may pass in,
2505 * and does some basic sanity checks. The caller must make sure that @path is
2506 * properly NUL terminated before calling in, and must call
2507 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2508 * uuid buffers.
2509 *
2510 * Return: 0 for success, -errno for failure
2511 */
2512int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2513 struct btrfs_dev_lookup_args *args,
2514 const char *path)
2515{
2516 struct btrfs_super_block *disk_super;
2517 struct file *bdev_file;
2518 int ret;
2519
2520 if (!path || !path[0])
2521 return -EINVAL;
2522 if (!strcmp(path, "missing")) {
2523 args->missing = true;
2524 return 0;
2525 }
2526
2527 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2528 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2529 if (!args->uuid || !args->fsid) {
2530 btrfs_put_dev_args_from_path(args);
2531 return -ENOMEM;
2532 }
2533
2534 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2535 &bdev_file, &disk_super);
2536 if (ret) {
2537 btrfs_put_dev_args_from_path(args);
2538 return ret;
2539 }
2540
2541 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2542 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2543 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2544 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2545 else
2546 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2547 btrfs_release_disk_super(disk_super);
2548 fput(bdev_file);
2549 return 0;
2550}
2551
2552/*
2553 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2554 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2555 * that don't need to be freed.
2556 */
2557void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2558{
2559 kfree(args->uuid);
2560 kfree(args->fsid);
2561 args->uuid = NULL;
2562 args->fsid = NULL;
2563}
2564
2565struct btrfs_device *btrfs_find_device_by_devspec(
2566 struct btrfs_fs_info *fs_info, u64 devid,
2567 const char *device_path)
2568{
2569 BTRFS_DEV_LOOKUP_ARGS(args);
2570 struct btrfs_device *device;
2571 int ret;
2572
2573 if (devid) {
2574 args.devid = devid;
2575 device = btrfs_find_device(fs_info->fs_devices, &args);
2576 if (!device)
2577 return ERR_PTR(-ENOENT);
2578 return device;
2579 }
2580
2581 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2582 if (ret)
2583 return ERR_PTR(ret);
2584 device = btrfs_find_device(fs_info->fs_devices, &args);
2585 btrfs_put_dev_args_from_path(&args);
2586 if (!device)
2587 return ERR_PTR(-ENOENT);
2588 return device;
2589}
2590
2591static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2592{
2593 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2594 struct btrfs_fs_devices *old_devices;
2595 struct btrfs_fs_devices *seed_devices;
2596
2597 lockdep_assert_held(&uuid_mutex);
2598 if (!fs_devices->seeding)
2599 return ERR_PTR(-EINVAL);
2600
2601 /*
2602 * Private copy of the seed devices, anchored at
2603 * fs_info->fs_devices->seed_list
2604 */
2605 seed_devices = alloc_fs_devices(NULL);
2606 if (IS_ERR(seed_devices))
2607 return seed_devices;
2608
2609 /*
2610 * It's necessary to retain a copy of the original seed fs_devices in
2611 * fs_uuids so that filesystems which have been seeded can successfully
2612 * reference the seed device from open_seed_devices. This also supports
2613 * multiple fs seed.
2614 */
2615 old_devices = clone_fs_devices(fs_devices);
2616 if (IS_ERR(old_devices)) {
2617 kfree(seed_devices);
2618 return old_devices;
2619 }
2620
2621 list_add(&old_devices->fs_list, &fs_uuids);
2622
2623 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2624 seed_devices->opened = 1;
2625 INIT_LIST_HEAD(&seed_devices->devices);
2626 INIT_LIST_HEAD(&seed_devices->alloc_list);
2627 mutex_init(&seed_devices->device_list_mutex);
2628
2629 return seed_devices;
2630}
2631
2632/*
2633 * Splice seed devices into the sprout fs_devices.
2634 * Generate a new fsid for the sprouted read-write filesystem.
2635 */
2636static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2637 struct btrfs_fs_devices *seed_devices)
2638{
2639 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2640 struct btrfs_super_block *disk_super = fs_info->super_copy;
2641 struct btrfs_device *device;
2642 u64 super_flags;
2643
2644 /*
2645 * We are updating the fsid, the thread leading to device_list_add()
2646 * could race, so uuid_mutex is needed.
2647 */
2648 lockdep_assert_held(&uuid_mutex);
2649
2650 /*
2651 * The threads listed below may traverse dev_list but can do that without
2652 * device_list_mutex:
2653 * - All device ops and balance - as we are in btrfs_exclop_start.
2654 * - Various dev_list readers - are using RCU.
2655 * - btrfs_ioctl_fitrim() - is using RCU.
2656 *
2657 * For-read threads as below are using device_list_mutex:
2658 * - Readonly scrub btrfs_scrub_dev()
2659 * - Readonly scrub btrfs_scrub_progress()
2660 * - btrfs_get_dev_stats()
2661 */
2662 lockdep_assert_held(&fs_devices->device_list_mutex);
2663
2664 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2665 synchronize_rcu);
2666 list_for_each_entry(device, &seed_devices->devices, dev_list)
2667 device->fs_devices = seed_devices;
2668
2669 fs_devices->seeding = false;
2670 fs_devices->num_devices = 0;
2671 fs_devices->open_devices = 0;
2672 fs_devices->missing_devices = 0;
2673 fs_devices->rotating = false;
2674 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2675
2676 generate_random_uuid(fs_devices->fsid);
2677 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2678 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2679
2680 super_flags = btrfs_super_flags(disk_super) &
2681 ~BTRFS_SUPER_FLAG_SEEDING;
2682 btrfs_set_super_flags(disk_super, super_flags);
2683}
2684
2685/*
2686 * Store the expected generation for seed devices in device items.
2687 */
2688static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2689{
2690 BTRFS_DEV_LOOKUP_ARGS(args);
2691 struct btrfs_fs_info *fs_info = trans->fs_info;
2692 struct btrfs_root *root = fs_info->chunk_root;
2693 struct btrfs_path *path;
2694 struct extent_buffer *leaf;
2695 struct btrfs_dev_item *dev_item;
2696 struct btrfs_device *device;
2697 struct btrfs_key key;
2698 u8 fs_uuid[BTRFS_FSID_SIZE];
2699 u8 dev_uuid[BTRFS_UUID_SIZE];
2700 int ret;
2701
2702 path = btrfs_alloc_path();
2703 if (!path)
2704 return -ENOMEM;
2705
2706 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2707 key.offset = 0;
2708 key.type = BTRFS_DEV_ITEM_KEY;
2709
2710 while (1) {
2711 btrfs_reserve_chunk_metadata(trans, false);
2712 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2713 btrfs_trans_release_chunk_metadata(trans);
2714 if (ret < 0)
2715 goto error;
2716
2717 leaf = path->nodes[0];
2718next_slot:
2719 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2720 ret = btrfs_next_leaf(root, path);
2721 if (ret > 0)
2722 break;
2723 if (ret < 0)
2724 goto error;
2725 leaf = path->nodes[0];
2726 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2727 btrfs_release_path(path);
2728 continue;
2729 }
2730
2731 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2732 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2733 key.type != BTRFS_DEV_ITEM_KEY)
2734 break;
2735
2736 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2737 struct btrfs_dev_item);
2738 args.devid = btrfs_device_id(leaf, dev_item);
2739 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2740 BTRFS_UUID_SIZE);
2741 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2742 BTRFS_FSID_SIZE);
2743 args.uuid = dev_uuid;
2744 args.fsid = fs_uuid;
2745 device = btrfs_find_device(fs_info->fs_devices, &args);
2746 BUG_ON(!device); /* Logic error */
2747
2748 if (device->fs_devices->seeding) {
2749 btrfs_set_device_generation(leaf, dev_item,
2750 device->generation);
2751 btrfs_mark_buffer_dirty(trans, leaf);
2752 }
2753
2754 path->slots[0]++;
2755 goto next_slot;
2756 }
2757 ret = 0;
2758error:
2759 btrfs_free_path(path);
2760 return ret;
2761}
2762
2763int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2764{
2765 struct btrfs_root *root = fs_info->dev_root;
2766 struct btrfs_trans_handle *trans;
2767 struct btrfs_device *device;
2768 struct file *bdev_file;
2769 struct super_block *sb = fs_info->sb;
2770 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2771 struct btrfs_fs_devices *seed_devices = NULL;
2772 u64 orig_super_total_bytes;
2773 u64 orig_super_num_devices;
2774 int ret = 0;
2775 bool seeding_dev = false;
2776 bool locked = false;
2777
2778 if (sb_rdonly(sb) && !fs_devices->seeding)
2779 return -EROFS;
2780
2781 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2782 fs_info->bdev_holder, NULL);
2783 if (IS_ERR(bdev_file))
2784 return PTR_ERR(bdev_file);
2785
2786 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2787 ret = -EINVAL;
2788 goto error;
2789 }
2790
2791 if (fs_devices->seeding) {
2792 seeding_dev = true;
2793 down_write(&sb->s_umount);
2794 mutex_lock(&uuid_mutex);
2795 locked = true;
2796 }
2797
2798 sync_blockdev(file_bdev(bdev_file));
2799
2800 rcu_read_lock();
2801 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2802 if (device->bdev == file_bdev(bdev_file)) {
2803 ret = -EEXIST;
2804 rcu_read_unlock();
2805 goto error;
2806 }
2807 }
2808 rcu_read_unlock();
2809
2810 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2811 if (IS_ERR(device)) {
2812 /* we can safely leave the fs_devices entry around */
2813 ret = PTR_ERR(device);
2814 goto error;
2815 }
2816
2817 device->fs_info = fs_info;
2818 device->bdev_file = bdev_file;
2819 device->bdev = file_bdev(bdev_file);
2820 ret = lookup_bdev(device_path, &device->devt);
2821 if (ret)
2822 goto error_free_device;
2823
2824 ret = btrfs_get_dev_zone_info(device, false);
2825 if (ret)
2826 goto error_free_device;
2827
2828 trans = btrfs_start_transaction(root, 0);
2829 if (IS_ERR(trans)) {
2830 ret = PTR_ERR(trans);
2831 goto error_free_zone;
2832 }
2833
2834 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2835 device->generation = trans->transid;
2836 device->io_width = fs_info->sectorsize;
2837 device->io_align = fs_info->sectorsize;
2838 device->sector_size = fs_info->sectorsize;
2839 device->total_bytes =
2840 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2841 device->disk_total_bytes = device->total_bytes;
2842 device->commit_total_bytes = device->total_bytes;
2843 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2844 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2845 device->dev_stats_valid = 1;
2846 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2847
2848 if (seeding_dev) {
2849 /* GFP_KERNEL allocation must not be under device_list_mutex */
2850 seed_devices = btrfs_init_sprout(fs_info);
2851 if (IS_ERR(seed_devices)) {
2852 ret = PTR_ERR(seed_devices);
2853 btrfs_abort_transaction(trans, ret);
2854 goto error_trans;
2855 }
2856 }
2857
2858 mutex_lock(&fs_devices->device_list_mutex);
2859 if (seeding_dev) {
2860 btrfs_setup_sprout(fs_info, seed_devices);
2861 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2862 device);
2863 }
2864
2865 device->fs_devices = fs_devices;
2866
2867 mutex_lock(&fs_info->chunk_mutex);
2868 list_add_rcu(&device->dev_list, &fs_devices->devices);
2869 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2870 fs_devices->num_devices++;
2871 fs_devices->open_devices++;
2872 fs_devices->rw_devices++;
2873 fs_devices->total_devices++;
2874 fs_devices->total_rw_bytes += device->total_bytes;
2875
2876 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2877
2878 if (!bdev_nonrot(device->bdev))
2879 fs_devices->rotating = true;
2880
2881 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2882 btrfs_set_super_total_bytes(fs_info->super_copy,
2883 round_down(orig_super_total_bytes + device->total_bytes,
2884 fs_info->sectorsize));
2885
2886 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2887 btrfs_set_super_num_devices(fs_info->super_copy,
2888 orig_super_num_devices + 1);
2889
2890 /*
2891 * we've got more storage, clear any full flags on the space
2892 * infos
2893 */
2894 btrfs_clear_space_info_full(fs_info);
2895
2896 mutex_unlock(&fs_info->chunk_mutex);
2897
2898 /* Add sysfs device entry */
2899 btrfs_sysfs_add_device(device);
2900
2901 mutex_unlock(&fs_devices->device_list_mutex);
2902
2903 if (seeding_dev) {
2904 mutex_lock(&fs_info->chunk_mutex);
2905 ret = init_first_rw_device(trans);
2906 mutex_unlock(&fs_info->chunk_mutex);
2907 if (ret) {
2908 btrfs_abort_transaction(trans, ret);
2909 goto error_sysfs;
2910 }
2911 }
2912
2913 ret = btrfs_add_dev_item(trans, device);
2914 if (ret) {
2915 btrfs_abort_transaction(trans, ret);
2916 goto error_sysfs;
2917 }
2918
2919 if (seeding_dev) {
2920 ret = btrfs_finish_sprout(trans);
2921 if (ret) {
2922 btrfs_abort_transaction(trans, ret);
2923 goto error_sysfs;
2924 }
2925
2926 /*
2927 * fs_devices now represents the newly sprouted filesystem and
2928 * its fsid has been changed by btrfs_sprout_splice().
2929 */
2930 btrfs_sysfs_update_sprout_fsid(fs_devices);
2931 }
2932
2933 ret = btrfs_commit_transaction(trans);
2934
2935 if (seeding_dev) {
2936 mutex_unlock(&uuid_mutex);
2937 up_write(&sb->s_umount);
2938 locked = false;
2939
2940 if (ret) /* transaction commit */
2941 return ret;
2942
2943 ret = btrfs_relocate_sys_chunks(fs_info);
2944 if (ret < 0)
2945 btrfs_handle_fs_error(fs_info, ret,
2946 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2947 trans = btrfs_attach_transaction(root);
2948 if (IS_ERR(trans)) {
2949 if (PTR_ERR(trans) == -ENOENT)
2950 return 0;
2951 ret = PTR_ERR(trans);
2952 trans = NULL;
2953 goto error_sysfs;
2954 }
2955 ret = btrfs_commit_transaction(trans);
2956 }
2957
2958 /*
2959 * Now that we have written a new super block to this device, check all
2960 * other fs_devices list if device_path alienates any other scanned
2961 * device.
2962 * We can ignore the return value as it typically returns -EINVAL and
2963 * only succeeds if the device was an alien.
2964 */
2965 btrfs_forget_devices(device->devt);
2966
2967 /* Update ctime/mtime for blkid or udev */
2968 update_dev_time(device_path);
2969
2970 return ret;
2971
2972error_sysfs:
2973 btrfs_sysfs_remove_device(device);
2974 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2975 mutex_lock(&fs_info->chunk_mutex);
2976 list_del_rcu(&device->dev_list);
2977 list_del(&device->dev_alloc_list);
2978 fs_info->fs_devices->num_devices--;
2979 fs_info->fs_devices->open_devices--;
2980 fs_info->fs_devices->rw_devices--;
2981 fs_info->fs_devices->total_devices--;
2982 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2983 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2984 btrfs_set_super_total_bytes(fs_info->super_copy,
2985 orig_super_total_bytes);
2986 btrfs_set_super_num_devices(fs_info->super_copy,
2987 orig_super_num_devices);
2988 mutex_unlock(&fs_info->chunk_mutex);
2989 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2990error_trans:
2991 if (trans)
2992 btrfs_end_transaction(trans);
2993error_free_zone:
2994 btrfs_destroy_dev_zone_info(device);
2995error_free_device:
2996 btrfs_free_device(device);
2997error:
2998 fput(bdev_file);
2999 if (locked) {
3000 mutex_unlock(&uuid_mutex);
3001 up_write(&sb->s_umount);
3002 }
3003 return ret;
3004}
3005
3006static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
3007 struct btrfs_device *device)
3008{
3009 int ret;
3010 struct btrfs_path *path;
3011 struct btrfs_root *root = device->fs_info->chunk_root;
3012 struct btrfs_dev_item *dev_item;
3013 struct extent_buffer *leaf;
3014 struct btrfs_key key;
3015
3016 path = btrfs_alloc_path();
3017 if (!path)
3018 return -ENOMEM;
3019
3020 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3021 key.type = BTRFS_DEV_ITEM_KEY;
3022 key.offset = device->devid;
3023
3024 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3025 if (ret < 0)
3026 goto out;
3027
3028 if (ret > 0) {
3029 ret = -ENOENT;
3030 goto out;
3031 }
3032
3033 leaf = path->nodes[0];
3034 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
3035
3036 btrfs_set_device_id(leaf, dev_item, device->devid);
3037 btrfs_set_device_type(leaf, dev_item, device->type);
3038 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
3039 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
3040 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
3041 btrfs_set_device_total_bytes(leaf, dev_item,
3042 btrfs_device_get_disk_total_bytes(device));
3043 btrfs_set_device_bytes_used(leaf, dev_item,
3044 btrfs_device_get_bytes_used(device));
3045 btrfs_mark_buffer_dirty(trans, leaf);
3046
3047out:
3048 btrfs_free_path(path);
3049 return ret;
3050}
3051
3052int btrfs_grow_device(struct btrfs_trans_handle *trans,
3053 struct btrfs_device *device, u64 new_size)
3054{
3055 struct btrfs_fs_info *fs_info = device->fs_info;
3056 struct btrfs_super_block *super_copy = fs_info->super_copy;
3057 u64 old_total;
3058 u64 diff;
3059 int ret;
3060
3061 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
3062 return -EACCES;
3063
3064 new_size = round_down(new_size, fs_info->sectorsize);
3065
3066 mutex_lock(&fs_info->chunk_mutex);
3067 old_total = btrfs_super_total_bytes(super_copy);
3068 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
3069
3070 if (new_size <= device->total_bytes ||
3071 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
3072 mutex_unlock(&fs_info->chunk_mutex);
3073 return -EINVAL;
3074 }
3075
3076 btrfs_set_super_total_bytes(super_copy,
3077 round_down(old_total + diff, fs_info->sectorsize));
3078 device->fs_devices->total_rw_bytes += diff;
3079 atomic64_add(diff, &fs_info->free_chunk_space);
3080
3081 btrfs_device_set_total_bytes(device, new_size);
3082 btrfs_device_set_disk_total_bytes(device, new_size);
3083 btrfs_clear_space_info_full(device->fs_info);
3084 if (list_empty(&device->post_commit_list))
3085 list_add_tail(&device->post_commit_list,
3086 &trans->transaction->dev_update_list);
3087 mutex_unlock(&fs_info->chunk_mutex);
3088
3089 btrfs_reserve_chunk_metadata(trans, false);
3090 ret = btrfs_update_device(trans, device);
3091 btrfs_trans_release_chunk_metadata(trans);
3092
3093 return ret;
3094}
3095
3096static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3097{
3098 struct btrfs_fs_info *fs_info = trans->fs_info;
3099 struct btrfs_root *root = fs_info->chunk_root;
3100 int ret;
3101 struct btrfs_path *path;
3102 struct btrfs_key key;
3103
3104 path = btrfs_alloc_path();
3105 if (!path)
3106 return -ENOMEM;
3107
3108 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3109 key.offset = chunk_offset;
3110 key.type = BTRFS_CHUNK_ITEM_KEY;
3111
3112 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3113 if (ret < 0)
3114 goto out;
3115 else if (ret > 0) { /* Logic error or corruption */
3116 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
3117 chunk_offset);
3118 btrfs_abort_transaction(trans, -ENOENT);
3119 ret = -EUCLEAN;
3120 goto out;
3121 }
3122
3123 ret = btrfs_del_item(trans, root, path);
3124 if (ret < 0) {
3125 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3126 btrfs_abort_transaction(trans, ret);
3127 goto out;
3128 }
3129out:
3130 btrfs_free_path(path);
3131 return ret;
3132}
3133
3134static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3135{
3136 struct btrfs_super_block *super_copy = fs_info->super_copy;
3137 struct btrfs_disk_key *disk_key;
3138 struct btrfs_chunk *chunk;
3139 u8 *ptr;
3140 int ret = 0;
3141 u32 num_stripes;
3142 u32 array_size;
3143 u32 len = 0;
3144 u32 cur;
3145 struct btrfs_key key;
3146
3147 lockdep_assert_held(&fs_info->chunk_mutex);
3148 array_size = btrfs_super_sys_array_size(super_copy);
3149
3150 ptr = super_copy->sys_chunk_array;
3151 cur = 0;
3152
3153 while (cur < array_size) {
3154 disk_key = (struct btrfs_disk_key *)ptr;
3155 btrfs_disk_key_to_cpu(&key, disk_key);
3156
3157 len = sizeof(*disk_key);
3158
3159 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3160 chunk = (struct btrfs_chunk *)(ptr + len);
3161 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3162 len += btrfs_chunk_item_size(num_stripes);
3163 } else {
3164 ret = -EIO;
3165 break;
3166 }
3167 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3168 key.offset == chunk_offset) {
3169 memmove(ptr, ptr + len, array_size - (cur + len));
3170 array_size -= len;
3171 btrfs_set_super_sys_array_size(super_copy, array_size);
3172 } else {
3173 ptr += len;
3174 cur += len;
3175 }
3176 }
3177 return ret;
3178}
3179
3180struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3181 u64 logical, u64 length)
3182{
3183 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3184 struct rb_node *prev = NULL;
3185 struct rb_node *orig_prev;
3186 struct btrfs_chunk_map *map;
3187 struct btrfs_chunk_map *prev_map = NULL;
3188
3189 while (node) {
3190 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3191 prev = node;
3192 prev_map = map;
3193
3194 if (logical < map->start) {
3195 node = node->rb_left;
3196 } else if (logical >= map->start + map->chunk_len) {
3197 node = node->rb_right;
3198 } else {
3199 refcount_inc(&map->refs);
3200 return map;
3201 }
3202 }
3203
3204 if (!prev)
3205 return NULL;
3206
3207 orig_prev = prev;
3208 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3209 prev = rb_next(prev);
3210 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3211 }
3212
3213 if (!prev) {
3214 prev = orig_prev;
3215 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3216 while (prev && logical < prev_map->start) {
3217 prev = rb_prev(prev);
3218 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3219 }
3220 }
3221
3222 if (prev) {
3223 u64 end = logical + length;
3224
3225 /*
3226 * Caller can pass a U64_MAX length when it wants to get any
3227 * chunk starting at an offset of 'logical' or higher, so deal
3228 * with underflow by resetting the end offset to U64_MAX.
