Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * linux/fs/nfs/direct.c
   3 *
   4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   5 *
   6 * High-performance uncached I/O for the Linux NFS client
   7 *
   8 * There are important applications whose performance or correctness
   9 * depends on uncached access to file data.  Database clusters
  10 * (multiple copies of the same instance running on separate hosts)
  11 * implement their own cache coherency protocol that subsumes file
  12 * system cache protocols.  Applications that process datasets
  13 * considerably larger than the client's memory do not always benefit
  14 * from a local cache.  A streaming video server, for instance, has no
  15 * need to cache the contents of a file.
  16 *
  17 * When an application requests uncached I/O, all read and write requests
  18 * are made directly to the server; data stored or fetched via these
  19 * requests is not cached in the Linux page cache.  The client does not
  20 * correct unaligned requests from applications.  All requested bytes are
  21 * held on permanent storage before a direct write system call returns to
  22 * an application.
  23 *
  24 * Solaris implements an uncached I/O facility called directio() that
  25 * is used for backups and sequential I/O to very large files.  Solaris
  26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27 * an undocumented mount option.
  28 *
  29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30 * help from Andrew Morton.
  31 *
  32 * 18 Dec 2001	Initial implementation for 2.4  --cel
  33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  34 * 08 Jun 2003	Port to 2.5 APIs  --cel
  35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  36 * 15 Sep 2004	Parallel async reads  --cel
  37 * 04 May 2005	support O_DIRECT with aio  --cel
  38 *
  39 */
  40
  41#include <linux/errno.h>
  42#include <linux/sched.h>
  43#include <linux/kernel.h>
  44#include <linux/file.h>
  45#include <linux/pagemap.h>
  46#include <linux/kref.h>
  47#include <linux/slab.h>
  48#include <linux/task_io_accounting_ops.h>
  49#include <linux/module.h>
  50
  51#include <linux/nfs_fs.h>
  52#include <linux/nfs_page.h>
  53#include <linux/sunrpc/clnt.h>
  54
  55#include <asm/uaccess.h>
  56#include <linux/atomic.h>
  57
  58#include "internal.h"
  59#include "iostat.h"
  60#include "pnfs.h"
  61
  62#define NFSDBG_FACILITY		NFSDBG_VFS
  63
  64static struct kmem_cache *nfs_direct_cachep;
  65
  66/*
  67 * This represents a set of asynchronous requests that we're waiting on
  68 */
  69struct nfs_direct_mirror {
  70	ssize_t count;
  71};
  72
  73struct nfs_direct_req {
  74	struct kref		kref;		/* release manager */
  75
  76	/* I/O parameters */
  77	struct nfs_open_context	*ctx;		/* file open context info */
  78	struct nfs_lock_context *l_ctx;		/* Lock context info */
  79	struct kiocb *		iocb;		/* controlling i/o request */
  80	struct inode *		inode;		/* target file of i/o */
  81
  82	/* completion state */
  83	atomic_t		io_count;	/* i/os we're waiting for */
  84	spinlock_t		lock;		/* protect completion state */
  85
  86	struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
  87	int			mirror_count;
  88
  89	ssize_t			count,		/* bytes actually processed */
  90				bytes_left,	/* bytes left to be sent */
  91				io_start,	/* start of IO */
  92				error;		/* any reported error */
  93	struct completion	completion;	/* wait for i/o completion */
  94
  95	/* commit state */
  96	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
  97	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
  98	struct work_struct	work;
  99	int			flags;
 100#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
 101#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
 102	struct nfs_writeverf	verf;		/* unstable write verifier */
 103};
 104
 105static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
 106static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
 107static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
 108static void nfs_direct_write_schedule_work(struct work_struct *work);
 109
 110static inline void get_dreq(struct nfs_direct_req *dreq)
 111{
 112	atomic_inc(&dreq->io_count);
 113}
 114
 115static inline int put_dreq(struct nfs_direct_req *dreq)
 116{
 117	return atomic_dec_and_test(&dreq->io_count);
 118}
 119
 120static void
 121nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
 122{
 123	int i;
 124	ssize_t count;
 125
 126	if (dreq->mirror_count == 1) {
 127		dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
 128		dreq->count += hdr->good_bytes;
 129	} else {
 130		/* mirrored writes */
 131		count = dreq->mirrors[hdr->pgio_mirror_idx].count;
 132		if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
 133			count = hdr->io_start + hdr->good_bytes - dreq->io_start;
 134			dreq->mirrors[hdr->pgio_mirror_idx].count = count;
 135		}
 136		/* update the dreq->count by finding the minimum agreed count from all
 137		 * mirrors */
 138		count = dreq->mirrors[0].count;
 139
 140		for (i = 1; i < dreq->mirror_count; i++)
 141			count = min(count, dreq->mirrors[i].count);
 142
 143		dreq->count = count;
 144	}
 145}
 146
 147/*
 148 * nfs_direct_select_verf - select the right verifier
 149 * @dreq - direct request possibly spanning multiple servers
 150 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
 151 * @commit_idx - commit bucket index for the DS
 152 *
 153 * returns the correct verifier to use given the role of the server
 154 */
 155static struct nfs_writeverf *
 156nfs_direct_select_verf(struct nfs_direct_req *dreq,
 157		       struct nfs_client *ds_clp,
 158		       int commit_idx)
 159{
 160	struct nfs_writeverf *verfp = &dreq->verf;
 161
 162#ifdef CONFIG_NFS_V4_1
 163	/*
 164	 * pNFS is in use, use the DS verf except commit_through_mds is set
 165	 * for layout segment where nbuckets is zero.
 166	 */
 167	if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
 168		if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
 169			verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
 170		else
 171			WARN_ON_ONCE(1);
 172	}
 173#endif
 174	return verfp;
 175}
 176
 177
 178/*
 179 * nfs_direct_set_hdr_verf - set the write/commit verifier
 180 * @dreq - direct request possibly spanning multiple servers
 181 * @hdr - pageio header to validate against previously seen verfs
 182 *
 183 * Set the server's (MDS or DS) "seen" verifier
 184 */
 185static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
 186				    struct nfs_pgio_header *hdr)
 187{
 188	struct nfs_writeverf *verfp;
 189
 190	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
 191	WARN_ON_ONCE(verfp->committed >= 0);
 192	memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
 193	WARN_ON_ONCE(verfp->committed < 0);
 194}
 195
 196/*
 197 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
 198 * @dreq - direct request possibly spanning multiple servers
 199 * @hdr - pageio header to validate against previously seen verf
 200 *
 201 * set the server's "seen" verf if not initialized.
 202 * returns result of comparison between @hdr->verf and the "seen"
 203 * verf of the server used by @hdr (DS or MDS)
 204 */
 205static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
 206					  struct nfs_pgio_header *hdr)
 207{
 208	struct nfs_writeverf *verfp;
 209
 210	verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
 211	if (verfp->committed < 0) {
 212		nfs_direct_set_hdr_verf(dreq, hdr);
 213		return 0;
 214	}
 215	return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
 216}
 217
 218/*
 219 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
 220 * @dreq - direct request possibly spanning multiple servers
 221 * @data - commit data to validate against previously seen verf
 222 *
 223 * returns result of comparison between @data->verf and the verf of
 224 * the server used by @data (DS or MDS)
 225 */
 226static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
 227					   struct nfs_commit_data *data)
 228{
 229	struct nfs_writeverf *verfp;
 230
 231	verfp = nfs_direct_select_verf(dreq, data->ds_clp,
 232					 data->ds_commit_index);
 233
 234	/* verifier not set so always fail */
 235	if (verfp->committed < 0)
 236		return 1;
 237
 238	return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
 239}
 240
 241/**
 242 * nfs_direct_IO - NFS address space operation for direct I/O
 
 243 * @iocb: target I/O control block
 244 * @iov: array of vectors that define I/O buffer
 245 * @pos: offset in file to begin the operation
 246 * @nr_segs: size of iovec array
 247 *
 248 * The presence of this routine in the address space ops vector means
 249 * the NFS client supports direct I/O. However, for most direct IO, we
 250 * shunt off direct read and write requests before the VFS gets them,
 251 * so this method is only ever called for swap.
 252 */
 253ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
 254{
 255	struct inode *inode = iocb->ki_filp->f_mapping->host;
 256
 257	/* we only support swap file calling nfs_direct_IO */
 258	if (!IS_SWAPFILE(inode))
 259		return 0;
 260
 261	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
 262
 263	if (iov_iter_rw(iter) == READ)
 264		return nfs_file_direct_read(iocb, iter, pos);
 265	return nfs_file_direct_write(iocb, iter);
 
