Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * fs/f2fs/checkpoint.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/bio.h>
  13#include <linux/mpage.h>
  14#include <linux/writeback.h>
  15#include <linux/blkdev.h>
  16#include <linux/f2fs_fs.h>
  17#include <linux/pagevec.h>
  18#include <linux/swap.h>
  19
  20#include "f2fs.h"
  21#include "node.h"
  22#include "segment.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26static struct kmem_cache *ino_entry_slab;
  27struct kmem_cache *inode_entry_slab;
  28
  29/*
  30 * We guarantee no failure on the returned page.
  31 */
  32struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  33{
  34	struct address_space *mapping = META_MAPPING(sbi);
  35	struct page *page = NULL;
  36repeat:
  37	page = grab_cache_page(mapping, index);
  38	if (!page) {
  39		cond_resched();
  40		goto repeat;
  41	}
  42	f2fs_wait_on_page_writeback(page, META, true);
  43	SetPageUptodate(page);
  44	return page;
  45}
  46
  47/*
  48 * We guarantee no failure on the returned page.
  49 */
  50static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  51							bool is_meta)
  52{
  53	struct address_space *mapping = META_MAPPING(sbi);
  54	struct page *page;
  55	struct f2fs_io_info fio = {
  56		.sbi = sbi,
  57		.type = META,
  58		.rw = READ_SYNC | REQ_META | REQ_PRIO,
  59		.old_blkaddr = index,
  60		.new_blkaddr = index,
  61		.encrypted_page = NULL,
  62	};
  63
  64	if (unlikely(!is_meta))
  65		fio.rw &= ~REQ_META;
  66repeat:
  67	page = grab_cache_page(mapping, index);
  68	if (!page) {
  69		cond_resched();
  70		goto repeat;
  71	}
  72	if (PageUptodate(page))
  73		goto out;
  74
  75	fio.page = page;
  76
  77	if (f2fs_submit_page_bio(&fio)) {
  78		f2fs_put_page(page, 1);
  79		goto repeat;
  80	}
  81
  82	lock_page(page);
  83	if (unlikely(page->mapping != mapping)) {
  84		f2fs_put_page(page, 1);
  85		goto repeat;
  86	}
  87
  88	/*
  89	 * if there is any IO error when accessing device, make our filesystem
  90	 * readonly and make sure do not write checkpoint with non-uptodate
  91	 * meta page.
  92	 */
  93	if (unlikely(!PageUptodate(page)))
  94		f2fs_stop_checkpoint(sbi);
  95out:
 
  96	return page;
  97}
  98
  99struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 100{
 101	return __get_meta_page(sbi, index, true);
 102}
 103
 104/* for POR only */
 105struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
 106{
 107	return __get_meta_page(sbi, index, false);
 108}
 109
 110bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
 111{
 112	switch (type) {
 113	case META_NAT:
 114		break;
 115	case META_SIT:
 116		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
 117			return false;
 118		break;
 119	case META_SSA:
 120		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
 121			blkaddr < SM_I(sbi)->ssa_blkaddr))
 122			return false;
 123		break;
 124	case META_CP:
 125		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
 126			blkaddr < __start_cp_addr(sbi)))
 127			return false;
 128		break;
 129	case META_POR:
 130		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
 131			blkaddr < MAIN_BLKADDR(sbi)))
 132			return false;
 133		break;
 134	default:
 135		BUG();
 136	}
 137
 138	return true;
 139}
 140
 141/*
 142 * Readahead CP/NAT/SIT/SSA pages
 143 */
 144int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
 145							int type, bool sync)
 146{
 
 147	struct page *page;
 148	block_t blkno = start;
 
 
 149	struct f2fs_io_info fio = {
 150		.sbi = sbi,
 151		.type = META,
 152		.rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
 153		.encrypted_page = NULL,
 154	};
 155	struct blk_plug plug;
 156
 157	if (unlikely(type == META_POR))
 158		fio.rw &= ~REQ_META;
 159
 160	blk_start_plug(&plug);
 161	for (; nrpages-- > 0; blkno++) {
 162
 163		if (!is_valid_blkaddr(sbi, blkno, type))
 164			goto out;
 165
 166		switch (type) {
 167		case META_NAT:
 168			if (unlikely(blkno >=
 169					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
 170				blkno = 0;
 171			/* get nat block addr */
 172			fio.new_blkaddr = current_nat_addr(sbi,
 
 
 173					blkno * NAT_ENTRY_PER_BLOCK);
 174			break;
 175		case META_SIT:
 176			/* get sit block addr */
 177			fio.new_blkaddr = current_sit_addr(sbi,
 
 
 178					blkno * SIT_ENTRY_PER_BLOCK);
 
 
 
 179			break;
 180		case META_SSA:
 181		case META_CP:
 182		case META_POR:
 183			fio.new_blkaddr = blkno;
 184			break;
 185		default:
 186			BUG();
 187		}
 188
 189		page = grab_cache_page(META_MAPPING(sbi), fio.new_blkaddr);
 190		if (!page)
 191			continue;
 192		if (PageUptodate(page)) {
 
 193			f2fs_put_page(page, 1);
 194			continue;
 195		}
 196
 197		fio.page = page;
 198		fio.old_blkaddr = fio.new_blkaddr;
 199		f2fs_submit_page_mbio(&fio);
 200		f2fs_put_page(page, 0);
 201	}
 202out:
 203	f2fs_submit_merged_bio(sbi, META, READ);
 204	blk_finish_plug(&plug);
 205	return blkno - start;
 206}
 207
 208void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
 209{
 210	struct page *page;
 211	bool readahead = false;
 212
 213	page = find_get_page(META_MAPPING(sbi), index);
 214	if (!page || (page && !PageUptodate(page)))
 215		readahead = true;
 216	f2fs_put_page(page, 0);
 217
 218	if (readahead)
 219		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
 220}
 221
 222static int f2fs_write_meta_page(struct page *page,
 223				struct writeback_control *wbc)
 224{
 225	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
 
 226
 227	trace_f2fs_writepage(page, META);
 228
 229	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 230		goto redirty_out;
 231	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
 232		goto redirty_out;
 233	if (unlikely(f2fs_cp_error(sbi)))
 234		goto redirty_out;
 235
 
 
 
 
 
 236	write_meta_page(sbi, page);
 
 237	dec_page_count(sbi, F2FS_DIRTY_META);
 238
 239	if (wbc->for_reclaim)
 240		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
 241
 242	unlock_page(page);
 243
 244	if (unlikely(f2fs_cp_error(sbi)))
 245		f2fs_submit_merged_bio(sbi, META, WRITE);
 246
 247	return 0;
 248
 249redirty_out:
 250	redirty_page_for_writepage(wbc, page);
 
 
 
