Loading...
1/*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41#include <linux/errno.h>
42#include <linux/sched.h>
43#include <linux/kernel.h>
44#include <linux/file.h>
45#include <linux/pagemap.h>
46#include <linux/kref.h>
47#include <linux/slab.h>
48#include <linux/task_io_accounting_ops.h>
49#include <linux/module.h>
50
51#include <linux/nfs_fs.h>
52#include <linux/nfs_page.h>
53#include <linux/sunrpc/clnt.h>
54
55#include <asm/uaccess.h>
56#include <linux/atomic.h>
57
58#include "internal.h"
59#include "iostat.h"
60#include "pnfs.h"
61
62#define NFSDBG_FACILITY NFSDBG_VFS
63
64static struct kmem_cache *nfs_direct_cachep;
65
66/*
67 * This represents a set of asynchronous requests that we're waiting on
68 */
69struct nfs_direct_mirror {
70 ssize_t count;
71};
72
73struct nfs_direct_req {
74 struct kref kref; /* release manager */
75
76 /* I/O parameters */
77 struct nfs_open_context *ctx; /* file open context info */
78 struct nfs_lock_context *l_ctx; /* Lock context info */
79 struct kiocb * iocb; /* controlling i/o request */
80 struct inode * inode; /* target file of i/o */
81
82 /* completion state */
83 atomic_t io_count; /* i/os we're waiting for */
84 spinlock_t lock; /* protect completion state */
85
86 struct nfs_direct_mirror mirrors[NFS_PAGEIO_DESCRIPTOR_MIRROR_MAX];
87 int mirror_count;
88
89 ssize_t count, /* bytes actually processed */
90 bytes_left, /* bytes left to be sent */
91 io_start, /* start of IO */
92 error; /* any reported error */
93 struct completion completion; /* wait for i/o completion */
94
95 /* commit state */
96 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
97 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
98 struct work_struct work;
99 int flags;
100#define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
101#define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
102 struct nfs_writeverf verf; /* unstable write verifier */
103};
104
105static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
106static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
107static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
108static void nfs_direct_write_schedule_work(struct work_struct *work);
109
110static inline void get_dreq(struct nfs_direct_req *dreq)
111{
112 atomic_inc(&dreq->io_count);
113}
114
115static inline int put_dreq(struct nfs_direct_req *dreq)
116{
117 return atomic_dec_and_test(&dreq->io_count);
118}
119
120static void
121nfs_direct_good_bytes(struct nfs_direct_req *dreq, struct nfs_pgio_header *hdr)
122{
123 int i;
124 ssize_t count;
125
126 if (dreq->mirror_count == 1) {
127 dreq->mirrors[hdr->pgio_mirror_idx].count += hdr->good_bytes;
128 dreq->count += hdr->good_bytes;
129 } else {
130 /* mirrored writes */
131 count = dreq->mirrors[hdr->pgio_mirror_idx].count;
132 if (count + dreq->io_start < hdr->io_start + hdr->good_bytes) {
133 count = hdr->io_start + hdr->good_bytes - dreq->io_start;
134 dreq->mirrors[hdr->pgio_mirror_idx].count = count;
135 }
136 /* update the dreq->count by finding the minimum agreed count from all
137 * mirrors */
138 count = dreq->mirrors[0].count;
139
140 for (i = 1; i < dreq->mirror_count; i++)
141 count = min(count, dreq->mirrors[i].count);
142
143 dreq->count = count;
144 }
145}
146
147/*
148 * nfs_direct_select_verf - select the right verifier
149 * @dreq - direct request possibly spanning multiple servers
150 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
151 * @commit_idx - commit bucket index for the DS
152 *
153 * returns the correct verifier to use given the role of the server
154 */
155static struct nfs_writeverf *
156nfs_direct_select_verf(struct nfs_direct_req *dreq,
157 struct nfs_client *ds_clp,
158 int commit_idx)
159{
160 struct nfs_writeverf *verfp = &dreq->verf;
161
162#ifdef CONFIG_NFS_V4_1
163 /*
164 * pNFS is in use, use the DS verf except commit_through_mds is set
165 * for layout segment where nbuckets is zero.
166 */
167 if (ds_clp && dreq->ds_cinfo.nbuckets > 0) {
168 if (commit_idx >= 0 && commit_idx < dreq->ds_cinfo.nbuckets)
169 verfp = &dreq->ds_cinfo.buckets[commit_idx].direct_verf;
170 else
171 WARN_ON_ONCE(1);
172 }
173#endif
174 return verfp;
175}
176
177
178/*
179 * nfs_direct_set_hdr_verf - set the write/commit verifier
180 * @dreq - direct request possibly spanning multiple servers
181 * @hdr - pageio header to validate against previously seen verfs
182 *
183 * Set the server's (MDS or DS) "seen" verifier
184 */
185static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
186 struct nfs_pgio_header *hdr)
187{
188 struct nfs_writeverf *verfp;
189
190 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
191 WARN_ON_ONCE(verfp->committed >= 0);
192 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
193 WARN_ON_ONCE(verfp->committed < 0);
194}
195
196/*
197 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
198 * @dreq - direct request possibly spanning multiple servers
199 * @hdr - pageio header to validate against previously seen verf
200 *
201 * set the server's "seen" verf if not initialized.
202 * returns result of comparison between @hdr->verf and the "seen"
203 * verf of the server used by @hdr (DS or MDS)
204 */
205static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
206 struct nfs_pgio_header *hdr)
207{
208 struct nfs_writeverf *verfp;
209
210 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp, hdr->ds_commit_idx);
211 if (verfp->committed < 0) {
212 nfs_direct_set_hdr_verf(dreq, hdr);
213 return 0;
214 }
215 return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
216}
217
218/*
219 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
220 * @dreq - direct request possibly spanning multiple servers
221 * @data - commit data to validate against previously seen verf
222 *
223 * returns result of comparison between @data->verf and the verf of
224 * the server used by @data (DS or MDS)
225 */
226static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
227 struct nfs_commit_data *data)
228{
229 struct nfs_writeverf *verfp;
230
231 verfp = nfs_direct_select_verf(dreq, data->ds_clp,
232 data->ds_commit_index);
233
234 /* verifier not set so always fail */
235 if (verfp->committed < 0)
236 return 1;
237
238 return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
239}
240
241/**
242 * nfs_direct_IO - NFS address space operation for direct I/O
243 * @iocb: target I/O control block
244 * @iov: array of vectors that define I/O buffer
245 * @pos: offset in file to begin the operation
246 * @nr_segs: size of iovec array
247 *
248 * The presence of this routine in the address space ops vector means
249 * the NFS client supports direct I/O. However, for most direct IO, we
250 * shunt off direct read and write requests before the VFS gets them,
251 * so this method is only ever called for swap.
