Loading...
1/*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/ratelimit.h>
21#include <linux/pci.h>
22#include <linux/pci-ats.h>
23#include <linux/bitmap.h>
24#include <linux/slab.h>
25#include <linux/debugfs.h>
26#include <linux/scatterlist.h>
27#include <linux/dma-mapping.h>
28#include <linux/iommu-helper.h>
29#include <linux/iommu.h>
30#include <linux/delay.h>
31#include <linux/amd-iommu.h>
32#include <linux/notifier.h>
33#include <linux/export.h>
34#include <linux/irq.h>
35#include <linux/msi.h>
36#include <linux/dma-contiguous.h>
37#include <linux/irqdomain.h>
38#include <linux/percpu.h>
39#include <asm/irq_remapping.h>
40#include <asm/io_apic.h>
41#include <asm/apic.h>
42#include <asm/hw_irq.h>
43#include <asm/msidef.h>
44#include <asm/proto.h>
45#include <asm/iommu.h>
46#include <asm/gart.h>
47#include <asm/dma.h>
48
49#include "amd_iommu_proto.h"
50#include "amd_iommu_types.h"
51#include "irq_remapping.h"
52
53#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
54
55#define LOOP_TIMEOUT 100000
56
57/*
58 * This bitmap is used to advertise the page sizes our hardware support
59 * to the IOMMU core, which will then use this information to split
60 * physically contiguous memory regions it is mapping into page sizes
61 * that we support.
62 *
63 * 512GB Pages are not supported due to a hardware bug
64 */
65#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
66
67static DEFINE_RWLOCK(amd_iommu_devtable_lock);
68
69/* List of all available dev_data structures */
70static LIST_HEAD(dev_data_list);
71static DEFINE_SPINLOCK(dev_data_list_lock);
72
73LIST_HEAD(ioapic_map);
74LIST_HEAD(hpet_map);
75
76/*
77 * Domain for untranslated devices - only allocated
78 * if iommu=pt passed on kernel cmd line.
79 */
80static const struct iommu_ops amd_iommu_ops;
81
82static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
83int amd_iommu_max_glx_val = -1;
84
85static struct dma_map_ops amd_iommu_dma_ops;
86
87/*
88 * This struct contains device specific data for the IOMMU
89 */
90struct iommu_dev_data {
91 struct list_head list; /* For domain->dev_list */
92 struct list_head dev_data_list; /* For global dev_data_list */
93 struct protection_domain *domain; /* Domain the device is bound to */
94 u16 devid; /* PCI Device ID */
95 u16 alias; /* Alias Device ID */
96 bool iommu_v2; /* Device can make use of IOMMUv2 */
97 bool passthrough; /* Device is identity mapped */
98 struct {
99 bool enabled;
100 int qdep;
101 } ats; /* ATS state */
102 bool pri_tlp; /* PASID TLB required for
103 PPR completions */
104 u32 errata; /* Bitmap for errata to apply */
105};
106
107/*
108 * general struct to manage commands send to an IOMMU
109 */
110struct iommu_cmd {
111 u32 data[4];
112};
113
114struct kmem_cache *amd_iommu_irq_cache;
115
116static void update_domain(struct protection_domain *domain);
117static int protection_domain_init(struct protection_domain *domain);
118static void detach_device(struct device *dev);
119
120/*
121 * For dynamic growth the aperture size is split into ranges of 128MB of
122 * DMA address space each. This struct represents one such range.
123 */
124struct aperture_range {
125
126 spinlock_t bitmap_lock;
127
128 /* address allocation bitmap */
129 unsigned long *bitmap;
130 unsigned long offset;
131 unsigned long next_bit;
132
133 /*
134 * Array of PTE pages for the aperture. In this array we save all the
135 * leaf pages of the domain page table used for the aperture. This way
136 * we don't need to walk the page table to find a specific PTE. We can
137 * just calculate its address in constant time.
138 */
139 u64 *pte_pages[64];
140};
141
142/*
143 * Data container for a dma_ops specific protection domain
144 */
145struct dma_ops_domain {
146 /* generic protection domain information */
147 struct protection_domain domain;
148
149 /* size of the aperture for the mappings */
150 unsigned long aperture_size;
151
152 /* aperture index we start searching for free addresses */
153 u32 __percpu *next_index;
154
155 /* address space relevant data */
156 struct aperture_range *aperture[APERTURE_MAX_RANGES];
157};
158
159/****************************************************************************
160 *
161 * Helper functions
162 *
163 ****************************************************************************/
164
165static struct protection_domain *to_pdomain(struct iommu_domain *dom)
166{
167 return container_of(dom, struct protection_domain, domain);
168}
169
170static inline u16 get_device_id(struct device *dev)
171{
172 struct pci_dev *pdev = to_pci_dev(dev);
173
174 return PCI_DEVID(pdev->bus->number, pdev->devfn);
175}
176
177static struct iommu_dev_data *alloc_dev_data(u16 devid)
178{
179 struct iommu_dev_data *dev_data;
180 unsigned long flags;
181
182 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
183 if (!dev_data)
184 return NULL;
185
186 dev_data->devid = devid;
187
188 spin_lock_irqsave(&dev_data_list_lock, flags);
189 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
190 spin_unlock_irqrestore(&dev_data_list_lock, flags);
191
192 return dev_data;
193}
194
195static struct iommu_dev_data *search_dev_data(u16 devid)
196{
197 struct iommu_dev_data *dev_data;
198 unsigned long flags;
199
200 spin_lock_irqsave(&dev_data_list_lock, flags);
201 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
202 if (dev_data->devid == devid)
203 goto out_unlock;
204 }
205
206 dev_data = NULL;
207
208out_unlock:
209 spin_unlock_irqrestore(&dev_data_list_lock, flags);
210
211 return dev_data;
212}
213
214static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
215{
216 *(u16 *)data = alias;
217 return 0;
218}
219
220static u16 get_alias(struct device *dev)
221{
222 struct pci_dev *pdev = to_pci_dev(dev);
223 u16 devid, ivrs_alias, pci_alias;
224
225 devid = get_device_id(dev);
226 ivrs_alias = amd_iommu_alias_table[devid];
227 pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);
228
229 if (ivrs_alias == pci_alias)
230 return ivrs_alias;
231
232 /*
233 * DMA alias showdown
234 *
235 * The IVRS is fairly reliable in telling us about aliases, but it
236 * can't know about every screwy device. If we don't have an IVRS
237 * reported alias, use the PCI reported alias. In that case we may
238 * still need to initialize the rlookup and dev_table entries if the
239 * alias is to a non-existent device.
240 */
241 if (ivrs_alias == devid) {
242 if (!amd_iommu_rlookup_table[pci_alias]) {
243 amd_iommu_rlookup_table[pci_alias] =
244 amd_iommu_rlookup_table[devid];
245 memcpy(amd_iommu_dev_table[pci_alias].data,
246 amd_iommu_dev_table[devid].data,
247 sizeof(amd_iommu_dev_table[pci_alias].data));
248 }
249
250 return pci_alias;
251 }
252
253 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
254 "for device %s[%04x:%04x], kernel reported alias "
255 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
256 PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
257 PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
258 PCI_FUNC(pci_alias));
259
260 /*
261 * If we don't have a PCI DMA alias and the IVRS alias is on the same
262 * bus, then the IVRS table may know about a quirk that we don't.
263 */
264 if (pci_alias == devid &&
265 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
266 pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
267 pdev->dma_alias_devfn = ivrs_alias & 0xff;
268 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
269 PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
270 dev_name(dev));
271 }
272
273 return ivrs_alias;
274}
275
276static struct iommu_dev_data *find_dev_data(u16 devid)
277{
278 struct iommu_dev_data *dev_data;
279
280 dev_data = search_dev_data(devid);
281
282 if (dev_data == NULL)
283 dev_data = alloc_dev_data(devid);
284
285 return dev_data;
286}
287
288static struct iommu_dev_data *get_dev_data(struct device *dev)
289{
290 return dev->archdata.iommu;
291}
292
293static bool pci_iommuv2_capable(struct pci_dev *pdev)
294{
295 static const int caps[] = {
296 PCI_EXT_CAP_ID_ATS,
297 PCI_EXT_CAP_ID_PRI,
298 PCI_EXT_CAP_ID_PASID,
299 };
300 int i, pos;
301
302 for (i = 0; i < 3; ++i) {
303 pos = pci_find_ext_capability(pdev, caps[i]);
304 if (pos == 0)
305 return false;
306 }
307
308 return true;
309}
310
311static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
312{
313 struct iommu_dev_data *dev_data;
314
315 dev_data = get_dev_data(&pdev->dev);
316
317 return dev_data->errata & (1 << erratum) ? true : false;
318}
319
320/*
321 * This function actually applies the mapping to the page table of the
322 * dma_ops domain.
323 */
324static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
325 struct unity_map_entry *e)
326{
327 u64 addr;
328
329 for (addr = e->address_start; addr < e->address_end;
330 addr += PAGE_SIZE) {
331 if (addr < dma_dom->aperture_size)
332 __set_bit(addr >> PAGE_SHIFT,
333 dma_dom->aperture[0]->bitmap);
334 }
335}
336
337/*
338 * Inits the unity mappings required for a specific device
339 */
340static void init_unity_mappings_for_device(struct device *dev,
341 struct dma_ops_domain *dma_dom)
342{
343 struct unity_map_entry *e;
344 u16 devid;
345
346 devid = get_device_id(dev);
347
348 list_for_each_entry(e, &amd_iommu_unity_map, list) {
349 if (!(devid >= e->devid_start && devid <= e->devid_end))
350 continue;
351 alloc_unity_mapping(dma_dom, e);
352 }
353}
354
355/*
356 * This function checks if the driver got a valid device from the caller to
357 * avoid dereferencing invalid pointers.
358 */
359static bool check_device(struct device *dev)
360{
361 u16 devid;
362
363 if (!dev || !dev->dma_mask)
364 return false;
365
366 /* No PCI device */
367 if (!dev_is_pci(dev))
368 return false;
369
370 devid = get_device_id(dev);
371
372 /* Out of our scope? */
373 if (devid > amd_iommu_last_bdf)
374 return false;
375
376 if (amd_iommu_rlookup_table[devid] == NULL)
377 return false;
378
379 return true;
380}
381
382static void init_iommu_group(struct device *dev)
383{
384 struct dma_ops_domain *dma_domain;
385 struct iommu_domain *domain;
386 struct iommu_group *group;
387
388 group = iommu_group_get_for_dev(dev);
389 if (IS_ERR(group))
390 return;
391
392 domain = iommu_group_default_domain(group);
393 if (!domain)
394 goto out;
395
396 dma_domain = to_pdomain(domain)->priv;
397
398 init_unity_mappings_for_device(dev, dma_domain);
399out:
400 iommu_group_put(group);
401}
402
403static int iommu_init_device(struct device *dev)
404{
405 struct pci_dev *pdev = to_pci_dev(dev);
406 struct iommu_dev_data *dev_data;
407
408 if (dev->archdata.iommu)
409 return 0;
410
411 dev_data = find_dev_data(get_device_id(dev));
412 if (!dev_data)
413 return -ENOMEM;
414
415 dev_data->alias = get_alias(dev);
416
417 if (pci_iommuv2_capable(pdev)) {
418 struct amd_iommu *iommu;
419
420 iommu = amd_iommu_rlookup_table[dev_data->devid];
421 dev_data->iommu_v2 = iommu->is_iommu_v2;
422 }
423
424 dev->archdata.iommu = dev_data;
425
426 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
427 dev);
428
429 return 0;
430}
431
432static void iommu_ignore_device(struct device *dev)
433{
434 u16 devid, alias;
435
436 devid = get_device_id(dev);
437 alias = get_alias(dev);
438
439 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
440 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
441
442 amd_iommu_rlookup_table[devid] = NULL;
443 amd_iommu_rlookup_table[alias] = NULL;
444}
445
446static void iommu_uninit_device(struct device *dev)
447{
448 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
449
450 if (!dev_data)
451 return;
452
453 if (dev_data->domain)
454 detach_device(dev);
455
456 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
457 dev);
458
459 iommu_group_remove_device(dev);
460
461 /* Remove dma-ops */
462 dev->archdata.dma_ops = NULL;
463
464 /*
465 * We keep dev_data around for unplugged devices and reuse it when the
466 * device is re-plugged - not doing so would introduce a ton of races.
467 */
468}
469
470#ifdef CONFIG_AMD_IOMMU_STATS
471
472/*
473 * Initialization code for statistics collection
474 */
475
476DECLARE_STATS_COUNTER(compl_wait);
477DECLARE_STATS_COUNTER(cnt_map_single);
478DECLARE_STATS_COUNTER(cnt_unmap_single);
479DECLARE_STATS_COUNTER(cnt_map_sg);
480DECLARE_STATS_COUNTER(cnt_unmap_sg);
481DECLARE_STATS_COUNTER(cnt_alloc_coherent);
482DECLARE_STATS_COUNTER(cnt_free_coherent);
483DECLARE_STATS_COUNTER(cross_page);
484DECLARE_STATS_COUNTER(domain_flush_single);
485DECLARE_STATS_COUNTER(domain_flush_all);
486DECLARE_STATS_COUNTER(alloced_io_mem);
487DECLARE_STATS_COUNTER(total_map_requests);
488DECLARE_STATS_COUNTER(complete_ppr);
489DECLARE_STATS_COUNTER(invalidate_iotlb);
490DECLARE_STATS_COUNTER(invalidate_iotlb_all);
491DECLARE_STATS_COUNTER(pri_requests);
492
493static struct dentry *stats_dir;
494static struct dentry *de_fflush;
495
496static void amd_iommu_stats_add(struct __iommu_counter *cnt)
497{
498 if (stats_dir == NULL)
499 return;
500
501 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
502 &cnt->value);
503}
504
505static void amd_iommu_stats_init(void)
506{
507 stats_dir = debugfs_create_dir("amd-iommu", NULL);
508 if (stats_dir == NULL)
509 return;
510
511 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
512 &amd_iommu_unmap_flush);
513
514 amd_iommu_stats_add(&compl_wait);
515 amd_iommu_stats_add(&cnt_map_single);
516 amd_iommu_stats_add(&cnt_unmap_single);
517 amd_iommu_stats_add(&cnt_map_sg);
518 amd_iommu_stats_add(&cnt_unmap_sg);
519 amd_iommu_stats_add(&cnt_alloc_coherent);
520 amd_iommu_stats_add(&cnt_free_coherent);
521 amd_iommu_stats_add(&cross_page);
522 amd_iommu_stats_add(&domain_flush_single);
523 amd_iommu_stats_add(&domain_flush_all);
524 amd_iommu_stats_add(&alloced_io_mem);
525 amd_iommu_stats_add(&total_map_requests);
526 amd_iommu_stats_add(&complete_ppr);
527 amd_iommu_stats_add(&invalidate_iotlb);
528 amd_iommu_stats_add(&invalidate_iotlb_all);
529 amd_iommu_stats_add(&pri_requests);
530}
531
532#endif
533
534/****************************************************************************
535 *
536 * Interrupt handling functions
537 *
538 ****************************************************************************/
539
540static void dump_dte_entry(u16 devid)
541{
542 int i;
543
544 for (i = 0; i < 4; ++i)
545 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
546 amd_iommu_dev_table[devid].data[i]);
547}
548
549static void dump_command(unsigned long phys_addr)
550{
551 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
552 int i;
553
554 for (i = 0; i < 4; ++i)
555 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
556}
557
558static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
559{
560 int type, devid, domid, flags;
561 volatile u32 *event = __evt;
562 int count = 0;
563 u64 address;
564
565retry:
566 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
567 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
568 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
569 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
570 address = (u64)(((u64)event[3]) << 32) | event[2];
571
572 if (type == 0) {
573 /* Did we hit the erratum? */
574 if (++count == LOOP_TIMEOUT) {
575 pr_err("AMD-Vi: No event written to event log\n");
576 return;
577 }
578 udelay(1);
579 goto retry;
580 }
581
582 printk(KERN_ERR "AMD-Vi: Event logged [");
583
584 switch (type) {
585 case EVENT_TYPE_ILL_DEV:
586 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
587 "address=0x%016llx flags=0x%04x]\n",
588 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
589 address, flags);
590 dump_dte_entry(devid);
591 break;
592 case EVENT_TYPE_IO_FAULT:
593 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
594 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
595 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
596 domid, address, flags);
597 break;
598 case EVENT_TYPE_DEV_TAB_ERR:
599 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
600 "address=0x%016llx flags=0x%04x]\n",
601 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
602 address, flags);
603 break;
604 case EVENT_TYPE_PAGE_TAB_ERR:
605 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
606 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
607 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
608 domid, address, flags);
609 break;
610 case EVENT_TYPE_ILL_CMD:
611 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
612 dump_command(address);
613 break;
614 case EVENT_TYPE_CMD_HARD_ERR:
615 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
616 "flags=0x%04x]\n", address, flags);
617 break;
618 case EVENT_TYPE_IOTLB_INV_TO:
619 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
620 "address=0x%016llx]\n",
621 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
622 address);
623 break;
624 case EVENT_TYPE_INV_DEV_REQ:
625 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
626 "address=0x%016llx flags=0x%04x]\n",
627 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
628 address, flags);
629 break;
630 default:
631 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
632 }
633
634 memset(__evt, 0, 4 * sizeof(u32));
635}
636
637static void iommu_poll_events(struct amd_iommu *iommu)
638{
639 u32 head, tail;
640
641 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
642 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
643
644 while (head != tail) {
645 iommu_print_event(iommu, iommu->evt_buf + head);
646 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
647 }
648
649 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
650}
651
652static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
653{
654 struct amd_iommu_fault fault;
655
656 INC_STATS_COUNTER(pri_requests);
657
658 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
659 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
660 return;
661 }
662
663 fault.address = raw[1];
664 fault.pasid = PPR_PASID(raw[0]);
665 fault.device_id = PPR_DEVID(raw[0]);
666 fault.tag = PPR_TAG(raw[0]);
667 fault.flags = PPR_FLAGS(raw[0]);
668
669 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
670}
671
672static void iommu_poll_ppr_log(struct amd_iommu *iommu)
673{
674 u32 head, tail;
675
676 if (iommu->ppr_log == NULL)
677 return;
678
679 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
680 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
681
682 while (head != tail) {
683 volatile u64 *raw;
684 u64 entry[2];
685 int i;
686
687 raw = (u64 *)(iommu->ppr_log + head);
688
689 /*
690 * Hardware bug: Interrupt may arrive before the entry is
691 * written to memory. If this happens we need to wait for the
692 * entry to arrive.
693 */
694 for (i = 0; i < LOOP_TIMEOUT; ++i) {
695 if (PPR_REQ_TYPE(raw[0]) != 0)
696 break;
697 udelay(1);
698 }
699
700 /* Avoid memcpy function-call overhead */
701 entry[0] = raw[0];
702 entry[1] = raw[1];
703
704 /*
705 * To detect the hardware bug we need to clear the entry
706 * back to zero.
707 */
708 raw[0] = raw[1] = 0UL;
709
710 /* Update head pointer of hardware ring-buffer */
711 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
712 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
713
714 /* Handle PPR entry */
715 iommu_handle_ppr_entry(iommu, entry);
716
717 /* Refresh ring-buffer information */
718 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
719 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
720 }
721}
722
723irqreturn_t amd_iommu_int_thread(int irq, void *data)
724{
725 struct amd_iommu *iommu = (struct amd_iommu *) data;
726 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
727
728 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
729 /* Enable EVT and PPR interrupts again */
730 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
731 iommu->mmio_base + MMIO_STATUS_OFFSET);
732
733 if (status & MMIO_STATUS_EVT_INT_MASK) {
734 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
735 iommu_poll_events(iommu);
736 }
737
738 if (status & MMIO_STATUS_PPR_INT_MASK) {
739 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
740 iommu_poll_ppr_log(iommu);
741 }
742
743 /*
744 * Hardware bug: ERBT1312
745 * When re-enabling interrupt (by writing 1
746 * to clear the bit), the hardware might also try to set
747 * the interrupt bit in the event status register.
748 * In this scenario, the bit will be set, and disable
749 * subsequent interrupts.
750 *
751 * Workaround: The IOMMU driver should read back the
752 * status register and check if the interrupt bits are cleared.
753 * If not, driver will need to go through the interrupt handler
754 * again and re-clear the bits
755 */
756 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
757 }
758 return IRQ_HANDLED;
759}
760
761irqreturn_t amd_iommu_int_handler(int irq, void *data)
762{
763 return IRQ_WAKE_THREAD;
764}
765
766/****************************************************************************
767 *
768 * IOMMU command queuing functions
769 *
770 ****************************************************************************/
771
772static int wait_on_sem(volatile u64 *sem)
773{
774 int i = 0;
775
776 while (*sem == 0 && i < LOOP_TIMEOUT) {
777 udelay(1);
778 i += 1;
779 }
780
781 if (i == LOOP_TIMEOUT) {
782 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
783 return -EIO;
784 }
785
786 return 0;
787}
788
789static void copy_cmd_to_buffer(struct amd_iommu *iommu,
790 struct iommu_cmd *cmd,
791 u32 tail)
792{
793 u8 *target;
794
795 target = iommu->cmd_buf + tail;
796 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
797
798 /* Copy command to buffer */
799 memcpy(target, cmd, sizeof(*cmd));
800
801 /* Tell the IOMMU about it */
802 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
803}
804
805static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
806{
807 WARN_ON(address & 0x7ULL);
808
809 memset(cmd, 0, sizeof(*cmd));
810 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
811 cmd->data[1] = upper_32_bits(__pa(address));
812 cmd->data[2] = 1;
813 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
814}
815
816static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
817{
818 memset(cmd, 0, sizeof(*cmd));
819 cmd->data[0] = devid;
820 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
821}
822
823static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
824 size_t size, u16 domid, int pde)
825{
826 u64 pages;
827 bool s;
828
829 pages = iommu_num_pages(address, size, PAGE_SIZE);
830 s = false;
831
832 if (pages > 1) {
833 /*
834 * If we have to flush more than one page, flush all
835 * TLB entries for this domain
836 */
837 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
838 s = true;
839 }
840
841 address &= PAGE_MASK;
842
843 memset(cmd, 0, sizeof(*cmd));
844 cmd->data[1] |= domid;
845 cmd->data[2] = lower_32_bits(address);
846 cmd->data[3] = upper_32_bits(address);
847 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
848 if (s) /* size bit - we flush more than one 4kb page */
849 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
850 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
851 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
852}
853
854static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
855 u64 address, size_t size)
856{
857 u64 pages;
858 bool s;
859
860 pages = iommu_num_pages(address, size, PAGE_SIZE);
861 s = false;
862
863 if (pages > 1) {
864 /*
865 * If we have to flush more than one page, flush all
866 * TLB entries for this domain
867 */
868 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
869 s = true;
870 }
871
872 address &= PAGE_MASK;
873
874 memset(cmd, 0, sizeof(*cmd));
875 cmd->data[0] = devid;
876 cmd->data[0] |= (qdep & 0xff) << 24;
877 cmd->data[1] = devid;
878 cmd->data[2] = lower_32_bits(address);
879 cmd->data[3] = upper_32_bits(address);
880 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
881 if (s)
882 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
883}
884
885static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
886 u64 address, bool size)
887{
888 memset(cmd, 0, sizeof(*cmd));
889
890 address &= ~(0xfffULL);
891
892 cmd->data[0] = pasid;
893 cmd->data[1] = domid;
894 cmd->data[2] = lower_32_bits(address);
895 cmd->data[3] = upper_32_bits(address);
896 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
897 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
898 if (size)
899 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
900 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
901}
902
903static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
904 int qdep, u64 address, bool size)
905{
906 memset(cmd, 0, sizeof(*cmd));
907
908 address &= ~(0xfffULL);
909
910 cmd->data[0] = devid;
911 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
912 cmd->data[0] |= (qdep & 0xff) << 24;
913 cmd->data[1] = devid;
914 cmd->data[1] |= (pasid & 0xff) << 16;
915 cmd->data[2] = lower_32_bits(address);
916 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
917 cmd->data[3] = upper_32_bits(address);
918 if (size)
919 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
920 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
921}
922
923static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
924 int status, int tag, bool gn)
925{
926 memset(cmd, 0, sizeof(*cmd));
927
928 cmd->data[0] = devid;
929 if (gn) {
930 cmd->data[1] = pasid;
931 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
932 }
933 cmd->data[3] = tag & 0x1ff;
934 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
935
936 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
937}
938
939static void build_inv_all(struct iommu_cmd *cmd)
940{
941 memset(cmd, 0, sizeof(*cmd));
942 CMD_SET_TYPE(cmd, CMD_INV_ALL);
943}
944
945static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
946{
947 memset(cmd, 0, sizeof(*cmd));
948 cmd->data[0] = devid;
949 CMD_SET_TYPE(cmd, CMD_INV_IRT);
950}
951
952/*
953 * Writes the command to the IOMMUs command buffer and informs the
954 * hardware about the new command.
