Loading...
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24/* ethtool support for igb */
25
26#include <linux/vmalloc.h>
27#include <linux/netdevice.h>
28#include <linux/pci.h>
29#include <linux/delay.h>
30#include <linux/interrupt.h>
31#include <linux/if_ether.h>
32#include <linux/ethtool.h>
33#include <linux/sched.h>
34#include <linux/slab.h>
35#include <linux/pm_runtime.h>
36#include <linux/highmem.h>
37#include <linux/mdio.h>
38
39#include "igb.h"
40
41struct igb_stats {
42 char stat_string[ETH_GSTRING_LEN];
43 int sizeof_stat;
44 int stat_offset;
45};
46
47#define IGB_STAT(_name, _stat) { \
48 .stat_string = _name, \
49 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
50 .stat_offset = offsetof(struct igb_adapter, _stat) \
51}
52static const struct igb_stats igb_gstrings_stats[] = {
53 IGB_STAT("rx_packets", stats.gprc),
54 IGB_STAT("tx_packets", stats.gptc),
55 IGB_STAT("rx_bytes", stats.gorc),
56 IGB_STAT("tx_bytes", stats.gotc),
57 IGB_STAT("rx_broadcast", stats.bprc),
58 IGB_STAT("tx_broadcast", stats.bptc),
59 IGB_STAT("rx_multicast", stats.mprc),
60 IGB_STAT("tx_multicast", stats.mptc),
61 IGB_STAT("multicast", stats.mprc),
62 IGB_STAT("collisions", stats.colc),
63 IGB_STAT("rx_crc_errors", stats.crcerrs),
64 IGB_STAT("rx_no_buffer_count", stats.rnbc),
65 IGB_STAT("rx_missed_errors", stats.mpc),
66 IGB_STAT("tx_aborted_errors", stats.ecol),
67 IGB_STAT("tx_carrier_errors", stats.tncrs),
68 IGB_STAT("tx_window_errors", stats.latecol),
69 IGB_STAT("tx_abort_late_coll", stats.latecol),
70 IGB_STAT("tx_deferred_ok", stats.dc),
71 IGB_STAT("tx_single_coll_ok", stats.scc),
72 IGB_STAT("tx_multi_coll_ok", stats.mcc),
73 IGB_STAT("tx_timeout_count", tx_timeout_count),
74 IGB_STAT("rx_long_length_errors", stats.roc),
75 IGB_STAT("rx_short_length_errors", stats.ruc),
76 IGB_STAT("rx_align_errors", stats.algnerrc),
77 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
78 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
79 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
80 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
81 IGB_STAT("tx_flow_control_xon", stats.xontxc),
82 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
83 IGB_STAT("rx_long_byte_count", stats.gorc),
84 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
85 IGB_STAT("tx_smbus", stats.mgptc),
86 IGB_STAT("rx_smbus", stats.mgprc),
87 IGB_STAT("dropped_smbus", stats.mgpdc),
88 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
89 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
90 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
91 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
92 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
93 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94};
95
96#define IGB_NETDEV_STAT(_net_stat) { \
97 .stat_string = __stringify(_net_stat), \
98 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100}
101static const struct igb_stats igb_gstrings_net_stats[] = {
102 IGB_NETDEV_STAT(rx_errors),
103 IGB_NETDEV_STAT(tx_errors),
104 IGB_NETDEV_STAT(tx_dropped),
105 IGB_NETDEV_STAT(rx_length_errors),
106 IGB_NETDEV_STAT(rx_over_errors),
107 IGB_NETDEV_STAT(rx_frame_errors),
108 IGB_NETDEV_STAT(rx_fifo_errors),
109 IGB_NETDEV_STAT(tx_fifo_errors),
110 IGB_NETDEV_STAT(tx_heartbeat_errors)
111};
112
113#define IGB_GLOBAL_STATS_LEN \
114 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115#define IGB_NETDEV_STATS_LEN \
116 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117#define IGB_RX_QUEUE_STATS_LEN \
118 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122#define IGB_QUEUE_STATS_LEN \
123 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124 IGB_RX_QUEUE_STATS_LEN) + \
125 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126 IGB_TX_QUEUE_STATS_LEN))
127#define IGB_STATS_LEN \
128 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130enum igb_diagnostics_results {
131 TEST_REG = 0,
132 TEST_EEP,
133 TEST_IRQ,
134 TEST_LOOP,
135 TEST_LINK
136};
137
138static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
139 [TEST_REG] = "Register test (offline)",
140 [TEST_EEP] = "Eeprom test (offline)",
141 [TEST_IRQ] = "Interrupt test (offline)",
142 [TEST_LOOP] = "Loopback test (offline)",
143 [TEST_LINK] = "Link test (on/offline)"
144};
145#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
146
147static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
148{
149 struct igb_adapter *adapter = netdev_priv(netdev);
150 struct e1000_hw *hw = &adapter->hw;
151 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
152 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
153 u32 status;
154 u32 speed;
155
156 status = rd32(E1000_STATUS);
157 if (hw->phy.media_type == e1000_media_type_copper) {
158
159 ecmd->supported = (SUPPORTED_10baseT_Half |
160 SUPPORTED_10baseT_Full |
161 SUPPORTED_100baseT_Half |
162 SUPPORTED_100baseT_Full |
163 SUPPORTED_1000baseT_Full|
164 SUPPORTED_Autoneg |
165 SUPPORTED_TP |
166 SUPPORTED_Pause);
167 ecmd->advertising = ADVERTISED_TP;
168
169 if (hw->mac.autoneg == 1) {
170 ecmd->advertising |= ADVERTISED_Autoneg;
171 /* the e1000 autoneg seems to match ethtool nicely */
172 ecmd->advertising |= hw->phy.autoneg_advertised;
173 }
174
175 ecmd->port = PORT_TP;
176 ecmd->phy_address = hw->phy.addr;
177 ecmd->transceiver = XCVR_INTERNAL;
178 } else {
179 ecmd->supported = (SUPPORTED_FIBRE |
180 SUPPORTED_1000baseKX_Full |
181 SUPPORTED_Autoneg |
182 SUPPORTED_Pause);
183 ecmd->advertising = (ADVERTISED_FIBRE |
184 ADVERTISED_1000baseKX_Full);
185 if (hw->mac.type == e1000_i354) {
186 if ((hw->device_id ==
187 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
188 !(status & E1000_STATUS_2P5_SKU_OVER)) {
189 ecmd->supported |= SUPPORTED_2500baseX_Full;
190 ecmd->supported &=
191 ~SUPPORTED_1000baseKX_Full;
192 ecmd->advertising |= ADVERTISED_2500baseX_Full;
193 ecmd->advertising &=
194 ~ADVERTISED_1000baseKX_Full;
195 }
196 }
197 if (eth_flags->e100_base_fx) {
198 ecmd->supported |= SUPPORTED_100baseT_Full;
199 ecmd->advertising |= ADVERTISED_100baseT_Full;
200 }
201 if (hw->mac.autoneg == 1)
202 ecmd->advertising |= ADVERTISED_Autoneg;
203
204 ecmd->port = PORT_FIBRE;
205 ecmd->transceiver = XCVR_EXTERNAL;
206 }
207 if (hw->mac.autoneg != 1)
208 ecmd->advertising &= ~(ADVERTISED_Pause |
209 ADVERTISED_Asym_Pause);
210
211 switch (hw->fc.requested_mode) {
212 case e1000_fc_full:
213 ecmd->advertising |= ADVERTISED_Pause;
214 break;
215 case e1000_fc_rx_pause:
216 ecmd->advertising |= (ADVERTISED_Pause |
217 ADVERTISED_Asym_Pause);
218 break;
219 case e1000_fc_tx_pause:
220 ecmd->advertising |= ADVERTISED_Asym_Pause;
221 break;
222 default:
223 ecmd->advertising &= ~(ADVERTISED_Pause |
224 ADVERTISED_Asym_Pause);
225 }
226 if (status & E1000_STATUS_LU) {
227 if ((status & E1000_STATUS_2P5_SKU) &&
228 !(status & E1000_STATUS_2P5_SKU_OVER)) {
229 speed = SPEED_2500;
230 } else if (status & E1000_STATUS_SPEED_1000) {
231 speed = SPEED_1000;
232 } else if (status & E1000_STATUS_SPEED_100) {
233 speed = SPEED_100;
234 } else {
235 speed = SPEED_10;
236 }
237 if ((status & E1000_STATUS_FD) ||
238 hw->phy.media_type != e1000_media_type_copper)
239 ecmd->duplex = DUPLEX_FULL;
240 else
241 ecmd->duplex = DUPLEX_HALF;
242 } else {
243 speed = SPEED_UNKNOWN;
244 ecmd->duplex = DUPLEX_UNKNOWN;
245 }
246 ethtool_cmd_speed_set(ecmd, speed);
247 if ((hw->phy.media_type == e1000_media_type_fiber) ||
248 hw->mac.autoneg)
249 ecmd->autoneg = AUTONEG_ENABLE;
250 else
251 ecmd->autoneg = AUTONEG_DISABLE;
252
253 /* MDI-X => 2; MDI =>1; Invalid =>0 */
254 if (hw->phy.media_type == e1000_media_type_copper)
255 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
256 ETH_TP_MDI;
257 else
258 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
259
260 if (hw->phy.mdix == AUTO_ALL_MODES)
261 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
262 else
263 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
264
265 return 0;
266}
267
268static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
269{
270 struct igb_adapter *adapter = netdev_priv(netdev);
271 struct e1000_hw *hw = &adapter->hw;
272
273 /* When SoL/IDER sessions are active, autoneg/speed/duplex
274 * cannot be changed
275 */
276 if (igb_check_reset_block(hw)) {
277 dev_err(&adapter->pdev->dev,
278 "Cannot change link characteristics when SoL/IDER is active.\n");
279 return -EINVAL;
280 }
281
282 /* MDI setting is only allowed when autoneg enabled because
283 * some hardware doesn't allow MDI setting when speed or
284 * duplex is forced.
285 */
286 if (ecmd->eth_tp_mdix_ctrl) {
287 if (hw->phy.media_type != e1000_media_type_copper)
288 return -EOPNOTSUPP;
289
290 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
291 (ecmd->autoneg != AUTONEG_ENABLE)) {
292 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
293 return -EINVAL;
294 }
295 }
296
297 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
298 usleep_range(1000, 2000);
299
300 if (ecmd->autoneg == AUTONEG_ENABLE) {
301 hw->mac.autoneg = 1;
302 if (hw->phy.media_type == e1000_media_type_fiber) {
303 hw->phy.autoneg_advertised = ecmd->advertising |
304 ADVERTISED_FIBRE |
305 ADVERTISED_Autoneg;
306 switch (adapter->link_speed) {
307 case SPEED_2500:
308 hw->phy.autoneg_advertised =
309 ADVERTISED_2500baseX_Full;
310 break;
311 case SPEED_1000:
312 hw->phy.autoneg_advertised =
313 ADVERTISED_1000baseT_Full;
314 break;
315 case SPEED_100:
316 hw->phy.autoneg_advertised =
317 ADVERTISED_100baseT_Full;
318 break;
319 default:
320 break;
321 }
322 } else {
323 hw->phy.autoneg_advertised = ecmd->advertising |
324 ADVERTISED_TP |
325 ADVERTISED_Autoneg;
326 }
327 ecmd->advertising = hw->phy.autoneg_advertised;
328 if (adapter->fc_autoneg)
329 hw->fc.requested_mode = e1000_fc_default;
330 } else {
331 u32 speed = ethtool_cmd_speed(ecmd);
332 /* calling this overrides forced MDI setting */
333 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
334 clear_bit(__IGB_RESETTING, &adapter->state);
335 return -EINVAL;
336 }
337 }
338
339 /* MDI-X => 2; MDI => 1; Auto => 3 */
340 if (ecmd->eth_tp_mdix_ctrl) {
341 /* fix up the value for auto (3 => 0) as zero is mapped
342 * internally to auto
343 */
344 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
345 hw->phy.mdix = AUTO_ALL_MODES;
346 else
347 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
348 }
349
350 /* reset the link */
351 if (netif_running(adapter->netdev)) {
352 igb_down(adapter);
353 igb_up(adapter);
354 } else
355 igb_reset(adapter);
356
357 clear_bit(__IGB_RESETTING, &adapter->state);
358 return 0;
359}
360
361static u32 igb_get_link(struct net_device *netdev)
362{
363 struct igb_adapter *adapter = netdev_priv(netdev);
364 struct e1000_mac_info *mac = &adapter->hw.mac;
365
366 /* If the link is not reported up to netdev, interrupts are disabled,
367 * and so the physical link state may have changed since we last
368 * looked. Set get_link_status to make sure that the true link
369 * state is interrogated, rather than pulling a cached and possibly
370 * stale link state from the driver.
371 */
372 if (!netif_carrier_ok(netdev))
373 mac->get_link_status = 1;
374
375 return igb_has_link(adapter);
376}
377
378static void igb_get_pauseparam(struct net_device *netdev,
379 struct ethtool_pauseparam *pause)
380{
381 struct igb_adapter *adapter = netdev_priv(netdev);
382 struct e1000_hw *hw = &adapter->hw;
383
384 pause->autoneg =
385 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
386
387 if (hw->fc.current_mode == e1000_fc_rx_pause)
388 pause->rx_pause = 1;
389 else if (hw->fc.current_mode == e1000_fc_tx_pause)
390 pause->tx_pause = 1;
391 else if (hw->fc.current_mode == e1000_fc_full) {
392 pause->rx_pause = 1;
393 pause->tx_pause = 1;
394 }
395}
396
397static int igb_set_pauseparam(struct net_device *netdev,
398 struct ethtool_pauseparam *pause)
399{
400 struct igb_adapter *adapter = netdev_priv(netdev);
401 struct e1000_hw *hw = &adapter->hw;
402 int retval = 0;
403
404 /* 100basefx does not support setting link flow control */
405 if (hw->dev_spec._82575.eth_flags.e100_base_fx)
406 return -EINVAL;
407
408 adapter->fc_autoneg = pause->autoneg;
409
410 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
411 usleep_range(1000, 2000);
412
413 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
414 hw->fc.requested_mode = e1000_fc_default;
415 if (netif_running(adapter->netdev)) {
416 igb_down(adapter);
417 igb_up(adapter);
418 } else {
419 igb_reset(adapter);
420 }
421 } else {
422 if (pause->rx_pause && pause->tx_pause)
423 hw->fc.requested_mode = e1000_fc_full;
424 else if (pause->rx_pause && !pause->tx_pause)
425 hw->fc.requested_mode = e1000_fc_rx_pause;
426 else if (!pause->rx_pause && pause->tx_pause)
427 hw->fc.requested_mode = e1000_fc_tx_pause;
428 else if (!pause->rx_pause && !pause->tx_pause)
429 hw->fc.requested_mode = e1000_fc_none;
430
431 hw->fc.current_mode = hw->fc.requested_mode;
432
433 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
434 igb_force_mac_fc(hw) : igb_setup_link(hw));
435 }
436
437 clear_bit(__IGB_RESETTING, &adapter->state);
438 return retval;
439}
440
441static u32 igb_get_msglevel(struct net_device *netdev)
442{
443 struct igb_adapter *adapter = netdev_priv(netdev);
444 return adapter->msg_enable;
445}
446
447static void igb_set_msglevel(struct net_device *netdev, u32 data)
448{
449 struct igb_adapter *adapter = netdev_priv(netdev);
450 adapter->msg_enable = data;
451}
452
453static int igb_get_regs_len(struct net_device *netdev)
454{
455#define IGB_REGS_LEN 739
456 return IGB_REGS_LEN * sizeof(u32);
457}
458
459static void igb_get_regs(struct net_device *netdev,
460 struct ethtool_regs *regs, void *p)
461{
462 struct igb_adapter *adapter = netdev_priv(netdev);
463 struct e1000_hw *hw = &adapter->hw;
464 u32 *regs_buff = p;
465 u8 i;
466
467 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
468
469 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
470
471 /* General Registers */
472 regs_buff[0] = rd32(E1000_CTRL);
473 regs_buff[1] = rd32(E1000_STATUS);
474 regs_buff[2] = rd32(E1000_CTRL_EXT);
475 regs_buff[3] = rd32(E1000_MDIC);
476 regs_buff[4] = rd32(E1000_SCTL);
477 regs_buff[5] = rd32(E1000_CONNSW);
478 regs_buff[6] = rd32(E1000_VET);
479 regs_buff[7] = rd32(E1000_LEDCTL);
480 regs_buff[8] = rd32(E1000_PBA);
481 regs_buff[9] = rd32(E1000_PBS);
482 regs_buff[10] = rd32(E1000_FRTIMER);
483 regs_buff[11] = rd32(E1000_TCPTIMER);
484
485 /* NVM Register */
486 regs_buff[12] = rd32(E1000_EECD);
487
488 /* Interrupt */
489 /* Reading EICS for EICR because they read the
490 * same but EICS does not clear on read
491 */
492 regs_buff[13] = rd32(E1000_EICS);
493 regs_buff[14] = rd32(E1000_EICS);
494 regs_buff[15] = rd32(E1000_EIMS);
495 regs_buff[16] = rd32(E1000_EIMC);
496 regs_buff[17] = rd32(E1000_EIAC);
497 regs_buff[18] = rd32(E1000_EIAM);
498 /* Reading ICS for ICR because they read the
499 * same but ICS does not clear on read
500 */
501 regs_buff[19] = rd32(E1000_ICS);
502 regs_buff[20] = rd32(E1000_ICS);
503 regs_buff[21] = rd32(E1000_IMS);
504 regs_buff[22] = rd32(E1000_IMC);
505 regs_buff[23] = rd32(E1000_IAC);
506 regs_buff[24] = rd32(E1000_IAM);
507 regs_buff[25] = rd32(E1000_IMIRVP);
508
509 /* Flow Control */
510 regs_buff[26] = rd32(E1000_FCAL);
511 regs_buff[27] = rd32(E1000_FCAH);
512 regs_buff[28] = rd32(E1000_FCTTV);
513 regs_buff[29] = rd32(E1000_FCRTL);
514 regs_buff[30] = rd32(E1000_FCRTH);
515 regs_buff[31] = rd32(E1000_FCRTV);
516
517 /* Receive */
518 regs_buff[32] = rd32(E1000_RCTL);
519 regs_buff[33] = rd32(E1000_RXCSUM);
520 regs_buff[34] = rd32(E1000_RLPML);
521 regs_buff[35] = rd32(E1000_RFCTL);
522 regs_buff[36] = rd32(E1000_MRQC);
523 regs_buff[37] = rd32(E1000_VT_CTL);
524
525 /* Transmit */
526 regs_buff[38] = rd32(E1000_TCTL);
527 regs_buff[39] = rd32(E1000_TCTL_EXT);
528 regs_buff[40] = rd32(E1000_TIPG);
529 regs_buff[41] = rd32(E1000_DTXCTL);
530
531 /* Wake Up */
532 regs_buff[42] = rd32(E1000_WUC);
533 regs_buff[43] = rd32(E1000_WUFC);
534 regs_buff[44] = rd32(E1000_WUS);
535 regs_buff[45] = rd32(E1000_IPAV);
536 regs_buff[46] = rd32(E1000_WUPL);
537
538 /* MAC */
539 regs_buff[47] = rd32(E1000_PCS_CFG0);
540 regs_buff[48] = rd32(E1000_PCS_LCTL);
541 regs_buff[49] = rd32(E1000_PCS_LSTAT);
542 regs_buff[50] = rd32(E1000_PCS_ANADV);
543 regs_buff[51] = rd32(E1000_PCS_LPAB);
544 regs_buff[52] = rd32(E1000_PCS_NPTX);
545 regs_buff[53] = rd32(E1000_PCS_LPABNP);
546
547 /* Statistics */
548 regs_buff[54] = adapter->stats.crcerrs;
549 regs_buff[55] = adapter->stats.algnerrc;
550 regs_buff[56] = adapter->stats.symerrs;
551 regs_buff[57] = adapter->stats.rxerrc;
552 regs_buff[58] = adapter->stats.mpc;
553 regs_buff[59] = adapter->stats.scc;
554 regs_buff[60] = adapter->stats.ecol;
555 regs_buff[61] = adapter->stats.mcc;
556 regs_buff[62] = adapter->stats.latecol;
557 regs_buff[63] = adapter->stats.colc;
558 regs_buff[64] = adapter->stats.dc;
559 regs_buff[65] = adapter->stats.tncrs;
560 regs_buff[66] = adapter->stats.sec;
561 regs_buff[67] = adapter->stats.htdpmc;
562 regs_buff[68] = adapter->stats.rlec;
563 regs_buff[69] = adapter->stats.xonrxc;
564 regs_buff[70] = adapter->stats.xontxc;
565 regs_buff[71] = adapter->stats.xoffrxc;
566 regs_buff[72] = adapter->stats.xofftxc;
567 regs_buff[73] = adapter->stats.fcruc;
568 regs_buff[74] = adapter->stats.prc64;
569 regs_buff[75] = adapter->stats.prc127;
570 regs_buff[76] = adapter->stats.prc255;
571 regs_buff[77] = adapter->stats.prc511;
572 regs_buff[78] = adapter->stats.prc1023;
573 regs_buff[79] = adapter->stats.prc1522;
574 regs_buff[80] = adapter->stats.gprc;
575 regs_buff[81] = adapter->stats.bprc;
576 regs_buff[82] = adapter->stats.mprc;
577 regs_buff[83] = adapter->stats.gptc;
578 regs_buff[84] = adapter->stats.gorc;
579 regs_buff[86] = adapter->stats.gotc;
580 regs_buff[88] = adapter->stats.rnbc;
581 regs_buff[89] = adapter->stats.ruc;
582 regs_buff[90] = adapter->stats.rfc;
583 regs_buff[91] = adapter->stats.roc;
584 regs_buff[92] = adapter->stats.rjc;
585 regs_buff[93] = adapter->stats.mgprc;
586 regs_buff[94] = adapter->stats.mgpdc;
587 regs_buff[95] = adapter->stats.mgptc;
588 regs_buff[96] = adapter->stats.tor;
589 regs_buff[98] = adapter->stats.tot;
590 regs_buff[100] = adapter->stats.tpr;
591 regs_buff[101] = adapter->stats.tpt;
592 regs_buff[102] = adapter->stats.ptc64;
593 regs_buff[103] = adapter->stats.ptc127;
594 regs_buff[104] = adapter->stats.ptc255;
595 regs_buff[105] = adapter->stats.ptc511;
596 regs_buff[106] = adapter->stats.ptc1023;
597 regs_buff[107] = adapter->stats.ptc1522;
598 regs_buff[108] = adapter->stats.mptc;
599 regs_buff[109] = adapter->stats.bptc;
600 regs_buff[110] = adapter->stats.tsctc;
601 regs_buff[111] = adapter->stats.iac;
602 regs_buff[112] = adapter->stats.rpthc;
603 regs_buff[113] = adapter->stats.hgptc;
604 regs_buff[114] = adapter->stats.hgorc;
605 regs_buff[116] = adapter->stats.hgotc;
606 regs_buff[118] = adapter->stats.lenerrs;
607 regs_buff[119] = adapter->stats.scvpc;
608 regs_buff[120] = adapter->stats.hrmpc;
609
610 for (i = 0; i < 4; i++)
611 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
612 for (i = 0; i < 4; i++)
613 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
614 for (i = 0; i < 4; i++)
615 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
616 for (i = 0; i < 4; i++)
617 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
618 for (i = 0; i < 4; i++)
619 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
620 for (i = 0; i < 4; i++)
621 regs_buff[141 + i] = rd32(E1000_RDH(i));
622 for (i = 0; i < 4; i++)
623 regs_buff[145 + i] = rd32(E1000_RDT(i));
624 for (i = 0; i < 4; i++)
625 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
626
627 for (i = 0; i < 10; i++)
628 regs_buff[153 + i] = rd32(E1000_EITR(i));
629 for (i = 0; i < 8; i++)
630 regs_buff[163 + i] = rd32(E1000_IMIR(i));
631 for (i = 0; i < 8; i++)
632 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
633 for (i = 0; i < 16; i++)
634 regs_buff[179 + i] = rd32(E1000_RAL(i));
635 for (i = 0; i < 16; i++)
636 regs_buff[195 + i] = rd32(E1000_RAH(i));
637
638 for (i = 0; i < 4; i++)
639 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
640 for (i = 0; i < 4; i++)
641 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
642 for (i = 0; i < 4; i++)
643 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
644 for (i = 0; i < 4; i++)
645 regs_buff[223 + i] = rd32(E1000_TDH(i));
646 for (i = 0; i < 4; i++)
647 regs_buff[227 + i] = rd32(E1000_TDT(i));
648 for (i = 0; i < 4; i++)
649 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
650 for (i = 0; i < 4; i++)
651 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
652 for (i = 0; i < 4; i++)
653 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
654 for (i = 0; i < 4; i++)
655 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
656
657 for (i = 0; i < 4; i++)
658 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
659 for (i = 0; i < 4; i++)
660 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
661 for (i = 0; i < 32; i++)
662 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
663 for (i = 0; i < 128; i++)
664 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
665 for (i = 0; i < 128; i++)
666 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
667 for (i = 0; i < 4; i++)
668 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
669
670 regs_buff[547] = rd32(E1000_TDFH);
671 regs_buff[548] = rd32(E1000_TDFT);
672 regs_buff[549] = rd32(E1000_TDFHS);
673 regs_buff[550] = rd32(E1000_TDFPC);
674
675 if (hw->mac.type > e1000_82580) {
676 regs_buff[551] = adapter->stats.o2bgptc;
677 regs_buff[552] = adapter->stats.b2ospc;
678 regs_buff[553] = adapter->stats.o2bspc;
679 regs_buff[554] = adapter->stats.b2ogprc;
680 }
681
682 if (hw->mac.type != e1000_82576)
683 return;
684 for (i = 0; i < 12; i++)
685 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
686 for (i = 0; i < 4; i++)
687 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
688 for (i = 0; i < 12; i++)
