Loading...
1/*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/ratelimit.h>
21#include <linux/pci.h>
22#include <linux/pci-ats.h>
23#include <linux/bitmap.h>
24#include <linux/slab.h>
25#include <linux/debugfs.h>
26#include <linux/scatterlist.h>
27#include <linux/dma-mapping.h>
28#include <linux/iommu-helper.h>
29#include <linux/iommu.h>
30#include <linux/delay.h>
31#include <linux/amd-iommu.h>
32#include <linux/notifier.h>
33#include <linux/export.h>
34#include <linux/irq.h>
35#include <linux/msi.h>
36#include <linux/dma-contiguous.h>
37#include <linux/irqdomain.h>
38#include <linux/percpu.h>
39#include <asm/irq_remapping.h>
40#include <asm/io_apic.h>
41#include <asm/apic.h>
42#include <asm/hw_irq.h>
43#include <asm/msidef.h>
44#include <asm/proto.h>
45#include <asm/iommu.h>
46#include <asm/gart.h>
47#include <asm/dma.h>
48
49#include "amd_iommu_proto.h"
50#include "amd_iommu_types.h"
51#include "irq_remapping.h"
52
53#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
54
55#define LOOP_TIMEOUT 100000
56
57/*
58 * This bitmap is used to advertise the page sizes our hardware support
59 * to the IOMMU core, which will then use this information to split
60 * physically contiguous memory regions it is mapping into page sizes
61 * that we support.
62 *
63 * 512GB Pages are not supported due to a hardware bug
64 */
65#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
66
67static DEFINE_RWLOCK(amd_iommu_devtable_lock);
68
69/* List of all available dev_data structures */
70static LIST_HEAD(dev_data_list);
71static DEFINE_SPINLOCK(dev_data_list_lock);
72
73LIST_HEAD(ioapic_map);
74LIST_HEAD(hpet_map);
75
76/*
77 * Domain for untranslated devices - only allocated
78 * if iommu=pt passed on kernel cmd line.
79 */
80static const struct iommu_ops amd_iommu_ops;
81
82static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
83int amd_iommu_max_glx_val = -1;
84
85static struct dma_map_ops amd_iommu_dma_ops;
86
87/*
88 * This struct contains device specific data for the IOMMU
89 */
90struct iommu_dev_data {
91 struct list_head list; /* For domain->dev_list */
92 struct list_head dev_data_list; /* For global dev_data_list */
93 struct protection_domain *domain; /* Domain the device is bound to */
94 u16 devid; /* PCI Device ID */
95 u16 alias; /* Alias Device ID */
96 bool iommu_v2; /* Device can make use of IOMMUv2 */
97 bool passthrough; /* Device is identity mapped */
98 struct {
99 bool enabled;
100 int qdep;
101 } ats; /* ATS state */
102 bool pri_tlp; /* PASID TLB required for
103 PPR completions */
104 u32 errata; /* Bitmap for errata to apply */
105};
106
107/*
108 * general struct to manage commands send to an IOMMU
109 */
110struct iommu_cmd {
111 u32 data[4];
112};
113
114struct kmem_cache *amd_iommu_irq_cache;
115
116static void update_domain(struct protection_domain *domain);
117static int protection_domain_init(struct protection_domain *domain);
118static void detach_device(struct device *dev);
119
120/*
121 * For dynamic growth the aperture size is split into ranges of 128MB of
122 * DMA address space each. This struct represents one such range.
123 */
124struct aperture_range {
125
126 spinlock_t bitmap_lock;
127
128 /* address allocation bitmap */
129 unsigned long *bitmap;
130 unsigned long offset;
131 unsigned long next_bit;
132
133 /*
134 * Array of PTE pages for the aperture. In this array we save all the
135 * leaf pages of the domain page table used for the aperture. This way
136 * we don't need to walk the page table to find a specific PTE. We can
137 * just calculate its address in constant time.
138 */
139 u64 *pte_pages[64];
140};
141
142/*
143 * Data container for a dma_ops specific protection domain
144 */
145struct dma_ops_domain {
146 /* generic protection domain information */
147 struct protection_domain domain;
148
149 /* size of the aperture for the mappings */
150 unsigned long aperture_size;
151
152 /* aperture index we start searching for free addresses */
153 u32 __percpu *next_index;
154
155 /* address space relevant data */
156 struct aperture_range *aperture[APERTURE_MAX_RANGES];
157};
158
159/****************************************************************************
160 *
161 * Helper functions
162 *
163 ****************************************************************************/
164
165static struct protection_domain *to_pdomain(struct iommu_domain *dom)
166{
167 return container_of(dom, struct protection_domain, domain);
168}
169
170static inline u16 get_device_id(struct device *dev)
171{
172 struct pci_dev *pdev = to_pci_dev(dev);
173
174 return PCI_DEVID(pdev->bus->number, pdev->devfn);
175}
176
177static struct iommu_dev_data *alloc_dev_data(u16 devid)
178{
179 struct iommu_dev_data *dev_data;
180 unsigned long flags;
181
182 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
183 if (!dev_data)
184 return NULL;
185
186 dev_data->devid = devid;
187
188 spin_lock_irqsave(&dev_data_list_lock, flags);
189 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
190 spin_unlock_irqrestore(&dev_data_list_lock, flags);
191
192 return dev_data;
193}
194
195static struct iommu_dev_data *search_dev_data(u16 devid)
196{
197 struct iommu_dev_data *dev_data;
198 unsigned long flags;
199
200 spin_lock_irqsave(&dev_data_list_lock, flags);
201 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
202 if (dev_data->devid == devid)
203 goto out_unlock;
204 }
205
206 dev_data = NULL;
207
208out_unlock:
209 spin_unlock_irqrestore(&dev_data_list_lock, flags);
210
211 return dev_data;
212}
213
214static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
215{
216 *(u16 *)data = alias;
217 return 0;
218}
219
220static u16 get_alias(struct device *dev)
221{
222 struct pci_dev *pdev = to_pci_dev(dev);
223 u16 devid, ivrs_alias, pci_alias;
224
225 devid = get_device_id(dev);
226 ivrs_alias = amd_iommu_alias_table[devid];
227 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
228
229 if (ivrs_alias == pci_alias)
230 return ivrs_alias;
231
232 /*
233 * DMA alias showdown
234 *
235 * The IVRS is fairly reliable in telling us about aliases, but it
236 * can't know about every screwy device. If we don't have an IVRS
237 * reported alias, use the PCI reported alias. In that case we may
238 * still need to initialize the rlookup and dev_table entries if the
239 * alias is to a non-existent device.
240 */
241 if (ivrs_alias == devid) {
242 if (!amd_iommu_rlookup_table[pci_alias]) {
243 amd_iommu_rlookup_table[pci_alias] =
244 amd_iommu_rlookup_table[devid];
245 memcpy(amd_iommu_dev_table[pci_alias].data,
246 amd_iommu_dev_table[devid].data,
247 sizeof(amd_iommu_dev_table[pci_alias].data));
248 }
249
250 return pci_alias;
251 }
252
253 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
254 "for device %s[%04x:%04x], kernel reported alias "
255 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
256 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
257 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
258 PCI_FUNC(pci_alias));
259
260 /*
261 * If we don't have a PCI DMA alias and the IVRS alias is on the same
262 * bus, then the IVRS table may know about a quirk that we don't.
263 */
264 if (pci_alias == devid &&
265 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
266 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
267 pdev->dma_alias_devfn = ivrs_alias & 0xff;
268 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
269 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
270 dev_name(dev));
271 }
272
273 return ivrs_alias;
274}
275
276static struct iommu_dev_data *find_dev_data(u16 devid)
277{
278 struct iommu_dev_data *dev_data;
279
280 dev_data = search_dev_data(devid);
281
282 if (dev_data == NULL)
283 dev_data = alloc_dev_data(devid);
284
285 return dev_data;
286}
287
288static struct iommu_dev_data *get_dev_data(struct device *dev)
289{
290 return dev->archdata.iommu;
291}
292
293static bool pci_iommuv2_capable(struct pci_dev *pdev)
294{
295 static const int caps[] = {
296 PCI_EXT_CAP_ID_ATS,
297 PCI_EXT_CAP_ID_PRI,
298 PCI_EXT_CAP_ID_PASID,
299 };
300 int i, pos;
301
302 for (i = 0; i < 3; ++i) {
303 pos = pci_find_ext_capability(pdev, caps[i]);
304 if (pos == 0)
305 return false;
306 }
307
308 return true;
309}
310
311static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
312{
313 struct iommu_dev_data *dev_data;
314
315 dev_data = get_dev_data(&pdev->dev);
316
317 return dev_data->errata & (1 << erratum) ? true : false;
318}
319
320/*
321 * This function actually applies the mapping to the page table of the
322 * dma_ops domain.
323 */
324static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
325 struct unity_map_entry *e)
326{
327 u64 addr;
328
329 for (addr = e->address_start; addr < e->address_end;
330 addr += PAGE_SIZE) {
331 if (addr < dma_dom->aperture_size)
332 __set_bit(addr >> PAGE_SHIFT,
333 dma_dom->aperture[0]->bitmap);
334 }
335}
336
337/*
338 * Inits the unity mappings required for a specific device
339 */
340static void init_unity_mappings_for_device(struct device *dev,
341 struct dma_ops_domain *dma_dom)
342{
343 struct unity_map_entry *e;
344 u16 devid;
345
346 devid = get_device_id(dev);
347
348 list_for_each_entry(e, &amd_iommu_unity_map, list) {
349 if (!(devid >= e->devid_start && devid <= e->devid_end))
350 continue;
351 alloc_unity_mapping(dma_dom, e);
352 }
353}
354
355/*
356 * This function checks if the driver got a valid device from the caller to
357 * avoid dereferencing invalid pointers.
358 */
359static bool check_device(struct device *dev)
360{
361 u16 devid;
362
363 if (!dev || !dev->dma_mask)
364 return false;
365
366 /* No PCI device */
367 if (!dev_is_pci(dev))
368 return false;
369
370 devid = get_device_id(dev);
371
372 /* Out of our scope? */
373 if (devid > amd_iommu_last_bdf)
374 return false;
375
376 if (amd_iommu_rlookup_table[devid] == NULL)
377 return false;
378
379 return true;
380}
381
382static void init_iommu_group(struct device *dev)
383{
384 struct dma_ops_domain *dma_domain;
385 struct iommu_domain *domain;
386 struct iommu_group *group;
387
388 group = iommu_group_get_for_dev(dev);
389 if (IS_ERR(group))
390 return;
391
392 domain = iommu_group_default_domain(group);
393 if (!domain)
394 goto out;
395
396 dma_domain = to_pdomain(domain)->priv;
397
398 init_unity_mappings_for_device(dev, dma_domain);
399out:
400 iommu_group_put(group);
401}
402
403static int iommu_init_device(struct device *dev)
404{
405 struct pci_dev *pdev = to_pci_dev(dev);
406 struct iommu_dev_data *dev_data;
407
408 if (dev->archdata.iommu)
409 return 0;
410
411 dev_data = find_dev_data(get_device_id(dev));
412 if (!dev_data)
413 return -ENOMEM;
414
415 dev_data->alias = get_alias(dev);
416
417 if (pci_iommuv2_capable(pdev)) {
418 struct amd_iommu *iommu;
419
420 iommu = amd_iommu_rlookup_table[dev_data->devid];
421 dev_data->iommu_v2 = iommu->is_iommu_v2;
422 }
423
424 dev->archdata.iommu = dev_data;
425
426 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
427 dev);
428
429 return 0;
430}
431
432static void iommu_ignore_device(struct device *dev)
433{
434 u16 devid, alias;
435
436 devid = get_device_id(dev);
437 alias = get_alias(dev);
438
439 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
440 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
441
442 amd_iommu_rlookup_table[devid] = NULL;
443 amd_iommu_rlookup_table[alias] = NULL;
444}
445
446static void iommu_uninit_device(struct device *dev)
447{
448 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
449
450 if (!dev_data)
451 return;
452
453 if (dev_data->domain)
454 detach_device(dev);
455
456 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
457 dev);
458
459 iommu_group_remove_device(dev);
460
461 /* Remove dma-ops */
462 dev->archdata.dma_ops = NULL;
463
464 /*
465 * We keep dev_data around for unplugged devices and reuse it when the
466 * device is re-plugged - not doing so would introduce a ton of races.
467 */
468}
469
470#ifdef CONFIG_AMD_IOMMU_STATS
471
472/*
473 * Initialization code for statistics collection
474 */
475
476DECLARE_STATS_COUNTER(compl_wait);
477DECLARE_STATS_COUNTER(cnt_map_single);
478DECLARE_STATS_COUNTER(cnt_unmap_single);
479DECLARE_STATS_COUNTER(cnt_map_sg);
480DECLARE_STATS_COUNTER(cnt_unmap_sg);
481DECLARE_STATS_COUNTER(cnt_alloc_coherent);
482DECLARE_STATS_COUNTER(cnt_free_coherent);
483DECLARE_STATS_COUNTER(cross_page);
484DECLARE_STATS_COUNTER(domain_flush_single);
485DECLARE_STATS_COUNTER(domain_flush_all);
486DECLARE_STATS_COUNTER(alloced_io_mem);
487DECLARE_STATS_COUNTER(total_map_requests);
488DECLARE_STATS_COUNTER(complete_ppr);
489DECLARE_STATS_COUNTER(invalidate_iotlb);
490DECLARE_STATS_COUNTER(invalidate_iotlb_all);
491DECLARE_STATS_COUNTER(pri_requests);
492
493static struct dentry *stats_dir;
494static struct dentry *de_fflush;
495
496static void amd_iommu_stats_add(struct __iommu_counter *cnt)
497{
498 if (stats_dir == NULL)
499 return;
500
501 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
502 &cnt->value);
503}
504
505static void amd_iommu_stats_init(void)
506{
507 stats_dir = debugfs_create_dir("amd-iommu", NULL);
508 if (stats_dir == NULL)
509 return;
510
511 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
512 &amd_iommu_unmap_flush);
513
514 amd_iommu_stats_add(&compl_wait);
515 amd_iommu_stats_add(&cnt_map_single);
516 amd_iommu_stats_add(&cnt_unmap_single);
517 amd_iommu_stats_add(&cnt_map_sg);
518 amd_iommu_stats_add(&cnt_unmap_sg);
519 amd_iommu_stats_add(&cnt_alloc_coherent);
520 amd_iommu_stats_add(&cnt_free_coherent);
521 amd_iommu_stats_add(&cross_page);
522 amd_iommu_stats_add(&domain_flush_single);
523 amd_iommu_stats_add(&domain_flush_all);
524 amd_iommu_stats_add(&alloced_io_mem);
525 amd_iommu_stats_add(&total_map_requests);
526 amd_iommu_stats_add(&complete_ppr);
527 amd_iommu_stats_add(&invalidate_iotlb);
528 amd_iommu_stats_add(&invalidate_iotlb_all);
529 amd_iommu_stats_add(&pri_requests);
530}
531
532#endif
533
534/****************************************************************************
535 *
536 * Interrupt handling functions
537 *
538 ****************************************************************************/
539
540static void dump_dte_entry(u16 devid)
541{
542 int i;
543
544 for (i = 0; i < 4; ++i)
545 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
546 amd_iommu_dev_table[devid].data[i]);
547}
548
549static void dump_command(unsigned long phys_addr)
550{
551 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
552 int i;
553
554 for (i = 0; i < 4; ++i)
555 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
556}
557
558static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
559{
560 int type, devid, domid, flags;
561 volatile u32 *event = __evt;
562 int count = 0;
563 u64 address;
564
565retry:
566 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
567 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
568 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
569 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
570 address = (u64)(((u64)event[3]) << 32) | event[2];
571
572 if (type == 0) {
573 /* Did we hit the erratum? */
574 if (++count == LOOP_TIMEOUT) {
575 pr_err("AMD-Vi: No event written to event log\n");
576 return;
577 }
578 udelay(1);
579 goto retry;
580 }
581
582 printk(KERN_ERR "AMD-Vi: Event logged [");
583
584 switch (type) {
585 case EVENT_TYPE_ILL_DEV:
586 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
587 "address=0x%016llx flags=0x%04x]\n",
588 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
589 address, flags);
590 dump_dte_entry(devid);
591 break;
592 case EVENT_TYPE_IO_FAULT:
593 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
594 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
595 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
596 domid, address, flags);
597 break;
598 case EVENT_TYPE_DEV_TAB_ERR:
599 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
600 "address=0x%016llx flags=0x%04x]\n",
601 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
602 address, flags);
603 break;
604 case EVENT_TYPE_PAGE_TAB_ERR:
605 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
606 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
607 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
608 domid, address, flags);
609 break;
610 case EVENT_TYPE_ILL_CMD:
611 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
612 dump_command(address);
613 break;
614 case EVENT_TYPE_CMD_HARD_ERR:
615 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
616 "flags=0x%04x]\n", address, flags);
617 break;
618 case EVENT_TYPE_IOTLB_INV_TO:
619 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
620 "address=0x%016llx]\n",
621 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
622 address);
623 break;
624 case EVENT_TYPE_INV_DEV_REQ:
625 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
626 "address=0x%016llx flags=0x%04x]\n",
627 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
628 address, flags);
629 break;
630 default:
631 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
632 }
633
634 memset(__evt, 0, 4 * sizeof(u32));
635}
636
637static void iommu_poll_events(struct amd_iommu *iommu)
638{
639 u32 head, tail;
640
641 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
642 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
643
644 while (head != tail) {
645 iommu_print_event(iommu, iommu->evt_buf + head);
646 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
647 }
648
649 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
650}
651
652static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
653{
654 struct amd_iommu_fault fault;
655
656 INC_STATS_COUNTER(pri_requests);
657
658 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
659 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
660 return;
661 }
662
663 fault.address = raw[1];
664 fault.pasid = PPR_PASID(raw[0]);
665 fault.device_id = PPR_DEVID(raw[0]);
666 fault.tag = PPR_TAG(raw[0]);
667 fault.flags = PPR_FLAGS(raw[0]);
668
669 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
670}
671
672static void iommu_poll_ppr_log(struct amd_iommu *iommu)
673{
674 u32 head, tail;
675
676 if (iommu->ppr_log == NULL)
677 return;
678
679 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
680 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
681
682 while (head != tail) {
683 volatile u64 *raw;
684 u64 entry[2];
685 int i;
686
687 raw = (u64 *)(iommu->ppr_log + head);
688
689 /*
690 * Hardware bug: Interrupt may arrive before the entry is
691 * written to memory. If this happens we need to wait for the
692 * entry to arrive.
693 */
694 for (i = 0; i < LOOP_TIMEOUT; ++i) {
695 if (PPR_REQ_TYPE(raw[0]) != 0)
696 break;
697 udelay(1);
698 }
699
700 /* Avoid memcpy function-call overhead */
701 entry[0] = raw[0];
702 entry[1] = raw[1];
703
704 /*
705 * To detect the hardware bug we need to clear the entry
706 * back to zero.
707 */
708 raw[0] = raw[1] = 0UL;
709
710 /* Update head pointer of hardware ring-buffer */
711 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
712 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
713
714 /* Handle PPR entry */
715 iommu_handle_ppr_entry(iommu, entry);
716
717 /* Refresh ring-buffer information */
718 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
719 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
720 }
721}
722
723irqreturn_t amd_iommu_int_thread(int irq, void *data)
724{
725 struct amd_iommu *iommu = (struct amd_iommu *) data;
726 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
727
728 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
729 /* Enable EVT and PPR interrupts again */
730 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
731 iommu->mmio_base + MMIO_STATUS_OFFSET);
732
733 if (status & MMIO_STATUS_EVT_INT_MASK) {
734 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
735 iommu_poll_events(iommu);
736 }
737
738 if (status & MMIO_STATUS_PPR_INT_MASK) {
739 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
740 iommu_poll_ppr_log(iommu);
741 }
742
743 /*
744 * Hardware bug: ERBT1312
745 * When re-enabling interrupt (by writing 1
746 * to clear the bit), the hardware might also try to set
747 * the interrupt bit in the event status register.
748 * In this scenario, the bit will be set, and disable
749 * subsequent interrupts.
750 *
751 * Workaround: The IOMMU driver should read back the
752 * status register and check if the interrupt bits are cleared.
753 * If not, driver will need to go through the interrupt handler
754 * again and re-clear the bits
755 */
756 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
757 }
758 return IRQ_HANDLED;
759}
760
761irqreturn_t amd_iommu_int_handler(int irq, void *data)
762{
763 return IRQ_WAKE_THREAD;
764}
765
766/****************************************************************************
767 *
768 * IOMMU command queuing functions
769 *
770 ****************************************************************************/
771
772static int wait_on_sem(volatile u64 *sem)
773{
774 int i = 0;
775
776 while (*sem == 0 && i < LOOP_TIMEOUT) {
777 udelay(1);
778 i += 1;
779 }
780
781 if (i == LOOP_TIMEOUT) {
782 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
783 return -EIO;
784 }
785
786 return 0;
787}
788
789static void copy_cmd_to_buffer(struct amd_iommu *iommu,
790 struct iommu_cmd *cmd,
791 u32 tail)
792{
793 u8 *target;
794
795 target = iommu->cmd_buf + tail;
796 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
797
798 /* Copy command to buffer */
799 memcpy(target, cmd, sizeof(*cmd));
800
801 /* Tell the IOMMU about it */
802 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
803}
804
805static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
806{
807 WARN_ON(address & 0x7ULL);
808
809 memset(cmd, 0, sizeof(*cmd));
810 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
811 cmd->data[1] = upper_32_bits(__pa(address));
812 cmd->data[2] = 1;
813 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
814}
815
816static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
817{
818 memset(cmd, 0, sizeof(*cmd));
819 cmd->data[0] = devid;
820 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
821}
822
823static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
824 size_t size, u16 domid, int pde)
825{
826 u64 pages;
827 bool s;
828
829 pages = iommu_num_pages(address, size, PAGE_SIZE);
830 s = false;
831
832 if (pages > 1) {
833 /*
834 * If we have to flush more than one page, flush all
835 * TLB entries for this domain
836 */
837 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
838 s = true;
839 }
840
841 address &= PAGE_MASK;
842
843 memset(cmd, 0, sizeof(*cmd));
844 cmd->data[1] |= domid;
845 cmd->data[2] = lower_32_bits(address);
846 cmd->data[3] = upper_32_bits(address);
847 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
848 if (s) /* size bit - we flush more than one 4kb page */
849 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
850 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
851 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
852}
853
854static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
855 u64 address, size_t size)
856{
857 u64 pages;
858 bool s;
859
860 pages = iommu_num_pages(address, size, PAGE_SIZE);
861 s = false;
862
863 if (pages > 1) {
864 /*
865 * If we have to flush more than one page, flush all
866 * TLB entries for this domain
867 */
868 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
869 s = true;
870 }
871
872 address &= PAGE_MASK;
873
874 memset(cmd, 0, sizeof(*cmd));
875 cmd->data[0] = devid;
876 cmd->data[0] |= (qdep & 0xff) << 24;
877 cmd->data[1] = devid;
878 cmd->data[2] = lower_32_bits(address);
879 cmd->data[3] = upper_32_bits(address);
880 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
881 if (s)
882 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
883}
884
885static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
886 u64 address, bool size)
887{
888 memset(cmd, 0, sizeof(*cmd));
889
890 address &= ~(0xfffULL);
891
892 cmd->data[0] = pasid;
893 cmd->data[1] = domid;
894 cmd->data[2] = lower_32_bits(address);
895 cmd->data[3] = upper_32_bits(address);
896 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
897 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
898 if (size)
899 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
900 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
901}
902
903static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
904 int qdep, u64 address, bool size)
905{
906 memset(cmd, 0, sizeof(*cmd));
907
908 address &= ~(0xfffULL);
909
910 cmd->data[0] = devid;
911 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
912 cmd->data[0] |= (qdep & 0xff) << 24;
913 cmd->data[1] = devid;
914 cmd->data[1] |= (pasid & 0xff) << 16;
915 cmd->data[2] = lower_32_bits(address);
916 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
917 cmd->data[3] = upper_32_bits(address);
918 if (size)
919 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
920 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
921}
922
923static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
924 int status, int tag, bool gn)
925{
926 memset(cmd, 0, sizeof(*cmd));
927
928 cmd->data[0] = devid;
929 if (gn) {
930 cmd->data[1] = pasid;
931 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
932 }
933 cmd->data[3] = tag & 0x1ff;
934 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
935
936 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
937}
938
939static void build_inv_all(struct iommu_cmd *cmd)
940{
941 memset(cmd, 0, sizeof(*cmd));
942 CMD_SET_TYPE(cmd, CMD_INV_ALL);
943}
944
945static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
946{
947 memset(cmd, 0, sizeof(*cmd));
948 cmd->data[0] = devid;
949 CMD_SET_TYPE(cmd, CMD_INV_IRT);
950}
951
952/*
953 * Writes the command to the IOMMUs command buffer and informs the
954 * hardware about the new command.
955 */
956static int iommu_queue_command_sync(struct amd_iommu *iommu,
957 struct iommu_cmd *cmd,
958 bool sync)
959{
960 u32 left, tail, head, next_tail;
961 unsigned long flags;
962
963again:
964 spin_lock_irqsave(&iommu->lock, flags);
965
966 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
967 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
968 next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
969 left = (head - next_tail) % CMD_BUFFER_SIZE;
970
971 if (left <= 2) {
972 struct iommu_cmd sync_cmd;
973 volatile u64 sem = 0;
974 int ret;
975
976 build_completion_wait(&sync_cmd, (u64)&sem);
977 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
978
979 spin_unlock_irqrestore(&iommu->lock, flags);
980
981 if ((ret = wait_on_sem(&sem)) != 0)
982 return ret;
983
984 goto again;
985 }
986
987 copy_cmd_to_buffer(iommu, cmd, tail);
988
989 /* We need to sync now to make sure all commands are processed */
990 iommu->need_sync = sync;
991
992 spin_unlock_irqrestore(&iommu->lock, flags);
993
994 return 0;
995}
996
997static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
998{
999 return iommu_queue_command_sync(iommu, cmd, true);
1000}
1001
1002/*
1003 * This function queues a completion wait command into the command
1004 * buffer of an IOMMU
1005 */
1006static int iommu_completion_wait(struct amd_iommu *iommu)
1007{
1008 struct iommu_cmd cmd;
1009 volatile u64 sem = 0;
1010 int ret;
1011
1012 if (!iommu->need_sync)
1013 return 0;
1014
1015 build_completion_wait(&cmd, (u64)&sem);
1016
1017 ret = iommu_queue_command_sync(iommu, &cmd, false);
1018 if (ret)
1019 return ret;
1020
1021 return wait_on_sem(&sem);
1022}
1023
1024static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1025{
1026 struct iommu_cmd cmd;
1027
1028 build_inv_dte(&cmd, devid);
1029
1030 return iommu_queue_command(iommu, &cmd);
1031}
1032
1033static void iommu_flush_dte_all(struct amd_iommu *iommu)
1034{
1035 u32 devid;
1036
1037 for (devid = 0; devid <= 0xffff; ++devid)
1038 iommu_flush_dte(iommu, devid);
1039
1040 iommu_completion_wait(iommu);
1041}
1042
1043/*
1044 * This function uses heavy locking and may disable irqs for some time. But
1045 * this is no issue because it is only called during resume.