 
 
 266}
 267
 268static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 269{
 270	unsigned int i;
 271	for (i = 0; i < npages; i++)
 272		put_page(pages[i]);
 273}
 274
 275void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
 276			      struct nfs_direct_req *dreq)
 277{
 278	cinfo->lock = &dreq->inode->i_lock;
 279	cinfo->mds = &dreq->mds_cinfo;
 280	cinfo->ds = &dreq->ds_cinfo;
 281	cinfo->dreq = dreq;
 282	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
 283}
 284
 285static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
 286					     struct nfs_pageio_descriptor *pgio,
 287					     struct nfs_page *req)
 288{
 289	int mirror_count = 1;
 290
 291	if (pgio->pg_ops->pg_get_mirror_count)
 292		mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
 293
 294	dreq->mirror_count = mirror_count;
 295}
 296
 297static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 298{
 299	struct nfs_direct_req *dreq;
 300
 301	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
 302	if (!dreq)
 303		return NULL;
 304
 305	kref_init(&dreq->kref);
 306	kref_get(&dreq->kref);
 307	init_completion(&dreq->completion);
 308	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 309	dreq->verf.committed = NFS_INVALID_STABLE_HOW;	/* not set yet */
 310	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
 311	dreq->mirror_count = 1;
 312	spin_lock_init(&dreq->lock);
 313
 314	return dreq;
 315}
 316
 317static void nfs_direct_req_free(struct kref *kref)
 318{
 319	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 320
 321	nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
 322	if (dreq->l_ctx != NULL)
 323		nfs_put_lock_context(dreq->l_ctx);
 324	if (dreq->ctx != NULL)
 325		put_nfs_open_context(dreq->ctx);
 326	kmem_cache_free(nfs_direct_cachep, dreq);
 327}
 328
 329static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 330{
 331	kref_put(&dreq->kref, nfs_direct_req_free);
 332}
 333
 334ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
 335{
 336	return dreq->bytes_left;
 337}
 338EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
 339
 340/*
 341 * Collects and returns the final error value/byte-count.
 342 */
 343static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 344{
 345	ssize_t result = -EIOCBQUEUED;
 346
 347	/* Async requests don't wait here */
 348	if (dreq->iocb)
 349		goto out;
 350
 351	result = wait_for_completion_killable(&dreq->completion);
 352
 353	if (!result)
 354		result = dreq->error;
 355	if (!result)
 356		result = dreq->count;
 357
 358out:
 359	return (ssize_t) result;
 360}
 361
 362/*
 363 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 364 * the iocb is still valid here if this is a synchronous request.
 365 */
 366static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
 367{
 368	struct inode *inode = dreq->inode;
 369
 370	if (dreq->iocb && write) {
 371		loff_t pos = dreq->iocb->ki_pos + dreq->count;
 372
 373		spin_lock(&inode->i_lock);
 374		if (i_size_read(inode) < pos)
 375			i_size_write(inode, pos);
 376		spin_unlock(&inode->i_lock);
 377	}
 378
 379	if (write)
 380		nfs_zap_mapping(inode, inode->i_mapping);
 381
 382	inode_dio_end(inode);
 383
 384	if (dreq->iocb) {
 385		long res = (long) dreq->error;
 386		if (!res)
 387			res = (long) dreq->count;
 388		dreq->iocb->ki_complete(dreq->iocb, res, 0);
 389	}
 390
 391	complete_all(&dreq->completion);
 392
 393	nfs_direct_req_release(dreq);
 394}
 395
 396static void nfs_direct_readpage_release(struct nfs_page *req)
 397{
 398	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
 399		d_inode(req->wb_context->dentry)->i_sb->s_id,
 400		(unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
 401		req->wb_bytes,
 402		(long long)req_offset(req));
 403	nfs_release_request(req);
 404}
 405
 406static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
 407{
 408	unsigned long bytes = 0;
 409	struct nfs_direct_req *dreq = hdr->dreq;
 410
 411	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 412		goto out_put;
 413
 414	spin_lock(&dreq->lock);
 415	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
 416		dreq->error = hdr->error;
 417	else
 418		nfs_direct_good_bytes(dreq, hdr);
 419
 420	spin_unlock(&dreq->lock);
 421
 422	while (!list_empty(&hdr->pages)) {
 423		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 424		struct page *page = req->wb_page;
 425
 426		if (!PageCompound(page) && bytes < hdr->good_bytes)
 427			set_page_dirty(page);
 428		bytes += req->wb_bytes;
 429		nfs_list_remove_request(req);
 430		nfs_direct_readpage_release(req);
 431	}
 432out_put:
 433	if (put_dreq(dreq))
 434		nfs_direct_complete(dreq, false);
 435	hdr->release(hdr);
 436}
 437
 438static void nfs_read_sync_pgio_error(struct list_head *head)
 439{
 440	struct nfs_page *req;
 441
 442	while (!list_empty(head)) {
 443		req = nfs_list_entry(head->next);
 444		nfs_list_remove_request(req);
 445		nfs_release_request(req);
 446	}
 447}
 448
 449static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
 450{
 451	get_dreq(hdr->dreq);
 452}
 453
 454static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
 455	.error_cleanup = nfs_read_sync_pgio_error,
 456	.init_hdr = nfs_direct_pgio_init,
 457	.completion = nfs_direct_read_completion,
 458};
 459
 460/*
 461 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 462 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 463 * bail and stop sending more reads.  Read length accounting is
 464 * handled automatically by nfs_direct_read_result().  Otherwise, if
 465 * no requests have been sent, just return an error.
 466 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467
 468static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 469					      struct iov_iter *iter,
 470					      loff_t pos)
 471{
 472	struct nfs_pageio_descriptor desc;
 473	struct inode *inode = dreq->inode;
 474	ssize_t result = -EINVAL;
 475	size_t requested_bytes = 0;
 476	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
 477
 478	nfs_pageio_init_read(&desc, dreq->inode, false,
 479			     &nfs_direct_read_completion_ops);
 480	get_dreq(dreq);
 481	desc.pg_dreq = dreq;
 482	inode_dio_begin(inode);
 483
 484	while (iov_iter_count(iter)) {
 485		struct page **pagevec;
 486		size_t bytes;
 487		size_t pgbase;
 488		unsigned npages, i;
 489
 490		result = iov_iter_get_pages_alloc(iter, &pagevec, 
 491						  rsize, &pgbase);
 492		if (result < 0)
 
 
 
 
 
 
 493			break;
 494	
 495		bytes = result;
 496		iov_iter_advance(iter, bytes);
 497		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498		for (i = 0; i < npages; i++) {
 499			struct nfs_page *req;
 500			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 501			/* XXX do we need to do the eof zeroing found in async_filler? */
 502			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
 
 503						 pgbase, req_len);
 504			if (IS_ERR(req)) {
 505				result = PTR_ERR(req);
 506				break;
 507			}
 508			req->wb_index = pos >> PAGE_SHIFT;
 509			req->wb_offset = pos & ~PAGE_MASK;
 510			if (!nfs_pageio_add_request(&desc, req)) {
 511				result = desc.pg_error;
 512				nfs_release_request(req);
 513				break;
 514			}
 515			pgbase = 0;
 516			bytes -= req_len;
 517			requested_bytes += req_len;
 
 518			pos += req_len;
 
 519			dreq->bytes_left -= req_len;
 520		}
 
 521		nfs_direct_release_pages(pagevec, npages);
 522		kvfree(pagevec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523		if (result < 0)
 524			break;
 
 
 
 
 525	}
 526
 527	nfs_pageio_complete(&desc);
 528
 529	/*
 530	 * If no bytes were started, return the error, and let the
 531	 * generic layer handle the completion.
 532	 */
 533	if (requested_bytes == 0) {
 534		inode_dio_end(inode);
 535		nfs_direct_req_release(dreq);
 536		return result < 0 ? result : -EIO;
 537	}
 538
 539	if (put_dreq(dreq))
 540		nfs_direct_complete(dreq, false);
 541	return 0;
 542}
 543
 544/**
 545 * nfs_file_direct_read - file direct read operation for NFS files
 546 * @iocb: target I/O control block
 547 * @iter: vector of user buffers into which to read data
 