955 */
956static int iommu_queue_command_sync(struct amd_iommu *iommu,
957 struct iommu_cmd *cmd,
958 bool sync)
959{
960 u32 left, tail, head, next_tail;
961 unsigned long flags;
962
963again:
964 spin_lock_irqsave(&iommu->lock, flags);
965
966 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
967 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
968 next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
969 left = (head - next_tail) % CMD_BUFFER_SIZE;
970
971 if (left <= 2) {
972 struct iommu_cmd sync_cmd;
973 volatile u64 sem = 0;
974 int ret;
975
976 build_completion_wait(&sync_cmd, (u64)&sem);
977 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
978
979 spin_unlock_irqrestore(&iommu->lock, flags);
980
981 if ((ret = wait_on_sem(&sem)) != 0)
982 return ret;
983
984 goto again;
985 }
986
987 copy_cmd_to_buffer(iommu, cmd, tail);
988
989 /* We need to sync now to make sure all commands are processed */
990 iommu->need_sync = sync;
991
992 spin_unlock_irqrestore(&iommu->lock, flags);
993
994 return 0;
995}
996
997static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
998{
999 return iommu_queue_command_sync(iommu, cmd, true);
1000}
1001
1002/*
1003 * This function queues a completion wait command into the command
1004 * buffer of an IOMMU
1005 */
1006static int iommu_completion_wait(struct amd_iommu *iommu)
1007{
1008 struct iommu_cmd cmd;
1009 volatile u64 sem = 0;
1010 int ret;
1011
1012 if (!iommu->need_sync)
1013 return 0;
1014
1015 build_completion_wait(&cmd, (u64)&sem);
1016
1017 ret = iommu_queue_command_sync(iommu, &cmd, false);
1018 if (ret)
1019 return ret;
1020
1021 return wait_on_sem(&sem);
1022}
1023
1024static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1025{
1026 struct iommu_cmd cmd;
1027
1028 build_inv_dte(&cmd, devid);
1029
1030 return iommu_queue_command(iommu, &cmd);
1031}
1032
1033static void iommu_flush_dte_all(struct amd_iommu *iommu)
1034{
1035 u32 devid;
1036
1037 for (devid = 0; devid <= 0xffff; ++devid)
1038 iommu_flush_dte(iommu, devid);
1039
1040 iommu_completion_wait(iommu);
1041}
1042
1043/*
1044 * This function uses heavy locking and may disable irqs for some time. But
1045 * this is no issue because it is only called during resume.
1046 */
1047static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1048{
1049 u32 dom_id;
1050
1051 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1052 struct iommu_cmd cmd;
1053 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1054 dom_id, 1);
1055 iommu_queue_command(iommu, &cmd);
1056 }
1057
1058 iommu_completion_wait(iommu);
1059}
1060
1061static void iommu_flush_all(struct amd_iommu *iommu)
1062{
1063 struct iommu_cmd cmd;
1064
1065 build_inv_all(&cmd);
1066
1067 iommu_queue_command(iommu, &cmd);
1068 iommu_completion_wait(iommu);
1069}
1070
1071static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1072{
1073 struct iommu_cmd cmd;
1074
1075 build_inv_irt(&cmd, devid);
1076
1077 iommu_queue_command(iommu, &cmd);
1078}
1079
1080static void iommu_flush_irt_all(struct amd_iommu *iommu)
1081{
1082 u32 devid;
1083
1084 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1085 iommu_flush_irt(iommu, devid);
1086
1087 iommu_completion_wait(iommu);
1088}
1089
1090void iommu_flush_all_caches(struct amd_iommu *iommu)
1091{
1092 if (iommu_feature(iommu, FEATURE_IA)) {
1093 iommu_flush_all(iommu);
1094 } else {
1095 iommu_flush_dte_all(iommu);
1096 iommu_flush_irt_all(iommu);
1097 iommu_flush_tlb_all(iommu);
1098 }
1099}
1100
1101/*
1102 * Command send function for flushing on-device TLB
1103 */
1104static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1105 u64 address, size_t size)
1106{
1107 struct amd_iommu *iommu;
1108 struct iommu_cmd cmd;
1109 int qdep;
1110
1111 qdep = dev_data->ats.qdep;
1112 iommu = amd_iommu_rlookup_table[dev_data->devid];
1113
1114 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1115
1116 return iommu_queue_command(iommu, &cmd);
1117}
1118
1119/*
1120 * Command send function for invalidating a device table entry
1121 */
1122static int device_flush_dte(struct iommu_dev_data *dev_data)
1123{
1124 struct amd_iommu *iommu;
1125 u16 alias;
1126 int ret;
1127
1128 iommu = amd_iommu_rlookup_table[dev_data->devid];
1129 alias = dev_data->alias;
1130
1131 ret = iommu_flush_dte(iommu, dev_data->devid);
1132 if (!ret && alias != dev_data->devid)
1133 ret = iommu_flush_dte(iommu, alias);
1134 if (ret)
1135 return ret;
1136
1137 if (dev_data->ats.enabled)
1138 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1139
1140 return ret;
1141}
1142
1143/*
1144 * TLB invalidation function which is called from the mapping functions.
1145 * It invalidates a single PTE if the range to flush is within a single
1146 * page. Otherwise it flushes the whole TLB of the IOMMU.
1147 */
1148static void __domain_flush_pages(struct protection_domain *domain,
1149 u64 address, size_t size, int pde)
1150{
1151 struct iommu_dev_data *dev_data;
1152 struct iommu_cmd cmd;
1153 int ret = 0, i;
1154
1155 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1156
1157 for (i = 0; i < amd_iommus_present; ++i) {
1158 if (!domain->dev_iommu[i])
1159 continue;
1160
1161 /*
1162 * Devices of this domain are behind this IOMMU
1163 * We need a TLB flush
1164 */
1165 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1166 }
1167
1168 list_for_each_entry(dev_data, &domain->dev_list, list) {
1169
1170 if (!dev_data->ats.enabled)
1171 continue;
1172
1173 ret |= device_flush_iotlb(dev_data, address, size);
1174 }
1175
1176 WARN_ON(ret);
1177}
1178
1179static void domain_flush_pages(struct protection_domain *domain,
1180 u64 address, size_t size)
1181{
1182 __domain_flush_pages(domain, address, size, 0);
1183}
1184
1185/* Flush the whole IO/TLB for a given protection domain */
1186static void domain_flush_tlb(struct protection_domain *domain)
1187{
1188 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1189}
1190
1191/* Flush the whole IO/TLB for a given protection domain - including PDE */
1192static void domain_flush_tlb_pde(struct protection_domain *domain)
1193{
1194 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1195}
1196
1197static void domain_flush_complete(struct protection_domain *domain)
1198{
1199 int i;
1200
1201 for (i = 0; i < amd_iommus_present; ++i) {
1202 if (!domain->dev_iommu[i])
1203 continue;
1204
1205 /*
1206 * Devices of this domain are behind this IOMMU
1207 * We need to wait for completion of all commands.
1208 */
1209 iommu_completion_wait(amd_iommus[i]);
1210 }
1211}
1212
1213
1214/*
1215 * This function flushes the DTEs for all devices in domain
1216 */
1217static void domain_flush_devices(struct protection_domain *domain)
1218{
1219 struct iommu_dev_data *dev_data;
1220
1221 list_for_each_entry(dev_data, &domain->dev_list, list)
1222 device_flush_dte(dev_data);
1223}
1224
1225/****************************************************************************
1226 *
1227 * The functions below are used the create the page table mappings for
1228 * unity mapped regions.
1229 *
1230 ****************************************************************************/
1231
1232/*
1233 * This function is used to add another level to an IO page table. Adding
1234 * another level increases the size of the address space by 9 bits to a size up
1235 * to 64 bits.
1236 */
1237static bool increase_address_space(struct protection_domain *domain,
1238 gfp_t gfp)
1239{
1240 u64 *pte;
1241
1242 if (domain->mode == PAGE_MODE_6_LEVEL)
1243 /* address space already 64 bit large */
1244 return false;
1245
1246 pte = (void *)get_zeroed_page(gfp);
1247 if (!pte)
1248 return false;
1249
1250 *pte = PM_LEVEL_PDE(domain->mode,
1251 virt_to_phys(domain->pt_root));
1252 domain->pt_root = pte;
1253 domain->mode += 1;
1254 domain->updated = true;
1255
1256 return true;
1257}
1258
1259static u64 *alloc_pte(struct protection_domain *domain,
1260 unsigned long address,
1261 unsigned long page_size,
1262 u64 **pte_page,
1263 gfp_t gfp)
1264{
1265 int level, end_lvl;
1266 u64 *pte, *page;
1267
1268 BUG_ON(!is_power_of_2(page_size));
1269
1270 while (address > PM_LEVEL_SIZE(domain->mode))
1271 increase_address_space(domain, gfp);
1272
1273 level = domain->mode - 1;
1274 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1275 address = PAGE_SIZE_ALIGN(address, page_size);
1276 end_lvl = PAGE_SIZE_LEVEL(page_size);
1277
1278 while (level > end_lvl) {
1279 u64 __pte, __npte;
1280
1281 __pte = *pte;
1282
1283 if (!IOMMU_PTE_PRESENT(__pte)) {
1284 page = (u64 *)get_zeroed_page(gfp);
1285 if (!page)
1286 return NULL;
1287
1288 __npte = PM_LEVEL_PDE(level, virt_to_phys(page));
1289
1290 if (cmpxchg64(pte, __pte, __npte)) {
1291 free_page((unsigned long)page);
1292 continue;
1293 }
1294 }
1295
1296 /* No level skipping support yet */
1297 if (PM_PTE_LEVEL(*pte) != level)
1298 return NULL;
1299
1300 level -= 1;
1301
1302 pte = IOMMU_PTE_PAGE(*pte);
1303
1304 if (pte_page && level == end_lvl)
1305 *pte_page = pte;
1306
1307 pte = &pte[PM_LEVEL_INDEX(level, address)];
1308 }
1309
1310 return pte;
1311}
1312
1313/*
1314 * This function checks if there is a PTE for a given dma address. If
1315 * there is one, it returns the pointer to it.
1316 */
1317static u64 *fetch_pte(struct protection_domain *domain,
1318 unsigned long address,
1319 unsigned long *page_size)
1320{
1321 int level;
1322 u64 *pte;
1323
1324 if (address > PM_LEVEL_SIZE(domain->mode))
1325 return NULL;
1326
1327 level = domain->mode - 1;
1328 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1329 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1330
1331 while (level > 0) {
1332
1333 /* Not Present */
1334 if (!IOMMU_PTE_PRESENT(*pte))
1335 return NULL;
1336
1337 /* Large PTE */
1338 if (PM_PTE_LEVEL(*pte) == 7 ||
1339 PM_PTE_LEVEL(*pte) == 0)
1340 break;
1341
1342 /* No level skipping support yet */
1343 if (PM_PTE_LEVEL(*pte) != level)
1344 return NULL;
1345
1346 level -= 1;
1347
1348 /* Walk to the next level */
1349 pte = IOMMU_PTE_PAGE(*pte);
1350 pte = &pte[PM_LEVEL_INDEX(level, address)];
1351 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1352 }
1353
1354 if (PM_PTE_LEVEL(*pte) == 0x07) {
1355 unsigned long pte_mask;
1356
1357 /*
1358 * If we have a series of large PTEs, make
1359 * sure to return a pointer to the first one.
1360 */
1361 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1362 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1363 pte = (u64 *)(((unsigned long)pte) & pte_mask);
1364 }
1365
1366 return pte;
1367}
1368
1369/*
1370 * Generic mapping functions. It maps a physical address into a DMA
1371 * address space. It allocates the page table pages if necessary.
1372 * In the future it can be extended to a generic mapping function
1373 * supporting all features of AMD IOMMU page tables like level skipping
1374 * and full 64 bit address spaces.
1375 */
1376static int iommu_map_page(struct protection_domain *dom,
1377 unsigned long bus_addr,
1378 unsigned long phys_addr,
1379 int prot,
1380 unsigned long page_size)
1381{
1382 u64 __pte, *pte;
1383 int i, count;
1384
1385 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1386 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1387
1388 if (!(prot & IOMMU_PROT_MASK))
1389 return -EINVAL;
1390
1391 count = PAGE_SIZE_PTE_COUNT(page_size);
1392 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1393
1394 if (!pte)
1395 return -ENOMEM;
1396
1397 for (i = 0; i < count; ++i)
1398 if (IOMMU_PTE_PRESENT(pte[i]))
1399 return -EBUSY;
1400
1401 if (count > 1) {
1402 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1403 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1404 } else
1405 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1406
1407 if (prot & IOMMU_PROT_IR)
1408 __pte |= IOMMU_PTE_IR;
1409 if (prot & IOMMU_PROT_IW)
1410 __pte |= IOMMU_PTE_IW;
1411
1412 for (i = 0; i < count; ++i)
1413 pte[i] = __pte;
1414
1415 update_domain(dom);
1416
1417 return 0;
1418}
1419
1420static unsigned long iommu_unmap_page(struct protection_domain *dom,
1421 unsigned long bus_addr,
1422 unsigned long page_size)
1423{
1424 unsigned long long unmapped;
1425 unsigned long unmap_size;
1426 u64 *pte;
1427
1428 BUG_ON(!is_power_of_2(page_size));
1429
1430 unmapped = 0;
1431
1432 while (unmapped < page_size) {
1433
1434 pte = fetch_pte(dom, bus_addr, &unmap_size);
1435
1436 if (pte) {
1437 int i, count;
1438
1439 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1440 for (i = 0; i < count; i++)
1441 pte[i] = 0ULL;
1442 }
1443
1444 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1445 unmapped += unmap_size;
1446 }
1447
1448 BUG_ON(unmapped && !is_power_of_2(unmapped));
1449
1450 return unmapped;
1451}
1452
1453/****************************************************************************
1454 *
1455 * The next functions belong to the address allocator for the dma_ops
1456 * interface functions. They work like the allocators in the other IOMMU
1457 * drivers. Its basically a bitmap which marks the allocated pages in
1458 * the aperture. Maybe it could be enhanced in the future to a more
1459 * efficient allocator.
1460 *
1461 ****************************************************************************/
1462
1463/*
1464 * The address allocator core functions.
1465 *
1466 * called with domain->lock held
1467 */
1468
1469/*
1470 * Used to reserve address ranges in the aperture (e.g. for exclusion
1471 * ranges.
1472 */
1473static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1474 unsigned long start_page,
1475 unsigned int pages)
1476{
1477 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1478
1479 if (start_page + pages > last_page)
1480 pages = last_page - start_page;
1481
1482 for (i = start_page; i < start_page + pages; ++i) {
1483 int index = i / APERTURE_RANGE_PAGES;
1484 int page = i % APERTURE_RANGE_PAGES;
1485 __set_bit(page, dom->aperture[index]->bitmap);
1486 }
1487}
1488
1489/*
1490 * This function is used to add a new aperture range to an existing
1491 * aperture in case of dma_ops domain allocation or address allocation
1492 * failure.
1493 */
1494static int alloc_new_range(struct dma_ops_domain *dma_dom,
1495 bool populate, gfp_t gfp)
1496{
1497 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1498 unsigned long i, old_size, pte_pgsize;
1499 struct aperture_range *range;
1500 struct amd_iommu *iommu;
1501 unsigned long flags;
1502
1503#ifdef CONFIG_IOMMU_STRESS
1504 populate = false;
1505#endif
1506
1507 if (index >= APERTURE_MAX_RANGES)
1508 return -ENOMEM;
1509
1510 range = kzalloc(sizeof(struct aperture_range), gfp);
1511 if (!range)
1512 return -ENOMEM;
1513
1514 range->bitmap = (void *)get_zeroed_page(gfp);
1515 if (!range->bitmap)
1516 goto out_free;
1517
1518 range->offset = dma_dom->aperture_size;
1519
1520 spin_lock_init(&range->bitmap_lock);
1521
1522 if (populate) {
1523 unsigned long address = dma_dom->aperture_size;
1524 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1525 u64 *pte, *pte_page;
1526
1527 for (i = 0; i < num_ptes; ++i) {
1528 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1529 &pte_page, gfp);
1530 if (!pte)
1531 goto out_free;
1532
1533 range->pte_pages[i] = pte_page;
1534
1535 address += APERTURE_RANGE_SIZE / 64;
1536 }
1537 }
1538
1539 spin_lock_irqsave(&dma_dom->domain.lock, flags);
1540
1541 /* First take the bitmap_lock and then publish the range */
1542 spin_lock(&range->bitmap_lock);
1543
1544 old_size = dma_dom->aperture_size;
1545 dma_dom->aperture[index] = range;
1546 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1547
1548 /* Reserve address range used for MSI messages */
1549 if (old_size < MSI_ADDR_BASE_LO &&
1550 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1551 unsigned long spage;
1552 int pages;
1553
1554 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1555 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1556
1557 dma_ops_reserve_addresses(dma_dom, spage, pages);
1558 }
1559
1560 /* Initialize the exclusion range if necessary */
1561 for_each_iommu(iommu) {
1562 if (iommu->exclusion_start &&
1563 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1564 && iommu->exclusion_start < dma_dom->aperture_size) {
1565 unsigned long startpage;
1566 int pages = iommu_num_pages(iommu->exclusion_start,
1567 iommu->exclusion_length,
1568 PAGE_SIZE);
1569 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1570 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1571 }
1572 }
1573
1574 /*
1575 * Check for areas already mapped as present in the new aperture
1576 * range and mark those pages as reserved in the allocator. Such
1577 * mappings may already exist as a result of requested unity
1578 * mappings for devices.
1579 */
1580 for (i = dma_dom->aperture[index]->offset;
1581 i < dma_dom->aperture_size;
1582 i += pte_pgsize) {
1583 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
1584 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1585 continue;
1586
1587 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1588 pte_pgsize >> 12);
1589 }
1590
1591 update_domain(&dma_dom->domain);
1592
1593 spin_unlock(&range->bitmap_lock);
1594
1595 spin_unlock_irqrestore(&dma_dom->domain.lock, flags);
1596
1597 return 0;
1598
1599out_free:
1600 update_domain(&dma_dom->domain);
1601
1602 free_page((unsigned long)range->bitmap);
1603
1604 kfree(range);
1605
1606 return -ENOMEM;
1607}
1608
1609static dma_addr_t dma_ops_aperture_alloc(struct dma_ops_domain *dom,
1610 struct aperture_range *range,
1611 unsigned long pages,
1612 unsigned long dma_mask,
1613 unsigned long boundary_size,
1614 unsigned long align_mask,
1615 bool trylock)
1616{
1617 unsigned long offset, limit, flags;
1618 dma_addr_t address;
1619 bool flush = false;
1620
1621 offset = range->offset >> PAGE_SHIFT;
1622 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1623 dma_mask >> PAGE_SHIFT);
1624
1625 if (trylock) {
1626 if (!spin_trylock_irqsave(&range->bitmap_lock, flags))
1627 return -1;
1628 } else {
1629 spin_lock_irqsave(&range->bitmap_lock, flags);
1630 }
1631
1632 address = iommu_area_alloc(range->bitmap, limit, range->next_bit,
1633 pages, offset, boundary_size, align_mask);
1634 if (address == -1) {
1635 /* Nothing found, retry one time */
1636 address = iommu_area_alloc(range->bitmap, limit,
1637 0, pages, offset, boundary_size,
1638 align_mask);
1639 flush = true;
1640 }
1641
1642 if (address != -1)
1643 range->next_bit = address + pages;
1644
1645 spin_unlock_irqrestore(&range->bitmap_lock, flags);
1646
1647 if (flush) {
1648 domain_flush_tlb(&dom->domain);
1649 domain_flush_complete(&dom->domain);
1650 }
1651
1652 return address;
1653}
1654
1655static unsigned long dma_ops_area_alloc(struct device *dev,
1656 struct dma_ops_domain *dom,
1657 unsigned int pages,
1658 unsigned long align_mask,
1659 u64 dma_mask)
1660{
1661 unsigned long boundary_size, mask;
1662 unsigned long address = -1;
1663 bool first = true;
1664 u32 start, i;
1665
1666 preempt_disable();
1667
1668 mask = dma_get_seg_boundary(dev);
1669
1670again:
1671 start = this_cpu_read(*dom->next_index);
1672
1673 /* Sanity check - is it really necessary? */
1674 if (unlikely(start > APERTURE_MAX_RANGES)) {
1675 start = 0;
1676 this_cpu_write(*dom->next_index, 0);
1677 }
1678
1679 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
1680 1UL << (BITS_PER_LONG - PAGE_SHIFT);
1681
1682 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1683 struct aperture_range *range;
1684 int index;
1685
1686 index = (start + i) % APERTURE_MAX_RANGES;
1687
1688 range = dom->aperture[index];
1689
1690 if (!range || range->offset >= dma_mask)
1691 continue;
1692
1693 address = dma_ops_aperture_alloc(dom, range, pages,
1694 dma_mask, boundary_size,
1695 align_mask, first);
1696 if (address != -1) {
1697 address = range->offset + (address << PAGE_SHIFT);
1698 this_cpu_write(*dom->next_index, index);
1699 break;
1700 }
1701 }
1702
1703 if (address == -1 && first) {
1704 first = false;
1705 goto again;
1706 }
1707
1708 preempt_enable();
1709
1710 return address;
1711}
1712
1713static unsigned long dma_ops_alloc_addresses(struct device *dev,
1714 struct dma_ops_domain *dom,
1715 unsigned int pages,
1716 unsigned long align_mask,
1717 u64 dma_mask)
1718{
1719 unsigned long address = -1;
1720
1721 while (address == -1) {
1722 address = dma_ops_area_alloc(dev, dom, pages,
1723 align_mask, dma_mask);
1724
1725 if (address == -1 && alloc_new_range(dom, false, GFP_ATOMIC))
1726 break;
1727 }
1728
1729 if (unlikely(address == -1))
1730 address = DMA_ERROR_CODE;
1731
1732 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1733
1734 return address;
1735}
1736
1737/*
1738 * The address free function.
1739 *
1740 * called with domain->lock held
1741 */
1742static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1743 unsigned long address,
1744 unsigned int pages)
1745{
1746 unsigned i = address >> APERTURE_RANGE_SHIFT;
1747 struct aperture_range *range = dom->aperture[i];
1748 unsigned long flags;
1749
1750 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1751
1752#ifdef CONFIG_IOMMU_STRESS
1753 if (i < 4)
1754 return;
1755#endif
1756
1757 if (amd_iommu_unmap_flush) {
1758 domain_flush_tlb(&dom->domain);
1759 domain_flush_complete(&dom->domain);
1760 }
1761
1762 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1763
1764 spin_lock_irqsave(&range->bitmap_lock, flags);
1765 if (address + pages > range->next_bit)
1766 range->next_bit = address + pages;
1767 bitmap_clear(range->bitmap, address, pages);
1768 spin_unlock_irqrestore(&range->bitmap_lock, flags);
1769
1770}
1771
1772/****************************************************************************
1773 *
1774 * The next functions belong to the domain allocation. A domain is
1775 * allocated for every IOMMU as the default domain. If device isolation
1776 * is enabled, every device get its own domain. The most important thing
1777 * about domains is the page table mapping the DMA address space they
1778 * contain.