689 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
690 for (i = 0; i < 12; i++)
691 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
692 for (i = 0; i < 12; i++)
693 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
694 for (i = 0; i < 12; i++)
695 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
696 for (i = 0; i < 12; i++)
697 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
698 for (i = 0; i < 12; i++)
699 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
700
701 for (i = 0; i < 12; i++)
702 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
703 for (i = 0; i < 12; i++)
704 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
705 for (i = 0; i < 12; i++)
706 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
707 for (i = 0; i < 12; i++)
708 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
709 for (i = 0; i < 12; i++)
710 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
711 for (i = 0; i < 12; i++)
712 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
713 for (i = 0; i < 12; i++)
714 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
715 for (i = 0; i < 12; i++)
716 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
717}
718
719static int igb_get_eeprom_len(struct net_device *netdev)
720{
721 struct igb_adapter *adapter = netdev_priv(netdev);
722 return adapter->hw.nvm.word_size * 2;
723}
724
725static int igb_get_eeprom(struct net_device *netdev,
726 struct ethtool_eeprom *eeprom, u8 *bytes)
727{
728 struct igb_adapter *adapter = netdev_priv(netdev);
729 struct e1000_hw *hw = &adapter->hw;
730 u16 *eeprom_buff;
731 int first_word, last_word;
732 int ret_val = 0;
733 u16 i;
734
735 if (eeprom->len == 0)
736 return -EINVAL;
737
738 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
739
740 first_word = eeprom->offset >> 1;
741 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
742
743 eeprom_buff = kmalloc(sizeof(u16) *
744 (last_word - first_word + 1), GFP_KERNEL);
745 if (!eeprom_buff)
746 return -ENOMEM;
747
748 if (hw->nvm.type == e1000_nvm_eeprom_spi)
749 ret_val = hw->nvm.ops.read(hw, first_word,
750 last_word - first_word + 1,
751 eeprom_buff);
752 else {
753 for (i = 0; i < last_word - first_word + 1; i++) {
754 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
755 &eeprom_buff[i]);
756 if (ret_val)
757 break;
758 }
759 }
760
761 /* Device's eeprom is always little-endian, word addressable */
762 for (i = 0; i < last_word - first_word + 1; i++)
763 le16_to_cpus(&eeprom_buff[i]);
764
765 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
766 eeprom->len);
767 kfree(eeprom_buff);
768
769 return ret_val;
770}
771
772static int igb_set_eeprom(struct net_device *netdev,
773 struct ethtool_eeprom *eeprom, u8 *bytes)
774{
775 struct igb_adapter *adapter = netdev_priv(netdev);
776 struct e1000_hw *hw = &adapter->hw;
777 u16 *eeprom_buff;
778 void *ptr;
779 int max_len, first_word, last_word, ret_val = 0;
780 u16 i;
781
782 if (eeprom->len == 0)
783 return -EOPNOTSUPP;
784
785 if ((hw->mac.type >= e1000_i210) &&
786 !igb_get_flash_presence_i210(hw)) {
787 return -EOPNOTSUPP;
788 }
789
790 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
791 return -EFAULT;
792
793 max_len = hw->nvm.word_size * 2;
794
795 first_word = eeprom->offset >> 1;
796 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
797 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
798 if (!eeprom_buff)
799 return -ENOMEM;
800
801 ptr = (void *)eeprom_buff;
802
803 if (eeprom->offset & 1) {
804 /* need read/modify/write of first changed EEPROM word
805 * only the second byte of the word is being modified
806 */
807 ret_val = hw->nvm.ops.read(hw, first_word, 1,
808 &eeprom_buff[0]);
809 ptr++;
810 }
811 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
812 /* need read/modify/write of last changed EEPROM word
813 * only the first byte of the word is being modified
814 */
815 ret_val = hw->nvm.ops.read(hw, last_word, 1,
816 &eeprom_buff[last_word - first_word]);
817 }
818
819 /* Device's eeprom is always little-endian, word addressable */
820 for (i = 0; i < last_word - first_word + 1; i++)
821 le16_to_cpus(&eeprom_buff[i]);
822
823 memcpy(ptr, bytes, eeprom->len);
824
825 for (i = 0; i < last_word - first_word + 1; i++)
826 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
827
828 ret_val = hw->nvm.ops.write(hw, first_word,
829 last_word - first_word + 1, eeprom_buff);
830
831 /* Update the checksum if nvm write succeeded */
832 if (ret_val == 0)
833 hw->nvm.ops.update(hw);
834
835 igb_set_fw_version(adapter);
836 kfree(eeprom_buff);
837 return ret_val;
838}
839
840static void igb_get_drvinfo(struct net_device *netdev,
841 struct ethtool_drvinfo *drvinfo)
842{
843 struct igb_adapter *adapter = netdev_priv(netdev);
844
845 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
846 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
847
848 /* EEPROM image version # is reported as firmware version # for
849 * 82575 controllers
850 */
851 strlcpy(drvinfo->fw_version, adapter->fw_version,
852 sizeof(drvinfo->fw_version));
853 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
854 sizeof(drvinfo->bus_info));
855}
856
857static void igb_get_ringparam(struct net_device *netdev,
858 struct ethtool_ringparam *ring)
859{
860 struct igb_adapter *adapter = netdev_priv(netdev);
861
862 ring->rx_max_pending = IGB_MAX_RXD;
863 ring->tx_max_pending = IGB_MAX_TXD;
864 ring->rx_pending = adapter->rx_ring_count;
865 ring->tx_pending = adapter->tx_ring_count;
866}
867
868static int igb_set_ringparam(struct net_device *netdev,
869 struct ethtool_ringparam *ring)
870{
871 struct igb_adapter *adapter = netdev_priv(netdev);
872 struct igb_ring *temp_ring;
873 int i, err = 0;
874 u16 new_rx_count, new_tx_count;
875
876 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
877 return -EINVAL;
878
879 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
880 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
881 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
882
883 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
884 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
885 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
886
887 if ((new_tx_count == adapter->tx_ring_count) &&
888 (new_rx_count == adapter->rx_ring_count)) {
889 /* nothing to do */
890 return 0;
891 }
892
893 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
894 usleep_range(1000, 2000);
895
896 if (!netif_running(adapter->netdev)) {
897 for (i = 0; i < adapter->num_tx_queues; i++)
898 adapter->tx_ring[i]->count = new_tx_count;
899 for (i = 0; i < adapter->num_rx_queues; i++)
900 adapter->rx_ring[i]->count = new_rx_count;
901 adapter->tx_ring_count = new_tx_count;
902 adapter->rx_ring_count = new_rx_count;
903 goto clear_reset;
904 }
905
906 if (adapter->num_tx_queues > adapter->num_rx_queues)
907 temp_ring = vmalloc(adapter->num_tx_queues *
908 sizeof(struct igb_ring));
909 else
910 temp_ring = vmalloc(adapter->num_rx_queues *
911 sizeof(struct igb_ring));
912
913 if (!temp_ring) {
914 err = -ENOMEM;
915 goto clear_reset;
916 }
917
918 igb_down(adapter);
919
920 /* We can't just free everything and then setup again,
921 * because the ISRs in MSI-X mode get passed pointers
922 * to the Tx and Rx ring structs.
923 */
924 if (new_tx_count != adapter->tx_ring_count) {
925 for (i = 0; i < adapter->num_tx_queues; i++) {
926 memcpy(&temp_ring[i], adapter->tx_ring[i],
927 sizeof(struct igb_ring));
928
929 temp_ring[i].count = new_tx_count;
930 err = igb_setup_tx_resources(&temp_ring[i]);
931 if (err) {
932 while (i) {
933 i--;
934 igb_free_tx_resources(&temp_ring[i]);
935 }
936 goto err_setup;
937 }
938 }
939
940 for (i = 0; i < adapter->num_tx_queues; i++) {
941 igb_free_tx_resources(adapter->tx_ring[i]);
942
943 memcpy(adapter->tx_ring[i], &temp_ring[i],
944 sizeof(struct igb_ring));
945 }
946
947 adapter->tx_ring_count = new_tx_count;
948 }
949
950 if (new_rx_count != adapter->rx_ring_count) {
951 for (i = 0; i < adapter->num_rx_queues; i++) {
952 memcpy(&temp_ring[i], adapter->rx_ring[i],
953 sizeof(struct igb_ring));
954
955 temp_ring[i].count = new_rx_count;
956 err = igb_setup_rx_resources(&temp_ring[i]);
957 if (err) {
958 while (i) {
959 i--;
960 igb_free_rx_resources(&temp_ring[i]);
961 }
962 goto err_setup;
963 }
964
965 }
966
967 for (i = 0; i < adapter->num_rx_queues; i++) {
968 igb_free_rx_resources(adapter->rx_ring[i]);
969
970 memcpy(adapter->rx_ring[i], &temp_ring[i],
971 sizeof(struct igb_ring));
972 }
973
974 adapter->rx_ring_count = new_rx_count;
975 }
976err_setup:
977 igb_up(adapter);
978 vfree(temp_ring);
979clear_reset:
980 clear_bit(__IGB_RESETTING, &adapter->state);
981 return err;
982}
983
984/* ethtool register test data */
985struct igb_reg_test {
986 u16 reg;
987 u16 reg_offset;
988 u16 array_len;
989 u16 test_type;
990 u32 mask;
991 u32 write;
992};
993
994/* In the hardware, registers are laid out either singly, in arrays
995 * spaced 0x100 bytes apart, or in contiguous tables. We assume
996 * most tests take place on arrays or single registers (handled
997 * as a single-element array) and special-case the tables.
998 * Table tests are always pattern tests.
999 *
1000 * We also make provision for some required setup steps by specifying
1001 * registers to be written without any read-back testing.
1002 */
1003
1004#define PATTERN_TEST 1
1005#define SET_READ_TEST 2
1006#define WRITE_NO_TEST 3
1007#define TABLE32_TEST 4
1008#define TABLE64_TEST_LO 5
1009#define TABLE64_TEST_HI 6
1010
1011/* i210 reg test */
1012static struct igb_reg_test reg_test_i210[] = {
1013 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1014 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1015 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1016 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1017 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1018 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1019 /* RDH is read-only for i210, only test RDT. */
1020 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1021 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1022 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1023 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1024 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1025 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1026 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1027 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1028 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1029 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1030 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1031 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1032 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1033 0xFFFFFFFF, 0xFFFFFFFF },
1034 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1035 0x900FFFFF, 0xFFFFFFFF },
1036 { E1000_MTA, 0, 128, TABLE32_TEST,
1037 0xFFFFFFFF, 0xFFFFFFFF },
1038 { 0, 0, 0, 0, 0 }
1039};
1040
1041/* i350 reg test */
1042static struct igb_reg_test reg_test_i350[] = {
1043 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1044 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1045 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1046 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1047 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1048 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1049 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1050 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1051 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1052 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1053 /* RDH is read-only for i350, only test RDT. */
1054 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1055 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1056 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1057 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1058 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1059 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1060 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1061 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1062 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1063 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1064 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1065 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1067 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1068 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1069 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1070 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1071 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1072 0xFFFFFFFF, 0xFFFFFFFF },
1073 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1074 0xC3FFFFFF, 0xFFFFFFFF },
1075 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
1076 0xFFFFFFFF, 0xFFFFFFFF },
1077 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
1078 0xC3FFFFFF, 0xFFFFFFFF },
1079 { E1000_MTA, 0, 128, TABLE32_TEST,
1080 0xFFFFFFFF, 0xFFFFFFFF },
1081 { 0, 0, 0, 0 }
1082};
1083
1084/* 82580 reg test */
1085static struct igb_reg_test reg_test_82580[] = {
1086 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1087 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1088 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1089 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1090 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1091 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1092 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1093 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1094 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1095 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1096 /* RDH is read-only for 82580, only test RDT. */
1097 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1098 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1099 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1100 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1101 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1102 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1103 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1104 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1105 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1106 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1107 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1108 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1109 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1110 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1111 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1112 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1113 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1114 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1115 0xFFFFFFFF, 0xFFFFFFFF },
1116 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1117 0x83FFFFFF, 0xFFFFFFFF },
1118 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1119 0xFFFFFFFF, 0xFFFFFFFF },
1120 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1121 0x83FFFFFF, 0xFFFFFFFF },
1122 { E1000_MTA, 0, 128, TABLE32_TEST,
1123 0xFFFFFFFF, 0xFFFFFFFF },
1124 { 0, 0, 0, 0 }
1125};
1126
1127/* 82576 reg test */
1128static struct igb_reg_test reg_test_82576[] = {
1129 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1130 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1131 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1132 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1133 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1134 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1135 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1136 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1137 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1138 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1139 /* Enable all RX queues before testing. */
1140 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1141 E1000_RXDCTL_QUEUE_ENABLE },
1142 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1143 E1000_RXDCTL_QUEUE_ENABLE },
1144 /* RDH is read-only for 82576, only test RDT. */
1145 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1146 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1147 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1148 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1149 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1150 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1151 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1152 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1153 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1154 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1155 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1156 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1157 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1158 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1159 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1160 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1161 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1162 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1163 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1164 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1165 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1166 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1167 { 0, 0, 0, 0 }
1168};
1169
1170/* 82575 register test */
1171static struct igb_reg_test reg_test_82575[] = {
1172 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1173 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1174 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1175 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1176 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1177 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1178 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1179 /* Enable all four RX queues before testing. */
1180 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1181 E1000_RXDCTL_QUEUE_ENABLE },
1182 /* RDH is read-only for 82575, only test RDT. */
1183 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1184 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1185 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1186 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1187 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1188 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1189 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1190 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1191 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1192 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1193 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1194 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1195 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1196 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1197 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1198 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1199 { 0, 0, 0, 0 }
1200};
1201
1202static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1203 int reg, u32 mask, u32 write)
1204{
1205 struct e1000_hw *hw = &adapter->hw;
1206 u32 pat, val;
1207 static const u32 _test[] = {
1208 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1209 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1210 wr32(reg, (_test[pat] & write));
1211 val = rd32(reg) & mask;
1212 if (val != (_test[pat] & write & mask)) {
1213 dev_err(&adapter->pdev->dev,
1214 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1215 reg, val, (_test[pat] & write & mask));
1216 *data = reg;
1217 return true;
1218 }
1219 }
1220
1221 return false;
1222}
1223
1224static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1225 int reg, u32 mask, u32 write)
1226{
1227 struct e1000_hw *hw = &adapter->hw;
1228 u32 val;
1229
1230 wr32(reg, write & mask);
1231 val = rd32(reg);
1232 if ((write & mask) != (val & mask)) {
1233 dev_err(&adapter->pdev->dev,
1234 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1235 reg, (val & mask), (write & mask));
1236 *data = reg;
1237 return true;
1238 }
1239
1240 return false;
1241}
1242
1243#define REG_PATTERN_TEST(reg, mask, write) \
1244 do { \
1245 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1246 return 1; \
1247 } while (0)
1248
1249#define REG_SET_AND_CHECK(reg, mask, write) \
1250 do { \
1251 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1252 return 1; \
1253 } while (0)
1254
1255static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1256{
1257 struct e1000_hw *hw = &adapter->hw;
1258 struct igb_reg_test *test;
1259 u32 value, before, after;
1260 u32 i, toggle;
1261
1262 switch (adapter->hw.mac.type) {
1263 case e1000_i350:
1264 case e1000_i354:
1265 test = reg_test_i350;
1266 toggle = 0x7FEFF3FF;
1267 break;
1268 case e1000_i210:
1269 case e1000_i211:
1270 test = reg_test_i210;
1271 toggle = 0x7FEFF3FF;
1272 break;
1273 case e1000_82580:
1274 test = reg_test_82580;
1275 toggle = 0x7FEFF3FF;
1276 break;
1277 case e1000_82576:
1278 test = reg_test_82576;
1279 toggle = 0x7FFFF3FF;
1280 break;
1281 default:
1282 test = reg_test_82575;
1283 toggle = 0x7FFFF3FF;
1284 break;
1285 }
1286
1287 /* Because the status register is such a special case,
1288 * we handle it separately from the rest of the register
1289 * tests. Some bits are read-only, some toggle, and some
1290 * are writable on newer MACs.
1291 */
1292 before = rd32(E1000_STATUS);
1293 value = (rd32(E1000_STATUS) & toggle);
1294 wr32(E1000_STATUS, toggle);
1295 after = rd32(E1000_STATUS) & toggle;
1296 if (value != after) {
1297 dev_err(&adapter->pdev->dev,
1298 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1299 after, value);
1300 *data = 1;
1301 return 1;
1302 }
1303 /* restore previous status */
1304 wr32(E1000_STATUS, before);
1305
1306 /* Perform the remainder of the register test, looping through
1307 * the test table until we either fail or reach the null entry.