1046 */
1047static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1048{
1049 u32 dom_id;
1050
1051 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1052 struct iommu_cmd cmd;
1053 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1054 dom_id, 1);
1055 iommu_queue_command(iommu, &cmd);
1056 }
1057
1058 iommu_completion_wait(iommu);
1059}
1060
1061static void iommu_flush_all(struct amd_iommu *iommu)
1062{
1063 struct iommu_cmd cmd;
1064
1065 build_inv_all(&cmd);
1066
1067 iommu_queue_command(iommu, &cmd);
1068 iommu_completion_wait(iommu);
1069}
1070
1071static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1072{
1073 struct iommu_cmd cmd;
1074
1075 build_inv_irt(&cmd, devid);
1076
1077 iommu_queue_command(iommu, &cmd);
1078}
1079
1080static void iommu_flush_irt_all(struct amd_iommu *iommu)
1081{
1082 u32 devid;
1083
1084 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1085 iommu_flush_irt(iommu, devid);
1086
1087 iommu_completion_wait(iommu);
1088}
1089
1090void iommu_flush_all_caches(struct amd_iommu *iommu)
1091{
1092 if (iommu_feature(iommu, FEATURE_IA)) {
1093 iommu_flush_all(iommu);
1094 } else {
1095 iommu_flush_dte_all(iommu);
1096 iommu_flush_irt_all(iommu);
1097 iommu_flush_tlb_all(iommu);
1098 }
1099}
1100
1101/*
1102 * Command send function for flushing on-device TLB
1103 */
1104static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1105 u64 address, size_t size)
1106{
1107 struct amd_iommu *iommu;
1108 struct iommu_cmd cmd;
1109 int qdep;
1110
1111 qdep = dev_data->ats.qdep;
1112 iommu = amd_iommu_rlookup_table[dev_data->devid];
1113
1114 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1115
1116 return iommu_queue_command(iommu, &cmd);
1117}
1118
1119/*
1120 * Command send function for invalidating a device table entry
1121 */
1122static int device_flush_dte(struct iommu_dev_data *dev_data)
1123{
1124 struct amd_iommu *iommu;
1125 u16 alias;
1126 int ret;
1127
1128 iommu = amd_iommu_rlookup_table[dev_data->devid];
1129 alias = dev_data->alias;
1130
1131 ret = iommu_flush_dte(iommu, dev_data->devid);
1132 if (!ret && alias != dev_data->devid)
1133 ret = iommu_flush_dte(iommu, alias);
1134 if (ret)
1135 return ret;
1136
1137 if (dev_data->ats.enabled)
1138 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1139
1140 return ret;
1141}
1142
1143/*
1144 * TLB invalidation function which is called from the mapping functions.
1145 * It invalidates a single PTE if the range to flush is within a single
1146 * page. Otherwise it flushes the whole TLB of the IOMMU.
1147 */
1148static void __domain_flush_pages(struct protection_domain *domain,
1149 u64 address, size_t size, int pde)
1150{
1151 struct iommu_dev_data *dev_data;
1152 struct iommu_cmd cmd;
1153 int ret = 0, i;
1154
1155 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1156
1157 for (i = 0; i < amd_iommus_present; ++i) {
1158 if (!domain->dev_iommu[i])
1159 continue;
1160
1161 /*
1162 * Devices of this domain are behind this IOMMU
1163 * We need a TLB flush
1164 */
1165 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1166 }
1167
1168 list_for_each_entry(dev_data, &domain->dev_list, list) {
1169
1170 if (!dev_data->ats.enabled)
1171 continue;
1172
1173 ret |= device_flush_iotlb(dev_data, address, size);
1174 }
1175
1176 WARN_ON(ret);
1177}
1178
1179static void domain_flush_pages(struct protection_domain *domain,
1180 u64 address, size_t size)
1181{
1182 __domain_flush_pages(domain, address, size, 0);
1183}
1184
1185/* Flush the whole IO/TLB for a given protection domain */
1186static void domain_flush_tlb(struct protection_domain *domain)
1187{
1188 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1189}
1190
1191/* Flush the whole IO/TLB for a given protection domain - including PDE */
1192static void domain_flush_tlb_pde(struct protection_domain *domain)
1193{
1194 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1195}
1196
1197static void domain_flush_complete(struct protection_domain *domain)
1198{
1199 int i;
1200
1201 for (i = 0; i < amd_iommus_present; ++i) {
1202 if (!domain->dev_iommu[i])
1203 continue;
1204
1205 /*
1206 * Devices of this domain are behind this IOMMU
1207 * We need to wait for completion of all commands.
1208 */
1209 iommu_completion_wait(amd_iommus[i]);
1210 }
1211}
1212
1213
1214/*
1215 * This function flushes the DTEs for all devices in domain
1216 */
1217static void domain_flush_devices(struct protection_domain *domain)
1218{
1219 struct iommu_dev_data *dev_data;
1220
1221 list_for_each_entry(dev_data, &domain->dev_list, list)
1222 device_flush_dte(dev_data);
1223}
1224
1225/****************************************************************************
1226 *
1227 * The functions below are used the create the page table mappings for
1228 * unity mapped regions.
1229 *
1230 ****************************************************************************/
1231
1232/*
1233 * This function is used to add another level to an IO page table. Adding
1234 * another level increases the size of the address space by 9 bits to a size up
1235 * to 64 bits.
1236 */
1237static bool increase_address_space(struct protection_domain *domain,
1238 gfp_t gfp)
1239{
1240 u64 *pte;
1241
1242 if (domain->mode == PAGE_MODE_6_LEVEL)
1243 /* address space already 64 bit large */
1244 return false;
1245
1246 pte = (void *)get_zeroed_page(gfp);
1247 if (!pte)
1248 return false;
1249
1250 *pte = PM_LEVEL_PDE(domain->mode,
1251 virt_to_phys(domain->pt_root));
1252 domain->pt_root = pte;
1253 domain->mode += 1;
1254 domain->updated = true;
1255
1256 return true;
1257}
1258
1259static u64 *alloc_pte(struct protection_domain *domain,
1260 unsigned long address,
1261 unsigned long page_size,
1262 u64 **pte_page,
1263 gfp_t gfp)
1264{
1265 int level, end_lvl;
1266 u64 *pte, *page;
1267
1268 BUG_ON(!is_power_of_2(page_size));
1269
1270 while (address > PM_LEVEL_SIZE(domain->mode))
1271 increase_address_space(domain, gfp);
1272
1273 level = domain->mode - 1;
1274 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1275 address = PAGE_SIZE_ALIGN(address, page_size);
1276 end_lvl = PAGE_SIZE_LEVEL(page_size);
1277
1278 while (level > end_lvl) {
1279 u64 __pte, __npte;
1280
1281 __pte = *pte;
1282
1283 if (!IOMMU_PTE_PRESENT(__pte)) {
1284 page = (u64 *)get_zeroed_page(gfp);
1285 if (!page)
1286 return NULL;
1287
1288 __npte = PM_LEVEL_PDE(level, virt_to_phys(page));
1289
1290 if (cmpxchg64(pte, __pte, __npte)) {
1291 free_page((unsigned long)page);
1292 continue;
1293 }
1294 }
1295
1296 /* No level skipping support yet */
1297 if (PM_PTE_LEVEL(*pte) != level)
1298 return NULL;
1299
1300 level -= 1;
1301
1302 pte = IOMMU_PTE_PAGE(*pte);
1303
1304 if (pte_page && level == end_lvl)
1305 *pte_page = pte;
1306
1307 pte = &pte[PM_LEVEL_INDEX(level, address)];
1308 }
1309
1310 return pte;
1311}
1312
1313/*
1314 * This function checks if there is a PTE for a given dma address. If
1315 * there is one, it returns the pointer to it.
1316 */
1317static u64 *fetch_pte(struct protection_domain *domain,
1318 unsigned long address,
1319 unsigned long *page_size)
1320{
1321 int level;
1322 u64 *pte;
1323
1324 if (address > PM_LEVEL_SIZE(domain->mode))
1325 return NULL;
1326
1327 level = domain->mode - 1;
1328 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1329 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1330
1331 while (level > 0) {
1332
1333 /* Not Present */
1334 if (!IOMMU_PTE_PRESENT(*pte))
1335 return NULL;
1336
1337 /* Large PTE */
1338 if (PM_PTE_LEVEL(*pte) == 7 ||
1339 PM_PTE_LEVEL(*pte) == 0)
1340 break;
1341
1342 /* No level skipping support yet */
1343 if (PM_PTE_LEVEL(*pte) != level)
1344 return NULL;
1345
1346 level -= 1;
1347
1348 /* Walk to the next level */
1349 pte = IOMMU_PTE_PAGE(*pte);
1350 pte = &pte[PM_LEVEL_INDEX(level, address)];
1351 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1352 }
1353
1354 if (PM_PTE_LEVEL(*pte) == 0x07) {
1355 unsigned long pte_mask;
1356
1357 /*
1358 * If we have a series of large PTEs, make
1359 * sure to return a pointer to the first one.
1360 */
1361 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1362 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1363 pte = (u64 *)(((unsigned long)pte) & pte_mask);
1364 }
1365
1366 return pte;
1367}
1368
1369/*
1370 * Generic mapping functions. It maps a physical address into a DMA
1371 * address space. It allocates the page table pages if necessary.
1372 * In the future it can be extended to a generic mapping function
1373 * supporting all features of AMD IOMMU page tables like level skipping
1374 * and full 64 bit address spaces.
1375 */
1376static int iommu_map_page(struct protection_domain *dom,
1377 unsigned long bus_addr,
1378 unsigned long phys_addr,
1379 int prot,
1380 unsigned long page_size)
1381{
1382 u64 __pte, *pte;
1383 int i, count;
1384
1385 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1386 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1387
1388 if (!(prot & IOMMU_PROT_MASK))
1389 return -EINVAL;
1390
1391 count = PAGE_SIZE_PTE_COUNT(page_size);
1392 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1393
1394 if (!pte)
1395 return -ENOMEM;
1396
1397 for (i = 0; i < count; ++i)
1398 if (IOMMU_PTE_PRESENT(pte[i]))
1399 return -EBUSY;
1400
1401 if (count > 1) {
1402 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1403 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1404 } else
1405 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1406
1407 if (prot & IOMMU_PROT_IR)
1408 __pte |= IOMMU_PTE_IR;
1409 if (prot & IOMMU_PROT_IW)
1410 __pte |= IOMMU_PTE_IW;
1411
1412 for (i = 0; i < count; ++i)
1413 pte[i] = __pte;
1414
1415 update_domain(dom);
1416
1417 return 0;
1418}
1419
1420static unsigned long iommu_unmap_page(struct protection_domain *dom,
1421 unsigned long bus_addr,
1422 unsigned long page_size)
1423{
1424 unsigned long long unmapped;
1425 unsigned long unmap_size;
1426 u64 *pte;
1427
1428 BUG_ON(!is_power_of_2(page_size));
1429
1430 unmapped = 0;
1431
1432 while (unmapped < page_size) {
1433
1434 pte = fetch_pte(dom, bus_addr, &unmap_size);
1435
1436 if (pte) {
1437 int i, count;
1438
1439 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1440 for (i = 0; i < count; i++)
1441 pte[i] = 0ULL;
1442 }
1443
1444 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1445 unmapped += unmap_size;
1446 }
1447
1448 BUG_ON(unmapped && !is_power_of_2(unmapped));
1449
1450 return unmapped;
1451}
1452
1453/****************************************************************************
1454 *
1455 * The next functions belong to the address allocator for the dma_ops
1456 * interface functions. They work like the allocators in the other IOMMU
1457 * drivers. Its basically a bitmap which marks the allocated pages in
1458 * the aperture. Maybe it could be enhanced in the future to a more
1459 * efficient allocator.
1460 *
1461 ****************************************************************************/
1462
1463/*
1464 * The address allocator core functions.
1465 *
1466 * called with domain->lock held
1467 */
1468
1469/*
1470 * Used to reserve address ranges in the aperture (e.g. for exclusion
1471 * ranges.
1472 */
1473static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1474 unsigned long start_page,
1475 unsigned int pages)
1476{
1477 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1478
1479 if (start_page + pages > last_page)
1480 pages = last_page - start_page;
1481
1482 for (i = start_page; i < start_page + pages; ++i) {
1483 int index = i / APERTURE_RANGE_PAGES;
1484 int page = i % APERTURE_RANGE_PAGES;
1485 __set_bit(page, dom->aperture[index]->bitmap);
1486 }
1487}
1488
1489/*
1490 * This function is used to add a new aperture range to an existing
1491 * aperture in case of dma_ops domain allocation or address allocation
1492 * failure.
1493 */
1494static int alloc_new_range(struct dma_ops_domain *dma_dom,
1495 bool populate, gfp_t gfp)
1496{
1497 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1498 unsigned long i, old_size, pte_pgsize;
1499 struct aperture_range *range;
1500 struct amd_iommu *iommu;
1501 unsigned long flags;
1502
1503#ifdef CONFIG_IOMMU_STRESS
1504 populate = false;
1505#endif
1506
1507 if (index >= APERTURE_MAX_RANGES)
1508 return -ENOMEM;
1509
1510 range = kzalloc(sizeof(struct aperture_range), gfp);
1511 if (!range)
1512 return -ENOMEM;
1513
1514 range->bitmap = (void *)get_zeroed_page(gfp);
1515 if (!range->bitmap)
1516 goto out_free;
1517
1518 range->offset = dma_dom->aperture_size;
1519
1520 spin_lock_init(&range->bitmap_lock);
1521
1522 if (populate) {
1523 unsigned long address = dma_dom->aperture_size;
1524 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1525 u64 *pte, *pte_page;
1526
1527 for (i = 0; i < num_ptes; ++i) {
1528 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1529 &pte_page, gfp);
1530 if (!pte)
1531 goto out_free;
1532
1533 range->pte_pages[i] = pte_page;
1534
1535 address += APERTURE_RANGE_SIZE / 64;
1536 }
1537 }
1538
1539 spin_lock_irqsave(&dma_dom->domain.lock, flags);
1540
1541 /* First take the bitmap_lock and then publish the range */
1542 spin_lock(&range->bitmap_lock);
1543
1544 old_size = dma_dom->aperture_size;
1545 dma_dom->aperture[index] = range;
1546 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1547
1548 /* Reserve address range used for MSI messages */
1549 if (old_size < MSI_ADDR_BASE_LO &&
1550 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1551 unsigned long spage;
1552 int pages;
1553
1554 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1555 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1556
1557 dma_ops_reserve_addresses(dma_dom, spage, pages);
1558 }
1559
1560 /* Initialize the exclusion range if necessary */
1561 for_each_iommu(iommu) {
1562 if (iommu->exclusion_start &&
1563 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1564 && iommu->exclusion_start < dma_dom->aperture_size) {
1565 unsigned long startpage;
1566 int pages = iommu_num_pages(iommu->exclusion_start,
1567 iommu->exclusion_length,
1568 PAGE_SIZE);
1569 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1570 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1571 }
1572 }
1573
1574 /*
1575 * Check for areas already mapped as present in the new aperture
1576 * range and mark those pages as reserved in the allocator. Such
1577 * mappings may already exist as a result of requested unity
1578 * mappings for devices.
1579 */
1580 for (i = dma_dom->aperture[index]->offset;
1581 i < dma_dom->aperture_size;
1582 i += pte_pgsize) {
1583 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1584 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1585 continue;
1586
1587 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1588 pte_pgsize >> 12);
1589 }
1590
1591 update_domain(&dma_dom->domain);
1592
1593 spin_unlock(&range->bitmap_lock);
1594
1595 spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
1596
1597 return 0;
1598
1599out_free:
1600 update_domain(&dma_dom->domain);
1601
1602 free_page((unsigned long)range->bitmap);
1603
1604 kfree(range);
1605
1606 return -ENOMEM;
1607}
1608
1609static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
1610 struct aperture_range *range,
1611 unsigned long pages,
1612 unsigned long dma_mask,
1613 unsigned long boundary_size,
1614 unsigned long align_mask,
1615 bool trylock)
1616{
1617 unsigned long offset, limit, flags;
1618 dma_addr_t address;
1619 bool flush = false;
1620
1621 offset = range->offset >> PAGE_SHIFT;
1622 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1623 dma_mask >> PAGE_SHIFT);
1624
1625 if (trylock) {
1626 if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
1627 return -1;
1628 } else {
1629 spin_lock_irqsave(&range->bitmap_lock, flags);
1630 }
1631
1632 address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
1633 pages, offset, boundary_size, align_mask);
1634 if (address == -1) {
1635 /* Nothing found, retry one time */
1636 address = iommu_area_alloc(range->bitmap, limit,
1637 0, pages, offset, boundary_size,
1638 align_mask);
1639 flush = true;
1640 }
1641
1642 if (address != -1)
1643 range->next_bit = address + pages;
1644
1645 spin_unlock_irqrestore(&range->bitmap_lock, flags);
1646
1647 if (flush) {
1648 domain_flush_tlb(&dom->domain);
1649 domain_flush_complete(&dom->domain);
1650 }
1651
1652 return address;
1653}
1654
1655static unsigned long dma_ops_area_alloc(struct device *dev,
1656 struct dma_ops_domain *dom,
1657 unsigned int pages,
1658 unsigned long align_mask,
1659 u64 dma_mask)
1660{
1661 unsigned long boundary_size, mask;
1662 unsigned long address = -1;
1663 bool first = true;
1664 u32 start, i;
1665
1666 preempt_disable();
1667
1668 mask = dma_get_seg_boundary(dev);
1669
1670again:
1671 start = this_cpu_read(*dom->next_index);
1672
1673 /* Sanity check - is it really necessary? */
1674 if (unlikely(start > APERTURE_MAX_RANGES)) {
1675 start = 0;
1676 this_cpu_write(*dom->next_index, 0);
1677 }
1678
1679 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
1680 1UL << (BITS_PER_LONG - PAGE_SHIFT);
1681
1682 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1683 struct aperture_range *range;
1684 int index;
1685
1686 index = (start + i) % APERTURE_MAX_RANGES;
1687
1688 range = dom->aperture[index];
1689
1690 if (!range || range->offset >= dma_mask)
1691 continue;
1692
1693 address = dma_ops_aperture_alloc(dom, range, pages,
1694 dma_mask, boundary_size,
1695 align_mask, first);
1696 if (address != -1) {
1697 address = range->offset + (address << PAGE_SHIFT);
1698 this_cpu_write(*dom->next_index, index);
1699 break;
1700 }
1701 }
1702
1703 if (address == -1 && first) {
1704 first = false;
1705 goto again;
1706 }
1707
1708 preempt_enable();
1709
1710 return address;
1711}
1712
1713static unsigned long dma_ops_alloc_addresses(struct device *dev,
1714 struct dma_ops_domain *dom,
1715 unsigned int pages,
1716 unsigned long align_mask,
1717 u64 dma_mask)
1718{
1719 unsigned long address = -1;
1720
1721 while (address == -1) {
1722 address = dma_ops_area_alloc(dev, dom, pages,
1723 align_mask, dma_mask);
1724
1725 if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
1726 break;
1727 }
1728
1729 if (unlikely(address == -1))
1730 address = DMA_ERROR_CODE;
1731
1732 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1733
1734 return address;
1735}
1736
1737/*
1738 * The address free function.
1739 *
1740 * called with domain->lock held
1741 */
1742static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1743 unsigned long address,
1744 unsigned int pages)
1745{
1746 unsigned i = address >> APERTURE_RANGE_SHIFT;
1747 struct aperture_range *range = dom->aperture[i];
1748 unsigned long flags;
1749
1750 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1751
1752#ifdef CONFIG_IOMMU_STRESS
1753 if (i < 4)
1754 return;
1755#endif
1756
1757 if (amd_iommu_unmap_flush) {
1758 domain_flush_tlb(&dom->domain);
1759 domain_flush_complete(&dom->domain);
1760 }
1761
1762 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1763
1764 spin_lock_irqsave(&range->bitmap_lock, flags);
1765 if (address + pages > range->next_bit)
1766 range->next_bit = address + pages;
1767 bitmap_clear(range->bitmap, address, pages);
1768 spin_unlock_irqrestore(&range->bitmap_lock, flags);
1769
1770}
1771
1772/****************************************************************************
1773 *
1774 * The next functions belong to the domain allocation. A domain is
1775 * allocated for every IOMMU as the default domain. If device isolation
1776 * is enabled, every device get its own domain. The most important thing
1777 * about domains is the page table mapping the DMA address space they
1778 * contain.
1779 *
1780 ****************************************************************************/
1781
1782/*
1783 * This function adds a protection domain to the global protection domain list
1784 */
1785static void add_domain_to_list(struct protection_domain *domain)
1786{
1787 unsigned long flags;
1788
1789 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1790 list_add(&domain->list, &amd_iommu_pd_list);
1791 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1792}
1793
1794/*
1795 * This function removes a protection domain to the global
1796 * protection domain list
1797 */
1798static void del_domain_from_list(struct protection_domain *domain)
1799{
1800 unsigned long flags;
1801
1802 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1803 list_del(&domain->list);
1804 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1805}
1806
1807static u16 domain_id_alloc(void)
1808{
1809 unsigned long flags;
1810 int id;
1811
1812 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1813 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1814 BUG_ON(id == 0);
1815 if (id > 0 && id < MAX_DOMAIN_ID)
1816 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1817 else
1818 id = 0;
1819 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1820
1821 return id;
1822}
1823
1824static void domain_id_free(int id)
1825{
1826 unsigned long flags;
1827
1828 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1829 if (id > 0 && id < MAX_DOMAIN_ID)
1830 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1831 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1832}
1833
1834#define DEFINE_FREE_PT_FN(LVL, FN) \
1835static void free_pt_##LVL (unsigned long __pt) \
1836{ \
1837 unsigned long p; \
1838 u64 *pt; \
1839 int i; \
1840 \
1841 pt = (u64 *)__pt; \
1842 \
1843 for (i = 0; i < 512; ++i) { \
1844 /* PTE present? */ \
1845 if (!IOMMU_PTE_PRESENT(pt[i])) \
1846 continue; \
1847 \
1848 /* Large PTE? */ \
1849 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1850 PM_PTE_LEVEL(pt[i]) == 7) \
1851 continue; \
1852 \
1853 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1854 FN(p); \
1855 } \
1856 free_page((unsigned long)pt); \
1857}
1858
1859DEFINE_FREE_PT_FN(l2, free_page)
1860DEFINE_FREE_PT_FN(l3, free_pt_l2)
1861DEFINE_FREE_PT_FN(l4, free_pt_l3)
1862DEFINE_FREE_PT_FN(l5, free_pt_l4)
1863DEFINE_FREE_PT_FN(l6, free_pt_l5)
1864
1865static void free_pagetable(struct protection_domain *domain)
1866{
1867 unsigned long root = (unsigned long)domain->pt_root;
1868
1869 switch (domain->mode) {
1870 case PAGE_MODE_NONE:
1871 break;
1872 case PAGE_MODE_1_LEVEL:
1873 free_page(root);
1874 break;
1875 case PAGE_MODE_2_LEVEL:
1876 free_pt_l2(root);
1877 break;
1878 case PAGE_MODE_3_LEVEL:
1879 free_pt_l3(root);
1880 break;
1881 case PAGE_MODE_4_LEVEL:
1882 free_pt_l4(root);
1883 break;
1884 case PAGE_MODE_5_LEVEL:
1885 free_pt_l5(root);
1886 break;
1887 case PAGE_MODE_6_LEVEL:
1888 free_pt_l6(root);
1889 break;
1890 default:
1891 BUG();
1892 }
1893}
1894
1895static void free_gcr3_tbl_level1(u64 *tbl)
1896{
1897 u64 *ptr;
1898 int i;
1899
1900 for (i = 0; i < 512; ++i) {
1901 if (!(tbl[i] & GCR3_VALID))
1902 continue;
1903
1904 ptr = __va(tbl[i] & PAGE_MASK);
1905
1906 free_page((unsigned long)ptr);
1907 }
1908}
1909
1910static void free_gcr3_tbl_level2(u64 *tbl)
1911{
1912 u64 *ptr;
1913 int i;
1914
1915 for (i = 0; i < 512; ++i) {
1916 if (!(tbl[i] & GCR3_VALID))
1917 continue;
1918
1919 ptr = __va(tbl[i] & PAGE_MASK);
1920
1921 free_gcr3_tbl_level1(ptr);
1922 }
1923}
1924
1925static void free_gcr3_table(struct protection_domain *domain)
1926{
1927 if (domain->glx == 2)
1928 free_gcr3_tbl_level2(domain->gcr3_tbl);
1929 else if (domain->glx == 1)
1930 free_gcr3_tbl_level1(domain->gcr3_tbl);
1931 else
1932 BUG_ON(domain->glx != 0);
1933
1934 free_page((unsigned long)domain->gcr3_tbl);
1935}
1936
1937/*
1938 * Free a domain, only used if something went wrong in the
1939 * allocation path and we need to free an already allocated page table
1940 */
1941static void dma_ops_domain_free(struct dma_ops_domain *dom)
1942{
1943 int i;
1944
1945 if (!dom)
1946 return;
1947
1948 free_percpu(dom->next_index);
1949
1950 del_domain_from_list(&dom->domain);
1951
1952 free_pagetable(&dom->domain);
1953
1954 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1955 if (!dom->aperture[i])
1956 continue;
1957 free_page((unsigned long)dom->aperture[i]->bitmap);
1958 kfree(dom->aperture[i]);
1959 }
1960
1961 kfree(dom);
1962}
1963
1964static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
1965 int max_apertures)
1966{
1967 int ret, i, apertures;
1968
1969 apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1970 ret = 0;
1971
1972 for (i = apertures; i < max_apertures; ++i) {
1973 ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
1974 if (ret)
1975 break;
1976 }
1977
1978 return ret;
1979}
1980
1981/*
1982 * Allocates a new protection domain usable for the dma_ops functions.
