Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * fs/f2fs/checkpoint.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/bio.h>
  13#include <linux/mpage.h>
  14#include <linux/writeback.h>
  15#include <linux/blkdev.h>
  16#include <linux/f2fs_fs.h>
  17#include <linux/pagevec.h>
  18#include <linux/swap.h>
  19
  20#include "f2fs.h"
  21#include "node.h"
  22#include "segment.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26static struct kmem_cache *ino_entry_slab;
  27struct kmem_cache *inode_entry_slab;
 
 
 
 
 
 
 
 
  28
  29/*
  30 * We guarantee no failure on the returned page.
  31 */
  32struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  33{
  34	struct address_space *mapping = META_MAPPING(sbi);
  35	struct page *page = NULL;
  36repeat:
  37	page = grab_cache_page(mapping, index);
  38	if (!page) {
  39		cond_resched();
  40		goto repeat;
  41	}
  42	f2fs_wait_on_page_writeback(page, META, true);
  43	SetPageUptodate(page);
 
  44	return page;
  45}
  46
  47/*
  48 * We guarantee no failure on the returned page.
  49 */
  50static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  51							bool is_meta)
  52{
  53	struct address_space *mapping = META_MAPPING(sbi);
  54	struct page *page;
  55	struct f2fs_io_info fio = {
  56		.sbi = sbi,
  57		.type = META,
  58		.rw = READ_SYNC | REQ_META | REQ_PRIO,
 
  59		.old_blkaddr = index,
  60		.new_blkaddr = index,
  61		.encrypted_page = NULL,
 
  62	};
 
  63
  64	if (unlikely(!is_meta))
  65		fio.rw &= ~REQ_META;
  66repeat:
  67	page = grab_cache_page(mapping, index);
  68	if (!page) {
  69		cond_resched();
  70		goto repeat;
  71	}
  72	if (PageUptodate(page))
  73		goto out;
  74
  75	fio.page = page;
  76
  77	if (f2fs_submit_page_bio(&fio)) {
 
  78		f2fs_put_page(page, 1);
  79		goto repeat;
  80	}
  81
  82	lock_page(page);
  83	if (unlikely(page->mapping != mapping)) {
  84		f2fs_put_page(page, 1);
  85		goto repeat;
  86	}
  87
  88	/*
  89	 * if there is any IO error when accessing device, make our filesystem
  90	 * readonly and make sure do not write checkpoint with non-uptodate
  91	 * meta page.
  92	 */
  93	if (unlikely(!PageUptodate(page)))
  94		f2fs_stop_checkpoint(sbi);
  95out:
  96	return page;
  97}
  98
  99struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 100{
 101	return __get_meta_page(sbi, index, true);
 102}
 103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104/* for POR only */
 105struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
 106{
 107	return __get_meta_page(sbi, index, false);
 108}
 109
 110bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111{
 112	switch (type) {
 113	case META_NAT:
 114		break;
 115	case META_SIT:
 116		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
 117			return false;
 118		break;
 119	case META_SSA:
 120		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
 121			blkaddr < SM_I(sbi)->ssa_blkaddr))
 122			return false;
 123		break;
 124	case META_CP:
 125		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
 126			blkaddr < __start_cp_addr(sbi)))
 127			return false;
 128		break;
 129	case META_POR:
 130		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
 131			blkaddr < MAIN_BLKADDR(sbi)))
 132			return false;
 133		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 134	default:
 135		BUG();
 136	}
 137
 138	return true;
 139}
 140
 141/*
 142 * Readahead CP/NAT/SIT/SSA pages
 143 */
 144int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
 145							int type, bool sync)
 146{
 147	struct page *page;
 148	block_t blkno = start;
 149	struct f2fs_io_info fio = {
 150		.sbi = sbi,
 151		.type = META,
 152		.rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
 
 153		.encrypted_page = NULL,
 
 
 154	};
 155	struct blk_plug plug;
 156
 157	if (unlikely(type == META_POR))
 158		fio.rw &= ~REQ_META;
 159
 160	blk_start_plug(&plug);
 161	for (; nrpages-- > 0; blkno++) {
 162
 163		if (!is_valid_blkaddr(sbi, blkno, type))
 164			goto out;
 165
 166		switch (type) {
 167		case META_NAT:
 168			if (unlikely(blkno >=
 169					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
 170				blkno = 0;
 171			/* get nat block addr */
 172			fio.new_blkaddr = current_nat_addr(sbi,
 173					blkno * NAT_ENTRY_PER_BLOCK);
 174			break;
 175		case META_SIT:
 176			/* get sit block addr */
 177			fio.new_blkaddr = current_sit_addr(sbi,
 178					blkno * SIT_ENTRY_PER_BLOCK);
 179			break;
 180		case META_SSA:
 181		case META_CP:
 182		case META_POR:
 183			fio.new_blkaddr = blkno;
 184			break;
 185		default:
 186			BUG();
 187		}
 188
 189		page = grab_cache_page(META_MAPPING(sbi), fio.new_blkaddr);
 
 190		if (!page)
 191			continue;
 192		if (PageUptodate(page)) {
 193			f2fs_put_page(page, 1);
 194			continue;
 195		}
 196
 197		fio.page = page;
 198		fio.old_blkaddr = fio.new_blkaddr;
 199		f2fs_submit_page_mbio(&fio);
 200		f2fs_put_page(page, 0);
 201	}
 202out:
 203	f2fs_submit_merged_bio(sbi, META, READ);
 204	blk_finish_plug(&plug);
 205	return blkno - start;
 206}
 207
 208void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
 209{
 210	struct page *page;
 211	bool readahead = false;
 212
 213	page = find_get_page(META_MAPPING(sbi), index);
 214	if (!page || (page && !PageUptodate(page)))
 215		readahead = true;
 216	f2fs_put_page(page, 0);
 217
 218	if (readahead)
 219		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
 220}
 221
 222static int f2fs_write_meta_page(struct page *page,
 223				struct writeback_control *wbc)
 
 224{
 225	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
 226
 227	trace_f2fs_writepage(page, META);
 228
 
 
 229	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 230		goto redirty_out;
 231	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
 232		goto redirty_out;
 233	if (unlikely(f2fs_cp_error(sbi)))
 234		goto redirty_out;
 235
 236	write_meta_page(sbi, page);
 237	dec_page_count(sbi, F2FS_DIRTY_META);
 238
 239	if (wbc->for_reclaim)
 240		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
 241
 242	unlock_page(page);
 243
 244	if (unlikely(f2fs_cp_error(sbi)))
 245		f2fs_submit_merged_bio(sbi, META, WRITE);
 246
 247	return 0;
 248
 249redirty_out:
 250	redirty_page_for_writepage(wbc, page);
 251	return AOP_WRITEPAGE_ACTIVATE;
 252}
 253
 
 
 
 
 
 
 254static int f2fs_write_meta_pages(struct address_space *mapping,
 255				struct writeback_control *wbc)
 256{
 257	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
 258	long diff, written;
 259
 
 
 
 260	/* collect a number of dirty meta pages and write together */
 261	if (wbc->for_kupdate ||
 262		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
 
 263		goto skip_write;
 264
 265	trace_f2fs_writepages(mapping->host, wbc, META);
 
 
 266
 267	/* if mounting is failed, skip writing node pages */
 268	mutex_lock(&sbi->cp_mutex);
 269	diff = nr_pages_to_write(sbi, META, wbc);
 270	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
 271	mutex_unlock(&sbi->cp_mutex);
 272	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
 273	return 0;
 274
 275skip_write:
 276	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
 277	trace_f2fs_writepages(mapping->host, wbc, META);
 278	return 0;
 279}
 280
 281long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
 282						long nr_to_write)
 283{
 284	struct address_space *mapping = META_MAPPING(sbi);
 285	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
 286	struct pagevec pvec;
 287	long nwritten = 0;
 
 288	struct writeback_control wbc = {
 289		.for_reclaim = 0,
 290	};
 291	struct blk_plug plug;
 292
 293	pagevec_init(&pvec, 0);
 294
 295	blk_start_plug(&plug);
 296
 297	while (index <= end) {
 298		int i, nr_pages;
 299		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 300				PAGECACHE_TAG_DIRTY,
 301				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 302		if (unlikely(nr_pages == 0))
 303			break;
 304
 305		for (i = 0; i < nr_pages; i++) {
 306			struct page *page = pvec.pages[i];
 307
 308			if (prev == ULONG_MAX)
 309				prev = page->index - 1;
 310			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
 311				pagevec_release(&pvec);
 312				goto stop;
 313			}
 314
 315			lock_page(page);
 316
 317			if (unlikely(page->mapping != mapping)) {
 318continue_unlock:
 319				unlock_page(page);
 320				continue;
 321			}
 322			if (!PageDirty(page)) {
 323				/* someone wrote it for us */
 324				goto continue_unlock;
 325			}
 326
 327			f2fs_wait_on_page_writeback(page, META, true);
 328
 329			BUG_ON(PageWriteback(page));
 330			if (!clear_page_dirty_for_io(page))
 331				goto continue_unlock;
 332
 333			if (mapping->a_ops->writepage(page, &wbc)) {
 334				unlock_page(page);
 335				break;
 336			}
 337			nwritten++;
 338			prev = page->index;
 339			if (unlikely(nwritten >= nr_to_write))
 340				break;
 341		}
 342		pagevec_release(&pvec);
 343		cond_resched();
 344	}
 345stop:
 346	if (nwritten)
 347		f2fs_submit_merged_bio(sbi, type, WRITE);
 348
 349	blk_finish_plug(&plug);
 350
 351	return nwritten;
 352}
 353
 354static int f2fs_set_meta_page_dirty(struct page *page)
 355{
 356	trace_f2fs_set_page_dirty(page, META);
 357
 358	SetPageUptodate(page);
 
 359	if (!PageDirty(page)) {
 360		__set_page_dirty_nobuffers(page);
 361		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
 362		SetPagePrivate(page);
 363		f2fs_trace_pid(page);
 364		return 1;
 365	}
 366	return 0;
 367}
 368
 369const struct address_space_operations f2fs_meta_aops = {
 370	.writepage	= f2fs_write_meta_page,
 371	.writepages	= f2fs_write_meta_pages,
 372	.set_page_dirty	= f2fs_set_meta_page_dirty,
 373	.invalidatepage = f2fs_invalidate_page,
 374	.releasepage	= f2fs_release_page,
 
 
 