1308 */
1309 while (test->reg) {
1310 for (i = 0; i < test->array_len; i++) {
1311 switch (test->test_type) {
1312 case PATTERN_TEST:
1313 REG_PATTERN_TEST(test->reg +
1314 (i * test->reg_offset),
1315 test->mask,
1316 test->write);
1317 break;
1318 case SET_READ_TEST:
1319 REG_SET_AND_CHECK(test->reg +
1320 (i * test->reg_offset),
1321 test->mask,
1322 test->write);
1323 break;
1324 case WRITE_NO_TEST:
1325 writel(test->write,
1326 (adapter->hw.hw_addr + test->reg)
1327 + (i * test->reg_offset));
1328 break;
1329 case TABLE32_TEST:
1330 REG_PATTERN_TEST(test->reg + (i * 4),
1331 test->mask,
1332 test->write);
1333 break;
1334 case TABLE64_TEST_LO:
1335 REG_PATTERN_TEST(test->reg + (i * 8),
1336 test->mask,
1337 test->write);
1338 break;
1339 case TABLE64_TEST_HI:
1340 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1341 test->mask,
1342 test->write);
1343 break;
1344 }
1345 }
1346 test++;
1347 }
1348
1349 *data = 0;
1350 return 0;
1351}
1352
1353static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1354{
1355 struct e1000_hw *hw = &adapter->hw;
1356
1357 *data = 0;
1358
1359 /* Validate eeprom on all parts but flashless */
1360 switch (hw->mac.type) {
1361 case e1000_i210:
1362 case e1000_i211:
1363 if (igb_get_flash_presence_i210(hw)) {
1364 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1365 *data = 2;
1366 }
1367 break;
1368 default:
1369 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1370 *data = 2;
1371 break;
1372 }
1373
1374 return *data;
1375}
1376
1377static irqreturn_t igb_test_intr(int irq, void *data)
1378{
1379 struct igb_adapter *adapter = (struct igb_adapter *) data;
1380 struct e1000_hw *hw = &adapter->hw;
1381
1382 adapter->test_icr |= rd32(E1000_ICR);
1383
1384 return IRQ_HANDLED;
1385}
1386
1387static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1388{
1389 struct e1000_hw *hw = &adapter->hw;
1390 struct net_device *netdev = adapter->netdev;
1391 u32 mask, ics_mask, i = 0, shared_int = true;
1392 u32 irq = adapter->pdev->irq;
1393
1394 *data = 0;
1395
1396 /* Hook up test interrupt handler just for this test */
1397 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1398 if (request_irq(adapter->msix_entries[0].vector,
1399 igb_test_intr, 0, netdev->name, adapter)) {
1400 *data = 1;
1401 return -1;
1402 }
1403 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1404 shared_int = false;
1405 if (request_irq(irq,
1406 igb_test_intr, 0, netdev->name, adapter)) {
1407 *data = 1;
1408 return -1;
1409 }
1410 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1411 netdev->name, adapter)) {
1412 shared_int = false;
1413 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1414 netdev->name, adapter)) {
1415 *data = 1;
1416 return -1;
1417 }
1418 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1419 (shared_int ? "shared" : "unshared"));
1420
1421 /* Disable all the interrupts */
1422 wr32(E1000_IMC, ~0);
1423 wrfl();
1424 usleep_range(10000, 11000);
1425
1426 /* Define all writable bits for ICS */
1427 switch (hw->mac.type) {
1428 case e1000_82575:
1429 ics_mask = 0x37F47EDD;
1430 break;
1431 case e1000_82576:
1432 ics_mask = 0x77D4FBFD;
1433 break;
1434 case e1000_82580:
1435 ics_mask = 0x77DCFED5;
1436 break;
1437 case e1000_i350:
1438 case e1000_i354:
1439 case e1000_i210:
1440 case e1000_i211:
1441 ics_mask = 0x77DCFED5;
1442 break;
1443 default:
1444 ics_mask = 0x7FFFFFFF;
1445 break;
1446 }
1447
1448 /* Test each interrupt */
1449 for (; i < 31; i++) {
1450 /* Interrupt to test */
1451 mask = 1 << i;
1452
1453 if (!(mask & ics_mask))
1454 continue;
1455
1456 if (!shared_int) {
1457 /* Disable the interrupt to be reported in
1458 * the cause register and then force the same
1459 * interrupt and see if one gets posted. If
1460 * an interrupt was posted to the bus, the
1461 * test failed.
1462 */
1463 adapter->test_icr = 0;
1464
1465 /* Flush any pending interrupts */
1466 wr32(E1000_ICR, ~0);
1467
1468 wr32(E1000_IMC, mask);
1469 wr32(E1000_ICS, mask);
1470 wrfl();
1471 usleep_range(10000, 11000);
1472
1473 if (adapter->test_icr & mask) {
1474 *data = 3;
1475 break;
1476 }
1477 }
1478
1479 /* Enable the interrupt to be reported in
1480 * the cause register and then force the same
1481 * interrupt and see if one gets posted. If
1482 * an interrupt was not posted to the bus, the
1483 * test failed.
1484 */
1485 adapter->test_icr = 0;
1486
1487 /* Flush any pending interrupts */
1488 wr32(E1000_ICR, ~0);
1489
1490 wr32(E1000_IMS, mask);
1491 wr32(E1000_ICS, mask);
1492 wrfl();
1493 usleep_range(10000, 11000);
1494
1495 if (!(adapter->test_icr & mask)) {
1496 *data = 4;
1497 break;
1498 }
1499
1500 if (!shared_int) {
1501 /* Disable the other interrupts to be reported in
1502 * the cause register and then force the other
1503 * interrupts and see if any get posted. If
1504 * an interrupt was posted to the bus, the
1505 * test failed.
1506 */
1507 adapter->test_icr = 0;
1508
1509 /* Flush any pending interrupts */
1510 wr32(E1000_ICR, ~0);
1511
1512 wr32(E1000_IMC, ~mask);
1513 wr32(E1000_ICS, ~mask);
1514 wrfl();
1515 usleep_range(10000, 11000);
1516
1517 if (adapter->test_icr & mask) {
1518 *data = 5;
1519 break;
1520 }
1521 }
1522 }
1523
1524 /* Disable all the interrupts */
1525 wr32(E1000_IMC, ~0);
1526 wrfl();
1527 usleep_range(10000, 11000);
1528
1529 /* Unhook test interrupt handler */
1530 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1531 free_irq(adapter->msix_entries[0].vector, adapter);
1532 else
1533 free_irq(irq, adapter);
1534
1535 return *data;
1536}
1537
1538static void igb_free_desc_rings(struct igb_adapter *adapter)
1539{
1540 igb_free_tx_resources(&adapter->test_tx_ring);
1541 igb_free_rx_resources(&adapter->test_rx_ring);
1542}
1543
1544static int igb_setup_desc_rings(struct igb_adapter *adapter)
1545{
1546 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1547 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1548 struct e1000_hw *hw = &adapter->hw;
1549 int ret_val;
1550
1551 /* Setup Tx descriptor ring and Tx buffers */
1552 tx_ring->count = IGB_DEFAULT_TXD;
1553 tx_ring->dev = &adapter->pdev->dev;
1554 tx_ring->netdev = adapter->netdev;
1555 tx_ring->reg_idx = adapter->vfs_allocated_count;
1556
1557 if (igb_setup_tx_resources(tx_ring)) {
1558 ret_val = 1;
1559 goto err_nomem;
1560 }
1561
1562 igb_setup_tctl(adapter);
1563 igb_configure_tx_ring(adapter, tx_ring);
1564
1565 /* Setup Rx descriptor ring and Rx buffers */
1566 rx_ring->count = IGB_DEFAULT_RXD;
1567 rx_ring->dev = &adapter->pdev->dev;
1568 rx_ring->netdev = adapter->netdev;
1569 rx_ring->reg_idx = adapter->vfs_allocated_count;
1570
1571 if (igb_setup_rx_resources(rx_ring)) {
1572 ret_val = 3;
1573 goto err_nomem;
1574 }
1575
1576 /* set the default queue to queue 0 of PF */
1577 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1578
1579 /* enable receive ring */
1580 igb_setup_rctl(adapter);
1581 igb_configure_rx_ring(adapter, rx_ring);
1582
1583 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1584
1585 return 0;
1586
1587err_nomem:
1588 igb_free_desc_rings(adapter);
1589 return ret_val;
1590}
1591
1592static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1593{
1594 struct e1000_hw *hw = &adapter->hw;
1595
1596 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1597 igb_write_phy_reg(hw, 29, 0x001F);
1598 igb_write_phy_reg(hw, 30, 0x8FFC);
1599 igb_write_phy_reg(hw, 29, 0x001A);
1600 igb_write_phy_reg(hw, 30, 0x8FF0);
1601}
1602
1603static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1604{
1605 struct e1000_hw *hw = &adapter->hw;
1606 u32 ctrl_reg = 0;
1607
1608 hw->mac.autoneg = false;
1609
1610 if (hw->phy.type == e1000_phy_m88) {
1611 if (hw->phy.id != I210_I_PHY_ID) {
1612 /* Auto-MDI/MDIX Off */
1613 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1614 /* reset to update Auto-MDI/MDIX */
1615 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1616 /* autoneg off */
1617 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1618 } else {
1619 /* force 1000, set loopback */
1620 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1621 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1622 }
1623 } else if (hw->phy.type == e1000_phy_82580) {
1624 /* enable MII loopback */
1625 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1626 }
1627
1628 /* add small delay to avoid loopback test failure */
1629 msleep(50);
1630
1631 /* force 1000, set loopback */
1632 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1633
1634 /* Now set up the MAC to the same speed/duplex as the PHY. */
1635 ctrl_reg = rd32(E1000_CTRL);
1636 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1637 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1638 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1639 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1640 E1000_CTRL_FD | /* Force Duplex to FULL */
1641 E1000_CTRL_SLU); /* Set link up enable bit */
1642
1643 if (hw->phy.type == e1000_phy_m88)
1644 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1645
1646 wr32(E1000_CTRL, ctrl_reg);
1647
1648 /* Disable the receiver on the PHY so when a cable is plugged in, the
1649 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1650 */
1651 if (hw->phy.type == e1000_phy_m88)
1652 igb_phy_disable_receiver(adapter);
1653
1654 mdelay(500);
1655 return 0;
1656}
1657
1658static int igb_set_phy_loopback(struct igb_adapter *adapter)
1659{
1660 return igb_integrated_phy_loopback(adapter);
1661}
1662
1663static int igb_setup_loopback_test(struct igb_adapter *adapter)
1664{
1665 struct e1000_hw *hw = &adapter->hw;
1666 u32 reg;
1667
1668 reg = rd32(E1000_CTRL_EXT);
1669
1670 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1671 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1672 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1673 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1674 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1675 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1676 (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1677 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1678 /* Enable DH89xxCC MPHY for near end loopback */
1679 reg = rd32(E1000_MPHY_ADDR_CTL);
1680 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1681 E1000_MPHY_PCS_CLK_REG_OFFSET;
1682 wr32(E1000_MPHY_ADDR_CTL, reg);
1683
1684 reg = rd32(E1000_MPHY_DATA);
1685 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1686 wr32(E1000_MPHY_DATA, reg);
1687 }
1688
1689 reg = rd32(E1000_RCTL);
1690 reg |= E1000_RCTL_LBM_TCVR;
1691 wr32(E1000_RCTL, reg);
1692
1693 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1694
1695 reg = rd32(E1000_CTRL);
1696 reg &= ~(E1000_CTRL_RFCE |
1697 E1000_CTRL_TFCE |
1698 E1000_CTRL_LRST);
1699 reg |= E1000_CTRL_SLU |
1700 E1000_CTRL_FD;
1701 wr32(E1000_CTRL, reg);
1702
1703 /* Unset switch control to serdes energy detect */
1704 reg = rd32(E1000_CONNSW);
1705 reg &= ~E1000_CONNSW_ENRGSRC;
1706 wr32(E1000_CONNSW, reg);
1707
1708 /* Unset sigdetect for SERDES loopback on
1709 * 82580 and newer devices.
1710 */
1711 if (hw->mac.type >= e1000_82580) {
1712 reg = rd32(E1000_PCS_CFG0);
1713 reg |= E1000_PCS_CFG_IGN_SD;
1714 wr32(E1000_PCS_CFG0, reg);
1715 }
1716
1717 /* Set PCS register for forced speed */
1718 reg = rd32(E1000_PCS_LCTL);
1719 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1720 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1721 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1722 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1723 E1000_PCS_LCTL_FSD | /* Force Speed */
1724 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1725 wr32(E1000_PCS_LCTL, reg);
1726
1727 return 0;
1728 }
1729
1730 return igb_set_phy_loopback(adapter);
1731}
1732
1733static void igb_loopback_cleanup(struct igb_adapter *adapter)
1734{
1735 struct e1000_hw *hw = &adapter->hw;
1736 u32 rctl;
1737 u16 phy_reg;
1738
1739 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1740 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1741 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1742 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1743 (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1744 u32 reg;
1745
1746 /* Disable near end loopback on DH89xxCC */
1747 reg = rd32(E1000_MPHY_ADDR_CTL);
1748 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1749 E1000_MPHY_PCS_CLK_REG_OFFSET;
1750 wr32(E1000_MPHY_ADDR_CTL, reg);
1751
1752 reg = rd32(E1000_MPHY_DATA);
1753 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1754 wr32(E1000_MPHY_DATA, reg);
1755 }
1756
1757 rctl = rd32(E1000_RCTL);
1758 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1759 wr32(E1000_RCTL, rctl);
1760
1761 hw->mac.autoneg = true;
1762 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1763 if (phy_reg & MII_CR_LOOPBACK) {
1764 phy_reg &= ~MII_CR_LOOPBACK;
1765 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1766 igb_phy_sw_reset(hw);
1767 }
1768}
1769
1770static void igb_create_lbtest_frame(struct sk_buff *skb,
1771 unsigned int frame_size)
1772{
1773 memset(skb->data, 0xFF, frame_size);
1774 frame_size /= 2;
1775 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1776 memset(&skb->data[frame_size + 10], 0xBE, 1);
1777 memset(&skb->data[frame_size + 12], 0xAF, 1);
1778}
1779
1780static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1781 unsigned int frame_size)
1782{
1783 unsigned char *data;
1784 bool match = true;
1785
1786 frame_size >>= 1;
1787
1788 data = kmap(rx_buffer->page);
1789
1790 if (data[3] != 0xFF ||
1791 data[frame_size + 10] != 0xBE ||
1792 data[frame_size + 12] != 0xAF)
1793 match = false;
1794
1795 kunmap(rx_buffer->page);
1796
1797 return match;
1798}
1799
1800static int igb_clean_test_rings(struct igb_ring *rx_ring,
1801 struct igb_ring *tx_ring,
1802 unsigned int size)
1803{
1804 union e1000_adv_rx_desc *rx_desc;
1805 struct igb_rx_buffer *rx_buffer_info;
1806 struct igb_tx_buffer *tx_buffer_info;
1807 u16 rx_ntc, tx_ntc, count = 0;
1808
1809 /* initialize next to clean and descriptor values */
1810 rx_ntc = rx_ring->next_to_clean;
1811 tx_ntc = tx_ring->next_to_clean;
1812 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1813
1814 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1815 /* check Rx buffer */
1816 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1817
1818 /* sync Rx buffer for CPU read */
1819 dma_sync_single_for_cpu(rx_ring->dev,
1820 rx_buffer_info->dma,
1821 IGB_RX_BUFSZ,
1822 DMA_FROM_DEVICE);
1823
1824 /* verify contents of skb */
1825 if (igb_check_lbtest_frame(rx_buffer_info, size))
1826 count++;
1827
1828 /* sync Rx buffer for device write */
1829 dma_sync_single_for_device(rx_ring->dev,
1830 rx_buffer_info->dma,
1831 IGB_RX_BUFSZ,
1832 DMA_FROM_DEVICE);
1833
1834 /* unmap buffer on Tx side */
1835 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1836 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1837
1838 /* increment Rx/Tx next to clean counters */
1839 rx_ntc++;
1840 if (rx_ntc == rx_ring->count)
1841 rx_ntc = 0;
1842 tx_ntc++;
1843 if (tx_ntc == tx_ring->count)
1844 tx_ntc = 0;
1845
1846 /* fetch next descriptor */
1847 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1848 }
1849
1850 netdev_tx_reset_queue(txring_txq(tx_ring));
1851
1852 /* re-map buffers to ring, store next to clean values */
1853 igb_alloc_rx_buffers(rx_ring, count);
1854 rx_ring->next_to_clean = rx_ntc;
1855 tx_ring->next_to_clean = tx_ntc;
1856
1857 return count;
1858}
1859
1860static int igb_run_loopback_test(struct igb_adapter *adapter)
1861{
1862 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1863 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1864 u16 i, j, lc, good_cnt;
1865 int ret_val = 0;
1866 unsigned int size = IGB_RX_HDR_LEN;
1867 netdev_tx_t tx_ret_val;
1868 struct sk_buff *skb;
1869
1870 /* allocate test skb */
1871 skb = alloc_skb(size, GFP_KERNEL);
1872 if (!skb)
1873 return 11;
1874
1875 /* place data into test skb */
1876 igb_create_lbtest_frame(skb, size);
1877 skb_put(skb, size);
1878
1879 /* Calculate the loop count based on the largest descriptor ring
1880 * The idea is to wrap the largest ring a number of times using 64
1881 * send/receive pairs during each loop
1882 */
1883
1884 if (rx_ring->count <= tx_ring->count)
1885 lc = ((tx_ring->count / 64) * 2) + 1;
1886 else
1887 lc = ((rx_ring->count / 64) * 2) + 1;
1888
1889 for (j = 0; j <= lc; j++) { /* loop count loop */
1890 /* reset count of good packets */
1891 good_cnt = 0;
1892
1893 /* place 64 packets on the transmit queue*/
1894 for (i = 0; i < 64; i++) {
1895 skb_get(skb);
1896 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1897 if (tx_ret_val == NETDEV_TX_OK)
1898 good_cnt++;
1899 }
1900
1901 if (good_cnt != 64) {
1902 ret_val = 12;
1903 break;
1904 }
1905
1906 /* allow 200 milliseconds for packets to go from Tx to Rx */
1907 msleep(200);
1908
1909 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1910 if (good_cnt != 64) {
1911 ret_val = 13;
1912 break;
1913 }
1914 } /* end loop count loop */
1915
1916 /* free the original skb */
1917 kfree_skb(skb);
1918
1919 return ret_val;
1920}
1921
1922static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1923{
1924 /* PHY loopback cannot be performed if SoL/IDER
1925 * sessions are active
1926 */
1927 if (igb_check_reset_block(&adapter->hw)) {
1928 dev_err(&adapter->pdev->dev,
1929 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1930 *data = 0;
1931 goto out;
1932 }
1933
1934 if (adapter->hw.mac.type == e1000_i354) {
1935 dev_info(&adapter->pdev->dev,
1936 "Loopback test not supported on i354.\n");
1937 *data = 0;
1938 goto out;
1939 }
1940 *data = igb_setup_desc_rings(adapter);
1941 if (*data)
1942 goto out;
1943 *data = igb_setup_loopback_test(adapter);
1944 if (*data)
1945 goto err_loopback;
1946 *data = igb_run_loopback_test(adapter);
1947 igb_loopback_cleanup(adapter);
1948
1949err_loopback:
1950 igb_free_desc_rings(adapter);
1951out:
1952 return *data;
1953}
1954
1955static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1956{
1957 struct e1000_hw *hw = &adapter->hw;
1958 *data = 0;
1959 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1960 int i = 0;
1961
1962 hw->mac.serdes_has_link = false;
1963
1964 /* On some blade server designs, link establishment
1965 * could take as long as 2-3 minutes
1966 */
1967 do {
1968 hw->mac.ops.check_for_link(&adapter->hw);
1969 if (hw->mac.serdes_has_link)
1970 return *data;
1971 msleep(20);
1972 } while (i++ < 3750);
1973
1974 *data = 1;
1975 } else {
1976 hw->mac.ops.check_for_link(&adapter->hw);
1977 if (hw->mac.autoneg)
1978 msleep(5000);
1979
1980 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1981 *data = 1;
1982 }
1983 return *data;
1984}
1985
1986static void igb_diag_test(struct net_device *netdev,
1987 struct ethtool_test *eth_test, u64 *data)
1988{
1989 struct igb_adapter *adapter = netdev_priv(netdev);
1990 u16 autoneg_advertised;
1991 u8 forced_speed_duplex, autoneg;
1992 bool if_running = netif_running(netdev);
1993
1994 set_bit(__IGB_TESTING, &adapter->state);
1995
1996 /* can't do offline tests on media switching devices */
1997 if (adapter->hw.dev_spec._82575.mas_capable)
1998 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
1999 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2000 /* Offline tests */
2001
2002 /* save speed, duplex, autoneg settings */