1983 * It also initializes the page table and the address allocator data
1984 * structures required for the dma_ops interface
1985 */
1986static struct dma_ops_domain *dma_ops_domain_alloc(void)
1987{
1988 struct dma_ops_domain *dma_dom;
1989 int cpu;
1990
1991 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1992 if (!dma_dom)
1993 return NULL;
1994
1995 if (protection_domain_init(&dma_dom->domain))
1996 goto free_dma_dom;
1997
1998 dma_dom->next_index = alloc_percpu(u32);
1999 if (!dma_dom->next_index)
2000 goto free_dma_dom;
2001
2002 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2003 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2004 dma_dom->domain.flags = PD_DMA_OPS_MASK;
2005 dma_dom->domain.priv = dma_dom;
2006 if (!dma_dom->domain.pt_root)
2007 goto free_dma_dom;
2008
2009 add_domain_to_list(&dma_dom->domain);
2010
2011 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2012 goto free_dma_dom;
2013
2014 /*
2015 * mark the first page as allocated so we never return 0 as
2016 * a valid dma-address. So we can use 0 as error value
2017 */
2018 dma_dom->aperture[0]->bitmap[0] = 1;
2019
2020 for_each_possible_cpu(cpu)
2021 *per_cpu_ptr(dma_dom->next_index, cpu) = 0;
2022
2023 return dma_dom;
2024
2025free_dma_dom:
2026 dma_ops_domain_free(dma_dom);
2027
2028 return NULL;
2029}
2030
2031/*
2032 * little helper function to check whether a given protection domain is a
2033 * dma_ops domain
2034 */
2035static bool dma_ops_domain(struct protection_domain *domain)
2036{
2037 return domain->flags & PD_DMA_OPS_MASK;
2038}
2039
2040static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2041{
2042 u64 pte_root = 0;
2043 u64 flags = 0;
2044
2045 if (domain->mode != PAGE_MODE_NONE)
2046 pte_root = virt_to_phys(domain->pt_root);
2047
2048 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2049 << DEV_ENTRY_MODE_SHIFT;
2050 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2051
2052 flags = amd_iommu_dev_table[devid].data[1];
2053
2054 if (ats)
2055 flags |= DTE_FLAG_IOTLB;
2056
2057 if (domain->flags & PD_IOMMUV2_MASK) {
2058 u64 gcr3 = __pa(domain->gcr3_tbl);
2059 u64 glx = domain->glx;
2060 u64 tmp;
2061
2062 pte_root |= DTE_FLAG_GV;
2063 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2064
2065 /* First mask out possible old values for GCR3 table */
2066 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2067 flags &= ~tmp;
2068
2069 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2070 flags &= ~tmp;
2071
2072 /* Encode GCR3 table into DTE */
2073 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2074 pte_root |= tmp;
2075
2076 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2077 flags |= tmp;
2078
2079 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2080 flags |= tmp;
2081 }
2082
2083 flags &= ~(0xffffUL);
2084 flags |= domain->id;
2085
2086 amd_iommu_dev_table[devid].data[1] = flags;
2087 amd_iommu_dev_table[devid].data[0] = pte_root;
2088}
2089
2090static void clear_dte_entry(u16 devid)
2091{
2092 /* remove entry from the device table seen by the hardware */
2093 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2094 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2095
2096 amd_iommu_apply_erratum_63(devid);
2097}
2098
2099static void do_attach(struct iommu_dev_data *dev_data,
2100 struct protection_domain *domain)
2101{
2102 struct amd_iommu *iommu;
2103 u16 alias;
2104 bool ats;
2105
2106 iommu = amd_iommu_rlookup_table[dev_data->devid];
2107 alias = dev_data->alias;
2108 ats = dev_data->ats.enabled;
2109
2110 /* Update data structures */
2111 dev_data->domain = domain;
2112 list_add(&dev_data->list, &domain->dev_list);
2113
2114 /* Do reference counting */
2115 domain->dev_iommu[iommu->index] += 1;
2116 domain->dev_cnt += 1;
2117
2118 /* Update device table */
2119 set_dte_entry(dev_data->devid, domain, ats);
2120 if (alias != dev_data->devid)
2121 set_dte_entry(alias, domain, ats);
2122
2123 device_flush_dte(dev_data);
2124}
2125
2126static void do_detach(struct iommu_dev_data *dev_data)
2127{
2128 struct amd_iommu *iommu;
2129 u16 alias;
2130
2131 /*
2132 * First check if the device is still attached. It might already
2133 * be detached from its domain because the generic
2134 * iommu_detach_group code detached it and we try again here in
2135 * our alias handling.
2136 */
2137 if (!dev_data->domain)
2138 return;
2139
2140 iommu = amd_iommu_rlookup_table[dev_data->devid];
2141 alias = dev_data->alias;
2142
2143 /* decrease reference counters */
2144 dev_data->domain->dev_iommu[iommu->index] -= 1;
2145 dev_data->domain->dev_cnt -= 1;
2146
2147 /* Update data structures */
2148 dev_data->domain = NULL;
2149 list_del(&dev_data->list);
2150 clear_dte_entry(dev_data->devid);
2151 if (alias != dev_data->devid)
2152 clear_dte_entry(alias);
2153
2154 /* Flush the DTE entry */
2155 device_flush_dte(dev_data);
2156}
2157
2158/*
2159 * If a device is not yet associated with a domain, this function does
2160 * assigns it visible for the hardware
2161 */
2162static int __attach_device(struct iommu_dev_data *dev_data,
2163 struct protection_domain *domain)
2164{
2165 int ret;
2166
2167 /*
2168 * Must be called with IRQs disabled. Warn here to detect early
2169 * when its not.
2170 */
2171 WARN_ON(!irqs_disabled());
2172
2173 /* lock domain */
2174 spin_lock(&domain->lock);
2175
2176 ret = -EBUSY;
2177 if (dev_data->domain != NULL)
2178 goto out_unlock;
2179
2180 /* Attach alias group root */
2181 do_attach(dev_data, domain);
2182
2183 ret = 0;
2184
2185out_unlock:
2186
2187 /* ready */
2188 spin_unlock(&domain->lock);
2189
2190 return ret;
2191}
2192
2193
2194static void pdev_iommuv2_disable(struct pci_dev *pdev)
2195{
2196 pci_disable_ats(pdev);
2197 pci_disable_pri(pdev);
2198 pci_disable_pasid(pdev);
2199}
2200
2201/* FIXME: Change generic reset-function to do the same */
2202static int pri_reset_while_enabled(struct pci_dev *pdev)
2203{
2204 u16 control;
2205 int pos;
2206
2207 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2208 if (!pos)
2209 return -EINVAL;
2210
2211 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2212 control |= PCI_PRI_CTRL_RESET;
2213 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2214
2215 return 0;
2216}
2217
2218static int pdev_iommuv2_enable(struct pci_dev *pdev)
2219{
2220 bool reset_enable;
2221 int reqs, ret;
2222
2223 /* FIXME: Hardcode number of outstanding requests for now */
2224 reqs = 32;
2225 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2226 reqs = 1;
2227 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2228
2229 /* Only allow access to user-accessible pages */
2230 ret = pci_enable_pasid(pdev, 0);
2231 if (ret)
2232 goto out_err;
2233
2234 /* First reset the PRI state of the device */
2235 ret = pci_reset_pri(pdev);
2236 if (ret)
2237 goto out_err;
2238
2239 /* Enable PRI */
2240 ret = pci_enable_pri(pdev, reqs);
2241 if (ret)
2242 goto out_err;
2243
2244 if (reset_enable) {
2245 ret = pri_reset_while_enabled(pdev);
2246 if (ret)
2247 goto out_err;
2248 }
2249
2250 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2251 if (ret)
2252 goto out_err;
2253
2254 return 0;
2255
2256out_err:
2257 pci_disable_pri(pdev);
2258 pci_disable_pasid(pdev);
2259
2260 return ret;
2261}
2262
2263/* FIXME: Move this to PCI code */
2264#define PCI_PRI_TLP_OFF (1 << 15)
2265
2266static bool pci_pri_tlp_required(struct pci_dev *pdev)
2267{
2268 u16 status;
2269 int pos;
2270
2271 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2272 if (!pos)
2273 return false;
2274
2275 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2276
2277 return (status & PCI_PRI_TLP_OFF) ? true : false;
2278}
2279
2280/*
2281 * If a device is not yet associated with a domain, this function
2282 * assigns it visible for the hardware
2283 */
2284static int attach_device(struct device *dev,
2285 struct protection_domain *domain)
2286{
2287 struct pci_dev *pdev = to_pci_dev(dev);
2288 struct iommu_dev_data *dev_data;
2289 unsigned long flags;
2290 int ret;
2291
2292 dev_data = get_dev_data(dev);
2293
2294 if (domain->flags & PD_IOMMUV2_MASK) {
2295 if (!dev_data->passthrough)
2296 return -EINVAL;
2297
2298 if (dev_data->iommu_v2) {
2299 if (pdev_iommuv2_enable(pdev) != 0)
2300 return -EINVAL;
2301
2302 dev_data->ats.enabled = true;
2303 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2304 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2305 }
2306 } else if (amd_iommu_iotlb_sup &&
2307 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2308 dev_data->ats.enabled = true;
2309 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2310 }
2311
2312 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2313 ret = __attach_device(dev_data, domain);
2314 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2315
2316 /*
2317 * We might boot into a crash-kernel here. The crashed kernel
2318 * left the caches in the IOMMU dirty. So we have to flush
2319 * here to evict all dirty stuff.
2320 */
2321 domain_flush_tlb_pde(domain);
2322
2323 return ret;
2324}
2325
2326/*
2327 * Removes a device from a protection domain (unlocked)
2328 */
2329static void __detach_device(struct iommu_dev_data *dev_data)
2330{
2331 struct protection_domain *domain;
2332
2333 /*
2334 * Must be called with IRQs disabled. Warn here to detect early
2335 * when its not.
2336 */
2337 WARN_ON(!irqs_disabled());
2338
2339 if (WARN_ON(!dev_data->domain))
2340 return;
2341
2342 domain = dev_data->domain;
2343
2344 spin_lock(&domain->lock);
2345
2346 do_detach(dev_data);
2347
2348 spin_unlock(&domain->lock);
2349}
2350
2351/*
2352 * Removes a device from a protection domain (with devtable_lock held)
2353 */
2354static void detach_device(struct device *dev)
2355{
2356 struct protection_domain *domain;
2357 struct iommu_dev_data *dev_data;
2358 unsigned long flags;
2359
2360 dev_data = get_dev_data(dev);
2361 domain = dev_data->domain;
2362
2363 /* lock device table */
2364 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2365 __detach_device(dev_data);
2366 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2367
2368 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2369 pdev_iommuv2_disable(to_pci_dev(dev));
2370 else if (dev_data->ats.enabled)
2371 pci_disable_ats(to_pci_dev(dev));
2372
2373 dev_data->ats.enabled = false;
2374}
2375
2376static int amd_iommu_add_device(struct device *dev)
2377{
2378 struct iommu_dev_data *dev_data;
2379 struct iommu_domain *domain;
2380 struct amd_iommu *iommu;
2381 u16 devid;
2382 int ret;
2383
2384 if (!check_device(dev) || get_dev_data(dev))
2385 return 0;
2386
2387 devid = get_device_id(dev);
2388 iommu = amd_iommu_rlookup_table[devid];
2389
2390 ret = iommu_init_device(dev);
2391 if (ret) {
2392 if (ret != -ENOTSUPP)
2393 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2394 dev_name(dev));
2395
2396 iommu_ignore_device(dev);
2397 dev->archdata.dma_ops = &nommu_dma_ops;
2398 goto out;
2399 }
2400 init_iommu_group(dev);
2401
2402 dev_data = get_dev_data(dev);
2403
2404 BUG_ON(!dev_data);
2405
2406 if (iommu_pass_through || dev_data->iommu_v2)
2407 iommu_request_dm_for_dev(dev);
2408
2409 /* Domains are initialized for this device - have a look what we ended up with */
2410 domain = iommu_get_domain_for_dev(dev);
2411 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2412 dev_data->passthrough = true;
2413 else
2414 dev->archdata.dma_ops = &amd_iommu_dma_ops;
2415
2416out:
2417 iommu_completion_wait(iommu);
2418
2419 return 0;
2420}
2421
2422static void amd_iommu_remove_device(struct device *dev)
2423{
2424 struct amd_iommu *iommu;
2425 u16 devid;
2426
2427 if (!check_device(dev))
2428 return;
2429
2430 devid = get_device_id(dev);
2431 iommu = amd_iommu_rlookup_table[devid];
2432
2433 iommu_uninit_device(dev);
2434 iommu_completion_wait(iommu);
2435}
2436
2437/*****************************************************************************
2438 *
2439 * The next functions belong to the dma_ops mapping/unmapping code.
2440 *
2441 *****************************************************************************/
2442
2443/*
2444 * In the dma_ops path we only have the struct device. This function
2445 * finds the corresponding IOMMU, the protection domain and the
2446 * requestor id for a given device.
2447 * If the device is not yet associated with a domain this is also done
2448 * in this function.
2449 */
2450static struct protection_domain *get_domain(struct device *dev)
2451{
2452 struct protection_domain *domain;
2453 struct iommu_domain *io_domain;
2454
2455 if (!check_device(dev))
2456 return ERR_PTR(-EINVAL);
2457
2458 io_domain = iommu_get_domain_for_dev(dev);
2459 if (!io_domain)
2460 return NULL;
2461
2462 domain = to_pdomain(io_domain);
2463 if (!dma_ops_domain(domain))
2464 return ERR_PTR(-EBUSY);
2465
2466 return domain;
2467}
2468
2469static void update_device_table(struct protection_domain *domain)
2470{
2471 struct iommu_dev_data *dev_data;
2472
2473 list_for_each_entry(dev_data, &domain->dev_list, list)
2474 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2475}
2476
2477static void update_domain(struct protection_domain *domain)
2478{
2479 if (!domain->updated)
2480 return;
2481
2482 update_device_table(domain);
2483
2484 domain_flush_devices(domain);
2485 domain_flush_tlb_pde(domain);
2486
2487 domain->updated = false;
2488}
2489
2490/*
2491 * This function fetches the PTE for a given address in the aperture
2492 */
2493static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2494 unsigned long address)
2495{
2496 struct aperture_range *aperture;
2497 u64 *pte, *pte_page;
2498
2499 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2500 if (!aperture)
2501 return NULL;
2502
2503 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2504 if (!pte) {
2505 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2506 GFP_ATOMIC);
2507 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2508 } else
2509 pte += PM_LEVEL_INDEX(0, address);
2510
2511 update_domain(&dom->domain);
2512
2513 return pte;
2514}
2515
2516/*
2517 * This is the generic map function. It maps one 4kb page at paddr to
2518 * the given address in the DMA address space for the domain.
2519 */
2520static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2521 unsigned long address,
2522 phys_addr_t paddr,
2523 int direction)
2524{
2525 u64 *pte, __pte;
2526
2527 WARN_ON(address > dom->aperture_size);
2528
2529 paddr &= PAGE_MASK;
2530
2531 pte = dma_ops_get_pte(dom, address);
2532 if (!pte)
2533 return DMA_ERROR_CODE;
2534
2535 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2536
2537 if (direction == DMA_TO_DEVICE)
2538 __pte |= IOMMU_PTE_IR;
2539 else if (direction == DMA_FROM_DEVICE)
2540 __pte |= IOMMU_PTE_IW;
2541 else if (direction == DMA_BIDIRECTIONAL)
2542 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2543
2544 WARN_ON_ONCE(*pte);
2545
2546 *pte = __pte;
2547
2548 return (dma_addr_t)address;
2549}
2550
2551/*
2552 * The generic unmapping function for on page in the DMA address space.
2553 */
2554static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2555 unsigned long address)
2556{
2557 struct aperture_range *aperture;
2558 u64 *pte;
2559
2560 if (address >= dom->aperture_size)
2561 return;
2562
2563 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2564 if (!aperture)
2565 return;
2566
2567 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2568 if (!pte)
2569 return;
2570
2571 pte += PM_LEVEL_INDEX(0, address);
2572
2573 WARN_ON_ONCE(!*pte);
2574
2575 *pte = 0ULL;
2576}
2577
2578/*
2579 * This function contains common code for mapping of a physically
2580 * contiguous memory region into DMA address space. It is used by all
2581 * mapping functions provided with this IOMMU driver.
2582 * Must be called with the domain lock held.
2583 */
2584static dma_addr_t __map_single(struct device *dev,
2585 struct dma_ops_domain *dma_dom,
2586 phys_addr_t paddr,
2587 size_t size,
2588 int dir,
2589 bool align,
2590 u64 dma_mask)
2591{
2592 dma_addr_t offset = paddr & ~PAGE_MASK;
2593 dma_addr_t address, start, ret;
2594 unsigned int pages;
2595 unsigned long align_mask = 0;
2596 int i;
2597
2598 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2599 paddr &= PAGE_MASK;
2600
2601 INC_STATS_COUNTER(total_map_requests);
2602
2603 if (pages > 1)
2604 INC_STATS_COUNTER(cross_page);
2605
2606 if (align)
2607 align_mask = (1UL << get_order(size)) - 1;
2608
2609 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2610 dma_mask);
2611
2612 if (address == DMA_ERROR_CODE)
2613 goto out;
2614
2615 start = address;
2616 for (i = 0; i < pages; ++i) {
2617 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2618 if (ret == DMA_ERROR_CODE)
2619 goto out_unmap;
2620
2621 paddr += PAGE_SIZE;
2622 start += PAGE_SIZE;
2623 }
2624 address += offset;
2625
2626 ADD_STATS_COUNTER(alloced_io_mem, size);
2627
2628 if (unlikely(amd_iommu_np_cache)) {
2629 domain_flush_pages(&dma_dom->domain, address, size);
2630 domain_flush_complete(&dma_dom->domain);
2631 }
2632
2633out:
2634 return address;
2635
2636out_unmap:
2637
2638 for (--i; i >= 0; --i) {
2639 start -= PAGE_SIZE;
2640 dma_ops_domain_unmap(dma_dom, start);
2641 }
2642
2643 dma_ops_free_addresses(dma_dom, address, pages);
2644
2645 return DMA_ERROR_CODE;
2646}
2647
2648/*
2649 * Does the reverse of the __map_single function. Must be called with
2650 * the domain lock held too
2651 */
2652static void __unmap_single(struct dma_ops_domain *dma_dom,
2653 dma_addr_t dma_addr,
2654 size_t size,
2655 int dir)
2656{
2657 dma_addr_t flush_addr;
2658 dma_addr_t i, start;
2659 unsigned int pages;
2660
2661 if ((dma_addr == DMA_ERROR_CODE) ||
2662 (dma_addr + size > dma_dom->aperture_size))
2663 return;
2664
2665 flush_addr = dma_addr;
2666 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2667 dma_addr &= PAGE_MASK;
2668 start = dma_addr;
2669
2670 for (i = 0; i < pages; ++i) {
2671 dma_ops_domain_unmap(dma_dom, start);
2672 start += PAGE_SIZE;
2673 }
2674
2675 SUB_STATS_COUNTER(alloced_io_mem, size);
2676
2677 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2678}
2679
2680/*
2681 * The exported map_single function for dma_ops.
2682 */
2683static dma_addr_t map_page(struct device *dev, struct page *page,
2684 unsigned long offset, size_t size,
2685 enum dma_data_direction dir,
2686 struct dma_attrs *attrs)
2687{
2688 phys_addr_t paddr = page_to_phys(page) + offset;
2689 struct protection_domain *domain;
2690 u64 dma_mask;
2691
2692 INC_STATS_COUNTER(cnt_map_single);
2693
2694 domain = get_domain(dev);
2695 if (PTR_ERR(domain) == -EINVAL)
2696 return (dma_addr_t)paddr;
2697 else if (IS_ERR(domain))
2698 return DMA_ERROR_CODE;
2699
2700 dma_mask = *dev->dma_mask;
2701
2702 return __map_single(dev, domain->priv, paddr, size, dir, false,
2703 dma_mask);
2704}
2705
2706/*
2707 * The exported unmap_single function for dma_ops.
2708 */
2709static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2710 enum dma_data_direction dir, struct dma_attrs *attrs)
2711{
2712 struct protection_domain *domain;
2713
2714 INC_STATS_COUNTER(cnt_unmap_single);
2715
2716 domain = get_domain(dev);
2717 if (IS_ERR(domain))
2718 return;
2719
2720 __unmap_single(domain->priv, dma_addr, size, dir);
2721}
2722
2723/*
2724 * The exported map_sg function for dma_ops (handles scatter-gather
2725 * lists).
2726 */
2727static int map_sg(struct device *dev, struct scatterlist *sglist,
2728 int nelems, enum dma_data_direction dir,
2729 struct dma_attrs *attrs)
2730{
2731 struct protection_domain *domain;
2732 int i;
2733 struct scatterlist *s;
2734 phys_addr_t paddr;
2735 int mapped_elems = 0;
2736 u64 dma_mask;
2737
2738 INC_STATS_COUNTER(cnt_map_sg);
2739
2740 domain = get_domain(dev);
2741 if (IS_ERR(domain))
2742 return 0;
2743
2744 dma_mask = *dev->dma_mask;
2745
2746 for_each_sg(sglist, s, nelems, i) {
2747 paddr = sg_phys(s);
2748
2749 s->dma_address = __map_single(dev, domain->priv,
2750 paddr, s->length, dir, false,
2751 dma_mask);
2752
2753 if (s->dma_address) {
2754 s->dma_length = s->length;
2755 mapped_elems++;
2756 } else
2757 goto unmap;
2758 }
2759
2760 return mapped_elems;
2761
2762unmap:
2763 for_each_sg(sglist, s, mapped_elems, i) {
2764 if (s->dma_address)
2765 __unmap_single(domain->priv, s->dma_address,
2766 s->dma_length, dir);
2767 s->dma_address = s->dma_length = 0;
2768 }
2769
2770 return 0;
2771}
2772
2773/*
2774 * The exported map_sg function for dma_ops (handles scatter-gather
2775 * lists).
2776 */
2777static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2778 int nelems, enum dma_data_direction dir,
2779 struct dma_attrs *attrs)
2780{
2781 struct protection_domain *domain;
2782 struct scatterlist *s;
2783 int i;
2784
2785 INC_STATS_COUNTER(cnt_unmap_sg);
2786
2787 domain = get_domain(dev);
2788 if (IS_ERR(domain))
2789 return;
2790
2791 for_each_sg(sglist, s, nelems, i) {
2792 __unmap_single(domain->priv, s->dma_address,
2793 s->dma_length, dir);
2794 s->dma_address = s->dma_length = 0;
2795 }
2796}
2797
2798/*
2799 * The exported alloc_coherent function for dma_ops.
2800 */
2801static void *alloc_coherent(struct device *dev, size_t size,
2802 dma_addr_t *dma_addr, gfp_t flag,
2803 struct dma_attrs *attrs)
2804{
2805 u64 dma_mask = dev->coherent_dma_mask;
2806 struct protection_domain *domain;
2807 struct page *page;
2808
2809 INC_STATS_COUNTER(cnt_alloc_coherent);
2810
2811 domain = get_domain(dev);
2812 if (PTR_ERR(domain) == -EINVAL) {
2813 page = alloc_pages(flag, get_order(size));
2814 *dma_addr = page_to_phys(page);
2815 return page_address(page);
2816 } else if (IS_ERR(domain))
2817 return NULL;
2818
2819 size = PAGE_ALIGN(size);
2820 dma_mask = dev->coherent_dma_mask;
2821 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2822 flag |= __GFP_ZERO;
2823
2824 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2825 if (!page) {
2826 if (!gfpflags_allow_blocking(flag))
2827 return NULL;
2828
2829 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2830 get_order(size));
2831 if (!page)
2832 return NULL;
2833 }
2834
2835 if (!dma_mask)
2836 dma_mask = *dev->dma_mask;
2837
2838 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2839 size, DMA_BIDIRECTIONAL, true, dma_mask);
2840
2841 if (*dma_addr == DMA_ERROR_CODE)
2842 goto out_free;
2843
2844 return page_address(page);
2845
2846out_free:
2847
2848 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2849 __free_pages(page, get_order(size));
2850
2851 return NULL;
2852}
2853
2854/*
2855 * The exported free_coherent function for dma_ops.
2856 */
2857static void free_coherent(struct device *dev, size_t size,
2858 void *virt_addr, dma_addr_t dma_addr,
2859 struct dma_attrs *attrs)
2860{
2861 struct protection_domain *domain;
2862 struct page *page;
2863
2864 INC_STATS_COUNTER(cnt_free_coherent);
2865
2866 page = virt_to_page(virt_addr);
2867 size = PAGE_ALIGN(size);
2868
2869 domain = get_domain(dev);
2870 if (IS_ERR(domain))
2871 goto free_mem;
2872
2873 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2874
2875free_mem:
2876 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2877 __free_pages(page, get_order(size));
2878}
2879
2880/*
2881 * This function is called by the DMA layer to find out if we can handle a
2882 * particular device. It is part of the dma_ops.
2883 */
2884static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2885{
2886 return check_device(dev);
2887}
2888
2889static int set_dma_mask(struct device *dev, u64 mask)
2890{
2891 struct protection_domain *domain;
2892 int max_apertures = 1;
2893
2894 domain = get_domain(dev);
2895 if (IS_ERR(domain))
2896 return PTR_ERR(domain);
2897
2898 if (mask == DMA_BIT_MASK(64))
2899 max_apertures = 8;
2900 else if (mask > DMA_BIT_MASK(32))
2901 max_apertures = 4;
2902
2903 /*
2904 * To prevent lock contention it doesn't make sense to allocate more
2905 * apertures than online cpus
2906 */
2907 if (max_apertures > num_online_cpus())
2908 max_apertures = num_online_cpus();
2909
2910 if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
2911 dev_err(dev, "Can't allocate %d iommu apertures\n",
2912 max_apertures);
2913
2914 return 0;
2915}
2916
2917static struct dma_map_ops amd_iommu_dma_ops = {
2918 .alloc = alloc_coherent,
2919 .free = free_coherent,
2920 .map_page = map_page,
2921 .unmap_page = unmap_page,
2922 .map_sg = map_sg,
2923 .unmap_sg = unmap_sg,
2924 .dma_supported = amd_iommu_dma_supported,
2925 .set_dma_mask = set_dma_mask,
2926};
2927
2928int __init amd_iommu_init_api(void)
2929{
2930 return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2931}
2932
2933int __init amd_iommu_init_dma_ops(void)
2934{
2935 swiotlb = iommu_pass_through ? 1 : 0;
2936 iommu_detected = 1;
2937
2938 /*
2939 * In case we don't initialize SWIOTLB (actually the common case
2940 * when AMD IOMMU is enabled), make sure there are global
2941 * dma_ops set as a fall-back for devices not handled by this
2942 * driver (for example non-PCI devices).