 251	return AOP_WRITEPAGE_ACTIVATE;
 252}
 253
 254static int f2fs_write_meta_pages(struct address_space *mapping,
 255				struct writeback_control *wbc)
 256{
 257	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
 258	long diff, written;
 259
 260	/* collect a number of dirty meta pages and write together */
 261	if (wbc->for_kupdate ||
 262		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
 263		goto skip_write;
 264
 265	trace_f2fs_writepages(mapping->host, wbc, META);
 266
 267	/* if mounting is failed, skip writing node pages */
 268	mutex_lock(&sbi->cp_mutex);
 269	diff = nr_pages_to_write(sbi, META, wbc);
 270	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
 271	mutex_unlock(&sbi->cp_mutex);
 272	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
 273	return 0;
 274
 275skip_write:
 276	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
 277	trace_f2fs_writepages(mapping->host, wbc, META);
 278	return 0;
 279}
 280
 281long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
 282						long nr_to_write)
 283{
 284	struct address_space *mapping = META_MAPPING(sbi);
 285	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
 286	struct pagevec pvec;
 287	long nwritten = 0;
 288	struct writeback_control wbc = {
 289		.for_reclaim = 0,
 290	};
 291	struct blk_plug plug;
 292
 293	pagevec_init(&pvec, 0);
 294
 295	blk_start_plug(&plug);
 296
 297	while (index <= end) {
 298		int i, nr_pages;
 299		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 300				PAGECACHE_TAG_DIRTY,
 301				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 302		if (unlikely(nr_pages == 0))
 303			break;
 304
 305		for (i = 0; i < nr_pages; i++) {
 306			struct page *page = pvec.pages[i];
 307
 308			if (prev == ULONG_MAX)
 309				prev = page->index - 1;
 310			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
 311				pagevec_release(&pvec);
 312				goto stop;
 313			}
 314
 315			lock_page(page);
 316
 317			if (unlikely(page->mapping != mapping)) {
 318continue_unlock:
 319				unlock_page(page);
 320				continue;
 321			}
 322			if (!PageDirty(page)) {
 323				/* someone wrote it for us */
 324				goto continue_unlock;
 325			}
 326
 327			f2fs_wait_on_page_writeback(page, META, true);
 328
 329			BUG_ON(PageWriteback(page));
 330			if (!clear_page_dirty_for_io(page))
 331				goto continue_unlock;
 332
 333			if (mapping->a_ops->writepage(page, &wbc)) {
 334				unlock_page(page);
 335				break;
 336			}
 337			nwritten++;
 338			prev = page->index;
 339			if (unlikely(nwritten >= nr_to_write))
 340				break;
 341		}
 342		pagevec_release(&pvec);
 343		cond_resched();
 344	}
 345stop:
 346	if (nwritten)
 347		f2fs_submit_merged_bio(sbi, type, WRITE);
 348
 349	blk_finish_plug(&plug);
 350
 351	return nwritten;
 352}
 353
 354static int f2fs_set_meta_page_dirty(struct page *page)
 355{
 
 
 
 356	trace_f2fs_set_page_dirty(page, META);
 357
 358	SetPageUptodate(page);
 359	if (!PageDirty(page)) {
 360		__set_page_dirty_nobuffers(page);
 361		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
 362		SetPagePrivate(page);
 363		f2fs_trace_pid(page);
 364		return 1;
 365	}
 366	return 0;
 367}
 368
 369const struct address_space_operations f2fs_meta_aops = {
 370	.writepage	= f2fs_write_meta_page,
 371	.writepages	= f2fs_write_meta_pages,
 372	.set_page_dirty	= f2fs_set_meta_page_dirty,
 373	.invalidatepage = f2fs_invalidate_page,
 374	.releasepage	= f2fs_release_page,
 375};
 376
 377static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 378{
 379	struct inode_management *im = &sbi->im[type];
 380	struct ino_entry *e, *tmp;
 381
 382	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
 383retry:
 384	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
 385
 386	spin_lock(&im->ino_lock);
 387	e = radix_tree_lookup(&im->ino_root, ino);
 388	if (!e) {
 389		e = tmp;
 390		if (radix_tree_insert(&im->ino_root, ino, e)) {
 391			spin_unlock(&im->ino_lock);
 392			radix_tree_preload_end();
 393			goto retry;
 394		}
 395		memset(e, 0, sizeof(struct ino_entry));
 396		e->ino = ino;
 397
 398		list_add_tail(&e->list, &im->ino_list);
 399		if (type != ORPHAN_INO)
 400			im->ino_num++;
 401	}
 402	spin_unlock(&im->ino_lock);
 403	radix_tree_preload_end();
 404
 405	if (e != tmp)
 406		kmem_cache_free(ino_entry_slab, tmp);
 407}
 408
 409static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 410{
 411	struct inode_management *im = &sbi->im[type];
 412	struct ino_entry *e;
 413
 414	spin_lock(&im->ino_lock);
 415	e = radix_tree_lookup(&im->ino_root, ino);
 416	if (e) {
 417		list_del(&e->list);
 418		radix_tree_delete(&im->ino_root, ino);
 419		im->ino_num--;
 420		spin_unlock(&im->ino_lock);
 421		kmem_cache_free(ino_entry_slab, e);
 422		return;
 423	}
 424	spin_unlock(&im->ino_lock);
 425}
 426
 427void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 428{
 429	/* add new dirty ino entry into list */
 430	__add_ino_entry(sbi, ino, type);
 431}
 432
 433void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 434{
 435	/* remove dirty ino entry from list */
 436	__remove_ino_entry(sbi, ino, type);
 437}
 438
 439/* mode should be APPEND_INO or UPDATE_INO */
 440bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
 441{
 442	struct inode_management *im = &sbi->im[mode];
 443	struct ino_entry *e;
 444
 445	spin_lock(&im->ino_lock);
 446	e = radix_tree_lookup(&im->ino_root, ino);
 447	spin_unlock(&im->ino_lock);
 448	return e ? true : false;
 449}
 450
 451void release_ino_entry(struct f2fs_sb_info *sbi)
 452{
 453	struct ino_entry *e, *tmp;
 454	int i;
 455
 456	for (i = APPEND_INO; i <= UPDATE_INO; i++) {
 457		struct inode_management *im = &sbi->im[i];
 458
 459		spin_lock(&im->ino_lock);
 460		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
 461			list_del(&e->list);
 462			radix_tree_delete(&im->ino_root, e->ino);
 463			kmem_cache_free(ino_entry_slab, e);
 464			im->ino_num--;
 465		}
 466		spin_unlock(&im->ino_lock);
 467	}
 468}
 469
 470int acquire_orphan_inode(struct f2fs_sb_info *sbi)
 471{
 472	struct inode_management *im = &sbi->im[ORPHAN_INO];
 473	int err = 0;
 474
 475	spin_lock(&im->ino_lock);
 476	if (unlikely(im->ino_num >= sbi->max_orphans))
 477		err = -ENOSPC;
 478	else
 479		im->ino_num++;
 480	spin_unlock(&im->ino_lock);
 481
 482	return err;
 483}
 484
 485void release_orphan_inode(struct f2fs_sb_info *sbi)
 486{
 487	struct inode_management *im = &sbi->im[ORPHAN_INO];
 488
 489	spin_lock(&im->ino_lock);
 490	f2fs_bug_on(sbi, im->ino_num == 0);
 491	im->ino_num--;
 492	spin_unlock(&im->ino_lock);
 493}
 494
 495void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 496{
 497	/* add new orphan ino entry into list */
 498	__add_ino_entry(sbi, ino, ORPHAN_INO);
 499}
 500
 501void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 502{
 503	/* remove orphan entry from orphan list */
 504	__remove_ino_entry(sbi, ino, ORPHAN_INO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 505}
 506
 507static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 508{
 509	struct inode *inode;
 
 510
 511	inode = f2fs_iget(sbi->sb, ino);
 512	if (IS_ERR(inode)) {
 513		/*
 514		 * there should be a bug that we can't find the entry
 515		 * to orphan inode.
 516		 */
 517		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
 518		return PTR_ERR(inode);
 
 
 
 519	}
 
 
 520
 
 
 
 
 521	clear_nlink(inode);
 522
 523	/* truncate all the data during iput */
 524	iput(inode);
 525	return 0;
 526}
 527
 528int recover_orphan_inodes(struct f2fs_sb_info *sbi)
 529{
 530	block_t start_blk, orphan_blocks, i, j;
 531	int err;
 532
 533	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
 534		return 0;
 535
 536	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
 537	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
 
 538
 539	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
 540
 541	for (i = 0; i < orphan_blocks; i++) {
 542		struct page *page = get_meta_page(sbi, start_blk + i);
 543		struct f2fs_orphan_block *orphan_blk;
 544
 545		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 546		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
 547			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
 548			err = recover_orphan_inode(sbi, ino);
 549			if (err) {
 550				f2fs_put_page(page, 1);
 551				return err;
 552			}
 553		}
 554		f2fs_put_page(page, 1);
 555	}
 556	/* clear Orphan Flag */
 557	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
 558	return 0;
 