252 */
253ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
254{
255 struct inode *inode = iocb->ki_filp->f_mapping->host;
256
257 /* we only support swap file calling nfs_direct_IO */
258 if (!IS_SWAPFILE(inode))
259 return 0;
260
261 VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
262
263 if (iov_iter_rw(iter) == READ)
264 return nfs_file_direct_read(iocb, iter, pos);
265 return nfs_file_direct_write(iocb, iter);
266}
267
268static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
269{
270 unsigned int i;
271 for (i = 0; i < npages; i++)
272 put_page(pages[i]);
273}
274
275void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
276 struct nfs_direct_req *dreq)
277{
278 cinfo->lock = &dreq->inode->i_lock;
279 cinfo->mds = &dreq->mds_cinfo;
280 cinfo->ds = &dreq->ds_cinfo;
281 cinfo->dreq = dreq;
282 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
283}
284
285static inline void nfs_direct_setup_mirroring(struct nfs_direct_req *dreq,
286 struct nfs_pageio_descriptor *pgio,
287 struct nfs_page *req)
288{
289 int mirror_count = 1;
290
291 if (pgio->pg_ops->pg_get_mirror_count)
292 mirror_count = pgio->pg_ops->pg_get_mirror_count(pgio, req);
293
294 dreq->mirror_count = mirror_count;
295}
296
297static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
298{
299 struct nfs_direct_req *dreq;
300
301 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
302 if (!dreq)
303 return NULL;
304
305 kref_init(&dreq->kref);
306 kref_get(&dreq->kref);
307 init_completion(&dreq->completion);
308 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
309 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */
310 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
311 dreq->mirror_count = 1;
312 spin_lock_init(&dreq->lock);
313
314 return dreq;
315}
316
317static void nfs_direct_req_free(struct kref *kref)
318{
319 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
320
321 nfs_free_pnfs_ds_cinfo(&dreq->ds_cinfo);
322 if (dreq->l_ctx != NULL)
323 nfs_put_lock_context(dreq->l_ctx);
324 if (dreq->ctx != NULL)
325 put_nfs_open_context(dreq->ctx);
326 kmem_cache_free(nfs_direct_cachep, dreq);
327}
328
329static void nfs_direct_req_release(struct nfs_direct_req *dreq)
330{
331 kref_put(&dreq->kref, nfs_direct_req_free);
332}
333
334ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
335{
336 return dreq->bytes_left;
337}
338EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
339
340/*
341 * Collects and returns the final error value/byte-count.
342 */
343static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
344{
345 ssize_t result = -EIOCBQUEUED;
346
347 /* Async requests don't wait here */
348 if (dreq->iocb)
349 goto out;
350
351 result = wait_for_completion_killable(&dreq->completion);
352
353 if (!result)
354 result = dreq->error;
355 if (!result)
356 result = dreq->count;
357
358out:
359 return (ssize_t) result;
360}
361
362/*
363 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
364 * the iocb is still valid here if this is a synchronous request.
365 */
366static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
367{
368 struct inode *inode = dreq->inode;
369
370 if (dreq->iocb && write) {
371 loff_t pos = dreq->iocb->ki_pos + dreq->count;
372
373 spin_lock(&inode->i_lock);
374 if (i_size_read(inode) < pos)
375 i_size_write(inode, pos);
376 spin_unlock(&inode->i_lock);
377 }
378
379 if (write)
380 nfs_zap_mapping(inode, inode->i_mapping);
381
382 inode_dio_end(inode);
383
384 if (dreq->iocb) {
385 long res = (long) dreq->error;
386 if (!res)
387 res = (long) dreq->count;
388 dreq->iocb->ki_complete(dreq->iocb, res, 0);
389 }
390
391 complete_all(&dreq->completion);
392
393 nfs_direct_req_release(dreq);
394}
395
396static void nfs_direct_readpage_release(struct nfs_page *req)
397{
398 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
399 d_inode(req->wb_context->dentry)->i_sb->s_id,
400 (unsigned long long)NFS_FILEID(d_inode(req->wb_context->dentry)),
401 req->wb_bytes,
402 (long long)req_offset(req));
403 nfs_release_request(req);
404}
405
406static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
407{
408 unsigned long bytes = 0;
409 struct nfs_direct_req *dreq = hdr->dreq;
410
411 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
412 goto out_put;
413
414 spin_lock(&dreq->lock);
415 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
416 dreq->error = hdr->error;
417 else
418 nfs_direct_good_bytes(dreq, hdr);
419
420 spin_unlock(&dreq->lock);
421
422 while (!list_empty(&hdr->pages)) {
423 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
424 struct page *page = req->wb_page;
425
426 if (!PageCompound(page) && bytes < hdr->good_bytes)
427 set_page_dirty(page);
428 bytes += req->wb_bytes;
429 nfs_list_remove_request(req);
430 nfs_direct_readpage_release(req);
431 }
432out_put:
433 if (put_dreq(dreq))
434 nfs_direct_complete(dreq, false);
435 hdr->release(hdr);
436}
437
438static void nfs_read_sync_pgio_error(struct list_head *head)
439{
440 struct nfs_page *req;
441
442 while (!list_empty(head)) {
443 req = nfs_list_entry(head->next);
444 nfs_list_remove_request(req);
445 nfs_release_request(req);
446 }
447}
448
449static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
450{
451 get_dreq(hdr->dreq);
452}
453
454static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
455 .error_cleanup = nfs_read_sync_pgio_error,
456 .init_hdr = nfs_direct_pgio_init,
457 .completion = nfs_direct_read_completion,
458};
459
460/*
461 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
462 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
463 * bail and stop sending more reads. Read length accounting is
464 * handled automatically by nfs_direct_read_result(). Otherwise, if
465 * no requests have been sent, just return an error.
466 */
467
468static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
469 struct iov_iter *iter,
470 loff_t pos)
471{
472 struct nfs_pageio_descriptor desc;
473 struct inode *inode = dreq->inode;
474 ssize_t result = -EINVAL;
475 size_t requested_bytes = 0;
476 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
477
478 nfs_pageio_init_read(&desc, dreq->inode, false,
479 &nfs_direct_read_completion_ops);
480 get_dreq(dreq);
481 desc.pg_dreq = dreq;
482 inode_dio_begin(inode);
483
484 while (iov_iter_count(iter)) {
485 struct page **pagevec;
486 size_t bytes;
487 size_t pgbase;
488 unsigned npages, i;
489
490 result = iov_iter_get_pages_alloc(iter, &pagevec,
491 rsize, &pgbase);
492 if (result < 0)
493 break;
494
495 bytes = result;
496 iov_iter_advance(iter, bytes);
497 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
498 for (i = 0; i < npages; i++) {
499 struct nfs_page *req;
500 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
501 /* XXX do we need to do the eof zeroing found in async_filler? */
502 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
503 pgbase, req_len);
504 if (IS_ERR(req)) {
505 result = PTR_ERR(req);
506 break;
507 }
508 req->wb_index = pos >> PAGE_SHIFT;
509 req->wb_offset = pos & ~PAGE_MASK;
510 if (!nfs_pageio_add_request(&desc, req)) {
511 result = desc.pg_error;
512 nfs_release_request(req);
513 break;
514 }
515 pgbase = 0;
516 bytes -= req_len;
517 requested_bytes += req_len;
518 pos += req_len;
519 dreq->bytes_left -= req_len;
520 }
521 nfs_direct_release_pages(pagevec, npages);
522 kvfree(pagevec);
523 if (result < 0)
524 break;
525 }
526
527 nfs_pageio_complete(&desc);
528
529 /*
530 * If no bytes were started, return the error, and let the
531 * generic layer handle the completion.
532 */
533 if (requested_bytes == 0) {
534 inode_dio_end(inode);
535 nfs_direct_req_release(dreq);
536 return result < 0 ? result : -EIO;
537 }
538
539 if (put_dreq(dreq))
540 nfs_direct_complete(dreq, false);
541 return 0;
542}
543
544/**
545 * nfs_file_direct_read - file direct read operation for NFS files
546 * @iocb: target I/O control block
547 * @iter: vector of user buffers into which to read data
548 * @pos: byte offset in file where reading starts
549 *
550 * We use this function for direct reads instead of calling
551 * generic_file_aio_read() in order to avoid gfar's check to see if
552 * the request starts before the end of the file. For that check
553 * to work, we must generate a GETATTR before each direct read, and
554 * even then there is a window between the GETATTR and the subsequent
555 * READ where the file size could change. Our preference is simply
556 * to do all reads the application wants, and the server will take
557 * care of managing the end of file boundary.