 548 * @pos: byte offset in file where reading starts
 549 *
 550 * We use this function for direct reads instead of calling
 551 * generic_file_aio_read() in order to avoid gfar's check to see if
 552 * the request starts before the end of the file.  For that check
 553 * to work, we must generate a GETATTR before each direct read, and
 554 * even then there is a window between the GETATTR and the subsequent
 555 * READ where the file size could change.  Our preference is simply
 556 * to do all reads the application wants, and the server will take
 557 * care of managing the end of file boundary.
 558 *
 559 * This function also eliminates unnecessarily updating the file's
 560 * atime locally, as the NFS server sets the file's atime, and this
 561 * client must read the updated atime from the server back into its
 562 * cache.
 563 */
 564ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
 565				loff_t pos)
 566{
 567	struct file *file = iocb->ki_filp;
 568	struct address_space *mapping = file->f_mapping;
 569	struct inode *inode = mapping->host;
 570	struct nfs_direct_req *dreq;
 571	struct nfs_lock_context *l_ctx;
 572	ssize_t result = -EINVAL;
 573	size_t count = iov_iter_count(iter);
 
 
 574	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 575
 576	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
 577		file, count, (long long) pos);
 578
 579	result = 0;
 580	if (!count)
 581		goto out;
 582
 583	inode_lock(inode);
 584	result = nfs_sync_mapping(mapping);
 585	if (result)
 586		goto out_unlock;
 587
 588	task_io_account_read(count);
 589
 590	result = -ENOMEM;
 591	dreq = nfs_direct_req_alloc();
 592	if (dreq == NULL)
 593		goto out_unlock;
 594
 595	dreq->inode = inode;
 596	dreq->bytes_left = count;
 597	dreq->io_start = pos;
 598	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 599	l_ctx = nfs_get_lock_context(dreq->ctx);
 600	if (IS_ERR(l_ctx)) {
 601		result = PTR_ERR(l_ctx);
 602		goto out_release;
 603	}
 604	dreq->l_ctx = l_ctx;
 605	if (!is_sync_kiocb(iocb))
 606		dreq->iocb = iocb;
 607
 608	NFS_I(inode)->read_io += count;
 609	result = nfs_direct_read_schedule_iovec(dreq, iter, pos);
 610
 611	inode_unlock(inode);
 612
 613	if (!result) {
 614		result = nfs_direct_wait(dreq);
 615		if (result > 0)
 616			iocb->ki_pos = pos + result;
 617	}
 618
 619	nfs_direct_req_release(dreq);
 620	return result;
 621
 622out_release:
 623	nfs_direct_req_release(dreq);
 624out_unlock:
 625	inode_unlock(inode);
 626out:
 627	return result;
 628}
 629
 630static void
 631nfs_direct_write_scan_commit_list(struct inode *inode,
 632				  struct list_head *list,
 633				  struct nfs_commit_info *cinfo)
 634{
 635	spin_lock(cinfo->lock);
 636#ifdef CONFIG_NFS_V4_1
 637	if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
 638		NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
 639#endif
 640	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
 641	spin_unlock(cinfo->lock);
 642}
 643
 644static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 645{
 646	struct nfs_pageio_descriptor desc;
 647	struct nfs_page *req, *tmp;
 648	LIST_HEAD(reqs);
 649	struct nfs_commit_info cinfo;
 650	LIST_HEAD(failed);
 651	int i;
 652
 653	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 654	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
 
 
 
 655
 656	dreq->count = 0;
 657	for (i = 0; i < dreq->mirror_count; i++)
 658		dreq->mirrors[i].count = 0;
 659	get_dreq(dreq);
 660
 661	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
 662			      &nfs_direct_write_completion_ops);
 663	desc.pg_dreq = dreq;
 664
 665	req = nfs_list_entry(reqs.next);
 666	nfs_direct_setup_mirroring(dreq, &desc, req);
 667	if (desc.pg_error < 0) {
 668		list_splice_init(&reqs, &failed);
 669		goto out_failed;
 670	}
 671
 672	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
 673		if (!nfs_pageio_add_request(&desc, req)) {
 674			nfs_list_remove_request(req);
 675			nfs_list_add_request(req, &failed);
 676			spin_lock(cinfo.lock);
 677			dreq->flags = 0;
 678			if (desc.pg_error < 0)
 679				dreq->error = desc.pg_error;
 680			else
 681				dreq->error = -EIO;
 682			spin_unlock(cinfo.lock);
 683		}
 684		nfs_release_request(req);
 685	}
 686	nfs_pageio_complete(&desc);
 687
 688out_failed:
 689	while (!list_empty(&failed)) {
 690		req = nfs_list_entry(failed.next);
 691		nfs_list_remove_request(req);
 692		nfs_unlock_and_release_request(req);
 693	}
 694
 695	if (put_dreq(dreq))
 696		nfs_direct_write_complete(dreq, dreq->inode);
 697}
 698
 699static void nfs_direct_commit_complete(struct nfs_commit_data *data)
 700{
 701	struct nfs_direct_req *dreq = data->dreq;
 702	struct nfs_commit_info cinfo;
 703	struct nfs_page *req;
 704	int status = data->task.tk_status;
 705
 706	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 707	if (status < 0) {
 708		dprintk("NFS: %5u commit failed with error %d.\n",
 709			data->task.tk_pid, status);
 710		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 711	} else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
 712		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
 713		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 714	}
 715
 716	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
 717	while (!list_empty(&data->pages)) {
 718		req = nfs_list_entry(data->pages.next);
 719		nfs_list_remove_request(req);
 720		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
 721			/* Note the rewrite will go through mds */
 722			nfs_mark_request_commit(req, NULL, &cinfo, 0);
 723		} else
 724			nfs_release_request(req);
 725		nfs_unlock_and_release_request(req);
 726	}
 727
 728	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
 729		nfs_direct_write_complete(dreq, data->inode);
 730}
 731
 732static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
 733		struct nfs_page *req)
 734{
 735	struct nfs_direct_req *dreq = cinfo->dreq;
 736
 737	spin_lock(&dreq->lock);
 738	dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 739	spin_unlock(&dreq->lock);
 740	nfs_mark_request_commit(req, NULL, cinfo, 0);
 741}
 742
 743static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
 744	.completion = nfs_direct_commit_complete,
 745	.resched_write = nfs_direct_resched_write,
 746};
 747
 748static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 749{
 750	int res;
 751	struct nfs_commit_info cinfo;
 752	LIST_HEAD(mds_list);
 753
 754	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 755	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
 756	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
 757	if (res < 0) /* res == -ENOMEM */
 758		nfs_direct_write_reschedule(dreq);
 759}
 760
 761static void nfs_direct_write_schedule_work(struct work_struct *work)
 762{
 763	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
 764	int flags = dreq->flags;
 765
 766	dreq->flags = 0;
 767	switch (flags) {
 768		case NFS_ODIRECT_DO_COMMIT:
 769			nfs_direct_commit_schedule(dreq);
 770			break;
 771		case NFS_ODIRECT_RESCHED_WRITES:
 772			nfs_direct_write_reschedule(dreq);
 773			break;
 774		default:
 775			nfs_direct_complete(dreq, true);
 776	}
 777}
 778
 779static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 780{
 781	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
 782}
 783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
 785{
 786	struct nfs_direct_req *dreq = hdr->dreq;
 787	struct nfs_commit_info cinfo;
 788	bool request_commit = false;
 789	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 790
 791	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 792		goto out_put;
 793
 794	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 795
 796	spin_lock(&dreq->lock);
 797
 798	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
 799		dreq->flags = 0;
 800		dreq->error = hdr->error;
 801	}
 802	if (dreq->error == 0) {
 803		nfs_direct_good_bytes(dreq, hdr);
 804		if (nfs_write_need_commit(hdr)) {
 
 
 
 
 
 805			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
 806				request_commit = true;
 807			else if (dreq->flags == 0) {
 808				nfs_direct_set_hdr_verf(dreq, hdr);
 809				request_commit = true;
 
 810				dreq->flags = NFS_ODIRECT_DO_COMMIT;
 811			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
 812				request_commit = true;
 813				if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
 814					dreq->flags =
 815						NFS_ODIRECT_RESCHED_WRITES;
 
 816			}
 817		}
 818	}
 819	spin_unlock(&dreq->lock);
 820
 821	while (!list_empty(&hdr->pages)) {
 822
 823		req = nfs_list_entry(hdr->pages.next);
 824		nfs_list_remove_request(req);
 825		if (request_commit) {
 