1779 *
1780 ****************************************************************************/
1781
1782/*
1783 * This function adds a protection domain to the global protection domain list
1784 */
1785static void add_domain_to_list(struct protection_domain *domain)
1786{
1787 unsigned long flags;
1788
1789 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1790 list_add(&domain->list, &amd_iommu_pd_list);
1791 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1792}
1793
1794/*
1795 * This function removes a protection domain to the global
1796 * protection domain list
1797 */
1798static void del_domain_from_list(struct protection_domain *domain)
1799{
1800 unsigned long flags;
1801
1802 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1803 list_del(&domain->list);
1804 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1805}
1806
1807static u16 domain_id_alloc(void)
1808{
1809 unsigned long flags;
1810 int id;
1811
1812 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1813 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1814 BUG_ON(id == 0);
1815 if (id > 0 && id < MAX_DOMAIN_ID)
1816 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1817 else
1818 id = 0;
1819 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1820
1821 return id;
1822}
1823
1824static void domain_id_free(int id)
1825{
1826 unsigned long flags;
1827
1828 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1829 if (id > 0 && id < MAX_DOMAIN_ID)
1830 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1831 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1832}
1833
1834#define DEFINE_FREE_PT_FN(LVL, FN) \
1835static void free_pt_##LVL (unsigned long __pt) \
1836{ \
1837 unsigned long p; \
1838 u64 *pt; \
1839 int i; \
1840 \
1841 pt = (u64 *)__pt; \
1842 \
1843 for (i = 0; i < 512; ++i) { \
1844 /* PTE present? */ \
1845 if (!IOMMU_PTE_PRESENT(pt[i])) \
1846 continue; \
1847 \
1848 /* Large PTE? */ \
1849 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1850 PM_PTE_LEVEL(pt[i]) == 7) \
1851 continue; \
1852 \
1853 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1854 FN(p); \
1855 } \
1856 free_page((unsigned long)pt); \
1857}
1858
1859DEFINE_FREE_PT_FN(l2, free_page)
1860DEFINE_FREE_PT_FN(l3, free_pt_l2)
1861DEFINE_FREE_PT_FN(l4, free_pt_l3)
1862DEFINE_FREE_PT_FN(l5, free_pt_l4)
1863DEFINE_FREE_PT_FN(l6, free_pt_l5)
1864
1865static void free_pagetable(struct protection_domain *domain)
1866{
1867 unsigned long root = (unsigned long)domain->pt_root;
1868
1869 switch (domain->mode) {
1870 case PAGE_MODE_NONE:
1871 break;
1872 case PAGE_MODE_1_LEVEL:
1873 free_page(root);
1874 break;
1875 case PAGE_MODE_2_LEVEL:
1876 free_pt_l2(root);
1877 break;
1878 case PAGE_MODE_3_LEVEL:
1879 free_pt_l3(root);
1880 break;
1881 case PAGE_MODE_4_LEVEL:
1882 free_pt_l4(root);
1883 break;
1884 case PAGE_MODE_5_LEVEL:
1885 free_pt_l5(root);
1886 break;
1887 case PAGE_MODE_6_LEVEL:
1888 free_pt_l6(root);
1889 break;
1890 default:
1891 BUG();
1892 }
1893}
1894
1895static void free_gcr3_tbl_level1(u64 *tbl)
1896{
1897 u64 *ptr;
1898 int i;
1899
1900 for (i = 0; i < 512; ++i) {
1901 if (!(tbl[i] & GCR3_VALID))
1902 continue;
1903
1904 ptr = __va(tbl[i] & PAGE_MASK);
1905
1906 free_page((unsigned long)ptr);
1907 }
1908}
1909
1910static void free_gcr3_tbl_level2(u64 *tbl)
1911{
1912 u64 *ptr;
1913 int i;
1914
1915 for (i = 0; i < 512; ++i) {
1916 if (!(tbl[i] & GCR3_VALID))
1917 continue;
1918
1919 ptr = __va(tbl[i] & PAGE_MASK);
1920
1921 free_gcr3_tbl_level1(ptr);
1922 }
1923}
1924
1925static void free_gcr3_table(struct protection_domain *domain)
1926{
1927 if (domain->glx == 2)
1928 free_gcr3_tbl_level2(domain->gcr3_tbl);
1929 else if (domain->glx == 1)
1930 free_gcr3_tbl_level1(domain->gcr3_tbl);
1931 else
1932 BUG_ON(domain->glx != 0);
1933
1934 free_page((unsigned long)domain->gcr3_tbl);
1935}
1936
1937/*
1938 * Free a domain, only used if something went wrong in the
1939 * allocation path and we need to free an already allocated page table
1940 */
1941static void dma_ops_domain_free(struct dma_ops_domain *dom)
1942{
1943 int i;
1944
1945 if (!dom)
1946 return;
1947
1948 free_percpu(dom->next_index);
1949
1950 del_domain_from_list(&dom->domain);
1951
1952 free_pagetable(&dom->domain);
1953
1954 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1955 if (!dom->aperture[i])
1956 continue;
1957 free_page((unsigned long)dom->aperture[i]->bitmap);
1958 kfree(dom->aperture[i]);
1959 }
1960
1961 kfree(dom);
1962}
1963
1964static int dma_ops_domain_alloc_apertures(struct dma_ops_domain *dma_dom,
1965 int max_apertures)
1966{
1967 int ret, i, apertures;
1968
1969 apertures = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1970 ret = 0;
1971
1972 for (i = apertures; i < max_apertures; ++i) {
1973 ret = alloc_new_range(dma_dom, false, GFP_KERNEL);
1974 if (ret)
1975 break;
1976 }
1977
1978 return ret;
1979}
1980
1981/*
1982 * Allocates a new protection domain usable for the dma_ops functions.
1983 * It also initializes the page table and the address allocator data
1984 * structures required for the dma_ops interface
1985 */
1986static struct dma_ops_domain *dma_ops_domain_alloc(void)
1987{
1988 struct dma_ops_domain *dma_dom;
1989 int cpu;
1990
1991 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1992 if (!dma_dom)
1993 return NULL;
1994
1995 if (protection_domain_init(&dma_dom->domain))
1996 goto free_dma_dom;
1997
1998 dma_dom->next_index = alloc_percpu(u32);
1999 if (!dma_dom->next_index)
2000 goto free_dma_dom;
2001
2002 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2003 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2004 dma_dom->domain.flags = PD_DMA_OPS_MASK;
2005 dma_dom->domain.priv = dma_dom;
2006 if (!dma_dom->domain.pt_root)
2007 goto free_dma_dom;
2008
2009 add_domain_to_list(&dma_dom->domain);
2010
2011 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2012 goto free_dma_dom;
2013
2014 /*
2015 * mark the first page as allocated so we never return 0 as
2016 * a valid dma-address. So we can use 0 as error value
2017 */
2018 dma_dom->aperture[0]->bitmap[0] = 1;
2019
2020 for_each_possible_cpu(cpu)
2021 *per_cpu_ptr(dma_dom->next_index, cpu) = 0;
2022
2023 return dma_dom;
2024
2025free_dma_dom:
2026 dma_ops_domain_free(dma_dom);
2027
2028 return NULL;
2029}
2030
2031/*
2032 * little helper function to check whether a given protection domain is a
2033 * dma_ops domain
2034 */
2035static bool dma_ops_domain(struct protection_domain *domain)
2036{
2037 return domain->flags & PD_DMA_OPS_MASK;
2038}
2039
2040static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2041{
2042 u64 pte_root = 0;
2043 u64 flags = 0;
2044
2045 if (domain->mode != PAGE_MODE_NONE)
2046 pte_root = virt_to_phys(domain->pt_root);
2047
2048 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2049 << DEV_ENTRY_MODE_SHIFT;
2050 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2051
2052 flags = amd_iommu_dev_table[devid].data[1];
2053
2054 if (ats)
2055 flags |= DTE_FLAG_IOTLB;
2056
2057 if (domain->flags & PD_IOMMUV2_MASK) {
2058 u64 gcr3 = __pa(domain->gcr3_tbl);
2059 u64 glx = domain->glx;
2060 u64 tmp;
2061
2062 pte_root |= DTE_FLAG_GV;
2063 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2064
2065 /* First mask out possible old values for GCR3 table */
2066 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2067 flags &= ~tmp;
2068
2069 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2070 flags &= ~tmp;
2071
2072 /* Encode GCR3 table into DTE */
2073 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2074 pte_root |= tmp;
2075
2076 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2077 flags |= tmp;
2078
2079 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2080 flags |= tmp;
2081 }
2082
2083 flags &= ~(0xffffUL);
2084 flags |= domain->id;
2085
2086 amd_iommu_dev_table[devid].data[1] = flags;
2087 amd_iommu_dev_table[devid].data[0] = pte_root;
2088}
2089
2090static void clear_dte_entry(u16 devid)
2091{
2092 /* remove entry from the device table seen by the hardware */
2093 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2094 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
2095
2096 amd_iommu_apply_erratum_63(devid);
2097}
2098
2099static void do_attach(struct iommu_dev_data *dev_data,
2100 struct protection_domain *domain)
2101{
2102 struct amd_iommu *iommu;
2103 u16 alias;
2104 bool ats;
2105
2106 iommu = amd_iommu_rlookup_table[dev_data->devid];
2107 alias = dev_data->alias;
2108 ats = dev_data->ats.enabled;
2109
2110 /* Update data structures */
2111 dev_data->domain = domain;
2112 list_add(&dev_data->list, &domain->dev_list);
2113
2114 /* Do reference counting */
2115 domain->dev_iommu[iommu->index] += 1;
2116 domain->dev_cnt += 1;
2117
2118 /* Update device table */
2119 set_dte_entry(dev_data->devid, domain, ats);
2120 if (alias != dev_data->devid)
2121 set_dte_entry(alias, domain, ats);
2122
2123 device_flush_dte(dev_data);
2124}
2125
2126static void do_detach(struct iommu_dev_data *dev_data)
2127{
2128 struct amd_iommu *iommu;
2129 u16 alias;
2130
2131 /*
2132 * First check if the device is still attached. It might already
2133 * be detached from its domain because the generic
2134 * iommu_detach_group code detached it and we try again here in
2135 * our alias handling.
2136 */
2137 if (!dev_data->domain)
2138 return;
2139
2140 iommu = amd_iommu_rlookup_table[dev_data->devid];
2141 alias = dev_data->alias;
2142
2143 /* decrease reference counters */
2144 dev_data->domain->dev_iommu[iommu->index] -= 1;
2145 dev_data->domain->dev_cnt -= 1;
2146
2147 /* Update data structures */
2148 dev_data->domain = NULL;
2149 list_del(&dev_data->list);
2150 clear_dte_entry(dev_data->devid);
2151 if (alias != dev_data->devid)
2152 clear_dte_entry(alias);
2153
2154 /* Flush the DTE entry */
2155 device_flush_dte(dev_data);
2156}
2157
2158/*
2159 * If a device is not yet associated with a domain, this function does
2160 * assigns it visible for the hardware
2161 */
2162static int __attach_device(struct iommu_dev_data *dev_data,
2163 struct protection_domain *domain)
2164{
2165 int ret;
2166
2167 /*
2168 * Must be called with IRQs disabled. Warn here to detect early
2169 * when its not.
2170 */
2171 WARN_ON(!irqs_disabled());
2172
2173 /* lock domain */
2174 spin_lock(&domain->lock);
2175
2176 ret = -EBUSY;
2177 if (dev_data->domain != NULL)
2178 goto out_unlock;
2179
2180 /* Attach alias group root */
2181 do_attach(dev_data, domain);
2182
2183 ret = 0;
2184
2185out_unlock:
2186
2187 /* ready */
2188 spin_unlock(&domain->lock);
2189
2190 return ret;
2191}
2192
2193
2194static void pdev_iommuv2_disable(struct pci_dev *pdev)
2195{
2196 pci_disable_ats(pdev);
2197 pci_disable_pri(pdev);
2198 pci_disable_pasid(pdev);
2199}
2200
2201/* FIXME: Change generic reset-function to do the same */
2202static int pri_reset_while_enabled(struct pci_dev *pdev)
2203{
2204 u16 control;
2205 int pos;
2206
2207 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2208 if (!pos)
2209 return -EINVAL;
2210
2211 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2212 control |= PCI_PRI_CTRL_RESET;
2213 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2214
2215 return 0;
2216}
2217
2218static int pdev_iommuv2_enable(struct pci_dev *pdev)
2219{
2220 bool reset_enable;
2221 int reqs, ret;
2222
2223 /* FIXME: Hardcode number of outstanding requests for now */
2224 reqs = 32;
2225 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2226 reqs = 1;
2227 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2228
2229 /* Only allow access to user-accessible pages */
2230 ret = pci_enable_pasid(pdev, 0);
2231 if (ret)
2232 goto out_err;
2233
2234 /* First reset the PRI state of the device */
2235 ret = pci_reset_pri(pdev);
2236 if (ret)
2237 goto out_err;
2238
2239 /* Enable PRI */
2240 ret = pci_enable_pri(pdev, reqs);
2241 if (ret)
2242 goto out_err;
2243
2244 if (reset_enable) {
2245 ret = pri_reset_while_enabled(pdev);
2246 if (ret)
2247 goto out_err;
2248 }
2249
2250 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2251 if (ret)
2252 goto out_err;
2253
2254 return 0;
2255
2256out_err:
2257 pci_disable_pri(pdev);
2258 pci_disable_pasid(pdev);
2259
2260 return ret;
2261}
2262
2263/* FIXME: Move this to PCI code */
2264#define PCI_PRI_TLP_OFF (1 << 15)
2265
2266static bool pci_pri_tlp_required(struct pci_dev *pdev)
2267{
2268 u16 status;
2269 int pos;
2270
2271 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2272 if (!pos)
2273 return false;
2274
2275 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2276
2277 return (status & PCI_PRI_TLP_OFF) ? true : false;
2278}
2279
2280/*
2281 * If a device is not yet associated with a domain, this function
2282 * assigns it visible for the hardware
2283 */
2284static int attach_device(struct device *dev,
2285 struct protection_domain *domain)
2286{
2287 struct pci_dev *pdev = to_pci_dev(dev);
2288 struct iommu_dev_data *dev_data;
2289 unsigned long flags;
2290 int ret;
2291
2292 dev_data = get_dev_data(dev);
2293
2294 if (domain->flags & PD_IOMMUV2_MASK) {
2295 if (!dev_data->passthrough)
2296 return -EINVAL;
2297
2298 if (dev_data->iommu_v2) {
2299 if (pdev_iommuv2_enable(pdev) != 0)
2300 return -EINVAL;
2301
2302 dev_data->ats.enabled = true;
2303 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2304 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2305 }
2306 } else if (amd_iommu_iotlb_sup &&
2307 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2308 dev_data->ats.enabled = true;
2309 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2310 }
2311
2312 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2313 ret = __attach_device(dev_data, domain);
2314 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2315
2316 /*
2317 * We might boot into a crash-kernel here. The crashed kernel
2318 * left the caches in the IOMMU dirty. So we have to flush
2319 * here to evict all dirty stuff.
2320 */
2321 domain_flush_tlb_pde(domain);
2322
2323 return ret;
2324}
2325
2326/*
2327 * Removes a device from a protection domain (unlocked)
2328 */
2329static void __detach_device(struct iommu_dev_data *dev_data)
2330{
2331 struct protection_domain *domain;
2332
2333 /*
2334 * Must be called with IRQs disabled. Warn here to detect early
2335 * when its not.
2336 */
2337 WARN_ON(!irqs_disabled());
2338
2339 if (WARN_ON(!dev_data->domain))
2340 return;
2341
2342 domain = dev_data->domain;
2343
2344 spin_lock(&domain->lock);
2345
2346 do_detach(dev_data);
2347
2348 spin_unlock(&domain->lock);
2349}
2350
2351/*
2352 * Removes a device from a protection domain (with devtable_lock held)
2353 */
2354static void detach_device(struct device *dev)
2355{
2356 struct protection_domain *domain;
2357 struct iommu_dev_data *dev_data;
2358 unsigned long flags;
2359
2360 dev_data = get_dev_data(dev);
2361 domain = dev_data->domain;
2362
2363 /* lock device table */
2364 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2365 __detach_device(dev_data);
2366 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2367
2368 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
2369 pdev_iommuv2_disable(to_pci_dev(dev));
2370 else if (dev_data->ats.enabled)
2371 pci_disable_ats(to_pci_dev(dev));
2372
2373 dev_data->ats.enabled = false;
2374}
2375
2376static int amd_iommu_add_device(struct device *dev)
2377{
2378 struct iommu_dev_data *dev_data;
2379 struct iommu_domain *domain;
2380 struct amd_iommu *iommu;
2381 u16 devid;
2382 int ret;
2383
2384 if (!check_device(dev) || get_dev_data(dev))
2385 return 0;
2386
2387 devid = get_device_id(dev);
2388 iommu = amd_iommu_rlookup_table[devid];
2389
2390 ret = iommu_init_device(dev);
2391 if (ret) {
2392 if (ret != -ENOTSUPP)
2393 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2394 dev_name(dev));
2395
2396 iommu_ignore_device(dev);
2397 dev->archdata.dma_ops = &nommu_dma_ops;
2398 goto out;
2399 }
2400 init_iommu_group(dev);
2401
2402 dev_data = get_dev_data(dev);
2403
2404 BUG_ON(!dev_data);
2405
2406 if (iommu_pass_through || dev_data->iommu_v2)
2407 iommu_request_dm_for_dev(dev);
2408
2409 /* Domains are initialized for this device - have a look what we ended up with */
2410 domain = iommu_get_domain_for_dev(dev);
2411 if (domain->type == IOMMU_DOMAIN_IDENTITY)
2412 dev_data->passthrough = true;
2413 else
2414 dev->archdata.dma_ops = &amd_iommu_dma_ops;
2415
2416out:
2417 iommu_completion_wait(iommu);
2418
2419 return 0;
2420}
2421
2422static void amd_iommu_remove_device(struct device *dev)
2423{
2424 struct amd_iommu *iommu;
2425 u16 devid;
2426
2427 if (!check_device(dev))
2428 return;
2429
2430 devid = get_device_id(dev);
2431 iommu = amd_iommu_rlookup_table[devid];
2432
2433 iommu_uninit_device(dev);
2434 iommu_completion_wait(iommu);
2435}
2436
2437/*****************************************************************************
2438 *
2439 * The next functions belong to the dma_ops mapping/unmapping code.
2440 *
2441 *****************************************************************************/
2442
2443/*
2444 * In the dma_ops path we only have the struct device. This function
2445 * finds the corresponding IOMMU, the protection domain and the
2446 * requestor id for a given device.
2447 * If the device is not yet associated with a domain this is also done
2448 * in this function.
2449 */
2450static struct protection_domain *get_domain(struct device *dev)
2451{
2452 struct protection_domain *domain;
2453 struct iommu_domain *io_domain;
2454
2455 if (!check_device(dev))
2456 return ERR_PTR(-EINVAL);
2457
2458 io_domain = iommu_get_domain_for_dev(dev);
2459 if (!io_domain)
2460 return NULL;
2461
2462 domain = to_pdomain(io_domain);
2463 if (!dma_ops_domain(domain))
2464 return ERR_PTR(-EBUSY);
2465
2466 return domain;
2467}
2468
2469static void update_device_table(struct protection_domain *domain)
2470{
2471 struct iommu_dev_data *dev_data;
2472
2473 list_for_each_entry(dev_data, &domain->dev_list, list)
2474 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2475}
2476
2477static void update_domain(struct protection_domain *domain)
2478{
2479 if (!domain->updated)
2480 return;
2481
2482 update_device_table(domain);
2483
2484 domain_flush_devices(domain);
2485 domain_flush_tlb_pde(domain);
2486
2487 domain->updated = false;
2488}
2489
2490/*
2491 * This function fetches the PTE for a given address in the aperture
2492 */
2493static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2494 unsigned long address)
2495{
2496 struct aperture_range *aperture;
2497 u64 *pte, *pte_page;
2498
2499 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2500 if (!aperture)
2501 return NULL;
2502
2503 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2504 if (!pte) {
2505 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2506 GFP_ATOMIC);
2507 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2508 } else
2509 pte += PM_LEVEL_INDEX(0, address);
2510
2511 update_domain(&dom->domain);
2512
2513 return pte;
2514}
2515
2516/*
2517 * This is the generic map function. It maps one 4kb page at paddr to
2518 * the given address in the DMA address space for the domain.
2519 */
2520static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2521 unsigned long address,
2522 phys_addr_t paddr,
2523 int direction)
2524{
2525 u64 *pte, __pte;
2526
2527 WARN_ON(address > dom->aperture_size);
2528
2529 paddr &= PAGE_MASK;
2530
2531 pte = dma_ops_get_pte(dom, address);
2532 if (!pte)
2533 return DMA_ERROR_CODE;
2534
2535 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2536
2537 if (direction == DMA_TO_DEVICE)
2538 __pte |= IOMMU_PTE_IR;
2539 else if (direction == DMA_FROM_DEVICE)
2540 __pte |= IOMMU_PTE_IW;
2541 else if (direction == DMA_BIDIRECTIONAL)
2542 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2543
2544 WARN_ON_ONCE(*pte);
2545
2546 *pte = __pte;
2547
2548 return (dma_addr_t)address;
2549}
2550
2551/*
2552 * The generic unmapping function for on page in the DMA address space.
2553 */
2554static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2555 unsigned long address)
2556{
2557 struct aperture_range *aperture;
2558 u64 *pte;
2559
2560 if (address >= dom->aperture_size)
2561 return;
2562
2563 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2564 if (!aperture)
2565 return;
2566
2567 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2568 if (!pte)
2569 return;
2570
2571 pte += PM_LEVEL_INDEX(0, address);
2572
2573 WARN_ON_ONCE(!*pte);
2574
2575 *pte = 0ULL;
2576}
2577
2578/*
2579 * This function contains common code for mapping of a physically
2580 * contiguous memory region into DMA address space. It is used by all
2581 * mapping functions provided with this IOMMU driver.
2582 * Must be called with the domain lock held.
2583 */
2584static dma_addr_t __map_single(struct device *dev,
2585 struct dma_ops_domain *dma_dom,
2586 phys_addr_t paddr,
2587 size_t size,
2588 int dir,
2589 bool align,
2590 u64 dma_mask)
2591{
2592 dma_addr_t offset = paddr & ~PAGE_MASK;
2593 dma_addr_t address, start, ret;
2594 unsigned int pages;
2595 unsigned long align_mask = 0;
2596 int i;
2597
2598 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2599 paddr &= PAGE_MASK;
2600
2601 INC_STATS_COUNTER(total_map_requests);
2602
2603 if (pages > 1)
2604 INC_STATS_COUNTER(cross_page);
2605
2606 if (align)
2607 align_mask = (1UL << get_order(size)) - 1;
2608
2609 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2610 dma_mask);
2611
2612 if (address == DMA_ERROR_CODE)
2613 goto out;
2614
2615 start = address;
2616 for (i = 0; i < pages; ++i) {
2617 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2618 if (ret == DMA_ERROR_CODE)
2619 goto out_unmap;
2620
2621 paddr += PAGE_SIZE;
2622 start += PAGE_SIZE;
2623 }
2624 address += offset;
2625
2626 ADD_STATS_COUNTER(alloced_io_mem, size);
2627
2628 if (unlikely(amd_iommu_np_cache)) {
2629 domain_flush_pages(&dma_dom->domain, address, size);
2630 domain_flush_complete(&dma_dom->domain);
2631 }
2632
2633out:
2634 return address;
2635
2636out_unmap:
2637
2638 for (--i; i >= 0; --i) {
2639 start -= PAGE_SIZE;
2640 dma_ops_domain_unmap(dma_dom, start);
2641 }
2642
2643 dma_ops_free_addresses(dma_dom, address, pages);
2644
2645 return DMA_ERROR_CODE;
2646}
2647
2648/*
2649 * Does the reverse of the __map_single function. Must be called with
2650 * the domain lock held too
2651 */
2652static void __unmap_single(struct dma_ops_domain *dma_dom,
2653 dma_addr_t dma_addr,
2654 size_t size,
2655 int dir)
2656{
2657 dma_addr_t flush_addr;
2658 dma_addr_t i, start;
2659 unsigned int pages;
2660
2661 if ((dma_addr == DMA_ERROR_CODE) ||
2662 (dma_addr + size > dma_dom->aperture_size))
2663 return;
2664
2665 flush_addr = dma_addr;
2666 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2667 dma_addr &= PAGE_MASK;
2668 start = dma_addr;
2669
2670 for (i = 0; i < pages; ++i) {
2671 dma_ops_domain_unmap(dma_dom, start);
2672 start += PAGE_SIZE;
2673 }
2674
2675 SUB_STATS_COUNTER(alloced_io_mem, size);
2676
2677 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2678}
2679
2680/*
2681 * The exported map_single function for dma_ops.