558 *
559 * This function also eliminates unnecessarily updating the file's
560 * atime locally, as the NFS server sets the file's atime, and this
561 * client must read the updated atime from the server back into its
562 * cache.
563 */
564ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
565 loff_t pos)
566{
567 struct file *file = iocb->ki_filp;
568 struct address_space *mapping = file->f_mapping;
569 struct inode *inode = mapping->host;
570 struct nfs_direct_req *dreq;
571 struct nfs_lock_context *l_ctx;
572 ssize_t result = -EINVAL;
573 size_t count = iov_iter_count(iter);
574 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
575
576 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
577 file, count, (long long) pos);
578
579 result = 0;
580 if (!count)
581 goto out;
582
583 inode_lock(inode);
584 result = nfs_sync_mapping(mapping);
585 if (result)
586 goto out_unlock;
587
588 task_io_account_read(count);
589
590 result = -ENOMEM;
591 dreq = nfs_direct_req_alloc();
592 if (dreq == NULL)
593 goto out_unlock;
594
595 dreq->inode = inode;
596 dreq->bytes_left = count;
597 dreq->io_start = pos;
598 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
599 l_ctx = nfs_get_lock_context(dreq->ctx);
600 if (IS_ERR(l_ctx)) {
601 result = PTR_ERR(l_ctx);
602 goto out_release;
603 }
604 dreq->l_ctx = l_ctx;
605 if (!is_sync_kiocb(iocb))
606 dreq->iocb = iocb;
607
608 NFS_I(inode)->read_io += count;
609 result = nfs_direct_read_schedule_iovec(dreq, iter, pos);
610
611 inode_unlock(inode);
612
613 if (!result) {
614 result = nfs_direct_wait(dreq);
615 if (result > 0)
616 iocb->ki_pos = pos + result;
617 }
618
619 nfs_direct_req_release(dreq);
620 return result;
621
622out_release:
623 nfs_direct_req_release(dreq);
624out_unlock:
625 inode_unlock(inode);
626out:
627 return result;
628}
629
630static void
631nfs_direct_write_scan_commit_list(struct inode *inode,
632 struct list_head *list,
633 struct nfs_commit_info *cinfo)
634{
635 spin_lock(cinfo->lock);
636#ifdef CONFIG_NFS_V4_1
637 if (cinfo->ds != NULL && cinfo->ds->nwritten != 0)
638 NFS_SERVER(inode)->pnfs_curr_ld->recover_commit_reqs(list, cinfo);
639#endif
640 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
641 spin_unlock(cinfo->lock);
642}
643
644static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
645{
646 struct nfs_pageio_descriptor desc;
647 struct nfs_page *req, *tmp;
648 LIST_HEAD(reqs);
649 struct nfs_commit_info cinfo;
650 LIST_HEAD(failed);
651 int i;
652
653 nfs_init_cinfo_from_dreq(&cinfo, dreq);
654 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
655
656 dreq->count = 0;
657 for (i = 0; i < dreq->mirror_count; i++)
658 dreq->mirrors[i].count = 0;
659 get_dreq(dreq);
660
661 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
662 &nfs_direct_write_completion_ops);
663 desc.pg_dreq = dreq;
664
665 req = nfs_list_entry(reqs.next);
666 nfs_direct_setup_mirroring(dreq, &desc, req);
667 if (desc.pg_error < 0) {
668 list_splice_init(&reqs, &failed);
669 goto out_failed;
670 }
671
672 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
673 if (!nfs_pageio_add_request(&desc, req)) {
674 nfs_list_remove_request(req);
675 nfs_list_add_request(req, &failed);
676 spin_lock(cinfo.lock);
677 dreq->flags = 0;
678 if (desc.pg_error < 0)
679 dreq->error = desc.pg_error;
680 else
681 dreq->error = -EIO;
682 spin_unlock(cinfo.lock);
683 }
684 nfs_release_request(req);
685 }
686 nfs_pageio_complete(&desc);
687
688out_failed:
689 while (!list_empty(&failed)) {
690 req = nfs_list_entry(failed.next);
691 nfs_list_remove_request(req);
692 nfs_unlock_and_release_request(req);
693 }
694
695 if (put_dreq(dreq))
696 nfs_direct_write_complete(dreq, dreq->inode);
697}
698
699static void nfs_direct_commit_complete(struct nfs_commit_data *data)
700{
701 struct nfs_direct_req *dreq = data->dreq;
702 struct nfs_commit_info cinfo;
703 struct nfs_page *req;
704 int status = data->task.tk_status;
705
706 nfs_init_cinfo_from_dreq(&cinfo, dreq);
707 if (status < 0) {
708 dprintk("NFS: %5u commit failed with error %d.\n",
709 data->task.tk_pid, status);
710 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
711 } else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
712 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
713 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
714 }
715
716 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
717 while (!list_empty(&data->pages)) {
718 req = nfs_list_entry(data->pages.next);
719 nfs_list_remove_request(req);
720 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
721 /* Note the rewrite will go through mds */
722 nfs_mark_request_commit(req, NULL, &cinfo, 0);
723 } else
724 nfs_release_request(req);
725 nfs_unlock_and_release_request(req);
726 }
727
728 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
729 nfs_direct_write_complete(dreq, data->inode);
730}
731
732static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
733 struct nfs_page *req)
734{
735 struct nfs_direct_req *dreq = cinfo->dreq;
736
737 spin_lock(&dreq->lock);
738 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
739 spin_unlock(&dreq->lock);
740 nfs_mark_request_commit(req, NULL, cinfo, 0);
741}
742
743static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
744 .completion = nfs_direct_commit_complete,
745 .resched_write = nfs_direct_resched_write,
746};
747
748static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
749{
750 int res;
751 struct nfs_commit_info cinfo;
752 LIST_HEAD(mds_list);
753
754 nfs_init_cinfo_from_dreq(&cinfo, dreq);
755 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
756 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
757 if (res < 0) /* res == -ENOMEM */
758 nfs_direct_write_reschedule(dreq);
759}
760
761static void nfs_direct_write_schedule_work(struct work_struct *work)
762{
763 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
764 int flags = dreq->flags;
765
766 dreq->flags = 0;
767 switch (flags) {
768 case NFS_ODIRECT_DO_COMMIT:
769 nfs_direct_commit_schedule(dreq);
770 break;
771 case NFS_ODIRECT_RESCHED_WRITES:
772 nfs_direct_write_reschedule(dreq);
773 break;
774 default:
775 nfs_direct_complete(dreq, true);
776 }
777}
778
779static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
780{
781 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
782}
783
784static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
785{
786 struct nfs_direct_req *dreq = hdr->dreq;
787 struct nfs_commit_info cinfo;
788 bool request_commit = false;
789 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
790
791 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
792 goto out_put;
793
794 nfs_init_cinfo_from_dreq(&cinfo, dreq);
795
796 spin_lock(&dreq->lock);
797
798 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
799 dreq->flags = 0;
800 dreq->error = hdr->error;
801 }
802 if (dreq->error == 0) {
803 nfs_direct_good_bytes(dreq, hdr);
804 if (nfs_write_need_commit(hdr)) {
805 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
806 request_commit = true;
807 else if (dreq->flags == 0) {
808 nfs_direct_set_hdr_verf(dreq, hdr);
809 request_commit = true;
810 dreq->flags = NFS_ODIRECT_DO_COMMIT;
811 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
812 request_commit = true;
813 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
814 dreq->flags =
815 NFS_ODIRECT_RESCHED_WRITES;
816 }
817 }
818 }
819 spin_unlock(&dreq->lock);
820
821 while (!list_empty(&hdr->pages)) {
822
823 req = nfs_list_entry(hdr->pages.next);
824 nfs_list_remove_request(req);
825 if (request_commit) {
826 kref_get(&req->wb_kref);
827 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
828 hdr->ds_commit_idx);
829 }
830 nfs_unlock_and_release_request(req);
831 }
832
833out_put:
834 if (put_dreq(dreq))
835 nfs_direct_write_complete(dreq, hdr->inode);
836 hdr->release(hdr);
837}
838
839static void nfs_write_sync_pgio_error(struct list_head *head)
840{
841 struct nfs_page *req;
842
843 while (!list_empty(head)) {
844 req = nfs_list_entry(head->next);
845 nfs_list_remove_request(req);
846 nfs_unlock_and_release_request(req);
847 }
848}
849
850static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
851{
852 struct nfs_direct_req *dreq = hdr->dreq;
853
854 spin_lock(&dreq->lock);
855 if (dreq->error == 0) {
856 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
857 /* fake unstable write to let common nfs resend pages */
858 hdr->verf.committed = NFS_UNSTABLE;
859 hdr->good_bytes = hdr->args.count;
860 }
861 spin_unlock(&dreq->lock);
862}
863
864static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
865 .error_cleanup = nfs_write_sync_pgio_error,
866 .init_hdr = nfs_direct_pgio_init,
867 .completion = nfs_direct_write_completion,
868 .reschedule_io = nfs_direct_write_reschedule_io,
869};
870
871
872/*
873 * NB: Return the value of the first error return code. Subsequent
874 * errors after the first one are ignored.