2943 */
2944 if (!swiotlb)
2945 dma_ops = &nommu_dma_ops;
2946
2947 amd_iommu_stats_init();
2948
2949 if (amd_iommu_unmap_flush)
2950 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2951 else
2952 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2953
2954 return 0;
2955}
2956
2957/*****************************************************************************
2958 *
2959 * The following functions belong to the exported interface of AMD IOMMU
2960 *
2961 * This interface allows access to lower level functions of the IOMMU
2962 * like protection domain handling and assignement of devices to domains
2963 * which is not possible with the dma_ops interface.
2964 *
2965 *****************************************************************************/
2966
2967static void cleanup_domain(struct protection_domain *domain)
2968{
2969 struct iommu_dev_data *entry;
2970 unsigned long flags;
2971
2972 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2973
2974 while (!list_empty(&domain->dev_list)) {
2975 entry = list_first_entry(&domain->dev_list,
2976 struct iommu_dev_data, list);
2977 __detach_device(entry);
2978 }
2979
2980 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2981}
2982
2983static void protection_domain_free(struct protection_domain *domain)
2984{
2985 if (!domain)
2986 return;
2987
2988 del_domain_from_list(domain);
2989
2990 if (domain->id)
2991 domain_id_free(domain->id);
2992
2993 kfree(domain);
2994}
2995
2996static int protection_domain_init(struct protection_domain *domain)
2997{
2998 spin_lock_init(&domain->lock);
2999 mutex_init(&domain->api_lock);
3000 domain->id = domain_id_alloc();
3001 if (!domain->id)
3002 return -ENOMEM;
3003 INIT_LIST_HEAD(&domain->dev_list);
3004
3005 return 0;
3006}
3007
3008static struct protection_domain *protection_domain_alloc(void)
3009{
3010 struct protection_domain *domain;
3011
3012 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3013 if (!domain)
3014 return NULL;
3015
3016 if (protection_domain_init(domain))
3017 goto out_err;
3018
3019 add_domain_to_list(domain);
3020
3021 return domain;
3022
3023out_err:
3024 kfree(domain);
3025
3026 return NULL;
3027}
3028
3029static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3030{
3031 struct protection_domain *pdomain;
3032 struct dma_ops_domain *dma_domain;
3033
3034 switch (type) {
3035 case IOMMU_DOMAIN_UNMANAGED:
3036 pdomain = protection_domain_alloc();
3037 if (!pdomain)
3038 return NULL;
3039
3040 pdomain->mode = PAGE_MODE_3_LEVEL;
3041 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3042 if (!pdomain->pt_root) {
3043 protection_domain_free(pdomain);
3044 return NULL;
3045 }
3046
3047 pdomain->domain.geometry.aperture_start = 0;
3048 pdomain->domain.geometry.aperture_end = ~0ULL;
3049 pdomain->domain.geometry.force_aperture = true;
3050
3051 break;
3052 case IOMMU_DOMAIN_DMA:
3053 dma_domain = dma_ops_domain_alloc();
3054 if (!dma_domain) {
3055 pr_err("AMD-Vi: Failed to allocate\n");
3056 return NULL;
3057 }
3058 pdomain = &dma_domain->domain;
3059 break;
3060 case IOMMU_DOMAIN_IDENTITY:
3061 pdomain = protection_domain_alloc();
3062 if (!pdomain)
3063 return NULL;
3064
3065 pdomain->mode = PAGE_MODE_NONE;
3066 break;
3067 default:
3068 return NULL;
3069 }
3070
3071 return &pdomain->domain;
3072}
3073
3074static void amd_iommu_domain_free(struct iommu_domain *dom)
3075{
3076 struct protection_domain *domain;
3077
3078 if (!dom)
3079 return;
3080
3081 domain = to_pdomain(dom);
3082
3083 if (domain->dev_cnt > 0)
3084 cleanup_domain(domain);
3085
3086 BUG_ON(domain->dev_cnt != 0);
3087
3088 if (domain->mode != PAGE_MODE_NONE)
3089 free_pagetable(domain);
3090
3091 if (domain->flags & PD_IOMMUV2_MASK)
3092 free_gcr3_table(domain);
3093
3094 protection_domain_free(domain);
3095}
3096
3097static void amd_iommu_detach_device(struct iommu_domain *dom,
3098 struct device *dev)
3099{
3100 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3101 struct amd_iommu *iommu;
3102 u16 devid;
3103
3104 if (!check_device(dev))
3105 return;
3106
3107 devid = get_device_id(dev);
3108
3109 if (dev_data->domain != NULL)
3110 detach_device(dev);
3111
3112 iommu = amd_iommu_rlookup_table[devid];
3113 if (!iommu)
3114 return;
3115
3116 iommu_completion_wait(iommu);
3117}
3118
3119static int amd_iommu_attach_device(struct iommu_domain *dom,
3120 struct device *dev)
3121{
3122 struct protection_domain *domain = to_pdomain(dom);
3123 struct iommu_dev_data *dev_data;
3124 struct amd_iommu *iommu;
3125 int ret;
3126
3127 if (!check_device(dev))
3128 return -EINVAL;
3129
3130 dev_data = dev->archdata.iommu;
3131
3132 iommu = amd_iommu_rlookup_table[dev_data->devid];
3133 if (!iommu)
3134 return -EINVAL;
3135
3136 if (dev_data->domain)
3137 detach_device(dev);
3138
3139 ret = attach_device(dev, domain);
3140
3141 iommu_completion_wait(iommu);
3142
3143 return ret;
3144}
3145
3146static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3147 phys_addr_t paddr, size_t page_size, int iommu_prot)
3148{
3149 struct protection_domain *domain = to_pdomain(dom);
3150 int prot = 0;
3151 int ret;
3152
3153 if (domain->mode == PAGE_MODE_NONE)
3154 return -EINVAL;
3155
3156 if (iommu_prot & IOMMU_READ)
3157 prot |= IOMMU_PROT_IR;
3158 if (iommu_prot & IOMMU_WRITE)
3159 prot |= IOMMU_PROT_IW;
3160
3161 mutex_lock(&domain->api_lock);
3162 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3163 mutex_unlock(&domain->api_lock);
3164
3165 return ret;
3166}
3167
3168static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3169 size_t page_size)
3170{
3171 struct protection_domain *domain = to_pdomain(dom);
3172 size_t unmap_size;
3173
3174 if (domain->mode == PAGE_MODE_NONE)
3175 return -EINVAL;
3176
3177 mutex_lock(&domain->api_lock);
3178 unmap_size = iommu_unmap_page(domain, iova, page_size);
3179 mutex_unlock(&domain->api_lock);
3180
3181 domain_flush_tlb_pde(domain);
3182
3183 return unmap_size;
3184}
3185
3186static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3187 dma_addr_t iova)
3188{
3189 struct protection_domain *domain = to_pdomain(dom);
3190 unsigned long offset_mask, pte_pgsize;
3191 u64 *pte, __pte;
3192
3193 if (domain->mode == PAGE_MODE_NONE)
3194 return iova;
3195
3196 pte = fetch_pte(domain, iova, &pte_pgsize);
3197
3198 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3199 return 0;
3200
3201 offset_mask = pte_pgsize - 1;
3202 __pte = *pte & PM_ADDR_MASK;
3203
3204 return (__pte & ~offset_mask) | (iova & offset_mask);
3205}
3206
3207static bool amd_iommu_capable(enum iommu_cap cap)
3208{
3209 switch (cap) {
3210 case IOMMU_CAP_CACHE_COHERENCY:
3211 return true;
3212 case IOMMU_CAP_INTR_REMAP:
3213 return (irq_remapping_enabled == 1);
3214 case IOMMU_CAP_NOEXEC:
3215 return false;
3216 }
3217
3218 return false;
3219}
3220
3221static void amd_iommu_get_dm_regions(struct device *dev,
3222 struct list_head *head)
3223{
3224 struct unity_map_entry *entry;
3225 u16 devid;
3226
3227 devid = get_device_id(dev);
3228
3229 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3230 struct iommu_dm_region *region;
3231
3232 if (devid < entry->devid_start || devid > entry->devid_end)
3233 continue;
3234
3235 region = kzalloc(sizeof(*region), GFP_KERNEL);
3236 if (!region) {
3237 pr_err("Out of memory allocating dm-regions for %s\n",
3238 dev_name(dev));
3239 return;
3240 }
3241
3242 region->start = entry->address_start;
3243 region->length = entry->address_end - entry->address_start;
3244 if (entry->prot & IOMMU_PROT_IR)
3245 region->prot |= IOMMU_READ;
3246 if (entry->prot & IOMMU_PROT_IW)
3247 region->prot |= IOMMU_WRITE;
3248
3249 list_add_tail(®ion->list, head);
3250 }
3251}
3252
3253static void amd_iommu_put_dm_regions(struct device *dev,
3254 struct list_head *head)
3255{
3256 struct iommu_dm_region *entry, *next;
3257
3258 list_for_each_entry_safe(entry, next, head, list)
3259 kfree(entry);
3260}
3261
3262static const struct iommu_ops amd_iommu_ops = {
3263 .capable = amd_iommu_capable,
3264 .domain_alloc = amd_iommu_domain_alloc,
3265 .domain_free = amd_iommu_domain_free,
3266 .attach_dev = amd_iommu_attach_device,
3267 .detach_dev = amd_iommu_detach_device,
3268 .map = amd_iommu_map,
3269 .unmap = amd_iommu_unmap,
3270 .map_sg = default_iommu_map_sg,
3271 .iova_to_phys = amd_iommu_iova_to_phys,
3272 .add_device = amd_iommu_add_device,
3273 .remove_device = amd_iommu_remove_device,
3274 .device_group = pci_device_group,
3275 .get_dm_regions = amd_iommu_get_dm_regions,
3276 .put_dm_regions = amd_iommu_put_dm_regions,
3277 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3278};
3279
3280/*****************************************************************************
3281 *
3282 * The next functions do a basic initialization of IOMMU for pass through
3283 * mode
3284 *
3285 * In passthrough mode the IOMMU is initialized and enabled but not used for
3286 * DMA-API translation.
3287 *
3288 *****************************************************************************/
3289
3290/* IOMMUv2 specific functions */
3291int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3292{
3293 return atomic_notifier_chain_register(&ppr_notifier, nb);
3294}
3295EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3296
3297int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3298{
3299 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3300}
3301EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3302
3303void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3304{
3305 struct protection_domain *domain = to_pdomain(dom);
3306 unsigned long flags;
3307
3308 spin_lock_irqsave(&domain->lock, flags);
3309
3310 /* Update data structure */
3311 domain->mode = PAGE_MODE_NONE;
3312 domain->updated = true;
3313
3314 /* Make changes visible to IOMMUs */
3315 update_domain(domain);
3316
3317 /* Page-table is not visible to IOMMU anymore, so free it */
3318 free_pagetable(domain);
3319
3320 spin_unlock_irqrestore(&domain->lock, flags);
3321}
3322EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3323
3324int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3325{
3326 struct protection_domain *domain = to_pdomain(dom);
3327 unsigned long flags;
3328 int levels, ret;
3329
3330 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3331 return -EINVAL;
3332
3333 /* Number of GCR3 table levels required */
3334 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3335 levels += 1;
3336
3337 if (levels > amd_iommu_max_glx_val)
3338 return -EINVAL;
3339
3340 spin_lock_irqsave(&domain->lock, flags);
3341
3342 /*
3343 * Save us all sanity checks whether devices already in the
3344 * domain support IOMMUv2. Just force that the domain has no
3345 * devices attached when it is switched into IOMMUv2 mode.
3346 */
3347 ret = -EBUSY;
3348 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3349 goto out;
3350
3351 ret = -ENOMEM;
3352 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3353 if (domain->gcr3_tbl == NULL)
3354 goto out;
3355
3356 domain->glx = levels;
3357 domain->flags |= PD_IOMMUV2_MASK;
3358 domain->updated = true;
3359
3360 update_domain(domain);
3361
3362 ret = 0;
3363
3364out:
3365 spin_unlock_irqrestore(&domain->lock, flags);
3366
3367 return ret;
3368}
3369EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3370
3371static int __flush_pasid(struct protection_domain *domain, int pasid,
3372 u64 address, bool size)
3373{
3374 struct iommu_dev_data *dev_data;
3375 struct iommu_cmd cmd;
3376 int i, ret;
3377
3378 if (!(domain->flags & PD_IOMMUV2_MASK))
3379 return -EINVAL;
3380
3381 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3382
3383 /*
3384 * IOMMU TLB needs to be flushed before Device TLB to
3385 * prevent device TLB refill from IOMMU TLB
3386 */
3387 for (i = 0; i < amd_iommus_present; ++i) {
3388 if (domain->dev_iommu[i] == 0)
3389 continue;
3390
3391 ret = iommu_queue_command(amd_iommus[i], &cmd);
3392 if (ret != 0)
3393 goto out;
3394 }
3395
3396 /* Wait until IOMMU TLB flushes are complete */
3397 domain_flush_complete(domain);
3398
3399 /* Now flush device TLBs */
3400 list_for_each_entry(dev_data, &domain->dev_list, list) {
3401 struct amd_iommu *iommu;
3402 int qdep;
3403
3404 /*
3405 There might be non-IOMMUv2 capable devices in an IOMMUv2
3406 * domain.
3407 */
3408 if (!dev_data->ats.enabled)
3409 continue;
3410
3411 qdep = dev_data->ats.qdep;
3412 iommu = amd_iommu_rlookup_table[dev_data->devid];
3413
3414 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3415 qdep, address, size);
3416
3417 ret = iommu_queue_command(iommu, &cmd);
3418 if (ret != 0)
3419 goto out;
3420 }
3421
3422 /* Wait until all device TLBs are flushed */
3423 domain_flush_complete(domain);
3424
3425 ret = 0;
3426
3427out:
3428
3429 return ret;
3430}
3431
3432static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3433 u64 address)
3434{
3435 INC_STATS_COUNTER(invalidate_iotlb);
3436
3437 return __flush_pasid(domain, pasid, address, false);
3438}
3439
3440int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3441 u64 address)
3442{
3443 struct protection_domain *domain = to_pdomain(dom);
3444 unsigned long flags;
3445 int ret;
3446
3447 spin_lock_irqsave(&domain->lock, flags);
3448 ret = __amd_iommu_flush_page(domain, pasid, address);
3449 spin_unlock_irqrestore(&domain->lock, flags);
3450
3451 return ret;
3452}
3453EXPORT_SYMBOL(amd_iommu_flush_page);
3454
3455static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3456{
3457 INC_STATS_COUNTER(invalidate_iotlb_all);
3458
3459 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3460 true);
3461}
3462
3463int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3464{
3465 struct protection_domain *domain = to_pdomain(dom);
3466 unsigned long flags;
3467 int ret;
3468
3469 spin_lock_irqsave(&domain->lock, flags);
3470 ret = __amd_iommu_flush_tlb(domain, pasid);
3471 spin_unlock_irqrestore(&domain->lock, flags);
3472
3473 return ret;
3474}
3475EXPORT_SYMBOL(amd_iommu_flush_tlb);
3476
3477static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3478{
3479 int index;
3480 u64 *pte;
3481
3482 while (true) {
3483
3484 index = (pasid >> (9 * level)) & 0x1ff;
3485 pte = &root[index];
3486
3487 if (level == 0)
3488 break;
3489
3490 if (!(*pte & GCR3_VALID)) {
3491 if (!alloc)
3492 return NULL;
3493
3494 root = (void *)get_zeroed_page(GFP_ATOMIC);
3495 if (root == NULL)
3496 return NULL;
3497
3498 *pte = __pa(root) | GCR3_VALID;
3499 }
3500
3501 root = __va(*pte & PAGE_MASK);
3502
3503 level -= 1;
3504 }
3505
3506 return pte;
3507}
3508
3509static int __set_gcr3(struct protection_domain *domain, int pasid,
3510 unsigned long cr3)
3511{
3512 u64 *pte;
3513
3514 if (domain->mode != PAGE_MODE_NONE)
3515 return -EINVAL;
3516
3517 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3518 if (pte == NULL)
3519 return -ENOMEM;
3520
3521 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3522
3523 return __amd_iommu_flush_tlb(domain, pasid);
3524}
3525
3526static int __clear_gcr3(struct protection_domain *domain, int pasid)
3527{
3528 u64 *pte;
3529
3530 if (domain->mode != PAGE_MODE_NONE)
3531 return -EINVAL;
3532
3533 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3534 if (pte == NULL)
3535 return 0;
3536
3537 *pte = 0;
3538
3539 return __amd_iommu_flush_tlb(domain, pasid);
3540}
3541
3542int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3543 unsigned long cr3)
3544{
3545 struct protection_domain *domain = to_pdomain(dom);
3546 unsigned long flags;
3547 int ret;
3548
3549 spin_lock_irqsave(&domain->lock, flags);
3550 ret = __set_gcr3(domain, pasid, cr3);
3551 spin_unlock_irqrestore(&domain->lock, flags);
3552
3553 return ret;
3554}
3555EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3556
3557int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3558{
3559 struct protection_domain *domain = to_pdomain(dom);
3560 unsigned long flags;
3561 int ret;
3562
3563 spin_lock_irqsave(&domain->lock, flags);
3564 ret = __clear_gcr3(domain, pasid);
3565 spin_unlock_irqrestore(&domain->lock, flags);
3566
3567 return ret;
3568}
3569EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3570
3571int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3572 int status, int tag)
3573{
3574 struct iommu_dev_data *dev_data;
3575 struct amd_iommu *iommu;
3576 struct iommu_cmd cmd;
3577
3578 INC_STATS_COUNTER(complete_ppr);
3579
3580 dev_data = get_dev_data(&pdev->dev);
3581 iommu = amd_iommu_rlookup_table[dev_data->devid];
3582
3583 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3584 tag, dev_data->pri_tlp);
3585
3586 return iommu_queue_command(iommu, &cmd);
3587}
3588EXPORT_SYMBOL(amd_iommu_complete_ppr);
3589
3590struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3591{
3592 struct protection_domain *pdomain;
3593
3594 pdomain = get_domain(&pdev->dev);
3595 if (IS_ERR(pdomain))
3596 return NULL;
3597
3598 /* Only return IOMMUv2 domains */
3599 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3600 return NULL;
3601
3602 return &pdomain->domain;
3603}
3604EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3605
3606void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3607{
3608 struct iommu_dev_data *dev_data;
3609
3610 if (!amd_iommu_v2_supported())
3611 return;
3612
3613 dev_data = get_dev_data(&pdev->dev);
3614 dev_data->errata |= (1 << erratum);
3615}
3616EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3617
3618int amd_iommu_device_info(struct pci_dev *pdev,
3619 struct amd_iommu_device_info *info)
3620{
3621 int max_pasids;
3622 int pos;
3623
3624 if (pdev == NULL || info == NULL)
3625 return -EINVAL;
3626
3627 if (!amd_iommu_v2_supported())
3628 return -EINVAL;
3629
3630 memset(info, 0, sizeof(*info));
3631
3632 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3633 if (pos)
3634 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3635
3636 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3637 if (pos)
3638 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3639
3640 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3641 if (pos) {
3642 int features;
3643
3644 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3645 max_pasids = min(max_pasids, (1 << 20));
3646
3647 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3648 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3649
3650 features = pci_pasid_features(pdev);
3651 if (features & PCI_PASID_CAP_EXEC)
3652 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3653 if (features & PCI_PASID_CAP_PRIV)
3654 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3655 }
3656
3657 return 0;
3658}
3659EXPORT_SYMBOL(amd_iommu_device_info);
3660
3661#ifdef CONFIG_IRQ_REMAP
3662
3663/*****************************************************************************
3664 *
3665 * Interrupt Remapping Implementation
3666 *
3667 *****************************************************************************/
3668
3669union irte {
3670 u32 val;
3671 struct {
3672 u32 valid : 1,
3673 no_fault : 1,
3674 int_type : 3,
3675 rq_eoi : 1,
3676 dm : 1,
3677 rsvd_1 : 1,
3678 destination : 8,
3679 vector : 8,
3680 rsvd_2 : 8;
3681 } fields;
3682};
3683
3684struct irq_2_irte {
3685 u16 devid; /* Device ID for IRTE table */
3686 u16 index; /* Index into IRTE table*/
3687};
3688
3689struct amd_ir_data {
3690 struct irq_2_irte irq_2_irte;
3691 union irte irte_entry;
3692 union {
3693 struct msi_msg msi_entry;
3694 };
3695};
3696
3697static struct irq_chip amd_ir_chip;
3698
3699#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3700#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3701#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3702#define DTE_IRQ_REMAP_ENABLE 1ULL
3703
3704static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3705{
3706 u64 dte;
3707
3708 dte = amd_iommu_dev_table[devid].data[2];
3709 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3710 dte |= virt_to_phys(table->table);
3711 dte |= DTE_IRQ_REMAP_INTCTL;
3712 dte |= DTE_IRQ_TABLE_LEN;
3713 dte |= DTE_IRQ_REMAP_ENABLE;
3714
3715 amd_iommu_dev_table[devid].data[2] = dte;
3716}
3717
3718#define IRTE_ALLOCATED (~1U)
3719
3720static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3721{
3722 struct irq_remap_table *table = NULL;
3723 struct amd_iommu *iommu;
3724 unsigned long flags;
3725 u16 alias;
3726
3727 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3728
3729 iommu = amd_iommu_rlookup_table[devid];
3730 if (!iommu)
3731 goto out_unlock;
3732
3733 table = irq_lookup_table[devid];
3734 if (table)
3735 goto out;
3736
3737 alias = amd_iommu_alias_table[devid];
3738 table = irq_lookup_table[alias];
3739 if (table) {
3740 irq_lookup_table[devid] = table;
3741 set_dte_irq_entry(devid, table);
3742 iommu_flush_dte(iommu, devid);
3743 goto out;
3744 }
3745
3746 /* Nothing there yet, allocate new irq remapping table */
3747 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3748 if (!table)
3749 goto out;
3750
3751 /* Initialize table spin-lock */
3752 spin_lock_init(&table->lock);
3753
3754 if (ioapic)
3755 /* Keep the first 32 indexes free for IOAPIC interrupts */
3756 table->min_index = 32;
3757
3758 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3759 if (!table->table) {
3760 kfree(table);
3761 table = NULL;
3762 goto out;
3763 }
3764
3765 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3766
3767 if (ioapic) {
3768 int i;
3769
3770 for (i = 0; i < 32; ++i)
3771 table->table[i] = IRTE_ALLOCATED;
3772 }
3773
3774 irq_lookup_table[devid] = table;
3775 set_dte_irq_entry(devid, table);
3776 iommu_flush_dte(iommu, devid);
3777 if (devid != alias) {
3778 irq_lookup_table[alias] = table;
3779 set_dte_irq_entry(alias, table);
3780 iommu_flush_dte(iommu, alias);
3781 }
3782
3783out:
3784 iommu_completion_wait(iommu);
3785
3786out_unlock:
3787 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3788
3789 return table;
3790}
3791
3792static int alloc_irq_index(u16 devid, int count)
3793{
3794 struct irq_remap_table *table;
3795 unsigned long flags;
3796 int index, c;
3797
3798 table = get_irq_table(devid, false);
3799 if (!table)
3800 return -ENODEV;
3801
3802 spin_lock_irqsave(&table->lock, flags);
3803
3804 /* Scan table for free entries */
3805 for (c = 0, index = table->min_index;
3806 index < MAX_IRQS_PER_TABLE;
3807 ++index) {
3808 if (table->table[index] == 0)
3809 c += 1;
3810 else
3811 c = 0;
3812
3813 if (c == count) {
3814 for (; c != 0; --c)
3815 table->table[index - c + 1] = IRTE_ALLOCATED;
3816
3817 index -= count - 1;
3818 goto out;
3819 }
3820 }
3821
3822 index = -ENOSPC;
3823
3824out:
3825 spin_unlock_irqrestore(&table->lock, flags);
3826
3827 return index;
3828}
3829
3830static int modify_irte(u16 devid, int index, union irte irte)
3831{
3832 struct irq_remap_table *table;
3833 struct amd_iommu *iommu;
3834 unsigned long flags;
3835
3836 iommu = amd_iommu_rlookup_table[devid];
3837 if (iommu == NULL)
3838 return -EINVAL;
3839
3840 table = get_irq_table(devid, false);
3841 if (!table)
3842 return -ENOMEM;
3843
3844 spin_lock_irqsave(&table->lock, flags);
3845 table->table[index] = irte.val;
3846 spin_unlock_irqrestore(&table->lock, flags);
3847
3848 iommu_flush_irt(iommu, devid);
3849 iommu_completion_wait(iommu);
3850
3851 return 0;
3852}
3853
3854static void free_irte(u16 devid, int index)
3855{
3856 struct irq_remap_table *table;
3857 struct amd_iommu *iommu;
3858 unsigned long flags;
3859
3860 iommu = amd_iommu_rlookup_table[devid];
3861 if (iommu == NULL)
3862 return;
3863
3864 table = get_irq_table(devid, false);
3865 if (!table)
3866 return;
3867
3868 spin_lock_irqsave(&table->lock, flags);
3869 table->table[index] = 0;
3870 spin_unlock_irqrestore(&table->lock, flags);
3871
3872 iommu_flush_irt(iommu, devid);
3873 iommu_completion_wait(iommu);
3874}
3875
3876static int get_devid(struct irq_alloc_info *info)
3877{
3878 int devid = -1;
3879
3880 switch (info->type) {
3881 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3882 devid = get_ioapic_devid(info->ioapic_id);
3883 break;
3884 case X86_IRQ_ALLOC_TYPE_HPET:
3885 devid = get_hpet_devid(info->hpet_id);
3886 break;
3887 case X86_IRQ_ALLOC_TYPE_MSI:
3888 case X86_IRQ_ALLOC_TYPE_MSIX:
3889 devid = get_device_id(&info->msi_dev->dev);
3890 break;
3891 default:
3892 BUG_ON(1);
3893 break;
3894 }
3895
3896 return devid;
3897}
3898
3899static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3900{
3901 struct amd_iommu *iommu;
3902 int devid;
3903
3904 if (!info)
3905 return NULL;
3906
3907 devid = get_devid(info);
3908 if (devid >= 0) {
3909 iommu = amd_iommu_rlookup_table[devid];
3910 if (iommu)
3911 return iommu->ir_domain;
3912 }
3913
3914 return NULL;
3915}
3916
3917static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3918{
3919 struct amd_iommu *iommu;
3920 int devid;
3921
3922 if (!info)
3923 return NULL;
3924
3925 switch (info->type) {
3926 case X86_IRQ_ALLOC_TYPE_MSI:
3927 case X86_IRQ_ALLOC_TYPE_MSIX:
3928 devid = get_device_id(&info->msi_dev->dev);
3929 iommu = amd_iommu_rlookup_table[devid];
3930 if (iommu)
3931 return iommu->msi_domain;
3932 break;
3933 default:
3934 break;
3935 }
3936
3937 return NULL;
3938}
3939
3940struct irq_remap_ops amd_iommu_irq_ops = {
3941 .prepare = amd_iommu_prepare,
3942 .enable = amd_iommu_enable,
3943 .disable = amd_iommu_disable,
3944 .reenable = amd_iommu_reenable,
3945 .enable_faulting = amd_iommu_enable_faulting,
3946 .get_ir_irq_domain = get_ir_irq_domain,
3947 .get_irq_domain = get_irq_domain,
3948};
3949
3950static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3951 struct irq_cfg *irq_cfg,
3952 struct irq_alloc_info *info,
3953 int devid, int index, int sub_handle)
3954{
3955 struct irq_2_irte *irte_info = &data->irq_2_irte;
3956 struct msi_msg *msg = &data->msi_entry;
3957 union irte *irte = &data->irte_entry;
3958 struct IO_APIC_route_entry *entry;
3959
3960 data->irq_2_irte.devid = devid;
3961 data->irq_2_irte.index = index + sub_handle;
3962
3963 /* Setup IRTE for IOMMU */
3964 irte->val = 0;
3965 irte->fields.vector = irq_cfg->vector;
3966 irte->fields.int_type = apic->irq_delivery_mode;
3967 irte->fields.destination = irq_cfg->dest_apicid;
3968 irte->fields.dm = apic->irq_dest_mode;
3969 irte->fields.valid = 1;
3970
3971 switch (info->type) {
3972 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3973 /* Setup IOAPIC entry */
3974 entry = info->ioapic_entry;
3975 info->ioapic_entry = NULL;
3976 memset(entry, 0, sizeof(*entry));
3977 entry->vector = index;
3978 entry->mask = 0;
3979 entry->trigger = info->ioapic_trigger;
3980 entry->polarity = info->ioapic_polarity;
3981 /* Mask level triggered irqs. */
3982 if (info->ioapic_trigger)
3983 entry->mask = 1;
3984 break;
3985
3986 case X86_IRQ_ALLOC_TYPE_HPET:
3987 case X86_IRQ_ALLOC_TYPE_MSI:
3988 case X86_IRQ_ALLOC_TYPE_MSIX:
3989 msg->address_hi = MSI_ADDR_BASE_HI;
3990 msg->address_lo = MSI_ADDR_BASE_LO;
3991 msg->data = irte_info->index;
3992 break;
3993
3994 default:
3995 BUG_ON(1);
3996 break;
3997 }
3998}
3999
4000static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4001 unsigned int nr_irqs, void *arg)
4002{
4003 struct irq_alloc_info *info = arg;
4004 struct irq_data *irq_data;
4005 struct amd_ir_data *data;
4006 struct irq_cfg *cfg;
4007 int i, ret, devid;
4008 int index = -1;
4009
4010 if (!info)
4011 return -EINVAL;
4012 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4013 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4014 return -EINVAL;
4015
4016 /*
4017 * With IRQ remapping enabled, don't need contiguous CPU vectors
4018 * to support multiple MSI interrupts.