 375};
 376
 377static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 
 378{
 379	struct inode_management *im = &sbi->im[type];
 380	struct ino_entry *e, *tmp;
 381
 382	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
 383retry:
 384	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
 385
 386	spin_lock(&im->ino_lock);
 387	e = radix_tree_lookup(&im->ino_root, ino);
 388	if (!e) {
 389		e = tmp;
 390		if (radix_tree_insert(&im->ino_root, ino, e)) {
 391			spin_unlock(&im->ino_lock);
 392			radix_tree_preload_end();
 393			goto retry;
 394		}
 395		memset(e, 0, sizeof(struct ino_entry));
 396		e->ino = ino;
 397
 398		list_add_tail(&e->list, &im->ino_list);
 399		if (type != ORPHAN_INO)
 400			im->ino_num++;
 401	}
 
 
 
 
 402	spin_unlock(&im->ino_lock);
 403	radix_tree_preload_end();
 404
 405	if (e != tmp)
 406		kmem_cache_free(ino_entry_slab, tmp);
 407}
 408
 409static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 410{
 411	struct inode_management *im = &sbi->im[type];
 412	struct ino_entry *e;
 413
 414	spin_lock(&im->ino_lock);
 415	e = radix_tree_lookup(&im->ino_root, ino);
 416	if (e) {
 417		list_del(&e->list);
 418		radix_tree_delete(&im->ino_root, ino);
 419		im->ino_num--;
 420		spin_unlock(&im->ino_lock);
 421		kmem_cache_free(ino_entry_slab, e);
 422		return;
 423	}
 424	spin_unlock(&im->ino_lock);
 425}
 426
 427void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 428{
 429	/* add new dirty ino entry into list */
 430	__add_ino_entry(sbi, ino, type);
 431}
 432
 433void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 434{
 435	/* remove dirty ino entry from list */
 436	__remove_ino_entry(sbi, ino, type);
 437}
 438
 439/* mode should be APPEND_INO or UPDATE_INO */
 440bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
 441{
 442	struct inode_management *im = &sbi->im[mode];
 443	struct ino_entry *e;
 444
 445	spin_lock(&im->ino_lock);
 446	e = radix_tree_lookup(&im->ino_root, ino);
 447	spin_unlock(&im->ino_lock);
 448	return e ? true : false;
 449}
 450
 451void release_ino_entry(struct f2fs_sb_info *sbi)
 452{
 453	struct ino_entry *e, *tmp;
 454	int i;
 455
 456	for (i = APPEND_INO; i <= UPDATE_INO; i++) {
 457		struct inode_management *im = &sbi->im[i];
 458
 459		spin_lock(&im->ino_lock);
 460		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
 461			list_del(&e->list);
 462			radix_tree_delete(&im->ino_root, e->ino);
 463			kmem_cache_free(ino_entry_slab, e);
 464			im->ino_num--;
 465		}
 466		spin_unlock(&im->ino_lock);
 467	}
 468}
 469
 470int acquire_orphan_inode(struct f2fs_sb_info *sbi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471{
 472	struct inode_management *im = &sbi->im[ORPHAN_INO];
 473	int err = 0;
 474
 475	spin_lock(&im->ino_lock);
 
 
 
 
 
 
 
 476	if (unlikely(im->ino_num >= sbi->max_orphans))
 477		err = -ENOSPC;
 478	else
 479		im->ino_num++;
 480	spin_unlock(&im->ino_lock);
 481
 482	return err;
 483}
 484
 485void release_orphan_inode(struct f2fs_sb_info *sbi)
 486{
 487	struct inode_management *im = &sbi->im[ORPHAN_INO];
 488
 489	spin_lock(&im->ino_lock);
 490	f2fs_bug_on(sbi, im->ino_num == 0);
 491	im->ino_num--;
 492	spin_unlock(&im->ino_lock);
 493}
 494
 495void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 496{
 497	/* add new orphan ino entry into list */
 498	__add_ino_entry(sbi, ino, ORPHAN_INO);
 
 499}
 500
 501void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 502{
 503	/* remove orphan entry from orphan list */
 504	__remove_ino_entry(sbi, ino, ORPHAN_INO);
 505}
 506
 507static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 508{
 509	struct inode *inode;
 
 
 510
 511	inode = f2fs_iget(sbi->sb, ino);
 512	if (IS_ERR(inode)) {
 513		/*
 514		 * there should be a bug that we can't find the entry
 515		 * to orphan inode.
 516		 */
 517		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
 518		return PTR_ERR(inode);
 519	}
 520
 
 
 
 
 
 
 521	clear_nlink(inode);
 522
 523	/* truncate all the data during iput */
 524	iput(inode);
 
 
 
 
 
 
 
 
 
 
 525	return 0;
 
 
 
 
 
 
 526}
 527
 528int recover_orphan_inodes(struct f2fs_sb_info *sbi)
 529{
 530	block_t start_blk, orphan_blocks, i, j;
 531	int err;
 
 
 
 
 532
 533	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
 534		return 0;
 535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 536	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
 537	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
 538
 539	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
 540
 541	for (i = 0; i < orphan_blocks; i++) {
 542		struct page *page = get_meta_page(sbi, start_blk + i);
 543		struct f2fs_orphan_block *orphan_blk;
 544
 
 
 
 
 
 
 545		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 546		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
 547			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
 548			err = recover_orphan_inode(sbi, ino);
 549			if (err) {
 550				f2fs_put_page(page, 1);
 551				return err;
 552			}
 553		}
 554		f2fs_put_page(page, 1);
 555	}
 556	/* clear Orphan Flag */
 557	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
 558	return 0;
 
 
 
 
 
 
 
 
 
 
 559}
 560
 561static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
 562{
 563	struct list_head *head;
 564	struct f2fs_orphan_block *orphan_blk = NULL;
 565	unsigned int nentries = 0;
 566	unsigned short index = 1;
 567	unsigned short orphan_blocks;
 568	struct page *page = NULL;
 569	struct ino_entry *orphan = NULL;
 570	struct inode_management *im = &sbi->im[ORPHAN_INO];
 571
 572	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
 573
 574	/*
 575	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
 576	 * orphan inode operations are covered under f2fs_lock_op().
 577	 * And, spin_lock should be avoided due to page operations below.
 578	 */
 579	head = &im->ino_list;
 580
 581	/* loop for each orphan inode entry and write them in Jornal block */
 582	list_for_each_entry(orphan, head, list) {
 583		if (!page) {
 584			page = grab_meta_page(sbi, start_blk++);
 585			orphan_blk =
 586				(struct f2fs_orphan_block *)page_address(page);
 587			memset(orphan_blk, 0, sizeof(*orphan_blk));
 588		}
 589
 590		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
 591
 592		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
 593			/*
 594			 * an orphan block is full of 1020 entries,
 595			 * then we need to flush current orphan blocks
 596			 * and bring another one in memory
 597			 */
 598			orphan_blk->blk_addr = cpu_to_le16(index);
 599			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 600			orphan_blk->entry_count = cpu_to_le32(nentries);
 601			set_page_dirty(page);
 602			f2fs_put_page(page, 1);
 603			index++;
 604			nentries = 0;
 605			page = NULL;
 606		}
 607	}
 608
 609	if (page) {
 610		orphan_blk->blk_addr = cpu_to_le16(index);
 611		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 612		orphan_blk->entry_count = cpu_to_le32(nentries);
 613		set_page_dirty(page);
 614		f2fs_put_page(page, 1);
 615	}
 616}
 617
 618static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
 619				block_t cp_addr, unsigned long long *version)
 620{
 621	struct page *cp_page_1, *cp_page_2 = NULL;
 622	unsigned long blk_size = sbi->blocksize;
 623	struct f2fs_checkpoint *cp_block;
 624	unsigned long long cur_version = 0, pre_version = 0;
 625	size_t crc_offset;
 626	__u32 crc = 0;
 627
 628	/* Read the 1st cp block in this CP pack */
 629	cp_page_1 = get_meta_page(sbi, cp_addr);
 
 
 
 
 
 
 630
 631	/* get the version number */
 632	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
 633	crc_offset = le32_to_cpu(cp_block->checksum_offset);
 634	if (crc_offset >= blk_size)
 635		goto invalid_cp1;
 
 636
 637	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
 638	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
 639		goto invalid_cp1;
 640
 641	pre_version = cur_cp_version(cp_block);
 642
 643	/* Read the 2nd cp block in this CP pack */
 644	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
 645	cp_page_2 = get_meta_page(sbi, cp_addr);
 
 
 
 
 646
 647	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
 648	crc_offset = le32_to_cpu(cp_block->checksum_offset);
 649	if (crc_offset >= blk_size)
 650		goto invalid_cp2;
 651
 652	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
 653	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
 654		goto invalid_cp2;
 655
 656	cur_version = cur_cp_version(cp_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657
 658	if (cur_version == pre_version) {
 659		*version = cur_version;
 660		f2fs_put_page(cp_page_2, 1);
 661		return cp_page_1;
 662	}
 663invalid_cp2:
 664	f2fs_put_page(cp_page_2, 1);
 665invalid_cp1:
 666	f2fs_put_page(cp_page_1, 1);
 667	return NULL;
 668}
 669
 670int get_valid_checkpoint(struct f2fs_sb_info *sbi)
 671{
 672	struct f2fs_checkpoint *cp_block;
 673	struct f2fs_super_block *fsb = sbi->raw_super;
 674	struct page *cp1, *cp2, *cur_page;
 675	unsigned long blk_size = sbi->blocksize;
 676	unsigned long long cp1_version = 0, cp2_version = 0;
 677	unsigned long long cp_start_blk_no;
 678	unsigned int cp_blks = 1 + __cp_payload(sbi);
 679	block_t cp_blk_no;
 680	int i;
 
 681
 682	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
 
 683	if (!sbi->ckpt)
 684		return -ENOMEM;
 685	/*
 686	 * Finding out valid cp block involves read both
 687	 * sets( cp pack1 and cp pack 2)
 688	 */
 689	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 690	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
 691
 692	/* The second checkpoint pack should start at the next segment */
 693	cp_start_blk_no += ((unsigned long long)1) <<
 694				le32_to_cpu(fsb->log_blocks_per_seg);
 695	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
 696
 697	if (cp1 && cp2) {
 698		if (ver_after(cp2_version, cp1_version))
 699			cur_page = cp2;
 700		else
 701			cur_page = cp1;
 702	} else if (cp1) {
 703		cur_page = cp1;
 704	} else if (cp2) {
 705		cur_page = cp2;
 706	} else {
 
 707		goto fail_no_cp;
 708	}
 709
 710	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
 711	memcpy(sbi->ckpt, cp_block, blk_size);
 712
 