875 */
876/*
877 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
878 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
879 * bail and stop sending more writes. Write length accounting is
880 * handled automatically by nfs_direct_write_result(). Otherwise, if
881 * no requests have been sent, just return an error.
882 */
883static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
884 struct iov_iter *iter,
885 loff_t pos)
886{
887 struct nfs_pageio_descriptor desc;
888 struct inode *inode = dreq->inode;
889 ssize_t result = 0;
890 size_t requested_bytes = 0;
891 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
892
893 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
894 &nfs_direct_write_completion_ops);
895 desc.pg_dreq = dreq;
896 get_dreq(dreq);
897 inode_dio_begin(inode);
898
899 NFS_I(inode)->write_io += iov_iter_count(iter);
900 while (iov_iter_count(iter)) {
901 struct page **pagevec;
902 size_t bytes;
903 size_t pgbase;
904 unsigned npages, i;
905
906 result = iov_iter_get_pages_alloc(iter, &pagevec,
907 wsize, &pgbase);
908 if (result < 0)
909 break;
910
911 bytes = result;
912 iov_iter_advance(iter, bytes);
913 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
914 for (i = 0; i < npages; i++) {
915 struct nfs_page *req;
916 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
917
918 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
919 pgbase, req_len);
920 if (IS_ERR(req)) {
921 result = PTR_ERR(req);
922 break;
923 }
924
925 nfs_direct_setup_mirroring(dreq, &desc, req);
926 if (desc.pg_error < 0) {
927 nfs_free_request(req);
928 result = desc.pg_error;
929 break;
930 }
931
932 nfs_lock_request(req);
933 req->wb_index = pos >> PAGE_SHIFT;
934 req->wb_offset = pos & ~PAGE_MASK;
935 if (!nfs_pageio_add_request(&desc, req)) {
936 result = desc.pg_error;
937 nfs_unlock_and_release_request(req);
938 break;
939 }
940 pgbase = 0;
941 bytes -= req_len;
942 requested_bytes += req_len;
943 pos += req_len;
944 dreq->bytes_left -= req_len;
945 }
946 nfs_direct_release_pages(pagevec, npages);
947 kvfree(pagevec);
948 if (result < 0)
949 break;
950 }
951 nfs_pageio_complete(&desc);
952
953 /*
954 * If no bytes were started, return the error, and let the
955 * generic layer handle the completion.
956 */
957 if (requested_bytes == 0) {
958 inode_dio_end(inode);
959 nfs_direct_req_release(dreq);
960 return result < 0 ? result : -EIO;
961 }
962
963 if (put_dreq(dreq))
964 nfs_direct_write_complete(dreq, dreq->inode);
965 return 0;
966}
967
968/**
969 * nfs_file_direct_write - file direct write operation for NFS files
970 * @iocb: target I/O control block
971 * @iter: vector of user buffers from which to write data
972 * @pos: byte offset in file where writing starts
973 *
974 * We use this function for direct writes instead of calling
975 * generic_file_aio_write() in order to avoid taking the inode
976 * semaphore and updating the i_size. The NFS server will set
977 * the new i_size and this client must read the updated size
978 * back into its cache. We let the server do generic write
979 * parameter checking and report problems.
980 *
981 * We eliminate local atime updates, see direct read above.
982 *
983 * We avoid unnecessary page cache invalidations for normal cached
984 * readers of this file.
985 *
986 * Note that O_APPEND is not supported for NFS direct writes, as there
987 * is no atomic O_APPEND write facility in the NFS protocol.