 559}
 560
 561static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
 562{
 563	struct list_head *head;
 564	struct f2fs_orphan_block *orphan_blk = NULL;
 565	unsigned int nentries = 0;
 566	unsigned short index = 1;
 567	unsigned short orphan_blocks;
 
 568	struct page *page = NULL;
 569	struct ino_entry *orphan = NULL;
 570	struct inode_management *im = &sbi->im[ORPHAN_INO];
 571
 572	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
 
 573
 574	/*
 575	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
 576	 * orphan inode operations are covered under f2fs_lock_op().
 577	 * And, spin_lock should be avoided due to page operations below.
 578	 */
 579	head = &im->ino_list;
 580
 581	/* loop for each orphan inode entry and write them in Jornal block */
 582	list_for_each_entry(orphan, head, list) {
 583		if (!page) {
 584			page = grab_meta_page(sbi, start_blk++);
 
 585			orphan_blk =
 586				(struct f2fs_orphan_block *)page_address(page);
 587			memset(orphan_blk, 0, sizeof(*orphan_blk));
 
 588		}
 589
 590		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
 591
 592		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
 593			/*
 594			 * an orphan block is full of 1020 entries,
 595			 * then we need to flush current orphan blocks
 596			 * and bring another one in memory
 597			 */
 598			orphan_blk->blk_addr = cpu_to_le16(index);
 599			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 600			orphan_blk->entry_count = cpu_to_le32(nentries);
 601			set_page_dirty(page);
 602			f2fs_put_page(page, 1);
 603			index++;
 604			nentries = 0;
 605			page = NULL;
 606		}
 607	}
 608
 609	if (page) {
 610		orphan_blk->blk_addr = cpu_to_le16(index);
 611		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 612		orphan_blk->entry_count = cpu_to_le32(nentries);
 613		set_page_dirty(page);
 614		f2fs_put_page(page, 1);
 615	}
 
 
 616}
 617
 618static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
 619				block_t cp_addr, unsigned long long *version)
 620{
 621	struct page *cp_page_1, *cp_page_2 = NULL;
 622	unsigned long blk_size = sbi->blocksize;
 623	struct f2fs_checkpoint *cp_block;
 624	unsigned long long cur_version = 0, pre_version = 0;
 625	size_t crc_offset;
 626	__u32 crc = 0;
 627
 628	/* Read the 1st cp block in this CP pack */
 629	cp_page_1 = get_meta_page(sbi, cp_addr);
 630
 631	/* get the version number */
 632	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
 633	crc_offset = le32_to_cpu(cp_block->checksum_offset);
 634	if (crc_offset >= blk_size)
 635		goto invalid_cp1;
 636
 637	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
 638	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
 639		goto invalid_cp1;
 640
 641	pre_version = cur_cp_version(cp_block);
 642
 643	/* Read the 2nd cp block in this CP pack */
 644	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
 645	cp_page_2 = get_meta_page(sbi, cp_addr);
 646
 647	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
 648	crc_offset = le32_to_cpu(cp_block->checksum_offset);
 649	if (crc_offset >= blk_size)
 650		goto invalid_cp2;
 651
 652	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
 653	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
 654		goto invalid_cp2;
 655
 656	cur_version = cur_cp_version(cp_block);
 657
 658	if (cur_version == pre_version) {
 659		*version = cur_version;
 660		f2fs_put_page(cp_page_2, 1);
 661		return cp_page_1;
 662	}
 663invalid_cp2:
 664	f2fs_put_page(cp_page_2, 1);
 665invalid_cp1:
 666	f2fs_put_page(cp_page_1, 1);
 667	return NULL;
 668}
 669
 670int get_valid_checkpoint(struct f2fs_sb_info *sbi)
 671{
 672	struct f2fs_checkpoint *cp_block;
 673	struct f2fs_super_block *fsb = sbi->raw_super;
 674	struct page *cp1, *cp2, *cur_page;
 675	unsigned long blk_size = sbi->blocksize;
 676	unsigned long long cp1_version = 0, cp2_version = 0;
 677	unsigned long long cp_start_blk_no;
 678	unsigned int cp_blks = 1 + __cp_payload(sbi);
 679	block_t cp_blk_no;
 680	int i;
 681
 682	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
 683	if (!sbi->ckpt)
 684		return -ENOMEM;
 685	/*
 686	 * Finding out valid cp block involves read both
 687	 * sets( cp pack1 and cp pack 2)
 688	 */
 689	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 690	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
 691
 692	/* The second checkpoint pack should start at the next segment */
 693	cp_start_blk_no += ((unsigned long long)1) <<
 694				le32_to_cpu(fsb->log_blocks_per_seg);
 695	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
 696
 697	if (cp1 && cp2) {
 698		if (ver_after(cp2_version, cp1_version))
 699			cur_page = cp2;
 700		else
 701			cur_page = cp1;
 702	} else if (cp1) {
 703		cur_page = cp1;
 704	} else if (cp2) {
 705		cur_page = cp2;
 706	} else {
 707		goto fail_no_cp;
 708	}
 709
 710	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
 711	memcpy(sbi->ckpt, cp_block, blk_size);
 712
 713	/* Sanity checking of checkpoint */
 714	if (sanity_check_ckpt(sbi))
 715		goto fail_no_cp;
 716
 717	if (cp_blks <= 1)
 718		goto done;
 719
 720	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 721	if (cur_page == cp2)
 722		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
 723
 724	for (i = 1; i < cp_blks; i++) {
 725		void *sit_bitmap_ptr;
 726		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
 727
 728		cur_page = get_meta_page(sbi, cp_blk_no + i);
 729		sit_bitmap_ptr = page_address(cur_page);
 730		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
 731		f2fs_put_page(cur_page, 1);
 732	}
 733done:
 734	f2fs_put_page(cp1, 1);
 735	f2fs_put_page(cp2, 1);
 736	return 0;
 737
 738fail_no_cp:
 739	kfree(sbi->ckpt);
 740	return -EINVAL;
 741}
 742
 743static void __add_dirty_inode(struct inode *inode, enum inode_type type)
 744{
 745	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 746	struct f2fs_inode_info *fi = F2FS_I(inode);
 747	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 
 
 
 
 748
 749	if (is_inode_flag_set(fi, flag))
 750		return;
 751
 752	set_inode_flag(fi, flag);
 753	list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
 754	stat_inc_dirty_inode(sbi, type);
 755}
 756
 757static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
 758{
 759	struct f2fs_inode_info *fi = F2FS_I(inode);
 760	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 
 761
 762	if (get_dirty_pages(inode) ||
 763			!is_inode_flag_set(F2FS_I(inode), flag))
 764		return;
 765
 766	list_del_init(&fi->dirty_list);
 767	clear_inode_flag(fi, flag);
 768	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
 
 
 
 
 
 
 
 
 
 769}
 770
 771void update_dirty_page(struct inode *inode, struct page *page)
 772{
 773	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 774	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
 
 
 775
 776	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
 777			!S_ISLNK(inode->i_mode))
 778		return;
 779
 780	spin_lock(&sbi->inode_lock[type]);
 781	__add_dirty_inode(inode, type);
 782	inode_inc_dirty_pages(inode);
 783	spin_unlock(&sbi->inode_lock[type]);
 784
 785	SetPagePrivate(page);
 786	f2fs_trace_pid(page);
 787}
 788
 789void add_dirty_dir_inode(struct inode *inode)
 790{
 791	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 792
 793	spin_lock(&sbi->inode_lock[DIR_INODE]);
 794	__add_dirty_inode(inode, DIR_INODE);
 795	spin_unlock(&sbi->inode_lock[DIR_INODE]);
 796}
 797
 798void remove_dirty_inode(struct inode *inode)
 799{
 800	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 801	struct f2fs_inode_info *fi = F2FS_I(inode);
 802	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
 803
 804	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
 805			!S_ISLNK(inode->i_mode))
 
 806		return;
 
 807
 808	spin_lock(&sbi->inode_lock[type]);
 809	__remove_dirty_inode(inode, type);
 810	spin_unlock(&sbi->inode_lock[type]);
 