4019 */
4020 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4021 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4022
4023 devid = get_devid(info);
4024 if (devid < 0)
4025 return -EINVAL;
4026
4027 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4028 if (ret < 0)
4029 return ret;
4030
4031 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4032 if (get_irq_table(devid, true))
4033 index = info->ioapic_pin;
4034 else
4035 ret = -ENOMEM;
4036 } else {
4037 index = alloc_irq_index(devid, nr_irqs);
4038 }
4039 if (index < 0) {
4040 pr_warn("Failed to allocate IRTE\n");
4041 goto out_free_parent;
4042 }
4043
4044 for (i = 0; i < nr_irqs; i++) {
4045 irq_data = irq_domain_get_irq_data(domain, virq + i);
4046 cfg = irqd_cfg(irq_data);
4047 if (!irq_data || !cfg) {
4048 ret = -EINVAL;
4049 goto out_free_data;
4050 }
4051
4052 ret = -ENOMEM;
4053 data = kzalloc(sizeof(*data), GFP_KERNEL);
4054 if (!data)
4055 goto out_free_data;
4056
4057 irq_data->hwirq = (devid << 16) + i;
4058 irq_data->chip_data = data;
4059 irq_data->chip = &amd_ir_chip;
4060 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4061 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4062 }
4063
4064 return 0;
4065
4066out_free_data:
4067 for (i--; i >= 0; i--) {
4068 irq_data = irq_domain_get_irq_data(domain, virq + i);
4069 if (irq_data)
4070 kfree(irq_data->chip_data);
4071 }
4072 for (i = 0; i < nr_irqs; i++)
4073 free_irte(devid, index + i);
4074out_free_parent:
4075 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4076 return ret;
4077}
4078
4079static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4080 unsigned int nr_irqs)
4081{
4082 struct irq_2_irte *irte_info;
4083 struct irq_data *irq_data;
4084 struct amd_ir_data *data;
4085 int i;
4086
4087 for (i = 0; i < nr_irqs; i++) {
4088 irq_data = irq_domain_get_irq_data(domain, virq + i);
4089 if (irq_data && irq_data->chip_data) {
4090 data = irq_data->chip_data;
4091 irte_info = &data->irq_2_irte;
4092 free_irte(irte_info->devid, irte_info->index);
4093 kfree(data);
4094 }
4095 }
4096 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4097}
4098
4099static void irq_remapping_activate(struct irq_domain *domain,
4100 struct irq_data *irq_data)
4101{
4102 struct amd_ir_data *data = irq_data->chip_data;
4103 struct irq_2_irte *irte_info = &data->irq_2_irte;
4104
4105 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4106}
4107
4108static void irq_remapping_deactivate(struct irq_domain *domain,
4109 struct irq_data *irq_data)
4110{
4111 struct amd_ir_data *data = irq_data->chip_data;
4112 struct irq_2_irte *irte_info = &data->irq_2_irte;
4113 union irte entry;
4114
4115 entry.val = 0;
4116 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4117}
4118
4119static struct irq_domain_ops amd_ir_domain_ops = {
4120 .alloc = irq_remapping_alloc,
4121 .free = irq_remapping_free,
4122 .activate = irq_remapping_activate,
4123 .deactivate = irq_remapping_deactivate,
4124};
4125
4126static int amd_ir_set_affinity(struct irq_data *data,
4127 const struct cpumask *mask, bool force)
4128{
4129 struct amd_ir_data *ir_data = data->chip_data;
4130 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4131 struct irq_cfg *cfg = irqd_cfg(data);
4132 struct irq_data *parent = data->parent_data;
4133 int ret;
4134
4135 ret = parent->chip->irq_set_affinity(parent, mask, force);
4136 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4137 return ret;
4138
4139 /*
4140 * Atomically updates the IRTE with the new destination, vector
4141 * and flushes the interrupt entry cache.
4142 */
4143 ir_data->irte_entry.fields.vector = cfg->vector;
4144 ir_data->irte_entry.fields.destination = cfg->dest_apicid;
4145 modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4146
4147 /*
4148 * After this point, all the interrupts will start arriving
4149 * at the new destination. So, time to cleanup the previous
4150 * vector allocation.
4151 */
4152 send_cleanup_vector(cfg);
4153
4154 return IRQ_SET_MASK_OK_DONE;
4155}
4156
4157static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4158{
4159 struct amd_ir_data *ir_data = irq_data->chip_data;
4160
4161 *msg = ir_data->msi_entry;
4162}
4163
4164static struct irq_chip amd_ir_chip = {
4165 .irq_ack = ir_ack_apic_edge,
4166 .irq_set_affinity = amd_ir_set_affinity,
4167 .irq_compose_msi_msg = ir_compose_msi_msg,
4168};
4169
4170int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4171{
4172 iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
4173 if (!iommu->ir_domain)
4174 return -ENOMEM;
4175
4176 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4177 iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4178
4179 return 0;
4180}
4181#endif
1/*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/ratelimit.h>
21#include <linux/pci.h>
22#include <linux/pci-ats.h>
23#include <linux/bitmap.h>
24#include <linux/slab.h>
25#include <linux/debugfs.h>
26#include <linux/scatterlist.h>
27#include <linux/dma-mapping.h>
28#include <linux/iommu-helper.h>
29#include <linux/iommu.h>
30#include <linux/delay.h>
31#include <linux/amd-iommu.h>
32#include <linux/notifier.h>
33#include <linux/export.h>
34#include <asm/msidef.h>
35#include <asm/proto.h>
36#include <asm/iommu.h>
37#include <asm/gart.h>
38#include <asm/dma.h>
39
40#include "amd_iommu_proto.h"
41#include "amd_iommu_types.h"
42
43#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
44
45#define LOOP_TIMEOUT 100000
46
47/*
48 * This bitmap is used to advertise the page sizes our hardware support
49 * to the IOMMU core, which will then use this information to split
50 * physically contiguous memory regions it is mapping into page sizes
51 * that we support.
52 *
53 * Traditionally the IOMMU core just handed us the mappings directly,
54 * after making sure the size is an order of a 4KiB page and that the
55 * mapping has natural alignment.
56 *
57 * To retain this behavior, we currently advertise that we support
58 * all page sizes that are an order of 4KiB.
59 *
60 * If at some point we'd like to utilize the IOMMU core's new behavior,
61 * we could change this to advertise the real page sizes we support.
62 */
63#define AMD_IOMMU_PGSIZES (~0xFFFUL)
64
65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
67/* A list of preallocated protection domains */
68static LIST_HEAD(iommu_pd_list);
69static DEFINE_SPINLOCK(iommu_pd_list_lock);
70
71/* List of all available dev_data structures */
72static LIST_HEAD(dev_data_list);
73static DEFINE_SPINLOCK(dev_data_list_lock);
74
75/*
76 * Domain for untranslated devices - only allocated
77 * if iommu=pt passed on kernel cmd line.
78 */
79static struct protection_domain *pt_domain;
80
81static struct iommu_ops amd_iommu_ops;
82
83static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
84int amd_iommu_max_glx_val = -1;
85
86static struct dma_map_ops amd_iommu_dma_ops;
87
88/*
89 * general struct to manage commands send to an IOMMU
90 */
91struct iommu_cmd {
92 u32 data[4];
93};
94
95static void update_domain(struct protection_domain *domain);
96static int __init alloc_passthrough_domain(void);
97
98/****************************************************************************
99 *
100 * Helper functions
101 *
102 ****************************************************************************/
103
104static struct iommu_dev_data *alloc_dev_data(u16 devid)
105{
106 struct iommu_dev_data *dev_data;
107 unsigned long flags;
108
109 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
110 if (!dev_data)
111 return NULL;
112
113 dev_data->devid = devid;
114 atomic_set(&dev_data->bind, 0);
115
116 spin_lock_irqsave(&dev_data_list_lock, flags);
117 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
118 spin_unlock_irqrestore(&dev_data_list_lock, flags);
119
120 return dev_data;
121}
122
123static void free_dev_data(struct iommu_dev_data *dev_data)
124{
125 unsigned long flags;
126
127 spin_lock_irqsave(&dev_data_list_lock, flags);
128 list_del(&dev_data->dev_data_list);
129 spin_unlock_irqrestore(&dev_data_list_lock, flags);
130
131 kfree(dev_data);
132}
133
134static struct iommu_dev_data *search_dev_data(u16 devid)
135{
136 struct iommu_dev_data *dev_data;
137 unsigned long flags;
138
139 spin_lock_irqsave(&dev_data_list_lock, flags);
140 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
141 if (dev_data->devid == devid)
142 goto out_unlock;
143 }
144
145 dev_data = NULL;
146
147out_unlock:
148 spin_unlock_irqrestore(&dev_data_list_lock, flags);
149
150 return dev_data;
151}
152
153static struct iommu_dev_data *find_dev_data(u16 devid)
154{
155 struct iommu_dev_data *dev_data;
156
157 dev_data = search_dev_data(devid);
158
159 if (dev_data == NULL)
160 dev_data = alloc_dev_data(devid);
161
162 return dev_data;
163}
164
165static inline u16 get_device_id(struct device *dev)
166{
167 struct pci_dev *pdev = to_pci_dev(dev);
168
169 return calc_devid(pdev->bus->number, pdev->devfn);
170}
171
172static struct iommu_dev_data *get_dev_data(struct device *dev)
173{
174 return dev->archdata.iommu;
175}
176
177static bool pci_iommuv2_capable(struct pci_dev *pdev)
178{
179 static const int caps[] = {
180 PCI_EXT_CAP_ID_ATS,
181 PCI_EXT_CAP_ID_PRI,
182 PCI_EXT_CAP_ID_PASID,
183 };
184 int i, pos;
185
186 for (i = 0; i < 3; ++i) {
187 pos = pci_find_ext_capability(pdev, caps[i]);
188 if (pos == 0)
189 return false;
190 }
191
192 return true;
193}
194
195static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
196{
197 struct iommu_dev_data *dev_data;
198
199 dev_data = get_dev_data(&pdev->dev);
200
201 return dev_data->errata & (1 << erratum) ? true : false;
202}
203
204/*
205 * In this function the list of preallocated protection domains is traversed to
206 * find the domain for a specific device
207 */
208static struct dma_ops_domain *find_protection_domain(u16 devid)
209{
210 struct dma_ops_domain *entry, *ret = NULL;
211 unsigned long flags;
212 u16 alias = amd_iommu_alias_table[devid];
213
214 if (list_empty(&iommu_pd_list))
215 return NULL;
216
217 spin_lock_irqsave(&iommu_pd_list_lock, flags);
218
219 list_for_each_entry(entry, &iommu_pd_list, list) {
220 if (entry->target_dev == devid ||
221 entry->target_dev == alias) {
222 ret = entry;
223 break;
224 }
225 }
226
227 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
228
229 return ret;
230}
231
232/*
233 * This function checks if the driver got a valid device from the caller to
234 * avoid dereferencing invalid pointers.
235 */
236static bool check_device(struct device *dev)
237{
238 u16 devid;
239
240 if (!dev || !dev->dma_mask)
241 return false;
242
243 /* No device or no PCI device */
244 if (dev->bus != &pci_bus_type)
245 return false;
246
247 devid = get_device_id(dev);
248
249 /* Out of our scope? */
250 if (devid > amd_iommu_last_bdf)
251 return false;
252
253 if (amd_iommu_rlookup_table[devid] == NULL)
254 return false;
255
256 return true;
257}
258
259static int iommu_init_device(struct device *dev)
260{
261 struct pci_dev *pdev = to_pci_dev(dev);
262 struct iommu_dev_data *dev_data;
263 u16 alias;
264
265 if (dev->archdata.iommu)
266 return 0;
267
268 dev_data = find_dev_data(get_device_id(dev));
269 if (!dev_data)
270 return -ENOMEM;
271
272 alias = amd_iommu_alias_table[dev_data->devid];
273 if (alias != dev_data->devid) {
274 struct iommu_dev_data *alias_data;
275
276 alias_data = find_dev_data(alias);
277 if (alias_data == NULL) {
278 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
279 dev_name(dev));
280 free_dev_data(dev_data);
281 return -ENOTSUPP;
282 }
283 dev_data->alias_data = alias_data;
284 }
285
286 if (pci_iommuv2_capable(pdev)) {
287 struct amd_iommu *iommu;
288
289 iommu = amd_iommu_rlookup_table[dev_data->devid];
290 dev_data->iommu_v2 = iommu->is_iommu_v2;
291 }
292
293 dev->archdata.iommu = dev_data;
294
295 return 0;
296}
297
298static void iommu_ignore_device(struct device *dev)
299{
300 u16 devid, alias;
301
302 devid = get_device_id(dev);
303 alias = amd_iommu_alias_table[devid];
304
305 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
306 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
307
308 amd_iommu_rlookup_table[devid] = NULL;
309 amd_iommu_rlookup_table[alias] = NULL;
310}
311
312static void iommu_uninit_device(struct device *dev)
313{
314 /*
315 * Nothing to do here - we keep dev_data around for unplugged devices
316 * and reuse it when the device is re-plugged - not doing so would
317 * introduce a ton of races.
318 */
319}
320
321void __init amd_iommu_uninit_devices(void)
322{
323 struct iommu_dev_data *dev_data, *n;
324 struct pci_dev *pdev = NULL;
325
326 for_each_pci_dev(pdev) {
327
328 if (!check_device(&pdev->dev))
329 continue;
330
331 iommu_uninit_device(&pdev->dev);
332 }
333
334 /* Free all of our dev_data structures */
335 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
336 free_dev_data(dev_data);
337}
338
339int __init amd_iommu_init_devices(void)
340{
341 struct pci_dev *pdev = NULL;
342 int ret = 0;
343
344 for_each_pci_dev(pdev) {
345
346 if (!check_device(&pdev->dev))
347 continue;
348
349 ret = iommu_init_device(&pdev->dev);
350 if (ret == -ENOTSUPP)
351 iommu_ignore_device(&pdev->dev);
352 else if (ret)
353 goto out_free;
354 }
355
356 return 0;
357
358out_free:
359
360 amd_iommu_uninit_devices();
361
362 return ret;
363}
364#ifdef CONFIG_AMD_IOMMU_STATS
365
366/*
367 * Initialization code for statistics collection
368 */
369
370DECLARE_STATS_COUNTER(compl_wait);
371DECLARE_STATS_COUNTER(cnt_map_single);
372DECLARE_STATS_COUNTER(cnt_unmap_single);
373DECLARE_STATS_COUNTER(cnt_map_sg);
374DECLARE_STATS_COUNTER(cnt_unmap_sg);
375DECLARE_STATS_COUNTER(cnt_alloc_coherent);
376DECLARE_STATS_COUNTER(cnt_free_coherent);
377DECLARE_STATS_COUNTER(cross_page);
378DECLARE_STATS_COUNTER(domain_flush_single);
379DECLARE_STATS_COUNTER(domain_flush_all);
380DECLARE_STATS_COUNTER(alloced_io_mem);
381DECLARE_STATS_COUNTER(total_map_requests);
382DECLARE_STATS_COUNTER(complete_ppr);
383DECLARE_STATS_COUNTER(invalidate_iotlb);
384DECLARE_STATS_COUNTER(invalidate_iotlb_all);
385DECLARE_STATS_COUNTER(pri_requests);
386
387
388static struct dentry *stats_dir;
389static struct dentry *de_fflush;
390
391static void amd_iommu_stats_add(struct __iommu_counter *cnt)
392{
393 if (stats_dir == NULL)
394 return;
395
396 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
397 &cnt->value);
398}
399
400static void amd_iommu_stats_init(void)
401{
402 stats_dir = debugfs_create_dir("amd-iommu", NULL);
403 if (stats_dir == NULL)
404 return;
405
406 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
407 &amd_iommu_unmap_flush);
408
409 amd_iommu_stats_add(&compl_wait);
410 amd_iommu_stats_add(&cnt_map_single);
411 amd_iommu_stats_add(&cnt_unmap_single);
412 amd_iommu_stats_add(&cnt_map_sg);
413 amd_iommu_stats_add(&cnt_unmap_sg);
414 amd_iommu_stats_add(&cnt_alloc_coherent);
415 amd_iommu_stats_add(&cnt_free_coherent);
416 amd_iommu_stats_add(&cross_page);
417 amd_iommu_stats_add(&domain_flush_single);
418 amd_iommu_stats_add(&domain_flush_all);
419 amd_iommu_stats_add(&alloced_io_mem);
420 amd_iommu_stats_add(&total_map_requests);
421 amd_iommu_stats_add(&complete_ppr);
422 amd_iommu_stats_add(&invalidate_iotlb);
423 amd_iommu_stats_add(&invalidate_iotlb_all);
424 amd_iommu_stats_add(&pri_requests);
425}
426
427#endif
428
429/****************************************************************************
430 *
431 * Interrupt handling functions
432 *
433 ****************************************************************************/
434
435static void dump_dte_entry(u16 devid)
436{
437 int i;
438
439 for (i = 0; i < 4; ++i)
440 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
441 amd_iommu_dev_table[devid].data[i]);
442}
443
444static void dump_command(unsigned long phys_addr)
445{
446 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
447 int i;
448
449 for (i = 0; i < 4; ++i)
450 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
451}
452
453static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
454{
455 int type, devid, domid, flags;
456 volatile u32 *event = __evt;
457 int count = 0;
458 u64 address;
459
460retry:
461 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
462 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
463 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
464 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
465 address = (u64)(((u64)event[3]) << 32) | event[2];
466
467 if (type == 0) {
468 /* Did we hit the erratum? */
469 if (++count == LOOP_TIMEOUT) {
470 pr_err("AMD-Vi: No event written to event log\n");
471 return;
472 }
473 udelay(1);
474 goto retry;
475 }
476
477 printk(KERN_ERR "AMD-Vi: Event logged [");
478
479 switch (type) {
480 case EVENT_TYPE_ILL_DEV:
481 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
482 "address=0x%016llx flags=0x%04x]\n",
483 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
484 address, flags);
485 dump_dte_entry(devid);
486 break;
487 case EVENT_TYPE_IO_FAULT:
488 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
489 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
490 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
491 domid, address, flags);
492 break;
493 case EVENT_TYPE_DEV_TAB_ERR:
494 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
495 "address=0x%016llx flags=0x%04x]\n",
496 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
497 address, flags);
498 break;
499 case EVENT_TYPE_PAGE_TAB_ERR:
500 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
501 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
502 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
503 domid, address, flags);
504 break;
505 case EVENT_TYPE_ILL_CMD:
506 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
507 dump_command(address);
508 break;
509 case EVENT_TYPE_CMD_HARD_ERR:
510 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
511 "flags=0x%04x]\n", address, flags);
512 break;
513 case EVENT_TYPE_IOTLB_INV_TO:
514 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
515 "address=0x%016llx]\n",
516 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
517 address);
518 break;
519 case EVENT_TYPE_INV_DEV_REQ:
520 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
521 "address=0x%016llx flags=0x%04x]\n",
522 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
523 address, flags);
524 break;
525 default:
526 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
527 }
528
529 memset(__evt, 0, 4 * sizeof(u32));
530}
531
532static void iommu_poll_events(struct amd_iommu *iommu)
533{
534 u32 head, tail;
535 unsigned long flags;
536
537 spin_lock_irqsave(&iommu->lock, flags);
538
539 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
540 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
541
542 while (head != tail) {
543 iommu_print_event(iommu, iommu->evt_buf + head);
544 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
545 }
546
547 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
548
549 spin_unlock_irqrestore(&iommu->lock, flags);
550}
551
552static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
553{
554 struct amd_iommu_fault fault;
555
556 INC_STATS_COUNTER(pri_requests);
557
558 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
559 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
560 return;
561 }
562
563 fault.address = raw[1];
564 fault.pasid = PPR_PASID(raw[0]);
565 fault.device_id = PPR_DEVID(raw[0]);
566 fault.tag = PPR_TAG(raw[0]);
567 fault.flags = PPR_FLAGS(raw[0]);
568
569 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
570}
571
572static void iommu_poll_ppr_log(struct amd_iommu *iommu)
573{
574 unsigned long flags;
575 u32 head, tail;
576
577 if (iommu->ppr_log == NULL)
578 return;
579
580 /* enable ppr interrupts again */
581 writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
582
583 spin_lock_irqsave(&iommu->lock, flags);
584
585 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
586 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
587
588 while (head != tail) {
589 volatile u64 *raw;
590 u64 entry[2];
591 int i;
592
593 raw = (u64 *)(iommu->ppr_log + head);
594
595 /*
596 * Hardware bug: Interrupt may arrive before the entry is
597 * written to memory. If this happens we need to wait for the
598 * entry to arrive.
599 */
600 for (i = 0; i < LOOP_TIMEOUT; ++i) {
601 if (PPR_REQ_TYPE(raw[0]) != 0)
602 break;
603 udelay(1);
604 }
605
606 /* Avoid memcpy function-call overhead */
607 entry[0] = raw[0];
608 entry[1] = raw[1];
609
610 /*
611 * To detect the hardware bug we need to clear the entry
612 * back to zero.
613 */
614 raw[0] = raw[1] = 0UL;
615
616 /* Update head pointer of hardware ring-buffer */
617 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
618 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
619
620 /*
621 * Release iommu->lock because ppr-handling might need to
622 * re-aquire it
623 */
624 spin_unlock_irqrestore(&iommu->lock, flags);
625
626 /* Handle PPR entry */
627 iommu_handle_ppr_entry(iommu, entry);
628
629 spin_lock_irqsave(&iommu->lock, flags);
630
631 /* Refresh ring-buffer information */
632 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
633 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
634 }
635
636 spin_unlock_irqrestore(&iommu->lock, flags);
637}
638
639irqreturn_t amd_iommu_int_thread(int irq, void *data)
640{
641 struct amd_iommu *iommu;
642
643 for_each_iommu(iommu) {
644 iommu_poll_events(iommu);
645 iommu_poll_ppr_log(iommu);
646 }
647
648 return IRQ_HANDLED;
649}
650
651irqreturn_t amd_iommu_int_handler(int irq, void *data)
652{
653 return IRQ_WAKE_THREAD;
654}
655
656/****************************************************************************
657 *
658 * IOMMU command queuing functions
659 *
660 ****************************************************************************/
661
662static int wait_on_sem(volatile u64 *sem)
663{
664 int i = 0;
665
666 while (*sem == 0 && i < LOOP_TIMEOUT) {
667 udelay(1);
668 i += 1;
669 }
670
671 if (i == LOOP_TIMEOUT) {
672 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
673 return -EIO;
674 }
675
676 return 0;
677}
678
679static void copy_cmd_to_buffer(struct amd_iommu *iommu,
680 struct iommu_cmd *cmd,
681 u32 tail)
682{
683 u8 *target;
684
685 target = iommu->cmd_buf + tail;
686 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
687
688 /* Copy command to buffer */
689 memcpy(target, cmd, sizeof(*cmd));
690
691 /* Tell the IOMMU about it */
692 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
693}
694
695static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
696{
697 WARN_ON(address & 0x7ULL);
698
699 memset(cmd, 0, sizeof(*cmd));
700 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
701 cmd->data[1] = upper_32_bits(__pa(address));
702 cmd->data[2] = 1;
703 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
704}
705
706static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
707{
708 memset(cmd, 0, sizeof(*cmd));
709 cmd->data[0] = devid;
710 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
711}
712
713static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
714 size_t size, u16 domid, int pde)
715{
716 u64 pages;
717 int s;
718
719 pages = iommu_num_pages(address, size, PAGE_SIZE);
720 s = 0;
721
722 if (pages > 1) {
723 /*
724 * If we have to flush more than one page, flush all
725 * TLB entries for this domain
726 */
727 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
728 s = 1;
729 }
730
731 address &= PAGE_MASK;
732
733 memset(cmd, 0, sizeof(*cmd));
734 cmd->data[1] |= domid;
735 cmd->data[2] = lower_32_bits(address);
736 cmd->data[3] = upper_32_bits(address);
737 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
738 if (s) /* size bit - we flush more than one 4kb page */
739 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
740 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
741 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
742}
743
744static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
745 u64 address, size_t size)
746{
747 u64 pages;
748 int s;
749
750 pages = iommu_num_pages(address, size, PAGE_SIZE);
751 s = 0;
752
753 if (pages > 1) {
754 /*
755 * If we have to flush more than one page, flush all
756 * TLB entries for this domain
757 */
758 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
759 s = 1;
760 }
761
762 address &= PAGE_MASK;
763
764 memset(cmd, 0, sizeof(*cmd));
765 cmd->data[0] = devid;
766 cmd->data[0] |= (qdep & 0xff) << 24;
767 cmd->data[1] = devid;
768 cmd->data[2] = lower_32_bits(address);
769 cmd->data[3] = upper_32_bits(address);
770 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
771 if (s)
772 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
773}
774
775static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
776 u64 address, bool size)
777{
778 memset(cmd, 0, sizeof(*cmd));
779
780 address &= ~(0xfffULL);
781
782 cmd->data[0] = pasid & PASID_MASK;
783 cmd->data[1] = domid;
784 cmd->data[2] = lower_32_bits(address);
785 cmd->data[3] = upper_32_bits(address);
786 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
787 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
788 if (size)
789 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
790 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
791}
792
793static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
794 int qdep, u64 address, bool size)
795{
796 memset(cmd, 0, sizeof(*cmd));
797
798 address &= ~(0xfffULL);
799
800 cmd->data[0] = devid;
801 cmd->data[0] |= (pasid & 0xff) << 16;
802 cmd->data[0] |= (qdep & 0xff) << 24;
803 cmd->data[1] = devid;
804 cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
805 cmd->data[2] = lower_32_bits(address);
806 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
807 cmd->data[3] = upper_32_bits(address);
808 if (size)
809 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
810 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
811}
812
813static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
814 int status, int tag, bool gn)
815{
816 memset(cmd, 0, sizeof(*cmd));
817
818 cmd->data[0] = devid;
819 if (gn) {
820 cmd->data[1] = pasid & PASID_MASK;
821 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
822 }
823 cmd->data[3] = tag & 0x1ff;
824 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
825
826 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
827}
828
829static void build_inv_all(struct iommu_cmd *cmd)
830{
831 memset(cmd, 0, sizeof(*cmd));
832 CMD_SET_TYPE(cmd, CMD_INV_ALL);
833}
834
835/*
836 * Writes the command to the IOMMUs command buffer and informs the
837 * hardware about the new command.