988 */
989ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter)
990{
991 ssize_t result = -EINVAL;
992 struct file *file = iocb->ki_filp;
993 struct address_space *mapping = file->f_mapping;
994 struct inode *inode = mapping->host;
995 struct nfs_direct_req *dreq;
996 struct nfs_lock_context *l_ctx;
997 loff_t pos, end;
998
999 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
1000 file, iov_iter_count(iter), (long long) iocb->ki_pos);
1001
1002 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES,
1003 iov_iter_count(iter));
1004
1005 pos = iocb->ki_pos;
1006 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
1007
1008 inode_lock(inode);
1009
1010 result = nfs_sync_mapping(mapping);
1011 if (result)
1012 goto out_unlock;
1013
1014 if (mapping->nrpages) {
1015 result = invalidate_inode_pages2_range(mapping,
1016 pos >> PAGE_SHIFT, end);
1017 if (result)
1018 goto out_unlock;
1019 }
1020
1021 task_io_account_write(iov_iter_count(iter));
1022
1023 result = -ENOMEM;
1024 dreq = nfs_direct_req_alloc();
1025 if (!dreq)
1026 goto out_unlock;
1027
1028 dreq->inode = inode;
1029 dreq->bytes_left = iov_iter_count(iter);
1030 dreq->io_start = pos;
1031 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1032 l_ctx = nfs_get_lock_context(dreq->ctx);
1033 if (IS_ERR(l_ctx)) {
1034 result = PTR_ERR(l_ctx);
1035 goto out_release;
1036 }
1037 dreq->l_ctx = l_ctx;
1038 if (!is_sync_kiocb(iocb))
1039 dreq->iocb = iocb;
1040
1041 result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
1042
1043 if (mapping->nrpages) {
1044 invalidate_inode_pages2_range(mapping,
1045 pos >> PAGE_SHIFT, end);
1046 }
1047
1048 inode_unlock(inode);
1049
1050 if (!result) {
1051 result = nfs_direct_wait(dreq);
1052 if (result > 0) {
1053 struct inode *inode = mapping->host;
1054
1055 iocb->ki_pos = pos + result;
1056 spin_lock(&inode->i_lock);
1057 if (i_size_read(inode) < iocb->ki_pos)
1058 i_size_write(inode, iocb->ki_pos);
1059 spin_unlock(&inode->i_lock);
1060 generic_write_sync(file, pos, result);
1061 }
1062 }
1063 nfs_direct_req_release(dreq);
1064 return result;
1065
1066out_release:
1067 nfs_direct_req_release(dreq);
1068out_unlock:
1069 inode_unlock(inode);
1070 return result;
1071}
1072
1073/**
1074 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1075 *
1076 */
1077int __init nfs_init_directcache(void)
1078{
1079 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1080 sizeof(struct nfs_direct_req),
1081 0, (SLAB_RECLAIM_ACCOUNT|
1082 SLAB_MEM_SPREAD),
1083 NULL);
1084 if (nfs_direct_cachep == NULL)
1085 return -ENOMEM;
1086
1087 return 0;
1088}
1089
1090/**
1091 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1092 *
1093 */
1094void nfs_destroy_directcache(void)
1095{
1096 kmem_cache_destroy(nfs_direct_cachep);
1097}
1/*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41#include <linux/errno.h>
42#include <linux/sched.h>
43#include <linux/kernel.h>
44#include <linux/file.h>
45#include <linux/pagemap.h>
46#include <linux/kref.h>
47#include <linux/slab.h>
48#include <linux/task_io_accounting_ops.h>
49#include <linux/module.h>
50
51#include <linux/nfs_fs.h>
52#include <linux/nfs_page.h>
53#include <linux/sunrpc/clnt.h>
54
55#include <asm/uaccess.h>
56#include <linux/atomic.h>
57
58#include "internal.h"
59#include "iostat.h"
60#include "pnfs.h"
61
62#define NFSDBG_FACILITY NFSDBG_VFS
63
64static struct kmem_cache *nfs_direct_cachep;
65
66/*
67 * This represents a set of asynchronous requests that we're waiting on
68 */
69struct nfs_direct_req {
70 struct kref kref; /* release manager */
71
72 /* I/O parameters */
73 struct nfs_open_context *ctx; /* file open context info */
74 struct nfs_lock_context *l_ctx; /* Lock context info */
75 struct kiocb * iocb; /* controlling i/o request */
76 struct inode * inode; /* target file of i/o */
77
78 /* completion state */
79 atomic_t io_count; /* i/os we're waiting for */
80 spinlock_t lock; /* protect completion state */
81 ssize_t count, /* bytes actually processed */
82 bytes_left, /* bytes left to be sent */
83 error; /* any reported error */
84 struct completion completion; /* wait for i/o completion */
85
86 /* commit state */
87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
89 struct work_struct work;
90 int flags;
91#define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
92#define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
93 struct nfs_writeverf verf; /* unstable write verifier */
94};
95
96static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99static void nfs_direct_write_schedule_work(struct work_struct *work);
100
101static inline void get_dreq(struct nfs_direct_req *dreq)
102{
103 atomic_inc(&dreq->io_count);
104}
105
106static inline int put_dreq(struct nfs_direct_req *dreq)
107{
108 return atomic_dec_and_test(&dreq->io_count);
109}
110
111/**
112 * nfs_direct_IO - NFS address space operation for direct I/O
113 * @rw: direction (read or write)
114 * @iocb: target I/O control block
115 * @iov: array of vectors that define I/O buffer
116 * @pos: offset in file to begin the operation
117 * @nr_segs: size of iovec array
118 *
119 * The presence of this routine in the address space ops vector means
120 * the NFS client supports direct I/O. However, for most direct IO, we
121 * shunt off direct read and write requests before the VFS gets them,
122 * so this method is only ever called for swap.
123 */
124ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
125{
126#ifndef CONFIG_NFS_SWAP
127 dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
128 iocb->ki_filp, (long long) pos, nr_segs);
129
130 return -EINVAL;
131#else
132 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
133
134 if (rw == READ || rw == KERNEL_READ)
135 return nfs_file_direct_read(iocb, iov, nr_segs, pos,
136 rw == READ ? true : false);
137 return nfs_file_direct_write(iocb, iov, nr_segs, pos,
138 rw == WRITE ? true : false);
139#endif /* CONFIG_NFS_SWAP */
140}
141
142static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
143{
144 unsigned int i;
145 for (i = 0; i < npages; i++)
146 page_cache_release(pages[i]);
147}
148
149void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
150 struct nfs_direct_req *dreq)
151{
152 cinfo->lock = &dreq->lock;
153 cinfo->mds = &dreq->mds_cinfo;
154 cinfo->ds = &dreq->ds_cinfo;
155 cinfo->dreq = dreq;
156 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
157}
158
159static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
160{
161 struct nfs_direct_req *dreq;
162
163 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
164 if (!dreq)
165 return NULL;
166
167 kref_init(&dreq->kref);
168 kref_get(&dreq->kref);
169 init_completion(&dreq->completion);
170 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
171 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
172 spin_lock_init(&dreq->lock);
173
174 return dreq;
175}
176
177static void nfs_direct_req_free(struct kref *kref)
178{
179 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
180
181 if (dreq->l_ctx != NULL)
182 nfs_put_lock_context(dreq->l_ctx);
183 if (dreq->ctx != NULL)
184 put_nfs_open_context(dreq->ctx);
185 kmem_cache_free(nfs_direct_cachep, dreq);
186}
187
188static void nfs_direct_req_release(struct nfs_direct_req *dreq)
189{
190 kref_put(&dreq->kref, nfs_direct_req_free);
191}
192
193ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
194{
195 return dreq->bytes_left;
196}
197EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
198
199/*
200 * Collects and returns the final error value/byte-count.
201 */
202static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
203{
204 ssize_t result = -EIOCBQUEUED;
205
206 /* Async requests don't wait here */
207 if (dreq->iocb)
208 goto out;
209
210 result = wait_for_completion_killable(&dreq->completion);
211
212 if (!result)
213 result = dreq->error;
214 if (!result)
215 result = dreq->count;
216
217out:
218 return (ssize_t) result;
219}
220
221/*
222 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
223 * the iocb is still valid here if this is a synchronous request.
224 */
225static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
226{
227 struct inode *inode = dreq->inode;
228
229 if (dreq->iocb && write) {
230 loff_t pos = dreq->iocb->ki_pos + dreq->count;
231
232 spin_lock(&inode->i_lock);
233 if (i_size_read(inode) < pos)
234 i_size_write(inode, pos);
235 spin_unlock(&inode->i_lock);
236 }
237
238 if (write)
239 nfs_zap_mapping(inode, inode->i_mapping);
240
241 inode_dio_done(inode);
242
243 if (dreq->iocb) {
244 long res = (long) dreq->error;
245 if (!res)
246 res = (long) dreq->count;
247 aio_complete(dreq->iocb, res, 0);
248 }
249
250 complete_all(&dreq->completion);
251
252 nfs_direct_req_release(dreq);
253}
254
255static void nfs_direct_readpage_release(struct nfs_page *req)
256{
257 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
258 req->wb_context->dentry->d_inode->i_sb->s_id,
259 (unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
260 req->wb_bytes,
261 (long long)req_offset(req));
262 nfs_release_request(req);
263}
264
265static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
266{
267 unsigned long bytes = 0;
268 struct nfs_direct_req *dreq = hdr->dreq;
269
270 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
271 goto out_put;
272
273 spin_lock(&dreq->lock);
274 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
275 dreq->error = hdr->error;
276 else
277 dreq->count += hdr->good_bytes;
278 spin_unlock(&dreq->lock);
279
280 while (!list_empty(&hdr->pages)) {
281 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
282 struct page *page = req->wb_page;
283
284 if (!PageCompound(page) && bytes < hdr->good_bytes)
285 set_page_dirty(page);
286 bytes += req->wb_bytes;
287 nfs_list_remove_request(req);
288 nfs_direct_readpage_release(req);
289 }
290out_put:
291 if (put_dreq(dreq))
292 nfs_direct_complete(dreq, false);
293 hdr->release(hdr);
294}
295
296static void nfs_read_sync_pgio_error(struct list_head *head)
297{
298 struct nfs_page *req;
299
300 while (!list_empty(head)) {
301 req = nfs_list_entry(head->next);
302 nfs_list_remove_request(req);
303 nfs_release_request(req);
304 }
305}
306
307static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
308{
309 get_dreq(hdr->dreq);
310}
311
312static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
313 .error_cleanup = nfs_read_sync_pgio_error,
314 .init_hdr = nfs_direct_pgio_init,
315 .completion = nfs_direct_read_completion,
316};
317
318/*
319 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
320 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
321 * bail and stop sending more reads. Read length accounting is
322 * handled automatically by nfs_direct_read_result(). Otherwise, if
323 * no requests have been sent, just return an error.