2682 */
2683static dma_addr_t map_page(struct device *dev, struct page *page,
2684 unsigned long offset, size_t size,
2685 enum dma_data_direction dir,
2686 struct dma_attrs *attrs)
2687{
2688 phys_addr_t paddr = page_to_phys(page) + offset;
2689 struct protection_domain *domain;
2690 u64 dma_mask;
2691
2692 INC_STATS_COUNTER(cnt_map_single);
2693
2694 domain = get_domain(dev);
2695 if (PTR_ERR(domain) == -EINVAL)
2696 return (dma_addr_t)paddr;
2697 else if (IS_ERR(domain))
2698 return DMA_ERROR_CODE;
2699
2700 dma_mask = *dev->dma_mask;
2701
2702 return __map_single(dev, domain->priv, paddr, size, dir, false,
2703 dma_mask);
2704}
2705
2706/*
2707 * The exported unmap_single function for dma_ops.
2708 */
2709static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2710 enum dma_data_direction dir, struct dma_attrs *attrs)
2711{
2712 struct protection_domain *domain;
2713
2714 INC_STATS_COUNTER(cnt_unmap_single);
2715
2716 domain = get_domain(dev);
2717 if (IS_ERR(domain))
2718 return;
2719
2720 __unmap_single(domain->priv, dma_addr, size, dir);
2721}
2722
2723/*
2724 * The exported map_sg function for dma_ops (handles scatter-gather
2725 * lists).
2726 */
2727static int map_sg(struct device *dev, struct scatterlist *sglist,
2728 int nelems, enum dma_data_direction dir,
2729 struct dma_attrs *attrs)
2730{
2731 struct protection_domain *domain;
2732 int i;
2733 struct scatterlist *s;
2734 phys_addr_t paddr;
2735 int mapped_elems = 0;
2736 u64 dma_mask;
2737
2738 INC_STATS_COUNTER(cnt_map_sg);
2739
2740 domain = get_domain(dev);
2741 if (IS_ERR(domain))
2742 return 0;
2743
2744 dma_mask = *dev->dma_mask;
2745
2746 for_each_sg(sglist, s, nelems, i) {
2747 paddr = sg_phys(s);
2748
2749 s->dma_address = __map_single(dev, domain->priv,
2750 paddr, s->length, dir, false,
2751 dma_mask);
2752
2753 if (s->dma_address) {
2754 s->dma_length = s->length;
2755 mapped_elems++;
2756 } else
2757 goto unmap;
2758 }
2759
2760 return mapped_elems;
2761
2762unmap:
2763 for_each_sg(sglist, s, mapped_elems, i) {
2764 if (s->dma_address)
2765 __unmap_single(domain->priv, s->dma_address,
2766 s->dma_length, dir);
2767 s->dma_address = s->dma_length = 0;
2768 }
2769
2770 return 0;
2771}
2772
2773/*
2774 * The exported map_sg function for dma_ops (handles scatter-gather
2775 * lists).
2776 */
2777static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2778 int nelems, enum dma_data_direction dir,
2779 struct dma_attrs *attrs)
2780{
2781 struct protection_domain *domain;
2782 struct scatterlist *s;
2783 int i;
2784
2785 INC_STATS_COUNTER(cnt_unmap_sg);
2786
2787 domain = get_domain(dev);
2788 if (IS_ERR(domain))
2789 return;
2790
2791 for_each_sg(sglist, s, nelems, i) {
2792 __unmap_single(domain->priv, s->dma_address,
2793 s->dma_length, dir);
2794 s->dma_address = s->dma_length = 0;
2795 }
2796}
2797
2798/*
2799 * The exported alloc_coherent function for dma_ops.
2800 */
2801static void *alloc_coherent(struct device *dev, size_t size,
2802 dma_addr_t *dma_addr, gfp_t flag,
2803 struct dma_attrs *attrs)
2804{
2805 u64 dma_mask = dev->coherent_dma_mask;
2806 struct protection_domain *domain;
2807 struct page *page;
2808
2809 INC_STATS_COUNTER(cnt_alloc_coherent);
2810
2811 domain = get_domain(dev);
2812 if (PTR_ERR(domain) == -EINVAL) {
2813 page = alloc_pages(flag, get_order(size));
2814 *dma_addr = page_to_phys(page);
2815 return page_address(page);
2816 } else if (IS_ERR(domain))
2817 return NULL;
2818
2819 size = PAGE_ALIGN(size);
2820 dma_mask = dev->coherent_dma_mask;
2821 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2822 flag |= __GFP_ZERO;
2823
2824 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2825 if (!page) {
2826 if (!gfpflags_allow_blocking(flag))
2827 return NULL;
2828
2829 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2830 get_order(size));
2831 if (!page)
2832 return NULL;
2833 }
2834
2835 if (!dma_mask)
2836 dma_mask = *dev->dma_mask;
2837
2838 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
2839 size, DMA_BIDIRECTIONAL, true, dma_mask);
2840
2841 if (*dma_addr == DMA_ERROR_CODE)
2842 goto out_free;
2843
2844 return page_address(page);
2845
2846out_free:
2847
2848 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2849 __free_pages(page, get_order(size));
2850
2851 return NULL;
2852}
2853
2854/*
2855 * The exported free_coherent function for dma_ops.
2856 */
2857static void free_coherent(struct device *dev, size_t size,
2858 void *virt_addr, dma_addr_t dma_addr,
2859 struct dma_attrs *attrs)
2860{
2861 struct protection_domain *domain;
2862 struct page *page;
2863
2864 INC_STATS_COUNTER(cnt_free_coherent);
2865
2866 page = virt_to_page(virt_addr);
2867 size = PAGE_ALIGN(size);
2868
2869 domain = get_domain(dev);
2870 if (IS_ERR(domain))
2871 goto free_mem;
2872
2873 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2874
2875free_mem:
2876 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2877 __free_pages(page, get_order(size));
2878}
2879
2880/*
2881 * This function is called by the DMA layer to find out if we can handle a
2882 * particular device. It is part of the dma_ops.
2883 */
2884static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2885{
2886 return check_device(dev);
2887}
2888
2889static int set_dma_mask(struct device *dev, u64 mask)
2890{
2891 struct protection_domain *domain;
2892 int max_apertures = 1;
2893
2894 domain = get_domain(dev);
2895 if (IS_ERR(domain))
2896 return PTR_ERR(domain);
2897
2898 if (mask == DMA_BIT_MASK(64))
2899 max_apertures = 8;
2900 else if (mask > DMA_BIT_MASK(32))
2901 max_apertures = 4;
2902
2903 /*
2904 * To prevent lock contention it doesn't make sense to allocate more
2905 * apertures than online cpus
2906 */
2907 if (max_apertures > num_online_cpus())
2908 max_apertures = num_online_cpus();
2909
2910 if (dma_ops_domain_alloc_apertures(domain->priv, max_apertures))
2911 dev_err(dev, "Can't allocate %d iommu apertures\n",
2912 max_apertures);
2913
2914 return 0;
2915}
2916
2917static struct dma_map_ops amd_iommu_dma_ops = {
2918 .alloc = alloc_coherent,
2919 .free = free_coherent,
2920 .map_page = map_page,
2921 .unmap_page = unmap_page,
2922 .map_sg = map_sg,
2923 .unmap_sg = unmap_sg,
2924 .dma_supported = amd_iommu_dma_supported,
2925 .set_dma_mask = set_dma_mask,
2926};
2927
2928int __init amd_iommu_init_api(void)
2929{
2930 return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2931}
2932
2933int __init amd_iommu_init_dma_ops(void)
2934{
2935 swiotlb = iommu_pass_through ? 1 : 0;
2936 iommu_detected = 1;
2937
2938 /*
2939 * In case we don't initialize SWIOTLB (actually the common case
2940 * when AMD IOMMU is enabled), make sure there are global
2941 * dma_ops set as a fall-back for devices not handled by this
2942 * driver (for example non-PCI devices).
2943 */
2944 if (!swiotlb)
2945 dma_ops = &nommu_dma_ops;
2946
2947 amd_iommu_stats_init();
2948
2949 if (amd_iommu_unmap_flush)
2950 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2951 else
2952 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2953
2954 return 0;
2955}
2956
2957/*****************************************************************************
2958 *
2959 * The following functions belong to the exported interface of AMD IOMMU
2960 *
2961 * This interface allows access to lower level functions of the IOMMU
2962 * like protection domain handling and assignement of devices to domains
2963 * which is not possible with the dma_ops interface.
2964 *
2965 *****************************************************************************/
2966
2967static void cleanup_domain(struct protection_domain *domain)
2968{
2969 struct iommu_dev_data *entry;
2970 unsigned long flags;
2971
2972 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2973
2974 while (!list_empty(&domain->dev_list)) {
2975 entry = list_first_entry(&domain->dev_list,
2976 struct iommu_dev_data, list);
2977 __detach_device(entry);
2978 }
2979
2980 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2981}
2982
2983static void protection_domain_free(struct protection_domain *domain)
2984{
2985 if (!domain)
2986 return;
2987
2988 del_domain_from_list(domain);
2989
2990 if (domain->id)
2991 domain_id_free(domain->id);
2992
2993 kfree(domain);
2994}
2995
2996static int protection_domain_init(struct protection_domain *domain)
2997{
2998 spin_lock_init(&domain->lock);
2999 mutex_init(&domain->api_lock);
3000 domain->id = domain_id_alloc();
3001 if (!domain->id)
3002 return -ENOMEM;
3003 INIT_LIST_HEAD(&domain->dev_list);
3004
3005 return 0;
3006}
3007
3008static struct protection_domain *protection_domain_alloc(void)
3009{
3010 struct protection_domain *domain;
3011
3012 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3013 if (!domain)
3014 return NULL;
3015
3016 if (protection_domain_init(domain))
3017 goto out_err;
3018
3019 add_domain_to_list(domain);
3020
3021 return domain;
3022
3023out_err:
3024 kfree(domain);
3025
3026 return NULL;
3027}
3028
3029static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
3030{
3031 struct protection_domain *pdomain;
3032 struct dma_ops_domain *dma_domain;
3033
3034 switch (type) {
3035 case IOMMU_DOMAIN_UNMANAGED:
3036 pdomain = protection_domain_alloc();
3037 if (!pdomain)
3038 return NULL;
3039
3040 pdomain->mode = PAGE_MODE_3_LEVEL;
3041 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3042 if (!pdomain->pt_root) {
3043 protection_domain_free(pdomain);
3044 return NULL;
3045 }
3046
3047 pdomain->domain.geometry.aperture_start = 0;
3048 pdomain->domain.geometry.aperture_end = ~0ULL;
3049 pdomain->domain.geometry.force_aperture = true;
3050
3051 break;
3052 case IOMMU_DOMAIN_DMA:
3053 dma_domain = dma_ops_domain_alloc();
3054 if (!dma_domain) {
3055 pr_err("AMD-Vi: Failed to allocate\n");
3056 return NULL;
3057 }
3058 pdomain = &dma_domain->domain;
3059 break;
3060 case IOMMU_DOMAIN_IDENTITY:
3061 pdomain = protection_domain_alloc();
3062 if (!pdomain)
3063 return NULL;
3064
3065 pdomain->mode = PAGE_MODE_NONE;
3066 break;
3067 default:
3068 return NULL;
3069 }
3070
3071 return &pdomain->domain;
3072}
3073
3074static void amd_iommu_domain_free(struct iommu_domain *dom)
3075{
3076 struct protection_domain *domain;
3077
3078 if (!dom)
3079 return;
3080
3081 domain = to_pdomain(dom);
3082
3083 if (domain->dev_cnt > 0)
3084 cleanup_domain(domain);
3085
3086 BUG_ON(domain->dev_cnt != 0);
3087
3088 if (domain->mode != PAGE_MODE_NONE)
3089 free_pagetable(domain);
3090
3091 if (domain->flags & PD_IOMMUV2_MASK)
3092 free_gcr3_table(domain);
3093
3094 protection_domain_free(domain);
3095}
3096
3097static void amd_iommu_detach_device(struct iommu_domain *dom,
3098 struct device *dev)
3099{
3100 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3101 struct amd_iommu *iommu;
3102 u16 devid;
3103
3104 if (!check_device(dev))
3105 return;
3106
3107 devid = get_device_id(dev);
3108
3109 if (dev_data->domain != NULL)
3110 detach_device(dev);
3111
3112 iommu = amd_iommu_rlookup_table[devid];
3113 if (!iommu)
3114 return;
3115
3116 iommu_completion_wait(iommu);
3117}
3118
3119static int amd_iommu_attach_device(struct iommu_domain *dom,
3120 struct device *dev)
3121{
3122 struct protection_domain *domain = to_pdomain(dom);
3123 struct iommu_dev_data *dev_data;
3124 struct amd_iommu *iommu;
3125 int ret;
3126
3127 if (!check_device(dev))
3128 return -EINVAL;
3129
3130 dev_data = dev->archdata.iommu;
3131
3132 iommu = amd_iommu_rlookup_table[dev_data->devid];
3133 if (!iommu)
3134 return -EINVAL;
3135
3136 if (dev_data->domain)
3137 detach_device(dev);
3138
3139 ret = attach_device(dev, domain);
3140
3141 iommu_completion_wait(iommu);
3142
3143 return ret;
3144}
3145
3146static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3147 phys_addr_t paddr, size_t page_size, int iommu_prot)
3148{
3149 struct protection_domain *domain = to_pdomain(dom);
3150 int prot = 0;
3151 int ret;
3152
3153 if (domain->mode == PAGE_MODE_NONE)
3154 return -EINVAL;
3155
3156 if (iommu_prot & IOMMU_READ)
3157 prot |= IOMMU_PROT_IR;
3158 if (iommu_prot & IOMMU_WRITE)
3159 prot |= IOMMU_PROT_IW;
3160
3161 mutex_lock(&domain->api_lock);
3162 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3163 mutex_unlock(&domain->api_lock);
3164
3165 return ret;
3166}
3167
3168static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3169 size_t page_size)
3170{
3171 struct protection_domain *domain = to_pdomain(dom);
3172 size_t unmap_size;
3173
3174 if (domain->mode == PAGE_MODE_NONE)
3175 return -EINVAL;
3176
3177 mutex_lock(&domain->api_lock);
3178 unmap_size = iommu_unmap_page(domain, iova, page_size);
3179 mutex_unlock(&domain->api_lock);
3180
3181 domain_flush_tlb_pde(domain);
3182
3183 return unmap_size;
3184}
3185
3186static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3187 dma_addr_t iova)
3188{
3189 struct protection_domain *domain = to_pdomain(dom);
3190 unsigned long offset_mask, pte_pgsize;
3191 u64 *pte, __pte;
3192
3193 if (domain->mode == PAGE_MODE_NONE)
3194 return iova;
3195
3196 pte = fetch_pte(domain, iova, &pte_pgsize);
3197
3198 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3199 return 0;
3200
3201 offset_mask = pte_pgsize - 1;
3202 __pte = *pte & PM_ADDR_MASK;
3203
3204 return (__pte & ~offset_mask) | (iova & offset_mask);
3205}
3206
3207static bool amd_iommu_capable(enum iommu_cap cap)
3208{
3209 switch (cap) {
3210 case IOMMU_CAP_CACHE_COHERENCY:
3211 return true;
3212 case IOMMU_CAP_INTR_REMAP:
3213 return (irq_remapping_enabled == 1);
3214 case IOMMU_CAP_NOEXEC:
3215 return false;
3216 }
3217
3218 return false;
3219}
3220
3221static void amd_iommu_get_dm_regions(struct device *dev,
3222 struct list_head *head)
3223{
3224 struct unity_map_entry *entry;
3225 u16 devid;
3226
3227 devid = get_device_id(dev);
3228
3229 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3230 struct iommu_dm_region *region;
3231
3232 if (devid < entry->devid_start || devid > entry->devid_end)
3233 continue;
3234
3235 region = kzalloc(sizeof(*region), GFP_KERNEL);
3236 if (!region) {
3237 pr_err("Out of memory allocating dm-regions for %s\n",
3238 dev_name(dev));
3239 return;
3240 }
3241
3242 region->start = entry->address_start;
3243 region->length = entry->address_end - entry->address_start;
3244 if (entry->prot & IOMMU_PROT_IR)
3245 region->prot |= IOMMU_READ;
3246 if (entry->prot & IOMMU_PROT_IW)
3247 region->prot |= IOMMU_WRITE;
3248
3249 list_add_tail(®ion->list, head);
3250 }
3251}
3252
3253static void amd_iommu_put_dm_regions(struct device *dev,
3254 struct list_head *head)
3255{
3256 struct iommu_dm_region *entry, *next;
3257
3258 list_for_each_entry_safe(entry, next, head, list)
3259 kfree(entry);
3260}
3261
3262static const struct iommu_ops amd_iommu_ops = {
3263 .capable = amd_iommu_capable,
3264 .domain_alloc = amd_iommu_domain_alloc,
3265 .domain_free = amd_iommu_domain_free,
3266 .attach_dev = amd_iommu_attach_device,
3267 .detach_dev = amd_iommu_detach_device,
3268 .map = amd_iommu_map,
3269 .unmap = amd_iommu_unmap,
3270 .map_sg = default_iommu_map_sg,
3271 .iova_to_phys = amd_iommu_iova_to_phys,
3272 .add_device = amd_iommu_add_device,
3273 .remove_device = amd_iommu_remove_device,
3274 .device_group = pci_device_group,
3275 .get_dm_regions = amd_iommu_get_dm_regions,
3276 .put_dm_regions = amd_iommu_put_dm_regions,
3277 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3278};
3279
3280/*****************************************************************************
3281 *
3282 * The next functions do a basic initialization of IOMMU for pass through
3283 * mode
3284 *
3285 * In passthrough mode the IOMMU is initialized and enabled but not used for
3286 * DMA-API translation.
3287 *
3288 *****************************************************************************/
3289
3290/* IOMMUv2 specific functions */
3291int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3292{
3293 return atomic_notifier_chain_register(&ppr_notifier, nb);
3294}
3295EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3296
3297int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3298{
3299 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3300}
3301EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3302
3303void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3304{
3305 struct protection_domain *domain = to_pdomain(dom);
3306 unsigned long flags;
3307
3308 spin_lock_irqsave(&domain->lock, flags);
3309
3310 /* Update data structure */
3311 domain->mode = PAGE_MODE_NONE;
3312 domain->updated = true;
3313
3314 /* Make changes visible to IOMMUs */
3315 update_domain(domain);
3316
3317 /* Page-table is not visible to IOMMU anymore, so free it */
3318 free_pagetable(domain);
3319
3320 spin_unlock_irqrestore(&domain->lock, flags);
3321}
3322EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3323
3324int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3325{
3326 struct protection_domain *domain = to_pdomain(dom);
3327 unsigned long flags;
3328 int levels, ret;
3329
3330 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3331 return -EINVAL;
3332
3333 /* Number of GCR3 table levels required */
3334 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3335 levels += 1;
3336
3337 if (levels > amd_iommu_max_glx_val)
3338 return -EINVAL;
3339
3340 spin_lock_irqsave(&domain->lock, flags);
3341
3342 /*
3343 * Save us all sanity checks whether devices already in the
3344 * domain support IOMMUv2. Just force that the domain has no
3345 * devices attached when it is switched into IOMMUv2 mode.
3346 */
3347 ret = -EBUSY;
3348 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3349 goto out;
3350
3351 ret = -ENOMEM;
3352 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3353 if (domain->gcr3_tbl == NULL)
3354 goto out;
3355
3356 domain->glx = levels;
3357 domain->flags |= PD_IOMMUV2_MASK;
3358 domain->updated = true;
3359
3360 update_domain(domain);
3361
3362 ret = 0;
3363
3364out:
3365 spin_unlock_irqrestore(&domain->lock, flags);
3366
3367 return ret;
3368}
3369EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3370
3371static int __flush_pasid(struct protection_domain *domain, int pasid,
3372 u64 address, bool size)
3373{
3374 struct iommu_dev_data *dev_data;
3375 struct iommu_cmd cmd;
3376 int i, ret;
3377
3378 if (!(domain->flags & PD_IOMMUV2_MASK))
3379 return -EINVAL;
3380
3381 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3382
3383 /*
3384 * IOMMU TLB needs to be flushed before Device TLB to
3385 * prevent device TLB refill from IOMMU TLB
3386 */
3387 for (i = 0; i < amd_iommus_present; ++i) {
3388 if (domain->dev_iommu[i] == 0)
3389 continue;
3390
3391 ret = iommu_queue_command(amd_iommus[i], &cmd);
3392 if (ret != 0)
3393 goto out;
3394 }
3395
3396 /* Wait until IOMMU TLB flushes are complete */
3397 domain_flush_complete(domain);
3398
3399 /* Now flush device TLBs */
3400 list_for_each_entry(dev_data, &domain->dev_list, list) {
3401 struct amd_iommu *iommu;
3402 int qdep;
3403
3404 /*
3405 There might be non-IOMMUv2 capable devices in an IOMMUv2
3406 * domain.