 
 
 
 
 713	/* Sanity checking of checkpoint */
 714	if (sanity_check_ckpt(sbi))
 715		goto fail_no_cp;
 
 
 716
 717	if (cp_blks <= 1)
 718		goto done;
 719
 720	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 721	if (cur_page == cp2)
 722		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
 723
 724	for (i = 1; i < cp_blks; i++) {
 725		void *sit_bitmap_ptr;
 726		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
 727
 728		cur_page = get_meta_page(sbi, cp_blk_no + i);
 
 
 
 
 729		sit_bitmap_ptr = page_address(cur_page);
 730		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
 731		f2fs_put_page(cur_page, 1);
 732	}
 733done:
 734	f2fs_put_page(cp1, 1);
 735	f2fs_put_page(cp2, 1);
 736	return 0;
 737
 
 
 
 738fail_no_cp:
 739	kfree(sbi->ckpt);
 740	return -EINVAL;
 741}
 742
 743static void __add_dirty_inode(struct inode *inode, enum inode_type type)
 744{
 745	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 746	struct f2fs_inode_info *fi = F2FS_I(inode);
 747	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 748
 749	if (is_inode_flag_set(fi, flag))
 750		return;
 751
 752	set_inode_flag(fi, flag);
 753	list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
 
 
 754	stat_inc_dirty_inode(sbi, type);
 755}
 756
 757static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
 758{
 759	struct f2fs_inode_info *fi = F2FS_I(inode);
 760	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 761
 762	if (get_dirty_pages(inode) ||
 763			!is_inode_flag_set(F2FS_I(inode), flag))
 764		return;
 765
 766	list_del_init(&fi->dirty_list);
 767	clear_inode_flag(fi, flag);
 768	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
 769}
 770
 771void update_dirty_page(struct inode *inode, struct page *page)
 772{
 773	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 774	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
 775
 776	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
 777			!S_ISLNK(inode->i_mode))
 778		return;
 779
 780	spin_lock(&sbi->inode_lock[type]);
 781	__add_dirty_inode(inode, type);
 
 782	inode_inc_dirty_pages(inode);
 783	spin_unlock(&sbi->inode_lock[type]);
 784
 785	SetPagePrivate(page);
 786	f2fs_trace_pid(page);
 787}
 788
 789void add_dirty_dir_inode(struct inode *inode)
 790{
 791	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 792
 793	spin_lock(&sbi->inode_lock[DIR_INODE]);
 794	__add_dirty_inode(inode, DIR_INODE);
 795	spin_unlock(&sbi->inode_lock[DIR_INODE]);
 796}
 797
 798void remove_dirty_inode(struct inode *inode)
 799{
 800	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 801	struct f2fs_inode_info *fi = F2FS_I(inode);
 802	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
 803
 804	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
 805			!S_ISLNK(inode->i_mode))
 806		return;
 807
 
 
 
 808	spin_lock(&sbi->inode_lock[type]);
 809	__remove_dirty_inode(inode, type);
 810	spin_unlock(&sbi->inode_lock[type]);
 811
 812	/* Only from the recovery routine */
 813	if (is_inode_flag_set(fi, FI_DELAY_IPUT)) {
 814		clear_inode_flag(fi, FI_DELAY_IPUT);
 815		iput(inode);
 816	}
 817}
 818
 819int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
 820{
 821	struct list_head *head;
 822	struct inode *inode;
 823	struct f2fs_inode_info *fi;
 824	bool is_dir = (type == DIR_INODE);
 
 825
 826	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
 827				get_pages(sbi, is_dir ?
 828				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 829retry:
 830	if (unlikely(f2fs_cp_error(sbi)))
 831		return -EIO;
 832
 833	spin_lock(&sbi->inode_lock[type]);
 834
 835	head = &sbi->inode_list[type];
 836	if (list_empty(head)) {
 837		spin_unlock(&sbi->inode_lock[type]);
 838		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
 839				get_pages(sbi, is_dir ?
 840				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 841		return 0;
 842	}
 843	fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
 844	inode = igrab(&fi->vfs_inode);
 845	spin_unlock(&sbi->inode_lock[type]);
 846	if (inode) {
 
 
 
 
 847		filemap_fdatawrite(inode->i_mapping);
 
 
 
 848		iput(inode);
 
 
 
 
 
 849	} else {
 850		/*
 851		 * We should submit bio, since it exists several
 852		 * wribacking dentry pages in the freeing inode.
 853		 */
 854		f2fs_submit_merged_bio(sbi, DATA, WRITE);
 855		cond_resched();
 856	}
 857	goto retry;
 858}
 859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860/*
 861 * Freeze all the FS-operations for checkpoint.
 862 */
 863static int block_operations(struct f2fs_sb_info *sbi)
 864{
 865	struct writeback_control wbc = {
 866		.sync_mode = WB_SYNC_ALL,
 867		.nr_to_write = LONG_MAX,
 868		.for_reclaim = 0,
 869	};
 870	struct blk_plug plug;
 871	int err = 0;
 872
 873	blk_start_plug(&plug);
 874
 875retry_flush_dents:
 876	f2fs_lock_all(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877	/* write all the dirty dentry pages */
 878	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
 879		f2fs_unlock_all(sbi);
 880		err = sync_dirty_inodes(sbi, DIR_INODE);
 881		if (err)
 882			goto out;
 883		goto retry_flush_dents;
 
 884	}
 885
 886	/*
 887	 * POR: we should ensure that there are no dirty node pages
 888	 * until finishing nat/sit flush.
 889	 */
 
 
 
 
 
 
 
 
 
 
 
 
 890retry_flush_nodes:
 891	down_write(&sbi->node_write);
 892
 893	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
 894		up_write(&sbi->node_write);
 895		err = sync_node_pages(sbi, 0, &wbc);
 
 
 896		if (err) {
 
 897			f2fs_unlock_all(sbi);
 898			goto out;
 899		}
 
 900		goto retry_flush_nodes;
 901	}
 
 
 
 
 
 
 
 902out:
 903	blk_finish_plug(&plug);
 904	return err;
 905}
 906
 907static void unblock_operations(struct f2fs_sb_info *sbi)
 908{
 909	up_write(&sbi->node_write);
 910	f2fs_unlock_all(sbi);
 911}
 912
 913static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
 914{
 915	DEFINE_WAIT(wait);
 916
 917	for (;;) {
 918		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
 919
 920		if (!get_pages(sbi, F2FS_WRITEBACK))
 
 
 
 921			break;
 922
 923		io_schedule_timeout(5*HZ);
 924	}
 925	finish_wait(&sbi->cp_wait, &wait);
 926}
 927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 929{
 930	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 931	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
 932	struct f2fs_nm_info *nm_i = NM_I(sbi);
 933	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
 934	nid_t last_nid = nm_i->next_scan_nid;
 935	block_t start_blk;
 936	unsigned int data_sum_blocks, orphan_blocks;
 937	__u32 crc32 = 0;
 938	int i;
 939	int cp_payload_blks = __cp_payload(sbi);
 940	block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
 941	bool invalidate = false;
 942	struct super_block *sb = sbi->sb;
 943	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
 944	u64 kbytes_written;
 945
 946	/*
 947	 * This avoids to conduct wrong roll-forward operations and uses
 948	 * metapages, so should be called prior to sync_meta_pages below.
 949	 */
 950	if (discard_next_dnode(sbi, discard_blk))
 951		invalidate = true;
 952
 953	/* Flush all the NAT/SIT pages */
 954	while (get_pages(sbi, F2FS_DIRTY_META)) {
 955		sync_meta_pages(sbi, META, LONG_MAX);
 956		if (unlikely(f2fs_cp_error(sbi)))
 957			return -EIO;
 958	}
 959
 960	next_free_nid(sbi, &last_nid);
 961
 962	/*
 963	 * modify checkpoint
 964	 * version number is already updated
 965	 */
 966	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
 967	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
 968	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
 969	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
 970		ckpt->cur_node_segno[i] =
 971			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
 972		ckpt->cur_node_blkoff[i] =
 973			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
 974		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
 975				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
 976	}
 977	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
 978		ckpt->cur_data_segno[i] =
 979			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
 980		ckpt->cur_data_blkoff[i] =
 981			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
 982		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
 983				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
 984	}
 985
 986	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
 987	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
 988	ckpt->next_free_nid = cpu_to_le32(last_nid);
 989
 990	/* 2 cp  + n data seg summary + orphan inode blocks */
 991	data_sum_blocks = npages_for_summary_flush(sbi, false);
 
 992	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
 993		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 994	else
 995		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 
 996
 997	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
 998	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
 999			orphan_blocks);
1000
1001	if (__remain_node_summaries(cpc->reason))
1002		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1003				cp_payload_blks + data_sum_blocks +
1004				orphan_blocks + NR_CURSEG_NODE_TYPE);
1005	else
1006		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1007				cp_payload_blks + data_sum_blocks +
1008				orphan_blocks);
1009
1010	if (cpc->reason == CP_UMOUNT)
1011		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1012	else
1013		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1014
1015	if (cpc->reason == CP_FASTBOOT)
1016		set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1017	else
1018		clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1019
1020	if (orphan_num)
1021		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1022	else
1023		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1024
1025	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1026		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1027
1028	/* update SIT/NAT bitmap */
1029	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1030	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1031
1032	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1033	*((__le32 *)((unsigned char *)ckpt +
1034				le32_to_cpu(ckpt->checksum_offset)))
1035				= cpu_to_le32(crc32);
1036
1037	start_blk = __start_cp_addr(sbi);
1038
1039	/* need to wait for end_io results */
1040	wait_on_all_pages_writeback(sbi);
1041	if (unlikely(f2fs_cp_error(sbi)))
1042		return -EIO;
 
 
 
 
 
 
 
 
 