 
 826			kref_get(&req->wb_kref);
 827			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
 828				hdr->ds_commit_idx);
 829		}
 830		nfs_unlock_and_release_request(req);
 831	}
 832
 833out_put:
 834	if (put_dreq(dreq))
 835		nfs_direct_write_complete(dreq, hdr->inode);
 836	hdr->release(hdr);
 837}
 838
 839static void nfs_write_sync_pgio_error(struct list_head *head)
 840{
 841	struct nfs_page *req;
 842
 843	while (!list_empty(head)) {
 844		req = nfs_list_entry(head->next);
 845		nfs_list_remove_request(req);
 846		nfs_unlock_and_release_request(req);
 847	}
 848}
 849
 850static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
 851{
 852	struct nfs_direct_req *dreq = hdr->dreq;
 853
 854	spin_lock(&dreq->lock);
 855	if (dreq->error == 0) {
 856		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 857		/* fake unstable write to let common nfs resend pages */
 858		hdr->verf.committed = NFS_UNSTABLE;
 859		hdr->good_bytes = hdr->args.count;
 860	}
 861	spin_unlock(&dreq->lock);
 862}
 863
 864static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
 865	.error_cleanup = nfs_write_sync_pgio_error,
 866	.init_hdr = nfs_direct_pgio_init,
 867	.completion = nfs_direct_write_completion,
 868	.reschedule_io = nfs_direct_write_reschedule_io,
 869};
 870
 871
 872/*
 873 * NB: Return the value of the first error return code.  Subsequent
 874 *     errors after the first one are ignored.
 875 */
 876/*
 877 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 878 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 879 * bail and stop sending more writes.  Write length accounting is
 880 * handled automatically by nfs_direct_write_result().  Otherwise, if
 881 * no requests have been sent, just return an error.
 882 */
 883static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 884					       struct iov_iter *iter,
 885					       loff_t pos)
 
 886{
 887	struct nfs_pageio_descriptor desc;
 888	struct inode *inode = dreq->inode;
 889	ssize_t result = 0;
 890	size_t requested_bytes = 0;
 891	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
 892
 893	nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
 894			      &nfs_direct_write_completion_ops);
 895	desc.pg_dreq = dreq;
 896	get_dreq(dreq);
 897	inode_dio_begin(inode);
 898
 899	NFS_I(inode)->write_io += iov_iter_count(iter);
 900	while (iov_iter_count(iter)) {
 901		struct page **pagevec;
 902		size_t bytes;
 903		size_t pgbase;
 904		unsigned npages, i;
 905
 906		result = iov_iter_get_pages_alloc(iter, &pagevec, 
 907						  wsize, &pgbase);
 
 
 908		if (result < 0)
 909			break;
 910
 911		bytes = result;
 912		iov_iter_advance(iter, bytes);
 913		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 914		for (i = 0; i < npages; i++) {
 915			struct nfs_page *req;
 916			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 917
 918			req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
 919						 pgbase, req_len);
 920			if (IS_ERR(req)) {
 921				result = PTR_ERR(req);
 922				break;
 923			}
 924
 925			nfs_direct_setup_mirroring(dreq, &desc, req);
 926			if (desc.pg_error < 0) {
 927				nfs_free_request(req);
 928				result = desc.pg_error;
 929				break;
 930			}
 931
 932			nfs_lock_request(req);
 933			req->wb_index = pos >> PAGE_SHIFT;
 934			req->wb_offset = pos & ~PAGE_MASK;
 935			if (!nfs_pageio_add_request(&desc, req)) {
 936				result = desc.pg_error;
 937				nfs_unlock_and_release_request(req);
 938				break;
 939			}
 940			pgbase = 0;
 941			bytes -= req_len;
 942			requested_bytes += req_len;
 943			pos += req_len;
 944			dreq->bytes_left -= req_len;
 945		}
 946		nfs_direct_release_pages(pagevec, npages);
 947		kvfree(pagevec);
 948		if (result < 0)
 949			break;
 
 950	}
 951	nfs_pageio_complete(&desc);
 952
 953	/*
 954	 * If no bytes were started, return the error, and let the
 955	 * generic layer handle the completion.
 956	 */
 957	if (requested_bytes == 0) {
 958		inode_dio_end(inode);
 959		nfs_direct_req_release(dreq);
 960		return result < 0 ? result : -EIO;
 961	}
 962
 963	if (put_dreq(dreq))
 964		nfs_direct_write_complete(dreq, dreq->inode);
 965	return 0;
 966}
 967
 968/**
 969 * nfs_file_direct_write - file direct write operation for NFS files
 970 * @iocb: target I/O control block
 971 * @iter: vector of user buffers from which to write data
 
 972 * @pos: byte offset in file where writing starts
 973 *
 974 * We use this function for direct writes instead of calling
 975 * generic_file_aio_write() in order to avoid taking the inode
 976 * semaphore and updating the i_size.  The NFS server will set
 977 * the new i_size and this client must read the updated size
 978 * back into its cache.  We let the server do generic write
 979 * parameter checking and report problems.
 980 *
 981 * We eliminate local atime updates, see direct read above.
 982 *
 983 * We avoid unnecessary page cache invalidations for normal cached
 984 * readers of this file.
 985 *
 986 * Note that O_APPEND is not supported for NFS direct writes, as there
 987 * is no atomic O_APPEND write facility in the NFS protocol.
 988 */
 989ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
 
 990{
 991	ssize_t result = -EINVAL;
 992	struct file *file = iocb->ki_filp;
 993	struct address_space *mapping = file->f_mapping;
 994	struct inode *inode = mapping->host;
 995	struct nfs_direct_req *dreq;
 996	struct nfs_lock_context *l_ctx;
 997	loff_t pos, end;
 
 
 
 
 
 
 998
 999	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
1000		file, iov_iter_count(iter), (long long) iocb->ki_pos);
1001
1002	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES,
1003		      iov_iter_count(iter));
 
1004
1005	pos = iocb->ki_pos;
1006	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
 
 
 
 
1007
1008	inode_lock(inode);
1009
1010	result = nfs_sync_mapping(mapping);
1011	if (result)
1012		goto out_unlock;
1013
1014	if (mapping->nrpages) {
1015		result = invalidate_inode_pages2_range(mapping,
1016					pos >> PAGE_SHIFT, end);
1017		if (result)
1018			goto out_unlock;
1019	}
1020
1021	task_io_account_write(iov_iter_count(iter));
1022
1023	result = -ENOMEM;
1024	dreq = nfs_direct_req_alloc();
1025	if (!dreq)
1026		goto out_unlock;
1027
1028	dreq->inode = inode;
1029	dreq->bytes_left = iov_iter_count(iter);
1030	dreq->io_start = pos;
1031	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1032	l_ctx = nfs_get_lock_context(dreq->ctx);
1033	if (IS_ERR(l_ctx)) {
1034		result = PTR_ERR(l_ctx);
1035		goto out_release;
1036	}
1037	dreq->l_ctx = l_ctx;
1038	if (!is_sync_kiocb(iocb))
1039		dreq->iocb = iocb;
1040
1041	result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
1042
1043	if (mapping->nrpages) {
1044		invalidate_inode_pages2_range(mapping,
1045					      pos >> PAGE_SHIFT, end);
1046	}
1047
1048	inode_unlock(inode);
1049
1050	if (!result) {
1051		result = nfs_direct_wait(dreq);
1052		if (result > 0) {
1053			struct inode *inode = mapping->host;
1054
1055			iocb->ki_pos = pos + result;
1056			spin_lock(&inode->i_lock);
1057			if (i_size_read(inode) < iocb->ki_pos)
1058				i_size_write(inode, iocb->ki_pos);
1059			spin_unlock(&inode->i_lock);
1060			generic_write_sync(file, pos, result);
1061		}
1062	}
1063	nfs_direct_req_release(dreq);
1064	return result;
1065
1066out_release:
1067	nfs_direct_req_release(dreq);
1068out_unlock:
1069	inode_unlock(inode);
 