 
 
 
 
 
 
 
 811
 
 812	/* Only from the recovery routine */
 813	if (is_inode_flag_set(fi, FI_DELAY_IPUT)) {
 814		clear_inode_flag(fi, FI_DELAY_IPUT);
 815		iput(inode);
 816	}
 817}
 818
 819int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
 820{
 
 821	struct list_head *head;
 822	struct inode *inode;
 823	struct f2fs_inode_info *fi;
 824	bool is_dir = (type == DIR_INODE);
 825
 826	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
 827				get_pages(sbi, is_dir ?
 828				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 829retry:
 830	if (unlikely(f2fs_cp_error(sbi)))
 831		return -EIO;
 832
 833	spin_lock(&sbi->inode_lock[type]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834
 835	head = &sbi->inode_list[type];
 836	if (list_empty(head)) {
 837		spin_unlock(&sbi->inode_lock[type]);
 838		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
 839				get_pages(sbi, is_dir ?
 840				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 841		return 0;
 842	}
 843	fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
 844	inode = igrab(&fi->vfs_inode);
 845	spin_unlock(&sbi->inode_lock[type]);
 846	if (inode) {
 847		filemap_fdatawrite(inode->i_mapping);
 848		iput(inode);
 849	} else {
 850		/*
 851		 * We should submit bio, since it exists several
 852		 * wribacking dentry pages in the freeing inode.
 853		 */
 854		f2fs_submit_merged_bio(sbi, DATA, WRITE);
 855		cond_resched();
 856	}
 857	goto retry;
 858}
 859
 860/*
 861 * Freeze all the FS-operations for checkpoint.
 862 */
 863static int block_operations(struct f2fs_sb_info *sbi)
 864{
 865	struct writeback_control wbc = {
 866		.sync_mode = WB_SYNC_ALL,
 867		.nr_to_write = LONG_MAX,
 868		.for_reclaim = 0,
 869	};
 870	struct blk_plug plug;
 871	int err = 0;
 872
 873	blk_start_plug(&plug);
 874
 875retry_flush_dents:
 876	f2fs_lock_all(sbi);
 877	/* write all the dirty dentry pages */
 878	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
 879		f2fs_unlock_all(sbi);
 880		err = sync_dirty_inodes(sbi, DIR_INODE);
 881		if (err)
 882			goto out;
 883		goto retry_flush_dents;
 884	}
 885
 886	/*
 887	 * POR: we should ensure that there are no dirty node pages
 888	 * until finishing nat/sit flush.
 889	 */
 890retry_flush_nodes:
 891	down_write(&sbi->node_write);
 892
 893	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
 894		up_write(&sbi->node_write);
 895		err = sync_node_pages(sbi, 0, &wbc);
 896		if (err) {
 897			f2fs_unlock_all(sbi);
 898			goto out;
 899		}
 900		goto retry_flush_nodes;
 901	}
 902out:
 903	blk_finish_plug(&plug);
 904	return err;
 905}
 906
 907static void unblock_operations(struct f2fs_sb_info *sbi)
 908{
 909	up_write(&sbi->node_write);
 910	f2fs_unlock_all(sbi);
 911}
 912
 913static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
 914{
 915	DEFINE_WAIT(wait);
 916
 917	for (;;) {
 918		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
 919
 920		if (!get_pages(sbi, F2FS_WRITEBACK))
 921			break;
 922
 923		io_schedule_timeout(5*HZ);
 924	}
 925	finish_wait(&sbi->cp_wait, &wait);
 926}
 927
 928static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 929{
 930	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 931	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
 932	struct f2fs_nm_info *nm_i = NM_I(sbi);
 933	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
 934	nid_t last_nid = nm_i->next_scan_nid;
 935	block_t start_blk;
 
 936	unsigned int data_sum_blocks, orphan_blocks;
 937	__u32 crc32 = 0;
 
 938	int i;
 939	int cp_payload_blks = __cp_payload(sbi);
 940	block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
 941	bool invalidate = false;
 942	struct super_block *sb = sbi->sb;
 943	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
 944	u64 kbytes_written;
 945
 946	/*
 947	 * This avoids to conduct wrong roll-forward operations and uses
 948	 * metapages, so should be called prior to sync_meta_pages below.
 949	 */
 950	if (discard_next_dnode(sbi, discard_blk))
 951		invalidate = true;
 952
 953	/* Flush all the NAT/SIT pages */
 954	while (get_pages(sbi, F2FS_DIRTY_META)) {
 955		sync_meta_pages(sbi, META, LONG_MAX);
 956		if (unlikely(f2fs_cp_error(sbi)))
 957			return -EIO;
 958	}
 959
 960	next_free_nid(sbi, &last_nid);
 961
 962	/*
 963	 * modify checkpoint
 964	 * version number is already updated
 965	 */
 966	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
 967	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
 968	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
 969	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
 970		ckpt->cur_node_segno[i] =
 971			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
 972		ckpt->cur_node_blkoff[i] =
 973			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
 974		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
 975				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
 976	}
 977	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
 978		ckpt->cur_data_segno[i] =
 979			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
 980		ckpt->cur_data_blkoff[i] =
 981			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
 982		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
 983				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
 984	}
 985
 986	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
 987	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
 988	ckpt->next_free_nid = cpu_to_le32(last_nid);
 989
 990	/* 2 cp  + n data seg summary + orphan inode blocks */
 991	data_sum_blocks = npages_for_summary_flush(sbi, false);
 992	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
 993		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 994	else
 995		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 996
 997	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
 998	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
 999			orphan_blocks);
1000
1001	if (__remain_node_summaries(cpc->reason))
1002		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1003				cp_payload_blks + data_sum_blocks +
1004				orphan_blocks + NR_CURSEG_NODE_TYPE);
1005	else
1006		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1007				cp_payload_blks + data_sum_blocks +
1008				orphan_blocks);
1009
1010	if (cpc->reason == CP_UMOUNT)
1011		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1012	else
 
 
1013		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
 
 
 
1014
1015	if (cpc->reason == CP_FASTBOOT)
1016		set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1017	else
1018		clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1019
1020	if (orphan_num)
1021		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1022	else
1023		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1024
1025	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1026		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1027
1028	/* update SIT/NAT bitmap */
1029	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1030	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1031
1032	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1033	*((__le32 *)((unsigned char *)ckpt +
1034				le32_to_cpu(ckpt->checksum_offset)))
1035				= cpu_to_le32(crc32);
1036
1037	start_blk = __start_cp_addr(sbi);
1038
1039	/* need to wait for end_io results */
1040	wait_on_all_pages_writeback(sbi);
1041	if (unlikely(f2fs_cp_error(sbi)))
1042		return -EIO;
1043
1044	/* write out checkpoint buffer at block 0 */
1045	update_meta_page(sbi, ckpt, start_blk++);
 
 
 
 
1046
1047	for (i = 1; i < 1 + cp_payload_blks; i++)
1048		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1049							start_blk++);
1050
1051	if (orphan_num) {
1052		write_orphan_inodes(sbi, start_blk);
1053		start_blk += orphan_blocks;
1054	}
1055
1056	write_data_summaries(sbi, start_blk);
1057	start_blk += data_sum_blocks;
1058
1059	/* Record write statistics in the hot node summary */
1060	kbytes_written = sbi->kbytes_written;
1061	if (sb->s_bdev->bd_part)
1062		kbytes_written += BD_PART_WRITTEN(sbi);
1063
1064	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1065
1066	if (__remain_node_summaries(cpc->reason)) {
1067		write_node_summaries(sbi, start_blk);
1068		start_blk += NR_CURSEG_NODE_TYPE;
1069	}
1070
1071	/* writeout checkpoint block */
1072	update_meta_page(sbi, ckpt, start_blk);
 
 
 