2003 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2004 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2005 autoneg = adapter->hw.mac.autoneg;
2006
2007 dev_info(&adapter->pdev->dev, "offline testing starting\n");
2008
2009 /* power up link for link test */
2010 igb_power_up_link(adapter);
2011
2012 /* Link test performed before hardware reset so autoneg doesn't
2013 * interfere with test result
2014 */
2015 if (igb_link_test(adapter, &data[TEST_LINK]))
2016 eth_test->flags |= ETH_TEST_FL_FAILED;
2017
2018 if (if_running)
2019 /* indicate we're in test mode */
2020 igb_close(netdev);
2021 else
2022 igb_reset(adapter);
2023
2024 if (igb_reg_test(adapter, &data[TEST_REG]))
2025 eth_test->flags |= ETH_TEST_FL_FAILED;
2026
2027 igb_reset(adapter);
2028 if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2029 eth_test->flags |= ETH_TEST_FL_FAILED;
2030
2031 igb_reset(adapter);
2032 if (igb_intr_test(adapter, &data[TEST_IRQ]))
2033 eth_test->flags |= ETH_TEST_FL_FAILED;
2034
2035 igb_reset(adapter);
2036 /* power up link for loopback test */
2037 igb_power_up_link(adapter);
2038 if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2039 eth_test->flags |= ETH_TEST_FL_FAILED;
2040
2041 /* restore speed, duplex, autoneg settings */
2042 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2043 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2044 adapter->hw.mac.autoneg = autoneg;
2045
2046 /* force this routine to wait until autoneg complete/timeout */
2047 adapter->hw.phy.autoneg_wait_to_complete = true;
2048 igb_reset(adapter);
2049 adapter->hw.phy.autoneg_wait_to_complete = false;
2050
2051 clear_bit(__IGB_TESTING, &adapter->state);
2052 if (if_running)
2053 igb_open(netdev);
2054 } else {
2055 dev_info(&adapter->pdev->dev, "online testing starting\n");
2056
2057 /* PHY is powered down when interface is down */
2058 if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2059 eth_test->flags |= ETH_TEST_FL_FAILED;
2060 else
2061 data[TEST_LINK] = 0;
2062
2063 /* Online tests aren't run; pass by default */
2064 data[TEST_REG] = 0;
2065 data[TEST_EEP] = 0;
2066 data[TEST_IRQ] = 0;
2067 data[TEST_LOOP] = 0;
2068
2069 clear_bit(__IGB_TESTING, &adapter->state);
2070 }
2071 msleep_interruptible(4 * 1000);
2072}
2073
2074static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2075{
2076 struct igb_adapter *adapter = netdev_priv(netdev);
2077
2078 wol->wolopts = 0;
2079
2080 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2081 return;
2082
2083 wol->supported = WAKE_UCAST | WAKE_MCAST |
2084 WAKE_BCAST | WAKE_MAGIC |
2085 WAKE_PHY;
2086
2087 /* apply any specific unsupported masks here */
2088 switch (adapter->hw.device_id) {
2089 default:
2090 break;
2091 }
2092
2093 if (adapter->wol & E1000_WUFC_EX)
2094 wol->wolopts |= WAKE_UCAST;
2095 if (adapter->wol & E1000_WUFC_MC)
2096 wol->wolopts |= WAKE_MCAST;
2097 if (adapter->wol & E1000_WUFC_BC)
2098 wol->wolopts |= WAKE_BCAST;
2099 if (adapter->wol & E1000_WUFC_MAG)
2100 wol->wolopts |= WAKE_MAGIC;
2101 if (adapter->wol & E1000_WUFC_LNKC)
2102 wol->wolopts |= WAKE_PHY;
2103}
2104
2105static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2106{
2107 struct igb_adapter *adapter = netdev_priv(netdev);
2108
2109 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2110 return -EOPNOTSUPP;
2111
2112 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2113 return wol->wolopts ? -EOPNOTSUPP : 0;
2114
2115 /* these settings will always override what we currently have */
2116 adapter->wol = 0;
2117
2118 if (wol->wolopts & WAKE_UCAST)
2119 adapter->wol |= E1000_WUFC_EX;
2120 if (wol->wolopts & WAKE_MCAST)
2121 adapter->wol |= E1000_WUFC_MC;
2122 if (wol->wolopts & WAKE_BCAST)
2123 adapter->wol |= E1000_WUFC_BC;
2124 if (wol->wolopts & WAKE_MAGIC)
2125 adapter->wol |= E1000_WUFC_MAG;
2126 if (wol->wolopts & WAKE_PHY)
2127 adapter->wol |= E1000_WUFC_LNKC;
2128 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2129
2130 return 0;
2131}
2132
2133/* bit defines for adapter->led_status */
2134#define IGB_LED_ON 0
2135
2136static int igb_set_phys_id(struct net_device *netdev,
2137 enum ethtool_phys_id_state state)
2138{
2139 struct igb_adapter *adapter = netdev_priv(netdev);
2140 struct e1000_hw *hw = &adapter->hw;
2141
2142 switch (state) {
2143 case ETHTOOL_ID_ACTIVE:
2144 igb_blink_led(hw);
2145 return 2;
2146 case ETHTOOL_ID_ON:
2147 igb_blink_led(hw);
2148 break;
2149 case ETHTOOL_ID_OFF:
2150 igb_led_off(hw);
2151 break;
2152 case ETHTOOL_ID_INACTIVE:
2153 igb_led_off(hw);
2154 clear_bit(IGB_LED_ON, &adapter->led_status);
2155 igb_cleanup_led(hw);
2156 break;
2157 }
2158
2159 return 0;
2160}
2161
2162static int igb_set_coalesce(struct net_device *netdev,
2163 struct ethtool_coalesce *ec)
2164{
2165 struct igb_adapter *adapter = netdev_priv(netdev);
2166 int i;
2167
2168 if (ec->rx_max_coalesced_frames ||
2169 ec->rx_coalesce_usecs_irq ||
2170 ec->rx_max_coalesced_frames_irq ||
2171 ec->tx_max_coalesced_frames ||
2172 ec->tx_coalesce_usecs_irq ||
2173 ec->stats_block_coalesce_usecs ||
2174 ec->use_adaptive_rx_coalesce ||
2175 ec->use_adaptive_tx_coalesce ||
2176 ec->pkt_rate_low ||
2177 ec->rx_coalesce_usecs_low ||
2178 ec->rx_max_coalesced_frames_low ||
2179 ec->tx_coalesce_usecs_low ||
2180 ec->tx_max_coalesced_frames_low ||
2181 ec->pkt_rate_high ||
2182 ec->rx_coalesce_usecs_high ||
2183 ec->rx_max_coalesced_frames_high ||
2184 ec->tx_coalesce_usecs_high ||
2185 ec->tx_max_coalesced_frames_high ||
2186 ec->rate_sample_interval)
2187 return -ENOTSUPP;
2188
2189 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2190 ((ec->rx_coalesce_usecs > 3) &&
2191 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2192 (ec->rx_coalesce_usecs == 2))
2193 return -EINVAL;
2194
2195 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2196 ((ec->tx_coalesce_usecs > 3) &&
2197 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2198 (ec->tx_coalesce_usecs == 2))
2199 return -EINVAL;
2200
2201 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2202 return -EINVAL;
2203
2204 /* If ITR is disabled, disable DMAC */
2205 if (ec->rx_coalesce_usecs == 0) {
2206 if (adapter->flags & IGB_FLAG_DMAC)
2207 adapter->flags &= ~IGB_FLAG_DMAC;
2208 }
2209
2210 /* convert to rate of irq's per second */
2211 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2212 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2213 else
2214 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2215
2216 /* convert to rate of irq's per second */
2217 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2218 adapter->tx_itr_setting = adapter->rx_itr_setting;
2219 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2220 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2221 else
2222 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2223
2224 for (i = 0; i < adapter->num_q_vectors; i++) {
2225 struct igb_q_vector *q_vector = adapter->q_vector[i];
2226 q_vector->tx.work_limit = adapter->tx_work_limit;
2227 if (q_vector->rx.ring)
2228 q_vector->itr_val = adapter->rx_itr_setting;
2229 else
2230 q_vector->itr_val = adapter->tx_itr_setting;
2231 if (q_vector->itr_val && q_vector->itr_val <= 3)
2232 q_vector->itr_val = IGB_START_ITR;
2233 q_vector->set_itr = 1;
2234 }
2235
2236 return 0;
2237}
2238
2239static int igb_get_coalesce(struct net_device *netdev,
2240 struct ethtool_coalesce *ec)
2241{
2242 struct igb_adapter *adapter = netdev_priv(netdev);
2243
2244 if (adapter->rx_itr_setting <= 3)
2245 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2246 else
2247 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2248
2249 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2250 if (adapter->tx_itr_setting <= 3)
2251 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2252 else
2253 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2254 }
2255
2256 return 0;
2257}
2258
2259static int igb_nway_reset(struct net_device *netdev)
2260{
2261 struct igb_adapter *adapter = netdev_priv(netdev);
2262 if (netif_running(netdev))
2263 igb_reinit_locked(adapter);
2264 return 0;
2265}
2266
2267static int igb_get_sset_count(struct net_device *netdev, int sset)
2268{
2269 switch (sset) {
2270 case ETH_SS_STATS:
2271 return IGB_STATS_LEN;
2272 case ETH_SS_TEST:
2273 return IGB_TEST_LEN;
2274 default:
2275 return -ENOTSUPP;
2276 }
2277}
2278
2279static void igb_get_ethtool_stats(struct net_device *netdev,
2280 struct ethtool_stats *stats, u64 *data)
2281{
2282 struct igb_adapter *adapter = netdev_priv(netdev);
2283 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2284 unsigned int start;
2285 struct igb_ring *ring;
2286 int i, j;
2287 char *p;
2288
2289 spin_lock(&adapter->stats64_lock);
2290 igb_update_stats(adapter, net_stats);
2291
2292 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2293 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2294 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2295 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2296 }
2297 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2298 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2299 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2300 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2301 }
2302 for (j = 0; j < adapter->num_tx_queues; j++) {
2303 u64 restart2;
2304
2305 ring = adapter->tx_ring[j];
2306 do {
2307 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2308 data[i] = ring->tx_stats.packets;
2309 data[i+1] = ring->tx_stats.bytes;
2310 data[i+2] = ring->tx_stats.restart_queue;
2311 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2312 do {
2313 start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2314 restart2 = ring->tx_stats.restart_queue2;
2315 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2316 data[i+2] += restart2;
2317
2318 i += IGB_TX_QUEUE_STATS_LEN;
2319 }
2320 for (j = 0; j < adapter->num_rx_queues; j++) {
2321 ring = adapter->rx_ring[j];
2322 do {
2323 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2324 data[i] = ring->rx_stats.packets;
2325 data[i+1] = ring->rx_stats.bytes;
2326 data[i+2] = ring->rx_stats.drops;
2327 data[i+3] = ring->rx_stats.csum_err;
2328 data[i+4] = ring->rx_stats.alloc_failed;
2329 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2330 i += IGB_RX_QUEUE_STATS_LEN;
2331 }
2332 spin_unlock(&adapter->stats64_lock);
2333}
2334
2335static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2336{
2337 struct igb_adapter *adapter = netdev_priv(netdev);
2338 u8 *p = data;
2339 int i;
2340
2341 switch (stringset) {
2342 case ETH_SS_TEST:
2343 memcpy(data, *igb_gstrings_test,
2344 IGB_TEST_LEN*ETH_GSTRING_LEN);
2345 break;
2346 case ETH_SS_STATS:
2347 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2348 memcpy(p, igb_gstrings_stats[i].stat_string,
2349 ETH_GSTRING_LEN);
2350 p += ETH_GSTRING_LEN;
2351 }
2352 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2353 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2354 ETH_GSTRING_LEN);
2355 p += ETH_GSTRING_LEN;
2356 }
2357 for (i = 0; i < adapter->num_tx_queues; i++) {
2358 sprintf(p, "tx_queue_%u_packets", i);
2359 p += ETH_GSTRING_LEN;
2360 sprintf(p, "tx_queue_%u_bytes", i);
2361 p += ETH_GSTRING_LEN;
2362 sprintf(p, "tx_queue_%u_restart", i);
2363 p += ETH_GSTRING_LEN;
2364 }
2365 for (i = 0; i < adapter->num_rx_queues; i++) {
2366 sprintf(p, "rx_queue_%u_packets", i);
2367 p += ETH_GSTRING_LEN;
2368 sprintf(p, "rx_queue_%u_bytes", i);
2369 p += ETH_GSTRING_LEN;
2370 sprintf(p, "rx_queue_%u_drops", i);
2371 p += ETH_GSTRING_LEN;
2372 sprintf(p, "rx_queue_%u_csum_err", i);
2373 p += ETH_GSTRING_LEN;
2374 sprintf(p, "rx_queue_%u_alloc_failed", i);
2375 p += ETH_GSTRING_LEN;
2376 }
2377 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2378 break;
2379 }
2380}
2381
2382static int igb_get_ts_info(struct net_device *dev,
2383 struct ethtool_ts_info *info)
2384{
2385 struct igb_adapter *adapter = netdev_priv(dev);
2386
2387 if (adapter->ptp_clock)
2388 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2389 else
2390 info->phc_index = -1;
2391
2392 switch (adapter->hw.mac.type) {
2393 case e1000_82575:
2394 info->so_timestamping =
2395 SOF_TIMESTAMPING_TX_SOFTWARE |
2396 SOF_TIMESTAMPING_RX_SOFTWARE |
2397 SOF_TIMESTAMPING_SOFTWARE;
2398 return 0;
2399 case e1000_82576:
2400 case e1000_82580:
2401 case e1000_i350:
2402 case e1000_i354:
2403 case e1000_i210:
2404 case e1000_i211:
2405 info->so_timestamping =
2406 SOF_TIMESTAMPING_TX_SOFTWARE |
2407 SOF_TIMESTAMPING_RX_SOFTWARE |
2408 SOF_TIMESTAMPING_SOFTWARE |
2409 SOF_TIMESTAMPING_TX_HARDWARE |
2410 SOF_TIMESTAMPING_RX_HARDWARE |
2411 SOF_TIMESTAMPING_RAW_HARDWARE;
2412
2413 info->tx_types =
2414 (1 << HWTSTAMP_TX_OFF) |
2415 (1 << HWTSTAMP_TX_ON);
2416
2417 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2418
2419 /* 82576 does not support timestamping all packets. */
2420 if (adapter->hw.mac.type >= e1000_82580)
2421 info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2422 else
2423 info->rx_filters |=
2424 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2425 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2426 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2427
2428 return 0;
2429 default:
2430 return -EOPNOTSUPP;
2431 }
2432}
2433
2434static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2435 struct ethtool_rxnfc *cmd)
2436{
2437 cmd->data = 0;
2438
2439 /* Report default options for RSS on igb */
2440 switch (cmd->flow_type) {
2441 case TCP_V4_FLOW:
2442 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2443 /* Fall through */
2444 case UDP_V4_FLOW:
2445 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2446 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2447 /* Fall through */
2448 case SCTP_V4_FLOW:
2449 case AH_ESP_V4_FLOW:
2450 case AH_V4_FLOW:
2451 case ESP_V4_FLOW:
2452 case IPV4_FLOW:
2453 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2454 break;
2455 case TCP_V6_FLOW:
2456 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2457 /* Fall through */
2458 case UDP_V6_FLOW:
2459 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2460 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2461 /* Fall through */
2462 case SCTP_V6_FLOW:
2463 case AH_ESP_V6_FLOW:
2464 case AH_V6_FLOW:
2465 case ESP_V6_FLOW:
2466 case IPV6_FLOW:
2467 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2468 break;
2469 default:
2470 return -EINVAL;
2471 }
2472
2473 return 0;
2474}
2475
2476static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2477 u32 *rule_locs)
2478{
2479 struct igb_adapter *adapter = netdev_priv(dev);
2480 int ret = -EOPNOTSUPP;
2481
2482 switch (cmd->cmd) {
2483 case ETHTOOL_GRXRINGS:
2484 cmd->data = adapter->num_rx_queues;
2485 ret = 0;
2486 break;
2487 case ETHTOOL_GRXFH:
2488 ret = igb_get_rss_hash_opts(adapter, cmd);
2489 break;
2490 default:
2491 break;
2492 }
2493
2494 return ret;
2495}
2496
2497#define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2498 IGB_FLAG_RSS_FIELD_IPV6_UDP)
2499static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2500 struct ethtool_rxnfc *nfc)
2501{
2502 u32 flags = adapter->flags;
2503
2504 /* RSS does not support anything other than hashing
2505 * to queues on src and dst IPs and ports
2506 */
2507 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2508 RXH_L4_B_0_1 | RXH_L4_B_2_3))
2509 return -EINVAL;
2510
2511 switch (nfc->flow_type) {
2512 case TCP_V4_FLOW:
2513 case TCP_V6_FLOW:
2514 if (!(nfc->data & RXH_IP_SRC) ||
2515 !(nfc->data & RXH_IP_DST) ||
2516 !(nfc->data & RXH_L4_B_0_1) ||
2517 !(nfc->data & RXH_L4_B_2_3))
2518 return -EINVAL;
2519 break;
2520 case UDP_V4_FLOW:
2521 if (!(nfc->data & RXH_IP_SRC) ||
2522 !(nfc->data & RXH_IP_DST))
2523 return -EINVAL;
2524 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2525 case 0:
2526 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2527 break;
2528 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2529 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2530 break;
2531 default:
2532 return -EINVAL;
2533 }
2534 break;
2535 case UDP_V6_FLOW:
2536 if (!(nfc->data & RXH_IP_SRC) ||
2537 !(nfc->data & RXH_IP_DST))
2538 return -EINVAL;
2539 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2540 case 0:
2541 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2542 break;
2543 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2544 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2545 break;
2546 default:
2547 return -EINVAL;
2548 }
2549 break;
2550 case AH_ESP_V4_FLOW:
2551 case AH_V4_FLOW:
2552 case ESP_V4_FLOW:
2553 case SCTP_V4_FLOW:
2554 case AH_ESP_V6_FLOW:
2555 case AH_V6_FLOW:
2556 case ESP_V6_FLOW:
2557 case SCTP_V6_FLOW:
2558 if (!(nfc->data & RXH_IP_SRC) ||
2559 !(nfc->data & RXH_IP_DST) ||
2560 (nfc->data & RXH_L4_B_0_1) ||
2561 (nfc->data & RXH_L4_B_2_3))
2562 return -EINVAL;
2563 break;
2564 default:
2565 return -EINVAL;
2566 }
2567
2568 /* if we changed something we need to update flags */
2569 if (flags != adapter->flags) {
2570 struct e1000_hw *hw = &adapter->hw;
2571 u32 mrqc = rd32(E1000_MRQC);
2572
2573 if ((flags & UDP_RSS_FLAGS) &&
2574 !(adapter->flags & UDP_RSS_FLAGS))
2575 dev_err(&adapter->pdev->dev,
2576 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2577
2578 adapter->flags = flags;
2579
2580 /* Perform hash on these packet types */
2581 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2582 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2583 E1000_MRQC_RSS_FIELD_IPV6 |
2584 E1000_MRQC_RSS_FIELD_IPV6_TCP;
2585
2586 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2587 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2588
2589 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2590 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2591
2592 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2593 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2594
2595 wr32(E1000_MRQC, mrqc);
2596 }
2597
2598 return 0;
2599}
2600
2601static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
2602{
2603 struct igb_adapter *adapter = netdev_priv(dev);
2604 int ret = -EOPNOTSUPP;
2605
2606 switch (cmd->cmd) {
2607 case ETHTOOL_SRXFH:
2608 ret = igb_set_rss_hash_opt(adapter, cmd);
2609 break;
2610 default:
2611 break;
2612 }
2613
2614 return ret;
2615}
2616
2617static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2618{
2619 struct igb_adapter *adapter = netdev_priv(netdev);
2620 struct e1000_hw *hw = &adapter->hw;
2621 u32 ret_val;
2622 u16 phy_data;
2623
2624 if ((hw->mac.type < e1000_i350) ||
2625 (hw->phy.media_type != e1000_media_type_copper))
2626 return -EOPNOTSUPP;
2627
2628 edata->supported = (SUPPORTED_1000baseT_Full |
2629 SUPPORTED_100baseT_Full);
2630 if (!hw->dev_spec._82575.eee_disable)
2631 edata->advertised =
2632 mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2633
2634 /* The IPCNFG and EEER registers are not supported on I354. */
2635 if (hw->mac.type == e1000_i354) {
2636 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
2637 } else {
2638 u32 eeer;
2639
2640 eeer = rd32(E1000_EEER);
2641
2642 /* EEE status on negotiated link */
2643 if (eeer & E1000_EEER_EEE_NEG)
2644 edata->eee_active = true;
2645
2646 if (eeer & E1000_EEER_TX_LPI_EN)
2647 edata->tx_lpi_enabled = true;
2648 }
2649
2650 /* EEE Link Partner Advertised */
2651 switch (hw->mac.type) {
2652 case e1000_i350:
2653 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
2654 &phy_data);
2655 if (ret_val)
2656 return -ENODATA;