1070	return result;
1071}
1072
1073/**
1074 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1075 *
1076 */
1077int __init nfs_init_directcache(void)
1078{
1079	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1080						sizeof(struct nfs_direct_req),
1081						0, (SLAB_RECLAIM_ACCOUNT|
1082							SLAB_MEM_SPREAD),
1083						NULL);
1084	if (nfs_direct_cachep == NULL)
1085		return -ENOMEM;
1086
1087	return 0;
1088}
1089
1090/**
1091 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1092 *
1093 */
1094void nfs_destroy_directcache(void)
1095{
1096	kmem_cache_destroy(nfs_direct_cachep);
1097}
v3.15
   1/*
   2 * linux/fs/nfs/direct.c
   3 *
   4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   5 *
   6 * High-performance uncached I/O for the Linux NFS client
   7 *
   8 * There are important applications whose performance or correctness
   9 * depends on uncached access to file data.  Database clusters
  10 * (multiple copies of the same instance running on separate hosts)
  11 * implement their own cache coherency protocol that subsumes file
  12 * system cache protocols.  Applications that process datasets
  13 * considerably larger than the client's memory do not always benefit
  14 * from a local cache.  A streaming video server, for instance, has no
  15 * need to cache the contents of a file.
  16 *
  17 * When an application requests uncached I/O, all read and write requests
  18 * are made directly to the server; data stored or fetched via these
  19 * requests is not cached in the Linux page cache.  The client does not
  20 * correct unaligned requests from applications.  All requested bytes are
  21 * held on permanent storage before a direct write system call returns to
  22 * an application.
  23 *
  24 * Solaris implements an uncached I/O facility called directio() that
  25 * is used for backups and sequential I/O to very large files.  Solaris
  26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27 * an undocumented mount option.
  28 *
  29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30 * help from Andrew Morton.
  31 *
  32 * 18 Dec 2001	Initial implementation for 2.4  --cel
  33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  34 * 08 Jun 2003	Port to 2.5 APIs  --cel
  35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  36 * 15 Sep 2004	Parallel async reads  --cel
  37 * 04 May 2005	support O_DIRECT with aio  --cel
  38 *
  39 */
  40
  41#include <linux/errno.h>
  42#include <linux/sched.h>
  43#include <linux/kernel.h>
  44#include <linux/file.h>
  45#include <linux/pagemap.h>
  46#include <linux/kref.h>
  47#include <linux/slab.h>
  48#include <linux/task_io_accounting_ops.h>
  49#include <linux/module.h>
  50
  51#include <linux/nfs_fs.h>
  52#include <linux/nfs_page.h>
  53#include <linux/sunrpc/clnt.h>
  54
  55#include <asm/uaccess.h>
  56#include <linux/atomic.h>
  57
  58#include "internal.h"
  59#include "iostat.h"
  60#include "pnfs.h"
  61
  62#define NFSDBG_FACILITY		NFSDBG_VFS
  63
  64static struct kmem_cache *nfs_direct_cachep;
  65
  66/*
  67 * This represents a set of asynchronous requests that we're waiting on
  68 */
 
 
 
 
  69struct nfs_direct_req {
  70	struct kref		kref;		/* release manager */
  71
  72	/* I/O parameters */
  73	struct nfs_open_context	*ctx;		/* file open context info */
  74	struct nfs_lock_context *l_ctx;		/* Lock context info */
  75	struct kiocb *		iocb;		/* controlling i/o request */
  76	struct inode *		inode;		/* target file of i/o */
  77
  78	/* completion state */
  79	atomic_t		io_count;	/* i/os we're waiting for */
  80	spinlock_t		lock;		/* protect completion state */
 
 
 
 
  81	ssize_t			count,		/* bytes actually processed */
  82				bytes_left,	/* bytes left to be sent */
 
  83				error;		/* any reported error */
  84	struct completion	completion;	/* wait for i/o completion */
  85
  86	/* commit state */
  87	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
  88	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
  89	struct work_struct	work;
  90	int			flags;
  91#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
  92#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
  93	struct nfs_writeverf	verf;		/* unstable write verifier */
  94};
  95
  96static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
  97static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
  98static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  99static void nfs_direct_write_schedule_work(struct work_struct *work);
 100
 101static inline void get_dreq(struct nfs_direct_req *dreq)
 102{
 103	atomic_inc(&dreq->io_count);
 104}
 105
 106static inline int put_dreq(struct nfs_direct_req *dreq)
 107{
 108	return atomic_dec_and_test(&dreq->io_count);
 109}
 110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111/**
 112 * nfs_direct_IO - NFS address space operation for direct I/O
 113 * @rw: direction (read or write)
 114 * @iocb: target I/O control block
 115 * @iov: array of vectors that define I/O buffer
 116 * @pos: offset in file to begin the operation
 117 * @nr_segs: size of iovec array
 118 *
 119 * The presence of this routine in the address space ops vector means
 120 * the NFS client supports direct I/O. However, for most direct IO, we
 121 * shunt off direct read and write requests before the VFS gets them,
 122 * so this method is only ever called for swap.
 123 */
 124ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
 125{
 126#ifndef CONFIG_NFS_SWAP
 127	dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
 128			iocb->ki_filp, (long long) pos, nr_segs);
 129
 130	return -EINVAL;
 131#else
 132	VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
 133
 134	if (rw == READ || rw == KERNEL_READ)
 135		return nfs_file_direct_read(iocb, iov, nr_segs, pos,
 136				rw == READ ? true : false);
 137	return nfs_file_direct_write(iocb, iov, nr_segs, pos,
 138				rw == WRITE ? true : false);
 139#endif /* CONFIG_NFS_SWAP */
 140}
 141
 142static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 143{
 144	unsigned int i;
 145	for (i = 0; i < npages; i++)
 146		page_cache_release(pages[i]);
 147}
 148
 149void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
 150			      struct nfs_direct_req *dreq)
 151{
 152	cinfo->lock = &dreq->lock;
 153	cinfo->mds = &dreq->mds_cinfo;
 154	cinfo->ds = &dreq->ds_cinfo;
 155	cinfo->dreq = dreq;
 156	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
 157}
 158
 
 
 
 
 
 
 
 
 
 
 
 
 159static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 160{
 161	struct nfs_direct_req *dreq;
 162
 163	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
 164	if (!dreq)
 165		return NULL;
 166
 167	kref_init(&dreq->kref);
 168	kref_get(&dreq->kref);
 169	init_completion(&dreq->completion);
 170	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 
 171	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
 
 172	spin_lock_init(&dreq->lock);
 173
 174	return dreq;
 175}
 176
 177static void nfs_direct_req_free(struct kref *kref)
 178{
 179	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 180
 
 181	if (dreq->l_ctx != NULL)
 182		nfs_put_lock_context(dreq->l_ctx);
 183	if (dreq->ctx != NULL)
 184		put_nfs_open_context(dreq->ctx);
 185	kmem_cache_free(nfs_direct_cachep, dreq);
 186}
 187
 188static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 189{
 190	kref_put(&dreq->kref, nfs_direct_req_free);
 191}
 192
 193ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
 194{
 195	return dreq->bytes_left;
 196}
 197EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
 198
 199/*
 200 * Collects and returns the final error value/byte-count.
 201 */
 202static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 203{
 204	ssize_t result = -EIOCBQUEUED;
 205
 206	/* Async requests don't wait here */
 207	if (dreq->iocb)
 208		goto out;
 209
 210	result = wait_for_completion_killable(&dreq->completion);
 211
 212	if (!result)
 213		result = dreq->error;
 214	if (!result)
 215		result = dreq->count;
 216
 217out:
 218	return (ssize_t) result;
 219}
 220
 221/*
 222 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 223 * the iocb is still valid here if this is a synchronous request.
 224 */
 225static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
 226{
 227	struct inode *inode = dreq->inode;
 228
 229	if (dreq->iocb && write) {
 230		loff_t pos = dreq->iocb->ki_pos + dreq->count;
 231
 232		spin_lock(&inode->i_lock);
 233		if (i_size_read(inode) < pos)
 234			i_size_write(inode, pos);
 235		spin_unlock(&inode->i_lock);
 236	}
 237
 238	if (write)
 239		nfs_zap_mapping(inode, inode->i_mapping);
 240
 241	inode_dio_done(inode);
 242
 243	if (dreq->iocb) {
 244		long res = (long) dreq->error;
 245		if (!res)
 246			res = (long) dreq->count;
 247		aio_complete(dreq->iocb, res, 0);
 248	}
 249
 250	complete_all(&dreq->completion);
 251
 252	nfs_direct_req_release(dreq);
 253}
 254
 255static void nfs_direct_readpage_release(struct nfs_page *req)
 256{
 257	dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
 258		req->wb_context->dentry->d_inode->i_sb->s_id,
 259		(unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
 260		req->wb_bytes,
 261		(long long)req_offset(req));
 262	nfs_release_request(req);
 263}
 264
 265static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
 266{
 267	unsigned long bytes = 0;
 268	struct nfs_direct_req *dreq = hdr->dreq;
 269
 270	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 271		goto out_put;
 272
 273	spin_lock(&dreq->lock);
 274	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
 275		dreq->error = hdr->error;
 276	else
 277		dreq->count += hdr->good_bytes;
 