 
1073
1074	/* wait for previous submitted node/meta pages writeback */
1075	wait_on_all_pages_writeback(sbi);
1076
1077	if (unlikely(f2fs_cp_error(sbi)))
1078		return -EIO;
1079
1080	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1081	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1082
1083	/* update user_block_counts */
1084	sbi->last_valid_block_count = sbi->total_valid_block_count;
1085	sbi->alloc_valid_block_count = 0;
1086
1087	/* Here, we only have one bio having CP pack */
1088	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1089
1090	/* wait for previous submitted meta pages writeback */
1091	wait_on_all_pages_writeback(sbi);
1092
1093	/*
1094	 * invalidate meta page which is used temporarily for zeroing out
1095	 * block at the end of warm node chain.
1096	 */
1097	if (invalidate)
1098		invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1099								discard_blk);
1100
1101	release_ino_entry(sbi);
1102
1103	if (unlikely(f2fs_cp_error(sbi)))
1104		return -EIO;
1105
1106	clear_prefree_segments(sbi, cpc);
1107	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1108
1109	return 0;
1110}
1111
1112/*
1113 * We guarantee that this checkpoint procedure will not fail.
1114 */
1115int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1116{
1117	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1118	unsigned long long ckpt_ver;
1119	int err = 0;
1120
1121	mutex_lock(&sbi->cp_mutex);
1122
1123	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1124		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1125		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1126		goto out;
1127	if (unlikely(f2fs_cp_error(sbi))) {
1128		err = -EIO;
1129		goto out;
1130	}
1131	if (f2fs_readonly(sbi->sb)) {
1132		err = -EROFS;
1133		goto out;
1134	}
1135
1136	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1137
1138	err = block_operations(sbi);
1139	if (err)
1140		goto out;
1141
1142	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1143
1144	f2fs_flush_merged_bios(sbi);
 
 
1145
1146	/*
1147	 * update checkpoint pack index
1148	 * Increase the version number so that
1149	 * SIT entries and seg summaries are written at correct place
1150	 */
1151	ckpt_ver = cur_cp_version(ckpt);
1152	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1153
1154	/* write cached NAT/SIT entries to NAT/SIT area */
1155	flush_nat_entries(sbi);
1156	flush_sit_entries(sbi, cpc);
1157
1158	/* unlock all the fs_lock[] in do_checkpoint() */
1159	err = do_checkpoint(sbi, cpc);
1160
1161	unblock_operations(sbi);
1162	stat_inc_cp_count(sbi->stat_info);
1163
1164	if (cpc->reason == CP_RECOVERY)
1165		f2fs_msg(sbi->sb, KERN_NOTICE,
1166			"checkpoint: version = %llx", ckpt_ver);
1167
1168	/* do checkpoint periodically */
1169	f2fs_update_time(sbi, CP_TIME);
1170	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1171out:
1172	mutex_unlock(&sbi->cp_mutex);
1173	return err;
 
 
1174}
1175
1176void init_ino_entry_info(struct f2fs_sb_info *sbi)
1177{
1178	int i;
1179
1180	for (i = 0; i < MAX_INO_ENTRY; i++) {
1181		struct inode_management *im = &sbi->im[i];
1182
1183		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1184		spin_lock_init(&im->ino_lock);
1185		INIT_LIST_HEAD(&im->ino_list);
1186		im->ino_num = 0;
1187	}
1188
1189	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1190			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1191				F2FS_ORPHANS_PER_BLOCK;
1192}
1193
1194int __init create_checkpoint_caches(void)
1195{
1196	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1197			sizeof(struct ino_entry));
1198	if (!ino_entry_slab)
1199		return -ENOMEM;
1200	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1201			sizeof(struct inode_entry));
1202	if (!inode_entry_slab) {
1203		kmem_cache_destroy(ino_entry_slab);
1204		return -ENOMEM;
1205	}
1206	return 0;
1207}
1208
1209void destroy_checkpoint_caches(void)
1210{
1211	kmem_cache_destroy(ino_entry_slab);
1212	kmem_cache_destroy(inode_entry_slab);
1213}
v3.15
  1/*
  2 * fs/f2fs/checkpoint.c
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/fs.h>
 12#include <linux/bio.h>
 13#include <linux/mpage.h>
 14#include <linux/writeback.h>
 15#include <linux/blkdev.h>
 16#include <linux/f2fs_fs.h>
 17#include <linux/pagevec.h>
 18#include <linux/swap.h>
 19
 20#include "f2fs.h"
 21#include "node.h"
 22#include "segment.h"
 
 23#include <trace/events/f2fs.h>
 24
 25static struct kmem_cache *orphan_entry_slab;
 26static struct kmem_cache *inode_entry_slab;
 27
 28/*
 29 * We guarantee no failure on the returned page.
 30 */
 31struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 32{
 33	struct address_space *mapping = META_MAPPING(sbi);
 34	struct page *page = NULL;
 35repeat:
 36	page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
 37	if (!page) {
 38		cond_resched();
 39		goto repeat;
 40	}
 41
 42	SetPageUptodate(page);
 43	return page;
 44}
 45
 46/*
 47 * We guarantee no failure on the returned page.
 48 */
 49struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 
 50{
 51	struct address_space *mapping = META_MAPPING(sbi);
 52	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 53repeat:
 54	page = grab_cache_page(mapping, index);
 55	if (!page) {
 56		cond_resched();
 57		goto repeat;
 58	}
 59	if (PageUptodate(page))
 60		goto out;
 61
 62	if (f2fs_submit_page_bio(sbi, page, index,
 63				READ_SYNC | REQ_META | REQ_PRIO))
 
 
 64		goto repeat;
 
 65
 66	lock_page(page);
 67	if (unlikely(page->mapping != mapping)) {
 68		f2fs_put_page(page, 1);
 69		goto repeat;
 70	}
 
 
 
 
 
 
 
 
 71out:
 72	mark_page_accessed(page);
 73	return page;
 74}
 75
 76inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
 
 
 
 
 
 
 
 
 
 
 
 77{
 78	switch (type) {
 79	case META_NAT:
 80		return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
 81	case META_SIT:
 82		return SIT_BLK_CNT(sbi);
 
 
 83	case META_SSA:
 
 
 
 
 84	case META_CP:
 85		return 0;
 
 
 
 
 
 
 
 
 86	default:
 87		BUG();
 88	}
 
 
 89}
 90
 91/*
 92 * Readahead CP/NAT/SIT/SSA pages
 93 */
 94int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
 
 95{
 96	block_t prev_blk_addr = 0;
 97	struct page *page;
 98	int blkno = start;
 99	int max_blks = get_max_meta_blks(sbi, type);
100
101	struct f2fs_io_info fio = {
 
102		.type = META,
103		.rw = READ_SYNC | REQ_META | REQ_PRIO
 
104	};
 
105
 
 
 
 
106	for (; nrpages-- > 0; blkno++) {
107		block_t blk_addr;
 
 
108
109		switch (type) {
110		case META_NAT:
 
 
 
111			/* get nat block addr */
112			if (unlikely(blkno >= max_blks))
113				blkno = 0;
114			blk_addr = current_nat_addr(sbi,
115					blkno * NAT_ENTRY_PER_BLOCK);
116			break;
117		case META_SIT:
118			/* get sit block addr */
119			if (unlikely(blkno >= max_blks))
120				goto out;
121			blk_addr = current_sit_addr(sbi,
122					blkno * SIT_ENTRY_PER_BLOCK);
123			if (blkno != start && prev_blk_addr + 1 != blk_addr)
124				goto out;
125			prev_blk_addr = blk_addr;
126			break;
127		case META_SSA:
128		case META_CP:
129			/* get ssa/cp block addr */
130			blk_addr = blkno;
131			break;
132		default:
133			BUG();
134		}
135
136		page = grab_cache_page(META_MAPPING(sbi), blk_addr);
137		if (!page)
138			continue;
139		if (PageUptodate(page)) {
140			mark_page_accessed(page);
141			f2fs_put_page(page, 1);
142			continue;
143		}
144
145		f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
146		mark_page_accessed(page);
 