2657
2658 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2659 break;
2660 case e1000_i354:
2661 case e1000_i210:
2662 case e1000_i211:
2663 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
2664 E1000_EEE_LP_ADV_DEV_I210,
2665 &phy_data);
2666 if (ret_val)
2667 return -ENODATA;
2668
2669 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2670
2671 break;
2672 default:
2673 break;
2674 }
2675
2676 edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
2677
2678 if ((hw->mac.type == e1000_i354) &&
2679 (edata->eee_enabled))
2680 edata->tx_lpi_enabled = true;
2681
2682 /* Report correct negotiated EEE status for devices that
2683 * wrongly report EEE at half-duplex
2684 */
2685 if (adapter->link_duplex == HALF_DUPLEX) {
2686 edata->eee_enabled = false;
2687 edata->eee_active = false;
2688 edata->tx_lpi_enabled = false;
2689 edata->advertised &= ~edata->advertised;
2690 }
2691
2692 return 0;
2693}
2694
2695static int igb_set_eee(struct net_device *netdev,
2696 struct ethtool_eee *edata)
2697{
2698 struct igb_adapter *adapter = netdev_priv(netdev);
2699 struct e1000_hw *hw = &adapter->hw;
2700 struct ethtool_eee eee_curr;
2701 bool adv1g_eee = true, adv100m_eee = true;
2702 s32 ret_val;
2703
2704 if ((hw->mac.type < e1000_i350) ||
2705 (hw->phy.media_type != e1000_media_type_copper))
2706 return -EOPNOTSUPP;
2707
2708 memset(&eee_curr, 0, sizeof(struct ethtool_eee));
2709
2710 ret_val = igb_get_eee(netdev, &eee_curr);
2711 if (ret_val)
2712 return ret_val;
2713
2714 if (eee_curr.eee_enabled) {
2715 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2716 dev_err(&adapter->pdev->dev,
2717 "Setting EEE tx-lpi is not supported\n");
2718 return -EINVAL;
2719 }
2720
2721 /* Tx LPI timer is not implemented currently */
2722 if (edata->tx_lpi_timer) {
2723 dev_err(&adapter->pdev->dev,
2724 "Setting EEE Tx LPI timer is not supported\n");
2725 return -EINVAL;
2726 }
2727
2728 if (!edata->advertised || (edata->advertised &
2729 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
2730 dev_err(&adapter->pdev->dev,
2731 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
2732 return -EINVAL;
2733 }
2734 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
2735 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
2736
2737 } else if (!edata->eee_enabled) {
2738 dev_err(&adapter->pdev->dev,
2739 "Setting EEE options are not supported with EEE disabled\n");
2740 return -EINVAL;
2741 }
2742
2743 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2744 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
2745 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
2746 adapter->flags |= IGB_FLAG_EEE;
2747
2748 /* reset link */
2749 if (netif_running(netdev))
2750 igb_reinit_locked(adapter);
2751 else
2752 igb_reset(adapter);
2753 }
2754
2755 if (hw->mac.type == e1000_i354)
2756 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
2757 else
2758 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
2759
2760 if (ret_val) {
2761 dev_err(&adapter->pdev->dev,
2762 "Problem setting EEE advertisement options\n");
2763 return -EINVAL;
2764 }
2765
2766 return 0;
2767}
2768
2769static int igb_get_module_info(struct net_device *netdev,
2770 struct ethtool_modinfo *modinfo)
2771{
2772 struct igb_adapter *adapter = netdev_priv(netdev);
2773 struct e1000_hw *hw = &adapter->hw;
2774 u32 status = 0;
2775 u16 sff8472_rev, addr_mode;
2776 bool page_swap = false;
2777
2778 if ((hw->phy.media_type == e1000_media_type_copper) ||
2779 (hw->phy.media_type == e1000_media_type_unknown))
2780 return -EOPNOTSUPP;
2781
2782 /* Check whether we support SFF-8472 or not */
2783 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
2784 if (status)
2785 return -EIO;
2786
2787 /* addressing mode is not supported */
2788 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
2789 if (status)
2790 return -EIO;
2791
2792 /* addressing mode is not supported */
2793 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
2794 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
2795 page_swap = true;
2796 }
2797
2798 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
2799 /* We have an SFP, but it does not support SFF-8472 */
2800 modinfo->type = ETH_MODULE_SFF_8079;
2801 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2802 } else {
2803 /* We have an SFP which supports a revision of SFF-8472 */
2804 modinfo->type = ETH_MODULE_SFF_8472;
2805 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2806 }
2807
2808 return 0;
2809}
2810
2811static int igb_get_module_eeprom(struct net_device *netdev,
2812 struct ethtool_eeprom *ee, u8 *data)
2813{
2814 struct igb_adapter *adapter = netdev_priv(netdev);
2815 struct e1000_hw *hw = &adapter->hw;
2816 u32 status = 0;
2817 u16 *dataword;
2818 u16 first_word, last_word;
2819 int i = 0;
2820
2821 if (ee->len == 0)
2822 return -EINVAL;
2823
2824 first_word = ee->offset >> 1;
2825 last_word = (ee->offset + ee->len - 1) >> 1;
2826
2827 dataword = kmalloc(sizeof(u16) * (last_word - first_word + 1),
2828 GFP_KERNEL);
2829 if (!dataword)
2830 return -ENOMEM;
2831
2832 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
2833 for (i = 0; i < last_word - first_word + 1; i++) {
2834 status = igb_read_phy_reg_i2c(hw, first_word + i, &dataword[i]);
2835 if (status) {
2836 /* Error occurred while reading module */
2837 kfree(dataword);
2838 return -EIO;
2839 }
2840
2841 be16_to_cpus(&dataword[i]);
2842 }
2843
2844 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
2845 kfree(dataword);
2846
2847 return 0;
2848}
2849
2850static int igb_ethtool_begin(struct net_device *netdev)
2851{
2852 struct igb_adapter *adapter = netdev_priv(netdev);
2853 pm_runtime_get_sync(&adapter->pdev->dev);
2854 return 0;
2855}
2856
2857static void igb_ethtool_complete(struct net_device *netdev)
2858{
2859 struct igb_adapter *adapter = netdev_priv(netdev);
2860 pm_runtime_put(&adapter->pdev->dev);
2861}
2862
2863static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
2864{
2865 return IGB_RETA_SIZE;
2866}
2867
2868static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
2869 u8 *hfunc)
2870{
2871 struct igb_adapter *adapter = netdev_priv(netdev);
2872 int i;
2873
2874 if (hfunc)
2875 *hfunc = ETH_RSS_HASH_TOP;
2876 if (!indir)
2877 return 0;
2878 for (i = 0; i < IGB_RETA_SIZE; i++)
2879 indir[i] = adapter->rss_indir_tbl[i];
2880
2881 return 0;
2882}
2883
2884void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
2885{
2886 struct e1000_hw *hw = &adapter->hw;
2887 u32 reg = E1000_RETA(0);
2888 u32 shift = 0;
2889 int i = 0;
2890
2891 switch (hw->mac.type) {
2892 case e1000_82575:
2893 shift = 6;
2894 break;
2895 case e1000_82576:
2896 /* 82576 supports 2 RSS queues for SR-IOV */
2897 if (adapter->vfs_allocated_count)
2898 shift = 3;
2899 break;
2900 default:
2901 break;
2902 }
2903
2904 while (i < IGB_RETA_SIZE) {
2905 u32 val = 0;
2906 int j;
2907
2908 for (j = 3; j >= 0; j--) {
2909 val <<= 8;
2910 val |= adapter->rss_indir_tbl[i + j];
2911 }
2912
2913 wr32(reg, val << shift);
2914 reg += 4;
2915 i += 4;
2916 }
2917}
2918
2919static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
2920 const u8 *key, const u8 hfunc)
2921{
2922 struct igb_adapter *adapter = netdev_priv(netdev);
2923 struct e1000_hw *hw = &adapter->hw;
2924 int i;
2925 u32 num_queues;
2926
2927 /* We do not allow change in unsupported parameters */
2928 if (key ||
2929 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
2930 return -EOPNOTSUPP;
2931 if (!indir)
2932 return 0;
2933
2934 num_queues = adapter->rss_queues;
2935
2936 switch (hw->mac.type) {
2937 case e1000_82576:
2938 /* 82576 supports 2 RSS queues for SR-IOV */
2939 if (adapter->vfs_allocated_count)
2940 num_queues = 2;
2941 break;
2942 default:
2943 break;
2944 }
2945
2946 /* Verify user input. */
2947 for (i = 0; i < IGB_RETA_SIZE; i++)
2948 if (indir[i] >= num_queues)
2949 return -EINVAL;
2950
2951
2952 for (i = 0; i < IGB_RETA_SIZE; i++)
2953 adapter->rss_indir_tbl[i] = indir[i];
2954
2955 igb_write_rss_indir_tbl(adapter);
2956
2957 return 0;
2958}
2959
2960static unsigned int igb_max_channels(struct igb_adapter *adapter)
2961{
2962 struct e1000_hw *hw = &adapter->hw;
2963 unsigned int max_combined = 0;
2964
2965 switch (hw->mac.type) {
2966 case e1000_i211:
2967 max_combined = IGB_MAX_RX_QUEUES_I211;
2968 break;
2969 case e1000_82575:
2970 case e1000_i210:
2971 max_combined = IGB_MAX_RX_QUEUES_82575;
2972 break;
2973 case e1000_i350:
2974 if (!!adapter->vfs_allocated_count) {
2975 max_combined = 1;
2976 break;
2977 }
2978 /* fall through */
2979 case e1000_82576:
2980 if (!!adapter->vfs_allocated_count) {
2981 max_combined = 2;
2982 break;
2983 }
2984 /* fall through */
2985 case e1000_82580:
2986 case e1000_i354:
2987 default:
2988 max_combined = IGB_MAX_RX_QUEUES;
2989 break;
2990 }
2991
2992 return max_combined;
2993}
2994
2995static void igb_get_channels(struct net_device *netdev,
2996 struct ethtool_channels *ch)
2997{
2998 struct igb_adapter *adapter = netdev_priv(netdev);
2999
3000 /* Report maximum channels */
3001 ch->max_combined = igb_max_channels(adapter);
3002
3003 /* Report info for other vector */
3004 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3005 ch->max_other = NON_Q_VECTORS;
3006 ch->other_count = NON_Q_VECTORS;
3007 }
3008
3009 ch->combined_count = adapter->rss_queues;
3010}
3011
3012static int igb_set_channels(struct net_device *netdev,
3013 struct ethtool_channels *ch)
3014{
3015 struct igb_adapter *adapter = netdev_priv(netdev);
3016 unsigned int count = ch->combined_count;
3017 unsigned int max_combined = 0;
3018
3019 /* Verify they are not requesting separate vectors */
3020 if (!count || ch->rx_count || ch->tx_count)
3021 return -EINVAL;
3022
3023 /* Verify other_count is valid and has not been changed */
3024 if (ch->other_count != NON_Q_VECTORS)
3025 return -EINVAL;
3026
3027 /* Verify the number of channels doesn't exceed hw limits */
3028 max_combined = igb_max_channels(adapter);
3029 if (count > max_combined)
3030 return -EINVAL;
3031
3032 if (count != adapter->rss_queues) {
3033 adapter->rss_queues = count;
3034 igb_set_flag_queue_pairs(adapter, max_combined);
3035
3036 /* Hardware has to reinitialize queues and interrupts to
3037 * match the new configuration.
3038 */
3039 return igb_reinit_queues(adapter);
3040 }
3041
3042 return 0;
3043}
3044
3045static const struct ethtool_ops igb_ethtool_ops = {
3046 .get_settings = igb_get_settings,
3047 .set_settings = igb_set_settings,
3048 .get_drvinfo = igb_get_drvinfo,
3049 .get_regs_len = igb_get_regs_len,
3050 .get_regs = igb_get_regs,
3051 .get_wol = igb_get_wol,
3052 .set_wol = igb_set_wol,
3053 .get_msglevel = igb_get_msglevel,
3054 .set_msglevel = igb_set_msglevel,
3055 .nway_reset = igb_nway_reset,
3056 .get_link = igb_get_link,
3057 .get_eeprom_len = igb_get_eeprom_len,
3058 .get_eeprom = igb_get_eeprom,
3059 .set_eeprom = igb_set_eeprom,
3060 .get_ringparam = igb_get_ringparam,
3061 .set_ringparam = igb_set_ringparam,
3062 .get_pauseparam = igb_get_pauseparam,
3063 .set_pauseparam = igb_set_pauseparam,
3064 .self_test = igb_diag_test,
3065 .get_strings = igb_get_strings,
3066 .set_phys_id = igb_set_phys_id,
3067 .get_sset_count = igb_get_sset_count,
3068 .get_ethtool_stats = igb_get_ethtool_stats,
3069 .get_coalesce = igb_get_coalesce,
3070 .set_coalesce = igb_set_coalesce,
3071 .get_ts_info = igb_get_ts_info,
3072 .get_rxnfc = igb_get_rxnfc,
3073 .set_rxnfc = igb_set_rxnfc,
3074 .get_eee = igb_get_eee,
3075 .set_eee = igb_set_eee,
3076 .get_module_info = igb_get_module_info,
3077 .get_module_eeprom = igb_get_module_eeprom,
3078 .get_rxfh_indir_size = igb_get_rxfh_indir_size,
3079 .get_rxfh = igb_get_rxfh,
3080 .set_rxfh = igb_set_rxfh,
3081 .get_channels = igb_get_channels,
3082 .set_channels = igb_set_channels,
3083 .begin = igb_ethtool_begin,
3084 .complete = igb_ethtool_complete,
3085};
3086
3087void igb_set_ethtool_ops(struct net_device *netdev)
3088{
3089 netdev->ethtool_ops = &igb_ethtool_ops;
3090}
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28/* ethtool support for igb */
29
30#include <linux/vmalloc.h>
31#include <linux/netdevice.h>
32#include <linux/pci.h>
33#include <linux/delay.h>
34#include <linux/interrupt.h>
35#include <linux/if_ether.h>
36#include <linux/ethtool.h>
37#include <linux/sched.h>
38#include <linux/slab.h>
39#include <linux/pm_runtime.h>
40
41#include "igb.h"
42
43struct igb_stats {
44 char stat_string[ETH_GSTRING_LEN];
45 int sizeof_stat;
46 int stat_offset;
47};
48
49#define IGB_STAT(_name, _stat) { \
50 .stat_string = _name, \
51 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
52 .stat_offset = offsetof(struct igb_adapter, _stat) \
53}
54static const struct igb_stats igb_gstrings_stats[] = {
55 IGB_STAT("rx_packets", stats.gprc),
56 IGB_STAT("tx_packets", stats.gptc),
57 IGB_STAT("rx_bytes", stats.gorc),
58 IGB_STAT("tx_bytes", stats.gotc),
59 IGB_STAT("rx_broadcast", stats.bprc),
60 IGB_STAT("tx_broadcast", stats.bptc),
61 IGB_STAT("rx_multicast", stats.mprc),
62 IGB_STAT("tx_multicast", stats.mptc),
63 IGB_STAT("multicast", stats.mprc),
64 IGB_STAT("collisions", stats.colc),
65 IGB_STAT("rx_crc_errors", stats.crcerrs),
66 IGB_STAT("rx_no_buffer_count", stats.rnbc),
67 IGB_STAT("rx_missed_errors", stats.mpc),
68 IGB_STAT("tx_aborted_errors", stats.ecol),
69 IGB_STAT("tx_carrier_errors", stats.tncrs),
70 IGB_STAT("tx_window_errors", stats.latecol),
71 IGB_STAT("tx_abort_late_coll", stats.latecol),
72 IGB_STAT("tx_deferred_ok", stats.dc),
73 IGB_STAT("tx_single_coll_ok", stats.scc),
74 IGB_STAT("tx_multi_coll_ok", stats.mcc),
75 IGB_STAT("tx_timeout_count", tx_timeout_count),
76 IGB_STAT("rx_long_length_errors", stats.roc),
77 IGB_STAT("rx_short_length_errors", stats.ruc),
78 IGB_STAT("rx_align_errors", stats.algnerrc),
79 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
80 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
81 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
82 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
83 IGB_STAT("tx_flow_control_xon", stats.xontxc),
84 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
85 IGB_STAT("rx_long_byte_count", stats.gorc),
86 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
87 IGB_STAT("tx_smbus", stats.mgptc),
88 IGB_STAT("rx_smbus", stats.mgprc),
89 IGB_STAT("dropped_smbus", stats.mgpdc),
90 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
91 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
92 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
93 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
94};
95
96#define IGB_NETDEV_STAT(_net_stat) { \
97 .stat_string = __stringify(_net_stat), \
98 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100}
101static const struct igb_stats igb_gstrings_net_stats[] = {
102 IGB_NETDEV_STAT(rx_errors),
103 IGB_NETDEV_STAT(tx_errors),
104 IGB_NETDEV_STAT(tx_dropped),
105 IGB_NETDEV_STAT(rx_length_errors),
106 IGB_NETDEV_STAT(rx_over_errors),
107 IGB_NETDEV_STAT(rx_frame_errors),
108 IGB_NETDEV_STAT(rx_fifo_errors),
109 IGB_NETDEV_STAT(tx_fifo_errors),
110 IGB_NETDEV_STAT(tx_heartbeat_errors)
111};
112
113#define IGB_GLOBAL_STATS_LEN \
114 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115#define IGB_NETDEV_STATS_LEN \
116 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117#define IGB_RX_QUEUE_STATS_LEN \
118 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120#define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122#define IGB_QUEUE_STATS_LEN \
123 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124 IGB_RX_QUEUE_STATS_LEN) + \
125 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126 IGB_TX_QUEUE_STATS_LEN))
127#define IGB_STATS_LEN \
128 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131 "Register test (offline)", "Eeprom test (offline)",
132 "Interrupt test (offline)", "Loopback test (offline)",
133 "Link test (on/offline)"
134};
135#define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138{
139 struct igb_adapter *adapter = netdev_priv(netdev);
140 struct e1000_hw *hw = &adapter->hw;
141 u32 status;
142
143 if (hw->phy.media_type == e1000_media_type_copper) {
144
145 ecmd->supported = (SUPPORTED_10baseT_Half |
146 SUPPORTED_10baseT_Full |
147 SUPPORTED_100baseT_Half |
148 SUPPORTED_100baseT_Full |
149 SUPPORTED_1000baseT_Full|
150 SUPPORTED_Autoneg |
151 SUPPORTED_TP);
152 ecmd->advertising = (ADVERTISED_TP |
153 ADVERTISED_Pause);
154
155 if (hw->mac.autoneg == 1) {
156 ecmd->advertising |= ADVERTISED_Autoneg;
157 /* the e1000 autoneg seems to match ethtool nicely */
158 ecmd->advertising |= hw->phy.autoneg_advertised;
159 }
160
161 ecmd->port = PORT_TP;
162 ecmd->phy_address = hw->phy.addr;
163 } else {
164 ecmd->supported = (SUPPORTED_1000baseT_Full |
165 SUPPORTED_FIBRE |
166 SUPPORTED_Autoneg);
167
168 ecmd->advertising = (ADVERTISED_1000baseT_Full |
169 ADVERTISED_FIBRE |
170 ADVERTISED_Autoneg |
171 ADVERTISED_Pause);
172
173 ecmd->port = PORT_FIBRE;
174 }
175
176 ecmd->transceiver = XCVR_INTERNAL;
177
178 status = rd32(E1000_STATUS);
179
180 if (status & E1000_STATUS_LU) {
181
182 if ((status & E1000_STATUS_SPEED_1000) ||
183 hw->phy.media_type != e1000_media_type_copper)
184 ethtool_cmd_speed_set(ecmd, SPEED_1000);
185 else if (status & E1000_STATUS_SPEED_100)
186 ethtool_cmd_speed_set(ecmd, SPEED_100);
187 else
188 ethtool_cmd_speed_set(ecmd, SPEED_10);
189
190 if ((status & E1000_STATUS_FD) ||
191 hw->phy.media_type != e1000_media_type_copper)
192 ecmd->duplex = DUPLEX_FULL;
193 else
194 ecmd->duplex = DUPLEX_HALF;
195 } else {
196 ethtool_cmd_speed_set(ecmd, -1);
197 ecmd->duplex = -1;
198 }
199
200 ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
201 return 0;
202}
203
204static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
205{
206 struct igb_adapter *adapter = netdev_priv(netdev);
207 struct e1000_hw *hw = &adapter->hw;
208
209 /* When SoL/IDER sessions are active, autoneg/speed/duplex
210 * cannot be changed */
211 if (igb_check_reset_block(hw)) {
212 dev_err(&adapter->pdev->dev, "Cannot change link "
213 "characteristics when SoL/IDER is active.\n");
214 return -EINVAL;
215 }
216
217 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
218 msleep(1);
219
220 if (ecmd->autoneg == AUTONEG_ENABLE) {
221 hw->mac.autoneg = 1;
222 hw->phy.autoneg_advertised = ecmd->advertising |
223 ADVERTISED_TP |
224 ADVERTISED_Autoneg;
225 ecmd->advertising = hw->phy.autoneg_advertised;
226 if (adapter->fc_autoneg)
227 hw->fc.requested_mode = e1000_fc_default;
228 } else {
229 u32 speed = ethtool_cmd_speed(ecmd);
230 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
231 clear_bit(__IGB_RESETTING, &adapter->state);
232 return -EINVAL;
233 }
234 }
235
236 /* reset the link */
237 if (netif_running(adapter->netdev)) {
238 igb_down(adapter);
239 igb_up(adapter);
240 } else
241 igb_reset(adapter);
242
243 clear_bit(__IGB_RESETTING, &adapter->state);
244 return 0;
245}
246
247static u32 igb_get_link(struct net_device *netdev)
248{
249 struct igb_adapter *adapter = netdev_priv(netdev);
250 struct e1000_mac_info *mac = &adapter->hw.mac;
251
252 /*
253 * If the link is not reported up to netdev, interrupts are disabled,
254 * and so the physical link state may have changed since we last
255 * looked. Set get_link_status to make sure that the true link
256 * state is interrogated, rather than pulling a cached and possibly
257 * stale link state from the driver.