1043
1044	/* write out checkpoint buffer at block 0 */
1045	update_meta_page(sbi, ckpt, start_blk++);
1046
1047	for (i = 1; i < 1 + cp_payload_blks; i++)
1048		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1049							start_blk++);
1050
1051	if (orphan_num) {
1052		write_orphan_inodes(sbi, start_blk);
1053		start_blk += orphan_blocks;
1054	}
1055
1056	write_data_summaries(sbi, start_blk);
1057	start_blk += data_sum_blocks;
1058
1059	/* Record write statistics in the hot node summary */
1060	kbytes_written = sbi->kbytes_written;
1061	if (sb->s_bdev->bd_part)
1062		kbytes_written += BD_PART_WRITTEN(sbi);
1063
1064	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1065
1066	if (__remain_node_summaries(cpc->reason)) {
1067		write_node_summaries(sbi, start_blk);
1068		start_blk += NR_CURSEG_NODE_TYPE;
1069	}
1070
1071	/* writeout checkpoint block */
1072	update_meta_page(sbi, ckpt, start_blk);
1073
1074	/* wait for previous submitted node/meta pages writeback */
1075	wait_on_all_pages_writeback(sbi);
1076
1077	if (unlikely(f2fs_cp_error(sbi)))
1078		return -EIO;
1079
1080	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1081	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1082
1083	/* update user_block_counts */
1084	sbi->last_valid_block_count = sbi->total_valid_block_count;
1085	sbi->alloc_valid_block_count = 0;
1086
1087	/* Here, we only have one bio having CP pack */
1088	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
 
 
1089
1090	/* wait for previous submitted meta pages writeback */
1091	wait_on_all_pages_writeback(sbi);
 
 
 
 
 
 
 
 
 
1092
1093	/*
1094	 * invalidate meta page which is used temporarily for zeroing out
1095	 * block at the end of warm node chain.
1096	 */
1097	if (invalidate)
1098		invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1099								discard_blk);
1100
1101	release_ino_entry(sbi);
1102
1103	if (unlikely(f2fs_cp_error(sbi)))
1104		return -EIO;
1105
1106	clear_prefree_segments(sbi, cpc);
1107	clear_sbi_flag(sbi, SBI_IS_DIRTY);
 
 
1108
1109	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110}
1111
1112/*
1113 * We guarantee that this checkpoint procedure will not fail.
1114 */
1115int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1116{
1117	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1118	unsigned long long ckpt_ver;
1119	int err = 0;
1120
 
 
 
 
 
 
 
 
1121	mutex_lock(&sbi->cp_mutex);
1122
1123	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1124		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1125		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1126		goto out;
1127	if (unlikely(f2fs_cp_error(sbi))) {
1128		err = -EIO;
1129		goto out;
1130	}
1131	if (f2fs_readonly(sbi->sb)) {
1132		err = -EROFS;
1133		goto out;
1134	}
1135
1136	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1137
1138	err = block_operations(sbi);
1139	if (err)
1140		goto out;
1141
1142	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1143
1144	f2fs_flush_merged_bios(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1145
1146	/*
1147	 * update checkpoint pack index
1148	 * Increase the version number so that
1149	 * SIT entries and seg summaries are written at correct place
1150	 */
1151	ckpt_ver = cur_cp_version(ckpt);
1152	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1153
1154	/* write cached NAT/SIT entries to NAT/SIT area */
1155	flush_nat_entries(sbi);
1156	flush_sit_entries(sbi, cpc);
 
 
 
1157
1158	/* unlock all the fs_lock[] in do_checkpoint() */
1159	err = do_checkpoint(sbi, cpc);
1160
 
 
 
 
1161	unblock_operations(sbi);
1162	stat_inc_cp_count(sbi->stat_info);
1163
1164	if (cpc->reason == CP_RECOVERY)
1165		f2fs_msg(sbi->sb, KERN_NOTICE,
1166			"checkpoint: version = %llx", ckpt_ver);
1167
1168	/* do checkpoint periodically */
1169	f2fs_update_time(sbi, CP_TIME);
1170	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1171out:
1172	mutex_unlock(&sbi->cp_mutex);
1173	return err;
1174}
1175
1176void init_ino_entry_info(struct f2fs_sb_info *sbi)
1177{
1178	int i;
1179
1180	for (i = 0; i < MAX_INO_ENTRY; i++) {
1181		struct inode_management *im = &sbi->im[i];
1182
1183		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1184		spin_lock_init(&im->ino_lock);
1185		INIT_LIST_HEAD(&im->ino_list);
1186		im->ino_num = 0;
1187	}
1188
1189	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1190			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1191				F2FS_ORPHANS_PER_BLOCK;
1192}
1193
1194int __init create_checkpoint_caches(void)
1195{
1196	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1197			sizeof(struct ino_entry));
1198	if (!ino_entry_slab)
1199		return -ENOMEM;
1200	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1201			sizeof(struct inode_entry));
1202	if (!inode_entry_slab) {
1203		kmem_cache_destroy(ino_entry_slab);
1204		return -ENOMEM;
1205	}
1206	return 0;
1207}
1208
1209void destroy_checkpoint_caches(void)
1210{
1211	kmem_cache_destroy(ino_entry_slab);
1212	kmem_cache_destroy(inode_entry_slab);
1213}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/checkpoint.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/bio.h>
  10#include <linux/mpage.h>
  11#include <linux/writeback.h>
  12#include <linux/blkdev.h>
  13#include <linux/f2fs_fs.h>
  14#include <linux/pagevec.h>
  15#include <linux/swap.h>
  16
  17#include "f2fs.h"
  18#include "node.h"
  19#include "segment.h"
  20#include "trace.h"
  21#include <trace/events/f2fs.h>
  22
  23static struct kmem_cache *ino_entry_slab;
  24struct kmem_cache *f2fs_inode_entry_slab;
  25
  26void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
  27{
  28	f2fs_build_fault_attr(sbi, 0, 0);
  29	set_ckpt_flags(sbi, CP_ERROR_FLAG);
  30	if (!end_io)
  31		f2fs_flush_merged_writes(sbi);
  32}
  33
  34/*
  35 * We guarantee no failure on the returned page.
  36 */
  37struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  38{
  39	struct address_space *mapping = META_MAPPING(sbi);
  40	struct page *page = NULL;
  41repeat:
  42	page = f2fs_grab_cache_page(mapping, index, false);
  43	if (!page) {
  44		cond_resched();
  45		goto repeat;
  46	}
  47	f2fs_wait_on_page_writeback(page, META, true, true);
  48	if (!PageUptodate(page))
  49		SetPageUptodate(page);
  50	return page;
  51}
  52
  53/*
  54 * We guarantee no failure on the returned page.
  55 */
  56static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  57							bool is_meta)
  58{
  59	struct address_space *mapping = META_MAPPING(sbi);
  60	struct page *page;
  61	struct f2fs_io_info fio = {
  62		.sbi = sbi,
  63		.type = META,
  64		.op = REQ_OP_READ,
  65		.op_flags = REQ_META | REQ_PRIO,
  66		.old_blkaddr = index,
  67		.new_blkaddr = index,
  68		.encrypted_page = NULL,
  69		.is_por = !is_meta,
  70	};
  71	int err;
  72
  73	if (unlikely(!is_meta))
  74		fio.op_flags &= ~REQ_META;
  75repeat:
  76	page = f2fs_grab_cache_page(mapping, index, false);
  77	if (!page) {
  78		cond_resched();
  79		goto repeat;
  80	}
  81	if (PageUptodate(page))
  82		goto out;
  83
  84	fio.page = page;
  85
  86	err = f2fs_submit_page_bio(&fio);
  87	if (err) {
  88		f2fs_put_page(page, 1);
  89		return ERR_PTR(err);
  90	}
  91
  92	lock_page(page);
  93	if (unlikely(page->mapping != mapping)) {
  94		f2fs_put_page(page, 1);
  95		goto repeat;
  96	}
  97
  98	if (unlikely(!PageUptodate(page))) {
  99		f2fs_put_page(page, 1);
 100		return ERR_PTR(-EIO);
 101	}
 
 
 
 102out:
 103	return page;
 104}
 105
 106struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 107{
 108	return __get_meta_page(sbi, index, true);
 109}
 110
 111struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
 112{
 113	struct page *page;
 114	int count = 0;
 115
 116retry:
 117	page = __get_meta_page(sbi, index, true);
 118	if (IS_ERR(page)) {
 119		if (PTR_ERR(page) == -EIO &&
 120				++count <= DEFAULT_RETRY_IO_COUNT)
 121			goto retry;
 122		f2fs_stop_checkpoint(sbi, false);
 123	}
 124	return page;
 125}
 126
 127/* for POR only */
 128struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
 129{
 130	return __get_meta_page(sbi, index, false);
 131}
 132
 133static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
 134							int type)
 135{
 136	struct seg_entry *se;
 137	unsigned int segno, offset;
 138	bool exist;
 139
 140	if (type != DATA_GENERIC_ENHANCE && type != DATA_GENERIC_ENHANCE_READ)
 141		return true;
 142
 143	segno = GET_SEGNO(sbi, blkaddr);
 144	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 145	se = get_seg_entry(sbi, segno);
 146
 147	exist = f2fs_test_bit(offset, se->cur_valid_map);
 148	if (!exist && type == DATA_GENERIC_ENHANCE) {
 149		f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
 150			 blkaddr, exist);
 151		set_sbi_flag(sbi, SBI_NEED_FSCK);
 152		WARN_ON(1);
 153	}
 154	return exist;
 155}
 156
 157bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
 158					block_t blkaddr, int type)
 159{
 160	switch (type) {
 161	case META_NAT:
 162		break;
 163	case META_SIT:
 164		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
 165			return false;
 166		break;
 167	case META_SSA:
 168		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
 169			blkaddr < SM_I(sbi)->ssa_blkaddr))
 170			return false;
 171		break;
 172	case META_CP:
 173		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
 174			blkaddr < __start_cp_addr(sbi)))
 175			return false;
 176		break;
 177	case META_POR:
 178		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
 179			blkaddr < MAIN_BLKADDR(sbi)))
 180			return false;
 181		break;
 182	case DATA_GENERIC:
 183	case DATA_GENERIC_ENHANCE:
 184	case DATA_GENERIC_ENHANCE_READ:
 185		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
 186				blkaddr < MAIN_BLKADDR(sbi))) {
 187			f2fs_warn(sbi, "access invalid blkaddr:%u",
 188				  blkaddr);
 189			set_sbi_flag(sbi, SBI_NEED_FSCK);
 190			WARN_ON(1);
 191			return false;
 192		} else {
 193			return __is_bitmap_valid(sbi, blkaddr, type);
 194		}
 195		break;
 196	case META_GENERIC:
 197		if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
 198			blkaddr >= MAIN_BLKADDR(sbi)))
 199			return false;
 200		break;
 201	default:
 202		BUG();
 203	}
 204
 205	return true;
 206}
 207
 208/*
 209 * Readahead CP/NAT/SIT/SSA pages
 210 */
 211int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
 212							int type, bool sync)
 213{
 214	struct page *page;
 215	block_t blkno = start;
 216	struct f2fs_io_info fio = {
 217		.sbi = sbi,
 218		.type = META,
 219		.op = REQ_OP_READ,
 220		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
 221		.encrypted_page = NULL,
 222		.in_list = false,
 223		.is_por = (type == META_POR),
 224	};
 225	struct blk_plug plug;
 226
 227	if (unlikely(type == META_POR))
 228		fio.op_flags &= ~REQ_META;
 229
 230	blk_start_plug(&plug);
 231	for (; nrpages-- > 0; blkno++) {
 232
 233		if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
 234			goto out;
 235
 236		switch (type) {
 237		case META_NAT:
 238			if (unlikely(blkno >=
 239					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
 240				blkno = 0;
 241			/* get nat block addr */
 242			fio.new_blkaddr = current_nat_addr(sbi,
 243					blkno * NAT_ENTRY_PER_BLOCK);
 244			break;
 245		case META_SIT:
 246			/* get sit block addr */
 247			fio.new_blkaddr = current_sit_addr(sbi,
 248					blkno * SIT_ENTRY_PER_BLOCK);
 249			break;
 250		case META_SSA:
 251		case META_CP:
 252		case META_POR:
 253			fio.new_blkaddr = blkno;
 254			break;
 255		default:
 256			BUG();
 257		}
 258
 259		page = f2fs_grab_cache_page(META_MAPPING(sbi),
 260						fio.new_blkaddr, false);
 261		if (!page)
 262			continue;
 263		if (PageUptodate(page)) {
 264			f2fs_put_page(page, 1);
 265			continue;
 266		}
 267
 268		fio.page = page;
 269		f2fs_submit_page_bio(&fio);
 