3229 */
3230 if (end < logical)
3231 end = U64_MAX;
3232
3233 if (end > prev_map->start &&
3234 logical < prev_map->start + prev_map->chunk_len) {
3235 refcount_inc(&prev_map->refs);
3236 return prev_map;
3237 }
3238 }
3239
3240 return NULL;
3241}
3242
3243struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3244 u64 logical, u64 length)
3245{
3246 struct btrfs_chunk_map *map;
3247
3248 read_lock(&fs_info->mapping_tree_lock);
3249 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3250 read_unlock(&fs_info->mapping_tree_lock);
3251
3252 return map;
3253}
3254
3255/*
3256 * Find the mapping containing the given logical extent.
3257 *
3258 * @logical: Logical block offset in bytes.
3259 * @length: Length of extent in bytes.
3260 *
3261 * Return: Chunk mapping or ERR_PTR.
3262 */
3263struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3264 u64 logical, u64 length)
3265{
3266 struct btrfs_chunk_map *map;
3267
3268 map = btrfs_find_chunk_map(fs_info, logical, length);
3269
3270 if (unlikely(!map)) {
3271 btrfs_crit(fs_info,
3272 "unable to find chunk map for logical %llu length %llu",
3273 logical, length);
3274 return ERR_PTR(-EINVAL);
3275 }
3276
3277 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3278 btrfs_crit(fs_info,
3279 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3280 logical, logical + length, map->start,
3281 map->start + map->chunk_len);
3282 btrfs_free_chunk_map(map);
3283 return ERR_PTR(-EINVAL);
3284 }
3285
3286 /* Callers are responsible for dropping the reference. */
3287 return map;
3288}
3289
3290static int remove_chunk_item(struct btrfs_trans_handle *trans,
3291 struct btrfs_chunk_map *map, u64 chunk_offset)
3292{
3293 int i;
3294
3295 /*
3296 * Removing chunk items and updating the device items in the chunks btree
3297 * requires holding the chunk_mutex.
3298 * See the comment at btrfs_chunk_alloc() for the details.
3299 */
3300 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3301
3302 for (i = 0; i < map->num_stripes; i++) {
3303 int ret;
3304
3305 ret = btrfs_update_device(trans, map->stripes[i].dev);
3306 if (ret)
3307 return ret;
3308 }
3309
3310 return btrfs_free_chunk(trans, chunk_offset);
3311}
3312
3313int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3314{
3315 struct btrfs_fs_info *fs_info = trans->fs_info;
3316 struct btrfs_chunk_map *map;
3317 u64 dev_extent_len = 0;
3318 int i, ret = 0;
3319 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3320
3321 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3322 if (IS_ERR(map)) {
3323 /*
3324 * This is a logic error, but we don't want to just rely on the
3325 * user having built with ASSERT enabled, so if ASSERT doesn't
3326 * do anything we still error out.
3327 */
3328 ASSERT(0);
3329 return PTR_ERR(map);
3330 }
3331
3332 /*
3333 * First delete the device extent items from the devices btree.
3334 * We take the device_list_mutex to avoid racing with the finishing phase
3335 * of a device replace operation. See the comment below before acquiring
3336 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3337 * because that can result in a deadlock when deleting the device extent
3338 * items from the devices btree - COWing an extent buffer from the btree
3339 * may result in allocating a new metadata chunk, which would attempt to
3340 * lock again fs_info->chunk_mutex.
3341 */
3342 mutex_lock(&fs_devices->device_list_mutex);
3343 for (i = 0; i < map->num_stripes; i++) {
3344 struct btrfs_device *device = map->stripes[i].dev;
3345 ret = btrfs_free_dev_extent(trans, device,
3346 map->stripes[i].physical,
3347 &dev_extent_len);
3348 if (ret) {
3349 mutex_unlock(&fs_devices->device_list_mutex);
3350 btrfs_abort_transaction(trans, ret);
3351 goto out;
3352 }
3353
3354 if (device->bytes_used > 0) {
3355 mutex_lock(&fs_info->chunk_mutex);
3356 btrfs_device_set_bytes_used(device,
3357 device->bytes_used - dev_extent_len);
3358 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3359 btrfs_clear_space_info_full(fs_info);
3360 mutex_unlock(&fs_info->chunk_mutex);
3361 }
3362 }
3363 mutex_unlock(&fs_devices->device_list_mutex);
3364
3365 /*
3366 * We acquire fs_info->chunk_mutex for 2 reasons:
3367 *
3368 * 1) Just like with the first phase of the chunk allocation, we must
3369 * reserve system space, do all chunk btree updates and deletions, and
3370 * update the system chunk array in the superblock while holding this
3371 * mutex. This is for similar reasons as explained on the comment at
3372 * the top of btrfs_chunk_alloc();
3373 *
3374 * 2) Prevent races with the final phase of a device replace operation
3375 * that replaces the device object associated with the map's stripes,
3376 * because the device object's id can change at any time during that
3377 * final phase of the device replace operation
3378 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3379 * replaced device and then see it with an ID of
3380 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3381 * the device item, which does not exists on the chunk btree.
3382 * The finishing phase of device replace acquires both the
3383 * device_list_mutex and the chunk_mutex, in that order, so we are
3384 * safe by just acquiring the chunk_mutex.
3385 */
3386 trans->removing_chunk = true;
3387 mutex_lock(&fs_info->chunk_mutex);
3388
3389 check_system_chunk(trans, map->type);
3390
3391 ret = remove_chunk_item(trans, map, chunk_offset);
3392 /*
3393 * Normally we should not get -ENOSPC since we reserved space before
3394 * through the call to check_system_chunk().
3395 *
3396 * Despite our system space_info having enough free space, we may not
3397 * be able to allocate extents from its block groups, because all have
3398 * an incompatible profile, which will force us to allocate a new system
3399 * block group with the right profile, or right after we called
3400 * check_system_space() above, a scrub turned the only system block group
3401 * with enough free space into RO mode.
3402 * This is explained with more detail at do_chunk_alloc().
3403 *
3404 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3405 */
3406 if (ret == -ENOSPC) {
3407 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3408 struct btrfs_block_group *sys_bg;
3409
3410 sys_bg = btrfs_create_chunk(trans, sys_flags);
3411 if (IS_ERR(sys_bg)) {
3412 ret = PTR_ERR(sys_bg);
3413 btrfs_abort_transaction(trans, ret);
3414 goto out;
3415 }
3416
3417 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3418 if (ret) {
3419 btrfs_abort_transaction(trans, ret);
3420 goto out;
3421 }
3422
3423 ret = remove_chunk_item(trans, map, chunk_offset);
3424 if (ret) {
3425 btrfs_abort_transaction(trans, ret);
3426 goto out;
3427 }
3428 } else if (ret) {
3429 btrfs_abort_transaction(trans, ret);
3430 goto out;
3431 }
3432
3433 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3434
3435 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3436 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3437 if (ret) {
3438 btrfs_abort_transaction(trans, ret);
3439 goto out;
3440 }
3441 }
3442
3443 mutex_unlock(&fs_info->chunk_mutex);
3444 trans->removing_chunk = false;
3445
3446 /*
3447 * We are done with chunk btree updates and deletions, so release the
3448 * system space we previously reserved (with check_system_chunk()).
3449 */
3450 btrfs_trans_release_chunk_metadata(trans);
3451
3452 ret = btrfs_remove_block_group(trans, map);
3453 if (ret) {
3454 btrfs_abort_transaction(trans, ret);
3455 goto out;
3456 }
3457
3458out:
3459 if (trans->removing_chunk) {
3460 mutex_unlock(&fs_info->chunk_mutex);
3461 trans->removing_chunk = false;
3462 }
3463 /* once for us */
3464 btrfs_free_chunk_map(map);
3465 return ret;
3466}
3467
3468int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3469{
3470 struct btrfs_root *root = fs_info->chunk_root;
3471 struct btrfs_trans_handle *trans;
3472 struct btrfs_block_group *block_group;
3473 u64 length;
3474 int ret;
3475
3476 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3477 btrfs_err(fs_info,
3478 "relocate: not supported on extent tree v2 yet");
3479 return -EINVAL;
3480 }
3481
3482 /*
3483 * Prevent races with automatic removal of unused block groups.
3484 * After we relocate and before we remove the chunk with offset
3485 * chunk_offset, automatic removal of the block group can kick in,
3486 * resulting in a failure when calling btrfs_remove_chunk() below.
3487 *
3488 * Make sure to acquire this mutex before doing a tree search (dev
3489 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3490 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3491 * we release the path used to search the chunk/dev tree and before
3492 * the current task acquires this mutex and calls us.
3493 */
3494 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3495
3496 /* step one, relocate all the extents inside this chunk */
3497 btrfs_scrub_pause(fs_info);
3498 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3499 btrfs_scrub_continue(fs_info);
3500 if (ret) {
3501 /*
3502 * If we had a transaction abort, stop all running scrubs.
3503 * See transaction.c:cleanup_transaction() why we do it here.
3504 */
3505 if (BTRFS_FS_ERROR(fs_info))
3506 btrfs_scrub_cancel(fs_info);
3507 return ret;
3508 }
3509
3510 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3511 if (!block_group)
3512 return -ENOENT;
3513 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3514 length = block_group->length;
3515 btrfs_put_block_group(block_group);
3516
3517 /*
3518 * On a zoned file system, discard the whole block group, this will
3519 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3520 * resetting the zone fails, don't treat it as a fatal problem from the
3521 * filesystem's point of view.
3522 */
3523 if (btrfs_is_zoned(fs_info)) {
3524 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3525 if (ret)
3526 btrfs_info(fs_info,
3527 "failed to reset zone %llu after relocation",
3528 chunk_offset);
3529 }
3530
3531 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3532 chunk_offset);
3533 if (IS_ERR(trans)) {
3534 ret = PTR_ERR(trans);
3535 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3536 return ret;
3537 }
3538
3539 /*
3540 * step two, delete the device extents and the
3541 * chunk tree entries
3542 */
3543 ret = btrfs_remove_chunk(trans, chunk_offset);
3544 btrfs_end_transaction(trans);
3545 return ret;
3546}
3547
3548static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3549{
3550 struct btrfs_root *chunk_root = fs_info->chunk_root;
3551 struct btrfs_path *path;
3552 struct extent_buffer *leaf;
3553 struct btrfs_chunk *chunk;
3554 struct btrfs_key key;
3555 struct btrfs_key found_key;
3556 u64 chunk_type;
3557 bool retried = false;
3558 int failed = 0;
3559 int ret;
3560
3561 path = btrfs_alloc_path();
3562 if (!path)
3563 return -ENOMEM;
3564
3565again:
3566 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3567 key.offset = (u64)-1;
3568 key.type = BTRFS_CHUNK_ITEM_KEY;
3569
3570 while (1) {
3571 mutex_lock(&fs_info->reclaim_bgs_lock);
3572 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3573 if (ret < 0) {
3574 mutex_unlock(&fs_info->reclaim_bgs_lock);
3575 goto error;
3576 }
3577 if (ret == 0) {
3578 /*
3579 * On the first search we would find chunk tree with
3580 * offset -1, which is not possible. On subsequent
3581 * loops this would find an existing item on an invalid
3582 * offset (one less than the previous one, wrong
3583 * alignment and size).
3584 */
3585 ret = -EUCLEAN;
3586 mutex_unlock(&fs_info->reclaim_bgs_lock);
3587 goto error;
3588 }
3589
3590 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3591 key.type);
3592 if (ret)
3593 mutex_unlock(&fs_info->reclaim_bgs_lock);
3594 if (ret < 0)
3595 goto error;
3596 if (ret > 0)
3597 break;
3598
3599 leaf = path->nodes[0];
3600 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3601
3602 chunk = btrfs_item_ptr(leaf, path->slots[0],
3603 struct btrfs_chunk);
3604 chunk_type = btrfs_chunk_type(leaf, chunk);
3605 btrfs_release_path(path);
3606
3607 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3608 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3609 if (ret == -ENOSPC)
3610 failed++;
3611 else
3612 BUG_ON(ret);
3613 }
3614 mutex_unlock(&fs_info->reclaim_bgs_lock);
3615
3616 if (found_key.offset == 0)
3617 break;
3618 key.offset = found_key.offset - 1;
3619 }
3620 ret = 0;
3621 if (failed && !retried) {
3622 failed = 0;
3623 retried = true;
3624 goto again;
3625 } else if (WARN_ON(failed && retried)) {
3626 ret = -ENOSPC;
3627 }
3628error:
3629 btrfs_free_path(path);
3630 return ret;
3631}
3632
3633/*
3634 * return 1 : allocate a data chunk successfully,
3635 * return <0: errors during allocating a data chunk,
3636 * return 0 : no need to allocate a data chunk.
3637 */
3638static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3639 u64 chunk_offset)
3640{
3641 struct btrfs_block_group *cache;
3642 u64 bytes_used;
3643 u64 chunk_type;
3644
3645 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3646 ASSERT(cache);
3647 chunk_type = cache->flags;
3648 btrfs_put_block_group(cache);
3649
3650 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3651 return 0;
3652
3653 spin_lock(&fs_info->data_sinfo->lock);
3654 bytes_used = fs_info->data_sinfo->bytes_used;
3655 spin_unlock(&fs_info->data_sinfo->lock);
3656
3657 if (!bytes_used) {
3658 struct btrfs_trans_handle *trans;
3659 int ret;
3660
3661 trans = btrfs_join_transaction(fs_info->tree_root);
3662 if (IS_ERR(trans))
3663 return PTR_ERR(trans);
3664
3665 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3666 btrfs_end_transaction(trans);
3667 if (ret < 0)
3668 return ret;
3669 return 1;
3670 }
3671
3672 return 0;
3673}
3674
3675static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3676 const struct btrfs_disk_balance_args *disk)
3677{
3678 memset(cpu, 0, sizeof(*cpu));
3679
3680 cpu->profiles = le64_to_cpu(disk->profiles);
3681 cpu->usage = le64_to_cpu(disk->usage);
3682 cpu->devid = le64_to_cpu(disk->devid);
3683 cpu->pstart = le64_to_cpu(disk->pstart);
3684 cpu->pend = le64_to_cpu(disk->pend);
3685 cpu->vstart = le64_to_cpu(disk->vstart);
3686 cpu->vend = le64_to_cpu(disk->vend);
3687 cpu->target = le64_to_cpu(disk->target);
3688 cpu->flags = le64_to_cpu(disk->flags);
3689 cpu->limit = le64_to_cpu(disk->limit);
3690 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3691 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3692}
3693
3694static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3695 const struct btrfs_balance_args *cpu)
3696{
3697 memset(disk, 0, sizeof(*disk));
3698
3699 disk->profiles = cpu_to_le64(cpu->profiles);
3700 disk->usage = cpu_to_le64(cpu->usage);
3701 disk->devid = cpu_to_le64(cpu->devid);
3702 disk->pstart = cpu_to_le64(cpu->pstart);
3703 disk->pend = cpu_to_le64(cpu->pend);
3704 disk->vstart = cpu_to_le64(cpu->vstart);
3705 disk->vend = cpu_to_le64(cpu->vend);
3706 disk->target = cpu_to_le64(cpu->target);
3707 disk->flags = cpu_to_le64(cpu->flags);
3708 disk->limit = cpu_to_le64(cpu->limit);
3709 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3710 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3711}
3712
3713static int insert_balance_item(struct btrfs_fs_info *fs_info,
3714 struct btrfs_balance_control *bctl)
3715{
3716 struct btrfs_root *root = fs_info->tree_root;
3717 struct btrfs_trans_handle *trans;
3718 struct btrfs_balance_item *item;
3719 struct btrfs_disk_balance_args disk_bargs;
3720 struct btrfs_path *path;
3721 struct extent_buffer *leaf;
3722 struct btrfs_key key;
3723 int ret, err;
3724
3725 path = btrfs_alloc_path();
3726 if (!path)
3727 return -ENOMEM;
3728
3729 trans = btrfs_start_transaction(root, 0);
3730 if (IS_ERR(trans)) {
3731 btrfs_free_path(path);
3732 return PTR_ERR(trans);
3733 }
3734
3735 key.objectid = BTRFS_BALANCE_OBJECTID;
3736 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3737 key.offset = 0;
3738
3739 ret = btrfs_insert_empty_item(trans, root, path, &key,
3740 sizeof(*item));
3741 if (ret)
3742 goto out;
3743
3744 leaf = path->nodes[0];
3745 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3746
3747 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3748
3749 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3750 btrfs_set_balance_data(leaf, item, &disk_bargs);
3751 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3752 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3753 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3754 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3755
3756 btrfs_set_balance_flags(leaf, item, bctl->flags);
3757
3758 btrfs_mark_buffer_dirty(trans, leaf);
3759out:
3760 btrfs_free_path(path);
3761 err = btrfs_commit_transaction(trans);
3762 if (err && !ret)
3763 ret = err;
3764 return ret;
3765}
3766
3767static int del_balance_item(struct btrfs_fs_info *fs_info)
3768{
3769 struct btrfs_root *root = fs_info->tree_root;
3770 struct btrfs_trans_handle *trans;
3771 struct btrfs_path *path;
3772 struct btrfs_key key;
3773 int ret, err;
3774
3775 path = btrfs_alloc_path();
3776 if (!path)
3777 return -ENOMEM;
3778
3779 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3780 if (IS_ERR(trans)) {
3781 btrfs_free_path(path);
3782 return PTR_ERR(trans);
3783 }
3784
3785 key.objectid = BTRFS_BALANCE_OBJECTID;
3786 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3787 key.offset = 0;
3788
3789 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3790 if (ret < 0)
3791 goto out;
3792 if (ret > 0) {
3793 ret = -ENOENT;
3794 goto out;
3795 }
3796
3797 ret = btrfs_del_item(trans, root, path);
3798out:
3799 btrfs_free_path(path);
3800 err = btrfs_commit_transaction(trans);
3801 if (err && !ret)
3802 ret = err;
3803 return ret;
3804}
3805
3806/*
3807 * This is a heuristic used to reduce the number of chunks balanced on
3808 * resume after balance was interrupted.
3809 */
3810static void update_balance_args(struct btrfs_balance_control *bctl)
3811{
3812 /*
3813 * Turn on soft mode for chunk types that were being converted.
3814 */
3815 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3816 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3817 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3818 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3819 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3820 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3821
3822 /*
3823 * Turn on usage filter if is not already used. The idea is
3824 * that chunks that we have already balanced should be
3825 * reasonably full. Don't do it for chunks that are being
3826 * converted - that will keep us from relocating unconverted
3827 * (albeit full) chunks.
3828 */
3829 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3830 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3831 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3832 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3833 bctl->data.usage = 90;
3834 }
3835 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3836 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3837 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3838 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3839 bctl->sys.usage = 90;
3840 }
3841 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3842 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3843 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3844 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3845 bctl->meta.usage = 90;
3846 }
3847}
3848
3849/*
3850 * Clear the balance status in fs_info and delete the balance item from disk.
3851 */
3852static void reset_balance_state(struct btrfs_fs_info *fs_info)
3853{
3854 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3855 int ret;
3856
3857 ASSERT(fs_info->balance_ctl);
3858
3859 spin_lock(&fs_info->balance_lock);
3860 fs_info->balance_ctl = NULL;
3861 spin_unlock(&fs_info->balance_lock);
3862
3863 kfree(bctl);
3864 ret = del_balance_item(fs_info);
3865 if (ret)
3866 btrfs_handle_fs_error(fs_info, ret, NULL);
3867}
3868
3869/*
3870 * Balance filters. Return 1 if chunk should be filtered out
3871 * (should not be balanced).