324 */
325static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
326 const struct iovec *iov,
327 loff_t pos, bool uio)
328{
329 struct nfs_direct_req *dreq = desc->pg_dreq;
330 struct nfs_open_context *ctx = dreq->ctx;
331 struct inode *inode = ctx->dentry->d_inode;
332 unsigned long user_addr = (unsigned long)iov->iov_base;
333 size_t count = iov->iov_len;
334 size_t rsize = NFS_SERVER(inode)->rsize;
335 unsigned int pgbase;
336 int result;
337 ssize_t started = 0;
338 struct page **pagevec = NULL;
339 unsigned int npages;
340
341 do {
342 size_t bytes;
343 int i;
344
345 pgbase = user_addr & ~PAGE_MASK;
346 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
347
348 result = -ENOMEM;
349 npages = nfs_page_array_len(pgbase, bytes);
350 if (!pagevec)
351 pagevec = kmalloc(npages * sizeof(struct page *),
352 GFP_KERNEL);
353 if (!pagevec)
354 break;
355 if (uio) {
356 down_read(¤t->mm->mmap_sem);
357 result = get_user_pages(current, current->mm, user_addr,
358 npages, 1, 0, pagevec, NULL);
359 up_read(¤t->mm->mmap_sem);
360 if (result < 0)
361 break;
362 } else {
363 WARN_ON(npages != 1);
364 result = get_kernel_page(user_addr, 1, pagevec);
365 if (WARN_ON(result != 1))
366 break;
367 }
368
369 if ((unsigned)result < npages) {
370 bytes = result * PAGE_SIZE;
371 if (bytes <= pgbase) {
372 nfs_direct_release_pages(pagevec, result);
373 break;
374 }
375 bytes -= pgbase;
376 npages = result;
377 }
378
379 for (i = 0; i < npages; i++) {
380 struct nfs_page *req;
381 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
382 /* XXX do we need to do the eof zeroing found in async_filler? */
383 req = nfs_create_request(dreq->ctx, dreq->inode,
384 pagevec[i],
385 pgbase, req_len);
386 if (IS_ERR(req)) {
387 result = PTR_ERR(req);
388 break;
389 }
390 req->wb_index = pos >> PAGE_SHIFT;
391 req->wb_offset = pos & ~PAGE_MASK;
392 if (!nfs_pageio_add_request(desc, req)) {
393 result = desc->pg_error;
394 nfs_release_request(req);
395 break;
396 }
397 pgbase = 0;
398 bytes -= req_len;
399 started += req_len;
400 user_addr += req_len;
401 pos += req_len;
402 count -= req_len;
403 dreq->bytes_left -= req_len;
404 }
405 /* The nfs_page now hold references to these pages */
406 nfs_direct_release_pages(pagevec, npages);
407 } while (count != 0 && result >= 0);
408
409 kfree(pagevec);
410
411 if (started)
412 return started;
413 return result < 0 ? (ssize_t) result : -EFAULT;
414}
415
416static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
417 const struct iovec *iov,
418 unsigned long nr_segs,
419 loff_t pos, bool uio)
420{
421 struct nfs_pageio_descriptor desc;
422 struct inode *inode = dreq->inode;
423 ssize_t result = -EINVAL;
424 size_t requested_bytes = 0;
425 unsigned long seg;
426
427 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
428 &nfs_direct_read_completion_ops);
429 get_dreq(dreq);
430 desc.pg_dreq = dreq;
431 atomic_inc(&inode->i_dio_count);
432
433 for (seg = 0; seg < nr_segs; seg++) {
434 const struct iovec *vec = &iov[seg];
435 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
436 if (result < 0)
437 break;
438 requested_bytes += result;
439 if ((size_t)result < vec->iov_len)
440 break;
441 pos += vec->iov_len;
442 }
443
444 nfs_pageio_complete(&desc);
445
446 /*
447 * If no bytes were started, return the error, and let the
448 * generic layer handle the completion.
449 */
450 if (requested_bytes == 0) {
451 inode_dio_done(inode);
452 nfs_direct_req_release(dreq);
453 return result < 0 ? result : -EIO;
454 }
455
456 if (put_dreq(dreq))
457 nfs_direct_complete(dreq, false);
458 return 0;
459}
460
461/**
462 * nfs_file_direct_read - file direct read operation for NFS files
463 * @iocb: target I/O control block
464 * @iov: vector of user buffers into which to read data
465 * @nr_segs: size of iov vector
466 * @pos: byte offset in file where reading starts
467 *
468 * We use this function for direct reads instead of calling
469 * generic_file_aio_read() in order to avoid gfar's check to see if
470 * the request starts before the end of the file. For that check
471 * to work, we must generate a GETATTR before each direct read, and
472 * even then there is a window between the GETATTR and the subsequent
473 * READ where the file size could change. Our preference is simply
474 * to do all reads the application wants, and the server will take
475 * care of managing the end of file boundary.
476 *
477 * This function also eliminates unnecessarily updating the file's
478 * atime locally, as the NFS server sets the file's atime, and this
479 * client must read the updated atime from the server back into its
480 * cache.