147		f2fs_put_page(page, 0);
148	}
149out:
150	f2fs_submit_merged_bio(sbi, META, READ);
 
151	return blkno - start;
152}
153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154static int f2fs_write_meta_page(struct page *page,
155				struct writeback_control *wbc)
156{
157	struct inode *inode = page->mapping->host;
158	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
159
160	if (unlikely(sbi->por_doing))
 
 
 
 
161		goto redirty_out;
162	if (wbc->for_reclaim)
163		goto redirty_out;
164
165	/* Should not write any meta pages, if any IO error was occurred */
166	if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
167		goto no_write;
168
169	f2fs_wait_on_page_writeback(page, META);
170	write_meta_page(sbi, page);
171no_write:
172	dec_page_count(sbi, F2FS_DIRTY_META);
 
 
 
 
173	unlock_page(page);
 
 
 
 
174	return 0;
175
176redirty_out:
177	dec_page_count(sbi, F2FS_DIRTY_META);
178	wbc->pages_skipped++;
179	account_page_redirty(page);
180	set_page_dirty(page);
181	return AOP_WRITEPAGE_ACTIVATE;
182}
183
184static int f2fs_write_meta_pages(struct address_space *mapping,
185				struct writeback_control *wbc)
186{
187	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
188	long diff, written;
189
190	/* collect a number of dirty meta pages and write together */
191	if (wbc->for_kupdate ||
192		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
193		goto skip_write;
194
 
 
195	/* if mounting is failed, skip writing node pages */
196	mutex_lock(&sbi->cp_mutex);
197	diff = nr_pages_to_write(sbi, META, wbc);
198	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
199	mutex_unlock(&sbi->cp_mutex);
200	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
201	return 0;
202
203skip_write:
204	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
 
205	return 0;
206}
207
208long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
209						long nr_to_write)
210{
211	struct address_space *mapping = META_MAPPING(sbi);
212	pgoff_t index = 0, end = LONG_MAX;
213	struct pagevec pvec;
214	long nwritten = 0;
215	struct writeback_control wbc = {
216		.for_reclaim = 0,
217	};
 
218
219	pagevec_init(&pvec, 0);
220
 
 
221	while (index <= end) {
222		int i, nr_pages;
223		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
224				PAGECACHE_TAG_DIRTY,
225				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
226		if (unlikely(nr_pages == 0))
227			break;
228
229		for (i = 0; i < nr_pages; i++) {
230			struct page *page = pvec.pages[i];
231
 
 
 
 
 
 
 
232			lock_page(page);
233
234			if (unlikely(page->mapping != mapping)) {
235continue_unlock:
236				unlock_page(page);
237				continue;
238			}
239			if (!PageDirty(page)) {
240				/* someone wrote it for us */
241				goto continue_unlock;
242			}
243
 
 
 
244			if (!clear_page_dirty_for_io(page))
245				goto continue_unlock;
246
247			if (f2fs_write_meta_page(page, &wbc)) {
248				unlock_page(page);
249				break;
250			}
251			nwritten++;
 
252			if (unlikely(nwritten >= nr_to_write))
253				break;
254		}
255		pagevec_release(&pvec);
256		cond_resched();
257	}
258
259	if (nwritten)
260		f2fs_submit_merged_bio(sbi, type, WRITE);
261
 
 
262	return nwritten;
263}
264
265static int f2fs_set_meta_page_dirty(struct page *page)
266{
267	struct address_space *mapping = page->mapping;
268	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
269
270	trace_f2fs_set_page_dirty(page, META);
271
272	SetPageUptodate(page);
273	if (!PageDirty(page)) {
274		__set_page_dirty_nobuffers(page);
275		inc_page_count(sbi, F2FS_DIRTY_META);
 
 
276		return 1;
277	}
278	return 0;
279}
280
281const struct address_space_operations f2fs_meta_aops = {
282	.writepage	= f2fs_write_meta_page,
283	.writepages	= f2fs_write_meta_pages,
284	.set_page_dirty	= f2fs_set_meta_page_dirty,
 
 
285};
286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
287int acquire_orphan_inode(struct f2fs_sb_info *sbi)
288{
 
289	int err = 0;
290
291	spin_lock(&sbi->orphan_inode_lock);
292	if (unlikely(sbi->n_orphans >= sbi->max_orphans))
293		err = -ENOSPC;
294	else
295		sbi->n_orphans++;
296	spin_unlock(&sbi->orphan_inode_lock);
297
298	return err;
299}
300
301void release_orphan_inode(struct f2fs_sb_info *sbi)
302{
303	spin_lock(&sbi->orphan_inode_lock);
304	f2fs_bug_on(sbi->n_orphans == 0);
305	sbi->n_orphans--;
306	spin_unlock(&sbi->orphan_inode_lock);
 
 
307}
308
309void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
310{
311	struct list_head *head;
312	struct orphan_inode_entry *new, *orphan;
 
313
314	new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
315	new->ino = ino;
316
317	spin_lock(&sbi->orphan_inode_lock);
318	head = &sbi->orphan_inode_list;
319	list_for_each_entry(orphan, head, list) {
320		if (orphan->ino == ino) {
321			spin_unlock(&sbi->orphan_inode_lock);
322			kmem_cache_free(orphan_entry_slab, new);
323			return;
324		}
325
326		if (orphan->ino > ino)
327			break;
328	}
329
330	/* add new orphan entry into list which is sorted by inode number */
331	list_add_tail(&new->list, &orphan->list);
332	spin_unlock(&sbi->orphan_inode_lock);
333}
334
335void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
336{
337	struct list_head *head;
338	struct orphan_inode_entry *orphan;
339
340	spin_lock(&sbi->orphan_inode_lock);
341	head = &sbi->orphan_inode_list;
342	list_for_each_entry(orphan, head, list) {
343		if (orphan->ino == ino) {
344			list_del(&orphan->list);
345			f2fs_bug_on(sbi->n_orphans == 0);
346			sbi->n_orphans--;
347			spin_unlock(&sbi->orphan_inode_lock);
348			kmem_cache_free(orphan_entry_slab, orphan);
349			return;
350		}
351	}
352	spin_unlock(&sbi->orphan_inode_lock);
353}
354
355static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
356{
357	struct inode *inode = f2fs_iget(sbi->sb, ino);
358	f2fs_bug_on(IS_ERR(inode));
359	clear_nlink(inode);
360
361	/* truncate all the data during iput */
362	iput(inode);
 
363}
364
365void recover_orphan_inodes(struct f2fs_sb_info *sbi)
366{
367	block_t start_blk, orphan_blkaddr, i, j;
 
368
369	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
370		return;
371
372	sbi->por_doing = true;
373	start_blk = __start_cp_addr(sbi) + 1;
374	orphan_blkaddr = __start_sum_addr(sbi) - 1;
375
376	ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
377
378	for (i = 0; i < orphan_blkaddr; i++) {
379		struct page *page = get_meta_page(sbi, start_blk + i);
380		struct f2fs_orphan_block *orphan_blk;
381
382		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
383		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
384			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
385			recover_orphan_inode(sbi, ino);
 
 
 
 
386		}
387		f2fs_put_page(page, 1);
388	}
389	/* clear Orphan Flag */
390	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
391	sbi->por_doing = false;
392	return;
393}
394
395static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
396{
397	struct list_head *head;
398	struct f2fs_orphan_block *orphan_blk = NULL;
399	unsigned int nentries = 0;
400	unsigned short index;
401	unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
402		(F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
403	struct page *page = NULL;
404	struct orphan_inode_entry *orphan = NULL;
 
405
406	for (index = 0; index < orphan_blocks; index++)
407		grab_meta_page(sbi, start_blk + index);
408
409	index = 1;
410	spin_lock(&sbi->orphan_inode_lock);
411	head = &sbi->orphan_inode_list;
 
 
 