3407 */
3408 if (!dev_data->ats.enabled)
3409 continue;
3410
3411 qdep = dev_data->ats.qdep;
3412 iommu = amd_iommu_rlookup_table[dev_data->devid];
3413
3414 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3415 qdep, address, size);
3416
3417 ret = iommu_queue_command(iommu, &cmd);
3418 if (ret != 0)
3419 goto out;
3420 }
3421
3422 /* Wait until all device TLBs are flushed */
3423 domain_flush_complete(domain);
3424
3425 ret = 0;
3426
3427out:
3428
3429 return ret;
3430}
3431
3432static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3433 u64 address)
3434{
3435 INC_STATS_COUNTER(invalidate_iotlb);
3436
3437 return __flush_pasid(domain, pasid, address, false);
3438}
3439
3440int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3441 u64 address)
3442{
3443 struct protection_domain *domain = to_pdomain(dom);
3444 unsigned long flags;
3445 int ret;
3446
3447 spin_lock_irqsave(&domain->lock, flags);
3448 ret = __amd_iommu_flush_page(domain, pasid, address);
3449 spin_unlock_irqrestore(&domain->lock, flags);
3450
3451 return ret;
3452}
3453EXPORT_SYMBOL(amd_iommu_flush_page);
3454
3455static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3456{
3457 INC_STATS_COUNTER(invalidate_iotlb_all);
3458
3459 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3460 true);
3461}
3462
3463int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3464{
3465 struct protection_domain *domain = to_pdomain(dom);
3466 unsigned long flags;
3467 int ret;
3468
3469 spin_lock_irqsave(&domain->lock, flags);
3470 ret = __amd_iommu_flush_tlb(domain, pasid);
3471 spin_unlock_irqrestore(&domain->lock, flags);
3472
3473 return ret;
3474}
3475EXPORT_SYMBOL(amd_iommu_flush_tlb);
3476
3477static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3478{
3479 int index;
3480 u64 *pte;
3481
3482 while (true) {
3483
3484 index = (pasid >> (9 * level)) & 0x1ff;
3485 pte = &root[index];
3486
3487 if (level == 0)
3488 break;
3489
3490 if (!(*pte & GCR3_VALID)) {
3491 if (!alloc)
3492 return NULL;
3493
3494 root = (void *)get_zeroed_page(GFP_ATOMIC);
3495 if (root == NULL)
3496 return NULL;
3497
3498 *pte = __pa(root) | GCR3_VALID;
3499 }
3500
3501 root = __va(*pte & PAGE_MASK);
3502
3503 level -= 1;
3504 }
3505
3506 return pte;
3507}
3508
3509static int __set_gcr3(struct protection_domain *domain, int pasid,
3510 unsigned long cr3)
3511{
3512 u64 *pte;
3513
3514 if (domain->mode != PAGE_MODE_NONE)
3515 return -EINVAL;
3516
3517 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3518 if (pte == NULL)
3519 return -ENOMEM;
3520
3521 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3522
3523 return __amd_iommu_flush_tlb(domain, pasid);
3524}
3525
3526static int __clear_gcr3(struct protection_domain *domain, int pasid)
3527{
3528 u64 *pte;
3529
3530 if (domain->mode != PAGE_MODE_NONE)
3531 return -EINVAL;
3532
3533 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3534 if (pte == NULL)
3535 return 0;
3536
3537 *pte = 0;
3538
3539 return __amd_iommu_flush_tlb(domain, pasid);
3540}
3541
3542int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3543 unsigned long cr3)
3544{
3545 struct protection_domain *domain = to_pdomain(dom);
3546 unsigned long flags;
3547 int ret;
3548
3549 spin_lock_irqsave(&domain->lock, flags);
3550 ret = __set_gcr3(domain, pasid, cr3);
3551 spin_unlock_irqrestore(&domain->lock, flags);
3552
3553 return ret;
3554}
3555EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3556
3557int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3558{
3559 struct protection_domain *domain = to_pdomain(dom);
3560 unsigned long flags;
3561 int ret;
3562
3563 spin_lock_irqsave(&domain->lock, flags);
3564 ret = __clear_gcr3(domain, pasid);
3565 spin_unlock_irqrestore(&domain->lock, flags);
3566
3567 return ret;
3568}
3569EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3570
3571int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3572 int status, int tag)
3573{
3574 struct iommu_dev_data *dev_data;
3575 struct amd_iommu *iommu;
3576 struct iommu_cmd cmd;
3577
3578 INC_STATS_COUNTER(complete_ppr);
3579
3580 dev_data = get_dev_data(&pdev->dev);
3581 iommu = amd_iommu_rlookup_table[dev_data->devid];
3582
3583 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3584 tag, dev_data->pri_tlp);
3585
3586 return iommu_queue_command(iommu, &cmd);
3587}
3588EXPORT_SYMBOL(amd_iommu_complete_ppr);
3589
3590struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3591{
3592 struct protection_domain *pdomain;
3593
3594 pdomain = get_domain(&pdev->dev);
3595 if (IS_ERR(pdomain))
3596 return NULL;
3597
3598 /* Only return IOMMUv2 domains */
3599 if (!(pdomain->flags & PD_IOMMUV2_MASK))
3600 return NULL;
3601
3602 return &pdomain->domain;
3603}
3604EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3605
3606void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3607{
3608 struct iommu_dev_data *dev_data;
3609
3610 if (!amd_iommu_v2_supported())
3611 return;
3612
3613 dev_data = get_dev_data(&pdev->dev);
3614 dev_data->errata |= (1 << erratum);
3615}
3616EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3617
3618int amd_iommu_device_info(struct pci_dev *pdev,
3619 struct amd_iommu_device_info *info)
3620{
3621 int max_pasids;
3622 int pos;
3623
3624 if (pdev == NULL || info == NULL)
3625 return -EINVAL;
3626
3627 if (!amd_iommu_v2_supported())
3628 return -EINVAL;
3629
3630 memset(info, 0, sizeof(*info));
3631
3632 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3633 if (pos)
3634 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3635
3636 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3637 if (pos)
3638 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3639
3640 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3641 if (pos) {
3642 int features;
3643
3644 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3645 max_pasids = min(max_pasids, (1 << 20));
3646
3647 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3648 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3649
3650 features = pci_pasid_features(pdev);
3651 if (features & PCI_PASID_CAP_EXEC)
3652 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3653 if (features & PCI_PASID_CAP_PRIV)
3654 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3655 }
3656
3657 return 0;
3658}
3659EXPORT_SYMBOL(amd_iommu_device_info);
3660
3661#ifdef CONFIG_IRQ_REMAP
3662
3663/*****************************************************************************
3664 *
3665 * Interrupt Remapping Implementation
3666 *
3667 *****************************************************************************/
3668
3669union irte {
3670 u32 val;
3671 struct {
3672 u32 valid : 1,
3673 no_fault : 1,
3674 int_type : 3,
3675 rq_eoi : 1,
3676 dm : 1,
3677 rsvd_1 : 1,
3678 destination : 8,
3679 vector : 8,
3680 rsvd_2 : 8;
3681 } fields;
3682};
3683
3684struct irq_2_irte {
3685 u16 devid; /* Device ID for IRTE table */
3686 u16 index; /* Index into IRTE table*/
3687};
3688
3689struct amd_ir_data {
3690 struct irq_2_irte irq_2_irte;
3691 union irte irte_entry;
3692 union {
3693 struct msi_msg msi_entry;
3694 };
3695};
3696
3697static struct irq_chip amd_ir_chip;
3698
3699#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3700#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3701#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3702#define DTE_IRQ_REMAP_ENABLE 1ULL
3703
3704static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3705{
3706 u64 dte;
3707
3708 dte = amd_iommu_dev_table[devid].data[2];
3709 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3710 dte |= virt_to_phys(table->table);
3711 dte |= DTE_IRQ_REMAP_INTCTL;
3712 dte |= DTE_IRQ_TABLE_LEN;
3713 dte |= DTE_IRQ_REMAP_ENABLE;
3714
3715 amd_iommu_dev_table[devid].data[2] = dte;
3716}
3717
3718#define IRTE_ALLOCATED (~1U)
3719
3720static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3721{
3722 struct irq_remap_table *table = NULL;
3723 struct amd_iommu *iommu;
3724 unsigned long flags;
3725 u16 alias;
3726
3727 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3728
3729 iommu = amd_iommu_rlookup_table[devid];
3730 if (!iommu)
3731 goto out_unlock;
3732
3733 table = irq_lookup_table[devid];
3734 if (table)
3735 goto out;
3736
3737 alias = amd_iommu_alias_table[devid];
3738 table = irq_lookup_table[alias];
3739 if (table) {
3740 irq_lookup_table[devid] = table;
3741 set_dte_irq_entry(devid, table);
3742 iommu_flush_dte(iommu, devid);
3743 goto out;
3744 }
3745
3746 /* Nothing there yet, allocate new irq remapping table */
3747 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3748 if (!table)
3749 goto out;
3750
3751 /* Initialize table spin-lock */
3752 spin_lock_init(&table->lock);
3753
3754 if (ioapic)
3755 /* Keep the first 32 indexes free for IOAPIC interrupts */
3756 table->min_index = 32;
3757
3758 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3759 if (!table->table) {
3760 kfree(table);
3761 table = NULL;
3762 goto out;
3763 }
3764
3765 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3766
3767 if (ioapic) {
3768 int i;
3769
3770 for (i = 0; i < 32; ++i)
3771 table->table[i] = IRTE_ALLOCATED;
3772 }
3773
3774 irq_lookup_table[devid] = table;
3775 set_dte_irq_entry(devid, table);
3776 iommu_flush_dte(iommu, devid);
3777 if (devid != alias) {
3778 irq_lookup_table[alias] = table;
3779 set_dte_irq_entry(alias, table);
3780 iommu_flush_dte(iommu, alias);
3781 }
3782
3783out:
3784 iommu_completion_wait(iommu);
3785
3786out_unlock:
3787 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3788
3789 return table;
3790}
3791
3792static int alloc_irq_index(u16 devid, int count)
3793{
3794 struct irq_remap_table *table;
3795 unsigned long flags;
3796 int index, c;
3797
3798 table = get_irq_table(devid, false);
3799 if (!table)
3800 return -ENODEV;
3801
3802 spin_lock_irqsave(&table->lock, flags);
3803
3804 /* Scan table for free entries */
3805 for (c = 0, index = table->min_index;
3806 index < MAX_IRQS_PER_TABLE;
3807 ++index) {
3808 if (table->table[index] == 0)
3809 c += 1;
3810 else
3811 c = 0;
3812
3813 if (c == count) {
3814 for (; c != 0; --c)
3815 table->table[index - c + 1] = IRTE_ALLOCATED;
3816
3817 index -= count - 1;
3818 goto out;
3819 }
3820 }
3821
3822 index = -ENOSPC;
3823
3824out:
3825 spin_unlock_irqrestore(&table->lock, flags);
3826
3827 return index;
3828}
3829
3830static int modify_irte(u16 devid, int index, union irte irte)
3831{
3832 struct irq_remap_table *table;
3833 struct amd_iommu *iommu;
3834 unsigned long flags;
3835
3836 iommu = amd_iommu_rlookup_table[devid];
3837 if (iommu == NULL)
3838 return -EINVAL;
3839
3840 table = get_irq_table(devid, false);
3841 if (!table)
3842 return -ENOMEM;
3843
3844 spin_lock_irqsave(&table->lock, flags);
3845 table->table[index] = irte.val;
3846 spin_unlock_irqrestore(&table->lock, flags);
3847
3848 iommu_flush_irt(iommu, devid);
3849 iommu_completion_wait(iommu);
3850
3851 return 0;
3852}
3853
3854static void free_irte(u16 devid, int index)
3855{
3856 struct irq_remap_table *table;
3857 struct amd_iommu *iommu;
3858 unsigned long flags;
3859
3860 iommu = amd_iommu_rlookup_table[devid];
3861 if (iommu == NULL)
3862 return;
3863
3864 table = get_irq_table(devid, false);
3865 if (!table)
3866 return;
3867
3868 spin_lock_irqsave(&table->lock, flags);
3869 table->table[index] = 0;
3870 spin_unlock_irqrestore(&table->lock, flags);
3871
3872 iommu_flush_irt(iommu, devid);
3873 iommu_completion_wait(iommu);
3874}
3875
3876static int get_devid(struct irq_alloc_info *info)
3877{
3878 int devid = -1;
3879
3880 switch (info->type) {
3881 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3882 devid = get_ioapic_devid(info->ioapic_id);
3883 break;
3884 case X86_IRQ_ALLOC_TYPE_HPET:
3885 devid = get_hpet_devid(info->hpet_id);
3886 break;
3887 case X86_IRQ_ALLOC_TYPE_MSI:
3888 case X86_IRQ_ALLOC_TYPE_MSIX:
3889 devid = get_device_id(&info->msi_dev->dev);
3890 break;
3891 default:
3892 BUG_ON(1);
3893 break;
3894 }
3895
3896 return devid;
3897}
3898
3899static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3900{
3901 struct amd_iommu *iommu;
3902 int devid;
3903
3904 if (!info)
3905 return NULL;
3906
3907 devid = get_devid(info);
3908 if (devid >= 0) {
3909 iommu = amd_iommu_rlookup_table[devid];
3910 if (iommu)
3911 return iommu->ir_domain;
3912 }
3913
3914 return NULL;
3915}
3916
3917static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
3918{
3919 struct amd_iommu *iommu;
3920 int devid;
3921
3922 if (!info)
3923 return NULL;
3924
3925 switch (info->type) {
3926 case X86_IRQ_ALLOC_TYPE_MSI:
3927 case X86_IRQ_ALLOC_TYPE_MSIX:
3928 devid = get_device_id(&info->msi_dev->dev);
3929 iommu = amd_iommu_rlookup_table[devid];
3930 if (iommu)
3931 return iommu->msi_domain;
3932 break;
3933 default:
3934 break;
3935 }
3936
3937 return NULL;
3938}
3939
3940struct irq_remap_ops amd_iommu_irq_ops = {
3941 .prepare = amd_iommu_prepare,
3942 .enable = amd_iommu_enable,
3943 .disable = amd_iommu_disable,
3944 .reenable = amd_iommu_reenable,
3945 .enable_faulting = amd_iommu_enable_faulting,
3946 .get_ir_irq_domain = get_ir_irq_domain,
3947 .get_irq_domain = get_irq_domain,
3948};
3949
3950static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3951 struct irq_cfg *irq_cfg,
3952 struct irq_alloc_info *info,
3953 int devid, int index, int sub_handle)
3954{
3955 struct irq_2_irte *irte_info = &data->irq_2_irte;
3956 struct msi_msg *msg = &data->msi_entry;
3957 union irte *irte = &data->irte_entry;
3958 struct IO_APIC_route_entry *entry;
3959
3960 data->irq_2_irte.devid = devid;
3961 data->irq_2_irte.index = index + sub_handle;
3962
3963 /* Setup IRTE for IOMMU */
3964 irte->val = 0;
3965 irte->fields.vector = irq_cfg->vector;
3966 irte->fields.int_type = apic->irq_delivery_mode;
3967 irte->fields.destination = irq_cfg->dest_apicid;
3968 irte->fields.dm = apic->irq_dest_mode;
3969 irte->fields.valid = 1;
3970
3971 switch (info->type) {
3972 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3973 /* Setup IOAPIC entry */
3974 entry = info->ioapic_entry;
3975 info->ioapic_entry = NULL;
3976 memset(entry, 0, sizeof(*entry));
3977 entry->vector = index;
3978 entry->mask = 0;
3979 entry->trigger = info->ioapic_trigger;
3980 entry->polarity = info->ioapic_polarity;
3981 /* Mask level triggered irqs. */
3982 if (info->ioapic_trigger)
3983 entry->mask = 1;
3984 break;
3985
3986 case X86_IRQ_ALLOC_TYPE_HPET:
3987 case X86_IRQ_ALLOC_TYPE_MSI:
3988 case X86_IRQ_ALLOC_TYPE_MSIX:
3989 msg->address_hi = MSI_ADDR_BASE_HI;
3990 msg->address_lo = MSI_ADDR_BASE_LO;
3991 msg->data = irte_info->index;
3992 break;
3993
3994 default:
3995 BUG_ON(1);
3996 break;
3997 }
3998}
3999
4000static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
4001 unsigned int nr_irqs, void *arg)
4002{
4003 struct irq_alloc_info *info = arg;
4004 struct irq_data *irq_data;
4005 struct amd_ir_data *data;
4006 struct irq_cfg *cfg;
4007 int i, ret, devid;
4008 int index = -1;
4009
4010 if (!info)
4011 return -EINVAL;
4012 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
4013 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
4014 return -EINVAL;
4015
4016 /*
4017 * With IRQ remapping enabled, don't need contiguous CPU vectors
4018 * to support multiple MSI interrupts.
4019 */
4020 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
4021 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
4022
4023 devid = get_devid(info);
4024 if (devid < 0)
4025 return -EINVAL;
4026
4027 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
4028 if (ret < 0)
4029 return ret;
4030
4031 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
4032 if (get_irq_table(devid, true))
4033 index = info->ioapic_pin;
4034 else
4035 ret = -ENOMEM;
4036 } else {
4037 index = alloc_irq_index(devid, nr_irqs);
4038 }
4039 if (index < 0) {
4040 pr_warn("Failed to allocate IRTE\n");
4041 goto out_free_parent;
4042 }
4043
4044 for (i = 0; i < nr_irqs; i++) {
4045 irq_data = irq_domain_get_irq_data(domain, virq + i);
4046 cfg = irqd_cfg(irq_data);
4047 if (!irq_data || !cfg) {
4048 ret = -EINVAL;
4049 goto out_free_data;
4050 }
4051
4052 ret = -ENOMEM;
4053 data = kzalloc(sizeof(*data), GFP_KERNEL);
4054 if (!data)
4055 goto out_free_data;
4056
4057 irq_data->hwirq = (devid << 16) + i;
4058 irq_data->chip_data = data;
4059 irq_data->chip = &amd_ir_chip;
4060 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
4061 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
4062 }
4063
4064 return 0;
4065
4066out_free_data:
4067 for (i--; i >= 0; i--) {
4068 irq_data = irq_domain_get_irq_data(domain, virq + i);
4069 if (irq_data)
4070 kfree(irq_data->chip_data);
4071 }
4072 for (i = 0; i < nr_irqs; i++)
4073 free_irte(devid, index + i);
4074out_free_parent:
4075 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4076 return ret;
4077}
4078
4079static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
4080 unsigned int nr_irqs)
4081{
4082 struct irq_2_irte *irte_info;
4083 struct irq_data *irq_data;
4084 struct amd_ir_data *data;
4085 int i;
4086
4087 for (i = 0; i < nr_irqs; i++) {
4088 irq_data = irq_domain_get_irq_data(domain, virq + i);
4089 if (irq_data && irq_data->chip_data) {
4090 data = irq_data->chip_data;
4091 irte_info = &data->irq_2_irte;
4092 free_irte(irte_info->devid, irte_info->index);
4093 kfree(data);
4094 }
4095 }
4096 irq_domain_free_irqs_common(domain, virq, nr_irqs);
4097}
4098
4099static void irq_remapping_activate(struct irq_domain *domain,
4100 struct irq_data *irq_data)
4101{
4102 struct amd_ir_data *data = irq_data->chip_data;
4103 struct irq_2_irte *irte_info = &data->irq_2_irte;
4104
4105 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4106}
4107
4108static void irq_remapping_deactivate(struct irq_domain *domain,
4109 struct irq_data *irq_data)
4110{
4111 struct amd_ir_data *data = irq_data->chip_data;
4112 struct irq_2_irte *irte_info = &data->irq_2_irte;
4113 union irte entry;
4114
4115 entry.val = 0;
4116 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
4117}
4118
4119static struct irq_domain_ops amd_ir_domain_ops = {
4120 .alloc = irq_remapping_alloc,
4121 .free = irq_remapping_free,
4122 .activate = irq_remapping_activate,
4123 .deactivate = irq_remapping_deactivate,
4124};
4125
4126static int amd_ir_set_affinity(struct irq_data *data,
4127 const struct cpumask *mask, bool force)
4128{
4129 struct amd_ir_data *ir_data = data->chip_data;
4130 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
4131 struct irq_cfg *cfg = irqd_cfg(data);
4132 struct irq_data *parent = data->parent_data;
4133 int ret;
4134
4135 ret = parent->chip->irq_set_affinity(parent, mask, force);
4136 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
4137 return ret;
4138
4139 /*
4140 * Atomically updates the IRTE with the new destination, vector
4141 * and flushes the interrupt entry cache.
4142 */
4143 ir_data->irte_entry.fields.vector = cfg->vector;
4144 ir_data->irte_entry.fields.destination = cfg->dest_apicid;
4145 modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
4146
4147 /*
4148 * After this point, all the interrupts will start arriving
4149 * at the new destination. So, time to cleanup the previous
4150 * vector allocation.
4151 */
4152 send_cleanup_vector(cfg);
4153
4154 return IRQ_SET_MASK_OK_DONE;
4155}
4156
4157static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
4158{
4159 struct amd_ir_data *ir_data = irq_data->chip_data;
4160
4161 *msg = ir_data->msi_entry;
4162}
4163
4164static struct irq_chip amd_ir_chip = {
4165 .irq_ack = ir_ack_apic_edge,
4166 .irq_set_affinity = amd_ir_set_affinity,
4167 .irq_compose_msi_msg = ir_compose_msi_msg,
4168};
4169
4170int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4171{
4172 iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
4173 if (!iommu->ir_domain)
4174 return -ENOMEM;
4175
4176 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4177 iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
4178
4179 return 0;
4180}
4181#endif
1/*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/pci-ats.h>
22#include <linux/bitmap.h>
23#include <linux/slab.h>
24#include <linux/debugfs.h>
25#include <linux/scatterlist.h>
26#include <linux/dma-mapping.h>
27#include <linux/iommu-helper.h>
28#include <linux/iommu.h>
29#include <linux/delay.h>
30#include <linux/amd-iommu.h>
31#include <asm/msidef.h>
32#include <asm/proto.h>
33#include <asm/iommu.h>
34#include <asm/gart.h>
35#include <asm/dma.h>
36
37#include "amd_iommu_proto.h"
38#include "amd_iommu_types.h"
39
40#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
41
42#define LOOP_TIMEOUT 100000
43
44static DEFINE_RWLOCK(amd_iommu_devtable_lock);
45
46/* A list of preallocated protection domains */
47static LIST_HEAD(iommu_pd_list);
48static DEFINE_SPINLOCK(iommu_pd_list_lock);
49
50/* List of all available dev_data structures */
51static LIST_HEAD(dev_data_list);
52static DEFINE_SPINLOCK(dev_data_list_lock);
53
54/*
55 * Domain for untranslated devices - only allocated
56 * if iommu=pt passed on kernel cmd line.
57 */
58static struct protection_domain *pt_domain;
59
60static struct iommu_ops amd_iommu_ops;
61
62/*
63 * general struct to manage commands send to an IOMMU
64 */
65struct iommu_cmd {
66 u32 data[4];
67};
68
69static void update_domain(struct protection_domain *domain);
70
71/****************************************************************************
72 *
73 * Helper functions
74 *
75 ****************************************************************************/
76
77static struct iommu_dev_data *alloc_dev_data(u16 devid)
78{
79 struct iommu_dev_data *dev_data;
80 unsigned long flags;
81
82 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
83 if (!dev_data)
84 return NULL;
85
86 dev_data->devid = devid;
87 atomic_set(&dev_data->bind, 0);
88
89 spin_lock_irqsave(&dev_data_list_lock, flags);
90 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
91 spin_unlock_irqrestore(&dev_data_list_lock, flags);
92
93 return dev_data;
94}
95
96static void free_dev_data(struct iommu_dev_data *dev_data)
97{
98 unsigned long flags;
99
100 spin_lock_irqsave(&dev_data_list_lock, flags);
101 list_del(&dev_data->dev_data_list);
102 spin_unlock_irqrestore(&dev_data_list_lock, flags);
103
104 kfree(dev_data);
105}
106
107static struct iommu_dev_data *search_dev_data(u16 devid)
108{
109 struct iommu_dev_data *dev_data;
110 unsigned long flags;
111
112 spin_lock_irqsave(&dev_data_list_lock, flags);
113 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
114 if (dev_data->devid == devid)
115 goto out_unlock;
116 }
117
118 dev_data = NULL;
119
120out_unlock:
121 spin_unlock_irqrestore(&dev_data_list_lock, flags);
122
123 return dev_data;
124}
125
126static struct iommu_dev_data *find_dev_data(u16 devid)
127{
128 struct iommu_dev_data *dev_data;
129
130 dev_data = search_dev_data(devid);
131
132 if (dev_data == NULL)
133 dev_data = alloc_dev_data(devid);
134
135 return dev_data;
136}
137
138static inline u16 get_device_id(struct device *dev)
139{
140 struct pci_dev *pdev = to_pci_dev(dev);
141
142 return calc_devid(pdev->bus->number, pdev->devfn);
143}
144
145static struct iommu_dev_data *get_dev_data(struct device *dev)
146{
147 return dev->archdata.iommu;
148}
149
150/*
151 * In this function the list of preallocated protection domains is traversed to
152 * find the domain for a specific device
153 */
154static struct dma_ops_domain *find_protection_domain(u16 devid)
155{
156 struct dma_ops_domain *entry, *ret = NULL;
157 unsigned long flags;
158 u16 alias = amd_iommu_alias_table[devid];
159
160 if (list_empty(&iommu_pd_list))
161 return NULL;
162
163 spin_lock_irqsave(&iommu_pd_list_lock, flags);
164
165 list_for_each_entry(entry, &iommu_pd_list, list) {
166 if (entry->target_dev == devid ||
167 entry->target_dev == alias) {
168 ret = entry;
169 break;
170 }
171 }
172
173 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
174
175 return ret;
176}
177
178/*
179 * This function checks if the driver got a valid device from the caller to
180 * avoid dereferencing invalid pointers.