 270		f2fs_put_page(page, 0);
 271	}
 272out:
 
 273	blk_finish_plug(&plug);
 274	return blkno - start;
 275}
 276
 277void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
 278{
 279	struct page *page;
 280	bool readahead = false;
 281
 282	page = find_get_page(META_MAPPING(sbi), index);
 283	if (!page || !PageUptodate(page))
 284		readahead = true;
 285	f2fs_put_page(page, 0);
 286
 287	if (readahead)
 288		f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
 289}
 290
 291static int __f2fs_write_meta_page(struct page *page,
 292				struct writeback_control *wbc,
 293				enum iostat_type io_type)
 294{
 295	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
 296
 297	trace_f2fs_writepage(page, META);
 298
 299	if (unlikely(f2fs_cp_error(sbi)))
 300		goto redirty_out;
 301	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 302		goto redirty_out;
 303	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
 304		goto redirty_out;
 
 
 305
 306	f2fs_do_write_meta_page(sbi, page, io_type);
 307	dec_page_count(sbi, F2FS_DIRTY_META);
 308
 309	if (wbc->for_reclaim)
 310		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
 311
 312	unlock_page(page);
 313
 314	if (unlikely(f2fs_cp_error(sbi)))
 315		f2fs_submit_merged_write(sbi, META);
 316
 317	return 0;
 318
 319redirty_out:
 320	redirty_page_for_writepage(wbc, page);
 321	return AOP_WRITEPAGE_ACTIVATE;
 322}
 323
 324static int f2fs_write_meta_page(struct page *page,
 325				struct writeback_control *wbc)
 326{
 327	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
 328}
 329
 330static int f2fs_write_meta_pages(struct address_space *mapping,
 331				struct writeback_control *wbc)
 332{
 333	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
 334	long diff, written;
 335
 336	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 337		goto skip_write;
 338
 339	/* collect a number of dirty meta pages and write together */
 340	if (wbc->sync_mode != WB_SYNC_ALL &&
 341			get_pages(sbi, F2FS_DIRTY_META) <
 342					nr_pages_to_skip(sbi, META))
 343		goto skip_write;
 344
 345	/* if locked failed, cp will flush dirty pages instead */
 346	if (!mutex_trylock(&sbi->cp_mutex))
 347		goto skip_write;
 348
 349	trace_f2fs_writepages(mapping->host, wbc, META);
 
 350	diff = nr_pages_to_write(sbi, META, wbc);
 351	written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
 352	mutex_unlock(&sbi->cp_mutex);
 353	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
 354	return 0;
 355
 356skip_write:
 357	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
 358	trace_f2fs_writepages(mapping->host, wbc, META);
 359	return 0;
 360}
 361
 362long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
 363				long nr_to_write, enum iostat_type io_type)
 364{
 365	struct address_space *mapping = META_MAPPING(sbi);
 366	pgoff_t index = 0, prev = ULONG_MAX;
 367	struct pagevec pvec;
 368	long nwritten = 0;
 369	int nr_pages;
 370	struct writeback_control wbc = {
 371		.for_reclaim = 0,
 372	};
 373	struct blk_plug plug;
 374
 375	pagevec_init(&pvec);
 376
 377	blk_start_plug(&plug);
 378
 379	while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 380				PAGECACHE_TAG_DIRTY))) {
 381		int i;
 
 
 
 
 382
 383		for (i = 0; i < nr_pages; i++) {
 384			struct page *page = pvec.pages[i];
 385
 386			if (prev == ULONG_MAX)
 387				prev = page->index - 1;
 388			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
 389				pagevec_release(&pvec);
 390				goto stop;
 391			}
 392
 393			lock_page(page);
 394
 395			if (unlikely(page->mapping != mapping)) {
 396continue_unlock:
 397				unlock_page(page);
 398				continue;
 399			}
 400			if (!PageDirty(page)) {
 401				/* someone wrote it for us */
 402				goto continue_unlock;
 403			}
 404
 405			f2fs_wait_on_page_writeback(page, META, true, true);
 406
 
 407			if (!clear_page_dirty_for_io(page))
 408				goto continue_unlock;
 409
 410			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
 411				unlock_page(page);
 412				break;
 413			}
 414			nwritten++;
 415			prev = page->index;
 416			if (unlikely(nwritten >= nr_to_write))
 417				break;
 418		}
 419		pagevec_release(&pvec);
 420		cond_resched();
 421	}
 422stop:
 423	if (nwritten)
 424		f2fs_submit_merged_write(sbi, type);
 425
 426	blk_finish_plug(&plug);
 427
 428	return nwritten;
 429}
 430
 431static int f2fs_set_meta_page_dirty(struct page *page)
 432{
 433	trace_f2fs_set_page_dirty(page, META);
 434
 435	if (!PageUptodate(page))
 436		SetPageUptodate(page);
 437	if (!PageDirty(page)) {
 438		__set_page_dirty_nobuffers(page);
 439		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
 440		f2fs_set_page_private(page, 0);
 441		f2fs_trace_pid(page);
 442		return 1;
 443	}
 444	return 0;
 445}
 446
 447const struct address_space_operations f2fs_meta_aops = {
 448	.writepage	= f2fs_write_meta_page,
 449	.writepages	= f2fs_write_meta_pages,
 450	.set_page_dirty	= f2fs_set_meta_page_dirty,
 451	.invalidatepage = f2fs_invalidate_page,
 452	.releasepage	= f2fs_release_page,
 453#ifdef CONFIG_MIGRATION
 454	.migratepage    = f2fs_migrate_page,
 455#endif
 456};
 457
 458static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
 459						unsigned int devidx, int type)
 460{
 461	struct inode_management *im = &sbi->im[type];
 462	struct ino_entry *e, *tmp;
 463
 464	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
 465
 466	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
 467
 468	spin_lock(&im->ino_lock);
 469	e = radix_tree_lookup(&im->ino_root, ino);
 470	if (!e) {
 471		e = tmp;
 472		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
 473			f2fs_bug_on(sbi, 1);
 474
 