3872 */
3873static int chunk_profiles_filter(u64 chunk_type,
3874 struct btrfs_balance_args *bargs)
3875{
3876 chunk_type = chunk_to_extended(chunk_type) &
3877 BTRFS_EXTENDED_PROFILE_MASK;
3878
3879 if (bargs->profiles & chunk_type)
3880 return 0;
3881
3882 return 1;
3883}
3884
3885static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3886 struct btrfs_balance_args *bargs)
3887{
3888 struct btrfs_block_group *cache;
3889 u64 chunk_used;
3890 u64 user_thresh_min;
3891 u64 user_thresh_max;
3892 int ret = 1;
3893
3894 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3895 chunk_used = cache->used;
3896
3897 if (bargs->usage_min == 0)
3898 user_thresh_min = 0;
3899 else
3900 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3901
3902 if (bargs->usage_max == 0)
3903 user_thresh_max = 1;
3904 else if (bargs->usage_max > 100)
3905 user_thresh_max = cache->length;
3906 else
3907 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3908
3909 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3910 ret = 0;
3911
3912 btrfs_put_block_group(cache);
3913 return ret;
3914}
3915
3916static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3917 u64 chunk_offset, struct btrfs_balance_args *bargs)
3918{
3919 struct btrfs_block_group *cache;
3920 u64 chunk_used, user_thresh;
3921 int ret = 1;
3922
3923 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3924 chunk_used = cache->used;
3925
3926 if (bargs->usage_min == 0)
3927 user_thresh = 1;
3928 else if (bargs->usage > 100)
3929 user_thresh = cache->length;
3930 else
3931 user_thresh = mult_perc(cache->length, bargs->usage);
3932
3933 if (chunk_used < user_thresh)
3934 ret = 0;
3935
3936 btrfs_put_block_group(cache);
3937 return ret;
3938}
3939
3940static int chunk_devid_filter(struct extent_buffer *leaf,
3941 struct btrfs_chunk *chunk,
3942 struct btrfs_balance_args *bargs)
3943{
3944 struct btrfs_stripe *stripe;
3945 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3946 int i;
3947
3948 for (i = 0; i < num_stripes; i++) {
3949 stripe = btrfs_stripe_nr(chunk, i);
3950 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3951 return 0;
3952 }
3953
3954 return 1;
3955}
3956
3957static u64 calc_data_stripes(u64 type, int num_stripes)
3958{
3959 const int index = btrfs_bg_flags_to_raid_index(type);
3960 const int ncopies = btrfs_raid_array[index].ncopies;
3961 const int nparity = btrfs_raid_array[index].nparity;
3962
3963 return (num_stripes - nparity) / ncopies;
3964}
3965
3966/* [pstart, pend) */
3967static int chunk_drange_filter(struct extent_buffer *leaf,
3968 struct btrfs_chunk *chunk,
3969 struct btrfs_balance_args *bargs)
3970{
3971 struct btrfs_stripe *stripe;
3972 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3973 u64 stripe_offset;
3974 u64 stripe_length;
3975 u64 type;
3976 int factor;
3977 int i;
3978
3979 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3980 return 0;
3981
3982 type = btrfs_chunk_type(leaf, chunk);
3983 factor = calc_data_stripes(type, num_stripes);
3984
3985 for (i = 0; i < num_stripes; i++) {
3986 stripe = btrfs_stripe_nr(chunk, i);
3987 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3988 continue;
3989
3990 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3991 stripe_length = btrfs_chunk_length(leaf, chunk);
3992 stripe_length = div_u64(stripe_length, factor);
3993
3994 if (stripe_offset < bargs->pend &&
3995 stripe_offset + stripe_length > bargs->pstart)
3996 return 0;
3997 }
3998
3999 return 1;
4000}
4001
4002/* [vstart, vend) */
4003static int chunk_vrange_filter(struct extent_buffer *leaf,
4004 struct btrfs_chunk *chunk,
4005 u64 chunk_offset,
4006 struct btrfs_balance_args *bargs)
4007{
4008 if (chunk_offset < bargs->vend &&
4009 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
4010 /* at least part of the chunk is inside this vrange */
4011 return 0;
4012
4013 return 1;
4014}
4015
4016static int chunk_stripes_range_filter(struct extent_buffer *leaf,
4017 struct btrfs_chunk *chunk,
4018 struct btrfs_balance_args *bargs)
4019{
4020 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4021
4022 if (bargs->stripes_min <= num_stripes
4023 && num_stripes <= bargs->stripes_max)
4024 return 0;
4025
4026 return 1;
4027}
4028
4029static int chunk_soft_convert_filter(u64 chunk_type,
4030 struct btrfs_balance_args *bargs)
4031{
4032 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4033 return 0;
4034
4035 chunk_type = chunk_to_extended(chunk_type) &
4036 BTRFS_EXTENDED_PROFILE_MASK;
4037
4038 if (bargs->target == chunk_type)
4039 return 1;
4040
4041 return 0;
4042}
4043
4044static int should_balance_chunk(struct extent_buffer *leaf,
4045 struct btrfs_chunk *chunk, u64 chunk_offset)
4046{
4047 struct btrfs_fs_info *fs_info = leaf->fs_info;
4048 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4049 struct btrfs_balance_args *bargs = NULL;
4050 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
4051
4052 /* type filter */
4053 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
4054 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
4055 return 0;
4056 }
4057
4058 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4059 bargs = &bctl->data;
4060 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4061 bargs = &bctl->sys;
4062 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4063 bargs = &bctl->meta;
4064
4065 /* profiles filter */
4066 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
4067 chunk_profiles_filter(chunk_type, bargs)) {
4068 return 0;
4069 }
4070
4071 /* usage filter */
4072 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
4073 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
4074 return 0;
4075 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
4076 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
4077 return 0;
4078 }
4079
4080 /* devid filter */
4081 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
4082 chunk_devid_filter(leaf, chunk, bargs)) {
4083 return 0;
4084 }
4085
4086 /* drange filter, makes sense only with devid filter */
4087 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
4088 chunk_drange_filter(leaf, chunk, bargs)) {
4089 return 0;
4090 }
4091
4092 /* vrange filter */
4093 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
4094 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
4095 return 0;
4096 }
4097
4098 /* stripes filter */
4099 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
4100 chunk_stripes_range_filter(leaf, chunk, bargs)) {
4101 return 0;
4102 }
4103
4104 /* soft profile changing mode */
4105 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
4106 chunk_soft_convert_filter(chunk_type, bargs)) {
4107 return 0;
4108 }
4109
4110 /*
4111 * limited by count, must be the last filter
4112 */
4113 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
4114 if (bargs->limit == 0)
4115 return 0;
4116 else
4117 bargs->limit--;
4118 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
4119 /*
4120 * Same logic as the 'limit' filter; the minimum cannot be
4121 * determined here because we do not have the global information
4122 * about the count of all chunks that satisfy the filters.
4123 */
4124 if (bargs->limit_max == 0)
4125 return 0;
4126 else
4127 bargs->limit_max--;
4128 }
4129
4130 return 1;
4131}
4132
4133static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4134{
4135 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4136 struct btrfs_root *chunk_root = fs_info->chunk_root;
4137 u64 chunk_type;
4138 struct btrfs_chunk *chunk;
4139 struct btrfs_path *path = NULL;
4140 struct btrfs_key key;
4141 struct btrfs_key found_key;
4142 struct extent_buffer *leaf;
4143 int slot;
4144 int ret;
4145 int enospc_errors = 0;
4146 bool counting = true;
4147 /* The single value limit and min/max limits use the same bytes in the */
4148 u64 limit_data = bctl->data.limit;
4149 u64 limit_meta = bctl->meta.limit;
4150 u64 limit_sys = bctl->sys.limit;
4151 u32 count_data = 0;
4152 u32 count_meta = 0;
4153 u32 count_sys = 0;
4154 int chunk_reserved = 0;
4155
4156 path = btrfs_alloc_path();
4157 if (!path) {
4158 ret = -ENOMEM;
4159 goto error;
4160 }
4161
4162 /* zero out stat counters */
4163 spin_lock(&fs_info->balance_lock);
4164 memset(&bctl->stat, 0, sizeof(bctl->stat));
4165 spin_unlock(&fs_info->balance_lock);
4166again:
4167 if (!counting) {
4168 /*
4169 * The single value limit and min/max limits use the same bytes
4170 * in the
4171 */
4172 bctl->data.limit = limit_data;
4173 bctl->meta.limit = limit_meta;
4174 bctl->sys.limit = limit_sys;
4175 }
4176 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4177 key.offset = (u64)-1;
4178 key.type = BTRFS_CHUNK_ITEM_KEY;
4179
4180 while (1) {
4181 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4182 atomic_read(&fs_info->balance_cancel_req)) {
4183 ret = -ECANCELED;
4184 goto error;
4185 }
4186
4187 mutex_lock(&fs_info->reclaim_bgs_lock);
4188 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4189 if (ret < 0) {
4190 mutex_unlock(&fs_info->reclaim_bgs_lock);
4191 goto error;
4192 }
4193
4194 /*
4195 * this shouldn't happen, it means the last relocate
4196 * failed
4197 */
4198 if (ret == 0)
4199 BUG(); /* FIXME break ? */
4200
4201 ret = btrfs_previous_item(chunk_root, path, 0,
4202 BTRFS_CHUNK_ITEM_KEY);
4203 if (ret) {
4204 mutex_unlock(&fs_info->reclaim_bgs_lock);
4205 ret = 0;
4206 break;
4207 }
4208
4209 leaf = path->nodes[0];
4210 slot = path->slots[0];
4211 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4212
4213 if (found_key.objectid != key.objectid) {
4214 mutex_unlock(&fs_info->reclaim_bgs_lock);
4215 break;
4216 }
4217
4218 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4219 chunk_type = btrfs_chunk_type(leaf, chunk);
4220
4221 if (!counting) {
4222 spin_lock(&fs_info->balance_lock);
4223 bctl->stat.considered++;
4224 spin_unlock(&fs_info->balance_lock);
4225 }
4226
4227 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4228
4229 btrfs_release_path(path);
4230 if (!ret) {
4231 mutex_unlock(&fs_info->reclaim_bgs_lock);
4232 goto loop;
4233 }
4234
4235 if (counting) {
4236 mutex_unlock(&fs_info->reclaim_bgs_lock);
4237 spin_lock(&fs_info->balance_lock);
4238 bctl->stat.expected++;
4239 spin_unlock(&fs_info->balance_lock);
4240
4241 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4242 count_data++;
4243 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4244 count_sys++;
4245 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4246 count_meta++;
4247
4248 goto loop;
4249 }
4250
4251 /*
4252 * Apply limit_min filter, no need to check if the LIMITS
4253 * filter is used, limit_min is 0 by default
4254 */
4255 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4256 count_data < bctl->data.limit_min)
4257 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4258 count_meta < bctl->meta.limit_min)
4259 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4260 count_sys < bctl->sys.limit_min)) {
4261 mutex_unlock(&fs_info->reclaim_bgs_lock);
4262 goto loop;
4263 }
4264
4265 if (!chunk_reserved) {
4266 /*
4267 * We may be relocating the only data chunk we have,
4268 * which could potentially end up with losing data's
4269 * raid profile, so lets allocate an empty one in
4270 * advance.
4271 */
4272 ret = btrfs_may_alloc_data_chunk(fs_info,
4273 found_key.offset);
4274 if (ret < 0) {
4275 mutex_unlock(&fs_info->reclaim_bgs_lock);
4276 goto error;
4277 } else if (ret == 1) {
4278 chunk_reserved = 1;
4279 }
4280 }
4281
4282 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4283 mutex_unlock(&fs_info->reclaim_bgs_lock);
4284 if (ret == -ENOSPC) {
4285 enospc_errors++;
4286 } else if (ret == -ETXTBSY) {
4287 btrfs_info(fs_info,
4288 "skipping relocation of block group %llu due to active swapfile",
4289 found_key.offset);
4290 ret = 0;
4291 } else if (ret) {
4292 goto error;
4293 } else {
4294 spin_lock(&fs_info->balance_lock);
4295 bctl->stat.completed++;
4296 spin_unlock(&fs_info->balance_lock);
4297 }
4298loop:
4299 if (found_key.offset == 0)
4300 break;
4301 key.offset = found_key.offset - 1;
4302 }
4303
4304 if (counting) {
4305 btrfs_release_path(path);
4306 counting = false;
4307 goto again;
4308 }
4309error:
4310 btrfs_free_path(path);
4311 if (enospc_errors) {
4312 btrfs_info(fs_info, "%d enospc errors during balance",
4313 enospc_errors);
4314 if (!ret)
4315 ret = -ENOSPC;
4316 }
4317
4318 return ret;
4319}
4320
4321/*
4322 * See if a given profile is valid and reduced.
4323 *
4324 * @flags: profile to validate
4325 * @extended: if true @flags is treated as an extended profile
4326 */
4327static int alloc_profile_is_valid(u64 flags, int extended)
4328{
4329 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4330 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4331
4332 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4333
4334 /* 1) check that all other bits are zeroed */
4335 if (flags & ~mask)
4336 return 0;
4337
4338 /* 2) see if profile is reduced */
4339 if (flags == 0)
4340 return !extended; /* "0" is valid for usual profiles */
4341
4342 return has_single_bit_set(flags);
4343}
4344
4345/*
4346 * Validate target profile against allowed profiles and return true if it's OK.
4347 * Otherwise print the error message and return false.
4348 */
4349static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4350 const struct btrfs_balance_args *bargs,
4351 u64 allowed, const char *type)
4352{
4353 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4354 return true;
4355
4356 /* Profile is valid and does not have bits outside of the allowed set */
4357 if (alloc_profile_is_valid(bargs->target, 1) &&
4358 (bargs->target & ~allowed) == 0)
4359 return true;
4360
4361 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4362 type, btrfs_bg_type_to_raid_name(bargs->target));
4363 return false;
4364}
4365
4366/*
4367 * Fill @buf with textual description of balance filter flags @bargs, up to
4368 * @size_buf including the terminating null. The output may be trimmed if it
4369 * does not fit into the provided buffer.
4370 */
4371static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4372 u32 size_buf)
4373{
4374 int ret;
4375 u32 size_bp = size_buf;
4376 char *bp = buf;
4377 u64 flags = bargs->flags;
4378 char tmp_buf[128] = {'\0'};
4379
4380 if (!flags)
4381 return;
4382
4383#define CHECK_APPEND_NOARG(a) \
4384 do { \
4385 ret = snprintf(bp, size_bp, (a)); \
4386 if (ret < 0 || ret >= size_bp) \
4387 goto out_overflow; \
4388 size_bp -= ret; \
4389 bp += ret; \
4390 } while (0)
4391
4392#define CHECK_APPEND_1ARG(a, v1) \
4393 do { \
4394 ret = snprintf(bp, size_bp, (a), (v1)); \
4395 if (ret < 0 || ret >= size_bp) \
4396 goto out_overflow; \
4397 size_bp -= ret; \
4398 bp += ret; \
4399 } while (0)
4400
4401#define CHECK_APPEND_2ARG(a, v1, v2) \
4402 do { \
4403 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4404 if (ret < 0 || ret >= size_bp) \
4405 goto out_overflow; \
4406 size_bp -= ret; \
4407 bp += ret; \
4408 } while (0)
4409
4410 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4411 CHECK_APPEND_1ARG("convert=%s,",
4412 btrfs_bg_type_to_raid_name(bargs->target));
4413
4414 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4415 CHECK_APPEND_NOARG("soft,");
4416
4417 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4418 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4419 sizeof(tmp_buf));
4420 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4421 }
4422
4423 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4424 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4425
4426 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4427 CHECK_APPEND_2ARG("usage=%u..%u,",
4428 bargs->usage_min, bargs->usage_max);
4429
4430 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4431 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4432
4433 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4434 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4435 bargs->pstart, bargs->pend);
4436
4437 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4438 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4439 bargs->vstart, bargs->vend);
4440
4441 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4442 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4443
4444 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4445 CHECK_APPEND_2ARG("limit=%u..%u,",
4446 bargs->limit_min, bargs->limit_max);
4447
4448 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4449 CHECK_APPEND_2ARG("stripes=%u..%u,",
4450 bargs->stripes_min, bargs->stripes_max);
4451
4452#undef CHECK_APPEND_2ARG
4453#undef CHECK_APPEND_1ARG
4454#undef CHECK_APPEND_NOARG
4455
4456out_overflow:
4457
4458 if (size_bp < size_buf)
4459 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4460 else
4461 buf[0] = '\0';
4462}
4463
4464static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4465{
4466 u32 size_buf = 1024;
4467 char tmp_buf[192] = {'\0'};
4468 char *buf;
4469 char *bp;
4470 u32 size_bp = size_buf;
4471 int ret;
4472 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4473
4474 buf = kzalloc(size_buf, GFP_KERNEL);
4475 if (!buf)
4476 return;
4477
4478 bp = buf;
4479
4480#define CHECK_APPEND_1ARG(a, v1) \
4481 do { \
4482 ret = snprintf(bp, size_bp, (a), (v1)); \
4483 if (ret < 0 || ret >= size_bp) \
4484 goto out_overflow; \
4485 size_bp -= ret; \
4486 bp += ret; \
4487 } while (0)
4488
4489 if (bctl->flags & BTRFS_BALANCE_FORCE)
4490 CHECK_APPEND_1ARG("%s", "-f ");
4491
4492 if (bctl->flags & BTRFS_BALANCE_DATA) {
4493 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4494 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4495 }
4496
4497 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4498 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4499 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4500 }
4501
4502 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4503 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4504 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4505 }
4506
4507#undef CHECK_APPEND_1ARG
4508
4509out_overflow:
4510
4511 if (size_bp < size_buf)
4512 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4513 btrfs_info(fs_info, "balance: %s %s",
4514 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4515 "resume" : "start", buf);
4516
4517 kfree(buf);
4518}
4519
4520/*
4521 * Should be called with balance mutexe held
4522 */
4523int btrfs_balance(struct btrfs_fs_info *fs_info,
4524 struct btrfs_balance_control *bctl,
4525 struct btrfs_ioctl_balance_args *bargs)
4526{
4527 u64 meta_target, data_target;
4528 u64 allowed;
4529 int mixed = 0;
4530 int ret;
4531 u64 num_devices;
4532 unsigned seq;
4533 bool reducing_redundancy;
4534 bool paused = false;
4535 int i;
4536
4537 if (btrfs_fs_closing(fs_info) ||
4538 atomic_read(&fs_info->balance_pause_req) ||
4539 btrfs_should_cancel_balance(fs_info)) {
4540 ret = -EINVAL;
4541 goto out;
4542 }
4543
4544 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4545 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4546 mixed = 1;
4547
4548 /*
4549 * In case of mixed groups both data and meta should be picked,
4550 * and identical options should be given for both of them.
4551 */
4552 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4553 if (mixed && (bctl->flags & allowed)) {
4554 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4555 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4556 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4557 btrfs_err(fs_info,
4558 "balance: mixed groups data and metadata options must be the same");
4559 ret = -EINVAL;
4560 goto out;
4561 }
4562 }
4563
4564 /*
4565 * rw_devices will not change at the moment, device add/delete/replace
4566 * are exclusive
4567 */
4568 num_devices = fs_info->fs_devices->rw_devices;
4569
4570 /*
4571 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4572 * special bit for it, to make it easier to distinguish. Thus we need
4573 * to set it manually, or balance would refuse the profile.
4574 */
4575 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4576 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4577 if (num_devices >= btrfs_raid_array[i].devs_min)
4578 allowed |= btrfs_raid_array[i].bg_flag;
4579
4580 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4581 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4582 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4583 ret = -EINVAL;
4584 goto out;
4585 }
4586
4587 /*
4588 * Allow to reduce metadata or system integrity only if force set for
4589 * profiles with redundancy (copies, parity)
4590 */
4591 allowed = 0;
4592 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4593 if (btrfs_raid_array[i].ncopies >= 2 ||
4594 btrfs_raid_array[i].tolerated_failures >= 1)
4595 allowed |= btrfs_raid_array[i].bg_flag;
4596 }
4597 do {
4598 seq = read_seqbegin(&fs_info->profiles_lock);
4599
4600 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4601 (fs_info->avail_system_alloc_bits & allowed) &&
4602 !(bctl->sys.target & allowed)) ||
4603 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4604 (fs_info->avail_metadata_alloc_bits & allowed) &&
4605 !(bctl->meta.target & allowed)))
4606 reducing_redundancy = true;
4607 else
4608 reducing_redundancy = false;
4609
4610 /* if we're not converting, the target field is uninitialized */
4611 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4612 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4613 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4614 bctl->data.target : fs_info->avail_data_alloc_bits;
4615 } while (read_seqretry(&fs_info->profiles_lock, seq));
4616
4617 if (reducing_redundancy) {
4618 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4619 btrfs_info(fs_info,
4620 "balance: force reducing metadata redundancy");
4621 } else {
4622 btrfs_err(fs_info,
4623 "balance: reduces metadata redundancy, use --force if you want this");
4624 ret = -EINVAL;
4625 goto out;
4626 }
4627 }
4628
4629 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4630 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4631 btrfs_warn(fs_info,
4632 "balance: metadata profile %s has lower redundancy than data profile %s",
4633 btrfs_bg_type_to_raid_name(meta_target),
4634 btrfs_bg_type_to_raid_name(data_target));
4635 }
4636
4637 ret = insert_balance_item(fs_info, bctl);
4638 if (ret && ret != -EEXIST)
4639 goto out;
4640
4641 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4642 BUG_ON(ret == -EEXIST);
4643 BUG_ON(fs_info->balance_ctl);
4644 spin_lock(&fs_info->balance_lock);
4645 fs_info->balance_ctl = bctl;
4646 spin_unlock(&fs_info->balance_lock);
4647 } else {
4648 BUG_ON(ret != -EEXIST);
4649 spin_lock(&fs_info->balance_lock);
4650 update_balance_args(bctl);
4651 spin_unlock(&fs_info->balance_lock);
4652 }
4653
4654 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4655 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4656 describe_balance_start_or_resume(fs_info);
4657 mutex_unlock(&fs_info->balance_mutex);
4658
4659 ret = __btrfs_balance(fs_info);
4660
4661 mutex_lock(&fs_info->balance_mutex);
4662 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4663 btrfs_info(fs_info, "balance: paused");
4664 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4665 paused = true;
4666 }
4667 /*
4668 * Balance can be canceled by:
4669 *
4670 * - Regular cancel request
4671 * Then ret == -ECANCELED and balance_cancel_req > 0
4672 *
4673 * - Fatal signal to "btrfs" process
4674 * Either the signal caught by wait_reserve_ticket() and callers
4675 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4676 * got -ECANCELED.