838 */
839static int iommu_queue_command_sync(struct amd_iommu *iommu,
840 struct iommu_cmd *cmd,
841 bool sync)
842{
843 u32 left, tail, head, next_tail;
844 unsigned long flags;
845
846 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
847
848again:
849 spin_lock_irqsave(&iommu->lock, flags);
850
851 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
852 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
853 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
854 left = (head - next_tail) % iommu->cmd_buf_size;
855
856 if (left <= 2) {
857 struct iommu_cmd sync_cmd;
858 volatile u64 sem = 0;
859 int ret;
860
861 build_completion_wait(&sync_cmd, (u64)&sem);
862 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
863
864 spin_unlock_irqrestore(&iommu->lock, flags);
865
866 if ((ret = wait_on_sem(&sem)) != 0)
867 return ret;
868
869 goto again;
870 }
871
872 copy_cmd_to_buffer(iommu, cmd, tail);
873
874 /* We need to sync now to make sure all commands are processed */
875 iommu->need_sync = sync;
876
877 spin_unlock_irqrestore(&iommu->lock, flags);
878
879 return 0;
880}
881
882static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
883{
884 return iommu_queue_command_sync(iommu, cmd, true);
885}
886
887/*
888 * This function queues a completion wait command into the command
889 * buffer of an IOMMU
890 */
891static int iommu_completion_wait(struct amd_iommu *iommu)
892{
893 struct iommu_cmd cmd;
894 volatile u64 sem = 0;
895 int ret;
896
897 if (!iommu->need_sync)
898 return 0;
899
900 build_completion_wait(&cmd, (u64)&sem);
901
902 ret = iommu_queue_command_sync(iommu, &cmd, false);
903 if (ret)
904 return ret;
905
906 return wait_on_sem(&sem);
907}
908
909static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
910{
911 struct iommu_cmd cmd;
912
913 build_inv_dte(&cmd, devid);
914
915 return iommu_queue_command(iommu, &cmd);
916}
917
918static void iommu_flush_dte_all(struct amd_iommu *iommu)
919{
920 u32 devid;
921
922 for (devid = 0; devid <= 0xffff; ++devid)
923 iommu_flush_dte(iommu, devid);
924
925 iommu_completion_wait(iommu);
926}
927
928/*
929 * This function uses heavy locking and may disable irqs for some time. But
930 * this is no issue because it is only called during resume.
931 */
932static void iommu_flush_tlb_all(struct amd_iommu *iommu)
933{
934 u32 dom_id;
935
936 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
937 struct iommu_cmd cmd;
938 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
939 dom_id, 1);
940 iommu_queue_command(iommu, &cmd);
941 }
942
943 iommu_completion_wait(iommu);
944}
945
946static void iommu_flush_all(struct amd_iommu *iommu)
947{
948 struct iommu_cmd cmd;
949
950 build_inv_all(&cmd);
951
952 iommu_queue_command(iommu, &cmd);
953 iommu_completion_wait(iommu);
954}
955
956void iommu_flush_all_caches(struct amd_iommu *iommu)
957{
958 if (iommu_feature(iommu, FEATURE_IA)) {
959 iommu_flush_all(iommu);
960 } else {
961 iommu_flush_dte_all(iommu);
962 iommu_flush_tlb_all(iommu);
963 }
964}
965
966/*
967 * Command send function for flushing on-device TLB
968 */
969static int device_flush_iotlb(struct iommu_dev_data *dev_data,
970 u64 address, size_t size)
971{
972 struct amd_iommu *iommu;
973 struct iommu_cmd cmd;
974 int qdep;
975
976 qdep = dev_data->ats.qdep;
977 iommu = amd_iommu_rlookup_table[dev_data->devid];
978
979 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
980
981 return iommu_queue_command(iommu, &cmd);
982}
983
984/*
985 * Command send function for invalidating a device table entry
986 */
987static int device_flush_dte(struct iommu_dev_data *dev_data)
988{
989 struct amd_iommu *iommu;
990 int ret;
991
992 iommu = amd_iommu_rlookup_table[dev_data->devid];
993
994 ret = iommu_flush_dte(iommu, dev_data->devid);
995 if (ret)
996 return ret;
997
998 if (dev_data->ats.enabled)
999 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1000
1001 return ret;
1002}
1003
1004/*
1005 * TLB invalidation function which is called from the mapping functions.
1006 * It invalidates a single PTE if the range to flush is within a single
1007 * page. Otherwise it flushes the whole TLB of the IOMMU.
1008 */
1009static void __domain_flush_pages(struct protection_domain *domain,
1010 u64 address, size_t size, int pde)
1011{
1012 struct iommu_dev_data *dev_data;
1013 struct iommu_cmd cmd;
1014 int ret = 0, i;
1015
1016 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1017
1018 for (i = 0; i < amd_iommus_present; ++i) {
1019 if (!domain->dev_iommu[i])
1020 continue;
1021
1022 /*
1023 * Devices of this domain are behind this IOMMU
1024 * We need a TLB flush
1025 */
1026 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1027 }
1028
1029 list_for_each_entry(dev_data, &domain->dev_list, list) {
1030
1031 if (!dev_data->ats.enabled)
1032 continue;
1033
1034 ret |= device_flush_iotlb(dev_data, address, size);
1035 }
1036
1037 WARN_ON(ret);
1038}
1039
1040static void domain_flush_pages(struct protection_domain *domain,
1041 u64 address, size_t size)
1042{
1043 __domain_flush_pages(domain, address, size, 0);
1044}
1045
1046/* Flush the whole IO/TLB for a given protection domain */
1047static void domain_flush_tlb(struct protection_domain *domain)
1048{
1049 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1050}
1051
1052/* Flush the whole IO/TLB for a given protection domain - including PDE */
1053static void domain_flush_tlb_pde(struct protection_domain *domain)
1054{
1055 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1056}
1057
1058static void domain_flush_complete(struct protection_domain *domain)
1059{
1060 int i;
1061
1062 for (i = 0; i < amd_iommus_present; ++i) {
1063 if (!domain->dev_iommu[i])
1064 continue;
1065
1066 /*
1067 * Devices of this domain are behind this IOMMU
1068 * We need to wait for completion of all commands.
1069 */
1070 iommu_completion_wait(amd_iommus[i]);
1071 }
1072}
1073
1074
1075/*
1076 * This function flushes the DTEs for all devices in domain
1077 */
1078static void domain_flush_devices(struct protection_domain *domain)
1079{
1080 struct iommu_dev_data *dev_data;
1081
1082 list_for_each_entry(dev_data, &domain->dev_list, list)
1083 device_flush_dte(dev_data);
1084}
1085
1086/****************************************************************************
1087 *
1088 * The functions below are used the create the page table mappings for
1089 * unity mapped regions.
1090 *
1091 ****************************************************************************/
1092
1093/*
1094 * This function is used to add another level to an IO page table. Adding
1095 * another level increases the size of the address space by 9 bits to a size up
1096 * to 64 bits.
1097 */
1098static bool increase_address_space(struct protection_domain *domain,
1099 gfp_t gfp)
1100{
1101 u64 *pte;
1102
1103 if (domain->mode == PAGE_MODE_6_LEVEL)
1104 /* address space already 64 bit large */
1105 return false;
1106
1107 pte = (void *)get_zeroed_page(gfp);
1108 if (!pte)
1109 return false;
1110
1111 *pte = PM_LEVEL_PDE(domain->mode,
1112 virt_to_phys(domain->pt_root));
1113 domain->pt_root = pte;
1114 domain->mode += 1;
1115 domain->updated = true;
1116
1117 return true;
1118}
1119
1120static u64 *alloc_pte(struct protection_domain *domain,
1121 unsigned long address,
1122 unsigned long page_size,
1123 u64 **pte_page,
1124 gfp_t gfp)
1125{
1126 int level, end_lvl;
1127 u64 *pte, *page;
1128
1129 BUG_ON(!is_power_of_2(page_size));
1130
1131 while (address > PM_LEVEL_SIZE(domain->mode))
1132 increase_address_space(domain, gfp);
1133
1134 level = domain->mode - 1;
1135 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1136 address = PAGE_SIZE_ALIGN(address, page_size);
1137 end_lvl = PAGE_SIZE_LEVEL(page_size);
1138
1139 while (level > end_lvl) {
1140 if (!IOMMU_PTE_PRESENT(*pte)) {
1141 page = (u64 *)get_zeroed_page(gfp);
1142 if (!page)
1143 return NULL;
1144 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1145 }
1146
1147 /* No level skipping support yet */
1148 if (PM_PTE_LEVEL(*pte) != level)
1149 return NULL;
1150
1151 level -= 1;
1152
1153 pte = IOMMU_PTE_PAGE(*pte);
1154
1155 if (pte_page && level == end_lvl)
1156 *pte_page = pte;
1157
1158 pte = &pte[PM_LEVEL_INDEX(level, address)];
1159 }
1160
1161 return pte;
1162}
1163
1164/*
1165 * This function checks if there is a PTE for a given dma address. If
1166 * there is one, it returns the pointer to it.
1167 */
1168static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1169{
1170 int level;
1171 u64 *pte;
1172
1173 if (address > PM_LEVEL_SIZE(domain->mode))
1174 return NULL;
1175
1176 level = domain->mode - 1;
1177 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1178
1179 while (level > 0) {
1180
1181 /* Not Present */
1182 if (!IOMMU_PTE_PRESENT(*pte))
1183 return NULL;
1184
1185 /* Large PTE */
1186 if (PM_PTE_LEVEL(*pte) == 0x07) {
1187 unsigned long pte_mask, __pte;
1188
1189 /*
1190 * If we have a series of large PTEs, make
1191 * sure to return a pointer to the first one.
1192 */
1193 pte_mask = PTE_PAGE_SIZE(*pte);
1194 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1195 __pte = ((unsigned long)pte) & pte_mask;
1196
1197 return (u64 *)__pte;
1198 }
1199
1200 /* No level skipping support yet */
1201 if (PM_PTE_LEVEL(*pte) != level)
1202 return NULL;
1203
1204 level -= 1;
1205
1206 /* Walk to the next level */
1207 pte = IOMMU_PTE_PAGE(*pte);
1208 pte = &pte[PM_LEVEL_INDEX(level, address)];
1209 }
1210
1211 return pte;
1212}
1213
1214/*
1215 * Generic mapping functions. It maps a physical address into a DMA
1216 * address space. It allocates the page table pages if necessary.
1217 * In the future it can be extended to a generic mapping function
1218 * supporting all features of AMD IOMMU page tables like level skipping
1219 * and full 64 bit address spaces.
1220 */
1221static int iommu_map_page(struct protection_domain *dom,
1222 unsigned long bus_addr,
1223 unsigned long phys_addr,
1224 int prot,
1225 unsigned long page_size)
1226{
1227 u64 __pte, *pte;
1228 int i, count;
1229
1230 if (!(prot & IOMMU_PROT_MASK))
1231 return -EINVAL;
1232
1233 bus_addr = PAGE_ALIGN(bus_addr);
1234 phys_addr = PAGE_ALIGN(phys_addr);
1235 count = PAGE_SIZE_PTE_COUNT(page_size);
1236 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1237
1238 for (i = 0; i < count; ++i)
1239 if (IOMMU_PTE_PRESENT(pte[i]))
1240 return -EBUSY;
1241
1242 if (page_size > PAGE_SIZE) {
1243 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1244 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1245 } else
1246 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1247
1248 if (prot & IOMMU_PROT_IR)
1249 __pte |= IOMMU_PTE_IR;
1250 if (prot & IOMMU_PROT_IW)
1251 __pte |= IOMMU_PTE_IW;
1252
1253 for (i = 0; i < count; ++i)
1254 pte[i] = __pte;
1255
1256 update_domain(dom);
1257
1258 return 0;
1259}
1260
1261static unsigned long iommu_unmap_page(struct protection_domain *dom,
1262 unsigned long bus_addr,
1263 unsigned long page_size)
1264{
1265 unsigned long long unmap_size, unmapped;
1266 u64 *pte;
1267
1268 BUG_ON(!is_power_of_2(page_size));
1269
1270 unmapped = 0;
1271
1272 while (unmapped < page_size) {
1273
1274 pte = fetch_pte(dom, bus_addr);
1275
1276 if (!pte) {
1277 /*
1278 * No PTE for this address
1279 * move forward in 4kb steps
1280 */
1281 unmap_size = PAGE_SIZE;
1282 } else if (PM_PTE_LEVEL(*pte) == 0) {
1283 /* 4kb PTE found for this address */
1284 unmap_size = PAGE_SIZE;
1285 *pte = 0ULL;
1286 } else {
1287 int count, i;
1288
1289 /* Large PTE found which maps this address */
1290 unmap_size = PTE_PAGE_SIZE(*pte);
1291 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1292 for (i = 0; i < count; i++)
1293 pte[i] = 0ULL;
1294 }
1295
1296 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1297 unmapped += unmap_size;
1298 }
1299
1300 BUG_ON(!is_power_of_2(unmapped));
1301
1302 return unmapped;
1303}
1304
1305/*
1306 * This function checks if a specific unity mapping entry is needed for
1307 * this specific IOMMU.
1308 */
1309static int iommu_for_unity_map(struct amd_iommu *iommu,
1310 struct unity_map_entry *entry)
1311{
1312 u16 bdf, i;
1313
1314 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1315 bdf = amd_iommu_alias_table[i];
1316 if (amd_iommu_rlookup_table[bdf] == iommu)
1317 return 1;
1318 }
1319
1320 return 0;
1321}
1322
1323/*
1324 * This function actually applies the mapping to the page table of the
1325 * dma_ops domain.
1326 */
1327static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1328 struct unity_map_entry *e)
1329{
1330 u64 addr;
1331 int ret;
1332
1333 for (addr = e->address_start; addr < e->address_end;
1334 addr += PAGE_SIZE) {
1335 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1336 PAGE_SIZE);
1337 if (ret)
1338 return ret;
1339 /*
1340 * if unity mapping is in aperture range mark the page
1341 * as allocated in the aperture
1342 */
1343 if (addr < dma_dom->aperture_size)
1344 __set_bit(addr >> PAGE_SHIFT,
1345 dma_dom->aperture[0]->bitmap);
1346 }
1347
1348 return 0;
1349}
1350
1351/*
1352 * Init the unity mappings for a specific IOMMU in the system
1353 *
1354 * Basically iterates over all unity mapping entries and applies them to
1355 * the default domain DMA of that IOMMU if necessary.
1356 */
1357static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1358{
1359 struct unity_map_entry *entry;
1360 int ret;
1361
1362 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1363 if (!iommu_for_unity_map(iommu, entry))
1364 continue;
1365 ret = dma_ops_unity_map(iommu->default_dom, entry);
1366 if (ret)
1367 return ret;
1368 }
1369
1370 return 0;
1371}
1372
1373/*
1374 * Inits the unity mappings required for a specific device
1375 */
1376static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1377 u16 devid)
1378{
1379 struct unity_map_entry *e;
1380 int ret;
1381
1382 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1383 if (!(devid >= e->devid_start && devid <= e->devid_end))
1384 continue;
1385 ret = dma_ops_unity_map(dma_dom, e);
1386 if (ret)
1387 return ret;
1388 }
1389
1390 return 0;
1391}
1392
1393/****************************************************************************
1394 *
1395 * The next functions belong to the address allocator for the dma_ops
1396 * interface functions. They work like the allocators in the other IOMMU
1397 * drivers. Its basically a bitmap which marks the allocated pages in
1398 * the aperture. Maybe it could be enhanced in the future to a more
1399 * efficient allocator.
1400 *
1401 ****************************************************************************/
1402
1403/*
1404 * The address allocator core functions.
1405 *
1406 * called with domain->lock held
1407 */
1408
1409/*
1410 * Used to reserve address ranges in the aperture (e.g. for exclusion
1411 * ranges.
1412 */
1413static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1414 unsigned long start_page,
1415 unsigned int pages)
1416{
1417 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1418
1419 if (start_page + pages > last_page)
1420 pages = last_page - start_page;
1421
1422 for (i = start_page; i < start_page + pages; ++i) {
1423 int index = i / APERTURE_RANGE_PAGES;
1424 int page = i % APERTURE_RANGE_PAGES;
1425 __set_bit(page, dom->aperture[index]->bitmap);
1426 }
1427}
1428
1429/*
1430 * This function is used to add a new aperture range to an existing
1431 * aperture in case of dma_ops domain allocation or address allocation
1432 * failure.
1433 */
1434static int alloc_new_range(struct dma_ops_domain *dma_dom,
1435 bool populate, gfp_t gfp)
1436{
1437 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1438 struct amd_iommu *iommu;
1439 unsigned long i, old_size;
1440
1441#ifdef CONFIG_IOMMU_STRESS
1442 populate = false;
1443#endif
1444
1445 if (index >= APERTURE_MAX_RANGES)
1446 return -ENOMEM;
1447
1448 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1449 if (!dma_dom->aperture[index])
1450 return -ENOMEM;
1451
1452 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1453 if (!dma_dom->aperture[index]->bitmap)
1454 goto out_free;
1455
1456 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1457
1458 if (populate) {
1459 unsigned long address = dma_dom->aperture_size;
1460 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1461 u64 *pte, *pte_page;
1462
1463 for (i = 0; i < num_ptes; ++i) {
1464 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1465 &pte_page, gfp);
1466 if (!pte)
1467 goto out_free;
1468
1469 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1470
1471 address += APERTURE_RANGE_SIZE / 64;
1472 }
1473 }
1474
1475 old_size = dma_dom->aperture_size;
1476 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1477
1478 /* Reserve address range used for MSI messages */
1479 if (old_size < MSI_ADDR_BASE_LO &&
1480 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1481 unsigned long spage;
1482 int pages;
1483
1484 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1485 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1486
1487 dma_ops_reserve_addresses(dma_dom, spage, pages);
1488 }
1489
1490 /* Initialize the exclusion range if necessary */
1491 for_each_iommu(iommu) {
1492 if (iommu->exclusion_start &&
1493 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1494 && iommu->exclusion_start < dma_dom->aperture_size) {
1495 unsigned long startpage;
1496 int pages = iommu_num_pages(iommu->exclusion_start,
1497 iommu->exclusion_length,
1498 PAGE_SIZE);
1499 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1500 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1501 }
1502 }
1503
1504 /*
1505 * Check for areas already mapped as present in the new aperture
1506 * range and mark those pages as reserved in the allocator. Such
1507 * mappings may already exist as a result of requested unity
1508 * mappings for devices.
1509 */
1510 for (i = dma_dom->aperture[index]->offset;
1511 i < dma_dom->aperture_size;
1512 i += PAGE_SIZE) {
1513 u64 *pte = fetch_pte(&dma_dom->domain, i);
1514 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1515 continue;
1516
1517 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1518 }
1519
1520 update_domain(&dma_dom->domain);
1521
1522 return 0;
1523
1524out_free:
1525 update_domain(&dma_dom->domain);
1526
1527 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1528
1529 kfree(dma_dom->aperture[index]);
1530 dma_dom->aperture[index] = NULL;
1531
1532 return -ENOMEM;
1533}
1534
1535static unsigned long dma_ops_area_alloc(struct device *dev,
1536 struct dma_ops_domain *dom,
1537 unsigned int pages,
1538 unsigned long align_mask,
1539 u64 dma_mask,
1540 unsigned long start)
1541{
1542 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1543 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1544 int i = start >> APERTURE_RANGE_SHIFT;
1545 unsigned long boundary_size;
1546 unsigned long address = -1;
1547 unsigned long limit;
1548
1549 next_bit >>= PAGE_SHIFT;
1550
1551 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1552 PAGE_SIZE) >> PAGE_SHIFT;
1553
1554 for (;i < max_index; ++i) {
1555 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1556
1557 if (dom->aperture[i]->offset >= dma_mask)
1558 break;
1559
1560 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1561 dma_mask >> PAGE_SHIFT);
1562
1563 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1564 limit, next_bit, pages, 0,
1565 boundary_size, align_mask);
1566 if (address != -1) {
1567 address = dom->aperture[i]->offset +
1568 (address << PAGE_SHIFT);
1569 dom->next_address = address + (pages << PAGE_SHIFT);
1570 break;
1571 }
1572
1573 next_bit = 0;
1574 }
1575
1576 return address;
1577}
1578
1579static unsigned long dma_ops_alloc_addresses(struct device *dev,
1580 struct dma_ops_domain *dom,
1581 unsigned int pages,
1582 unsigned long align_mask,
1583 u64 dma_mask)
1584{
1585 unsigned long address;
1586
1587#ifdef CONFIG_IOMMU_STRESS
1588 dom->next_address = 0;
1589 dom->need_flush = true;
1590#endif
1591
1592 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1593 dma_mask, dom->next_address);
1594
1595 if (address == -1) {
1596 dom->next_address = 0;
1597 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1598 dma_mask, 0);
1599 dom->need_flush = true;
1600 }
1601
1602 if (unlikely(address == -1))
1603 address = DMA_ERROR_CODE;
1604
1605 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1606
1607 return address;
1608}
1609
1610/*
1611 * The address free function.
1612 *
1613 * called with domain->lock held
1614 */
1615static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1616 unsigned long address,
1617 unsigned int pages)
1618{
1619 unsigned i = address >> APERTURE_RANGE_SHIFT;
1620 struct aperture_range *range = dom->aperture[i];
1621
1622 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1623
1624#ifdef CONFIG_IOMMU_STRESS
1625 if (i < 4)
1626 return;
1627#endif
1628
1629 if (address >= dom->next_address)
1630 dom->need_flush = true;
1631
1632 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1633
1634 bitmap_clear(range->bitmap, address, pages);
1635
1636}
1637
1638/****************************************************************************
1639 *
1640 * The next functions belong to the domain allocation. A domain is
1641 * allocated for every IOMMU as the default domain. If device isolation
1642 * is enabled, every device get its own domain. The most important thing
1643 * about domains is the page table mapping the DMA address space they
1644 * contain.
1645 *
1646 ****************************************************************************/
1647
1648/*
1649 * This function adds a protection domain to the global protection domain list
1650 */
1651static void add_domain_to_list(struct protection_domain *domain)
1652{
1653 unsigned long flags;
1654
1655 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1656 list_add(&domain->list, &amd_iommu_pd_list);
1657 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1658}
1659
1660/*
1661 * This function removes a protection domain to the global
1662 * protection domain list
1663 */
1664static void del_domain_from_list(struct protection_domain *domain)
1665{
1666 unsigned long flags;
1667
1668 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1669 list_del(&domain->list);
1670 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1671}
1672
1673static u16 domain_id_alloc(void)
1674{
1675 unsigned long flags;
1676 int id;
1677
1678 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1679 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1680 BUG_ON(id == 0);
1681 if (id > 0 && id < MAX_DOMAIN_ID)
1682 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1683 else
1684 id = 0;
1685 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1686
1687 return id;
1688}
1689
1690static void domain_id_free(int id)
1691{
1692 unsigned long flags;
1693
1694 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1695 if (id > 0 && id < MAX_DOMAIN_ID)
1696 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1697 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1698}
1699
1700static void free_pagetable(struct protection_domain *domain)
1701{
1702 int i, j;
1703 u64 *p1, *p2, *p3;
1704
1705 p1 = domain->pt_root;
1706
1707 if (!p1)
1708 return;
1709
1710 for (i = 0; i < 512; ++i) {
1711 if (!IOMMU_PTE_PRESENT(p1[i]))
1712 continue;
1713
1714 p2 = IOMMU_PTE_PAGE(p1[i]);
1715 for (j = 0; j < 512; ++j) {
1716 if (!IOMMU_PTE_PRESENT(p2[j]))
1717 continue;
1718 p3 = IOMMU_PTE_PAGE(p2[j]);
1719 free_page((unsigned long)p3);
1720 }
1721
1722 free_page((unsigned long)p2);
1723 }
1724
1725 free_page((unsigned long)p1);
1726
1727 domain->pt_root = NULL;
1728}
1729
1730static void free_gcr3_tbl_level1(u64 *tbl)
1731{
1732 u64 *ptr;
1733 int i;
1734
1735 for (i = 0; i < 512; ++i) {
1736 if (!(tbl[i] & GCR3_VALID))
1737 continue;
1738
1739 ptr = __va(tbl[i] & PAGE_MASK);
1740
1741 free_page((unsigned long)ptr);
1742 }
1743}
1744
1745static void free_gcr3_tbl_level2(u64 *tbl)
1746{
1747 u64 *ptr;
1748 int i;
1749
1750 for (i = 0; i < 512; ++i) {
1751 if (!(tbl[i] & GCR3_VALID))
1752 continue;
1753
1754 ptr = __va(tbl[i] & PAGE_MASK);
1755
1756 free_gcr3_tbl_level1(ptr);
1757 }
1758}
1759
1760static void free_gcr3_table(struct protection_domain *domain)
1761{
1762 if (domain->glx == 2)
1763 free_gcr3_tbl_level2(domain->gcr3_tbl);
1764 else if (domain->glx == 1)
1765 free_gcr3_tbl_level1(domain->gcr3_tbl);
1766 else if (domain->glx != 0)
1767 BUG();
1768
1769 free_page((unsigned long)domain->gcr3_tbl);
1770}
1771
1772/*
1773 * Free a domain, only used if something went wrong in the
1774 * allocation path and we need to free an already allocated page table
1775 */
1776static void dma_ops_domain_free(struct dma_ops_domain *dom)
1777{
1778 int i;
1779
1780 if (!dom)
1781 return;
1782
1783 del_domain_from_list(&dom->domain);
1784
1785 free_pagetable(&dom->domain);
1786
1787 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1788 if (!dom->aperture[i])
1789 continue;
1790 free_page((unsigned long)dom->aperture[i]->bitmap);
1791 kfree(dom->aperture[i]);
1792 }
1793
1794 kfree(dom);
1795}
1796
1797/*
1798 * Allocates a new protection domain usable for the dma_ops functions.