181 */
182static bool check_device(struct device *dev)
183{
184 u16 devid;
185
186 if (!dev || !dev->dma_mask)
187 return false;
188
189 /* No device or no PCI device */
190 if (dev->bus != &pci_bus_type)
191 return false;
192
193 devid = get_device_id(dev);
194
195 /* Out of our scope? */
196 if (devid > amd_iommu_last_bdf)
197 return false;
198
199 if (amd_iommu_rlookup_table[devid] == NULL)
200 return false;
201
202 return true;
203}
204
205static int iommu_init_device(struct device *dev)
206{
207 struct iommu_dev_data *dev_data;
208 u16 alias;
209
210 if (dev->archdata.iommu)
211 return 0;
212
213 dev_data = find_dev_data(get_device_id(dev));
214 if (!dev_data)
215 return -ENOMEM;
216
217 alias = amd_iommu_alias_table[dev_data->devid];
218 if (alias != dev_data->devid) {
219 struct iommu_dev_data *alias_data;
220
221 alias_data = find_dev_data(alias);
222 if (alias_data == NULL) {
223 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
224 dev_name(dev));
225 free_dev_data(dev_data);
226 return -ENOTSUPP;
227 }
228 dev_data->alias_data = alias_data;
229 }
230
231 dev->archdata.iommu = dev_data;
232
233 return 0;
234}
235
236static void iommu_ignore_device(struct device *dev)
237{
238 u16 devid, alias;
239
240 devid = get_device_id(dev);
241 alias = amd_iommu_alias_table[devid];
242
243 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
244 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
245
246 amd_iommu_rlookup_table[devid] = NULL;
247 amd_iommu_rlookup_table[alias] = NULL;
248}
249
250static void iommu_uninit_device(struct device *dev)
251{
252 /*
253 * Nothing to do here - we keep dev_data around for unplugged devices
254 * and reuse it when the device is re-plugged - not doing so would
255 * introduce a ton of races.
256 */
257}
258
259void __init amd_iommu_uninit_devices(void)
260{
261 struct iommu_dev_data *dev_data, *n;
262 struct pci_dev *pdev = NULL;
263
264 for_each_pci_dev(pdev) {
265
266 if (!check_device(&pdev->dev))
267 continue;
268
269 iommu_uninit_device(&pdev->dev);
270 }
271
272 /* Free all of our dev_data structures */
273 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
274 free_dev_data(dev_data);
275}
276
277int __init amd_iommu_init_devices(void)
278{
279 struct pci_dev *pdev = NULL;
280 int ret = 0;
281
282 for_each_pci_dev(pdev) {
283
284 if (!check_device(&pdev->dev))
285 continue;
286
287 ret = iommu_init_device(&pdev->dev);
288 if (ret == -ENOTSUPP)
289 iommu_ignore_device(&pdev->dev);
290 else if (ret)
291 goto out_free;
292 }
293
294 return 0;
295
296out_free:
297
298 amd_iommu_uninit_devices();
299
300 return ret;
301}
302#ifdef CONFIG_AMD_IOMMU_STATS
303
304/*
305 * Initialization code for statistics collection
306 */
307
308DECLARE_STATS_COUNTER(compl_wait);
309DECLARE_STATS_COUNTER(cnt_map_single);
310DECLARE_STATS_COUNTER(cnt_unmap_single);
311DECLARE_STATS_COUNTER(cnt_map_sg);
312DECLARE_STATS_COUNTER(cnt_unmap_sg);
313DECLARE_STATS_COUNTER(cnt_alloc_coherent);
314DECLARE_STATS_COUNTER(cnt_free_coherent);
315DECLARE_STATS_COUNTER(cross_page);
316DECLARE_STATS_COUNTER(domain_flush_single);
317DECLARE_STATS_COUNTER(domain_flush_all);
318DECLARE_STATS_COUNTER(alloced_io_mem);
319DECLARE_STATS_COUNTER(total_map_requests);
320
321static struct dentry *stats_dir;
322static struct dentry *de_fflush;
323
324static void amd_iommu_stats_add(struct __iommu_counter *cnt)
325{
326 if (stats_dir == NULL)
327 return;
328
329 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
330 &cnt->value);
331}
332
333static void amd_iommu_stats_init(void)
334{
335 stats_dir = debugfs_create_dir("amd-iommu", NULL);
336 if (stats_dir == NULL)
337 return;
338
339 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
340 (u32 *)&amd_iommu_unmap_flush);
341
342 amd_iommu_stats_add(&compl_wait);
343 amd_iommu_stats_add(&cnt_map_single);
344 amd_iommu_stats_add(&cnt_unmap_single);
345 amd_iommu_stats_add(&cnt_map_sg);
346 amd_iommu_stats_add(&cnt_unmap_sg);
347 amd_iommu_stats_add(&cnt_alloc_coherent);
348 amd_iommu_stats_add(&cnt_free_coherent);
349 amd_iommu_stats_add(&cross_page);
350 amd_iommu_stats_add(&domain_flush_single);
351 amd_iommu_stats_add(&domain_flush_all);
352 amd_iommu_stats_add(&alloced_io_mem);
353 amd_iommu_stats_add(&total_map_requests);
354}
355
356#endif
357
358/****************************************************************************
359 *
360 * Interrupt handling functions
361 *
362 ****************************************************************************/
363
364static void dump_dte_entry(u16 devid)
365{
366 int i;
367
368 for (i = 0; i < 8; ++i)
369 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
370 amd_iommu_dev_table[devid].data[i]);
371}
372
373static void dump_command(unsigned long phys_addr)
374{
375 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
376 int i;
377
378 for (i = 0; i < 4; ++i)
379 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
380}
381
382static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
383{
384 u32 *event = __evt;
385 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
386 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
387 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
388 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
389 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
390
391 printk(KERN_ERR "AMD-Vi: Event logged [");
392
393 switch (type) {
394 case EVENT_TYPE_ILL_DEV:
395 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
396 "address=0x%016llx flags=0x%04x]\n",
397 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
398 address, flags);
399 dump_dte_entry(devid);
400 break;
401 case EVENT_TYPE_IO_FAULT:
402 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
403 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
404 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
405 domid, address, flags);
406 break;
407 case EVENT_TYPE_DEV_TAB_ERR:
408 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
409 "address=0x%016llx flags=0x%04x]\n",
410 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
411 address, flags);
412 break;
413 case EVENT_TYPE_PAGE_TAB_ERR:
414 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
415 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
416 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
417 domid, address, flags);
418 break;
419 case EVENT_TYPE_ILL_CMD:
420 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
421 dump_command(address);
422 break;
423 case EVENT_TYPE_CMD_HARD_ERR:
424 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
425 "flags=0x%04x]\n", address, flags);
426 break;
427 case EVENT_TYPE_IOTLB_INV_TO:
428 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
429 "address=0x%016llx]\n",
430 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
431 address);
432 break;
433 case EVENT_TYPE_INV_DEV_REQ:
434 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
435 "address=0x%016llx flags=0x%04x]\n",
436 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
437 address, flags);
438 break;
439 default:
440 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
441 }
442}
443
444static void iommu_poll_events(struct amd_iommu *iommu)
445{
446 u32 head, tail;
447 unsigned long flags;
448
449 spin_lock_irqsave(&iommu->lock, flags);
450
451 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
452 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
453
454 while (head != tail) {
455 iommu_print_event(iommu, iommu->evt_buf + head);
456 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
457 }
458
459 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
460
461 spin_unlock_irqrestore(&iommu->lock, flags);
462}
463
464irqreturn_t amd_iommu_int_thread(int irq, void *data)
465{
466 struct amd_iommu *iommu;
467
468 for_each_iommu(iommu)
469 iommu_poll_events(iommu);
470
471 return IRQ_HANDLED;
472}
473
474irqreturn_t amd_iommu_int_handler(int irq, void *data)
475{
476 return IRQ_WAKE_THREAD;
477}
478
479/****************************************************************************
480 *
481 * IOMMU command queuing functions
482 *
483 ****************************************************************************/
484
485static int wait_on_sem(volatile u64 *sem)
486{
487 int i = 0;
488
489 while (*sem == 0 && i < LOOP_TIMEOUT) {
490 udelay(1);
491 i += 1;
492 }
493
494 if (i == LOOP_TIMEOUT) {
495 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
496 return -EIO;
497 }
498
499 return 0;
500}
501
502static void copy_cmd_to_buffer(struct amd_iommu *iommu,
503 struct iommu_cmd *cmd,
504 u32 tail)
505{
506 u8 *target;
507
508 target = iommu->cmd_buf + tail;
509 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
510
511 /* Copy command to buffer */
512 memcpy(target, cmd, sizeof(*cmd));
513
514 /* Tell the IOMMU about it */
515 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
516}
517
518static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
519{
520 WARN_ON(address & 0x7ULL);
521
522 memset(cmd, 0, sizeof(*cmd));
523 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
524 cmd->data[1] = upper_32_bits(__pa(address));
525 cmd->data[2] = 1;
526 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
527}
528
529static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
530{
531 memset(cmd, 0, sizeof(*cmd));
532 cmd->data[0] = devid;
533 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
534}
535
536static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
537 size_t size, u16 domid, int pde)
538{
539 u64 pages;
540 int s;
541
542 pages = iommu_num_pages(address, size, PAGE_SIZE);
543 s = 0;
544
545 if (pages > 1) {
546 /*
547 * If we have to flush more than one page, flush all
548 * TLB entries for this domain
549 */
550 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
551 s = 1;
552 }
553
554 address &= PAGE_MASK;
555
556 memset(cmd, 0, sizeof(*cmd));
557 cmd->data[1] |= domid;
558 cmd->data[2] = lower_32_bits(address);
559 cmd->data[3] = upper_32_bits(address);
560 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
561 if (s) /* size bit - we flush more than one 4kb page */
562 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
563 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
564 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
565}
566
567static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
568 u64 address, size_t size)
569{
570 u64 pages;
571 int s;
572
573 pages = iommu_num_pages(address, size, PAGE_SIZE);
574 s = 0;
575
576 if (pages > 1) {
577 /*
578 * If we have to flush more than one page, flush all
579 * TLB entries for this domain
580 */
581 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
582 s = 1;
583 }
584
585 address &= PAGE_MASK;
586
587 memset(cmd, 0, sizeof(*cmd));
588 cmd->data[0] = devid;
589 cmd->data[0] |= (qdep & 0xff) << 24;
590 cmd->data[1] = devid;
591 cmd->data[2] = lower_32_bits(address);
592 cmd->data[3] = upper_32_bits(address);
593 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
594 if (s)
595 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
596}
597
598static void build_inv_all(struct iommu_cmd *cmd)
599{
600 memset(cmd, 0, sizeof(*cmd));
601 CMD_SET_TYPE(cmd, CMD_INV_ALL);
602}
603
604/*
605 * Writes the command to the IOMMUs command buffer and informs the
606 * hardware about the new command.
607 */
608static int iommu_queue_command_sync(struct amd_iommu *iommu,
609 struct iommu_cmd *cmd,
610 bool sync)
611{
612 u32 left, tail, head, next_tail;
613 unsigned long flags;
614
615 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
616
617again:
618 spin_lock_irqsave(&iommu->lock, flags);
619
620 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
621 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
622 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
623 left = (head - next_tail) % iommu->cmd_buf_size;
624
625 if (left <= 2) {
626 struct iommu_cmd sync_cmd;
627 volatile u64 sem = 0;
628 int ret;
629
630 build_completion_wait(&sync_cmd, (u64)&sem);
631 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
632
633 spin_unlock_irqrestore(&iommu->lock, flags);
634
635 if ((ret = wait_on_sem(&sem)) != 0)
636 return ret;
637
638 goto again;
639 }
640
641 copy_cmd_to_buffer(iommu, cmd, tail);
642
643 /* We need to sync now to make sure all commands are processed */
644 iommu->need_sync = sync;
645
646 spin_unlock_irqrestore(&iommu->lock, flags);
647
648 return 0;
649}
650
651static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
652{
653 return iommu_queue_command_sync(iommu, cmd, true);
654}
655
656/*
657 * This function queues a completion wait command into the command
658 * buffer of an IOMMU
659 */
660static int iommu_completion_wait(struct amd_iommu *iommu)
661{
662 struct iommu_cmd cmd;
663 volatile u64 sem = 0;
664 int ret;
665
666 if (!iommu->need_sync)
667 return 0;
668
669 build_completion_wait(&cmd, (u64)&sem);
670
671 ret = iommu_queue_command_sync(iommu, &cmd, false);
672 if (ret)
673 return ret;
674
675 return wait_on_sem(&sem);
676}
677
678static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
679{
680 struct iommu_cmd cmd;
681
682 build_inv_dte(&cmd, devid);
683
684 return iommu_queue_command(iommu, &cmd);
685}
686
687static void iommu_flush_dte_all(struct amd_iommu *iommu)
688{
689 u32 devid;
690
691 for (devid = 0; devid <= 0xffff; ++devid)
692 iommu_flush_dte(iommu, devid);
693
694 iommu_completion_wait(iommu);
695}
696
697/*
698 * This function uses heavy locking and may disable irqs for some time. But
699 * this is no issue because it is only called during resume.
700 */
701static void iommu_flush_tlb_all(struct amd_iommu *iommu)
702{
703 u32 dom_id;
704
705 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
706 struct iommu_cmd cmd;
707 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
708 dom_id, 1);
709 iommu_queue_command(iommu, &cmd);
710 }
711
712 iommu_completion_wait(iommu);
713}
714
715static void iommu_flush_all(struct amd_iommu *iommu)
716{
717 struct iommu_cmd cmd;
718
719 build_inv_all(&cmd);
720
721 iommu_queue_command(iommu, &cmd);
722 iommu_completion_wait(iommu);
723}
724
725void iommu_flush_all_caches(struct amd_iommu *iommu)
726{
727 if (iommu_feature(iommu, FEATURE_IA)) {
728 iommu_flush_all(iommu);
729 } else {
730 iommu_flush_dte_all(iommu);
731 iommu_flush_tlb_all(iommu);
732 }
733}
734
735/*
736 * Command send function for flushing on-device TLB
737 */
738static int device_flush_iotlb(struct iommu_dev_data *dev_data,
739 u64 address, size_t size)
740{
741 struct amd_iommu *iommu;
742 struct iommu_cmd cmd;
743 int qdep;
744
745 qdep = dev_data->ats.qdep;
746 iommu = amd_iommu_rlookup_table[dev_data->devid];
747
748 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
749
750 return iommu_queue_command(iommu, &cmd);
751}
752
753/*
754 * Command send function for invalidating a device table entry
755 */
756static int device_flush_dte(struct iommu_dev_data *dev_data)
757{
758 struct amd_iommu *iommu;
759 int ret;
760
761 iommu = amd_iommu_rlookup_table[dev_data->devid];
762
763 ret = iommu_flush_dte(iommu, dev_data->devid);
764 if (ret)
765 return ret;
766
767 if (dev_data->ats.enabled)
768 ret = device_flush_iotlb(dev_data, 0, ~0UL);
769
770 return ret;
771}
772
773/*
774 * TLB invalidation function which is called from the mapping functions.
775 * It invalidates a single PTE if the range to flush is within a single
776 * page. Otherwise it flushes the whole TLB of the IOMMU.
777 */
778static void __domain_flush_pages(struct protection_domain *domain,
779 u64 address, size_t size, int pde)
780{
781 struct iommu_dev_data *dev_data;
782 struct iommu_cmd cmd;
783 int ret = 0, i;
784
785 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
786
787 for (i = 0; i < amd_iommus_present; ++i) {
788 if (!domain->dev_iommu[i])
789 continue;
790
791 /*
792 * Devices of this domain are behind this IOMMU
793 * We need a TLB flush
794 */
795 ret |= iommu_queue_command(amd_iommus[i], &cmd);
796 }
797
798 list_for_each_entry(dev_data, &domain->dev_list, list) {
799
800 if (!dev_data->ats.enabled)
801 continue;
802
803 ret |= device_flush_iotlb(dev_data, address, size);
804 }
805
806 WARN_ON(ret);
807}
808
809static void domain_flush_pages(struct protection_domain *domain,
810 u64 address, size_t size)
811{
812 __domain_flush_pages(domain, address, size, 0);
813}
814
815/* Flush the whole IO/TLB for a given protection domain */
816static void domain_flush_tlb(struct protection_domain *domain)
817{
818 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
819}
820
821/* Flush the whole IO/TLB for a given protection domain - including PDE */
822static void domain_flush_tlb_pde(struct protection_domain *domain)
823{
824 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
825}
826
827static void domain_flush_complete(struct protection_domain *domain)
828{
829 int i;
830
831 for (i = 0; i < amd_iommus_present; ++i) {
832 if (!domain->dev_iommu[i])
833 continue;
834
835 /*
836 * Devices of this domain are behind this IOMMU
837 * We need to wait for completion of all commands.
838 */
839 iommu_completion_wait(amd_iommus[i]);
840 }
841}
842
843
844/*
845 * This function flushes the DTEs for all devices in domain
846 */
847static void domain_flush_devices(struct protection_domain *domain)
848{
849 struct iommu_dev_data *dev_data;
850
851 list_for_each_entry(dev_data, &domain->dev_list, list)
852 device_flush_dte(dev_data);
853}
854
855/****************************************************************************
856 *
857 * The functions below are used the create the page table mappings for
858 * unity mapped regions.
859 *
860 ****************************************************************************/
861
862/*
863 * This function is used to add another level to an IO page table. Adding
864 * another level increases the size of the address space by 9 bits to a size up
865 * to 64 bits.
866 */
867static bool increase_address_space(struct protection_domain *domain,
868 gfp_t gfp)
869{
870 u64 *pte;
871
872 if (domain->mode == PAGE_MODE_6_LEVEL)
873 /* address space already 64 bit large */
874 return false;
875
876 pte = (void *)get_zeroed_page(gfp);
877 if (!pte)
878 return false;
879
880 *pte = PM_LEVEL_PDE(domain->mode,
881 virt_to_phys(domain->pt_root));
882 domain->pt_root = pte;
883 domain->mode += 1;
884 domain->updated = true;
885
886 return true;
887}
888
889static u64 *alloc_pte(struct protection_domain *domain,
890 unsigned long address,
891 unsigned long page_size,
892 u64 **pte_page,
893 gfp_t gfp)
894{
895 int level, end_lvl;
896 u64 *pte, *page;
897
898 BUG_ON(!is_power_of_2(page_size));
899
900 while (address > PM_LEVEL_SIZE(domain->mode))
901 increase_address_space(domain, gfp);
902
903 level = domain->mode - 1;
904 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
905 address = PAGE_SIZE_ALIGN(address, page_size);
906 end_lvl = PAGE_SIZE_LEVEL(page_size);
907
908 while (level > end_lvl) {
909 if (!IOMMU_PTE_PRESENT(*pte)) {
910 page = (u64 *)get_zeroed_page(gfp);
911 if (!page)
912 return NULL;
913 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
914 }
915
916 /* No level skipping support yet */
917 if (PM_PTE_LEVEL(*pte) != level)
918 return NULL;
919
920 level -= 1;
921
922 pte = IOMMU_PTE_PAGE(*pte);
923
924 if (pte_page && level == end_lvl)
925 *pte_page = pte;
926
927 pte = &pte[PM_LEVEL_INDEX(level, address)];
928 }
929
930 return pte;
931}
932
933/*
934 * This function checks if there is a PTE for a given dma address. If
935 * there is one, it returns the pointer to it.
936 */
937static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
938{
939 int level;
940 u64 *pte;
941
942 if (address > PM_LEVEL_SIZE(domain->mode))
943 return NULL;
944
945 level = domain->mode - 1;
946 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
947
948 while (level > 0) {
949
950 /* Not Present */
951 if (!IOMMU_PTE_PRESENT(*pte))
952 return NULL;
953
954 /* Large PTE */
955 if (PM_PTE_LEVEL(*pte) == 0x07) {
956 unsigned long pte_mask, __pte;
957
958 /*
959 * If we have a series of large PTEs, make
960 * sure to return a pointer to the first one.
961 */
962 pte_mask = PTE_PAGE_SIZE(*pte);
963 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
964 __pte = ((unsigned long)pte) & pte_mask;
965
966 return (u64 *)__pte;
967 }
968
969 /* No level skipping support yet */
970 if (PM_PTE_LEVEL(*pte) != level)
971 return NULL;
972
973 level -= 1;
974
975 /* Walk to the next level */
976 pte = IOMMU_PTE_PAGE(*pte);
977 pte = &pte[PM_LEVEL_INDEX(level, address)];
978 }
979
980 return pte;
981}
982
983/*
984 * Generic mapping functions. It maps a physical address into a DMA
985 * address space. It allocates the page table pages if necessary.
986 * In the future it can be extended to a generic mapping function
987 * supporting all features of AMD IOMMU page tables like level skipping
988 * and full 64 bit address spaces.
989 */
990static int iommu_map_page(struct protection_domain *dom,
991 unsigned long bus_addr,
992 unsigned long phys_addr,
993 int prot,
994 unsigned long page_size)
995{
996 u64 __pte, *pte;
997 int i, count;
998
999 if (!(prot & IOMMU_PROT_MASK))
1000 return -EINVAL;
1001
1002 bus_addr = PAGE_ALIGN(bus_addr);
1003 phys_addr = PAGE_ALIGN(phys_addr);
1004 count = PAGE_SIZE_PTE_COUNT(page_size);
1005 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1006
1007 for (i = 0; i < count; ++i)
1008 if (IOMMU_PTE_PRESENT(pte[i]))
1009 return -EBUSY;
1010
1011 if (page_size > PAGE_SIZE) {
1012 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1013 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1014 } else
1015 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1016
1017 if (prot & IOMMU_PROT_IR)
1018 __pte |= IOMMU_PTE_IR;
1019 if (prot & IOMMU_PROT_IW)
1020 __pte |= IOMMU_PTE_IW;
1021
1022 for (i = 0; i < count; ++i)
1023 pte[i] = __pte;
1024
1025 update_domain(dom);
1026
1027 return 0;
1028}
1029
1030static unsigned long iommu_unmap_page(struct protection_domain *dom,
1031 unsigned long bus_addr,
1032 unsigned long page_size)
1033{
1034 unsigned long long unmap_size, unmapped;
1035 u64 *pte;
1036
1037 BUG_ON(!is_power_of_2(page_size));
1038
1039 unmapped = 0;
1040
1041 while (unmapped < page_size) {
1042
1043 pte = fetch_pte(dom, bus_addr);
1044
1045 if (!pte) {
1046 /*
1047 * No PTE for this address
1048 * move forward in 4kb steps
1049 */
1050 unmap_size = PAGE_SIZE;
1051 } else if (PM_PTE_LEVEL(*pte) == 0) {
1052 /* 4kb PTE found for this address */
1053 unmap_size = PAGE_SIZE;
1054 *pte = 0ULL;
1055 } else {
1056 int count, i;
1057
1058 /* Large PTE found which maps this address */
1059 unmap_size = PTE_PAGE_SIZE(*pte);
1060 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1061 for (i = 0; i < count; i++)
1062 pte[i] = 0ULL;
1063 }
1064
1065 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1066 unmapped += unmap_size;
1067 }
1068
1069 BUG_ON(!is_power_of_2(unmapped));
1070
1071 return unmapped;
1072}
1073
1074/*
1075 * This function checks if a specific unity mapping entry is needed for
1076 * this specific IOMMU.
1077 */
1078static int iommu_for_unity_map(struct amd_iommu *iommu,
1079 struct unity_map_entry *entry)
1080{
1081 u16 bdf, i;
1082
1083 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1084 bdf = amd_iommu_alias_table[i];
1085 if (amd_iommu_rlookup_table[bdf] == iommu)
1086 return 1;
1087 }
1088
1089 return 0;
1090}
1091
1092/*
1093 * This function actually applies the mapping to the page table of the
1094 * dma_ops domain.