4677 * Either way, in this case balance_cancel_req = 0, and
4678 * ret == -EINTR or ret == -ECANCELED.
4679 *
4680 * So here we only check the return value to catch canceled balance.
4681 */
4682 else if (ret == -ECANCELED || ret == -EINTR)
4683 btrfs_info(fs_info, "balance: canceled");
4684 else
4685 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4686
4687 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4688
4689 if (bargs) {
4690 memset(bargs, 0, sizeof(*bargs));
4691 btrfs_update_ioctl_balance_args(fs_info, bargs);
4692 }
4693
4694 /* We didn't pause, we can clean everything up. */
4695 if (!paused) {
4696 reset_balance_state(fs_info);
4697 btrfs_exclop_finish(fs_info);
4698 }
4699
4700 wake_up(&fs_info->balance_wait_q);
4701
4702 return ret;
4703out:
4704 if (bctl->flags & BTRFS_BALANCE_RESUME)
4705 reset_balance_state(fs_info);
4706 else
4707 kfree(bctl);
4708 btrfs_exclop_finish(fs_info);
4709
4710 return ret;
4711}
4712
4713static int balance_kthread(void *data)
4714{
4715 struct btrfs_fs_info *fs_info = data;
4716 int ret = 0;
4717
4718 sb_start_write(fs_info->sb);
4719 mutex_lock(&fs_info->balance_mutex);
4720 if (fs_info->balance_ctl)
4721 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4722 mutex_unlock(&fs_info->balance_mutex);
4723 sb_end_write(fs_info->sb);
4724
4725 return ret;
4726}
4727
4728int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4729{
4730 struct task_struct *tsk;
4731
4732 mutex_lock(&fs_info->balance_mutex);
4733 if (!fs_info->balance_ctl) {
4734 mutex_unlock(&fs_info->balance_mutex);
4735 return 0;
4736 }
4737 mutex_unlock(&fs_info->balance_mutex);
4738
4739 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4740 btrfs_info(fs_info, "balance: resume skipped");
4741 return 0;
4742 }
4743
4744 spin_lock(&fs_info->super_lock);
4745 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4746 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4747 spin_unlock(&fs_info->super_lock);
4748 /*
4749 * A ro->rw remount sequence should continue with the paused balance
4750 * regardless of who pauses it, system or the user as of now, so set
4751 * the resume flag.
4752 */
4753 spin_lock(&fs_info->balance_lock);
4754 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4755 spin_unlock(&fs_info->balance_lock);
4756
4757 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4758 return PTR_ERR_OR_ZERO(tsk);
4759}
4760
4761int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4762{
4763 struct btrfs_balance_control *bctl;
4764 struct btrfs_balance_item *item;
4765 struct btrfs_disk_balance_args disk_bargs;
4766 struct btrfs_path *path;
4767 struct extent_buffer *leaf;
4768 struct btrfs_key key;
4769 int ret;
4770
4771 path = btrfs_alloc_path();
4772 if (!path)
4773 return -ENOMEM;
4774
4775 key.objectid = BTRFS_BALANCE_OBJECTID;
4776 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4777 key.offset = 0;
4778
4779 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4780 if (ret < 0)
4781 goto out;
4782 if (ret > 0) { /* ret = -ENOENT; */
4783 ret = 0;
4784 goto out;
4785 }
4786
4787 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4788 if (!bctl) {
4789 ret = -ENOMEM;
4790 goto out;
4791 }
4792
4793 leaf = path->nodes[0];
4794 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4795
4796 bctl->flags = btrfs_balance_flags(leaf, item);
4797 bctl->flags |= BTRFS_BALANCE_RESUME;
4798
4799 btrfs_balance_data(leaf, item, &disk_bargs);
4800 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4801 btrfs_balance_meta(leaf, item, &disk_bargs);
4802 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4803 btrfs_balance_sys(leaf, item, &disk_bargs);
4804 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4805
4806 /*
4807 * This should never happen, as the paused balance state is recovered
4808 * during mount without any chance of other exclusive ops to collide.
4809 *
4810 * This gives the exclusive op status to balance and keeps in paused
4811 * state until user intervention (cancel or umount). If the ownership
4812 * cannot be assigned, show a message but do not fail. The balance
4813 * is in a paused state and must have fs_info::balance_ctl properly
4814 * set up.
4815 */
4816 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4817 btrfs_warn(fs_info,
4818 "balance: cannot set exclusive op status, resume manually");
4819
4820 btrfs_release_path(path);
4821
4822 mutex_lock(&fs_info->balance_mutex);
4823 BUG_ON(fs_info->balance_ctl);
4824 spin_lock(&fs_info->balance_lock);
4825 fs_info->balance_ctl = bctl;
4826 spin_unlock(&fs_info->balance_lock);
4827 mutex_unlock(&fs_info->balance_mutex);
4828out:
4829 btrfs_free_path(path);
4830 return ret;
4831}
4832
4833int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4834{
4835 int ret = 0;
4836
4837 mutex_lock(&fs_info->balance_mutex);
4838 if (!fs_info->balance_ctl) {
4839 mutex_unlock(&fs_info->balance_mutex);
4840 return -ENOTCONN;
4841 }
4842
4843 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4844 atomic_inc(&fs_info->balance_pause_req);
4845 mutex_unlock(&fs_info->balance_mutex);
4846
4847 wait_event(fs_info->balance_wait_q,
4848 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4849
4850 mutex_lock(&fs_info->balance_mutex);
4851 /* we are good with balance_ctl ripped off from under us */
4852 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4853 atomic_dec(&fs_info->balance_pause_req);
4854 } else {
4855 ret = -ENOTCONN;
4856 }
4857
4858 mutex_unlock(&fs_info->balance_mutex);
4859 return ret;
4860}
4861
4862int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4863{
4864 mutex_lock(&fs_info->balance_mutex);
4865 if (!fs_info->balance_ctl) {
4866 mutex_unlock(&fs_info->balance_mutex);
4867 return -ENOTCONN;
4868 }
4869
4870 /*
4871 * A paused balance with the item stored on disk can be resumed at
4872 * mount time if the mount is read-write. Otherwise it's still paused
4873 * and we must not allow cancelling as it deletes the item.
4874 */
4875 if (sb_rdonly(fs_info->sb)) {
4876 mutex_unlock(&fs_info->balance_mutex);
4877 return -EROFS;
4878 }
4879
4880 atomic_inc(&fs_info->balance_cancel_req);
4881 /*
4882 * if we are running just wait and return, balance item is
4883 * deleted in btrfs_balance in this case
4884 */
4885 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4886 mutex_unlock(&fs_info->balance_mutex);
4887 wait_event(fs_info->balance_wait_q,
4888 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4889 mutex_lock(&fs_info->balance_mutex);
4890 } else {
4891 mutex_unlock(&fs_info->balance_mutex);
4892 /*
4893 * Lock released to allow other waiters to continue, we'll
4894 * reexamine the status again.
4895 */
4896 mutex_lock(&fs_info->balance_mutex);
4897
4898 if (fs_info->balance_ctl) {
4899 reset_balance_state(fs_info);
4900 btrfs_exclop_finish(fs_info);
4901 btrfs_info(fs_info, "balance: canceled");
4902 }
4903 }
4904
4905 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4906 atomic_dec(&fs_info->balance_cancel_req);
4907 mutex_unlock(&fs_info->balance_mutex);
4908 return 0;
4909}
4910
4911/*
4912 * shrinking a device means finding all of the device extents past
4913 * the new size, and then following the back refs to the chunks.
4914 * The chunk relocation code actually frees the device extent
4915 */
4916int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4917{
4918 struct btrfs_fs_info *fs_info = device->fs_info;
4919 struct btrfs_root *root = fs_info->dev_root;
4920 struct btrfs_trans_handle *trans;
4921 struct btrfs_dev_extent *dev_extent = NULL;
4922 struct btrfs_path *path;
4923 u64 length;
4924 u64 chunk_offset;
4925 int ret;
4926 int slot;
4927 int failed = 0;
4928 bool retried = false;
4929 struct extent_buffer *l;
4930 struct btrfs_key key;
4931 struct btrfs_super_block *super_copy = fs_info->super_copy;
4932 u64 old_total = btrfs_super_total_bytes(super_copy);
4933 u64 old_size = btrfs_device_get_total_bytes(device);
4934 u64 diff;
4935 u64 start;
4936 u64 free_diff = 0;
4937
4938 new_size = round_down(new_size, fs_info->sectorsize);
4939 start = new_size;
4940 diff = round_down(old_size - new_size, fs_info->sectorsize);
4941
4942 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4943 return -EINVAL;
4944
4945 path = btrfs_alloc_path();
4946 if (!path)
4947 return -ENOMEM;
4948
4949 path->reada = READA_BACK;
4950
4951 trans = btrfs_start_transaction(root, 0);
4952 if (IS_ERR(trans)) {
4953 btrfs_free_path(path);
4954 return PTR_ERR(trans);
4955 }
4956
4957 mutex_lock(&fs_info->chunk_mutex);
4958
4959 btrfs_device_set_total_bytes(device, new_size);
4960 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4961 device->fs_devices->total_rw_bytes -= diff;
4962
4963 /*
4964 * The new free_chunk_space is new_size - used, so we have to
4965 * subtract the delta of the old free_chunk_space which included
4966 * old_size - used. If used > new_size then just subtract this
4967 * entire device's free space.
4968 */
4969 if (device->bytes_used < new_size)
4970 free_diff = (old_size - device->bytes_used) -
4971 (new_size - device->bytes_used);
4972 else
4973 free_diff = old_size - device->bytes_used;
4974 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4975 }
4976
4977 /*
4978 * Once the device's size has been set to the new size, ensure all
4979 * in-memory chunks are synced to disk so that the loop below sees them
4980 * and relocates them accordingly.
4981 */
4982 if (contains_pending_extent(device, &start, diff)) {
4983 mutex_unlock(&fs_info->chunk_mutex);
4984 ret = btrfs_commit_transaction(trans);
4985 if (ret)
4986 goto done;
4987 } else {
4988 mutex_unlock(&fs_info->chunk_mutex);
4989 btrfs_end_transaction(trans);
4990 }
4991
4992again:
4993 key.objectid = device->devid;
4994 key.offset = (u64)-1;
4995 key.type = BTRFS_DEV_EXTENT_KEY;
4996
4997 do {
4998 mutex_lock(&fs_info->reclaim_bgs_lock);
4999 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5000 if (ret < 0) {
5001 mutex_unlock(&fs_info->reclaim_bgs_lock);
5002 goto done;
5003 }
5004
5005 ret = btrfs_previous_item(root, path, 0, key.type);
5006 if (ret) {
5007 mutex_unlock(&fs_info->reclaim_bgs_lock);
5008 if (ret < 0)
5009 goto done;
5010 ret = 0;
5011 btrfs_release_path(path);
5012 break;
5013 }
5014
5015 l = path->nodes[0];
5016 slot = path->slots[0];
5017 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5018
5019 if (key.objectid != device->devid) {
5020 mutex_unlock(&fs_info->reclaim_bgs_lock);
5021 btrfs_release_path(path);
5022 break;
5023 }
5024
5025 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5026 length = btrfs_dev_extent_length(l, dev_extent);
5027
5028 if (key.offset + length <= new_size) {
5029 mutex_unlock(&fs_info->reclaim_bgs_lock);
5030 btrfs_release_path(path);
5031 break;
5032 }
5033
5034 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5035 btrfs_release_path(path);
5036
5037 /*
5038 * We may be relocating the only data chunk we have,
5039 * which could potentially end up with losing data's
5040 * raid profile, so lets allocate an empty one in
5041 * advance.
5042 */
5043 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5044 if (ret < 0) {
5045 mutex_unlock(&fs_info->reclaim_bgs_lock);
5046 goto done;
5047 }
5048
5049 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5050 mutex_unlock(&fs_info->reclaim_bgs_lock);
5051 if (ret == -ENOSPC) {
5052 failed++;
5053 } else if (ret) {
5054 if (ret == -ETXTBSY) {
5055 btrfs_warn(fs_info,
5056 "could not shrink block group %llu due to active swapfile",
5057 chunk_offset);
5058 }
5059 goto done;
5060 }
5061 } while (key.offset-- > 0);
5062
5063 if (failed && !retried) {
5064 failed = 0;
5065 retried = true;
5066 goto again;
5067 } else if (failed && retried) {
5068 ret = -ENOSPC;
5069 goto done;
5070 }
5071
5072 /* Shrinking succeeded, else we would be at "done". */
5073 trans = btrfs_start_transaction(root, 0);
5074 if (IS_ERR(trans)) {
5075 ret = PTR_ERR(trans);
5076 goto done;
5077 }
5078
5079 mutex_lock(&fs_info->chunk_mutex);
5080 /* Clear all state bits beyond the shrunk device size */
5081 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5082 CHUNK_STATE_MASK);
5083
5084 btrfs_device_set_disk_total_bytes(device, new_size);
5085 if (list_empty(&device->post_commit_list))
5086 list_add_tail(&device->post_commit_list,
5087 &trans->transaction->dev_update_list);
5088
5089 WARN_ON(diff > old_total);
5090 btrfs_set_super_total_bytes(super_copy,
5091 round_down(old_total - diff, fs_info->sectorsize));
5092 mutex_unlock(&fs_info->chunk_mutex);
5093
5094 btrfs_reserve_chunk_metadata(trans, false);
5095 /* Now btrfs_update_device() will change the on-disk size. */
5096 ret = btrfs_update_device(trans, device);
5097 btrfs_trans_release_chunk_metadata(trans);
5098 if (ret < 0) {
5099 btrfs_abort_transaction(trans, ret);
5100 btrfs_end_transaction(trans);
5101 } else {
5102 ret = btrfs_commit_transaction(trans);
5103 }
5104done:
5105 btrfs_free_path(path);
5106 if (ret) {
5107 mutex_lock(&fs_info->chunk_mutex);
5108 btrfs_device_set_total_bytes(device, old_size);
5109 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5110 device->fs_devices->total_rw_bytes += diff;
5111 atomic64_add(free_diff, &fs_info->free_chunk_space);
5112 }
5113 mutex_unlock(&fs_info->chunk_mutex);
5114 }
5115 return ret;
5116}
5117
5118static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5119 struct btrfs_key *key,
5120 struct btrfs_chunk *chunk, int item_size)
5121{
5122 struct btrfs_super_block *super_copy = fs_info->super_copy;
5123 struct btrfs_disk_key disk_key;
5124 u32 array_size;
5125 u8 *ptr;
5126
5127 lockdep_assert_held(&fs_info->chunk_mutex);
5128
5129 array_size = btrfs_super_sys_array_size(super_copy);
5130 if (array_size + item_size + sizeof(disk_key)
5131 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5132 return -EFBIG;
5133
5134 ptr = super_copy->sys_chunk_array + array_size;
5135 btrfs_cpu_key_to_disk(&disk_key, key);
5136 memcpy(ptr, &disk_key, sizeof(disk_key));
5137 ptr += sizeof(disk_key);
5138 memcpy(ptr, chunk, item_size);
5139 item_size += sizeof(disk_key);
5140 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5141
5142 return 0;
5143}
5144
5145/*
5146 * sort the devices in descending order by max_avail, total_avail
5147 */
5148static int btrfs_cmp_device_info(const void *a, const void *b)
5149{
5150 const struct btrfs_device_info *di_a = a;
5151 const struct btrfs_device_info *di_b = b;
5152
5153 if (di_a->max_avail > di_b->max_avail)
5154 return -1;
5155 if (di_a->max_avail < di_b->max_avail)
5156 return 1;
5157 if (di_a->total_avail > di_b->total_avail)
5158 return -1;
5159 if (di_a->total_avail < di_b->total_avail)
5160 return 1;
5161 return 0;
5162}
5163
5164static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5165{
5166 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5167 return;
5168
5169 btrfs_set_fs_incompat(info, RAID56);
5170}
5171
5172static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5173{
5174 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5175 return;
5176
5177 btrfs_set_fs_incompat(info, RAID1C34);
5178}
5179
5180/*
5181 * Structure used internally for btrfs_create_chunk() function.
5182 * Wraps needed parameters.
5183 */
5184struct alloc_chunk_ctl {
5185 u64 start;
5186 u64 type;
5187 /* Total number of stripes to allocate */
5188 int num_stripes;
5189 /* sub_stripes info for map */
5190 int sub_stripes;
5191 /* Stripes per device */
5192 int dev_stripes;
5193 /* Maximum number of devices to use */
5194 int devs_max;
5195 /* Minimum number of devices to use */
5196 int devs_min;
5197 /* ndevs has to be a multiple of this */
5198 int devs_increment;
5199 /* Number of copies */
5200 int ncopies;
5201 /* Number of stripes worth of bytes to store parity information */
5202 int nparity;
5203 u64 max_stripe_size;
5204 u64 max_chunk_size;
5205 u64 dev_extent_min;
5206 u64 stripe_size;
5207 u64 chunk_size;
5208 int ndevs;
5209};
5210
5211static void init_alloc_chunk_ctl_policy_regular(
5212 struct btrfs_fs_devices *fs_devices,
5213 struct alloc_chunk_ctl *ctl)
5214{
5215 struct btrfs_space_info *space_info;
5216
5217 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5218 ASSERT(space_info);
5219
5220 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5221 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5222
5223 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5224 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5225
5226 /* We don't want a chunk larger than 10% of writable space */
5227 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5228 ctl->max_chunk_size);
5229 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5230}
5231
5232static void init_alloc_chunk_ctl_policy_zoned(
5233 struct btrfs_fs_devices *fs_devices,
5234 struct alloc_chunk_ctl *ctl)
5235{
5236 u64 zone_size = fs_devices->fs_info->zone_size;
5237 u64 limit;
5238 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5239 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5240 u64 min_chunk_size = min_data_stripes * zone_size;
5241 u64 type = ctl->type;
5242
5243 ctl->max_stripe_size = zone_size;
5244 if (type & BTRFS_BLOCK_GROUP_DATA) {
5245 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5246 zone_size);
5247 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5248 ctl->max_chunk_size = ctl->max_stripe_size;
5249 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5250 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5251 ctl->devs_max = min_t(int, ctl->devs_max,
5252 BTRFS_MAX_DEVS_SYS_CHUNK);
5253 } else {
5254 BUG();
5255 }
5256
5257 /* We don't want a chunk larger than 10% of writable space */
5258 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5259 zone_size),
5260 min_chunk_size);
5261 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5262 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5263}
5264
5265static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5266 struct alloc_chunk_ctl *ctl)
5267{
5268 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5269
5270 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5271 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5272 ctl->devs_max = btrfs_raid_array[index].devs_max;
5273 if (!ctl->devs_max)
5274 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5275 ctl->devs_min = btrfs_raid_array[index].devs_min;
5276 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5277 ctl->ncopies = btrfs_raid_array[index].ncopies;
5278 ctl->nparity = btrfs_raid_array[index].nparity;
5279 ctl->ndevs = 0;
5280
5281 switch (fs_devices->chunk_alloc_policy) {
5282 case BTRFS_CHUNK_ALLOC_REGULAR:
5283 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5284 break;
5285 case BTRFS_CHUNK_ALLOC_ZONED:
5286 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5287 break;
5288 default:
5289 BUG();
5290 }
5291}
5292
5293static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5294 struct alloc_chunk_ctl *ctl,
5295 struct btrfs_device_info *devices_info)
5296{
5297 struct btrfs_fs_info *info = fs_devices->fs_info;
5298 struct btrfs_device *device;
5299 u64 total_avail;
5300 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5301 int ret;
5302 int ndevs = 0;
5303 u64 max_avail;
5304 u64 dev_offset;
5305
5306 /*
5307 * in the first pass through the devices list, we gather information
5308 * about the available holes on each device.
5309 */
5310 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5311 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5312 WARN(1, KERN_ERR
5313 "BTRFS: read-only device in alloc_list\n");
5314 continue;
5315 }
5316
5317 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5318 &device->dev_state) ||
5319 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5320 continue;
5321
5322 if (device->total_bytes > device->bytes_used)
5323 total_avail = device->total_bytes - device->bytes_used;
5324 else
5325 total_avail = 0;
5326
5327 /* If there is no space on this device, skip it. */
5328 if (total_avail < ctl->dev_extent_min)
5329 continue;
5330
5331 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5332 &max_avail);
5333 if (ret && ret != -ENOSPC)
5334 return ret;
5335
5336 if (ret == 0)
5337 max_avail = dev_extent_want;
5338
5339 if (max_avail < ctl->dev_extent_min) {
5340 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5341 btrfs_debug(info,
5342 "%s: devid %llu has no free space, have=%llu want=%llu",
5343 __func__, device->devid, max_avail,
5344 ctl->dev_extent_min);
5345 continue;
5346 }
5347
5348 if (ndevs == fs_devices->rw_devices) {
5349 WARN(1, "%s: found more than %llu devices\n",
5350 __func__, fs_devices->rw_devices);
5351 break;
5352 }
5353 devices_info[ndevs].dev_offset = dev_offset;
5354 devices_info[ndevs].max_avail = max_avail;
5355 devices_info[ndevs].total_avail = total_avail;
5356 devices_info[ndevs].dev = device;
5357 ++ndevs;
5358 }
5359 ctl->ndevs = ndevs;
5360
5361 /*
5362 * now sort the devices by hole size / available space
5363 */
5364 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5365 btrfs_cmp_device_info, NULL);
5366
5367 return 0;
5368}
5369
5370static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5371 struct btrfs_device_info *devices_info)
5372{
5373 /* Number of stripes that count for block group size */
5374 int data_stripes;
5375
5376 /*
5377 * The primary goal is to maximize the number of stripes, so use as
5378 * many devices as possible, even if the stripes are not maximum sized.