 
 475		memset(e, 0, sizeof(struct ino_entry));
 476		e->ino = ino;
 477
 478		list_add_tail(&e->list, &im->ino_list);
 479		if (type != ORPHAN_INO)
 480			im->ino_num++;
 481	}
 482
 483	if (type == FLUSH_INO)
 484		f2fs_set_bit(devidx, (char *)&e->dirty_device);
 485
 486	spin_unlock(&im->ino_lock);
 487	radix_tree_preload_end();
 488
 489	if (e != tmp)
 490		kmem_cache_free(ino_entry_slab, tmp);
 491}
 492
 493static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 494{
 495	struct inode_management *im = &sbi->im[type];
 496	struct ino_entry *e;
 497
 498	spin_lock(&im->ino_lock);
 499	e = radix_tree_lookup(&im->ino_root, ino);
 500	if (e) {
 501		list_del(&e->list);
 502		radix_tree_delete(&im->ino_root, ino);
 503		im->ino_num--;
 504		spin_unlock(&im->ino_lock);
 505		kmem_cache_free(ino_entry_slab, e);
 506		return;
 507	}
 508	spin_unlock(&im->ino_lock);
 509}
 510
 511void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 512{
 513	/* add new dirty ino entry into list */
 514	__add_ino_entry(sbi, ino, 0, type);
 515}
 516
 517void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 518{
 519	/* remove dirty ino entry from list */
 520	__remove_ino_entry(sbi, ino, type);
 521}
 522
 523/* mode should be APPEND_INO or UPDATE_INO */
 524bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
 525{
 526	struct inode_management *im = &sbi->im[mode];
 527	struct ino_entry *e;
 528
 529	spin_lock(&im->ino_lock);
 530	e = radix_tree_lookup(&im->ino_root, ino);
 531	spin_unlock(&im->ino_lock);
 532	return e ? true : false;
 533}
 534
 535void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
 536{
 537	struct ino_entry *e, *tmp;
 538	int i;
 539
 540	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
 541		struct inode_management *im = &sbi->im[i];
 542
 543		spin_lock(&im->ino_lock);
 544		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
 545			list_del(&e->list);
 546			radix_tree_delete(&im->ino_root, e->ino);
 547			kmem_cache_free(ino_entry_slab, e);
 548			im->ino_num--;
 549		}
 550		spin_unlock(&im->ino_lock);
 551	}
 552}
 553
 554void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
 555					unsigned int devidx, int type)
 556{
 557	__add_ino_entry(sbi, ino, devidx, type);
 558}
 559
 560bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
 561					unsigned int devidx, int type)
 562{
 563	struct inode_management *im = &sbi->im[type];
 564	struct ino_entry *e;
 565	bool is_dirty = false;
 566
 567	spin_lock(&im->ino_lock);
 568	e = radix_tree_lookup(&im->ino_root, ino);
 569	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
 570		is_dirty = true;
 571	spin_unlock(&im->ino_lock);
 572	return is_dirty;
 573}
 574
 575int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
 576{
 577	struct inode_management *im = &sbi->im[ORPHAN_INO];
 578	int err = 0;
 579
 580	spin_lock(&im->ino_lock);
 581
 582	if (time_to_inject(sbi, FAULT_ORPHAN)) {
 583		spin_unlock(&im->ino_lock);
 584		f2fs_show_injection_info(FAULT_ORPHAN);
 585		return -ENOSPC;
 586	}
 587
 588	if (unlikely(im->ino_num >= sbi->max_orphans))
 589		err = -ENOSPC;
 590	else
 591		im->ino_num++;
 592	spin_unlock(&im->ino_lock);
 593
 594	return err;
 595}
 596
 597void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
 598{
 599	struct inode_management *im = &sbi->im[ORPHAN_INO];
 600
 601	spin_lock(&im->ino_lock);
 602	f2fs_bug_on(sbi, im->ino_num == 0);
 603	im->ino_num--;
 604	spin_unlock(&im->ino_lock);
 605}
 606
 607void f2fs_add_orphan_inode(struct inode *inode)
 608{
 609	/* add new orphan ino entry into list */
 610	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
 611	f2fs_update_inode_page(inode);
 612}
 613
 614void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 615{
 616	/* remove orphan entry from orphan list */
 617	__remove_ino_entry(sbi, ino, ORPHAN_INO);
 618}
 619
 620static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 621{
 622	struct inode *inode;
 623	struct node_info ni;
 624	int err;
 625
 626	inode = f2fs_iget_retry(sbi->sb, ino);
 627	if (IS_ERR(inode)) {
 628		/*
 629		 * there should be a bug that we can't find the entry
 630		 * to orphan inode.
 631		 */
 632		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
 633		return PTR_ERR(inode);
 634	}
 635
 636	err = dquot_initialize(inode);
 637	if (err) {
 638		iput(inode);
 639		goto err_out;
 640	}
 641
 642	clear_nlink(inode);
 643
 644	/* truncate all the data during iput */
 645	iput(inode);
 646
 647	err = f2fs_get_node_info(sbi, ino, &ni);
 648	if (err)
 649		goto err_out;
 650
 651	/* ENOMEM was fully retried in f2fs_evict_inode. */
 652	if (ni.blk_addr != NULL_ADDR) {
 653		err = -EIO;
 654		goto err_out;
 655	}
 656	return 0;
 657
 658err_out:
 659	set_sbi_flag(sbi, SBI_NEED_FSCK);
 660	f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
 661		  __func__, ino);
 662	return err;
 663}
 664
 665int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
 666{
 667	block_t start_blk, orphan_blocks, i, j;
 668	unsigned int s_flags = sbi->sb->s_flags;
 669	int err = 0;
 670#ifdef CONFIG_QUOTA
 671	int quota_enabled;
 672#endif
 673
 674	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
 675		return 0;
 676
 677	if (bdev_read_only(sbi->sb->s_bdev)) {
 678		f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
 679		return 0;
 680	}
 681
 682	if (s_flags & SB_RDONLY) {
 683		f2fs_info(sbi, "orphan cleanup on readonly fs");
 684		sbi->sb->s_flags &= ~SB_RDONLY;
 685	}
 686
 687#ifdef CONFIG_QUOTA
 688	/* Needed for iput() to work correctly and not trash data */
 689	sbi->sb->s_flags |= SB_ACTIVE;
 690
 691	/*
 692	 * Turn on quotas which were not enabled for read-only mounts if
 693	 * filesystem has quota feature, so that they are updated correctly.
 694	 */
 695	quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
 696#endif
 697
 698	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
 699	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
 700
 701	f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
 702
 703	for (i = 0; i < orphan_blocks; i++) {
 704		struct page *page;
 705		struct f2fs_orphan_block *orphan_blk;
 706
 707		page = f2fs_get_meta_page(sbi, start_blk + i);
 708		if (IS_ERR(page)) {
 709			err = PTR_ERR(page);
 710			goto out;
 711		}
 712
 713		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 714		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
 715			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
 716			err = recover_orphan_inode(sbi, ino);
 717			if (err) {
 718				f2fs_put_page(page, 1);
 719				goto out;
 720			}
 721		}
 722		f2fs_put_page(page, 1);
 723	}
 724	/* clear Orphan Flag */
 725	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
 726out:
 727	set_sbi_flag(sbi, SBI_IS_RECOVERED);
 728
 729#ifdef CONFIG_QUOTA
 730	/* Turn quotas off */
 731	if (quota_enabled)
 732		f2fs_quota_off_umount(sbi->sb);
 733#endif
 734	sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
 735
 736	return err;
 737}
 738
 739static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
 740{
 741	struct list_head *head;
 742	struct f2fs_orphan_block *orphan_blk = NULL;
 743	unsigned int nentries = 0;
 744	unsigned short index = 1;
 745	unsigned short orphan_blocks;
 746	struct page *page = NULL;
 747	struct ino_entry *orphan = NULL;
 748	struct inode_management *im = &sbi->im[ORPHAN_INO];
 749
 750	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
 751
 752	/*
 753	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
 754	 * orphan inode operations are covered under f2fs_lock_op().
 755	 * And, spin_lock should be avoided due to page operations below.
 756	 */
 757	head = &im->ino_list;
 758
 759	/* loop for each orphan inode entry and write them in Jornal block */
 760	list_for_each_entry(orphan, head, list) {
 761		if (!page) {
 762			page = f2fs_grab_meta_page(sbi, start_blk++);
 763			orphan_blk =
 764				(struct f2fs_orphan_block *)page_address(page);
 765			memset(orphan_blk, 0, sizeof(*orphan_blk));
 766		}
 767
 768		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
 769
 770		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
 771			/*
 772			 * an orphan block is full of 1020 entries,
 773			 * then we need to flush current orphan blocks
 774			 * and bring another one in memory
 775			 */
 776			orphan_blk->blk_addr = cpu_to_le16(index);
 777			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 778			orphan_blk->entry_count = cpu_to_le32(nentries);
 779			set_page_dirty(page);
 780			f2fs_put_page(page, 1);
 781			index++;
 782			nentries = 0;
 783			page = NULL;
 784		}
 785	}
 786
 787	if (page) {
 788		orphan_blk->blk_addr = cpu_to_le16(index);
 789		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 790		orphan_blk->entry_count = cpu_to_le32(nentries);
 791		set_page_dirty(page);
 792		f2fs_put_page(page, 1);
 793	}
 794}
 795
 796static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
 797						struct f2fs_checkpoint *ckpt)
 798{
 799	unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
 800	__u32 chksum;
 
 
 
 
 801
 802	chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
 803	if (chksum_ofs < CP_CHKSUM_OFFSET) {
 804		chksum_ofs += sizeof(chksum);
 805		chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
 806						F2FS_BLKSIZE - chksum_ofs);
 807	}
 808	return chksum;
 809}
 810
 811static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
 812		struct f2fs_checkpoint **cp_block, struct page **cp_page,
 813		unsigned long long *version)
 814{
 815	size_t crc_offset = 0;
 816	__u32 crc;
 817
 818	*cp_page = f2fs_get_meta_page(sbi, cp_addr);
 819	if (IS_ERR(*cp_page))
 820		return PTR_ERR(*cp_page);
 821
 822	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
 823
 824	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
 825	if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
 826			crc_offset > CP_CHKSUM_OFFSET) {
 827		f2fs_put_page(*cp_page, 1);
 828		f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
 829		return -EINVAL;
 830	}
 831
 832	crc = f2fs_checkpoint_chksum(sbi, *cp_block);
 833	if (crc != cur_cp_crc(*cp_block)) {
 834		f2fs_put_page(*cp_page, 1);
 835		f2fs_warn(sbi, "invalid crc value");
 836		return -EINVAL;
 837	}
 
 
 838
 839	*version = cur_cp_version(*cp_block);
 840	return 0;
 841}
 842
 843static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
 844				block_t cp_addr, unsigned long long *version)
 845{
 846	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
 847	struct f2fs_checkpoint *cp_block = NULL;
 848	unsigned long long cur_version = 0, pre_version = 0;
 849	int err;
 850
 851	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
 852					&cp_page_1, version);
 853	if (err)
 854		return NULL;
 855
 856	if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
 857					sbi->blocks_per_seg) {
 858		f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
 859			  le32_to_cpu(cp_block->cp_pack_total_block_count));
 860		goto invalid_cp;
 861	}
 862	pre_version = *version;
 863
 864	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
 865	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
 866					&cp_page_2, version);
 867	if (err)
 868		goto invalid_cp;
 869	cur_version = *version;
 870
 871	if (cur_version == pre_version) {
 872		*version = cur_version;
 873		f2fs_put_page(cp_page_2, 1);
 874		return cp_page_1;
 875	}
 
 876	f2fs_put_page(cp_page_2, 1);
 877invalid_cp:
 878	f2fs_put_page(cp_page_1, 1);
 879	return NULL;
 880}
 881
 882int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
 883{
 884	struct f2fs_checkpoint *cp_block;
 885	struct f2fs_super_block *fsb = sbi->raw_super;
 886	struct page *cp1, *cp2, *cur_page;
 887	unsigned long blk_size = sbi->blocksize;
 888	unsigned long long cp1_version = 0, cp2_version = 0;
 889	unsigned long long cp_start_blk_no;
 890	unsigned int cp_blks = 1 + __cp_payload(sbi);
 891	block_t cp_blk_no;
 892	int i;
 893	int err;
 894
 895	sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
 896				 GFP_KERNEL);
 897	if (!sbi->ckpt)
 898		return -ENOMEM;
 899	/*
 900	 * Finding out valid cp block involves read both
 901	 * sets( cp pack1 and cp pack 2)
 902	 */
 903	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 904	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
 905
 906	/* The second checkpoint pack should start at the next segment */
 907	cp_start_blk_no += ((unsigned long long)1) <<
 908				le32_to_cpu(fsb->log_blocks_per_seg);
 909	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
 910
 911	if (cp1 && cp2) {
 912		if (ver_after(cp2_version, cp1_version))
 913			cur_page = cp2;
 914		else
 915			cur_page = cp1;
 916	} else if (cp1) {
 917		cur_page = cp1;
 918	} else if (cp2) {
 919		cur_page = cp2;
 920	} else {
 921		err = -EFSCORRUPTED;
 922		goto fail_no_cp;
 923	}
 924
 925	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
 926	memcpy(sbi->ckpt, cp_block, blk_size);
 927
 928	if (cur_page == cp1)
 929		sbi->cur_cp_pack = 1;
 930	else
 931		sbi->cur_cp_pack = 2;
 932
 933	/* Sanity checking of checkpoint */
 934	if (f2fs_sanity_check_ckpt(sbi)) {
 935		err = -EFSCORRUPTED;
 936		goto free_fail_no_cp;
 937	}
 938
 939	if (cp_blks <= 1)
 940		goto done;
 941
 942	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 943	if (cur_page == cp2)
 944		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
 945
 946	for (i = 1; i < cp_blks; i++) {
 947		void *sit_bitmap_ptr;
 948		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
 949
 950		cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
 951		if (IS_ERR(cur_page)) {
 952			err = PTR_ERR(cur_page);
 953			goto free_fail_no_cp;
 954		}
 955		sit_bitmap_ptr = page_address(cur_page);
 956		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
 957		f2fs_put_page(cur_page, 1);
 958	}
 959done:
 960	f2fs_put_page(cp1, 1);
 961	f2fs_put_page(cp2, 1);
 962	return 0;
 963
 964free_fail_no_cp:
 965	f2fs_put_page(cp1, 1);
 966	f2fs_put_page(cp2, 1);
 967fail_no_cp:
 968	kvfree(sbi->ckpt);
 969	return err;
 970}
 971
 972static void __add_dirty_inode(struct inode *inode, enum inode_type type)
 973{
 974	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 
 975	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 976
 977	if (is_inode_flag_set(inode, flag))
 978		return;
 979
 980	set_inode_flag(inode, flag);
 981	if (!f2fs_is_volatile_file(inode))
 982		list_add_tail(&F2FS_I(inode)->dirty_list,
 983						&sbi->inode_list[type]);
 984	stat_inc_dirty_inode(sbi, type);
 985}
 986
 987static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
 988{
 