412
413	/* loop for each orphan inode entry and write them in Jornal block */
414	list_for_each_entry(orphan, head, list) {
415		if (!page) {
416			page = find_get_page(META_MAPPING(sbi), start_blk++);
417			f2fs_bug_on(!page);
418			orphan_blk =
419				(struct f2fs_orphan_block *)page_address(page);
420			memset(orphan_blk, 0, sizeof(*orphan_blk));
421			f2fs_put_page(page, 0);
422		}
423
424		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
425
426		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
427			/*
428			 * an orphan block is full of 1020 entries,
429			 * then we need to flush current orphan blocks
430			 * and bring another one in memory
431			 */
432			orphan_blk->blk_addr = cpu_to_le16(index);
433			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
434			orphan_blk->entry_count = cpu_to_le32(nentries);
435			set_page_dirty(page);
436			f2fs_put_page(page, 1);
437			index++;
438			nentries = 0;
439			page = NULL;
440		}
441	}
442
443	if (page) {
444		orphan_blk->blk_addr = cpu_to_le16(index);
445		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
446		orphan_blk->entry_count = cpu_to_le32(nentries);
447		set_page_dirty(page);
448		f2fs_put_page(page, 1);
449	}
450
451	spin_unlock(&sbi->orphan_inode_lock);
452}
453
454static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
455				block_t cp_addr, unsigned long long *version)
456{
457	struct page *cp_page_1, *cp_page_2 = NULL;
458	unsigned long blk_size = sbi->blocksize;
459	struct f2fs_checkpoint *cp_block;
460	unsigned long long cur_version = 0, pre_version = 0;
461	size_t crc_offset;
462	__u32 crc = 0;
463
464	/* Read the 1st cp block in this CP pack */
465	cp_page_1 = get_meta_page(sbi, cp_addr);
466
467	/* get the version number */
468	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
469	crc_offset = le32_to_cpu(cp_block->checksum_offset);
470	if (crc_offset >= blk_size)
471		goto invalid_cp1;
472
473	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
474	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
475		goto invalid_cp1;
476
477	pre_version = cur_cp_version(cp_block);
478
479	/* Read the 2nd cp block in this CP pack */
480	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
481	cp_page_2 = get_meta_page(sbi, cp_addr);
482
483	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
484	crc_offset = le32_to_cpu(cp_block->checksum_offset);
485	if (crc_offset >= blk_size)
486		goto invalid_cp2;
487
488	crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
489	if (!f2fs_crc_valid(crc, cp_block, crc_offset))
490		goto invalid_cp2;
491
492	cur_version = cur_cp_version(cp_block);
493
494	if (cur_version == pre_version) {
495		*version = cur_version;
496		f2fs_put_page(cp_page_2, 1);
497		return cp_page_1;
498	}
499invalid_cp2:
500	f2fs_put_page(cp_page_2, 1);
501invalid_cp1:
502	f2fs_put_page(cp_page_1, 1);
503	return NULL;
504}
505
506int get_valid_checkpoint(struct f2fs_sb_info *sbi)
507{
508	struct f2fs_checkpoint *cp_block;
509	struct f2fs_super_block *fsb = sbi->raw_super;
510	struct page *cp1, *cp2, *cur_page;
511	unsigned long blk_size = sbi->blocksize;
512	unsigned long long cp1_version = 0, cp2_version = 0;
513	unsigned long long cp_start_blk_no;
 
 
 
514
515	sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
516	if (!sbi->ckpt)
517		return -ENOMEM;
518	/*
519	 * Finding out valid cp block involves read both
520	 * sets( cp pack1 and cp pack 2)
521	 */
522	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
523	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
524
525	/* The second checkpoint pack should start at the next segment */
526	cp_start_blk_no += ((unsigned long long)1) <<
527				le32_to_cpu(fsb->log_blocks_per_seg);
528	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
529
530	if (cp1 && cp2) {
531		if (ver_after(cp2_version, cp1_version))
532			cur_page = cp2;
533		else
534			cur_page = cp1;
535	} else if (cp1) {
536		cur_page = cp1;
537	} else if (cp2) {
538		cur_page = cp2;
539	} else {
540		goto fail_no_cp;
541	}
542
543	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
544	memcpy(sbi->ckpt, cp_block, blk_size);
545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
546	f2fs_put_page(cp1, 1);
547	f2fs_put_page(cp2, 1);
548	return 0;
549
550fail_no_cp:
551	kfree(sbi->ckpt);
552	return -EINVAL;
553}
554
555static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
556{
557	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
558	struct list_head *head = &sbi->dir_inode_list;
559	struct dir_inode_entry *entry;
560
561	list_for_each_entry(entry, head, list)
562		if (unlikely(entry->inode == inode))
563			return -EEXIST;
564
565	list_add_tail(&new->list, head);
566	stat_inc_dirty_dir(sbi);
567	return 0;
 
 
 
568}
569
570void set_dirty_dir_page(struct inode *inode, struct page *page)
571{
572	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
573	struct dir_inode_entry *new;
574	int ret = 0;
575
576	if (!S_ISDIR(inode->i_mode))
 
577		return;
578
579	new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
580	new->inode = inode;
581	INIT_LIST_HEAD(&new->list);
582
583	spin_lock(&sbi->dir_inode_lock);
584	ret = __add_dirty_inode(inode, new);
585	inode_inc_dirty_dents(inode);
586	SetPagePrivate(page);
587	spin_unlock(&sbi->dir_inode_lock);
588
589	if (ret)
590		kmem_cache_free(inode_entry_slab, new);
591}
592
593void add_dirty_dir_inode(struct inode *inode)
594{
595	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
596	struct dir_inode_entry *new =
597			f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
598	int ret = 0;
599
600	new->inode = inode;
601	INIT_LIST_HEAD(&new->list);
 
602
603	spin_lock(&sbi->dir_inode_lock);
604	ret = __add_dirty_inode(inode, new);
605	spin_unlock(&sbi->dir_inode_lock);
 
606
607	if (ret)
608		kmem_cache_free(inode_entry_slab, new);
609}
610
611void remove_dirty_dir_inode(struct inode *inode)
612{
613	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
614	struct list_head *head;
615	struct dir_inode_entry *entry;
 
 
 
616
617	if (!S_ISDIR(inode->i_mode))
618		return;
 
 
 
619
620	spin_lock(&sbi->dir_inode_lock);
621	if (get_dirty_dents(inode)) {
622		spin_unlock(&sbi->dir_inode_lock);
623		return;
624	}
625
626	head = &sbi->dir_inode_list;
627	list_for_each_entry(entry, head, list) {
628		if (entry->inode == inode) {
629			list_del(&entry->list);
630			stat_dec_dirty_dir(sbi);
631			spin_unlock(&sbi->dir_inode_lock);
632			kmem_cache_free(inode_entry_slab, entry);
633			goto done;
634		}
635	}
636	spin_unlock(&sbi->dir_inode_lock);
637
638done:
639	/* Only from the recovery routine */
640	if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
641		clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
642		iput(inode);
643	}
644}
645
646struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
647{
648
649	struct list_head *head;
650	struct inode *inode = NULL;
651	struct dir_inode_entry *entry;
 
652
653	spin_lock(&sbi->dir_inode_lock);
 
 
 
 
 
654
655	head = &sbi->dir_inode_list;
656	list_for_each_entry(entry, head, list) {
657		if (entry->inode->i_ino == ino) {
658			inode = entry->inode;
659			break;
660		}
661	}
662	spin_unlock(&sbi->dir_inode_lock);
663	return inode;
664}
665
666void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
667{
668	struct list_head *head;
669	struct dir_inode_entry *entry;
670	struct inode *inode;
671retry:
672	spin_lock(&sbi->dir_inode_lock);
673
674	head = &sbi->dir_inode_list;
675	if (list_empty(head)) {
676		spin_unlock(&sbi->dir_inode_lock);
677		return;
 
 
 