258 */
259 if (!netif_carrier_ok(netdev))
260 mac->get_link_status = 1;
261
262 return igb_has_link(adapter);
263}
264
265static void igb_get_pauseparam(struct net_device *netdev,
266 struct ethtool_pauseparam *pause)
267{
268 struct igb_adapter *adapter = netdev_priv(netdev);
269 struct e1000_hw *hw = &adapter->hw;
270
271 pause->autoneg =
272 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
273
274 if (hw->fc.current_mode == e1000_fc_rx_pause)
275 pause->rx_pause = 1;
276 else if (hw->fc.current_mode == e1000_fc_tx_pause)
277 pause->tx_pause = 1;
278 else if (hw->fc.current_mode == e1000_fc_full) {
279 pause->rx_pause = 1;
280 pause->tx_pause = 1;
281 }
282}
283
284static int igb_set_pauseparam(struct net_device *netdev,
285 struct ethtool_pauseparam *pause)
286{
287 struct igb_adapter *adapter = netdev_priv(netdev);
288 struct e1000_hw *hw = &adapter->hw;
289 int retval = 0;
290
291 adapter->fc_autoneg = pause->autoneg;
292
293 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
294 msleep(1);
295
296 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
297 hw->fc.requested_mode = e1000_fc_default;
298 if (netif_running(adapter->netdev)) {
299 igb_down(adapter);
300 igb_up(adapter);
301 } else {
302 igb_reset(adapter);
303 }
304 } else {
305 if (pause->rx_pause && pause->tx_pause)
306 hw->fc.requested_mode = e1000_fc_full;
307 else if (pause->rx_pause && !pause->tx_pause)
308 hw->fc.requested_mode = e1000_fc_rx_pause;
309 else if (!pause->rx_pause && pause->tx_pause)
310 hw->fc.requested_mode = e1000_fc_tx_pause;
311 else if (!pause->rx_pause && !pause->tx_pause)
312 hw->fc.requested_mode = e1000_fc_none;
313
314 hw->fc.current_mode = hw->fc.requested_mode;
315
316 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
317 igb_force_mac_fc(hw) : igb_setup_link(hw));
318 }
319
320 clear_bit(__IGB_RESETTING, &adapter->state);
321 return retval;
322}
323
324static u32 igb_get_msglevel(struct net_device *netdev)
325{
326 struct igb_adapter *adapter = netdev_priv(netdev);
327 return adapter->msg_enable;
328}
329
330static void igb_set_msglevel(struct net_device *netdev, u32 data)
331{
332 struct igb_adapter *adapter = netdev_priv(netdev);
333 adapter->msg_enable = data;
334}
335
336static int igb_get_regs_len(struct net_device *netdev)
337{
338#define IGB_REGS_LEN 739
339 return IGB_REGS_LEN * sizeof(u32);
340}
341
342static void igb_get_regs(struct net_device *netdev,
343 struct ethtool_regs *regs, void *p)
344{
345 struct igb_adapter *adapter = netdev_priv(netdev);
346 struct e1000_hw *hw = &adapter->hw;
347 u32 *regs_buff = p;
348 u8 i;
349
350 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
351
352 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
353
354 /* General Registers */
355 regs_buff[0] = rd32(E1000_CTRL);
356 regs_buff[1] = rd32(E1000_STATUS);
357 regs_buff[2] = rd32(E1000_CTRL_EXT);
358 regs_buff[3] = rd32(E1000_MDIC);
359 regs_buff[4] = rd32(E1000_SCTL);
360 regs_buff[5] = rd32(E1000_CONNSW);
361 regs_buff[6] = rd32(E1000_VET);
362 regs_buff[7] = rd32(E1000_LEDCTL);
363 regs_buff[8] = rd32(E1000_PBA);
364 regs_buff[9] = rd32(E1000_PBS);
365 regs_buff[10] = rd32(E1000_FRTIMER);
366 regs_buff[11] = rd32(E1000_TCPTIMER);
367
368 /* NVM Register */
369 regs_buff[12] = rd32(E1000_EECD);
370
371 /* Interrupt */
372 /* Reading EICS for EICR because they read the
373 * same but EICS does not clear on read */
374 regs_buff[13] = rd32(E1000_EICS);
375 regs_buff[14] = rd32(E1000_EICS);
376 regs_buff[15] = rd32(E1000_EIMS);
377 regs_buff[16] = rd32(E1000_EIMC);
378 regs_buff[17] = rd32(E1000_EIAC);
379 regs_buff[18] = rd32(E1000_EIAM);
380 /* Reading ICS for ICR because they read the
381 * same but ICS does not clear on read */
382 regs_buff[19] = rd32(E1000_ICS);
383 regs_buff[20] = rd32(E1000_ICS);
384 regs_buff[21] = rd32(E1000_IMS);
385 regs_buff[22] = rd32(E1000_IMC);
386 regs_buff[23] = rd32(E1000_IAC);
387 regs_buff[24] = rd32(E1000_IAM);
388 regs_buff[25] = rd32(E1000_IMIRVP);
389
390 /* Flow Control */
391 regs_buff[26] = rd32(E1000_FCAL);
392 regs_buff[27] = rd32(E1000_FCAH);
393 regs_buff[28] = rd32(E1000_FCTTV);
394 regs_buff[29] = rd32(E1000_FCRTL);
395 regs_buff[30] = rd32(E1000_FCRTH);
396 regs_buff[31] = rd32(E1000_FCRTV);
397
398 /* Receive */
399 regs_buff[32] = rd32(E1000_RCTL);
400 regs_buff[33] = rd32(E1000_RXCSUM);
401 regs_buff[34] = rd32(E1000_RLPML);
402 regs_buff[35] = rd32(E1000_RFCTL);
403 regs_buff[36] = rd32(E1000_MRQC);
404 regs_buff[37] = rd32(E1000_VT_CTL);
405
406 /* Transmit */
407 regs_buff[38] = rd32(E1000_TCTL);
408 regs_buff[39] = rd32(E1000_TCTL_EXT);
409 regs_buff[40] = rd32(E1000_TIPG);
410 regs_buff[41] = rd32(E1000_DTXCTL);
411
412 /* Wake Up */
413 regs_buff[42] = rd32(E1000_WUC);
414 regs_buff[43] = rd32(E1000_WUFC);
415 regs_buff[44] = rd32(E1000_WUS);
416 regs_buff[45] = rd32(E1000_IPAV);
417 regs_buff[46] = rd32(E1000_WUPL);
418
419 /* MAC */
420 regs_buff[47] = rd32(E1000_PCS_CFG0);
421 regs_buff[48] = rd32(E1000_PCS_LCTL);
422 regs_buff[49] = rd32(E1000_PCS_LSTAT);
423 regs_buff[50] = rd32(E1000_PCS_ANADV);
424 regs_buff[51] = rd32(E1000_PCS_LPAB);
425 regs_buff[52] = rd32(E1000_PCS_NPTX);
426 regs_buff[53] = rd32(E1000_PCS_LPABNP);
427
428 /* Statistics */
429 regs_buff[54] = adapter->stats.crcerrs;
430 regs_buff[55] = adapter->stats.algnerrc;
431 regs_buff[56] = adapter->stats.symerrs;
432 regs_buff[57] = adapter->stats.rxerrc;
433 regs_buff[58] = adapter->stats.mpc;
434 regs_buff[59] = adapter->stats.scc;
435 regs_buff[60] = adapter->stats.ecol;
436 regs_buff[61] = adapter->stats.mcc;
437 regs_buff[62] = adapter->stats.latecol;
438 regs_buff[63] = adapter->stats.colc;
439 regs_buff[64] = adapter->stats.dc;
440 regs_buff[65] = adapter->stats.tncrs;
441 regs_buff[66] = adapter->stats.sec;
442 regs_buff[67] = adapter->stats.htdpmc;
443 regs_buff[68] = adapter->stats.rlec;
444 regs_buff[69] = adapter->stats.xonrxc;
445 regs_buff[70] = adapter->stats.xontxc;
446 regs_buff[71] = adapter->stats.xoffrxc;
447 regs_buff[72] = adapter->stats.xofftxc;
448 regs_buff[73] = adapter->stats.fcruc;
449 regs_buff[74] = adapter->stats.prc64;
450 regs_buff[75] = adapter->stats.prc127;
451 regs_buff[76] = adapter->stats.prc255;
452 regs_buff[77] = adapter->stats.prc511;
453 regs_buff[78] = adapter->stats.prc1023;
454 regs_buff[79] = adapter->stats.prc1522;
455 regs_buff[80] = adapter->stats.gprc;
456 regs_buff[81] = adapter->stats.bprc;
457 regs_buff[82] = adapter->stats.mprc;
458 regs_buff[83] = adapter->stats.gptc;
459 regs_buff[84] = adapter->stats.gorc;
460 regs_buff[86] = adapter->stats.gotc;
461 regs_buff[88] = adapter->stats.rnbc;
462 regs_buff[89] = adapter->stats.ruc;
463 regs_buff[90] = adapter->stats.rfc;
464 regs_buff[91] = adapter->stats.roc;
465 regs_buff[92] = adapter->stats.rjc;
466 regs_buff[93] = adapter->stats.mgprc;
467 regs_buff[94] = adapter->stats.mgpdc;
468 regs_buff[95] = adapter->stats.mgptc;
469 regs_buff[96] = adapter->stats.tor;
470 regs_buff[98] = adapter->stats.tot;
471 regs_buff[100] = adapter->stats.tpr;
472 regs_buff[101] = adapter->stats.tpt;
473 regs_buff[102] = adapter->stats.ptc64;
474 regs_buff[103] = adapter->stats.ptc127;
475 regs_buff[104] = adapter->stats.ptc255;
476 regs_buff[105] = adapter->stats.ptc511;
477 regs_buff[106] = adapter->stats.ptc1023;
478 regs_buff[107] = adapter->stats.ptc1522;
479 regs_buff[108] = adapter->stats.mptc;
480 regs_buff[109] = adapter->stats.bptc;
481 regs_buff[110] = adapter->stats.tsctc;
482 regs_buff[111] = adapter->stats.iac;
483 regs_buff[112] = adapter->stats.rpthc;
484 regs_buff[113] = adapter->stats.hgptc;
485 regs_buff[114] = adapter->stats.hgorc;
486 regs_buff[116] = adapter->stats.hgotc;
487 regs_buff[118] = adapter->stats.lenerrs;
488 regs_buff[119] = adapter->stats.scvpc;
489 regs_buff[120] = adapter->stats.hrmpc;
490
491 for (i = 0; i < 4; i++)
492 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
493 for (i = 0; i < 4; i++)
494 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
495 for (i = 0; i < 4; i++)
496 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
497 for (i = 0; i < 4; i++)
498 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
499 for (i = 0; i < 4; i++)
500 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
501 for (i = 0; i < 4; i++)
502 regs_buff[141 + i] = rd32(E1000_RDH(i));
503 for (i = 0; i < 4; i++)
504 regs_buff[145 + i] = rd32(E1000_RDT(i));
505 for (i = 0; i < 4; i++)
506 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
507
508 for (i = 0; i < 10; i++)
509 regs_buff[153 + i] = rd32(E1000_EITR(i));
510 for (i = 0; i < 8; i++)
511 regs_buff[163 + i] = rd32(E1000_IMIR(i));
512 for (i = 0; i < 8; i++)
513 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
514 for (i = 0; i < 16; i++)
515 regs_buff[179 + i] = rd32(E1000_RAL(i));
516 for (i = 0; i < 16; i++)
517 regs_buff[195 + i] = rd32(E1000_RAH(i));
518
519 for (i = 0; i < 4; i++)
520 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
521 for (i = 0; i < 4; i++)
522 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
523 for (i = 0; i < 4; i++)
524 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
525 for (i = 0; i < 4; i++)
526 regs_buff[223 + i] = rd32(E1000_TDH(i));
527 for (i = 0; i < 4; i++)
528 regs_buff[227 + i] = rd32(E1000_TDT(i));
529 for (i = 0; i < 4; i++)
530 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
531 for (i = 0; i < 4; i++)
532 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
533 for (i = 0; i < 4; i++)
534 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
535 for (i = 0; i < 4; i++)
536 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
537
538 for (i = 0; i < 4; i++)
539 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
540 for (i = 0; i < 4; i++)
541 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
542 for (i = 0; i < 32; i++)
543 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
544 for (i = 0; i < 128; i++)
545 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
546 for (i = 0; i < 128; i++)
547 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
548 for (i = 0; i < 4; i++)
549 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
550
551 regs_buff[547] = rd32(E1000_TDFH);
552 regs_buff[548] = rd32(E1000_TDFT);
553 regs_buff[549] = rd32(E1000_TDFHS);
554 regs_buff[550] = rd32(E1000_TDFPC);
555
556 if (hw->mac.type > e1000_82580) {
557 regs_buff[551] = adapter->stats.o2bgptc;
558 regs_buff[552] = adapter->stats.b2ospc;
559 regs_buff[553] = adapter->stats.o2bspc;
560 regs_buff[554] = adapter->stats.b2ogprc;
561 }
562
563 if (hw->mac.type != e1000_82576)
564 return;
565 for (i = 0; i < 12; i++)
566 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
567 for (i = 0; i < 4; i++)
568 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
569 for (i = 0; i < 12; i++)
570 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
571 for (i = 0; i < 12; i++)
572 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
573 for (i = 0; i < 12; i++)
574 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
575 for (i = 0; i < 12; i++)
576 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
577 for (i = 0; i < 12; i++)
578 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
579 for (i = 0; i < 12; i++)
580 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
581
582 for (i = 0; i < 12; i++)
583 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
584 for (i = 0; i < 12; i++)
585 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
586 for (i = 0; i < 12; i++)
587 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
588 for (i = 0; i < 12; i++)
589 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
590 for (i = 0; i < 12; i++)
591 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
592 for (i = 0; i < 12; i++)
593 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
594 for (i = 0; i < 12; i++)
595 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
596 for (i = 0; i < 12; i++)
597 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
598}
599
600static int igb_get_eeprom_len(struct net_device *netdev)
601{
602 struct igb_adapter *adapter = netdev_priv(netdev);
603 return adapter->hw.nvm.word_size * 2;
604}
605
606static int igb_get_eeprom(struct net_device *netdev,
607 struct ethtool_eeprom *eeprom, u8 *bytes)
608{
609 struct igb_adapter *adapter = netdev_priv(netdev);
610 struct e1000_hw *hw = &adapter->hw;
611 u16 *eeprom_buff;
612 int first_word, last_word;
613 int ret_val = 0;
614 u16 i;
615
616 if (eeprom->len == 0)
617 return -EINVAL;
618
619 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
620
621 first_word = eeprom->offset >> 1;
622 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
623
624 eeprom_buff = kmalloc(sizeof(u16) *
625 (last_word - first_word + 1), GFP_KERNEL);
626 if (!eeprom_buff)
627 return -ENOMEM;
628
629 if (hw->nvm.type == e1000_nvm_eeprom_spi)
630 ret_val = hw->nvm.ops.read(hw, first_word,
631 last_word - first_word + 1,
632 eeprom_buff);
633 else {
634 for (i = 0; i < last_word - first_word + 1; i++) {
635 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
636 &eeprom_buff[i]);
637 if (ret_val)
638 break;
639 }
640 }
641
642 /* Device's eeprom is always little-endian, word addressable */
643 for (i = 0; i < last_word - first_word + 1; i++)
644 le16_to_cpus(&eeprom_buff[i]);
645
646 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
647 eeprom->len);
648 kfree(eeprom_buff);
649
650 return ret_val;
651}
652
653static int igb_set_eeprom(struct net_device *netdev,
654 struct ethtool_eeprom *eeprom, u8 *bytes)
655{
656 struct igb_adapter *adapter = netdev_priv(netdev);
657 struct e1000_hw *hw = &adapter->hw;
658 u16 *eeprom_buff;
659 void *ptr;
660 int max_len, first_word, last_word, ret_val = 0;
661 u16 i;
662
663 if (eeprom->len == 0)
664 return -EOPNOTSUPP;
665
666 if (hw->mac.type == e1000_i211)
667 return -EOPNOTSUPP;
668
669 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
670 return -EFAULT;
671
672 max_len = hw->nvm.word_size * 2;
673
674 first_word = eeprom->offset >> 1;
675 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
676 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
677 if (!eeprom_buff)
678 return -ENOMEM;
679
680 ptr = (void *)eeprom_buff;
681
682 if (eeprom->offset & 1) {
683 /* need read/modify/write of first changed EEPROM word */
684 /* only the second byte of the word is being modified */
685 ret_val = hw->nvm.ops.read(hw, first_word, 1,
686 &eeprom_buff[0]);
687 ptr++;
688 }
689 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
690 /* need read/modify/write of last changed EEPROM word */
691 /* only the first byte of the word is being modified */
692 ret_val = hw->nvm.ops.read(hw, last_word, 1,
693 &eeprom_buff[last_word - first_word]);
694 }
695
696 /* Device's eeprom is always little-endian, word addressable */
697 for (i = 0; i < last_word - first_word + 1; i++)
698 le16_to_cpus(&eeprom_buff[i]);
699
700 memcpy(ptr, bytes, eeprom->len);
701
702 for (i = 0; i < last_word - first_word + 1; i++)
703 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
704
705 ret_val = hw->nvm.ops.write(hw, first_word,
706 last_word - first_word + 1, eeprom_buff);
707
708 /* Update the checksum over the first part of the EEPROM if needed
709 * and flush shadow RAM for 82573 controllers */
710 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
711 hw->nvm.ops.update(hw);
712
713 kfree(eeprom_buff);
714 return ret_val;
715}
716
717static void igb_get_drvinfo(struct net_device *netdev,
718 struct ethtool_drvinfo *drvinfo)
719{
720 struct igb_adapter *adapter = netdev_priv(netdev);
721 u16 eeprom_data;
722
723 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
724 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
725
726 /* EEPROM image version # is reported as firmware version # for
727 * 82575 controllers */
728 adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
729 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
730 "%d.%d-%d",
731 (eeprom_data & 0xF000) >> 12,
732 (eeprom_data & 0x0FF0) >> 4,
733 eeprom_data & 0x000F);
734
735 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
736 sizeof(drvinfo->bus_info));
737 drvinfo->n_stats = IGB_STATS_LEN;
738 drvinfo->testinfo_len = IGB_TEST_LEN;
739 drvinfo->regdump_len = igb_get_regs_len(netdev);
740 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
741}
742
743static void igb_get_ringparam(struct net_device *netdev,
744 struct ethtool_ringparam *ring)
745{
746 struct igb_adapter *adapter = netdev_priv(netdev);
747
748 ring->rx_max_pending = IGB_MAX_RXD;
749 ring->tx_max_pending = IGB_MAX_TXD;
750 ring->rx_pending = adapter->rx_ring_count;
751 ring->tx_pending = adapter->tx_ring_count;
752}
753
754static int igb_set_ringparam(struct net_device *netdev,
755 struct ethtool_ringparam *ring)
756{
757 struct igb_adapter *adapter = netdev_priv(netdev);
758 struct igb_ring *temp_ring;
759 int i, err = 0;
760 u16 new_rx_count, new_tx_count;
761
762 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
763 return -EINVAL;
764
765 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
766 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
767 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
768
769 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
770 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
771 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
772
773 if ((new_tx_count == adapter->tx_ring_count) &&
774 (new_rx_count == adapter->rx_ring_count)) {
775 /* nothing to do */
776 return 0;
777 }
778
779 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
780 msleep(1);
781
782 if (!netif_running(adapter->netdev)) {
783 for (i = 0; i < adapter->num_tx_queues; i++)
784 adapter->tx_ring[i]->count = new_tx_count;
785 for (i = 0; i < adapter->num_rx_queues; i++)
786 adapter->rx_ring[i]->count = new_rx_count;
787 adapter->tx_ring_count = new_tx_count;
788 adapter->rx_ring_count = new_rx_count;
789 goto clear_reset;
790 }
791
792 if (adapter->num_tx_queues > adapter->num_rx_queues)
793 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
794 else
795 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
796
797 if (!temp_ring) {
798 err = -ENOMEM;
799 goto clear_reset;
800 }
801
802 igb_down(adapter);
803
804 /*
805 * We can't just free everything and then setup again,
806 * because the ISRs in MSI-X mode get passed pointers
807 * to the tx and rx ring structs.
808 */
809 if (new_tx_count != adapter->tx_ring_count) {
810 for (i = 0; i < adapter->num_tx_queues; i++) {
811 memcpy(&temp_ring[i], adapter->tx_ring[i],
812 sizeof(struct igb_ring));
813
814 temp_ring[i].count = new_tx_count;
815 err = igb_setup_tx_resources(&temp_ring[i]);
816 if (err) {
817 while (i) {
818 i--;
819 igb_free_tx_resources(&temp_ring[i]);
820 }
821 goto err_setup;
822 }
823 }
824
825 for (i = 0; i < adapter->num_tx_queues; i++) {
826 igb_free_tx_resources(adapter->tx_ring[i]);
827
828 memcpy(adapter->tx_ring[i], &temp_ring[i],
829 sizeof(struct igb_ring));
830 }
831
832 adapter->tx_ring_count = new_tx_count;
833 }
834
835 if (new_rx_count != adapter->rx_ring_count) {
836 for (i = 0; i < adapter->num_rx_queues; i++) {
837 memcpy(&temp_ring[i], adapter->rx_ring[i],
838 sizeof(struct igb_ring));
839
840 temp_ring[i].count = new_rx_count;
841 err = igb_setup_rx_resources(&temp_ring[i]);
842 if (err) {
843 while (i) {
844 i--;
845 igb_free_rx_resources(&temp_ring[i]);
846 }
847 goto err_setup;
848 }
849
850 }
851
852 for (i = 0; i < adapter->num_rx_queues; i++) {
853 igb_free_rx_resources(adapter->rx_ring[i]);
854
855 memcpy(adapter->rx_ring[i], &temp_ring[i],
856 sizeof(struct igb_ring));
857 }
858
859 adapter->rx_ring_count = new_rx_count;
860 }
861err_setup:
862 igb_up(adapter);
863 vfree(temp_ring);
864clear_reset:
865 clear_bit(__IGB_RESETTING, &adapter->state);
866 return err;
867}
868
869/* ethtool register test data */
870struct igb_reg_test {
871 u16 reg;
872 u16 reg_offset;
873 u16 array_len;
874 u16 test_type;
875 u32 mask;
876 u32 write;
877};
878
879/* In the hardware, registers are laid out either singly, in arrays
880 * spaced 0x100 bytes apart, or in contiguous tables. We assume
881 * most tests take place on arrays or single registers (handled
882 * as a single-element array) and special-case the tables.