 278	spin_unlock(&dreq->lock);
 279
 280	while (!list_empty(&hdr->pages)) {
 281		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 282		struct page *page = req->wb_page;
 283
 284		if (!PageCompound(page) && bytes < hdr->good_bytes)
 285			set_page_dirty(page);
 286		bytes += req->wb_bytes;
 287		nfs_list_remove_request(req);
 288		nfs_direct_readpage_release(req);
 289	}
 290out_put:
 291	if (put_dreq(dreq))
 292		nfs_direct_complete(dreq, false);
 293	hdr->release(hdr);
 294}
 295
 296static void nfs_read_sync_pgio_error(struct list_head *head)
 297{
 298	struct nfs_page *req;
 299
 300	while (!list_empty(head)) {
 301		req = nfs_list_entry(head->next);
 302		nfs_list_remove_request(req);
 303		nfs_release_request(req);
 304	}
 305}
 306
 307static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
 308{
 309	get_dreq(hdr->dreq);
 310}
 311
 312static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
 313	.error_cleanup = nfs_read_sync_pgio_error,
 314	.init_hdr = nfs_direct_pgio_init,
 315	.completion = nfs_direct_read_completion,
 316};
 317
 318/*
 319 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 320 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 321 * bail and stop sending more reads.  Read length accounting is
 322 * handled automatically by nfs_direct_read_result().  Otherwise, if
 323 * no requests have been sent, just return an error.
 324 */
 325static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
 326						const struct iovec *iov,
 327						loff_t pos, bool uio)
 328{
 329	struct nfs_direct_req *dreq = desc->pg_dreq;
 330	struct nfs_open_context *ctx = dreq->ctx;
 331	struct inode *inode = ctx->dentry->d_inode;
 332	unsigned long user_addr = (unsigned long)iov->iov_base;
 333	size_t count = iov->iov_len;
 334	size_t rsize = NFS_SERVER(inode)->rsize;
 335	unsigned int pgbase;
 336	int result;
 337	ssize_t started = 0;
 338	struct page **pagevec = NULL;
 339	unsigned int npages;
 340
 341	do {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342		size_t bytes;
 343		int i;
 
 344
 345		pgbase = user_addr & ~PAGE_MASK;
 346		bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
 347
 348		result = -ENOMEM;
 349		npages = nfs_page_array_len(pgbase, bytes);
 350		if (!pagevec)
 351			pagevec = kmalloc(npages * sizeof(struct page *),
 352					  GFP_KERNEL);
 353		if (!pagevec)
 354			break;
 355		if (uio) {
 356			down_read(&current->mm->mmap_sem);
 357			result = get_user_pages(current, current->mm, user_addr,
 358					npages, 1, 0, pagevec, NULL);
 359			up_read(&current->mm->mmap_sem);
 360			if (result < 0)
 361				break;
 362		} else {
 363			WARN_ON(npages != 1);
 364			result = get_kernel_page(user_addr, 1, pagevec);
 365			if (WARN_ON(result != 1))
 366				break;
 367		}
 368
 369		if ((unsigned)result < npages) {
 370			bytes = result * PAGE_SIZE;
 371			if (bytes <= pgbase) {
 372				nfs_direct_release_pages(pagevec, result);
 373				break;
 374			}
 375			bytes -= pgbase;
 376			npages = result;
 377		}
 378
 379		for (i = 0; i < npages; i++) {
 380			struct nfs_page *req;
 381			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 382			/* XXX do we need to do the eof zeroing found in async_filler? */
 383			req = nfs_create_request(dreq->ctx, dreq->inode,
 384						 pagevec[i],
 385						 pgbase, req_len);
 386			if (IS_ERR(req)) {
 387				result = PTR_ERR(req);
 388				break;
 389			}
 390			req->wb_index = pos >> PAGE_SHIFT;
 391			req->wb_offset = pos & ~PAGE_MASK;
 392			if (!nfs_pageio_add_request(desc, req)) {
 393				result = desc->pg_error;
 394				nfs_release_request(req);
 395				break;
 396			}
 397			pgbase = 0;
 398			bytes -= req_len;
 399			started += req_len;
 400			user_addr += req_len;
 401			pos += req_len;
 402			count -= req_len;
 403			dreq->bytes_left -= req_len;
 404		}
 405		/* The nfs_page now hold references to these pages */
 406		nfs_direct_release_pages(pagevec, npages);
 407	} while (count != 0 && result >= 0);
 408
 409	kfree(pagevec);
 410
 411	if (started)
 412		return started;
 413	return result < 0 ? (ssize_t) result : -EFAULT;
 414}
 415
 416static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 417					      const struct iovec *iov,
 418					      unsigned long nr_segs,
 419					      loff_t pos, bool uio)
 420{
 421	struct nfs_pageio_descriptor desc;
 422	struct inode *inode = dreq->inode;
 423	ssize_t result = -EINVAL;
 424	size_t requested_bytes = 0;
 425	unsigned long seg;
 426
 427	NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
 428			     &nfs_direct_read_completion_ops);
 429	get_dreq(dreq);
 430	desc.pg_dreq = dreq;
 431	atomic_inc(&inode->i_dio_count);
 432
 433	for (seg = 0; seg < nr_segs; seg++) {
 434		const struct iovec *vec = &iov[seg];
 435		result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
 436		if (result < 0)
 437			break;
 438		requested_bytes += result;
 439		if ((size_t)result < vec->iov_len)
 440			break;
 441		pos += vec->iov_len;
 442	}
 443
 444	nfs_pageio_complete(&desc);
 445
 446	/*
 447	 * If no bytes were started, return the error, and let the
 448	 * generic layer handle the completion.
 449	 */
 450	if (requested_bytes == 0) {
 451		inode_dio_done(inode);
 452		nfs_direct_req_release(dreq);
 453		return result < 0 ? result : -EIO;
 454	}
 455
 456	if (put_dreq(dreq))
 457		nfs_direct_complete(dreq, false);
 458	return 0;
 459}
 460
 461/**
 462 * nfs_file_direct_read - file direct read operation for NFS files
 463 * @iocb: target I/O control block
 464 * @iov: vector of user buffers into which to read data
 465 * @nr_segs: size of iov vector
 466 * @pos: byte offset in file where reading starts
 467 *
 468 * We use this function for direct reads instead of calling
 469 * generic_file_aio_read() in order to avoid gfar's check to see if
 470 * the request starts before the end of the file.  For that check
 471 * to work, we must generate a GETATTR before each direct read, and
 472 * even then there is a window between the GETATTR and the subsequent
 473 * READ where the file size could change.  Our preference is simply
 474 * to do all reads the application wants, and the server will take
 475 * care of managing the end of file boundary.
 476 *
 477 * This function also eliminates unnecessarily updating the file's
 478 * atime locally, as the NFS server sets the file's atime, and this
 479 * client must read the updated atime from the server back into its
 480 * cache.
 481 */
 482ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
 483				unsigned long nr_segs, loff_t pos, bool uio)
 484{
 485	struct file *file = iocb->ki_filp;
 486	struct address_space *mapping = file->f_mapping;
 487	struct inode *inode = mapping->host;
 488	struct nfs_direct_req *dreq;
 489	struct nfs_lock_context *l_ctx;
 490	ssize_t result = -EINVAL;
 491	size_t count;
 492
 493	count = iov_length(iov, nr_segs);
 494	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 495
 496	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
 497		file, count, (long long) pos);
 498
 499	result = 0;
 500	if (!count)
 501		goto out;
 502
 503	mutex_lock(&inode->i_mutex);
 504	result = nfs_sync_mapping(mapping);
 505	if (result)
 506		goto out_unlock;
 507
 508	task_io_account_read(count);
 509
 510	result = -ENOMEM;
 511	dreq = nfs_direct_req_alloc();
 512	if (dreq == NULL)
 513		goto out_unlock;
 514
 515	dreq->inode = inode;
 516	dreq->bytes_left = iov_length(iov, nr_segs);
 