5379 *
5380 * The DUP profile stores more than one stripe per device, the
5381 * max_avail is the total size so we have to adjust.
5382 */
5383 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5384 ctl->dev_stripes);
5385 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5386
5387 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5388 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5389
5390 /*
5391 * Use the number of data stripes to figure out how big this chunk is
5392 * really going to be in terms of logical address space, and compare
5393 * that answer with the max chunk size. If it's higher, we try to
5394 * reduce stripe_size.
5395 */
5396 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5397 /*
5398 * Reduce stripe_size, round it up to a 16MB boundary again and
5399 * then use it, unless it ends up being even bigger than the
5400 * previous value we had already.
5401 */
5402 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5403 data_stripes), SZ_16M),
5404 ctl->stripe_size);
5405 }
5406
5407 /* Stripe size should not go beyond 1G. */
5408 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5409
5410 /* Align to BTRFS_STRIPE_LEN */
5411 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5412 ctl->chunk_size = ctl->stripe_size * data_stripes;
5413
5414 return 0;
5415}
5416
5417static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5418 struct btrfs_device_info *devices_info)
5419{
5420 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5421 /* Number of stripes that count for block group size */
5422 int data_stripes;
5423
5424 /*
5425 * It should hold because:
5426 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5427 */
5428 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5429
5430 ctl->stripe_size = zone_size;
5431 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5432 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5433
5434 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */
5435 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5436 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5437 ctl->stripe_size) + ctl->nparity,
5438 ctl->dev_stripes);
5439 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5440 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5441 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5442 }
5443
5444 ctl->chunk_size = ctl->stripe_size * data_stripes;
5445
5446 return 0;
5447}
5448
5449static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5450 struct alloc_chunk_ctl *ctl,
5451 struct btrfs_device_info *devices_info)
5452{
5453 struct btrfs_fs_info *info = fs_devices->fs_info;
5454
5455 /*
5456 * Round down to number of usable stripes, devs_increment can be any
5457 * number so we can't use round_down() that requires power of 2, while
5458 * rounddown is safe.
5459 */
5460 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5461
5462 if (ctl->ndevs < ctl->devs_min) {
5463 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5464 btrfs_debug(info,
5465 "%s: not enough devices with free space: have=%d minimum required=%d",
5466 __func__, ctl->ndevs, ctl->devs_min);
5467 }
5468 return -ENOSPC;
5469 }
5470
5471 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5472
5473 switch (fs_devices->chunk_alloc_policy) {
5474 case BTRFS_CHUNK_ALLOC_REGULAR:
5475 return decide_stripe_size_regular(ctl, devices_info);
5476 case BTRFS_CHUNK_ALLOC_ZONED:
5477 return decide_stripe_size_zoned(ctl, devices_info);
5478 default:
5479 BUG();
5480 }
5481}
5482
5483static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5484{
5485 for (int i = 0; i < map->num_stripes; i++) {
5486 struct btrfs_io_stripe *stripe = &map->stripes[i];
5487 struct btrfs_device *device = stripe->dev;
5488
5489 set_extent_bit(&device->alloc_state, stripe->physical,
5490 stripe->physical + map->stripe_size - 1,
5491 bits | EXTENT_NOWAIT, NULL);
5492 }
5493}
5494
5495static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5496{
5497 for (int i = 0; i < map->num_stripes; i++) {
5498 struct btrfs_io_stripe *stripe = &map->stripes[i];
5499 struct btrfs_device *device = stripe->dev;
5500
5501 __clear_extent_bit(&device->alloc_state, stripe->physical,
5502 stripe->physical + map->stripe_size - 1,
5503 bits | EXTENT_NOWAIT,
5504 NULL, NULL);
5505 }
5506}
5507
5508void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5509{
5510 write_lock(&fs_info->mapping_tree_lock);
5511 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5512 RB_CLEAR_NODE(&map->rb_node);
5513 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5514 write_unlock(&fs_info->mapping_tree_lock);
5515
5516 /* Once for the tree reference. */
5517 btrfs_free_chunk_map(map);
5518}
5519
5520EXPORT_FOR_TESTS
5521int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5522{
5523 struct rb_node **p;
5524 struct rb_node *parent = NULL;
5525 bool leftmost = true;
5526
5527 write_lock(&fs_info->mapping_tree_lock);
5528 p = &fs_info->mapping_tree.rb_root.rb_node;
5529 while (*p) {
5530 struct btrfs_chunk_map *entry;
5531
5532 parent = *p;
5533 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5534
5535 if (map->start < entry->start) {
5536 p = &(*p)->rb_left;
5537 } else if (map->start > entry->start) {
5538 p = &(*p)->rb_right;
5539 leftmost = false;
5540 } else {
5541 write_unlock(&fs_info->mapping_tree_lock);
5542 return -EEXIST;
5543 }
5544 }
5545 rb_link_node(&map->rb_node, parent, p);
5546 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5547 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5548 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5549 write_unlock(&fs_info->mapping_tree_lock);
5550
5551 return 0;
5552}
5553
5554EXPORT_FOR_TESTS
5555struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5556{
5557 struct btrfs_chunk_map *map;
5558
5559 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5560 if (!map)
5561 return NULL;
5562
5563 refcount_set(&map->refs, 1);
5564 RB_CLEAR_NODE(&map->rb_node);
5565
5566 return map;
5567}
5568
5569static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5570 struct alloc_chunk_ctl *ctl,
5571 struct btrfs_device_info *devices_info)
5572{
5573 struct btrfs_fs_info *info = trans->fs_info;
5574 struct btrfs_chunk_map *map;
5575 struct btrfs_block_group *block_group;
5576 u64 start = ctl->start;
5577 u64 type = ctl->type;
5578 int ret;
5579
5580 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5581 if (!map)
5582 return ERR_PTR(-ENOMEM);
5583
5584 map->start = start;
5585 map->chunk_len = ctl->chunk_size;
5586 map->stripe_size = ctl->stripe_size;
5587 map->type = type;
5588 map->io_align = BTRFS_STRIPE_LEN;
5589 map->io_width = BTRFS_STRIPE_LEN;
5590 map->sub_stripes = ctl->sub_stripes;
5591 map->num_stripes = ctl->num_stripes;
5592
5593 for (int i = 0; i < ctl->ndevs; i++) {
5594 for (int j = 0; j < ctl->dev_stripes; j++) {
5595 int s = i * ctl->dev_stripes + j;
5596 map->stripes[s].dev = devices_info[i].dev;
5597 map->stripes[s].physical = devices_info[i].dev_offset +
5598 j * ctl->stripe_size;
5599 }
5600 }
5601
5602 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5603
5604 ret = btrfs_add_chunk_map(info, map);
5605 if (ret) {
5606 btrfs_free_chunk_map(map);
5607 return ERR_PTR(ret);
5608 }
5609
5610 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5611 if (IS_ERR(block_group)) {
5612 btrfs_remove_chunk_map(info, map);
5613 return block_group;
5614 }
5615
5616 for (int i = 0; i < map->num_stripes; i++) {
5617 struct btrfs_device *dev = map->stripes[i].dev;
5618
5619 btrfs_device_set_bytes_used(dev,
5620 dev->bytes_used + ctl->stripe_size);
5621 if (list_empty(&dev->post_commit_list))
5622 list_add_tail(&dev->post_commit_list,
5623 &trans->transaction->dev_update_list);
5624 }
5625
5626 atomic64_sub(ctl->stripe_size * map->num_stripes,
5627 &info->free_chunk_space);
5628
5629 check_raid56_incompat_flag(info, type);
5630 check_raid1c34_incompat_flag(info, type);
5631
5632 return block_group;
5633}
5634
5635struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5636 u64 type)
5637{
5638 struct btrfs_fs_info *info = trans->fs_info;
5639 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5640 struct btrfs_device_info *devices_info = NULL;
5641 struct alloc_chunk_ctl ctl;
5642 struct btrfs_block_group *block_group;
5643 int ret;
5644
5645 lockdep_assert_held(&info->chunk_mutex);
5646
5647 if (!alloc_profile_is_valid(type, 0)) {
5648 ASSERT(0);
5649 return ERR_PTR(-EINVAL);
5650 }
5651
5652 if (list_empty(&fs_devices->alloc_list)) {
5653 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5654 btrfs_debug(info, "%s: no writable device", __func__);
5655 return ERR_PTR(-ENOSPC);
5656 }
5657
5658 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5659 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5660 ASSERT(0);
5661 return ERR_PTR(-EINVAL);
5662 }
5663
5664 ctl.start = find_next_chunk(info);
5665 ctl.type = type;
5666 init_alloc_chunk_ctl(fs_devices, &ctl);
5667
5668 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5669 GFP_NOFS);
5670 if (!devices_info)
5671 return ERR_PTR(-ENOMEM);
5672
5673 ret = gather_device_info(fs_devices, &ctl, devices_info);
5674 if (ret < 0) {
5675 block_group = ERR_PTR(ret);
5676 goto out;
5677 }
5678
5679 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5680 if (ret < 0) {
5681 block_group = ERR_PTR(ret);
5682 goto out;
5683 }
5684
5685 block_group = create_chunk(trans, &ctl, devices_info);
5686
5687out:
5688 kfree(devices_info);
5689 return block_group;
5690}
5691
5692/*
5693 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5694 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5695 * chunks.
5696 *
5697 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5698 * phases.
5699 */
5700int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5701 struct btrfs_block_group *bg)
5702{
5703 struct btrfs_fs_info *fs_info = trans->fs_info;
5704 struct btrfs_root *chunk_root = fs_info->chunk_root;
5705 struct btrfs_key key;
5706 struct btrfs_chunk *chunk;
5707 struct btrfs_stripe *stripe;
5708 struct btrfs_chunk_map *map;
5709 size_t item_size;
5710 int i;
5711 int ret;
5712
5713 /*
5714 * We take the chunk_mutex for 2 reasons:
5715 *
5716 * 1) Updates and insertions in the chunk btree must be done while holding
5717 * the chunk_mutex, as well as updating the system chunk array in the
5718 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5719 * details;
5720 *
5721 * 2) To prevent races with the final phase of a device replace operation
5722 * that replaces the device object associated with the map's stripes,
5723 * because the device object's id can change at any time during that
5724 * final phase of the device replace operation
5725 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5726 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5727 * which would cause a failure when updating the device item, which does
5728 * not exists, or persisting a stripe of the chunk item with such ID.
5729 * Here we can't use the device_list_mutex because our caller already
5730 * has locked the chunk_mutex, and the final phase of device replace
5731 * acquires both mutexes - first the device_list_mutex and then the
5732 * chunk_mutex. Using any of those two mutexes protects us from a
5733 * concurrent device replace.
5734 */
5735 lockdep_assert_held(&fs_info->chunk_mutex);
5736
5737 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5738 if (IS_ERR(map)) {
5739 ret = PTR_ERR(map);
5740 btrfs_abort_transaction(trans, ret);
5741 return ret;
5742 }
5743
5744 item_size = btrfs_chunk_item_size(map->num_stripes);
5745
5746 chunk = kzalloc(item_size, GFP_NOFS);
5747 if (!chunk) {
5748 ret = -ENOMEM;
5749 btrfs_abort_transaction(trans, ret);
5750 goto out;
5751 }
5752
5753 for (i = 0; i < map->num_stripes; i++) {
5754 struct btrfs_device *device = map->stripes[i].dev;
5755
5756 ret = btrfs_update_device(trans, device);
5757 if (ret)
5758 goto out;
5759 }
5760
5761 stripe = &chunk->stripe;
5762 for (i = 0; i < map->num_stripes; i++) {
5763 struct btrfs_device *device = map->stripes[i].dev;
5764 const u64 dev_offset = map->stripes[i].physical;
5765
5766 btrfs_set_stack_stripe_devid(stripe, device->devid);
5767 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5768 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5769 stripe++;
5770 }
5771
5772 btrfs_set_stack_chunk_length(chunk, bg->length);
5773 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5774 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5775 btrfs_set_stack_chunk_type(chunk, map->type);
5776 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5777 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5778 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5779 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5780 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5781
5782 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5783 key.type = BTRFS_CHUNK_ITEM_KEY;
5784 key.offset = bg->start;
5785
5786 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5787 if (ret)
5788 goto out;
5789
5790 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5791
5792 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5793 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5794 if (ret)
5795 goto out;
5796 }
5797
5798out:
5799 kfree(chunk);
5800 btrfs_free_chunk_map(map);
5801 return ret;
5802}
5803
5804static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5805{
5806 struct btrfs_fs_info *fs_info = trans->fs_info;
5807 u64 alloc_profile;
5808 struct btrfs_block_group *meta_bg;
5809 struct btrfs_block_group *sys_bg;
5810
5811 /*
5812 * When adding a new device for sprouting, the seed device is read-only
5813 * so we must first allocate a metadata and a system chunk. But before
5814 * adding the block group items to the extent, device and chunk btrees,
5815 * we must first:
5816 *
5817 * 1) Create both chunks without doing any changes to the btrees, as
5818 * otherwise we would get -ENOSPC since the block groups from the
5819 * seed device are read-only;
5820 *
5821 * 2) Add the device item for the new sprout device - finishing the setup
5822 * of a new block group requires updating the device item in the chunk
5823 * btree, so it must exist when we attempt to do it. The previous step
5824 * ensures this does not fail with -ENOSPC.
5825 *
5826 * After that we can add the block group items to their btrees:
5827 * update existing device item in the chunk btree, add a new block group
5828 * item to the extent btree, add a new chunk item to the chunk btree and
5829 * finally add the new device extent items to the devices btree.
5830 */
5831
5832 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5833 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5834 if (IS_ERR(meta_bg))
5835 return PTR_ERR(meta_bg);
5836
5837 alloc_profile = btrfs_system_alloc_profile(fs_info);
5838 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5839 if (IS_ERR(sys_bg))
5840 return PTR_ERR(sys_bg);
5841
5842 return 0;
5843}
5844
5845static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5846{
5847 const int index = btrfs_bg_flags_to_raid_index(map->type);
5848
5849 return btrfs_raid_array[index].tolerated_failures;
5850}
5851
5852bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5853{
5854 struct btrfs_chunk_map *map;
5855 int miss_ndevs = 0;
5856 int i;
5857 bool ret = true;
5858
5859 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5860 if (IS_ERR(map))
5861 return false;
5862
5863 for (i = 0; i < map->num_stripes; i++) {
5864 if (test_bit(BTRFS_DEV_STATE_MISSING,
5865 &map->stripes[i].dev->dev_state)) {
5866 miss_ndevs++;
5867 continue;
5868 }
5869 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5870 &map->stripes[i].dev->dev_state)) {
5871 ret = false;
5872 goto end;
5873 }
5874 }
5875
5876 /*
5877 * If the number of missing devices is larger than max errors, we can
5878 * not write the data into that chunk successfully.
5879 */
5880 if (miss_ndevs > btrfs_chunk_max_errors(map))
5881 ret = false;
5882end:
5883 btrfs_free_chunk_map(map);
5884 return ret;
5885}
5886
5887void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5888{
5889 write_lock(&fs_info->mapping_tree_lock);
5890 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5891 struct btrfs_chunk_map *map;
5892 struct rb_node *node;
5893
5894 node = rb_first_cached(&fs_info->mapping_tree);
5895 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5896 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5897 RB_CLEAR_NODE(&map->rb_node);
5898 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5899 /* Once for the tree ref. */
5900 btrfs_free_chunk_map(map);
5901 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5902 }
5903 write_unlock(&fs_info->mapping_tree_lock);
5904}
5905
5906static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5907{
5908 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
5909
5910 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5911 return 2;
5912
5913 /*
5914 * There could be two corrupted data stripes, we need to loop retry in
5915 * order to rebuild the correct data.
5916 *
5917 * Fail a stripe at a time on every retry except the stripe under
5918 * reconstruction.
5919 */
5920 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5921 return map->num_stripes;
5922
5923 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5924 return btrfs_raid_array[index].ncopies;
5925}
5926
5927int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5928{
5929 struct btrfs_chunk_map *map;
5930 int ret;
5931
5932 map = btrfs_get_chunk_map(fs_info, logical, len);
5933 if (IS_ERR(map))
5934 /*
5935 * We could return errors for these cases, but that could get
5936 * ugly and we'd probably do the same thing which is just not do
5937 * anything else and exit, so return 1 so the callers don't try
5938 * to use other copies.
5939 */
5940 return 1;
5941
5942 ret = btrfs_chunk_map_num_copies(map);
5943 btrfs_free_chunk_map(map);
5944 return ret;
5945}
5946
5947unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5948 u64 logical)
5949{
5950 struct btrfs_chunk_map *map;
5951 unsigned long len = fs_info->sectorsize;
5952
5953 if (!btrfs_fs_incompat(fs_info, RAID56))
5954 return len;
5955
5956 map = btrfs_get_chunk_map(fs_info, logical, len);
5957
5958 if (!WARN_ON(IS_ERR(map))) {
5959 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5960 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5961 btrfs_free_chunk_map(map);
5962 }
5963 return len;
5964}
5965
5966static int find_live_mirror(struct btrfs_fs_info *fs_info,
5967 struct btrfs_chunk_map *map, int first,
5968 int dev_replace_is_ongoing)
5969{
5970 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
5971 int i;
5972 int num_stripes;
5973 int preferred_mirror;
5974 int tolerance;
5975 struct btrfs_device *srcdev;
5976
5977 ASSERT((map->type &
5978 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5979
5980 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5981 num_stripes = map->sub_stripes;
5982 else
5983 num_stripes = map->num_stripes;
5984
5985 switch (policy) {
5986 default:
5987 /* Shouldn't happen, just warn and use pid instead of failing */
5988 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
5989 policy);
5990 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
5991 fallthrough;
5992 case BTRFS_READ_POLICY_PID:
5993 preferred_mirror = first + (current->pid % num_stripes);
5994 break;
5995 }
5996
5997 if (dev_replace_is_ongoing &&
5998 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5999 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6000 srcdev = fs_info->dev_replace.srcdev;
6001 else
6002 srcdev = NULL;
6003
6004 /*
6005 * try to avoid the drive that is the source drive for a
6006 * dev-replace procedure, only choose it if no other non-missing
6007 * mirror is available
6008 */
6009 for (tolerance = 0; tolerance < 2; tolerance++) {
6010 if (map->stripes[preferred_mirror].dev->bdev &&
6011 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6012 return preferred_mirror;
6013 for (i = first; i < first + num_stripes; i++) {
6014 if (map->stripes[i].dev->bdev &&
6015 (tolerance || map->stripes[i].dev != srcdev))
6016 return i;
6017 }
6018 }
6019
6020 /* we couldn't find one that doesn't fail. Just return something
6021 * and the io error handling code will clean up eventually
6022 */
6023 return preferred_mirror;
6024}
6025
6026EXPORT_FOR_TESTS
6027struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6028 u64 logical, u16 total_stripes)
6029{
6030 struct btrfs_io_context *bioc;
6031
6032 bioc = kzalloc(
6033 /* The size of btrfs_io_context */
6034 sizeof(struct btrfs_io_context) +
6035 /* Plus the variable array for the stripes */
6036 sizeof(struct btrfs_io_stripe) * (total_stripes),
6037 GFP_NOFS);
6038
6039 if (!bioc)
6040 return NULL;
6041
6042 refcount_set(&bioc->refs, 1);
6043
6044 bioc->fs_info = fs_info;
6045 bioc->replace_stripe_src = -1;
6046 bioc->full_stripe_logical = (u64)-1;
6047 bioc->logical = logical;
6048
6049 return bioc;
6050}
6051
6052void btrfs_get_bioc(struct btrfs_io_context *bioc)
6053{
6054 WARN_ON(!refcount_read(&bioc->refs));
6055 refcount_inc(&bioc->refs);
6056}
6057
6058void btrfs_put_bioc(struct btrfs_io_context *bioc)
6059{
6060 if (!bioc)
6061 return;
6062 if (refcount_dec_and_test(&bioc->refs))
6063 kfree(bioc);
6064}
6065
6066/*
6067 * Please note that, discard won't be sent to target device of device
6068 * replace.