 989	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 990
 991	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
 
 992		return;
 993
 994	list_del_init(&F2FS_I(inode)->dirty_list);
 995	clear_inode_flag(inode, flag);
 996	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
 997}
 998
 999void f2fs_update_dirty_page(struct inode *inode, struct page *page)
1000{
1001	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1002	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1003
1004	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1005			!S_ISLNK(inode->i_mode))
1006		return;
1007
1008	spin_lock(&sbi->inode_lock[type]);
1009	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1010		__add_dirty_inode(inode, type);
1011	inode_inc_dirty_pages(inode);
1012	spin_unlock(&sbi->inode_lock[type]);
1013
1014	f2fs_set_page_private(page, 0);
1015	f2fs_trace_pid(page);
1016}
1017
1018void f2fs_remove_dirty_inode(struct inode *inode)
1019{
1020	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 
 
 
 
 
 
 
 
 
 
1021	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1022
1023	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1024			!S_ISLNK(inode->i_mode))
1025		return;
1026
1027	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1028		return;
1029
1030	spin_lock(&sbi->inode_lock[type]);
1031	__remove_dirty_inode(inode, type);
1032	spin_unlock(&sbi->inode_lock[type]);
 
 
 
 
 
 
1033}
1034
1035int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1036{
1037	struct list_head *head;
1038	struct inode *inode;
1039	struct f2fs_inode_info *fi;
1040	bool is_dir = (type == DIR_INODE);
1041	unsigned long ino = 0;
1042
1043	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1044				get_pages(sbi, is_dir ?
1045				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1046retry:
1047	if (unlikely(f2fs_cp_error(sbi)))
1048		return -EIO;
1049
1050	spin_lock(&sbi->inode_lock[type]);
1051
1052	head = &sbi->inode_list[type];
1053	if (list_empty(head)) {
1054		spin_unlock(&sbi->inode_lock[type]);
1055		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1056				get_pages(sbi, is_dir ?
1057				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1058		return 0;
1059	}
1060	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1061	inode = igrab(&fi->vfs_inode);
1062	spin_unlock(&sbi->inode_lock[type]);
1063	if (inode) {
1064		unsigned long cur_ino = inode->i_ino;
1065
1066		F2FS_I(inode)->cp_task = current;
1067
1068		filemap_fdatawrite(inode->i_mapping);
1069
1070		F2FS_I(inode)->cp_task = NULL;
1071
1072		iput(inode);
1073		/* We need to give cpu to another writers. */
1074		if (ino == cur_ino)
1075			cond_resched();
1076		else
1077			ino = cur_ino;
1078	} else {
1079		/*
1080		 * We should submit bio, since it exists several
1081		 * wribacking dentry pages in the freeing inode.
1082		 */
1083		f2fs_submit_merged_write(sbi, DATA);
1084		cond_resched();
1085	}
1086	goto retry;
1087}
1088
1089int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1090{
1091	struct list_head *head = &sbi->inode_list[DIRTY_META];
1092	struct inode *inode;
1093	struct f2fs_inode_info *fi;
1094	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1095
1096	while (total--) {
1097		if (unlikely(f2fs_cp_error(sbi)))
1098			return -EIO;
1099
1100		spin_lock(&sbi->inode_lock[DIRTY_META]);
1101		if (list_empty(head)) {
1102			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1103			return 0;
1104		}
1105		fi = list_first_entry(head, struct f2fs_inode_info,
1106							gdirty_list);
1107		inode = igrab(&fi->vfs_inode);
1108		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1109		if (inode) {
1110			sync_inode_metadata(inode, 0);
1111
1112			/* it's on eviction */
1113			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1114				f2fs_update_inode_page(inode);
1115			iput(inode);
1116		}
1117	}
1118	return 0;
1119}
1120
1121static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1122{
1123	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1124	struct f2fs_nm_info *nm_i = NM_I(sbi);
1125	nid_t last_nid = nm_i->next_scan_nid;
1126
1127	next_free_nid(sbi, &last_nid);
1128	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1129	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1130	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1131	ckpt->next_free_nid = cpu_to_le32(last_nid);
1132}
1133
1134static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1135{
1136	bool ret = false;
1137
1138	if (!is_journalled_quota(sbi))
1139		return false;
1140
1141	down_write(&sbi->quota_sem);
1142	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1143		ret = false;
1144	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1145		ret = false;
1146	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1147		clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1148		ret = true;
1149	} else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1150		ret = true;
1151	}
1152	up_write(&sbi->quota_sem);
1153	return ret;
1154}
1155
1156/*
1157 * Freeze all the FS-operations for checkpoint.
1158 */
1159static int block_operations(struct f2fs_sb_info *sbi)
1160{
1161	struct writeback_control wbc = {
1162		.sync_mode = WB_SYNC_ALL,
1163		.nr_to_write = LONG_MAX,
1164		.for_reclaim = 0,
1165	};
1166	struct blk_plug plug;
1167	int err = 0, cnt = 0;
1168
1169	blk_start_plug(&plug);
1170
1171retry_flush_quotas:
1172	f2fs_lock_all(sbi);
1173	if (__need_flush_quota(sbi)) {
1174		int locked;
1175
1176		if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1177			set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1178			set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1179			goto retry_flush_dents;
1180		}
1181		f2fs_unlock_all(sbi);
1182
1183		/* only failed during mount/umount/freeze/quotactl */
1184		locked = down_read_trylock(&sbi->sb->s_umount);
1185		f2fs_quota_sync(sbi->sb, -1);
1186		if (locked)
1187			up_read(&sbi->sb->s_umount);
1188		cond_resched();
1189		goto retry_flush_quotas;
1190	}
1191
1192retry_flush_dents:
1193	/* write all the dirty dentry pages */
1194	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1195		f2fs_unlock_all(sbi);
1196		err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1197		if (err)
1198			goto out;
1199		cond_resched();
1200		goto retry_flush_quotas;
1201	}
1202
1203	/*
1204	 * POR: we should ensure that there are no dirty node pages
1205	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1206	 */
1207	down_write(&sbi->node_change);
1208
1209	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1210		up_write(&sbi->node_change);
1211		f2fs_unlock_all(sbi);
1212		err = f2fs_sync_inode_meta(sbi);
1213		if (err)
1214			goto out;
1215		cond_resched();
1216		goto retry_flush_quotas;
1217	}
1218
1219retry_flush_nodes:
1220	down_write(&sbi->node_write);
1221
1222	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1223		up_write(&sbi->node_write);
1224		atomic_inc(&sbi->wb_sync_req[NODE]);
1225		err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1226		atomic_dec(&sbi->wb_sync_req[NODE]);
1227		if (err) {
1228			up_write(&sbi->node_change);
1229			f2fs_unlock_all(sbi);
1230			goto out;
1231		}
1232		cond_resched();
1233		goto retry_flush_nodes;
1234	}
1235
1236	/*
1237	 * sbi->node_change is used only for AIO write_begin path which produces
1238	 * dirty node blocks and some checkpoint values by block allocation.
1239	 */
1240	__prepare_cp_block(sbi);
1241	up_write(&sbi->node_change);
1242out:
1243	blk_finish_plug(&plug);
1244	return err;
1245}
1246
1247static void unblock_operations(struct f2fs_sb_info *sbi)
1248{
1249	up_write(&sbi->node_write);
1250	f2fs_unlock_all(sbi);
1251}
1252
1253void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1254{
1255	DEFINE_WAIT(wait);
1256
1257	for (;;) {
1258		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1259
1260		if (!get_pages(sbi, F2FS_WB_CP_DATA))
1261			break;
1262
1263		if (unlikely(f2fs_cp_error(sbi)))
1264			break;
1265
1266		io_schedule_timeout(5*HZ);
1267	}
1268	finish_wait(&sbi->cp_wait, &wait);
1269}
1270
1271static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1272{
1273	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1274	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1275	unsigned long flags;
1276
1277	spin_lock_irqsave(&sbi->cp_lock, flags);
1278
1279	if ((cpc->reason & CP_UMOUNT) &&
1280			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1281			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1282		disable_nat_bits(sbi, false);
1283
1284	if (cpc->reason & CP_TRIMMED)
1285		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1286	else
1287		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1288
1289	if (cpc->reason & CP_UMOUNT)
1290		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1291	else
1292		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1293
1294	if (cpc->reason & CP_FASTBOOT)
1295		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1296	else
1297		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1298
1299	if (orphan_num)
1300		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1301	else
1302		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1303
1304	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1305		is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1306		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1307
1308	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1309		__set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1310	else
1311		__clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1312
1313	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1314		__set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1315	else
1316		__clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1317
1318	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1319		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1320	else
1321		__clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1322
1323	if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1324		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1325
1326	/* set this flag to activate crc|cp_ver for recovery */
1327	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1328	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1329
1330	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1331}
1332
1333static void commit_checkpoint(struct f2fs_sb_info *sbi,
1334	void *src, block_t blk_addr)
1335{
1336	struct writeback_control wbc = {
1337		.for_reclaim = 0,
1338	};
1339
1340	/*
1341	 * pagevec_lookup_tag and lock_page again will take
1342	 * some extra time. Therefore, f2fs_update_meta_pages and
1343	 * f2fs_sync_meta_pages are combined in this function.
1344	 */
1345	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1346	int err;
1347
1348	f2fs_wait_on_page_writeback(page, META, true, true);
1349
1350	memcpy(page_address(page), src, PAGE_SIZE);
1351
1352	set_page_dirty(page);
1353	if (unlikely(!clear_page_dirty_for_io(page)))
1354		f2fs_bug_on(sbi, 1);
1355
1356	/* writeout cp pack 2 page */
1357	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1358	if (unlikely(err && f2fs_cp_error(sbi))) {
1359		f2fs_put_page(page, 1);
1360		return;
1361	}
1362
1363	f2fs_bug_on(sbi, err);
1364	f2fs_put_page(page, 0);
1365
1366	/* submit checkpoint (with barrier if NOBARRIER is not set) */
1367	f2fs_submit_merged_write(sbi, META_FLUSH);
1368}
1369
1370static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1371{
1372	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 
1373	struct f2fs_nm_info *nm_i = NM_I(sbi);
1374	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
 