 517	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 518	l_ctx = nfs_get_lock_context(dreq->ctx);
 519	if (IS_ERR(l_ctx)) {
 520		result = PTR_ERR(l_ctx);
 521		goto out_release;
 522	}
 523	dreq->l_ctx = l_ctx;
 524	if (!is_sync_kiocb(iocb))
 525		dreq->iocb = iocb;
 526
 527	NFS_I(inode)->read_io += iov_length(iov, nr_segs);
 528	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
 529
 530	mutex_unlock(&inode->i_mutex);
 531
 532	if (!result) {
 533		result = nfs_direct_wait(dreq);
 534		if (result > 0)
 535			iocb->ki_pos = pos + result;
 536	}
 537
 538	nfs_direct_req_release(dreq);
 539	return result;
 540
 541out_release:
 542	nfs_direct_req_release(dreq);
 543out_unlock:
 544	mutex_unlock(&inode->i_mutex);
 545out:
 546	return result;
 547}
 548
 549#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 550static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 551{
 552	struct nfs_pageio_descriptor desc;
 553	struct nfs_page *req, *tmp;
 554	LIST_HEAD(reqs);
 555	struct nfs_commit_info cinfo;
 556	LIST_HEAD(failed);
 
 557
 558	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 559	pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
 560	spin_lock(cinfo.lock);
 561	nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
 562	spin_unlock(cinfo.lock);
 563
 564	dreq->count = 0;
 
 
 565	get_dreq(dreq);
 566
 567	NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
 568			      &nfs_direct_write_completion_ops);
 569	desc.pg_dreq = dreq;
 570
 
 
 
 
 
 
 
 571	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
 572		if (!nfs_pageio_add_request(&desc, req)) {
 573			nfs_list_remove_request(req);
 574			nfs_list_add_request(req, &failed);
 575			spin_lock(cinfo.lock);
 576			dreq->flags = 0;
 577			dreq->error = -EIO;
 
 
 
 578			spin_unlock(cinfo.lock);
 579		}
 580		nfs_release_request(req);
 581	}
 582	nfs_pageio_complete(&desc);
 583
 
 584	while (!list_empty(&failed)) {
 585		req = nfs_list_entry(failed.next);
 586		nfs_list_remove_request(req);
 587		nfs_unlock_and_release_request(req);
 588	}
 589
 590	if (put_dreq(dreq))
 591		nfs_direct_write_complete(dreq, dreq->inode);
 592}
 593
 594static void nfs_direct_commit_complete(struct nfs_commit_data *data)
 595{
 596	struct nfs_direct_req *dreq = data->dreq;
 597	struct nfs_commit_info cinfo;
 598	struct nfs_page *req;
 599	int status = data->task.tk_status;
 600
 601	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 602	if (status < 0) {
 603		dprintk("NFS: %5u commit failed with error %d.\n",
 604			data->task.tk_pid, status);
 605		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 606	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
 607		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
 608		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 609	}
 610
 611	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
 612	while (!list_empty(&data->pages)) {
 613		req = nfs_list_entry(data->pages.next);
 614		nfs_list_remove_request(req);
 615		if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
 616			/* Note the rewrite will go through mds */
 617			nfs_mark_request_commit(req, NULL, &cinfo);
 618		} else
 619			nfs_release_request(req);
 620		nfs_unlock_and_release_request(req);
 621	}
 622
 623	if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
 624		nfs_direct_write_complete(dreq, data->inode);
 625}
 626
 627static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
 
 628{
 629	/* There is no lock to clear */
 
 
 
 
 
 630}
 631
 632static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
 633	.completion = nfs_direct_commit_complete,
 634	.error_cleanup = nfs_direct_error_cleanup,
 635};
 636
 637static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 638{
 639	int res;
 640	struct nfs_commit_info cinfo;
 641	LIST_HEAD(mds_list);
 642
 643	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 644	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
 645	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
 646	if (res < 0) /* res == -ENOMEM */
 647		nfs_direct_write_reschedule(dreq);
 648}
 649
 650static void nfs_direct_write_schedule_work(struct work_struct *work)
 651{
 652	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
 653	int flags = dreq->flags;
 654
 655	dreq->flags = 0;
 656	switch (flags) {
 657		case NFS_ODIRECT_DO_COMMIT:
 658			nfs_direct_commit_schedule(dreq);
 659			break;
 660		case NFS_ODIRECT_RESCHED_WRITES:
 661			nfs_direct_write_reschedule(dreq);
 662			break;
 663		default:
 664			nfs_direct_complete(dreq, true);
 665	}
 666}
 667
 668static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 669{
 670	schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
 671}
 672
 673#else
 674static void nfs_direct_write_schedule_work(struct work_struct *work)
 675{
 676}
 677
 678static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 679{
 680	nfs_direct_complete(dreq, true);
 681}
 682#endif
 683
 684/*
 685 * NB: Return the value of the first error return code.  Subsequent
 686 *     errors after the first one are ignored.
 687 */
 688/*
 689 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 690 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 691 * bail and stop sending more writes.  Write length accounting is
 692 * handled automatically by nfs_direct_write_result().  Otherwise, if
 693 * no requests have been sent, just return an error.
 694 */
 695static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
 696						 const struct iovec *iov,
 697						 loff_t pos, bool uio)
 698{
 699	struct nfs_direct_req *dreq = desc->pg_dreq;
 700	struct nfs_open_context *ctx = dreq->ctx;
 701	struct inode *inode = ctx->dentry->d_inode;
 702	unsigned long user_addr = (unsigned long)iov->iov_base;
 703	size_t count = iov->iov_len;
 704	size_t wsize = NFS_SERVER(inode)->wsize;
 705	unsigned int pgbase;
 706	int result;
 707	ssize_t started = 0;
 708	struct page **pagevec = NULL;
 709	unsigned int npages;
 710
 711	do {
 712		size_t bytes;
 713		int i;
 714
 715		pgbase = user_addr & ~PAGE_MASK;
 716		bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
 717
 718		result = -ENOMEM;
 719		npages = nfs_page_array_len(pgbase, bytes);
 720		if (!pagevec)
 721			pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
 722		if (!pagevec)
 723			break;
 724
 725		if (uio) {
 726			down_read(&current->mm->mmap_sem);
 727			result = get_user_pages(current, current->mm, user_addr,
 728						npages, 0, 0, pagevec, NULL);
 729			up_read(&current->mm->mmap_sem);
 730			if (result < 0)
 731				break;
 732		} else {
 733			WARN_ON(npages != 1);
 734			result = get_kernel_page(user_addr, 0, pagevec);
 735			if (WARN_ON(result != 1))
 736				break;
 737		}
 738
 739		if ((unsigned)result < npages) {
 740			bytes = result * PAGE_SIZE;
 741			if (bytes <= pgbase) {
 742				nfs_direct_release_pages(pagevec, result);
 743				break;
 744			}
 745			bytes -= pgbase;
 746			npages = result;
 747		}
 748
 749		for (i = 0; i < npages; i++) {
 750			struct nfs_page *req;
 751			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 752
 753			req = nfs_create_request(dreq->ctx, dreq->inode,
 754						 pagevec[i],
 755						 pgbase, req_len);
 756			if (IS_ERR(req)) {
 757				result = PTR_ERR(req);
 758				break;
 759			}
 760			nfs_lock_request(req);
 761			req->wb_index = pos >> PAGE_SHIFT;
 762			req->wb_offset = pos & ~PAGE_MASK;
 763			if (!nfs_pageio_add_request(desc, req)) {
 764				result = desc->pg_error;
 765				nfs_unlock_and_release_request(req);
 766				break;
 767			}
 768			pgbase = 0;
 769			bytes -= req_len;
 770			started += req_len;
 771			user_addr += req_len;
 772			pos += req_len;
 773			count -= req_len;
 774			dreq->bytes_left -= req_len;
 775		}
 776		/* The nfs_page now hold references to these pages */
 777		nfs_direct_release_pages(pagevec, npages);
 778	} while (count != 0 && result >= 0);
 779
 780	kfree(pagevec);
 781
 782	if (started)
 783		return started;
 784	return result < 0 ? (ssize_t) result : -EFAULT;
 785}
 786
 787static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
 788{
 789	struct nfs_direct_req *dreq = hdr->dreq;
 790	struct nfs_commit_info cinfo;
 791	int bit = -1;
 792	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 793
 794	if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
 795		goto out_put;
 796
 797	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 798
 799	spin_lock(&dreq->lock);
 800
 801	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
 802		dreq->flags = 0;
 803		dreq->error = hdr->error;
 804	}
 805	if (dreq->error != 0)
 806		bit = NFS_IOHDR_ERROR;
 807	else {
 808		dreq->count += hdr->good_bytes;
 809		if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
 810			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 811			bit = NFS_IOHDR_NEED_RESCHED;
 812		} else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
 813			if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
 814				bit = NFS_IOHDR_NEED_RESCHED;
 815			else if (dreq->flags == 0) {
 816				memcpy(&dreq->verf, hdr->verf,
 817				       sizeof(dreq->verf));
 818				bit = NFS_IOHDR_NEED_COMMIT;
 819				dreq->flags = NFS_ODIRECT_DO_COMMIT;
 820			} else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
 821				if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
 822					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 823					bit = NFS_IOHDR_NEED_RESCHED;
 824				} else
 825					bit = NFS_IOHDR_NEED_COMMIT;
 826			}
 827		}
 828	}
 829	spin_unlock(&dreq->lock);
 830
 831	while (!list_empty(&hdr->pages)) {
 