1799 * It also initializes the page table and the address allocator data
1800 * structures required for the dma_ops interface
1801 */
1802static struct dma_ops_domain *dma_ops_domain_alloc(void)
1803{
1804 struct dma_ops_domain *dma_dom;
1805
1806 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1807 if (!dma_dom)
1808 return NULL;
1809
1810 spin_lock_init(&dma_dom->domain.lock);
1811
1812 dma_dom->domain.id = domain_id_alloc();
1813 if (dma_dom->domain.id == 0)
1814 goto free_dma_dom;
1815 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1816 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1817 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1818 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1819 dma_dom->domain.priv = dma_dom;
1820 if (!dma_dom->domain.pt_root)
1821 goto free_dma_dom;
1822
1823 dma_dom->need_flush = false;
1824 dma_dom->target_dev = 0xffff;
1825
1826 add_domain_to_list(&dma_dom->domain);
1827
1828 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1829 goto free_dma_dom;
1830
1831 /*
1832 * mark the first page as allocated so we never return 0 as
1833 * a valid dma-address. So we can use 0 as error value
1834 */
1835 dma_dom->aperture[0]->bitmap[0] = 1;
1836 dma_dom->next_address = 0;
1837
1838
1839 return dma_dom;
1840
1841free_dma_dom:
1842 dma_ops_domain_free(dma_dom);
1843
1844 return NULL;
1845}
1846
1847/*
1848 * little helper function to check whether a given protection domain is a
1849 * dma_ops domain
1850 */
1851static bool dma_ops_domain(struct protection_domain *domain)
1852{
1853 return domain->flags & PD_DMA_OPS_MASK;
1854}
1855
1856static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1857{
1858 u64 pte_root = 0;
1859 u64 flags = 0;
1860
1861 if (domain->mode != PAGE_MODE_NONE)
1862 pte_root = virt_to_phys(domain->pt_root);
1863
1864 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1865 << DEV_ENTRY_MODE_SHIFT;
1866 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1867
1868 flags = amd_iommu_dev_table[devid].data[1];
1869
1870 if (ats)
1871 flags |= DTE_FLAG_IOTLB;
1872
1873 if (domain->flags & PD_IOMMUV2_MASK) {
1874 u64 gcr3 = __pa(domain->gcr3_tbl);
1875 u64 glx = domain->glx;
1876 u64 tmp;
1877
1878 pte_root |= DTE_FLAG_GV;
1879 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1880
1881 /* First mask out possible old values for GCR3 table */
1882 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1883 flags &= ~tmp;
1884
1885 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1886 flags &= ~tmp;
1887
1888 /* Encode GCR3 table into DTE */
1889 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1890 pte_root |= tmp;
1891
1892 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1893 flags |= tmp;
1894
1895 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1896 flags |= tmp;
1897 }
1898
1899 flags &= ~(0xffffUL);
1900 flags |= domain->id;
1901
1902 amd_iommu_dev_table[devid].data[1] = flags;
1903 amd_iommu_dev_table[devid].data[0] = pte_root;
1904}
1905
1906static void clear_dte_entry(u16 devid)
1907{
1908 /* remove entry from the device table seen by the hardware */
1909 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1910 amd_iommu_dev_table[devid].data[1] = 0;
1911
1912 amd_iommu_apply_erratum_63(devid);
1913}
1914
1915static void do_attach(struct iommu_dev_data *dev_data,
1916 struct protection_domain *domain)
1917{
1918 struct amd_iommu *iommu;
1919 bool ats;
1920
1921 iommu = amd_iommu_rlookup_table[dev_data->devid];
1922 ats = dev_data->ats.enabled;
1923
1924 /* Update data structures */
1925 dev_data->domain = domain;
1926 list_add(&dev_data->list, &domain->dev_list);
1927 set_dte_entry(dev_data->devid, domain, ats);
1928
1929 /* Do reference counting */
1930 domain->dev_iommu[iommu->index] += 1;
1931 domain->dev_cnt += 1;
1932
1933 /* Flush the DTE entry */
1934 device_flush_dte(dev_data);
1935}
1936
1937static void do_detach(struct iommu_dev_data *dev_data)
1938{
1939 struct amd_iommu *iommu;
1940
1941 iommu = amd_iommu_rlookup_table[dev_data->devid];
1942
1943 /* decrease reference counters */
1944 dev_data->domain->dev_iommu[iommu->index] -= 1;
1945 dev_data->domain->dev_cnt -= 1;
1946
1947 /* Update data structures */
1948 dev_data->domain = NULL;
1949 list_del(&dev_data->list);
1950 clear_dte_entry(dev_data->devid);
1951
1952 /* Flush the DTE entry */
1953 device_flush_dte(dev_data);
1954}
1955
1956/*
1957 * If a device is not yet associated with a domain, this function does
1958 * assigns it visible for the hardware
1959 */
1960static int __attach_device(struct iommu_dev_data *dev_data,
1961 struct protection_domain *domain)
1962{
1963 int ret;
1964
1965 /* lock domain */
1966 spin_lock(&domain->lock);
1967
1968 if (dev_data->alias_data != NULL) {
1969 struct iommu_dev_data *alias_data = dev_data->alias_data;
1970
1971 /* Some sanity checks */
1972 ret = -EBUSY;
1973 if (alias_data->domain != NULL &&
1974 alias_data->domain != domain)
1975 goto out_unlock;
1976
1977 if (dev_data->domain != NULL &&
1978 dev_data->domain != domain)
1979 goto out_unlock;
1980
1981 /* Do real assignment */
1982 if (alias_data->domain == NULL)
1983 do_attach(alias_data, domain);
1984
1985 atomic_inc(&alias_data->bind);
1986 }
1987
1988 if (dev_data->domain == NULL)
1989 do_attach(dev_data, domain);
1990
1991 atomic_inc(&dev_data->bind);
1992
1993 ret = 0;
1994
1995out_unlock:
1996
1997 /* ready */
1998 spin_unlock(&domain->lock);
1999
2000 return ret;
2001}
2002
2003
2004static void pdev_iommuv2_disable(struct pci_dev *pdev)
2005{
2006 pci_disable_ats(pdev);
2007 pci_disable_pri(pdev);
2008 pci_disable_pasid(pdev);
2009}
2010
2011/* FIXME: Change generic reset-function to do the same */
2012static int pri_reset_while_enabled(struct pci_dev *pdev)
2013{
2014 u16 control;
2015 int pos;
2016
2017 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2018 if (!pos)
2019 return -EINVAL;
2020
2021 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2022 control |= PCI_PRI_CTRL_RESET;
2023 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2024
2025 return 0;
2026}
2027
2028static int pdev_iommuv2_enable(struct pci_dev *pdev)
2029{
2030 bool reset_enable;
2031 int reqs, ret;
2032
2033 /* FIXME: Hardcode number of outstanding requests for now */
2034 reqs = 32;
2035 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2036 reqs = 1;
2037 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2038
2039 /* Only allow access to user-accessible pages */
2040 ret = pci_enable_pasid(pdev, 0);
2041 if (ret)
2042 goto out_err;
2043
2044 /* First reset the PRI state of the device */
2045 ret = pci_reset_pri(pdev);
2046 if (ret)
2047 goto out_err;
2048
2049 /* Enable PRI */
2050 ret = pci_enable_pri(pdev, reqs);
2051 if (ret)
2052 goto out_err;
2053
2054 if (reset_enable) {
2055 ret = pri_reset_while_enabled(pdev);
2056 if (ret)
2057 goto out_err;
2058 }
2059
2060 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2061 if (ret)
2062 goto out_err;
2063
2064 return 0;
2065
2066out_err:
2067 pci_disable_pri(pdev);
2068 pci_disable_pasid(pdev);
2069
2070 return ret;
2071}
2072
2073/* FIXME: Move this to PCI code */
2074#define PCI_PRI_TLP_OFF (1 << 15)
2075
2076bool pci_pri_tlp_required(struct pci_dev *pdev)
2077{
2078 u16 status;
2079 int pos;
2080
2081 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2082 if (!pos)
2083 return false;
2084
2085 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2086
2087 return (status & PCI_PRI_TLP_OFF) ? true : false;
2088}
2089
2090/*
2091 * If a device is not yet associated with a domain, this function does
2092 * assigns it visible for the hardware
2093 */
2094static int attach_device(struct device *dev,
2095 struct protection_domain *domain)
2096{
2097 struct pci_dev *pdev = to_pci_dev(dev);
2098 struct iommu_dev_data *dev_data;
2099 unsigned long flags;
2100 int ret;
2101
2102 dev_data = get_dev_data(dev);
2103
2104 if (domain->flags & PD_IOMMUV2_MASK) {
2105 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2106 return -EINVAL;
2107
2108 if (pdev_iommuv2_enable(pdev) != 0)
2109 return -EINVAL;
2110
2111 dev_data->ats.enabled = true;
2112 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2113 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2114 } else if (amd_iommu_iotlb_sup &&
2115 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2116 dev_data->ats.enabled = true;
2117 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2118 }
2119
2120 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2121 ret = __attach_device(dev_data, domain);
2122 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2123
2124 /*
2125 * We might boot into a crash-kernel here. The crashed kernel
2126 * left the caches in the IOMMU dirty. So we have to flush
2127 * here to evict all dirty stuff.
2128 */
2129 domain_flush_tlb_pde(domain);
2130
2131 return ret;
2132}
2133
2134/*
2135 * Removes a device from a protection domain (unlocked)
2136 */
2137static void __detach_device(struct iommu_dev_data *dev_data)
2138{
2139 struct protection_domain *domain;
2140 unsigned long flags;
2141
2142 BUG_ON(!dev_data->domain);
2143
2144 domain = dev_data->domain;
2145
2146 spin_lock_irqsave(&domain->lock, flags);
2147
2148 if (dev_data->alias_data != NULL) {
2149 struct iommu_dev_data *alias_data = dev_data->alias_data;
2150
2151 if (atomic_dec_and_test(&alias_data->bind))
2152 do_detach(alias_data);
2153 }
2154
2155 if (atomic_dec_and_test(&dev_data->bind))
2156 do_detach(dev_data);
2157
2158 spin_unlock_irqrestore(&domain->lock, flags);
2159
2160 /*
2161 * If we run in passthrough mode the device must be assigned to the
2162 * passthrough domain if it is detached from any other domain.
2163 * Make sure we can deassign from the pt_domain itself.
2164 */
2165 if (dev_data->passthrough &&
2166 (dev_data->domain == NULL && domain != pt_domain))
2167 __attach_device(dev_data, pt_domain);
2168}
2169
2170/*
2171 * Removes a device from a protection domain (with devtable_lock held)
2172 */
2173static void detach_device(struct device *dev)
2174{
2175 struct protection_domain *domain;
2176 struct iommu_dev_data *dev_data;
2177 unsigned long flags;
2178
2179 dev_data = get_dev_data(dev);
2180 domain = dev_data->domain;
2181
2182 /* lock device table */
2183 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2184 __detach_device(dev_data);
2185 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2186
2187 if (domain->flags & PD_IOMMUV2_MASK)
2188 pdev_iommuv2_disable(to_pci_dev(dev));
2189 else if (dev_data->ats.enabled)
2190 pci_disable_ats(to_pci_dev(dev));
2191
2192 dev_data->ats.enabled = false;
2193}
2194
2195/*
2196 * Find out the protection domain structure for a given PCI device. This
2197 * will give us the pointer to the page table root for example.
2198 */
2199static struct protection_domain *domain_for_device(struct device *dev)
2200{
2201 struct iommu_dev_data *dev_data;
2202 struct protection_domain *dom = NULL;
2203 unsigned long flags;
2204
2205 dev_data = get_dev_data(dev);
2206
2207 if (dev_data->domain)
2208 return dev_data->domain;
2209
2210 if (dev_data->alias_data != NULL) {
2211 struct iommu_dev_data *alias_data = dev_data->alias_data;
2212
2213 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2214 if (alias_data->domain != NULL) {
2215 __attach_device(dev_data, alias_data->domain);
2216 dom = alias_data->domain;
2217 }
2218 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2219 }
2220
2221 return dom;
2222}
2223
2224static int device_change_notifier(struct notifier_block *nb,
2225 unsigned long action, void *data)
2226{
2227 struct dma_ops_domain *dma_domain;
2228 struct protection_domain *domain;
2229 struct iommu_dev_data *dev_data;
2230 struct device *dev = data;
2231 struct amd_iommu *iommu;
2232 unsigned long flags;
2233 u16 devid;
2234
2235 if (!check_device(dev))
2236 return 0;
2237
2238 devid = get_device_id(dev);
2239 iommu = amd_iommu_rlookup_table[devid];
2240 dev_data = get_dev_data(dev);
2241
2242 switch (action) {
2243 case BUS_NOTIFY_UNBOUND_DRIVER:
2244
2245 domain = domain_for_device(dev);
2246
2247 if (!domain)
2248 goto out;
2249 if (dev_data->passthrough)
2250 break;
2251 detach_device(dev);
2252 break;
2253 case BUS_NOTIFY_ADD_DEVICE:
2254
2255 iommu_init_device(dev);
2256
2257 /*
2258 * dev_data is still NULL and
2259 * got initialized in iommu_init_device
2260 */
2261 dev_data = get_dev_data(dev);
2262
2263 if (iommu_pass_through || dev_data->iommu_v2) {
2264 dev_data->passthrough = true;
2265 attach_device(dev, pt_domain);
2266 break;
2267 }
2268
2269 domain = domain_for_device(dev);
2270
2271 /* allocate a protection domain if a device is added */
2272 dma_domain = find_protection_domain(devid);
2273 if (dma_domain)
2274 goto out;
2275 dma_domain = dma_ops_domain_alloc();
2276 if (!dma_domain)
2277 goto out;
2278 dma_domain->target_dev = devid;
2279
2280 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2281 list_add_tail(&dma_domain->list, &iommu_pd_list);
2282 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2283
2284 dev_data = get_dev_data(dev);
2285
2286 dev->archdata.dma_ops = &amd_iommu_dma_ops;
2287
2288 break;
2289 case BUS_NOTIFY_DEL_DEVICE:
2290
2291 iommu_uninit_device(dev);
2292
2293 default:
2294 goto out;
2295 }
2296
2297 iommu_completion_wait(iommu);
2298
2299out:
2300 return 0;
2301}
2302
2303static struct notifier_block device_nb = {
2304 .notifier_call = device_change_notifier,
2305};
2306
2307void amd_iommu_init_notifier(void)
2308{
2309 bus_register_notifier(&pci_bus_type, &device_nb);
2310}
2311
2312/*****************************************************************************
2313 *
2314 * The next functions belong to the dma_ops mapping/unmapping code.
2315 *
2316 *****************************************************************************/
2317
2318/*
2319 * In the dma_ops path we only have the struct device. This function
2320 * finds the corresponding IOMMU, the protection domain and the
2321 * requestor id for a given device.
2322 * If the device is not yet associated with a domain this is also done
2323 * in this function.
2324 */
2325static struct protection_domain *get_domain(struct device *dev)
2326{
2327 struct protection_domain *domain;
2328 struct dma_ops_domain *dma_dom;
2329 u16 devid = get_device_id(dev);
2330
2331 if (!check_device(dev))
2332 return ERR_PTR(-EINVAL);
2333
2334 domain = domain_for_device(dev);
2335 if (domain != NULL && !dma_ops_domain(domain))
2336 return ERR_PTR(-EBUSY);
2337
2338 if (domain != NULL)
2339 return domain;
2340
2341 /* Device not bount yet - bind it */
2342 dma_dom = find_protection_domain(devid);
2343 if (!dma_dom)
2344 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2345 attach_device(dev, &dma_dom->domain);
2346 DUMP_printk("Using protection domain %d for device %s\n",
2347 dma_dom->domain.id, dev_name(dev));
2348
2349 return &dma_dom->domain;
2350}
2351
2352static void update_device_table(struct protection_domain *domain)
2353{
2354 struct iommu_dev_data *dev_data;
2355
2356 list_for_each_entry(dev_data, &domain->dev_list, list)
2357 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2358}
2359
2360static void update_domain(struct protection_domain *domain)
2361{
2362 if (!domain->updated)
2363 return;
2364
2365 update_device_table(domain);
2366
2367 domain_flush_devices(domain);
2368 domain_flush_tlb_pde(domain);
2369
2370 domain->updated = false;
2371}
2372
2373/*
2374 * This function fetches the PTE for a given address in the aperture
2375 */
2376static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2377 unsigned long address)
2378{
2379 struct aperture_range *aperture;
2380 u64 *pte, *pte_page;
2381
2382 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2383 if (!aperture)
2384 return NULL;
2385
2386 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2387 if (!pte) {
2388 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2389 GFP_ATOMIC);
2390 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2391 } else
2392 pte += PM_LEVEL_INDEX(0, address);
2393
2394 update_domain(&dom->domain);
2395
2396 return pte;
2397}
2398
2399/*
2400 * This is the generic map function. It maps one 4kb page at paddr to
2401 * the given address in the DMA address space for the domain.
2402 */
2403static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2404 unsigned long address,
2405 phys_addr_t paddr,
2406 int direction)
2407{
2408 u64 *pte, __pte;
2409
2410 WARN_ON(address > dom->aperture_size);
2411
2412 paddr &= PAGE_MASK;
2413
2414 pte = dma_ops_get_pte(dom, address);
2415 if (!pte)
2416 return DMA_ERROR_CODE;
2417
2418 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2419
2420 if (direction == DMA_TO_DEVICE)
2421 __pte |= IOMMU_PTE_IR;
2422 else if (direction == DMA_FROM_DEVICE)
2423 __pte |= IOMMU_PTE_IW;
2424 else if (direction == DMA_BIDIRECTIONAL)
2425 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2426
2427 WARN_ON(*pte);
2428
2429 *pte = __pte;
2430
2431 return (dma_addr_t)address;
2432}
2433
2434/*
2435 * The generic unmapping function for on page in the DMA address space.
2436 */
2437static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2438 unsigned long address)
2439{
2440 struct aperture_range *aperture;
2441 u64 *pte;
2442
2443 if (address >= dom->aperture_size)
2444 return;
2445
2446 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2447 if (!aperture)
2448 return;
2449
2450 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2451 if (!pte)
2452 return;
2453
2454 pte += PM_LEVEL_INDEX(0, address);
2455
2456 WARN_ON(!*pte);
2457
2458 *pte = 0ULL;
2459}
2460
2461/*
2462 * This function contains common code for mapping of a physically
2463 * contiguous memory region into DMA address space. It is used by all
2464 * mapping functions provided with this IOMMU driver.
2465 * Must be called with the domain lock held.
2466 */
2467static dma_addr_t __map_single(struct device *dev,
2468 struct dma_ops_domain *dma_dom,
2469 phys_addr_t paddr,
2470 size_t size,
2471 int dir,
2472 bool align,
2473 u64 dma_mask)
2474{
2475 dma_addr_t offset = paddr & ~PAGE_MASK;
2476 dma_addr_t address, start, ret;
2477 unsigned int pages;
2478 unsigned long align_mask = 0;
2479 int i;
2480
2481 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2482 paddr &= PAGE_MASK;
2483
2484 INC_STATS_COUNTER(total_map_requests);
2485
2486 if (pages > 1)
2487 INC_STATS_COUNTER(cross_page);
2488
2489 if (align)
2490 align_mask = (1UL << get_order(size)) - 1;
2491
2492retry:
2493 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2494 dma_mask);
2495 if (unlikely(address == DMA_ERROR_CODE)) {
2496 /*
2497 * setting next_address here will let the address
2498 * allocator only scan the new allocated range in the
2499 * first run. This is a small optimization.
2500 */
2501 dma_dom->next_address = dma_dom->aperture_size;
2502
2503 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2504 goto out;
2505
2506 /*
2507 * aperture was successfully enlarged by 128 MB, try
2508 * allocation again
2509 */
2510 goto retry;
2511 }
2512
2513 start = address;
2514 for (i = 0; i < pages; ++i) {
2515 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2516 if (ret == DMA_ERROR_CODE)
2517 goto out_unmap;
2518
2519 paddr += PAGE_SIZE;
2520 start += PAGE_SIZE;
2521 }
2522 address += offset;
2523
2524 ADD_STATS_COUNTER(alloced_io_mem, size);
2525
2526 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2527 domain_flush_tlb(&dma_dom->domain);
2528 dma_dom->need_flush = false;
2529 } else if (unlikely(amd_iommu_np_cache))
2530 domain_flush_pages(&dma_dom->domain, address, size);
2531
2532out:
2533 return address;
2534
2535out_unmap:
2536
2537 for (--i; i >= 0; --i) {
2538 start -= PAGE_SIZE;
2539 dma_ops_domain_unmap(dma_dom, start);
2540 }
2541
2542 dma_ops_free_addresses(dma_dom, address, pages);
2543
2544 return DMA_ERROR_CODE;
2545}
2546
2547/*
2548 * Does the reverse of the __map_single function. Must be called with
2549 * the domain lock held too
2550 */
2551static void __unmap_single(struct dma_ops_domain *dma_dom,
2552 dma_addr_t dma_addr,
2553 size_t size,
2554 int dir)
2555{
2556 dma_addr_t flush_addr;
2557 dma_addr_t i, start;
2558 unsigned int pages;
2559
2560 if ((dma_addr == DMA_ERROR_CODE) ||
2561 (dma_addr + size > dma_dom->aperture_size))
2562 return;
2563
2564 flush_addr = dma_addr;
2565 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2566 dma_addr &= PAGE_MASK;
2567 start = dma_addr;
2568
2569 for (i = 0; i < pages; ++i) {
2570 dma_ops_domain_unmap(dma_dom, start);
2571 start += PAGE_SIZE;
2572 }
2573
2574 SUB_STATS_COUNTER(alloced_io_mem, size);
2575
2576 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2577
2578 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2579 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2580 dma_dom->need_flush = false;
2581 }
2582}
2583
2584/*
2585 * The exported map_single function for dma_ops.
2586 */
2587static dma_addr_t map_page(struct device *dev, struct page *page,
2588 unsigned long offset, size_t size,
2589 enum dma_data_direction dir,
2590 struct dma_attrs *attrs)
2591{
2592 unsigned long flags;
2593 struct protection_domain *domain;
2594 dma_addr_t addr;
2595 u64 dma_mask;
2596 phys_addr_t paddr = page_to_phys(page) + offset;
2597
2598 INC_STATS_COUNTER(cnt_map_single);
2599
2600 domain = get_domain(dev);
2601 if (PTR_ERR(domain) == -EINVAL)
2602 return (dma_addr_t)paddr;
2603 else if (IS_ERR(domain))
2604 return DMA_ERROR_CODE;
2605
2606 dma_mask = *dev->dma_mask;
2607
2608 spin_lock_irqsave(&domain->lock, flags);
2609
2610 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2611 dma_mask);
2612 if (addr == DMA_ERROR_CODE)
2613 goto out;
2614
2615 domain_flush_complete(domain);
2616
2617out:
2618 spin_unlock_irqrestore(&domain->lock, flags);
2619
2620 return addr;
2621}
2622
2623/*
2624 * The exported unmap_single function for dma_ops.
2625 */
2626static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2627 enum dma_data_direction dir, struct dma_attrs *attrs)
2628{
2629 unsigned long flags;
2630 struct protection_domain *domain;
2631
2632 INC_STATS_COUNTER(cnt_unmap_single);
2633
2634 domain = get_domain(dev);
2635 if (IS_ERR(domain))
2636 return;
2637
2638 spin_lock_irqsave(&domain->lock, flags);
2639
2640 __unmap_single(domain->priv, dma_addr, size, dir);
2641
2642 domain_flush_complete(domain);
2643
2644 spin_unlock_irqrestore(&domain->lock, flags);
2645}
2646
2647/*
2648 * This is a special map_sg function which is used if we should map a
2649 * device which is not handled by an AMD IOMMU in the system.
2650 */
2651static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2652 int nelems, int dir)
2653{
2654 struct scatterlist *s;
2655 int i;
2656
2657 for_each_sg(sglist, s, nelems, i) {
2658 s->dma_address = (dma_addr_t)sg_phys(s);
2659 s->dma_length = s->length;
2660 }
2661
2662 return nelems;
2663}
2664
2665/*
2666 * The exported map_sg function for dma_ops (handles scatter-gather
2667 * lists).
2668 */
2669static int map_sg(struct device *dev, struct scatterlist *sglist,
2670 int nelems, enum dma_data_direction dir,
2671 struct dma_attrs *attrs)
2672{
2673 unsigned long flags;
2674 struct protection_domain *domain;
2675 int i;
2676 struct scatterlist *s;
2677 phys_addr_t paddr;
2678 int mapped_elems = 0;
2679 u64 dma_mask;
2680
2681 INC_STATS_COUNTER(cnt_map_sg);
2682
2683 domain = get_domain(dev);
2684 if (PTR_ERR(domain) == -EINVAL)
2685 return map_sg_no_iommu(dev, sglist, nelems, dir);
2686 else if (IS_ERR(domain))
2687 return 0;
2688
2689 dma_mask = *dev->dma_mask;
2690
2691 spin_lock_irqsave(&domain->lock, flags);
2692
2693 for_each_sg(sglist, s, nelems, i) {
2694 paddr = sg_phys(s);
2695
2696 s->dma_address = __map_single(dev, domain->priv,
2697 paddr, s->length, dir, false,
2698 dma_mask);
2699
2700 if (s->dma_address) {
2701 s->dma_length = s->length;
2702 mapped_elems++;
2703 } else
2704 goto unmap;
2705 }
2706
2707 domain_flush_complete(domain);
2708
2709out:
2710 spin_unlock_irqrestore(&domain->lock, flags);
2711
2712 return mapped_elems;
2713unmap:
2714 for_each_sg(sglist, s, mapped_elems, i) {
2715 if (s->dma_address)
2716 __unmap_single(domain->priv, s->dma_address,
2717 s->dma_length, dir);
2718 s->dma_address = s->dma_length = 0;
2719 }
2720
2721 mapped_elems = 0;
2722
2723 goto out;
2724}
2725
2726/*
2727 * The exported map_sg function for dma_ops (handles scatter-gather
2728 * lists).