6069 */
6070struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6071 u64 logical, u64 *length_ret,
6072 u32 *num_stripes)
6073{
6074 struct btrfs_chunk_map *map;
6075 struct btrfs_discard_stripe *stripes;
6076 u64 length = *length_ret;
6077 u64 offset;
6078 u32 stripe_nr;
6079 u32 stripe_nr_end;
6080 u32 stripe_cnt;
6081 u64 stripe_end_offset;
6082 u64 stripe_offset;
6083 u32 stripe_index;
6084 u32 factor = 0;
6085 u32 sub_stripes = 0;
6086 u32 stripes_per_dev = 0;
6087 u32 remaining_stripes = 0;
6088 u32 last_stripe = 0;
6089 int ret;
6090 int i;
6091
6092 map = btrfs_get_chunk_map(fs_info, logical, length);
6093 if (IS_ERR(map))
6094 return ERR_CAST(map);
6095
6096 /* we don't discard raid56 yet */
6097 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6098 ret = -EOPNOTSUPP;
6099 goto out_free_map;
6100 }
6101
6102 offset = logical - map->start;
6103 length = min_t(u64, map->start + map->chunk_len - logical, length);
6104 *length_ret = length;
6105
6106 /*
6107 * stripe_nr counts the total number of stripes we have to stride
6108 * to get to this block
6109 */
6110 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6111
6112 /* stripe_offset is the offset of this block in its stripe */
6113 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6114
6115 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6116 BTRFS_STRIPE_LEN_SHIFT;
6117 stripe_cnt = stripe_nr_end - stripe_nr;
6118 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6119 (offset + length);
6120 /*
6121 * after this, stripe_nr is the number of stripes on this
6122 * device we have to walk to find the data, and stripe_index is
6123 * the number of our device in the stripe array
6124 */
6125 *num_stripes = 1;
6126 stripe_index = 0;
6127 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6128 BTRFS_BLOCK_GROUP_RAID10)) {
6129 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6130 sub_stripes = 1;
6131 else
6132 sub_stripes = map->sub_stripes;
6133
6134 factor = map->num_stripes / sub_stripes;
6135 *num_stripes = min_t(u64, map->num_stripes,
6136 sub_stripes * stripe_cnt);
6137 stripe_index = stripe_nr % factor;
6138 stripe_nr /= factor;
6139 stripe_index *= sub_stripes;
6140
6141 remaining_stripes = stripe_cnt % factor;
6142 stripes_per_dev = stripe_cnt / factor;
6143 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6144 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6145 BTRFS_BLOCK_GROUP_DUP)) {
6146 *num_stripes = map->num_stripes;
6147 } else {
6148 stripe_index = stripe_nr % map->num_stripes;
6149 stripe_nr /= map->num_stripes;
6150 }
6151
6152 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6153 if (!stripes) {
6154 ret = -ENOMEM;
6155 goto out_free_map;
6156 }
6157
6158 for (i = 0; i < *num_stripes; i++) {
6159 stripes[i].physical =
6160 map->stripes[stripe_index].physical +
6161 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6162 stripes[i].dev = map->stripes[stripe_index].dev;
6163
6164 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6165 BTRFS_BLOCK_GROUP_RAID10)) {
6166 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6167
6168 if (i / sub_stripes < remaining_stripes)
6169 stripes[i].length += BTRFS_STRIPE_LEN;
6170
6171 /*
6172 * Special for the first stripe and
6173 * the last stripe:
6174 *
6175 * |-------|...|-------|
6176 * |----------|
6177 * off end_off
6178 */
6179 if (i < sub_stripes)
6180 stripes[i].length -= stripe_offset;
6181
6182 if (stripe_index >= last_stripe &&
6183 stripe_index <= (last_stripe +
6184 sub_stripes - 1))
6185 stripes[i].length -= stripe_end_offset;
6186
6187 if (i == sub_stripes - 1)
6188 stripe_offset = 0;
6189 } else {
6190 stripes[i].length = length;
6191 }
6192
6193 stripe_index++;
6194 if (stripe_index == map->num_stripes) {
6195 stripe_index = 0;
6196 stripe_nr++;
6197 }
6198 }
6199
6200 btrfs_free_chunk_map(map);
6201 return stripes;
6202out_free_map:
6203 btrfs_free_chunk_map(map);
6204 return ERR_PTR(ret);
6205}
6206
6207static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6208{
6209 struct btrfs_block_group *cache;
6210 bool ret;
6211
6212 /* Non zoned filesystem does not use "to_copy" flag */
6213 if (!btrfs_is_zoned(fs_info))
6214 return false;
6215
6216 cache = btrfs_lookup_block_group(fs_info, logical);
6217
6218 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6219
6220 btrfs_put_block_group(cache);
6221 return ret;
6222}
6223
6224static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6225 struct btrfs_dev_replace *dev_replace,
6226 u64 logical,
6227 struct btrfs_io_geometry *io_geom)
6228{
6229 u64 srcdev_devid = dev_replace->srcdev->devid;
6230 /*
6231 * At this stage, num_stripes is still the real number of stripes,
6232 * excluding the duplicated stripes.
6233 */
6234 int num_stripes = io_geom->num_stripes;
6235 int max_errors = io_geom->max_errors;
6236 int nr_extra_stripes = 0;
6237 int i;
6238
6239 /*
6240 * A block group which has "to_copy" set will eventually be copied by
6241 * the dev-replace process. We can avoid cloning IO here.
6242 */
6243 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6244 return;
6245
6246 /*
6247 * Duplicate the write operations while the dev-replace procedure is
6248 * running. Since the copying of the old disk to the new disk takes
6249 * place at run time while the filesystem is mounted writable, the
6250 * regular write operations to the old disk have to be duplicated to go
6251 * to the new disk as well.
6252 *
6253 * Note that device->missing is handled by the caller, and that the
6254 * write to the old disk is already set up in the stripes array.
6255 */
6256 for (i = 0; i < num_stripes; i++) {
6257 struct btrfs_io_stripe *old = &bioc->stripes[i];
6258 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6259
6260 if (old->dev->devid != srcdev_devid)
6261 continue;
6262
6263 new->physical = old->physical;
6264 new->dev = dev_replace->tgtdev;
6265 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6266 bioc->replace_stripe_src = i;
6267 nr_extra_stripes++;
6268 }
6269
6270 /* We can only have at most 2 extra nr_stripes (for DUP). */
6271 ASSERT(nr_extra_stripes <= 2);
6272 /*
6273 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6274 * replace.
6275 * If we have 2 extra stripes, only choose the one with smaller physical.
6276 */
6277 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6278 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6279 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6280
6281 /* Only DUP can have two extra stripes. */
6282 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6283
6284 /*
6285 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6286 * The extra stripe would still be there, but won't be accessed.
6287 */
6288 if (first->physical > second->physical) {
6289 swap(second->physical, first->physical);
6290 swap(second->dev, first->dev);
6291 nr_extra_stripes--;
6292 }
6293 }
6294
6295 io_geom->num_stripes = num_stripes + nr_extra_stripes;
6296 io_geom->max_errors = max_errors + nr_extra_stripes;
6297 bioc->replace_nr_stripes = nr_extra_stripes;
6298}
6299
6300static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6301 struct btrfs_io_geometry *io_geom)
6302{
6303 /*
6304 * Stripe_nr is the stripe where this block falls. stripe_offset is
6305 * the offset of this block in its stripe.
6306 */
6307 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6308 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6309 ASSERT(io_geom->stripe_offset < U32_MAX);
6310
6311 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6312 unsigned long full_stripe_len =
6313 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6314
6315 /*
6316 * For full stripe start, we use previously calculated
6317 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6318 * STRIPE_LEN.
6319 *
6320 * By this we can avoid u64 division completely. And we have
6321 * to go rounddown(), not round_down(), as nr_data_stripes is
6322 * not ensured to be power of 2.
6323 */
6324 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6325 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6326
6327 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6328 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6329 /*
6330 * For writes to RAID56, allow to write a full stripe set, but
6331 * no straddling of stripe sets.
6332 */
6333 if (io_geom->op == BTRFS_MAP_WRITE)
6334 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6335 }
6336
6337 /*
6338 * For other RAID types and for RAID56 reads, allow a single stripe (on
6339 * a single disk).
6340 */
6341 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6342 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6343 return U64_MAX;
6344}
6345
6346static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6347 u64 *length, struct btrfs_io_stripe *dst,
6348 struct btrfs_chunk_map *map,
6349 struct btrfs_io_geometry *io_geom)
6350{
6351 dst->dev = map->stripes[io_geom->stripe_index].dev;
6352
6353 if (io_geom->op == BTRFS_MAP_READ &&
6354 btrfs_need_stripe_tree_update(fs_info, map->type))
6355 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6356 map->type,
6357 io_geom->stripe_index, dst);
6358
6359 dst->physical = map->stripes[io_geom->stripe_index].physical +
6360 io_geom->stripe_offset +
6361 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6362 return 0;
6363}
6364
6365static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6366 const struct btrfs_io_stripe *smap,
6367 const struct btrfs_chunk_map *map,
6368 int num_alloc_stripes,
6369 enum btrfs_map_op op, int mirror_num)
6370{
6371 if (!smap)
6372 return false;
6373
6374 if (num_alloc_stripes != 1)
6375 return false;
6376
6377 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6378 return false;
6379
6380 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6381 return false;
6382
6383 return true;
6384}
6385
6386static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6387 struct btrfs_io_geometry *io_geom)
6388{
6389 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6390 io_geom->stripe_nr /= map->num_stripes;
6391 if (io_geom->op == BTRFS_MAP_READ)
6392 io_geom->mirror_num = 1;
6393}
6394
6395static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6396 struct btrfs_chunk_map *map,
6397 struct btrfs_io_geometry *io_geom,
6398 bool dev_replace_is_ongoing)
6399{
6400 if (io_geom->op != BTRFS_MAP_READ) {
6401 io_geom->num_stripes = map->num_stripes;
6402 return;
6403 }
6404
6405 if (io_geom->mirror_num) {
6406 io_geom->stripe_index = io_geom->mirror_num - 1;
6407 return;
6408 }
6409
6410 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6411 dev_replace_is_ongoing);
6412 io_geom->mirror_num = io_geom->stripe_index + 1;
6413}
6414
6415static void map_blocks_dup(const struct btrfs_chunk_map *map,
6416 struct btrfs_io_geometry *io_geom)
6417{
6418 if (io_geom->op != BTRFS_MAP_READ) {
6419 io_geom->num_stripes = map->num_stripes;
6420 return;
6421 }
6422
6423 if (io_geom->mirror_num) {
6424 io_geom->stripe_index = io_geom->mirror_num - 1;
6425 return;
6426 }
6427
6428 io_geom->mirror_num = 1;
6429}
6430
6431static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6432 struct btrfs_chunk_map *map,
6433 struct btrfs_io_geometry *io_geom,
6434 bool dev_replace_is_ongoing)
6435{
6436 u32 factor = map->num_stripes / map->sub_stripes;
6437 int old_stripe_index;
6438
6439 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6440 io_geom->stripe_nr /= factor;
6441
6442 if (io_geom->op != BTRFS_MAP_READ) {
6443 io_geom->num_stripes = map->sub_stripes;
6444 return;
6445 }
6446
6447 if (io_geom->mirror_num) {
6448 io_geom->stripe_index += io_geom->mirror_num - 1;
6449 return;
6450 }
6451
6452 old_stripe_index = io_geom->stripe_index;
6453 io_geom->stripe_index = find_live_mirror(fs_info, map,
6454 io_geom->stripe_index,
6455 dev_replace_is_ongoing);
6456 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6457}
6458
6459static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6460 struct btrfs_io_geometry *io_geom,
6461 u64 logical, u64 *length)
6462{
6463 int data_stripes = nr_data_stripes(map);
6464
6465 /*
6466 * Needs full stripe mapping.
6467 *
6468 * Push stripe_nr back to the start of the full stripe For those cases
6469 * needing a full stripe, @stripe_nr is the full stripe number.
6470 *
6471 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6472 * that can be expensive. Here we just divide @stripe_nr with
6473 * @data_stripes.
6474 */
6475 io_geom->stripe_nr /= data_stripes;
6476
6477 /* RAID[56] write or recovery. Return all stripes */
6478 io_geom->num_stripes = map->num_stripes;
6479 io_geom->max_errors = btrfs_chunk_max_errors(map);
6480
6481 /* Return the length to the full stripe end. */
6482 *length = min(logical + *length,
6483 io_geom->raid56_full_stripe_start + map->start +
6484 btrfs_stripe_nr_to_offset(data_stripes)) -
6485 logical;
6486 io_geom->stripe_index = 0;
6487 io_geom->stripe_offset = 0;
6488}
6489
6490static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6491 struct btrfs_io_geometry *io_geom)
6492{
6493 int data_stripes = nr_data_stripes(map);
6494
6495 ASSERT(io_geom->mirror_num <= 1);
6496 /* Just grab the data stripe directly. */
6497 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6498 io_geom->stripe_nr /= data_stripes;
6499
6500 /* We distribute the parity blocks across stripes. */
6501 io_geom->stripe_index =
6502 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6503
6504 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6505 io_geom->mirror_num = 1;
6506}
6507
6508static void map_blocks_single(const struct btrfs_chunk_map *map,
6509 struct btrfs_io_geometry *io_geom)
6510{
6511 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6512 io_geom->stripe_nr /= map->num_stripes;
6513 io_geom->mirror_num = io_geom->stripe_index + 1;
6514}
6515
6516/*
6517 * Map one logical range to one or more physical ranges.
6518 *
6519 * @length: (Mandatory) mapped length of this run.
6520 * One logical range can be split into different segments
6521 * due to factors like zones and RAID0/5/6/10 stripe
6522 * boundaries.
6523 *
6524 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6525 * which has one or more physical ranges (btrfs_io_stripe)
6526 * recorded inside.
6527 * Caller should call btrfs_put_bioc() to free it after use.
6528 *
6529 * @smap: (Optional) single physical range optimization.
6530 * If the map request can be fulfilled by one single
6531 * physical range, and this is parameter is not NULL,
6532 * then @bioc_ret would be NULL, and @smap would be
6533 * updated.
6534 *
6535 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6536 * value is 0.
6537 *
6538 * Mirror number 0 means to choose any live mirrors.
6539 *
6540 * For non-RAID56 profiles, non-zero mirror_num means
6541 * the Nth mirror. (e.g. mirror_num 1 means the first
6542 * copy).
6543 *
6544 * For RAID56 profile, mirror 1 means rebuild from P and
6545 * the remaining data stripes.
6546 *
6547 * For RAID6 profile, mirror > 2 means mark another
6548 * data/P stripe error and rebuild from the remaining
6549 * stripes..
6550 */
6551int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6552 u64 logical, u64 *length,
6553 struct btrfs_io_context **bioc_ret,
6554 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6555{
6556 struct btrfs_chunk_map *map;
6557 struct btrfs_io_geometry io_geom = { 0 };
6558 u64 map_offset;
6559 int ret = 0;
6560 int num_copies;
6561 struct btrfs_io_context *bioc = NULL;
6562 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6563 int dev_replace_is_ongoing = 0;
6564 u16 num_alloc_stripes;
6565 u64 max_len;
6566
6567 ASSERT(bioc_ret);
6568
6569 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6570 io_geom.num_stripes = 1;
6571 io_geom.stripe_index = 0;
6572 io_geom.op = op;
6573
6574 map = btrfs_get_chunk_map(fs_info, logical, *length);
6575 if (IS_ERR(map))
6576 return PTR_ERR(map);
6577
6578 num_copies = btrfs_chunk_map_num_copies(map);
6579 if (io_geom.mirror_num > num_copies)
6580 return -EINVAL;
6581
6582 map_offset = logical - map->start;
6583 io_geom.raid56_full_stripe_start = (u64)-1;
6584 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6585 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6586
6587 if (dev_replace->replace_task != current)
6588 down_read(&dev_replace->rwsem);
6589
6590 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6591 /*
6592 * Hold the semaphore for read during the whole operation, write is
6593 * requested at commit time but must wait.
6594 */
6595 if (!dev_replace_is_ongoing && dev_replace->replace_task != current)
6596 up_read(&dev_replace->rwsem);
6597
6598 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6599 case BTRFS_BLOCK_GROUP_RAID0:
6600 map_blocks_raid0(map, &io_geom);
6601 break;
6602 case BTRFS_BLOCK_GROUP_RAID1:
6603 case BTRFS_BLOCK_GROUP_RAID1C3:
6604 case BTRFS_BLOCK_GROUP_RAID1C4:
6605 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6606 break;
6607 case BTRFS_BLOCK_GROUP_DUP:
6608 map_blocks_dup(map, &io_geom);
6609 break;
6610 case BTRFS_BLOCK_GROUP_RAID10:
6611 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6612 break;
6613 case BTRFS_BLOCK_GROUP_RAID5:
6614 case BTRFS_BLOCK_GROUP_RAID6:
6615 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6616 map_blocks_raid56_write(map, &io_geom, logical, length);
6617 else
6618 map_blocks_raid56_read(map, &io_geom);
6619 break;
6620 default:
6621 /*
6622 * After this, stripe_nr is the number of stripes on this
6623 * device we have to walk to find the data, and stripe_index is
6624 * the number of our device in the stripe array
6625 */
6626 map_blocks_single(map, &io_geom);
6627 break;
6628 }
6629 if (io_geom.stripe_index >= map->num_stripes) {
6630 btrfs_crit(fs_info,
6631 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6632 io_geom.stripe_index, map->num_stripes);
6633 ret = -EINVAL;
6634 goto out;
6635 }
6636
6637 num_alloc_stripes = io_geom.num_stripes;
6638 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6639 op != BTRFS_MAP_READ)
6640 /*
6641 * For replace case, we need to add extra stripes for extra
6642 * duplicated stripes.
6643 *
6644 * For both WRITE and GET_READ_MIRRORS, we may have at most
6645 * 2 more stripes (DUP types, otherwise 1).
6646 */
6647 num_alloc_stripes += 2;
6648
6649 /*
6650 * If this I/O maps to a single device, try to return the device and
6651 * physical block information on the stack instead of allocating an
6652 * I/O context structure.
6653 */
6654 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6655 io_geom.mirror_num)) {
6656 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6657 if (mirror_num_ret)
6658 *mirror_num_ret = io_geom.mirror_num;
6659 *bioc_ret = NULL;
6660 goto out;
6661 }
6662
6663 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6664 if (!bioc) {
6665 ret = -ENOMEM;
6666 goto out;
6667 }
6668 bioc->map_type = map->type;
6669
6670 /*
6671 * For RAID56 full map, we need to make sure the stripes[] follows the
6672 * rule that data stripes are all ordered, then followed with P and Q
6673 * (if we have).
6674 *
6675 * It's still mostly the same as other profiles, just with extra rotation.
6676 */
6677 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6678 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6679 /*
6680 * For RAID56 @stripe_nr is already the number of full stripes
6681 * before us, which is also the rotation value (needs to modulo
6682 * with num_stripes).
6683 *
6684 * In this case, we just add @stripe_nr with @i, then do the
6685 * modulo, to reduce one modulo call.
6686 */
6687 bioc->full_stripe_logical = map->start +
6688 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6689 nr_data_stripes(map));
6690 for (int i = 0; i < io_geom.num_stripes; i++) {
6691 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6692 u32 stripe_index;
6693
6694 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6695 dst->dev = map->stripes[stripe_index].dev;
6696 dst->physical =
6697 map->stripes[stripe_index].physical +
6698 io_geom.stripe_offset +
6699 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6700 }
6701 } else {
6702 /*
6703 * For all other non-RAID56 profiles, just copy the target
6704 * stripe into the bioc.
6705 */
6706 for (int i = 0; i < io_geom.num_stripes; i++) {
6707 ret = set_io_stripe(fs_info, logical, length,
6708 &bioc->stripes[i], map, &io_geom);
6709 if (ret < 0)
6710 break;
6711 io_geom.stripe_index++;
6712 }
6713 }
6714
6715 if (ret) {
6716 *bioc_ret = NULL;
6717 btrfs_put_bioc(bioc);
6718 goto out;
6719 }
6720
6721 if (op != BTRFS_MAP_READ)
6722 io_geom.max_errors = btrfs_chunk_max_errors(map);
6723
6724 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6725 op != BTRFS_MAP_READ) {
6726 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6727 }
6728
6729 *bioc_ret = bioc;
6730 bioc->num_stripes = io_geom.num_stripes;
6731 bioc->max_errors = io_geom.max_errors;
6732 bioc->mirror_num = io_geom.mirror_num;
6733
6734out:
6735 if (dev_replace_is_ongoing && dev_replace->replace_task != current) {
6736 lockdep_assert_held(&dev_replace->rwsem);
6737 /* Unlock and let waiting writers proceed */
6738 up_read(&dev_replace->rwsem);
6739 }
6740 btrfs_free_chunk_map(map);
6741 return ret;
6742}
6743
6744static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6745 const struct btrfs_fs_devices *fs_devices)
6746{
6747 if (args->fsid == NULL)
6748 return true;
6749 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6750 return true;
6751 return false;
6752}
6753
6754static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6755 const struct btrfs_device *device)
6756{
6757 if (args->missing) {
6758 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6759 !device->bdev)
6760 return true;
6761 return false;
6762 }
6763
6764 if (device->devid != args->devid)
6765 return false;
6766 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6767 return false;
6768 return true;
6769}
6770
6771/*
6772 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6773 * return NULL.
6774 *
6775 * If devid and uuid are both specified, the match must be exact, otherwise
6776 * only devid is used.
6777 */
6778struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6779 const struct btrfs_dev_lookup_args *args)
6780{
6781 struct btrfs_device *device;
6782 struct btrfs_fs_devices *seed_devs;
6783
6784 if (dev_args_match_fs_devices(args, fs_devices)) {
6785 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6786 if (dev_args_match_device(args, device))
6787 return device;
6788 }
6789 }
6790
6791 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6792 if (!dev_args_match_fs_devices(args, seed_devs))
6793 continue;
6794 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6795 if (dev_args_match_device(args, device))
6796 return device;
6797 }
6798 }
6799
6800 return NULL;
6801}
6802
6803static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6804 u64 devid, u8 *dev_uuid)
6805{
6806 struct btrfs_device *device;
6807 unsigned int nofs_flag;
6808
6809 /*
6810 * We call this under the chunk_mutex, so we want to use NOFS for this
6811 * allocation, however we don't want to change btrfs_alloc_device() to
6812 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6813 * places.
6814 */
6815
6816 nofs_flag = memalloc_nofs_save();
6817 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6818 memalloc_nofs_restore(nofs_flag);
6819 if (IS_ERR(device))
6820 return device;
6821
6822 list_add(&device->dev_list, &fs_devices->devices);
6823 device->fs_devices = fs_devices;
6824 fs_devices->num_devices++;
6825
6826 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6827 fs_devices->missing_devices++;
6828
6829 return device;
6830}
6831
6832/*
6833 * Allocate new device struct, set up devid and UUID.