 832		req = nfs_list_entry(hdr->pages.next);
 833		nfs_list_remove_request(req);
 834		switch (bit) {
 835		case NFS_IOHDR_NEED_RESCHED:
 836		case NFS_IOHDR_NEED_COMMIT:
 837			kref_get(&req->wb_kref);
 838			nfs_mark_request_commit(req, hdr->lseg, &cinfo);
 
 839		}
 840		nfs_unlock_and_release_request(req);
 841	}
 842
 843out_put:
 844	if (put_dreq(dreq))
 845		nfs_direct_write_complete(dreq, hdr->inode);
 846	hdr->release(hdr);
 847}
 848
 849static void nfs_write_sync_pgio_error(struct list_head *head)
 850{
 851	struct nfs_page *req;
 852
 853	while (!list_empty(head)) {
 854		req = nfs_list_entry(head->next);
 855		nfs_list_remove_request(req);
 856		nfs_unlock_and_release_request(req);
 857	}
 858}
 859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
 861	.error_cleanup = nfs_write_sync_pgio_error,
 862	.init_hdr = nfs_direct_pgio_init,
 863	.completion = nfs_direct_write_completion,
 
 864};
 865
 
 
 
 
 
 
 
 
 
 
 
 
 866static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 867					       const struct iovec *iov,
 868					       unsigned long nr_segs,
 869					       loff_t pos, bool uio)
 870{
 871	struct nfs_pageio_descriptor desc;
 872	struct inode *inode = dreq->inode;
 873	ssize_t result = 0;
 874	size_t requested_bytes = 0;
 875	unsigned long seg;
 876
 877	NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
 878			      &nfs_direct_write_completion_ops);
 879	desc.pg_dreq = dreq;
 880	get_dreq(dreq);
 881	atomic_inc(&inode->i_dio_count);
 
 
 
 
 
 
 
 882
 883	NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
 884	for (seg = 0; seg < nr_segs; seg++) {
 885		const struct iovec *vec = &iov[seg];
 886		result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
 887		if (result < 0)
 888			break;
 889		requested_bytes += result;
 890		if ((size_t)result < vec->iov_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891			break;
 892		pos += vec->iov_len;
 893	}
 894	nfs_pageio_complete(&desc);
 895
 896	/*
 897	 * If no bytes were started, return the error, and let the
 898	 * generic layer handle the completion.
 899	 */
 900	if (requested_bytes == 0) {
 901		inode_dio_done(inode);
 902		nfs_direct_req_release(dreq);
 903		return result < 0 ? result : -EIO;
 904	}
 905
 906	if (put_dreq(dreq))
 907		nfs_direct_write_complete(dreq, dreq->inode);
 908	return 0;
 909}
 910
 911/**
 912 * nfs_file_direct_write - file direct write operation for NFS files
 913 * @iocb: target I/O control block
 914 * @iov: vector of user buffers from which to write data
 915 * @nr_segs: size of iov vector
 916 * @pos: byte offset in file where writing starts
 917 *
 918 * We use this function for direct writes instead of calling
 919 * generic_file_aio_write() in order to avoid taking the inode
 920 * semaphore and updating the i_size.  The NFS server will set
 921 * the new i_size and this client must read the updated size
 922 * back into its cache.  We let the server do generic write
 923 * parameter checking and report problems.
 924 *
 925 * We eliminate local atime updates, see direct read above.
 926 *
 927 * We avoid unnecessary page cache invalidations for normal cached
 928 * readers of this file.
 929 *
 930 * Note that O_APPEND is not supported for NFS direct writes, as there
 931 * is no atomic O_APPEND write facility in the NFS protocol.
 932 */
 933ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
 934				unsigned long nr_segs, loff_t pos, bool uio)
 935{
 936	ssize_t result = -EINVAL;
 937	struct file *file = iocb->ki_filp;
 938	struct address_space *mapping = file->f_mapping;
 939	struct inode *inode = mapping->host;
 940	struct nfs_direct_req *dreq;
 941	struct nfs_lock_context *l_ctx;
 942	loff_t end;
 943	size_t count;
 944
 945	count = iov_length(iov, nr_segs);
 946	end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
 947
 948	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
 949
 950	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
 951		file, count, (long long) pos);
 952
 953	result = generic_write_checks(file, &pos, &count, 0);
 954	if (result)
 955		goto out;
 956
 957	result = -EINVAL;
 958	if ((ssize_t) count < 0)
 959		goto out;
 960	result = 0;
 961	if (!count)
 962		goto out;
 963
 964	mutex_lock(&inode->i_mutex);
 965
 966	result = nfs_sync_mapping(mapping);
 967	if (result)
 968		goto out_unlock;
 969
 970	if (mapping->nrpages) {
 971		result = invalidate_inode_pages2_range(mapping,
 972					pos >> PAGE_CACHE_SHIFT, end);
 973		if (result)
 974			goto out_unlock;
 975	}
 976
 977	task_io_account_write(count);
 978
 979	result = -ENOMEM;
 980	dreq = nfs_direct_req_alloc();
 981	if (!dreq)
 982		goto out_unlock;
 983
 984	dreq->inode = inode;
 985	dreq->bytes_left = count;
 
 986	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 987	l_ctx = nfs_get_lock_context(dreq->ctx);
 988	if (IS_ERR(l_ctx)) {
 989		result = PTR_ERR(l_ctx);
 990		goto out_release;
 991	}
 992	dreq->l_ctx = l_ctx;
 993	if (!is_sync_kiocb(iocb))
 994		dreq->iocb = iocb;
 995
 996	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
 997
 998	if (mapping->nrpages) {
 999		invalidate_inode_pages2_range(mapping,
1000					      pos >> PAGE_CACHE_SHIFT, end);
1001	}
1002
1003	mutex_unlock(&inode->i_mutex);
1004
1005	if (!result) {
1006		result = nfs_direct_wait(dreq);
1007		if (result > 0) {
1008			struct inode *inode = mapping->host;
1009
1010			iocb->ki_pos = pos + result;
1011			spin_lock(&inode->i_lock);
1012			if (i_size_read(inode) < iocb->ki_pos)
1013				i_size_write(inode, iocb->ki_pos);
1014			spin_unlock(&inode->i_lock);
 
1015		}
1016	}
1017	nfs_direct_req_release(dreq);
1018	return result;
1019
1020out_release:
1021	nfs_direct_req_release(dreq);
1022out_unlock:
1023	mutex_unlock(&inode->i_mutex);
1024out:
1025	return result;
1026}
1027
1028/**
1029 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1030 *
1031 */
1032int __init nfs_init_directcache(void)
1033{
1034	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1035						sizeof(struct nfs_direct_req),
1036						0, (SLAB_RECLAIM_ACCOUNT|
1037							SLAB_MEM_SPREAD),
1038						NULL);
1039	if (nfs_direct_cachep == NULL)
1040		return -ENOMEM;
1041
1042	return 0;
1043}
1044
1045/**
1046 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1047 *
1048 */
1049void nfs_destroy_directcache(void)
1050{
1051	kmem_cache_destroy(nfs_direct_cachep);
1052}