883 * Table tests are always pattern tests.
884 *
885 * We also make provision for some required setup steps by specifying
886 * registers to be written without any read-back testing.
887 */
888
889#define PATTERN_TEST 1
890#define SET_READ_TEST 2
891#define WRITE_NO_TEST 3
892#define TABLE32_TEST 4
893#define TABLE64_TEST_LO 5
894#define TABLE64_TEST_HI 6
895
896/* i210 reg test */
897static struct igb_reg_test reg_test_i210[] = {
898 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
899 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
900 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
901 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
902 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
903 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
904 /* RDH is read-only for i210, only test RDT. */
905 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
906 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
907 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
908 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
909 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
910 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
911 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
912 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
913 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
914 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
915 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
916 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
917 { E1000_RA, 0, 16, TABLE64_TEST_LO,
918 0xFFFFFFFF, 0xFFFFFFFF },
919 { E1000_RA, 0, 16, TABLE64_TEST_HI,
920 0x900FFFFF, 0xFFFFFFFF },
921 { E1000_MTA, 0, 128, TABLE32_TEST,
922 0xFFFFFFFF, 0xFFFFFFFF },
923 { 0, 0, 0, 0, 0 }
924};
925
926/* i350 reg test */
927static struct igb_reg_test reg_test_i350[] = {
928 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
929 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
930 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
931 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
932 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
933 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
934 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
935 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
936 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
937 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
938 /* RDH is read-only for i350, only test RDT. */
939 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
940 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
941 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
942 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
943 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
944 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
945 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
946 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
947 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
948 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
949 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
950 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
951 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
952 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
953 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
954 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
955 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
956 { E1000_RA, 0, 16, TABLE64_TEST_LO,
957 0xFFFFFFFF, 0xFFFFFFFF },
958 { E1000_RA, 0, 16, TABLE64_TEST_HI,
959 0xC3FFFFFF, 0xFFFFFFFF },
960 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
961 0xFFFFFFFF, 0xFFFFFFFF },
962 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
963 0xC3FFFFFF, 0xFFFFFFFF },
964 { E1000_MTA, 0, 128, TABLE32_TEST,
965 0xFFFFFFFF, 0xFFFFFFFF },
966 { 0, 0, 0, 0 }
967};
968
969/* 82580 reg test */
970static struct igb_reg_test reg_test_82580[] = {
971 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
972 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
973 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
974 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
975 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
976 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
977 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
978 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
979 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
980 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
981 /* RDH is read-only for 82580, only test RDT. */
982 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
983 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
984 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
985 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
986 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
987 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
988 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
989 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
990 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
991 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
992 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
993 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
994 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
995 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
996 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
997 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
998 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
999 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1000 0xFFFFFFFF, 0xFFFFFFFF },
1001 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1002 0x83FFFFFF, 0xFFFFFFFF },
1003 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1004 0xFFFFFFFF, 0xFFFFFFFF },
1005 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1006 0x83FFFFFF, 0xFFFFFFFF },
1007 { E1000_MTA, 0, 128, TABLE32_TEST,
1008 0xFFFFFFFF, 0xFFFFFFFF },
1009 { 0, 0, 0, 0 }
1010};
1011
1012/* 82576 reg test */
1013static struct igb_reg_test reg_test_82576[] = {
1014 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1015 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1016 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1017 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1018 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1019 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1020 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1021 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1022 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1023 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1024 /* Enable all RX queues before testing. */
1025 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1026 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1027 /* RDH is read-only for 82576, only test RDT. */
1028 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1029 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1030 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1031 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1032 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1033 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1034 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1035 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1036 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1037 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1038 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1039 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1041 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1042 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1043 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1044 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1045 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1046 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1047 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1048 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1049 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1050 { 0, 0, 0, 0 }
1051};
1052
1053/* 82575 register test */
1054static struct igb_reg_test reg_test_82575[] = {
1055 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1057 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1058 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1059 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1060 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1061 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1062 /* Enable all four RX queues before testing. */
1063 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1064 /* RDH is read-only for 82575, only test RDT. */
1065 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1067 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1068 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1069 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1070 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1071 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1072 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1073 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1074 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1075 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1076 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1077 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1078 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1079 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1080 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081 { 0, 0, 0, 0 }
1082};
1083
1084static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1085 int reg, u32 mask, u32 write)
1086{
1087 struct e1000_hw *hw = &adapter->hw;
1088 u32 pat, val;
1089 static const u32 _test[] =
1090 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1091 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1092 wr32(reg, (_test[pat] & write));
1093 val = rd32(reg) & mask;
1094 if (val != (_test[pat] & write & mask)) {
1095 dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1096 "failed: got 0x%08X expected 0x%08X\n",
1097 reg, val, (_test[pat] & write & mask));
1098 *data = reg;
1099 return 1;
1100 }
1101 }
1102
1103 return 0;
1104}
1105
1106static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1107 int reg, u32 mask, u32 write)
1108{
1109 struct e1000_hw *hw = &adapter->hw;
1110 u32 val;
1111 wr32(reg, write & mask);
1112 val = rd32(reg);
1113 if ((write & mask) != (val & mask)) {
1114 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1115 " got 0x%08X expected 0x%08X\n", reg,
1116 (val & mask), (write & mask));
1117 *data = reg;
1118 return 1;
1119 }
1120
1121 return 0;
1122}
1123
1124#define REG_PATTERN_TEST(reg, mask, write) \
1125 do { \
1126 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1127 return 1; \
1128 } while (0)
1129
1130#define REG_SET_AND_CHECK(reg, mask, write) \
1131 do { \
1132 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1133 return 1; \
1134 } while (0)
1135
1136static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1137{
1138 struct e1000_hw *hw = &adapter->hw;
1139 struct igb_reg_test *test;
1140 u32 value, before, after;
1141 u32 i, toggle;
1142
1143 switch (adapter->hw.mac.type) {
1144 case e1000_i350:
1145 test = reg_test_i350;
1146 toggle = 0x7FEFF3FF;
1147 break;
1148 case e1000_i210:
1149 case e1000_i211:
1150 test = reg_test_i210;
1151 toggle = 0x7FEFF3FF;
1152 break;
1153 case e1000_82580:
1154 test = reg_test_82580;
1155 toggle = 0x7FEFF3FF;
1156 break;
1157 case e1000_82576:
1158 test = reg_test_82576;
1159 toggle = 0x7FFFF3FF;
1160 break;
1161 default:
1162 test = reg_test_82575;
1163 toggle = 0x7FFFF3FF;
1164 break;
1165 }
1166
1167 /* Because the status register is such a special case,
1168 * we handle it separately from the rest of the register
1169 * tests. Some bits are read-only, some toggle, and some
1170 * are writable on newer MACs.
1171 */
1172 before = rd32(E1000_STATUS);
1173 value = (rd32(E1000_STATUS) & toggle);
1174 wr32(E1000_STATUS, toggle);
1175 after = rd32(E1000_STATUS) & toggle;
1176 if (value != after) {
1177 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1178 "got: 0x%08X expected: 0x%08X\n", after, value);
1179 *data = 1;
1180 return 1;
1181 }
1182 /* restore previous status */
1183 wr32(E1000_STATUS, before);
1184
1185 /* Perform the remainder of the register test, looping through
1186 * the test table until we either fail or reach the null entry.
1187 */
1188 while (test->reg) {
1189 for (i = 0; i < test->array_len; i++) {
1190 switch (test->test_type) {
1191 case PATTERN_TEST:
1192 REG_PATTERN_TEST(test->reg +
1193 (i * test->reg_offset),
1194 test->mask,
1195 test->write);
1196 break;
1197 case SET_READ_TEST:
1198 REG_SET_AND_CHECK(test->reg +
1199 (i * test->reg_offset),
1200 test->mask,
1201 test->write);
1202 break;
1203 case WRITE_NO_TEST:
1204 writel(test->write,
1205 (adapter->hw.hw_addr + test->reg)
1206 + (i * test->reg_offset));
1207 break;
1208 case TABLE32_TEST:
1209 REG_PATTERN_TEST(test->reg + (i * 4),
1210 test->mask,
1211 test->write);
1212 break;
1213 case TABLE64_TEST_LO:
1214 REG_PATTERN_TEST(test->reg + (i * 8),
1215 test->mask,
1216 test->write);
1217 break;
1218 case TABLE64_TEST_HI:
1219 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1220 test->mask,
1221 test->write);
1222 break;
1223 }
1224 }
1225 test++;
1226 }
1227
1228 *data = 0;
1229 return 0;
1230}
1231
1232static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1233{
1234 *data = 0;
1235
1236 /* Validate eeprom on all parts but i211 */
1237 if (adapter->hw.mac.type != e1000_i211) {
1238 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1239 *data = 2;
1240 }
1241
1242 return *data;
1243}
1244
1245static irqreturn_t igb_test_intr(int irq, void *data)
1246{
1247 struct igb_adapter *adapter = (struct igb_adapter *) data;
1248 struct e1000_hw *hw = &adapter->hw;
1249
1250 adapter->test_icr |= rd32(E1000_ICR);
1251
1252 return IRQ_HANDLED;
1253}
1254
1255static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1256{
1257 struct e1000_hw *hw = &adapter->hw;
1258 struct net_device *netdev = adapter->netdev;
1259 u32 mask, ics_mask, i = 0, shared_int = true;
1260 u32 irq = adapter->pdev->irq;
1261
1262 *data = 0;
1263
1264 /* Hook up test interrupt handler just for this test */
1265 if (adapter->msix_entries) {
1266 if (request_irq(adapter->msix_entries[0].vector,
1267 igb_test_intr, 0, netdev->name, adapter)) {
1268 *data = 1;
1269 return -1;
1270 }
1271 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1272 shared_int = false;
1273 if (request_irq(irq,
1274 igb_test_intr, 0, netdev->name, adapter)) {
1275 *data = 1;
1276 return -1;
1277 }
1278 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1279 netdev->name, adapter)) {
1280 shared_int = false;
1281 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1282 netdev->name, adapter)) {
1283 *data = 1;
1284 return -1;
1285 }
1286 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1287 (shared_int ? "shared" : "unshared"));
1288
1289 /* Disable all the interrupts */
1290 wr32(E1000_IMC, ~0);
1291 wrfl();
1292 msleep(10);
1293
1294 /* Define all writable bits for ICS */
1295 switch (hw->mac.type) {
1296 case e1000_82575:
1297 ics_mask = 0x37F47EDD;
1298 break;
1299 case e1000_82576:
1300 ics_mask = 0x77D4FBFD;
1301 break;
1302 case e1000_82580:
1303 ics_mask = 0x77DCFED5;
1304 break;
1305 case e1000_i350:
1306 case e1000_i210:
1307 case e1000_i211:
1308 ics_mask = 0x77DCFED5;
1309 break;
1310 default:
1311 ics_mask = 0x7FFFFFFF;
1312 break;
1313 }
1314
1315 /* Test each interrupt */
1316 for (; i < 31; i++) {
1317 /* Interrupt to test */
1318 mask = 1 << i;
1319
1320 if (!(mask & ics_mask))
1321 continue;
1322
1323 if (!shared_int) {
1324 /* Disable the interrupt to be reported in
1325 * the cause register and then force the same
1326 * interrupt and see if one gets posted. If
1327 * an interrupt was posted to the bus, the
1328 * test failed.
1329 */
1330 adapter->test_icr = 0;
1331
1332 /* Flush any pending interrupts */
1333 wr32(E1000_ICR, ~0);
1334
1335 wr32(E1000_IMC, mask);
1336 wr32(E1000_ICS, mask);
1337 wrfl();
1338 msleep(10);
1339
1340 if (adapter->test_icr & mask) {
1341 *data = 3;
1342 break;
1343 }
1344 }
1345
1346 /* Enable the interrupt to be reported in
1347 * the cause register and then force the same
1348 * interrupt and see if one gets posted. If
1349 * an interrupt was not posted to the bus, the
1350 * test failed.
1351 */
1352 adapter->test_icr = 0;
1353
1354 /* Flush any pending interrupts */
1355 wr32(E1000_ICR, ~0);
1356
1357 wr32(E1000_IMS, mask);
1358 wr32(E1000_ICS, mask);
1359 wrfl();
1360 msleep(10);
1361
1362 if (!(adapter->test_icr & mask)) {
1363 *data = 4;
1364 break;
1365 }
1366
1367 if (!shared_int) {
1368 /* Disable the other interrupts to be reported in
1369 * the cause register and then force the other
1370 * interrupts and see if any get posted. If
1371 * an interrupt was posted to the bus, the
1372 * test failed.
1373 */
1374 adapter->test_icr = 0;
1375
1376 /* Flush any pending interrupts */
1377 wr32(E1000_ICR, ~0);
1378
1379 wr32(E1000_IMC, ~mask);
1380 wr32(E1000_ICS, ~mask);
1381 wrfl();
1382 msleep(10);
1383
1384 if (adapter->test_icr & mask) {
1385 *data = 5;
1386 break;
1387 }
1388 }
1389 }
1390
1391 /* Disable all the interrupts */
1392 wr32(E1000_IMC, ~0);
1393 wrfl();
1394 msleep(10);
1395
1396 /* Unhook test interrupt handler */
1397 if (adapter->msix_entries)
1398 free_irq(adapter->msix_entries[0].vector, adapter);
1399 else
1400 free_irq(irq, adapter);
1401
1402 return *data;
1403}
1404
1405static void igb_free_desc_rings(struct igb_adapter *adapter)
1406{
1407 igb_free_tx_resources(&adapter->test_tx_ring);
1408 igb_free_rx_resources(&adapter->test_rx_ring);
1409}
1410
1411static int igb_setup_desc_rings(struct igb_adapter *adapter)
1412{
1413 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1414 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1415 struct e1000_hw *hw = &adapter->hw;
1416 int ret_val;
1417
1418 /* Setup Tx descriptor ring and Tx buffers */
1419 tx_ring->count = IGB_DEFAULT_TXD;
1420 tx_ring->dev = &adapter->pdev->dev;
1421 tx_ring->netdev = adapter->netdev;
1422 tx_ring->reg_idx = adapter->vfs_allocated_count;
1423
1424 if (igb_setup_tx_resources(tx_ring)) {
1425 ret_val = 1;
1426 goto err_nomem;
1427 }
1428
1429 igb_setup_tctl(adapter);
1430 igb_configure_tx_ring(adapter, tx_ring);
1431
1432 /* Setup Rx descriptor ring and Rx buffers */
1433 rx_ring->count = IGB_DEFAULT_RXD;
1434 rx_ring->dev = &adapter->pdev->dev;
1435 rx_ring->netdev = adapter->netdev;
1436 rx_ring->reg_idx = adapter->vfs_allocated_count;
1437
1438 if (igb_setup_rx_resources(rx_ring)) {
1439 ret_val = 3;
1440 goto err_nomem;
1441 }
1442
1443 /* set the default queue to queue 0 of PF */
1444 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1445
1446 /* enable receive ring */
1447 igb_setup_rctl(adapter);
1448 igb_configure_rx_ring(adapter, rx_ring);
1449
1450 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1451
1452 return 0;
1453
1454err_nomem:
1455 igb_free_desc_rings(adapter);
1456 return ret_val;
1457}
1458
1459static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1460{
1461 struct e1000_hw *hw = &adapter->hw;
1462
1463 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1464 igb_write_phy_reg(hw, 29, 0x001F);
1465 igb_write_phy_reg(hw, 30, 0x8FFC);
1466 igb_write_phy_reg(hw, 29, 0x001A);
1467 igb_write_phy_reg(hw, 30, 0x8FF0);
1468}
1469
1470static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1471{
1472 struct e1000_hw *hw = &adapter->hw;
1473 u32 ctrl_reg = 0;
1474 u16 phy_reg = 0;
1475
1476 hw->mac.autoneg = false;
1477
1478 switch (hw->phy.type) {
1479 case e1000_phy_m88:
1480 /* Auto-MDI/MDIX Off */
1481 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1482 /* reset to update Auto-MDI/MDIX */
1483 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1484 /* autoneg off */
1485 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1486 break;
1487 case e1000_phy_82580:
1488 /* enable MII loopback */
1489 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1490 break;
1491 case e1000_phy_i210:
1492 /* set loopback speed in PHY */
1493 igb_read_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1494 &phy_reg);
1495 phy_reg |= GS40G_MAC_SPEED_1G;
1496 igb_write_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1497 phy_reg);
1498 ctrl_reg = rd32(E1000_CTRL_EXT);
1499 default:
1500 break;
1501 }
1502
1503 /* force 1000, set loopback */
1504 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1505
1506 /* Now set up the MAC to the same speed/duplex as the PHY. */
1507 ctrl_reg = rd32(E1000_CTRL);
1508 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1509 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1510 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1511 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1512 E1000_CTRL_FD | /* Force Duplex to FULL */
1513 E1000_CTRL_SLU); /* Set link up enable bit */
1514
1515 if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1516 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1517
1518 wr32(E1000_CTRL, ctrl_reg);
1519
1520 /* Disable the receiver on the PHY so when a cable is plugged in, the
1521 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1522 */
1523 if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1524 igb_phy_disable_receiver(adapter);
1525
1526 udelay(500);
1527
1528 return 0;
1529}
1530
1531static int igb_set_phy_loopback(struct igb_adapter *adapter)
1532{
1533 return igb_integrated_phy_loopback(adapter);
1534}
1535
1536static int igb_setup_loopback_test(struct igb_adapter *adapter)
1537{
1538 struct e1000_hw *hw = &adapter->hw;
1539 u32 reg;
1540
1541 reg = rd32(E1000_CTRL_EXT);
1542
1543 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1544 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1545 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1546 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1547 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1548 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1549
1550 /* Enable DH89xxCC MPHY for near end loopback */
1551 reg = rd32(E1000_MPHY_ADDR_CTL);
1552 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1553 E1000_MPHY_PCS_CLK_REG_OFFSET;
1554 wr32(E1000_MPHY_ADDR_CTL, reg);
1555
1556 reg = rd32(E1000_MPHY_DATA);
1557 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1558 wr32(E1000_MPHY_DATA, reg);
1559 }
1560
1561 reg = rd32(E1000_RCTL);