1375	block_t start_blk;
1376	unsigned int data_sum_blocks, orphan_blocks;
1377	__u32 crc32 = 0;
1378	int i;
1379	int cp_payload_blks = __cp_payload(sbi);
 
 
1380	struct super_block *sb = sbi->sb;
1381	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1382	u64 kbytes_written;
1383	int err;
 
 
 
 
 
 
1384
1385	/* Flush all the NAT/SIT pages */
1386	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1387	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) &&
1388					!f2fs_cp_error(sbi));
 
 
 
 
1389
1390	/*
1391	 * modify checkpoint
1392	 * version number is already updated
1393	 */
1394	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
 
1395	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1396	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1397		ckpt->cur_node_segno[i] =
1398			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1399		ckpt->cur_node_blkoff[i] =
1400			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1401		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1402				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1403	}
1404	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1405		ckpt->cur_data_segno[i] =
1406			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1407		ckpt->cur_data_blkoff[i] =
1408			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1409		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1410				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1411	}
1412
 
 
 
 
1413	/* 2 cp  + n data seg summary + orphan inode blocks */
1414	data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1415	spin_lock_irqsave(&sbi->cp_lock, flags);
1416	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1417		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1418	else
1419		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1420	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1421
1422	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1423	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1424			orphan_blocks);
1425
1426	if (__remain_node_summaries(cpc->reason))
1427		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1428				cp_payload_blks + data_sum_blocks +
1429				orphan_blocks + NR_CURSEG_NODE_TYPE);
1430	else
1431		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1432				cp_payload_blks + data_sum_blocks +
1433				orphan_blocks);
1434
1435	/* update ckpt flag for checkpoint */
1436	update_ckpt_flags(sbi, cpc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437
1438	/* update SIT/NAT bitmap */
1439	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1440	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1441
1442	crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1443	*((__le32 *)((unsigned char *)ckpt +
1444				le32_to_cpu(ckpt->checksum_offset)))
1445				= cpu_to_le32(crc32);
1446
1447	start_blk = __start_cp_next_addr(sbi);
1448
1449	/* write nat bits */
1450	if (enabled_nat_bits(sbi, cpc)) {
1451		__u64 cp_ver = cur_cp_version(ckpt);
1452		block_t blk;
1453
1454		cp_ver |= ((__u64)crc32 << 32);
1455		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1456
1457		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1458		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1459			f2fs_update_meta_page(sbi, nm_i->nat_bits +
1460					(i << F2FS_BLKSIZE_BITS), blk + i);
1461	}
1462
1463	/* write out checkpoint buffer at block 0 */
1464	f2fs_update_meta_page(sbi, ckpt, start_blk++);
1465
1466	for (i = 1; i < 1 + cp_payload_blks; i++)
1467		f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1468							start_blk++);
1469
1470	if (orphan_num) {
1471		write_orphan_inodes(sbi, start_blk);
1472		start_blk += orphan_blocks;
1473	}
1474
1475	f2fs_write_data_summaries(sbi, start_blk);
1476	start_blk += data_sum_blocks;
1477
1478	/* Record write statistics in the hot node summary */
1479	kbytes_written = sbi->kbytes_written;
1480	if (sb->s_bdev->bd_part)
1481		kbytes_written += BD_PART_WRITTEN(sbi);
1482
1483	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1484
1485	if (__remain_node_summaries(cpc->reason)) {
1486		f2fs_write_node_summaries(sbi, start_blk);
1487		start_blk += NR_CURSEG_NODE_TYPE;
1488	}
1489
 
 
 
 
 
 
 
 
 
 
 
 
1490	/* update user_block_counts */
1491	sbi->last_valid_block_count = sbi->total_valid_block_count;
1492	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1493
1494	/* Here, we have one bio having CP pack except cp pack 2 page */
1495	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1496	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_META) &&
1497					!f2fs_cp_error(sbi));
1498
1499	/* wait for previous submitted meta pages writeback */
1500	f2fs_wait_on_all_pages_writeback(sbi);
1501
1502	/* flush all device cache */
1503	err = f2fs_flush_device_cache(sbi);
1504	if (err)
1505		return err;
1506
1507	/* barrier and flush checkpoint cp pack 2 page if it can */
1508	commit_checkpoint(sbi, ckpt, start_blk);
1509	f2fs_wait_on_all_pages_writeback(sbi);
1510
1511	/*
1512	 * invalidate intermediate page cache borrowed from meta inode
1513	 * which are used for migration of encrypted inode's blocks.
1514	 */
1515	if (f2fs_sb_has_encrypt(sbi))
1516		invalidate_mapping_pages(META_MAPPING(sbi),
1517				MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1518
1519	f2fs_release_ino_entry(sbi, false);
1520
1521	f2fs_reset_fsync_node_info(sbi);
 
1522
 
1523	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1524	clear_sbi_flag(sbi, SBI_NEED_CP);
1525	clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1526
1527	spin_lock(&sbi->stat_lock);
1528	sbi->unusable_block_count = 0;
1529	spin_unlock(&sbi->stat_lock);
1530
1531	__set_cp_next_pack(sbi);
1532
1533	/*
1534	 * redirty superblock if metadata like node page or inode cache is
1535	 * updated during writing checkpoint.
1536	 */
1537	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1538			get_pages(sbi, F2FS_DIRTY_IMETA))
1539		set_sbi_flag(sbi, SBI_IS_DIRTY);
1540
1541	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1542
1543	return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1544}
1545
1546/*
1547 * We guarantee that this checkpoint procedure will not fail.
1548 */
1549int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1550{
1551	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1552	unsigned long long ckpt_ver;
1553	int err = 0;
1554
1555	if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1556		return -EROFS;
1557
1558	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1559		if (cpc->reason != CP_PAUSE)
1560			return 0;
1561		f2fs_warn(sbi, "Start checkpoint disabled!");
1562	}
1563	mutex_lock(&sbi->cp_mutex);
1564
1565	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1566		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1567		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1568		goto out;
1569	if (unlikely(f2fs_cp_error(sbi))) {
1570		err = -EIO;
1571		goto out;
1572	}
 
 
 
 
1573
1574	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1575
1576	err = block_operations(sbi);
1577	if (err)
1578		goto out;
1579
1580	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1581
1582	f2fs_flush_merged_writes(sbi);
1583
1584	/* this is the case of multiple fstrims without any changes */
1585	if (cpc->reason & CP_DISCARD) {
1586		if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1587			unblock_operations(sbi);
1588			goto out;
1589		}
1590
1591		if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1592				SIT_I(sbi)->dirty_sentries == 0 &&
1593				prefree_segments(sbi) == 0) {
1594			f2fs_flush_sit_entries(sbi, cpc);
1595			f2fs_clear_prefree_segments(sbi, cpc);
1596			unblock_operations(sbi);
1597			goto out;
1598		}
1599	}
1600
1601	/*
1602	 * update checkpoint pack index
1603	 * Increase the version number so that
1604	 * SIT entries and seg summaries are written at correct place
1605	 */
1606	ckpt_ver = cur_cp_version(ckpt);
1607	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1608
1609	/* write cached NAT/SIT entries to NAT/SIT area */
1610	err = f2fs_flush_nat_entries(sbi, cpc);
1611	if (err)
1612		goto stop;
1613
1614	f2fs_flush_sit_entries(sbi, cpc);
1615
1616	/* unlock all the fs_lock[] in do_checkpoint() */
1617	err = do_checkpoint(sbi, cpc);
1618	if (err)
1619		f2fs_release_discard_addrs(sbi);
1620	else
1621		f2fs_clear_prefree_segments(sbi, cpc);
1622stop:
1623	unblock_operations(sbi);
1624	stat_inc_cp_count(sbi->stat_info);
1625
1626	if (cpc->reason & CP_RECOVERY)
1627		f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
 
1628
1629	/* do checkpoint periodically */
1630	f2fs_update_time(sbi, CP_TIME);
1631	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1632out:
1633	mutex_unlock(&sbi->cp_mutex);
1634	return err;
1635}
1636
1637void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1638{
1639	int i;
1640
1641	for (i = 0; i < MAX_INO_ENTRY; i++) {
1642		struct inode_management *im = &sbi->im[i];
1643
1644		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1645		spin_lock_init(&im->ino_lock);
1646		INIT_LIST_HEAD(&im->ino_list);
1647		im->ino_num = 0;
1648	}
1649
1650	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1651			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1652				F2FS_ORPHANS_PER_BLOCK;
1653}
1654
1655int __init f2fs_create_checkpoint_caches(void)
1656{
1657	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1658			sizeof(struct ino_entry));
1659	if (!ino_entry_slab)
1660		return -ENOMEM;
1661	f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1662			sizeof(struct inode_entry));
1663	if (!f2fs_inode_entry_slab) {
1664		kmem_cache_destroy(ino_entry_slab);
1665		return -ENOMEM;
1666	}
1667	return 0;
1668}
1669
1670void f2fs_destroy_checkpoint_caches(void)
1671{
1672	kmem_cache_destroy(ino_entry_slab);
1673	kmem_cache_destroy(f2fs_inode_entry_slab);
1674}