1095 */
1096static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1097 struct unity_map_entry *e)
1098{
1099 u64 addr;
1100 int ret;
1101
1102 for (addr = e->address_start; addr < e->address_end;
1103 addr += PAGE_SIZE) {
1104 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1105 PAGE_SIZE);
1106 if (ret)
1107 return ret;
1108 /*
1109 * if unity mapping is in aperture range mark the page
1110 * as allocated in the aperture
1111 */
1112 if (addr < dma_dom->aperture_size)
1113 __set_bit(addr >> PAGE_SHIFT,
1114 dma_dom->aperture[0]->bitmap);
1115 }
1116
1117 return 0;
1118}
1119
1120/*
1121 * Init the unity mappings for a specific IOMMU in the system
1122 *
1123 * Basically iterates over all unity mapping entries and applies them to
1124 * the default domain DMA of that IOMMU if necessary.
1125 */
1126static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1127{
1128 struct unity_map_entry *entry;
1129 int ret;
1130
1131 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1132 if (!iommu_for_unity_map(iommu, entry))
1133 continue;
1134 ret = dma_ops_unity_map(iommu->default_dom, entry);
1135 if (ret)
1136 return ret;
1137 }
1138
1139 return 0;
1140}
1141
1142/*
1143 * Inits the unity mappings required for a specific device
1144 */
1145static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1146 u16 devid)
1147{
1148 struct unity_map_entry *e;
1149 int ret;
1150
1151 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1152 if (!(devid >= e->devid_start && devid <= e->devid_end))
1153 continue;
1154 ret = dma_ops_unity_map(dma_dom, e);
1155 if (ret)
1156 return ret;
1157 }
1158
1159 return 0;
1160}
1161
1162/****************************************************************************
1163 *
1164 * The next functions belong to the address allocator for the dma_ops
1165 * interface functions. They work like the allocators in the other IOMMU
1166 * drivers. Its basically a bitmap which marks the allocated pages in
1167 * the aperture. Maybe it could be enhanced in the future to a more
1168 * efficient allocator.
1169 *
1170 ****************************************************************************/
1171
1172/*
1173 * The address allocator core functions.
1174 *
1175 * called with domain->lock held
1176 */
1177
1178/*
1179 * Used to reserve address ranges in the aperture (e.g. for exclusion
1180 * ranges.
1181 */
1182static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1183 unsigned long start_page,
1184 unsigned int pages)
1185{
1186 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1187
1188 if (start_page + pages > last_page)
1189 pages = last_page - start_page;
1190
1191 for (i = start_page; i < start_page + pages; ++i) {
1192 int index = i / APERTURE_RANGE_PAGES;
1193 int page = i % APERTURE_RANGE_PAGES;
1194 __set_bit(page, dom->aperture[index]->bitmap);
1195 }
1196}
1197
1198/*
1199 * This function is used to add a new aperture range to an existing
1200 * aperture in case of dma_ops domain allocation or address allocation
1201 * failure.
1202 */
1203static int alloc_new_range(struct dma_ops_domain *dma_dom,
1204 bool populate, gfp_t gfp)
1205{
1206 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1207 struct amd_iommu *iommu;
1208 unsigned long i, old_size;
1209
1210#ifdef CONFIG_IOMMU_STRESS
1211 populate = false;
1212#endif
1213
1214 if (index >= APERTURE_MAX_RANGES)
1215 return -ENOMEM;
1216
1217 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1218 if (!dma_dom->aperture[index])
1219 return -ENOMEM;
1220
1221 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1222 if (!dma_dom->aperture[index]->bitmap)
1223 goto out_free;
1224
1225 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1226
1227 if (populate) {
1228 unsigned long address = dma_dom->aperture_size;
1229 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1230 u64 *pte, *pte_page;
1231
1232 for (i = 0; i < num_ptes; ++i) {
1233 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1234 &pte_page, gfp);
1235 if (!pte)
1236 goto out_free;
1237
1238 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1239
1240 address += APERTURE_RANGE_SIZE / 64;
1241 }
1242 }
1243
1244 old_size = dma_dom->aperture_size;
1245 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1246
1247 /* Reserve address range used for MSI messages */
1248 if (old_size < MSI_ADDR_BASE_LO &&
1249 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1250 unsigned long spage;
1251 int pages;
1252
1253 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1254 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1255
1256 dma_ops_reserve_addresses(dma_dom, spage, pages);
1257 }
1258
1259 /* Initialize the exclusion range if necessary */
1260 for_each_iommu(iommu) {
1261 if (iommu->exclusion_start &&
1262 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1263 && iommu->exclusion_start < dma_dom->aperture_size) {
1264 unsigned long startpage;
1265 int pages = iommu_num_pages(iommu->exclusion_start,
1266 iommu->exclusion_length,
1267 PAGE_SIZE);
1268 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1269 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1270 }
1271 }
1272
1273 /*
1274 * Check for areas already mapped as present in the new aperture
1275 * range and mark those pages as reserved in the allocator. Such
1276 * mappings may already exist as a result of requested unity
1277 * mappings for devices.
1278 */
1279 for (i = dma_dom->aperture[index]->offset;
1280 i < dma_dom->aperture_size;
1281 i += PAGE_SIZE) {
1282 u64 *pte = fetch_pte(&dma_dom->domain, i);
1283 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1284 continue;
1285
1286 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
1287 }
1288
1289 update_domain(&dma_dom->domain);
1290
1291 return 0;
1292
1293out_free:
1294 update_domain(&dma_dom->domain);
1295
1296 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1297
1298 kfree(dma_dom->aperture[index]);
1299 dma_dom->aperture[index] = NULL;
1300
1301 return -ENOMEM;
1302}
1303
1304static unsigned long dma_ops_area_alloc(struct device *dev,
1305 struct dma_ops_domain *dom,
1306 unsigned int pages,
1307 unsigned long align_mask,
1308 u64 dma_mask,
1309 unsigned long start)
1310{
1311 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1312 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1313 int i = start >> APERTURE_RANGE_SHIFT;
1314 unsigned long boundary_size;
1315 unsigned long address = -1;
1316 unsigned long limit;
1317
1318 next_bit >>= PAGE_SHIFT;
1319
1320 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1321 PAGE_SIZE) >> PAGE_SHIFT;
1322
1323 for (;i < max_index; ++i) {
1324 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1325
1326 if (dom->aperture[i]->offset >= dma_mask)
1327 break;
1328
1329 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1330 dma_mask >> PAGE_SHIFT);
1331
1332 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1333 limit, next_bit, pages, 0,
1334 boundary_size, align_mask);
1335 if (address != -1) {
1336 address = dom->aperture[i]->offset +
1337 (address << PAGE_SHIFT);
1338 dom->next_address = address + (pages << PAGE_SHIFT);
1339 break;
1340 }
1341
1342 next_bit = 0;
1343 }
1344
1345 return address;
1346}
1347
1348static unsigned long dma_ops_alloc_addresses(struct device *dev,
1349 struct dma_ops_domain *dom,
1350 unsigned int pages,
1351 unsigned long align_mask,
1352 u64 dma_mask)
1353{
1354 unsigned long address;
1355
1356#ifdef CONFIG_IOMMU_STRESS
1357 dom->next_address = 0;
1358 dom->need_flush = true;
1359#endif
1360
1361 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1362 dma_mask, dom->next_address);
1363
1364 if (address == -1) {
1365 dom->next_address = 0;
1366 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1367 dma_mask, 0);
1368 dom->need_flush = true;
1369 }
1370
1371 if (unlikely(address == -1))
1372 address = DMA_ERROR_CODE;
1373
1374 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1375
1376 return address;
1377}
1378
1379/*
1380 * The address free function.
1381 *
1382 * called with domain->lock held
1383 */
1384static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1385 unsigned long address,
1386 unsigned int pages)
1387{
1388 unsigned i = address >> APERTURE_RANGE_SHIFT;
1389 struct aperture_range *range = dom->aperture[i];
1390
1391 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1392
1393#ifdef CONFIG_IOMMU_STRESS
1394 if (i < 4)
1395 return;
1396#endif
1397
1398 if (address >= dom->next_address)
1399 dom->need_flush = true;
1400
1401 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1402
1403 bitmap_clear(range->bitmap, address, pages);
1404
1405}
1406
1407/****************************************************************************
1408 *
1409 * The next functions belong to the domain allocation. A domain is
1410 * allocated for every IOMMU as the default domain. If device isolation
1411 * is enabled, every device get its own domain. The most important thing
1412 * about domains is the page table mapping the DMA address space they
1413 * contain.
1414 *
1415 ****************************************************************************/
1416
1417/*
1418 * This function adds a protection domain to the global protection domain list
1419 */
1420static void add_domain_to_list(struct protection_domain *domain)
1421{
1422 unsigned long flags;
1423
1424 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1425 list_add(&domain->list, &amd_iommu_pd_list);
1426 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1427}
1428
1429/*
1430 * This function removes a protection domain to the global
1431 * protection domain list
1432 */
1433static void del_domain_from_list(struct protection_domain *domain)
1434{
1435 unsigned long flags;
1436
1437 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1438 list_del(&domain->list);
1439 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1440}
1441
1442static u16 domain_id_alloc(void)
1443{
1444 unsigned long flags;
1445 int id;
1446
1447 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1448 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1449 BUG_ON(id == 0);
1450 if (id > 0 && id < MAX_DOMAIN_ID)
1451 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1452 else
1453 id = 0;
1454 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1455
1456 return id;
1457}
1458
1459static void domain_id_free(int id)
1460{
1461 unsigned long flags;
1462
1463 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1464 if (id > 0 && id < MAX_DOMAIN_ID)
1465 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1466 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1467}
1468
1469static void free_pagetable(struct protection_domain *domain)
1470{
1471 int i, j;
1472 u64 *p1, *p2, *p3;
1473
1474 p1 = domain->pt_root;
1475
1476 if (!p1)
1477 return;
1478
1479 for (i = 0; i < 512; ++i) {
1480 if (!IOMMU_PTE_PRESENT(p1[i]))
1481 continue;
1482
1483 p2 = IOMMU_PTE_PAGE(p1[i]);
1484 for (j = 0; j < 512; ++j) {
1485 if (!IOMMU_PTE_PRESENT(p2[j]))
1486 continue;
1487 p3 = IOMMU_PTE_PAGE(p2[j]);
1488 free_page((unsigned long)p3);
1489 }
1490
1491 free_page((unsigned long)p2);
1492 }
1493
1494 free_page((unsigned long)p1);
1495
1496 domain->pt_root = NULL;
1497}
1498
1499/*
1500 * Free a domain, only used if something went wrong in the
1501 * allocation path and we need to free an already allocated page table
1502 */
1503static void dma_ops_domain_free(struct dma_ops_domain *dom)
1504{
1505 int i;
1506
1507 if (!dom)
1508 return;
1509
1510 del_domain_from_list(&dom->domain);
1511
1512 free_pagetable(&dom->domain);
1513
1514 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1515 if (!dom->aperture[i])
1516 continue;
1517 free_page((unsigned long)dom->aperture[i]->bitmap);
1518 kfree(dom->aperture[i]);
1519 }
1520
1521 kfree(dom);
1522}
1523
1524/*
1525 * Allocates a new protection domain usable for the dma_ops functions.
1526 * It also initializes the page table and the address allocator data
1527 * structures required for the dma_ops interface
1528 */
1529static struct dma_ops_domain *dma_ops_domain_alloc(void)
1530{
1531 struct dma_ops_domain *dma_dom;
1532
1533 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1534 if (!dma_dom)
1535 return NULL;
1536
1537 spin_lock_init(&dma_dom->domain.lock);
1538
1539 dma_dom->domain.id = domain_id_alloc();
1540 if (dma_dom->domain.id == 0)
1541 goto free_dma_dom;
1542 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1543 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1544 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1545 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1546 dma_dom->domain.priv = dma_dom;
1547 if (!dma_dom->domain.pt_root)
1548 goto free_dma_dom;
1549
1550 dma_dom->need_flush = false;
1551 dma_dom->target_dev = 0xffff;
1552
1553 add_domain_to_list(&dma_dom->domain);
1554
1555 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1556 goto free_dma_dom;
1557
1558 /*
1559 * mark the first page as allocated so we never return 0 as
1560 * a valid dma-address. So we can use 0 as error value
1561 */
1562 dma_dom->aperture[0]->bitmap[0] = 1;
1563 dma_dom->next_address = 0;
1564
1565
1566 return dma_dom;
1567
1568free_dma_dom:
1569 dma_ops_domain_free(dma_dom);
1570
1571 return NULL;
1572}
1573
1574/*
1575 * little helper function to check whether a given protection domain is a
1576 * dma_ops domain
1577 */
1578static bool dma_ops_domain(struct protection_domain *domain)
1579{
1580 return domain->flags & PD_DMA_OPS_MASK;
1581}
1582
1583static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1584{
1585 u64 pte_root = virt_to_phys(domain->pt_root);
1586 u32 flags = 0;
1587
1588 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1589 << DEV_ENTRY_MODE_SHIFT;
1590 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1591
1592 if (ats)
1593 flags |= DTE_FLAG_IOTLB;
1594
1595 amd_iommu_dev_table[devid].data[3] |= flags;
1596 amd_iommu_dev_table[devid].data[2] = domain->id;
1597 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1598 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1599}
1600
1601static void clear_dte_entry(u16 devid)
1602{
1603 /* remove entry from the device table seen by the hardware */
1604 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1605 amd_iommu_dev_table[devid].data[1] = 0;
1606 amd_iommu_dev_table[devid].data[2] = 0;
1607
1608 amd_iommu_apply_erratum_63(devid);
1609}
1610
1611static void do_attach(struct iommu_dev_data *dev_data,
1612 struct protection_domain *domain)
1613{
1614 struct amd_iommu *iommu;
1615 bool ats;
1616
1617 iommu = amd_iommu_rlookup_table[dev_data->devid];
1618 ats = dev_data->ats.enabled;
1619
1620 /* Update data structures */
1621 dev_data->domain = domain;
1622 list_add(&dev_data->list, &domain->dev_list);
1623 set_dte_entry(dev_data->devid, domain, ats);
1624
1625 /* Do reference counting */
1626 domain->dev_iommu[iommu->index] += 1;
1627 domain->dev_cnt += 1;
1628
1629 /* Flush the DTE entry */
1630 device_flush_dte(dev_data);
1631}
1632
1633static void do_detach(struct iommu_dev_data *dev_data)
1634{
1635 struct amd_iommu *iommu;
1636
1637 iommu = amd_iommu_rlookup_table[dev_data->devid];
1638
1639 /* decrease reference counters */
1640 dev_data->domain->dev_iommu[iommu->index] -= 1;
1641 dev_data->domain->dev_cnt -= 1;
1642
1643 /* Update data structures */
1644 dev_data->domain = NULL;
1645 list_del(&dev_data->list);
1646 clear_dte_entry(dev_data->devid);
1647
1648 /* Flush the DTE entry */
1649 device_flush_dte(dev_data);
1650}
1651
1652/*
1653 * If a device is not yet associated with a domain, this function does
1654 * assigns it visible for the hardware
1655 */
1656static int __attach_device(struct iommu_dev_data *dev_data,
1657 struct protection_domain *domain)
1658{
1659 int ret;
1660
1661 /* lock domain */
1662 spin_lock(&domain->lock);
1663
1664 if (dev_data->alias_data != NULL) {
1665 struct iommu_dev_data *alias_data = dev_data->alias_data;
1666
1667 /* Some sanity checks */
1668 ret = -EBUSY;
1669 if (alias_data->domain != NULL &&
1670 alias_data->domain != domain)
1671 goto out_unlock;
1672
1673 if (dev_data->domain != NULL &&
1674 dev_data->domain != domain)
1675 goto out_unlock;
1676
1677 /* Do real assignment */
1678 if (alias_data->domain == NULL)
1679 do_attach(alias_data, domain);
1680
1681 atomic_inc(&alias_data->bind);
1682 }
1683
1684 if (dev_data->domain == NULL)
1685 do_attach(dev_data, domain);
1686
1687 atomic_inc(&dev_data->bind);
1688
1689 ret = 0;
1690
1691out_unlock:
1692
1693 /* ready */
1694 spin_unlock(&domain->lock);
1695
1696 return ret;
1697}
1698
1699/*
1700 * If a device is not yet associated with a domain, this function does
1701 * assigns it visible for the hardware
1702 */
1703static int attach_device(struct device *dev,
1704 struct protection_domain *domain)
1705{
1706 struct pci_dev *pdev = to_pci_dev(dev);
1707 struct iommu_dev_data *dev_data;
1708 unsigned long flags;
1709 int ret;
1710
1711 dev_data = get_dev_data(dev);
1712
1713 if (amd_iommu_iotlb_sup && pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
1714 dev_data->ats.enabled = true;
1715 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
1716 }
1717
1718 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1719 ret = __attach_device(dev_data, domain);
1720 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1721
1722 /*
1723 * We might boot into a crash-kernel here. The crashed kernel
1724 * left the caches in the IOMMU dirty. So we have to flush
1725 * here to evict all dirty stuff.
1726 */
1727 domain_flush_tlb_pde(domain);
1728
1729 return ret;
1730}
1731
1732/*
1733 * Removes a device from a protection domain (unlocked)
1734 */
1735static void __detach_device(struct iommu_dev_data *dev_data)
1736{
1737 struct protection_domain *domain;
1738 unsigned long flags;
1739
1740 BUG_ON(!dev_data->domain);
1741
1742 domain = dev_data->domain;
1743
1744 spin_lock_irqsave(&domain->lock, flags);
1745
1746 if (dev_data->alias_data != NULL) {
1747 struct iommu_dev_data *alias_data = dev_data->alias_data;
1748
1749 if (atomic_dec_and_test(&alias_data->bind))
1750 do_detach(alias_data);
1751 }
1752
1753 if (atomic_dec_and_test(&dev_data->bind))
1754 do_detach(dev_data);
1755
1756 spin_unlock_irqrestore(&domain->lock, flags);
1757
1758 /*
1759 * If we run in passthrough mode the device must be assigned to the
1760 * passthrough domain if it is detached from any other domain.
1761 * Make sure we can deassign from the pt_domain itself.
1762 */
1763 if (iommu_pass_through &&
1764 (dev_data->domain == NULL && domain != pt_domain))
1765 __attach_device(dev_data, pt_domain);
1766}
1767
1768/*
1769 * Removes a device from a protection domain (with devtable_lock held)
1770 */
1771static void detach_device(struct device *dev)
1772{
1773 struct iommu_dev_data *dev_data;
1774 unsigned long flags;
1775
1776 dev_data = get_dev_data(dev);
1777
1778 /* lock device table */
1779 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1780 __detach_device(dev_data);
1781 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1782
1783 if (dev_data->ats.enabled) {
1784 pci_disable_ats(to_pci_dev(dev));
1785 dev_data->ats.enabled = false;
1786 }
1787}
1788
1789/*
1790 * Find out the protection domain structure for a given PCI device. This
1791 * will give us the pointer to the page table root for example.
1792 */
1793static struct protection_domain *domain_for_device(struct device *dev)
1794{
1795 struct iommu_dev_data *dev_data;
1796 struct protection_domain *dom = NULL;
1797 unsigned long flags;
1798
1799 dev_data = get_dev_data(dev);
1800
1801 if (dev_data->domain)
1802 return dev_data->domain;
1803
1804 if (dev_data->alias_data != NULL) {
1805 struct iommu_dev_data *alias_data = dev_data->alias_data;
1806
1807 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1808 if (alias_data->domain != NULL) {
1809 __attach_device(dev_data, alias_data->domain);
1810 dom = alias_data->domain;
1811 }
1812 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1813 }
1814
1815 return dom;
1816}
1817
1818static int device_change_notifier(struct notifier_block *nb,
1819 unsigned long action, void *data)
1820{
1821 struct device *dev = data;
1822 u16 devid;
1823 struct protection_domain *domain;
1824 struct dma_ops_domain *dma_domain;
1825 struct amd_iommu *iommu;
1826 unsigned long flags;
1827
1828 if (!check_device(dev))
1829 return 0;
1830
1831 devid = get_device_id(dev);
1832 iommu = amd_iommu_rlookup_table[devid];
1833
1834 switch (action) {
1835 case BUS_NOTIFY_UNBOUND_DRIVER:
1836
1837 domain = domain_for_device(dev);
1838
1839 if (!domain)
1840 goto out;
1841 if (iommu_pass_through)
1842 break;
1843 detach_device(dev);
1844 break;
1845 case BUS_NOTIFY_ADD_DEVICE:
1846
1847 iommu_init_device(dev);
1848
1849 domain = domain_for_device(dev);
1850
1851 /* allocate a protection domain if a device is added */
1852 dma_domain = find_protection_domain(devid);
1853 if (dma_domain)
1854 goto out;
1855 dma_domain = dma_ops_domain_alloc();
1856 if (!dma_domain)
1857 goto out;
1858 dma_domain->target_dev = devid;
1859
1860 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1861 list_add_tail(&dma_domain->list, &iommu_pd_list);
1862 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1863
1864 break;
1865 case BUS_NOTIFY_DEL_DEVICE:
1866
1867 iommu_uninit_device(dev);
1868
1869 default:
1870 goto out;
1871 }
1872
1873 iommu_completion_wait(iommu);
1874
1875out:
1876 return 0;
1877}
1878
1879static struct notifier_block device_nb = {
1880 .notifier_call = device_change_notifier,
1881};
1882
1883void amd_iommu_init_notifier(void)
1884{
1885 bus_register_notifier(&pci_bus_type, &device_nb);
1886}
1887
1888/*****************************************************************************
1889 *
1890 * The next functions belong to the dma_ops mapping/unmapping code.
1891 *
1892 *****************************************************************************/
1893
1894/*
1895 * In the dma_ops path we only have the struct device. This function
1896 * finds the corresponding IOMMU, the protection domain and the
1897 * requestor id for a given device.
1898 * If the device is not yet associated with a domain this is also done
1899 * in this function.
1900 */
1901static struct protection_domain *get_domain(struct device *dev)
1902{
1903 struct protection_domain *domain;
1904 struct dma_ops_domain *dma_dom;
1905 u16 devid = get_device_id(dev);
1906
1907 if (!check_device(dev))
1908 return ERR_PTR(-EINVAL);
1909
1910 domain = domain_for_device(dev);
1911 if (domain != NULL && !dma_ops_domain(domain))
1912 return ERR_PTR(-EBUSY);
1913
1914 if (domain != NULL)
1915 return domain;
1916
1917 /* Device not bount yet - bind it */
1918 dma_dom = find_protection_domain(devid);
1919 if (!dma_dom)
1920 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1921 attach_device(dev, &dma_dom->domain);
1922 DUMP_printk("Using protection domain %d for device %s\n",
1923 dma_dom->domain.id, dev_name(dev));
1924
1925 return &dma_dom->domain;
1926}
1927
1928static void update_device_table(struct protection_domain *domain)
1929{
1930 struct iommu_dev_data *dev_data;
1931
1932 list_for_each_entry(dev_data, &domain->dev_list, list)
1933 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
1934}
1935
1936static void update_domain(struct protection_domain *domain)
1937{
1938 if (!domain->updated)
1939 return;
1940
1941 update_device_table(domain);
1942
1943 domain_flush_devices(domain);
1944 domain_flush_tlb_pde(domain);
1945
1946 domain->updated = false;
1947}
1948
1949/*
1950 * This function fetches the PTE for a given address in the aperture
1951 */
1952static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1953 unsigned long address)
1954{
1955 struct aperture_range *aperture;
1956 u64 *pte, *pte_page;
1957
1958 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1959 if (!aperture)
1960 return NULL;
1961
1962 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1963 if (!pte) {
1964 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
1965 GFP_ATOMIC);
1966 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1967 } else
1968 pte += PM_LEVEL_INDEX(0, address);
1969
1970 update_domain(&dom->domain);
1971
1972 return pte;
1973}
1974
1975/*
1976 * This is the generic map function. It maps one 4kb page at paddr to
1977 * the given address in the DMA address space for the domain.