1562 reg |= E1000_RCTL_LBM_TCVR;
1563 wr32(E1000_RCTL, reg);
1564
1565 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1566
1567 reg = rd32(E1000_CTRL);
1568 reg &= ~(E1000_CTRL_RFCE |
1569 E1000_CTRL_TFCE |
1570 E1000_CTRL_LRST);
1571 reg |= E1000_CTRL_SLU |
1572 E1000_CTRL_FD;
1573 wr32(E1000_CTRL, reg);
1574
1575 /* Unset switch control to serdes energy detect */
1576 reg = rd32(E1000_CONNSW);
1577 reg &= ~E1000_CONNSW_ENRGSRC;
1578 wr32(E1000_CONNSW, reg);
1579
1580 /* Set PCS register for forced speed */
1581 reg = rd32(E1000_PCS_LCTL);
1582 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1583 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1584 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1585 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1586 E1000_PCS_LCTL_FSD | /* Force Speed */
1587 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1588 wr32(E1000_PCS_LCTL, reg);
1589
1590 return 0;
1591 }
1592
1593 return igb_set_phy_loopback(adapter);
1594}
1595
1596static void igb_loopback_cleanup(struct igb_adapter *adapter)
1597{
1598 struct e1000_hw *hw = &adapter->hw;
1599 u32 rctl;
1600 u16 phy_reg;
1601
1602 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1603 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1604 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1605 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1606 u32 reg;
1607
1608 /* Disable near end loopback on DH89xxCC */
1609 reg = rd32(E1000_MPHY_ADDR_CTL);
1610 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1611 E1000_MPHY_PCS_CLK_REG_OFFSET;
1612 wr32(E1000_MPHY_ADDR_CTL, reg);
1613
1614 reg = rd32(E1000_MPHY_DATA);
1615 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1616 wr32(E1000_MPHY_DATA, reg);
1617 }
1618
1619 rctl = rd32(E1000_RCTL);
1620 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1621 wr32(E1000_RCTL, rctl);
1622
1623 hw->mac.autoneg = true;
1624 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1625 if (phy_reg & MII_CR_LOOPBACK) {
1626 phy_reg &= ~MII_CR_LOOPBACK;
1627 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1628 igb_phy_sw_reset(hw);
1629 }
1630}
1631
1632static void igb_create_lbtest_frame(struct sk_buff *skb,
1633 unsigned int frame_size)
1634{
1635 memset(skb->data, 0xFF, frame_size);
1636 frame_size /= 2;
1637 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1638 memset(&skb->data[frame_size + 10], 0xBE, 1);
1639 memset(&skb->data[frame_size + 12], 0xAF, 1);
1640}
1641
1642static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1643{
1644 frame_size /= 2;
1645 if (*(skb->data + 3) == 0xFF) {
1646 if ((*(skb->data + frame_size + 10) == 0xBE) &&
1647 (*(skb->data + frame_size + 12) == 0xAF)) {
1648 return 0;
1649 }
1650 }
1651 return 13;
1652}
1653
1654static int igb_clean_test_rings(struct igb_ring *rx_ring,
1655 struct igb_ring *tx_ring,
1656 unsigned int size)
1657{
1658 union e1000_adv_rx_desc *rx_desc;
1659 struct igb_rx_buffer *rx_buffer_info;
1660 struct igb_tx_buffer *tx_buffer_info;
1661 struct netdev_queue *txq;
1662 u16 rx_ntc, tx_ntc, count = 0;
1663 unsigned int total_bytes = 0, total_packets = 0;
1664
1665 /* initialize next to clean and descriptor values */
1666 rx_ntc = rx_ring->next_to_clean;
1667 tx_ntc = tx_ring->next_to_clean;
1668 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1669
1670 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1671 /* check rx buffer */
1672 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1673
1674 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1675 dma_unmap_single(rx_ring->dev,
1676 rx_buffer_info->dma,
1677 IGB_RX_HDR_LEN,
1678 DMA_FROM_DEVICE);
1679 rx_buffer_info->dma = 0;
1680
1681 /* verify contents of skb */
1682 if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1683 count++;
1684
1685 /* unmap buffer on tx side */
1686 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1687 total_bytes += tx_buffer_info->bytecount;
1688 total_packets += tx_buffer_info->gso_segs;
1689 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1690
1691 /* increment rx/tx next to clean counters */
1692 rx_ntc++;
1693 if (rx_ntc == rx_ring->count)
1694 rx_ntc = 0;
1695 tx_ntc++;
1696 if (tx_ntc == tx_ring->count)
1697 tx_ntc = 0;
1698
1699 /* fetch next descriptor */
1700 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1701 }
1702
1703 txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index);
1704 netdev_tx_completed_queue(txq, total_packets, total_bytes);
1705
1706 /* re-map buffers to ring, store next to clean values */
1707 igb_alloc_rx_buffers(rx_ring, count);
1708 rx_ring->next_to_clean = rx_ntc;
1709 tx_ring->next_to_clean = tx_ntc;
1710
1711 return count;
1712}
1713
1714static int igb_run_loopback_test(struct igb_adapter *adapter)
1715{
1716 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1717 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1718 u16 i, j, lc, good_cnt;
1719 int ret_val = 0;
1720 unsigned int size = IGB_RX_HDR_LEN;
1721 netdev_tx_t tx_ret_val;
1722 struct sk_buff *skb;
1723
1724 /* allocate test skb */
1725 skb = alloc_skb(size, GFP_KERNEL);
1726 if (!skb)
1727 return 11;
1728
1729 /* place data into test skb */
1730 igb_create_lbtest_frame(skb, size);
1731 skb_put(skb, size);
1732
1733 /*
1734 * Calculate the loop count based on the largest descriptor ring
1735 * The idea is to wrap the largest ring a number of times using 64
1736 * send/receive pairs during each loop
1737 */
1738
1739 if (rx_ring->count <= tx_ring->count)
1740 lc = ((tx_ring->count / 64) * 2) + 1;
1741 else
1742 lc = ((rx_ring->count / 64) * 2) + 1;
1743
1744 for (j = 0; j <= lc; j++) { /* loop count loop */
1745 /* reset count of good packets */
1746 good_cnt = 0;
1747
1748 /* place 64 packets on the transmit queue*/
1749 for (i = 0; i < 64; i++) {
1750 skb_get(skb);
1751 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1752 if (tx_ret_val == NETDEV_TX_OK)
1753 good_cnt++;
1754 }
1755
1756 if (good_cnt != 64) {
1757 ret_val = 12;
1758 break;
1759 }
1760
1761 /* allow 200 milliseconds for packets to go from tx to rx */
1762 msleep(200);
1763
1764 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1765 if (good_cnt != 64) {
1766 ret_val = 13;
1767 break;
1768 }
1769 } /* end loop count loop */
1770
1771 /* free the original skb */
1772 kfree_skb(skb);
1773
1774 return ret_val;
1775}
1776
1777static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1778{
1779 /* PHY loopback cannot be performed if SoL/IDER
1780 * sessions are active */
1781 if (igb_check_reset_block(&adapter->hw)) {
1782 dev_err(&adapter->pdev->dev,
1783 "Cannot do PHY loopback test "
1784 "when SoL/IDER is active.\n");
1785 *data = 0;
1786 goto out;
1787 }
1788 if ((adapter->hw.mac.type == e1000_i210)
1789 || (adapter->hw.mac.type == e1000_i210)) {
1790 dev_err(&adapter->pdev->dev,
1791 "Loopback test not supported "
1792 "on this part at this time.\n");
1793 *data = 0;
1794 goto out;
1795 }
1796 *data = igb_setup_desc_rings(adapter);
1797 if (*data)
1798 goto out;
1799 *data = igb_setup_loopback_test(adapter);
1800 if (*data)
1801 goto err_loopback;
1802 *data = igb_run_loopback_test(adapter);
1803 igb_loopback_cleanup(adapter);
1804
1805err_loopback:
1806 igb_free_desc_rings(adapter);
1807out:
1808 return *data;
1809}
1810
1811static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1812{
1813 struct e1000_hw *hw = &adapter->hw;
1814 *data = 0;
1815 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1816 int i = 0;
1817 hw->mac.serdes_has_link = false;
1818
1819 /* On some blade server designs, link establishment
1820 * could take as long as 2-3 minutes */
1821 do {
1822 hw->mac.ops.check_for_link(&adapter->hw);
1823 if (hw->mac.serdes_has_link)
1824 return *data;
1825 msleep(20);
1826 } while (i++ < 3750);
1827
1828 *data = 1;
1829 } else {
1830 hw->mac.ops.check_for_link(&adapter->hw);
1831 if (hw->mac.autoneg)
1832 msleep(4000);
1833
1834 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1835 *data = 1;
1836 }
1837 return *data;
1838}
1839
1840static void igb_diag_test(struct net_device *netdev,
1841 struct ethtool_test *eth_test, u64 *data)
1842{
1843 struct igb_adapter *adapter = netdev_priv(netdev);
1844 u16 autoneg_advertised;
1845 u8 forced_speed_duplex, autoneg;
1846 bool if_running = netif_running(netdev);
1847
1848 set_bit(__IGB_TESTING, &adapter->state);
1849 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1850 /* Offline tests */
1851
1852 /* save speed, duplex, autoneg settings */
1853 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1854 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1855 autoneg = adapter->hw.mac.autoneg;
1856
1857 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1858
1859 /* power up link for link test */
1860 igb_power_up_link(adapter);
1861
1862 /* Link test performed before hardware reset so autoneg doesn't
1863 * interfere with test result */
1864 if (igb_link_test(adapter, &data[4]))
1865 eth_test->flags |= ETH_TEST_FL_FAILED;
1866
1867 if (if_running)
1868 /* indicate we're in test mode */
1869 dev_close(netdev);
1870 else
1871 igb_reset(adapter);
1872
1873 if (igb_reg_test(adapter, &data[0]))
1874 eth_test->flags |= ETH_TEST_FL_FAILED;
1875
1876 igb_reset(adapter);
1877 if (igb_eeprom_test(adapter, &data[1]))
1878 eth_test->flags |= ETH_TEST_FL_FAILED;
1879
1880 igb_reset(adapter);
1881 if (igb_intr_test(adapter, &data[2]))
1882 eth_test->flags |= ETH_TEST_FL_FAILED;
1883
1884 igb_reset(adapter);
1885 /* power up link for loopback test */
1886 igb_power_up_link(adapter);
1887 if (igb_loopback_test(adapter, &data[3]))
1888 eth_test->flags |= ETH_TEST_FL_FAILED;
1889
1890 /* restore speed, duplex, autoneg settings */
1891 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1892 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1893 adapter->hw.mac.autoneg = autoneg;
1894
1895 /* force this routine to wait until autoneg complete/timeout */
1896 adapter->hw.phy.autoneg_wait_to_complete = true;
1897 igb_reset(adapter);
1898 adapter->hw.phy.autoneg_wait_to_complete = false;
1899
1900 clear_bit(__IGB_TESTING, &adapter->state);
1901 if (if_running)
1902 dev_open(netdev);
1903 } else {
1904 dev_info(&adapter->pdev->dev, "online testing starting\n");
1905
1906 /* PHY is powered down when interface is down */
1907 if (if_running && igb_link_test(adapter, &data[4]))
1908 eth_test->flags |= ETH_TEST_FL_FAILED;
1909 else
1910 data[4] = 0;
1911
1912 /* Online tests aren't run; pass by default */
1913 data[0] = 0;
1914 data[1] = 0;
1915 data[2] = 0;
1916 data[3] = 0;
1917
1918 clear_bit(__IGB_TESTING, &adapter->state);
1919 }
1920 msleep_interruptible(4 * 1000);
1921}
1922
1923static int igb_wol_exclusion(struct igb_adapter *adapter,
1924 struct ethtool_wolinfo *wol)
1925{
1926 struct e1000_hw *hw = &adapter->hw;
1927 int retval = 1; /* fail by default */
1928
1929 switch (hw->device_id) {
1930 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1931 /* WoL not supported */
1932 wol->supported = 0;
1933 break;
1934 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1935 case E1000_DEV_ID_82576_FIBER:
1936 case E1000_DEV_ID_82576_SERDES:
1937 /* Wake events not supported on port B */
1938 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1939 wol->supported = 0;
1940 break;
1941 }
1942 /* return success for non excluded adapter ports */
1943 retval = 0;
1944 break;
1945 case E1000_DEV_ID_82576_QUAD_COPPER:
1946 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1947 /* quad port adapters only support WoL on port A */
1948 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1949 wol->supported = 0;
1950 break;
1951 }
1952 /* return success for non excluded adapter ports */
1953 retval = 0;
1954 break;
1955 default:
1956 /* dual port cards only support WoL on port A from now on
1957 * unless it was enabled in the eeprom for port B
1958 * so exclude FUNC_1 ports from having WoL enabled */
1959 if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1960 !adapter->eeprom_wol) {
1961 wol->supported = 0;
1962 break;
1963 }
1964
1965 retval = 0;
1966 }
1967
1968 return retval;
1969}
1970
1971static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1972{
1973 struct igb_adapter *adapter = netdev_priv(netdev);
1974
1975 wol->supported = WAKE_UCAST | WAKE_MCAST |
1976 WAKE_BCAST | WAKE_MAGIC |
1977 WAKE_PHY;
1978 wol->wolopts = 0;
1979
1980 /* this function will set ->supported = 0 and return 1 if wol is not
1981 * supported by this hardware */
1982 if (igb_wol_exclusion(adapter, wol) ||
1983 !device_can_wakeup(&adapter->pdev->dev))
1984 return;
1985
1986 /* apply any specific unsupported masks here */
1987 switch (adapter->hw.device_id) {
1988 default:
1989 break;
1990 }
1991
1992 if (adapter->wol & E1000_WUFC_EX)
1993 wol->wolopts |= WAKE_UCAST;
1994 if (adapter->wol & E1000_WUFC_MC)
1995 wol->wolopts |= WAKE_MCAST;
1996 if (adapter->wol & E1000_WUFC_BC)
1997 wol->wolopts |= WAKE_BCAST;
1998 if (adapter->wol & E1000_WUFC_MAG)
1999 wol->wolopts |= WAKE_MAGIC;
2000 if (adapter->wol & E1000_WUFC_LNKC)
2001 wol->wolopts |= WAKE_PHY;
2002}
2003
2004static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2005{
2006 struct igb_adapter *adapter = netdev_priv(netdev);
2007
2008 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2009 return -EOPNOTSUPP;
2010
2011 if (igb_wol_exclusion(adapter, wol) ||
2012 !device_can_wakeup(&adapter->pdev->dev))
2013 return wol->wolopts ? -EOPNOTSUPP : 0;
2014
2015 /* these settings will always override what we currently have */
2016 adapter->wol = 0;
2017
2018 if (wol->wolopts & WAKE_UCAST)
2019 adapter->wol |= E1000_WUFC_EX;
2020 if (wol->wolopts & WAKE_MCAST)
2021 adapter->wol |= E1000_WUFC_MC;
2022 if (wol->wolopts & WAKE_BCAST)
2023 adapter->wol |= E1000_WUFC_BC;
2024 if (wol->wolopts & WAKE_MAGIC)
2025 adapter->wol |= E1000_WUFC_MAG;
2026 if (wol->wolopts & WAKE_PHY)
2027 adapter->wol |= E1000_WUFC_LNKC;
2028 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2029
2030 return 0;
2031}
2032
2033/* bit defines for adapter->led_status */
2034#define IGB_LED_ON 0
2035
2036static int igb_set_phys_id(struct net_device *netdev,
2037 enum ethtool_phys_id_state state)
2038{
2039 struct igb_adapter *adapter = netdev_priv(netdev);
2040 struct e1000_hw *hw = &adapter->hw;
2041
2042 switch (state) {
2043 case ETHTOOL_ID_ACTIVE:
2044 igb_blink_led(hw);
2045 return 2;
2046 case ETHTOOL_ID_ON:
2047 igb_blink_led(hw);
2048 break;
2049 case ETHTOOL_ID_OFF:
2050 igb_led_off(hw);
2051 break;
2052 case ETHTOOL_ID_INACTIVE:
2053 igb_led_off(hw);
2054 clear_bit(IGB_LED_ON, &adapter->led_status);
2055 igb_cleanup_led(hw);
2056 break;
2057 }
2058
2059 return 0;
2060}
2061
2062static int igb_set_coalesce(struct net_device *netdev,
2063 struct ethtool_coalesce *ec)
2064{
2065 struct igb_adapter *adapter = netdev_priv(netdev);
2066 int i;
2067
2068 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2069 ((ec->rx_coalesce_usecs > 3) &&
2070 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2071 (ec->rx_coalesce_usecs == 2))
2072 return -EINVAL;
2073
2074 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2075 ((ec->tx_coalesce_usecs > 3) &&
2076 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2077 (ec->tx_coalesce_usecs == 2))
2078 return -EINVAL;
2079
2080 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2081 return -EINVAL;
2082
2083 /* If ITR is disabled, disable DMAC */
2084 if (ec->rx_coalesce_usecs == 0) {
2085 if (adapter->flags & IGB_FLAG_DMAC)
2086 adapter->flags &= ~IGB_FLAG_DMAC;
2087 }
2088
2089 /* convert to rate of irq's per second */
2090 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2091 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2092 else
2093 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2094
2095 /* convert to rate of irq's per second */
2096 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2097 adapter->tx_itr_setting = adapter->rx_itr_setting;
2098 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2099 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2100 else
2101 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2102
2103 for (i = 0; i < adapter->num_q_vectors; i++) {
2104 struct igb_q_vector *q_vector = adapter->q_vector[i];
2105 q_vector->tx.work_limit = adapter->tx_work_limit;
2106 if (q_vector->rx.ring)
2107 q_vector->itr_val = adapter->rx_itr_setting;
2108 else
2109 q_vector->itr_val = adapter->tx_itr_setting;
2110 if (q_vector->itr_val && q_vector->itr_val <= 3)
2111 q_vector->itr_val = IGB_START_ITR;
2112 q_vector->set_itr = 1;
2113 }
2114
2115 return 0;
2116}
2117
2118static int igb_get_coalesce(struct net_device *netdev,
2119 struct ethtool_coalesce *ec)
2120{
2121 struct igb_adapter *adapter = netdev_priv(netdev);
2122
2123 if (adapter->rx_itr_setting <= 3)
2124 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2125 else
2126 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2127
2128 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2129 if (adapter->tx_itr_setting <= 3)
2130 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2131 else
2132 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2133 }
2134
2135 return 0;
2136}
2137
2138static int igb_nway_reset(struct net_device *netdev)
2139{
2140 struct igb_adapter *adapter = netdev_priv(netdev);
2141 if (netif_running(netdev))
2142 igb_reinit_locked(adapter);
2143 return 0;
2144}
2145
2146static int igb_get_sset_count(struct net_device *netdev, int sset)
2147{
2148 switch (sset) {
2149 case ETH_SS_STATS:
2150 return IGB_STATS_LEN;
2151 case ETH_SS_TEST:
2152 return IGB_TEST_LEN;
2153 default:
2154 return -ENOTSUPP;
2155 }
2156}
2157
2158static void igb_get_ethtool_stats(struct net_device *netdev,
2159 struct ethtool_stats *stats, u64 *data)
2160{
2161 struct igb_adapter *adapter = netdev_priv(netdev);
2162 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2163 unsigned int start;
2164 struct igb_ring *ring;
2165 int i, j;
2166 char *p;
2167
2168 spin_lock(&adapter->stats64_lock);
2169 igb_update_stats(adapter, net_stats);
2170
2171 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2172 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2173 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2174 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2175 }
2176 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2177 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2178 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2179 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2180 }
2181 for (j = 0; j < adapter->num_tx_queues; j++) {
2182 u64 restart2;
2183
2184 ring = adapter->tx_ring[j];
2185 do {
2186 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2187 data[i] = ring->tx_stats.packets;
2188 data[i+1] = ring->tx_stats.bytes;
2189 data[i+2] = ring->tx_stats.restart_queue;
2190 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2191 do {
2192 start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2193 restart2 = ring->tx_stats.restart_queue2;
2194 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2195 data[i+2] += restart2;
2196
2197 i += IGB_TX_QUEUE_STATS_LEN;
2198 }
2199 for (j = 0; j < adapter->num_rx_queues; j++) {
2200 ring = adapter->rx_ring[j];
2201 do {
2202 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2203 data[i] = ring->rx_stats.packets;
2204 data[i+1] = ring->rx_stats.bytes;
2205 data[i+2] = ring->rx_stats.drops;
2206 data[i+3] = ring->rx_stats.csum_err;
2207 data[i+4] = ring->rx_stats.alloc_failed;
2208 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2209 i += IGB_RX_QUEUE_STATS_LEN;
2210 }
2211 spin_unlock(&adapter->stats64_lock);
2212}
2213
2214static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2215{
2216 struct igb_adapter *adapter = netdev_priv(netdev);
2217 u8 *p = data;
2218 int i;
2219
2220 switch (stringset) {
2221 case ETH_SS_TEST:
2222 memcpy(data, *igb_gstrings_test,
2223 IGB_TEST_LEN*ETH_GSTRING_LEN);
2224 break;
2225 case ETH_SS_STATS:
2226 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2227 memcpy(p, igb_gstrings_stats[i].stat_string,
2228 ETH_GSTRING_LEN);
2229 p += ETH_GSTRING_LEN;
2230 }
2231 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2232 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2233 ETH_GSTRING_LEN);
2234 p += ETH_GSTRING_LEN;
2235 }
2236 for (i = 0; i < adapter->num_tx_queues; i++) {
2237 sprintf(p, "tx_queue_%u_packets", i);
2238 p += ETH_GSTRING_LEN;
2239 sprintf(p, "tx_queue_%u_bytes", i);
2240 p += ETH_GSTRING_LEN;
2241 sprintf(p, "tx_queue_%u_restart", i);
2242 p += ETH_GSTRING_LEN;
2243 }
2244 for (i = 0; i < adapter->num_rx_queues; i++) {
2245 sprintf(p, "rx_queue_%u_packets", i);
2246 p += ETH_GSTRING_LEN;
2247 sprintf(p, "rx_queue_%u_bytes", i);
2248 p += ETH_GSTRING_LEN;
2249 sprintf(p, "rx_queue_%u_drops", i);
2250 p += ETH_GSTRING_LEN;
2251 sprintf(p, "rx_queue_%u_csum_err", i);
2252 p += ETH_GSTRING_LEN;
2253 sprintf(p, "rx_queue_%u_alloc_failed", i);
2254 p += ETH_GSTRING_LEN;
2255 }
2256/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2257 break;
2258 }
2259}
2260
2261static int igb_ethtool_begin(struct net_device *netdev)
2262{
2263 struct igb_adapter *adapter = netdev_priv(netdev);
2264 pm_runtime_get_sync(&adapter->pdev->dev);
2265 return 0;
2266}
2267
2268static void igb_ethtool_complete(struct net_device *netdev)
2269{
2270 struct igb_adapter *adapter = netdev_priv(netdev);
2271 pm_runtime_put(&adapter->pdev->dev);
2272}
2273
2274static const struct ethtool_ops igb_ethtool_ops = {
2275 .get_settings = igb_get_settings,
2276 .set_settings = igb_set_settings,
2277 .get_drvinfo = igb_get_drvinfo,
2278 .get_regs_len = igb_get_regs_len,
2279 .get_regs = igb_get_regs,
2280 .get_wol = igb_get_wol,
2281 .set_wol = igb_set_wol,
2282 .get_msglevel = igb_get_msglevel,
2283 .set_msglevel = igb_set_msglevel,
2284 .nway_reset = igb_nway_reset,
2285 .get_link = igb_get_link,
2286 .get_eeprom_len = igb_get_eeprom_len,
2287 .get_eeprom = igb_get_eeprom,
2288 .set_eeprom = igb_set_eeprom,
2289 .get_ringparam = igb_get_ringparam,
2290 .set_ringparam = igb_set_ringparam,
2291 .get_pauseparam = igb_get_pauseparam,
2292 .set_pauseparam = igb_set_pauseparam,
2293 .self_test = igb_diag_test,
2294 .get_strings = igb_get_strings,
2295 .set_phys_id = igb_set_phys_id,
2296 .get_sset_count = igb_get_sset_count,
2297 .get_ethtool_stats = igb_get_ethtool_stats,
2298 .get_coalesce = igb_get_coalesce,
2299 .set_coalesce = igb_set_coalesce,
2300 .begin = igb_ethtool_begin,
2301 .complete = igb_ethtool_complete,
2302};
2303
2304void igb_set_ethtool_ops(struct net_device *netdev)
2305{
2306 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2307}