6834 *
6835 * @fs_info: used only for generating a new devid, can be NULL if
6836 * devid is provided (i.e. @devid != NULL).
6837 * @devid: a pointer to devid for this device. If NULL a new devid
6838 * is generated.
6839 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6840 * is generated.
6841 * @path: a pointer to device path if available, NULL otherwise.
6842 *
6843 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6844 * on error. Returned struct is not linked onto any lists and must be
6845 * destroyed with btrfs_free_device.
6846 */
6847struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6848 const u64 *devid, const u8 *uuid,
6849 const char *path)
6850{
6851 struct btrfs_device *dev;
6852 u64 tmp;
6853
6854 if (WARN_ON(!devid && !fs_info))
6855 return ERR_PTR(-EINVAL);
6856
6857 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6858 if (!dev)
6859 return ERR_PTR(-ENOMEM);
6860
6861 INIT_LIST_HEAD(&dev->dev_list);
6862 INIT_LIST_HEAD(&dev->dev_alloc_list);
6863 INIT_LIST_HEAD(&dev->post_commit_list);
6864
6865 atomic_set(&dev->dev_stats_ccnt, 0);
6866 btrfs_device_data_ordered_init(dev);
6867 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6868
6869 if (devid)
6870 tmp = *devid;
6871 else {
6872 int ret;
6873
6874 ret = find_next_devid(fs_info, &tmp);
6875 if (ret) {
6876 btrfs_free_device(dev);
6877 return ERR_PTR(ret);
6878 }
6879 }
6880 dev->devid = tmp;
6881
6882 if (uuid)
6883 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6884 else
6885 generate_random_uuid(dev->uuid);
6886
6887 if (path) {
6888 struct rcu_string *name;
6889
6890 name = rcu_string_strdup(path, GFP_KERNEL);
6891 if (!name) {
6892 btrfs_free_device(dev);
6893 return ERR_PTR(-ENOMEM);
6894 }
6895 rcu_assign_pointer(dev->name, name);
6896 }
6897
6898 return dev;
6899}
6900
6901static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6902 u64 devid, u8 *uuid, bool error)
6903{
6904 if (error)
6905 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6906 devid, uuid);
6907 else
6908 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6909 devid, uuid);
6910}
6911
6912u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6913{
6914 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6915
6916 return div_u64(map->chunk_len, data_stripes);
6917}
6918
6919#if BITS_PER_LONG == 32
6920/*
6921 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6922 * can't be accessed on 32bit systems.
6923 *
6924 * This function do mount time check to reject the fs if it already has
6925 * metadata chunk beyond that limit.
6926 */
6927static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6928 u64 logical, u64 length, u64 type)
6929{
6930 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6931 return 0;
6932
6933 if (logical + length < MAX_LFS_FILESIZE)
6934 return 0;
6935
6936 btrfs_err_32bit_limit(fs_info);
6937 return -EOVERFLOW;
6938}
6939
6940/*
6941 * This is to give early warning for any metadata chunk reaching
6942 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6943 * Although we can still access the metadata, it's not going to be possible
6944 * once the limit is reached.
6945 */
6946static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6947 u64 logical, u64 length, u64 type)
6948{
6949 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6950 return;
6951
6952 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6953 return;
6954
6955 btrfs_warn_32bit_limit(fs_info);
6956}
6957#endif
6958
6959static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6960 u64 devid, u8 *uuid)
6961{
6962 struct btrfs_device *dev;
6963
6964 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6965 btrfs_report_missing_device(fs_info, devid, uuid, true);
6966 return ERR_PTR(-ENOENT);
6967 }
6968
6969 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6970 if (IS_ERR(dev)) {
6971 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6972 devid, PTR_ERR(dev));
6973 return dev;
6974 }
6975 btrfs_report_missing_device(fs_info, devid, uuid, false);
6976
6977 return dev;
6978}
6979
6980static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6981 struct btrfs_chunk *chunk)
6982{
6983 BTRFS_DEV_LOOKUP_ARGS(args);
6984 struct btrfs_fs_info *fs_info = leaf->fs_info;
6985 struct btrfs_chunk_map *map;
6986 u64 logical;
6987 u64 length;
6988 u64 devid;
6989 u64 type;
6990 u8 uuid[BTRFS_UUID_SIZE];
6991 int index;
6992 int num_stripes;
6993 int ret;
6994 int i;
6995
6996 logical = key->offset;
6997 length = btrfs_chunk_length(leaf, chunk);
6998 type = btrfs_chunk_type(leaf, chunk);
6999 index = btrfs_bg_flags_to_raid_index(type);
7000 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7001
7002#if BITS_PER_LONG == 32
7003 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7004 if (ret < 0)
7005 return ret;
7006 warn_32bit_meta_chunk(fs_info, logical, length, type);
7007#endif
7008
7009 /*
7010 * Only need to verify chunk item if we're reading from sys chunk array,
7011 * as chunk item in tree block is already verified by tree-checker.
7012 */
7013 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7014 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7015 if (ret)
7016 return ret;
7017 }
7018
7019 map = btrfs_find_chunk_map(fs_info, logical, 1);
7020
7021 /* already mapped? */
7022 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7023 btrfs_free_chunk_map(map);
7024 return 0;
7025 } else if (map) {
7026 btrfs_free_chunk_map(map);
7027 }
7028
7029 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7030 if (!map)
7031 return -ENOMEM;
7032
7033 map->start = logical;
7034 map->chunk_len = length;
7035 map->num_stripes = num_stripes;
7036 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7037 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7038 map->type = type;
7039 /*
7040 * We can't use the sub_stripes value, as for profiles other than
7041 * RAID10, they may have 0 as sub_stripes for filesystems created by
7042 * older mkfs (<v5.4).
7043 * In that case, it can cause divide-by-zero errors later.
7044 * Since currently sub_stripes is fixed for each profile, let's
7045 * use the trusted value instead.
7046 */
7047 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7048 map->verified_stripes = 0;
7049 map->stripe_size = btrfs_calc_stripe_length(map);
7050 for (i = 0; i < num_stripes; i++) {
7051 map->stripes[i].physical =
7052 btrfs_stripe_offset_nr(leaf, chunk, i);
7053 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7054 args.devid = devid;
7055 read_extent_buffer(leaf, uuid, (unsigned long)
7056 btrfs_stripe_dev_uuid_nr(chunk, i),
7057 BTRFS_UUID_SIZE);
7058 args.uuid = uuid;
7059 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7060 if (!map->stripes[i].dev) {
7061 map->stripes[i].dev = handle_missing_device(fs_info,
7062 devid, uuid);
7063 if (IS_ERR(map->stripes[i].dev)) {
7064 ret = PTR_ERR(map->stripes[i].dev);
7065 btrfs_free_chunk_map(map);
7066 return ret;
7067 }
7068 }
7069
7070 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7071 &(map->stripes[i].dev->dev_state));
7072 }
7073
7074 ret = btrfs_add_chunk_map(fs_info, map);
7075 if (ret < 0) {
7076 btrfs_err(fs_info,
7077 "failed to add chunk map, start=%llu len=%llu: %d",
7078 map->start, map->chunk_len, ret);
7079 btrfs_free_chunk_map(map);
7080 }
7081
7082 return ret;
7083}
7084
7085static void fill_device_from_item(struct extent_buffer *leaf,
7086 struct btrfs_dev_item *dev_item,
7087 struct btrfs_device *device)
7088{
7089 unsigned long ptr;
7090
7091 device->devid = btrfs_device_id(leaf, dev_item);
7092 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7093 device->total_bytes = device->disk_total_bytes;
7094 device->commit_total_bytes = device->disk_total_bytes;
7095 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7096 device->commit_bytes_used = device->bytes_used;
7097 device->type = btrfs_device_type(leaf, dev_item);
7098 device->io_align = btrfs_device_io_align(leaf, dev_item);
7099 device->io_width = btrfs_device_io_width(leaf, dev_item);
7100 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7101 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7102 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7103
7104 ptr = btrfs_device_uuid(dev_item);
7105 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7106}
7107
7108static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7109 u8 *fsid)
7110{
7111 struct btrfs_fs_devices *fs_devices;
7112 int ret;
7113
7114 lockdep_assert_held(&uuid_mutex);
7115 ASSERT(fsid);
7116
7117 /* This will match only for multi-device seed fs */
7118 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7119 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7120 return fs_devices;
7121
7122
7123 fs_devices = find_fsid(fsid, NULL);
7124 if (!fs_devices) {
7125 if (!btrfs_test_opt(fs_info, DEGRADED))
7126 return ERR_PTR(-ENOENT);
7127
7128 fs_devices = alloc_fs_devices(fsid);
7129 if (IS_ERR(fs_devices))
7130 return fs_devices;
7131
7132 fs_devices->seeding = true;
7133 fs_devices->opened = 1;
7134 return fs_devices;
7135 }
7136
7137 /*
7138 * Upon first call for a seed fs fsid, just create a private copy of the
7139 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7140 */
7141 fs_devices = clone_fs_devices(fs_devices);
7142 if (IS_ERR(fs_devices))
7143 return fs_devices;
7144
7145 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7146 if (ret) {
7147 free_fs_devices(fs_devices);
7148 return ERR_PTR(ret);
7149 }
7150
7151 if (!fs_devices->seeding) {
7152 close_fs_devices(fs_devices);
7153 free_fs_devices(fs_devices);
7154 return ERR_PTR(-EINVAL);
7155 }
7156
7157 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7158
7159 return fs_devices;
7160}
7161
7162static int read_one_dev(struct extent_buffer *leaf,
7163 struct btrfs_dev_item *dev_item)
7164{
7165 BTRFS_DEV_LOOKUP_ARGS(args);
7166 struct btrfs_fs_info *fs_info = leaf->fs_info;
7167 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7168 struct btrfs_device *device;
7169 u64 devid;
7170 int ret;
7171 u8 fs_uuid[BTRFS_FSID_SIZE];
7172 u8 dev_uuid[BTRFS_UUID_SIZE];
7173
7174 devid = btrfs_device_id(leaf, dev_item);
7175 args.devid = devid;
7176 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7177 BTRFS_UUID_SIZE);
7178 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7179 BTRFS_FSID_SIZE);
7180 args.uuid = dev_uuid;
7181 args.fsid = fs_uuid;
7182
7183 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7184 fs_devices = open_seed_devices(fs_info, fs_uuid);
7185 if (IS_ERR(fs_devices))
7186 return PTR_ERR(fs_devices);
7187 }
7188
7189 device = btrfs_find_device(fs_info->fs_devices, &args);
7190 if (!device) {
7191 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7192 btrfs_report_missing_device(fs_info, devid,
7193 dev_uuid, true);
7194 return -ENOENT;
7195 }
7196
7197 device = add_missing_dev(fs_devices, devid, dev_uuid);
7198 if (IS_ERR(device)) {
7199 btrfs_err(fs_info,
7200 "failed to add missing dev %llu: %ld",
7201 devid, PTR_ERR(device));
7202 return PTR_ERR(device);
7203 }
7204 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7205 } else {
7206 if (!device->bdev) {
7207 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7208 btrfs_report_missing_device(fs_info,
7209 devid, dev_uuid, true);
7210 return -ENOENT;
7211 }
7212 btrfs_report_missing_device(fs_info, devid,
7213 dev_uuid, false);
7214 }
7215
7216 if (!device->bdev &&
7217 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7218 /*
7219 * this happens when a device that was properly setup
7220 * in the device info lists suddenly goes bad.
7221 * device->bdev is NULL, and so we have to set
7222 * device->missing to one here
7223 */
7224 device->fs_devices->missing_devices++;
7225 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7226 }
7227
7228 /* Move the device to its own fs_devices */
7229 if (device->fs_devices != fs_devices) {
7230 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7231 &device->dev_state));
7232
7233 list_move(&device->dev_list, &fs_devices->devices);
7234 device->fs_devices->num_devices--;
7235 fs_devices->num_devices++;
7236
7237 device->fs_devices->missing_devices--;
7238 fs_devices->missing_devices++;
7239
7240 device->fs_devices = fs_devices;
7241 }
7242 }
7243
7244 if (device->fs_devices != fs_info->fs_devices) {
7245 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7246 if (device->generation !=
7247 btrfs_device_generation(leaf, dev_item))
7248 return -EINVAL;
7249 }
7250
7251 fill_device_from_item(leaf, dev_item, device);
7252 if (device->bdev) {
7253 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7254
7255 if (device->total_bytes > max_total_bytes) {
7256 btrfs_err(fs_info,
7257 "device total_bytes should be at most %llu but found %llu",
7258 max_total_bytes, device->total_bytes);
7259 return -EINVAL;
7260 }
7261 }
7262 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7263 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7264 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7265 device->fs_devices->total_rw_bytes += device->total_bytes;
7266 atomic64_add(device->total_bytes - device->bytes_used,
7267 &fs_info->free_chunk_space);
7268 }
7269 ret = 0;
7270 return ret;
7271}
7272
7273int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7274{
7275 struct btrfs_super_block *super_copy = fs_info->super_copy;
7276 struct extent_buffer *sb;
7277 struct btrfs_disk_key *disk_key;
7278 struct btrfs_chunk *chunk;
7279 u8 *array_ptr;
7280 unsigned long sb_array_offset;
7281 int ret = 0;
7282 u32 num_stripes;
7283 u32 array_size;
7284 u32 len = 0;
7285 u32 cur_offset;
7286 u64 type;
7287 struct btrfs_key key;
7288
7289 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7290
7291 /*
7292 * We allocated a dummy extent, just to use extent buffer accessors.
7293 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7294 * that's fine, we will not go beyond system chunk array anyway.
7295 */
7296 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7297 if (!sb)
7298 return -ENOMEM;
7299 set_extent_buffer_uptodate(sb);
7300
7301 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7302 array_size = btrfs_super_sys_array_size(super_copy);
7303
7304 array_ptr = super_copy->sys_chunk_array;
7305 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7306 cur_offset = 0;
7307
7308 while (cur_offset < array_size) {
7309 disk_key = (struct btrfs_disk_key *)array_ptr;
7310 len = sizeof(*disk_key);
7311 if (cur_offset + len > array_size)
7312 goto out_short_read;
7313
7314 btrfs_disk_key_to_cpu(&key, disk_key);
7315
7316 array_ptr += len;
7317 sb_array_offset += len;
7318 cur_offset += len;
7319
7320 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7321 btrfs_err(fs_info,
7322 "unexpected item type %u in sys_array at offset %u",
7323 (u32)key.type, cur_offset);
7324 ret = -EIO;
7325 break;
7326 }
7327
7328 chunk = (struct btrfs_chunk *)sb_array_offset;
7329 /*
7330 * At least one btrfs_chunk with one stripe must be present,
7331 * exact stripe count check comes afterwards
7332 */
7333 len = btrfs_chunk_item_size(1);
7334 if (cur_offset + len > array_size)
7335 goto out_short_read;
7336
7337 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7338 if (!num_stripes) {
7339 btrfs_err(fs_info,
7340 "invalid number of stripes %u in sys_array at offset %u",
7341 num_stripes, cur_offset);
7342 ret = -EIO;
7343 break;
7344 }
7345
7346 type = btrfs_chunk_type(sb, chunk);
7347 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7348 btrfs_err(fs_info,
7349 "invalid chunk type %llu in sys_array at offset %u",
7350 type, cur_offset);
7351 ret = -EIO;
7352 break;
7353 }
7354
7355 len = btrfs_chunk_item_size(num_stripes);
7356 if (cur_offset + len > array_size)
7357 goto out_short_read;
7358
7359 ret = read_one_chunk(&key, sb, chunk);
7360 if (ret)
7361 break;
7362
7363 array_ptr += len;
7364 sb_array_offset += len;
7365 cur_offset += len;
7366 }
7367 clear_extent_buffer_uptodate(sb);
7368 free_extent_buffer_stale(sb);
7369 return ret;
7370
7371out_short_read:
7372 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7373 len, cur_offset);
7374 clear_extent_buffer_uptodate(sb);
7375 free_extent_buffer_stale(sb);
7376 return -EIO;
7377}
7378
7379/*
7380 * Check if all chunks in the fs are OK for read-write degraded mount
7381 *
7382 * If the @failing_dev is specified, it's accounted as missing.
7383 *
7384 * Return true if all chunks meet the minimal RW mount requirements.
7385 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7386 */
7387bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7388 struct btrfs_device *failing_dev)
7389{
7390 struct btrfs_chunk_map *map;
7391 u64 next_start;
7392 bool ret = true;
7393
7394 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7395 /* No chunk at all? Return false anyway */
7396 if (!map) {
7397 ret = false;
7398 goto out;
7399 }
7400 while (map) {
7401 int missing = 0;
7402 int max_tolerated;
7403 int i;
7404
7405 max_tolerated =
7406 btrfs_get_num_tolerated_disk_barrier_failures(
7407 map->type);
7408 for (i = 0; i < map->num_stripes; i++) {
7409 struct btrfs_device *dev = map->stripes[i].dev;
7410
7411 if (!dev || !dev->bdev ||
7412 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7413 dev->last_flush_error)
7414 missing++;
7415 else if (failing_dev && failing_dev == dev)
7416 missing++;
7417 }
7418 if (missing > max_tolerated) {
7419 if (!failing_dev)
7420 btrfs_warn(fs_info,
7421 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7422 map->start, missing, max_tolerated);
7423 btrfs_free_chunk_map(map);
7424 ret = false;
7425 goto out;
7426 }
7427 next_start = map->start + map->chunk_len;
7428 btrfs_free_chunk_map(map);
7429
7430 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7431 }
7432out:
7433 return ret;
7434}
7435
7436static void readahead_tree_node_children(struct extent_buffer *node)
7437{
7438 int i;
7439 const int nr_items = btrfs_header_nritems(node);
7440
7441 for (i = 0; i < nr_items; i++)
7442 btrfs_readahead_node_child(node, i);
7443}
7444
7445int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7446{
7447 struct btrfs_root *root = fs_info->chunk_root;
7448 struct btrfs_path *path;
7449 struct extent_buffer *leaf;
7450 struct btrfs_key key;
7451 struct btrfs_key found_key;
7452 int ret;
7453 int slot;
7454 int iter_ret = 0;
7455 u64 total_dev = 0;
7456 u64 last_ra_node = 0;
7457
7458 path = btrfs_alloc_path();
7459 if (!path)
7460 return -ENOMEM;
7461
7462 /*
7463 * uuid_mutex is needed only if we are mounting a sprout FS
7464 * otherwise we don't need it.
7465 */
7466 mutex_lock(&uuid_mutex);
7467
7468 /*
7469 * It is possible for mount and umount to race in such a way that
7470 * we execute this code path, but open_fs_devices failed to clear
7471 * total_rw_bytes. We certainly want it cleared before reading the
7472 * device items, so clear it here.
7473 */
7474 fs_info->fs_devices->total_rw_bytes = 0;
7475
7476 /*
7477 * Lockdep complains about possible circular locking dependency between
7478 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7479 * used for freeze procection of a fs (struct super_block.s_writers),
7480 * which we take when starting a transaction, and extent buffers of the
7481 * chunk tree if we call read_one_dev() while holding a lock on an
7482 * extent buffer of the chunk tree. Since we are mounting the filesystem
7483 * and at this point there can't be any concurrent task modifying the
7484 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7485 */
7486 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7487 path->skip_locking = 1;
7488
7489 /*
7490 * Read all device items, and then all the chunk items. All
7491 * device items are found before any chunk item (their object id
7492 * is smaller than the lowest possible object id for a chunk
7493 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7494 */
7495 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7496 key.offset = 0;
7497 key.type = 0;
7498 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7499 struct extent_buffer *node = path->nodes[1];
7500
7501 leaf = path->nodes[0];
7502 slot = path->slots[0];
7503
7504 if (node) {
7505 if (last_ra_node != node->start) {
7506 readahead_tree_node_children(node);
7507 last_ra_node = node->start;
7508 }
7509 }
7510 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7511 struct btrfs_dev_item *dev_item;
7512 dev_item = btrfs_item_ptr(leaf, slot,
7513 struct btrfs_dev_item);
7514 ret = read_one_dev(leaf, dev_item);
7515 if (ret)
7516 goto error;
7517 total_dev++;
7518 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7519 struct btrfs_chunk *chunk;
7520
7521 /*
7522 * We are only called at mount time, so no need to take
7523 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7524 * we always lock first fs_info->chunk_mutex before
7525 * acquiring any locks on the chunk tree. This is a
7526 * requirement for chunk allocation, see the comment on
7527 * top of btrfs_chunk_alloc() for details.
7528 */
7529 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7530 ret = read_one_chunk(&found_key, leaf, chunk);
7531 if (ret)
7532 goto error;
7533 }
7534 }
7535 /* Catch error found during iteration */
7536 if (iter_ret < 0) {
7537 ret = iter_ret;
7538 goto error;
7539 }
7540
7541 /*
7542 * After loading chunk tree, we've got all device information,
7543 * do another round of validation checks.