1978 */
1979static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
1980 unsigned long address,
1981 phys_addr_t paddr,
1982 int direction)
1983{
1984 u64 *pte, __pte;
1985
1986 WARN_ON(address > dom->aperture_size);
1987
1988 paddr &= PAGE_MASK;
1989
1990 pte = dma_ops_get_pte(dom, address);
1991 if (!pte)
1992 return DMA_ERROR_CODE;
1993
1994 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1995
1996 if (direction == DMA_TO_DEVICE)
1997 __pte |= IOMMU_PTE_IR;
1998 else if (direction == DMA_FROM_DEVICE)
1999 __pte |= IOMMU_PTE_IW;
2000 else if (direction == DMA_BIDIRECTIONAL)
2001 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2002
2003 WARN_ON(*pte);
2004
2005 *pte = __pte;
2006
2007 return (dma_addr_t)address;
2008}
2009
2010/*
2011 * The generic unmapping function for on page in the DMA address space.
2012 */
2013static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2014 unsigned long address)
2015{
2016 struct aperture_range *aperture;
2017 u64 *pte;
2018
2019 if (address >= dom->aperture_size)
2020 return;
2021
2022 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2023 if (!aperture)
2024 return;
2025
2026 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2027 if (!pte)
2028 return;
2029
2030 pte += PM_LEVEL_INDEX(0, address);
2031
2032 WARN_ON(!*pte);
2033
2034 *pte = 0ULL;
2035}
2036
2037/*
2038 * This function contains common code for mapping of a physically
2039 * contiguous memory region into DMA address space. It is used by all
2040 * mapping functions provided with this IOMMU driver.
2041 * Must be called with the domain lock held.
2042 */
2043static dma_addr_t __map_single(struct device *dev,
2044 struct dma_ops_domain *dma_dom,
2045 phys_addr_t paddr,
2046 size_t size,
2047 int dir,
2048 bool align,
2049 u64 dma_mask)
2050{
2051 dma_addr_t offset = paddr & ~PAGE_MASK;
2052 dma_addr_t address, start, ret;
2053 unsigned int pages;
2054 unsigned long align_mask = 0;
2055 int i;
2056
2057 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2058 paddr &= PAGE_MASK;
2059
2060 INC_STATS_COUNTER(total_map_requests);
2061
2062 if (pages > 1)
2063 INC_STATS_COUNTER(cross_page);
2064
2065 if (align)
2066 align_mask = (1UL << get_order(size)) - 1;
2067
2068retry:
2069 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2070 dma_mask);
2071 if (unlikely(address == DMA_ERROR_CODE)) {
2072 /*
2073 * setting next_address here will let the address
2074 * allocator only scan the new allocated range in the
2075 * first run. This is a small optimization.
2076 */
2077 dma_dom->next_address = dma_dom->aperture_size;
2078
2079 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2080 goto out;
2081
2082 /*
2083 * aperture was successfully enlarged by 128 MB, try
2084 * allocation again
2085 */
2086 goto retry;
2087 }
2088
2089 start = address;
2090 for (i = 0; i < pages; ++i) {
2091 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2092 if (ret == DMA_ERROR_CODE)
2093 goto out_unmap;
2094
2095 paddr += PAGE_SIZE;
2096 start += PAGE_SIZE;
2097 }
2098 address += offset;
2099
2100 ADD_STATS_COUNTER(alloced_io_mem, size);
2101
2102 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2103 domain_flush_tlb(&dma_dom->domain);
2104 dma_dom->need_flush = false;
2105 } else if (unlikely(amd_iommu_np_cache))
2106 domain_flush_pages(&dma_dom->domain, address, size);
2107
2108out:
2109 return address;
2110
2111out_unmap:
2112
2113 for (--i; i >= 0; --i) {
2114 start -= PAGE_SIZE;
2115 dma_ops_domain_unmap(dma_dom, start);
2116 }
2117
2118 dma_ops_free_addresses(dma_dom, address, pages);
2119
2120 return DMA_ERROR_CODE;
2121}
2122
2123/*
2124 * Does the reverse of the __map_single function. Must be called with
2125 * the domain lock held too
2126 */
2127static void __unmap_single(struct dma_ops_domain *dma_dom,
2128 dma_addr_t dma_addr,
2129 size_t size,
2130 int dir)
2131{
2132 dma_addr_t flush_addr;
2133 dma_addr_t i, start;
2134 unsigned int pages;
2135
2136 if ((dma_addr == DMA_ERROR_CODE) ||
2137 (dma_addr + size > dma_dom->aperture_size))
2138 return;
2139
2140 flush_addr = dma_addr;
2141 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2142 dma_addr &= PAGE_MASK;
2143 start = dma_addr;
2144
2145 for (i = 0; i < pages; ++i) {
2146 dma_ops_domain_unmap(dma_dom, start);
2147 start += PAGE_SIZE;
2148 }
2149
2150 SUB_STATS_COUNTER(alloced_io_mem, size);
2151
2152 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2153
2154 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2155 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2156 dma_dom->need_flush = false;
2157 }
2158}
2159
2160/*
2161 * The exported map_single function for dma_ops.
2162 */
2163static dma_addr_t map_page(struct device *dev, struct page *page,
2164 unsigned long offset, size_t size,
2165 enum dma_data_direction dir,
2166 struct dma_attrs *attrs)
2167{
2168 unsigned long flags;
2169 struct protection_domain *domain;
2170 dma_addr_t addr;
2171 u64 dma_mask;
2172 phys_addr_t paddr = page_to_phys(page) + offset;
2173
2174 INC_STATS_COUNTER(cnt_map_single);
2175
2176 domain = get_domain(dev);
2177 if (PTR_ERR(domain) == -EINVAL)
2178 return (dma_addr_t)paddr;
2179 else if (IS_ERR(domain))
2180 return DMA_ERROR_CODE;
2181
2182 dma_mask = *dev->dma_mask;
2183
2184 spin_lock_irqsave(&domain->lock, flags);
2185
2186 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2187 dma_mask);
2188 if (addr == DMA_ERROR_CODE)
2189 goto out;
2190
2191 domain_flush_complete(domain);
2192
2193out:
2194 spin_unlock_irqrestore(&domain->lock, flags);
2195
2196 return addr;
2197}
2198
2199/*
2200 * The exported unmap_single function for dma_ops.
2201 */
2202static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2203 enum dma_data_direction dir, struct dma_attrs *attrs)
2204{
2205 unsigned long flags;
2206 struct protection_domain *domain;
2207
2208 INC_STATS_COUNTER(cnt_unmap_single);
2209
2210 domain = get_domain(dev);
2211 if (IS_ERR(domain))
2212 return;
2213
2214 spin_lock_irqsave(&domain->lock, flags);
2215
2216 __unmap_single(domain->priv, dma_addr, size, dir);
2217
2218 domain_flush_complete(domain);
2219
2220 spin_unlock_irqrestore(&domain->lock, flags);
2221}
2222
2223/*
2224 * This is a special map_sg function which is used if we should map a
2225 * device which is not handled by an AMD IOMMU in the system.
2226 */
2227static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2228 int nelems, int dir)
2229{
2230 struct scatterlist *s;
2231 int i;
2232
2233 for_each_sg(sglist, s, nelems, i) {
2234 s->dma_address = (dma_addr_t)sg_phys(s);
2235 s->dma_length = s->length;
2236 }
2237
2238 return nelems;
2239}
2240
2241/*
2242 * The exported map_sg function for dma_ops (handles scatter-gather
2243 * lists).
2244 */
2245static int map_sg(struct device *dev, struct scatterlist *sglist,
2246 int nelems, enum dma_data_direction dir,
2247 struct dma_attrs *attrs)
2248{
2249 unsigned long flags;
2250 struct protection_domain *domain;
2251 int i;
2252 struct scatterlist *s;
2253 phys_addr_t paddr;
2254 int mapped_elems = 0;
2255 u64 dma_mask;
2256
2257 INC_STATS_COUNTER(cnt_map_sg);
2258
2259 domain = get_domain(dev);
2260 if (PTR_ERR(domain) == -EINVAL)
2261 return map_sg_no_iommu(dev, sglist, nelems, dir);
2262 else if (IS_ERR(domain))
2263 return 0;
2264
2265 dma_mask = *dev->dma_mask;
2266
2267 spin_lock_irqsave(&domain->lock, flags);
2268
2269 for_each_sg(sglist, s, nelems, i) {
2270 paddr = sg_phys(s);
2271
2272 s->dma_address = __map_single(dev, domain->priv,
2273 paddr, s->length, dir, false,
2274 dma_mask);
2275
2276 if (s->dma_address) {
2277 s->dma_length = s->length;
2278 mapped_elems++;
2279 } else
2280 goto unmap;
2281 }
2282
2283 domain_flush_complete(domain);
2284
2285out:
2286 spin_unlock_irqrestore(&domain->lock, flags);
2287
2288 return mapped_elems;
2289unmap:
2290 for_each_sg(sglist, s, mapped_elems, i) {
2291 if (s->dma_address)
2292 __unmap_single(domain->priv, s->dma_address,
2293 s->dma_length, dir);
2294 s->dma_address = s->dma_length = 0;
2295 }
2296
2297 mapped_elems = 0;
2298
2299 goto out;
2300}
2301
2302/*
2303 * The exported map_sg function for dma_ops (handles scatter-gather
2304 * lists).
2305 */
2306static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2307 int nelems, enum dma_data_direction dir,
2308 struct dma_attrs *attrs)
2309{
2310 unsigned long flags;
2311 struct protection_domain *domain;
2312 struct scatterlist *s;
2313 int i;
2314
2315 INC_STATS_COUNTER(cnt_unmap_sg);
2316
2317 domain = get_domain(dev);
2318 if (IS_ERR(domain))
2319 return;
2320
2321 spin_lock_irqsave(&domain->lock, flags);
2322
2323 for_each_sg(sglist, s, nelems, i) {
2324 __unmap_single(domain->priv, s->dma_address,
2325 s->dma_length, dir);
2326 s->dma_address = s->dma_length = 0;
2327 }
2328
2329 domain_flush_complete(domain);
2330
2331 spin_unlock_irqrestore(&domain->lock, flags);
2332}
2333
2334/*
2335 * The exported alloc_coherent function for dma_ops.
2336 */
2337static void *alloc_coherent(struct device *dev, size_t size,
2338 dma_addr_t *dma_addr, gfp_t flag)
2339{
2340 unsigned long flags;
2341 void *virt_addr;
2342 struct protection_domain *domain;
2343 phys_addr_t paddr;
2344 u64 dma_mask = dev->coherent_dma_mask;
2345
2346 INC_STATS_COUNTER(cnt_alloc_coherent);
2347
2348 domain = get_domain(dev);
2349 if (PTR_ERR(domain) == -EINVAL) {
2350 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2351 *dma_addr = __pa(virt_addr);
2352 return virt_addr;
2353 } else if (IS_ERR(domain))
2354 return NULL;
2355
2356 dma_mask = dev->coherent_dma_mask;
2357 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2358 flag |= __GFP_ZERO;
2359
2360 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2361 if (!virt_addr)
2362 return NULL;
2363
2364 paddr = virt_to_phys(virt_addr);
2365
2366 if (!dma_mask)
2367 dma_mask = *dev->dma_mask;
2368
2369 spin_lock_irqsave(&domain->lock, flags);
2370
2371 *dma_addr = __map_single(dev, domain->priv, paddr,
2372 size, DMA_BIDIRECTIONAL, true, dma_mask);
2373
2374 if (*dma_addr == DMA_ERROR_CODE) {
2375 spin_unlock_irqrestore(&domain->lock, flags);
2376 goto out_free;
2377 }
2378
2379 domain_flush_complete(domain);
2380
2381 spin_unlock_irqrestore(&domain->lock, flags);
2382
2383 return virt_addr;
2384
2385out_free:
2386
2387 free_pages((unsigned long)virt_addr, get_order(size));
2388
2389 return NULL;
2390}
2391
2392/*
2393 * The exported free_coherent function for dma_ops.
2394 */
2395static void free_coherent(struct device *dev, size_t size,
2396 void *virt_addr, dma_addr_t dma_addr)
2397{
2398 unsigned long flags;
2399 struct protection_domain *domain;
2400
2401 INC_STATS_COUNTER(cnt_free_coherent);
2402
2403 domain = get_domain(dev);
2404 if (IS_ERR(domain))
2405 goto free_mem;
2406
2407 spin_lock_irqsave(&domain->lock, flags);
2408
2409 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2410
2411 domain_flush_complete(domain);
2412
2413 spin_unlock_irqrestore(&domain->lock, flags);
2414
2415free_mem:
2416 free_pages((unsigned long)virt_addr, get_order(size));
2417}
2418
2419/*
2420 * This function is called by the DMA layer to find out if we can handle a
2421 * particular device. It is part of the dma_ops.
2422 */
2423static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2424{
2425 return check_device(dev);
2426}
2427
2428/*
2429 * The function for pre-allocating protection domains.
2430 *
2431 * If the driver core informs the DMA layer if a driver grabs a device
2432 * we don't need to preallocate the protection domains anymore.
2433 * For now we have to.
2434 */
2435static void prealloc_protection_domains(void)
2436{
2437 struct pci_dev *dev = NULL;
2438 struct dma_ops_domain *dma_dom;
2439 u16 devid;
2440
2441 for_each_pci_dev(dev) {
2442
2443 /* Do we handle this device? */
2444 if (!check_device(&dev->dev))
2445 continue;
2446
2447 /* Is there already any domain for it? */
2448 if (domain_for_device(&dev->dev))
2449 continue;
2450
2451 devid = get_device_id(&dev->dev);
2452
2453 dma_dom = dma_ops_domain_alloc();
2454 if (!dma_dom)
2455 continue;
2456 init_unity_mappings_for_device(dma_dom, devid);
2457 dma_dom->target_dev = devid;
2458
2459 attach_device(&dev->dev, &dma_dom->domain);
2460
2461 list_add_tail(&dma_dom->list, &iommu_pd_list);
2462 }
2463}
2464
2465static struct dma_map_ops amd_iommu_dma_ops = {
2466 .alloc_coherent = alloc_coherent,
2467 .free_coherent = free_coherent,
2468 .map_page = map_page,
2469 .unmap_page = unmap_page,
2470 .map_sg = map_sg,
2471 .unmap_sg = unmap_sg,
2472 .dma_supported = amd_iommu_dma_supported,
2473};
2474
2475static unsigned device_dma_ops_init(void)
2476{
2477 struct pci_dev *pdev = NULL;
2478 unsigned unhandled = 0;
2479
2480 for_each_pci_dev(pdev) {
2481 if (!check_device(&pdev->dev)) {
2482 unhandled += 1;
2483 continue;
2484 }
2485
2486 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2487 }
2488
2489 return unhandled;
2490}
2491
2492/*
2493 * The function which clues the AMD IOMMU driver into dma_ops.
2494 */
2495
2496void __init amd_iommu_init_api(void)
2497{
2498 register_iommu(&amd_iommu_ops);
2499}
2500
2501int __init amd_iommu_init_dma_ops(void)
2502{
2503 struct amd_iommu *iommu;
2504 int ret, unhandled;
2505
2506 /*
2507 * first allocate a default protection domain for every IOMMU we
2508 * found in the system. Devices not assigned to any other
2509 * protection domain will be assigned to the default one.
2510 */
2511 for_each_iommu(iommu) {
2512 iommu->default_dom = dma_ops_domain_alloc();
2513 if (iommu->default_dom == NULL)
2514 return -ENOMEM;
2515 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2516 ret = iommu_init_unity_mappings(iommu);
2517 if (ret)
2518 goto free_domains;
2519 }
2520
2521 /*
2522 * Pre-allocate the protection domains for each device.
2523 */
2524 prealloc_protection_domains();
2525
2526 iommu_detected = 1;
2527 swiotlb = 0;
2528
2529 /* Make the driver finally visible to the drivers */
2530 unhandled = device_dma_ops_init();
2531 if (unhandled && max_pfn > MAX_DMA32_PFN) {
2532 /* There are unhandled devices - initialize swiotlb for them */
2533 swiotlb = 1;
2534 }
2535
2536 amd_iommu_stats_init();
2537
2538 return 0;
2539
2540free_domains:
2541
2542 for_each_iommu(iommu) {
2543 if (iommu->default_dom)
2544 dma_ops_domain_free(iommu->default_dom);
2545 }
2546
2547 return ret;
2548}
2549
2550/*****************************************************************************
2551 *
2552 * The following functions belong to the exported interface of AMD IOMMU
2553 *
2554 * This interface allows access to lower level functions of the IOMMU
2555 * like protection domain handling and assignement of devices to domains
2556 * which is not possible with the dma_ops interface.
2557 *
2558 *****************************************************************************/
2559
2560static void cleanup_domain(struct protection_domain *domain)
2561{
2562 struct iommu_dev_data *dev_data, *next;
2563 unsigned long flags;
2564
2565 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2566
2567 list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2568 __detach_device(dev_data);
2569 atomic_set(&dev_data->bind, 0);
2570 }
2571
2572 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2573}
2574
2575static void protection_domain_free(struct protection_domain *domain)
2576{
2577 if (!domain)
2578 return;
2579
2580 del_domain_from_list(domain);
2581
2582 if (domain->id)
2583 domain_id_free(domain->id);
2584
2585 kfree(domain);
2586}
2587
2588static struct protection_domain *protection_domain_alloc(void)
2589{
2590 struct protection_domain *domain;
2591
2592 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2593 if (!domain)
2594 return NULL;
2595
2596 spin_lock_init(&domain->lock);
2597 mutex_init(&domain->api_lock);
2598 domain->id = domain_id_alloc();
2599 if (!domain->id)
2600 goto out_err;
2601 INIT_LIST_HEAD(&domain->dev_list);
2602
2603 add_domain_to_list(domain);
2604
2605 return domain;
2606
2607out_err:
2608 kfree(domain);
2609
2610 return NULL;
2611}
2612
2613static int amd_iommu_domain_init(struct iommu_domain *dom)
2614{
2615 struct protection_domain *domain;
2616
2617 domain = protection_domain_alloc();
2618 if (!domain)
2619 goto out_free;
2620
2621 domain->mode = PAGE_MODE_3_LEVEL;
2622 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2623 if (!domain->pt_root)
2624 goto out_free;
2625
2626 dom->priv = domain;
2627
2628 return 0;
2629
2630out_free:
2631 protection_domain_free(domain);
2632
2633 return -ENOMEM;
2634}
2635
2636static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2637{
2638 struct protection_domain *domain = dom->priv;
2639
2640 if (!domain)
2641 return;
2642
2643 if (domain->dev_cnt > 0)
2644 cleanup_domain(domain);
2645
2646 BUG_ON(domain->dev_cnt != 0);
2647
2648 free_pagetable(domain);
2649
2650 protection_domain_free(domain);
2651
2652 dom->priv = NULL;
2653}
2654
2655static void amd_iommu_detach_device(struct iommu_domain *dom,
2656 struct device *dev)
2657{
2658 struct iommu_dev_data *dev_data = dev->archdata.iommu;
2659 struct amd_iommu *iommu;
2660 u16 devid;
2661
2662 if (!check_device(dev))
2663 return;
2664
2665 devid = get_device_id(dev);
2666
2667 if (dev_data->domain != NULL)
2668 detach_device(dev);
2669
2670 iommu = amd_iommu_rlookup_table[devid];
2671 if (!iommu)
2672 return;
2673
2674 iommu_completion_wait(iommu);
2675}
2676
2677static int amd_iommu_attach_device(struct iommu_domain *dom,
2678 struct device *dev)
2679{
2680 struct protection_domain *domain = dom->priv;
2681 struct iommu_dev_data *dev_data;
2682 struct amd_iommu *iommu;
2683 int ret;
2684
2685 if (!check_device(dev))
2686 return -EINVAL;
2687
2688 dev_data = dev->archdata.iommu;
2689
2690 iommu = amd_iommu_rlookup_table[dev_data->devid];
2691 if (!iommu)
2692 return -EINVAL;
2693
2694 if (dev_data->domain)
2695 detach_device(dev);
2696
2697 ret = attach_device(dev, domain);
2698
2699 iommu_completion_wait(iommu);
2700
2701 return ret;
2702}
2703
2704static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
2705 phys_addr_t paddr, int gfp_order, int iommu_prot)
2706{
2707 unsigned long page_size = 0x1000UL << gfp_order;
2708 struct protection_domain *domain = dom->priv;
2709 int prot = 0;
2710 int ret;
2711
2712 if (iommu_prot & IOMMU_READ)
2713 prot |= IOMMU_PROT_IR;
2714 if (iommu_prot & IOMMU_WRITE)
2715 prot |= IOMMU_PROT_IW;
2716
2717 mutex_lock(&domain->api_lock);
2718 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
2719 mutex_unlock(&domain->api_lock);
2720
2721 return ret;
2722}
2723
2724static int amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
2725 int gfp_order)
2726{
2727 struct protection_domain *domain = dom->priv;
2728 unsigned long page_size, unmap_size;
2729
2730 page_size = 0x1000UL << gfp_order;
2731
2732 mutex_lock(&domain->api_lock);
2733 unmap_size = iommu_unmap_page(domain, iova, page_size);
2734 mutex_unlock(&domain->api_lock);
2735
2736 domain_flush_tlb_pde(domain);
2737
2738 return get_order(unmap_size);
2739}
2740
2741static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2742 unsigned long iova)
2743{
2744 struct protection_domain *domain = dom->priv;
2745 unsigned long offset_mask;
2746 phys_addr_t paddr;
2747 u64 *pte, __pte;
2748
2749 pte = fetch_pte(domain, iova);
2750
2751 if (!pte || !IOMMU_PTE_PRESENT(*pte))
2752 return 0;
2753
2754 if (PM_PTE_LEVEL(*pte) == 0)
2755 offset_mask = PAGE_SIZE - 1;
2756 else
2757 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
2758
2759 __pte = *pte & PM_ADDR_MASK;
2760 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
2761
2762 return paddr;
2763}
2764
2765static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2766 unsigned long cap)
2767{
2768 switch (cap) {
2769 case IOMMU_CAP_CACHE_COHERENCY:
2770 return 1;
2771 }
2772
2773 return 0;
2774}
2775
2776static struct iommu_ops amd_iommu_ops = {
2777 .domain_init = amd_iommu_domain_init,
2778 .domain_destroy = amd_iommu_domain_destroy,
2779 .attach_dev = amd_iommu_attach_device,
2780 .detach_dev = amd_iommu_detach_device,
2781 .map = amd_iommu_map,
2782 .unmap = amd_iommu_unmap,
2783 .iova_to_phys = amd_iommu_iova_to_phys,
2784 .domain_has_cap = amd_iommu_domain_has_cap,
2785};
2786
2787/*****************************************************************************
2788 *
2789 * The next functions do a basic initialization of IOMMU for pass through
2790 * mode
2791 *
2792 * In passthrough mode the IOMMU is initialized and enabled but not used for
2793 * DMA-API translation.
2794 *
2795 *****************************************************************************/
2796
2797int __init amd_iommu_init_passthrough(void)
2798{
2799 struct amd_iommu *iommu;
2800 struct pci_dev *dev = NULL;
2801 u16 devid;
2802
2803 /* allocate passthrough domain */
2804 pt_domain = protection_domain_alloc();
2805 if (!pt_domain)
2806 return -ENOMEM;
2807
2808 pt_domain->mode |= PAGE_MODE_NONE;
2809
2810 for_each_pci_dev(dev) {
2811 if (!check_device(&dev->dev))
2812 continue;
2813
2814 devid = get_device_id(&dev->dev);
2815
2816 iommu = amd_iommu_rlookup_table[devid];
2817 if (!iommu)
2818 continue;
2819
2820 attach_device(&dev->dev, pt_domain);
2821 }
2822
2823 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2824
2825 return 0;
2826}