678	}
679	entry = list_entry(head->next, struct dir_inode_entry, list);
680	inode = igrab(entry->inode);
681	spin_unlock(&sbi->dir_inode_lock);
682	if (inode) {
683		filemap_fdatawrite(inode->i_mapping);
684		iput(inode);
685	} else {
686		/*
687		 * We should submit bio, since it exists several
688		 * wribacking dentry pages in the freeing inode.
689		 */
690		f2fs_submit_merged_bio(sbi, DATA, WRITE);
 
691	}
692	goto retry;
693}
694
695/*
696 * Freeze all the FS-operations for checkpoint.
697 */
698static void block_operations(struct f2fs_sb_info *sbi)
699{
700	struct writeback_control wbc = {
701		.sync_mode = WB_SYNC_ALL,
702		.nr_to_write = LONG_MAX,
703		.for_reclaim = 0,
704	};
705	struct blk_plug plug;
 
706
707	blk_start_plug(&plug);
708
709retry_flush_dents:
710	f2fs_lock_all(sbi);
711	/* write all the dirty dentry pages */
712	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
713		f2fs_unlock_all(sbi);
714		sync_dirty_dir_inodes(sbi);
 
 
715		goto retry_flush_dents;
716	}
717
718	/*
719	 * POR: we should ensure that there is no dirty node pages
720	 * until finishing nat/sit flush.
721	 */
722retry_flush_nodes:
723	mutex_lock(&sbi->node_write);
724
725	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
726		mutex_unlock(&sbi->node_write);
727		sync_node_pages(sbi, 0, &wbc);
 
 
 
 
728		goto retry_flush_nodes;
729	}
 
730	blk_finish_plug(&plug);
 
731}
732
733static void unblock_operations(struct f2fs_sb_info *sbi)
734{
735	mutex_unlock(&sbi->node_write);
736	f2fs_unlock_all(sbi);
737}
738
739static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
740{
741	DEFINE_WAIT(wait);
742
743	for (;;) {
744		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
745
746		if (!get_pages(sbi, F2FS_WRITEBACK))
747			break;
748
749		io_schedule();
750	}
751	finish_wait(&sbi->cp_wait, &wait);
752}
753
754static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
755{
756	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
757	nid_t last_nid = 0;
 
 
 
758	block_t start_blk;
759	struct page *cp_page;
760	unsigned int data_sum_blocks, orphan_blocks;
761	__u32 crc32 = 0;
762	void *kaddr;
763	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
764
765	/* Flush all the NAT/SIT pages */
766	while (get_pages(sbi, F2FS_DIRTY_META))
767		sync_meta_pages(sbi, META, LONG_MAX);
 
 
 
768
769	next_free_nid(sbi, &last_nid);
770
771	/*
772	 * modify checkpoint
773	 * version number is already updated
774	 */
775	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
776	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
777	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
778	for (i = 0; i < 3; i++) {
779		ckpt->cur_node_segno[i] =
780			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
781		ckpt->cur_node_blkoff[i] =
782			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
783		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
784				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
785	}
786	for (i = 0; i < 3; i++) {
787		ckpt->cur_data_segno[i] =
788			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
789		ckpt->cur_data_blkoff[i] =
790			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
791		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
792				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
793	}
794
795	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
796	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
797	ckpt->next_free_nid = cpu_to_le32(last_nid);
798
799	/* 2 cp  + n data seg summary + orphan inode blocks */
800	data_sum_blocks = npages_for_summary_flush(sbi);
801	if (data_sum_blocks < 3)
802		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
803	else
804		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
805
806	orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
807					/ F2FS_ORPHANS_PER_BLOCK;
808	ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
 
 
 
 
 
 
 
 
 
809
810	if (is_umount) {
811		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
812		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
813			data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
814	} else {
815		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
816		ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
817			data_sum_blocks + orphan_blocks);
818	}
819
820	if (sbi->n_orphans)
 
 
 
 
 
821		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
822	else
823		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
824
 
 
 
825	/* update SIT/NAT bitmap */
826	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
827	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
828
829	crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
830	*((__le32 *)((unsigned char *)ckpt +
831				le32_to_cpu(ckpt->checksum_offset)))
832				= cpu_to_le32(crc32);
833
834	start_blk = __start_cp_addr(sbi);
835
 
 
 
 
 
836	/* write out checkpoint buffer at block 0 */
837	cp_page = grab_meta_page(sbi, start_blk++);
838	kaddr = page_address(cp_page);
839	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
840	set_page_dirty(cp_page);
841	f2fs_put_page(cp_page, 1);
842
843	if (sbi->n_orphans) {
 
 
 
 
844		write_orphan_inodes(sbi, start_blk);
845		start_blk += orphan_blocks;
846	}
847
848	write_data_summaries(sbi, start_blk);
849	start_blk += data_sum_blocks;
850	if (is_umount) {
 
 
 
 
 
 
 
 
851		write_node_summaries(sbi, start_blk);
852		start_blk += NR_CURSEG_NODE_TYPE;
853	}
854
855	/* writeout checkpoint block */
856	cp_page = grab_meta_page(sbi, start_blk);
857	kaddr = page_address(cp_page);
858	memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
859	set_page_dirty(cp_page);
860	f2fs_put_page(cp_page, 1);
861
862	/* wait for previous submitted node/meta pages writeback */
863	wait_on_all_pages_writeback(sbi);
864
865	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
866	filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
 
 
 
867
868	/* update user_block_counts */
869	sbi->last_valid_block_count = sbi->total_valid_block_count;
870	sbi->alloc_valid_block_count = 0;
871
872	/* Here, we only have one bio having CP pack */
873	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
874
875	if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
876		clear_prefree_segments(sbi);
877		F2FS_RESET_SB_DIRT(sbi);
878	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
879}
880
881/*
882 * We guarantee that this checkpoint procedure should not fail.
883 */
884void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
885{
886	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
887	unsigned long long ckpt_ver;
 
888
889	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
890
891	mutex_lock(&sbi->cp_mutex);
892	block_operations(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
893
894	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
895
896	f2fs_submit_merged_bio(sbi, DATA, WRITE);
897	f2fs_submit_merged_bio(sbi, NODE, WRITE);
898	f2fs_submit_merged_bio(sbi, META, WRITE);
899
900	/*
901	 * update checkpoint pack index
902	 * Increase the version number so that
903	 * SIT entries and seg summaries are written at correct place
904	 */
905	ckpt_ver = cur_cp_version(ckpt);
906	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
907
908	/* write cached NAT/SIT entries to NAT/SIT area */
909	flush_nat_entries(sbi);
910	flush_sit_entries(sbi);
911
912	/* unlock all the fs_lock[] in do_checkpoint() */
913	do_checkpoint(sbi, is_umount);
914
915	unblock_operations(sbi);
 
 
 
 
 
 
 
 
 
 
916	mutex_unlock(&sbi->cp_mutex);
917
918	stat_inc_cp_count(sbi->stat_info);
919	trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
920}
921
922void init_orphan_info(struct f2fs_sb_info *sbi)
923{
924	spin_lock_init(&sbi->orphan_inode_lock);
925	INIT_LIST_HEAD(&sbi->orphan_inode_list);
926	sbi->n_orphans = 0;
927	/*
928	 * considering 512 blocks in a segment 8 blocks are needed for cp
929	 * and log segment summaries. Remaining blocks are used to keep
930	 * orphan entries with the limitation one reserved segment
931	 * for cp pack we can have max 1020*504 orphan entries
932	 */
933	sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
934				* F2FS_ORPHANS_PER_BLOCK;
 
 
 
935}
936
937int __init create_checkpoint_caches(void)
938{
939	orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
940			sizeof(struct orphan_inode_entry));
941	if (!orphan_entry_slab)
942		return -ENOMEM;
943	inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
944			sizeof(struct dir_inode_entry));
945	if (!inode_entry_slab) {
946		kmem_cache_destroy(orphan_entry_slab);
947		return -ENOMEM;
948	}
949	return 0;
950}
951
952void destroy_checkpoint_caches(void)
953{
954	kmem_cache_destroy(orphan_entry_slab);
955	kmem_cache_destroy(inode_entry_slab);
956}