481 */
482ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
483 unsigned long nr_segs, loff_t pos, bool uio)
484{
485 struct file *file = iocb->ki_filp;
486 struct address_space *mapping = file->f_mapping;
487 struct inode *inode = mapping->host;
488 struct nfs_direct_req *dreq;
489 struct nfs_lock_context *l_ctx;
490 ssize_t result = -EINVAL;
491 size_t count;
492
493 count = iov_length(iov, nr_segs);
494 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
495
496 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
497 file, count, (long long) pos);
498
499 result = 0;
500 if (!count)
501 goto out;
502
503 mutex_lock(&inode->i_mutex);
504 result = nfs_sync_mapping(mapping);
505 if (result)
506 goto out_unlock;
507
508 task_io_account_read(count);
509
510 result = -ENOMEM;
511 dreq = nfs_direct_req_alloc();
512 if (dreq == NULL)
513 goto out_unlock;
514
515 dreq->inode = inode;
516 dreq->bytes_left = iov_length(iov, nr_segs);
517 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
518 l_ctx = nfs_get_lock_context(dreq->ctx);
519 if (IS_ERR(l_ctx)) {
520 result = PTR_ERR(l_ctx);
521 goto out_release;
522 }
523 dreq->l_ctx = l_ctx;
524 if (!is_sync_kiocb(iocb))
525 dreq->iocb = iocb;
526
527 NFS_I(inode)->read_io += iov_length(iov, nr_segs);
528 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
529
530 mutex_unlock(&inode->i_mutex);
531
532 if (!result) {
533 result = nfs_direct_wait(dreq);
534 if (result > 0)
535 iocb->ki_pos = pos + result;
536 }
537
538 nfs_direct_req_release(dreq);
539 return result;
540
541out_release:
542 nfs_direct_req_release(dreq);
543out_unlock:
544 mutex_unlock(&inode->i_mutex);
545out:
546 return result;
547}
548
549#if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
550static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
551{
552 struct nfs_pageio_descriptor desc;
553 struct nfs_page *req, *tmp;
554 LIST_HEAD(reqs);
555 struct nfs_commit_info cinfo;
556 LIST_HEAD(failed);
557
558 nfs_init_cinfo_from_dreq(&cinfo, dreq);
559 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
560 spin_lock(cinfo.lock);
561 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
562 spin_unlock(cinfo.lock);
563
564 dreq->count = 0;
565 get_dreq(dreq);
566
567 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
568 &nfs_direct_write_completion_ops);
569 desc.pg_dreq = dreq;
570
571 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
572 if (!nfs_pageio_add_request(&desc, req)) {
573 nfs_list_remove_request(req);
574 nfs_list_add_request(req, &failed);
575 spin_lock(cinfo.lock);
576 dreq->flags = 0;
577 dreq->error = -EIO;
578 spin_unlock(cinfo.lock);
579 }
580 nfs_release_request(req);
581 }
582 nfs_pageio_complete(&desc);
583
584 while (!list_empty(&failed)) {
585 req = nfs_list_entry(failed.next);
586 nfs_list_remove_request(req);
587 nfs_unlock_and_release_request(req);
588 }
589
590 if (put_dreq(dreq))
591 nfs_direct_write_complete(dreq, dreq->inode);
592}
593
594static void nfs_direct_commit_complete(struct nfs_commit_data *data)
595{
596 struct nfs_direct_req *dreq = data->dreq;
597 struct nfs_commit_info cinfo;
598 struct nfs_page *req;
599 int status = data->task.tk_status;
600
601 nfs_init_cinfo_from_dreq(&cinfo, dreq);
602 if (status < 0) {
603 dprintk("NFS: %5u commit failed with error %d.\n",
604 data->task.tk_pid, status);
605 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
606 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
607 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
608 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
609 }
610
611 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
612 while (!list_empty(&data->pages)) {
613 req = nfs_list_entry(data->pages.next);
614 nfs_list_remove_request(req);
615 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
616 /* Note the rewrite will go through mds */
617 nfs_mark_request_commit(req, NULL, &cinfo);
618 } else
619 nfs_release_request(req);
620 nfs_unlock_and_release_request(req);
621 }
622
623 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
624 nfs_direct_write_complete(dreq, data->inode);
625}
626
627static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
628{
629 /* There is no lock to clear */
630}
631
632static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
633 .completion = nfs_direct_commit_complete,
634 .error_cleanup = nfs_direct_error_cleanup,
635};
636
637static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
638{
639 int res;
640 struct nfs_commit_info cinfo;
641 LIST_HEAD(mds_list);
642
643 nfs_init_cinfo_from_dreq(&cinfo, dreq);
644 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
645 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
646 if (res < 0) /* res == -ENOMEM */
647 nfs_direct_write_reschedule(dreq);
648}
649
650static void nfs_direct_write_schedule_work(struct work_struct *work)
651{
652 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
653 int flags = dreq->flags;
654
655 dreq->flags = 0;
656 switch (flags) {
657 case NFS_ODIRECT_DO_COMMIT:
658 nfs_direct_commit_schedule(dreq);
659 break;
660 case NFS_ODIRECT_RESCHED_WRITES:
661 nfs_direct_write_reschedule(dreq);
662 break;
663 default:
664 nfs_direct_complete(dreq, true);
665 }
666}
667
668static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
669{
670 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
671}
672
673#else
674static void nfs_direct_write_schedule_work(struct work_struct *work)
675{
676}
677
678static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
679{
680 nfs_direct_complete(dreq, true);
681}
682#endif
683
684/*
685 * NB: Return the value of the first error return code. Subsequent
686 * errors after the first one are ignored.
687 */
688/*
689 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
690 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
691 * bail and stop sending more writes. Write length accounting is
692 * handled automatically by nfs_direct_write_result(). Otherwise, if
693 * no requests have been sent, just return an error.
694 */
695static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
696 const struct iovec *iov,
697 loff_t pos, bool uio)
698{
699 struct nfs_direct_req *dreq = desc->pg_dreq;
700 struct nfs_open_context *ctx = dreq->ctx;
701 struct inode *inode = ctx->dentry->d_inode;
702 unsigned long user_addr = (unsigned long)iov->iov_base;
703 size_t count = iov->iov_len;
704 size_t wsize = NFS_SERVER(inode)->wsize;
705 unsigned int pgbase;
706 int result;
707 ssize_t started = 0;
708 struct page **pagevec = NULL;
709 unsigned int npages;
710
711 do {
712 size_t bytes;
713 int i;
714
715 pgbase = user_addr & ~PAGE_MASK;
716 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
717
718 result = -ENOMEM;
719 npages = nfs_page_array_len(pgbase, bytes);
720 if (!pagevec)
721 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
722 if (!pagevec)
723 break;
724
725 if (uio) {
726 down_read(¤t->mm->mmap_sem);
727 result = get_user_pages(current, current->mm, user_addr,
728 npages, 0, 0, pagevec, NULL);
729 up_read(¤t->mm->mmap_sem);
730 if (result < 0)
731 break;
732 } else {
733 WARN_ON(npages != 1);
734 result = get_kernel_page(user_addr, 0, pagevec);
735 if (WARN_ON(result != 1))
736 break;
737 }
738
739 if ((unsigned)result < npages) {
740 bytes = result * PAGE_SIZE;
741 if (bytes <= pgbase) {
742 nfs_direct_release_pages(pagevec, result);
743 break;
744 }
745 bytes -= pgbase;
746 npages = result;
747 }
748
749 for (i = 0; i < npages; i++) {
750 struct nfs_page *req;
751 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
752
753 req = nfs_create_request(dreq->ctx, dreq->inode,
754 pagevec[i],
755 pgbase, req_len);
756 if (IS_ERR(req)) {
757 result = PTR_ERR(req);
758 break;
759 }
760 nfs_lock_request(req);
761 req->wb_index = pos >> PAGE_SHIFT;
762 req->wb_offset = pos & ~PAGE_MASK;
763 if (!nfs_pageio_add_request(desc, req)) {
764 result = desc->pg_error;