2729 */
2730static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2731 int nelems, enum dma_data_direction dir,
2732 struct dma_attrs *attrs)
2733{
2734 unsigned long flags;
2735 struct protection_domain *domain;
2736 struct scatterlist *s;
2737 int i;
2738
2739 INC_STATS_COUNTER(cnt_unmap_sg);
2740
2741 domain = get_domain(dev);
2742 if (IS_ERR(domain))
2743 return;
2744
2745 spin_lock_irqsave(&domain->lock, flags);
2746
2747 for_each_sg(sglist, s, nelems, i) {
2748 __unmap_single(domain->priv, s->dma_address,
2749 s->dma_length, dir);
2750 s->dma_address = s->dma_length = 0;
2751 }
2752
2753 domain_flush_complete(domain);
2754
2755 spin_unlock_irqrestore(&domain->lock, flags);
2756}
2757
2758/*
2759 * The exported alloc_coherent function for dma_ops.
2760 */
2761static void *alloc_coherent(struct device *dev, size_t size,
2762 dma_addr_t *dma_addr, gfp_t flag,
2763 struct dma_attrs *attrs)
2764{
2765 unsigned long flags;
2766 void *virt_addr;
2767 struct protection_domain *domain;
2768 phys_addr_t paddr;
2769 u64 dma_mask = dev->coherent_dma_mask;
2770
2771 INC_STATS_COUNTER(cnt_alloc_coherent);
2772
2773 domain = get_domain(dev);
2774 if (PTR_ERR(domain) == -EINVAL) {
2775 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2776 *dma_addr = __pa(virt_addr);
2777 return virt_addr;
2778 } else if (IS_ERR(domain))
2779 return NULL;
2780
2781 dma_mask = dev->coherent_dma_mask;
2782 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2783 flag |= __GFP_ZERO;
2784
2785 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2786 if (!virt_addr)
2787 return NULL;
2788
2789 paddr = virt_to_phys(virt_addr);
2790
2791 if (!dma_mask)
2792 dma_mask = *dev->dma_mask;
2793
2794 spin_lock_irqsave(&domain->lock, flags);
2795
2796 *dma_addr = __map_single(dev, domain->priv, paddr,
2797 size, DMA_BIDIRECTIONAL, true, dma_mask);
2798
2799 if (*dma_addr == DMA_ERROR_CODE) {
2800 spin_unlock_irqrestore(&domain->lock, flags);
2801 goto out_free;
2802 }
2803
2804 domain_flush_complete(domain);
2805
2806 spin_unlock_irqrestore(&domain->lock, flags);
2807
2808 return virt_addr;
2809
2810out_free:
2811
2812 free_pages((unsigned long)virt_addr, get_order(size));
2813
2814 return NULL;
2815}
2816
2817/*
2818 * The exported free_coherent function for dma_ops.
2819 */
2820static void free_coherent(struct device *dev, size_t size,
2821 void *virt_addr, dma_addr_t dma_addr,
2822 struct dma_attrs *attrs)
2823{
2824 unsigned long flags;
2825 struct protection_domain *domain;
2826
2827 INC_STATS_COUNTER(cnt_free_coherent);
2828
2829 domain = get_domain(dev);
2830 if (IS_ERR(domain))
2831 goto free_mem;
2832
2833 spin_lock_irqsave(&domain->lock, flags);
2834
2835 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2836
2837 domain_flush_complete(domain);
2838
2839 spin_unlock_irqrestore(&domain->lock, flags);
2840
2841free_mem:
2842 free_pages((unsigned long)virt_addr, get_order(size));
2843}
2844
2845/*
2846 * This function is called by the DMA layer to find out if we can handle a
2847 * particular device. It is part of the dma_ops.
2848 */
2849static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2850{
2851 return check_device(dev);
2852}
2853
2854/*
2855 * The function for pre-allocating protection domains.
2856 *
2857 * If the driver core informs the DMA layer if a driver grabs a device
2858 * we don't need to preallocate the protection domains anymore.
2859 * For now we have to.
2860 */
2861static void __init prealloc_protection_domains(void)
2862{
2863 struct iommu_dev_data *dev_data;
2864 struct dma_ops_domain *dma_dom;
2865 struct pci_dev *dev = NULL;
2866 u16 devid;
2867
2868 for_each_pci_dev(dev) {
2869
2870 /* Do we handle this device? */
2871 if (!check_device(&dev->dev))
2872 continue;
2873
2874 dev_data = get_dev_data(&dev->dev);
2875 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2876 /* Make sure passthrough domain is allocated */
2877 alloc_passthrough_domain();
2878 dev_data->passthrough = true;
2879 attach_device(&dev->dev, pt_domain);
2880 pr_info("AMD-Vi: Using passthough domain for device %s\n",
2881 dev_name(&dev->dev));
2882 }
2883
2884 /* Is there already any domain for it? */
2885 if (domain_for_device(&dev->dev))
2886 continue;
2887
2888 devid = get_device_id(&dev->dev);
2889
2890 dma_dom = dma_ops_domain_alloc();
2891 if (!dma_dom)
2892 continue;
2893 init_unity_mappings_for_device(dma_dom, devid);
2894 dma_dom->target_dev = devid;
2895
2896 attach_device(&dev->dev, &dma_dom->domain);
2897
2898 list_add_tail(&dma_dom->list, &iommu_pd_list);
2899 }
2900}
2901
2902static struct dma_map_ops amd_iommu_dma_ops = {
2903 .alloc = alloc_coherent,
2904 .free = free_coherent,
2905 .map_page = map_page,
2906 .unmap_page = unmap_page,
2907 .map_sg = map_sg,
2908 .unmap_sg = unmap_sg,
2909 .dma_supported = amd_iommu_dma_supported,
2910};
2911
2912static unsigned device_dma_ops_init(void)
2913{
2914 struct iommu_dev_data *dev_data;
2915 struct pci_dev *pdev = NULL;
2916 unsigned unhandled = 0;
2917
2918 for_each_pci_dev(pdev) {
2919 if (!check_device(&pdev->dev)) {
2920
2921 iommu_ignore_device(&pdev->dev);
2922
2923 unhandled += 1;
2924 continue;
2925 }
2926
2927 dev_data = get_dev_data(&pdev->dev);
2928
2929 if (!dev_data->passthrough)
2930 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2931 else
2932 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2933 }
2934
2935 return unhandled;
2936}
2937
2938/*
2939 * The function which clues the AMD IOMMU driver into dma_ops.
2940 */
2941
2942void __init amd_iommu_init_api(void)
2943{
2944 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2945}
2946
2947int __init amd_iommu_init_dma_ops(void)
2948{
2949 struct amd_iommu *iommu;
2950 int ret, unhandled;
2951
2952 /*
2953 * first allocate a default protection domain for every IOMMU we
2954 * found in the system. Devices not assigned to any other
2955 * protection domain will be assigned to the default one.
2956 */
2957 for_each_iommu(iommu) {
2958 iommu->default_dom = dma_ops_domain_alloc();
2959 if (iommu->default_dom == NULL)
2960 return -ENOMEM;
2961 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2962 ret = iommu_init_unity_mappings(iommu);
2963 if (ret)
2964 goto free_domains;
2965 }
2966
2967 /*
2968 * Pre-allocate the protection domains for each device.
2969 */
2970 prealloc_protection_domains();
2971
2972 iommu_detected = 1;
2973 swiotlb = 0;
2974
2975 /* Make the driver finally visible to the drivers */
2976 unhandled = device_dma_ops_init();
2977 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2978 /* There are unhandled devices - initialize swiotlb for them */
2979 swiotlb = 1;
2980 }
2981
2982 amd_iommu_stats_init();
2983
2984 return 0;
2985
2986free_domains:
2987
2988 for_each_iommu(iommu) {
2989 if (iommu->default_dom)
2990 dma_ops_domain_free(iommu->default_dom);
2991 }
2992
2993 return ret;
2994}
2995
2996/*****************************************************************************
2997 *
2998 * The following functions belong to the exported interface of AMD IOMMU
2999 *
3000 * This interface allows access to lower level functions of the IOMMU
3001 * like protection domain handling and assignement of devices to domains
3002 * which is not possible with the dma_ops interface.
3003 *
3004 *****************************************************************************/
3005
3006static void cleanup_domain(struct protection_domain *domain)
3007{
3008 struct iommu_dev_data *dev_data, *next;
3009 unsigned long flags;
3010
3011 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3012
3013 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3014 __detach_device(dev_data);
3015 atomic_set(&dev_data->bind, 0);
3016 }
3017
3018 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3019}
3020
3021static void protection_domain_free(struct protection_domain *domain)
3022{
3023 if (!domain)
3024 return;
3025
3026 del_domain_from_list(domain);
3027
3028 if (domain->id)
3029 domain_id_free(domain->id);
3030
3031 kfree(domain);
3032}
3033
3034static struct protection_domain *protection_domain_alloc(void)
3035{
3036 struct protection_domain *domain;
3037
3038 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3039 if (!domain)
3040 return NULL;
3041
3042 spin_lock_init(&domain->lock);
3043 mutex_init(&domain->api_lock);
3044 domain->id = domain_id_alloc();
3045 if (!domain->id)
3046 goto out_err;
3047 INIT_LIST_HEAD(&domain->dev_list);
3048
3049 add_domain_to_list(domain);
3050
3051 return domain;
3052
3053out_err:
3054 kfree(domain);
3055
3056 return NULL;
3057}
3058
3059static int __init alloc_passthrough_domain(void)
3060{
3061 if (pt_domain != NULL)
3062 return 0;
3063
3064 /* allocate passthrough domain */
3065 pt_domain = protection_domain_alloc();
3066 if (!pt_domain)
3067 return -ENOMEM;
3068
3069 pt_domain->mode = PAGE_MODE_NONE;
3070
3071 return 0;
3072}
3073static int amd_iommu_domain_init(struct iommu_domain *dom)
3074{
3075 struct protection_domain *domain;
3076
3077 domain = protection_domain_alloc();
3078 if (!domain)
3079 goto out_free;
3080
3081 domain->mode = PAGE_MODE_3_LEVEL;
3082 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3083 if (!domain->pt_root)
3084 goto out_free;
3085
3086 domain->iommu_domain = dom;
3087
3088 dom->priv = domain;
3089
3090 return 0;
3091
3092out_free:
3093 protection_domain_free(domain);
3094
3095 return -ENOMEM;
3096}
3097
3098static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3099{
3100 struct protection_domain *domain = dom->priv;
3101
3102 if (!domain)
3103 return;
3104
3105 if (domain->dev_cnt > 0)
3106 cleanup_domain(domain);
3107
3108 BUG_ON(domain->dev_cnt != 0);
3109
3110 if (domain->mode != PAGE_MODE_NONE)
3111 free_pagetable(domain);
3112
3113 if (domain->flags & PD_IOMMUV2_MASK)
3114 free_gcr3_table(domain);
3115
3116 protection_domain_free(domain);
3117
3118 dom->priv = NULL;
3119}
3120
3121static void amd_iommu_detach_device(struct iommu_domain *dom,
3122 struct device *dev)
3123{
3124 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3125 struct amd_iommu *iommu;
3126 u16 devid;
3127
3128 if (!check_device(dev))
3129 return;
3130
3131 devid = get_device_id(dev);
3132
3133 if (dev_data->domain != NULL)
3134 detach_device(dev);
3135
3136 iommu = amd_iommu_rlookup_table[devid];
3137 if (!iommu)
3138 return;
3139
3140 iommu_completion_wait(iommu);
3141}
3142
3143static int amd_iommu_attach_device(struct iommu_domain *dom,
3144 struct device *dev)
3145{
3146 struct protection_domain *domain = dom->priv;
3147 struct iommu_dev_data *dev_data;
3148 struct amd_iommu *iommu;
3149 int ret;
3150
3151 if (!check_device(dev))
3152 return -EINVAL;
3153
3154 dev_data = dev->archdata.iommu;
3155
3156 iommu = amd_iommu_rlookup_table[dev_data->devid];
3157 if (!iommu)
3158 return -EINVAL;
3159
3160 if (dev_data->domain)
3161 detach_device(dev);
3162
3163 ret = attach_device(dev, domain);
3164
3165 iommu_completion_wait(iommu);
3166
3167 return ret;
3168}
3169
3170static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3171 phys_addr_t paddr, size_t page_size, int iommu_prot)
3172{
3173 struct protection_domain *domain = dom->priv;
3174 int prot = 0;
3175 int ret;
3176
3177 if (domain->mode == PAGE_MODE_NONE)
3178 return -EINVAL;
3179
3180 if (iommu_prot & IOMMU_READ)
3181 prot |= IOMMU_PROT_IR;
3182 if (iommu_prot & IOMMU_WRITE)
3183 prot |= IOMMU_PROT_IW;
3184
3185 mutex_lock(&domain->api_lock);
3186 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3187 mutex_unlock(&domain->api_lock);
3188
3189 return ret;
3190}
3191
3192static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3193 size_t page_size)
3194{
3195 struct protection_domain *domain = dom->priv;
3196 size_t unmap_size;
3197
3198 if (domain->mode == PAGE_MODE_NONE)
3199 return -EINVAL;
3200
3201 mutex_lock(&domain->api_lock);
3202 unmap_size = iommu_unmap_page(domain, iova, page_size);
3203 mutex_unlock(&domain->api_lock);
3204
3205 domain_flush_tlb_pde(domain);
3206
3207 return unmap_size;
3208}
3209
3210static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3211 unsigned long iova)
3212{
3213 struct protection_domain *domain = dom->priv;
3214 unsigned long offset_mask;
3215 phys_addr_t paddr;
3216 u64 *pte, __pte;
3217
3218 if (domain->mode == PAGE_MODE_NONE)
3219 return iova;
3220
3221 pte = fetch_pte(domain, iova);
3222
3223 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3224 return 0;
3225
3226 if (PM_PTE_LEVEL(*pte) == 0)
3227 offset_mask = PAGE_SIZE - 1;
3228 else
3229 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3230
3231 __pte = *pte & PM_ADDR_MASK;
3232 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3233
3234 return paddr;
3235}
3236
3237static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3238 unsigned long cap)
3239{
3240 switch (cap) {
3241 case IOMMU_CAP_CACHE_COHERENCY:
3242 return 1;
3243 }
3244
3245 return 0;
3246}
3247
3248static int amd_iommu_device_group(struct device *dev, unsigned int *groupid)
3249{
3250 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3251 struct pci_dev *pdev = to_pci_dev(dev);
3252 u16 devid;
3253
3254 if (!dev_data)
3255 return -ENODEV;
3256
3257 if (pdev->is_virtfn || !iommu_group_mf)
3258 devid = dev_data->devid;
3259 else
3260 devid = calc_devid(pdev->bus->number,
3261 PCI_DEVFN(PCI_SLOT(pdev->devfn), 0));
3262
3263 *groupid = amd_iommu_alias_table[devid];
3264
3265 return 0;
3266}
3267
3268static struct iommu_ops amd_iommu_ops = {
3269 .domain_init = amd_iommu_domain_init,
3270 .domain_destroy = amd_iommu_domain_destroy,
3271 .attach_dev = amd_iommu_attach_device,
3272 .detach_dev = amd_iommu_detach_device,
3273 .map = amd_iommu_map,
3274 .unmap = amd_iommu_unmap,
3275 .iova_to_phys = amd_iommu_iova_to_phys,
3276 .domain_has_cap = amd_iommu_domain_has_cap,
3277 .device_group = amd_iommu_device_group,
3278 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3279};
3280
3281/*****************************************************************************
3282 *
3283 * The next functions do a basic initialization of IOMMU for pass through
3284 * mode
3285 *
3286 * In passthrough mode the IOMMU is initialized and enabled but not used for
3287 * DMA-API translation.
3288 *
3289 *****************************************************************************/
3290
3291int __init amd_iommu_init_passthrough(void)
3292{
3293 struct iommu_dev_data *dev_data;
3294 struct pci_dev *dev = NULL;
3295 struct amd_iommu *iommu;
3296 u16 devid;
3297 int ret;
3298
3299 ret = alloc_passthrough_domain();
3300 if (ret)
3301 return ret;
3302
3303 for_each_pci_dev(dev) {
3304 if (!check_device(&dev->dev))
3305 continue;
3306
3307 dev_data = get_dev_data(&dev->dev);
3308 dev_data->passthrough = true;
3309
3310 devid = get_device_id(&dev->dev);
3311
3312 iommu = amd_iommu_rlookup_table[devid];
3313 if (!iommu)
3314 continue;
3315
3316 attach_device(&dev->dev, pt_domain);
3317 }
3318
3319 amd_iommu_stats_init();
3320
3321 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3322
3323 return 0;
3324}
3325
3326/* IOMMUv2 specific functions */
3327int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3328{
3329 return atomic_notifier_chain_register(&ppr_notifier, nb);
3330}
3331EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3332
3333int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3334{
3335 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3336}
3337EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3338
3339void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3340{
3341 struct protection_domain *domain = dom->priv;
3342 unsigned long flags;
3343
3344 spin_lock_irqsave(&domain->lock, flags);
3345
3346 /* Update data structure */
3347 domain->mode = PAGE_MODE_NONE;
3348 domain->updated = true;
3349
3350 /* Make changes visible to IOMMUs */
3351 update_domain(domain);
3352
3353 /* Page-table is not visible to IOMMU anymore, so free it */
3354 free_pagetable(domain);
3355
3356 spin_unlock_irqrestore(&domain->lock, flags);
3357}
3358EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3359
3360int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3361{
3362 struct protection_domain *domain = dom->priv;
3363 unsigned long flags;
3364 int levels, ret;
3365
3366 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3367 return -EINVAL;
3368
3369 /* Number of GCR3 table levels required */
3370 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3371 levels += 1;
3372
3373 if (levels > amd_iommu_max_glx_val)
3374 return -EINVAL;
3375
3376 spin_lock_irqsave(&domain->lock, flags);
3377
3378 /*
3379 * Save us all sanity checks whether devices already in the
3380 * domain support IOMMUv2. Just force that the domain has no
3381 * devices attached when it is switched into IOMMUv2 mode.
3382 */
3383 ret = -EBUSY;
3384 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3385 goto out;
3386
3387 ret = -ENOMEM;
3388 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3389 if (domain->gcr3_tbl == NULL)
3390 goto out;
3391
3392 domain->glx = levels;
3393 domain->flags |= PD_IOMMUV2_MASK;
3394 domain->updated = true;
3395
3396 update_domain(domain);
3397
3398 ret = 0;
3399
3400out:
3401 spin_unlock_irqrestore(&domain->lock, flags);
3402
3403 return ret;
3404}
3405EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3406
3407static int __flush_pasid(struct protection_domain *domain, int pasid,
3408 u64 address, bool size)
3409{
3410 struct iommu_dev_data *dev_data;
3411 struct iommu_cmd cmd;
3412 int i, ret;
3413
3414 if (!(domain->flags & PD_IOMMUV2_MASK))
3415 return -EINVAL;
3416
3417 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3418
3419 /*
3420 * IOMMU TLB needs to be flushed before Device TLB to
3421 * prevent device TLB refill from IOMMU TLB
3422 */
3423 for (i = 0; i < amd_iommus_present; ++i) {
3424 if (domain->dev_iommu[i] == 0)
3425 continue;
3426
3427 ret = iommu_queue_command(amd_iommus[i], &cmd);
3428 if (ret != 0)
3429 goto out;
3430 }
3431
3432 /* Wait until IOMMU TLB flushes are complete */
3433 domain_flush_complete(domain);
3434
3435 /* Now flush device TLBs */
3436 list_for_each_entry(dev_data, &domain->dev_list, list) {
3437 struct amd_iommu *iommu;
3438 int qdep;
3439
3440 BUG_ON(!dev_data->ats.enabled);
3441
3442 qdep = dev_data->ats.qdep;
3443 iommu = amd_iommu_rlookup_table[dev_data->devid];
3444
3445 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3446 qdep, address, size);
3447
3448 ret = iommu_queue_command(iommu, &cmd);
3449 if (ret != 0)
3450 goto out;
3451 }
3452
3453 /* Wait until all device TLBs are flushed */
3454 domain_flush_complete(domain);
3455
3456 ret = 0;
3457
3458out:
3459
3460 return ret;
3461}
3462
3463static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3464 u64 address)
3465{
3466 INC_STATS_COUNTER(invalidate_iotlb);
3467
3468 return __flush_pasid(domain, pasid, address, false);
3469}
3470
3471int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3472 u64 address)
3473{
3474 struct protection_domain *domain = dom->priv;
3475 unsigned long flags;
3476 int ret;
3477
3478 spin_lock_irqsave(&domain->lock, flags);
3479 ret = __amd_iommu_flush_page(domain, pasid, address);
3480 spin_unlock_irqrestore(&domain->lock, flags);
3481
3482 return ret;
3483}
3484EXPORT_SYMBOL(amd_iommu_flush_page);
3485
3486static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3487{
3488 INC_STATS_COUNTER(invalidate_iotlb_all);
3489
3490 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3491 true);
3492}
3493
3494int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3495{
3496 struct protection_domain *domain = dom->priv;
3497 unsigned long flags;
3498 int ret;
3499
3500 spin_lock_irqsave(&domain->lock, flags);
3501 ret = __amd_iommu_flush_tlb(domain, pasid);
3502 spin_unlock_irqrestore(&domain->lock, flags);
3503
3504 return ret;
3505}
3506EXPORT_SYMBOL(amd_iommu_flush_tlb);
3507
3508static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3509{
3510 int index;
3511 u64 *pte;
3512
3513 while (true) {
3514
3515 index = (pasid >> (9 * level)) & 0x1ff;
3516 pte = &root[index];
3517
3518 if (level == 0)
3519 break;
3520
3521 if (!(*pte & GCR3_VALID)) {
3522 if (!alloc)
3523 return NULL;
3524
3525 root = (void *)get_zeroed_page(GFP_ATOMIC);
3526 if (root == NULL)
3527 return NULL;
3528
3529 *pte = __pa(root) | GCR3_VALID;
3530 }
3531
3532 root = __va(*pte & PAGE_MASK);
3533
3534 level -= 1;
3535 }
3536
3537 return pte;
3538}
3539
3540static int __set_gcr3(struct protection_domain *domain, int pasid,
3541 unsigned long cr3)
3542{
3543 u64 *pte;
3544
3545 if (domain->mode != PAGE_MODE_NONE)
3546 return -EINVAL;
3547
3548 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3549 if (pte == NULL)
3550 return -ENOMEM;
3551
3552 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3553
3554 return __amd_iommu_flush_tlb(domain, pasid);
3555}
3556
3557static int __clear_gcr3(struct protection_domain *domain, int pasid)
3558{
3559 u64 *pte;
3560
3561 if (domain->mode != PAGE_MODE_NONE)
3562 return -EINVAL;
3563
3564 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3565 if (pte == NULL)
3566 return 0;
3567
3568 *pte = 0;
3569
3570 return __amd_iommu_flush_tlb(domain, pasid);
3571}
3572
3573int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3574 unsigned long cr3)
3575{
3576 struct protection_domain *domain = dom->priv;
3577 unsigned long flags;
3578 int ret;
3579
3580 spin_lock_irqsave(&domain->lock, flags);
3581 ret = __set_gcr3(domain, pasid, cr3);
3582 spin_unlock_irqrestore(&domain->lock, flags);
3583
3584 return ret;
3585}
3586EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3587
3588int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3589{
3590 struct protection_domain *domain = dom->priv;
3591 unsigned long flags;
3592 int ret;
3593
3594 spin_lock_irqsave(&domain->lock, flags);
3595 ret = __clear_gcr3(domain, pasid);
3596 spin_unlock_irqrestore(&domain->lock, flags);
3597
3598 return ret;
3599}
3600EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3601
3602int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3603 int status, int tag)
3604{
3605 struct iommu_dev_data *dev_data;
3606 struct amd_iommu *iommu;
3607 struct iommu_cmd cmd;
3608
3609 INC_STATS_COUNTER(complete_ppr);
3610
3611 dev_data = get_dev_data(&pdev->dev);
3612 iommu = amd_iommu_rlookup_table[dev_data->devid];
3613
3614 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3615 tag, dev_data->pri_tlp);
3616
3617 return iommu_queue_command(iommu, &cmd);
3618}
3619EXPORT_SYMBOL(amd_iommu_complete_ppr);
3620
3621struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3622{
3623 struct protection_domain *domain;
3624
3625 domain = get_domain(&pdev->dev);
3626 if (IS_ERR(domain))
3627 return NULL;
3628
3629 /* Only return IOMMUv2 domains */
3630 if (!(domain->flags & PD_IOMMUV2_MASK))
3631 return NULL;
3632
3633 return domain->iommu_domain;
3634}
3635EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3636
3637void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3638{
3639 struct iommu_dev_data *dev_data;
3640
3641 if (!amd_iommu_v2_supported())
3642 return;
3643
3644 dev_data = get_dev_data(&pdev->dev);
3645 dev_data->errata |= (1 << erratum);
3646}
3647EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3648
3649int amd_iommu_device_info(struct pci_dev *pdev,
3650 struct amd_iommu_device_info *info)
3651{
3652 int max_pasids;
3653 int pos;
3654
3655 if (pdev == NULL || info == NULL)
3656 return -EINVAL;
3657
3658 if (!amd_iommu_v2_supported())
3659 return -EINVAL;
3660
3661 memset(info, 0, sizeof(*info));
3662
3663 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3664 if (pos)
3665 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3666
3667 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3668 if (pos)
3669 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3670
3671 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3672 if (pos) {
3673 int features;
3674
3675 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3676 max_pasids = min(max_pasids, (1 << 20));
3677
3678 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3679 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3680
3681 features = pci_pasid_features(pdev);
3682 if (features & PCI_PASID_CAP_EXEC)
3683 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3684 if (features & PCI_PASID_CAP_PRIV)
3685 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3686 }
3687
3688 return 0;
3689}
3690EXPORT_SYMBOL(amd_iommu_device_info);