7544 */
7545 if (total_dev != fs_info->fs_devices->total_devices) {
7546 btrfs_warn(fs_info,
7547"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7548 btrfs_super_num_devices(fs_info->super_copy),
7549 total_dev);
7550 fs_info->fs_devices->total_devices = total_dev;
7551 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7552 }
7553 if (btrfs_super_total_bytes(fs_info->super_copy) <
7554 fs_info->fs_devices->total_rw_bytes) {
7555 btrfs_err(fs_info,
7556 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7557 btrfs_super_total_bytes(fs_info->super_copy),
7558 fs_info->fs_devices->total_rw_bytes);
7559 ret = -EINVAL;
7560 goto error;
7561 }
7562 ret = 0;
7563error:
7564 mutex_unlock(&uuid_mutex);
7565
7566 btrfs_free_path(path);
7567 return ret;
7568}
7569
7570int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7571{
7572 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7573 struct btrfs_device *device;
7574 int ret = 0;
7575
7576 fs_devices->fs_info = fs_info;
7577
7578 mutex_lock(&fs_devices->device_list_mutex);
7579 list_for_each_entry(device, &fs_devices->devices, dev_list)
7580 device->fs_info = fs_info;
7581
7582 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7583 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7584 device->fs_info = fs_info;
7585 ret = btrfs_get_dev_zone_info(device, false);
7586 if (ret)
7587 break;
7588 }
7589
7590 seed_devs->fs_info = fs_info;
7591 }
7592 mutex_unlock(&fs_devices->device_list_mutex);
7593
7594 return ret;
7595}
7596
7597static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7598 const struct btrfs_dev_stats_item *ptr,
7599 int index)
7600{
7601 u64 val;
7602
7603 read_extent_buffer(eb, &val,
7604 offsetof(struct btrfs_dev_stats_item, values) +
7605 ((unsigned long)ptr) + (index * sizeof(u64)),
7606 sizeof(val));
7607 return val;
7608}
7609
7610static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7611 struct btrfs_dev_stats_item *ptr,
7612 int index, u64 val)
7613{
7614 write_extent_buffer(eb, &val,
7615 offsetof(struct btrfs_dev_stats_item, values) +
7616 ((unsigned long)ptr) + (index * sizeof(u64)),
7617 sizeof(val));
7618}
7619
7620static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7621 struct btrfs_path *path)
7622{
7623 struct btrfs_dev_stats_item *ptr;
7624 struct extent_buffer *eb;
7625 struct btrfs_key key;
7626 int item_size;
7627 int i, ret, slot;
7628
7629 if (!device->fs_info->dev_root)
7630 return 0;
7631
7632 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7633 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7634 key.offset = device->devid;
7635 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7636 if (ret) {
7637 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7638 btrfs_dev_stat_set(device, i, 0);
7639 device->dev_stats_valid = 1;
7640 btrfs_release_path(path);
7641 return ret < 0 ? ret : 0;
7642 }
7643 slot = path->slots[0];
7644 eb = path->nodes[0];
7645 item_size = btrfs_item_size(eb, slot);
7646
7647 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7648
7649 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7650 if (item_size >= (1 + i) * sizeof(__le64))
7651 btrfs_dev_stat_set(device, i,
7652 btrfs_dev_stats_value(eb, ptr, i));
7653 else
7654 btrfs_dev_stat_set(device, i, 0);
7655 }
7656
7657 device->dev_stats_valid = 1;
7658 btrfs_dev_stat_print_on_load(device);
7659 btrfs_release_path(path);
7660
7661 return 0;
7662}
7663
7664int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7665{
7666 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7667 struct btrfs_device *device;
7668 struct btrfs_path *path = NULL;
7669 int ret = 0;
7670
7671 path = btrfs_alloc_path();
7672 if (!path)
7673 return -ENOMEM;
7674
7675 mutex_lock(&fs_devices->device_list_mutex);
7676 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7677 ret = btrfs_device_init_dev_stats(device, path);
7678 if (ret)
7679 goto out;
7680 }
7681 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7682 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7683 ret = btrfs_device_init_dev_stats(device, path);
7684 if (ret)
7685 goto out;
7686 }
7687 }
7688out:
7689 mutex_unlock(&fs_devices->device_list_mutex);
7690
7691 btrfs_free_path(path);
7692 return ret;
7693}
7694
7695static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7696 struct btrfs_device *device)
7697{
7698 struct btrfs_fs_info *fs_info = trans->fs_info;
7699 struct btrfs_root *dev_root = fs_info->dev_root;
7700 struct btrfs_path *path;
7701 struct btrfs_key key;
7702 struct extent_buffer *eb;
7703 struct btrfs_dev_stats_item *ptr;
7704 int ret;
7705 int i;
7706
7707 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7708 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7709 key.offset = device->devid;
7710
7711 path = btrfs_alloc_path();
7712 if (!path)
7713 return -ENOMEM;
7714 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7715 if (ret < 0) {
7716 btrfs_warn_in_rcu(fs_info,
7717 "error %d while searching for dev_stats item for device %s",
7718 ret, btrfs_dev_name(device));
7719 goto out;
7720 }
7721
7722 if (ret == 0 &&
7723 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7724 /* need to delete old one and insert a new one */
7725 ret = btrfs_del_item(trans, dev_root, path);
7726 if (ret != 0) {
7727 btrfs_warn_in_rcu(fs_info,
7728 "delete too small dev_stats item for device %s failed %d",
7729 btrfs_dev_name(device), ret);
7730 goto out;
7731 }
7732 ret = 1;
7733 }
7734
7735 if (ret == 1) {
7736 /* need to insert a new item */
7737 btrfs_release_path(path);
7738 ret = btrfs_insert_empty_item(trans, dev_root, path,
7739 &key, sizeof(*ptr));
7740 if (ret < 0) {
7741 btrfs_warn_in_rcu(fs_info,
7742 "insert dev_stats item for device %s failed %d",
7743 btrfs_dev_name(device), ret);
7744 goto out;
7745 }
7746 }
7747
7748 eb = path->nodes[0];
7749 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7750 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7751 btrfs_set_dev_stats_value(eb, ptr, i,
7752 btrfs_dev_stat_read(device, i));
7753 btrfs_mark_buffer_dirty(trans, eb);
7754
7755out:
7756 btrfs_free_path(path);
7757 return ret;
7758}
7759
7760/*
7761 * called from commit_transaction. Writes all changed device stats to disk.
7762 */
7763int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7764{
7765 struct btrfs_fs_info *fs_info = trans->fs_info;
7766 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7767 struct btrfs_device *device;
7768 int stats_cnt;
7769 int ret = 0;
7770
7771 mutex_lock(&fs_devices->device_list_mutex);
7772 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7773 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7774 if (!device->dev_stats_valid || stats_cnt == 0)
7775 continue;
7776
7777
7778 /*
7779 * There is a LOAD-LOAD control dependency between the value of
7780 * dev_stats_ccnt and updating the on-disk values which requires
7781 * reading the in-memory counters. Such control dependencies
7782 * require explicit read memory barriers.
7783 *
7784 * This memory barriers pairs with smp_mb__before_atomic in
7785 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7786 * barrier implied by atomic_xchg in
7787 * btrfs_dev_stats_read_and_reset
7788 */
7789 smp_rmb();
7790
7791 ret = update_dev_stat_item(trans, device);
7792 if (!ret)
7793 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7794 }
7795 mutex_unlock(&fs_devices->device_list_mutex);
7796
7797 return ret;
7798}
7799
7800void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7801{
7802 btrfs_dev_stat_inc(dev, index);
7803
7804 if (!dev->dev_stats_valid)
7805 return;
7806 btrfs_err_rl_in_rcu(dev->fs_info,
7807 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7808 btrfs_dev_name(dev),
7809 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7811 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7812 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7813 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7814}
7815
7816static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7817{
7818 int i;
7819
7820 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7821 if (btrfs_dev_stat_read(dev, i) != 0)
7822 break;
7823 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7824 return; /* all values == 0, suppress message */
7825
7826 btrfs_info_in_rcu(dev->fs_info,
7827 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7828 btrfs_dev_name(dev),
7829 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7830 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7831 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7832 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7833 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7834}
7835
7836int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7837 struct btrfs_ioctl_get_dev_stats *stats)
7838{
7839 BTRFS_DEV_LOOKUP_ARGS(args);
7840 struct btrfs_device *dev;
7841 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7842 int i;
7843
7844 mutex_lock(&fs_devices->device_list_mutex);
7845 args.devid = stats->devid;
7846 dev = btrfs_find_device(fs_info->fs_devices, &args);
7847 mutex_unlock(&fs_devices->device_list_mutex);
7848
7849 if (!dev) {
7850 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7851 return -ENODEV;
7852 } else if (!dev->dev_stats_valid) {
7853 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7854 return -ENODEV;
7855 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7856 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7857 if (stats->nr_items > i)
7858 stats->values[i] =
7859 btrfs_dev_stat_read_and_reset(dev, i);
7860 else
7861 btrfs_dev_stat_set(dev, i, 0);
7862 }
7863 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7864 current->comm, task_pid_nr(current));
7865 } else {
7866 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7867 if (stats->nr_items > i)
7868 stats->values[i] = btrfs_dev_stat_read(dev, i);
7869 }
7870 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7871 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7872 return 0;
7873}
7874
7875/*
7876 * Update the size and bytes used for each device where it changed. This is
7877 * delayed since we would otherwise get errors while writing out the
7878 * superblocks.
7879 *
7880 * Must be invoked during transaction commit.
7881 */
7882void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7883{
7884 struct btrfs_device *curr, *next;
7885
7886 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7887
7888 if (list_empty(&trans->dev_update_list))
7889 return;
7890
7891 /*
7892 * We don't need the device_list_mutex here. This list is owned by the
7893 * transaction and the transaction must complete before the device is
7894 * released.
7895 */
7896 mutex_lock(&trans->fs_info->chunk_mutex);
7897 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7898 post_commit_list) {
7899 list_del_init(&curr->post_commit_list);
7900 curr->commit_total_bytes = curr->disk_total_bytes;
7901 curr->commit_bytes_used = curr->bytes_used;
7902 }
7903 mutex_unlock(&trans->fs_info->chunk_mutex);
7904}
7905
7906/*
7907 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7908 */
7909int btrfs_bg_type_to_factor(u64 flags)
7910{
7911 const int index = btrfs_bg_flags_to_raid_index(flags);
7912
7913 return btrfs_raid_array[index].ncopies;
7914}
7915
7916
7917
7918static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7919 u64 chunk_offset, u64 devid,
7920 u64 physical_offset, u64 physical_len)
7921{
7922 struct btrfs_dev_lookup_args args = { .devid = devid };
7923 struct btrfs_chunk_map *map;
7924 struct btrfs_device *dev;
7925 u64 stripe_len;
7926 bool found = false;
7927 int ret = 0;
7928 int i;
7929
7930 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7931 if (!map) {
7932 btrfs_err(fs_info,
7933"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7934 physical_offset, devid);
7935 ret = -EUCLEAN;
7936 goto out;
7937 }
7938
7939 stripe_len = btrfs_calc_stripe_length(map);
7940 if (physical_len != stripe_len) {
7941 btrfs_err(fs_info,
7942"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7943 physical_offset, devid, map->start, physical_len,
7944 stripe_len);
7945 ret = -EUCLEAN;
7946 goto out;
7947 }
7948
7949 /*
7950 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7951 * space. Although kernel can handle it without problem, better to warn
7952 * the users.
7953 */
7954 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7955 btrfs_warn(fs_info,
7956 "devid %llu physical %llu len %llu inside the reserved space",
7957 devid, physical_offset, physical_len);
7958
7959 for (i = 0; i < map->num_stripes; i++) {
7960 if (map->stripes[i].dev->devid == devid &&
7961 map->stripes[i].physical == physical_offset) {
7962 found = true;
7963 if (map->verified_stripes >= map->num_stripes) {
7964 btrfs_err(fs_info,
7965 "too many dev extents for chunk %llu found",
7966 map->start);
7967 ret = -EUCLEAN;
7968 goto out;
7969 }
7970 map->verified_stripes++;
7971 break;
7972 }
7973 }
7974 if (!found) {
7975 btrfs_err(fs_info,
7976 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7977 physical_offset, devid);
7978 ret = -EUCLEAN;
7979 }
7980
7981 /* Make sure no dev extent is beyond device boundary */
7982 dev = btrfs_find_device(fs_info->fs_devices, &args);
7983 if (!dev) {
7984 btrfs_err(fs_info, "failed to find devid %llu", devid);
7985 ret = -EUCLEAN;
7986 goto out;
7987 }
7988
7989 if (physical_offset + physical_len > dev->disk_total_bytes) {
7990 btrfs_err(fs_info,
7991"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7992 devid, physical_offset, physical_len,
7993 dev->disk_total_bytes);
7994 ret = -EUCLEAN;
7995 goto out;
7996 }
7997
7998 if (dev->zone_info) {
7999 u64 zone_size = dev->zone_info->zone_size;
8000
8001 if (!IS_ALIGNED(physical_offset, zone_size) ||
8002 !IS_ALIGNED(physical_len, zone_size)) {
8003 btrfs_err(fs_info,
8004"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8005 devid, physical_offset, physical_len);
8006 ret = -EUCLEAN;
8007 goto out;
8008 }
8009 }
8010
8011out:
8012 btrfs_free_chunk_map(map);
8013 return ret;
8014}
8015
8016static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8017{
8018 struct rb_node *node;
8019 int ret = 0;
8020
8021 read_lock(&fs_info->mapping_tree_lock);
8022 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8023 struct btrfs_chunk_map *map;
8024
8025 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8026 if (map->num_stripes != map->verified_stripes) {
8027 btrfs_err(fs_info,
8028 "chunk %llu has missing dev extent, have %d expect %d",
8029 map->start, map->verified_stripes, map->num_stripes);
8030 ret = -EUCLEAN;
8031 goto out;
8032 }
8033 }
8034out:
8035 read_unlock(&fs_info->mapping_tree_lock);
8036 return ret;
8037}
8038
8039/*
8040 * Ensure that all dev extents are mapped to correct chunk, otherwise
8041 * later chunk allocation/free would cause unexpected behavior.
8042 *
8043 * NOTE: This will iterate through the whole device tree, which should be of
8044 * the same size level as the chunk tree. This slightly increases mount time.
8045 */
8046int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8047{
8048 struct btrfs_path *path;
8049 struct btrfs_root *root = fs_info->dev_root;
8050 struct btrfs_key key;
8051 u64 prev_devid = 0;
8052 u64 prev_dev_ext_end = 0;
8053 int ret = 0;
8054
8055 /*
8056 * We don't have a dev_root because we mounted with ignorebadroots and
8057 * failed to load the root, so we want to skip the verification in this
8058 * case for sure.
8059 *
8060 * However if the dev root is fine, but the tree itself is corrupted
8061 * we'd still fail to mount. This verification is only to make sure
8062 * writes can happen safely, so instead just bypass this check
8063 * completely in the case of IGNOREBADROOTS.
8064 */
8065 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8066 return 0;
8067
8068 key.objectid = 1;
8069 key.type = BTRFS_DEV_EXTENT_KEY;
8070 key.offset = 0;
8071
8072 path = btrfs_alloc_path();
8073 if (!path)
8074 return -ENOMEM;
8075
8076 path->reada = READA_FORWARD;
8077 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8078 if (ret < 0)
8079 goto out;
8080
8081 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8082 ret = btrfs_next_leaf(root, path);
8083 if (ret < 0)
8084 goto out;
8085 /* No dev extents at all? Not good */
8086 if (ret > 0) {
8087 ret = -EUCLEAN;
8088 goto out;
8089 }
8090 }
8091 while (1) {
8092 struct extent_buffer *leaf = path->nodes[0];
8093 struct btrfs_dev_extent *dext;
8094 int slot = path->slots[0];
8095 u64 chunk_offset;
8096 u64 physical_offset;
8097 u64 physical_len;
8098 u64 devid;
8099
8100 btrfs_item_key_to_cpu(leaf, &key, slot);
8101 if (key.type != BTRFS_DEV_EXTENT_KEY)
8102 break;
8103 devid = key.objectid;
8104 physical_offset = key.offset;
8105
8106 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8107 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8108 physical_len = btrfs_dev_extent_length(leaf, dext);
8109
8110 /* Check if this dev extent overlaps with the previous one */
8111 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8112 btrfs_err(fs_info,
8113"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8114 devid, physical_offset, prev_dev_ext_end);
8115 ret = -EUCLEAN;
8116 goto out;
8117 }
8118
8119 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8120 physical_offset, physical_len);
8121 if (ret < 0)
8122 goto out;
8123 prev_devid = devid;
8124 prev_dev_ext_end = physical_offset + physical_len;
8125
8126 ret = btrfs_next_item(root, path);
8127 if (ret < 0)
8128 goto out;
8129 if (ret > 0) {
8130 ret = 0;
8131 break;
8132 }
8133 }
8134
8135 /* Ensure all chunks have corresponding dev extents */
8136 ret = verify_chunk_dev_extent_mapping(fs_info);
8137out:
8138 btrfs_free_path(path);
8139 return ret;
8140}
8141
8142/*
8143 * Check whether the given block group or device is pinned by any inode being
8144 * used as a swapfile.
8145 */
8146bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8147{
8148 struct btrfs_swapfile_pin *sp;
8149 struct rb_node *node;
8150
8151 spin_lock(&fs_info->swapfile_pins_lock);
8152 node = fs_info->swapfile_pins.rb_node;
8153 while (node) {
8154 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8155 if (ptr < sp->ptr)
8156 node = node->rb_left;
8157 else if (ptr > sp->ptr)
8158 node = node->rb_right;
8159 else
8160 break;
8161 }
8162 spin_unlock(&fs_info->swapfile_pins_lock);
8163 return node != NULL;
8164}
8165
8166static int relocating_repair_kthread(void *data)
8167{
8168 struct btrfs_block_group *cache = data;
8169 struct btrfs_fs_info *fs_info = cache->fs_info;
8170 u64 target;
8171 int ret = 0;
8172
8173 target = cache->start;
8174 btrfs_put_block_group(cache);
8175
8176 sb_start_write(fs_info->sb);
8177 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8178 btrfs_info(fs_info,
8179 "zoned: skip relocating block group %llu to repair: EBUSY",
8180 target);
8181 sb_end_write(fs_info->sb);
8182 return -EBUSY;
8183 }
8184
8185 mutex_lock(&fs_info->reclaim_bgs_lock);
8186
8187 /* Ensure block group still exists */
8188 cache = btrfs_lookup_block_group(fs_info, target);
8189 if (!cache)
8190 goto out;
8191
8192 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8193 goto out;
8194
8195 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8196 if (ret < 0)
8197 goto out;
8198
8199 btrfs_info(fs_info,
8200 "zoned: relocating block group %llu to repair IO failure",
8201 target);
8202 ret = btrfs_relocate_chunk(fs_info, target);
8203
8204out:
8205 if (cache)
8206 btrfs_put_block_group(cache);
8207 mutex_unlock(&fs_info->reclaim_bgs_lock);
8208 btrfs_exclop_finish(fs_info);
8209 sb_end_write(fs_info->sb);
8210
8211 return ret;
8212}
8213
8214bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8215{
8216 struct btrfs_block_group *cache;
8217
8218 if (!btrfs_is_zoned(fs_info))
8219 return false;
8220
8221 /* Do not attempt to repair in degraded state */
8222 if (btrfs_test_opt(fs_info, DEGRADED))
8223 return true;
8224
8225 cache = btrfs_lookup_block_group(fs_info, logical);
8226 if (!cache)
8227 return true;
8228
8229 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8230 btrfs_put_block_group(cache);
8231 return true;
8232 }
8233
8234 kthread_run(relocating_repair_kthread, cache,
8235 "btrfs-relocating-repair");
8236
8237 return true;
8238}
8239
8240static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8241 struct btrfs_io_stripe *smap,
8242 u64 logical)
8243{
8244 int data_stripes = nr_bioc_data_stripes(bioc);
8245 int i;
8246
8247 for (i = 0; i < data_stripes; i++) {
8248 u64 stripe_start = bioc->full_stripe_logical +
8249 btrfs_stripe_nr_to_offset(i);
8250
8251 if (logical >= stripe_start &&
8252 logical < stripe_start + BTRFS_STRIPE_LEN)
8253 break;
8254 }
8255 ASSERT(i < data_stripes);
8256 smap->dev = bioc->stripes[i].dev;
8257 smap->physical = bioc->stripes[i].physical +
8258 ((logical - bioc->full_stripe_logical) &
8259 BTRFS_STRIPE_LEN_MASK);
8260}
8261
8262/*
8263 * Map a repair write into a single device.
8264 *
8265 * A repair write is triggered by read time repair or scrub, which would only
8266 * update the contents of a single device.
8267 * Not update any other mirrors nor go through RMW path.
8268 *
8269 * Callers should ensure:
8270 *
8271 * - Call btrfs_bio_counter_inc_blocked() first
8272 * - The range does not cross stripe boundary
8273 * - Has a valid @mirror_num passed in.
8274 */
8275int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8276 struct btrfs_io_stripe *smap, u64 logical,
8277 u32 length, int mirror_num)
8278{
8279 struct btrfs_io_context *bioc = NULL;
8280 u64 map_length = length;
8281 int mirror_ret = mirror_num;
8282 int ret;
8283
8284 ASSERT(mirror_num > 0);
8285
8286 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8287 &bioc, smap, &mirror_ret);
8288 if (ret < 0)
8289 return ret;
8290
8291 /* The map range should not cross stripe boundary. */
8292 ASSERT(map_length >= length);
8293
8294 /* Already mapped to single stripe. */
8295 if (!bioc)
8296 goto out;
8297
8298 /* Map the RAID56 multi-stripe writes to a single one. */
8299 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8300 map_raid56_repair_block(bioc, smap, logical);
8301 goto out;
8302 }
8303
8304 ASSERT(mirror_num <= bioc->num_stripes);
8305 smap->dev = bioc->stripes[mirror_num - 1].dev;
8306 smap->physical = bioc->stripes[mirror_num - 1].physical;
8307out:
8308 btrfs_put_bioc(bioc);
8309 ASSERT(smap->dev);
8310 return 0;
8311}