765 nfs_unlock_and_release_request(req);
766 break;
767 }
768 pgbase = 0;
769 bytes -= req_len;
770 started += req_len;
771 user_addr += req_len;
772 pos += req_len;
773 count -= req_len;
774 dreq->bytes_left -= req_len;
775 }
776 /* The nfs_page now hold references to these pages */
777 nfs_direct_release_pages(pagevec, npages);
778 } while (count != 0 && result >= 0);
779
780 kfree(pagevec);
781
782 if (started)
783 return started;
784 return result < 0 ? (ssize_t) result : -EFAULT;
785}
786
787static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
788{
789 struct nfs_direct_req *dreq = hdr->dreq;
790 struct nfs_commit_info cinfo;
791 int bit = -1;
792 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
793
794 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
795 goto out_put;
796
797 nfs_init_cinfo_from_dreq(&cinfo, dreq);
798
799 spin_lock(&dreq->lock);
800
801 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
802 dreq->flags = 0;
803 dreq->error = hdr->error;
804 }
805 if (dreq->error != 0)
806 bit = NFS_IOHDR_ERROR;
807 else {
808 dreq->count += hdr->good_bytes;
809 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
810 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
811 bit = NFS_IOHDR_NEED_RESCHED;
812 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
813 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
814 bit = NFS_IOHDR_NEED_RESCHED;
815 else if (dreq->flags == 0) {
816 memcpy(&dreq->verf, hdr->verf,
817 sizeof(dreq->verf));
818 bit = NFS_IOHDR_NEED_COMMIT;
819 dreq->flags = NFS_ODIRECT_DO_COMMIT;
820 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
821 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
822 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
823 bit = NFS_IOHDR_NEED_RESCHED;
824 } else
825 bit = NFS_IOHDR_NEED_COMMIT;
826 }
827 }
828 }
829 spin_unlock(&dreq->lock);
830
831 while (!list_empty(&hdr->pages)) {
832 req = nfs_list_entry(hdr->pages.next);
833 nfs_list_remove_request(req);
834 switch (bit) {
835 case NFS_IOHDR_NEED_RESCHED:
836 case NFS_IOHDR_NEED_COMMIT:
837 kref_get(&req->wb_kref);
838 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
839 }
840 nfs_unlock_and_release_request(req);
841 }
842
843out_put:
844 if (put_dreq(dreq))
845 nfs_direct_write_complete(dreq, hdr->inode);
846 hdr->release(hdr);
847}
848
849static void nfs_write_sync_pgio_error(struct list_head *head)
850{
851 struct nfs_page *req;
852
853 while (!list_empty(head)) {
854 req = nfs_list_entry(head->next);
855 nfs_list_remove_request(req);
856 nfs_unlock_and_release_request(req);
857 }
858}
859
860static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
861 .error_cleanup = nfs_write_sync_pgio_error,
862 .init_hdr = nfs_direct_pgio_init,
863 .completion = nfs_direct_write_completion,
864};
865
866static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
867 const struct iovec *iov,
868 unsigned long nr_segs,
869 loff_t pos, bool uio)
870{
871 struct nfs_pageio_descriptor desc;
872 struct inode *inode = dreq->inode;
873 ssize_t result = 0;
874 size_t requested_bytes = 0;
875 unsigned long seg;
876
877 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
878 &nfs_direct_write_completion_ops);
879 desc.pg_dreq = dreq;
880 get_dreq(dreq);
881 atomic_inc(&inode->i_dio_count);
882
883 NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
884 for (seg = 0; seg < nr_segs; seg++) {
885 const struct iovec *vec = &iov[seg];
886 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
887 if (result < 0)
888 break;
889 requested_bytes += result;
890 if ((size_t)result < vec->iov_len)
891 break;
892 pos += vec->iov_len;
893 }
894 nfs_pageio_complete(&desc);
895
896 /*
897 * If no bytes were started, return the error, and let the
898 * generic layer handle the completion.
899 */
900 if (requested_bytes == 0) {
901 inode_dio_done(inode);
902 nfs_direct_req_release(dreq);
903 return result < 0 ? result : -EIO;
904 }
905
906 if (put_dreq(dreq))
907 nfs_direct_write_complete(dreq, dreq->inode);
908 return 0;
909}
910
911/**
912 * nfs_file_direct_write - file direct write operation for NFS files
913 * @iocb: target I/O control block
914 * @iov: vector of user buffers from which to write data
915 * @nr_segs: size of iov vector
916 * @pos: byte offset in file where writing starts
917 *
918 * We use this function for direct writes instead of calling
919 * generic_file_aio_write() in order to avoid taking the inode
920 * semaphore and updating the i_size. The NFS server will set
921 * the new i_size and this client must read the updated size
922 * back into its cache. We let the server do generic write
923 * parameter checking and report problems.
924 *
925 * We eliminate local atime updates, see direct read above.
926 *
927 * We avoid unnecessary page cache invalidations for normal cached
928 * readers of this file.
929 *
930 * Note that O_APPEND is not supported for NFS direct writes, as there
931 * is no atomic O_APPEND write facility in the NFS protocol.
932 */
933ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
934 unsigned long nr_segs, loff_t pos, bool uio)
935{
936 ssize_t result = -EINVAL;
937 struct file *file = iocb->ki_filp;
938 struct address_space *mapping = file->f_mapping;
939 struct inode *inode = mapping->host;
940 struct nfs_direct_req *dreq;
941 struct nfs_lock_context *l_ctx;
942 loff_t end;
943 size_t count;
944
945 count = iov_length(iov, nr_segs);
946 end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
947
948 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
949
950 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
951 file, count, (long long) pos);
952
953 result = generic_write_checks(file, &pos, &count, 0);
954 if (result)
955 goto out;
956
957 result = -EINVAL;
958 if ((ssize_t) count < 0)
959 goto out;
960 result = 0;
961 if (!count)
962 goto out;
963
964 mutex_lock(&inode->i_mutex);
965
966 result = nfs_sync_mapping(mapping);
967 if (result)
968 goto out_unlock;
969
970 if (mapping->nrpages) {
971 result = invalidate_inode_pages2_range(mapping,
972 pos >> PAGE_CACHE_SHIFT, end);
973 if (result)
974 goto out_unlock;
975 }
976
977 task_io_account_write(count);
978
979 result = -ENOMEM;
980 dreq = nfs_direct_req_alloc();
981 if (!dreq)
982 goto out_unlock;
983
984 dreq->inode = inode;
985 dreq->bytes_left = count;
986 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
987 l_ctx = nfs_get_lock_context(dreq->ctx);
988 if (IS_ERR(l_ctx)) {
989 result = PTR_ERR(l_ctx);
990 goto out_release;
991 }
992 dreq->l_ctx = l_ctx;
993 if (!is_sync_kiocb(iocb))
994 dreq->iocb = iocb;
995
996 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
997
998 if (mapping->nrpages) {
999 invalidate_inode_pages2_range(mapping,
1000 pos >> PAGE_CACHE_SHIFT, end);
1001 }
1002
1003 mutex_unlock(&inode->i_mutex);
1004
1005 if (!result) {
1006 result = nfs_direct_wait(dreq);
1007 if (result > 0) {
1008 struct inode *inode = mapping->host;
1009
1010 iocb->ki_pos = pos + result;
1011 spin_lock(&inode->i_lock);
1012 if (i_size_read(inode) < iocb->ki_pos)
1013 i_size_write(inode, iocb->ki_pos);
1014 spin_unlock(&inode->i_lock);
1015 }
1016 }
1017 nfs_direct_req_release(dreq);
1018 return result;
1019
1020out_release:
1021 nfs_direct_req_release(dreq);
1022out_unlock:
1023 mutex_unlock(&inode->i_mutex);
1024out:
1025 return result;
1026}
1027
1028/**
1029 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1030 *
1031 */
1032int __init nfs_init_directcache(void)
1033{
1034 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1035 sizeof(struct nfs_direct_req),
1036 0, (SLAB_RECLAIM_ACCOUNT|
1037 SLAB_MEM_SPREAD),
1038 NULL);
1039 if (nfs_direct_cachep == NULL)
1040 return -ENOMEM;
1041
1042 return 0;
1043}
1044
1045/**
1046 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1047 *
1048 */
1049void nfs_destroy_directcache(void)
1050{
1051 kmem_cache_destroy(nfs_direct_cachep);
1052}